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Abstract

Nonlinear fluid motion occurs naturally in central components of the climate system.
Studying such motion is instrumental for improving the accuracy and realism of
models of climate components, which has important implications for future climate
projections. This thesis presents four studies on the topic of nonlinear fluid dynamics
addressing two subjects: the dynamics of ice sheet deformation and the dynamics
of the turbulent energy cascade.

The first study investigates the controlling mechanisms of the observed 2016
seasonal speed-up of Zachariae and Nioghalvfjerdsfjorden outlet glaciers in north-
east Greenland, which drain a significant part of the Greenland ice sheet. From
surface imagery made available by the newest generation of satellites, state-of-the-
art velocity maps are derived, and the timings of processes potentially impacting
the speed-up are estimated. By combining observations with numerical modelling,
it is shown that the subglacial environment exerts an important control over the
ice discharge rate of the region, which has implications for estimating the region’s
contribution to near-term sea level rise.

The second study investigates the influence of strong single-maximum fabrics
on the transient deformation of internal layers within ice sheets. By using a new
Lagrangian numerical ice flow model, it is shown that discrete, strong single-
maximum layers — which may account for suppressed shearing along nonbasal
crystallographic planes — are a plausible candidate for explaining the disturbed
flow observed from ice-penetrating radar transects. The results have potential
implications for interpreting ice-core stratigraphies and chronologies, as well as
understanding of how internal disturbances might influence surrounding flow fields.

The third and fourth study address the origin of the transfer direction of kinetic
energy between scales of motion (upscale/downscale) in fully developed turbulence
using the spectral-helical decomposition of the velocity field. In this decomposition,
the nonlinear term in the Navier–Stokes equation becomes to a sum over eight
distinct types of three-wave interactions. In the third study, a simple model (a shell
model) is introduced to investigate the behaviour of the eight types of nonlinear
interactions, which is compared to a linear stability analysis, finding a fair agreement.
In the fourth study, a subset of the three-wave interactions are shown to conserve a
new positive-definite quadratic quantity in addition to kinetic energy, which cause
the interactions to contribute to a reverse transfer of energy in three dimensions
(small to large scales) in analogy to two-dimensional turbulence. Understanding the
energy transfer directionality, and possible ties between two- and three-dimensional
turbulence, has implications for geophysical flows such as the free atmosphere
and oceans where vertical motion in many places is suppressed, thereby affecting
predictability time scales and the transport of energy and momentum in climate.
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Resumé

I centrale dele af klimasystemet finder ulineære væskestrømninger naturligt sted, og kom-
plicerer klimamodellers forudsigelser. For at øge nøjagtigheden af klimamodelberegninger
er det vigtigt at studere disse væsker, da modelbeskrivelsen af de enkelte komponen-
ter i klimasystemet derved kan forbedres. Denne afhandling består af fire studier under
temaet ulineære væskestrømninger, delt i to emner: den dynamiske beskrivelse af iskappers
flydning, samt den dynamik, der kontrollerer transporten af energi i turbulente strømninger.

Det første studie undersøger hvilke mekanismer, der kontrollerer de observerede
hastighedsændringer i 2016 ved udløbsgletsjere Zachariæ and Nioghalvfjerdsfjorden i
det nordøstlige Grønland, som er et udløbsområde, der dræner en betydelig del af den
Grønlandske indlandsis. Ud fra satellitbilleder undersøger studiet afledte hastighedskort,
og sammenholder dem med igangsættelsen af bestemte processer, der er kendt for at
kunne påvirke isens flydehastighed. I kombination med numeriske modelberegninger
peger studiet på, at koblingen mellem is og grundfjeld (der er påvirket af processer som
f.eks. afsmeltningen af is) kan have en betydelig indflydelse på iseksporten. Dette har
konsekvenser for regionens estimerede bidrag til havvandsstigninger.

Det andet studie undersøger forholdet mellem de stærkt anisotropiske iskrystalstruk-
turer, der findes i iskapper, og den tidsafhængige udvikling af dybe interne lag i iskapper.
Ved at gøre brug af en ny Lagransk isflydemodel viser studiet, at diskrete interne lag med
stærkt anisotropiske egenskaber — der kan bremse isdeformationen hvis iskrystaller er
orienteret ugunstigt — er et plausibelt bud på, hvorfor dybe interne lag i iskapper kan
have dramatiske forstyrrelser i flydemønsteret. Dette resultat har konsekvenser for både
fortolkningen af stratigrafier og kronologier i iskerner, men også for forståelsen af, hvordan
flydningen af den øvrige ismasse påvirkes.

Det tredje og fjerde studie beskæftiger sig med overførelsen af kinetisk energi i
turbulente strømninger mellem forskellige karakteristiske størrelser af bevægelse ved at
benytte den spektral-heliske dekomposition af hastighedsfeltet. I denne dekomposition
reduceres det ulinære led i Navier—Stokes ligningen til en sum over otte forskellig
typer tre-bølge interaktioner. I det tredje studie introduceres en simpel skalmodel for
at undersøge opførslen af de otte typer interaktioner, og det viser sig, at de til dels er i
overenstemmelse med en lineær stabilitetsanalyse. Det fjerde studie tager udgangspunkt i
en delmængde af mulige tre-bølge interaktioner, og det konkluderes at disse bevarer en
ny positiv-definit kvadratisk størrelse udover bevarelsen af den kinetiske energi. Denne
nye invariant muliggør en energioverførelse fra små til større karakteristiske størrelser af
bevægelse (dvs. et inverst bidrag til energioverførelsen) i tredimensional turbulens i analogi
med todimensional turbulens. Både retningen af energitransporten, samt hvilke bånd, der
findes mellem to- og tredimensional turbulens, spiller en vigtig rolle for de bevægelser, der
finder sted i eksempelvis atmosfæren og oceanerne. I disse hydrodynamiske fluider, hvor
vertikal bevægelse flere steder er undertrykt, kan retningen på energioverførelsen have
indflydelse på væskebevægelsens forudsigelighed samt transporten af energi og impuls i
klimasystemet.
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Chapter 1

Introduction

Nonlinear fluid motion occurs naturally in central components of the climate system
across a large range of spatial and temporal scales. While the degree of nonlinearity
may vary from having subordinate influence on the larger-scale fluid motion to
being principal for the flow, studying the behaviour of nonlinear flows has important
implications for future projections of the climate system.

Depending on their type, flow nonlinearities can cause a significant departure
from steady, laminar flow regimes by the formation of instabilities and symmetry
breaking, and can lead to complicated internal stress fields affecting the response
to external influences in a nontrivial way. As a result, nonlinearities can severely
complicate theoretical pursuits by not allowing central quantities to be expressed in
closed forms, or by introducing terms with exponents that complicate the search for
solutions even in simple, idealized cases. Investigating nonlinear flows numerically
can likewise be troublesome, or resource intensive at best, due to the governing equa-
tions being dynamically stiff (requiring accurately resolving the smallest naturally
occurring time scales) or having to approximate solutions iteratively.

Nonetheless, studying nonlinear flows theoretically, numerically, and in prac-
tice is instrumental for improving the accuracy and realism of models of central
components in the climate system.

This thesis is a collection of four studies addressing two different kinds of
nonlinear fluid motion occurring in the climate system: the deformation of ice
sheets (main body of work), and the turbulent flows in e.g. the atmosphere and
oceans. In particular, the four studies consider the three phenomena shown in figure
1.1: the response of marine-terminating glaciers subject to spatio-temporal variable
forcings (top), the disturbed flow of internal layers deep within ice sheets (middle),
and the dynamics of the turbulent energy cascade in large inertial-range flows (large
range of scales of motion) such as in the atmosphere and oceans (bottom).
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14 CHAPTER 1. INTRODUCTION

Figure 1.1: The nonlinear flows studied in this thesis:
Top: Marine-terminating glaciers of ice sheets subject to spatio-temporal variable forcings.
The image shows the seasonal surface melting over the Zachariae outlet glacier in northeast
Greenland which influences its discharge of ice into the ocean. The image is a composite of
images taken between July 22–26, 2016, by NASA’s Landsat 8 satellite and processed by
the author. The horizontal scale is approximately 80 km.
Middle: Disturbed internal layers deep within ice sheets. The image shows a 52 km long
vertical transect over Greenland constructed from CReSIS’s ice-penetrating radar. The
distinct horizontal curves are internal layers with different dielectric properties, suggesting
increasingly disturbed layers with depth. The vertical scale is approximately 1 km, and the
dark bottom curve is the bedrock, located at 2:5 km below the surface.
Bottom: The turbulent energy cascade. Color-enhanced image taken by NASA’s Juno
spacecraft of the high clouds over Jupiter at latitude 57°, October 24, 2017. The image
shows the turbulent motion of Jupiter’s atmosphere and the large range of scales of motion
(eddy sizes). The horizontal scale is approximately 20 375 km.
Image credits: U.S. Geological Survey (top), NASA Operation IceBridge campaign 2011
(middle), and NASA/JPL-Caltech/Gerald Eichstädt/Seán Doran (bottom)
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1.1 Ice sheet dynamics

The movement of glaciers and ice sheets generally conforms with the slow, viscosity-
dominated nature of creeping flows. These flows display an insignificant effect of
inertia and typically creep around obstacles, compared to turbulent fluids that spin
off compact velocity structures such as vortices (Lautrup, 2005).

Dominated by internal friction, creeping flows are characterized by small
Reynolds numbers, Re � 1, defined as Re D UL=� where U is the charac-
teristic fluid velocity, L is the characteristic linear dimension, and � is the kinematic
viscosity of the fluid. In this limit, the advective acceleration can be neglected in the
momentum balance and the fluid description (Stokes flow) is therefore free of the
nonlinear terms that tend to spontaneously break spatio-temporal flow symmetries in
turbulent flows. In the case of glacier and ice sheet flows, however, the constitutive
equation (flow law) — the relation between internal stresses and irreversible viscous
momentum transfers caused by the relative motion of fluid particles — is itself
nonlinear. Ice is an example of a shear-thinning fluid, meaning its effective viscosity
decreases under shear straining. Fluids for which the effective viscosity depends on
strain-rate or strain-rate history are collectively classified as non-Newtonian fluids,
in contrast to constant-viscosity Newtonian fluids.

In the case of ice, nonlinearities allow for exotic stress-gradient phenomena
to occur such as stress bridges and flow coupling (Kamb and Echelmeyer, 1986;
Van Der Veen and Whillans, 1989), the latter allowing boundary conditions to exert
far-reaching influence upstream (typically up to ten ice thicknesses), and allowing
fast and slow moving regions to be dynamically connected.

Considering the full stress balance, such as the governing equation for ice flow
prescribes, is, however, predominantly done only for process studies. For numerical
projections, the iterative solution processes becomes too computationally expensive
if the time-scales of interest are long. Depending on the research questions asked,
several useful approximations to the governing equation (stress balance) have been
developed (Hutter, 1983; Morland, 1987; MacAyeal, 1989; Pattyn, 2003), which
can considerably ease the iterative processes of solving the boundary value problem
w.r.t. the velocity and pressure fields.

Part I of this thesis considers, in broad terms, two different applications the
governing equations for ice flow, assuming ice flow is to a good approximation
a Stokes flow. In study #1, the terminus region of the northeast Greenland ice
stream is considered (figure 1.1, top), which potentially has a large contribution to
near-term sea level rise. The study investigates the controlling mechanisms of the
observed seasonal speed-up by numerical modelling and from observational data,
which might give some important insight into the future, longer-term behaviour
with possible implications for other outlet systems around Greenland. In study #2,
the transient deformation of internal layers within ice sheets is investigated using
a transversely isotropic flow law. Justified by the physical properties measured
from ice cores, the material symmetry group of deep layers cannot be assumed
isotropic, and Glen’s isotropic flow law is therefore arguably less applicable there.
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Using a new two-dimensional vertical cross-section model, this study therefore
explores how internal layer deformation is affected by accounting for transverse
isotropy under idealized circumstances. This work has potential implications for
the interpretation of ice core stratigraphies and chronologies, as well as further
advancing the understanding of how internal disturbances are formed (defined as
the buckling and folding of internal layers such as in figure 1.1) and how adjacent
flow fields might be affected.

1.2 Turbulent cascade dynamics

Turbulent fluids can be characterized as composed of distinct, compact velocity
structures with chaotic and self-advecting vorticity fields (Davidson, 2004). Unlike
Stokes flows, inertia plays a significant role in turbulent flows. Consequently, the
Reynolds numbers associated with fully developed turbulence are typically very
large, Re� 1, and the advective acceleration can therefore not be neglected in the
momentum balance.

Incompressible Newtonian fluids are the most studied, which have a simple
linear constitutive equation and the Navier–Stokes equation as their corresponding
governing equation. Unlike the governing equation for ice flow, where nonlinearities
arise through the nonlinear constitutive equation, the rich spatio-temporal structure
of turbulence is caused by the nonlinear advective acceleration and pressure gradient
term.

For small viscosities (high Reynolds numbers), a large scale-separation develops
between the large (integral) scales, where the flow is forced, and the small (Kol-
mogorov) viscous scale, where kinetic energy is dissipated into heat. In between the
two scales, a range of self-similar scales of inertial flow develop in three-dimensional
(3D) turbulence through which energy cascades intermittently from the largest to
the smallest scale. Investigating the dynamics facilitating the cascade of energy is
central to the study of turbulence and is the focus of studies #3 and #4 in part II of
this thesis.

In literature, emphasis has historically been put on understanding the rich multi-
fractal nature of velocity point-correlation and structure functions in the hope that
important insights might be gained [see e.g. Batchelor (1953); Davidson (2004)].
Intriguingly, the Navier–Stokes equation has largely resisted analysis, and analytical
results are rare and few. The nonlinear term is predominately to blame for this by
causing the governing equations of statistical quantities not to close (Frisch, 1995;
Landau and Lifshitz, 1959). As a result, a lot of effort has been put into creating
closure schemes for a variety of different applications, each having their caveats
(Davidson, 2004).

For both analytical and numerical analyses of the Navier–Stokes equation,
representing the flow in spectral space in terms of plane waves has proven useful.
In this representation, the nonlinear terms of the Navier–Stokes equation become
a sum over three-wave (spectral) interactions, or triad interactions. It turns out
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that inviscid quadratic invariants, such as energy, are conserved within each triad
interaction, which makes the spectral representation particularly useful for studying
the dynamics of the energy cascade. Furthermore, this representation has led to
remarkable ties being found between 3D and 2D (two-dimensional) turbulence
(Kraichnan, 1967, 1971).

Part II of this thesis presents work on the role of inviscid quadratic invariants
in 3D turbulence by considering the helical decomposition of the spectral-space
dynamics (Waleffe, 1992) using a simple energy cascade model (shell model). In
study #3, the role played by helicity, a quadratic invariant in 3D, is investigated using
the spectral-helical decomposition of the velocity field. In this decomposition, the
number of triad interactions is increased by a factor of eight. Unfortunately, direct
numerical simulations of the Navier–Stokes equation for high Reynolds number
flows are still too computationally expensive to allow all eight types of interactions
to be simultaneously coupled (as the Navier–Stokes equation prescribes). Motivated
by this, study #3 introduces a new reduced wave-space model (shell model) capable
of coupling the eight types of interactions in a computationally efficient way, thus
allowing the role played by helicity and the eight individual triad interactions to be
explored in a coupled configuration. In study #4, the role played by a new quadratic
invariant, identified in study #3, is further investigated. This new quantity resembles
enstrophy, a quadratic invariant in 2D, which is known to cause a reversed (or
inverse) energy cascade from small to large scales in 2D. Being conserved only by
a subset of the eight triad interactions, the new quantity is not globally conserved
like energy and helicity (or enstrophy in 2D). This study therefore considers in
isolation the interactions conserving the new quantity to determine their similarity
to enstrophy-conserving interactions in 2D.

Understanding the connections between 2D and 3D turbulence, and how nonlin-
ear interactions and boundary conditions may influence the direction of the energy
cascade, has important implications for geophysical flows such as the atmosphere
and oceans. Viewing such flows as being either confined by large aspect ratios, rota-
tion, or fluid stratification, vertical motion in the atmosphere and oceans is in many
places suppressed. The degree to which the energy cascade is reversed, and by what
means, not only influences energy and momentum transports in climate, but also
limits predictability due to back-propagation of (small-scale) errors in initial-value
fields (Lorenz, 1969; Leith, 1971) potentially affecting large scale motion at later
times.

1.3 Structure

Being mainly a collection of research articles, this thesis is a synopsis of three
published research articles and one unpublished study.

The thesis is structured in two parts:

� Part I addresses the two studies in ice flow dynamics (one published research
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article, one unpublished study).

� Part II addresses the two studies on the turbulent energy cascade (two pub-
lished research articles).

Since both subjects are part of the wider theme of continuum mechanics, some
elementary background on continuum mechanics is briefly introduced in chapter
2 before parts I and II. Within each part, additional subject-specific background is
provided, followed by the individual studies and outlooks.

1.4 Notation

The notation used in this work varies between regular vector calculus notation
and the more powerful index (tensor) notation, recognizing the trade-off between
readability, notational compactness, and tradition in literature. In vector calculus
notation, tensors of rank 1 (vectors) or larger are denoted with bold, e.g. A, implying
the tensor rank is implicit unless otherwise stated explicitly for readability, such as

A.4/ or A.6/ for tensors of rank 4 and 6, respectively. In index notation, the ranks
are naturally explicit, e.g. Aijkl . Note only orthogonal coordinate systems are con-
sidered here, implying no need to distinguish between covariant and contravariant
components. Furthermore, the Einstein summation notation for repeated indices is
adopted unless otherwise stated, and the following compact notation for derivatives
is generally used

@if D @f

@xi
and @tf D @f

@t
:

Stated explicitly as convenient examples, the following expressions are therefore
equivalent:

@iuj D ru
@iui D r � u
@ijuk D @i@juk
@jjui D r2u

AikBkj D A � B
AikBklClj D A � B � C

Ai i D A W I D Tr A
AlkBkl D A W B D Tr.A � B/

AmkBklClm D A W .B � C/ D Tr.A � B � C/:

Finally, note that the exponent notation for repeated inner products, e.g. A �A D A2,
is used throughout.



Chapter 2

Continuous matter

Fluid dynamics concerns itself with the temporal evolution of a moving fluid. This
description typically includes the evolution of field variables such as velocity u.t; x/,
pressure p.t; x/, density �.t; x/, and temperature T .t; x/, all of which are regarded
as continuous due to the macroscopic nature of the phenomena studied. Because
the equations governing the evolution of field variables are often complicated and
coupled, simplifications are frequently considered such as fluid incompressibility
and isothermality, thereby decoupling density and temperature from the problem.
Furthermore, the dependencies on space (x) and time (t) are generally assumed
implicit and therefore suppressed, a tradition which is adopted here too.

This chapter introduces some basic background on the momentum balance,
relevant for both parts I and II, the content and style of which follows Landau and
Lifshitz (1959) and Naumenko and Altenbach (2007).

2.1 Incompressibility and the momentum balance

Mass conservation within some infinitesimal volume element, dV , implies any local
change of mass must be caused by a net mass flux through the enclosing surface of
the volume element, that is

@t

Z
� dV D �

I
�ui dSi ;

where dSi is an infinitesimal element of the enclosing surface. Applying the
divergence theorem the surface integral becomes

R
@i .�ui / dV , implying @t� D

�@i .�ui / by equating integrands. For incompressible fluids (constant density, �),
mass conservation thus translates into a divergence-free velocity field

@iui D 0: (2.1)

A similar approach may be adopted for the rate of change of momentum, �ui . In
this case, any local change of momentum in some volume element must be balanced
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by a net momentum flux into the element and by body forces acting on the element,
that is

@t

Z
�ui dV D �

I
˘ij dSj C

Z
�bi dV ;

where ˘ij is the momentum-flux density of the i th component of momentum in
the j th direction, and bi is the sum of all body forces per unit mass. Rewriting the
surface integral using Green’s theorem it becomes � R @j˘ij dV , implying

@t .�ui / D �@j˘ij C �bi :

Further decomposing ˘ij into advective components, .�ui /uj (i th momentum
component in j th direction), and viscous momentum transfers by stresses on the
enclosing surface, ��ij , gives �@tui D ��uj @jui C @j�ij C �bi assuming in-
compressibility. Denoting the material derivative by Dt .�/ D @t .�/C uj @j .�/, the
momentum balance becomes

�Dtui D @j�ij C �bi : (2.2)

Decomposing the stress tensor (�ij ) into its normal (�pıij ) and deviatoric (�ij )
parts

�ij D �pıij C �ij ;

where the pressure (p) and the deviatoric-stress tensor (�ij ) are defined as

p D ��jj =3 and �ij D
0@�xx C p �xy �xz

�yx �yy C p �yz
�zx �zy �zz C p

1A ;
leaves �ij traceless such that it vanishes for any material at rest. Using the stress
decomposition, the balance of momentum becomes

�Dtui D �@ip C @j �ij C �bi : (2.3)

In order to apply the momentum balance to a particular material, a constitutive
relation must be given, relating the material’s kinematic response to an applied
stress. That is, a stress–strain relationship, �ij .�ij ; P�ij /, must be specified. Here, the
strain tensor, �ij , is defined in terms of the symmetric gradient of the displacement
vector field, di , as

�ij D 1

2

�
@jdi C @idj

�
; (2.4)

and the strain-rate tensor is defined similarly in terms of velocity gradients as

P�ij D 1

2

�
@jui C @iuj

�
; (2.5)
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since the velocity field is by definition the time derivative of the displacement field.
Typically, materials with constitutive relations depending on the displacement field
exhibit elastic (Hookean) behaviour, whereas material with constitutive relations
depending on the strain-rate exhibit viscous fluid behaviour.

Note that the velocity gradient, @jui , can more generally be decomposed into
its symmetric part (2.5) and antisymmetric part, the latter defined as

!ij D 1

2

�
@jui � @iuj

�
; (2.6)

such that @jui D P�ij C !ij . Viscous constitutive relations, however, typically rely
only on P�ij since !ij is related to the rotation rate of fluid elements and does not
contribute to the deformational rate of change.

2.2 Constitutive relations

Constitutive relations are often derived either from first principles or from empirical
studies. Generally, they reduce the material description to depend on relatively
few free macroscopic parameters, e.g. the elastic moduli in homogeneous isotropic
Hookean solids, or the isotropic viscosity in linear-viscous (Newtonian) isotropic
fluids. In the latter case, the constitutive equation follows from noting that internal
friction is caused by the relative motion of fluid particles, implying viscous stresses,
�ij , must depend on spatial derivatives of the velocity field. For small velocity
gradients, dependence on first-order derivatives is generally assumed to suffice, in
which case the constitutive equation becomes (Landau and Lifshitz, 1959)

�ij D �P�ij ; (2.7)

where � D �� is the dynamic viscosity.
Constitutive equations are frequently prescribed in their forward form, P�ij .�ij /,

giving the response of a material to an applied stress. In order to obtain a material’s
governing equation, the constitutive equation must first be posed in its so-called
inverse form, �ij .P�ij / [as in (2.7)], thus allowing it to be inserted into the stress-
divergence term of the momentum balance (2.3). In the case of Newtonian fluids,
this leads to the governing equation known as the Navier–Stokes equation (assuming
incompressibility and neglecting bi )

Dtui D ���1@ip C �@jjui : (2.8)

In viscous fluids, viscosity acts as a momentum sink, which, unlike in purely
elastic materials, implies energy is dissipated through a load cycle. Consequently,
simple linear viscoelastic materials with mixed viscous and elastic properties can
modelled by simple one-dimensional constitutive models combining springs and
dashpots (viscous dampers) in series, parallel, or in more complicated configurations.
As an example, consider the Kelvin–Voigt viscoelastic model where a Hookean
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(b)(a)

Figure 2.1: Simple one-dimensional material models. (a) Kelvin–Voigt viscoelastic material
represented by a parallel connection between a purely viscous damper and a purely elastic
spring. (b) Bingham viscoplastic material represented by a parallel connection between a
purely viscous damper and frictional sliding block.

spring and a linear-viscous dashpot are connected parallel [figure 2.1.(a)]. For
such a material, the straining of both components must be identical and equal the
total strain, � D �s D �d (subscripts referring to spring and dashpot components,
respectively), whereas the total stress must equal the sum of component-wise
contributions, � D �s C �d. Invoking the (one-dimensional) constitutive models for
each component, �s D E�s and �d D �P�d, where E is the elastic modulus and � the
viscosity, the constitutive relation becomes � D E� C �P�.

In addition to viscoelastic materials, a class viscoplastic materials also exists.
While viscoelastic materials experience little permanent deformation after a load
cycle (both elastic and viscous strains recovering), viscoplastic materials experience
irreversible deformation when subjected to stresses exceeding some characteristic
yield stress, �yield. In other words, the slow time-dependent viscous deformation, or
creep, is irreversible in such materials (Naumenko and Altenbach, 2007). In terms
of mechanical components like springs and dashpots, plastic flows are analogous to
sliding block components where sliding occurs once an applied stress exceeds the
frictional resistance. A viscoplastic material can therefore be modelled in simple
terms by e.g. a dashpot and sliding block element connected in parallel, also known
as a Bingham material [figure 2.1.(b)]. Several microphysical mechanisms have
been proposed to explain creeping flows (Courtney, 2005). In this work, however,
only those related to the creep of polycrystalline ice are treated (chapter 3).

Purely viscous materials may also creep in a plastic fashion if governed by a
nonlinear constitutive relation, such as the Norton–Hoff model

P� D ��1�
��1 D A�n�1;

which effectively exhibits a yield stress for large flow exponents, n, where A is
a material parameter. In this sense, the subject of rheology concerns itself with
the constitutive relations of materials with nonlinear deformational behaviours,
complicated directional dependencies (material symmetries), and mixed fluid–solid
properties.
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Ice sheet dynamics
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Chapter 3

Creep of polycrystalline ice

The motion of ice under an applied stress conforms with the slow moving, highly
viscous, and continuously remoulding nature of creep. Glen (1955) was the first
to show experimentally that ice is not a simple linear-viscous (Newtonian) fluid,
but rather a nonlinear-viscous (non-Newtonian) viscoplastic fluid, governed by a
Norton–Hoff type constitutive relation

P� D ��1�
��1 D A�n�1; (3.1)

where P� is the strain-rate response to an applied deviatoric stress, � , and A is a
material parameter. The degree of plasticity is captured by the flow exponent, n,
which in the case of glaciers and ice sheets typically ranges from 2 to 3 (Cuffey and
Paterson, 2010). The rheology of ice is therefore regarded as intermediary between
a Newtonian fluid (n D 1) and a perfectly plastic material (large n).

The ice material in glaciers and ice sheets consists of an aggregate of ice crystals
of the kind Ih (or simply grains) with varying sizes and orientations depending
on the deformational history. The individual grains in multi-grained ice (polycrys-
talline ice), are structured as crystal lattices, composed of hexagonal molecular
rings. The hexagonal rings [figure 3.1.(a)] arrange themselves in stacked planes

(b)

c

c(a)

Figure 3.1: A single hexagonal molecular ring and its normal direction c (panel a), and
a top–down view (along the c-axis) onto a basal plane constructed from hexagonal rings
forming a hexagonal mesh (panel b).
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Figure 3.2: Schmidt diagrams (right-hand side) are derived from ice-core thin sections (left-
hand side), defined as the equal-area projection of c-axes from the thin sections (middle).
The two idealized diagrams on the right-hand side show the difference between an isotropic
fabric (top) and a single-maximum fabric with a vertical symmetry axis (bottom).

of rings [figure 3.1.(b)], or basal planes1, thereby allowing a basal-plane normal
direction (c-axis) to be defined per grain (crystal) as a natural measure of the mi-
crostructure orientation. In this regard, the ice fabric, short for c-axis fabric, refers
to the ensemble/distribution of crystal c-axes from a sample of ice. Depending
on the deformational history, the fabric may range from isotropic (no preferred
c-axes direction) to anisotropic with a single-maximum or multiple-maxima (c-axes
distributed nonuniformly by clustering around one or multiple preferred directions),
or other exotic types such as band or girdle fabrics (c-axes distributed along conical
surfaces and planes) (Cuffey and Paterson, 2010).

The fabric may be quantified using so-called Schmidt diagrams, defined as the
equal-area projection of c-axes from a thin section sample of an ice core (figure 3.2).
In figure 3.3, Schmidt diagrams are shown for the North Greenland ice core project
(NGRIP) ice core (Svensson et al., 2003), exemplifying the development of a strong
single maximum with depth, a common fabric type found in deep layers (Hooke,
1973; Gow and Williamson, 1976; Herron and Langway, 1982).

Under an applied stress, the deformation of single crystals strongly favour the
slipping of basal planes relative to one another (basal plane shearing), whereas
shearing along nonbasal planes can be up to four orders of magnitude harder (Duval
et al., 1983). The basal-plane slipping, synonymous to basal glide or easy glide, is
facilitated by the movement of dislocations, the principle mechanism of deformation
(Cuffey and Paterson, 2010). For shearing along nonbasal planes, so-called hard
glide, deformation is also facilitated by the movement of dislocations but along the
prismatic or pyramidal planes (figure 3.4) or by dislocation climb normal to basal
planes (Fukuda et al., 1987).

The bulk creep behaviour of polycrystalline ice is effectively controlled by
rate-limiting mechanisms acting in conjunction with basal glide. For example, in

1Basal planes are in fact slightly uneven due to the hexagonal rings not being strictly flat.
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Depth
165m 827m 1608m 2066m 2532m

NorthGRIP core
Svensson et al. (2003)

Figure 3.3: Distribution of c-axes (Schmidt diagrams) with depth for the North Greenland
ice core project (NGRIP) ice core (Svensson et al., 2003), showing a strong single maximum
developing towards the bottom. Replotted with permission from Anders Svensson.

fine grained ice, grain boundary sliding has been suggested to play a rate-limiting
role (Goldsby and Kohlstedt, 2001), or, in the case of a polycrystalline aggregate
with a multitude of grain orientations, grains unfavourably oriented for basal glide
may be rate-limiting by dislocations being stressed to move in the hard directions
(Fukuda et al., 1987; Duval and Castelnau, 1995), known as dislocation creep.

The creep behaviour associated with larger-scale motion, however, requires a
continuum description involving macroscopic flow parameters such as the effective
fluid viscosity. To determine such parameters, a micro–macro model is needed to
connect the physical properties of the fabric microstructure to the effective macro-
scopic flow parameters. Alternatively, simplifying assumptions can be made about
the fabric microstructure, such as idealizing the microstructure symmetry group,
allowing the flow parameters to be determined from deformational tests without
knowledge of the detailed micro state. The most celebrated flow law for ice is
the Nye–Glen isotropic flow law (Glen, 1955; Nye, 1957) (or simply Glen’s law)
which multi-axially extends (3.1) by assuming fabric isotropy, thereby reducing
the deformational description (flow law) to depend on just one flow parameter, the

Basal plane

c

Prismatic plane Pyramidal plane

Figure 3.4: Crystallographic planes along which dislocation glide occurs, the principle
mechanism by which ice deforms. Shearing along nonbasal planes can be up to four orders
of magnitude harder than along basal planes (Duval et al., 1983).
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Figure 3.5: The three stages of creep: primary, secondary and tertiary. In the secondary
stage, the creep strain-rate is approximately steady.

rate-factor (isotropic fluidity).

In the following background material, Glen’s law is treated in detail, which
provides a natural stepping stone for considering the more complicated transversely
isotropic flow law in study #2. In addition, because Weertman’s sliding law and the
block-flow approximation of Glen’s law are central background for study #1, the
two subjects are briefly introduced in the following too.

3.1 Steady state creep

Creep deformation can be regarded as taking place in three stages (figure 3.5)
(Cuffey and Paterson, 2010):

1. Primary (transient) creep is characterised by relatively high strain-rates which
decrease with time due to internal stress redistribution and material hard-
ening processes (e.g. strain, time, and kinematic hardening), subsequently
transitioning into the second stage.

2. Secondary creep is characterised by an approximate balance between soften-
ing and hardening processes, and may be regarded as a steady state in which
the strain-rate approaches a minimum value. In this stage, damage (softening)
and recovery (hardening) processes are concurrent and no material strength is
therefore lost.

3. Tertiary creep is characterised by progressive damage by microscopic void
and pore growth, thereby weakening the material’s strength until fracture
finally occurs.

When modelling ice flow, as well as in many engineering applications, the
proposed constitutive models often assume secondary creep for simplicity (Cuffey
and Paterson, 2010; Naumenko and Altenbach, 2007). If strains are infinitesimally
small, the strain-rate tensor, P�ij , may be partitioned into contributions from elastic
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and viscous creep, respectively, that is

P�ij D P�elastic
ij C P�creep

ij :

In the case of ice flow, however, elastic deformation is typically disregarded in
secondary creep (Cuffey and Paterson, 2010). From here on, only the inelastic creep
component is therefore considered (P�ij D P�creep

ij ).
In this work, the steady-state creep theory by Odqvist (1974) is adopted, itself

based on the original work by Richard von Mises’s potential formulations. In short,
one considers the variational problem ıW.σ/ D ıσ W Pε, rooted in thermodynamic
extremum principles and related to viscous energy dissipation (Ziegler, 1963; Nau-
menko and Altenbach, 2007), which gives rise to the flow rule (synonymous to flow
law or constitutive equation)

Pε D @W.σ/

@σ
; (3.2)

where W is known as the creep potential. Note that this formulation gives the
forward flow law — the material’s response to an applied stress — and not the
inverse law, τ . Pε/, needed for the stress-divergence term in the momentum balance.

From (3.2), constitutive equations are constrained by requiring frame indiffer-
ence for relevant (orthogonal) symmetry transformations, Q, which is enforced by
requiring W.σ/ be indifferent under the same transformations in the sense that

W.Q � σ �QT/ D W.σ/: (3.3)

Choosing the relevant symmetry transformations should ideally be guided by the
material and physical symmetry groups; that is microstructure symmetries such as
crystalline symmetries, fiber arrangements, and behavioural symmetries identified
from elastic- and creep-deformation experiments.

Due to the frame indifference imposed by (3.3), the creep potential can be
reduced to depend only on the stress-tensor (orthogonal) invariants I1.σ/; � � � ;
IN .σ/ associated with the relevant group of symmetry transformations, where N is
the total number of invariants. For example, in the case of Glen’s flow law for ice,
three invariants exist under isotropy, Trσ;Trσ2, and Trσ3.

The functional dependence of W on Ii .σ/ is often, and for the present purpose,
expressed in terms of a single equivalent stress or effective stress, �E

�
I1.σ/; � � � ;

IN .σ/
�
, such that

W.σ/ D W �
�E
�
I1.σ/; � � � ; IN .σ/

��
; (3.4)

implying

Pε D @W.�E/

@�E

@�E

@σ
D �E

@�E

@σ
; where �E D @W.�E/

@�E
; (3.5)

�E being the equivalent strain-rate or effective strain-rate. The functional depen-
dence of �E on Ii .σ/ is, in turn, a phenomenological model.
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In the interest of generalizing the approach for deriving flow laws reflecting
a given symmetry, the present work adopts the following expression for �E (Nau-
menko and Altenbach, 2007)

�E
�
I1.σ/; � � � ; IN .σ/

� D ˛I1�I1.σ/; � � � ; IN .σ/�
C ˇI2

�
I1.σ/; � � � ; IN .σ/

�
(3.6)

C I3
�
I1.σ/; � � � ; IN .σ/

�
;

where I1; I2 and I3 are each weighted sums (material parameters as weights) over
products of the basic stress-tensor invariants, Ii .σ/, resulting in first, second and
third order dependence on σ, respectively. Models with  D 0 are referred to as
classical creep models, whereas  ¤ 0 are nonclassical due to their constitutive
equations having tensorially nonlinear terms.

The functions I1; I2 and I3 can in general be prescribed by the help of material
tensors A; B.4/ and C.6/ (rank 2, 4 and 6, respectively) (Naumenko and Altenbach,
2007)

I1 D A W σ; I22 D σ W B.4/ W σ; I33 D σ W .σ W C.6/ W σ/; (3.7)

which too must be invariant under the same set of symmetry transformations, Q,
that is

A0 D Q � A �QT D A (3.8)

B.4/ 0 D Q �Q � B.4/ �QT �QT D B.4/ (3.9)

C.6/ 0 D Q �Q �Q � C.6/ �QT �QT �QT D C.6/ : (3.10)

For example in the case of isotropy, the material tensors A; B.4/ and C.6/ must be
functions of (products of) the identity matrix, the only rank 2 isotropic tensor.

In general terms using material tensors, the flow law can thus be written as

Pε D �E

�
˛
@I1
@σ
C ˇ@I2

@σ
C  @I3

@σ

�
(3.11)

D �E

 
˛AC ˇ B.4/ W σ

I2
C  σ W C.6/ W σ

I23

!
; (3.12)

where (3.6) and the chain rule have been used.

3.2 Glen’s isotropic flow law

For an isotropic fabric, the material tensors A, B.4/ and C.6/ must be invariant
under transformations Q 2 SO.3/ (full rotational symmetry). Consequently, the
material tensors must be functions of elementary isotropic tensors, which for ranks
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2, 4 and 6 imply they can be functions of (products of) only the rank 2 identity
tensor, ıij . More precisely, it can be shown that (Kearsley and Fong, 1975)

Aij D a1ıij ;
Bijkm D b1ıij ıkm C b2ıikıjm C b3ıimıjk;

Cijkmpq D ıij .c1ıkmıpq C c2ıkpımq C c3ıkqımp/
C ıik.c4ıjmıpq C c5ıjpımq C c6ıjqımp/
C ıim.c7ıjkıpq C c8ıjpıkq C c9ıjqıkp/
C ıip.c10ıjkımq C c11ıjmıkq C c12ıjqıkm/
C ıiq.c13ıjkımp C c14ıjmıkp C c15ıjpıkm/;

(3.13)

where ai ; bi and ci are coefficients.
Noting that the basic invariants of rank 2 tensors are given by

I1.σ/ D Trσ; I2.σ/ D Trσ2; I3.σ/ D Trσ3; (3.14)

inserting (3.13) into (3.7), one finds

I1 D �1;1I1
I22 D �2;1I 21 C �2;2I2
I33 D �3;1I 31 C .�3;2 C �3;3/I1I2 C �3;4I3;

(3.15)

where the coefficients have been grouped together for convenience by

�1;1 D a1;
�2;1 D b1; �2;2 D b2 C b3;
�3;1 D c1; �3;2 D c4 C c7; �3;3 D c2 C c3 C c12 C c15;
�3;4 D c5 C c6 C c8 C c9 C c10 C c11 C c13 C c14:

By similar calculations, contracting the material tensors according to (3.12), one
finds

B.4/ W σ D �2;1I1IC �2;2σ
σ W C.6/ W σ D �3;1I 21 IC �3;2I2IC �3;3I1σ C �3;4σ2:

(3.16)

From the above expressions, the constitutive equation can be constructed by
inserting into (3.12). Two simplifying assumptions are, however, frequently adopted
when considering the flow of ice masses: (i) polycrystalline ice is incompressible
(no volumetric creep), and (ii) nonclassical (second order) terms are neglected
( D 0) because laboratory experiments find they have little influence (Jun et al.,
1996). Such nonclassical effects include creep normal or parallel to shear planes
(Poynting–Swift effect) (Naumenko and Altenbach, 2007). In addition, the creep
potential has not yet been specified, preventing the effective strain-rate, �E, from
being calculated (3.5) and therefore also the effective viscosity. In the following
subsections, these points are treated before finally arriving at Glen’s flow law.
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Incompressibility

The density of ice in glaciers and ice sheets varies through the top-most � 100 m of
the ice column where snow gradually transforms to firn, and then subsequently to
ice with a constant density of 917 kg m�3. During this transformation, air passages
between grains are sealed off (pore closeoff), and at greater depths bubbles become
highly compressed until finally being absorbed into the crystal lattice (air-hydrate
crystals, or clathrates). When modelling thick ice masses, ice can therefore be
regarded as approximately incompressible.

Recalling that σ D �pIC τ and letting the stress-deviator invariants, Ii .τ /, be
defined similarly to (3.14), equations (3.15) and (3.16) can be written, respectively,
as (neglecting nonclassical terms  D 0)

I1 D �3�1;1p

I22 D 3�2;2
�
3
�2;1

�2;2
C 1

�
p2 C �2;2I2.τ /

and

B.4/ W σ D ��2;2
�
3
�2;1

�2;2
C 1

�
pIC �2;2τ :

Enforcing incompressibility requires eliminating pressure dependencies, which is
fulfilled if the expressions in the parentheses vanish, implying

�1;1 D 0 and
�2;1

�2;2
D �1

3
; (3.17)

reducing the constitutive equation (3.12) to

Pε D �Eˇ�
1=2
2;2 .I2.τ //

�1=2 τ (3.18)

Note that the constraints (3.17) reduce �E to depend only on the deviatoric-stress
invariants, Ii .τ /. In order to conform with literature in the following, the effective
deviatoric stress, �E, is therefore referred to instead, which is equal to �E due to
(3.17). In addition, invariants may unambiguously be assumed to be functions of
the deviatoric stress, and in the following the suppressed notation Ii D Ii .τ / is
therefore adopted unless stated otherwise.

Effective viscosity

In equation (3.18), the prefactor ��1 D �Eˇ�
1=2
2;2 I

�1=2
2 is the effective material

fluidity (reciprocal viscosity). However, in order to be fully prescribed, the effective
strain-rate, �E D @W.�E/=@�E, must be calculated, which requires the potential
to be specified. Nye (1957) proposed the effective stress and strain-rates follow
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the observed power law found from shearing experiments of single (tensorial)
components (3.1) (Glen, 1955), that is

�E D A0�nE ; or equivalently W.�E/ D A0

nC 1�
nC1
E ; (3.19)

also known as a Norton–Bailey potential, implying the fluidity is

��1 D A0
�
ˇ
�
�2;2I2

�1=2�n
ˇ�

1=2
2;2 I

�1=2
2 D AI .n�1/=22 ; (3.20)

where the rate factor, A, is defined as the product A D A0ˇnC1�.nC1/=22;2 .
The value of the exponent n typically ranges from 2 to 3, but most often n D 3

is found to fit (Cuffey and Paterson, 2010). Lower values around n D 1:8 have
however also been suggested in situations were grain-boundary sliding is the rate-
limiting mechanism, such as in fined-grained ice (Goldsby and Kohlstedt, 2001).
Note that these values are neither linear viscous n D 1 (Newtonian) nor plastic
(large n), and ice is therefore generally regarded as an intermediary, or viscoplastic.

Glen’s law

Combining (3.20) with (3.18), one arrives the Nye–Glen isotropic flow law (Glen,
1955; Nye, 1957), or simply Glen’s law

Pε D ��1τ (3.21)

��1 D AI .n�1/=22 ; (3.22)

which is tensorially isotropic but non-Newtonian due to the effective viscosity, �,
depending on the second invariant, I2.τ /.

Rate-factor A

The rate-factor, A, is a macroscopic flow parameter which in principle accounts for
all the material properties influencing the fluidity (reciprocal viscosity). Soluble
impurities can for example soften ice by introducing additional lattice defects
assisting the movement of dislocations, thereby enhancing deformation by up to
a factor of 10 (Jones and Glen, 1969). Particulate impurities, on the other hand,
can lead to both enhanced and reduced flow rates by causing new dislocations that
soften the ice (enhancing the flow rate), or by causing increased resistance to grain
boundary sliding (reducing the flow rate) (Cuffey and Paterson, 2010).

The rate-factor also depends strongly on temperature, which may be accounted
by a simple Arrhenius-type law (Weertman, 1983)

A D A0 exp
��Q=RT 0�; (3.23)

where T 0 is the temperature adjusted for melting point depression [thereby indirectly
accounting for the pressure dependence, which might be overpredicting the impact
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of pressure on deformability (Greve et al., 2014)], R D 8:314 J mol�1 K�1 is the
universal gas constant, Q is the creep activation energy obtained from laboratory
experiments [around Q D 6 � 104 J mol�1 for temperatures below 263 K and
Q D 1:15 � 105 J mol�1 above 263 K (Cuffey and Paterson, 2010)], and A0 is
a material parameter. The rate-factor enhancement induced by the temperature
changes can be quite large: the rate-factor increases by approximately factor of ten
between �30 ıC and �10 ıC, and up to another factor of ten to 0 ıC (Cuffey and
Paterson, 2010). Above �10 ıC, however, the Arrhenius relationship is unable to
correctly account for the softening, which has been attributed liquid water facilitating
an increased grain boundary sliding (Barnes et al., 1971).

3.3 Inverse constitutive equation

When modelling ice flow, the constitutive equation must be posed in the inverse
form, τ . Pε/, for it to be inserted into the momentum balance (2.3). Unfortunately, a
closed-form solution of the inverse problem does not always exist (Shames, 1997).
In the case of the Glen’s tensorially-linear law, it is however possible. Consider
(3.21)–(3.22) combined and rearranged as

τ D A�1.I2.τ //.1�n/=2 Pε: (3.24)

From this expression, it is clear that the second invariant I2.τ /must be re-expressed
in terms of Pε. Calculating I2.τ / using (3.24), one immediately finds I2.τ / D
τ W τ D A�2.I2.τ //1�nI2. Pε/, where the strain-rate tensor invariants are defined
similarly to (3.14). Solving for I2.τ / gives I2.τ / D A�2=n.I2. Pε//1=n, which if
back substituted into (3.24) gives the inverted, closed-form of the Glen’s law

τ D � Pε (3.25)

� D A�1=n.I2. Pε//.1�n/=2n: (3.26)

3.4 Block flow

In numerical glacier and ice-sheet models, solving the full momentum balance (full
Stokes balance) for the velocity field in long transient problems is generally too
computationally expensive. Consequently, approximations are typically applied
to reduce the number of terms appearing in the balance equation, guided by the
external geometrical or dynamical circumstances shaping the problem. The most
popular approximation is the shallow ice approximation, applicable to large regions
of ice sheets where horizontal strain-rates are small. By noting the aspect ratio of
ice sheets is on the order of 10�3 and scaling all variables to dimensionless forms,
the shallow ice approximation is the outcome of keeping only terms with zeroth
order dependence on the aspect ratio (Le Meur et al., 2004). What remains is a
balance between gravity and the basal drag, and that only shear stresses act on
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internal (horizontal) planes. The motion of ice is therefore caused solely by internal
shear deformation along horizontal planes (vertical shearing).

In regions of fast flowing ice, however, the ice fluidity may be insufficient for
internal deformation to alone account for the flow speed. Instead, the ice mass is
assumed to approximately slide over the bed in a block-like fashion with negligible
internal deformation. Considering the vertically-integrated stress balance, the flow is
locally governed by a balance between the gravity-driven stress (driving stress) and
basal drag, longitudinal stresses, lateral stresses, and bridging stresses (Van Der Veen
and Whillans, 1989). Bridging effects are however small enough in practice to be
neglected (Kamb and Echelmeyer, 1986), thereby reducing the vertically-integrated
stress balance to

�gH˛ D .τb/x � @x
�
2H N� �2@xux C @yuy�� � @y �H N� �@yux C @xuy��

�gH˛ D .τb/y � @y
�
2H N� �2@yuy C @xux�� � @x �H N� �@yux C @xuy�� ;

(3.27)
where ˛ is the surface slope, τb.u/ is the basal drag, H is the ice thickness, ux and
uy are the depth-averaged velocities, and N� is the depth-averaged effective viscosity
such that Nτ D N� Pε.

In the block-flow approximation (3.27), the basal slipperiness/drag is therefore
parametrised by the drag relation τb.u/, and the driving stress is balanced not
only by basal drag, but additionally also by stresses transmitted longitudinally
(compressional/extensional forces due to e.g. down- or upstream topographical
bumps) and stresses transmitted laterally (such as side-wall drag due to rigid margins
or viscous shear-margins surrounding fast flowing ice).

3.5 Drag over hard beds

The basal drag relation, τb.u/, generally depends on local bed properties such as
the bed type, deformability of the subglacial sedimentary substrate (till), and the
basal water pressure. In literature, a distinction is made between soft deformable
beds and hard undeformable beds. While the drag relation for soft beds is based on
the rheology of till (incorporating granulometry, porosity, consolidation, dilatancy,
hydraulic permeability, and more) (Cuffey and Paterson, 2010), hard beds are widely
described using Weertman’s sliding law (Weertman, 1957) which parametrizes the
drag in the presence of undeformable obstacles by assuming regelation and enhanced
creep occur concurrently.

If ice is at its pressure melting point, regelation accounts for the melting of ice
on the upstream side of a bump and the subsequent transport and refreezing on the
downstream side due to the pressure difference between the up- and downstream
sides. Specifically, the higher pressure on the upstream side means the ice is colder
there (Clausius–Clapeyron relation), causing heat to flow from the warmer down-
stream side to the upstream side (figure 3.6). This process is however ineffective for
bumps larger than � 1 m in length which greatly impede heat conduction (Cuffey
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Figure 3.6: Basal sliding by regelation. The figure shows the flow directions of ice, heat,
and water, corresponding to the description in the text.

and Paterson, 2010). Enhanced creep, on the other hand, is most effective for large
bumps and is a viscous deformation process. The process works by bumps inducing
an upstream region of increased stress, which in turn enhances deformation due to
the stress dependence of the effective viscosity. Thus, the bigger the bumps, the
larger the stress increase, which implies this mechanism is most effective for large
bumps.

Weertman’s sliding velocity is defined as the sum of the velocity due to regela-
tion and enhanced creep by considering idealized cubic bumps. The two velocities
are calculated from simple thermodynamical considerations and near-field esti-
mates of longitudinal stress perturbations in the presence of bumps, respectively.
Weertman argued that the basal sliding velocity is largely set by the resistance of
intermediate sized bumps, for which none of the processes are effective. Calculating
the size of such controlling obstacles allows the basal drag relationship to be reduced
to just one term, namely

τb.u/ D cjuj1=m�1u; (3.28)

where u is the basal sliding velocity, c is a spatially variable drag-coefficient, and m
is typically taken to be around 2 (Cuffey and Paterson, 2010).



Chapter 4

Study #1

4.1 Introduction

The fast-flowing northeast Greenland ice stream (NEGIS) is a remarkable and rare
flow feature of ice sheets (figure 4.1). Extending in a wedge-like shape more than
600 km from the interior of the ice sheet to the coast, it potentially holds 1:1 m of
sea level rise in its marine-based sector alone (Morlighem et al., 2014; Mouginot
et al., 2015). Relatively recently, Zachariae, one of its three marine outlet glaciers,
was reported to experience a significant inter-annual speed-up (Mouginot et al.,
2015). This observation, combined with the newly available high spatio-temporally
resolved surface imagery available from the European Space Agency (ESA) Sentinel
1A satellite, provided the motivation for this study.

The cloud-penetrating synthetic aperture radar (SAR) images taken by Sentinel
1A may be analysed for surface features appearing repeatedly in consecutive images,
thereby allowing surface velocity maps to be derived every �12 to 20 days. This
work was carried out by recognizing that important insights might be made into
how marine-terminating outlets (such as Zachariae) could respond to future (longer
time-scale) changes in forcings by studying how Zachariae, and its neighbouring
outlet Nioghalvfjerdsfjorden, respond to seasonal-scale changes in forcings.

Study #1 addresses this question by combining climate data (observed and
modelled) with numerical modelling in order to investigate the influence of four
specific processes thought to affect the seasonal velocity response along the twin
outlets. Figure 4.2 shows a schematic cross-sections along the flow of Zachariae and
Nioghalvfjerdsfjorden together with the four processes considered: the influence
of (1) subglacial lubrication due to surface meltwater penetrating to the bed, (2)
subglacial sticky spots such as topographical bumps, (3) the � 76 km long floating
ice shelf at the termination of Nioghalvfjerdsfjorden possibly adding resistance to
the flow, and (4) the seasonal ice mélange in front of Zachariae possibly adding a
small resistance to the flow.

37
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Figure 4.1: The NEGIS terminus region considered in this work (black bounding box) and
the NEGIS encatchment area (dashed line). Coloured contours show the surface velocity
wherever j Evsurfj > 0:1 m d�1.
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Figure 4.2: Schematic cross-section along flow of Nioghalvfjerdsfjorden (a) and Zachariae
(b) depicting the four processes studied (red circles).

For visual reference, figure 4.3 shows the extent of seasonal surface melting
during 22–26 July 2016 over the region of interest compared to spring (15–20 April
2016), processed from optical imagery taken by the Landsat 8 satellite, which,
unlike SAR imagery, is not cloud penetrating.

Processes 1 and 4 were investigated by processing raw (level 0) SAR images
from Sentinel 1A to estimate the onset of seasonal surface melting and the Zachariae
ice mélange break-up. This involved processing raw image bands by applying
instrument calibration and converting the instrument measure to the relevant physical
quantity, the surface backscatter �0 (normalized radar cross-section)

Processes 1, 2 and 3 were investigated using the numerical ice flow model Úa
(Gudmundsson et al., 2012) and relies on Weertman’s basal sliding law for hard
(undeformable) beds and the block-flow approximation of Glen’s law (introduced in
sections 3.4 and 3.5 above).
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Figure 4.3: Optical Landsat 8 satellite images showing the seasonal surface melting in
shades of blue (bottom, 22–26 July 2016) compared to spring (top, 15–20 April 2016) over
the Nioghalvfjerdsfjorden and Zachariae outlet systems. Processed from raw imagery data
available from the U.S. Geological Survey (USGS).
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Abstract The seasonal response to surface melting of the Northeast Greenland Ice Stream outlets,
Zachariae and 79N, is investigated using new highly temporally resolved surface velocity maps for 2016
combined with numerical modeling. The seasonal speedup at 79N of 0.15 km/yr is suggested to be driven
by a decrease in effective basal pressure induced by surface melting, whereas for Zachariae its 0.11 km/yr
seasonal speedup correlates equally well with the breakup of its large ice mélange. We investigate the
influence 76 km long floating tongue at 79N, finding it provides little resistance and that most of it could
be lost without impacting the dynamics of the area. Furthermore, we show that reducing the slipperiness
along the tongue-wall interfaces produces a velocity change spatially inconsistent with the observed
seasonal speedup. Finally, we find that subglacial sticky spots such as bedrock bumps play a negligible role
in the large-scale response to a seasonally enhanced basal slipperiness of the region.

Plain Language Summary The Northeast Greenland Ice Stream may potentially contribute
significantly to near-term sea level rise and is one of the lesser studied Greenlandic systems, partly due to its
remoteness. We present a new high temporally resolved velocity data set derived from Sentinel 1-A which
allows capturing changes on a seasonal timescale, a feature which only the newest generation satellites
now permit. We show how surface melting may be linked to the observed seasonal velocity changes, giving
important insights into the possible future (range of) behavior and sensitivity of the ice stream outlets
to atmospheric changes. In addition, we present a detailed study of possible moderating factors on the
seasonal velocity response. In particular, we find that (i) the large ice mélange in front of the Zachariae
outlet might be dampening the outlet’s response, (ii) small-scale subglacial topographical bumps
(sticky spots) exert very limited control on the flow, and (iii) the 76 km long floating tongue of the 79N
outlet is largely a passive feature, suggesting that most of it (∼80%) could be lost without effecting the
outlet’s contribution to near-term sea level rise. This has broad implications for assessing the future mass
loss of ice sheets since it points to the importance of studying every major calving event individually.

1. Introduction

The Northeast Greenland Ice Stream (NEGIS) is a remarkable and rare dynamical flow feature of ice sheets.
Being the only of its kind in Greenland, it extends more than 600 km into the interior of the ice sheet
(Figure 1a, inset, colored contours) and terminates in three marine glaciers, 79N (NI), Zachariae (ZA), and
Storstrømmen [Fahnestock et al., 2001a; Joughin et al., 2001]. The northernmost two, NI and ZA, drain approxi-
mately 198,380 km2 (12%) of the ice sheet surface area (16% considering all three, dashed line in Figure 1, inset
[Zwally et al., 2012]), holding 1.1 m of sea level rise equivalent in their marine-based sector alone [Morlighem
et al., 2014; Mouginot et al., 2015] (Figure 1b, blue contours).

Because of its unusual geometry and potentially large contribution to near-term sea level rise, NEGIS is being
studied with increasing interest in order to quantify, and better understand, possible mass-flux drivers and
responses to perturbations under the present and a warming climate. On one hand, numerical models used
to quantify ice flow are increasingly attempting to resolve NEGIS as a coherent flow structure in large scale
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Figure 1. Ice surface velocities (v⃗), flow lines, and bed/surface topography of Zachariae (ZA) and 79N (NI) outlet glaciers.
(a) Mean |v⃗| of 2016 (colored contours), v⃗ (wherever |v⃗|>0.1 km/yr) between 24 September and 14 October 2016
(arrows), and ZA and NI flow lines (black lines). The inset shows the northeast Greenland ice stream (NEGIS) drainage
area [Zwally et al., 2012] (dashed black line) together with the NEGIS surface velocity wherever |v⃗|>0.1 m/d (colored
contours). (b) Basal topography (colored contours) [Bamber et al., 2001; Morlighem et al., 2014], smoothed ice height
contours (white lines) [Howat et al., 2014], and ESA CCI 2016 grounding lines (dashed white lines) [ENVEO, 2016a] and
calving fronts [ENVEO, 2016b]. Gray hatched regions mark ice-free surfaces in both panels.

(ice sheet wide) modeling [Greve and Otsu, 2007; Seddik et al., 2012; Greve and Herzfeld, 2013; Schlegel et al.,
2013; Ahlkrona et al., 2016], thereby allowing for insights into, e.g., the role played by basal friction and topog-
raphy [Joughin et al., 2001; Greve and Otsu, 2007; Sergienko et al., 2014; Schlegel et al., 2015; Krabbendam, 2016],
the stationarity of its position [Karlsson and Dahl-Jensen, 2015], and the influence of external forcings on down-
stream mass fluxes [Schlegel et al., 2015]. On the other hand, new observational data continues to shed light
on otherwise unknown, or poorly understood, features of the flow, such as the geothermal hotspot suggested
to initiate NEGIS by lubricating the bed [Fahnestock et al., 2001b; Layberry and Bamber, 2001; Bamber et al.,
2013; Christianson et al., 2014; Keisling et al., 2014; Rogozhina et al., 2016], dynamically induced mass losses by
a multitude of external forcings [Khan et al., 2014], the influence of sea ice and the warm regional ocean circu-
lation around NI [Thomsen et al., 1997; Mayer et al., 2000; Reeh et al., 2000, 2001], the complicated ice rheology
near the upstream bounding shear margins [Bell et al., 2014], and interannual surface velocities suggesting
nontrivial, dissimilar behaviors of the two neighboring terminus glaciers, NI and ZA [Mouginot et al., 2015].

In this work, we further investigate the seasonal behavior of the ZA and NI outlets by considering new
high-temporal resolution surface velocity maps available every ∼12–20 days throughout 2016, combined
with atmospheric, subsurface, and ice flow modeling. Our aim is to put the observed interannual speedup
of ZA and NI into a seasonal context and to investigate to what extent seasonal and interannual drivers are
similar, which may help to better understand future changes.

2. Method and Results

Our analysis focuses on the observed 2016 seasonal behavior along the flow lines of ZA and NI (Figure 1).
The dimensions of the region investigated were chosen based on the interferometric wide swath width of
European Space Agency (ESA)’s Sentinel-1, which roughly overlaps with the domain considered by Mouginot
et al. [2015]. We use ESA Sentinel-1 synthetic aperture radar (SAR) data from tracks 074, 170, and 112 with
a 12 day repeat (24 day repeat in one case) between images to derive ice velocities. Data from these three
tracks were combined to construct 28 surface ice velocity maps for 2016 of the ZI and NI area with best
possible spatial coverage. The operational interferometric post processing (IPP) chain [Dall et al., 2015], devel-
oped at the Technical University of Denmark (DTU) Space and upgraded with offset tracking for ESA’s Climate
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Figure 2. Flow line profiles along ZA and NI. (a and d) Ice surface speeds, |v⃗|. (b and e) Radar cross-section 𝜎0 (surface
backscatter) from Sentinel-1A synthetic aperture radar (SAR) images [Copernicus, 2016] (high/low values are dry/wet
surface conditions). (c and f) Simulated accumulated runoff estimates (between the legend periods) using the
subsurface model by [Langen et al., 2015, 2017].

Change Initiative (CCI) Greenland project, was employed to derive the surface movement using offset track-
ing [Strozzi et al., 2002] assuming surface parallel flow using the digital elevation model from the greenland
mapping project (GIMP DEM) by Howat et al. [2014, 2015]. The ice velocity data are freely available from
www.promice.dk.

Figure 1a shows the 2016 mean surface velocity in colored contours based on the 28 velocity maps covering
2016, and Figure 1b shows the bounding geometry of the region based on basal topography by Bamber et al.
[2001] and Morlighem et al. [2014], ice thicknesses from the GIMP DEM, and calving fronts and grounding
lines by ENVEO [2016a, 2016b]. We note that the true ZA grounding line of 2016 is most likely located ∼15 km
upstream of the ESA grounding line, as suggested by the heavily rifted ice occurring on the remnant shelf
after the recent collapse of its floating tongue (vertically white hatched area in Figure 1a, see the supporting
information section S2).

These new highly temporally resolved surface velocity maps uniquely allow for detailed, remote process
studies. The top panels in Figure 2 show the along-flow line velocity profiles of (a) ZA and (d) NI for selected,
approximately evenly spaced, intervals of dates throughout 2016, ranging from winter (dashed blue) through
summer (dashed/solid red) to winter (solid blue). At the ZA outlet, a seasonal speedup is initiated between
8 June and 7 July, reaching more than 15 km–30 km upstream from the rifted ice margin (supporting
information section S2). After peaking with an increase of approximately 0.11 km/yr (14%) near the rifted ice
margin, a return to the winter baseline occurs between 12 September to 2 October. For NI, the speedup, too,
starts between 8 June to 7 July, peaks in 7–19 July with an increase of approximately 0.15 km/yr (11%) near
the grounding line, and returns to its winter baseline between 7 and 24 August.

In regions of fast flowing ice, such as ice streams, the motion is generally attributed to a plug-like flow
(constant velocity and strain rate throughout the thickness of the ice column) whereby the ice slides over
the bed due to deformation of soft sedimentary substrate (till) or due to a low effective pressure in the sub-
glacial drainage system, defined as the difference between the overburden and basal water pressure [Rose,
1979; Alley et al., 1986; Clarke, 1987; Macayeal et al., 1995; Luthi et al., 2002]. While the far upstream part of
NEGIS likely experiences a lowered effective pressure (permitting enhanced sliding) due to large basal melt
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rates [Fahnestock et al., 2001b; Christianson et al., 2014; Keisling et al., 2014], the basal state of the lower part is
less known. It is, however, likely that the downstream basal environment is not water saturated in the sense
that any additional water source could further enhance basal sliding. If so, it is plausible that the observed
speedups are caused by seasonal surface melt penetrating through the ice and decreasing the effective pres-
sure and/or lubricating the bed, as opposed to, e.g., ocean warming at the fronts suggested to trigger the
observed decadal speedups [Mouginot et al., 2015]. This mechanism has previously been suggested as a driver
of seasonal speedups at different outlet glaciers by subglacial channels being flooded at the onset of the
melt season, thereby increasing the basal water pressure leading to distributed drainage through intercon-
nected cavities (effectively creating a small film of water lifting the ice from its substrate) [Joughin et al., 2008a;
Stearns et al., 2008; Schoof , 2010; Chandler et al., 2013; Moon et al., 2014]. Later in the melt season when larger
subglacial conduits (channels) effectively dominate the water transport, the water pressure drops (effective
pressure increases) and the enhanced sliding ceases. This behavior has led to the suggestion that melt water
variability, rather than the mean flux or total amount, plays an important role in seasonally enhanced sliding
[Bartholomaus et al., 2008; Cuffey and Paterson, 2010; Schoof , 2010].

To test this hypothesis at ZA and NI, surface backscatter (radar cross section, 𝜎0) from Sentinel-1A synthetic
aperture radar (SAR) images [Copernicus, 2016] was investigated for signs of melting synchronous with the
velocity speedups. Since SAR backscattering over snow covers arises from subsurface volume scatterers of
snow/ice structures, such backscattering is sensitive to the wetness of the surface layer, which has previously
successfully been used to identify surface melting over Greenland on diurnal and seasonal timescales [Nghiem
et al., 2001; Steffen et al., 2004]. Figures 2b and 2e show that the backscatter along the two flow lines indeed
drops synchronously with the speedups (high/low values indicating dry/wet conditions), suggesting the melt
water quickly penetrates the ice (e.g., through crevasses or by hydraulic fracturing [Fountain et al., 2005; van
der Veen, 2007; Bartholomaus et al., 2008; Das et al., 2008]). Figure S1 in the supporting information further
displays the spatial extent of the melting, indicating not only surface melting reaching far upstream but also a
multitude of surface melt lakes, some as large as ≈5 km in diameter and rivers up to ≈20 km long, confirming
the presence of large amounts of surface melt water. Note that the existence of large lakes could, potentially,
delay the delivery of large volumes of water to the bed since filling and draining of lakes may be separated by
several weeks.

To further quantify the amount of liquid water equivalent (weq) present, we invoke the firn (subsurface)
model used in HIRHAM5 as documented by Langen et al., 2015 [HIRHAM5, 2017] but used in an operational
setup forced with 6-hourly surface energy fluxes and precipitation from the Danish Meteorological Institute’s
weather forecast model, HIRLAM 7.3 K05 [Undén et al., 2002; Rontu et al., 2009; Kjellström et al., 2005]. The firn
model allows the surface liquid water budget to be decomposed into components such as surface melt water
runoff, retention in snow pack, refreezing, and more. The accumulated runoff along the two flow lines is shown
in Figures 2c and 2f (accumulated over the time span indicated by the legends), suggesting poor retention in
the firn and potentially large amounts of surface melt that could reach the bed.

The fact that similar velocity changes occur along ZA and NI with almost an order of magnitude more runoff
along ZA compared to NI (on equal time intervals, Figures 2c and 2f) might suggest that melt water variability,
and not the total amount, is driving the observed speedup. Claiming that melting is the driver alone, however,
would be disregarding the possible seasonally dependant effects of the large ice mélange in front of ZA, the
floating tongue of NI, and the differences in basal environment along ZA and NI which could, potentially,
moderate their responses due to, e.g., sticky spots. If increased (upstream) basal lubrication is indeed causing
the observed changes alone, one might expect the ice mélange, floating tongue, and potential sticky spots
to exert only limited control over the velocity.

2.1. Role of the 79N Floating Tongue
To determine the influence of the 79N floating tongue, we further investigate if the tongue provides any resis-
tance at the grounding line, and to what degree it might change during the seasonal speedup. Principally,
such change could be caused either by a softening/warming of the fabric, thereby changing the internal stress
configuration of the tongue, or by an enhanced sliding occurring along the tongue-wall interfaces. In the sup-
porting information section S3, we show that derived strain rate maps indicate no seasonality, suggesting
little internal stress redistribution over the season. Moreover, noting that the NI shear margins are relatively
confined (Figure 3a), one might expect a weak coupling between the tongue and sidewalls. However, not-
ing the upstream shear margin widths are similar, and that our estimates of slipperiness along the sidewalls
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Figure 3. 79N stress budget derived from observations. (a) Strain rate field �̇�xy of 24 September and 14 October (in the
local basis of the ground line transect) used to delineate transects; (b) transect-averaged stress components, where full
lines are 2016 annual means and shades cover ±1 standard deviation.

are comparable to the subglacial values (supporting information section S4), we in the following give a more
detailed account of the role played by the tongue.

We note, however, that floating tongues are unlikely to contribute to the stress budget of upstream grounded
ice by actively providing resistance since (i) basal drag and lateral resistance from shear margins gener-
ally support grounded ice well, (ii) low-sloping equilibrium profiles are more likely to develop than tongues
with frictionless bases holding back high-sloping grounded ice, and (iii) shear margins of sidewall-bounded
tongues are likely weak (soft) because shearing tends to warm the ice, which, unlike for (unbounded)
grounded ice shear margins, is not replaced with cold ice by cross-margin flow.

In section 2.1.1, we adopt the data-oriented approach by Van Der Veen et al. [2011] to show that even if the
ice is assumed anchored to the sidewalls, the potential size (upper limit) of the resistive stress is indeed small
compared to the total (driving) stress budget. Note that while this suggests the tongue is mostly a dynami-
cally passive feature, it is not passive in the sense that removing the tongue would still produce a speedup
because the sea water column alone can no longer balance the weight of the ice. Subsequently in section 2.1.2,
we study the sensitivity of 79N to perturbations in basal slipperiness along the tongue-sidewall interfaces
and over the remaining grounded ice using the numerical ice flow model Úa [Gudmundsson et al., 2012],
suggesting the seasonal speedup is likely related to upstream changes in basal slipperiness and not enhanced
sidewall slipperiness.
2.1.1. Potential Resistance Provided by the 79N Tongue
In the Van Der Veen et al. [2011] approach, the sizes of the different stress components are estimated along the
flow line by calculating their average values over transects locally perpendicular to the flow. These transects,
which are picked at evenly spaced intervals (here Δx = 2 km), are delineated by their intersection with the ice
stream shear margins, defined as the parallel belts of maxima and minima in the strain rate field �̇�xy (Figure 3a,
orange/purple belts). Note that while transect orientations do not change much over the course of 2016, their
widths (i.e., shear margin positions) do during the summer speedup, in part due to poorer spatial coverage,
which is accommodated for in the following by calculating transect widths for each velocity map. Note also
that x and y denote the local (transect-wise) along-flow and normal directions.

Assuming plug flow, a transect-wise stress balance on the grounded part of NI implies that the driving
stress (𝜏d) is balanced by flow-resisting stresses associated with lateral drag imposed by shear margins (𝜏lat),
along-flow longitudinal tension/compression (𝜏lon), and basal drag (𝜏b), that is

𝜏d = 𝜏lat + 𝜏lon + 𝜏b (grounded part). (1)

The first three terms are defined as 𝜏d = −𝜌gH𝜕h∕𝜕x, 𝜏lat = 2B(HN�̇�
1∕n
xy,N − HS�̇�

1∕n
xy,S)∕W , and 𝜏lon =

−2B𝜕(H�̇�1∕n
xx )∕𝜕x, where (· · ·) denotes the transect average, 𝜌 = 917 kg/m3 the density of ice, g = 9.8 m/s

the gravitational acceleration, H the ice thickness, h the surface height, W the transect width, and n = 3 is
the Glen flow exponent. The flow parameter B was set to B = A−1∕n = 275 kPa/a3 (A being the rate factor),

RATHMANN ET AL. SEASONALITY OF ZACHARIAE AND 79N 5



Geophysical Research Letters 10.1002/2017GL074368

corresponding to an ice temperature of −5∘C, assuming the ice is warmer than the mean surface air tem-
perature, which in 2016 was −13∘C between the NI grounding line and 20 km upstream (HIRLAM 7.3 K05
data). Finally, the subscripts in HN and HS denote point evaluations on the northern (N) and southern (S) shear
margins respectively (similarly for �̇�xy,N and �̇�xy,S).

Note that the quantity of interest here, the tongue’s (resistive) contribution to the longitudinal stress field,
hereafter referred to as 𝜏t, is not directly obtainable from the observed strain rates, �̇�xx , since these reflect the
influence of the net longitudinal stress, 𝜏lon = 𝜏lon,0 + 𝜏t, where 𝜏lon,0 is the component associated with the
local ice geometry.

For the floating tongue, however, there is no basal drag, and the stress balance becomes

𝜏d = 𝜏lat + 𝜏lon + 𝜏r (floating part), (2)

where 𝜏d = −1∕2𝜌g(1−𝜌∕𝜌w)𝜕H2∕𝜕x, 𝜌w = 1027 kg/m3 being the density of sea water, and 𝜏r = 𝜏d−𝜏lat−𝜏lon

is the stress residual/imbalance, which is 𝜏r = 0 along the buttressed part of the tongue and 𝜏r < 0 along the
part potentially contributing to resisting the upstream flow.

Figure 3b shows the 2016-averaged components (full lines) ⟨𝜏d⟩, ⟨𝜏lat⟩, ⟨𝜏lon⟩, and the residual ⟨𝜏r⟩, together
with their standard deviation (filled colors). The figure indicates that (i) the residual, ⟨𝜏r⟩, is negative, suggest-
ing the tongue may provide some resistance, but (ii) that resistance is predominately provided by the first
10–20 km of the tongue, after which ⟨𝜏r⟩ ≈ 0.

In order to estimate the size of 𝜏t, we note that the integrated stress residual (hatched blue in Figure 3b) must
be balanced at the grounding line by the integral of 𝜏t from the grounding line and one coupling length
upstream (hatched red in Figure 3b), here chosen as 10 grounding line ice thicknesses (10Hgl = 6.0 km),
that is

∫
15km

0km
⟨𝜏r⟩dx = ∫

0km

−10Hgl

⟨𝜏t⟩dx ≈ 10Hgl⟨𝜏t⟩. (3)

Note that previous reports on coupling lengths suggest values between 7 and 15 ice thicknesses [Howat et al.,
2005, 2008; Kamb and Echelmeyer, 1986]. Assuming ⟨𝜏t⟩ to be evenly distributed over the coupling length,
rightmost integral in equation (3) may be approximated accordingly, thus allowing for a low order estimation
of ⟨𝜏t⟩ (red line in Figure 3b). In this case, the average ratio of (tongue) resistive stress to driving stress over
the coupling length is ⟨𝜏t⟩∕⟨𝜏d⟩∗ = 34%, where ⟨𝜏d⟩∗ = (10Hgl)−1 ∫ 0km

−10Hgl
⟨𝜏d⟩dx. Note the above are upper

estimates in the sense that the tongue might not be fully anchored to its sidewalls.
2.1.2. 79N Sensitivity to Tongue Length and Basal Slipperiness
In addition to estimating the potential resistive stress using the above data-oriented method, we also numer-
ically consider the velocity response along 79N to changes in basal slipperiness and tongue length by using
the finite-element ice flow model Úa [Gudmundsson et al., 2012] based on the shallow shelf approximation.

In section S4 in the supporting information, we use Úa for two separate sets of perturbation experiments
whereby the basal slipperiness and tongue length are covaried: in the first set the slipperiness along the
tongue-sidewall interfaces is uniformly perturbed relative to the slipperiness inverted from winter time veloc-
ities, whereas in the second set the slipperiness under the remaining (upstream) grounded ice is uniformly
perturbed. Considering both sets of perturbations thus allows us to test the hypothesis that seasonal changes
are caused by an upstream increase in basal slipperiness (melt-induced enhanced sliding) rather than e.g.,
downstream enhanced sliding along the sidewalls of the tongue.

The results suggest that once the tongue is less than 15 km long, the grounding line velocity becomes
very sensitive to any further decrease in tongue length, which is in agreement with the observational based
analysis in section 2.1.1, suggesting the innermost part might provide resistance. Note, however, that some
speedup is to be expected even without a tongue providing resistance because of the large thickness changes
that occur over the innermost part—cutting off the tongue there produces a force imbalance since the weight
of the removed tongue is replaced by the weight of a smaller column of sea water.

Considering the flow line response to uniform slipperiness perturbations over the grounded ice, the model
suggests that a ∼20% increase in upstream slipperiness is enough to reproduce both the amplitude and spa-
tial extent of the seasonal velocity change. Moreover, we find that enhanced sliding along the tongue-sidewall
margins alone gives rise to velocity changes only locally over the tongue. Thus, it seems unlikely the tongue
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plays a role in the seasonal speedup in the sense that increased sliding along the tongue-sidewall interface
cannot account for the full spatial extent of the observed seasonality. Instead, the speedup magnitude and
spatial extent seems consistent with a ∼20% increase in upstream basal slipperiness.

2.2. Role of the Zachariae Ice Mélange
In the supporting information, we further investigate the influence and timing of the Zachariae ice mélange
breakup. By defining the mélange as being mobilized/broken-up by the loss of surface feature correlation
between consecutive SAR images, indicating fast moving ice escaping the feature tracking window and/or
surface features being degraded due to melting, we find that the break up coincides with the onset of surface
melting upstream of the rifted zone, approximately 8 June. Note that because of the large height differences
of around 250 m–500 m between the rifted front and the upstream part, this needed not be so. The two events
coinciding does, unfortunately, not allow us to discern whether the ice mélange is in fact strong enough to
trigger upstream changes upon disintegration, or if surface melting is responsible. Nonetheless, Zachariae is
potentially an important case for further understanding the relative roles played by ice mélanges and surface
melting/basal lubrication in seasonal changes, one where mélange modeling and multi-year seasonal velocity
datasets may prove useful.

2.3. Role of Potential Subglacial Sticky Spots
Localized patches of basal friction, or “sticky spots,” have previously been suggested to play an important
role in the dynamics of ice streams [Kamb, 1991; Alley, 1993; Stokes et al., 2007]. Generally caused by bedrock
bumps, till-free areas, or subglacial meltwater frozen to the bed, sticky spots may help to stabilize ice streams
[Kamb, 1991; Stokes et al., 2007]. Because bedrock bumps are regarded as likely sources of sticky spots [Alley,
1993] and are possibly influential under active ice streams [Stokes et al., 2007], we further investigate in sup-
porting information section S4.2 their potential role in moderating the seasonal velocity changes observed
along ZA and NI.

Noting that the area along ZA with the greatest seasonal speedup is deeper, and likely weaker, than further
upstream close to a couple of bedrock bumps, one might suspect the large number of bedrock bumps along
NI to be especially influential. To determine their influence, we perform two sets of slipperiness perturba-
tion experiments using Úa whereby (i) the slipperiness is varied for all grounded ice except over small-scale
bedrock bumps (defined as bumps being taller than sea level) and (ii) the slipperiness is varied for all grounded
ice in addition to bedrock bumps being flattened (artificially set to sea level height). We find that while
the influence of bedrock bumps on the velocity field is small in magnitude and spatially local for both NI
and ZA (not shown for latter), the details of the subglacial environment potentially exert a greater con-
trol on the seasonal velocity response compared to e.g., changes in slipperiness along the tongue-sidewall
interfaces.

3. Discussion and Conclusions

Glaciers that discharge into the ocean are potentially large contributors to the uncertainty of sea level rise pre-
dictions of the near future. In particular, glaciers with floating tongues add to this uncertainty by their tongues
possibly acting as a downstream plug holding back the flow of ice. This underlines the need for understand-
ing the processes leading to the breaking up of floating tongues—be it by mechanical failure due to changes
in the stress configuration, subsurface hot water plumes destabilizing the tongue, related to calving by sur-
face melting filling up crevasses, or the ice mélange breaking up because of wind stresses. While there has
been some debate over the driving mechanism behind the sudden doubling in ice discharge of Jakobshavn
Isbræ coincident with the collapse of its floating tongue in 1998 [Truffer and Echelmeyer, 2003; Joughin et al.,
2008b; Holland et al., 2008; Van Der Veen et al., 2011], it stands, together with the recent large calving event at
the Larsen C ice shelf, as important examples of the need to understand the processes governing the stability
of floating tongues/shelves and whether they provide any resistance.

In this work, we found that the 76 km long floating tongue of 79N might provide some (small) resistance
from the innermost 15 km, suggesting a greater speedup may follow a potential collapse than otherwise
expected if it were just buttressed (albeit the resistance is small). This, we argue, emphasizes the need to con-
sider the consequences of calving events on an individual basis. In the light of the results presented here, it
seems important to understand the structural integrity of the 79N tongue to, e.g., the reported increasing sur-
rounding mean ocean temperature over the last decade [Mouginot et al., 2015]. In this context, we propose
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that high temporally resolved velocity data sets might provide unique opportunities to understand the
strength and durability of floating tongues (and their upstream systems) when exposed to changes in exter-
nal forcings over long time scales by investigating their response to forcings on a seasonal time scale, such as
attempted here.

In summary we presented a highly temporally resolved velocity data set derived from Sentinel-1A SAR
imagery allowing for insights into the seasonal behavior and drivers of the Zachariae (ZA) and 79N (NI) outlet
glaciers in northeast Greenland. We showed that extensive surface melt is present over ZA and NI, both area
wise and in terms of water equivalent, by combining SAR images with a numerical firn (subsurface) model to
quantify the seasonal runoff. In particular, we suggest that the observed speedups during the summer of 2016
of approximately 0.15 km/yr along NI is driven by surface melt water penetrating the ice and lubricating the
bed (decreasing the effective basal pressure), whereas the 0.11 km/yr speedup along ZA correlates equally
well with both the onset of surface melting and the breakup of its large ice mélange, making it less clear
whether the ice mélange is in fact strong enough to induce the observed seasonal changes upon break up.

By decomposing the near-terminus stress budget of NI, we find the potential resistance provided by the
floating tongue is at most on the order of 34% of the near-terminus stress budget (assuming the tongue is
actually anchored to the wall) and is constant across season, suggesting it is unlikely that the tongue moder-
ates the seasonal response much. By covarying the basal slipperiness and tongue length using the numerical
ice flow model Úa, we furthermore found (i) that the outermost ∼56–66 km of the tongue can be removed
without making NI unstable, (ii) that only an upstream increase in basal slipperiness of the grounded ice can
induce a change in the velocity field spatially consistent with the observed seasonal speedup (as opposed
to, e.g., enhanced sliding along the tongue-sidewall interfaces), and (iii) that subglacial sticky spots, such as
small-scale bedrock bumps, seem only to induce velocity changes small in magnitude and spatially local for
both NI and ZA, thus probably not providing large-scale moderation of the observed seasonal response.
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S1 Backscatter and surface melt maps

NI
ZA

Advancing melt

1

1

1

10

10

10

10

100

km
0 10 20

a June 13

NI
ZA

Receding melt

1

10

100

100

km
0 10 20

b August 12

NI
ZA

1

1

10

10

100

km
0 10 20

c August 24

Leading 7days accumulated runoff [mm weq]
NI—ZA boundary

−18 −16 −14 −12 −10
10 log10σ0 [dB]

Figure S1: Summer surface melt estimates. Advancing and receeding seasonal surface melt over
ZA and NI as shown by Sentinel 1A SAR images (grayscale) including kilometre-large surface
melt lakes forming (black/gray spots). Black/gray coloured areas coincide with low backscatter,
indicating wet surface conditions, whereas white areas indicates dry surface conditions. Overlayed
are runoff estimates of the 7 days leading the panel timestamps using the subsurface (firn) model of
[Langen et al., 2015, 2017] forced with 6-hourly surface energy fluxes and precipitation from the
DMI weather forecast model HIRLAM 7.3 K05 (orange lines).
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S2 The timing and influence of the Zachariæ ice mélange break up

In the main text, we investigate the relative influences of seasonal surface melting (pos-
sibly lubricating the bed) and the break-up/mobilization of the ice mélange on the observed
2016 seasonal velocity speed-up along Zachariæ. In this section, we present the analysis of
the timing of the break-up of the ice mélange, suggesting it coincides with the onset of sur-
face melting.

By studying weekly/sub-weekly Sentinel 1A SAR images from tracks 074 and 140,
we find the outer-most part of Zachariæ (ZA) is heavily rifted down-stream of the dashed
line(s) in figure S2, which is a seemingly a stable margin throughout 2016. This margin was
in part determined by (i) visually investigating where rifting occurs, (ii) by the large change
in the velocity gradient along the flowline(s), and (iii) by the location of the large, spatially
coherent, high-backscattering patch near the mélange (visible in panels a and d of figure S2),
the latter likely being sub-surface ice exposed due to rifting (having a higher backscatter than
surrounding ice). Note that this patch is approximately unchanged across the seasonal speed-
up, suggesting the rifting may be a stationary feature after the recent collapse of the floating
tongue, or, at least, very slowly progressing.

In order to determine the timing of the collapse/mobilization of the ice mélange, we
suggest the loss of correlation (over time) between surface features is a useful measure, im-
plying a sudden reduced spatial coverage of surface velocities over the mélange is to be ex-
pected upon break-up. Throughout January until June, the velocity pattern surrounding the
mélange is unchanged (figure S2a, red/orange contour lines), after which the velocity cov-
erage diminishes from around June 08 (figure S2b), indicating fast moving ice escaping the
feature tracking window and/or surface features being degraded due to melting. During Au-
gust (figure S2c), the mélange reaches its minimum extent with high-speed ice drifting oc-
curring (no velocities could be extracted from feature tracking due to the fast flow), followed
be re-consolidation of the mélange in early September (figure S2d), determined by the return
of the velocity structure over the mélange. We note the timing of both the break-up and re-
consolidation overlap with the onset and ending of the melt season, making it less obvious
which of these mechanisms might be controlling the up-stream changes, whereas the down-
stream, near-terminus speed-ups are likely controlled by mélange dynamics.

In figure S3, the seasonal velocity profiles are shown along the main ZA flowline and
two additional auxiliary "upper" and "lower" flowlines (FL) adjacent to the main (solid white
lines in figure S2). Because of the degraded, patchy velocity maps near terminus (our region
of interest) during the summer melt season, we include these two addition auxiliary flowlines
to better determine the spatial extent of the velocity changes. We note that all three flowlines
indicate ∼ 0.11 km/yr (∼ 14 %) increases 15 km up-stream from the rifted margin, while the
upper flowline, having a better up-stream coverage, suggests the speed-up may extend as far
back as 30 km from the rifted margin.
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Figure S2: Seasonality of Zachariæ ice mélange and rifted ice zone. Sentinel-1A SAR images
(surface backscatter in grayscale) over Zachariæ across the 2016 summer melt season showing the
ice mélange being mobilized and breaking up around June 08 (b), followed by re-consolidation in
early September (d). Overlayed is the main flowline (FL), considered in the main text, plus two
additional upper and lower flowlines (solid white lines) considered in figure S3. The coloured
contours are the 1 km/yr (orange) and 2 km/yr (red) velocity contours, used to estimate the timing
of the ice mélange mobilizing. The dashed line indicates the approximate margin downstream of
which the ice is heavily rifted, which is most pronounced within the 1 km/yr contour (orange line).
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Figure S3: Velocity profiles along Zachariæ. Velocity profiles along the Zachariæ flowlines
shown in figure S2. The main flowline is identical to that in the main text, whereas the auxil-
iary upper and lower flowlines (FL) show the adjacent flow. The spotty/noisy summer profiles
are due to surface melting degrading the correlation between surface structures used in the
offset tracking.
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S3 79N strain-rates across season

Figure S4 shows in detail the 79N strain-rates near and over the floating tongue. In
addition to the transverse winter strain-rates shown in figure 3a of the main text, figure S4a
also shows the corresponding longitudinal winter strain-rates. Furthermore, the differences
between summer and winter strain-rates are shown in panels b and d for Ûεxx and Ûεxy , respec-
tively, suggesting little stress redistribution over the tongue during the period of speed-up.
Note the summer strain-rate maps were generated using a composition of summer maps be-
tween May-15 2016 — Aug-15 2016 to improve the spatial coverage.
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Figure S4: 79N strain-rates. Strain-rates along flow ( Ûεxx , top panels) and transverse
to the flow ( Ûεxy , bottom panels) calculated using the average observed winter/spring
velocities during Jan-01 2016 — May-15 2016 (left-hand panels), and the difference be-
tween summer melt season (May-15 2016 — Aug-15 2016) and the winter/spring season
(right-hand panels).
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S4 Úa perturbation experiments

In order to accurately represent the current stress configuration of the NEGIS outlets,
we estimate the unknown basal slipperiness coefficient, C, using Úa [Gudmundsson et al.,
2012], which is related to the basal drag by Wertman’s sliding law, τb = C−1/m |®v |1/m−1®v,
with an exponent of m = 2. Setting up Úa on the domain shown in main text figure 1 with
element sizes of approximately 0.4 km2 and flow parameters as in main text section 2.1.1,
the basal slipperiness was determined for each velocity map using the built-in, inverse esti-
mation of basal drag. Unfortunately, during the melt season the velocity maps contain large
patches of missing data due to bad correlation between surface features, giving less confi-
dence in the inverted basal slipperiness maps due to large errors in modelled surface veloci-
ties (not shown). Because of this, we propose the effect of seasonally enhanced slipperiness
may be expressed, to low order, by uniformly scaling the slipperiness map of one of the win-
ter/spring inversions with good coverage. For this purpose, we choose the 09-Apr—29-Apr
map, hereafter referred to as the C0 slipperiness map (figure S5e). Figures S5a,b,c show the
corresponding modelled velocities using Úa (a) compared to observations (b) and the model
error (c), indicating an overall reasonable fit. Note that refining the mesh further did not im-
prove the model error (not shown).

In the slipperiness perturbation experiments considered here, the ice-covered, non-
floating computational domain was partitioned into three (finite) element subsets:

1. grounded ice elements up-stream of the grounding line (Ω set),
2. a subset of grounded ice elements which may, potentially, be sticky spots, defined as

small-scale bedrock bumps taller than sea level (Ωs set),
3. elements along the tongue–wall interfaces (Γ set).

Figure S5d shows the model mesh and the element types. Using this model setup, we per-
formed four types of slipperiness perturbation experiments with the aim of understanding the
hypothesized seasonally enhanced sliding along 79N.

S4.1 Perturbing Ω and Γ slipperinesses

Figure S6 shows the model response to uniform slipperiness perturbations (scaling C0
by −20%,−15%, · · · , 50%) of the Ω and Γ element sets, respectively, as a function of the
79N tongue length L/L0 = 0.0, 0.1, · · · 1.0 (L0 = 76 km being the present day length) in
forward diagnostic solutions (solving only the momentum equations).

Figures S6a,c show the velocity response at the reference point shown in figure S5e,
indicating a relatively strong sensitivity to changes in basal slipperiness for the grounded part
compared to along the tongue–wall interfaces. Moreover, it is seen that once L/L0 . 0.2 (i.e.
L . 15 km) the grounding-line velocity becomes very sensitive to the length of the tongue.

Figures S6b,d furthermore show the full 79N flowline response to selected slipperi-
ness perturbations compared to observations, indicating: (i) slipperiness changes along the
tongue–sidewall interfaces produce only a velocity response locally on the tongue (figure
S6d), whereas changes over the grounded part leads to changes along the full flowline (fig-
ure S6b), and (ii) a ∼ 20 % increase in slipperiness over the grounded part, Ω, gives rise to
a flowline velocity response comparable in magnitude and spatial extent to the observed sea-
sonal change (figure S6b).

S4.2 Perturbing Ω \Ωs slipperinesses and the bedrock topography

In order to estimate the influence of the potential sticky spots below 79N on the sea-
sonal speed-up, two additional perturbation experiments were performed. In the first experi-
ment, the slipperiness was uniformly scaled for the Ω\Ωs element set (all grounded elements
expect the sticky spots), which may be interpreted as a more realistic seasonal slipperiness
perturbation since the slipperiness of high-laying sticky spots might be less effected by an
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increase in the subglacial water content. In the second experiment, all small-scale bumps in
bedrock topography taller than sea level were flattened by re-setting their hight to zero (sea
level), followed by the slipperiness field being scaled for all grounded elements (Ω set).

Figures S7a,b show the flowline responses in the two experiments, respectively. From
figure S7a we note that when perturbing the slipperiness of only non-sticky grounded ele-
ments (Ω \ Ωs), the velocity response is almost indistinguishable from when perturbing all
grounded elements (Ω, figure S6b). Similarly, when flattening the small-scale bumps consti-
tuting the potential sticky spots the flowline response (figure S7b) is almost identical to that
without a flattening (figure S6b).

Taking both results together, this suggests that small-scale topographical details such
as bedrock bumps do not exert large-scale control over the magnitude of the seasonal speed-
up. In fact, on closer inspection of figures S7a,b, the difference in flowline responses, com-
pared to when perturbing all grounded elements (figure S6b), is mostly locally around the
sticky spots (∼ 30 km from the grounding line). We note, however, that while the influence of
bedrock bumps on the velocity field is small in magnitude and spatially local for both NI and
ZA (not shown for latter), the details of the subglacial environment potentially exert a greater
control on the seasonal velocity response compared to, e.g., changes in slipperiness along the
tongue–sidewall interfaces (figure S6d).
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Figure S5: Úa performance and mesh. Observed (a) and modelled (b) surface velocities for
09-Apr—29-Apr. (c) Model error. (d) Finite element (FE) mesh with element types labelled in
color. (e) inverted basal slipperiness for 09-Apr—29-Apr and perturbed tongue lengths (L/L0).
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Figure S6: Slipperiness perturbation experiments using Úa. Modelled velocity responses to
uniform slipperiness perturbations of the Ω elements (grounded ice, panels a and b) and the Γ
elements (tongue–sidewall interfaces of 79N, panels c and d) (see figure S5d for details on the
element masks). Panels a and c show the model response at the reference point (see figure S5e)
as a function of the floating tongue length, L, whereas panels b and d show the full 79N flowline
response for selected perturbations using the present tongue length (L=L0).
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4.3 Outlook

The subglacial environment of ice sheets is by and large inaccessible with only little
direct evidence existing on the state of the ice–bed interface. While radio-echo
sounding surveys such as Christianson et al. (2014) over NEGIS can be instrumental
in deducing the thermal state of the bed by e.g. inferring basal melting from the
dipping of isochrones, or by bed reflections being consistent with certain types of
ice–bed interfaces and not others, such inferences are all indirect. Deep ice core
drilling projects, on the other hand, provide a unique opportunity to study the bed
by direct access through the empty bore hole, thereby providing valuable in-situ
measurements of the ice–bed interface. Unfortunately, such measurements are too
few to extrapolate basal properties to the spatio–temporal scales needed to constrain
boundaries of ice-sheet models for more accurate future projections.

An alternative approach is to infer the basal state by inverting for the free
parameters in the basal drag relation, constrained against observed surface velocities,
such as done in the present study. This line of approach has proven fruitful for
understanding the magnitude of basal resistance as well as revealing the range of
possible spatial structure (Sergienko et al., 2014; Shapero et al., 2016).

With the newest generation of satellites, it might be possible to further extend the
scope of what can be learned from inverse modelling. Considering high temporally
resolved velocity maps as here, it might be possible to invert for the basal state on
time scales not previously possible. Having estimates of how the basal state changes
during a melt season could, for example, have important implications for validating
hydrological (water routing) models, as well as informing where future surveys on
water routing processes should be conducted.

Inverting for the basal resistance is, however, an under-determined problem
in the sense that multiple solutions might have the same cost-function value. It
is therefore not completely clear what methodology would allow the inversion
of basal resistance (for consecutive velocity maps) to reflect the actual physical
subglacial change over time, and not some unphysical change due to over-fitting of
velocity artefacts. One method that might work would be to represent the unknown
basal-resistance map as a linear combination of smoothly varying basis functions,
such that the coefficients of the basis function are the unknowns inverted for (a sort
of regularization). If the chosen basis functions allow only coarse spatial structure
to be resolved (coarse needing to be defined), it is possible that the inversion would
allows the actual physical subglacial change to be extracted (difference between
consecutive inverted maps of basal resistance).

Other intriguing prospects of highly spatio-temporally resolved surface imagery
and velocity maps includes the ability to systematically compare the timing and
response to seasonal surface melting across a multitude of outlet glaciers in e.g.
Greenland. This might allow quantifying the types and ranges of responses, and
could help predict which outlet systems might be particularly sensitive to future
changes in atmospheric heat content and thus contribute to near-term sea level rise.



Chapter 5

Study #2

5.1 Introduction

In the deep layers of ice sheets, the c-axis fabric of polycrystalline ice is typically
not isotropic but displays a range of rotational symmetries. A fabric commonly
found at large depths is the single-maximum fabric (figure 3.3), which exhibits a
single preferred c-axis direction (Hooke, 1973; Gow and Williamson, 1976; Herron
and Langway, 1982; Svensson et al., 2003). Caused by recrystallization processes
and crystal deformation processes (Cuffey and Paterson, 2010, chap. 3.3), single-
maximum fabrics have an approximate material rotational symmetry around their
preferred direction — they are transversely isotropic. Consequently, the material
microstructural symmetry element should be reflected by the corresponding rheology
too (section 3.1). Most theoretical and modelling analyses of ice flow, however,
ignore this fact and assume fabric isotropy. While assuming fabric isotropy is an
excellent approximation, often demonstrated by the success of ice flow models in
reproducing observed surface flow fields1, Glen’s isotropic flow law can, in this
respect, typically be justified only for the top-most, undeveloped fabric of glaciers
and ice sheets.

Although no general creep relation exists taking fabric anisotropy into account
(Cuffey and Paterson, 2010, p. 78), a large collection of literature has led to sig-
nificant advances. Lile (1978) first considered the effect of preferred-orientation
fabrics by investigating how intragranular strain-rates of single crystals were influ-
enced by stress redistribution, accomplished by introducing an enhancement factor
depending on a geometrical tensor. Later, more elaborate work by Azuma (1994,
1995); Azuma and Goto-Azuma (1996); Thorsteinsson (2001) and others extended
the idea of a geometrical tensor to describe the bulk aggregate orientation in order
to enhance deformation by basal glide in polycrystalline ice [relating microscopic
(single-crystal) stresses to macroscopic (polycrystal) stresses]. Moreover, work has
been done to extended this method to idealized crystallographic symmetries and

1The rate-factor, A, is frequently multiplied by an enhancement factor, E, to achieve a better fit,
which conveniently allows to account for unknown material softening and hardening effects.
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evolving anisotropy (Lliboutry, 1993; Castelnau and Duval, 1994; Van der Veen
and Whillans, 1994), and to so-called viscoplastic self-consistent models allowing
crystal slip not only along basal planes, but along prismatic and pyramidal planes
too (figure 3.4) (Castelnau et al., 1996; Meyssonnier and Philip, 1996).

Supposing that certain idealized microstructural symmetries exist, plastic po-
tential theory (section 3.1) allows developing more general anisotropic flow-laws
relying on free macroscopic parameters—that is, effective, macroscopic directional
viscosities along principal (symmetry) directions—which depend (in an unspeci-
fied way) on local grain orientation distributions. Johnson (1977) considered such
an approach for modelling directionally solidified metallic alloys as transversely
isotropic, and several glaciological studies have embraced the use of plastic potential
theory in proposing orthotropic and transversely isotropic constitutive equations
(Meyssonnier and Philip, 1996; Gödert and Hutter, 1998; Svendsen and Hutter,
1996; Lliboutry, 1993; Staroszczyk and Gagliardini, 1999; Gillet-Chaulet et al.,
2005).

This approach, however, relies not only on specifying additional models for the
free macroscopic flow parameters, which must depend on the local microstructural
distributions of grain orientation, size, etc., but also requires accurately representing
such microstructural distributions including their co-evolution with flow.

From a practical point of view, the above mentioned discrete-grain resolving
models have the drawback of needing to track and evolve individual grains with
time. Typically hundreds of grains are needed to adequately describe the fabric at a
given point (Staroszczyk and Gagliardini, 1999), which can become impractical for
large computational domains needed for larger scale flow problems. To overcome
this problem, continuous representations of c-axis orientations have been proposed
using orientation distribution functions (ODFs) (Lliboutry, 1993; Meyssonnier and
Philip, 1996; Svendsen and Hutter, 1996), inspired by material sciences (Bunge,
2013).

Independently of choice of microstructural representation, introducing models
for the free macroscopic flow parameters (in terms of the microscopic aggregate by
e.g. homogenization procedures) adds an additional layer of model complexity to
the evolution of ice masses. This work makes the case that much is still to be learned
by studying idealized transversely isotropic flows (from plastic potential theory)
with prescribed macroscopic flow parameters; that is, without the added layer of
realism provided by modelling the evolution of microstructural grain distributions
and the corresponding effect on macroscopic flow parameters, thus decoupling the
problem of a co-evolving fabric and ice flow.

Specifically, this work attempts to investigate the relation between deep internal
layer disturbances — such as the folding/buckling observed from ice-penetrating
radar transects (figure 1.1, middle) — and the dynamics introduced by a macroscopic
transversely isotropic rheology. Understanding the mechanisms behind internal layer
disturbances has implications for the interpretation of ice core stratigraphies and
chronologies, as well as understanding how disturbances might influence adjacent
flow, such as near the shear-margins of the northeast Greenland ice stream (NEGIS)
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Figure 5.1: Disturbed flow captured in the near-bed layers from an ice-penetrating radar
transect over Greenland. The distinct horizontal curves are internal layers with different
dielectric properties. The transect is approximately 210 km to 230 km north of the East
Greenland Ice Core Project (EGRIP) camp. Image credit: CReSIS’s ice-penetrating radar,
NASA Operation IceBridge campaign 2012.

where large disturbances may occur (figure 5.1).

In the following sections the forward and inverse flow law for a transversely
isotropic symmetry is introduced, constructed by requiring tensorial linearity (clas-
sical von Mises type law) with a Norton–Bailey potential (3.19) thus ensuring
conformity with Glen’s isotropic law. Subsequently, a new two-dimensional, finite-
element anisotropic Lagrangian numerical ice-flow model is introduced, developed
by the author. This model is used to investigate the effect of discrete, strong
single-maximum layers on transient internal layer deformation (morphology) under
idealized circumstances. Specifically, it is shown that the transient buckling and
folding of internals layers, such as observed from ice-penetrating radar transects
(figure 5.1), might be explained by vertical shear (change in horizontal velocity with
depth) being opposed in slightly nonvertical single-maximum fabrics if nonbasal
(hard) glide is suppressed.

5.2 Transversely isotropic creep

A transversely isotropic flow law can too be constructed from the material tensors A,
B.4/ and C.6/ , in which case the material tensors are built from products of the two

elementary transversely isotropic tensors: the identity, I, and the fabric (rotational)
symmetry axis, m, the latter defined as the normalized c-axis vector sum of a given
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local bundle

m DPi ci=
P

i ci
 : (5.1)

In this sense, the transversely isotropic flow law is local due to its dependency
on the local symmetry axis direction, hereafter interchangeably referred to as the
single-maximum direction2. This work, however, adopts a similar approach to
that of Johnson (1977) by instead constructing I1; I2 and I3 directly from the five
transversely isotropic basic invariants3 (Johnson, 1977; Naumenko and Altenbach,
2007)

I1.σ/ D Trσ; I2.σ/ D Trσ2; I3.σ/ D Trσ3;

I4.σ/ D Tr
�
σ �M�

; I5.σ/ D Tr
�
σ2 �M�

;
(5.2)

where M is given by the outer (dyadic) product

M D m˝m: (5.3)

The possible combinations resulting in first, second and third order dependence on
σ are, respectively,

I1 D �1;1I1 C �1;2I4
I22 D �2;1I 21 C �2;2I1I4 C �2;3I 24 C �2;4I2 C �2;5I5
I33 D �3;1I 31 C �3;2I1I2 C �3;3I3 C �3;4I 34 C �3;5I4I5

C �3;6I 21 I4 C �3;7I1I 24 C �3;8I2I4 C �3;9I1I5;

where �i;j are material parameters. Note that I1; I2 and I3 are shared with Glen’s
isotropic law (3.14) while I4 and I5 are new, and that �2;4 is related to the isotropic
rate-factor, A, analogous to �2;2 in the above isotropic case (3.20).

Disregarding nonclassical, second-order effects ( D 0) and setting ˛ D 0

following von Mises’ work on the plasticity of crystals (Mises, 1928), thus ensuring
conformity with Glen’s law in the isotropic limit, the flow law (3.11) becomes

Pε D �Eˇ
@I2
@σ
D �Eˇ

1

2
I�12

@I22
@σ

; (5.4)

where the chain rule was used to conveniently re-express the derivative. By substi-
tuting σ D �pIC τ into I2 and @I22=@σ, and relabelling �i � �2;i for notational

2Other rotationally symmetric fabrics such a girdle fabrics are also transversely isotropic and are
equally well explained by a transversely isotropic flow law. This work, however, is motivated by
observations and measurements based on single-maximum fabrics and therefore focuses its treatment
on this special case of transverse isotropy. Throughout, little distinction is therefore made between
transversely isotropic fabrics and single-maximum fabrics.

3I1; � � � I5 are invariant under coordinate transformations Q that preserve the symmetry-axis
orientation (m) for any rotation (�) about it (subset of full 3D rotation group), defined as

Q.�;m/ DMC .I �M/ cos� Cm � I sin� 2 SO.3/:
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brevity since only I2 contributions are considered, one finds

I22 D �4p
�
gIIp � gI I4

�C �3I 24 C �4I2 C �5I5 (5.5)

@I22
@σ
D ��4p

�
gIIIIC gI M

�
C �2I4IC 2�3I4MC 2�4τ C �5fτ ;Mg; (5.6)

where Ii D Ii .τ / is implied [defined similarly to (5.2)], fτ ;Mg is the anticommu-
tator between τ and M

fτ ;Mg DM � τ C τ �M; (5.7)

and material parameters have been grouped together for convenience as

gI D 3
�2

�4
C 2�3

�4
C 2�5

�4
; gII D 9

�1

�4
C 3�2

�4
C �3

�4
C 3C �5

�4
;

gIII D 6
�1

�4
C �2

�4
C 2:

(5.8)

Note the invariant derivatives occurring when calculating (5.6) are given by

@σI1.σ/ D I; @σI1.σ/
2 D 2I1.σ/I; @σI2.σ/ D 2σ;

@σI4.σ/ DM; @σI4.σ/
2 D 2I4.σ/M; @σI5.σ/ D fσ;Mg;

which is most easily shown in index notation.
Incompressibility requires no dependence on the pressure in (5.5)–(5.6), imply-

ing gI ; gII and gIII must vanish. Solving the three equations gI ; gII; gIII D 0 with
five unknowns, the parameters are related by

�2

�4
D �6�1

�4
� 2 and 9

�1

�4
D �5

�4
C �3

�4
� 3: (5.9)

Because this system is under-determined, the transversely isotropic constitutive
equation has 5 � 3 D 2 additional flow parameters compared to isotropy. The two
additional flow parameters, being defined relative to the isotropic (Glen) parameter
�4 in (5.9), play the role of enhancement factors and are hereafter referred to by

E 0 D �3

�4
and E 00 D �5

�4
: (5.10)

In the two-dimensional case treated below, it is shown that a special combination of
E 0 and E 00 may be interpreted as the basal-plane (easy) and nonbasal-plane (hard)
glide enhancement factors.

Applying the incompressibility constraints (5.9) to (5.5)–(5.6), the two terms
reduce to

I22 D �4
�
I2 CE 0I 24 CE 00I5

�
(5.11)

@I22
@σ
D 2�4

�
τ CE 0I4MC E 00

2
fτ ;Mg � E

0 CE 00
3

I4I
�
: (5.12)
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From here, assuming a Norton–Bailey potential such that �E D A0�nE D A0ˇnIn2 ,
and defining the rate-factor as A D A0ˇ

nC1�.nC1/=24 , the constitutive equation
(5.4) becomes

Pε D ��1
�
τ CE 0I4MC E 00

2
fτ ;Mg � E

0 CE 00
3

I4I
�

(5.13)

��1 D A �I2 CE 0I 24 CE 00I5�.n�1/=2 ; (5.14)

which is uniquely defined by the three macroscopic flow parameters A;E 0 and E 00,
and reduces to Glen’s flow law (3.21)–(3.22) for E 0; E 00 D 0.

5.2.1 Inverse two-dimensional constitutive equation

Posing the transversely isotropic constitutive equation in an inverse, closed form,
τ . Pε/, is algebraically more challenging than for Glen’s law. While in Glen’s law
the problem amounts to solving one equation with one unknown, in the present case
three equations with three unknowns must be solved in order to re-express Ii .τ / in
terms of Ii . Pε/.

First, the stress deviator, τ , must however be isolated in (5.13). By rearranging
terms, it follows that

τ C E 00

2
fτ ;Mg D �.τ / Pε �E 0I4.τ /MC E 0 CE 00

d
I4.τ /Id ; (5.15)

which is a anti-commutator matrix equation (Sylvester equation). Here d is the
dimensionality of the problem, and Id is the d � d identity matrix. Note that
d D 3 was considered without loss of generality in the above section 5.2. Solving
Sylvester’s equation in a symbolic manner is not straight forward and requires
vectorizing each term by the stacking columns according to

vec.Xij / D ŒX11; � � � ; Xm1; X12; � � � ; Xm2; � � � ; X1n; � � � ; Xmn�T:

Vectorizing (5.15) can then be shown to give

Pd2 vec.τ / D �.τ / vec. Pε/ �E 0I4.τ / vec.M/C E 0 CE 00
d

I4.τ / vec.Id /;

(5.16)

where Pd2 is a d2 � d2 matrix defined as

Pd2 D Id2 C E 00

2
.M˝ Id C Id ˝M/ ; (5.17)

and "˝" is the Kronecker product (generalized outer product).
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Applying P�1
d2 to both sides of (5.16) and subsequently reverting the vectoriza-

tion, gives

τ D �.τ /
�
PεC E 00

E 00 C 2
�

E 00

E 00 C 1I4. Pε/M � f Pε;Mg
��

� E 00

E 00 C 1
�
E 0

E 00
C E 0 CE 00

d

�
I4.τ /MC E 0 CE 00

d
I4.τ /I; (5.18)

which follows from noting that

P�1
d2 vec.M/ D 1

E 00 C 1 vec.M/;

P�1
d2 vec.I/ D vec.I/ � E 00

E 00 C 1 vec.M/;

P�1
d2 vec. Pε/ D vec. Pε/ � E 00

E 00 C 2
�

vec.f Pε;Mg/C E 00

E 00 C 1I4. Pε/ vec.M/

�
:

Expression (5.18) is, however, not in a closed form due to the invariants Ii .τ /
on the right-hand side depending on τ [note that �.τ / too depends on Ii .τ /, as
defined in (5.14)]. In order to fully invert (5.18), it is thus necessary to reexpress
the unknowns, Ii .τ /, in terms of Ii . Pε/, which may be archived by calculating
I2.τ / D tr.τ 2/, I4.τ / D tr.τ � M/, and I5.τ / D tr.τ 2 � M/ using (5.18) and
subsequently solving for I2.τ /, I4.τ /, and I5.τ / (not shown).

In the present work, the two-dimensional relation (d D 2) is desired for im-
plementing in an idealized vertical-cross-section ice-flow model. Solving for the
invariants with d D 2 and adopting the following change of free flow parameters:

E∦ D 1CE 0 CE 00 and Ek D 1CE 00=2; (5.19)

the inverse two-dimensional flow law is uncovered

τ D �
�
E
�1=n
k PεC

h
E
�1=n
∦ �E�1=nk

i
I4R

�
(5.20)

� D A�1=n
�
E
�1=n
k I2 C 2

h
E
�1=n
∦ �E�1=nk

i
I 24

�.1�n/=2n
; (5.21)

where Ek and E∦ are anisotropic enhancement factors (elaborated on below), and
R.�/ 2 O.2/ is the orthogonal transformation

R.�/ D 2M � I D
�� cos 2� sin 2�

sin 2� cos 2�

�
; (5.22)

which gives the reflection of a point about a line passing through the origin and
extended outward at an angle � from the y-axis. The angle � here represents the
symmetry-axis orientation such that

m D .sin �; cos �/; (5.23)
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Figure 5.2: Qualitative relation between the anisotropic enhancement-factor ratio, Ek=E∦,
and the local c-axis spread, the latter defined in terms of the cone-angle around the fabric
symmetry-axis direction, m.�/. The transversely isotropic flow-law reduces to Glen–Nye’s
isotropic law for Ek=E∦ D 1, while the limit Ek=E∦ � 1 corresponds to a strongly
developed preferred-direction fabric (strong transverse isotropy).

and allows the fourth invariant, I4, to be written compactly as

I4.�/ D P�yy cos 2� C P�xy sin 2�: (5.24)

Thus, as one might expect, the rotational symmetry around m in three dimensions
(d D 3) reduces to a reflection symmetry across m in two dimensions (d D 2), as
represented by the reflection transformation, R.�/.

5.2.2 Phenomenology of two-dimensional flow law

The two-dimensional flow law (5.20)–(5.21) collapses to Glen’s isotropic law in
the special case Ek D E∦, in which case the two enhancement factors reduce to the
regular isotropic enhancement factor amending Glen’s law. The relative magnitude,
Ek=E∦, must therefore contain information about c-axis spread around the preferred
direction, with larger ratios corresponding to smaller spread (figure 5.2).

It is, meanwhile, not immediately clear how the anisotropic departure from
Glen’s law manifests itself functionally. The effect of the anisotropic term may be
understood by considering fabrics with the uniform orientations � D f0°; 45°; 90°g,
in which case (5.20)–(5.21) become

τ D � �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

 
E
�1=n
∦ P�xx E

�1=n
k P�xy

E
�1=n
k P�xy E

�1=n
∦ P�yy

!
for � D f0°; 90°g

 
E
�1=n
k P�xx E

�1=n
∦ P�xy

E
�1=n
∦ P�xy E

�1=n
k P�yy

!
for � D 45°:

(5.25)
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Thus, for a fabric with a vertical symmetry-axis (� D 0ı), the shear component
(P�xy) is enhanced by a factor of Ek (to some power of n), that is

Ek is the basal-plane (easy) glide enhancement factor,

while for a fabric axis tilting at � D 45ı the shear component (P�xy) is enhanced by
a factor of E∦ (to some power of n), that is

E∦ is the nonbasal-plane (hard) glide enhancement factor.

The fact that E∦ is the nonbasal, hard glide enhancement is justified by deformation
experiments on single-maximum fabrics from the Dye 3 ice core where the resistance
along shear planes tilting away from the fabric axis was investigated (Shoji and
Langway Jr, 1985; Shoji and Langway, 1988). Specifically, it was found that shear
planes oriented at 45° from the fabric axis were the hardest (harder than for an
isotropic fabric), while shearing parallel to basal planes was the softest angle (softer
than for an isotropic fabric), implying Ek > 1 > E∦.

The presented form of the transversely isotropic flow law (5.20)–(5.21) is
therefore particularly useful because the two new flow parameters, Ek and E∦,
may be interpreted in terms of deformation experiments. For small-spread single-
maximum fabrics, the ratio between soft and stiff orientations has been reported
to be as large as Ek=E∦ � 102 to 104 (Shoji and Langway Jr, 1985; Shoji and
Langway, 1988; Duval et al., 1983).

In addition to enhancing the shear component (P�xy), the transversely isotropic
flow-law also enhances the normal components (P�xx; P�yy) too, as evident from
the nonzero diagonals of (5.25); that is, for nonvertical fabric axes, the basal and
nonbasal glide enhancements influence the longitudinal (�xx) and vertical (�yy)
normal components too.

Finally, note that when components in (5.25) transform as �ij D E�1=n P�ij , the
components are effectively reduced in the momentum balance for E�1=n < 1 (or
vice-versa), implying the strain-rate solution must be enhanced relative to E D 1
to overcome the suppressing factor of E�1=n (or vice-versa). Thus, because of
the negative enhancement exponent, �1=n, the shear component P�xy solving the
balance is effectively reduced as � ! 45° if E∦ < 1, but enhanced as � ! 0° if
Ek > 1.

Bounds on Ek and E∦

The anisotropic enhancement factors, Ek and E∦, are thermodynamically con-
strained by requiring that viscous energy dissipation decreases the mechanical
energy. Calculating the rate of change of energy using the momentum balance (2.2),
it follows that (Landau and Lifshitz, 1959)

@

@t

Z
1

2
�u2 dV D �

I
.�Cu � u � τ / � dS � 1

2

Z
τ W Pε dV ;
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where C D u2=2C ��1p is the Bernoulli function. Extending the integral domain
to include the entire fluid domain, the first integral on the right-hand side vanishes.
Consequently, the enhancement factors are bound by τ W Pε > 0. Using (5.20)–(5.21),
one finds (noting Pε W R D 2I4)

τ W Pε D A�1=n
�
E
�1=n
k I2 C 2

h
E
�1=n
∦ �E�1=nk

i
I 24

�.1Cn/=2n
:

Since I2 and I 24 are strictly positive, it follows that

Ek � E∦ > 0; (5.26)

which conforms with deformational experiments (Shoji and Langway Jr, 1985;
Shoji and Langway, 1988).

5.3 The model

In order to investigate the influence of fabric anisotropy on transient internal layer
deformation, the author developed a new two-dimensional, finite-element ice flow
model for solving the momentum balance (2.3) with the transversely isotropic rhe-
ology (5.20)–(5.21). A new model is justified by the need to accurately displace
material elements and their physical properties (A;Ek; E∦; �) with time, since the
solution to the momentum balance depends on the exact material configuration. This
is typically not the case in existing (isotropic) ice flow models, such as vertically
integrated models, which address different questions. Boundaries between internal
layers must therefore be represented as Lagrangian interfaces, and nonuniform
material properties must too be displaced in a Lagrangian fashion — e.g. � which
might change due to local processes and flow. Note that for isotropic layers with uni-
form rate-factors, only the bounding interfaces between layers need to be accurately
displaced with time.

Due to the Lagrangian nature of the problem, the model is implemented as a
finite-element numerical model, thereby allowing (i) interfaces between layers to
be naturally defined along cell (element) edges, and (ii) physical properties to be
defined on a conservative, per-cell basis. The model is written in Python and relies
on FEniCS (Alnæs et al., 2015) to solve the stress balance given the external ice
geometry and internal material configuration. FEniCS is a open-source computing
platform for solving partial differential equations, itself relying on a collection of
components equally deserving credit (Logg and Wells, 2010; Kirby and Logg, 2006;
Alnæs et al., 2014; Kirby, 2004; Alnæs et al., 2009). Furthermore, the model relies
on the software Gmsh for generating finite-element meshes subject to constraints
such as the vertex density along internal interfaces or external boundaries. The
cross-component communication, time-stepping, and fabric evolution (including
the nontrivial task of correctly dissecting complicated folded layers across external
mesh boundaries) is not handled by third-party software.
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Figure 5.3: Schematical representation of the two-dimensional, Lagrangian-layered ice flow
model. The model consists of n layers (L1; � � � ;Ln), each layer having distinct, constant
flow parameters A;Ek; E∦, whereas the single-maximum direction, � , is spatio-temporally
variable. The surface is traction-free, while the bed constitutes a no-slip interface, sloping
at a constant angle with a small Gaussian bump superimposed. The left- and right-hand
boundaries are assumed periodic for simplicity.

It is not a priori clear how the morphology of internal layers changes with single-
maximum strength. Therefore, the present work seeks to investigate the evolution
of internal layers in simplest possible terms by removing other influences that might
have a significant affect. Since Stokes flows are boundary-value problems, the
model considers idealized periodic left–right boundaries (figure 5.3). Furthermore,
the surface is assumed traction-free (natural boundary condition), and the whole
ice slab rests with a no-slip Dirichlet boundary condition on a constant-slope bed,
perturbed by a small superimposed Gaussian bump to break the time-translational
symmetry (figure 5.3).

The model adopts the popular triangular Taylor–Hood (mixed) finite element
(Hood and Taylor, 1974) which fulfils the inf-sup condition for the Stokes flow
problem (saddle-point problem), critical for stability and convergence (Arnold et al.,
1984). Taylor–Hood elements generally consist of Lagrange elements of order k
for pressure and k C 1 for velocity. In the model, first- and second-order Lagrange
elements (CG1 and CG2 elements) are used for pressure and velocity, respectively,
while physical properties are represented on a per-cell basis using the zeroth-order
discontinuous Lagrange element, DG0 (figure 5.4).

Lagrangian numerical models (unrelated to Lagrange finite elements) are un-
conditionally stable, implying the time-step size is in principle unrestricted. The
accuracy of a transient simulation does, however, depend on the step size, which is
found to be characteristically on the order of 1=1000 of a year in order to achieve
convergence for flows with internal interface speeds on the order of kilometres



76 CHAPTER 5. STUDY #2

Velocity u
Pressure p

Fabric properties A, E‖, E∦, θ

Figure 5.4: Taylor–Hood element used in the model. The element consists of triangular
Lagrange elements of order 2 for velocity (CG2) and of order 1 for pressure (CG1). In
addition, physical properties are regarded cell based and are represented using discontinuous
Lagrange elements of order 0 (DG0). The figure shows the corresponding placement of the
degrees of freedom (circles).

per year. Time integration is carried out using the Euler method, and internal in-
terfaces are updated by displacing them according to the velocity field solution.
This allows an updated mesh to be generated using Gmsh by explicitly specify-
ing the new interface positions, which are constructed under the constraint of an
approximately equidistant vertex spacing along the new internal interfaces (transfi-
nite meshing). Therefore, the accuracy of a transient simulation also depends on
the chosen vertex spacing since large spacings (large cells) will tend to smooth
out kinks/excursions along the interface due to transfinite meshing not necessarily
including the spline-defining vertices (figure 5.5).

The fabric orientation, � , must evolve at the end of each time step by co-
rotating with the effective material rotation-rate, which generally depends on both
the local velocity curl and strain-rate tensor (Aravas, 1994; Gödert and Hutter, 1998;
Svendsen and Hutter, 1996). As an initial step, however, this work considers fabric

tn+1

tn

Interface vertices
Interface cells
True interface at tn+1

Figure 5.5: Lagrangian displacement of an internal interface, demonstrating the potential
error when regridding an interface at a later time step (tnC1) by requiring approximately
equidistant vertex spacing (transfinite meshing).
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evolution as a function of the local velocity curl only (solid co-rotation with flow)
as a prototype for how an evolving fabric might influence flow. That is

Dt� D f̨ .ω/ (5.27)

where ˛ is some constant between 0 and 1. Note that in this work, fabric processes
such as re-crystallization etc. are neglected for simplicity.

After evolving the orientation field, it is subsequently regridded onto the mid-
points of the updated mesh (DG0 nodes) using a high-order cubic interpolation on
a per layer basis, thus ensuring information does not unphysically cross internal
layers when interpolating.

The transient problem is thus an active scalar problem in the sense that the mo-
mentum balance solution (velocity and pressure) depends on the fabric orientation,
� , which in turn may dynamically evolve according to the local velocity structure
by (5.27).

5.3.1 Weak formulation

The finite element method, unlike many other numerical schemes, approximates the
solution to a partial differential equation (PDE) and not the equation itself. In short,
the computational domain is partitioned into elements (cells) in which the solution
is approximated by a linear combination of basis functions. The basis coefficients
are solved for by assembling coefficient equations for each element, yielding a
large system of algebraic equations. Constructing the coefficient equations requires
posing the Stokes flow PDE in its weak or variational form, in contrast to the strong
form

�r � τ Crp D �g (5.28)

r � u D 0: (5.29)

While accounting for the finite element variational formulation in detail is out of
scope for the present work, this section is devoted to deriving the weak form of
(5.28)–(5.29) and its discretization, but leaves out the details on the coefficient
equations etc.

Starting with the momentum balance (5.28) by forming the inner product with a
test function v, followed by integrating over the domain ˝ (an open subset of Rd
where d D dim u), one finds

�
Z
˝

.r � τ / � v dxC
Z
˝

.rp/ � v dx D
Z
˝

�g � v dx ; (5.30)

where .u; p/ 2 H 1
0 .˝/

d�L2.˝/ and v 2 H 1
0 .˝/

d ; that is to say that u; v;ru;rv
and p are square integrable and p is defined up to a constant (Bercovier and
Pironneau, 1979). The first term in (5.30) may be rewritten using the product rule
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and integrating by parts, giving

�
Z
˝

.r � τ / � v dx D
Z
˝

Œτ W rv � r � .τ � v/� dx

D
Z
˝

τ W rv dx �
Z
@˝

n � .τ � v/ dS ; (5.31)

where @˝ is the boundary of ˝. Similarly, the second term may be rewritten asZ
˝

.rp/ � v dx D
Z
˝

Œr � .pv/ � pr � v� dx

D
Z
@˝

n � .pv/ dS �
Z
˝

pr � v dx : (5.32)

Inserting (5.31) and (5.32) into (5.30), noting that n � .pv/ � n � .τ � v/ D n �
.ŒpI � τ � � v/ D n�.�σ � v/ D �n�σ �v, and exploiting the symmetry of τ to rewrite
τ W rv D 1=2.�ij C �j i /@j vi D 1=2.�ij @j vi C �ij @ivj / D τ W .rvC frvgT/=2,
gives Z

˝

h
τ W .rvC frvgT/=2 � pr � v

i
dx (5.33)

�
Z
@˝

n � σ � v dS D
Z
˝

�g � v dx :

Secondly, multiplying the incompressibility (5.29) with the pressure test func-
tion, q 2 L2.˝/ and integrating over ˝, givesZ

˝

qr � u dx D 0: (5.34)

Adding the two expressions (5.33) and (5.34), one finally findsZ
˝

h
τ W .rvC frvgT/=2C qr � u � pr � v

i
dx (5.35)

�
Z
@˝

n � σ � v dS D
Z
˝

�g � v dx ;

which is the sought after weak form. Equation (5.35) is a mixed variational form,
that is a form where both u and p are simultaneously approximated.

The weak form (5.35) is still a continuous problem in terms of infinite dimen-
sional vector spaces. In order to be discretized by finite elements, the problem needs
to be restated in terms of the finite dimensional spaces Vh of H 1

0 .˝/
d and Qh

of L2.˝/. Approximating the solution .u; p/ by .uh; ph/ 2 Vh � Qh with basis
functions .�i ;  i / respectively [and likewise for .v; q/, i.e. a Galerkin method],
such that

uh D c.u/i �i and ph D c.p/i  i ;



5.4. MODEL SETUP AND EXPERIMENTS 79

allows the equations for the coefficients .c.u/i ; c
.p/
i / to be written as a linear system.

A convenient property of the variational approach is that test functions vanish
along the parts of the boundary where the solution is known (Langtangen and
Mardal, 2016). In the case of an ice flow model, the external boundary may be
divided into the four parts @˝ D �surface[�bed[�left[�right. If a no-slip condition
is assumed at the glacier bed, �bed, the boundary term

R
@˝ n �σ � v dS consequently

vanishes there. Similarly, ice flow models generally assume a traction-free surface
(n �σ D 0), implying the boundary term too vanishes at the surface, �surface. Finally,
in the case of periodic left/right boundaries (as in the above model), the boundary
terms trivially vanish too.

5.4 Model setup and experiments

The aim of this study is to evaluate, in simplest possible terms, the implications
of enhanced basal glide (Ek > 1) and suppressed nonbasal glide (E∦ < 1) on
the transient deformation of internals layers. The model is therefore configured
with just three discrete layers: a single anisotropic layer sandwiched between two
isotropic (Glen) layers. In addition, control simulations are also presented in which
all three layers are isotropic but with a rate-factor contrast (enhancement) in the
middle layer.

Although ice is a nonlinear viscous fluid with a typical flow exponent of around
n D 3, the nonlinear solver has not yet been fully implemented in the model for
transient simulations. In the following, all simulations are therefore conducted with
n D 1 (linear viscous), which can, in a sense, be considered as a low-order estimate
of how nonlinear viscous ice might behave. A significant difference between the
linear-viscous and the nonlinear-viscous isotropic flow law is the narrowing of the
effective vertical-shear zone with increasing n because ice shear softens: the larger
n, the more confined towards the bottom the shear zone is, and the larger a fraction
of the (upper) ice column moves in a rigid fashion without shearing. Simulating
layer deformation with n D 3 might therefore exhibit stronger disturbances (due to
the larger shear), but also limit the disturbances to occur only in the lower, near-bed
layers.

The surface and all internal interfaces are initially assumed flat (undisturbed),
and the middle layer is 100 m thick and positioned at 150 m from the bed.The bed is
chosen to slope with an inclination of 10°, and the modelled ice slab has a uniform
isotropic rate-factor of A D 1 � 10�13 Pa�1 s�1. The value of A was chosen such
that the surface velocity approximately matches that of the corresponding nonlinear
solution with n D 3 with A D 1 � 10�25 Pa�3 s�1 (corresponding to ice at approx-
imately �20 ıC). The time-step is taken to be �t D 0:004 yr, the gravitational
acceleration is g D 9:82 m s�2, and the density of ice is � D 917 kg m�3.

While the transversely isotropic flow law fully prescribes the tensorial structure
of the strain-rate enhancements as a function of the single-maximum orientation, � ,
the magnitudes of the enhancement factors must contain information about c-axis
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# ˛ � Ek Ek=E∦ L2 is effectively...

1 — — 1 1 a trace layer (indifferent from L1 and L3)
2 — — 10 1 isotropically softened
3 — — 0.01 1 isotropically hardened
4 0 0° 10 10 vertical-shear softened
5 0 45° 1 100 vertical-shear hardened
6 0.1 �.t/ 1 100 nonbasal-shear hardened + evolving fabric

Table 5.1: Numerical experiments performed: experiments #1–#3 are the isotropic control
experiments, whereas experiments #4–#6 are the anisotropic experiments. From left to right,
the columns are respectively: the material rotation-rate fraction (˛), the fabric orientation � ,
the easy (basal glide) enhancement (Ek), Ek relative to the hard (nonbasal glide) enhance-
ment (E∦), and a description of how the parameter choice mechanically affects the middle
layer (L2).

spread around the single-maximum direction. Specifically, they must vary from their
largest/smallest values in the case of a strong single-maximum (small spread) and
become Ek D E∦ D 1 in the limit of isotropy (figure 5.2). The exact dependence,
however, requires a micro–macro model to be accounted for. Striving to keep the
problem simple, this study instead considers a constant, time-independent strong
single-maximum fabric in the middle layer, layer 2 (L2). Guided by deformational
tests suggesting Ek=E∦ � 102 to 104 and Ek � 10 for strong single-maximum
fabrics (Shoji and Langway Jr, 1985; Shoji and Langway, 1988; Duval et al., 1983),
the values Ek=E∦ D 100 and Ek D 10 were used in the following experiments.

Six different numerical experiments were conducted in total (table 5.1). Across
all experiments, the top (L3) and bottom (L1) layers were kept isotropic. The
configuration of the middle layer (L2) differs, however, between experiments. In
the control experiments #1–#3, L2 is assumed isotropic too but with rate-factor
enhancements of 1, 10 and 0.1, respectively — i.e. L2 is isotropically unenhanced,
softened, and hardened compared to the surrounding layers, respectively.

In order to determine the separate effects of basal and nonbasal glide, anisotropic
experiments #4–#5 systematically consider one glide type enhanced/suppressed
while the other is unbiased (compared to isotropy) in the fabric configurations
maximally biased towards each glide type, namely the time-independent (static),
uniform fabric fields � D 0° and � D 45° for easy and hard glide, respectively.
That is:

#4: L2 is vertical-shear softened (enhanced) uniformly: the fabric is statically
maximally biased towards vertical shear by basal glide (� D 0°) with basal
glide enhanced, while nonbasal glide is unbiased compared to isotropy
(E∦ D 1),

#5: L2 is vertical-shear hardened (suppressed) uniformly: the fabric is statically
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maximally biased towards vertical shear by nonbasal glide (� D 45°) with
nonbasal glide supressed, while basal glide is unbiased compared to isotropy
(Ek D 1),

The corresponding enhancement factors are listed in table 5.1.
For all experiments but #6, the fabric axes do not evolve with time. In experiment

#6 — which is otherwise identical to experiment #5 — the fabric field is allowed to
evolve kinematically starting from � D 0° according to the local rotation rate (!xy)
by

Dt� D 0:1!xy ;

i.e. ˛ D 0:1; f .ω/ D !xy in (5.27). Experiment #6 thus seeks to investigate how
the layer morphology with evolving (nonuniform) fabric axes might be different
from that of uniform static-fabric layers. Note that experiment #6 considers the
case where hard glide is suppressed in L2 while easy glide is unbiased compared to
isotropy (as in experiment #5), and not oppositely (as in experiment #4), because
disturbed flow is found for experiment #5.

Since no dynamic recrystallization etc. is accounted for in experiment #6, �
will continue to increase with time due to shearing, eventually approaching � � 90°
and larger. Such large deviations from vertical is seldom found in ice core thin
sections, and, consequently, is unlikely to be a fabric state generally realized over
larger scales. The value ˛ D 0:1 was therefore chosen to effectively slow down the
time-scale of fabric rotation in the absence of recrystallization, thereby allowing the
simulated disturbances to evolve before the fabric orientation deviates considerably
from vertical.

5.5 Results

The left-hand panels of figures 5.6–5.9 show the L2 interface positions (black lines)
at four different points in time for experiments #1, #3, #5, and #6, respectively
(panels (a) showing the solution at t D 0). Here, the downslope direction is from
left to right. Note that the four times are not identical in each figure, which were
chosen per experiment to illustrate the range of simulated behaviour. The yellow–
red coloured contours show the corresponding strain-rate magnitudes in terms of
I2. Pε/, whereas the blue contours depict the regions where the vertical velocity is
negative. The right-hand panels show the horizontal velocity component on the
periodic boundary (dashed line in left-hand panels) compared to the initial velocity
profile (full versus dotted lines).

Figure 5.6 (experiment #1) shows the unenhanced, isotropic deformation of L2
(trace layer experiment). Starting from a flat, undisturbed layer geometry [figure
5.6.(a)], this configuration leads to undulations on the upper and lower L2 interfaces
that propagate throughout the simulation. The same was found for the isotropically
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softened experiment (#2) and the enhanced vertical-shear experiment (#4) (not
shown for brevity), but with much larger interfacial propagation speeds. In all three
cases (#1,#2 and #4), the layer evolution is stable in the sense that no disturbances
develop.

Figure 5.7 (experiment #3), on the other hand, shows that an isotropically
hardened layer with negligible internal shear-deformation can generate some slight
buckling behaviour, caused by a transverse wave being mediated.

Figure 5.8 (experiment #5) shows the simulated effect of L2 being vertical-shear
hardened, in which case severe buckling develops [figure 5.8.(c,d)]. Note that in
this experiment, vertical shearing is hardened relative to longitudinal and transverse
deformation, unlike the isotropically hardened experiment #3 (figure 5.7). For
reference, the black arrows show the (static) fabric axes orientations along the L2
interface cells.

Figure 5.8 (experiment #6) shows the simulated effect of suppressing nonbasal
plane shear in L2 — similarly to experiment #5 — but with a kinematically evolving
(nonstatic) fabric. For reference, the black arrows show the instantaneous fabric axes
orientations along the L2 interface cells. In this experiment, severe buckling also
develops, although the vertical extents are slightly smaller compared to experiment
#5, and layer folding is found to occur relatively fast [figure 5.8.(d)].
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Figure 5.6: Experiment #1. Left-hand panels: L2 interface position (black full lines) at four points in time (a)–(d)
(top–bottom) and the corresponding strain-rate magnitude in terms of I2. Pε/ in yellow–red contours. Right-hand panels:
Instantaneous vertical profile of ux (full line) at the periodic boundary (x D 3 km) compared to at the initial profile at
t D 0 (dotted line).
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Figure 5.7: Experiment #3. Left-hand panels: L2 interface position (black full lines) at four points in time (a)–(d)
(top–bottom) and the corresponding strain-rate magnitude in terms of I2. Pε/ in yellow–red contours. Right-hand panels:
Instantaneous vertical profile of ux (full line) at the periodic boundary (x D 3 km) compared to at the initial profile at
t D 0 (dotted line).
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Figure 5.8: Experiment #5. Left-hand panels: L2 interface position (black full lines) at four points in time (a)–(d)
(top–bottom) and the corresponding strain-rate magnitude in terms of I2. Pε/ in yellow–red contours. Right-hand panels:
Instantaneous vertical profile of ux (full line) at the periodic boundary (x D 3 km) compared to at the initial profile
at t D 0 (dotted line). For reference, the black arrows in the left-hand panels show the instantaneous fabric axes
orientations associated with the cells along the L2 interfaces.
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Figure 5.9: Experiment #6. Left-hand panels: L2 interface position (black full lines) at four points in time (a)–(d)
(top–bottom) and the corresponding strain-rate magnitude in terms of I2. Pε/ in yellow–red contours. Right-hand panels:
Instantaneous vertical profile of ux (full line) at the periodic boundary (x D 3 km) compared to at the initial profile
at t D 0 (dotted line). For reference, the black arrows in the left-hand panels show the instantaneous fabric axes
orientations associated with the cells along the L2 interfaces.
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Figure 5.10: Morphological evolution of multilayered Al/Cu compound (brighter phases
are Cu) consisting of stacked disks which are sheared with a 1 RPM rotation-rate parallel to
the layers. The left-hand panel (a) shows the initial layer configuration, and the right-hand
panel (b) shows the configuration at some later time. The images are acquired by 3D
X-ray synchrotron tomography, and the horizontal scale of each panel is approximately
500 µm. The panels are reprinted with permission by Mohsen Pouryazdan Panah under
the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0) and correspond to panels f and h of figure 2 in Pouryazdan et al.
(2017).

5.6 Discussion and outlook

In the idealized simulations presented here, disturbances (significant buckling and
folding) are found to occur only in layers opposing hard glide, sandwiched between
relatively soft layers. This can be interpreted as the soft, bounding layers provide a
differential drag on the upper and lower interfaces of a shear-hardened layer which
then buckles if unwilling to shear. The buckling may subsequently evolve into
fold if (i) the upper, concave part of a buckle finds itself in a faster flow regime,
in which case the fold is trivially induced by the velocity-shear structure, or (ii)
if the fabric evolves in some nonuniform way rendering the buckling unstable.
The fact that disturbances evolve in mechanically hard layers was also recently
found to be the case in deformation experiments and numerical simulations of
multilayered metallic compounds (Pouryazdan et al., 2017). Specifically, they
considered multilayered samples of Al/Cu and Ag/Cu, finding that mechanically
stronger layers, embedded in thicker layers of weaker material, developed quasi-
regular folds in both deformational experiments (figure 5.10) and in numerical
simulations by modelling the material as a nonlinear fluid. Comparing the present
simulated disturbances to their work, or, for that matter, to geological phenomena
such as the folding of kilometre-thick rock layers (Fossen, 2010), the similarity
is quite remarkable given the large differences in material type and spatial scale
(millimetres vs. kilometre).

Vertical-shear profiles derived from the Dye 3 borehole tilt reveal that deep ice
from the last glaciation (ice-age) is about 2.5 times softer for vertical shearing com-

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
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pared to Holocene ice (present interglacial) (Dahl-Jensen and Gundestrup, 1987),
and that ice-age ice generally has smaller crystals, larger dust/impurity concentra-
tions, and a stronger single-maximum fabric. While dust and other impurities can
in principle enhance deformation rates, the concentrations found in ice-age ice are
generally too small to affect deformability4 (Cuffey and Paterson, 2010). If crystal
sizes are to play an important role in the development of internal disturbances,
the numerical simulations above suggest that size distribution changes with depth
might not alone be enough: If crystal sizes vary in an otherwise isotropic fabric,
such an effect could be captured macroscopically by an isotropic enhancement
factor. Isotropic enhancements are meanwhile found not impact the development of
disturbances according to control simulations #2 and #3. If the fabric is anisotropic,
however, there is no reason to believe that Ek and E∦ should have identical depen-
dencies on crystal sizes. In this sense, crystal sizes might be relevant for explaining
disturbed flow only insofar the fabric is anisotropic, in which case the enhancement
ratio Ek=E∦ might be affected.

The present simulations are rather idealized in an attempt to probe the morphol-
ogy of single-maximum layers. A natural next step would be to increase the realism
by considering a nonlinear rheology with e.g. n D 3. Independently of n, however,
it is not a priori clear whether the transition to disturbed flow is a gradual function
of Ek=E∦. It would therefore be interesting to study the deformational behaviour
for different n across a range of enhancement factor ratios, and to compare with
measured ice core fabrics together with radargrams adjacent to the coring sites (re-
vealing whether the flow is disturbed or not). Moreover, experiment #6 suggests that
large deviations from vertical fabric axes might not be necessary to cause disturbed
flows, which could also be compared against ice core fabrics and radargrams.

Improving upon the model realism, it is not clear how the transient behaviour
would be affected by initializing the model with a vertical layering based on ob-
servations. One could imagine, for example, that smoothly changing enhancement
factors with depth in a many-layered configuration might lessen the susceptibility
to buckling and folding because of reduced drag differences occurring between
upper and lower interfaces. On the other hand, the present fabric evolution is crude
and does not account for recrystallization processes. Given the difference between
experiments #4, #5 and #6, a realistic account of fabric evolution might have a
significant impact on the susceptibility of layers to buckle and fold.

The present work has demonstrated the usefulness of a Lagrangian layered
ice-flow model in probing the morphology of internal layer disturbances, even for
very idealized ice geometries. Specifically, the simulations presented here suggest
that studying fabrics which suppress hard glide might provide important insight
into the development of internal layer disturbances. Moreover, this work indicates

4Impurities may affect size distributions of crystals by (i) inhibiting growth by impeding grain-
boundary migration, and (ii) increasing the dislocation density which induces the development of new
grains by nucleation (Cuffey and Paterson, 2010).



5.6. DISCUSSION AND OUTLOOK 89

that a lot might still be learned from studying how internal deformation depends
on bulk, anisotropic macroscopic flow parameters, without the need to increase the
realism of the fabric microstructure description using e.g. micro–macro models.
For future work, one could therefore consider a more realistic internal layering
as a natural next step, which may later be improved using micro–macro models
once the large-scale dependence of ice flow on the macroscopic flow parameters is
sufficiently understood for realistic geometries.
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Chapter 6

Hydrodynamical turbulence

Fully developed three-dimensional (3D) hydrodynamical turbulence is generally
characterized by a nonlinear transfer of energy from the large forcing scale of motion
(integral scale) to the small dissipative Kolmogorov scale, �. In the large Reynolds
number (Re) limit, �! 0, the forcing and dissipative scales are separated by a self-
similar inertial subrange spanning many orders of magnitude. Within this subrange
of inertial flow, far from both forcing and dissipation scales, energy cascades from
large scales to small scales due to inertial interactions. This cascade process may be
understood in terms of the Richardson cascade picture (figure 6.1): large vortical
flow structures, or eddies, break up into smaller ones, passing on their energy, which
in turn break up into smaller ones, and so on until the characteristic eddy sizes reach
the dissipation scale where viscous drag acts as an energy sink by transforming
mechanical (kinetic) energy into heat. In a statistical steady state, the average
energy injection rate (pumping), ", therefore matches the average dissipation rate.
Understanding the mechanisms behind this cascade of energy is central to the study
of turbulence.

In two-dimensional (2D) turbulence, however, the energy cascade is reversed,
synonymous to an inverse cascade, implying energy cascades upscale to ever larger
scales until some large-scale drag effectively removes energy (figure 6.1). By
considering the rate of change of energy in the Navier–Stokes equation (NSE), the
reversal in 2D may be explained by the existence of enstrophy, another quadratic
invariant besides energy, which effectively blocks the forward cascade of energy
(Kraichnan, 1967, 1971). As a consequence, and partly because the NSE has
notoriously resisted analytical analysis, quadratic invariants play a fundamental role
in the understanding of turbulent cascade dynamics, which are central to studies #3
and #4 of this thesis.

Due to the cross-scale nature of turbulent fluid interactions, much literature
focuses on the dynamics of turbulence in spectral space instead of real space. This
has the advantage of providing a natural scale separation in terms of wavenumbers,
albeit not perfect. Turbulent velocity fields consist of collections of compact vortical
structures (eddies), self-advecting in a chaotic manner, which is different from a col-
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Figure 6.1: The Richardson energy cascade picture of turbulence. In three-dimensional
(3D) turbulence (left figure), energy cascades from the large forcing scale of motion to
the small energy dissipation scale (Kolmogorov scale, �), while in two-dimensional (2D)
turbulence (Kraichnan picture, right panel), energy cascades reversely to larger scales where
large-scale drag effectively acts as an energy sink. The cascade picture involves eddies
breaking up in 3D, or merging in 2D, within the inertial subrange, defined as the range of
scales far from the forcing and dissipation scales in which only inertial interactions are
present. The lower left axis shows schematically the spectral energy density of eddies as a
function of their characteristic size, L, suggesting the spectral decomposition provides a
useful (approximate) separation of scales of motion.

lections of waves (Davidson, 2004). However, by considering the energy density of
a single eddy as schematically shown in figure 6.1 (lower left axis), the distribution
is relatively narrowly defined around the inverse characteristic eddy size (Davidson,
2004). In this sense, considering spectral turbulence dynamics instead of real-space
dynamics therefore proves a reasonable, but not perfect, separation of scales useful
for studying the cross-scale dynamics of turbulent cascades.

In the following sections, background essential to studies #3 and #4 is briefly
introduced, specifically the existence of quadratic quantities, triad dynamics, the
spectral-helical decomposition, and shell models of turbulence.

6.1 Real-space invariants

Motivated by the Richardson energy cascade picture, consider the rate of change of
kinetic energy, E D 1=2 R uiui dx, by calculating DtE using the NSE (2.8) plus
some external forcing, fi . If the domain is periodic or has closed boundaries, all
divergence terms vanish when applying the divergence theorem, and the rate of
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change (the energy equation) becomes

DtE D ��Z C FE ; (6.1)

where the energy pumping is defined as FE D
R
uifi dx, enstrophy is defined as

Z D R !i!i dx (vorticity squared), and !i .x/ D .r � u.x//i D �ijk@juk.x/ is the
vorticity (�ijk being the Levi-Civita symbol). Thus, in a steady state, the energy
pumping must be balanced by the viscosity, �, times enstrophy. With increasing
Reynolds number (decreasing �), enstrophy must therefore grow in order to balance
the forcing, which is achieved by extending the inertial range, thereby allowing
smaller-scale velocity gradients to be resolved.

By applying the curl to the NSE, one obtains the vorticity equation from which
the rate of change of Z can in turn be derived by multiplying with !i on both sides
of the vorticity equation and integrating over the fluid domain, giving (the enstrophy
equation)

DtZ=2 D
Z
!i!jSij dx � �

Z
j�ijk@j!kj2 dxC FZ : (6.2)

The strain-rate tensor (2.5) is here denoted Sij , and the enstrophy pumping is de-
fined as FZ D

R
!i�ijk@jfk dx. From (6.2), it follows that enstrophy may change

in the inviscid (� D 0), force-free limit by the vortex stretching/bending term,R
!i!jSij dx, due to straining of the velocity field. In 2D turbulence, however,

the stretching and bending term can be shown to be absent. Consequently, en-
strophy is also inviscidly conserved (like energy) and can only grow by increased
pumping (forcing). Enstrophy can therefore not grow with increasing Reynolds
number (decreasing �) for the steady state of (6.1) to be fulfilled. Instead, energy
cascades reversely to larger scales, while enstrophy cascades down scale (figure 6.2)
(Kraichnan, 1967, 1971).

Finally, a third hydrodynamical inviscid invariant, helicity, also exists, which
was only relatively recently identified (Brissaud et al., 1973; André and Lesieur,
1977). Helicity is defined as the inner product between velocity and vorticity,
H D R

ui!i dx, and is related to the flow chirality (handedness). Applying the
NSE and vorticity equation to the definition of H , the rate of change of helicity is
given by (assuming periodic or closed boundaries)

DtH=2 D ��
Z
.@jui /.@j!i / dxC FH ; (6.3)

where the helicity pumping is defined as FH D 1=2
R
.!ifi C !i�ijk@jfk/ dx.

Note that helicity has two important properties relevant in the following: (i) unlike
energy and enstrophy, helicity is not sign-definite, and (ii) helicity is identically
zero in 2D since vorticity is always perpendicular to the plane of flow.
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Figure 6.2: Ideal time-averaged energy spectra, E.k/, in 3D (left) and 2D (right), showing
the average energy and enstrophy cascade directions relative to the energy pumping (forcing)
scale (black arrow). Note that small k correspond to large spatial scales and vice-versa. The
scaling exponents follow from a Kolmogorov "K41" (Kolmogorov, 1941a,b) dimensional
analysis for both the energy (k�5=3) (Rose and Sulem, 1978; Frisch, 1995) and enstrophy
(k�3) (Kraichnan, 1967; Batchelor, 1969) inertial ranges.

6.2 Spectral-space dynamics

The dynamics of turbulence in spectral space are obtained by applying the velocity
field Fourier transform pair

ui .k/ D .2�/�3
Z
ui .x/e�ik�x dx and ui .x/ D

Z
ui .k/eik�x dk (6.4)

to the NSE and the incompressibility constraint. Note that factors of i are here
the imaginary unit, not to be confused with component indices (subscripts) of the
velocity field, e.g. ui .k/.

In spectral space, incompressibility, @iui .x/ D 0, translates intoR
e�ik�x@i

R
ui .k0/eik

0�x dk0dx D 0, implying

kiui .k/ D 0; (6.5)

where the identity ı.k � k0/ D .2�/�3 R exp.i.k � k0/ � x/ dx was used. That is,
the velocity components are orthogonal to their wave vectors.

For the NSE, the spectral-space version becomes (normalizing units such that
� D 1) (Kraichnan and Montgomery, 1980; Ditlevsen, 2010)

.@t C �k2/ui .k/ D i
“

kCk0Ck00D0

�
ıil �

kikl

k2

�
k00j u�j .k0/u�l .k

00/ dk0dk00C fi .k/; (6.6)
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u.k/ u.k 0/

u.k00/

k
k0

k00

Figure 6.3: A triad of waves fk;k0;k00g and the spectral velocity components
fui .k/; uj .k0/; ul .k00/g involved in the corresponding triad interaction. For reference, vor-
tices are drawn adjacent to each leg, schematically illustrating the (approximate) inverse
relationship between wavenumber and characteristic eddy size.

using Parseval’s identity ui .�k/ D u�i .k/, and where p.k/ has conveniently been
written in terms of ui .k/ by taking the divergence of the NSE [giving @i ip.x/ D
�@i .uj .x/@jui .x//] and Fourier transforming the result.

From (6.6), the evolution of a given spectral velocity component, ui .k/, is
governed by the sum over all three-wave interactions, or triad interactions, be-
tween velocity components fui .k/; uj .k0/; ul.k00/g given that their wave vectors
fulfil kC k0C k00 D 0 (triangles in spectral space, figure 6.3). Studying turbulent
cascade dynamics in spectral space therefore amounts to studying the behaviour of
triad interactions, such as how triad interactions of different (triangular) geometries
contribute to the energy and helicity cascades (or enstrophy cascade in 2D). While
the forward energy cascade in 3D is dominated by local1 triad interactions (Batche-
lor, 1953), the 2D inverse energy cascade is dominated by nonlocal2 interactions

1Wavenumbers of approximately similar size, i.e. approximately equilateral triangles.
2The smallest wavenumber being less than one-fifth the middle wavenumber.

E
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E
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/ E.k 0/

E.k00/

k

k0
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Figure 6.4: Mean energy transfers between triad components (legs) in 3D (left) and 2D
(right). In 3D, local interactions are predominantly responsible for the (forward) energy
cascade (Batchelor, 1953), whereas in 2D, nonlocal interactions are predominantly respon-
sible for the (reverse) energy cascade (Kraichnan, 1971). The component-wise energies
are defined as E.k/ D ui .k/u�i .k/=2. Solid blue (dashed red) arrows denote mean for-
ward (reverse) energy transfers, while thick (thin) arrows represent dominant (subordinate)
transfers.
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C �

u.k/ D uC.k/hC.k/ u.k/ D u�.k/h�.k/

Figure 6.5: Positive (left) and negative (right) helical flows, defined as flows parallel or
antiparallel to the local curl.

(Kraichnan, 1971) and is bidirectional (Fjørtoft, 1953; Batchelor, 1953; Kraichnan,
1967; Kraichnan and Montgomery, 1980) — implying energy is transferred from
the middle wave mode into both the larger mode (dominant transfer) and smaller
mode (subordinate transfer) (Kraichnan, 1967; Kraichnan and Montgomery, 1980)
(figure 6.4).

6.3 Spectral–helical decomposition

In literature, the spectral-helical decomposition has proven particularly fruitful for
understanding the role played by helicity and its relation to enstrophy in 2D. The
helical decomposition exploits spectral incompressibility, k � u.k/, by decomposing
u.k/ onto two orthogonal basis modes, hC.k/ and h�.k/, that is

u.k/ D uC.k/hC.k/C u�.k/h�.k/; (6.7)

which are simultaneously also eigen modes of the (spectral) curl operator, ik � .�/.
In real space, helicity is defined as H D R

u.x/ � r � u.x/ dx, and a flow is
characterized as maximally positive (negative) helical if u.k/ is parallel (antiparallel)
to r � u.k/ (figure 6.5). In this sense, decomposing u.k/ onto curl eigen modes
is particularity advantageous since any maximally positive or negative helical flow
is given entirely in terms of one basis mode, e.g. u.k/ D uC.k/hC.k/ or u.k/ D
u�.k/h�.k/ (figure 6.5).

Waleffe (1992) showed that hs.k/ D isOi.k/C Oj.k/ is exactly such a curl eigen
basis if Oi.k/ D k � r=jk � rj and Oj.k/ D �Ok.k/ � Oi.k/, where r is an arbitrary
vector and s D ˙ is a sign coefficient, in which case the eigen-value is sk [i.e.
ik�hs.k/ D skhs.k/]. In addition to k �hs.k/ D 0 by definition, the basis has other
useful properties such as h�s .k/ D hs.�k/ D h�s.k/ and hs.k/ � h�t .k/ D 2ıst ,
which ensures the reality of u.x/ and leads to the particularly simple expressions
for the spectral densities of energy, helicity and enstrophy, respectively

E.k/ D u.k/ � u�.k/=2 D .juC.k/j2 C ju�.k/j2/=2
H.k/ D u.k/ � ω�.k/ D k.juC.k/j2 � ju�.k/j2/
Z.k/ D ω.k/ � ω�.k/ D k2juC.k/j2 C ju�.k/j2/:
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Figure 6.6: The eight helical triad interactions reduce to four groups (G1–G4) when sorting
against shared coupling coefficients.

That is, the spectral densities are given entirely in terms of the positive and negative
helical energy densities, juC.k/j2 and ju�.k/j2.

In the helical basis, the two helical velocity components, uC.k/ and u�.k/
(s D ˙), are related to the regular spectral components by us.k/ D 1=2h�s .k/ �u.k/
using the above basis identities. The spectral-helical NSE directly follows by
calculating

@tus.k/ D 1=2h�s .k/ � @tu.k/; (6.8)

where @tu.k/ D
R
@tu.x/e�ik�x dx. Instead of inserting the real-space NSE given

by (2.8), an alternative symmetric form is particularly convenient: invoking the
vector calculus identity .u.x/ � r/u.x/ D ru2.x/=2 � u.x/ � .r � u.x// and
symmetrizing ω.x/ � u.x/ D 1

2
.ω.x/ � u.x/ � u.x/ � ω.x//, the real-space NSE

may be written as

.@t C �r2/u.x/ D �rC.x/ � 1
2
.ω.x/ � u.x/ � u.x/ � ω.x// ; (6.9)

where C.x/ D ��1p.x/ C u2.x/=2 is the Bernoulli function, and vorticity is by
definition ω.x/ D r � u.x/.

Fourier transforming (6.9) and inserting the result into (6.8), the helically
decomposed NSE (spectral-helical NSE) is uncovered (Waleffe, 1992)

.@t C �k2/us.k/ D �1=4
“

kCk0Ck00D0

X
s0;s00

.s0k0� s00k00/ g u�s0.k0/u�s00.k00/ dk0dk00 ; (6.10)

where

g D h�s0.k0/ � h�s00.k00/ � h�s .k/ (6.11)
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is a factor that depends on both triad shape and orientation (see section below on
coupling weights), and .s0k0� s00k00/ g is the effective triad coupling weight.

Importantly, the spectral-helical NSE (6.10) differs from the ordinary spectral
NSE (6.6) in that each triad interactions is split into 23 D 8 triad sub-interactions
between helical velocity components, as indicated by the inner sum over helical
signs fs; s0; s00g in (6.10). By sorting against shared coupling coefficients, four
groups of sub-interactions emerge (figure 6.6):

fs; s0; s00g D ˙fC;�;Cg;˙fC;�;�g;˙fC;C;�g;˙fC;C;Cg;

hereafter referred to as G1–G4, respectively. The spectral-helical NSE (6.10) thus
has the cross-helical triad dynamics explicitly resolved, which is the starting point
in studies #3 and #4.

G1–G4 triad behaviours

Isolating terms involving only a single triad of waves, fk;k0;k00g, in the discrete
form of the spectral–helical NSE (6.10), one finds (using the cyclic property of g)

Pus D .s0k0� s00k00/ g u�s0u�s00

Pus0 D .s00k00� sk/ g u�s00u�s
Pus00 D .sk � s0k0/ g u�su�s0

; (6.12)

where the compact notation for time derivatives, Pus D dtus.k/; Pus0 D dtu
0
s.k0/

and Pus00 D dtu00s.k00/, is adopted. Note that the cyclic symmetry of (6.12) implies
k � k0 � k00 can be assumed without loss of generality. Multiplying by u�s ; u�s0 and
u�s00 in the three equations (6.12), respectively, it follows that each triad interaction
conserves energy, and similarly helicity by multiplication of sku�s ; s0k0u�s0 and
s00k00u�s00, respectively. While the energy fluxes between the three triad legs (velocity
components) are fixed and determined by the coefficients .s0k0� s00k00/, .s00k00� sk/,
and .sk � s0k0/ in (6.12), the average energy-flux direction (to/form a leg) depends
on the sign of the average triple-correlator hu�su�s0u�s00i C c:c: which is unknown.

Waleffe (1992) suggested that the leg-to-leg transfers in G1–G4 triads may be
determined by a linear stability analysis of the steady solutions

fus; us0; us00g D fU0; 0; 0g; f0; U0; 0g; f0; 0; U0g;

using (6.12), where U0 is some initial value. That is, adding infinitesimal pertur-
bations to the two energyless modes of each steady state, the linear stability of the
velocity components may be assessed. In the case of fus; us0; us00g D fU0; 0; 0g, for
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example, the componentwise time-derivatives become8̂<̂
:
Pus D 0;
Pus0 D .s00k00� sk/gu�s00U �0
Pus00 D .sk � s0k0/gU �0 u�s0

H)
(
Rus0 D .s00k00� sk/.sk � s0k0/jgjjU0jus0
Rus00 D .s00k00� sk/.sk � s0k0/jgjjU0jus00

:

The second-order derivatives thus imply exponential growth whenever the coefficient
.s00k00� sk/.sk � s0k0/ is greater than zero. Similarly, the two other states predict
exponential growth for legs fus; us00g and fus; us0g whenever .sk � s0k0/.s0k0 �
s00k00/ > 0 and .s0k0�s00k00/.s00k00�sk/ > 0, respectively. Based on this observation,
Waleffe (1992) suggested that energy, one average, flows out of the most unstable
mode and into the other two, which coincides with the mode having the largest
absolute coefficient value in (6.12). From a detailed analysis, it follows that the
smallest leg (largest scale) is unstable in G1 and G3 interactions, thus contributing
exclusively to a forward energy cascade (denoted F-class interactions), while in
G2 and G4 interactions the middle leg is unstable, thus partly contributing to a
reverse energy cascade (denoted R-class interactions). For G2 interactions, however,
Waleffe (1992) showed that the dominant transfer might change from being forward
(middle leg to largest leg) to reverse (middle leg to smallest leg) depending on triad
geometry.

The predictions from a linear stability analysis are summarized in figure 6.7,
showing the G1–G4 triad behaviours (leg-to-leg transfers) and the corresponding
spectra based on scaling arguments.

The linear stability analysis and the role played by helicity is the focus in study
#3 where a simple energy cascade model (shell model) is introduced. The model
is used to test numerically whether the linear stability predictions carry over when
G1–G4 triads are coupled as the NSE prescribes. In study #4, a novel explanation
for the split forward/reverse cascade of G2 triads (figure 6.7 lower plots) is proposed
in terms of a new quadratic invariant in analogy to enstrophy i 2D, and the behaviour
near the transition geometries k0=k D 3:6 is investigated numerically.
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Figure 6.7: Behaviour of G1–G4 triads (leg-to-leg transfers) based on a linear stability analysis (Waleffe, 1992). G1
and G3 triads (F-class) contribute to a forward energy cascade (transfers from smallest to larger legs), and G2 and G4
triads (R-class) have a partly reversed energy cascade (transfers from middle to larger and smaller legs). G2 triads
additionally exhibit a cascade reversal around geometries with a middle-to-smallest leg ratio of k0=k D 3:6, shifting the
dominant energy transfer direction from forward (in local triads) to reverse (in nonlocal triads) Waleffe (1992). The
scaling exponent �7=3 below the forcing scale in G4 corresponds to a forward cascade of helicity (Brissaud et al.,
1973). In study #3, the behaviours of G1–G4 are studied numerically in both isolation and coupled together (as the NSE
prescribes), and are compared to the linear stability predictions shown in this figure. In study #4, a physical mechanism
responsible for the G2 reversal is proposed, and the behaviour near the transition geometries is investigated numerically
(question marks in figure).
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Figure 6.8: The rotated spectral-helical bases of each triad leg, µ and Oz, such that Oz is shared
among all legs and all µ components lie on the triad plane.

G1–G4 coupling weights

The geometry term g defined in (6.11) may be written in a particularly convenient
form, which is central to the derivation of G1–G4 coupling weights in study #3
in the case of a shell model. Rotating the basis pair of each triad leg into frames
sharing a component normal to the triad plane, denoted Oz, the bases may be written
as hs.k/ D is Oi.k/COj.k/ D eis�k .OzCisµ.k// and similarly for hs0.k0/ and hs00.k00/
by interchanging fk; s; �kg ! fk0; s0; �k0g; fk00; s00; �k00g, respectively. The shared
component, Oz, is, by definition of being normal to the triad plane, constrained by
Oz D k � k0=jk � k0j D k0� k00=jk0� k00j D k00� k=jk00� kj, whereas the in-plane
components are by orthogonality µ.k/ D Ok� Oz, µ.k0/ D Ok0� Oz, and µ.k00/ D Ok00� Oz.
The resulting bases are shown in figure 6.8.

Using these rotated bases, the geometry term may instead be written as

h�s0.k0/ � h�s00.k00/ � h�s .k/ D �e�i.s�kCs0�k0Cs00�k00/

� Q.k; k
0; k00/

2kk0k00
ss0s00.sk C s0k0C s00k00/; (6.13)

where Q.k; k0; k00/ D .2k2k02 C 2k02k002 C 2k002k2 � k4 � k04 � k004/1=2, and
the trigonometric identity sin.˛k/=k D sin.˛k0/=k0 D sin.˛k00/=k00 D Q.k; k0; k00/
=.2kk0k00/ has been used (Waleffe, 1992). Writing the geometry term this way thus
allows to distinguish between contributions from a triad’s shape versus orientation
(the exponential).

6.4 Shell models

Direct numerical simulations of the NSE are still, by and large, computationally
unfeasible even for short inertial subranges because: (i) of the large number of
degrees of freedom required to establish inertial subranges, and (ii) because of the
small time step needed to account for the dynamical stiffness of the NSE. As a
consequence, a lot of effort has been put into developing reduced wave-space models
of turbulence allowing long inertial subranges to be resolved in a computationally
cost-effective manner.
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Shell models are a class of such models in which only wave vectors with
exponentially distributed magnitudes are considered. They may be regarded as
structureless cascade models where the dimensionality of wave-space is reduced
to one dimension and where the nonlinear triad interaction terms are carefully
constructed to conserve all NSE invariants. Shell models have received a lot of
attention in literature because of certain statistical quantities being remarkably
similar to those found for the NSE. This includes their multi-scaling velocity
correlations with nontrivial scaling exponents almost indistinguishable from the
NSE case (Jensen et al., 1991), as well as their possession of an inertial law fixing the
scaling of third-order structure functions in a similar fashion to the much celebrated
four-fifths law (Ditlevsen, 2000).

The purpose of this section is to briefly introduce shell models since they play a
central role in the experimental parts of studies #3 and #4. For more comprehensive
review, the reader is referred to e.g. Biferale (2003); Ditlevsen (2010).

In general terms, shell models can be written in a form similar to the regular3

spectral NSE (6.6) (no summation over repeated indices implied)

.dt C �k2n/u.kn/ D ikn
X
m;l

InIm;lu
�.km/u�.kl/C fn; (6.14)

where u.kn/ is the spectral velocity component of the nth shell (shell velocity),
and InIm;l are interaction coefficients constrained to preserve energy, helicity (or
enstrophy), and phase-space volume, similarly to the NSE. The discretely resolved
wavenumbers are given by the geometric series

kn D k0�n; (6.15)

where k0 is the wavenumber of the largest scale, � is the shell (wavenumber) spacing,
and n D 0; 1; � � � ; N where N corresponds to the largest resolved shell number
(smallest scale). The forcing term fn is typically applied to a single shell only and
may be constructed to allow full control over the average inputs of energy, helicity
(or enstrophy). Finally, �k2nu.kn/ is a dissipation term similar to the corresponding
term in the NSE.

The exact functional form of InIm;l is what distinguishes the shell models
(Biferale, 2003; Frisch, 1995; Ditlevsen, 2010). For the purpose of this introduction,
consider the simple, widely studied nearest-neighbour limit of triad interactions
where the middle and largest triad legs are, respectively, � and �2 times bigger than
the smallest leg, inspired by the Richardson cascade picture of local interactions
being dominant. In this limit, the interaction model is giving by (Ditlevsen, 2000)

InIm;l D ınC1;mı�.nC2/;l �
�

�
ın�1;mı�.nC1/;l C

1 � �
�2

ı�.n�1/;mı�.n�2/;l ;

3Studies #3 and #4 consider a helically decomposed version the shell model introduced here,
which is structurally similar.
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Figure 6.9: Example of four consecutively resolved triad geometries in the nearest-neighbour
limit of triad interactions (middle and largest triad leg being � and �2 times bigger than
the smallest leg, respectively) with � D 1:4. All triads have identical shapes but are scaled
versions of each other (scaled by �) and therefore share two legs with the previous/next
triad.

where ıi;j is the Kronecker delta, � is a model parameter, and negative wavenumber
indices are defined such that u.k�n/ � u.�kn/ D u�.kn/. Inserting InIm;l into
(6.14), the shell model takes the form

.dt C �k2n/u.kn/ D ikn
�
u�.knC1/u.knC2/ � �

�
u�.kn�1/u.knC1/C

1 � �
�2

u.kn�2/u.kn�1/
�
C fn:

The closing of triads in the NSE dictates that the shell spacing, �, must be bounded
by the triangle inequality, which in the nearest-neighbour limit amounts to kn C
�kn � �2kn H) 1C � � �2, implying 1 < � � g, where g is the golden ratio.
Furthermore, because kn (6.15) is a geometric series, the resolved triad shapes are
identical for a given shell spacing � and model InIm;l (unless models are mixed),
and are thus scaled versions (multiples of �) of each other (exemplified in figure 6.9
for the nearest-neighbour limit).

In study #3, this nearest-neighbour limit is considered in the case of a helically
decomposed shell model (coupling G1–G4), while study #4 explores the nonlocal,
acute triad limit m; l � n relevant for the cascade reversal associated with G2
interactions (figure 6.7).





Chapter 7

Study #3

7.1 Introduction

In literature, a linear stability analysis is frequently relied on to explain the behaviour
of individual helical triads (G1–G4) — that is, how energy is transferred between
triad components — based on the linear stability of the terms in (6.10) corresponding
to a single triad (6.12). In fully developed turbulence, however, it is not clear to what
extent linear stability is relevant. Such an analysis, which considers single-triad
states that are unlikely to be realized in physical flows, is very different from the full
NSE which simultaneously resolves all possible triad interactions. In this regard,
it is plausible that the behaviour of coupled triad configurations (G1–G4) cannot
generally be explained by studying the stability of steady solutions of single triad
systems.

Direct numerical simulations of the NSE (6.10) therefore seem unavoidable if
wanting to understand the influence of G1–G4 interactions in coupled configurations
and to what extent linear stability is relevant. Unfortunately, such simulations are
still relatively computationally expensive. As an alternative, important insights
might instead be made by gradually increasing the realism of reduced wave-space
models of the NSE such as shell models; that is by increasing the number of resolved
triad interactions in a systematic way. The present study adopts this methodology
by introducing a new nonlocal, helically decomposed shell model, derived from
the NSE and related to the helically decomposed Sabra shell model (De Pietro
et al., 2015). One important difference compared to other shell models is, however,
that the model comes with G1–G4 coupling weights directly related the NSE (no
rationale exists otherwise for choosing coupling weights). Using this model, the
coupled versus uncoupled G1–G4 behaviours are investigated, and how the energy
cascade is partitioned into separate components carried by G1–G4 interactions.
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Role of helicity in triad interactions in three-dimensional turbulence
investigated by a new shell model
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Fully developed homogeneous isotropic turbulence in two dimensions is fundamentally different from that in
three dimensions. In two dimensions, the simultaneous inviscid conservation of both kinetic energy and enstrophy
within the inertial range of scales leads to a forward cascade of enstrophy and a reverse cascade of energy. In three
dimensions, helicity, the integral of the scalar product of velocity and vorticity, is also an inviscid flow invariant
along with the energy. Unlike the enstrophy, however, the helicity does not block the forward cascade of energy to
small scales. Energy and helicity are conserved not only globally but also within each nonlinear triadic interaction
between three plane waves in the spectral form of the Navier-Stokes equation (NSE). By decomposing each plane
wave into two helical modes of opposite helicities, each triadic interaction is split into a set of eight helical triadic
interactions between helical modes [F. Waleffe, Phys. Fluids A 4, 350 (1992)]. Recently it was found that a subset
of these helical interactions, which render both signs of helicity separately conserved (enstrophy-like), leads to
an inverse cascade of (part of) the energy [L. Biferale et al., Phys. Rev. Lett. 108, 164501 (2012)]. Motivated
by this finding we introduce a new shell model, obtained from the NSE expressed in the helical basis, allowing
the eight helical interactions to be coupled as in the NSE and their relative contributions evaluated as a function
of both the net helicity input and triad geometry. By numerically integrating the new model, we find that the
intermittency of the energy cascade decreases with the net helicity input. Studying the partitioning of the energy
cascade between the eight helical interactions, we find that the decrease in intermittency is related to a shift in the
dominating helical interactions when helically forced, two of which exhibit a larger cascade intermittency than
the other six interactions. Among the relatively local triad geometries considered here, the partitioning of the
energy and helicity cascades between the eight helical interactions shows no sign of change with triad geometry.

DOI: 10.1103/PhysRevE.94.033115

I. INTRODUCTION

The role played by helicity in the cascade processes of
fully developed three-dimensional (3D) turbulence is elusive.
Helicity, the integral of the scalar product of vorticity and
velocity, is an inviscid invariant thought to be more or less
passively advected through the energy cascade from the large
integral scale to the small viscous (dissipating) Kolmogorov
scale of the flow. This stands in contrast to two-dimensional
(2D) turbulence, where the enstrophy, the integral of the
vorticity squared, is a second positive inviscid invariant besides
energy. The ratio of the dissipation of enstrophy to the
dissipation of energy scales with the Kolmogorov scale η as
η−2, thus for η → 0 the forward cascade of enstrophy prevents
a forward cascade of energy, which instead is transported to
larger scales. Following Waleffe [1] we refer to this as a reverse
cascade, synonymous to an inverse or upscale cascade.

A similar scaling argument for 3D turbulence leads to
the ratio of dissipation of helicity to dissipation of energy
scaling as η−1. Thus for a constant dissipation of helicity the
dissipation of energy vanishes when η → 0. Unlike the 2D
case, however, this does not prevent a forward cascade of
energy because helicity is not sign specific, implying that the
separate dissipation of positive and negative helicity structures
can grow as η−1, while the net dissipation of both energy and
helicity balance their respective inputs at the forcing scale.
In recent work by Biferale et al. [2] it was proposed that

*rathmann@nbi.ku.dk
†pditlev@nbi.ku.dk

if only interactions between same-signed helicity modes are
considered, a phenomenon corresponding to the reverse energy
cascade in 2D turbulence could be present in the 3D case, with
sign-fixed helicity playing the role of enstrophy.

In the spectral representation of the Navier-Stokes equation
(NSE), nonlinear interactions are represented by exchanges
of energy and helicity between three plane waves under the
constraint that their wave vectors (momenta) sum to 0, thereby
forming triangles (triads). In the interest of investigating
the role played by helicity in an incompressible flow, it is
useful to further decompose the spectral velocity components
u(k) in terms of helical modes. Under the helical decom-
position spectral velocity components u(k) are decomposed
onto a plane perpendicular to k using the incompressibility
k · u(k) = 0 such that u(k) = u+(k)h+(k) + u−(k)h−(k). The
basis vectors h±(k) are eigenvectors of the curl operator, i.e.,
ik × h±(k) = ±kh±(k), leading to the energy and helicity
being given by

E =
∑

k

(|u+(k)|2 + |u−(k)|2), (1)

H =
∑

k

k(|u+(k)|2 − |u−(k)|2) (2)

and the spectral form of the NSE being given by [1]

(∂t +νk2)us(k) = −1/4
∑

k+k′+k′′=0

∑
s ′,s ′′

(s ′k′−s ′′k′′)

h∗
s ′ (k′)×h∗

s ′′ (k′′) · h∗
s (k) u∗

s ′ (k′)u∗
s ′′ (k′′), (3)

where {s,s ′,s ′′} = ±1 are helical signs. The inner sum indi-
cates that each triadic interaction is split into a set of 23 = 8

2470-0045/2016/94(3)/033115(14) 033115-1 ©2016 American Physical Society
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distinct helical triadic interactions, or subinteractions, among
the helical modes. The interaction coefficient

(s ′k′ − s ′′k′′)h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k) (4)

will, for a given triad of waves k + k′ + k′′ = 0, give the
relative weights of the different subinteractions. By sorting
the subinteractions, four pairs with similar interaction co-
efficients arise [1], {s,s ′,s ′′} = ±{+,−,+}, ± {+,−,−}, ±
{+,+,−}, ± {+,+,+}, hereafter referred to as the four types
of subinteractions instead of the eight distinct.

By isolating terms in (3) involving only the three wave
vectors {k,k′,k′′} (a single triad), one finds

∂tus(k) = (s ′k′ − s ′′k′′) g u∗
s ′ (k′)u∗

s ′′ (k′′),

∂tus ′ (k′) = (s ′′k′′ − sk) g u∗
s ′′ (k′′)u∗

s (k), (5)

∂tus ′′ (k′′) = (sk − s ′k′) g u∗
s (k)u∗

s ′ (k′),

where g = −1/4 h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k). Multiplying by

u∗
s (k), u∗

s ′ (k′), and u∗
s ′′ (k′′), respectively, in the three equations,

(5), it immediately follows that energy is conserved within
each triad since ∂t (|us(k)|2 + |us ′ (k′)|2 + |us ′′ (k′′)|2) = 0, and
similarly for the helicity since ∂t (sk|us(k)|2 + s ′k′|us ′ (k′)|2 +
s ′′k′′|us ′′ (k′′)|2) = 0. Nonlinear fluxes of energy and helicity
thus result as the sum of exchanges of these quantities
between the three triad legs. Furthermore, by considering the
generalized energy- and helicity-like quantities

E(α) =
∑

k

kα(|u+(k)|2 + |u−(k)|2), (6)

H (β) =
∑

k

kβ(|u+(k)|2 − |u−(k)|2), (7)

it is straightforward to show that such quantities are similarly
conserved within each triad if the exponents α and β fulfill

(s ′k′/k − s ′′k′′/k) + (k′/k)α(s ′′k′′/k − s)

+ (k′′/k)α(s − s ′k′/k) = 0 (8)

and

s(s ′k′/k − s ′′k′′/k) + s ′(k′/k)β(s ′′k′′/k − s)

+ s ′′(k′′/k)β(s − s ′k′/k) = 0, (9)

respectively. The quantities E(α) and H (β), hereafter referred
to as the pseudoenergy and pseudohelicity, clearly depend on
both the specific triad shape by {k,k′,k′′} and the subinteraction
by {s,s ′,s ′′}, whereas the proper energy (α = 0) and helicity
(β = 1) are globally conserved across all triadic interactions,
as they should be.

Given the triad dynamics governed by (5), the lin-
ear stability of the fixed points {us(k),us ′ (k′),us ′′ (k′′)} =
{U0,0,0},{0,U0,0},{0,0,U0} may easily be calculated. Waleffe
[1] proposed that the average energy transfer directions
between triad legs might be determined by the stability of these
fixed points such that energy flows out of the unstable mode
(leg) and into the other two. By this rationale, the above four
subinteractions may be divided into two classes (each class
consisting of two subinteractions): one class in which energy
flows from the smallest wave mode (large scales) into the
two larger wave modes (smaller scales), termed the “forward”
class, and one class in which the energy flows out of the middle

mode and into the largest and smallest modes, termed the
“reverse” class. Here the subinteractions between same-signed
helical modes corresponding to the 2D turbulence case are of
the reverse class. Note that the largest wave mode (smallest
scale) is never an unstable mode.

In fully developed 3D turbulence it is not clear to what
extent linear stability analysis is relevant or, more importantly,
to what extent mixing of the four subinteractions is essential for
the overall behavior of the flow. Even if the flow by some strong
symmetry constraints could be prepared in a maximally helical
state (of only one helical sign), linear instability would make
energy flow into modes of opposite sign, obeying the helicity
conservation by creating equal amounts of helicity of both
signs in the process. In this work we thus seek to investigate
numerically the relative importance of the four subinteractions
in a coupled context—in particular, quantifying their relative
contributions to the energy and helicity cascades and the
energy cascade intermittency as a function of the net helicity
input and triad shape. Motivated by this we introduce a
new helical shell model inspired by (3) allowing the four
subinteractions to be coupled as in the NSE.

Helically decomposed shell models derived from the
regular GOY [3] and Sabra [4,5] shell models have already
been studied [6–10]. Applying the helical decomposition to
these regular models four possible helical shell models may be
constructed, each one corresponding to one of the four subin-
teractions. So far, however, only uncoupled configurations of
these four separate helical shell models have been considered
[6–10].

Our new model is advantageous over previous helical shell
models because:

(1) It is structurally closer to the helically decomposed
NSE, (3), by being obtained directly from it.

(2) It contains the coupling strengths equivalent to (4) for
the four types of subinteractions (which are naturally derived
from the NSE), unlike previous models, for which there
currently exists no rationale for coupling the subinteractions.

Similarly to previous helical shell models our new model
also consists of four separate models, each one corresponding
to one of the four subinteractions among helical modes. In the
following we therefore refer to these as the four submodels of
the new shell model.

In summary the purpose of this work is (a) to introduce
the new model (Sec. II), (b) to numerically investigate the
roles played by the four submodels (subinteractions) in a
coupled configuration as a function of the triad geometry
and helicity input (Sec. III), and (c) to compare the new
uncoupled submodels with previous studies of (uncoupled)
helical shell models, in particular, the helical Sabra model,
which is structurally closest to the new model (Sec. IV).

II. THE NEW SHELL MODEL

The new model (source freely available at https://github.
com/nicholasmr/rdshellmodel) is obtained from the helically
decomposed NSE, (3), in Appendix A by defining complex
velocity components us

n ≡ us(kn) (s = ±) on an exponentially
thinned set of wave-vector magnitudes kn = k0λ

n for n =
0,1, . . . ,N . Within this discretized wave space triadic interac-
tions are permitted only between waves fulfilling the triangle
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(a) Submodel 1: {s, s , s } = ±{+,−,+}
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(b) Submodel 2: {s, s , s } = ±{+,−,−}
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(c) Submodel 3: {s, s , s } = ±{+,+,−}
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(d) Submodel 4: {s, s , s } = ±{+,+,+}
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s s · s +

s + s · s
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FIG. 1. Schematic of the three nonlinear helical interactions of each submodel coupling to u+
n . All interactions are sign flipped for

complementary interactions coupling to u−
n (not shown). Arrows indicate the average energy transfer direction within each triadic interaction

resulting from a linear stability analysis [1,10]: solid blue (dashed red) arrows denote forward (reverse) energy transfers, while thick (thin)
arrows represent dominant (subordinate) transfers.

inequality kn + kn+p � kn+q (the shell model equivalent of
the NSE constraint k + k′ + k′′ = 0) and 0 < p < q [a model
constraint ensuring that waves do not self-interact (unilateral
triangles) such that Liouville’s theorem is fulfilled as for the
inviscid part of the NSE].

In the limit of nearest-neighbor interactions the new model
is

(dt + Dn)us
n = skn

∑
s ′,s ′′

gs ′,s ′′
(

u
s·s ′,∗
n+1 us·s ′′

n+2 − εs ′,s ′′

λ
u

s·s ′,∗
n−1 us·s ′ ·s ′′

n+1

+ ξ s ′,s ′′

λ2
us·s ′′

n−2u
s·s ′ ·s ′′
n−1

)
+ f s

n , (10)

where λ, k0, and N are free model parameters and us,∗
n

is the complex conjugate of us
n. The helical signs of the

interacting modes depend on the specific submodel, here
written compactly by introducing effective signs built on
products of s, s ′, and s ′′, e.g., s · s ′. Forcing and viscous
dissipation at the nth shell (scale kn) of helical sign s are
f s

n and (νk2
n + νLk−4

n )us
n ≡ Dnu

s
n, respectively, νLk−4

n us
n being

a large-scale drag added to remove any potential buildup of
energy at large scales. The small- and large-scale viscosities
ν and νL are free parameters, whereas the large-scale drag
exponent (−4) was chosen such that the large-scale dissipation
is confined to the first few shells for the longest possible
inertial range. The specific values of νL and the large-scale

drag exponent were found not to influence the model behavior
(not shown). The summation over {s ′,s ′′} is the weighted sum
over the four submodels. The four possible pairs {s ′,s ′′} =
{−,+}, {−,−}, {+,−}, {+,+} hereafter denote submodels 1–
4, respectively, in accordance with previous literature. Thus,
three helical triadic interactions are resolved per shell per
submodel (Fig. 1).

The submodel weights gs ′,s ′′
and modal interaction coeffi-

cients εs ′,s ′′
and ξ s ′,s ′′

are given by (derived in Appendix A)

gs ′,s ′′
(λ) = −s ′s ′′(1 + s ′λ − s ′′λ2)(s ′λ − s ′′λ2), (11)

εs ′,s ′′
(λ) = 1 − s ′′λ2

λ − s ′s ′′λ2
, (12)

ξ s ′,s ′′
(λ) = −s ′′(1 − s ′εs ′,s ′′

). (13)

The interaction coefficients gs ′,s ′′
, εs ′,s ′′

, and ξ s ′,s ′′
depend

on the shell model spacing parameter λ which indicates the
geometry of the resolved triads: for λ → 1 triangles become
equilateral (leg lengths {1,1,1} relative to the smallest leg),
while for λ → (1 + √

5)/2 = ϕ (golden ratio) they collapse to
a line (leg lengths {1,ϕ,ϕ2} relative to the smallest leg). Note
that unless triads are closed (λ � ϕ), as the NSE requires, the
interaction coefficients are not well defined (Appendix B).

Waleffe [1] hypothesized two classes of helical triadic
interactions based on the average energy transfer directions
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FIG. 2. Submodel (a) coupling strength gs′,s′′
, (b) interaction coefficient εs′,s′′

, and (c) their product as a function of λ.

using linear stability: (i) a class of forward interactions (F
class) consisting of triads with opposite helical signs of the
two largest wave modes and (ii) a class of reverse interactions
(R class) consisting of triads with equal helical signs of the
two largest wave modes. Thus, two of the four subinteractions
belong to the F class, while the remaining two belong to the
R class. The R-class interactions for which all three signs are
not equal, however, were suggested by Waleffe [1], based on
the above instability assumption and a scaling assumption, to
become F class for local triadic interactions, defined as the ratio
of the smallest to the middle wave number being higher than
0.278. Considering closed-triad nearest-neighbor interactions
in the shell model thus renders these interactions purely F class
since the ratio is bounded by 1/λ � 1/ϕ = 0.618.

Because the product of helical signs between the two largest
modes in all nonlinear terms of (10) is s ′ · s ′′, each submodel
consists only of interactions of one class. Like the helically
decomposed GOY and Sabra models the new model therefore
also consists of two submodels of the F class [s ′ · s ′′ = −1;
Figs. 1(a) and 1(c)] and two of the R class [s ′ · s ′′ = +1;
Figs. 1(b) and 1(d)], of which submodel 2 ({s ′,s ′′} = {−,−})
contains the dual F- and R-class nature described above.

The interaction coefficients gs ′,s ′′
and εs ′,s ′′

are both plotted
as functions of λ in Fig. 2. Figure 2(a) shows the normalized
submodel weights ĝs ′,s ′′ = gs ′,s ′′

/
∑

s ′,s ′′ gs ′,s ′′
. Since two of the

submodels belong to the F class their associated weights (g+,−
and g−,+) are expected to be the largest because 3D turbulence
exhibits an average forward-dominated energy cascade. This is
indeed found to be the case. The modal interaction coefficients
εs ′,s ′′

plotted in Fig. 2(b) indicate that both s ′ · s ′′ = −1
(F-class) submodels have |εs ′,s ′′ | < 1, whereas both s ′ · s ′′ =
+1 (R-class) submodels have |εs ′,s ′′ | > 1. This is appealing
because the structure of the new model, (10), and functional
forms of εs ′,s ′′

, (12), resemble, but are not identical to, the
helically decomposed GOY and Sabra counterparts. In the
GOY and Sabra models it is well known that the limit
εs ′,s ′′ = 1 marks the transition between 2D behavior of the
energy cascade (1 < εs ′,s ′′

< 2) and 3D behavior (εs ′,s ′′
< 1).

The values of εs ′,s ′′
thus seem to support the expected F- and

R-class behavior based on the s ′ · s ′′ product.

Invariants and fluxes

Similarly to other shell models the nonlinear terms in
(10) conserve both the energy E = ∑N

n=0(|u+
n |2 + |u−

n |2)
and the helicity H = ∑N

n=0 kn(|u+
n |2 − |u−

n |2). Additionally,

in the limit of nearest-neighbor interactions each sub-
model conserves one pseudoenergy quantity E(α) =∑N

n=0 kα
n (|u+

n |2 + |u−
n |2) and one pseudohelicity quantity

H (β) = ∑N
n=0 k

β
n (|u+

n |2 − |u−
n |2), where the exponents α and

β are, respectively, constrained by

1 − s ′λαεs ′,s ′′ + s ′′(λα)2ξ s ′,s ′′ = 0, (14)

1 − λβεs ′,s ′′ + (λβ)2ξ s ′,s ′′ = 0, (15)

which are constraints similar to (8) and (9) of the NSE (see
Appendix C). These pseudoinvariants are therefore specific to
each submodel ({s ′,s ′′} pair) and the resolved triad shape by λ.

The existence of globally conserved (across all triad interac-
tions) pseudoinvariants within each submodel can potentially
influence the behavior of that submodel. However, because
pseudoinvariants are not shared among submodels (or triad
shapes), only the energy and helicity are globally conserved
when mixing submodels (or triad shapes), similarly to the NSE
(Appendix C).

Nonlinear spectral fluxes of energy and helicity through
the nth shell are given as the transfers from all wave
numbers less than kn to wave numbers larger than kn,
that is, �E

n = dt

∑n
m=0(|u+

m|2 + |u−
m|2) and �H

n = dt

∑n
m=0 km

(|u+
m|2 − |u−

m|2). Following the calculations through the yields
for a single submodel (see Appendix D)

�E
n = �

−,s ′,s ′′
n+1 + (1 − s ′εs ′,s ′′

)�−,s ′,s ′′
n , (16)

�H
n = kn

(
�

+,s ′,s ′′
n+1 + (λ−1 − εs ′,s ′′

)�+,s ′,s ′′
n

)
, (17)

where the correlators are defined as

�±,s ′,s ′′
n = 2kn−1 Re

[
u

+,∗
n−1u

s ′,∗
n us ′′

n+1 ± u
−,∗
n−1u

−s ′,∗
n u−s ′′

n+1

]
. (18)

For the coupled model the corresponding expressions are
merely the weighted sums of (16) and (17) using weights
gs ′,s ′′

.

III. NUMERICAL RESULTS: 1. THE COUPLED MODEL

The coupling strengths, (11) [Fig. 2(a)], suggest that the
influence of F-class interactions (submodels 1 and 3) should
dominate over that of R-class interactions (submodels 2 and
4) in a coupled configuration. However, due to the strong
nonlinearities present in (10) the relative influence of the
four submodels might not be so simple and might possibly
depend on the triad shape and net helicity input. In this
work we are therefore interested in quantifying the relative
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FIG. 3. Simulated coupled model (a) energy and helicity spectra and (b, c) energy and helicity fluxes. Also shown are (b, c) the individual
submodel contributions of the energy and helicity cascades and (d) the energy cascade intermittency. Black lines denote the helically forced
scenario (δin �= 0), whereas gray lines denote the nonhelically forced scenario (δin = 0).

contributions from the four individual submodels to the energy
and helicity cascades and the energy cascade intermittency as
a function of the helicity input and triad shape. To do so we
considered multiple triad shapes (λ values) along with two
forcing scenarios: (i) a maximally helical forcing (of only
one sign) and (ii) nonhelical forcing (of both signs). Since
numerical results were found not to depend on the triad shape λ

(discussed below), here, for the sake of brevity, we present the
results of just one configuration—λ = 1.3, k0 = 1, N = 81,
ν = 10−11, and νL = 103—implying the coupling strengths
{ĝ−,+,ĝ−,−,ĝ+,−,ĝ+,+} = {0.34,−0.03,0.68,0.01} and εs ′,s ′′

values {ε−,+,ε−,−,ε+,−,ε+,+} = {−0.23,−6.89,0.89,1.76}.
The value λ = 1.3 was chosen for conformity with a future
planned study considering coupled non-nearest-neighbor in-
teractions (λ = 1.3 allows a total of seven triad geometries; see
Appendixes A and B for details). The values chosen for k0 and
N were found not to influence the model behavior (not shown).
The number of shells N determines the highest resolved wave
number and is limited by hardware capabilities (integration
time) due to the stiffness of the system. Because the large-
and small-scale viscosities ν and νL affect only the length of
the inertial ranges, and not their dynamics (not shown), their
values were chosen such that dissipation occurs at the ends of
the resolved wave space for the longest possible inertial ranges.
A fourth-order Runge-Kutta integration scheme was applied in
all simulations using dt = 5 × 10−8 together with the forcing
f ±

nf
= (1 + i)/u±,∗

nf
applied to shell nf = 30, supplying a

constant input of energy εin (not to be confused with the

interaction coefficient εs ′,s ′′
) and helicity δin. The choice of

forcing scale was found not to influence the results (not
shown). Two forcing scenarios were employed: one in which
only the positive 30th helical shell is forced such that εin = 2,
hereafter referred to as the δin �= 0 (helical) simulations (where
δin = k30εin); and one in which both 30th helical shells are
forced such that εin = 4, hereafter referred to as the δin = 0
(nonhelical) simulations. All realizations are 1011 time steps
long and were initialized using the velocity profile u±

n ∼ k
−1/3
n .

A spin-up of 1010 time steps was performed to eliminate
transients from the statistics, which was determined by the
plateauing of the total energy content and the shell 1 and 20
energy content.

Figure 3(a) shows the coupled model simulated energy
and helicity spectra for both the helically (δin �= 0) and
the nonhelically (δin = 0) forced case. Under both forcing
scenarios the energy spectrum scales K41-like as 〈En〉 ∼ k

−2/3
n

for wave numbers kn > knf
, associated with a forward energy

cascade [Fig. 3(b)]. For wave numbers kn < knf
(large scales)

the energy is found to equilibrate. The seemingly small positive
〈En〉 scaling for kn < knf

is due to an insufficiently short
spectral range connecting the forcing scale with the large-scale
sink, which is evident from equivalent simulations using a
smaller forcing scale (not shown). The helicity spectrum
is found to scale linearly with the energy spectrum for
kn > knf

[Fig. 3(a)], i.e., 〈En〉 ∼ 〈Hn〉 ∼ k
−2/3
n , associated

with a forward helicity cascade [Fig. 3(c)]. This behavior
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matches expectations for the dual forward energy and helicity
cascades envisaged by Brissaud et al. [11]. For the large
scales kn < knf

the helicity spectrum matches its equilibrium
spectrum 〈Hn〉 ∼ k2

n based on the equipartitioning of the
energy and helicity (same method as presented in Sec. IV
below; not shown).

Figures 3(b) and 3(c) additionally show how the total 〈�E
n 〉

and 〈�H
n 〉 fluxes are partitioned among the four submodels,

calculated by (16) and (17) multiplied by the weights gs ′,s ′′
.

Figure 3(b) shows the forward energy cascade in nonhelical
turbulence (gray lines) is predominantly carried by submodel 1
and 3 interactions, whereas submodels 2 and 4 both contribute
with relatively small up-scale cascades, the former being more
than an order of magnitude larger than the latter. In helical tur-
bulence, however, the forward energy cascade is carried almost
entirely by submodel 3 interactions (black lines), whereas the
forward helicity cascade is dominated equally by submodel 1
and 3 interactions while submodel 2 contributes a small reverse
component [Fig. 3(c)]. In the interest of determining how
this partitioning might depend on the triad geometry multiple
λ values were additionally considered. The values tested
were λ = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6} together with N =
{223, 116, 81, 63, 52, 45} and nf = {83, 44, 30, 24, 20, 17},
respectively, thus ensuring that kN and knf

are approximately
unchanged. All interaction coefficients were updated accord-
ing to (11)–(13) to reflect the different λ values. Across all
λ values no change in cascade partitioning was found (not
shown), albeit only relatively local triads (similar leg sizes) are
possible in the nearest-neighbor interaction limit considered
here.

In order to understand how the change in dominant helical
interactions with the net helicity input influences the energy
cascade intermittency we quantify the intermittency, similarly
to De Pietro et al. [10], by the shell-energy flatness

Fn = S4(kn)/(S2(kn))2, (19)

where the structure functions Sq(kn) are defined in terms of
�E

n by

Sq(kn) = 〈(
k−1
n

∣∣�E
n

∣∣)q/3〉
. (20)

Figure 3(d) shows the flatness Fn calculated using the
total energy flux as well as using the individual submodel
contributions to �E

n . Interestingly, the energy cascade in
helical turbulence is found to be less intermittent than that
in nonhelical turbulence. The zoom-in in Fig. 3(d) shows
that the flatnesses calculated using the individual submodel
contributions to �E

n are largest for submodels 1 and 3 under
both forcing scenarios.

As an explanation for the change in intermittency one might
hypothesize that the different submodels each possess different
degrees of cascade intermittency, such as found by De Pietro
et al. [10], but this is masked in coupled configurations as
Fig. 3(d) suggests. If so, one would anticipate the flatness
of submodel 1 to be greatest among the four submodels
in stand-alone uncoupled simulations. In the follow section
we investigate this hypothesis and compare the uncoupled
submodels with those in previous studies considering other
helical shell models.

IV. NUMERICAL RESULTS: 2.
THE UNCOUPLED SUBMODELS

The uncoupled submodels were integrated individually
using the same configuration as listed in Sec. III. However,
due to the submodel-dependent scaling of inertial ranges,
the viscosity ν was chosen separately for each submodel
configuration to ensure that dissipation occurs at the end
of the resolved wave space for the longest possible inertial
ranges. The large-scale viscosity was meanwhile kept fixed at
νL = 103. For each of the four submodels the same two forcing
scenarios were applied as in the coupled configuration.

Figures 4(a) and 4(c) show the submodel 1–4 energy
fluxes and spectra, respectively, of the nonhelically forced
simulations (δin = 0). The helically forced simulations (δin �=
0) display similar results but are not shown in Fig. 4, for
clarity. The results show that submodels 1–3 all exhibit the
expected K41 scaling 〈En〉 ∼ k

−2/3
n associated with a forward

energy cascade for wave numbers kn > knf
. For wave numbers

kn < knf
(large scales) the three submodels have distinctly

different spectra. Submodel 4, however, is different from
submodels 1–3 in the entire spectrum. This submodel is
found to transfer energy upscale but does not exhibit any
scaling of the energy spectrum for kn < knf

. The scaling

for wave numbers kn > knf
is approximately 〈En〉 ∼ k

−4/3
n ,

corresponding to a forward cascade of (positive) helicity.
Figures 4(b) and 4(d) show the helicity fluxes and spectra,

respectively, of the helically forced simulations (δin �= 0). The
results show that submodels 2 and 3 both exhibit helicity
spectra scaling K41-like as 〈Hn〉 ∼ k

−2/3
n for kn > knf

, which
are accompanied by forward cascades of helicity. Submodels
1 and 4 also exhibit downscale cascades of helicity but with
spectra scaling as 〈Hn〉 ∼ kn〈En〉.

In order to explain the dissimilar submodel behaviors found
for kn < knf

, in the following we differentiate between the
parts of the simulated energy spectra in which flow invariants
equipartition among shells from those parts in which invariants
cascade [12]. Using the equipartition theorem, a conservative
system with quadratic invariants, in this case E, E(α), H ,
and H (β), will on average distribute the conserved quantities
equally between the degrees of freedom in the system
[13]. In the present case the submodel partition function
therefore takes the form Z = ∫

exp[−∑
n((A + A(α)kα

n +
Bkn + B(β)k

β
n )|u+

n |2 + (A + A(α)kα
n − Bkn − B(β)k

β
n )|u−

n |2)]
�idu+

i du−
i , where A, A(α), B, and B(β) are the inverse E,

E(α), H , and H (β) temperatures, respectively. Using the
partition function the equilibrated energy and helicity spectra
are easily calculated, giving

〈E(kn)〉 = A + A(α)kα
n(

A + A(α)kα
n

)2 − (
Bkn + B(β)k

β
n

)2

≈ 1

A + A(α)kα
n

, (21)

〈H (kn)〉 = kn

(
Bkn + B(β)k

β
n

)
(
A + A(α)kα

n

)2 − (
Bkn + B(β)k

β
n

)2

≈ kn

(
Bkn + B(β)k

β
n

)
(
A + A(α)kα

n

)2 , (22)
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FIG. 4. Simulated uncoupled submodel (a, b) energy and helicity fluxes and (c, d) energy and helicity spectra. (a) The corresponding
calculated flatnesses using (19). (e, f) Equilibrium spectra predicted by (21) and (22).

where (A + A(α)kα
n )2 � (Bkn + B(β)k

β
n )2 has been used for

the approximate forms by noting that the energy spectra of
the helical (δin �= 0) and nonhelical (δin = 0) simulations
are similar (not shown). The inverse temperatures may be
constrained by equating the average dissipation of the four in-
variants to their average inputs εin, δin = knf

εin, ε(α)
in = kα

nf
εin,

and δ
(β)
in = k

β
nf

εin, where nf is the forcing shell. Of course, the
actual dissipation is the integrated effect over a large range
of scales. However, in order to obtain useful expressions for
the temperatures we approximate these as one effective (Kol-
mogorov) scale per quantity, hereafter denoted kE,kE(α) ,kH and
kH (β) . Equating input to dissipation then gives the approximate

expressions

εin ≈ D(kE)〈E(kE)〉, (23)

δin ≈ D(kH )〈H (kH )〉, (24)

ε(α)
in ≈ D(kE(α) )kα

E(α)〈E(kE(α) )〉, (25)

δ(β)
in ≈ D(kH (β) )kβ−1

H (β) 〈H (kH (β) )〉, (26)

where D(kn) = νk2
n + νLk−4

n , 〈E(α)(kn)〉 = kα
n 〈E(kn)〉, and

〈H (β)(kn)〉 = k
β−1
n 〈H (kn)〉. Combining the above expressions

all temperatures are related to A by

A(α)

A
=

D(kE)k−α
E(α) − D(kE(α) )k−α

nf

D(kE(α) )k−α
nf

kα
E(α) − D(kE)

, (27)

B(β)

B
=

(
1 + kα

H (β)
A(α)

A

)
D(kH )kβ−1

nf
k2
H − (

1 + kα
H

A(α)

A

)
D(kH (β) )kβ + 1

H (β)(
1 + kα

H
A(α)

A

)
D(kH (β) )k2β

H (β) −
(
1 + kα

H (β)
A(α)

A

)
D(kH )kβ−1

nf
k

β + 1
H

, (28)

B

A
= D(kE)knf

(
1 + kα

H
A(α)

A

)2

D(kH )kH

(
1 + kα

E
A(α)

A

)(
kH + k

β

H
B(β)

B

) . (29)

033115-7



NICHOLAS M. RATHMANN AND PETER D. DITLEVSEN PHYSICAL REVIEW E 94, 033115 (2016)

TABLE I. Approximate dissipation scales used in (27)–(29) for
best fits of (21) and (22) with the simulated energy and helicity spectra
in Figs. 4(c) and 4(d).

Submodel kE kE(α) kH kH (β)

1 4.2 × 103 2.5 × 103 2.5 × 103 4.2 × 103

2 1.0 × 104 5.0 × 102 4.5 × 103 4.1 × 102

3 4.2 × 103 3.0 × 103 5.5 × 103 4.0 × 103

4 5.0 × 101 6.5 × 104 6.5 × 104 5.0 × 101

Inserting (27)–(29) into (21) and (22), Figs. 4(e) and 4(f) show
the submodel equilibrium spectra with A = 1 × 103 [for off-
sets comparable to Figs. 4(c) and 4(d)] and nf = 30 (as in sim-
ulations) using the dissipation scales listed in Table I obtained
from best fits to the simulated spectra in Figs. 4(c) and 4(d)
and corresponding pseudoinvariant spectra (not shown).

Comparing the simulated spectra 〈En〉 and 〈Hn〉 of sub-
models 1–3 with the equilibrium spectra, one finds that they
agree well, suggesting equipartitioning of the energy (En)
and pseudoenergy (kα

nEn) for kn < knf
. As in the coupled

model case the weak positive scaling of 〈En〉 simulated by
submodels 1 and 3 is due to an insufficiently short spectral
range connecting the forcing scale with the large-scale sink,
which is evident from equivalent simulations using a smaller
forcing scale (not shown). The simulated 〈Hn〉 spectra of
submodels 1–3 also match the expected equilibrium spectra
in Fig. 4(f) for kn < knf

, which remarkably even captures the
small dip exhibited by submodel 2.

Before moving on to submodel 4 let us consider the scaling
behavior for wave numbers kn > knf

of submodels 1–3. In this
spectral range energy fluxes are constant, which is fulfilled if
the correlators scale as �−,s ′,s ′′

n ∼ const., implying velocity
components scaling as u±

n ∼ k
−1/3
n . One would thus expect

〈En〉 ∼ k
−2/3
n , which is indeed found to be the case. The

energy and helicity fluxes indicate dual downscale (forward)
cascades of both quantities in submodels 1–3 [Figs. 4(a)
and 4(b)]. Brissaud et al. [11] envisaged that such dual
downscale cascades would manifest themselves by the helicity
spectrum scaling linearly with the energy spectrum, i.e.,
〈En〉 ∼ 〈Hn〉 ∼ k

−2/3
n , which is here indeed found to be the

case [Fig. 4(d)], similarly to the coupled model [Fig. 3(a)].
The energy and helicity spectra of submodel 4 do not

resemble their equilibrium spectra, suggesting that equipar-
titioning of flow invariants is not responsible for the shapes
of the spectra. Following the above K41 scaling argument
one might expect the energy spectrum to scale as ∼k

−2/3
n

for kn < knf
due to the energy cascade and as ∼k

−4/3
n for

kn > knf
due to the helicity cascade (by a similar argument),

but this is clearly not the case for kn < knf
. The failure of

the K41 argument may be understood from the specific ratios
〈�E

n 〉/〈�H
n 〉 in the two inertial ranges of the flow which allow

the correlators to be scale dependent while simultaneously
supporting constant energy and helicity fluxes. In submodel
4 helical modes of opposite signs do not interact, thus if
there is no pumping of a specific sign of helicity, all modes
of that sign will decay. In this case the correlators reduce
to �+,+,+

n = �−,+,+
n = 2kn−1 Re[u+,∗

n−1u
+,∗
n u+

n+1] ≡ ��
n. Cal-

culating the ratio 〈�E
n 〉/〈�H

n 〉 by inserting ��
n into (16) and

10 2 10 4 10 6

0.8

1.4

FIG. 5. Simulated submodel 4 correlator ratios (squares) and
predicted ratios based on (30) (solid and dashed lines).

(17), one finds the exact relation

〈��
n+1〉

〈��
n〉

= ε+,+ − kn

〈
�E

n

〉/〈
�H

n

〉 − 1

1 − kn

〈
�E

n

〉/〈
�H

n

〉 ≡ dn

(〈
�E

n

〉/〈
�H

n

〉)
,

(30)

which may be scale sensitive depending on 〈�E
n 〉/〈�H

n 〉. The
simulated ratios are found to be 〈�E

n 〉/〈�H
n 〉 = 1.4 × 10−1

in the inertial range kn < knf
(shell 10–28 average) and

〈�E
n 〉/〈�H

n 〉 = 7.1 × 10−8 in the intertial range kn > knf

(shell 32–45 average). Using these ratios Fig. 5 shows the
simulated 〈��

n+1〉/〈��
n〉 values compared to the anticipated

dn forms, plotted only in their valid ranges where fluxes are
constant. The correlators clearly exhibit scale dependence for
kn < knf

following dn, thus suggesting that the K41 argument

leading to 〈En〉 ∼ k
−2/3
n is not necessarily valid.

The new shell model introduced here is obtained from
the helical decomposition of the NSE. It is remarkable that
the three helical interactions per shell of each submodel
are similar to those of the helically decomposed GOY and
Sabra submodels apart from the interaction coefficients [6–10].
Benzi et al. [7] implemented the four helical submodels in
a GOY model. Interestingly, the (absolute) values of εs ′,s ′′

indicate that the new model, similarly to the GOY model,
consists of two submodels (1 and 4) with canonical 2D and 3D
εs ′,s ′′

configurations and one new 3D type (Sec. II). The last
submodel (submodel 2) was found by Benzi et al. [7] to show
signs of a reverse energy cascade, a property not shared by the
new model in its nearest-neighbor limit (multiple free param-
eter combinations were tested as specified below; not shown).

Recent work by De Pietro et al. [10] also numerically
investigated the Sabra model equivalent of submodel 2,
finding the energy spectrum scaling as 〈En〉 ∼ k−0.28

n for wave
numbers kn < knf

, as opposed to the energy/pseudoenergy
equipartitioning found here. In order to test the possible
influence of the choice of free parameters on the scaling
properties of the new submodel 2 multiple parameter com-
binations were considered: λ = {1.3,1.4,1.5}, k0 = {0.5,1,4},
N = {81,63,52}, nf = {30,40,50}, and νL = {101,102,103}
(with different large-scale drag exponents: −2,−4). All these
configurations, which each properly closes triads as required
by the NSE (λ � ϕ), were found to behave similarly to
the above results (not shown). If, on the other hand, the
shell spacing λ exceeds the golden ratio ϕ (open triads),
we find scaling behavior matching that found by De Pietro
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FIG. 6. (a) Simulated energy spectra of submodel 2 when configured as by De Pietro et al. [10] (λ = 2 with knf
= k8 or knf

= k20) and
(b) simulated energy correlators of submodel 2 ranging from nearest-neighbor {p,q} = {1,2} (local) interactions to non-nearest-neighbor
(nonlocal) interactions. Panel (a) additionally shows the existence of a reverse psuedoenergy cascade (normalized by the mean pseudoenergy
input ε(α)

in = kα
nf

εin).

et al. [10]. Figure 6(a) shows the simulated energy spectrum
of submodel 2 configured approximately as by De Pietro
et al. [10], with λ = 2, N = 31, νL = 1, and ν = 10−12,
forced either at shell nf = 8 or at shell nf = 20 using a
helical forcing (a nonhelical forcing produces similar results;
not shown). Here, however, we suggest that the scaling
〈En〉 ∼ k

2α/3
n = k−0.39

n for kn < knf
arising from the reverse

cascade of psuedoenergy [Fig. 6(a)] is a better fit compared
to 〈En〉 ∼ k−0.28

n based on a suggested zero-mode solution
[10]. Note that the pseudoinvariants are shared between the
two models since the interaction coefficients are related by
ε

s ′,s ′′
(Sabra) = s ′εs ′,s ′′

and ξ
s ′,s ′′
(Sabra) = −s ′′ξ s ′,s ′′

, leading to the same
conservation constraint, (14), for the Sabra model.

Similarly to De Pietro et al. [10] we also find the flatnesses
among the uncoupled submodels to be largest in submodel 1
for kn > knf

, although they did not consider submodel 3.
Finally, De Pietro et al. [10] found that the direction of the

energy cascade in a Sabra-type submodel 2 depends on triad
shape as suggested by Waleffe [1]. By extending the interaction
scope to interactions between shells {n,n + p,n + q} for 0 <

p < q ({p,q} = {1,2} being the nearest-neighbor limit consid-
ered above), nonlocal triads (smallest-to-middle wave-number
ratio <0.278) may be constructed, allowing the predicted
F- to R-class transition to be investigated. Doing so, they
explained the cascade transition by noting the time-averaged
energy correlators of submodel 2, 〈�−,s ′,s ′′

n,p,q 〉 = 〈�−,−,−
n,p,q 〉, are

asymptotically constant (independent of n) within inertial
ranges. If so, the time-averaged non-nearest-neighbor equiv-
alent of (16) (see Appendix D) becomes 〈�E

n 〉 = ((q − 1) +
(q − p − 1)ε−,−

p,q )〈�−,−,−
n,p,q 〉 ≡ Fp,q〈�−,−,−

n,p,q 〉, and the sign of
Fp,q determines the cascade direction as a function of the triad
shape (determined by {λ,p,q}) since the sign of 〈�−,−,−

n,p,q 〉 may
be determined from a linear stability analysis and is shape
independent. However, because of the dissimilar correlator
definitions between the Sabra model and the new model, the
energy correlators of the new model might behave differently.
In order to test this three additional simulations were car-
ried out for the non-nearest-neighbor interactions {p,q} =
{2,3},{3,4},{4,5} (implying ε−,−

p,q = {−6.31,−5.85,−5.50},
respectively) using configurations otherwise similar to the
submodel 2 setup described in Sec. IV (details on the
non-nearest-neighbor interaction models is presented in Ap-

pendixes A–D). The simulated correlators are shown in
Fig. 6(b) and are found to exhibit scale dependence with
decreased interaction locality (large p,q), suggesting that
some other explanation is needed for the reversal of the
energy cascade in the nonlocal triad limit (not shown). This
will be the focus of a subsequent study considering in detail
the role played by pseudoinvariants, which will be published
elsewhere.

Gilbert et al. [14] showed that a regular Sabra model in
the 2D configuration ε+,+ > 1, corresponding to submodel
4 here, exhibits different 〈En〉 scaling regimes depending
on the value of ε+,+. Their works suggests that whenever
ε+,+/λ < 1 + λ−2/3 the reverse energy flux regime should
be accompanied by a proper K41 scaling energy spectrum,
whereas above this critical value a quasiequilibrium energy
spectrum should develop. Inserting ε+,+ from (12) one would
thus always expect a K41 scaling to occur. However, present
simulations can hardly be said to scale as 〈En〉 ∼ k

−2/3
n or to be

in quasiequilibrium for kn < knf
. In order to further compare

submodel 4 with their work, additional simulations were
therefore conducted using λ = {1.1,1.2,1.3,1.4,1.5,1.6,2.0}
with N = {146,76,53,41,37,34,22}, respectively (ensuring
kN are approximately the same). In all cases energy spectra
were found to behave as in Fig. 4(c) (not shown), suggesting
that the work by Gilbert et al. [14] does not carry over to
submodel 4 of the new model.

V. SUMMARY

The role of helicity in 3D turbulence was numerically
investigated in the context of a new shell model obtained
as a special case of the helically decomposed Navier-Stokes
equation (NSE) [1]. Unlike previous shell models, the new
model can couple the four naturally occurring subsets of
helical triadic interactions (subinteractions) similarly to the
NSE, thereby allowing their individual roles to be investigated
in a coupled context. By considering forcing scenarios with
and without an input of helicity we find that the (forward)
energy cascade in helical turbulence is less intermittent than
that in nonhelical turbulence for local triadic interactions.
The energy cascade in helical turbulence was found to be
carried almost entirely by subinteractions of the third type,
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whereas in nonhelical turbulence the cascade is partitioned
roughly equally between subinteraction 1 and subinteraction
3. This large influence exerted by subinteractions 1 and 3
matches expectations based on real 3D turbulence, in which
these subinteractions are thought to exclusively contribute to
a forward energy cascade [1]. Additionally, by varying the
resolved triad shape we find no change in simulated behavior or
cascade partitioning, albeit only relatively local triads (similar
leg sizes) are possible in the nearest-neighbor interaction limit
considered here.

In order to understand the decreased intermittency arising
from a net helicity input the four individual subinteractions
(submodels) were simulated separately (uncoupled) in
the limit of local triadic interactions, which share several
similarities with the four existing helically decomposed Sabra
shell models. These simulations showed that the cascade
intermittency of submodel 1 far exceeds the other three, thus
explaining the decreased intermittency in helical turbulence
where subinteraction type 1 is suppressed when coupled with
the other three.

In accordance with expectations three of the four submodels
(submodels 1–3) contribute with dual downscale (forward)
cascades of energy and helicity, whereas the last submodel
(submodel 4), which renders both signs of helicity separately
inviscidly conserved (enstrophy-like), transfers energy upscale
and helicity downscale.

In the coupled model and the three dual-cascading submod-
els (submodels 1–3) flow invariants were found to equipartition
in the range of scales kn < knf

(knf
being the forcing

scale), which was explained using the equipartition theorem
with multiple conserved quadratic quantities. The remaining
submodel 4, however, exhibits a reverse energy cascade for
kn < knf

but has a very small weight in comparison to the
other submodels in the full set of triadic interactions of the
helically decomposed dynamics. By investigating the scaling
behavior of the triple correlations used in energy and helicity
flux calculations of submodel 4, it was found these cannot

necessarily be assumed to be scale independent within inertial
ranges. If so, as was found to be the case numerically, this
prevents the traditional shell model K41-style argument from
being used, otherwise leading to an anticipated 〈E(kn)〉 ∼
k

−2/3
n scaling energy spectrum within energy cascade

regimes.

APPENDIX A: THE NEW SHELL MODEL

In order to obtain the new model from the helically
decomposed Navier-Stokes equation (NSE), (3), it is necessary
to impose two constraints: (i) spectral velocity components
are assumed to be independent of direction in k space,
us(k) = us(kk̂) = us(k), and (ii) reducing k space to include
only components which are increasingly spaced in magnitude
according to the geometrical progression kn = k0λ

n for n =
0,1, . . . ,N . Within this wave set, only cross-scale triadic
interactions are considered, i.e., triads in which all three wave
components have different magnitudes, which is inspired by
the structure of the GOY and Sabra shell models. Since only
cross-magnitude interactions are considered, it is useful to
split the triadic sum in the NSE, (3), into three separate sums,
hereafter referred to as the three triad groups, for which k is
the smallest (k < k′ < k′′), middle (k′ < k < k′′), and largest
(k′ < k′′ < k) wave number. Note that double-primed vectors
are chosen to be larger than single-primed ones, which leads
to no loss of generality due to symmetry when interchanging
the dummy waves k′ ↔ k′′ (and s ′ ↔ s ′′). Additionally, the
vectorial condition k + k′ + k′′ = 0 on each triadic sum can
be rewritten by expressing the largest mode as the sum of the
two smaller and absorbing the resulting negative signs into
the terms of the sums using reality u(−k) = u∗(k) and the
basis property hs(−k) = h−s(k) [1]. The vectorial condition
on each triadic sum thus becomes k + k′ = k′′, k + k′ = k′′,
and k = k′ + k′′ for groups 1, 2, and 3, respectively, and the
NSE, (3), then takes the form

(∂t + νk2)us(k) = − 1

4

∑
s ′,s ′′

⎡
⎢⎢⎢⎣

∑
k+k′=k′′
k<k′<k′′

(s ′k′ − s ′′k′′)h∗
s ′ (k′) × h∗

−s ′′ (k′′) · h∗
s (k)u∗

s ′ (k′)us ′′ (k′′)

−
∑

k+k′=k′′
k′<k<k′′

(s ′k′ − s ′′k′′)h∗
s (k) × h∗

−s ′′ (k′′) · h∗
s ′ (k′)u∗

s ′ (k′)us ′′ (k′′)

+
∑

k=k′+k′′
k′<k′′<k

(s ′k′ − s ′′k′′)h∗
−s ′′ (k′′) × h∗

s (k) · h∗
−s ′ (k′)us ′ (k′)us ′′ (k′′)

⎤
⎥⎥⎥⎦ (A1)

where the antisymmetric property of h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k)

has been used to rearrange the order of basis components in a
way which shall be useful later.

In the interest of dropping the direction dependencies k̂,
k̂′, and k̂′′, consider further splitting the three triadic sums
in (A1) into sums over triad shapes and triad orientations,
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respectively, ∑
k+k′=k′′
k<k′<k′′

=
∑
k′,k′′

k+k′ � k′′
k < k′ < k′′

∑
k̂′,k̂′′

kk̂+k′k̂′ = k′′k̂′′

, (A2)

∑
k+k′=k′′
k′<k<k′′

=
∑
k′,k′′

k+k′�k′′
k′ < k < k′′

∑
k̂′,k̂′′

kk̂+k′k̂′=k′′k̂′′

, (A3)

∑
k=k′+k′′
k′<k′′<k

=
∑
k′,k′′

k′+k′′�k

k′<k′′<k

∑
k̂′,k̂′′

kk̂=k′k̂′+k′′k̂′′

. (A4)

From here, reducing the k space to include only components
with magnitudes given by kn = k0λ

n allows the three sums

over triad shapes to be rejoined: Depending on λ, the triangle
inequality constrains the possible choices of n in kn which
can be combined to construct triads. Consider therefore the
range of integers p and q sorted by 0 < p < q which fulfill
the triangle inequality kn + kn+p � kn+q , thereby allowing
any triad geometry to be constructed when λ → 1 for large
or small enough values of {p,q}. From this reduction it
immediately follows that {k′,k′′} = {kn+p,kn+q} for the first
group, thus turning the sum over {k′,k′′} into a sum over
{p,q}. The corresponding {k′,k′′} sums of groups 2 and 3
may be written in terms of the same {p,q} sum as group
1 by noting that the constraints imposed by (A3) and (A4)
are, respectively, fulfilled if {k′,k′′} = {kn−p,kn+q−p} and
{k′,k′′} = {kn−q,kn+p−q}, which produces triad shapes similar
to group 1. Substituting in the above, one finds

(
∂t +νk2

n

)
us(knk̂) = − 1

4
kn

∑
p, q

0<p<q

kn+kn+p�kn+q

∑
s ′,s ′′

⎡
⎢⎢⎢⎣

∑
k̂′,k̂′′

knk̂+kn+p k̂′=kn+q k̂′′

(s ′λp−s ′′λq)h∗
s ′ (kn+pk̂′)×h∗

−s ′′ (kn+q k̂′′) · h∗
s (knk̂) u∗

s ′ (kn+pk̂′)us ′′ (kn+q k̂′′)

−
∑
k̂′,k̂′′

knk̂+kn−p k̂′=kn+q−p k̂′′

s ′ − s ′′λq

λp
h∗

s (knk̂) × h∗
−s ′′ (kn+q−pk̂′′) · h∗

s ′ (kn−pk̂′) u∗
s ′ (kn−pk̂′)us ′′ (kn+q−pk̂′′)

+
∑
k̂′,k̂′′

knk̂=kn−q k̂′+kn+p−q k̂′′

s ′ − s ′′λp

λq
h∗

−s ′′ (kn+p−q k̂′′) × h∗
s (knk̂) · h∗

−s ′ (kn−q k̂′) us ′ (kn−q k̂′)us ′′ (kn+p−q k̂′′)

⎤
⎥⎥⎥⎦.

(A5)

Dropping now the direction dependencies k̂, k̂′, and k̂′′,
the compact shell model notation us,∗

n = u∗
s (kn) is adopted.

Moreover, because only one mode per magnitude is resolved,
the inner sums over {k̂′,k̂′′} (triad orientation) are also dropped.
Having assumed direction independence, the rotational term
(complex exponential) in the geometry term is assumed to be
discardable, allowing it to be written more compactly as

h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k)

= −Q(k,k′,k′′)
2kk′k′′ ss ′s ′′(sk + s ′k′ + s ′′k′′)

≡ �s ′,s ′′,s(k
′,k′′,k) = �s ′,s ′′,s(λ

p,λq,1) ≡ �
p,q

s ′,s ′′,s , (A6)

where (i) the group 1 associations {k′,k′′} = {kn+p,kn+q}
are used in the �

p,q

s ′,s ′′,s definition (groups 2 and 3 could
equally have been used), (ii) the scale-independent property
�s ′,s ′′,s(kn+p,kn+q,kn) = �s ′,s ′′,s(λ

p,λq,1) has been used (i.e.,
only relative leg sizes matter), and (iii) Q(k,k′,k′′) = (2k2k′2 +
2k′2k′′2 + 2k′′2k2 − k4 − k′4 − k′′4)1/2 (see Waleffe [1] for
details). With this compacted notation Eq. (A5) may then be

written as(
dt + νk2

n

)
us

n

= −1

4
kn

∑
p, q

0<p<q

kn+kn+p�kn+q

∑
s ′,s ′′

[
(s ′λp − s ′′λq)�p,q

s ′,−s ′′,su
s ′,∗
n+pus ′′

n+q

− s ′ − s ′′λq

λp
�

p,q

s,−s ′′,s ′u
s ′,∗
n−pus ′′

n+q−p

+ s ′ − s ′′λp

λq
�

p,q

−s ′′,s,−s ′u
s ′
n−qu

s ′′
n+p−q

]
(A7)

by using the scale-independent property of �
p,q

s ′,s ′′,s , allowing
all wave magnitudes in the geometry terms of groups 2 and 3
in (A5) to be multiplied through by λp and λq , respectively.

This expression is in fact a weighted sum of four helical
shell models in disguise. To realize this, one needs to expand
the sum over helical signs. Doing so, one finds three terms per
{s ′,s ′′} contribution involving

(i) �
p,q
+,−,+, �

p,q
+,−,+, �

p,q
−,+,− for {s ′,s ′′} = {+,+},

(ii) �
p,q
+,+,+, �

p,q
+,+,+, �

p,q
+,+,− for {s ′,s ′′} = {+,−},

(iii) �
p,q
−,−,+, �

p,q
+,−,−, �

p,q
−,+,+ for {s ′,s ′′} = {−,+},

(iv) �
p,q
−,+,+, �

p,q
+,+,−, �

p,q
+,+,+ for {s ′,s ′′} = {−,−}.

033115-11



NICHOLAS M. RATHMANN AND PETER D. DITLEVSEN PHYSICAL REVIEW E 94, 033115 (2016)

Collecting terms sharing � using the reflection property �
p,q

−s ′,−s ′′,−s = �
p,q

s ′,s ′′,s and defining Gp,q(λ) =
1/8 Q(1,λp,λq)/(λpλq), the new shell model is uncovered,

(dt + Dn)us
n = skn

∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q

(
u

s·s ′,∗
n+p us·s ′′

n+q − εs ′,s ′′
p,q

λp
u

s·s ′,∗
n−p us·s ′ ·s ′′

n+q−p + ξ s ′,s ′′
p,q

λq
us·s ′′

n−qu
s·s ′ ·s ′′
n+p−q

)
, (A8)

where λ and k0 are free parameters and Dn ≡ νk2
n. The helical

signs of the interacting modes depend on the specific {s ′,s ′′}
set, here written compactly by introducing effective signs
built on products of s, s ′, and s ′′, e.g., s · s ′. The triad shape
weight Gp,q , submodel weight gs ′,s ′′

p,q , and modal interaction
coefficients εs ′,s ′′

p,q and ξ s ′,s ′′
p,q are given by

Gp,q(λ) = 1/8 (2λ−2q + 2λ−2p + 2 − λ−2(p+q) − λ2(p−q)

− λ2(q−p))1/2, (A9)

gs ′,s ′′
p,q (λ) = −s ′s ′′(1 + s ′λp − s ′′λq)(s ′λp − s ′′λq), (A10)

εs ′,s ′′
p,q (λ) = 1 − s ′′λq

λp − s ′s ′′λq
, (A11)

ξ s ′,s ′′
p,q (λ) = −s ′′(1 − s ′εs ′,s ′′

p,q

)
. (A12)

APPENDIX B: INTERACTION WEIGHTS

The functional forms of the three interaction coefficients
gs ′,s ′′

p,q , εs ′,s ′′
p,q , and ξ s ′,s ′′

p,q in their local limit are addressed in Sec. II.
Figure 7 shows plots of the remaining triad shape weight Gp,q ,
ranging from the limit of local interactions ({p,q} = {1,2}) to
nonlocal (q = p + 1, p � 1) [Fig. 7(a)] and reduced nonlocal
(q = p + i, where 1 � i � 3) interactions [Fig. 7(b)]. Three
important results are noticed here. First, the K41 assumption
of local interactions being dominant is supported by Gp,q .
Second, Gp,q is proportional to the area of the triangle
formed by {k,k′,k′′}, thereby automatically ensuring that the
triangle inequality is fulfilled by Gp,q = 0 if kn + kn+p <

kn+q . Consequently, interactions are well defined only for

1 � λ � ϕ, where ϕ is the golden ratio. Third, reducing the
nonlocalness of interactions by tending towards coupling three
different scales weighs less compared to interactions involving
two comparable scales [p ∼ q in Fig. 7(b)].

APPENDIX C: INVARIANTS

In the helical basis the energy and helicity take the simple
form E = ∑N

n=0(|u+
n |2 + |u−

n |2) and H = ∑N
n=0 kn(|u+

n |2 −
|u−

n |2), where n = 0 and n = N are the first and last shells [1].
Here, however, we consider generalized quadratic invariants
as introduced in Sec. I. Consider therefore the generalized
energy-like and helicity-like quantities

E(α) =
N∑

n=0

kα
n (|u+

n |2 + |u−
n |2), (C1)

H (β) =
N∑

n=0

kβ
n (|u+

n |2 − |u−
n |2), (C2)

where α and β are some yet to be determined exponents.
In this notation energy is given by α = 0 and helicity
by β = 1.

It turns out that each of the four submodels, here defined as
the four contributions from

∑
s ′,s ′′ in (A8) (Sec. II), inviscidly

conserve the energy and helicity separately for every triad
shape ({p,q,λ} set). Taking the time derivative of (C1) using
(A8) and telescoping sums by assuming a finite wave set (i.e.,
us

n = 0 for n < 0 and n > N), one finds the nonlinear (N.L.)
rate of change of E(α) is given by the long but straightforward

1 1.3 1.6
0

0.1

0.2

1 1.2 1.4 1.6
0

0.1

0.2

FIG. 7. Triad interaction weight Gp,q as a function of the triad geometry for (a) local ({p,q} = {1,2}) to nonlocal (q = p + 1, p � 1)
triads and (b) reduced nonlocal (q = p + i where 1 � i � 3) triads.
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calculation

dt |N.L.E
(α) =

N∑
n=0

kα
n (u+,∗

n dtu
+
n + u−,∗

n dtu
−
n ) + c.c.

=
∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q

N∑
n=q

kα+1
n−q

[(
u

+,∗
n−qu

s ′,∗
n−q+pus ′′

n − u
−,∗
n−qu

−s ′,∗
n−q+pu−s ′′

n

)

− (λα)pεs ′,s ′′
p,q

(
u

s ′,∗
n−qu

+,∗
n−q+pus ′s ′′

n − u
−s ′,∗
n−q u

−,∗
n−q+pu−s ′s ′′

n

) + (λα)qξ s ′,s ′′
p,q

(
u

s ′′,∗
n−qu

s ′s ′′,∗
n−q+pu+

n − u
−s ′′,∗
n−q u

−s ′s ′′,∗
n−q+pu−

n

)] + c.c.

(C3)

From here it is noted that the second and third velocity
triple-product differences are equal to the first times s ′ and
s ′′, respectively, that is,

u
s ′,∗
n−qu

+,∗
n−q+pus ′s ′′

n − u
−s ′,∗
n−q u

−,∗
n−q+pu−s ′s ′′

n

= s ′(u+,∗
n−qu

s ′,∗
n−q+pus ′′

n − u
−,∗
n−qu

−s ′,∗
n−q+pu−s ′′

n

)
(C4)

u
s ′′,∗
n−qu

s ′s ′′,∗
n−q+pu+

n − u
−s ′′,∗
n−q u

−s ′s ′′,∗
n−q+pu−

n

= s ′′(u+,∗
n−qu

s ′,∗
n−q+pus ′′

n − u
−,∗
n−qu

−s ′,∗
n−q+pu−s ′′

n

)
, (C5)

thus allowing the triple-product differences to be moved
outside the square brackets. A similar calculation may be
done for H (β), yielding a positive sign between the velocity
triple products, implying that all three triple-product sums are
similar. Tidying up by defining correlators as

�±,s ′,s ′′
n,p,q ≡ 2kn−q Re

[
u

+,∗
n−qu

s ′,∗
n−q+pus ′′

n ± u
−,∗
n−qu

−s ′,∗
n−q+pu−s ′′

n

]
(C6)

the generalized energy and helicity equations become

dt |N.L.E
(α) =

∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q E s ′,s ′′

p,q

N∑
n=q

kα
n−q�

−,s ′,s ′′
n,p,q

(C7)

dt |N.L.H
(β) =

∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q H s ′,s ′′

p,q

N∑
n=q

k
β
n−q�

+,s ′,s ′′
n,p,q

(C8)

where the three correlator prefactors in (C3) (and corre-
spondingly for the helicity) have been grouped together

by

E s ′,s ′′
p,q (λα) = 1 − s ′(λα)pεs ′,s ′′

p,q + s ′′(λα)qξ s ′,s ′′
p,q , (C9)

H s ′,s ′′
p,q (λβ) = 1 − (λβ)pεs ′,s ′′

p,q + (λβ)qξ s ′,s ′′
p,q . (C10)

Equations (C9) and (C10) are in fact equal to the generalized
conservation constraints, (6) and (7), imposed by the NSE by
noting that {k,k′,k′′} = {kn,kn+p,kn+q}.

The conservation of E(α) and H (β) thus requires
E s ′,s ′′

p,q (λα) = 0 and H s ′,s ′′
p,q (λβ) = 0. Plugging α = 0 into

E s ′,s ′′
p,q (λα) one finds that the energy is always conserved inde-

pendently of the triad shape ({λ,p,q}) and submodel ({s ′,s ′′}).
Other solutions to E s ′,s ′′

p,q (λα) = 0, however, depend on the spe-
cific submodel and triad shape resolved. Since these solutions
are not shared across triad shapes or submodels, the remaining
invariants can be considered triad shape- and submodel-
specific invariants, or pseudoenergy invariants, because they
are broken when mixing triad shapes and/or submodels, just
as in the NSE. In a similar fashion, each submodel inviscidly
conserves the helicity (β = 1) separately for every triad shape
since H s ′,s ′′

p,q = 0 by substituting (A11) and (A12) in. The re-
maining helicity-like invariants behave similarly to the energy-
like invariants and are thus denoted pseudohelicity invariants.

Note that because of the polynomial structure of (C9) and
(C10), any triad shape configuration given by {λ,p,q} will
have q − 1 pseudoenergy invariants and q − 1 pseudohelicity
invariants.

APPENDIX D: SPECTRAL FLUXES

Nonlinear spectral fluxes of E(α) and H (β) through
the nth shell are given as the transfers from all wave
numbers less than kn to wave numbers greater than kn,
that is, �E(α)

n = dt |N.L.

∑n
m=0 kα

m(|u+
m|2 + |u−

m|2) and �H (β)

n =
dt |N.L.

∑n
m=0 k

β
m(|u+

m|2 − |u−
m|2). Following the calculations

through, one finds that (C3) becomes (breaking the sum at
n instead of N )

�E(α)

n =
∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q

[
E s ′,s ′′

p,q

n∑
m=q

kα
m−q�

−,s ′,s ′′
m,p,q +

n+q∑
m=n+1

kα
m−q�

−,s ′,s ′′
m,p,q − s ′εs ′,s ′′

p,q

n+q−p∑
m=n+1

kα
m−q+p�−,s ′,s ′′

m,p,q

]
, (D1)

where summation over the shared range q � m � n has been grouped together in the first term. This term, however, vanishes
since E s ′,s ′′

p,q (λα) = 0 for E(α) to be an invariant. Going through similar calculations for �H (β)

n one finally finds that the spectral
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fluxes are given by

�E(α)

n =
∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q

[
n+q∑

m=n+1

kα
m−q�

−,s ′,s ′′
m,p,q − s ′εs ′,s ′′

p,q

n+q−p∑
m=n+1

kα
m−q+p�−,s ′,s ′′

m,p,q

]
, (D2)

�H (β)

n =
∑
p, q

0<p<q

kn+kn+p�kn+q

Gp,q

∑
s ′,s ′′

gs ′,s ′′
p,q

[
n+q∑

m=n+1

k
β
m−q�

+,s ′,s ′′
m,p,q − εs ′,s ′′

p,q

n+q−p∑
m=n+1

k
β
m−q+p�+,s ′,s ′′

m,p,q

]
. (D3)
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7.3 Outlook

The partitioning of the energy cascade between symmetrized helical triad interac-
tions (different from G1–G4) was recently investigated by Alexakis (2017) in a
direct numerical simulation of the spectral-helical NSE. Like here, it was found that
the energy cascade partitions itself into constant-flux components within the inertial
range — an intriguing result since energy conservation implies only the total flux
needs to be constant.

Alexakis (2017) furthermore found the partitioning to be unaffected by helicity
pumping, suggesting it might be universal. The partitioning was however considered
across the entire set of (average of) resolved triad shapes, making it unclear whether
the partitioning universality is valid on a per triad shape basis too (i.e. not just
a net property of coupled systems). In order to test the partitioning universality,
additional shell models simulations could therefore be conducted in which both
triad shape and helicity pumping are varied (the latter being in contrast to the two
extreme cases considered in study #3, i.e. no helicity and maximal helically forced).

In the popular nearest-neighbour limit of shell models (figure 6.9), however,
triad shapes are relatively local (close to equilateral) since the middle and largest
triangle sides are merely � and �2 times larger than the smallest, respectively, where
1 < � � g and g is the golden ratio. The shell model presented in this paper is
meanwhile nonlocal, thereby extending the range of possible relative leg sizes to
�p and �q , respectively, for integers 1 < p < q. The triad interactions resolved
by the new shell model can therefore have unrestricted shapes for small enough �
and large enough p; q (figure 7.1), which is useful for the further investigating the
energy cascade partitioning between G1–G4 according to the above ideas.



124 CHAPTER 7. STUDY #3

n −
q

n −
p

n −
q +

p

n n +
q −

p

n +
p

n +
q

G1

u+

u−

u+

u−

u+

u−

n −
q

n −
p

n −
q +

p

n n +
q −

p

n +
p

n +
q

G2

u+

u−

u+

u−

u+

u−

n −
q

n −
p

n −
q +

p

n n +
q −

p

n +
p

n +
q

G3

u+

u−

u+

u−

u+

u−

n −
q

n −
p

n −
q +

p

n n +
q −

p

n +
p

n +
q

G4

u+

u−

u+

u−

u+

u−

Figure 7.1: Nonlocal helical shell model, consisting of the three helical triad interactions per interaction
group (G1–G4) coupling to uCn (filled gray circles). Complementary interactions coupling to u�n are given by
similar but sign-flipped interactions (not shown). The arrows indicate the average energy transfer direction
within each decoupled triadic interaction (showing the same as in figure 6.7, but from a shell model’s
perspective) resulting from a linear stability analysis (Waleffe, 1992): solid blue (dashed red) arrows denote
forward (reverse) energy transfers, while thick (thin) arrows represent dominant (subordinate) transfers. In
each panel, the left (right) direction corresponds to larger (smaller) scales.



Chapter 8

Study #4

8.1 Introduction

Quadratic invariants play a fundamental role in the understanding of turbulent cas-
cade dynamics, such as enstrophy effectively blocking the forward energy cascade
in 2D. Recently, it was found that G4 triad interactions conserve a hidden enstrophy-
like quantity capable of reversing the 3D forward energy cascade in analogy to
enstrophy in 2D (Biferale et al., 2012), thus providing a clearer physical explanation
for the reverse (R-class) contribution predicted from a linear stability analysis (G4
in figure 6.7).

In this work, we show that G2 interactions also conserve an enstrophy-like
invariant capable of reversing the energy cascade, but that the conservation depends
on triad geometry, thus making the cascade reversal dependant on triad geometry too.
Remarkably, this result coincides with predictions based on a linear stability analysis
and from studying the energy flux equation assuming an infinite Kolmogorov scaling
(Waleffe, 1992). The standing problem of explaining why the dominant transfer
direction in G2 shifts from forward to reverse depending on triad geometry (G2 in
figure 6.7) is therefore proposed to be explained by the existence of a new quadratic
quantity. This study does thus not only suggests a novel physical explanation for the
behaviour of G2 triads, but has important ties to the traditional view that quadratic
invariants are important for the directionality of the energy cascade.
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Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both
kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral
scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly
rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can
be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a
second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward
cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it
has previously been shown that a subset of three-wave (triad) interactions conserve helicity
in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy
cascade in 3D. In this work, we show, both theoretically and numerically, that an additional
subset of interactions exist, conserving a new pseudo-invariant in addition to energy and
helicity, which contributes either to a forward or an inverse energy cascade depending on
the specific triad interaction geometry.

DOI: 10.1103/PhysRevFluids.2.054607

I. INTRODUCTION

Fully developed three-dimensional (3D) turbulence is characterized by a forward cascade of
kinetic energy from the large integral scale of motion to the small Kolmogorov scale η of
viscous dissipation. In the large Reynolds number limit, η → 0, the production of enstrophy,
the integral of the vorticity squared, by the stretching and bending term in the incompressible
Navier-Stokes equations (NSE) permits the viscous dissipation of energy at the Kolmogorov scale.
In two-dimensional (2D) turbulence, the stretching and bending term is absent, and enstrophy is, in
addition to energy, also an inviscid invariant [1]. In this case, the dissipation of enstrophy prevents
dissipation of energy at the Kolmogorov scale, effectively blocking the forward cascade of energy.
The dual inviscid conservation of both quantities,

∫
E(k)dk and

∫
k2E(k)dk, the integrals over

the spectral energy and enstrophy densities, respectively, consequently implies a reversal of the
energy cascade to larger scales, hereafter referred to as a reverse cascade, following Waleffe [2]
(synonymous to an inverse or upscale cascade). In 3D turbulence, helicity, the integral of the scalar
product of velocity and vorticity, is also an inviscid invariant [3]. Similar to the enstrophy spectrum,
the helicity spectrum, H (k) ∼ kE(k), dominates over the energy spectrum at small scales (large
k), but unlike enstrophy, helicity is not sign definite. As a consequence, the increased dissipation
(of both signs) of helicity compared to energy can be obtained without a net helicity production as
long as the dissipation of both positive and negative helicities balance [4]. Inviscid conservation of
helicity therefore does not prevent a forward cascade of energy [5].

In helical flows, such as strongly rotating flows with broken mirror symmetry, a simultaneous
forward helicity cascade and reverse energy cascade can however be observed [6]. In the spectral
decomposition of the NSE, energy and helicity (and enstrophy in 2D) are conserved within each
three-wave interaction (triad interaction). It was recently proposed that reverse energy cascades
might generally exist in 3D turbulence [7], caused by a specific subset of triad interactions among

*rathmann@nbi.ku.dk
†pditlev@nbi.ku.dk
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FIG. 1. G1–G4 helical triad interactions classified by behavior (F and R classes). The behavior of G2
triads is here proposed to be determined by the conservation of a new geometry-dependant enstrophy-like
quantity, E(α). The arrows indicate the average energy transfer directions based on a linear stability analysis [2]:
Blue/solid (red/dashed) arrows denote forward (reverse) energy transfers while thick (thin) arrows represent
the dominant (subordinate) transfers.

helical wave components [2] of the same sign which render helicity enstrophy-like. The relative
roles played by the different of subsets of helical triad interactions would depend specifically on the
symmetries and boundary conditions of the turbulent flow [8,9].

By applying the helical decomposition [2] to the NSE, triad interactions are split into four distinct
groups of interactions between helical modes of different signs (depending on the relative weights of
interchange of energy and helicity among the three waves). Within each helical interaction group, we
show that an additional either helicity- or enstrophy-like quantity is conserved. Here, we conjecture
that it is the spectral properties of this triad-specific invariant that governs the dual cascade of energy
and helicity in 3D turbulence. Our conjecture is confirmed in the case of a shell model (reduced
wave space model) which obeys the same conservations as the NSE [8].

In the helical decomposition [2] of the NSE for incompressible flows, each complex spectral
velocity component, u(k), is decomposed into helical helical modes, h±(k) (using k · u(k) = 0),
which are eigenmodes of the curl operator, i.e., ik × h± = ±kh±, where k = |k|. In this basis,
velocity components are given by u(k) = u+(k)h+ + u−(k)h−, and energy and helicity are given by
E = ∑

k(|u+(k)|2 + |u−(k)|2) and H = ∑
k k(|u+(k)|2 − |u−(k)|2), respectively. The spectral NSE

become [2]

(dt + νk2)us(k) = −1/4
∑

k+k′+k′′=0

∑
s ′,s ′′

(s ′k′ − s ′′k′′) h∗
s ′ (k′) × h∗

s ′′ (k′′) · h∗
s (k) u∗

s ′ (k′)u∗
s ′′ (k′′), (1)

where {s,s ′,s ′′} = ±1 are the helical signs of the interacting modes and (s ′k′ − s ′′k′′) h∗
s ′ (k′) ×

h∗
s ′′ (k′′) · h∗

s (k) is the coupling coefficient of the helical triad interaction involving velocity
components {us(k),us ′ (k′),us ′′ (k′′)}. Each triad interaction in the spectral NSE is thus split into four
helical triad interactions by the inner sum over helical signs in (1) when sorted against shared coupling
coefficients: {s,s ′,s ′′} = ±{+,−,+}, ± {+,−,−}, ± {+,+,−}, ± {+,+,+}, hereafter referred to as
groups G1,. . . ,G4 respectively; see Fig. 1.

By isolating terms in (1) involving only three wave vectors {k,k′,k′′} (a single triad) and
defining the shorthand notation g = h∗

s ′ (k′) × h∗
s ′′ (k′′) · h∗

s (k), one finds, using the cyclic property
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of g,

dtus(k) = (s ′k′ − s ′′k′′) g u∗
s ′ (k′)u∗

s ′′ (k′′),

dtus ′ (k′) = (s ′′k′′ − sk) g u∗
s ′′ (k′′)u∗

s (k), (2)

dtus ′′ (k′′) = (sk − s ′k′) g u∗
s (k)u∗

s ′ (k′).

This simple form of the helically decomposed NSE triad dynamics is the basis of our analysis.
Note that the cyclic symmetry of (2) implies that one may assume k � k′ � k′′ without loss of
generality. By multiplying by u∗

s (k),u∗
s ′ (k′) and u∗

s ′′ (k′′), respectively, in the three equations (2), it
immediately follows that energy is conserved within each triad interaction, and similarly for helicity
by multiplication of sku∗

s (k),s ′k′u∗
s ′ (k′) and s ′′k′′u∗

s ′′ (k′′), respectively [2]. The energy flux between
the three triad legs is fixed for a given triad and is determined by the terms (s ′k′ − s ′′k′′),(s ′′k′′ − sk),
and (sk − s ′k′) in (2), while the average flux direction (to or from a leg) is determined by the sign of
the three-wave correlator 〈u∗

s (k)u∗
s ′ (k′)u∗

s ′′ (k′′)〉 + c.c.
Waleffe [2] suggested that a linear instability analysis would predict the average energy flux

direction within helical triad interactions by assuming that energy, on average, flows out of the
most unstable wave mode and into the other two. By evaluating the stability of the fixed points
{us(k),us ′ (k′),us ′′ (k′′)} = {U0,0,0},{0,U0,0},{0,0,U0} using (2), the unstable wave mode may be
identified as the one with the largest absolute coefficient value in (2). This criterion implies that the
smallest leg (largest scale) is unstable in G1 and G3 interactions, suggesting that these interactions
contribute with a forward energy cascade (F-class interactions), while for G2 and G4 the middle
leg is unstable, suggesting part of the energy flux is reversed. In G4, only same-signed helical
modes interact, implying both positive and negative helicities, H+ = ∑

k k|u+(k)|2 and H− =∑
k k|u−(k)|2), are separately conserved. As such, G4 interactions can be regarded as analogous to

enstrophy-conserving 2D interactions, and, consequently, should contribute with a reversed energy
cascade (R-class interactions). This was recently indeed found to be the case numerically [7]. Note
that the 2D analogy argument for why G4 interactions should exhibit a reversed energy cascade is
different from that of the instability assumption. Lastly, in G2 interactions, positive and negative
helicity components do interact, thus breaking the helicity-enstrophy analogy for explaining the
mixed F- and R-class nature of G2 [2].

II. THE PSEUDO-INVARIANT

Here we argue that the mixed F- and R-class nature of G2 interactions is determined by a new
quantity different from energy and helicity, which too is conserved within a single triad interaction
(2), but depends on triad shape. This new “pseudo-invariant” is thus, unlike energy and helicity,
not a globally conserved quantity (across all triad interactions) because of its shape dependency.
We therefore conjecture that the energy cascade, within subsets of identically shaped triads, should
transition from forward (F-class) to reverse (R-class) depending on whether energy or the pseudo-
invariant is dominant at the dissipation scale. To realize this, consider the spectral pseudo-invariant
quantity defined as

E(α)(k) = kα
(|u+(k)|2 + |u−(k)|2), α ∈ R, (3)

which is analogous to the spectral energy density E(k) = |u+(k)|2 + |u−(k)|2. This quantity
is conserved by triad interactions governed by (2) if dt (E(α)(k) + E(α)(k′) + E(α)(k′′)) = 0,
implying (

s ′ k
′

k
− s ′′ k

′′

k

)
+

(
k′

k

)α(
s ′′ k

′′

k
− s

)
+

(
k′′

k

)α(
s − s ′ k

′

k

)
= 0, (4)

which is trivially fulfilled for any triad when α = 0 (i.e., energy). As a function of triad shape, given
by the relative leg sizes k′/k and k′′/k, the left-hand side of (4) consists of a constant term and two
monotonically increasing or decreasing terms. The existence of a nontrivial, real solution (α 	= 0)

054607-3



NICHOLAS M. RATHMANN AND PETER D. DITLEVSEN

0 π/ 3 π/ 2
θ

π/ 3

π/ 2

π

θ

F-class

R-class

Equilateral (k ≈ k ≈ k )

Acute (k ≈ k k )

Flat (k ≈ k ≈ k / 2)

k / k

k/ k k / k
θ
θ

α(k,k ,k ) = 0
Simulated

−1.0

−0.5

0.0

0.5

1.0

α(
k,
k
,k
)

FIG. 2. G2 α solutions as a function of triad shape given by the two interior angles θ ′ and θ ′′. Overlayed
are the α = 0 contour using Eq. (5) (dotted line) and the specific triad geometries simulated in this study
(crosses).

for a given triad shape {k,k′,k′′} and interaction group {s,s ′,s ′′} therefore requires the signs of the
coefficients of the two last terms in (4) to be opposite. Note that no more than one nontrivial, real
solution can exist. It follows that only G2 and G4 interactions can have nontrivial solutions to (4).
For G4, α = 1 is the solution for any triad, corresponding to the global inviscid conservation of
helicity, as expected. For G2, the solution α = α(k,k′,k′′) is triad shape dependent.

Figure 2 shows the numerically solved G2 solutions for all possible (noncongruent) triad
geometries (colored area in Fig. 2) by expressing each triad in terms of the two interior angles θ ′
and θ ′′ using the sine rule: k′/k = sin(θ ′)/ sin(π − θ ′ − θ ′′) and k′′/k = sin(θ ′′)/ sin(π − θ ′ − θ ′′).

For G2 triads fulfilling

log k′′/k

1 + k′′/k
= log k′/k

1 + k′/k
, (5)

[taking d/dα|α=0 of Eq. (4)], the trivial and nontrivial solutions collapse to the single solution α = 0.
Because the ratio of the spectral pseudo-invariant density to energy scales as kα (growing with k for
α > 0), the subset of G2 triad interactions having α > 0 (red in Fig. 2) may be regarded analogous
to enstrophy-conserving interactions in 2D turbulence. Note that these triad interactions correspond
to nonlocal interactions.

In addition to a stability analysis, Waleffe [2] also estimated the behaviors of G1–G4 by studying
the spectral energy flux equation. Assuming an infinite Kolmogorov scaling, the analysis suggested,
to leading order, that triad geometries for which

log k/k′

1 + k/k′ + log k′′/k′

k′′/k′ − 1
(6)

is positive (negative) should contribute with forward (reverse) energy cascades. Noting that 1 �
k′′/k′ � k/k′ + 1 (triangle inequality), it follows that G2 triads with k/k′ > 0.318 contribute to a
forward cascade, whereas k/k′ < 0.278 contribute reversely. That is, a band of triad geometries
exist, 0.278 < k/k′ < 0.318, outside which the energy cascade is either forward or reverse. Here,
however, we argue that retaining the original expression (6) contains more information on the
G2 F/R transition since (i) setting it equal to 0 can be shown to be identical to (5), which has a
clearer physical interpretation, and (ii) provides the exact F/R-transition line as a function of triad
geometry (Fig. 2).
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III. NUMERICAL TEST

In order to test our conjecture, we apply our newly constructed helical shell model [8]
(source available at https://github.com/nicholasmr/rdshellmodel). Shell models are a class of
fixed-triad-shape and reduced-wave-space models, allowing for very long inertial ranges to be
resolved. Benzi et al. [10] did the pioneering work on constructing helical shell models, which,
since then, has inspired other helical shell models and led to important insights on helically
decomposed triad dynamics [4,8,11–17]. The shell model used here [8], which is related to the
Sabra model [15] by the transformation us(kn) → −isus(kn) except for a sign change in G1 and G3
(relevant only when coupling G1–G4), additionally provides a natural coupling between the four
interaction groups (G1–G4) and multiple triad shapes through coupling weights derived directly
from (1).

In helical shell models, it is straight forward to perform “spectral surgery” as proposed [7,15,18,19]
in order to investigate the (isolated/uncoupled) behavior of G2 interactions. Considering only fixed-
shaped G2 interactions, the shell model takes the form

(
dt + νk2

n + νLk−2
n

)
us(kn) = skn

[
u∗

−s(kn+p)u−s(kn+q) − εp,q

λp
u∗

−s(kn−p)us(kn+q−p)

+ 1 + εp,q

λq
u−s(kn−q)us(kn−q+p)

]
+ fs(kn), (7)

where εp,q = (1 + λq)/(λp − λq), fs(kn) is the forcing at wave number kn, and the linear terms
νk2

nus(kn) and νLk−2
n us(kn) are viscous dissipation and a drag term, respectively; the latter is added

in the usual way to remove energy at large scales. The scalars kn = k0λ
n, where n = 0, . . . ,N ,

represent the exponentially distributed shell wave numbers resolved, {p,q} ∈ N where 1 < p < q,
k0 ∈ R+, and λ ∈ ]1,(1 + √

5)/2] = ]1,ϕ]. The golden ratio ϕ is the upper limit such that any set of
nearest neighbor waves fulfills the triangle inequality as required by the NSE.

The integers {p,q} can be related to any triangular shape through the sine rule. The possible
resolved triad shapes depend therefore on the combination of {λ,p,q}: For λ → 1 any triad geometry
may be constructed for sufficiently large or small values of {p,q}, while for {λ,p,q} = {ϕ,1,2} triads
collapse to a line. Thus, for each chosen set of {λ,p,q}, the shell model consists, independently of
scale kn, only of fixed-shaped triad interactions.

The nonlinear terms in (7) conserve both energy E = ∑N
n=0(|u+(kn)|2 + |u−(kn)|2) and helicity

H = ∑N
n=0 kn(|u+(kn)|2 − |u−(kn)|2). Each {p,q} configuration of the model (λ hereafter assumed

fixed) additionally conserves the pseudo-invariants E(α) = ∑N
n=0 kα

n (|u+(kn)|2 + |u−(kn)|2) in
complete analogy to (4) for the NSE [8].

The nonlinear spectral energy flux through the nth shell is given by [8]


(kn) =
n+q∑

m=n+1

�m,p,q + εp,q

n+q−p∑
m=n+1

�m,p,q, (8)

where �m,p,q = 2km−q Re[u∗
+(km−q)u∗

−(km−q+p)u−(km) − u∗
−(km−q)u∗

+(km−q+p)u+(km)].
Simulations were conducted with λ = 1.1, k0 = 1, and N = 223 for both high and low Reynolds

number configurations {ν,νL} = {1×10−12, 1×102}, {1×10−11, 1×104}, respectively. Five different
sets of {p,q} were chosen: p = {1,12,13,14,22} with q = p + 1, corresponding to α = {−30.9, −
0.15,0.01,0.15,0.69} (crosses in Fig. 2). In all simulations, the forcing f±(knf ) = (1 + i)/u∗

±(knf )
was applied to both helical components at shell nf = 108, supplying a constant energy input of
εin = 4.

Figure 3 shows the simulated spectral energy fluxes. The blue curves show the resulting energy
fluxes for the model configured with triad shapes having α < 0, in which case energy should exhibit
a forward cascade. The red curves show the opposite with α > 0, namely a 2D-like reversed energy
cascade and a forward cascade of the enstrophy-like pseudo-invariant (latter not shown). As the
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FIG. 3. Simulated spectral energy fluxes of the G2 triad geometries (α values) considered. Solid (dashed)
lines correspond to high (low) Reynolds number configurations.

cascade directions for the energy and the pseudo-invariant interchange at α = 0, we expect a split
forward and reversed energy cascade to develop, which is indeed found to be the case (black curve
in Fig. 3). Furthermore, because the ratio of the spectral pseudo-invariant density to energy scales as
kα , one would expect with increasing Reynolds numbers a narrowing of the α interval over which
the F- to R-class transition occurs, which is also found to be the case (solid versus dashed lines
in Fig. 3).

IV. DISCUSSION

De Pietro et al. [15] gave an alternative explanation for the F to R transition in the case of a
shell model by studying the energy flux equation (8). Their work suggested that if time-averaged
triple correlators, 〈�n,p,q〉, are asymptotically constant (independent of kn), Eq. (8) may be written
as 〈
(kn)〉 = (q + (q − p)εp,q)〈�n,p,q〉 = Fp,q〈�n,p,q〉. Thus, the sign of Fp,q , which depends on
triad geometry, would indicate the flux direction, assuming the sign of 〈�n,p,q〉 is fixed and given by
a stability analysis [2,15]. However, even though this prediction is in agreement with our conjecture
for the triad geometries considered here, it is important to note that 〈�n,p,q〉 cannot necessarily be
assumed asymptotically constant in the nonlocal triad limit [8].

The importance of the “hidden” reverse energy cascade carried by G2 R-class interactions (α > 0),
which are mostly nonlocal, depends (i) on the number of G2 R-class triads compared to the number
of G2 F-class triads, and (ii) the magnitude of the G2 coupling coefficients in (1) compared to those of
G1, G3, and G4. To estimate (i), consider the continuous version of (1) where the triad sum becomes
an integral over dk′dk′′. In terms of θ ′ and θ ′′, the corresponding density of triads within the element
dk′dk′′ is given by the transformation dk′dk′′ = | det J | dθ ′dθ ′′, where J = ∂ is the Jacobian of
the transformation k′ = ′(θ ′,θ ′′) and | det J | = k2 sin(θ ′) sin(θ ′′)[1 + cos(θ ′ + θ ′′)2]/sin(θ ′ + θ ′′)4.
Thus, the number of G2 R-class triads far exceeds the number of G2 F-class triads in
the limit of large inertial ranges (Re → ∞) since the acute triad limit k′,k′′ → ∞ implies
sin(θ ′ + θ ′′) → 0 and therefore a large density of nonlocal triads. To estimate (ii), consider the
relative (normalized) magnitudes of the G2 coupling coefficients given by I−,−/

∑
s ′,s ′′ Is ′,s ′′ , where

Is ′,s ′′ = |(sk + s ′k′ + s ′′k′′)(s ′k′ − s ′′k′′)|. That is, Is ′,s ′′ is the part of the total coupling weight
unique to each of G1–G4, which originates from (1) by noting |(s ′k′ − s ′′k′′) g| = Is ′,s ′′Q/(2kk′k′′),
where Q = (2k2k′2 + 2k′2k′′2 + 2k′′2k2 − k4 − k′4 − k′′4)1/2 [2]. Figure 4 shows the relative G2
coupling magnitudes (solid black lines), suggesting G2 R-class interactions should, overall, play
an important role in the helically decomposed dynamics of flat and semi-acute triads. In addition,
assuming k = 1 without loss of generality, the colored contours in Fig. 4 show the triad density,
| det J |, is also large for such flat and semi-acute triads triads, suggesting G2 R-class interactions
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FIG. 4. G2 relative coupling weight (solid black contours) and triad densities (coloured contours) as a
function of triad shape.

become increasingly important to the extent that the inertial range is long enough for them to be
resolved.

V. SUMMARY

In conclusion, we presented an alternative classification to linear triad stability analysis [2] for
explaining the nature of the four elementary nonlinear interactions of the spectral Navier-Stokes
equation in the helical basis. By showing a subset of interactions conserve new enstrophy-like
blocking quantities depending on triad geometry, the apparent complicated nature of the second
group (G2) of helical interactions (Fig. 1) may be explained in terms of physically conserved
quantities analogous to enstrophy in 2D turbulence.
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8.3 Outlook

Having studied G2 interactions in isolation, it is not immediately clear whether the
G2 cascade reversal persistently carries over to coupled triad configurations; that is
if coupling-induced effects change the behaviour of G2 triads. An important next
step would therefore be to couple G1–G4 systematically for many different triad
geometries, where the sampled geometries cross ˛.k; k0; k00/ D 0 too. This would
allow to determine whether the reversal persists even as the cascade partitioning
possibly changes as a function of coupling weights (related to the outlook of study
#3). If so, the robustness of pseudo-invariants could arguably be important for
understanding the behaviour of large coupled systems too, or even the spectral-
helical NSE.

Another potential implication of pseudo-invariants is that they might exist in
magnetohydrodynamical turbulence too. A central problem in astrophysics is how
magnetic fields are generated by astrophysical bodies at spatial scales much larger
than the outer scale of the bodies. A popular explanation is that a large-scale
dynamo action occurs, by which the magnetic field is amplified through turbulent,
nonlinear interactions between the velocity field and the magnetic field in the
electroconducting fluid inside the body. Specifically, the upscale cascade of the
inviscid invariant magnetic helicity in magnetohydrodynamical (MHD) turbulence,
defined as the inner product between the magnetic field and the magnetic potential,

+ + +
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Figure 8.1: The minimal set of triad interactions (MTI) required to conserve all three
magnetohydrodynamical invariants: energy, magnetic helicity, and cross-helicity. For a
given triad of waves, fk;k0;k00g, the MTI consists of one hydrodynamical triad interaction
group (Guuui ) and three magnetohydrodynamical groups (GuBBi ;GBuBi ;GBBui ). Each MTI
is uniquely defined by the helical signs of the interacting modes, fs; s0; s00; �; � 0; � 00g D ˙,
or, equivalently, by group indices i in analogy to the notation used for hydrodynamical
turbulence and in this thesis.
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has been proposed as an explanation (Frisch et al., 1975). In this respect, it is
important to study the dynamical mechanisms by which inviscid invariants are
transferred across spatial scales in order to cast light on the evolution of planetary
and stellar magnetic fields.

Since both velocity and magnetic fields are solenoidal in MHD turbulence, both
fields may be expressed in the helical basis as

u.k/ D uC.k/hC C u�.k/h�
B.k/ D BC.k/hC C B�.k/h�:

Applying this decomposition to the MHD equations (Lessinnes et al., 2009), one
finds that each triad of waves fk;k0;k00g conserve all ideal MHD invariants: energy
(kinetic+magnetic), magnetic helicity and cross-helicity. Unlike hydrodynamical
turbulence, however, four distinct triad interactions (for each triad of waves) is
required to conserve all invariants — constituting a minimal set of triad interactions
(MTI) [figure 8.1]. Because the magnetic components have their own associated
helical signs (f�; � 0; � 00g for legs fk;k0;k00g), a total of 26 D 64 distinct MTIs exist.

Similarly to the hydrodynamical case (6.12), by picking out terms from the
spectral-helical MHD equations involving a single triad of waves, the simplified
dynamics governing a single MTI falls out. Considering then the enstrophy-like
pseudo-invariant

E.˛/.k/ D k˛ �juC.k/j2 C ju�.k/j2 C jBC.k/j2 C jB�.k/j2�
and applying the MTI equations, a subset of triad interactions might be found to con-
serve hidden enstrophy-like quantities in analogy to G2 and G4 for hydrodynamical
turbulence. If a further subset of these triads additionally have magnetic compo-
nents as the smallest triad leg (largest spatial scale), such triads could, potentially,
contribute with an upscale transfer of magnetic energy and thereby to large-scale
dynamo action.
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