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Abstract

The pre-industrial interglacial climate has been characterized by warm and stable
temperatures, without major abrupt changes. This has been different during the
last glacial period, which was much colder, but has been frequently interrupted
by abrupt climate changes, the so-called Dansgaard-Oeschger (DO) events. These
events are most pronounced in Greenland ice core records where the temperature
proxy suggests jumps in between a cold (stadial) and a warm (interstadial) state with
temperature increases of up to 16 K within few decades. Their cause is unknown
and most realistic climate models do not produce the observed behavior. Uncovering
how these models need to be changed in order to reproduce past climate changes
will greatly increase faith in their projections of present day anthropogenic climate
change. Nevertheless, a small number of realistic models, and a larger number of
conceptual ones, have been proposed that show variability resembling DO events.
They represent different dynamical mechanisms, ranging from transitions in between
multiple stable climate states, due to stochastic perturbations or changes of a control
parameter, to periodic oscillations. Most comparisons of models to proxy data are
qualitative, and do not address the complex temporal pattern of DO events.

This thesis presents a characterization of DO events by robust statistical analysis
of the ice core record, which can serve as a basis for comparisons of model output
and data. Different simple statistical and dynamical models are tested against the
data, using statistical hypothesis tests and Bayesian model comparison, with the
aim to distinguish different dynamical mechanisms underlying DO events. The
temporal variability in the DO warming and cooling event series is too pronounced
to originate from two independent random processes that are stationary and memo-
ryless. Instead, there is evidence for external modulation of DO events, with distinct
factors influencing stadials and interstadials. However, external modulation, such
as changes in solar radiation, is not sufficient to explain the entire variability. Ad-
ditionally, the stadial and interstadial durations have distinct statistics, indicating
different mechanisms that cause the respective transitions. Bayesian model compar-
ison on the basis of summary statistics shows that different stochastic dynamical
systems can equally well explain the data, because the dynamics are dominated
by high intensity noise in order to reproduce the large temporal variability of DO
events. The corresponding dynamical regimes include noise-induced transitions in a
bi-stable potential, excitability and relaxation oscillations. This thesis provides new
insights into the dynamical mechanisms underlying DO events, and constitutes a
statistical basis for future quantitative comparisons of proxy records and realistic
climate models that exhibit DO-type variability.
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Resumé på Dansk

Den varme før-industrielle mellemistidsperiode var relativt stabil, uden store plud-
selige klimaforandringer. Det var anderledes under den sidste istid, som udover at
være meget koldere også blev afbrudt af pludselige og voldsomme klimaforandringer,
de såkaldte Dansgaard-Oeschger (DO) begivenheder. Disse klimabegivenheder ses
tydeligst i iskernemålinger fra Grønlands iskappe. Her viser isotopvariationer, som
er proxy for temperaturen, spring mellem en kold glacial (stadial) tilstand til en
varmere (interstadial) tilstand med en opvarmning på op til 16 grader indenfor få
årtier. Årsagen til DO begivenhederne er ukendt, og de fleste realistiske klimamod-
eller har hidtil ikke været i stand til at reproducere dette variable istidsklima. Hvis
vi kan finde ud af hvad der skal til for at få klimamodellerne til at beskrive den
observerede klimaopførsel vil i høj grad styrke vores tiltro til at modellerne er i
stand til realistisk at forudsige de fremtidige klimaforandringer som følge af den
menneskeskabte drivhusopvarmning. Dog er der foreslået få realistiske og den del
konceptuelle klimamodeller, der faktisk er i stand til at simulere klimavariationer,
der minder om de paleoklimatiske observationer. Disse modeller foreslår forskellige
dynamiske mekanismer som årsag til DO begivenhederne: Det kunne være at der er
flere stabile klimaer, hvor spring imellem disse er forårsaget af tilfældige forstyrrelser
eller at stabiliteten af de enkelte klimatilstande ændrer sig, ved en langsom ændring
af en ydre faktor, en såkaldt kontrolparameter. Alternativt, kunne klimaet ændre
sig med periodiske oscillationer. De fleste sammenligninger mellem proxy observa-
tionerne og modelklimaet er kvalitativ og adresserer ikke den komplekse tidslige
struktur i forekomsten af DO begivenheder.

Denne afhandling præsenterer en karakteristik af DO begivenhederne ved hjælp
af en robust statistisk analyse af iskernemålingerne. Dette kan bruges som basis
for sammenligning af modelklimaer med paleoklimatisk data. Forskellige enkle
statistiske og dynamiske modeller bliver testet ved sammenligning med data. Dette
gøres ved brug af statistisk hypotese testning og Baysiansk model sammenligning,
med det formål at kunne skelne mellem forskellige foreslåede dynamiske mekanis-
mer styrende for DO begivenheder. Den tidslige variation i perioderne mellem de
pludselige opvarmninger og afkølinger er af sådan en beskaffenhed at de ikke kan
beskrives som to uafhængige stationære tilfældige processer uden hukommelse.
I stedet peger analysen på at der er en ekstern modulation af DO begivenheder,
som er styret af forskellige faktorer i stadiale og interstadiale perioder. Dog er
eksterne modulationer, såsom variationerne i solindstråling, ikke tilstrækkeligt til
at forklare hele variationen. Oveni modulationerne observerer vi at varigheden af
stadialperioder og interstadialperioder har forskellig statistik, hvilket kunne betyde
at afbrydelsen af henholdsvis kolde og varme perioder kunne skyldes forskellige
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mekanismer. Baysiansk modelsammenligning på baggrund af statistiske karak-
teristika (summary statistisk) viser at forskellige foreslåede stokastisk dynamiske
modeller lige godt forklarer data. Dette skyldes at dynamikken i modellerne er
domineret af den tilfældige støj, hvis de skal være i stand til at reproducere den
store tidslige variation af de observerede DO begivenheder. De korresponderende
dynamiske parameter regimer i modellerne inkluderer støj-drevne overgange i et
bi-stabilt potentiale og forskellige former for oscillationer. Afhandlingen giver ny ind-
sigt i den dynamik som DO begivenhederne skyldes. Det giver en statistisk basis for
fremtidige kvantitative sammenligninger mellem proxy målingerne og avancerede
klimamodeller, som reproducerer DO-lignende variationer.
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1Introduction

The current geological period, referred to as the Quaternary, began roughly 2.6
Million years ago and is characterized by a cyclic growth and disappearance of large
continental ice sheets, known as glacial and interglacial periods. These cycles imply
huge global-scale changes in climate, vegetation and fauna, and are well-documented
in all climate archives that span this period, such as ocean sediment core proxies for
global land ice extent [RL05]. It is generally believed that this climate variability is
due to changes in the distribution of incoming solar radiation (insolation) caused
by cyclic variations of the earth’s orbit, known as Milankovich cycles [Mil30]. This
insolation forcing has to be amplified by feedback mechanisms in order to explain the
large magnitude of the climate cycles. The details of this phenomenon, such as the
change in periodicity from approximately 40 kyr (kyr = one thousand years) to 100
kyr that occurred after the so-called middle Pleistocene transition about 1 Million
years ago, are still a matter of scientific debate. Nevertheless, the insolation forcing as
the driver is widely accepted. The situation is different for the next most pronounced
mode of climate variability other than glacial cycles, which happens on time scales
just below the variations in insolation. These so-called Dansgaard-Oeschger (DO)
events are abrupt, large-scale climate changes that have been recorded in the last
glacial period (approx. 12 - 120 kyr BP, BP = before present), and generally lack
a consensus regarding their cause. First discovered in Greenland ice cores, they
have been shown to have a large amplitude, which is about half of the mean glacial-
interglacial temperature difference in Greenland. They are, furthermore, very abrupt,
unfolding within a few decades. Since their discovery in ice cores, they have been
indentified in various other terrestrial and marine climate archives all over the
Northern Hemisphere. They are the prime demonstration that large-scale climate
change can happen at decadal time scales, and thus have high relevance to the
understanding of current anthropogenic climate change.

As of now, no comprehensive picture to explain these climate changes has emerged
from analyzing different available proxy observations of glacial climate parameters.
Likewise, detailed climate models under glacial boundary conditions typically lack
the necessary abruptness to realistically reproduce DO-type variability. Identifying
which modifications need to be made in the climate models in order for them to
reproduce the observed abrupt climate changes of the past would greatly increase
our confidence in their future projections of anthropogenic climate change. About
30 abrupt DO climate changes have been identified in the last glacial period, and
they constitute a very complex temporal pattern. Apart from questions regarding the
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physical mechanism underlying DO events, i.e., an identification of the components
of the climate system that are involved, there are fundamental questions regarding
the nature of the events. Are they part of a self-sustained oscillation in the climate
system? Or are they a manifestation of switches in between two alternative stable
states of the climate system, driven by large fluctuations in fast components of the
climate? Answers to questions like these can subsequently be used to distinguish
between hypothesized physical mechanisms. This approach is pursued in this
thesis.

In the remainder of this Chapter, we will give an introduction to the phenomenon of
abrupt glacial climate change, starting with evidence from paleoclimatic archives in
Sec. 1.1. Thereafter, in Sec. 1.2 we review leading physical hypotheses to explain
DO events, followed by a review of previous research on the dynamics of DO events
in Sec. 1.3. The methodology and scientific questions that form the basis of this
thesis are introduced in Sec. 1.4.

1.1 Evidence of abrupt glacial climate
change

The first evidence that the glacial climate might have been more unstable than
the current interglacial (the Holocene) came from the ice core record at the Camp
Century military base on the Greenland ice sheet, which showed persistent millennial-
scale fluctuations of water stable isotopes [Joh+72]. Water stable isotopes in
precipitation have been known to be correlated with atmospheric temperature. This
is due to isotopic fractionation, i.e., a depletion of the heavy isotopes 18O and
deuterium 2H relative to the lighter isotopes 16O and hydrogen H. This temperature
dependent process occurs at the different phase transitions of water in an air mass
as it moves from the site of evaporation to the accumulation site, where its isotopic
composition is measured [Dan64]. It was conjectured that this relationship could be
used to infer past temperatures from old ice in glaciers [Dan+73]. As a consequence,
the isotope variations measured in the Camp Century ice core were interpreted
as swings in between very cold (stadial) and mild (interstadial) conditions over
Greenland. The signal from Camp Century was found to be robust and not just local,
as the same isotope fluctuations were discovered in the second deep Greenland ice
core DYE-3, which was drilled about 1400 km away from Camp Century [Dan+82].
The positions of the two cores on the ice sheet were not optimal with respect to the
flow of the ice, but were a compromise for logistical and other reasons. Subsequently,
these two records were confirmed by the GRIP ice core [Dan+93] and the close-by
GISP2 ice core [Gro+93], drilled at the optimal location of the ice sheet, namely
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the summit where ice flow is slow and vertical. In both GRIP and GISP2 ice cores,
the stratigraphic sequence in the bottom of the core was disturbed, thus corrupting
the record from the oldest parts of the last glacial period. The newer NGRIP ice
core presents an undisturbed sequence, which spans about 5 kyr into the previous
interglacial period (the Eemian) at roughly 123 kyr BP [NGR04]. Because it allows
for an analysis of the entire last glacial period, most of the analysis in this thesis is
based on the oxygen isotope record of this ice core.
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Fig. 1.1.: Several proxy records and paleoclimatic reconstructions of the last glacial period.
a: NGRIP δ18O record [NGR04]. b: Greenland temperature reconstruction by
Kindler et al. [Kin+14]. c: Logarithm of the calcium concentration in the NGRIP
ice core [Ras+14]. d: Methane record from the Antarctic EPICA Dome C ice core
[Lou+08]. e: Antarctic δ18O record from the EDML ice core [EPI10]. f: CO2
record from the Antarctic Byrd ice core [AB08].

Most other parameters measured in Greenland ice cores were also found to vary
dramatically during the last glacial period. Already in the DYE-3 ice core it was
observed that CO2, trapped in small air bubbles in the ice, co-varies with the water
stable isotopes [Sta+84]. However, it was later found that the measured record was
not reliable and the actual global atmospheric CO2 rather co-varies with the Antarctic

1.1 Evidence of abrupt glacial climate change 3



isotope record and not with Greenland. More reliable are records of deposited
terrestrial dust and other chemical impurities that vary strongly and in synchrony
with the water stable isotopes, implying significant atmospheric circulation pattern
changes [May+97]. A number of important paleoclimatic reconstructions are shown
in Fig. 1.1, for a time interval spanning parts of the previous interglacial period
(119-130 kyr BP), the last glacial period (12-119 kyr BP) and the current interglacial
period (0-12 kyr BP).

The evidence for abrupt climate changes found in Greenland ice cores has sub-
sequently been supported by similar findings in other paleoclimatic archives. Re-
constructions of North Atlantic sea surface temperatures from marine sediment
cores have shown strong resemblance with the variations recorded in Greenland
[Bon+93]. Furthermore, Northern Hemisphere terrestrial archives established close
analogues to the abrupt events over Greenland, and thus revealed their large spatial
extent [Wan+01; Gen+03]. With an independent temperature reconstruction based
on nitrogen isotopes in air bubbles, the qualitative validity of the paleothermometer
based on ice core water stable isotopes has been confirmed [Kin+14], as shown in
Fig. 1.1b. From this reconstruction it has been found that the warming transitions
from stadial to interstadial conditions corresponded to a Greenland surface warming
of +5 K to +16.5 K. The transitions are furthermore very rapid, with temperatures
rising to their maximum within a few decades [Wol+10]. Changes in some climate
parameters indicating shifts in atmospheric circulation have even been shown to
occur within 1-3 years [Ste+08]. This combination of evidence forms a convincing
picture of large-scale and abrupt climate changes in the Northern Hemisphere, which
are now known as Dansgaard-Oeschger (DO) events. Because of their magnitude
and abruptness, these climate changes had even more widespread imprints, beyond
the climatological signal. Dramatic changes in vegetation have been observed from
paleosoil records in Loess sequences [Rou+07; Rou+17]. Even evidence for an
influence of DO events on the extinction of megafauna populations is beginning to
be obtained [Coo+15].

Even though the climatic fluctuations of the Southern Hemisphere during the last
glacial period, as inferred from Antarctic ice cores, are more subdued and less abrupt,
the DO events are in fact of global scale. All events recorded in Greenland have
analogues in Antarctic isotope records, referred to as Antarctic Isotope Maxima (AIM)
[Blu+98; Jou+07; Cap+10]. These events are closely tied to DO events and a study
based on recent efforts in synchronizing Greenland and Antarctic records suggests
that DO events on average start 200 years earlier than the corresponding Antarctic
events [WAI15]. For a comparison of the structure of the DO and AIM events,
see Fig. 1.2. The millennial-scale variability also manifests itself in reconstructed
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Greenhouse gas concentrations, with CO2 resembling the Antarctic [AB08], and NH4

the Greenland isotopic record [Flü+04].

Lastly, even though the Greenland ice core records only cover the most recent glacial
period, different evidence suggests that there have been DO events in all previous
glacial periods, at least in the last 800 kyr since the glacial-interglacial cyclicity
elongated to 100 kyr. First, AIM events have been identified in earlier glacial periods
[Jou+07], and their close correspondence to DO events thus suggests DO variability
in the Northern Hemisphere. In fact, the relation of timing and shape in between
AIM and DO events ca be used to create a synthetic Greenland isotope record for
earlier glacial periods [Bar+11]. A similar suggestion comes from the Antarctic
methane record, which closely resembles the Greenland water stable isotopes for
the last glacial, and shows consistent variability in the previous 8 glacial periods
[Lou+08]. Other independent records, which have corresponding events in the
last glacial, show similar dynamics in older glacial periods, such as a sea surface
temperature record from the Iberian margin [Mar+07] or speleothem proxy records
of the Asian monsoon [Che+09; Che+16].
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1.2 Hypotheses to explain abrupt glacial
climate change

In many leading hypotheses to explain DO events, the Atlantic Meriodional Over-
turning Circulation (AMOC) plays a major role. It is an ocean circulation largely
driven by buoyancy and meridional gradients in heat and salt, and is responsible
for a large part of the heat transport from lower to higher (polar) latitudes. Thus
a change in the circulation can account for large temperature changes at Northern
latitudes. It was suggested that the AMOC can switch between an ’on’ and an ’off’
state [Sto61], where the switching is controlled by freshwater input into the North
Atlantic, e.g. from ice sheet melt, which dilutes the heavy salt water, thus turning
off the sinking of heavy water (deep water formation) [Bro+85]. Indeed, globally
coupled climate models verified the existence of two stable equilibria of the AMOC
[MS88]. It has been subsequently reported for various models that a sudden input
of freshwater into the North Atlantic can fully or partially shut down the AMOC,
leading to an abrupt cooling of higher Northern latitudes. However, multi-model
studies show that the amount of freshwater needed in order to significantly impact
the AMOC, or, in other words, the stability of the corresponding climate state, is very
model dependent [Kag+13]. Furthermore, the sudden input of freshwater explains
an abrupt cooling, but not an abrupt warming, since the AMOC resurgence after
removal of freshwater input is typically more gradual. These types of studies also
do not explain the actual trigger of an event, i.e., the freshwater input dynamics.
Still, AMOC variability remains an appealing candidate to cause DO events, not
least because it can explain the bi-polar relationship expressed by Greenland and
Antarctic temperature reconstructions.

There have been studies introducing models, which do not rely on a freshwater
forcing to obtain transitions in the AMOC, but which possess other control parameters
that cause feedback mechanisms to result in a change of AMOC circulation regime.
For instance, a varying height of Northern Hemisphere ice sheets can trigger changes
in atmospheric circulation and subsequently sea ice, which ultimately leads to large
transitions in AMOC strength [Zha+14]. Here, there is a hysteresis of AMOC
strength with respect to the ice sheet height, which can explain both abrupt warming
and cooling transitions. A similar hysteresis with respect to atmospheric CO2 as
control parameter has been found, where abrupt climate transitions can be triggered
by changes in CO2, which are of similar magnitude compared to the observed
fluctuations in the last glacial [Zha+17].

A different dynamical mechanism has been identified in a model of intermediate
complexity [GR02]. Here, only the weak AMOC state is stable and the strong mode

6 Chapter 1 Introduction



is marginally unstable. Excursions from the weak to the strong AMOC state are
induced by stochastic freshwater forcing. This phenomenon is often referred to as
excitability. Furthermore, the possibility of self-sustained oscillations of the AMOC
has been postulated, driven by alternating phases of gradual salinity build-up and
freshening through meltwater in the Atlantic Ocean [Bro+90]. Salt-driven oscillatory
behavior of the AMOC, which however does not require meltwater input, has been
subsequently found in a realistic climate model [PV14; VP16]. In this model, changes
in North Atlantic sea ice cover are crucial to obtain a climate response similar to DO
events. Indeed, in many modeling studies, a change in the AMOC circulation regime
is not enough to explain the amplitude and abruptness observed in the Greenland
ice core signal. It has thus been suggested, that rapid retreat or expansion of sea
ice can act as an amplifier of climate variability, via the positive ice-albedo feedback
and because of its insulating effect, which decouples the atmosphere from the heat
reservoir of the ocean [Li+05; Li+10; Dok+13]. If the fast time scale provided
by sea ice changes is combined with a slower time scale, such as regrowth of an
ice shelf after collapse [Pet+13], one might obtain fast-slow dynamics resembling
abrupt warming and gradual cooling observed for the Greenland interstadials.

Apart from hypotheses that involve self-sustained oscillations, slow changes in a
control parameter or a direct external trigger, there have been a few instances of
completely unforced abrupt climate transitions in climate models. Such seemingly
random transitions can be the result of extremes in the chaotic atmospheric dynamics,
which then trigger large-scale climate regime shifts through different feedback
processes [Dri+13; Kle+15].

This overview of proposed hypotheses is not exhaustive, but should illustrate the wide
range of different dynamics that arise in the respective scenarios. Note that we did
not discuss the connection of DO events with massive iceberg discharges occurring
in the same period during the last glacial, called Heinrich events. The connection in
between these two types of events is not fully understood, but recent studies propose
promising mechanisms to explain the interaction of the two [Bas+17].

1.3 Dynamics of Dansgaard-Oeschger
events

In the previous section, it was seen that there exist numerous hypotheses to explain
glacial climate variability, supported by experiments with detailed climate models
and qualitative analysis of different paleoclimatic archives. From these manifold
hypotheses a breadth of qualitatively different dynamics of DO events arises, rang-
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ing from periodic oscillations to presumably unpredictable occurrences of events
triggered by the fast and chaotic atmospheric dynamics. Here, two approaches to
gain insight into the dynamics of DO events are highlighted, which both lie at the
heart of this thesis. First, a quantitative look on the statistical properties of the proxy
records, such as the Greenland water stable isotopes, allows one to test hypotheses
regarding the dynamics of DO events. Second, because it is mathematically and com-
putationally very challenging to understand and identify the dynamics of a realistic
climate model with millions of degrees of freedom, low-order dynamical systems
models of important climate components can be a very useful tool to understand
glacial climate variability.

Early spectral analysis of the GISP2 ice core revealed a spectral peak corresponding
to a periodicity of approximately 1500 years [GS97; Sch+99]. Subsequently, by con-
sidering the times elapsed in between rapid warming events, i.e., so-called waiting
times, it has been suggested that the warming events are paced by a fundamental
period of 1470 years and are spaced at multiples of this period [Sch02a]. This was
hypothesized to be a result of a phenomenon called stochastic resonance, given a
periodic input [All+01]. Consequently, it has been attempted to explain the origin
of the fundamental periodicity by a combination of two solar cycles [Bra+05]. How-
ever, by statistical hypothesis testing of a stochastic resonance model and the isotope
record, it has been found that only a very small periodic component is consistent
with the data [Dit+05]. Furthermore, the significance of the spectral peak at 1470
years has been challenged [Bra+10], and the pacing of events by a fundamental
period has been shown to be not robust and instead the events are consistent with a
memoryless, random process [Dit+07].

There have been additional insights into glacial climate dynamics by observing
dynamical behaviors that arise when interacting components of the climate system
are idealized as dynamical systems. To appreciate this, note that it was in fact a paper
by Stommel [Sto61], which in 1961 first formulated the idea of multiple equilibria
in a density-driven circulation, such as the AMOC, by analyzing a simple dynamical
systems model. Stommel’s model is a so-called box model, where the climate system
is highly discretized and simplified by, for instance, describing the Atlantic ocean
with two variables (average temperature and salinity) both at equatorial and polar
latitudes, and a fixed atmospheric boundary condition. From Stommel’s model,
different dynamical scenarios may be deduced, such as noise-induced jumps in
between two asymptotically stable equilibria, when including a stochastic freshwater
forcing [Ces94]. This concept can explain a number of qualitative features of the ice
core record [Dit99]. On the other hand, a different extension of Stommel’s model
allows for the occurrence of relaxation oscillations [RS16b]. The appeal of these
relaxation oscillations to describe DO events lies in their fast-slow characteristics,
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i.e., a fast time scale to mimic rapid warmings and a slow, relaxation time scale
corresponding to the gradual interstadial coolings. Similarly, other box models of the
Atlantic oceanic circulation display relaxation oscillations [SP99; Sch02b; Sah15].
Finally, also excitable dynamics have been found in ocean box models [Ces96] and
simplified coupled climate models [Tim+03].

With different conceptual models that claim to display essential features of DO cycles,
as well as more realistic climate models covering roughly the same set of dynamical
behavior, it is necessary to find frameworks that can objectively compare these
models against the data and assess their quality. Here, one could either pick specific
conceptual models that have been proposed, or more generally consider abstractions
of similar conceptual models and replace them with generic stochastic dynamical
systems that represent a specific dynamical paradigm. This has been the motivation
for recent efforts to compare different dynamical paradigms to Greenland ice core
data [Kwa13; MC17], and we will follow up on this approach in this thesis.

Another line of research uses ideas from dynamical systems theory to infer dynamical
mechanisms that might underlie certain abrupt changes of behavior in a complex
system, such as the climate. These abrupt changes, also called critical transitions,
occur when the system crosses a so-called tipping point [Sch+12]. Different generic
scenarios in the way such a tipping point is crossed have been identified [Ash+12],
namely tipping via slow passage of a bifurcation (B-tipping), tipping by noise-
induced escape from an asymptotically stable state (N-tipping), and tipping by
failure of tracking a moving, quasi-stable equilibrium when changing a control
parameter faster than a critical rate (R-tipping). An important distinction between
the different tipping scenarios is the occurrence of early-warning signals due to
critical slowing down before the tipping point is reached, which happens for B-
tipping but not for N-tipping. The potential occurrence of early-warning signals
before R-tipping is currently being explored [RS16a]. Both N-tipping and B-tipping
have been considered as potential scenarios for the abrupt warmings associated with
DO events. The possibility of an R-tipping mechanism to underlie abrupt climate
change is part of our current research effort (see Outlook). Based on these ideas,
early-warning imprints have been searched for in Greenland ice core data. While
first it has been shown that there is no critical slowing down before DO events in
the NGRIP record [DJ10], it was later reported that weak early-warning signals
exist when considering the ensemble average of DO events [Cim+13]. However,
it is not clear whether this result is statistically robust. More recently, evidence for
critical slowing down in the NGRIP record before DO events has been reported,
when only considering the higher frequencies in the record [Ryp16], and it has been
hypothesized that this is an imprint of a passage through a bifurcation in a fast
subsystem of the climate, such as sea ice [Boe18].
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1.4 Scientific questions and methodology
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Fig. 1.3.: The high-resolution NGRIP δ18O record of the last glacial (top), corresponding
to isotope measurements at 5cm intervals on the GICC05 time scale [NGR04;
Gki+14; Sve+06]. For comparison, low-pass filtered (middle) and high-pass
filtered (bottom) versions of the record are shown, together with the envelope
of the high-pass filtered time series. Note the increasing amplitude of the high-
frequency fluctuations towards the end of the glacial.

The aim of this thesis is to further the insight into mechanisms that underlie DO
events by extracting new information out of the proxy record, and by processing new
and existing information in novel ways. We believe that a comprehensive statistical
description of the features of DO events, as inferred from the ice core record, is still
missing. Investigations into the governing mechanisms should be guided by the data,
and there is more quantitative information available from the ice core records, as has
been used previously. Interpretation of proxy records, such as the high-resolution
NGRIP δ18O record, should be done with care. As seen in Fig. 1.3, the amplitude of
high-frequency variations increases over time in the glacial period. However, it is not
obvious to which degree the high frequencies carry a true climatic signal, since there
are other processes affecting the record at these frequencies, including variations in
the accumulation rate, and post-depositional effects such as wind-driven mixing of
deposited snow, diffusion of the isotopes in firn and ice, and a thinning of the layers
due to ice flow. Still, there are robust features of DO events that can be extracted
from the record. A complete analysis of these features should serve to benchmark
DO-type variability that is currently beginning to be obtained in different realistic
climate models. In climate model experiments, results are often compared only
qualitatively with the data. This is true both for studies with detailed climate models,
but also conceptual ones, with the exception of a handful of recent studies, which
have a quantitative approach similar to our work [Kwa13; Kru+15; MC17; Boe+17].
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Additionally, often only specific parts of the data are being picked that suit best to
support the hypotheses, such as the rather regular DO cycles in the period 32-48 kyr
BP. The approach taken in this thesis is to formulate clear hypotheses based on the
ice core data and test them with simple statistical or dynamical models, which can
be readily interpreted in terms of dynamical mechanisms. With this approach, we
try to answer the following scientific questions:

1. Can the high temporal variability of the properties of DO events, such as
residence times in warm and cold climate states, be expected due to chance
by randomly occurring events?

2. Are the DO cycles, and more generally the millennial-scale glacial climate
variability, modulated by external forcing, such as insolation?

3. Can we infer from the data whether the DO cycles are a result of noise-
induced jumps in between two meta-stable states, or of noisy, self-sustained
oscillations?

4. Is there evidence in the statistical properties of the data in favor of certain
physical mechanisms to explain DO events?

It is clear that not all questions one might have concerning the cause of DO events
can be answered from the Greenland isotope records alone. Other archives will
need to be consulted to make statements about the more detailed nature of DO
event dynamics, and glacial climate dynamics in general. Still, there is more to
be learned from single isotope records, and for some purposes they can stand for
themselves, such as answering questions concerning the timing and durations of DO
events. We focus on identifying dynamical mechanisms that generate abrupt climate
change as observed in Northern Hemisphere paleoclimate proxies. As seen from
Antarctic ice cores, the more subdued millennial-scale variability in the Southern
Hemisphere is closely related to DO events. A connection of the signals observed in
both Hemispheres can be reasonably approximated by simple conceptual models,
such as the thermal bipolar seesaw model [SJ03] or a simple integration of the
Northern Hemisphere signal to obtain the Southern Hemisphere signal [Bar+11].
Since the Antarctic records obtained from ice cores at different locations have slightly
different characteristics across AIM events, it is an open question which model is
most appropriate to describe the signals. The details of the bipolar teleconnection
mechanisms are still a matter of scientific debate and are beyond the scope of this
thesis.
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Apart from the above-stated scientific questions, our research interest goes beyond
climate science. How can models be compared in a consistent way when focusing
strictly on key statistical properties of the data? What is the most sensible way to
compare models to data, when the data is one short realization of a stochastic pro-
cess? What is the influence of different noise structure on the qualitative dynamical
behavior in stochastic dynamical systems, and how can such structure be inferred
from data? More broadly, we are interested in methods to understand, classify and
detect critical transitions.

Our methodology consists of an initial, broad statistical analysis of the data, followed
by the identification of key statistical features and a search of dynamical mechanisms
that could be in line with these features. These mechanisms are then tested by
classical statistical hypothesis tests and Bayesian model comparison. The scientific
content of this thesis consists of three separate manuscripts. The first manuscript
in Chapter 2, referred to as Paper 1 hereafter, is a statistical analysis of the NGRIP
δ18O record with the objective to extract prominent features of DO events, such
as the gradual interstadial cooling rates, in order to analyze the distributions of
these features, and establish to which degree they correlate with each other and
are influenced by external forcing. The second manuscript in Chapter 3 (Paper 2)
discusses the time-varying structure of residence times in stadials and interstadials,
and tests whether this structure could arise by chance from random processes
governing warming and cooling events. Furthermore, a random process model
with time-varying parameters is fitted to the data, driven by a combination of
external forcings. The third manuscript in Chapter 4 (Paper 3) is a Bayesian model
comparison study, which uses summary statistics to compare different stochastic
dynamical systems to the NGRIP record. This is achieved with a method called
Approximate Bayesian Computation. The manuscripts have been included un-altered
from their published or submitted version, except for reformatting to match layout
of the thesis. The results of the three manuscripts are synthesized in the conclusion
in Chapter 5, and an outlook to current and future work related to this thesis is
given in Chapter 6.
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2Objective extraction and
analysis of statistical
features of
Dansgaard-Oeschger
events

Abstract

The strongest mode of centennial to millennial climate variability of the last glacial
period are the Dansgaard-Oeschger events. They are best recorded in proxies from
Greenland ice cores, such as the NGRIP δ18O record. These proxy records are of
very high resolution, but contain a lot of noise, the cause of which is partly due to
glaciological effects unrelated to climate. Furthermore, the properties of this noise
change throughout the record. This hampers the applicability and interpretability
of classical time series analysis techniques. To overcome this, we remove the high-
frequency noise and extract the most robust features in the data by fitting a consistent
piecewise-linear model to the whole time series. This enables us to investigate new
quantitative features of DO events in a statistical manner. Apart from stationary
distributions, we search for causalities hidden in between different features and for
modulations of them in time via external climate factors.

2.1 Introduction

The physical mechanism(s) and cause of the Dansgaard-Oeschger (DO) events are
unknown and debated. Modeling and simulations of the events are guided by the
proxy records, among which the stable water isotope records from Greenland ice
cores are most prominent. The records are noisy, and since we are not guided
by theories about how they should evolve, there is no obvious filter to extract the
climate signal from the record. A common characteristics for the DO events seems
to be an abrupt temperature increase from the cold stadial conditions to a maximum
temperature in the warm interstadial state followed by a gradual cooling until there
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is another abrupt jump back into the stadial state. This is referred to as the saw-tooth
shape of the events.

Due to the high noise level in the record it is however difficult to discern this specific
structure in all of the events. Some events do not seem to follow the generic shape.
Furthermore, there are very short events so that it is difficult to speak of a gradual
cooling episode. Even other events are interrupted by shorter cooling episodes,
referred to as sub-events [Cap+10]. As interpretation of noisy time series are often
biased, subjective and one is prone to recognize patterns that can arise by chance,
we seek a quantitative evaluation of the record. Assuming the saw-tooth shape of
the events, we develop an algorithm for fitting the saw-tooth shape to the entire
NGRIP δ18O record of the last glacial, similar to ramp-fitting a jump in a record.

Firstly, our method will give an objective basis of the validity of the generic saw-tooth
description of the DO-events and identify which individual DO-events fall outside
this description. Secondly, with the simple piecewise-linear fit, we obtain estimates
for the stadial and interstadial levels, the abruptness of the transitions and the
gradual cooling rate in the interstadial periods. Furthermore, by bootstrapping, we
obtain both an estimate of the uncertainty in extracting these parameters from the
noisy background and the distribution of parameter values across the DO-events of
the last glacial period. This could potentially be used for identifying or excluding
proposed mechanisms and for bench-marking model results.

Previous efforts to extract robust DO event features from the record were mostly
conducted on only part of the record and were focused on single or very few features.
In [Sch02b], linear fits to the interstadials were used to infer the cooling rates
starting with Greenland interstadial (GI) 14. Estimates for abruptness of warming
transitions and durations of interstadials have been derived in [Rou+17], starting
at GI-17.1. A comprehensive survey of onset times of all interstadial and stadial
periods is given in [Ras+14]. Our work is different in that we derive all features
that can be extracted from a saw-tooth shaped fit to all events at once, by using a fit
that is consistent and continuous throughout the record. We thus do not have to rely
on any subjective choice of stadial and interstadial onsets or levels. We do, however,
not attempt to define the DO events themselves from the record, but instead use the
fixed set of all previously classified events [Ras+14].

A naive approach to obtain a piecewise-linear fit of the whole record could proceed
in the following way. Considering the stadial episode as constant levels, first cut the
time series at a predefined beginning and end of two consecutive stadials episode.
Then fit a saw-tooth shape to the event in the middle. The end of the fit to this
event then determines the start of the next stadial episode, to be used to fit the
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following event. However, the point at which one initially cut the stadial periods
determines the levels of the two stadials that have been used to determine the fit to
the event. For a consistent fit, the start and end points of a stadial are determined
by the fits to two neighboring events. In this way, the fit to each event depends on
both its neighboring events before and after, and we cannot simply fit the events
sequentially. A solution would be to fit the whole time series at once to a piecewise
linear model with approximately 180 parameters, corresponding to 6 times the
number of DO events. However, due to high noise and abundance of sub-event
features we believe that such a fit will be difficult to achieve without invoking
very complicated constraints. Instead, we propose an iterative fitting routine that
converges to a consistent fit of the whole time series. We start with a guess for the
stadial onset and end times, which determine the constant stadial levels, and fit a
saw-tooth shape to each event. Thereafter, we update the stadial onset and end
times according to the fit and repeat fitting. When after some iterations the onset
and end times do not change significantly anymore the fit has converged and is
consistent.

The paper is structured in the following way. In Sec. 2.2 we introduce the data used
in the study and its pre-processing, the iterative fitting algorithm, the features we
extract from the saw-tooth shape fit to the events and the statistical tools to analyze
these features. In Sec. 2.3 we report the results of the fit and the subsequent data
analysis. First, in Sec. 2.3.1, we demonstrate the convergence of our fit and discuss
the appropriateness of the saw-tooth fit to the events. Then, in Sec. 2.3.2, we give an
overview of the features derived from the fit. Section 2.3.3 discusses the uncertainty
in estimating the fit parameters and the derived features. In Sec. 2.3.4 we analyze
in detail the features characterizing the stadial, interstadial and abrupt warming
periods. The results of the fit and the implications of the subsequent data analysis
are discussed in Sec. 2.4.

2.2 Methods and Materials

2.2.1 Data

The basis of our study is the δ18O record of the last glacial period, which lasted
from about 120 kyr BP (kyr BP = one thousand years before present) to 12 kyr
BP. δ18O in the NGRIP ice core has been measured in 5 cm samples along the core
[NGR04; Gki+14; Ras+14]. These raw depth measurements are then transferred
to the GICC05 time scale [Sve+06]. This results in an unevenly spaced time series
with a resolution of 3 years at the end to 10 or more years at the beginning of
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the last glacial period. Because it greatly simplifies our analysis, we transfer this to
an evenly-spaced time series by oversampling it to 1 year resolution using nearest-
neighbor interpolation. This means we do not alter the actually measured values and
thus adding or removing any variability. For comparison, the high-resolution δ18O

record from the GRIP ice core on the GICC05 time scale has been used [Joh+97;
Ras+14], and processed in the same way.

Our study does not aim to present an algorithm that detects or classifies warming
events from the time series. Instead, we fit a waveform to previously classified events
from Greenland, which have been reported in [Ras+14] together with their time
stamps. We do not treat sub-events, which are small dips to colder conditions during
a warm period, as separate events, but instead fit them as part of the interstadial
periods. The published time stamps will be used to initialize our iterative fitting
procedure, and are subsequently refined during the process.

Finally, we use several other data sets that are not derived from Greenland ice core,
and investigate to what extent they might correlate with or explain the DO event
features. These are loosely referred to as external forcings, although not all are truly
external to the climate system, but rather obtained from independent data sources.
As proxy for global ice volume, we use the LR04 ocean sediment record stack [RL05].
To represent Antarctic temperatures, we choose the δ18O measurements from the
EDML ice core on the AICC12 time scale [EPI10]. This data was processed by
an interpolation to an equidistant 20 year grid and subsequently a smoothing by
convolution with a 600 year Hamming window to reduce noise. Furthermore, we
consider incoming solar radiation curves at high northern latitudes. Firstly, we use
incoming solar radiation at 65 degree North integrated over the summer (referred
to as 65Nint hereafter), which we defined as the annual sum of the insolation on
days exceeding an average of 350 W/m2 [Huy06]. Secondly, we use incoming solar
radiation at 65 degree North at summer solstice (referred to as 65Nsolst hereafter)
[Las+04]. In addition, we also consider the raw orbital parameters of obliquity,
eccentricity, and precession index [Las+04].

2.2.2 Fitting routine

Starting from an initial guess, based on the timings reported in [Ras+14], we define
beginnings and ends of the stadial periods and keep them fixed throughout an
iteration of our algorithm. The time series is then divided in segments at these times.
For each event i, we take a segment of the time series consisting of a stadial and
interstadial period plus the following stadial period. These segments are then fitted
individually to the a piecewise-linear model, as shown in Fig. 2.1 and explained in
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the following. The fit starts with a constant line at the beginning of a stadial period.
The constant is fixed to the mean level of the stadial period lsi , where the duration of
this period is determined in the previous iteration. A first break point (parameter b1)
of this constant line is determined, which is followed by a linear up-slope (parameter
s1). The slope ends at the second break point (parameter b2). After this break point
there is a linear down-slope (parameter s2), which ends at a break point (parameter
b3). After this break point there is a steeper down-slope until a last break point
(parameter b4), which is at a fixed level of the next stadial lsi+1, where this level is
determined from the previous iteration. Note that also the rapid down-slope of the
interstadial to the stadial state as well as the interstadial maximum are determined
from the six parameters b1,2,3,4 and s1,2.

After all transitions have been fit, the parameters b4 and b1 update the beginnings and
ends of the stadial periods. The updated stadial periods yield a new segmentation of
the time series and new stadial levels, which are then used as the constant segments
in the next iteration of the fitting routine. The idea of this approach is that if the
problem is well behaved, the beginnings and ends of the stadial periods do not
change significantly anymore after a certain number of iterations, meaning that we
found a consistent fit of the time series as a whole. An algorithm for this routine is
given in Appendix 2.A.
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Fig. 2.1.: Generic piecewise-linear model fit to DO event 20, where the time series consists
of GS-21.1, GI-20 and GS-20. The parameters of the piecewise-linear model are
the four break-points b1,2,3,4, the up-slope s1 and the down-slope s2. The constant
levels lsi and lsi+1 of GS-21.1 and GS-20 are constant during an iteration of the
fitting routine, and are updated when after each iteration all breakpoints have
been determined.

To determine the 6 parameters at each transition, we minimize the root mean
squared deviation of the fit from the time series segment. Due to the high noise
level, there are many local minima in this optimization problem. Thus, either a
brute-force parameter search on a grid or an advanced algorithm is needed to find a
global minimum.We chose an algorithm called basin-hopping, which is described
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in [Ols+12] and is included in the Scientific Python package scipy.optimize, where
it can also be customized. The basic idea of the algorithm is the following: Given
a initial coordinates in terms of the parameter vector θ0, one searches for a local
minimum of the goal function f(θ), e.g., with a Newton, quasi-Newton or other
method. The argument to this local minimum θn is then randomly perturbed by a
Kernel to yield new coordinates θ∗, which are the starting point of a new local mini-
mization. Next, there is a Metropolis accept or reject step: We accept the argument
of the local minimization θn+1 as new coordinates if the local minimum is deeper
than the previous one f(θn+1) < f(θn), or else with probability e−(f(θn+1)−f(θn))/T ,
where T is a parameter relating to the typical difference in depth of adjacent local
minima. Now we go back to the perturbation step either with old coordinates θn
or, if accepted, with new coordinates θn+1, and repeat. The iterative procedure is
repeated for a large number of iterations and the result is the argument to the lowest
function value found.

Within basin-hopping, one has the freedom of choosing any local minimizer as well
as perturbation Kernel. These have to be adapted to our optimization problem.
We have several constraints on the parameters that need to be satisfied by the
optimization. For instance, we demand that all segments of the fit are present and
do not overlap (b1 < b2 < b3 < b4). Other constraints ensure that the characteristic
shape of DO events is fit as good as possible for all events. Among other things, we
thus demand the gradual slope to be significantly longer and less steep than the fast
cooling transition at the end of an interstadial. An overview of all the constraints we
used is given in Appendix 2.A. To satisfy them, we chose a multivariate Gaussian
perturbation Kernel, which is truncated at the respective parameter constraints. The
local minimizer choice requires further consideration. Our goal function landscape
is very rough and not differentiable. Thus, methods like gradient descent give
very poor results in our case. A method that does not depend on derivatives and
can handle constraints is called Constrained Optimization by Linear Approximation
(COBYLA), and we found it to work well in our case.

Two hyper-parameters have to be specified in the basin-hopping algorithm: The
variance of the perturbation Kernel, and the parameter T used in the Metropolis
criterion. These should both be comparable to typical differences in goal function
(temperature) and arguments (perturbation width) of neighboring local minima in
the minimization problem. We chose these parameters empirically by observing how
the goal function changes as we slightly change the fit. Although this varies signifi-
cantly from transition to transition, we determined single values as a compromise
for all transitions. For the Kernel variance in the directions of b1,2,3,4 we chose a
value of 15, and for s1 and s2 we chose 0.004 and 0.0015, respectively.
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The fitting procedure outlined above yields one best fit that we hope to be close
to the absolute global minimum of the optimization problem and furthermore as
consistent as possible, meaning that the stadial sections that were used for the fit
in the last iteration are identical to the stadial sections defined by the resulting
fit. Additionally to this best fit we would like to estimate the uncertainty in each
of the parameters that arise due to noise in the record. We cannot estimate this
from the output of our fitting procedure in a straightforward way. Instead, we
use bootstrapping to repeatedly generate synthetic data for each transition and
optimize the parameters with basin-hopping. Like this, we yield a distribution on
each parameter. Due to computational demands, we do not combine this with our
iterative procedure, but rather resample and fit every transition independently. Thus,
we neglect the co-variance structure of the errors in the parameters of neighboring
transitions. However, we still consider it to be a very good estimate of the uncertainty
due to the noise in the record. The detailed procedure is given in Appendix 2.C.

2.2.3 DO event features and data analysis

For each DO event, we yield best fit parameters and from these a variety of features
follow immediately. These features are the core of our analysis and will be explained
in the following. For each warming period, gradual interstadial cooling period, as
well as rapid cooling period at the end of an interstadial, we consider the duration,
rate of change and the amplitude. Furthermore, several absolute levels are of
interest, including the constant stadial levels, the interstadial levels after the abrupt
warming and the interstadial level before the rapid cooling. As a level relative to
each event, we consider the level before the rapid cooling above the previous stadial
level, which is given by the rapid warming amplitude minus the gradual cooling
amplitude. Finally, the gradual cooling amplitude divided by the rapid warming
amplitude measures the position of the point of rapid cooling within the event
amplitude. In total, we consider 15 features, which are listed in Tab. 2.1.

We use several tools to search for relations in between different features, as well
as in between features and external climate factors. Because of the large number
of features, we first automatically pre-select potentially relevant relationships and
thereafter manually investigate, whether the results are robust to outliers, among
other things. First of all we consider Pearson and Spearman correlation coefficients
of pairs of features and external climate factors. We pre-select all combinations
with p-values smaller than 0.1, assuming independence of the samples. In reality,
the p-values are often higher due to autocorrelation. We subsequently investigate
this individually for the pre-selected combinations, together with other potential
artifacts. In order to find relations of more than two variables, we additionally
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Tab. 2.1.: List of DO event features obtained from the fit that are analyzed in this study.

Feature Definition
Warming duration b2 − b1
Warming rate s1
Warming amplitude s1(b2 − b1)
Gradual cooling dur. b3 − b2
Gradual cooling rate −s2
Gradual cooling ampl. s2(b2 − b3)
Fast cooling dur. b4 − b3
Fast cooling rate (b4 − b3)−1 · [s1(b2 − b1) + s2(b3 − b2)− (lsi+1 − lsi )]
Fast cooling ampl. s1(b2 − b1) + s2(b3 − b2)− (lsi+1 − lsi )
Stadial duration b1
Stadial level ls

Interstadial level s2(b2 − b3) + ls

Interstadial end level s1(b2 − b1) + s2(b3 − b2) + ls

Relative Int. end level s1(b2 − b1) + s2(b3 − b2)
Cooling/warming ampl. s2(b2 − b3) · [s1(b2 − b1)]−1

search for multiple linear regression models to explain selected features of the
data. For this, we typically use logarithmic quantities because with our features it
is otherwise unlikely to find a linear relationship that is not due to outliers. For a
given feature as response variable, we fit linear regression models of combinations
of two other features or forcings and pre-select models with the largest coefficients
of determination, in order to further analyze the fit. We furthermore, in order to
find subsets of events that have different properties than other subsets, we perform
a clustering analysis on the data. We try two different algorithms, namely K-means
and Agglomerative Hierarchical Clustering. As desired number of clusters we choose
2 or 3, since a higher number does not give good results given our sample size of
31. We find clusters for all combinations of 2 and 3 features and forcings and select
potentially relevant clusterings by the so-called mean Silhouette coefficient, which is
a distance-based measure for the validity of clusters. We perform an analysis with
the abovementioned tools on the entire set of features and forcings. From the results
obtained, we only report selected findings, which are most robust and relevant to us,
in Sec. 2.3.4 of this paper.
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Fig. 2.2.: High-resolution NGRIP δ18O time series and the piecewise-linear fit obtained by
our method.

2.3 Results

2.3.1 Piecewise-linear fit

We run the iterative fitting routine for 40 iterations, so that the initial fluctuations
in the parameters have died out and converged to a consistent fit, as detailed in
Appendix 2.B. In Fig. 2.2 we superimpose the resulting fit onto the high-resolution
NGRIP time series. We fit 31 DO events in total, starting with DO 24.2 and ending at
DO 2.2, excluding the two outermost events of the last glacial, because they have non-
stationary properties in their stadial parts. Table 2.2 shows all parameters obtained
from the fit. Instead of b1,2,3,4 for each transition, we show the corresponding times
of stadial end, interstadial onset, interstadial end and stadial onset.

In our fit, all transitions follow the characteristic saw-tooth shape. For some events,
this is because of the constraints we use in the fitting algorithm. Typically, the
constraints do not strictly bound the best fit parameters, but they force the fit into
another local minimum that is consistent with the saw-tooth shape, which often
yields parameters that are still clearly within the constraints. There are, however,
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Tab. 2.2.: Parameters resulting from the fitting routine on the NGRIP data.

Event Stadial
End
(yr BP)

Interstadial
Onset
(yr BP)

Interstadial
End
(yr BP)

Stadial
Onset
(yr BP)

Warming
Rate
(permil/yr)

Cooling
Rate
(permil/yr)

24.2 108313 108270 106914 106810 0.0992 -0.00062
24.1 106790 106743 105452 105439 0.0744 -0.00069
23.2 104556 104441 104387 104366 0.0340 -0.01555
23.1 104090 103996 93916 93898 0.0290 -0.00027
22 90069 89999 87743 87631 0.0270 -0.00082
21.2 85060 85027 84964 84952 0.1230 -0.03992
21.1 84799 84737 77866 77659 0.0655 -0.00049
20 76452 76434 74245 74009 0.2935 -0.00148
19.2 72377 72280 70385 70365 0.0730 -0.00251
19.1 69646 69587 69443 69381 0.0831 -0.01262
18 64212 64051 63858 63846 0.0262 -0.00367
17.2 59520 59390 59323 59294 0.0446 -0.00503
17.1 59076 59061 58571 58549 0.2951 -0.00491
16.2 58266 58245 58168 58162 0.2340 -0.03107
16.1 58051 58023 56536 56364 0.1059 -0.00131
15.2 55821 55759 55449 55296 0.0554 -0.00062
15.1 55011 54950 54892 54887 0.0981 -0.05104
14 54228 54193 49617 49410 0.1092 -0.00046
13 49315 49253 48517 48301 0.0367 -0.00223
12 46890 46826 44286 44277 0.0761 -0.00140
11 43450 43271 42285 42278 0.0225 -0.00236
10 41479 41439 41024 40864 0.0910 -0.00326
9 40175 40131 39933 39928 0.0699 -0.01096
8 38231 38199 36602 36583 0.1549 -0.00210
7 35508 35461 34741 34735 0.0859 -0.00289
6 33822 33681 33434 33314 0.0250 -0.00334
5.2 32521 32485 32039 32028 0.1324 -0.00583
5.1 30794 30752 30514 30473 0.0394 -0.00695
4 28908 28871 28635 28544 0.1302 -0.00485
3 27786 27765 27572 27492 0.2762 -0.01529
2.2 23389 23328 23196 23191 0.0607 -0.01098

four events where the best fit parameters actually lie very close to the bounds set
by the constraints. This happens for events 5.1 and 3, which both have ratios of
rapid to gradual cooling rates very close to the constraint value of 2.0. Similarly, for
the events 15.2 and 6 the ratio of gradual to rapid cooling duration is close to 2.0.
Detailed pictures of each transition and the corresponding fit are shown in Fig. S2
in the supplementary material.

The fact that some constraints are needed in order to ensure that the fit of each
event follows a saw-tooth shape can be used to classify which events fall outside of
this description. To this end, we perform another run of the iterative fitting routine
without using constraints 3, 4, 6 and 7 listed in Appendix 2.A. From the resulting fit
we then analyze, which of the events are not consistent with the saw-tooth shape.
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For this, we use 4 criteria: 1. The abrupt cooling rate is at least twice as large as
the gradual cooling rate. 2. The gradual cooling lasts at least twice as long as the
abrupt cooling. 3. There is gradual cooling after the rapid warming, i.e., the gradual
cooling rate is negative. 4. The abrupt cooling amplitude is larger than 0.5 permil.
Criterion 1 is not met by events 23.1, 19.2, 15.1, 11, 5.1, 3 and 2.2, criterion 2 by
events 21.2, 19.2, 17.2, 15.2, 15.1, 11, 10, 9, 8, 6, 5.1, 3 and 2.2, criterion 3 by
event 11, and criterion 4 by events 23.1 and 15.1. By demanding that all of these
criteria are met, we thus conclude that the following 14 out of 31 events fall outside
of the saw-tooth description: 23.1, 21.2, 19.2, 17.2, 15.2, 15.1, 11, 10, 9, 8, 6, 5.1,
3 and 2.2.

2.3.2 DO event features

In Fig. 2.3 we show histograms of all the DO event features derived from the
fit parameters that we consider in this study, as defined in Sec. 2.2.3. From
the histograms we can see that the features have different types of distributions.
We discuss which distributions are most likely for selected features in Sec. 2.3.4.
Whether the features of single events should be considered as independent samples
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Fig. 2.3.: Histograms of our sample of 31 events for all features considered in this study, as
defined in Tab. 2.1.

from a distribution depends on whether they have a significant trend over time.
If we consider the event-wise sequence of one feature as an evenly spaced time
series we can calculate the autocorrelation until a certain lag and determine by
a permutation test, whether the value at a given lag is significantly larger than
what could be expected in an uncorrelated sample for a given confidence. By
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considering an autocorrelation up to lag 5, we find that the three different levels
(stadial, interstadial and level before rapid cooling) show significant autocorrelation
at 95% until a lag of 3. We also find significant autocorrelation for four other features
at only one specific lag value each, which we consider as false positives. In fact,
when independently testing the hypothesis of significant autocorrelation at 95%
confidence for 15 different time series (features) at 5 lags, there is an expected
value of 3.75 false positives. The corresponding data is shown in Fig. S3 in the
supplementary material. As a result, in most cases we can consider the features
as independent samples and, e.g., interpret correlation coefficients accordingly. In
critical cases we still check whether results are robust by detrending the data.

2.3.3 Uncertainty of fit parameters and features

From the best fit, we estimate the uncertainty of each parameter via bootstrapping,
as explained in Appendix 2.C. As an example, we show histograms of the parameters
for DO event 20 in Fig. 2.4. In this case the distributions are quite symmetric, but
this is not always the case.
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Fig. 2.4.: Histogram of model parameters and some derived quantities for the DO event 20
after 500 iterations of the bootstrap resampling procedure. The parameter values
for the best fit, as reported in Sec. 2.3.1, are indicated with red dashed lines. The
amplitude feature is given by s1(b2 − b1).

In Tab. 2.3 we show the durations and amplitudes of the rapid warmings for
each event along with a bootstrap confidence interval consisting of the 16- and
84-percentiles, which would correspond to the ±σ range if the distributions were
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Gaussian. The actual distributions are often skewed, so that the best fit values lie
close to the edges of the confidence intervals, or even outside of the intervals. In
these cases, the ±σ confidence intervals are not the best indicator for the uncer-
tainty, because they barely include the mode of the very skewed distributions. The
magnitude of the uncertainties vary from event to event. In the case of the warming
durations, the average bootstrap standard deviation is 20.0 years, with a minimum
of 3.4 years for GI-16.2 and a maximum of 57.4 years for GI-18. We observe that
shorter warmings typically also have smaller uncertainties. As comparison, the
durations of the rapid coolings at the end of an interstadial have a larger uncertainty
with an average bootstrap standard deviation of 53.6 years. This is expected, because
the rapid cooling is typically less well pronounced in the record compared to the
rapid warming. The coolings also have a larger spread in the bootstrap standard
deviations with a minimum of 4.6 years for GI-16.2 and a maximum of 209.9 years
for GI-23.1, because some events have a very clearly defined rapid cooling, while
others do not. Similarly, the onset times of the rapid warmings have an average
bootstrap standard deviation of 11.4 years, whereas the onset of the stadial periods
have a corresponding average uncertainty of 31.7 years.

As complementary approach to assess the uncertainties of the features, we compare
them to those derived in the same way from another Greenland ice core. We chose
the δ18O record of the GRIP ice core, which is measured at a similar resolution to the
NGRIP record and has been transferred to the GICC05 time scale starting at the onset
of GI-23-1. We thus started fitting the record from GS-22 with 40 iterations of our
algorithm, using the same constraints and hyperparameters. Again, the algorithm
converges to a consistent fit, where each of the events is well approximated by
a saw-tooth shape. We now describe how well the features of NGRIP and GRIP
correspond for the 26 mutual events.

For the gradual cooling rates, the Pearson (Spearman’s rank) correlation coefficient
is rp = 0.64 (rs = 0.65). Here, the discrepancy in between the two records is
only due to a handful of short very events, for which in one record a short but
clearly visible linear cooling slope is discernable, whereas this is not the case in the
other record, where the interstadials are more like a plateau. This happens for the
interstadials 18, 16.2 and 5.1, which don’t show a slope in GRIP, and 17.2, which
doesn’t show a strong slope in NGRIP. If we remove these events, the correlation
is rp = 0.97 and rs = 0.98. The warming durations show a correlation of rp = 0.55
and rs = 0.63. There are no outliers, but a rather large spread, indicating that the
warming duration is a less robust feature compared to the cooling rate. With 69
years on average, the GRIP warmings are 8 years shorter than the NGRIP average.
The average absolute deviation of warming durations in the two cores is 31 years,
with a maximum discrepancy of 103 years for GI-10, where we find a warming of 40
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Tab. 2.3.: Durations and amplitudes of the rapid warmings inferred from the fit, together
with a confidence interval obtained by bootstrapping.

Event Warming duration (yr) Amplitude (δ18O permil)
Best fit 16-p 84-p Best fit 16-p 84-p

24.2 43.4 36.3 47.8 4.30 4.23 4.40
24.1 47.4 34.9 45.0 3.53 3.42 3.61
23.2 115.2 96.1 126.1 3.92 3.72 4.11
23.1 94.1 78.9 127.3 2.73 2.69 2.75
22 70.0 70.3 91.8 1.89 1.78 1.95
21.2 33.0 25.7 39.9 4.06 3.61 4.10
21.1 61.7 53.5 79.6 4.05 3.98 4.09
20 18.2 14.7 21.6 5.34 5.25 5.42
19.2 97.2 74.3 98.1 7.09 6.93 7.19
19.1 58.5 37.7 60.0 4.86 4.45 4.97
18 161.0 74.6 194.0 4.21 3.99 4.51
17.2 129.7 83.7 158.0 5.79 5.47 6.20
17.1 15.3 13.9 27.0 4.53 4.14 4.72
16.2 21.0 18.6 24.0 4.92 4.59 5.19
16.1 28.4 28.9 84.0 3.01 2.88 3.16
15.2 61.6 39.0 100.0 3.41 3.38 3.67
15.1 60.6 56.4 69.2 5.94 5.68 6.12
14 35.5 38.0 79.0 3.87 3.78 3.95
13 62.4 63.4 101.2 2.29 2.07 2.60
12 63.9 45.7 73.8 4.86 4.71 4.94
11 179.5 143.0 201.0 4.05 3.86 4.17
10 40.3 41.3 80.2 3.67 3.40 3.97
9 44.2 37.5 86.4 3.09 2.66 3.22
8 31.7 29.8 53.0 4.91 4.78 4.98
7 47.4 45.3 90.2 4.07 3.86 4.27
6 140.4 110.6 172.1 3.51 3.41 3.92
5.2 36.0 31.1 54.6 4.76 4.45 4.93
5.1 41.8 41.4 82.0 1.65 1.51 1.89
4 37.2 27.1 41.8 4.84 4.47 5.11
3 21.3 18.0 25.0 5.88 5.40 5.92
2.2 61.2 42.0 91.6 3.72 3.21 3.75

years for NGRIP and 143 years for GRIP. Such deviations can arise if there is a slight
step in the record before the most rapid warming and the algorithm includes this in
the fit.

The warming amplitudes are very well correlated with rp = 0.87 and rs = 0.83.
The average amplitude of 3.87 permil in GRIP is 0.45 permil lower than the NGRIP
average. The stadial levels are also well correlated with rp = 0.78 and rs = 0.66.
There is a quite consistent offset in between the cores of 1.84 permil due to dif-
ferences in altitude and latitude of the GRIP and NGRIP sites. However, there are
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also some clear differences in between the two cores. These include GS-21.1, which
does not obey the offset but is at a very similar level in both GRIP and NGRIP, and
GS-14, which is difficult to define and thus vulnerable to give different results due
to different noise in the cores.

The rapid cooling durations, i.e. b4 − b3, are less well correlated with rp = 0.46 and
rs = 0.53. This is expected because for many transitions this feature is less well
defined than the rapid warmings. In these cases, the best fit determined by our
algorithm is very susceptible to noise and can give qualitatively different results
for different cores, i.e. a very abrupt cooling in one core and a much less abrupt
cooling in the other. In this way the abrupt cooling of GI-19.2 lasts 208 years in GRIP
and only 20 years in NGRIP, and for GI-12 294 years in GRIP and only 9 years in
NGRIP. Conversely, the abrupt coolings of GI-19.1, GI-10 and GI-6 last much longer
in NGRIP, with 62, 160 and 120 years in NGRIP versus 2, 5 and 2 years in GRIP,
respectively. The average absolute deviation in between the two cores is 59 years.

The stadial and interstadial durations are very well correlated with rs = 0.99 and
rs = 0.97, respectively. The average absolute deviation is 59 years for interstadials
and 73 years for stadials, which is small compared to the average durations. The
biggest discrepancies in between the two cores come from the indeterminacy in the
rapid coolings of certain events, as described above.

In summary, the uncertainties obtained by bootstrapping and by comparison with
the GRIP ice core are compatible. The average bootstrap standard deviation of rapid
warming and cooling durations is 20 and 54 years, respectively. This compares
well to the average absolute deviation in between GRIP and NGRIP of warming
and cooling durations of 31 and 59 years, respectively. The discrepancy of 31 years
for warming durations also includes a systematic bias of on average 8 year longer
warmings in GRIP. Thus the unbiased uncertainty is likely even closer to the one
obtained by bootstrapping. Shorter time scale features like rapid warming durations
are not fully representative for every single event in one core. However, the overall
trends are consistent, as seen by significant correlation. Features on longer time
scale, such as most of the cooling slopes and stadial levels, are clearly representative.
The same holds for stadial and interstadial durations.
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2.3.4 Statistical analysis of DO event features

2.3.4.1 Interstadial periods

By our definition, the interstadial periods start at the maximum of the fit after
the abrupt warming and ends at the start of the rapid cooling that leads back to
stadial conditions. The interstadial durations are thus given by b3 − b2. In this
analysis, we focus on the factors influencing the interstadial durations. As has
been noted previously for the younger half of the last glacial in the GISP2 ice core,
there is a strong correlation of interstadial durations DI and their respective cooling
rates λc = AD−1

I , where A is the amplitude of the cooling [Sch02b]. If for every
interstadial the gradual cooling would be perfectly linear and the jump back to
stadial conditions would always occur after the same magnitude of cooling Ā, the
interstadial duration would be inversely proportional to the cooling rate DI = Āλ−1

c .
If on the other hand the interstadials would have a fixed cooling rate λ̄c and the jump
back to stadial conditions would happen at a variable threshold, the interstadial
durations would be proportional to the cooling amplitudes DI = Aλ̄−1

c .

We test which of the two scenarios is better supported by the data. In essence,
this depends on whether either the cooling amplitudes or the cooling rates have a
much larger spread than the other. The coefficient of variation for the amplitudes is
CV = 0.51, whereas for the rates we find CV = 1.49. Furthermore, the Spearman
correlation of interstadial durations and cooling rates is rs = −0.89, which is
clearly significant given the samples size of 31 events and weak autocorrelation of
the sequence of interstadial durations and rates. Similarly, the logarithm of both
quantities show a Pearson correlation of rp = −0.88. For interstadial durations
and cooling amplitudes we find rs = 0.40, and for the logarithms rp = 0.41. This
correlation is largely due to three outliers, namely the two longest interstadials
GI-23.1 and GI-21.1, and the event with largest amplitude GI-19.2. Removing these
reduces the correlation to rs = 0.24 and rp = 0.27, which is not significant at 95%
as determined by a permutation test. Thus, there does not seem to be a relation
between durations and amplitudes that goes beyond outlier events, as opposed to
durations and cooling rates. Furthermore, the correlation of cooling amplitudes and
rates is not significant. Thus there is indeed a strong control by the cooling rates on
the interstadial durations over the entire glacial, in agreement with the findings for
the younger half of the glacial in [Sch02b].

In Fig. 2.5a we show a scatterplot of log λc and logDI along with a linear regression
yielding a slope of -0.94. The 95% confidence interval of this slope obtained via
bootstrapping is [-1.12, -0.75]. Because we do not account for errors in the rates
estimated from the data the regressed slope is biased towards 0 due to attenuation
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Fig. 2.5.: a) Scatterplot of the logarithms of interstadial durations and cooling rates. Two
linear fits obtained by ordinary least squares are shown. For one of them we fixed
the slope to -1 and varied only the intercept. b) Correlation coefficients of the
logarithms of interstadial duration and the linear slope fitted to a slice of the
beginning of the interstadial as a function of the length of that slice. The values
of the Spearman (Pearson) correlation coefficients using slopes obtained from the
full interstadials is marked with a dashed (dotted) line.

and the true slope will be closer to -1. Even though we in fact have estimates for the
errors in the rates, we do not attempt to correct this bias at this point. Instead we
can conclude that the model DI ∝ λ−1

c is consistent with the data, where the spread
is caused by the fact that the jump back to stadial conditions happens after varying
cooling amplitudes, which have a mean of 2.04 and standard deviation of 1.04.

The relation between interstadial durations and cooling rates also manifests itself
in the respective distributions. As seen in Fig. 2.3, both durations and rates have
strongly skewed histograms. They are both consistent with log-normal distributions,
as shown by Anderson-Darling tests with p = 0.47 and p = 0.89 for durations and
rates, respectively. Because of the relation of the two features, the fact that one is log-
normally distributed implies that the other is, too. Consider DI and λ−1

c as random
variables with DI = Ā · λ−1

c . If DI is distributed log-normally with parameters µ and
σ, then λ−1

c also follows a log-normal distribution with parameters −µ+ ln(Ā) and
σ. We show that in our case this relation holds as follows: We estimate µ and σ from
the data DI and use the observed average amplitude Ā = 2. It follows that the data

2.3 Results 29



λ−1
c is consistent with a log-normal distribution with −µ+ ln(2) and σ , as seen by

an Anderson-Darling test with p = 0.33.

While other skewed distributions like the exponential, gumbel and power law are
rejected by statistical tests at high confidence, both durations and cooling rates
are also consistent with an inverse Gaussian distribution. In fact, as indicated
by relative likelihoods of 2.6 and 1.7 for durations and rates, respectively, the
inverse Gaussian fits better than the log-normal. Given our small sample size, this
might not be significant, however. The observation that the durations and rates
are inversely related and both are well fit by the inverse Gaussian comes from the
fact that the reciprocal inverse Gaussian distribution has a very similar shape. More
specifically, if the true distribution of a variable is inverse Gaussian X ∼ IG(x),
then the distribution of Y = Ā

X is reciprocal inverse Gaussian Y ∼ Ā
x2 IG(Ā/x). It

is still expected that a moderately sized sample of Y is likely to be also consistent
with an inverse Gaussian distribution, due to the similarity of the two. The inverse
Gaussian could make an appealing model for the interstadial durations, since it
arises as distribution of first hitting times of a constant level for Brownian motion
with a constant drift. However, the interstadial time series look qualitatively much
different than what is expected from this model, because they are quite linear, but
have strongly varying slopes. In order for the model to produce roughly linear time
series, the drift has to be high, which results in very similar slopes of the time series.
In this parameter regime, the resulting inverse Gaussian distribution of first hitting
times converges to a Gaussian. We leave a further discussion on which mechanism
could yield log-normal or inverse Gaussian distributions of durations or cooling rates
for upcoming studies. Instead, in the following we focus on implications of the
approximate linearity of the interstadial time series.

The simple relation of interstadial durations and cooling rates might have some
implications on the understanding of DO event dynamics. If the cooling rates
imply the interstadial durations, then one must conclude that the durations are
already determined as soon as the cooling rate is established, which might happen
early on in the interstadial. This is different from the idea that the transition from
interstadial to stadial might be a noise-induced escape from one metastable state
to another. To test this, we take small slices of the beginnings of each interstadial,
fit a linear slope s to them and then calculate how strongly these slopes determine
the durations of the full interglacials as we increase the length of the slices. Due to
noise in the beginning of the interstadials, for some interstadials a small positive
slope is being detected. We set these slopes instead to s = −0.0001, because in our
analysis we will use the logarithms of cooling rates and durations. For the relatively
short events 15.2 and 17.2, no negative slope is obtained when fitting the whole
interstadial part independently, as opposed to the slopes obtained in the fit of the
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entire time series. We thus have to exclude these two outliers in the following. In
Fig. 2.5b we show how the correlation in between the slopes s of these slices and
the interstadial durations DI evolves as we increase the length of the slices. For
better visualization, we report correlations of logDI and − log(−s). The correlation
of the slopes estimated from the full interstadials and the durations when excluding
events 15.2 and 17.2 is rs = 0.94 (rp = 0.94), and is indicated by a dashed (dotted)
line in the figure. We can see that the correlation coefficient rapidly increases up to
a length of 150 years. Thereafter the correlation stabilizes until another more rapid
increase at a length of 350 years. The rapid increase in correlation is partly due to a
non-negligible number of events already being at full length (6 events at 150 years
and 12 events at 350 years). Still, also the slopes of the remainder does already
correlate well with the final durations. At 350 years, the durations are almost as
well determined by the slopes estimated from the slices as they are from the full
interstadials. The remaining indeterminacy comes from a handful of longer events
that did not settle to a clear negative slope after 350 years, namely interstadials 23.2,
22, 14, 11. For the latter three events, this is due to sub-events that occur shortly
after the interstadial onset. Although we can see that there are exceptions, because
of the rapid increase of the correlation coefficient towards -1 already for short slice
lengths, we conclude that for most events the interstadial duration is determined at
a relatively early stage within a few hundred years after the rapid warming.

Having established control of the interstadial durations by the cooling rates, we
investigate whether the variability in the cooling rates can be explained by other
features in the DO event series, or by external climate forcings. Although under
initial inspection we find significant correlation of the cooling rates with several
other features, none of them are relevant, either because they are caused by few
outliers or else directly due to their definition. As an example, the cooling rates are
(anti-)correlated with the rates (durations) of the steep drop to stadial conditions,
because of the fact that very short interstadials (with high cooling rates) only support
steep and short drops at the end.

Among the external climate factors, we find a correlation of rs = 0.40 and rp = 0.35
with the ice volume proxy LR04. This correlation is largely due to a common linear
trend of the two quantities. The correlation is not significant anymore at 95%
when removing a linear trend, as determined by a permutation test. On the other
hand, there is a large sub-set of events which appears to be linearly related. As
shown in Fig. 2.6, the furthest outliers from an approximate linear relationship
are the interstadials 23.2, 21.2, 16.2 and 15.1. When removing these outliers, the
correlation is rp = 0.79, which clearly goes beyond a common linear trend with
a correlation of rp = 0.63 after linearly detrending. When only considering the
younger half of the record starting with GI-14, which does not contain outliers, the

2.3 Results 31



lo
g 

(c
oo

lin
g 

ra
te

)

a

b

4.00 4.25 4.50 4.75

8

7

6

5

4

3

23.2

21.2 16.215.1

0

4

8

12

16

20

24

28

E
v
e
n
t 

#

LR
04

 (b
en

th
ic

 fo
ra

m
. δ

18
O

)

LR04 (benthic foram. δ18O)

lo
g 

(c
oo

lin
g 

ra
te

)

100 80 60 40 20
time (kyr BP)

8

6

4

3.5

4.0

4.5

5.0

Fig. 2.6.: a) Scatterplot of the logarithm of the interstadial cooling rates and the LR04
values at time points corresponding to the interstadial onsets. b) Time series of
the cooling rates (dots) and the LR04 stack (crosses). The error bars on the cooling
rates are given by the 16- to 84-percentile obtained by bootstrapping.

correlation is rp = 0.84. This corresponds to the finding in [Sch02b], who report
that the interstadial cooling rates starting from GI-14 are forced by global sea level.
We note, however, that the correlation is mostly due to the common trend of the two
quantities, as we find rp = 0.37 after linear detrending, which is not significant at
95%. Nevertheless, as shown above, when discarding outliers there is evidence for
significant correlation as we include older parts of the record.

Similarly, in a subset of the events, there are indications of a linear relationship of
the logarithm of the cooling rates and the Antarctic EDML record at the interstadial
onsets. While the correlation of the entire data set is not significant at 90% with
rp = −0.19 and rs = −0.23, when removing the events 24.2, 23.2, 23.1, 21.2, 16.2
and 15.1, the remaining events appear to have an approximate linear relationship,
as indicated in Fig. 2.7. The correlation then becomes rp = −0.81 and rs = −0.78,
and furthermore rp = −0.72 and rs = −0.61 after linearly detrending. Assuming
independence, these values are significant with p < 0.01. Thus, in this subset there
is evidence for anti-correlation beyond a simple linear trend. The linear relationship
is strongest for the younger half of the record, which starts at GI-14 and does not
have outliers. Here, we find rp = −0.89, and rp = −0.70 after linearly detrending.
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Fig. 2.7.: a) Scatterplot of the logarithm of the interstadial cooling rates and the EDML
values at time points corresponding to the interstadial onsets. b) Time series
of the cooling rates (dots) and the EDML stack (crosses). The error bars on the
cooling rates are given by the 16- to 84-percentile obtained by bootstrapping.
Note the inverted axis for EDML.

A corresponding linear relation of the logarithms of interstadial durations and
Antarctic temperature has been noted before in [BS15], for different Antarctic ice
cores. Importantly, they lump together into one event the two events comprising
each of the interstadials 24, 23, 21, 17, 16, 15 and 2. With our entire data set we
obtain correlations of rp = 0.29 and rs = 0.27 which are not significant at 95%.
If we remove the abovementioned outliers plus GI-17.2, we find a strong linear
relationship of rp = 0.93, comparable to the findings in [BS15]. It is robust to linear
detrending with rp = 0.87. With the exception of GI-24.2, these outliers are all very
short events. Removing the outliers, just like lumping them together with adjacent
longer events as in [BS15], thus removes a lot of the variability in the interstadial
durations.

Without any clear reason to treat the outliers as less significant events, we conclude
that the relations of cooling rates and both LR04 and EDML records rather hold only
on average, such as when averaging over multiple consecutive events. Because of
the large variability in the interstadial features neither record sufficiently predicts all
interstadial durations or cooling rates.
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2.3.4.2 Stadial periods

The stadial periods are defined to start after the rapid cooling and end at the onset
of the rapid warming, and are thus simply given by the values b1. They have highly
variable durations, ranging from the 20 years of GS-24.2 to 5169 years for GS-
19.1, with an average of 1328 years. Our definition of the stadials gives rise to
the exceptionally short duration of GS-24.2, where the proxy does not stabilize
on a constant level, but rapidly warms again right after the rapid cooling. The
histogram in Fig. 2.3 shows that the stadial duration distribution is clearly skewed.
The data is consistent with an exponential (p = 0.79 with Anderson-Darling test)
and a log-normal distribution (p = 0.18). The exponential distribution is 16 times
more likely compared to the log-normal, as determined by the relative likelihood.
Exponential distributions arise in the low noise limit of noise-induced escape times
from asymptotically stable equilibria in dynamical systems [Day87].

In the following we discuss whether the stadial duration variability is to some degree
influenced by other features in the data, or a result of external factors. Among
external factors, the stadial durations are best correlated with 65Nsolst (rs = −0.64).
Among NGRIP features, the only one that is significantly and robustly correlated with
the stadial durations are the stadial levels with rs = −0.43. In Fig. 2.8a we show a
scatterplot of the stadial levels and the logarithms of the corresponding durations.
If one discards the first 6 events of the record, there is a clear linear correlation
of rp = −0.80. After linearly detrending both features, we obtain rp = −0.76, and
thus an anti-correlation that goes beyond a common linear trend. The stadial levels
themselves are very well explained by external forcing. As a result, the correlation
of stadial levels and durations could be either due to common forcing or due to the
stadial levels directly controlling the durations. Although these scenarios are difficult
to distinguish within our simplistic framework, we start by exploring how well the
stadial levels can be explained by external forcing.

The stadial levels correlate well with ice volume and the Antarctic record, where
much of the calculated correlation is due to a common linear trend. They are even
better explained by insolation forcing. The linear correlation with 65Nsolst is rp =
0.60 with two outliers (GS-24.2 and GS-22). When removing these, the correlation
is rp = 0.82, and does not change when linearly detrending because the insolation
does not have a linear trend. To see whether this insolation forcing explains most of
the correlation of durations and levels, we remove a linear fit to 65Nsolst from each
variable and find a remaining linear correlation of rp = −0.38. Even though the
significance of this correlation is hard to assess due to the large autocorrelation of
the stadial level series, this could imply that there is more information in the stadial
levels about the durations than simply common insolation forcing. However, there
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Fig. 2.8.: a) Scatterplot of stadial levels and logarithmic durations. Outliers from an
approximate linear relationship are labeled. b) Event series of observed stadial
levels and those modeled by Y = 3.52 ·X1 +98.84 ·X2−57.96, where X1 is 65Nint
and X2 the eccentricity. c) Models predicting the observed stadial durations
(crosses). The first 6 events, indicated by gray markers, were discarded when
fitting the models. The model based on predicted stadial levels from insolation
(squares) is explained in the main text. The second model (circles) is given by
log Y = −0.037 ·X1−27.11 ·X2 +25.24, where X1 is 65Nsolst and X2 eccentricity.
The third model (diamonds) is given by log Y = −0.90 ·X1 + 75.39 ·X2 + 38.71,
where X1 is the Antarctic EDML record and X2 eccentricity.

could be additional components to the insolation forcing that might explain more of
the observed variability.

We investigate whether multiple linear regression models with two predictors explain
the stadial levels and durations significantly better. With a model comprised of 65Nint
and eccentricity, the stadial levels are very well determined (R2 = 0.86), as shown
in Fig. 2.8b. The model is given by Lmod = 3.52 ·X1 + 98.84 ·X2 − 57.96, where
X1 is 65Nint and X2 the eccentricity, both at stadial onset. The modeled levels also
correlate reasonably well with the logarithm of the stadial durations (rp = −0.64

2.3 Results 35



when excluding the first 6 events). We check whether this is a good model for
the durations in the original scale by regressing a linear model of the modeled
stadial levels to the logarithm of the stadial durations, which yields log(Dmod) =
−0.90 · Lmod − 32.18, and then exponentiating the predicted values. The result is
shown in Fig. 2.8c, where we compare this model to two other multiple linear
regression models, that directly regress the external forcings on the logarithm of the
durations and then exponentiate the predicted values. After the first 6 events, for
which none of the models fits adequately, all three models produce a similar trend.
The model based on predicted stadial levels, and a model with direct forcing by 65N
summer solstice insolation and eccentricity show similar skill with R2 = 0.29 and
R2 = 0.30, respectively. The third model based on eccentricity and the EDML record
is slightly better with R2 = 0.46, mainly because it fits two of the longest stadials
better. Still, all of the models fit only the overall trend and leave a large variability
on top of the trend unexplained. A linear correlation of the logarithm still leaves a
lot of room for variability in the original scale, unless the correlation is perfect.

To demonstrate that the exponential tail in the variability of the stadial durations
is not a result of the modulation by external forcing, we remove the trend due to
forcing by fitting a linear model of one or more forcings to the logarithm of the
stadial durations. We obtain detrended data in logarithmic scale by adding the
mean of the logarithmic data to the residuals of the fit. Finally we exponentiate to
obtain detrended data in the original scale. When using 65Nsolst as forcing, we
find p = 0.15 in an Anderson-Darling test on the exponential distribution. With the
slightly better linear model of both eccentricity and 65Nsolst, as introduced above,
we find p = 0.29. Thus, the distribution of the detrended data is still long-tailed and
consistent with an exponential distribution.

2.3.4.3 Abrupt warming periods

The rapid warming transitions in NGRIP as determined by our piecewise-linear
fit have an average duration of 63.2 years. There is quite a large spread with a
minimum duration of 15.3 years for GI-17.1 and a maximum of 179.5 years for
GI-11. There does not seem to be a trend, as we find both short and long warmings
in early and later parts of the record. The distribution is skewed as seen from the
histogram in Fig. 2.3. We find 5 transitions that last for more than a hundred years
(interstadials 6, 11, 17.2, 18, 23.2). For all of them there is not only a single abrupt
warming, but also a systematic departure from stadial to warmer values before, as
can be seen in Fig. S1 of the supplemental material. Our algorithm includes these
early warming trends into the warming transition. It is difficult to argue whether
this is appropriate. Clearly, other methods to define the abrupt warmings might give
different results in these cases. In [Rou+17], the transition onsets are defined by the

36 Chapter 2 Objective extraction and analysis of statistical features of

Dansgaard-Oeschger events



derivative of the signal and consequently the warming transitions into interstadials
6 and 11 are reported to be much shorter. Given our definition of abrupt warmings,
we can at least argue that the longest warming transitions are not a result of noise,
because in our fit of the GRIP record the same transitions are also among the longest
and are clearly above average.

To investigate which distributions are consistent with the observed data we use
Anderson-Darling, Cramer-von Mises and Kolmogorov-Smirnov tests. The Anderson-
Darling test shows that the log-normal (p=0.63), Gumbel (p=0.053) and inverse
Gaussian (p=0.95) distributions cannot be rejected at 95% confidence by the data.
The other tests give equivalent results. By computing the relative likelihood from
the Akaike information criterion, we find that the inverse Gaussian distribution is
9.7 times more likely than the Gumbel distribution, and the log-normal distribution
is 7.6 times more likely than the Gumbel distribution. We cannot choose in between
log-normal and inverse Gaussian with any confidence.

In the following we investigate whether we can infer anything about the mechanism
of the warming transitions from the distribution of their durations. To begin with, it
is clear that the durations of the warmings are much shorter than the time spent in
the stadial state. If we consider the stadial-interstadial transition as a noise-induced
transition from one metastable state to another starting at the stadial onset, most
of the time is spent in the vicinity of the stadial state. The part of the trajectory
that leaves this vicinity for the last time and then moves towards the other state
(interstadial) is referred to in the literature as the reactive trajectory. The rapid
warming durations of our piecewise-linear fit are estimates for the duration of these
reactive trajectories and can be compared to what is expected in the framework of
noise-induced transitions in multi-stable systems. For one-dimensional stochastic
dynamical systems it has been proven that the distribution of the reactive trajectory
durations converges to a Gumbel distribution in the zero noise limit [Cér+13].
Similarly, there is numerical evidence for the Gumbel distribution arising in one-
dimensional spatially extended systems for low noise amplitudes [Rol+16]. Because
in our data we cannot separate true climatic noise that might drive the observed
large-scale climate transitions from other types of noise (non-climatic or regional
climatic), it is hard to say whether a low-noise condition is indeed met and a Gumbel
distribution should be expected.

To clarify what should be expected for finite noise amplitudes and small sample
sizes, we conduct a numerical experiment with a stochastic double well model. It is
given by the stochastic differential equation dXt =

(
−dV (Xt)

dx

)
dt+ σdWt, with the

potential V (x) = x4 − x2 and the Wiener process Wt. There are two fixed points at
x = −1 and x = 1. We initialize the system at x = −1 and repeatedly collect reactive
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trajectories, which start when they last leave x < −0.9 and end as they enter x > 0.9.
We find that small samples of 31 of these reactive trajectory durations are indeed
typically consistent with a Gumbel distribution, but can be consistent with other
distributions, too. To illustrate this, we perform Anderson-Darling tests on many of
these small samples and record the p-values. This is done for a range of different
noise levels. For the Gumbel distribution at σ = 0.5 the p-value of 90% of the
samples lies in the interval (0.005, 0.85), which is given by the 5- and 95-percentile.
For σ = 0.00045 the interval is (0.07, 0.92). Thus, in this case, very rarely a sample
of 31 reactive trajectory durations would be rejected by a hypothesis test on the
Gumbel distribution. However, the log-normal distribution fits equally well with
90% of the p-values in (0.05, 0.94). The distribution that most reliably fits the data
is the inverse Gaussian distribution with 90% of the p-values in (0.50, 0.99). The
fact that the inverse Gaussian distribution fits well also for large sample sizes has
been already noted in [Cér+11]. Even non-skewed distribution can be consistent
with the samples, as seen for the Gaussian distribution, which yields 90% of the
p-values in (0.005, 0.50). Similar values are obtained for the logistic distribution.
The results do not change qualitatively when we use KS or CVM tests instead, and
also the noise level does not seem to have a large influence. These results imply that
from this small sample size we cannot reliably identify the true distribution and thus
an underlying mechanism. Still, the data are at least consistent with the expected
behavior of noise-induced escape from a metastable state. Clearly, there are also
other simple mechanisms that are consistent with data. For example, as already
mentioned above, the inverse Gaussian arises as distribution of time elapsed for a
Brownian motion with drift to reach a fixed level.

The variability in the warmings cannot be explained by other features of the record,
as there is no significant and robust correlation, other than with the warming rates
and amplitudes, which are trivially related. Multiple linear models with two features
also cannot predict the warming durations. Similarly, we do not find any external
forcing, or a combination of two forcings, that can explain a significant part of the
variability.

Finally, we discuss the amplitudes of the rapid warmings, which have an average of
4.2 permil, with most events clustering around this value. Still, there is considerable
variability, and the most extreme values are 7.1 permil for GI-19.2 and 1.7 permil for
GI-5.1. The latter is not surprising, because GI-5.1 is almost not visually discernible
as en event in the δ18O series. When considering whether the variability can be
explained by external forcing, we do not find a relation of the DO event amplitudes
and global ice volume (LR04), as has been proposed before [McM+99; Sch+99].
It should be noted, however, that these earlier studies have a completely different
notion of the amplitudes of DO events and millennial-scale variability. We assess
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the actual amplitude of the rapid transitions, for which our approach based on
the high resolution data seems ideal, because any low-pass filtering would reduce
the amplitude of shorter events. Instead of ice volume, we find a correlation with
65Nint of rp = −0.36 and rs = −0.31, which is significant at 95% as determined by
permutation tests. However, the correlation is visually not striking, and is largely
determined due to the fact that GI-19.2 happens close to an insolation minimum.
Removing GI-19.2 yields correlation coefficients that are not significant at 90%.
Finally, note that the NGRIP record and thus the inferred amplitudes are not directly
interpretable as temperature, since the relationship of δ18O and temperature is
likely to have changed over time. To illustrate, in the temperature reconstruction by
Kindler et al. [Kin+14], the largest amplitude occurs for GI-11 with an estimated
16.5 K warming, and not for GI-19.2, which is estimated by 14 K.

2.4 Discussion and Conclusion

We developed a consistent fitting routine that allows us to extract robust features of
DO events from the noisy, high-resolution NGRIP record. We demonstrated that the
algorithm converges to a continuous piecewise-linear fit of the whole time series,
where each DO event cycle is given by a constant stadial period, an abrupt warming
period, a gradually cooling interstadial period and an abrupt cooling period. The
resulting fit is satisfactory in the sense that each event receives a reasonable saw-
tooth shaped fit. Not for all events this is necessarily the overall best piecewise-linear
fit. For example, there are transitions that do not really have a significant rapid
cooling period at the end of the interstadials, but rather cool gradually until reaching
roughly constant stadial values. In fact, in Sec. 2.3.1 we showed that 14 out of the
31 DO events analyzed in this study do not follow the saw-tooth shape that is often
reported as being generic for all DO events.

We assess the uncertainties of the fit parameters by using a bootstrap resampling
technique and alternatively by comparing with a fit obtained from a different ice
core (GRIP). The average absolute deviations of the GRIP and NGRIP features are of
very similar magnitude compared to the average standard deviations obtained by
bootstrapping. This gives us confidence in the validity of the uncertainty estimates
of the latter method. From the uncertainties it follows that some of the shorter time
scale features derived from the fit have to be taken with care, such as the rapid
warming durations. Here, not all individual values might be reliable. However,
the comparison with GRIP shows that we have reason to believe that the overall
trends and distributions, also of the shorter time scale features, are robust. The
results also depend on the method or model to define the features. As an example,
our piecewise-linear method yields quite different estimates of the abrupt warming
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durations as compared to the estimates given in [Rou+17], where abrupt warmings
are defined by an estimated derivative of the signal. Our results have an average
absolute deviation of 25 years (26 years) compared to their algorithmically (visually)
determined warming durations starting at GI-17.1.

We subsequently analyzed different features that describe each DO event and that
can be derived from the fit parameters. These features include the proxy levels in the
stadials, at the interstadial maxima and ends, the durations and rates of warming
and cooling periods, as well as stadial and interstadial durations. In general, all
features except for the proxy levels develop rather irregularly from event to event,
as shown by the absence of significant autocorrelation, and many of them are very
broadly distributed. With statistical hypothesis tests we evaluate which distributions
describe the individual features best. Identifying the distributions of the underlying
processes can give some insight into the nature of the mechanisms giving rise to
the abrupt climate changes. Furthermore, we investigated whether the variability
in some features can be explained by other features or combinations of them. In
order to do this, we searched for significant correlations of pairs of features and
multiple linear regression models of two features that determine another feature
well. This yields a long list of significant correlations in between features, many
of which are not surprising because they occur in pairs of features that are closely
related by definition. Other correlations are the result of a few outliers and are thus
not robust. Among the remaining relevant relationships in between features, we test
if these are due to a common underlying trend caused by external forcing. To do
this, we correlate all features with a selection of external climate factors.

We synthesized some of the findings of the data analysis and reported the results in
terms of different aspects of DO events, namely the interstadial, stadial, and abrupt
warming periods. Except for a common forcing envelope of stadial and interstadial
levels, there is hardly any inter-relation in between the features of the different
periods. Additionally, they have different statistical properties and appear to be
influenced by different external factors, as detailed in the following.

The interstadial periods have highly variable durations and are characterized by
a roughly linear cooling, which is given by the gradual cooling rate. We find that
the cooling rates are also highly variable and clearly determine the interstadial
durations, as opposed to the cooling amplitudes, which cannot robustly explain the
variability of the durations. Interstadial durations and cooling rates are consistent
with a simple inverse relationship. Because the interstadial cooling is approximately
linear, the interstadial durations are determined to a good approximation as soon as
the cooling rates have stabilized. We estimate from the data that for most transitions
this happens within the first 150 to 350 years of the interstadial. Next, we assess
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whether the large variability in the cooling rates can be explained by other features
of the record or external factors, and compare our results to two previously proposed
external forcing mechanisms to control the interstadials. Based on the GISP2 ice
core record of the younger half of the last glacial it has been proposed, that the
interstadial cooling rates are controlled by global sea level [Sch02b]. While we can
confirm this finding by observing a linear correlation of the logarithm of the cooling
rates with the LR04 record for global ice volume, the relation seems to be weaker
in the older half of the glacial. Here, there are a handful of outliers. Similarly, a
control of Antarctic temperature on interstadial durations has been reported [BS15],
but is only valid if certain outliers are discarded. Assuming that our classification of
outliers is robust, it could indicate that not all of the transitions are caused by the
same trigger.

The stadials have different properties compared to the interstadials, going beyond
the fact that the temperature within stadials is approximately constant. The duration
distribution closely resembles an exponential, and is thus consistent with noise-
induced escape from a metastable state to another. The large dispersion of this
distribution cannot be explained by external forcing alone. Instead, the distribution
is still consistent with an exponential after detrending with the best fit to insolation
forcing. Although there are different possibilities to obtain a good fit of the trend of
the stadial durations, a forcing by insolation seems most plausible. We additionally
find indications for a control by the stadial levels on the durations, but it is difficult
to conclude from our data whether there is a true causal link, or merely common
insolation forcing on both variables.

The piecewise-linear fit furthermore gives estimates for the amplitudes, rates and
durations of the rapid DO warmings. We find no evidence for the rapid warmings to
be influenced by any other features of the record or by external factors. Still, there
is considerable variability of the warming durations, and we find the distribution
to be consistent with the durations of so-called reactive trajectories in systems
with noise-induced escapes in between multiple metastable equilibria [Cér+13;
Rol+16].

Thus, our analysis suggests that both the stadial period durations and subsequent
warming durations are consistent with the stadial to interstadial transition as a
noise-induced escape from a metastable state. This is different from the interstadial
to stadial transition, which seems to occur in a more predictable fashion, because
our analysis shows that the linear cooling rate anticipates the interstadial durations.
Additionally, the interstadial durations are not consistent with an exponential distri-
bution. It has, however, recently been suggested that there is a bifurcation before DO
events in a fast sub-system of the climate, which was based on evidence for critical
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slowing down in the high-frequencies of the ice core record prior to a significant
number of DO warming transitions [Ryp16; Boe18]. If this is the case it would mean
that there is some predictability of the warming transitions, too. Finally, we find
that the influence of external forcing is different for stadial and interstadial periods,
with more evidence for insolation forcing on stadials and ice volume on interstadials,
which is equivalent to the findings in [LD18].

In conclusion, we developed an iterative method to fit a continuous piecewise-linear
waveform to the whole last glacial record, which converges well. By using parameter
constraints, we can fit a characteristic saw-tooth shape to every DO event. However,
we find that for many of the transitions this is ad-hoc. Almost half of the events
do not show a distinct and significant rapid cooling episode after the more gradual
interstadial cooling. An analysis of the DO event features that we derive from the fit
confirms the irregularity and randomness that is evident from visual inspection of
the record. There is hardly any evidence for relationships linking the features that
describe the stadial, interstadial and abrupt warming periods, except for a common
envelope that governs the stadial and interstadial levels via insolation forcing. A
statistical analysis hints at different mechanisms underlying warming and cooling
transitions. This manifests itself in different distributions and external influences
of the stadials and interstadial durations, as well as the fact that the interstadial
durations can be predicted to some degree by the interstadial linear cooling rates.

42 Chapter 2 Objective extraction and analysis of statistical features of

Dansgaard-Oeschger events



2.A Iterative algorithm to fit
piecewise-linear model

Algorithm 1 Pseudocode for fitting algorithm

1: while j < J do
2: if j = 0 then
3: {tbi} = {tb0i }; {tei} = {te0i }
4: else
5: Set Stadial durations: {DSt

i } = {b1,i + tbi − tbi−1 − b4,i−1}
6: Set Interstadial durations: {DIs

i } = {b4,i − b1,i}
7: Set Stadial beginning times: {tbi} =

{∑i−1
n=0(DSt

n +DIs
n )
}

8: Set Stadial end times: {tei} =
{∑i

n=0D
St
n +∑i−1

n=0D
Is
n

}
9: end if

10: Define Stadial levels: {lsi } =
{〈
Xtbi ,...,t

e
i

〉}
11: Cut into segments: {si} =

{
Xtbi ,...,t

e
i+1

}
12: while i < N do
13: if j=0 then
14: Initial conditions: θ∗i = θ0

i

15: else
16: Initial conditions: θ∗i = θi

17: end if
18: Find optimal θnewi of segment si with θ∗i , l

s
i and lsi+1

19: i = i+ 1
20: end while
21: Update parameters {θi} = {θnewi }
22: j = j + 1
23: end while

The following list contains all constraints used in the optimization problem in order
to ensure convergence of the algorithm to a fit within the qualitative limits of the
desired characteristic waveform. Specifically, constraints 3 and 4 shall guarantee
that there is a distinction in between gradual cooling and rapid cooling at the end of
an interstadial. With these constraints we can prevent that our algorithm splits an
interstadial in half with two very similar slopes, which can easily happen because
there are interstadials which arguably have a rather gradual cooling all the way down
to the next stadial with no easily discernable steep cooling at the end. The lower
limit of constraint 6 shall help to only fit to the steep part of warming transitions,
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which might have a slight warming prior to it. The upper limit of constraint 7 is
needed in order to force a small negative slope on very short transitions which
otherwise could also be viewed as plateaus.

1. No overlap of segments:
b2 > b1, b3 > b2 and b4 > b3

2. Gradual slope cannot go below following stadial level lsi+1:
s1(b2 − b1) + s2(b4 − b3) > lsi+1

3. Gradual slope must be twice as long as steep drop:
b3 − b2 > 2 · (b4 − b3)

4. Drop at end of interstadial must be at least twice as steep as gradual slope:
2 · s2 <

s1(b2−b1)+s2(b3−b2)−lsi+1+lsi
b4−b3

5. Stadial period not shorter than 20 years:
b1 > 20, b2 > 20, b3 < (DSt +DIs − 20)
and b4 < (DSt +DIs − 20)

6. Limit steepness of up-slope (permil y−1):
0.02 < s1 < 1.5

7. Limit steepness of down-slope (permil y−1):
−0.3 < s2 < −0.0001

For the basin-hopping algorithm we use a multivariate Gaussian Kernel of fixed
variance with σb1 = 15, σb2 = 15, σb3 = 15, σb4 = 15, σs1 = 0.004 and σs2 =
0.0015.

2.B Convergence of iterative fitting
routine

We repeatedly run our iterative fitting routine and monitor whether the individual
parameters converge, so that a consistent fit is obtained in the end. Critical for
obtaining a consistent fit is that the stadial levels do not change substantially, as
explained in the Methods section. In Fig. 2.9a we show the evolution over 40
iterations of the incremental deviations of the stadial levels compared to the previous

44 Chapter 2 Objective extraction and analysis of statistical features of

Dansgaard-Oeschger events



0 20 40
0

20

40

In
cr

. 
b

1

0 20 40
0

20

40

In
cr

. 
b

2

0 20 40
iteration

0

20

40

In
cr

. 
b

3

0 20 40
iteration

0

20

40

In
cr

. 
b

4

a

b

0 10 20 30 40
iteration

0.50

0.25

0.00

0.25

In
cr

. 
st

a
d

ia
l

1
8
O

Fig. 2.9.: a) Evolution of the incremental change of all stadial levels compared to the
previous iteration for all 40 iterations of the fitting routine. b) Average over
all transitions of the incremental change (absolute value) of the break point
parameters b1, b2, b3 and b4.

iteration. Most stadial levels converge rapidly so that their increments stay below
0.05 permil. Two short stadials keep fluctuating until around iteration 20 before
they converge. Because of the convergence of stadial levels, we consider our fit to
be consistent. Furthermore, the best fit parameters are robust, which can be seen in
Fig. 2.9b. Here, we show the average absolute incremental deviations to the break
point parameters at each iteration. After 15 iterations the procedure is stable, with
average incremental deviations of roughly 0.4 years for b1 and b2 to 0.5 years for b3
and b4, which result from the stochastic fitting algorithm. Note that these values are
already well below the smallest sample spacing of the original unevenly spaced time
series.

2.C Uncertainty estimation of fitting
parameters

Because of the nature of the data, care has to be taken when generating the synthetic
data. The properties of the data changes throughout the record and are also quite
different in between adjacent stadials and interstadials. Stadials have both a larger
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variance and a larger effective sample spacing in time than the interstadials. For
this reason, synthetic data will be created for each stadial and interstadial period
individually. The original data is unevenly spaced, which would provide difficulties
on its own, while our data is nearest-neighbor interpolated and oversampled to a
1-year resolution. This means that there typically are multiple neighboring point
with the same value, making it difficult to find a good autoregressive or ARMA
model for the residuals to generate synthetic data. Instead, we use a block bootstrap
resampling technique to keep all relevant structure in the data. We chose a simple
block bootstrap where non-overlapping blocks of fixed length of the time series
are randomly ordered, because it preserves the correct mean of the individual
stadial and interstadial residuals. Alternatively, a more involved method called
stationary bootstrap could be applied, but we do not think it will change any of the
conclusions.

In the following, we present the procedure for uncertainty estimation. We denote
the original data time series of a given transition as {Xt}, the fit obtained by the
data as {Yt} and the residuals to the fit as {Rt} = {Xt − Yt}. We furthermore use
the break points b1,2,3,4 obtained in the fit of this transition.

1. Divide the residuals into four segment Rit at the breakpoints:
{Rit} = {Rt}t=bi−1...bi

for i = 1...4, where b0 = 0.
Denote the length of {Rit} as ni.

2. For each segment: Divide into ni/l blocks of length l.
Append remaining data points to last block if ni/l non-integer.
The block length l is determined by the length of the segment, as explained
below.

3. For each segment: Randomly sample blocks without replacement and con-
catenate until all blocks have been used. This yields resampled segments
{R̄it}.

4. Concatenate the four resampled segments and add the fit to get synthetic data
{X∗t } = {Yt}+ {{R̄1

t }, {R̄2
t }, {R̄3

t }, {R̄4
t }}

5. Fit {X∗t } to a piecewise-linear model with the basin-hopping algorithm.

6. Repeat from step 2.

In order to also be able to resample the shortest segments, while also preserving the
autocorrelative structure in all but the shortest segments, we choose the following
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scheme for the block length l: If the segment length ni is larger than 40 years, choose
l = 20. If 40 > ni ≥ 20 choose l = 10. If 20 > ni ≥ 10 choose l = 5. If ni < 10 do
not resample and simply return original segment. The scheme has been determined
by looking at the residuals of each segments in all transitions and observing that the
autocorrelation drops to non-significant values for all segments after 10-15 years.
It thus seems reasonable to use the same block length rule for all transitions and
segments.
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3Random and externally
controlled occurrence of
Dansgaard-Oeschger
events

Abstract

Dansgaard-Oeschger (DO) events constitute the most pronounced mode of centen-
nial to millennial climate variability of the last glacial period. Since their discovery,
many decades of research have been devoted to understand the origin and nature of
these rapid climate shifts. In recent years, a number of studies have appeared that
report emergence of DO-type variability in fully coupled general circulation models
via different mechanisms. These mechanisms result in the occurrence of DO events
at varying degrees of regularity, ranging from periodic to random. When examining
the full sequence of DO events as captured in the NGRIP ice core record, one can
observe high irregularity in the timing of individual events at any stage within the
last glacial period. In addition to the prevailing irregularity, certain properties of the
DO event sequence, such as the average event frequency or the relative distribution
of cold versus warm periods, appear to be changing throughout the glacial.
By using statistical hypothesis tests on simple event models, we investigate whether
the observed event sequence may have been generated by stationary random pro-
cesses or rather has been strongly modulated by external factors. We find that the
sequence of DO warming events is consistent with a stationary random process,
whereas dividing the event sequence into warming and cooling events leads to
inconsistency with two independent event processes. As we include external forcing,
we find a particularly good fit to the observed DO sequence in a model where the
average residence time in warm periods are controlled by global ice volume and
cold periods by boreal summer insolation.

3.1 Introduction

During the last glacial period, lasting from approximately 120 kya BP to 12 kya BP
(thousands of years before present), a large number of abrupt large-scale climate
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changes have been recorded in Greenland ice cores and other Northern Hemisphere
climate proxies. These so-called Dansgaard-Oeschger (DO) events [Dan+93] are
characterized by an abrupt warming of 10-15 K from cold conditions (stadials) to
warmer conditions (interstadials) within a few decades. This is typically followed by
gradual cooling, lasting centuries to thousands of years, until a more abrupt jump
back to cold conditions is observed. The warming events are not regularly spaced
over the glacial, but rather distributed in a complex temporal pattern, as can be seen
in the NGRIP ice core record in Fig. 3.1. This raises questions about the causes of
these recurring climate changes. Could an internal oscillation of large components
of the climate system under strongly varying conditions give rise to this pattern?
Are the climate changes in contrast manifestations of highly sensitive, multistable
climate system components, where jumps in between different states are triggered in
an unpredictable way by one or possibly many different other chaotic components?
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Fig. 3.1.: NGRIP oxygen isotope ice core record in 20-year binned resolution and associated
Dansgaard-Oeschger warming and cooling events. The numbers above the time
series indicate the warming transitions into the respective Greenland interstadials.
The nomenclature is adopted from [Ras+14] and only events considered in this
study are marked. On the time axis we marked the timing of warming (red) and
cooling (blue) events.

Since the discovery of these unexpected climate events with no known cause, ques-
tions of this kind have been addressed. Whereas high-resolution coupled climate
models under glacial conditions typically lack DO-type variability, models of inter-
mediate complexity and simpler conceptual models have been proposed to explain
qualitative features of the sequence of last glacial climate changes. Starting from
the discovery of an approximate 1500 year spectral signature in the GISP2 ice core
record [GS97] and an apparent in-phase pacing of individual events by multiples
of this time period [All+01; Sch02b; Rah03], a number of competing hypotheses
have been compared to the data. Among these were studies aiming to establish
a mechanism for this periodicity, including direct triggering by periodic forcing
[Bra+05], stochastic resonance [All+01], ghost resonance [Bra+07] and coherence
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resonance [Tim+03]. On the other hand, it has been shown that there is limited sig-
nificance to the periodic spectral signature [Bra+10] and pacing of individual events
[Dit+07]. When including data reaching further back in time than 50 kyr BP it is
found that only very weak periodic contributions to modeled switching sequences
are compatible with the data and that instead it is more likely that the observed
sequence of events is a realization of a purely noise-driven process [Dit+05].

In this work, we want to expand on this idea by testing whether the observed se-
quence of events is indeed consistent with one or more random, stationary processes,
or whether the changes over time of the properties of the observed event sequence
require a modulation of parameters of the governing process over time. To this end,
we consider the whole glacial period, as opposed to previous efforts focusing on
a rather regular period in the middle of the glacial. We investigate two different
levels in detail of description by first only regarding the sequence of warming events
and second the combined sequence of alternating transitions in between cold and
warm conditions. We proceed by testing two null hypotheses: 1. The sequence of
DO warming events is a realization of a Poisson process with fixed rate parameter.
2. The sequence of stadials and interstadials is a realization of two independent
Poisson processes with fixed rate parameters giving rise to transitions in between
stadials and interstadials. In order to test the hypotheses, we consider the evolution
of the number of warming events in a moving window of 20 kyr. This quantity
measures how variable the average event frequency is over time, a property which
we denote as irregularity, and in the DO sequence it deviates strongly from a constant
occurrence frequency of events over time. We test whether samples from the above
mentioned stationary processes show a similar irregularity.

In addition to the evolution of the frequency of warming events we look at the
evolution of the abundance of the stadial over the interstadial condition, which
changes significantly over time in the DO sequence. This additional non-stationary
structure in the data is the basis for another hypothesis test we perform. Finally, we
test how the models’ support with respect to the data is improved as we force the
rate parameters with a combination of a global climate proxy and orbital variations
of insolation, to incorporate changing background climate conditions. The main
findings of this study are: 1. A Poisson process with fixed rate parameter, modeling
warming transitions only, is consistent with the time variations in the NGRIP DO
warming event sequence. 2. A model composed of two independent stationary
Poisson processes governing transitions in between stadials and interstadials is not
consistent with the time variations in the observed DO event sequence. 3. Forcing
the aforementioned models with a combination of a global ice volume proxy and
a summer insolation curve leads to good statistical agreement with the observed
sequence. Specifically, we find good agreement for a model with two individual
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processes, where the average transition rate from interstadial to stadial is controlled
by global ice volume forcing, obtained from independent ocean core isotope records,
and the average transition rate from stadial to interstadial is controlled by boreal
summer insolation.

The paper is structured in the following way. In Section 2 we introduce in more detail
the data used in this study, the summary statistics used to investigate irregularity
in the event series, the models used to explain the data and the hypothesis test
procedure. In Section 3 we present the results of the hypothesis tests on the different
models. We discuss and interpret the results in Section 4.

3.2 Methods and Models

Our study of the sequence of DO events is based on the refined dating represented by
the GICC05 time scale [Sve+06], the classification of Greenland stadials (GS) and
Greenland interstadials (GI) given in Rasmussen et al. [Ras+14] and the timings
reported therein. We consider all stadials and interstadials and corresponding
transitions, starting with GI-25c at 115370 kyr BP and ending with the transition
from GS-1 to the Holocene at 11703 kyr BP. We do not include events classified
as subevents, i.e., drops in the middle interstadials to colder, but not fully stadial
conditions, with the exception of GS-14. This yields a total number of 34 warming
events and 33 cooling events. This increase in number from the 25 originally
reported warming events is due to refined subdivision [Ras+14].

Given sequence and timing of transitions in between stadials and interstadials, we
construct time-varying indicators of irregularity in the sequence of event timings,
which are shown in Fig. 3.2a,b. To this end, we calculate the number of warming
transitions within a moving window of 20 kyr at midpoint in time t, which we
denote as E(t). The window size of 20 kyr is chosen as trade-off between resolution
and statistical robustness of longer-term features in the event sequence given the
characteristic time scale of event occurrence of 3.1 kyr. The window is furthermore of
comparable size to dominant variations in global background climate and insolation
forcing, which will be investigated below. We obtain a time series indicating the
deviation in the occurrence frequency of warming events from an evenly spaced
(regular) event occurrence. We summarize this in a scalar test statistic ES defined as
the root mean squared deviation of the time series E(tn) from the expectation value
Ē

ES =

√√√√ 1
N

N∑
n=1

(E(tn)− Ē)2, (3.1)
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Fig. 3.2.: Time-varying irregularity indicators calculated from the NGRIP DO sequence,
and climate forcings. (a): The number of warming events in a running 20 kyr
window E(t) (red) and the mean value (dashed blue). (b): The abundance of
stadials in a 20 kyr window P (t). For values greater than 0.5 (indicated by gray
shading) the portion of stadials is larger than the portion of interstadials within
the window. (c) Ocean sediment proxy record for global ice volume I(t). (d)
Integrated summer insolation at 65 degree North S(t).

where Ē = 6.367 the average number of events per 20 kyr of the whole DO sequence.
For events occurring periodically with a period significantly smaller that the window
size, the test statistic ES is close to zero. For completely randomly occurring events
the test statistic will show a finite value, which depends on the moving window
size relative to the average waiting time in between events. The same time-varying
indicator has previously been used to complement a model comparison study aiming
to quantify the influence of external forcing to conceptual models of the NGRIP ice
core record [MC17]. With this statistic we test whether the observed DO sequence
departs significantly further from regularity as compared to what is expected by
a random, uncorrelated event sequence. If this is the case, it would hint either
at non-stationarity of the underlying process or a super-exponential event waiting
time distribution. We consider the latter scenario to be less likely since no clear
motivation for such a process exists.

While no significant correlation between duration of individual stadials and pre-
ceding or subsequent interstadial is observed (Pearson’s r = 0.04 and r = −0.15,
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respectively), the data suggests long-term variations in stadial and interstadial du-
ration distributions. If these variations are systematic for stadials and interstadials
(i.e. correlated or anti-correlated) they should be detectable in the correlation of
individual neighboring stadial/interstadial durations given a large enough sample
size. However, due to the small sample size of events in this study and the broad
distribution of event waiting times a correlation due to long-term trends is not
observed in practice. It is thus necessary to devise another time-varying indicator
in order to capture additional detail in the structure of the DO sequence. When
observing a given number of events in a time window, this may be either comprised
of a combination of long stadials and short interstadials, or short stadials and long
interstadials. This is not resolved in the statistic ES . To capture this structure, we
investigate the total portion of stadials within a moving window. Given the sum of
the duration of all stadials Tst(t) in a time window around a given midpoint in time
t, the indicator is defined as P (t) = Tst(t) · (20 kyr)−1. We summarize this indicator
by a scalar test statistic PS . It is defined as the root mean squared deviation from
the average value P̄

PS =

√√√√ 1
N

N∑
n=1

(P (tn)− P̄ )2, (3.2)

where P̄ = 0.461 is the sum of all stadial durations divided by the total duration of
the last glacial period.

We now describe the models which are used to evaluate our hypotheses on the
data using the test statistics described above. The first model used in our study
models the process generating the sequence of warming events as a Poisson process
with fixed rate parameter λ, i.e., we disregard the cooling transitions in between
warming events. It is denoted as ’one-process model’ hereafter. The inverse of the
rate parameter corresponds to the average waiting time in between warming events.
The Poisson process corresponds to a situation where there is no memory of the past
and thus the probability for a transition is determined by λ and is independent of
time. All information on climate stability is represented in the parameter λ. We set
its value equal to the inverse of the empirically observed average waiting time over
the entire glacial record. This yields λ = (3.141 kyr)−1.

As a second model, labeled ’two-process model’ hereafter, we propose two individual
processes for generating warming transitions from stadials to interstadials and
cooling transitions from interstadials back to stadials. Each is represented by a
Poisson process with a fixed rate λ1 and λ2, for warming and cooling, respectively.
Again, the parameters are derived from the data by considering the empirical
average residence times in stadials and interstadials, yielding λ1 = (1.477 kyr)−1

and λ2 = (1.663 kyr)−1. The model is different from the one previously introduced in
that the sequence of warming transitions is not a Poisson process, but a more regular
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one that is obtained from the sum of two independent processes. The probability
distribution of waiting times T in between warming events is not exponential, but
can be evaluated, yielding

P (t > T ) = (λ1 − λ2)−1 · (λ1e
−λ2T − λ2e

−λ1T ). (3.3)

The average interstadial and stadial durations of the data seem to behave differently
over the course of the glacial, as captured by our second test statistic. This motivates
us to study whether this behavior is likely to be encountered by chance assuming
randomness and independence of both warming and cooling transitions.

As comparison to our hypothesis of stationary random processes, we consider the
same models with time-varying rate parameters, which are given by a linear com-
bination of two external climate factors: λ = λ̃ + aS(t) + bI(t). Firstly, we use a
measure of incoming solar radiation at 65 deg North integrated over the summer
S(t) [Huy06]. It is defined as the annual sum of the insolation on days exceeding
an average of 350 W/m2. Secondly, we use the LR04 ocean sediment record stack
as proxy for global ice volume I(t) [RL05]. We note that, in contrast to insolation,
global ice volume is not an external factor in the strict sense. However, its dominant
variability is on longer timescales than DO events and most importantly it is obtained
from an independent data source. Time series of these forcings are shown in Fig.
3.2c,d. The models’ parameters are chosen such that the time-varying indicators
are on average closest to those of the data. Specifically, by Monte Carlo simulation
we generate many realizations for a fixed model parameter, compute time-varying
indicators for each realization and then construct an average curve. Finally, the
root-mean-square deviation (RMSD) from this curve with respect to the time-varying
data statistic is computed. For best fit, we search for the least RMSD on a grid in
parameter space. This corresponds to a numerical calculation of the maximum likeli-
hood fit to the observed data. The two-process model is fitted to both statistics E(t)
and P (t) simultaneously, by minimizing the normalized sum of the errors RMSDE,P
to each of the statistics, defined as RMSDsum = RMSDP /ES + RMSDP /PS .

The hypothesis tests are performed in the following way. For a given model we
simulate a large number of realizations, which are collections of subsequent events
with the same total duration as the record (104 kyr). For each realization we
calculate the time-varying indicator of interest and the corresponding scalar test
statistic. We then use the distribution of test statistics for a one-sided hypothesis test.
The test simply counts how many test statistics in the ensemble are as large as or
larger than the test statistic obtained from the data. Divided by the sample size, this
yields a p-value, which estimates the probability of generating a random realization
under the null hypothesis model that is at least as extreme as the observed data. We
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can reject the null hypothesis at a confidence level α if the p-value is smaller than
1− α.

3.3 Results
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marked in red and determines the p-value of the hypothesis tests.

The results of the hypothesis test on the stationary one- and two-process models are
shown in Fig. 3.3a-c. The plots show test statistic distributions of the respective null
models and the corresponding test statistic value of the data. For the one-process
model, the data test statistic lies well within the distribution, yielding a p-value of
pE = 0.16, as seen in Fig. 3.3a. Thus, we cannot rejected the null hypothesis at a
level >85%. This indicates that the variations in the timing of warming transitions
are consistent with a stationary Poisson process, i.e., without invoking variations
in the rate parameter. Fig.’s 3.3b,c show the hypothesis tests of the two-process
model, yielding low p-values pE and pP for both test statistics. The stationary two-
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process model is thus rejected by the hypothesis tests with both test statistics at high
confidence >98%.
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To better visualize the outcomes of the hypothesis tests, we show confidence bands
for the time-varying indicators from our Monte Carlo simulations in Fig. 3.4. The
indicator E(t) of the data lies within the 95% point-wise confidence band of the
one-process model. Moreover, this band can be calculated analytically from the
fact that the probability distribution of observing k events in a time period T is
given by the Poisson distribution P (k, T ) = (λT )k

k! e−λT . The cumulative distribution
thereof allows us to calculate the probabilities of observing the minimal and maximal
number of events per 20 kyr found in the data indicator E(t). We find the probability
to observe 2 or less events is P = 0.047 and to observe 12 or more events P = 0.030.
This confirms that we cannot exclude the possibility of observing only 2 events and
as much as 12 events during 20 kyr of the record at 95% confidence. The 95%
confidence band of E(t) for the two-process model in Fig. 3.4b is narrower and
does not include the most extreme parts of the data curve. The same holds for the
indicator P (t), thus confirming that the two-process model can be ruled out with
high confidence as null model for the observed sequence of events.

In the following we present the hypothesis tests performed on the one- and two-
process models forced with insolation S(t) and ice volume I(t), which are both
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Model Parameters p-Value Goodness-of-Fit
Stationary one-process λ = 0.32 pE = 0.16 RMSD = 3.05

Stationary two-process
λ1 = 0.68 pE = 0.011 RMSDsum = 2.0
λ2 = 0.60 pP = 0.005

Non-stat. one-process
λ̃ = 0.32 pE = 0.70 RMSD = 1.42
a = 0.43 , b = 0.82

Non-stat. two-process
λ̃1 = 0.97 , λ̃2 = 0.97 pE = 0.63 RMSDsum = 0.59
a1 = 1.60 , b1 = −0.57 pP = 0.65
a2 = −1.96, b2 = 2.56

Fig. 3.5.: Summary of model parameters, hypothesis test results and Goodness-of-Fit of the
mean model time-varying indicators with respect to the data.

scaled to zero mean and range 1. Fig. 3.6 shows the time dependent transition rates
as obtained from the parameter fit. For the one-process model we obtain

λ(t) = 0.32 + 0.43 · S(t) + 0.82 · I(t). (3.4)

The best-fit two-process model has warming transition rate λ1(t) and cooling transi-
tion rate λ2(t)

λ1(t) = 0.97 + 1.60 · S(t)− 0.57 · I(t)

λ2(t) = 0.97− 1.96 · S(t) + 2.56 · I(t).
(3.5)

The hypothesis tests for the fitted models are shown in Fig. 3.3d-f and yield high
p-values, where the data statistic lies near the mode of the distributions. Note that
we only measure the deviation of the time-varying statistics from a constant average
value. Thus, the statistical test is not targeted at evaluating the fit to the data, but
merely at probing whether the fluctuations over time of the indicators are of the
right magnitude. Goodness-of-fit can be seen by means of the confidence bands
and mean of the time-varying indicators, as shown in Fig. 3.7. For both models,
the mean indicators lie close to the data curves, which consequently lie within 95%
confidence bands. We summarize all model parameters, hypothesis test results and
goodness-of-fit values in the table in Fig. 3.5.

We additionally report how the goodness-of-fit of the forced models changes when
using only partial forcing and thus a reduced number of parameters. When forcing
the one-process model with both ice volume and insolation, we yield a RMSD of the
model mean E(t) from the data curve of 1.42. Forcing with ice volume (insolation)
only yields a best-fit RMSD of 1.64 (3.00). As baseline comparison, the RMSD from
the unforced model to the data curve is equal to ES , i.e. has a RMSD of 3.05. The
model forced with ice volume fits the data only marginally worse than the model
with both forcings and for comparison we show the mean time-varying indicator E(t)
for this model in Fig. 3.7a with a green dashed curve. For the two-process model,
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Fig. 3.6.: Time-varying transition rate parameters of the best-fit one-process λ(t) (a) and
two-process (b) models λ1(t) and λ2(t), as well as of the reduced models (dashed
lines).

we considered all combinations where both warming and cooling processes are only
forced by either ice volume or insolation. Goodness-of-fit in the two-process model is
given by the sum of errors of both indicators RMSDsum. For the best-fit model with
full forcing we find RMSDsum = 0.59, whereas the baseline of an unforced model
gives RMSDsum = 2.0. Forcing both warming and cooling processes with ice volume
(insolation) only yields a best-fit of RMSDsum = 0.90 (1.60). Using insolation for
the warming transitions and ice volume forcing for the cooling transitions yields
RMSDsum = 0.68, while the converse choice yields RMSDsum = 1.68. Thus, the only
reduced two-process model yielding a comparable goodness-of-fit compared to the
model with full forcing is the model with insolation forcing on warming transitions
and ice volume forcing on cooling transitions. It is defined by

λ1(t) = 0.81 + 1.54 · S(t)

λ2(t) = 0.80 + 2.39 · I(t).
(3.6)

We show the mean time-varying indicators for this model in Fig. 3.7b,c with a green
dashed curve.

3.4 Discussion and Conclusions

Our first result considers only the warming events. While the distribution of waiting
times in between warming events is well modeled by an exponential distribution
(not shown here), we show here that the number of events in a moving window of
20 kyr (and thus the mean waiting time) is clearly changing over time, but no more
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Fig. 3.7.: Point-wise 95% confidence bands and model mean (black curve) for the time-
varying indicators E(t) and P (t) from Monte Carlo simulations. (a) E(t) for
the best-fit non-stationary one-process model with full forcing. (b) and (c), E(t)
and P (t) for the best-fit non-stationary two-process model with full forcing. The
indicators for the data are shown in red. The green dashed line indicates the
best-fit model mean curves for the respective models with reduced forcing, as
described in the main text.

than would be expected from a realization of a stationary Poisson process. Thus,
if there is a unique process giving rise to the warming transitions, it need not be
changing over time due to external factors. Although the description of DO events
solely by the timing of the abrupt warming is very simplistic, we still think it is a
useful result since the abrupt warmings are the most robust feature in ice core and
other proxy records and are commonly used to assess synchronicity and pacing of
abrupt climate change in the last glacial.

The second result indicates, however, limits to the stationarity in the sequence of
events as we increase the detail of description. Assuming two independent processes
giving rise to transitions from stadials to interstadials and vice versa, the null
hypothesis of stationarity can be rejected with both our statistics. Specifically, both
the variations over time of the number of warming events and the relative durations
of stadials and interstadials are too large to be consistent with our two-process model
using constant parameters. This model gives rise to a more regular sequence of
warming events, compared to the one-process model. This is because one DO cycle
is the sum of two independent processes and thus its duration does not follow an
exponential distribution (coefficient of variation CV = 1.0), but Eq. 3.3, which is
less dispersed (CV = 0.708). In the limiting case of a DO cycle comprised of a very
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large sequence of N independent and stationary processes, one finds a Gaussian
distribution of waiting times with decreasing variance as N grows. This would then
correspond to an almost evenly-spaced sequence of events, which is not supported
by the observations.

Next, we investigated improvements of the consistency of the models with the data
by allowing their parameters to vary over time as linear combination of two climate
forcings. Choosing the best fit linear combination of forcings, we found the average
time varying indicators of both models to match very well to the data curve. Thus,
whereas the data was seen as a rather out-lying realization that is consistent with
a one-process model but not with a two-process model, when introducing forcings
it becomes the expected behavior of the models. The goodness-of-fit follows from
the correlation of the time-varying indicators and the forcings, which can be seen in
Fig. 3.2. For the ice volume proxy we find a Pearson correlation of r2 = 0.78 with
P (t) and r2 = 0.58 with E(t). We assess significance of this correlation by fitting
an AR(1) process to the linearly detrended ice volume and conduct a hypothesis
test yielding a correlation with P (t) of 0.33 with a p-value of p = 0.035 and thus
significance at 95% confidence. In contrast, the correlation of the indicator E(t) and
ice volume does not go beyond the linear trend. We do not assess the significance of
correlations of insolation with the time-varying indicators, since it is difficult to find
a good null model in this case.

Finally, we discuss the importance of ice volume and insolation in the best-fit
one- and two-process models. In the one-process model, Eq. 3.4 shows that both
increased insolation and ice volume lead to higher occurrence rates of events, with
the contribution of ice volume approximately twice as large as that of insolation.
We note that the decrease in DO activity towards the Last Glacial Maximum is not
captured by the model because the ice volume forcing is dominating. The individual
contributions in the best-fit model do not completely capture the importance of
the two forcings. There are directions in the likelihood landscape of parameters
which are very flat. As a result, we found that the best-fit model with only ice
volume forcing yields a fit only marginally worse than the best-fit model with both
forcings. We thus conclude that ice volume is clearly the more important control
on the sequence of warming events. This is consistent with the findings in Mitsui
and Crucifix [MC17], where Bayesian model selection criteria show that global ice
volume is a more important forcing than insolation in stochastic dynamical systems
as models for Greenland ice core records.

In the two-process model the warming and cooling transition rates are influenced
by the forcing in opposite ways, as can be seen from Eq. 3.5: Warming transitions
from stadials to interstadials become more likely for higher insolation and lower
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ice volume, and vice versa for cooling transitions from interstadials to stadials.
For cooling transitions, the contribution of ice volume is slightly larger than that of
insolation. The warming transition rate is dominated by insolation, which contributes
three times more than ice volume. With this model, the overall trend of mean waiting
times in between warming events and of the stadial abundance is well captured,
including the decrease in activity towards the LGM. Similar to the one-process model,
we found a more parsimonious model which fits the data almost as well as the best-fit
model with full forcing. This model uses only insolation forcing for stadials and ice
volume forcing for interstadials, which complements the analysis of the individual
contributions in the fully forced model. We thus hypothesize that based on our study
there is evidence for insolation control on average stadial duration and ice volume
control on average interstadial duration. This finding could hint at two distinct
mechanisms responsible for transitions in between regimes.

An exhaustive investigation of whether our model description and subsequent find-
ings are consistent with governing mechanisms for DO-type variability inferred
from detailed data and realistic model studies is beyond the scope of this paper.
Nevertheless we conclude the discussion with some interpretations which are more
speculative in nature. We begin with insolation control on stadial duration. Boreal
summer insolation might influence the occurrence frequency of warming transitions
by modulating the ice-ocean albedo feedback, which amplifies break-up or export of
larger areas of sea ice. Sea ice decrease could subsequently cause rapid warming
through subsurface ocean heat release [Dok+13]. Initial openings of the sea ice
cover might be created by wind stress. Evidence for stochastic wind stress forcing
and subsequent sea ice changes have been reported in unforced model studies of
rapid climate transitions [Dri+13; Kle+15]. To explain global ice volume control on
interstadial duration we invoke different influences on the strength and stability of
the interstadial (strong) mode of the Atlantic Meridional Overturning Circulation
(AMOC). If we consider global ice volume as an indicator of mean global climate,
we find consistency with coupled climate simulations that show correlation of the
stability of the strong AMOC branch to freshwater hosing and mean climate state
[Kaw+17]. We furthermore note the study in Buizert and Schmittner [BS15], where
a correlation of individual interstadial duration and Antarctic temperatures from
ice cores is established and explained by influences of Southern Ocean processes on
the strength and stability of the AMOC. Given the strong similarity of the global ice
volume record and Antarctic ice core records on longer time scales, this is closely
related to our findings. We finally note that in our model description, the trigger for
warmings and coolings is stochastic and thus different from near-periodic DO cycles
[PV14].
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In conclusion, we show that the long-term variations in DO warming event frequency,
often described as millennial climate activity, is consistent with a memory-less
stationary random process. From the data at hand we cannot exclude the possibility
that the long-term variations have occurred by chance. If we however divide a DO
cycle into two independent processes governing warming and cooling, this is not
true anymore and significant time-varying structure is detected. We thus propose a
model that incorporates long-term variations through forcing of the parameters with
external climate factors. We find good agreement with the data in a model where
the mean duration of interstadial phases of the DO cycle are controlled by global ice
volume and the stadial phases by boreal summer insolation. This finding can help to
distinguish in between different mechanisms that have been proposed to cause DO
events.
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4A consistent model
selection analysis of
abrupt glacial climate
changes

Abstract

The most pronounced mode of climate variability during the last glacial period are the
so-called Dansgaard-Oeschger (DO) events. The underlying dynamical mechanism
of these abrupt climate changes remains unknown and they are elusive in most
simulations of state-of-the-art coupled climate models. There has been significant
debate over whether the climate system is exhibiting self-sustained oscillations with
vastly varying periods across these events, or rather noise-induced jumps in between
two quasi-stable regimes. In previous studies, statistical model comparison has been
employed to the NGRIP ice core record from Greenland in order to compare different
classes of stochastic dynamical systems, representing different dynamical paradigms.
Such model comparison studies typically rely on accurately reproducing the observed
records. We aim to avoid this due to the large amount of stochasticity and uncertainty
both on long and short time scales in the record. Instead, we focus on the most
important qualitative features of the data, as captured by summary statistics. We
perform Bayesian inference and model comparison experiments based solely on
these summary statistics via Approximate Bayesian Computation. This yields an
alternative approach to existing studies that helps to reconcile and synthesize insights
from Bayesian model comparison and qualitative statistical analysis.

4.1 Introduction

The last glacial period, lasting from roughly 120 kyr to 12 kyr before present
(1 kyr = 1 thousand years), has seen around 30 very abrupt changes in climate
conditions of the Northern Hemisphere, known as Dansgaard-Oeschger (DO) events
[Dan+93]. These events are the most pronounced climate variability on the sub-
orbital timescales, i.e., below ≈ 20 kyr. In Greenland, they are marked by rapid
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warmings from cold conditions (stadials) to approximately 10 K warmer conditions
(interstadials) within a few decades. This is usually followed by a more gradual
cooling, which precedes a quick jump back to stadial conditions. The spacing and
duration of individual events is highly variable and largely uncorrelated in time
over the course of the last glacial period. Some interstadials show gradual cooling
for thousands of years, while others jump back to stadial conditions within 100-
200 years. DO events are the primary evidence that large-scale climate change
can happen on centennial and even decadal timescales. It is thus imperative to
understand the underlying mechanisms in order to improve predictions of future
anthropogenic climate change.

While significant climate change concurrent with DO events is well documented in
various climate proxies from marine and terrestrial archives all over the Northern
Hemisphere, it is most clearly observed in proxy records from Greenland ice cores.
An important proxy is δ18O, which measures the ratio of the heavy oxygen isotope
18O to the light isotope 16O in the ice. This ratio is widely accepted as a proxy for
temperature at the accumulation site. We consider the δ18O record of the NGRIP ice
core, which has been measured in 5 cm samples along the core. This results in an
unevenly spaced time series with a resolution of 3 years at the end to 10 or more
years at the beginning of the last glacial period. It is a matter of debate whether
the highest frequencies in ice core records correspond to a true large-scale climate
signal. Studies of ice coring sites with low accumulation rates have shown that the
highest frequencies in the record can be dominated by post-depositional disturbances
to the snow [Mün+16]. To facilitate analysis and to filter out some of these high
frequencies, we will use an evenly spaced time series of 20 year binned and averaged
δ18O measurements. Still, it is unclear to what degree adjacent samples of this
time series represent true large-scale climate variability. In our attempt to analyze
and model the data, we thus concentrate instead on more characteristic statistical
features, which do not concern the highest frequencies in the record.

Even after decades of research following their discovery, there is no consensus on
the triggers of DO events, or on whether they are a manifestation of internal cli-
mate variability. In simulations of globally coupled climate models, DO-type events
are largely elusive, although some recent studies report occurrences thereof, albeit
through different mechanisms at play. Development in this area is hampered by
very high computational costs of investigating millennial-scale phenomena with
high-resolution climate models. Similarly, the paleoclimate data community has
not settled on a comprehensive explanation by examining evidence from different
proxy variables at different locations. With this work, we want to advance the
understanding of mechanisms that could be a likely cause of DO events. We attempt
to investigate whether it is possible to establish evidence in favor of one causal mech-
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anism above others from the NGRIP δ18O time series alone. To this end, we compare
a suite of simple, stochastic dynamical systems models to each other via Bayesian
model comparison. The models represent different dynamical paradigms and arise
as conceptual climate models with different underlying physical hypotheses.

The NGRIP data set is characterized by the high amounts of irregularity that is
displayed both on the very short time scales (possibly non-climatic noise) and longer
time scales, as manifested in the high temporal irregularity of the abrupt events. We
thus choose to view the time series at hand as one realization of a highly stochastic
process, produced by the complex and chaotic dynamics of the climate system. As
a consequence, we want to avoid fitting the models point-wise to the data, but
rather demand the models to display similar qualitative, statistical features, such
that the observations could be a likely or possible realization of the model. In order
to do that in a qualitative way, this leads us to the construction of a set of summary
statistics replacing the actual time series. To perform Bayesian parameter inference
and model comparison implies the evaluation of a likelihood function of a model
given a set of parameters and data. Since the likelihood function of our models is
completely intractable, especially in the presence of summary statistics, we have
to adopt a likelihood-free method. One method permitting this is called Approxi-
mate Bayesian Computation (ABC, first developed in [Pri+99], see [Mar+12] for a
review). This technique allows us to compute Bayes factors and posterior parameter
distribution. Compared to simply estimating maximum likelihood parameters, this is
advantageous because we can assess the models’ sensitivity in parameter space and
see how well constrained individual model parameters are by the data.

The paper is organized in the following way. In Sec. 4.2 we will present the models
examined in this study, along with some physical considerations motivating the study
of these. In Sec. 4.3, our method is presented, i.e., the construction of summary
statistics as well as the parameter inference and model comparison approach. Our
results are given in Sec. 4.4, where we first demonstrate the method with a study on
synthetic data in Sec. 4.4.1 and then present the study on the NGRIP data set in Sec.
4.4.2. We discuss our results and conclude in Sec. 4.5.

4.2 Models

In this study we restrict our analysis to models defined by stochastic differential
equations of two variables, where the variable x will be identified with the climate
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proxy. Several well-studied stochastic dynamical systems models are of the following
form:

dxt =
(
a1xt − a3x

3
t + a0 + byt

)
dt+ σxdWx,t

dyt = f(xt, yt)dt+ σydWy,t

(4.1)

The individual models investigated by us differ in the choice of f(x, y) and specific
parameters:

1. f = 0, b = 0: Double well potential (DW)

2. f = −xt + c, a0 = 0: Van der Pol oscillator (VDP)

3. f = tan(β)yt − xt + c, a0 = 0: FitzHugh-Nagumo model (FHN)

The DW model corresponds to stochastic, overdamped motion of a particle in a
double well potential. It has been proposed previously as model for glacial climate
variability [Dit99; TL00], and displays jumps in between cold and warm states at
random times similar to a telegraph process. It can be derived from Stommel’s
classical model of a bi-stable Northern Atlantic Overturning Circulation (AMOC),
which has been one of the most prevalent mechanisms invoked to explain DO events
[Sto61]. When including stochastic wind stress forcing in the Stommel model and
going to the limit of very fast ocean temperature equilibration, one yields stochastic
motion in a double well potential [SY93; Ces94].

Similarly, relaxation oscillators, such as the VDP or FHN models, have been proposed
for modeling Greenland ice cores [Kwa13; RS16b; MC17]. At first glance, they
seem good candidates for generating DO events, since during a relaxation oscillation
cycle one can get a characteristic fast rise and slow decay of the fast variable in
a certain parameter regime (c 6= 0). We illustrate the most important dynamical
regimes in Fig. 4.1. In the VDP model, the oscillatory regime is given if |c| is small
compared to the ratio a1/a3. On the other hand, as depicted in Fig. 4.1a, if |c| is
beyond a certain critical value, the deterministic system has one stable fixed point.
Noise perturbations can kick the system out of this fixed point and excite a larger
excursion in phase space until the fixed point is reached again. This is often referred
to as the excitable regime. If we decrease b in the oscillatory regime, the period
of oscillation grows, as the trajectory spends more time close to the stable parts of
the nullcline of the x variable, which is also referred to as the slow manifold and is
indicated in Fig. 4.1b. In the limit of b = 0 in Eq. 4.1, the variables decouple and we
are left with a double well potential model for the variable x. Thus, both VDP and
FHN models include a symmetric (a0 = 0) DW model as a special case. The general
form in Eq. 4.1 permits transitions between the very different models proposed in
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Fig. 4.1.: Phase portrait and nullclines of the VDP and FHN models with a1 = 4 and a3 = 1.
The nullclines of the x variables are given by y = (a3x− a1x

3)/b and are drawn
in black for b = 1.5 in all panels. The solid part of that curve is the slow manifold.
Stable (unstable) spirals are marked by solid (open) circles, and saddle points by
open diamonds. a): Two y-nullclines of the VDP model given by x = c, indicating
a transition from oscillatory (c = −0.5, limit cycle drawn in orange) to excitable
dynamics (c = −1.3). b): x-nullclines of the VDP model for two different values
of b indicating a stretching of the slow manifold and thus a lengthening of the
period in the oscillatory regime. c): Three y-nullclines of the FHN model given
by y = (x − c)/ tan(x), indicating a transition from oscillatory (β = −0.1) to
excitable (β = −0.4) and bi-stable (β = −1) dynamics.

the literature by continuous changes of parameter values. Similarly, the oscillator
models we consider are nested, as explained in the following.

The VDP model is a special case of the FHN model, obtained by setting β = 0.
Initially developed as simplified model for spiking neurons, the FHN model can
display even richer dynamical behaviors including relaxation oscillations, excitability
and bi-stability. The latter regime occurs for negative β, where below a certain
critical value two stable fixed points emerge. As b decreases, this critical value gets
closer to zero. Including additive noise in this regime induces stochastic jumps in
between the two states. We indicated a transition from oscillatory to excitable and
bi-stable dynamics by changing β and otherwise fixed parameters in Fig. 4.1c. For
more details on the dynamics of the VDP and FHN models, and the rich bifurcation
structure that appears especially close to the boundaries of the dynamical regimes,
we refer the reader to [Roc+00]. Relaxation oscillator models, similar to the ones
regarded in this study, can also be derived from Stommel’s model, e.g., by including
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an additional feedback from the ocean state to the atmosphere [RS16b]. We include
noise forcing in the oscillator models, which is crucial in order to obtain the highly
irregular oscillatory behavior that is seen in the data.

We simulate all models with a Euler-Maruyama method, a time step of ∆t = 0.0005
and time scaled to units of 1 kyr. The actual model output we consider is given as a
binned average of 20 years, i.e. 40 time steps, mirroring the pre-processing of the
NGRIP data at hand.

4.3 Materials and methods

4.3.1 Data

Our model comparison study starts by preprocessing the NGRIP data set, as explained
in the following. We use the 20 year averaged δ18O data on the GICC05modelext time
scale, as published by [Ras+14]. We remove a 25 kyr running mean, corresponding
to a highpass eliminating variations due to orbital forcing on time scales longer than
20 kyr, which are not investigated in this study. With this, we are able to assess
the statistical properties of the sub-orbital timescale dynamics in the signal using
summary statistics. Finally, we cut the time series starting at 110 kyr, i.e. during
GS-25 (GS = Greenland interstadial), and ending at 23 kyr b2k (before AD 2000),
i.e. just after GI-2.2 (GI = Greenland interstadial). We do this in order to exclude
the high early glacial δ18O values before GS-25 and the rising δ18O values in GS-2.1
with very high noise level in order to be able to objectively define warming events,
as described below. The resulting time series is shown in Fig. 4.2.
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Fig. 4.2.: Slice of the NGRIP δ18O time series high pass filtered with 25 kyr running mean,
on which our study is based. Also shown are thresholds used to define warming
(cooling) events, which are marked by red (blue) dots.

4.3.2 Summary statistics

As next prerequisite to perform parameter inference and model comparison one
needs to specify a measure to quantify the goodness-of-fit of model output with
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respect to data. We do not compare model output time series and data pointwise,
e.g., using a root mean squared error. Due to the high stochasticity displayed in the
data, it is irrelevant and possibly overfitting to find a model which would be able to
produce a time series which is pointwise close to the data. Practically, one can use
one-step prediction errors, assuming these are uncorrelated Gaussian. This has been
done with the NGRIP record using Kalman filtering [KL09; Kwa13; MC17]. However,
due to the high noise level and uncertainty in the interpretation of high-frequencies
in the ice core data, our strategy is to replace the time series with a set of summary
statistics and assess goodness-of-fit by comparing summary statistics of model and
data time series. The summary statistics are described in the following.

We choose summary statistics which contain as much information as possible about
the qualitative aspects of the NGRIP data that we want our models to reproduce.
First of all, the models should show DO-type events, i.e. switching in between
higher and lower proxy values. To define events, we introduce one lower and one
upper threshold at x = −1 and x = 1.5, respectively. An up-switching event is
defined by the first up-crossing of the upper threshold after up-crossing the lower
threshold [Dit+07]. In the same way, the first down-crossing of the lower threshold
after down-crossing the upper threshold defines a down-switching event. The result
of this procedure applied to the detrended NGRIP data can be seen in Fig. 4.2.
Periods in between up- and down-switching events (and vice versa) are denoted
as interstadials (stadials). The thresholds are defined such that when applied to
the detrended NGRIP data, the original classification of DO events and Greenland
stadials/interstadials is reasonably well preserved [Ras+14]. Our classification
differs such that GI-5.1 is not detected and GI-16.2 and 16.1 are detected as one
single interstadial. Additionally, three very short spikes, which are not classified
DO events, are identified as warming events (in GS-8, GS-9 and GS 19.1). We
furthermore detect some of the most pronounced climate changes typically classified
as DO sub-events, yielding 35 warming events in total.

With events defined as above we construct three summary statistics in the following
way: Since one notable characteristic of the data is a broad distribution of durations
in between events, we compare models and data using empirical cumulative distri-
bution functions (ECDFs) of these durations. Specifically, given a time series, ECDFs
are constructed for durations of stadials, interstadials, and for the waiting times in
between two warming events. Two time series are then compared by computing the
Kolmogorov-Smirnov distance of the respective ECDFs, which yields a scalar measure
of goodness-of-fit for each of the statistical properties. These are denoted as s1, s2

and s3, for stadial durations, interstadial durations and waiting times in between
warming events, respectively. We visualize this construction in Fig. 4.3a-c.
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Fig. 4.3.: Statistical properties investigated in this study. a), b) and c) Complement of
empirical cumulative distribution function 1 − ECDF = P (X > x) of stadial
durations, interstadial durations and waiting times, respectively. The NGRIP
data statistics are shown in red, the asymptotic statistics for a DW model with
a0 = 0.16, a1 = 2.86, a3 = 0.93 and σ = 4.17 is shown in black, corresponding
95% simultaneous confidence bands are shown with blue shading and an example
realization is shown in gray. The maximal vertical distances of data and model
realization are illustrated with dashed lines and correspond to our summary
statistics s1, s2 and s3. d) Probability density function (PDF) of the time series,
used to compute s4. e) Autocorrelation function up to a lag of 2250 years, which
underlies s5.

We introduce a fourth summary statistic in order to capture the bi-modal structure
of the NGRIP time series, which is best observed from the stationary density shown
in Fig. 4.3d. We compute the ECDF of the whole time series and make a pairwise
comparison by computing the Kolmogorov-Smirnov distance, which we denote as
s4.
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Finally, to capture the persistence properties of the detrended climate record, we
base another summary statistic on the autocorrelation function up to a lag of 2250
years, as shown in Fig. 4.3e for both NGRIP data and a DW model. Two time series
are compared by computing the root mean squared deviation (RMSD), which will
be denoted as s5. This yields a total of 5 scalar quantities to assess the fit of model
output to data, which we summarize in a vector s = (s1, s2, s3, s4, s5)T . For a good
fit, we require all individual components to be sufficiently small, as will be discussed
in more detail below.

An important qualitative feature of the NGRIP record so far missing from this
description with summary statistics is the characteristic saw-tooth shape of the DO
events. This behavior can also be captured with summary statistics, but with the
models considered here it turns out to be hardly compatible with the other summary
statistics introduced above. We discuss this statistical feature separately in Sec.
4.4.2.3.

4.3.3 Inference and model comparison

The measures for goodness-of-fit as defined above enable us to perform parameter
inference and model comparison in an approximate Bayesian approach. Specifically,
we aim to approximate two entities. First, we want to sample from the posterior
distribution of model parameters θ given data D

p(θ|D) = p(D|θ) p(θ)
p(D) , (4.2)

where p(θ) is a prior distribution of the parameters. Second, we wish to compute
the relative probabilities of each model given the data p(Mi|D), which is evaluated
using Bayes’ theorem:

p(Mi|D) = p(D|Mi) p(Mi)
p(D) . (4.3)

Here, p(Mi) is the prior probability of model Mi. Thus, the relative posterior
probability of two models is

p(M1|D)
p(M2|D) = p(D|M1)

p(D|M2) ·
p(M1)
p(M2) = B1,2

p(M1)
p(M2) , (4.4)

where B1,2 is called the Bayes’ factor and p(D|Mi) is referred to as the marginal
likelihood or model evidence. The latter is an integral over parameter space of the
product of likelihood and prior:

p(D|Mi) =
∫
p(D|θ,Mi) p(θ,Mi) dθ. (4.5)
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The computation of both the posterior parameter distribution and the model evidence
require the likelihood p(D|θ), for which no explicit form is available for our models
and summary statistics. We thus adopt a likelihood-free method called Approximate
Bayesian Computation (ABC). An explicit expression for the likelihood is replaced
by the following approximation

p(D|θ) =
∫
p(x|θ) δ(x,D)dx ≈

∫
p(x|θ)πε(x,D)dx, (4.6)

where x denotes model output, δ(x,D) is the Dirac function and πε(x,D) is a
Kernel function which is strongly peaked where model output x and data D are
similar according to some metric. Our choice of metric is the vector of summary
statistics s(x,D) introduced earlier. We choose a rectangular Kernel function that
is πε(x,D) = 1 if all components sk(x,D) for given model simulation x satisfy
sk(x,D) < εk, and πε(x,D) = 0 otherwise. The vector ε = (ε1, ε2, ε3, ε4, ε5)T denotes
tolerances to be specified. The only requirement for using this approach is the ability
to produce model simulations x for given values of parameter θ, or in other words to
sample from p(x|θ). The integral in Eq. 4.6 is replaced by a Monte Carlo sampling
approximation.

The standard ABC approach proceeds in the following way: We sample a parameter
from the prior p(θ), simulate a model output x and accept the parameter value θ
as a sample from the posterior distribution with probability πε(x,D). This yields a
sampling estimate of the parameter posterior, which furthermore gives us a Monte
Carlo estimate of the integral needed to compute the model evidence in Eq. 4.5:

p(D|Mi) ≈
1
J

J∑
j=1

πε(xj , D), (4.7)

where J is the number of samples drawn from the prior. In our case of a rectangular
Kernel, this expression is equal to the rate at which randomly drawn parameter
samples are accepted, i.e., yield summary statistics which are below the given
tolerances.

Sampling parameters from the prior distribution in order to obtain the posterior is
typically inefficient, since most of the prior parameter space has very small posterior
probability. Instead we use an approach known as ABC population Monte Carlo
(ABC-PMC) [Bea+09], which uses sequential importance sampling to approximate
the posterior distribution through a sequence of intermediary distributions using
decreasing values for the tolerances εk. In this approach, we start at some relatively
large tolerance and draw parameter samples from the prior distribution p(θ) until
a desired number of samples have satisfied sk(x,D) < εk. This population of
parameters is then perturbed by a Gaussian Kernel and sampled from in the next
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iteration with slightly lower tolerance. This perturbed distribution is referred to
as the proposal distribution f(θ). From the second iteration on, the population of
accepted parameter samples has to be weighted according to importance sampling
in order to compensate that it was not drawn from the prior distribution but from
the proposal distribution. The weights of a particle j in importance sampling is given
by the likelihood ratio of prior and proposal distribution wj = p(θj)

f(θj) .

Furthermore, in ABC-PMC the Gaussian Kernel used to perturb the previous pop-
ulation is adaptive. [Bea+09] use a diagonal multivariate Gaussian Kernel where
the diagonal entries are given by the two-fold variance of the previous population
samples. Instead, we use a multivariate Gaussian Kernel, where each entry is given
by the two-fold co-variance of the previous population. This allows us to sample
more efficiently when there is co-variant structure in the parameter posterior, as
shown later. We stop the iterative procedure when the tolerances are so low that it
is computationally very expensive to get a reasonable amount of posterior samples.
The algorithm used in this study to obtain parameter posteriors and Bayes factors is
is given and explained in the appendix.

It is important to note that because of the use of summary statistics there is no point
to point model output and data comparison and thus we can use a length of model
simulations different to the data length. Increasing model simulation length can
sometimes increase performance, as will be discussed later.

4.4 Results

In order to demonstrate the method’s abilities, we first apply it to synthetic data
from within our model ensemble in Sec. 4.4.1. Thereafter, we present the results of
the method when applied to the NGRIP data set in Sec. 4.4.2.

4.4.1 Synthetic data study

0 20 40 60 80
5

0

5

x

time (kyr)

Fig. 4.4.: Time series of VDP model used as synthetic data to test the ABC-SMC method.
The model parameters are b = 6, a1 = 6, a3 = 1, c = −0.5, σX = 4.5 and σY = 0.
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Tab. 4.1.: Sequence of tolerances used in the ABC-SMC experiment with synthetic data.

Iteration ε1,2,3 ε4,5 Iteration ε1,2,3 ε4,5

1 0.400 0.300 9 0.175 0.085
2 0.325 0.250 10 0.170 0.070
3 0.275 0.225 11 0.165 0.055
4 0.250 0.200 12 0.160 0.045
5 0.225 0.175 13 0.155 0.035
6 0.200 0.150 14 0.150 0.030
7 0.190 0.125 15 0.145 0.025
8 0.180 0.100

As synthetic data, we choose a 87 kyr simulation output from the VDP model in
a dynamical regime of noisy oscillations, which can be seen in Fig. 4.4. With
this we demonstrate the following abilities of our method: 1. The correct model
parameters are recovered from the posterior parameter distribution of the true
model. 2. The true model is selected very strongly over a model which cannot
operate in a comparable dynamical regime. 3. A model that can operate in the same
dynamical regime as the true model but is of higher complexity is disfavored by the
model selection procedure due to the higher number of parameters. 4. The results
of model and parameter inference at sufficiently low tolerance are not critically
dependent on data length and parameter prior distributions.

The model comparison parameters used in this synthetic data study are as follows.
We used 15 ABC-PMC iterations with descending tolerances as specified in Tab. 4.1.
Each model simulation output was equally long as the data (87 kyr), and a total
number of 500 particles were used at each step. The prior parameter distributions
for all models were chosen to be uniform.

4.4.1.1 Parameter inference

We first discuss the results for parameter inference, starting with the true model.
In the violin plot of Fig. 4.5, we show the kernel density estimates of the VDP
intermediate marginal parameter distributions for each iteration and indicate the
bounds of the uniform prior distributions (red). We observe a gradual decrease in
dispersion of the distributions as well as a convergence of the means close to the
true values. Figure 4.6a shows in more detail the marginal posterior parameter
distributions for the VDP model after the last iteration. We can see that there
remains both an uncertainty in the parameter estimate as well as a small bias of
the distribution mode for some parameters. The uncertainty is mostly due to the
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Fig. 4.5.: Violin plot illustrating the convergence of VDP marginal intermediate distributions
for increasing iterations of the ABC-PMC algorithm. For each iteration, a Gaussian
kernel estimate of the density is shown, together with the median. The true
parameter values are indicated with a green dashed line. The bounds of the
uniform distributions on the prior are indicated with the red lines.

non-zero tolerance and short simulation length, while the bias is due to random
sampling and shortness of the test data. We conducted experiments with various
data and model simulation lengths: When using shorter data length, the summary
statistics are always quite different from the mean model statistics. Thus we find
a bias in the inferred parameters. Longer data yields statistics closer to the model
mean and thus less biased inference. However, the posterior dispersion does not
change. If we increase the model simulation length, we can reduce the posterior
dispersion because the statistics of model output samples are sharper for a given
parameter and thus less wrong parameter samples scatter into the posterior. The
Bayes factors are not systematically influenced in either case.

We furthermore observe that some parameters are better constrained by our summary
statistics than others and are thus easier to infer, such as can be seen for c in contrast
to b. Additionally, while most parameters seem independent of each other, the
parameters a1 and a3 show a linear dependency in the posterior, which can be seen
in the bottom right panel of Fig. 4.6a. This gives rise to most of the uncertainty seen
in the marginal posteriors.

The parameter inference results for the FHN model are shown in Fig. 4.6b. We
see that parameters, which the FHN model has in common with the VDP model,
also converge to the true values. The additional parameter β stays quite uncertain
but has most weight in a region close to 0, which would then correspond to the
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VDP model. We do not show marginal posterior parameter distributions for the DW
model, since it is eliminated by our model selection procedure after iteration 6, as
discussed in the following.

4.4.1.2 Model comparison

We now discuss model comparison results. In Fig. 4.7 we show Bayes factors for
four different ABC experiments at all iterations. The data from the experiment
discussed in the previous section are shown in circle markers. The Bayes factors
of the DW model over the VDP model, shown in Fig. 4.7a, drop to zero already
at large tolerances, which means that the ABC procedure can efficiently exclude
the wrong model. In contrast, Fig. 4.7b shows that the Bayes factors of the FHN
model over the VDP model settles after some fluctuations to BFHN,V DP ≈ 0.5 as the
tolerance approaches zero. This is because the two models are nested, i.e. the FHN
model includes the VDP model but has an additional parameter. We can thus use
this Bayes factor as an estimate of how much an additional parameter is penalized
among models explaining the data equally well.
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Fig. 4.7.: Bayes factors a) BDW,V DP and b) BF HN,V DP at all iterations of four different
ABC-PMC runs using VDP synthetic data.

The squares in Fig. 4.7 show an ABC experiment where we doubled the prior range
of the parameters b and a1 in the VDP model. It is seen that the model comparison
results do not depend on the width of the priors, given they are wide enough to
contain the full posterior distribution. In the third ABC experiment, marked with
triangles, we used a synthetic data length of 1000 kyr. The last experiment is
marked with diamonds and shows results for using a longer simulation length of
435 kyr. In both of these experiments the model comparison results do not change
qualitatively.
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Tab. 4.2.: Sequence of tolerances used in the ABC-PMC experiment with NGRIP data.

Iter. ε1,2,3 ε4 ε5 Iter. ε1,2,3 ε4 ε5

1 0.4 0.3 0.3 7 0.19 0.08 0.11
2 0.3 0.225 0.225 8 0.185 0.075 0.1
3 0.25 0.175 0.175 9 0.18 0.07 0.09
4 0.225 0.15 0.15 10 0.175 0.065 0.08
5 0.2 0.125 0.125 11 0.17 0.06 0.07
6 0.195 0.1 0.115

4.4.2 NGRIP data study

The ABC-PMC runs with NGRIP data were performed with the sequence of tolerances
given in Tab. 4.2. Because none of the models can perfectly reproduce the NGRIP
statistics, we had to stop the sequential algorithm due to computational demand at
slightly higher tolerances compared to the synthetic data study. As in the synthetic
data study, we used uniform priors for all parameters. The ranges of these priors can
be seen in the respective figures showing the posterior distributions (Fig.’s 4.8-4.10)
and were chosen wide enough to contain the full posterior distribution.

4.4.2.1 Parameter inference

The posterior distributions of the DW model (b = 0) are shown in Fig. 4.8 and lie
well constrained within the priors. There remains considerable dispersion in the
marginals of a1 and a3, most of which comes from a linear dependency of the two,
as can be seen in the bottom right panel of the figure. With a0 close to zero, the
double well potential inferred from the data is approximately symmetric.

We now discuss the inferred dynamics of the oscillator models when only including
noise in the x variable, i.e., σY = 0. The posterior distributions are shown in Fig. 4.9.
Because different regions in parameter space describe different dynamical regimes,
we analyze the posterior samples as an ensemble. In the posterior samples of the
VDP shown in Fig. 4.9a, we can see that the distribution of b is approaching 0. Thus
the dynamics are effectively one-dimensional and approximate a symmetric double
well potential, as discussed in Sec. 4.2. Still, 91% of the posterior samples are in
a regime of noisy oscillations, because |c| is too small compared to the ratio a1/a3.
However, the oscillation periods expected from the deterministic system increase as b
goes to zero and are much longer than the waiting times of the stochastic dynamics.
The median ratio of deterministic period to stochastic waiting time is 38.4, with 10-
and 90-percentiles at 8.2 and 165.1. Thus, the dynamics are such that much time
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Fig. 4.8.: Marginal posterior distribution of DW model parameters after the last iteration
of the ABC-PMC inference using NGRIP data. The bottom right panel shows the
joint distribution of parameters a1 and a3.

can be spent on each branch of slow manifold, which is then escaped via noise. In
effect, the model is noise dominated and the dynamics are closely similar to a double
well potential.

Figure 4.9b shows the posterior distributions of the FHN model. We observe that b
again becomes close to zero, albeit not as strongly as in the VDP model. Additionally,
β approaches its limit of −π/2. The combination of these two parameter regimes
typically yields two stable steady states, as explained in Sec. 4.2. Indeed, 95% of
the posterior samples are in a bi-stable regime, whereas the remaining ones are
in the excitable regime. The dynamics in the x variable in a bi-stable regime are
again effectively very similar to double well potential dynamics. There is a large
remaining dispersion in c, since the effect of c on the dynamics becomes negligible
as β approaches −π/2.

As we include noise in the y variables of the oscillator models, the inferred parameter
regimes change as seen from the marginal distributions in Fig. 4.10. In the VDPY
model, the parameter b no longer tends to zero. As a result, the dynamics are no
longer quasi one-dimensional. Out of the posterior samples, 83% are in an oscillatory
regime, the rest being excitable. Within the oscillatory samples, the median ratio of
deterministic period to stochastic waiting time is 1.02 (10- and 90-percentile at 0.73
and 1.75). Due to the parameter a1 approaching very small values, the amplitude
of the deterministic limit cycles is small compared to the amplitude of the noisy
signal. Thus, the dynamics are again very noise-driven and apart from the mean
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Tab. 4.3.: Highest probability parameters within the posterior sample estimated by Gaus-
sian Kernel smoothing.

Model Best parameter estimates
DW a0 = 0.16 a1 = 2.86 a3 = 0.93 σ = 4.17
VDP b = 0.04 a1 = 4.42 a3 = 1.35 c = 0.07 σ = 4.44
FHN b = 0.04 a1 = 2.23 a3 = 0.82 c = −6.98 σ = 4.46 β = −1.51
VDPY b = 10.23 a1 = 1.43 a3 = 2.89 c = 0.01 σX = 4.90 σY = 2.45
FHNY b = 2.55 a1 = 0.63 a3 = 2.71 c = 0.22 σX = 4.80 σY = 11.08 β = −0.67

period do not inherit any features of the deterministic system. For the FHN model,
Fig. 4.10b shows that the parameters b and β no longer approach their boundaries
of 0 and π/2, respectively. As a result, the FHNY model posterior samples contain
79% mono-stable, 17% oscillatory and 4% bi-stable parameter regimes. Thus, the
excitable regime is the most prevalent. It does not seem to matter, whether the
single fixed point in the mono-stable samples is in the ’warm’ or ’cold’ state, as they
are roughly equally distributed among the ensemble. Furthermore, as for the VDP
model, the parameter a1 tends to very small values.

To get an idea of the maximum likelihood parameters of our models and to show
representative time series, we estimate the parameter sample which lies in the
highest density region of the posterior distribution. This is done via Gaussian Kernel
smoothing, where the Kernel width is chosen manually. Although the method is
typically robust over a wide range of Kernel widths, the result still has to be taken
with care because of the relative sparseness of the posterior samples in parameter
space. This is especially true if parameter samples tend to accumulate at the edges
of their valid domain, as is often the case in our study. The resulting parameter
estimates are given in Tab. 4.3 and model realizations are shown together with the
data in Fig. 4.11.

4.4.2.2 Model comparison

As detailed in Sec. 4.3.3, the ratio of acceptance rates in ABC-PMC runs of two
models at a given tolerance gives our approximation of the Bayes factor B1,2. The
results are summarized in the Tab. 4.4. As can be seen in the table’s first column,
the DW model is slightly preferred over the oscillator models without noise in the
y variable, while the converse is true as we add noise to both variables. Thus, the
performance of the oscillators clearly improves by adding noise also to the y-variable,
which is reflected by Bayes factors of 6.27 and 4.83 for the VDPY over VDP and
FHNY over FHN models, respectively. Comparing the two oscillator models with and
without noise in the y variable, we observe that in both cases the FHN model is very
slightly preferred with Bayes factors of 1.24 and 1.61, respectively. As a result, the
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Fig. 4.11.: a) NGRIP data set used as basis of our study. b)-f) Model realizations of all
models considered in the study with highest posterior probability parameters
from Tab. 4.3. Panels b), c), d), e) and f) correspond to the DW, VDP, FHN,
VDPY and FHNY models, respectively.

model that is most supported by the data in terms of the summary statistics chosen
by us is the FHNY model with additive noise in both variables.

4.4.2.3 Time reversal asymmetry

We now address the characteristic saw-tooth shape of the DO events, which is not
accounted for by the summary statistics used in the model comparison experiments
of this study so far. On average, the NGRIP record rises much faster to high values
during warming periods as it falls to low values during cooling periods. This feature
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Tab. 4.4.: Bayes factors obtained from the ABC-PMC experiment with NGRIP data. The
rows and columns are organized such that the value in column i and row j is the
Bayes factor Bij of model i in favor over model j, as defined in Eq. 4.4.

Bij j
i DW VDP FHN VDPY FHNY

DW - 0.26 0.42 1.62 2.01
VDP 3.87 - 1.61 6.27 7.78
FHN 2.41 0.62 - 3.90 4.83
VDPY 0.62 0.16 0.26 - 1.24
FHNY 0.50 0.13 0.21 0.81 -

is often referred to as time-reversal asymmetry and can be measured in a time series
x(t) by the skewed difference statistic

M(τ) = 〈[x(t)− x(t+ τ)]3〉
〈[x(t)− x(t+ τ)]2〉 , (4.8)

where 〈·〉 denotes the expectation value over the time series and τ corresponds
to a characteristic time scale (see e.g. [The+92]). A similar indicator has been
used before to analyze the results of the model comparison study by [Kwa13]. In
contrast to the DW model, both VDP and FHN models can in principle show such
time reversal asymmetry, in a regime of relaxation oscillations. Due to similarity in
shape of the DO events and relaxation oscillations, the latter are often invoked as
plausible dynamical mechanism.

0 500 1000 1500 2000 2500
lag (years)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

M

data

model mean

no asymmetry

only asymmetry

95% conf.

95% c.: no asym.

Fig. 4.12.: Time-reversal asymmetry statistic M(τ) for the NGRIP data (red) and model
averages over the posterior samples from ABC-PMC runs with following summary
statistics: 1. s1,2,3,4,5,6 (blue). 2. s1,2,3,4,5 (orange dashed). 3. s6 and standard
deviation (green). For the former two runs, 95% simultaneous confidence bands
are shown. Two example realizations of the first run are shown in gray.
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In order to test whether the oscillator models can show asymmetry behavior similar
to the NGRIP time series, we include the RMSD of M(τ) up to a lag of τ = 2500
years for model output and data as an additional summary statistic s6. The RMSD
of the data curve M(τ) to a straight line, i.e., a model with no asymmetry, is 0.92,
which serves as a baseline for our asymmetry summary statistic s6 and respective
tolerance ε6. We restrict our analysis to the FHNY model since it has the richest
dynamics.

In Fig. 4.12 we compare M(τ) of data, and FHNY posterior samples of different
ABC runs. For illustrative purposes, we conducted a ABC-PMC run that only used
s6 and the standard deviation as summary statistics. The average model statistics
for posterior samples obtained from this run are shown as a green line in the figure
and demonstrate that the FHNY model has a dynamical regime with asymmetry of
the desired magnitude. Next, we performed a ABC-PMC run with all six summaries
s1,2,3,4,5,6. We gradually decreased the tolerance of s6 from ε6 = 0.8 to ε6 = 0.575,
while lowering the other tolerances to the rather moderate values of ε1,2,3 = 0.225
and ε4,5 = 0.15. At this point it becomes computationally very expensive to continue
with lower tolerances, mirroring the fact that the FHNY model cannot both display
time reversal asymmetry and the statistical behavior discussed earlier in this work.
The summaries s1,2,3,4,5 force the oscillator model into a regime, where it can only
show asymmetry throughout a whole realization by chance, which is very rare. From
the figure we can see that on average, the posterior samples of the run that included
s6 show no asymmetry. The same holds for the posterior samples inferred from the
ABC-PMC run without s6. The posterior samples with s6 are also only marginally
more likely to show significant asymmetry compared to the ones without s6, as can
be seen from the confidence bands.

4.5 Discussion and Conclusion

This study presents Bayesian model comparison experiments of stochastic dynamical
systems given the NGRIP δ18O record of the last glacial period, and aims to further
the knowledge on which dynamical mechanism underlies DO events. The highly
stochastic nature of these climate changes, as well as of the underlying data set
prompted us to base this model comparison solely on statistical properties of the
time series, captured by summary statistics. This approach is different from previous
model comparison studies concerned with Greenland ice core data and stochastic
dynamical systems [Kwa13; Kru+15; MC17; Boe+17]. Even though these studies
also aim to compare different models in terms of their statistical properties, such as
stationary densities and mean waiting times, they first estimate maximum-likelihood
parameters from the 1-step prediction error with various techniques and subse-
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quently use the Bayesian Information Criterion for model selection. Afterwards, they
qualitatively compare the statistical properties of the best fit models. However, it
is unclear how the statistical properties of the models emerge in the fitting proce-
dure. As a consequence, there might arise a mismatch in between the models or
parameter regimes preferred by the model comparison procedure and by qualitative
analysis of the statistical properties, as reported by [Boe+17]. This motivates us to
base the entire parameter inference and model comparison on summary statistics.
Additionally, our approach is different in that we are able to show full parameter
posterior distributions, which allows the assessment of parameter sensitivity and
uncertainty. This becomes especially important in models with physically motivated
parameters.

As prerequisite result, using synthetic data, we demonstrated in Sec. 4.4.1 how
parameter inference and model comparison can be successfully done with a set of
summary statistics and the ensemble of models considered. For this purpose, we
adopted a version of ABC to our needs, and showed that given a model realization
from within the model ensemble, the true model and its parameters can be inferred
in a robust way. Furthermore, we estimated the penalty on the Bayes factor arising if
one model of our ensemble has a superfluous parameter. In the case of two models
being both correct, we yield B ≈ 2 in favor of the model without the superfluous
parameter, which we consider to be only a small penalty.

We subsequently applied the model comparison framework to the NGRIP data set,
mainly aiming to establish evidence in favor or against the DW model over one or
both of the oscillator models. We found that the results depend on whether one
includes noise only in the observed x variable of the oscillators, or in both. There
is evidence that the DW model is better supported by the data than the oscillator
models without noise in the y variable. Our estimate of the Bayes factor in favor
of the DW model over the VDP and FHN models is 3.87 and 2.41, respectively.
By looking at the posterior parameter distributions, we can see that the oscillator
models in fact operate in regimes where they approximate dynamics similar to
the DW model. Specifically, the VDP oscillator dynamics can be characterized by
deterministic oscillations with very long residences in either of the two branches
of the slow manifold, which are however abandoned prematurely by a stochastic
jump to the other branch. The FHN model, on the other hand, operates in a bi-stable
regime, where transitions are noise-induced. As a consequence, we believe that in
the case of σY = 0 there is a large contribution to the Bayes factors by a penalty on
the additional parameters of the oscillator models. Even though the Bayes factors
are not very high, we can thus conclude that the double well potential paradigm is
clearly favored over oscillator models with additive noise only in the x variable.
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As we add noise to the y variable of the oscillator models, we saw clear improvement
over the case with σY = 0, as inferred from Bayes factors of 6.27 and 4.83 for
the VDP and FHN model, respectively. We inferred from the posterior parameter
distributions that the oscillator models now operate in dynamical regimes different
from the case σY = 0. While the VDP model still is in an oscillatory regime, albeit
with different properties, the FHN model now prefers an excitable regime with one
fixed point either in a ’warm’ or ’cold’ state. From the Bayes factors of 1.62 and
2.01 we now find slight evidence in favor of the VDPY and FHNY models over the
DW model. As a consequence, our results agree in principle with previous model
comparison studies that also compare a DW potential model with a VDP oscillator
including additive noise in both variables [Kwa13; MC17]. However, while these
studies find quantitatively overwhelming evidence in favor of the oscillator, we
only find very mild evidence. To complement our quantitative analysis via Bayes
factors, one can qualitatively observe the models’ statistical properties underlying
our summary statistics. We show this in the Electronic supplementary material for
both best fit parameter estimates and posterior parameter ensemble averages. We
conclude that none of the models can fit all statistics at the same time in a robust
way. Furthermore, the different models don’t fit the individual statistics equally well.
Although there might be a slight overall advantage for the FHNY model, our analysis
does not suggest that either one of the DW, VDPY and FHNY models is much worse
than the others in describing the statistical properties of the record.

Finally, we considered an additional summary statistic in our Bayesian model com-
parison experiment, which measures the time reversal asymmetry of a time series
and captures the characteristic saw-tooth shape of the DO events in the NGRIP
record. We used this additional statistic in a ABC-PMC run on the FHN model, which
can show time reversal asymmetry in a regime of relaxation oscillations. We observe
that it is not possible to yield time reversal asymmetry comparable to the data in
the model when also obeying constraints posed by the other statistical properties
s1,2,3,4,5, in particular the temporal irregularity of events captured by the long-tailed
distributions of waiting times. This is consistent with the results of the study by
[Kwa13], where it is observed that the best-fit VDP model inferred from the NGRIP
data also does not show time-reversal asymmetry. We thus conclude that the time-
asymmetry of the record cannot be explained by chance. It is a real feature of the
data, which is not captured by the simple class of models investigated here. More
complex models are necessary, such as models including time delays, which were
shown to yield time-reversal asymmetry to a certain degree when inferred from the
NGRIP data [Boe+17].

Our study does not address external forcing directly, since we use summary statistics
based on stationary properties only. This can however readily be done by including
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summary statistics of time-varying properties in the data, such as the summary
statistics used in [LD18]. Even though there is evidence for a contribution of
external modulation to the statistical properties in the record [MC17; LD18], we still
find it useful to analyze a class of models that can approximate the observed statistics
without a forced modulation of parameters. We believe that the observed statistical
properties are largely due to stationary variability and not external modulation.

In conclusion, this study investigates the ability of a class of models to explain
the statistical properties of the glacial climate. This class of models incorporates
different dynamical paradigms, which can be interpolated by continuous changes of
parameters. We conducted model comparison experiments using only key statistical
properties of the data. Although we find that relaxation oscillator models with
noise in both variables have a slight advantage over stochastic motion in a double
well potential, the Bayes factors are not very conclusive. None of the models can
accurately fit all data statistics and all models have to rely heavily on chance for
a realization to fit closely. This means that the dynamics inferred from the glacial
climate record must be noise-dominated and the deterministic backbone is less well-
defined. As a result, different deterministic regimes from the spectrum in between
double well potential and relaxation oscillations can be equally consistent with the
data.

4.A ABC-PMC algorithm

In this appendix we present our adaption of the ABC-PMC algorithm first presented
in [Bea+09]. It is an iterative procedure over subsequent populations t of N
parameter samples θjt , called particles in the following. Each population is weighted
by importance sampling weights wjt , which are the likelihood ratios of the prior
parameter distribution p(θjt ) and the proposal distribution. The proposal distribution
is a perturbation of the previous population by a Gaussian Kernel Kt(·|θ), whose
Kernel width adapts after every population t. As discussed in Sec. 4.3, s(D′, D) is a
vector of summary statistics, and εt is a vector of tolerances, whose entries decrease
for increasing population t.

1. Set population indicator t = 0

2. Set particle indicator j = 1

3. If t = 0 sample θ∗∗ from p(·).
If t > 0 sample θ∗ from previous population with weights {wjt−1} and perturb
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particle to obtain θ∗∗ ∼ Kt(·|θ∗), where Kt is a Gaussian Kernel with covari-
ance Σt−1.
If p(θ∗∗) = 0 return to 3.
Simulate data D′ from p(·|θ∗∗).
If s(D′, D) > εt return to 3.

4. Set θjt = θ∗∗ and calculate the particle weight wjt = p(θj
t )∑N

i=1 w
i
t−1Kt(θi

t−1)|θj
t ))

If j < N , set j = j + 1 and go to 3.

5. Normalize weights and set Σt to twice the covariance of {θjt}
If t < T set t = t+ 1 and go to 2.
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5Conclusion

This thesis investigates the causes and mechanisms that underlie DO events by
statistical analysis and modeling of Greenland ice core records. With a combination of
time series analysis, statistical hypothesis testing and Bayesian model comparison, we
gather evidence in order to distinguish in between different hypotheses concerning
DO events. In the following, the main findings are summarized.

1. The stadial and interstadial periods have different statistical properties. Whereas
the stadial durations are very well described by an exponential distribution, the
interstadials are consistent with a log-normal or inverse Gaussian distribution.

2. The interstadial durations are strongly correlated with the respective cooling
rates. In fact, the cooling rates anticipate the durations. This is because
the interstadial coolings are roughly linear and the variability of the cooling
rates is higher than the variability of the levels at which the interstadials
terminate. We show that within 150-350 years after the interstadial onset, the
interstadial durations become well determined. This does not hold for every
single interstadial, but for most.

3. With statistical hypothesis tests based on Poisson processes we show that
the observed variability in the timings of the DO warming and cooling event
sequence is too high to have been the result of two stationary, independent
random processes that trigger warming and cooling transition.

4. There is evidence for external modulation of the properties of DO events,
and the influencing factors are different for stadial and interstadial durations.
The stadials are controlled by insolation, and the interstadials by global ice
volume.

5. External forcing is, however, not enough to explain all variability, but just
an underlying trend. When considering the stadial durations, we still find
exponentially distributed variability, as for a memoryless process, after a
removal of the insolation component from the data.

6. Based on key statistical properties of the NGRIP δ18O record, we compare
stochastic dynamical systems that can display bi-stable, excitable and oscil-
latory dynamics. In order to reproduce the data’s statistics, all models have
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to be driven by high intensity noise, which dominates over the specific deter-
ministic dynamics of the individual models. As a result, double well potential,
relaxation oscillator and excitable models may all be equally consistent with
the data.

7. The saw-tooth shape of DO events is a robust aspect of the data, and indicates
some determinism. We find that simple relaxation oscillator models driven by
additive noise cannot display this behavior when they are also constrained to
fulfill the more stochastic aspects in the data, such as waiting and residence
time distributions.

We now discuss these findings in terms of the main scientific questions we have
posed in the introduction and compare them with related, previously published
results.

1. Can the high temporal variability of the properties of DO events, such as residence
times in warm and cold climate states, be expected due to chance by randomly occurring
events?

There is a visible trend in the properties, as captured by the time-varying indicators
defined in Paper 2 (Sec. 3.2). Specifically, the frequency of DO warming events
increases from 2-4 events per 20 kyr at the beginning of the last glacial to up to
12 events per 20 kyr around 50 kyr BP, after which there is a decline to around 5
events per 20 kyr towards the end of the last glacial. At the same time, the portion
of stadial compared to interstadial periods changes from around 20% stadials to
80% stadials. We find that the long-term variations in DO warming event frequency
is consistent with a memory-less stationary random process. We thus cannot exclude
the possibility that the long-term variations have occurred by chance. If we however
divide a DO cycle into two independent processes governing warming and cooling,
this is not true anymore and significant time-varying structure is detected, which
might be due to external forcing. Since our statistical analysis in Paper 1 (Sec.
2.3.4) suggests that the processes of warming and cooling transitions are indeed
independent, the latter result seems more relevant. On the other hand, if one allows
for processes that give rise to super-exponential variability, stationarity might still
be consistent with the data. Although we have not tested it explicitly, we cannot
exclude this possibility, given that the interstadial durations are consistent with a
log-normal distribution, as reported in Paper 1 (Sec. 2.3.4.1). Still, an externally
forced scenario seems likely as discussed in the following paragraph.

2. Are the DO cycles, and more generally the millennial-scale glacial climate variability,
modulated by external forcing, such as insolation?
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Following up on the evidence for non-stationarity, in Paper 2 (Sec. 3.2) we propose a
model that incorporates long-term variations through linear forcing of the parameters
with external climate factors. We find good agreement with the data in a model
where the average duration of interstadial phases of the DO cycle are controlled by
global ice volume and the stadial phases by boreal summer insolation. Similarly, we
find that several DO event features derived from the piecewise-linear fit in Paper 1 are
correlated with external forcing (Sec. 2.3.4). For stadial and interstadial durations,
the findings are very similar to the model proposed in Paper 2. Importantly, there are
always outliers and the relationships of forcings and durations are very non-linear,
which leaves a lot of variability unexplained even after accounting for external
forcing.

Time variations of millennial climate activity, i.e. the occurrence frequency of DO
events, have been noted before. Through analysis of both ocean sediment cores
and Antarctic ice cores it has been established that the occurrence of millennial-
scale events is most frequent for intermediate glacial climate, and less frequent
for warmer climate and fully glacial climate, as measured by global ice volume
[McM+99] or mean Antarctic temperature [Kaw+17]. The model presented in
Paper 2, which takes into account both stadial and interstadial periods with individual
ice volume and insolation forcings, can reproduce this behavior for the last glacial
period. Additionally, a forcing of the individual interstadial durations by Antarctic
temperature [BS15] and global ice volume [Sch02b] has been reported. As discussed
more in detail in Paper 1 (Sec. 2.3.4.1), these results are not fully robust when also
including the shortest DO events into the analysis, especially in the older part of the
last glacial. Based on our analysis, we thus propose either a) a control by external
forcing of the mean stadial and interstadial durations with a very large variability
around the mean (as modeled in Paper 1), or b) a more direct forcing of the majority
events with less variability, but with some outlier events that are independent from
the forcing, and which might be triggered via a different mechanisms.

As a side note, we mention that the expression external forcing is used rather loosely
in this thesis. It can indicate both a time varying quantity that is truly external to the
climate system, such as boreal summer insolation or orbital parameters, or another
paleoclimatic record that is representative of large scale climate on long time scales
obtained from a data source that is independent from the Greenland isotope record,
such as global ice volume records.

3. Can we infer from the data whether the DO cycles are a result of noise-induced jumps
in between two meta-stable states, or of noisy, self-sustained oscillations?
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Before discussing this question, note that our studies do not directly address period-
icity of the events. It is clear from the record that the oscillations have no simple
periodicity, if one regards the whole glacial. The distributions of waiting times in
between events and residence times in cold and warm states are long-tailed, as
discussed in Paper 1 (Sec. 2.3.4). Furthermore, we have shown that the variability
in these features cannot be fully explained when accounting for external forcing
driving the instantaneous period of the DO cycles. This indicates that there is a
strong stochastic component to the occurrences of DO events. We also do not discuss
the hypothesis that events are triggered by integer multiples of a fundamental period
[All+01; Sch02a], because we think it has been sufficiently covered in the literature
[Dit+07; PF10]. Even though, when allowing for a vast range of these multiples,
we cannot exclude that some results in this thesis might be consistent with this
mechanism, there is generally not enough evidence in the data in favor of this
hypothesis [Dit+07]. Instead, we compare different noise-driven dynamical systems
to the statistical properties of the data. In Paper 3, a model comparison via Approx-
imate Bayesian Computation shows that one cannot conclusively decide whether
the underlying deterministic dynamical regime is that of a relaxation oscillator, an
excitable system or a bi-stable, one-dimensional potential system (Sec. 4.4.2). There
is a small advantage of both the relaxation oscillator and the excitable system over
the potential model, which we attribute mostly due to the possibility of unobserved
dynamical noise in the hidden variable. Our ongoing work shows that using addi-
tional observational noise for a double well potential model significantly improves
the model’s performance (not presented in the thesis). From the perspective of
this low-dimensional model description, we conclude that the stochastic influences
dominate and it is not so crucial where the underlying deterministic dynamics lie in
the continuum in between the dynamical regimes outlined above.

Note that our interpretation of this model comparison is different from previous stud-
ies [Kwa13; MC17], which report strong evidence in favor of relaxations oscillator
models. A main difference is their use of the time series increments for a one-step
prediction likelihood, whereas we use statistical properties that do not depend much
on these increments, which we justify by the difficulty in interpreting the highest
frequencies of the record. What generally motivates the use of relaxation oscillator
models is their ability to show saw-tooth shaped oscillations, which break time
reversal symmetry, and are similar to the characteristic shape of DO events. However,
we show that the models cannot display significant time reversal asymmetry if they
also have to obey the constraints of the other statistical properties of the record, such
as the temporal irregularity captured by the distributions of residence and waiting
times.
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4. Is there evidence in the statistical properties of the data in favor of certain physical
mechanisms to explain DO events?

In Paper 1 (Sec. 2.3.4) we find that both the stadial durations and the durations
of the rapid warming transitions are consistent with what is expected for noise-
induced escapes from a meta-stable state. This suggests that mechanisms with a
random trigger could underlie the transitions, such as those of studies that report
noise-induced, unforced climate transitions in detailed climate models [Dri+13;
Kle+15]. This is different for the interstadial periods, whose linear cooling indicate
more deterministic dynamics, given by a cooling time scale, which itself has a very
large variability. Thus, the cooling transitions at the end of interstadials don’t seem
to be compatible with a random and memoryless trigger. However, what kind of
process could set the highly variable cooling rates is unclear.

The different forcing influences on interstadial and stadial durations (Paper 1 and 2)
let us speculate that there are different mechanisms governing the two transitions
(warming and cooling), where the specific form of the external forcings can give
hints into the mechanisms. As one potential mechanism that seems consistent with
the forcing influence we inferred, we hypothesize a modulation of stadial durations
by insolation via the ice-ocean albedo feedback (Sec. 3.4). Global ice volume control
on interstadial duration might be explained by different influences on the strength
and stability of the interstadial (strong) mode of the Atlantic Meridional Overturning
Circulation (AMOC). However, contrary to our finding, the influence of ice volume
on AMOC stability reported by studies with globally coupled models is often such
that increases of Northern Hemisphere ice sheets actually enhance the stability of the
strong AMOC state, which would intuitively result in longer interstadials [Zha+14].
This has been addressed in [BS15], where Southern Ocean processes are invoked to
control interstadial durations. The fact that there are distinct outlier events which do
not follow the trend by external forcing that is present in the majority of events might
suggest that there are types of events that are triggered by a different mechanism.

As a final note, we remark that from our model comparison study in Paper 3 we
cannot exclude the possibility of an underlying self-sustained oscillation, such as
reported by Peltier and Vettoretti [PV14]. However, our analysis suggests that such
an oscillation needs to be heavily influenced by noise, in order to fulfill the observed
temporal irregularity.
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6Outlook

We conclude with some brief thoughts on possible directions to use and extend the
results obtained in this thesis. In the model comparison study in Paper 3, it was clear
that none of the models could accurately reproduce all the statistical features of the
data in a reliable way. Thus, better stochastic dynamic models are needed, which
fulfill both stochastic and deterministic aspect of DO events. One direction that we
currently pursue is the inclusion of other types of noise, such as non-Gaussian and
multiplicative noise, or a combination of both. Initial tests lead us to believe that this
permits the use of additive noise with only small amplitude and as a consequence
can preserve deterministic dynamical features, while still producing an irregular
sequence of events.

Based on the forcing influences we inferred for stadial and interstadial durations,
it would be interesting to check whether detailed climate models that produce a
DO-like cycle show a response to variations in boundary conditions that is compatible
with our findings. Similarly, by combining all statistical properties of DO events
that we have collected in the three manuscripts, one could look for a conceptual,
low-order box model, which can fulfill as many constraints set by our findings as
possible. Such a conceptual model should furthermore be extended to qualitatively
reproduce the bipolar dynamics seen by comparison of Greenland and Antarctic ice
cores, which was not a focus of this thesis.

Concerning the statistical analysis in Paper 1, it seems straightforward to go into
more depth with some of the aspects covered, such as the interstadial cooling rates,
and construct simple dynamical models to test against the data. Additionally, the
data analysis presented in the paper is not exhaustive. Some features have not
been analyzed extensively, the nature of outlier events should be investigated, and
in general more advanced statistical methods could be tried to analyze the data
generated by the piecewise-linear fit.

Finally, in addition to the dynamical paradigms investigated in this thesis, new
mechanisms should be considered. One such mechanism that we currently investi-
gate concerns rate-induced tipping. The fact that the simple Stommel box model
actually supports this phenomenon could hint at a potential relevance in relation
to DO events. Rate-dependent transitions of the AMOC have also been observed in
a detailed climate model [SS97]. In conclusion, we have gathered some evidence
to give partial answers to the scientific questions that we posed in the introduction.
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However, it is clear that in order to get more definite answers more work is needed,
not least in order to overcome the issue of the limited number of DO events available
to conduct statistical tests. A satisfactory reproduction of the glacial climate record
with tractable stochastic dynamical systems models remains a challenge.
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Fig. A.S1.: Zoom into time series and piecewise-linear fit of the 5 longest rapid warmings
leading up to interstadials 6 (warming of 140.4 years), 11 (179.5 years), 17.2
(129.7 years), 18 (161.0 years) and 23.2 (115.2 years).
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Fig. A.S2.: All interstadial transitions fitted with a saw-tooth shape by our algorithm. The
panels start with GI-2.2 on the top left and end with GI-24.2 on the bottom
right.
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Fig. A.S3.: Autocorrelation functions of all 15 features considered in the study, which are
defined in the Methods and Materials section of the main article. We give 95%
confidence bands, outside of which an autocorrelation is considered significant.
The theoretical confidence band assuming Gaussianity and large sample size is
shown with a dotted line, while a confidence band obtained from the respective
samples and a permutation test is shown with a dashed line.
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BSupplemental material to
’A consistent model
selection analysis of
abrupt glacial climate
changes’

In this supplement we give a qualitative overview of the statistical properties of the
three models that are best supported by the data, i.e., the DW, VDPY and FHNY

models. In Fig. B.S1, we show the statistics obtained under a single parameter value
for each model, which is given by our estimate of the largest posterior probability
parameter. Figure B.S2 instead shows statistics averaged over the full posterior
parameter ensemble. Note that in both figures there is a bend for higher values
in the black lines for s1,2,3, i.e., the model averages of the empirical cumulative
distribution functions, which is an artifact due to the finite size of each realization.
In both figures, the average statistics show the same characteristics and yield the
following qualitative picture. It is seen that none of the models can robustly satisfy
all statistics of the data. For the autocorrelation (s5) there is a clear advantage of
the FHNY over the DW and VDPY models, whereas for the stationary density (s4)
DW performs better than VDPY and FHNY . We do not see a clear advantage of
any model for the stadial durations (s1), whereas for the waiting times (s3) there
might be a slight advantage for the oscillators, since they seem to be closer to an
exponential distribution. The same holds for the interstadial durations, where the
oscillators show a slightly super-exponential distribution, which is advantageous in
terms of the data.
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Fig. B.S1.: Statistical properties underlying the summary statistics s1,2,3,4,5 for the DW,
VDPY and FHNY models with largest posterior probability parameters, as ex-
plained in the main text. Red lines are data statistics, black lines are the
model averages over 20.000 realizations and the shading corresponds to 95%
simultaneous confidence bands.
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Fig. B.S2.: Statistical properties underlying the summary statistics s1,2,3,4,5 for the posterior
parameter ensembles of the DW, VDPY and FHNY models. Red lines are data
statistics, black lines are the model averages and the shading corresponds to
95% simultaneous confidence bands. We generated multiple realizations with
each parameter in the ensembles, such that the total number of realizations was
roughly 20.000.
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