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Abstract
In this thesis I explore four major topics of supernova cosmology. The underlying theme through-
out is to improve supernovae as standard candles and thereby improve our understanding of dark
energy, dark matter, and cosmology.

For the last few decades the property that type Ia supernovae can be used as standard candles
has played a crucial part in constraining the cosmological parameters of the standard cosmolog-
ical model. Despite having played this crucial role in modern cosmology the progenitor system
for type Ia supernovae has so far not been fully understood. In order to understand all system-
atic effects related to observing type Ia supernovae we need the ability to reliably identify which
progenitor system resulted in the type Ia supernovae that we are observing. One way to constrain
these progenitor models is through the predicted delay times, the time between star formation and
explosion of the type Ia supernovae. On that background we investigate two different ways of mea-
suring the type Ia supernova rates and delay times and how these two methods can be reconciled in
a new model. The findings are that the new model is in good agreement with current observations
and preferred over the current consensus model. However to constrain type Ia supernova rates in
highly star forming regions additional observations are needed in this regime.

Type Ia supernovae can be used to probe the local cosmological bulk flow. Some studies find
that this bulk flow is in excess of what is predicted by the standard cosmological model. We
show that by taking into account survey geometry and sampling effects when computing the linear
theory prediction of this bulk flow these large observed flows can be explained. The finding is that
survey geometry and in particular sampling effects can shift the linear theory prediction towards
larger bulk flows. This defuses the apparent tension between the measured bulk flow and theory.

Peculiar velocities of type Ia supernova can systematically effect the observed redshifts of Ia
supernovae which in turn can cause derived cosmological parameters to also shift systematically.
With focus on the Dark Energy Survey type Ia supernova sample it is determined that the method
applied to correct for the effects of peculiar velocities in other current studies is sufficient for the
Dark Energy Survey sample. This correction must be associated with an uncertainty that is then
propagated with other sources of systematic uncertainties in the total uncertainty budget.

After the success of the type Ia supernova as a standard candle at lower redshifts, many candi-
dates for a similarly useful standard candle at higher redshifts have been proposed. The potential
utility of these proposed high redshift standard candles is investigated, in particular if they aid in
discerning between standard cosmology and a defined subset of modified dark energy models. The
finding is that higher redshift standard candles will not contribute to this effort more than lower
redshift counterparts as the modified dark energy models under current observational constraints
can not deviate significantly from standard cosmology at these higher redshifts. This conversely
implies that any deviation from standard cosmology at higher redshifts will pose a problem not
just to standard cosmology, but also to the tested subset of modified dark energy models.
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Motivation and Thesis Structure

This thesis has a focus on type Ia supernovae and their use in modern cosmology. The underlying
motivation is to constrain cosmological models and ultimately learn more about the nature of dark
energy and dark matter.

Although type Ia supernovae play a crucial part in modern cosmology the exact progenitor
system, or systems, have so far not been identified. If we are to accurately determine all system-
atic effects involved in type Ia supernova observations we need to be able to reliably identify the
progenitor system of each Ia supernova. For current type Ia supernova surveys systematic uncer-
tainties are the same size as statistical uncertainties, and in the future this balance will only become
more dominated by systematics. To this end in chapter 2 is a discussion of two different methods
that type Ia supernova rates and delay times are measured followed by a discussion of how these
two methods can be reconciled.

It is crucial that whenever observations are in apparent disagreement with standard cosmology
that we put these claims to the test. A number of studies have suggested that the local cosmological
bulk flow is in excess of what is predicted by standard cosmology. In chapter 3 we therefore test
whether the large observed bulk flows could be caused by sparse sampling and survey geometry
effects or whether there truly is disagreement with standard cosmology.

A problem for the current standard cosmology is the apparent discrepancy between the Hubble
constant measured by local probes such as type Ia supernovae and that measured from observa-
tions of the cosmic microwave background. The current disagreement is roughly ∼3σ, which
is interesting but by no means strong enough evidence to reject the current standard cosmology.
Future type Ia surveys will however tighten the constraints on the cosmological parameters and
help shed light on whether there truly is disagreement between nearby and distant probes within
the standard cosmology paradigm. The larger number of type Ia supernovae that these surveys
will observe translates to the uncertainty budget being dominated more by systematic uncertain-
ties as the statistical uncertainties will become smaller. Among these systematics are the effects of
peculiar velocities, which introduce a non-trivial systematic redshift contribution to the observed
redshifts of type Ia supernovae and is significant at redshifts of 0.1 or less. On that background
chapter 4 discusses the current methods applied when correcting for the systematic redshift ef-
fects of peculiar velocities, and how future surveys can improve upon this approach to continue to
provide reliable and competitive cosmological constraints.

It has been argued that standard candles at high redshift (z & 2) will aid in constraining cos-
mological models and that future telescopes such as the James Webb Space Telescope promises
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to enable observations of these proposed high redshift standard candles. Before investing con-
siderable observational resources in observing these high redshift standard candles it is important
to determine what questions high redshift standard candles will aid in answering. This has been
an open question and on that background chapter 5 discusses the utility of high redshift standard
candles in discerning between different models for dark energy.

This thesis is structured with first an introduction to the topics I have worked within during
my Ph.D. degree. This introduction is meant to be available to anyone with a general astrophysics
background and therefore includes both some historical context but also the current status of each
topic. Following this general introduction are the four main scientific products of this thesis, which
make up chapter two through five. Finally in chapter six is a summary of this thesis as well as a
proposed outline for how further progress can be made within the thesis topics.
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Chapter 1

Overview of Type Ia Supernovae and
Cosmological Applications

In astronomy transient phenomena, such as supernovae, gamma ray bursts, or the merging of black
holes or neutron stars present an opportunity to investigate physics at energy scales that are simply
not possible to investigate here on Earth. Supernovae in particular have been observed by as-
tronomers at least as far back as July 4th 1054 where Chinese astronomers observed a supernova
where we today can observe the remnant in the Crab Nebula. Danish astronomer Tycho Brahe
observed a supernova in 1572 that we now know was a type Ia supernova. The large bolometric
luminosities of type Ia supernovae of ∼1043erg s−1 at their maximum means that they constitute
a large portion of the supernovae observed since their extreme luminosities allow them to be ob-
served from large distances. At their peak type Ia supernovae shine as bright as roughly 10 billion
suns, enabling them to shine as bright as the total sum of stars that make up their host galaxy. Their
apparent homogeneity which allows them to be used as standardisable candles, the details of which
will be explained later, additionally make them an object of extreme interest in modern cosmology.

The first long-term set of spectra of a type Ia supernova were observed by Minkowski (1939)
who used photographic plates to observe SN 1937C. Since then major advancements in both the
quality and quantity of type Ia supernova observations have taken place, especially since the advent
of the charged-coupled device (CCD). Type Ia supernovae are classified by their lack of hydrogen
and helium features in their optical spectra, and are incredibly uniform in their spectra and light
curves (Maoz et al., 2014). Averaged type Ia supernova redshifts in various redshift ranges are
shown in figure 1.1 and illustrate the uniformity of type Ia spectra. Type Ia supernova reach a
maximum in optical within ∼15-20 days and then decline by roughly three magnitudes in one
month and then steadily one magnitude per month over the following months.

Physical models for type Ia supernova explosions are reviewed in Hillebrandt and Niemeyer
(2000), later updated in Hillebrandt et al. (2013). Type Ia supernovae are observed in old stellar
populations and show a distinct lack of hydrogen and helium in in the spectra. There is broad
consensus that this is a strong indication that the core is a white dwarf which when it reaches
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CHAPTER 1. OVERVIEW OF TYPE IA SUPERNOVAE AND COSMOLOGICAL
APPLICATIONS

Figure 1.1: Averaged spectra of type Ia supernovae at various redshift ranges. The spectral features
of selected elements are highlighted for convenience. Reproduced from Sullivan et al. (2009).

the Chandrasekhar mass of ∼1.4M� experiences runaway fusion of carbon and oxygen in the
core. The physical mechanism that produces the observed luminosity is then nuclear decay of
first 56Ni to 56Co and thereafter 56Co to the stable isotope 56Fe, with the exponential timescales
of these decays being nine and 114 days respectively. The majority of this luminosity is in the
optical spectrum, as an optically thick ejecta reprocesses short wavelength photons into the optical
regime. Some variance is however observed in the features of type Ia supernovae and the exact
progenitor, or progenitors, of type Ia supernovae are currently unknown.

1.1 Type Ia Supernova Progenitor Models

While there is strong consensus that type Ia supernovae are white dwarfs undergoing thermonu-
clear explosion, the same consensus does not exist when it comes to the question of how the white
dwarf reaches this state. As white dwarfs are inherently stable some interaction between the white
dwarf and another object must take place. Recent evidence suggests that there are likely more
than one possible avenue that can lead to white dwarfs undergoing rapid thermonuclear explosion.
Evidence suggests that type Ia supernovae that are more luminous than the average are predomi-
nantly found in highly star forming galaxies, and vice versa with less luminous type Ia supernovae
more often found in galaxies with little or no active star formation. See Branch (1998) for a re-
view and Hicken et al. (2009), Kelly et al. (2010), or Sullivan et al. (2010) for a discussion of
type Ia supernovae and host galaxy correlations. When the diversity of observations is taken into
account, it seems improbable that a single progenitor channel can account for all observed type Ia
supernovae. There is however not concrete evidence yet to say with certainty either way. For a
progenitor model to hold up to scrutiny it must have a robust explosion mechanic, match observed
peak luminosities, light curves, birth rates, and delay times. This is a tall order, and so far no single
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progenitor can fulfil all these requirements. That does not mean that we are completely ignorant on
type Ia supernova progenitors, or that progress has not been made in the last few decades. In this
section we will investigate some of the proposed progenitor models, and consider how they stack
up against observations. When going through these progenitors we will group them according to
the same prescription as Hillebrandt et al. (2013), e.g. Chandrasekhar mass, sub-Chandrasekhar
mass, double degenerate, and others.

1.1.1 Chandrasekhar Mass - Single Degenerate

The Chandrasekhar mass progenitors are commonly referred to as single degenerate and were in
the past the most promising type Ia supernova progenitor. The mechanism is that a companion star,
which is either a main sequence star or a red giant, is feeding the white dwarf material through
Roche-lobe overflow. In order for the transfer of mass to be stable the transfer rate needs to be
at least ∼10−7M� yr−1 (Nomoto et al., 2007) (see also Shen and Bildsten (2007), Wolf et al.
(2013), or Starrfield (2014) for a different view). With a stable mass transfer the white dwarf will
burn hydrogen, which slowly increases the density in the core of the white dwarf. Once the white
dwarf mass reaches the Chandrasekhar limit of ∼1.4M� the white dwarf collapses and explodes
as a type Ia supernova. The companion star is initially more massive than the white dwarf. It will
then lose its hydrogen rich envelope on the asymptotic giant branch, fill its Roche-lobe and form
the common envelope that then feeds material to the white dwarf, possibly through forming an
accretion disk around the white dwarf. It is believed that it is also possible for the companion star
to be a helium rich star, rather than hydrogen rich (Solheim and Yungelson, 2004). This scenario
involves the companion star to be of higher mass than in the previous scenario, which in turn
causes the delay time from formation to detonation to be shorter. This, combined with this sce-
nario possibly causing observables such as the spectrum of the type Ia supernovae to differ from
the previous scenario, leads to some (see e.g. Ruiter et al. (2011)) classifying this as a distinct
progenitor scenario.

Supernovae are physically complex and to model them requires a firm understanding of mag-
netohydrodynamics. Magnetohydrodynamics is conducted using numerical methods, and the com-
plexity of the models is therefore limited by the available computing power. Traditional models
have therefore been one dimensional, which although they suffer from severe limitations have
taught us a lot about the inner workings of type Ia supernovae, see e.g. Nomoto et al. (1984) for
a seminal paper on the topic. Modern simulations however have much more computing power
available and can therefore be run in three dimensions. Going from one to three dimensions in the
context of simulating type Ia supernovae is a double-edged sword. The advantages are clear; it
enables modelling of effects such as turbulence and asymmetric burning and propagation of the ex-
plosion. On the other hand a multitude of assumptions are needed in order to run a full simulation
in three dimensions. Many distinct parts come together and interact in a manner that is not always
obvious. This requires meticulous study of the effects that each assumption has on the outcome of
the simulation. Ultimately we wish to compare the results of these simulations with observables.
From studying the evolution of type Ia supernova light curves the consensus is that (Hillebrandt
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CHAPTER 1. OVERVIEW OF TYPE IA SUPERNOVAE AND COSMOLOGICAL
APPLICATIONS

Figure 1.2: Slices through the N100 type Ia supernova simulation of Röpke et al. (2012). Top left
figure shows the density and the remaining five figures show the distribution of selected elements
100 seconds after detonation. It is apparent that the inner core consists of stable iron and 56Ni
which will subsequently decay and thereby produce the observable optical luminosity. Reproduced
from Röpke et al. (2012).

et al., 2013) the observations are in agreement with decay of between 0.3-0.9 M� of 56Ni. This
supports models where the detonation happens through deflagration, rather than through prompt
detonation. Models based on prompt detonation produces more 56Ni than what is in agreement.
Deflagration however preheats and pre-expands the material which in turn results in the burning
taking place at lower densities and more material ending up as intermediate mass elements and
not 56Ni. See e.g. Seitenzahl et al. (2013) or Röpke et al. (2012) for examples of numerical sim-
ulations of a single degenerate progenitor. Figure 1.2 shows slices through the three dimensional
simulation of a type Ia supernova from Röpke et al. (2012) 100 seconds after detonation. It is
apparent that the produced 56Ni is embedded in an envelope of intermediate mass elements such
as carbon and oxygen.

1.1.2 Sub-Chandrasekhar Mass - Double Detonation

A progenitor channel where the explosion happens at sub-Chandrasekhar masses has been sug-
gested (e.g. Shen et al. (2010) or Solheim (2010) for a review). It derives its name from the
explosion mechanic in which two subsequent detonations take place. In this scenario the white
dwarf accretes helium from a companion star. This layer of helium may then under the right cir-
cumstances detonate (Tutukov and Yungelson, 1996), which may then trigger a second detonation
that leads to the white dwarf exploding as a type Ia supernova. There are two distinct proposed
channels which can lead to a white dwarf stably accreting helium. The first channel is that the pri-
mary star unstably fills its Roche-lobe while on the asymptotic giant branch, stripping the common
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Figure 1.3: A time series evolution of the density of double detonation model two by Fink et al.
(2010). The dashed cyan lines mark the border of the helium shell, and the solid cyan/magenta
lines are the carbon/oxygen flames. Note that the density scale varies over time. Reproduced from
Fink et al. (2010).

envelope and resulting in a white dwarf and main sequence binary. A second common envelope
forms when the secondary star unstably fills its Roche-lobe, which results in a binary system con-
sisting of a white dwarf and a stripped core of a giant with an exposed helium burning core that
then subsequently feeds helium onto the white dwarf, which eventually causes detonation through
the double detonation method described above. The second channel is similar to the first, except
that here the initial mass of the secondary star is smaller. After the second common envelope this
smaller mass results in a setup similar to the first where a white dwarf is accreting helium from
an exposed helium core, however the helium donor star is in this scenario not massive enough to
burn helium itself.

The double detonation scenario has been modelled by e.g. Sim et al. (2010) who found that a
type Ia supernova with∼0.6M� of 56Ni can come from a detonation of a white dwarf with a mass
of∼1.1M�. They then derived observables from their simulation and found that theB-band light
curves produced by their models are in decent agreement with observations. In figure 1.3 a density
time series of double detonation model two by Fink et al. (2010) is shown. Fink et al. (2010) finds
that the explosion mechanics are robust against effects such as asymmetries in the initial ignition
or a low mass of the helium shell.
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CHAPTER 1. OVERVIEW OF TYPE IA SUPERNOVAE AND COSMOLOGICAL
APPLICATIONS

1.1.3 Double Degenerate

In the double degenerate scenario two white dwarfs with a combined mass in excess of the Chan-
drasekhar limit merge and explode as a type Ia supernova. A number of scenarios can lead to
a binary system with two white dwarfs. One could be that the primary star fills its Roche-lobe
and stably transfers mass to the secondary star. This strips the primary star and evolves it into a
white dwarf. The secondary star then fills its Roche-lobe and unstably transfers material to the
primary star, causing a common envelope to form. After some time and additional mass transfer
(this time stable) from the secondary to the primary star, a binary has formed consisting of two
white dwarfs in close orbit. The double degenerate progenitor has historically, along with the sin-
gle degenerate progenitor, been the most prominent progenitor to explain how the bulk of type Ia
supernovae form. Some studies have however cast some doubt on this picture. Some ( see e.g.
Miyaji et al. (1980) or Saio and Nomoto (1985)) find that the accretion between the white dwarf
binaries can lead to burning happening in the outer layers of the white dwarf, rather than at the
centre, which could turn the white dwarf into an oxygen-neon-magnesium white dwarf rather than
a carbon-oxygen white dwarf. More recently Liu et al. (2017) numerically evolved roughly 1800
binary systems varying the initial conditions to produce a grid for producing type Ia supernovae
through the double degenerate scenario. By interpolating over their grid they then perform binary
population synthesis simulations and find that the double degenerate model may contribute up to
16 percent of all observed type Ia supernovae.

1.1.4 Other Progenitor Models

A multitude of other progenitor channels have been proposed in the literature. One example is
the merger of a carbon-oxygen rich white dwarf and an asymptotic giant branch star during a
common envelope event (Livio and Riess, 2003). In the reviews of Hillebrandt et al. (2013),
Maoz et al. (2014), and Livio and Mazzali (2011) there is a more in depth discussion of the above
progenitor models as well as other models. Among them are the collisional variant of the double
degenerate progenitor. This is a model intended to explaining the possibility that some type Ia
supernovae originate in dense stellar environments such as galactic nuclei or globular clusters. A
third low mass star would be in orbit around the inner white dwarf binary. Through the Lidov-
Kozai mechanism the orbit of the inner white dwarfs could become highly eccentric. An eccentric
orbit would cause the time to merger to shorten as more energy is lost through gravitational waves,
which would eventually lead to a merger of the white dwarfs, or in rare conditions a head on
collision. Current constraints however suggest that such progenitors will be relatively rare, as
only 10-20% of stars are in triple systems, and likely only a small fraction of these will have the
necessary ratios of the orbits.

1.1.5 Progenitors and Delay Times

Having looked specifically at the delay times for the single degenerate scenario Bours et al. (2013)
find that it is not possible to produce sufficient type Ia supernovae at long delay times, therefore
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failing to reproduce the tail end of the observed ∼τ−1 delay time distribution. This is due to this
progenitor channel not being able to produce binary systems with orbital periods much above a
few hundred days, which in turn causes short in-spiral times. Their conclusion is therefore that
while the single degenerate progenitor channel may contribute significantly to the observed type Ia
supernovae at short delay times, it is highly unlikely to represent the entirety of observed Ia super-
novae. Ruiter et al. (2011) discuses the delay times of the double detonation progenitor channel.
The approach applied is to use binary population synthesis code to map out the possible delay
times. Ruiter et al. (2011) define two distinct channels of formation, called the prompt channel
with delay times <500 Myr and the delayed channel with delay times of &800 Myr and up to the
Hubble time. They find that the prompt channel account for 13% of all double detonation type Ia
supernovae, while the remaining 87% are produced in the delayed channel. This is in good agree-
ment with the results of Rodney et al. (2014) that likewise define a prompt and delayed channel.
When looking at delay times of the double degenerate progenitor channel they largely reproduce
the observed ∼τ−1 delay time distribution. For delay times larger than ∼1 Gyr Yungelson and
Livio (2000) find excellent agreement with observations. For shorter delay times however the de-
lay time is dominated by the production rate of the white dwarfs, which instead scales as ∼τ−1/2

(Pritchet et al., 2008). Some models include a transition away from τ−1 at short delay times (see
e.g. Rodney et al. (2014)) and the current observations do not have sufficient constraining power
to determine whether a τ−1, τ−1/2, or possible a constant τ0 is the best fit at short delay times.

With respects to the observed delay times the double degenerate progenitor channel seems to
come out slightly ahead. There is however no substantial amount of evidence favouring any one
scenario, and each of the progenitor scenarios discussed here have their own unresolved issues.
In order for the double degenerate scenario to be the dominant one it needs to include a scenario
where triple stellar systems invoke a prompt collision, although it is uncertain that enough double
white dwarf systems will exist in triple star systems with an appropriate configuration (Leigh and
Geller, 2013) or that the inner binary in the triple configuration will not collide while on the main
sequence (Hamers et al., 2013). In the recent review of Livio and Mazzali (2011) the progenitor
channels presented here are discussed and the strengths and weaknesses of each reviewed. They
find that while the single degenerate scenario is the one that has been investigated the most and
also explains many of the current observations it is not without shortcomings. One of these short-
comings is that it does not easily explain the observed delay times, which are of particular interest
in this thesis. The fact that the substantial effort over the last decades to determine the progenitor
channel has so far not reached a certain conclusion could be interpreted as a suggestion that there
may be two or more Ia supernova progenitor channels. Livio and Mazzali (2011) compare the
current status to that of gamma ray bursts before it was realised that there are two distinct events,
short and long, caused by distinct physical phenomena. They further argue that processes involv-
ing thermonuclear explosions are sensitive to initial conditions and small changes can result in a
multitude of different outcomes. Additionally the proposed progenitor channels of type Ia super-
novae are more similar than the two mechanisms responsible for gamma ray bursts, collapse of
the cores of massive stars and neutron star-neutron star collisions. It may therefore yet take some
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time before a full understanding of the scenario, or scenarios, that lead to type Ia supernovae are
fully understood.

1.2 How to use type Ia supernovae as standard candles

In the early 1990’s a large number of extragalatic distance indicators existed. Jacoby et al. (1992)
reviewed seven of the most reliable, including globular-cluster luminosity functions, type Ia super-
novae, HI line width relations, planetary-nebula luminosity functions, surface brightness fluctua-
tions, and fundamental plane relations for elliptical galaxies. Among these one in particular later
rose to prominence in cosmology; the type Ia supernova. In Jacoby et al. (1992) it was however
concluded that the uncertainties on distances from type Ia were relatively large, making them a less
competitive distance indicator. One supernova in particular was a cause for concern, SN 1991bg,
which reached a peak light curve magnitude in the B band that was ∼2.5 magnitudes fainter than
SN 1957B. Both SN 1991bg and SN 1957B were type Ia supernovae, and importantly they both
had the same host galaxy, the elliptical NGC4374. The magnitude difference between the two
supernovae was therefore unlikely to be a result of varying host galaxy conditions. The important
piece to the puzzle was added in Phillips (1993) where it was noted that while SN 1991bg was
much fainter at maximum light than other type Ia supernovae, the light curve also declined unusu-
ally fast. In the seminal paper by Phillips (1993) the absolute magnitudes at maximum light for
type Ia supernovae is shown to be tightly correlated with the decline rate of the light curve. Specif-
ically Phillips (1993) introduced the parameter ∆m15, which is the difference between apparent
magnitude at peak brightness and fifteen days after peak, typically in the B-band. The relation
found by Phillips (1993) is apparent in figure 1.4 and can be written in the form (Phillips, 1993;
Phillips et al., 1999; Kattner et al., 2012)

M(B)max = −21.726 + 2.698∆m15(B), (1.1)

where M(B)max is the absolute B-band magnitude and ∆m15(B) is ∆m15 as measured in the
B-band.

Despite the initial success of the method from Phillips (1993) in standardising the type Ia
standard candle it failed in taking into account the variability in the observed light curves caused
by variation in the large spectral features of type Ia supernovae. Various approaches attempt to
resolve this issue by fitting a stretch parameter (Riess et al., 1995; Perlmutter et al., 1997), using
color information (Wang et al., 2003, 2005), or both (Riess et al., 1996; Guy et al., 2005). The
current state of the art model to fit type Ia supernova light curves is the SALT2 empirical model
by Guy et al. (2007). The model is summarised in the equation

mB = MB − αX1 + βC + µ (1.2)

where mB and MB are the apparent and absolute magnitudes at maximum in the B-band. X1 is
the stretch term and C the colour term, with α and β being globally fit variables that are assumed

10



Figure 1.4: The relation between the decline in peak apparent magnitude and 15 days later and
absolute magnitude in the B, V, and I bands. This relation facilitates the standardising of type Ia
supernovae into a standard candle with only little intrinsic scatter on the derived absolute magni-
tudes. Reproduced from Phillips (1993).

11



CHAPTER 1. OVERVIEW OF TYPE IA SUPERNOVAE AND COSMOLOGICAL
APPLICATIONS

Figure 1.5: Observed bolometric light curves of type Ia supernovae from the SNfactory (coloured
symbols) and synthetic light curves for explosion models (black curves). The upper half of the
figure shows the original light curves and the bottom light curves normalised to a peak luminosity
of 1.2 · 1043erg s−1. Reproduced from Guy et al. (2007).
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to be constant for all type Ia supernovae. Finally µ is the distance modulus of the supernovae,
which is dependent on the redshift of the host galaxy and assumed cosmology. In figure 1.5 a
representative sample of type Ia supernova light curves are shown alongside synthetic light curves
from explosion models.

1.2.1 Calibration of absolute magnitudes

To derive absolute, rather than relative, distances to type Ia supernovae requires calibration of the
absolute magnitude, MB , of the type Ia supernovae in question. This is done through observing
type Ia supernovae in galaxies which have absolute distances from some other distance indicator.
In theory it does not matter which distance indicator is used, however in practice the standard
today is to use the period-luminosity relation of Cepheid variables to derive absolute distances to
nearby type Ia supernovae. The period-luminosity relation takes the form

mW = bW (log10 P − 1) + ZW∆ log10[O/H]ij +MW + µ (1.3)

wheremW is the ’extinction-free’ apparent magnitude, P is the period in days, and ∆ log10[O/H]ij

the metallicity of the Cepheid. The absolute magnitude MW is the magnitude of a Cepheid at a
distance of 10 pc and with a period of 10 days, and µ the distance modulus of the Cepheid host
galaxy. bW and ZW are fitting parameters that tune the dependency of the magnitude on period
and metallicity of the Cepheid. For further details on the definitions see Madore (1982) or Zhang
et al. (2017) for a more recent application of Cepheids to calibrate type Ia supernovae absolute
magnitudes.

1.3 Modern cosmology

Our understanding of the universe has evolved immensely over the last 100 years. In 1920 a debate
at the Smithsonian Museum of Natural History between Harlow Shapley and Heber Curtis centred
on the existence of galaxies other than the Milky Way and the size of the observable universe as
a whole. The accepted model of the time that Shapley supported was that the Milky Way made
up the entire universe and that objects such as the Andromeda galaxy were merely nebulae and
part of the Milky Way. Curtis on the other hand argued that Andromeda and other similar objects
were galaxies, or ”island universes”, in their own right. Additional observations eventually proved
Curtis’s assertion correct. Among these were observations published in Hubble (1929) that showed
a linear relation between distance and recession velocity of the form

v = H0d. (1.4)

Equation 1.4 is known as Hubble’s law, relating the velocity v and distance d through the Hubble
constant H0 which is typically quoted in units of km s−1 Mpc−1. The observations that lay as the
original foundation of Hubble’s law are shown in figure 1.6.

While Hubble’s law is exceedingly simple it does not accurately describe observed recession
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Figure 1.6: Velocities against distances for extra galactic nebulae. The linear relation illustrates
that more distant astronomical objects recede from the observer at increasing velocities. Repro-
duced from Hubble (1929).

velocities at larger distances. The more general Hubble parameter is defined as

H(t) =
ȧ(t)

a(t)
(1.5)

where a(t) is the scale factor and the dot denotes taking the time derivative. In the following the
notation that a subscript of ’0’ denotes the value at present is adopted. To derive an expression
for how the Hubble parameter varies we start with Einstein’s field equations. Then assuming an
isotropic and homogeneous universe with constant curvature one can derive a metric of the form

ds2 = −c2dt2 + a(t)2
[
dr2 +R2

0Sk(χ)2dΩ2
]
, (1.6)

which is known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. Here c is the speed
of light in vacuum, a(t) is the scale factor, Sk(χ) is

Sk(χ) =





sin (χ) for κ = 1

χ for κ = 0

sinh (χ) for κ = −1

(1.7)

where R0 is the curvature radius at present day, χ the dimensionless comoving distance, and κ is
either 1, 0, or -1 for a positively curved, flat, or negatively curved universe. The final term dΩ is
given by

dΩ2 = dθ2 + sin2 θdφ2, (1.8)

containing the spherical coordinates θ and φ. For the FLRW metric an equation that governs
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the expansion rate of the universe can then be derived. The equation is known as the Friedmann
equation and is

H(t)2 =

(
˙a(t)

a(t)

)2

=
8πG

3c2
ε(t)− κc2

R2
0a(t)2

+
Λ

3
. (1.9)

The Friedmann equation in equation 1.9 includes the Λ term which is known as the cosmological
constant. The term was introduced by Einstein in Einstein (1917) to keep the universe static, but
today plays a very different role that will soon become apparent. ε(t) is the energy density of
the universe, and in equation 1.9 it includes contributions from matter and radiation, but not the
cosmological constant which has been separated to show explicitly that it is not a function of time.
If we absorb the cosmological constant Λ into the total energy density ε(t) and assume flatness,
e.g. κ = 0, equation 1.9 becomes

H(t)2 =
8πG

3c2
ε(t), (1.10)

which in turn implies that there is a critical energy density

εc =
3c2

8πG
H(t)2, (1.11)

where the universe is neither positively or negatively curved, but rather flat.

While equation 1.9 is a very powerful and important equation in cosmology we can not from
it alone derive an expression for how the scale factor a(t) evolves as a function of time. Rather,
two additional pieces need to be added in order to solve the puzzle. The first is called the fluid
equation and is often written as

ε̇+ 3
ȧ

a
(ε+ P ) = 0, (1.12)

where P is the pressure. The second piece is that we need to relate the pressure P to the energy
density ε through an equation of state. A simple solution is to assume a relation

P = wε (1.13)

where w is a dimensionless number that is 0 for matter, 1/3 for radiation, and -1 for the cosmolog-
ical constant. With this the fluid equation can be written as

ε̇+ 3
ȧ

a
(1 + w)ε = 0. (1.14)

Solving the separable differential equation and assuming that w is constant for each component
reveals the relation

ε(a) = εw,0a
−3(1+w), (1.15)

where again the notation is that a subscript of 0 indicates value at present day. For matter, radiation,
and the cosmological constant the solutions are

εm(a) = εm,0a
−3 (1.16)
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for matter,
εr(a) = εr,0a

−4 (1.17)

for radiation, and
εΛ(a) = εΛ,0 (1.18)

for the cosmological constant. It is common practice to write the energy densities as a fraction of
the critical energy density by defining

Ω(t) =
ε(t)

εc(t)
(1.19)

where Ω(t) is then referred to as the dimensionless density parameter.
Dividing equation 1.9 through with H0 and applying the above definitions allows us to write the
Friedmann equation as

H(a)2

H2
0

= Ωr,0a
−4 + Ωm,0a

−3 + ΩΛ,0 + Ωk,0a
−2, (1.20)

where for convenience we defined Ωk,0 = 1− (Ωr,0 + Ωm,0 + ΩΛ,0). Equation 1.20 gives us the
Hubble parameter, H(a), as a function of scale function given that the cosmological parameters
H0, Ωr,0, Ωm,0, and ΩΛ,0 are known. Note here that the Hubble parameter is written as a function
of scale factor rather than time. This is standard practise as the scale factor relates to the easily
observed redshift (assuming that a0 = 1) through the simple relation

a =
1

1 + z
, (1.21)

where going from redshift to time is possible, but by no means a trivial operation.

In Ia supernova cosmology the observed quantity is often what is known as the distance mod-
ulus, µ. To relate distance modulus to the cosmological parameters from above requires a few
steps. First, distance modulus is given as

µ(z) = 5 log10[DL(z)] + 25, (1.22)

when the luminosity distance, DL(z), is measured in Mpc. The luminosity distance is in turn
given by

DL(z) = (1 + z)
c

H0

√
Ωk,0

Sk(χ), (1.23)

where Sk(χ) is defined in equation 1.7 and χ(z) is

χ(z) = H0

√
Ωk,0

∫ z

0

dz′

H(z′)
, (1.24)

when the chosen variable to integrate over is the observed quantity, the redshift z. It should be
noted that in general the above integral has no analytic solution. Rather, the integral is solved
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numerically for a specific set of cosmological parameters. That equation 1.7 has different cases
depending on the curvature of the universe makes numerically solving the integral fairly bother-
some. Rather, what is done in practise is to either restrict oneself to deal with only the case where
the universe is flat, or work with a Taylor expansion of equation 1.7. Another simplification of
equation 1.24 is to define

E(z) =
H(z)

H0
, (1.25)

which in turn allows us to rewrite equation 1.24 to

χ(z) =
√

Ωk,0

∫ z

0

dz′

E(z′)
, (1.26)

which more clearly reveals that χ(z) is indeed unitless. See King et al. (2013) for a reference
where this is done in practise.

In equation 1.9 we chose to include the cosmological constant, Λ, as an explicit term rather
than including it in the energy density ε. Rather than serving the original purpose of keeping
the universe static, in the modern interpretation Λ serves as a source of accelerated expansion of
the universe at late times. This accelerated expansion was observed by Riess et al. (1998) and
Perlmutter et al. (1999) who observed type Ia supernovae in the nearby universe at low redshift
and up to a redshift of ∼1. The Hubble diagram that shows that the cosmology with a non-zero
cosmological constant best fit the data of Riess et al. (1998) is shown in figure 1.7.

1.3.1 Modifications to standard cosmology

The cosmology introduced in the above section is referred to as either standard or ΛCDM cos-
mology. ΛCDM has been successful at explaining observations of not only type Ia supernovae
but also the cosmic microwave background, baryon acoustic oscillations and more. Issues still
remain, such as a discrepancy between the Hubble constant measurements from local probes, such
as Ia supernovae and baryon acoustic oscillations, and high redshift probes like the cosmic mi-
crowave background. Therefore alternatives to the standard ΛCDM model have been proposed.
They broadly fall into two categories, either modifying ΛCDM through e.g. the equation of state
of dark energy or through altering the underlying assumptions by modifying general relativity.
In the second category a common modification of general relativity is to the Ricci scalar. The
Lagrangian in the Einstein-Hilbert action is

SEH =
1

2κ

∫
d4x
√−gR, (1.27)

where κ = 8πG, g is the determinant of the metric, and R is the Ricci scalar. The modification is
then to turn the Ricci scalar into a general function of R,

S =
1

2κ

∫
d4x
√−gf(R), (1.28)
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Figure 1.7: The upper panel shows the Hubble diagram for the Riess et al. (1998) sample of type
Ia supernovae. Three cosmologies are overplotted, two matter only cosmologies with Ωm = 0.2
and Ωm = 1 respectively as well as the best fit flat Ωm = 0.24, ΩΛ = 0.76 cosmology. The
bottom panel shows residuals for all three cosmologies compared with the Ωm = 0.2 cosmology.
Reproduced from Riess et al. (1998).
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where f(R) is an arbitrary function of R. This family of models is known as f(R) models (Buch-
dahl, 1970; Sotiriou and Faraoni, 2010). A motivation for f(R) gravity is that it can lead to the
observed accelerated expansion of the universe without having an explicit dark energy term. A
few assumptions are typically made to simplify the notation. The first is describing matter as a
perfect fluid with stress-energy tensor

Tµν = (ρ+ P )uµuν + Pgµν , (1.29)

in tensor notation, where uµ is the four velocity of an observer moving with the fluid and ρ and
P are the energy density and pressure of the fluid, respectively. The second assumption is to
assume a spatially flat universe, e.g. Ωk = k = 0. This does of course restrict the model to be
applicable only when this assumption is true, however in practise this limitation is not a strong
one. This is because observational evidence is in agreement with a flat universe, and any deviation
from this flatness will have to be relatively small. Any deviation that exists between the solution
where flatness is assumed and where it is not would therefore disappear as Ωk → 0. With these
assumptions the Hubble parameter in f(R) gravity models can be written as

H2 =
κ

3f ′

(
ρ+

Rf ′ − f
2

− 3HṘf ′′
)
, (1.30)

where as shorthand f = f(R) is used and prime denotes derivative with the function parameter.
The effective pressure and density are then defined as

ρeff =
Rf ′ − f

2f ′
− 3HṘf ′′

f ′
, (1.31)

and

Peff =
Ṙ2f ′′′ + 2HṘf ′′ + R̈f ′′ + (f −Rf ′)/2

f ′
. (1.32)

From the definition of the equation of state we can therefore write

weff =
Peff

ρeff
=
Ṙ2f ′′′ + 2HṘf ′′ + R̈f ′′ + (f −Rf ′)/2

(Rf ′ − f)/2− 3HṘf ′′
(1.33)

for the effective equation of state of the fluid, where appropriate parameters will then yield weff ≈
−1.

The purpose of f(R) gravity models is to provide a phenomenological modification of general
relativity which enables the introduction of higher order terms in the gravity model. From work-
ing with f(R) models we can gain understanding for the effects of these modifications, and fitting
these models to the available data allows us to focus on models that are in agreement with obser-
vations. See e.g. Adams and Blake (2017) for an excellent introduction to f(R) gravity in practise.

Another modification of standard ΛCDM cosmology is to allow the equation of state of dark
energy,wΛ, to depart from being -1. The simplest modification is to allowwΛ to have another value
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than -1, but still remain a constant as a function of time. This cosmology is typically referred to
as a wCDM cosmology. A higher order modification is then to introduce an extra parameter that
enables wΛ to vary as a function of redshift. Combined this family of models with varying wΛ are
typically referred to as wzCDM or waCDM cosmologies, depending on whether the redshift or the
scale factor is used. These modifications are like f(R) gravity phenomenological in nature. The
purpose of these modifications is to test the assumption of whether dark energy truly is constant
or whether there is some evolution with redshift. With current data it is not possible to derive tight
constraints on the cosmological parameters if more than two additional parameters are added, so
therefore for the purpose of learning about the nature of dark energy we shall here restrict ourselves
to look at models for wΛ with a maximum of two free parameters. A multitude of these models
exist, here we will list the ones that are referenced the most in current literature but this list is not
meant to be exhaustive. A model that is popular is the CPL (Chevallier and Polarski, 2000; Linder,
2003) model which is defined as

w(z) = w0 + wa
z

1 + z
. (1.34)

Other models include the BA (Barboza and Alcaniz, 2012) model,

w(z) = w0 + wa
z(1 + z)

1 + z2
, (1.35)

the Sine model (Lazkoz et al., 2010),

w(z) = w0 + wa sin z, (1.36)

the logarithmic (Feng et al., 2011) model,

w(z) = w0 + wa ln (1 + z), (1.37)

MZ model 1,

w(z) = w0 + wa

(
ln (2 + z)

1 + z
− ln 2

)
, (1.38)

and MZ model 2,

w(z) = w0 + wa

(
sin (1 + z)

1 + z
− sin 1

)
, (1.39)

both by Ma and Zhang (2011). The FSLL model 1,

w(z) = w0 + wa
z

1 + z2
, (1.40)

FSLL model 2,

w(z) = w0 + wa
z2

1 + z2
, (1.41)

both by Feng et al. (2012). The linear model (Cooray and Huterer, 1999),

w(z) = w0 + waz, (1.42)
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the JBP model (Jassal et al., 2004),

w(z) = w0 + wa
z

(1 + z)2
, (1.43)

and the 7CPL model (Pantazis et al., 2016),

w(z) = w0 + wa

(
z

1 + z

)7

, (1.44)

which is the specific case where n = 7 of the nCPL (Pantazis et al., 2016) model,

w(z) = w0 + wa

(
z

1 + z

)n
. (1.45)

For a recent review of the status of both modified gravity andwzCDM cosmologies see Joyce et al.
(2016).

1.4 Peculiar Velocities and Bulk Flows in Cosmology

Peculiar velocities of type Ia supernovae are for most supernova cosmologists a nuisance and a
source of systematics uncertainty. If sufficient peculiar velocities are measured however, it allows
us to probe the local bulk flow. The local bulk flow is determined by fluctuations in the density
field, which in turn is determined by the assumed model for gravity and cosmological parameters
such as σ8 and Ωm,0. So by measuring the local bulk flow we can constrain these cosmological
parameters. The seminal works on the topic are Peebles (1994) and Coles and Lucchin (2013).

It is useful to first define the necessary mathematical notation to describe fluctuations in the
density field before progressing to the velocity field, as the velocity field is directly given by the
density field (and some assumed gravitation, which we will not discuss here, but instead assume
general relativity to hold true). If we wish to describe the distribution of matter in the universe, we
might imagine first subdividing the universe into areas that are evolving independently of one an-
other. As time progresses however, these areas will eventually not be independent of one another.
It is therefore advantageous to think of the fluctuations in the density field as a superposition of
plane waves which in the limit where the fluctuations are linear evolve independently. This allows
us to describe the density field as a superposition of individual components in Fourier space rather
than real space. This is often referred to as k-space, as the variable used is k = 2π/r, rather than
the real space distance r. Let us now consider a volume V that is bigger than the largest structures
that exist in the universe. The density of this volume at point r is then ρ(r) and the mean density
is denoted 〈ρ〉. We typically want to quantify how the density field deviates from this mean value
at a specific point. These fluctuations from the mean are therefore defined as

δ(r) =
ρ(r)− 〈ρ〉
〈ρ〉 . (1.46)
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Again going to the limit where the fluctuations evolve linearly we can then express these fluctua-
tions as a Fourier series

δ(r) =
∑

k

δk exp (ik · r) (1.47)

where the coefficients δk are given by

δk =
1

V

∫

V
δ(r) exp (−ik · r)dr. (1.48)

Let us suppose we calculate the coefficients δk for the volume V . We then proceed to do the same,
but for a different volume of equal size to V . For this new volume the Fourier coefficients will
differ from those derived for V . If repeated enough times, we can from this thought experiment
determine the variance of the Fourier coefficients. These will be related to the variance of the
density fluctuations, σ2 = 〈δ(r)2〉, through

σ2 = 〈δ(r)2〉 =
∑

k

〈|δk|2〉. (1.49)

Note here that by definition the 〈δ(r)〉2 term is zero and omitted from the expression above. If we
now assume that the density field is statistically isotropic and homogeneous the direction of k can
be ignored and we can therefore write k = |k| and modify the above expression to

σ2 = 〈δ(r)2〉 =
1

V

∑

k

δ2
k, (1.50)

which in the limit where V →∞ becomes

lim
V→∞

1

V

∑

k

δ2
k =

1

2π2

∫ ∞

0
P (k)k2dk, (1.51)

where P (k) is the matter powerspectrum of the density field. While equation 1.51 is correct and
applicable at the largest scales, it is not useful by itself in the context of peculiar velocities which
we can only measure at smaller scales. We shall therefore use the same logic to build a statistical
description of the density field at some scale R. We let 〈M〉 be the mean mass found inside
a sphere with volume V and radius R. The mass variance over multiple independent spherical
volumes of size V is then given by

σ2
M =

〈(M − 〈M〉)2〉
〈M〉2 . (1.52)

Using the same reasoning as for equation 1.47 we can decompose this into a Fourier series and
then let the volume tend towards infinity. This yields an expression for the mass variance of the
form

σ2
M =

∑

k

〈|δk|2〉
(

1

V

∫

V
exp (ik · r)

)2

. (1.53)
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To further simplify this equation we can decompose exp (ik · r) in spherical harmonics

exp (ik · r) =
∑

l,m

jl(kr)i
l(2l + 1)P

|m|
l (cosν exp (imϕ), (1.54)

where l and m are the degree and order of the spherical Bessel functions jl and the associated
Legendre polynomials P |m|l respectively. r, ν, and ϕ are spherical polar coordinates. We can then
insert this decomposition into the integral of equation 1.53 which yields

∫

V
exp (ik · r) =

∑

l,m

il(2l + 1)

∫ 2π

0
exp (imϕ)dϕ

∫ π

0
P
|m|
l (cos ν) sin νdν

∫ R

0
jl(kr)r

2dr

(1.55)

= 4π

∫ R

0
j0(kr)r2dr =

4π

k3
(sin (kR)− kR cos (kR)). (1.56)

We here used that the integrals over ν and ϕ are zero unless m = l = 0 and that the 0’th spherical
Bessel function is given by

j0(x) =
sinx

x
. (1.57)

Motivated by the above result we define the window function W (kR) as

W (kR) =
3(sin (kR)− kR cos (kR))

(kR)3
, (1.58)

which then allows us to rewrite equation 1.53 as

σ2
M =

1

V

∑

k

δ2
kW

2(kR), (1.59)

which in the limit where V →∞ is

lim
V→∞

1

V

∑

k

δ2
kW

2(kR) =
1

2π2

∫ ∞

0
P (k)W 2(kR)k2dk. (1.60)

Extending this argument to velocities we find that the velocity variance can be expressed as

σ2
v(R) =

H2
0f

2

2π2

∫ ∞

0
P (k)W 2(kR)dk, (1.61)

where we used that the relation between the velocity power spectrum and the matter power spec-
trum is given as

Pv(k) = H2
0f

2k−2P (k), (1.62)

where Pv(k) is the velocity power spectrum. The physical interpretation of the power spectrum
is to describe how strongly various modes, or in physical terms scales, contribute to the velocity
variance. The window function is then a description of how sensitive we are to the various modes
of the power spectrum. If a measurement of the velocity variance is completely insensitive to the
power spectrum modes, this will translate to the window function being zero at that particular

23



CHAPTER 1. OVERVIEW OF TYPE IA SUPERNOVAE AND COSMOLOGICAL
APPLICATIONS

value of k. On the other hand, if a measurement is completely sensitive to the modes of a specific
scale then the window function will take the value one at that value of k. In practice what we
measure is not the variance, rather it is a bulk flow of a defined local volume with regards to the
dipole subtracted cosmic microwave background rest frame. As the velocity variance is inherently
statistical in nature, it is therefore also necessary to compare the measured bulk flow with the full
statistical prediction from linear theory. Specifically this will be a Maxwell-Boltzmann distribution
of bulk flows that are given by the velocity variance. The likelihood distribution for bulk flows
take the form

P (v)dv =

√
54

π

(
v

σv

)2

exp

(
−3

2

(
v

σv

)2
)

dv

σv
. (1.63)

Taking the derivative of equation 1.63 allows us to show that the maximum likelihood bulk flow
relates to the velocity variance by

vML(R) =
√

2/3σv(R). (1.64)

While the most likely bulk flow can be of interest, it does not encapsulate the entirety of the
theoretical prediction. When determining whether an observed bulk flow is in agreement with the
theoretical prediction it is therefore necessary to fold the likelihood distribution of equation 1.63
into the statistical analysis.
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Chapter 2

Reconciling Volumetric and Individual
Galaxy Type Ia Supernova Rates

This chapter contains the paper ”Reconciling volumetric and individual galaxy type Ia supernova
rates” by Andersen, P. and Hjorth, J., 2018, arXiv:1801.00793

2.1 Abstract

Significant observational effort has been devoted to determining volumetric type Ia supernova rates
at high redshifts, leading to clues about the nature of Ia supernova progenitors and constraints on
the iron production in the universe. A complementary approach is to investigate type Ia supernova
rates in individual, more nearby, galaxies. The popular A+B model for the specific supernova rate,
while reliable for a wide range of galaxy properties, diverges for large specific star formation rates.
Applying it outside its range of validity could lead to the prediction of excessive type Ia supernova
rates. Moreover, the A+B model it is not directly derived from a delay time distribution. We here
introduce a new model which is explicitly motivated by a simple delay time distribution composed
of a prompt and a delayed component. The model is in remarkably good agreement with current
observational constraints. It yields a prompt fraction of fp = 0.11+0.10

−0.06 in agreement with results
based on volumetric rates of type Ia supernovae at high redshift (Rodney et al., 2014). The model
is tested against realistic star formation rates from the Illustris-1 simulation and is found to be self
consistent in the asymptotic limits. An analytic function that encapsulates the features of the new
model is shown to be in excellent agreement with the data. In terms of goodness of fit, the new
model is strongly preferred over the A+B model. At log (sSFR) & −9 there are no constraints
from observations. Observations in this regime will further constrain the delay time distribution
of type Ia supernovae at short delay times.

2.2 Introduction

Type Ia supernovae (SNe) play a central role in modern astronomy. As standardisable candles
they have been used to determine the apparent accelerated expansion of the universe (Riess et al.,
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1998; Perlmutter et al., 1999). In the chemical evolution of the universe they act as an important
source of iron (Tsujimoto et al., 1995; Maoz and Graur, 2017). Despite their prominence, the
precise physics of the Ia SNe progenitor is unknown. This is often referred to as the progenitor
problem. Different models for the progenitor predict different delay time distributions (DTD).
The DTD parametrises the distribution of times between the formation of the progenitor and the
subsequent SN explosion. In the limit where all star formation happens instantaneously, in a brief
starburst, the DTD parametrisation will reflect the rate of SN explosions that follow the starburst.
In practise, the star formation history is more complex, and the observed SN rate is a convolution
of the DTD and the star formation rate. This complicates modelling of SN Ia rates which plays an
important role in, e.g., cosmological astrophysics and chemical evolution modelling.

Different avenues can be taken when modelling SN rates. One is to measure volumetric SN
rates as a function of redshift (Totani et al., 2008; Graur et al., 2014; Rodney et al., 2014) and fit
an assumed DTD. This approach seems to suggest a DTD of the form DTD ∼ τ−1, perhaps with
a transition to becoming constant at early times (e.g., Rodney et al., 2014). This may be explained
by a progenitor model with two distinct progenitors. These two progenitors are often referred
to as a prompt component, with short delay times, and a delayed component, with longer delays
between star formation and SN explosion. Another approach is to observe SN rates for individual
galaxies as a function of star formation rate of the host galaxy, averaged over all observed galaxies.
This approach does not formally define or assume a DTD, and instead assumes that the SN rate
depends on physical parameters such as stellar mass and star formation rate of the host galaxy.
The consensus model for this approach is the A+B model (Mannucci et al., 2005; Scannapieco
and Bildsten, 2005), which, in the simplest form, relates the SN Ia rate linearly to the stellar mass
and the star formation rate, i.e.,

SNR = A M∗ +B SFR, (2.1)

where SNR is the SN rate, M∗ is the stellar mass, and SFR is the star formation rate. A and B are
then the two free parameters of the model, with units of SNe yr−1M−1

� and SNe yr−1(M� yr−1)−1

respectively. Often the stellar mass is eliminated from the above equation by dividing through with
M∗, which in turn yields

sSNR = A+B sSFR, (2.2)

where sSNR = SNR/M∗ is the specific supernova rate and sSFR = SFR/M∗ is the specific star
formation rate. Alternatives to the A+B model of Scannapieco and Bildsten (2005) exist, see e.g.
Smith et al. (2012) for a generalisation of the A+B model or Graur et al. (2015b) where a simple
τ−1 DTD is combined with galaxy ‘downsizing’ to model specific supernova rates.

In Scannapieco and Bildsten (2005) the A+B model is motivated by an observed bimodal
distribution of type Ia SNe luminosities; they argue that the brightest SNe are more prevalent in
actively star forming galaxies while underluminous events occur primarily in galaxies with low
star formation rates. Wang et al. (1997) and Hakobyan et al. (2016) additionally find that in star
forming galaxies, type Ia SNe occur more often in the disk than in the bulge, which suggests that
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the Ia rate is somehow dependent on recent star formation. Mannucci et al. (2006) furthermore
argue that their finding that only DTDs including both a prompt and a delayed component are
consistent with observations suggests that there exists two classes of Ia progenitors. Rodney et al.
(2014) fit a DTD that includes a prompt and delayed component, and find that this model fits the
z < 1 volumetric rates well with a prompt fraction of fp = 0.53±0.09±0.10

stat sys . At redshifts of z > 1

they find comparatively fewer Ia SNe, and a prompt fraction of fp = 0.21±0.34±0.49
stat sys , which they

argue is an indication that prompt progenitors might be less numerous than the z < 1 sample sug-
gests. The picture emerging from these studies is that the mechanism responsible for Ia explosions
can have two channels, one prompt and one delayed, and that both contribute significantly to the
observed supernova rate.

In this work we attempt to reconcile the approach using volumetric rates and the approach
using individual rates. To do so we will assume a DTD functionally similar to the one adopted by
Rodney et al. (2014). From this DTD we derive a model for the supernova rate as a function of
star formation rate, and compare it to the A+B model. Additionally, from the functional form of
the new model we will develop a simple expression that will predict supernova rates in the high
redshift and high specific star formation regime.

The paper is structured as follows. First, in section 2.3, we derive a new model for the relation
between sSNR and sSFR. In section 2.4 we discuss the currently available data and describe the
data set used in this work. In section 2.5 we discuss the complications in fitting the models to the
data, and proceed to fit both our new model and an A+B model. The results, including goodness
of fit, using reduced χ2 and Kolmogorov–Smirnov tests, are presented in section 2.6. In section
2.7 we validate that the model is self consistent in the limits of high and low sSFR using realistic
star formation histories from the Illustris-1 simulation. Finally, in section 2.8, we discuss the
applicability of the models in the high sSFR/high redshift regime and provide recommendations
for how the new model can be used in practice.

2.3 Models

For clarity, we denote all times in this work that relate to the DTD with τ , all times related to SNR
with t, while galaxy ages are denoted with an upper case T .

2.3.1 Piecewise model

Delay Time Distribution There is strong evidence for a DTD that follows a power law of τ−1,
see e.g. Maoz and Mannucci (2012) or Maoz et al. (2014), Fig. 8. In Rodney et al. (2014) a
three-branched DTD is defined, as being zero up to 0.04 Gyr, then constant up to 0.5 Gyr, and
finally declining as τ−1 for τ > 0.5 Gyr. This corresponds to some fraction of the SNe making up
a prompt fraction, and some a delayed fraction. Formally, the DTD of Rodney et al. (2014) takes
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the form

DTD(τ) =





0 for τ < τ0

k1 for τ0 ≤ τ ≤ τ1

k2t
−1 for τ1 < τ,

(2.3)

with (τ0, τ1) = (0.04 Gyr, 0.5 Gyr). For simplicity we neglect the zero part the DTD where τ < τ0.
This is equivalent to assuming that τ0 = 0. This has no strong impact as this DTD does not diverge
as τ → 0. The DTD used throughout this work is therefore defined as

DTD(τ) =




k1 for τ ≤ τ1

k2τ
−1 for τ1 < τ.

(2.4)

In the following we will derive the SNR in three regimes. For all regimes we apply the definition

SNR(t) =

∫ tb

ta

SFR(t− τ)DTD(τ)dτ, (2.5)

where the limits ta and tb are set such that SNR(t) is positive. As both SFR(t− τ) and DTD(τ)

are positive, this means that the limits must be set such that tb > ta.

Short Duration Starburst at Early Times

We consider a galaxy with age Ta where the star formation takes place from Ta to Ta − ∆T in
a short starburst of duration ∆T where ∆T � Ta. Since we observe at late times, only the τ−1

component of the DTD is relevant. This yields

SNR(t) =

∫ Ta

Ta−∆T
SFR(t− τ)k2τ

−1dτ

= −
∫ Ta−∆T

Ta

SFR(t− τ)k2τ
−1dτ

= −k2SFR ln
Ta −∆T

Ta
≈ k2SFR

∆T

Ta

=
k2

Ta
M∗,

(2.6)

where in the third line we Taylor expanded to first order and in the fourth line used that the product
of the star formation rate and a time interval is the stellar mass produced. Additionally we assumed
that the SFR is constant over the integrated time period, which is a valid assumption as ∆T � Ta.

Recent Starburst

For a recent starburst at late times where τ < τ1 the constant term of the DTD dominates, yielding

SNR(t) =

∫ t

0
SFR(t− τ)k1dτ = SFR k1 t, (2.7)
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when assuming that the SFR is constant over the integrated time, which for a recent starburst is a
good approximation. Dividing equation 2.7 through by the mass M∗ it yields

sSNR = sSFR k1 t. (2.8)

In the recent starburst limit sSFR ≈ t−1. This follows from the relation between the mass M∗
and SFR,

M∗ =

∫ t

0
SFR dt = SFR t, (2.9)

and from the definition of the sSFR ,

sSFR =
SFR

M∗

= t−1.

(2.10)

Inserting the result of equation 2.10 into equation 2.8 yields

sSNR = k1 (2.11)

for τ < τ1, i.e., the specific supernova rate tends to a constant at high sSFR. k1 can in principle be
measured directly by counting the number of SNe in high sSFR galaxies. This also gives a direct
measurement of the prompt fraction, defined as

fp =

∫ t1
0 k1dt

∫ t1
0 k1dt+

∫ t2
t1
k2t−1dt

=
k1t1

k1t1 + k2 ln ( t2t1 )

(2.12)

where we follow Rodney et al. (2014) in denoting the prompt fraction fp.

Intermediate Times

Above we derived the SNR in the early and late asymptotic limits. At intermediate times both the
prompt and delayed component contribute. If we, for the sake of argument, assume that the SFR
can be treated as a constant, then

SNR(t) =

∫ t2

0
SFR(t− τ)DTD(τ)dτ

=

∫ t1

0
SFR(t− τ)k1dτ +

∫ t2

t1

SFR(t− τ)k2τ
−1dτ

= SFR (k1t1 + k2 ln
t2
t1

).

(2.13)
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Dividing through with the mass M∗ gives

sSNR(t) = sSFR

(
k1t1 + k2 ln

t2
t1

)
. (2.14)

The result of equation 2.14 is simply the product of the sSFR and a constant. The assumption of
constant SFR is poor at intermediate times, so in order to generalise the behaviour we assume a
power law in sSFR of the form

sSNR(sSFR) = α

(
sSFR

1 yr−1

)β
, (2.15)

where in order to have the correct units a normalisation constant of size 1 yr−1 is introduced and
α carries units of SNe yr−1M−1

� .

Putting it all Together

In the previous three sections we have suggested that the SNR is constant in the asymptotic limits
and a power law at intermediate times. To parametrise this requires four free parameters, when im-
posing the requirement of continuity and fitting the for the transition points between the asymptotic
limits and intermediate times. These four parameters are two parameters determining the constant
SNR in the asymptotic limits and two parameters to fix the transition between the limits and inter-
mediate times. To simplify the equations we utilise an equivalent but simpler parametrisation that
has the transition points and then β and α from equation 2.15 as free parameters. Combining this
in a continuous piecewise function yields

sSNR(sSFR) = α





S1 for sSFR < sSFR2(
sSFR
1 yr−1

)β
for sSFR2 < sSFR < sSFR1

S2 for sSFR > sSFR1,

(2.16)

where

S1 =

(
sSFR1

1 yr−1

)β
, (2.17)

S2 =

(
sSFR2

1 yr−1

)β
, (2.18)

and the four parameters to be fit are sSFR1, sSFR2, β, and α.

2.3.2 Smooth logarithm parametrisation

The model of equation 2.16 is not convenient for purposes that require a continuous differentiable
model. Therefore we introduce a parametrisation that contains the same features, but is a smooth
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function for all values of sSFR. It is defined as

sSNR(sSFR) = a+
a

k
log

(
sSFR

sSFR0
+ b

)
, (2.19)

where the four free parameters to be fit are a, k, sSFR0, and b.

2.4 Data

The available type Ia supernova versus sSFR data include that of Mannucci et al. (2005), Sullivan
et al. (2006), Smith et al. (2012), Gao and Pritchet (2013), Graur et al. (2015b), and Botticella et al.
(2017). Sullivan et al. (2006) use type Ia observations from the Supernova Legacy Survey (SNLS)
in the redshift range 0.2 < z < 0.75. In Smith et al. (2012) type Ia SN observations are taken
from the Sloan Digital Sky Survey (SDSS-II) SN Survey (Frieman et al., 2008) which observed
at redshifts of z < 0.4. The data of Sullivan et al. (2006) and Smith et al. (2012) are analysed in
a fashion that makes it straightforward to combine the two data sets. This includes assuming the
same cosmology, both using AB magnitudes, binning and treating their data in a similar fashion.
Other data sets exist, including those of Mannucci et al. (2005). Mannucci et al. (2005) uses the
SN observations of Cappellaro et al. (1999). Gao and Pritchet (2013) use spectroscopic data from
the SDSS-II sample. Graur et al. (2015b) use a SN sample from SDSS Data Release 9. The most
recent data is from the SUDARE survey (Botticella et al., 2017).

To work with data based on fully consistent assumptions and treatment of the data we choose
to use the combined data set of Sullivan et al. (2006) and Smith et al. (2012) in the analysis of
this work. The datapoint contaminated by systematically uncertain ”ridge-line” galaxies of Smith
et al. (2012) is on the basis of this contamination excluded from the analysis; see Fig. 5 of Smith
et al. (2012) for details.

2.5 Method

For all models we fit for maximum likelihood parameters by minimising the χ2 function given by

χ2(sSFR;P ) =
∑

i

(
sSNRmodel(sSFR;P )− sSNRdata,i

σi

)2

(2.20)

where sSNRmodel(sSFR;P ) is the sSNR predicted by the model in question given parameters P
and sSNRdata,i is the i’th measurement with associated uncertainty σi. In practise what is done is
we maximise the log-likelihood function which is related to χ2 via

logL(sSFR;P ) =
−χ2(sSFR;P )

2
. (2.21)
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Model Maximum Likelihood Parameters χ2
reduced BIC AIC KS

A+B A = (4.66± 0.56) · 10−14, B = (4.88+0.54
−0.52) · 10−4 3.5 36.3 35.5 0.21

Piecewise β = 0.586± 0.084, α = (1.19± 2.20) · 10−7,
sSFR2 = (1.01± 0.55) · 10−11

sSFR1 = (1.04± 0.41) · 10−9

1.2 18.0 16.4 0.048

Smooth log. a = (1.12± 2.34) · 10−13, k = 0.49± 1.53,
sSFR0 = (1.665± 0.002) · 10−10, b = 0.73± 0.99

1.3 18.4 16.8 0.036

Table 2.1: Tabulated maximum likelihood parameter values and test values for the A+B model
and the three models developed in this work. The two models from this work all have tests val-
ues that are comparable. This is unsurprising, as the models by construction contain the same
functional features. The A+B model however consistently produce worse test values than the
other models. The BIC and AIC tests are of special interest here as they penalise models for
including additional fitting parameters, but despite this penalty the new models still produce sig-
nificantly better test results than the A+B model. The units of A and B are SNe yr−1M−1

� and
SNe yr−1(M� yr−1)−1 respectively. For the piecewise model sSFR1 and sSFR2 carry units of
yr−1, α has units of SNe yr−1M−1

� while β is unitless. For the smooth logarithm a and sSFR0

have units of yr−1 while k and b are unitless.

To fit the A+B model, the EMCEE (Foreman-Mackey et al., 2013) Markov chain Monte Carlo
(MCMC) implementation was used to determine the maximum likelihood parameters utilising
the log-likelihood function of Eq. 2.21. For the new models developed in this work the EMCEE

MCMC approach is unfortunately not viable. The reason is that the likelihood space contains a
large number of local extrema. This causes the peaks in the one dimensional marginalised like-
lihoods to be a combination of different extrema of the likelihood space for different parameters,
resulting in parameters that are a poor fit to the model. Therefore another approach is used for
these models where the log-likelihood is calculated for values in a discrete grid in the parame-
ter space of the model in question. From the grid of likelihoods the global maximum likelihood
parameters are then extracted. Since the likelihood space is highly degenerate it is difficult to as-
sociate simple uncertainties to the maximum likelihood parameters without imposing strict priors,
which would result in prior driven uncertainties. We apply the Fisher information matrix method
(see Albrecht et al. (2006) or King et al. (2014) for an introduction to Fisher matrix methodol-
ogy) to estimate uncertainties on the maximum likelihood parameters. The Fisher matrix method
is a second order approximation of the likelihood and assumes Gaussian measurement uncertain-
ties. The Fisher matrix method will yield the best theoretically possible statistical uncertainties,
and neglects contributions from non-Gaussianity and systematics. More details on how the models
introduced in this work are fit and links to the fitting and analysis code can be found in appendix H.

To test the quality of the model fits we calculate the reduced χ2, Bayesian information crite-
rion (BIC), Akaike information criterion (AIC), and perform the Kolmogorov-Smirnov (KS) test
for each model fit. The reduced χ2 is defined as

χ2
reduced =

χ2

ν
(2.22)
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where ν represents the degrees of freedom, given by ν = N − np where N is the number of data
points and np is the number of free parameters. The BIC is defined as

BIC = χ2 + np · logN (2.23)

and the AIC as
AIC = χ2 + 2np. (2.24)

2.6 Results

We apply the method of section 2.5 to produce the fits shown in figure 2.1. The details of the fits
and test values are listed in table 2.1.

The derived maximum likelihood parameters ofA = (4.66±0.56)·10−14 andB = (4.88+0.54
−0.52)·

10−4 for the A+B model are consistent with those in the literature, see e.g. figure 1 of Gao and
Pritchet (2013). Further fit details are available in figure 2.2. Table 2.1 shows that the A+B model
provides the worst fit of the ones tested in this work for all test cases; reduced χ2, BIC, AIC, and
KS test. Especially the BIC and AIC are of interest here, as they contain a penalty for including
additional free parameters; in this way they test whether including the additional parameters is
justified. Both models developed in this work yield test values that are similar within the random
noise that is expected when deriving reduced χ2 values. This noise is simply a product of the un-
certainty in each measurement, which in turn causes the reduced χ2 value itself to be uncertain. It
is unsurprising that the two models developed in this work yield so similar test results, as they by
construction contain the same overall functional shape. From figure 2.1 this constructed similarity
is apparent.

Our findings are in agreement with Smith et al. (2012) who find that the assumed linear rela-
tion of the A+B model provides a poor fit to data. Rather they find that a relation of SNR ∝M0.68

∗
is preferred. Gao and Pritchet (2013) furthermore find that the A+B model provides a poor fit to
their data and show that there exists tension between A+B model parameter estimates in the lit-
erature, although the tension is weak as the uncertainties are relatively large (see Figure 1 of Gao
and Pritchet (2013)). Both of these studies indicate that there is some behaviour that the A+B
model does not capture, and that additional fitting parameters are needed to adequately model the
Ia supernova rates.

2.7 Comparison with Simulations

Assuming constant sSFR in section 2.3 will not hold true for all regimes of the piecewise model.
In this section we test what the transition between the asymptotic limits looks like for realistic
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Figure 2.1: The piecewise and smooth logarithm maximum likelihood parameter fits plotted
against the Sullivan et al. (2006) and Smith et al. (2012) data as well as the maximum likeli-
hood AB model plotted as the dashed red line. The used parameters are shown in table 2.1. The
plots show that the two models defined in this work are functionally similar, and that the A+B
model increasingly deviates from these models at larger values of sSFR. As there is no data to
constrain models at log (sSFR) > −9 the sSNR in this regime is associated with large uncertainty
and is strongly model dependent. In terms of goodness of fit (results shown in table 2.1) both the
piecewise and smooth logarithm models outperform the A+B model.
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Figure 2.2: The corner plot from fitting the A+B model to the combined data set of Sullivan et al.
(2006) and Smith et al. (2012) using the EMCEE MCMC tool. It is apparent from the contour plot,
showing one, two, and three sigma uncertainties, that there is some mild covariance between the
fitted parameters. The units of A and B are SNe yr−1M−1

� and SNe yr−1(M� yr−1)−1 respec-
tively. This figure was created using the CHAINCONSUMER package of Hinton (2016).
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Figure 2.3: The red shaded dots show sSFR versus sSNR for star formation histories of simulated
Illustris galaxies at discrete times in the range 1 Gyr to 13.7 Gyr. The colourbar shows the relation
between colour and age, the redder the older the galaxy. The specific supernova rate is calculated
for each galaxy using equation 2.5 where the DTD of equation 2.4 is assumed with the best fitting
parameters for the piecewise model from table 2.1. The observations of Sullivan et al. (2006),
Smith et al. (2012), Graur et al. (2015b), and SUDARE (Botticella et al., 2017) as well as the
best fitting piecewise model to the observation of Sullivan et al. (2006) and Smith et al. (2012) is
overplotted for comparison.
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star formation histories. The applied approach is to determine the sSNR and sSFR for a number
of galaxies with more realistic star formation rates using equation 2.5 and compare them with the
predictions of the piecewise model. A source of realistic star formation histories can be found in
the Illustris simulation (Vogelsberger et al., 2014a,b; Genel et al., 2014). Illustris is a hydrodynam-
ical simulation going beyond simulating only the gravity of dark matter particles and also includes
baryonic physics. Modelling gas and galaxies using computational fluid dynamics enables the
Illustris simulation to predict the properties of the galaxies in the (106.5 Mpc)3 large simulated
volume. From 29,276 Illustris-1 galaxies with M∗ > 109M� a subsample of 100 galaxies is
chosen such that galaxies from all mass ranges are represented. This data collection is based on
the analysis tools from Sparre et al. (2015) and Diemer et al. (2017). For each galaxy the SFR
as a function of time is extracted, and convolved in equation 2.5 with the DTD of equation 2.4 to
produce supernova rates at discrete times ranging from 1 Gyr to 13.7 Gyr. Deriving the mass of
the galaxy at each of these discrete times using

M∗ =

∫ t

0
SFR(t′)dt′ (2.25)

allows us to determine the specific star formation and specific supernova rates. The results are
shown as the red shaded dots in figure 2.3. The shading of the dot indicates age, with darker
shades meaning older galaxies. It is apparent that in the limits of very high or very low specific
star formation rate the Illustris galaxies tends to the same specific supernova rates as the piecewise
model. The exact values of specific supernova rate that the sample tends towards is a function
of the assumed DTD parameters. If higher or lower k1 and k2 parameters were given as input in
equation 2.4 this would be reflected in the limits the galaxies in figure 2.3 tend towards. As the
piecewise function is fit to the observed data it captures the features therein, rather than the features
of the Illustris galaxies. When the observations deviate from the Illustris results the piecewise
model that best fits these observations will do the same. The reason for the slight discrepancy
between Illustris and observations could be that a significant fraction of the stellar mass of galaxies
is accreted rather than formed in situ. This additional mass from accretion is not taken into account
when using equation 2.25 to determine the stellar mass. Figure 3 of Rodriguez-Gomez et al.
(2016) shows that the accreted fraction is in the range of 0% for galaxies of mass 109M� to 80%
for galaxies of mass 1012M�. Another effect which can influence the mass of the galaxies is
mass loss through massive stars dying and leaving remnant stars with masses smaller than the
original ones. Figure 110 of Leitherer et al. (1999), figure 3 of Courteau et al. (2014), or equation
14 of Behroozi et al. (2013) show that on timescales of gigayears at most ∼50% of the mass is
lost due to this effect. In summary, the effects of mass loss or accretion will typically yield a
factor two increase or decrease in mass. Considering the effects discussed above and the statistical
uncertainties on the observed data, the agreement between observations and the Illustris results is
remarkably good.
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2.8 Discussion

The DTD used in this work is functionally identical to the one of Rodney et al. (2014). There-
fore it is possible to compare the value of the prompt fraction, fp, from our fit to that of Rodney
et al. (2014). In Rodney et al. (2014) the transition from a constant to τ−1 DTD is fixed at 0.5
Gyr. Following the prescription of equation 2.12, making it explicit that we fix the transition to be
0.5 Gyr with a subscript of 0.5, we arrive at a prompt fraction of fp,0.5 = 0.11+0.10

−0.06 which is in
slight tension with the result of fp = 0.53±0.09±0.10

stat sys where Rodney et al. (2014) utilise their full
data set, but is in good agreement with the result of fp = 0.21±0.34±0.49

stat sys where only the CAN-
DELS+CLASH sample of Ia supernovae was used. If we do not fix the transition to happen at 0.5
Gyr, and instead use the maximum likelihood fit value of t1 = 964+631

−273 Myr we find a prompt
fraction of fp = 0.15+0.11

−0.09. This transition time is significantly larger than the fixed value of 0.5
Gyr of Rodney et al. (2014) but considering the uncertainties there is only slight tension.

From figure 2.1 it is apparent that the difference in predicted Ia supernova rate between the
A+B model and the models developed in this work increase with sSFR. The fit suggests that the
biggest shortcoming of the A+B model is that it diverges towards increasingly larger values of
supernova rate with sSFR, where the models that instead plateau at these large sSFR values in
our analysis perform better. This suggests that the A+B model and the assumed DTD of Rod-
ney et al. (2014) are in tension. The high sSFR regime will become increasingly important as
future surveys push observations to higher redshifts. See, e.g., figure 4 of Behroozi et al. (2013)
showing that galaxies at high redshift are predominantly high sSFR galaxies with an sSFR in
excess of log sSFR & −10. A significant part of these galaxies will have sSFR values above
log sSFR > −9. It is difficult to determine the validity of the models of this work in this regime
as there are only few constraints from observations at log sSFR > −9. The reliability of the pre-
dicted sSNR in this regime will therefore be strongly dependent on the validity of the underlying
assumed model, in this case specifically the DTD assumed in equation 2.4. Conversely, observa-
tions at high sSFR will constrain the DTD in this regime.

The test results quoted in table 2.1 corroborate the points made above, with an important
additional point being that although the quoted uncertainties for the parameters of the models
developed in this work are only estimates, these uncertainty estimates have no influence on the test
results as the tests solely depend on the goodness-of-fit of the maximum likelihood parameters.
Based on the above results and discussion we recommend that either the piecewise model or
the smooth logarithm parametrisation developed in this work is used when predicting type Ia
supernova rates.
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Chapter 3

Cosmology with Peculiar Velocities:
Observational Effects

This chapter contains the paper ”Cosmology with peculiar velocities: Observational effects” by
Andersen, P., Davis, T., and Howlett, C., 2016, MNRAS, doi: 10.1093/mnras/stw2252

3.1 Abstract

In this paper we investigate how observational effects could possibly bias cosmological inferences
from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are
compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow
that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show
that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk
flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole
sky), and when the observations undersample the velocity distributions. Our results may explain
why several bulk flow measurements found bulk flow velocities that seem larger than those ex-
pected in standard ΛCDM cosmologies. We recommend a different approach when comparing
bulk flows to cosmological models, in which the theoretical prediction for each bulk flow mea-
surement is calculated specifically for the geometry and sampling rate of that survey. This means
that bulk flow values will not be comparable between surveys, but instead they are comparable
with cosmological models, which is the more important measure.

3.2 Introduction

The term bulk flow in the context of cosmology refers to the average motion of matter in a partic-
ular region of space relative to the dipole subtracted cosmic microwave background (CMB) rest
frame. One reason why bulk flows are interesting to cosmologists is that by measuring them we
can learn more about the composition of the universe, the laws of gravity, and whether our current
cosmological model is a good representation of the actual underlying dynamics.
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A bulk flow is induced by density fluctuations, and thus the bulk motion we observe should
match what we expect from the density distribution. The density distribution is in turn determined
by cosmological parameters such as the strength of clustering, through σ8, and the matter density,
ΩM. The magnitude of bulk flows can be predicted from theory given a model and set of cosmo-
logical parameters (e.g. σ8 and ΩM), some initial conditions (such as a fluctuation amplitude at the
end of inflation), and a law of gravity (such as general relativity). If the observed bulk flow was to
deviate from that predicted by theory, that would indicate that one or more of the given inputs is
incorrect.

Currently tension exists in measurements of the bulk flow, with some measurements in ap-
parent agreement with that predicted by ΛCDM (Colin et al., 2011; Dai et al., 2011; Nusser and
Davis, 2011; Osborne et al., 2011; Turnbull et al., 2012; Lavaux et al., 2013; Ma and Scott, 2013;
Feix et al., 2014; Ma and Pan, 2014; Planck Collaboration, 2014; Hong et al., 2014; Carrick et al.,
2015) while others are not (Kashlinsky et al., 2008; Watkins et al., 2009; Feldman et al., 2010;
Abate and Feldman, 2012; Watkins and Feldman, 2015). Relieving this tension is important if we
are to gain physical insight into the nature of dark energy and dark matter.

The field of using large scale bulk flows to constrain cosmology has historically been limited
by systematics due to the limited quality and quantity of the data available. Modern datasets now
include peculiar velocity measurements of thousands of galaxies with moderate precision and hun-
dreds of type Ia supernovae (SNe) with excellent precision. These have inspired a new generation
of bulk flow studies. As these new datasets become increasingly abundant and precise, it is pru-
dent to investigate the observational effects that may bias a bulk flow measured from one of these
datasets.

One such effect is undersampling of the surveyed volume. Undersampling is especially rel-
evant for estimates utilising a small number of distance indicators, like many recent estimates of
the bulk flow done with observations of type Ia SNe (Haugbolle et al., 2007; Jha et al., 2007; Colin
et al., 2011; Dai et al., 2011; Weyant et al., 2011; Turnbull et al., 2012). Attempts at addressing
sampling issues have been proposed, see e.g. Watkins et al. (2009), Li et al. (2012) or Weyant
et al. (2011). Another such effect is the geometry of a survey – namely whether the survey cov-
ers the whole sky or a narrow cone. Methods such as the minimum variance method proposed
by Watkins et al. (2009) attempt to weight arbitrarily shaped survey geometries so that the bulk
flow they calculate approximates what would have been measured if the distribution of data was
spherical. Other effects, besides observational, might also play an important role. See e.g. Huterer
et al. (2015) where the effects of velocity correlations between supernova magnitudes are included
in the data covariance matrix, and are found to have a significant impact on the constraints from a
derived bulk flow estimate.

The bias that might arise from estimating the bulk flow magnitude with a small number of
peculiar velocities, effectively undersampling the surveyed volume, and with a non-spherical dis-
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tribution of measurements, is the focus of this paper. We utilise data from the Horizon Run 2
(HR2; Kim et al., 2011) simulation to investigate how strong a bias undersampling introduces for
various survey volumes, from spherically symmetric surveys, to hemispherical and narrow cone
surveys. We focus on the Maximum Likelihood (ML) estimator of the bulk flow, as it is compu-
tationally cheap to perform, easy to interpret and used widely in the literature. Additionally, for
a limited test case, we investigate how successful the Minimum Variance (MV) (Watkins et al.,
2009) estimator is at alleviating the bias that comes from undersampling. The ML and MV esti-
mators are described in Appendix A, where we take the opportunity to clarify some typographic
errors and undefined terms in the original papers that can lead to confusion.

In section 3.3 we introduce the HR2 simulation. Then in section 3.4 we summarise the the-
oretical footing of large scale bulk flows, and provide an expansion beyond the usual spherical
assumptions so that the theory is also valid for non-spherical geometries. The theoretical esti-
mate is established as the benchmark against which we test the effects of undersampling. Then in
section 3.5 we analyse the effects of undersampling on the Maximum Likelihood estimator, for a
spherical, hemispherical and narrow cone geometry. Finally in section 3.6 we discuss our findings
and the implications for future work using large scale bulk flows in cosmology.

Throughout this paper when we refer to the theoretically most likely bulk flow magnitude it
will be denoted the most probable bulk flow magnitude, Vp, to avoid confusion with bulk flows
from the Maximum Likelihood estimator.

3.3 Simulation: Horizon Run 2

Throughout this paper we use the Horizon Run 2 (HR2) cosmological simulation (Kim et al.,
2011) to investigate how observational effects, in particular non-spherical survey geometries and
undersampling, can influence bulk flow measurements in a ΛCDM universe. We choose this sim-
ulation for the following reason: the bulk motions of galaxies are primarily sensitive to large scale
density perturbations, meaning that the bulk flow measured in apparently distinct patches drawn
from a single simulation can remain significantly correlated. The HR2 simulation, containing 216
billion particles spanning a (7.2h−1Gpc)3 volume, is large enough that we can be confident our
bulk flow measurements are effectively independent. The above simulation parameters result in a
mass resolution of 1.25× 1011h−1M�, which allows us to recover galaxy-size halos with a mean
particle separation of 1.2h−1 Mpc. The power spectrum, correlation function, mass function and
basic halo properties match those predicted by WMAP5 ΛCDM (Komatsu et al., 2009) and linear
theory to percent level accuracy.

To generate our measurements we first draw spherical subsamples of radius 1h−1 Gpc from
the full HR2 dataset. The origin of each subset is chosen randomly, so that some will be chosen in
higher than average density regions and some in lower than average density regions, incorporating
the effects of cosmic variance. Knowledge of our local galactic surroundings could have been
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folded into the selection of origins, so that the subsets chosen would more closely represent the
local environment that we find ourselves in. We have not done this, which means that the results
of this work are the zero-knowledge results with no assumptions made about our position in the
cosmological density field. In essence, we are comparing our one measurement of the bulk flow
of our local universe to the distribution of bulk flows that ΛCDM would predict. It would also be
enlightening to investigate whether there are any aspects of our local universe that would bias such
a measurement, as Wojtak et al. (2015) did for supernova cosmology. However, that is beyond the
scope of this paper.

The HR2 subsets consist of approximately 3.1·106 dark matter haloes, each with six dimen-
sional phase space information. Unfortunately a mock galaxy survey that fills the entire volume
of the simulation does not exist, so in our analysis we assume that each DM halo corresponds to
one galaxy. The smallest of the DM haloes are of a mass comparable to that of a galaxy, but the
largest DM haloes of the HR2 simulation have a mass that would be equivalent to hundreds of
galaxies. Effectively we are grouping galaxies in massive clusters into just one datapoint with the
same probability of being subsampled as any other galaxy.

Fortunately, a limited number of mock SDSS-III (Eisenstein et al., 2011) galaxy catalogues
have been produced for the HR2 simulation, which allow us to test how this assumption may af-
fect our results. In Appendix B we perform an analysis of the bulk flow magnitude distribution of
galaxies from one such mock catalogue, and compare the distributions derived from the DM halo
velocities. Our analysis shows that the distributions are similar, and, as such, treating each halo as
an individual galaxy has minimal effect on our results.

To look at the effect of undersampling and non-spherical geometries, we wish to compare the
actual bulk flow magnitude of a given number of galaxies within some volume, to the magnitude
recovered using the ML and MV estimators. Although a real survey only has peculiar velocity
information along the line-of-sight direction, both of these estimators attempt to reconstruct the
3D distribution of velocities and estimate the bulk flow. In this sense a fair comparison is then
between the output of these estimators and the most probable bulk flow measured using the full
3D velocity vector for each galaxy. The method we use to determine the most probable bulk flow
magnitude as well as the upper and lower 1-σ limit for a particular subsample of the simulation is
the following:

1. Randomly place a geometry in the simulation.

2. Of total N galaxies within the geometry, randomly draw n.

3. Derive the actual bulk flow vector of the n galaxies, using the 3D velocity vector for each
object.

4. Store the magnitude of the bulk flow vector.

5. Repeat the above process until the resulting distribution has converged.
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Analogous to the method above we can determine the most probable bulk flow magnitude and 1-σ
upper and lower bounds for a specific bulk flow estimator, e.g. the ML estimator applied in section
3.5:

1. Randomly place a geometry in the simulation.

2. Of total N galaxies within the geometry, randomly draw n.

3. For the n galaxies compute the line-of-sight velocities.

4. Apply the ML estimator to the line-of-sight velocities and derive the ML bulk flow vector.

5. Store the magnitude of the ML bulk flow vector.

6. Repeat the above process until the resulting distribution has converged.

The uncertainty associated with each peculiar velocity measurement is calculated as in Appendix
A of Davis et al. (2011), the implications of this are discussed in Appendix C. When determining
upper and lower 1-σ bounds we apply an equal likelihood algorithm, so that the 1-σ limits are the
equal likelihood bounds that encapsulate 68.27% of the normalised distirbution.

3.4 Linear Theory

Under the assumption of the cosmological principle, that the universe is statistically isotropic and
homogeneous, and assuming Gaussian density fluctuations, the velocity field at any given location
can be treated as Gaussian random variate with zero mean and variance given by the velocity
power spectrum Pvv(k). Hence the bulk flow vector measured within some volume can also be
described as a Gaussian random variate with zero mean and variance

σ2
V (r) =

∫
d3k

(2π)3
Pvv(k)|W̃ (k; r)|2. (3.1)

Assuming isotropy, this becomes

σ2
V (r) =

1

2π2

∫ ∞

k=0
dk k2Pvv(k)|W̃ (k; r)|2,

=⇒ σ2
V (R) =

H2
0f

2

2π2

∫ ∞

k=0
dkP (k)W̃ (k;R)2, (3.2)

where the Hubble constant, H0, growth rate, f , and velocity and matter power spectra Pvv(k) and
P (k) define a particular cosmology. The second equality of Eq. 3.2, which is commonly associated
with the RMS velocity expected for a bulk flow vector (Coles and Lucchin, 2013) follows from the
assumption of a spherically symmetric window function and the linear approximation that Pvv =

H2
0f

2k−2Pθθ(k) ≈ H2
0f

2k−2P (k), where Pθθ is the power spectrum of the velocity divergence
field (See Chapter 18 of Coles and Lucchin (2013) for a review of the relationship between the
density, velocity divergence and velocity fields, and Jennings (2012) for measurements of Pθθ
from simulations). As can be seen in Fig. 1, Pθθ(k) = P (k) is typically a good assumption on the
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Figure 3.1: Window functions for the geometries used in this paper plotted along with the matter-
matter and velocity divergence power spectra from COPTER. P (k) is the matter power spectrum,
and Pθθ(k) the velocity divergence power spectrum. The geometries used are equal volume spher-
ical cones with opening angles θ, ranging from fully spherical θ = π to a very narrow cone with
θ = π/8

large scales probed by bulk flow measurements.

In Eq. 3.2 W̃ (k; r) is the Fourier transform of the window function, W (r), for the geometry
of the specific survey making that bulk flow measurement. The window function is a function of
both k and the volume in which the bulk flow is being measured. It measures how sensitive we
are to measuring the statistical fluctuations at a particular scale. If the window function is large
for a particular k it means that we are highly sensitive to measuring fluctuations at the scale k
represents. The window function will be dependent on the geometry of the measurements taken
to derive the bulk flow, and is therefore unique for each particular survey. For a fully spherical
geometry of radius R the window function takes the form

W̃ (k;R) =
3(sin kR− kR cos kR)

(kR)3
. (3.3)

How strongly the window function of a particular survey will deviate from this spherical case will
be determined by the geometry of the survey in question. Example window functions for conical
geometries with a variety of opening angles are shown in Fig. 3.1. How these were calculated is
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detailed in section 3.4.1.

To calculate all the theoretical values of σV in this paper we use a velocity divergence power
spectrum, generated with the implementation of Renormalised Perturbation Theory (Crocce and
Scoccimarro, 2006) in the COPTER code (Carlson et al., 2009). A linear CAMB1 (Lewis et al.,
2000; Howlett et al., 2012) matter transfer function with the same cosmological parameters as
HR2 and WMAP5 was used as input. From this COPTER produces both a non-linear matter power
spectrum as well as a non-linear velocity divergence power spectrum. We found that the differ-
ence between using the COPTER velocity divergence power spectrum, the non-linear matter power
spectrum, or the linear power spectrum was negligible, except for very narrow or small geometries
where effects at k & 0.05 become important. In Fig. 3.1 we can see that for the geometries used in
our analysis the differences when using the three power spectra are small as the spectra only differ
in the regime where the window function vanishes. Nonetheless, throughout this paper we use the
COPTER velocity divergence power spectrum as that is most appropriate when working with bulk
flows.

To calculate the theoretical most probable bulk flow magnitude Vp(R) we use the fact that the
peculiar velocity distribution is Maxwellian (Li et al., 2012) with RMS velocity σV , which gives
us a probability distribution for the bulk flow amplitude of the form (Coles and Lucchin, 2013)

p(V )dV =

√
2

π

(
3

σ2
V

)3/2

V 2 exp

(
−3V 2

2σ2
V

)
dV. (3.4)

For this distribution the maximum probability value is then given by the relation

Vp(R) =
√

2/3σV (R). (3.5)

When referring to the theoretical most probable bulk flow magnitude throughout this paper, it is
this value based on a Maxwellian distribution of velocities that we are referencing. We confirmed
that the velocities of halos in the HR2 simulation do indeed follow a Maxwellian distribution.

It is important to note that while the most probable bulk flow magnitude is a discrete value,
it is still a value from a distribution with a variance. Optimally the theoretical distribution should
be compared to an observed distribution of bulk flow magnitudes, but this is not practical in most
situations. The best we can do is to compare our measured bulk flow magnitude with the most
probable bulk flow magnitude from theory, but importantly remember to account for the variance
on our theoretical prediction in our statistics.

3.4.1 Non-Spherical Geometries

As well as investigating the effects of undersampling on a spherical geometry, we wish to addi-
tionally develop a theoretical estimate for non-spherical geometries, that is we wish to break the

1http://camb.info/readme.html
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assumption of spherical symmetry used to derive Eq. 3.3. For uniformly distributed surveys the
window function takes the form

W̃ (k; r) =
1

V

∫

V
exp (ik · r)dr, (3.6)

where exp (ik · r) can be expanded to (Coles and Lucchin, 2013),

exp (ik · r) =
∑

l,m

jl(kr)i
l(2l + 1)P |m|l (cos θ) exp (imφ), (3.7)

where P |m|l are the Associated Legendre Polynomials. The integral of Eq. 3.6 then becomes

∫

V
exp (ik · r)dr

=
∑

l,m

il(2l + 1)

∫ φmax

0
exp (imφ)dφ

∫ θmax

0
P |m|l (cos θ) sin θdθ

∫ R

0
jl(kr)r

2dr

(3.8)

which for the spherical case where (θmax, φmax) = (π, 2π) reduces to Eq. 3.3. For a spherical
cone geometry, with radius related to volume and opening angle by

r =

(
3V

2π(1− cos θ)

)1/3

, (3.9)

we can set φmax = 2π but let θmax vary in the interval (0;π]. Regardless of the values of l, all
terms of m vanish except for the m = 0 term. Therefore for non-spherical geometries we have
to sum over l to infinity. Although this approach is theoretically correct, in practice we would
sum over l only until the function value had converged to within computational accuracy. This
is however very impractical since the complexity of the terms increase rapidly with l making it
difficult to include terms above l ≈ 20. Unfortunately, we find that for our geometries that are
very non-spherical only using terms l ≤ 20 is not sufficient to guarantee convergence. Hence this
approach is still only practical for geometries close to a sphere.

Another approach to solving the window function for a given k is to reformulate the volume
integral in Cartesian coordinates

W̃ (k; r) =
1

V

∫ X

0

∫ Y

0

∫ Z

0
w(x, y, z)ei(kx+ky+kz)dxdydz. (3.10)

The triple integral is over a cube that is at least large enough to contain the volume V from Eq. 3.6.
The w(x, y, z) function is introduced, defined as being one inside the volume and zero otherwise,
which makes sure the volume integrated over is conserved. The conversion to Cartesian coor-
dinates makes it simpler to solve the integral numerically. It should be noted that even though
we only consider rotationally symmetric windows with constant number density in this study, the
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above equation can be extended to include surveys of arbitrary geometry and non-constant number
density, simply by choosing a suitable function w(x, y, z).

Based on Eq. 3.10 we developed two pieces of code to solve the problem numerically, one cal-
culating the integral using MCMC methods and the other applying a trapezoidal volume integral.2

The independence of the two codes is used to confirm the validity of the results; the outputs from
the two codes are consistently within 3% percent of one another.

To see how this theoretical prediction compares with the actual underlying bulk flow of the
HR2 simulation, we plot the most probable bulk flow magnitude as well as the upper and lower 1-
σ limits as a function of geometry in Fig. 3.2. The geometry in this case is a spherical cone where
the opening angle θ is varied. It is worth noting that the volume of the geometry is kept constant
as the opening angle θ is varied. This is achieved by varying the radial extent of the geometry
along with θ according to Eq. 3.9. Keeping the volume constant helps keep the simulation and
theoretical results almost constant as θ is varied. For all opening angles we see that our theoretical
value matches that measured from the simulations extremely well.

3.5 Geometry and Sampling Effects

In this section we present how non-spherical geometries and undersampling of the cosmological
volume can impact the results of the ML and MV estimators. We use the theoretically predicted
most probable bulk flow magnitude as a benchmark; the closer the estimator comes to replicating
the theoretical distribution the better.

We first investigate the scenario where we use a fixed number of objects (n = 500) and com-
pare both the performance of the ML and MV estimator. The results can be seen in Fig. 3.2. Both
the ML and MV estimator have a bias towards measuring larger bulk flow magnitudes on average
than the actual underlying bulk flows. As the survey geometry becomes narrower, however, this
bias increases, with the most narrow geometry having the strongest bias. The behaviour of the ML
and MV estimators is very similar.

In the narrow cone regime, both the ML and MV estimators predict significantly larger most
probable bulk flows than would be expected from theory. Hence, incorrectly accounting for non-
spherical geometries in the ML and MV estimators could potentially lead one to conclude they
had measured a larger bulk flow than would be expected in a ΛCDM universe.

Next we investigate how the sampling rate can create biases in the most probable bulk flow cal-
culated using the ML and MV estimates for a fixed geometry. For the values n ∈ [50, 500, 1000, 2000, 4000]

and opening angles θ ∈ [π/8, π/2, π], corresponding to a narrow spherical cone, a hemisphere,

2For details and link to the source code see https://github.com/per-andersen/MV-MLE-BulkFlow
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Figure 3.2: The most probable measured bulk flow magnitude as a function of opening angle for
a spherical cone geometry. The tested geometries vary in opening angle from the fully spherical
situation where θ = π, over a hemisphere to the most narrow geometry tested being θ = π/16.
The distributions from the simulation, theory, MV estimator, and ML estimator are shown with the
dashed line being the most probable bulk flow magnitude and the colored band showing the upper
and lower 1-σ limits. For both the ML and MV estimators the sampling was fixed at n = 500. For
the MV estimator the ideal radius RI was set to 50 Mpc h−1.
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and a full sphere, we apply the ML estimator as described in section 3.3. The results can be seen
in Fig. 3.3. There are two noteworthy trends from this plot. The first is that for all geometries
the estimated most probable value is shifted to be 1-σ away from the actual most probable value
when the sampling is less than n . 500. The second is that this effect is stronger for narrow ge-
ometries, in our case the geometry with opening angle θ = π/8 is much more adversely affected
by undersampling than the hemispherical or spherical case. What this means in practice is that
estimates of the bulk flow magnitude that utilise a small number of peculiar velocities are likely
to be biased by undersampling effects in such a way that we would measure on average a larger
bulk flow magnitude than the actual underlying bulk flow being probed. Of particular interest is
the fact that this remains true even for spherical geometries if the number of objects is small.

The most probable bulk flow velocities for the distributions in Fig. 3.3, as well as a few ad-
ditional configurations of sampling rate and opening angles, are listed in Table 3.1. The absolute
differences between the most probable bulk flow values derived from simulation and theory are
also listed. This absolute difference is an indicator of how strong a bias we might expect in the
distribution of bulk flows derived for a particular sampling rate and survey geometry. A small ab-
solute difference between most probable bulk flow velocities from simulation and theory indicates
that the sampling rate is sufficient, and that minimal bias is to be expected for that particular sur-
vey geometry. In using Table 3.1 it is important to note that not only the most probable bulk flow
velocity, Vp, is shifted towards larger values. Rather, the entire distribution of bulk flow velocities
is shifted, including the one and two sigma limits. Looking at, e.g., line seven of Table 3.1 where
n = 50 and θ = 0.125π we see that even though the theory predicts something close to ∼100 km
s−1 a measured bulk flow value of ∼500 km s−1 is still within the one sigma confidence limits,
and hence is still well within the expectations of a ΛCDM cosmology.

The cause for the bias from poor sampling is the increased variance of the bulk flow veloc-
ity components; in Fig. 3.4 the x-components of the bulk flow velocities from the top panel of
Fig. 3.3 are plotted for the various sampling rates. When sampling decreases variance increases,
which in turn causes the most probable bulk flow value to shift according to Eq. 3.5. Note that
σV in Eq. 3.5 denotes the variance of the bulk flow vector, which is equal to the RMS because the
distribution of bulk flow vectors is Gaussian. The variance in any one Cartesian component of the
bulk flow vector is then σV /

√
3. For the bulk flow magnitude σV refers only to the RMS, due to

the relationship between Maxwellian and Gaussian distributions. The variance of the bulk flow
magnitude is then given by3 σ2 = σ2

V(1− 8
3π ).

Another way to illustrate this effect is to imagine a large volume where the galaxies within
obey the cosmological principle such that if you sum over the velocities of all N galaxies you
will derive a bulk flow magnitude of exactly zero. This will be true even if only the line-of-sight

3To derive this use p(V )dV from equation 3.4 in the definition of variance σ2 ≡
∫∞
0
p(V )(v − v̄)2dV , where

the standard integral
∫∞
0
xne−bx

2

dx = (2k−1)!!

2k+1bk

√
π
b

with n = 2k and b > 0 comes in handy; note (2k − 1)!! ≡
Πk
i=1(2i− 1) = (2k)!

2kk!
.
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Figure 3.4: The distribution of the x-components of the bulk flows from the top panel of Fig. 3.3
where the opening angle is θ = π/8. Poorer sampling leads to a larger variance in the Gaussian-
distributed velocity components, which in turn causes the most probable bulk flow to shift to a
larger value.

components of the peculiar velocities are observed. If then only n < N peculiar velocities are
observed, it is very likely that a non-zero bulk flow magnitude will be measured, and since a
magnitude can only ever be positive we are now dealing with some non-zero positive number. We
might redraw a new set of n galaxies and derive a different magnitude, but it is still going to be
some non-zero positive number. If n ≈ N then we are likely to measure a magnitude that is closer
to zero than if we only draw n � N galaxies. In other words, undersampling always increases
our RMS velocity and skews the most probable measured magnitude towards larger values.

3.6 Discussion & Conclusion

After reviewing linear theory we showed how it can be expanded to be valid for non-spherical
geometries, developing code that numerically calculates the theoretical bulk flow magnitude for
any arbitrary survey geometry. To test the validity of the developed code, the derived theoretical
bulk flow magnitude was compared to that of a variety of spherical cone geometries in the Horizon
Run 2 (HR2) cosmological simulation and found to be within 5% or better agreement for all tested
geometries.
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θ Vp 68% Limits |Vp - Vp,theory | Sample Density
km s−1 km s−1 km s−1 (h−1Mpc)−3

n : 8000 0.125 π 132 +73
−61 71 - 205 26 200×10−6

n : 4000 0.125 π 136 +75
−63 73 - 210 29 100×10−6

n : 2000 0.125 π 142 +79
−66 75 - 221 35 50×10−6

n : 1000 0.125 π 153 +86
−72 80 - 238 46 25×10−6

n : 500 0.125 π 173 +97
−81 92 - 269 66 12×10−6

n : 100 0.125 π 257 +143
−119 137 - 399 150 2×10−6

n : 50 0.125 π 326 +203
−166 160 - 528 219 1×10−6

n : 8000 0.5 π 131 +74
−62 68 - 205 21 200×10−6

n : 4000 0.5 π 131 +74
−61 69 - 204 22 100×10−6

n : 2000 0.5 π 132 +75
−63 69 - 207 22 50×10−6

n : 1000 0.5 π 133 +76
−63 69 - 208 23 25×10−6

n : 500 0.5 π 136 +77
−64 72 - 213 27 12×10−6

n : 100 0.5 π 158 +89
−74 84 - 247 49 2×10−6

n : 50 0.5 π 180 +96
−81 99 - 275 70 1×10−6

n : 8000 1.0 π 110 +58
−49 61 - 168 3 200×10−6

n : 4000 1.0 π 110 +58
−49 61 - 167 3 100×10−6

n : 2000 1.0 π 111 +59
−49 61 - 169 2 50×10−6

n : 1000 1.0 π 113 +59
−50 62 - 171 0 25×10−6

n : 500 1.0 π 116 +61
−51 64 - 176 3 12×10−6

n : 100 1.0 π 138 +72
−61 77 - 210 25 2×10−6

n : 50 1.0 π 159 +83
−70 89 - 241 46 1×10−6

Table 3.1: Vp is the most probable bulk flow for the distribution of bulk flows derived from simu-
lation using the ML estimator, for the given survey geometry, defined by the opening angle θ, and
sampling rate, given by n, which is the number of peculiar velocities per derived bulk flow esti-
mate. The upper and lower one sigma equal likelihood limits encapsulating 68% of the likelihood
are also listed. |Vp - Vp,theory | is the absolute difference between the most probable bulk flow ve-
locity derived from estimate and from linear theory. A small absolute difference indicates that the
sampling rate is sufficient for the given geometry, such that the derived distribution matches the
actual underlying distribution. In the final column the survey sample density is listed for reference.
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However, when simulating more realistic surveys and applying the Maximum Likelihood
(ML) estimator we found that undersampling effects severely bias measurements of the bulk flow
magnitude when a small number (n . 500) of peculiar velocities are used in the bulk flow esti-
mate. On average, undersampling pushes the measured bulk flow to higher values, with the bias
being amplified when narrower survey geometries are used.

For our fixed volume of 40·106(h−1Mpc)3 using 500 SNe corresponds to a sampling density
of∼ 13 SNe/106(h−1Mpc)3. Hence we expect undersampling could affect many recent measure-
ments of the of the bulk flow magnitude utilising type Ia SNe as a distance indicator (i.e, Haugbolle
et al. 2007; Jha et al. 2007; Colin et al. 2011; Dai et al. 2011; Weyant et al. 2011; Turnbull et al.
2012; Feindt et al. 2013) where the number of supernovae are well below 300 and the sampling
density is also well below 13 SNe/106(h−1Mpc)3.

Without a detailed analysis of each of the previous bulk flow estimates, which is beyond the
scope of this paper, it is hard to determine whether or not a particular result is affected by un-
dersampling. However, some examples that might deserve attention include e.g. Feindt et al.
(2013) where the SNe are subdivided into four shells, and for the SNe in each shell a bulk flow
is estimated. We would expect the bulk flow to converge to the CMB frame as we go to higher
redshifts and larger volumes, and yet Feindt et al. (2013) find that in shells of both increasing
redshift and increasing volume there is no clear trend in the magnitude of the bulk flow. In-
stead, the trend they see could potentially be explained by undersampling. Their bins contain
varying numbers of supernovae, namely n = [128, 36, 38, 77], in which they find bulk flows of
Vp = [243, 452, 650, 105]km s−1. So there is a trend by which the bins with fewer supernovae find
larger bulk flows (e.g. compare the middle two bins with the outer two bins).

Similarly, Turnbull et al. (2012) provide two measurements of the ML bulk flow: one with all
245 SNe from the First Amendment compilation, the other with a subset of 136 SNe that excludes
the nearby ones (excludes z < 0.02). Naive expectations would suggest that the sample focussing
on higher redshift SNe should be closer to converging on the CMB and thus have a lower bulk
flow, however they find the opposite. The higher-redshift-only sample has a higher bulk flow, but
since it has fewer data points than the full sample that would be consistent with our finding that
undersampling overestimates the bulk flow.

Both Feindt et al. (2013) and Turnbull et al. (2012) found bulk flows that exceeded the pre-
dicted flow based on known density distributions in the nearby universe, so whether the estimates
are inflated by undersampling is potentially an interesting question (although neither claimed sig-
nificant deviation from ΛCDM). While we have selected these two as the most significant exam-
ples that could be affected by the sampling biases we discuss in this paper, we note that this trend
is pervasive, as no other samples show significant opposing trends. Some show slight reduction
in bulk flow with smaller samples, but it is much less significant than the positively correlated
examples above (and much smaller than the uncertainties), e.g. in Colin et al. (2011) increasing
the sample from 61 to 109 SNe increases the estimated bulk flow from 250 km s−1to 260 km s−1,
an effect of less than 5%.

For bulk flow estimates where the typical number of observed peculiar velocities in a survey is
n & 3000, i.e., most estimates using the Tully-Fisher or Fundamental Plane relation (Nusser and
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Davis, 2011; Ma and Pan, 2014; Watkins and Feldman, 2015; Scrimgeour et al., 2016), we found
no bias from undersampling. It is however important to note that the analysis of this paper assumes
type Ia SNe are used as distance indicators, and therefore the uncertainties in each distance mea-
surement are small (Appendix C). The typically larger uncertainties derived from Tully-Fisher or
Fundamental Plane estimates would increase the variance in the individual bulk flow components,
which in turn could mean we require larger numbers of objects to avoid biases than is found here.

Effects from uneven sampling have previously been discussed in the literature. One example
is Eq. 10 of Li et al. (2012) where a method of dividing the measured peculiar velocities by their
selection function is proposed. In Aaronson et al. (1982) and Haugbolle et al. (2007) Monte Carlo
simulations of observations are used to better understand systematic effects, including sampling
effects. Other works (Weyant et al., 2011; Watkins et al., 2009) develop new estimators such as
the Weighted Least Squares (WLS), the Coefficient Unbiased (CU), or the Minimum Variance
(MV) estimators, with the MV estimator being the most popular alternative to the ML estimator.
The MV estimator is constructed in part to account for sampling bias (with the motivation to be
able to compare measurements of bulk flow between surveys); in our work we found that the MV
estimator suffered the same bias as the ML estimator, again with the bias increasing for narrower
geometries.

A number of recent papers compare a measured bulk flow directly to a ΛCDM prediction based
on linear theory and an assumption of spherical symmetry. For example Colin et al. (2011), Dai
et al. (2011), and Scrimgeour et al. (2016) plot bulk flow measurements as a function of redshift
compared to a generic ΛCDM prediction. Our analysis suggests that such a comparison between
bulk flows derived from different surveys, and therefore different survey geometries and sampling
rates, is potentially problematic.

In Park et al. (2012) the HR2 simulation was used to show that the size of the large scale
structure known as the Sloan Great Wall (SGW) is in agreement with what we statistically expect
from ΛCDM cosmology, something that had previously been disputed. Similarly, as early as
Aaronson et al. (1982) simulations were being used to compare measured bulk flows to theoretical
predictions. Analogous to their arguments, our study highlights the importance of considering
the full distribution of bulk flow magnitudes from theory, including sampling effects, rather than
focusing on only the most probable bulk flow magnitude. That is, we propose that bulk flows
should not be compared to the prediction from linear theory, but with the bulk flow magnitude
distribution derived from a cosmological simulation using the method described above, with the
actual survey geometry given as input.
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Chapter 4

Peculiar Velocity Correction for Dark
Energy Survey Type Ia Supernovae

This chapter contains the unpublished notes on peculiar velocity correction for the Dark Energy
Survey type Ia supernovae by Andersen, P., 2018.

4.1 Abstract

These notes detail first how we currently correct redshifts for peculiar velocities when doing cos-
mology with the Dark Energy Survey (DES) type Ia supernovae (SNe). Secondly we discuss how
we can improve the current prescription by associating the current correction with an uncertainty.

4.2 Introduction

The observed velocity of a galaxy is a sum of the recession velocity which is attributed to the
Hubble flow, as well as the peculiar motion caused by a gravitational pull from small and large
scale structures. At redshifts of ≥ 0.1 the recession velocity is approximately of order c z ∼
30000 km s−1where typical peculiar motions are of order 300 km s−1and therefore a sub percent
contribution. At lower redshifts peculiar velocities contribute significantly to the observed redshift
and in the context of Ia SN cosmology it is therefore crucial to understand the effects that peculiar
velocities have on cosmology fitting. If the peculiar velocities of the SNe in the observed sample
were distributed isotropically they would add an additional source of scatter in the Hubble diagram
at low redshifts. This would in turn not bias the derived cosmological parameters, rather just add
to the statistical uncertainty on those parameters. However, if the low redshift SNe are embedded
in a large scale flow this will introduce a non trivial systematic shift in the low redshift part of
the Hubble diagram which in turn will systematically bias the derived cosmological parameters.
Whether this systematic bias from correlated flows is significant depends on the size of the this
bulk motion. In table 5 of Scrimgeour et al. (2016) is a summary of recent size estimates of the
bulk motion, which range from ∼200km s−1to ∼1000 km s−1, with a mean value weighted by
the uncertainties yielding ∼347 km s−1. 347 km s−1corresponds to a redshift bias of 347km s−1

c ≈
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0.0012. Different methods have been proposed to correct for the peculiar motion of galaxies
and hence for the systematic bias in the cosmological parameters. One of the first to perform
a correction on a one correction per supernova basis was Conley et al. (2011) who applied the
method described in Neill et al. (2007) which is based on linear pertubation theory,

v =
β

4π

∫ Rmax

δ(r′)
r′ − r

|r′ − r|d
3r′ + V. (4.1)

Here v is the peculiar velocity field at position r where V is a dipole term that takes into account
flows on scales larger than Rmax and β which is a scaling parameter. Conley et al. (2011) then as-
sumed that the uncertainty associated with this correction was 150km s−1for all supernovae in their
sample. Later the study in Betoule et al. (2014a) adopted the same methodology as Conley et al.
(2011) when correcting observed redshifts for effects of peculiar velocities. More recently Riess
et al. (2016a) correct redshifts for peculiar velocities based on the density maps of Scolnic et al.
(2014, 2015), and assume a constant uncertainty associated with this correction of 250km s−1.
In this work we will investigate the size of this bias specifically in the context of the Dark En-
ergy Survey (DES) and define the method used to correct the SNe in the DES sample for peculiar
velocities.

4.3 Current Peculiar Velocity Correction

The peculiar velocity field used for corrections comes from the 2M++ redshift compilation (http:
//cosmicflows.iap.fr/download.html). The data is a three dimensional discrete grid
where for each point in the grid we have velocities in the x, y, and z direction. The grid runs from
−200 to 200 Mpc/h with a grid spacing of 1.5625 Mpc/h yielding a total of 2563 grid points. The
velocities are in the CMB frame in Galactic Cartesian coordinates, with the best fitting external
dipole of Vext = (89,−131, 17) already added (Carrick et al. (2015), Table 3).

When correcting a supernova for the peculiar velocity we start by getting the peculiar velocity
from the 2M++ grid nearest to the supernova in question. If the supernova happens to be outside
of the 200 Mpc/h large grid a zero velocity is returned, effectively causing a zero-correction. Once
the peculiar velocity is known the correction can be applied. The input to the correction function
is a redshift in the heliocentric frame, zh. Therefore two corrections need to be applied: One that
converts from the heliocentric frame to the CMB frame, zCMB, and one that applies the peculiar
velocity correction in the CMB frame. The corrected redshift can therefore be calculated by

zcor =
1 + zcmb

1 + Cp
− 1, (4.2)

where
zcmb = (1 + zh)(1 + Ch) (4.3)
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Figure 4.1: Size of the peculiar velocity redshift correction as a function of redshift (left) and position (right). Left:
The horizontal axis shows the redshift in the CMB frame, zCMB, after correcting the observed redshift for the Earth’s
motion. The vertical axis is the difference between zCMB and the redshift after correcting for our estimate of the distant
galaxy’s peculiar velocity, zcor. Thus zcor should be the true cosmological redshift after the peculiar velocities of both
the observer (Earth) and emitter (distant galaxy) have been removed. The plot illustrates that for larger redshifts the
flow tends towards the CMB dipole, but for smaller redshifts there is some variation due to smaller scale flows. Right:
Colours indicate the magnitude of the peculiar velocity correction (zCMB − zcor) applied for supernova positions
indicated by the RA and Dec shown on the axes. Squares indicate the positions of our four high-z sample regions (the
DES regions).

and

Ch =
vh
c

(sin b sin bh + cos b cos bh cos (l − lh)) (4.4)

Cp =
vp
c
·




cos l cos b

sin l cos b

sin l


 . (4.5)

Here Cp is the peculiar velocity correction term and Ch the heliocentric correction term. Ad-
ditionally zcmb is the CMB frame uncorrected redshift, zh the heliocentric redshift and, bh, lh,
and vh are constants defining the direction of the sun’s movement in the CMB frame given by
(bh, lh, vh) = (48.25◦, 263.85◦, 371 km s−1). The above correction is implemented in code in
the SpectroSN repository on GitHub (https://github.com/dessn/SpectroSN/tree/
master/data/nearby).

4.4 Understanding our sample

The peculiar velocity correction is only applied to low-redshift data that has z < 0.1 and has a
predicted peculiar velocity value in the 2M++ grid. Figure 4.1 shows the magnitude of the peculiar
velocity redshift correction both as a function of redshift (left) and position (right).

4.5 Effects of Incompleteness in 2M++ Peculiar Velocity Field

Before describing how we we introduce uncertainties on the correction made in the previous sec-
tion, we first wish to investigate the effects of data incompleteness, possibly causing some local
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structures to be missing in the peculiar velocity field. This could introduce a spurious dipole in
the correction, and would systematically apply an incorrect correction. If this is potentially a large
effect we need to properly take it into account when correcting redshifts for peculiar velocities.
If it is a minor effect we can instead include it in the uncertainty budget for the peculiar veloc-
ity correction, which is not entirely correct, but much easier for our cosmology fitter people to
work with. Michael Hudson has given us a crude ballpark estimate that this effect is of order 100
km s−1. To test the effects of this on cosmological parameter estimation we introduce the factor f
which systematically shifts all corrected redshifts with same fraction of the size of the correction.
In the code we implement this by shifting zcor to

zcor → zcor + f∆z (4.6)

where ∆z ≡ (zcmb − zcor) is the difference between the uncorrected CMB-frame redshift and
the peculiar-velocity-corrected CMB-frame redshift. Testing f values in the range f ∈ [−1, 1]

corresponds to testing miscalibrated dipoles of [−160, 160] km s−1. The parameters Ωm, w0 from
the f = 0 case will then be compared with the f ∈ [−1, 1] results. The results of this analysis
are summarised in table 4.1, and the full corner plots for each fit can be found at the end of these
notes. From table 4.1 we see that w0 is very stable. Ωm however is shifted on order of 10-15%.1

That shift is less than the one-sigma uncertainty, so not statistically significant, but nevertheless it
is a systematic bias we want to avoid. Given that it is a sub-dominant uncertainty we consider it
reasonable to treat it roughly by adding an uncertainty to the diagonal of the covariance matrix (or
to the simulations).

f Ωm w0 Ωm offset
0 0.15+0.23

−0.15 -0.47+0.13
−0.21 -

0.5 0.17+0.23
−0.16 -0.47+0.13

−0.22 12%
-0.5 0.17+0.23

−0.15 -0.48+0.13
−0.21 12%

1.0 0.18+0.23
−0.17 -0.47+0.14

−0.23 17%
-1.0 0.14+0.23

−0.14 -0.47+0.12
−0.21 -7%

Table 4.1: The derived Ωm and w0 values for various values of f with associated 68% likeli-
hood uncertainties. The value of f dictates the size of the introduced synthetic dipole. The range
f ∈ [−1, 1] corresponds to synthetic dipoles in the range [−160, 160] km s−1. Therefore when
f is zero there is no synthetic dipole, which is used as the benchmark to compare the other de-
rived cosmological parameters against. The sign of f determines the direction of the introduced
synthetic dipole.

1Note that the degeneracy direction means this shift can move to a shift in w0 if the best fit happened to be at higher
Ωm,0. See figure 4.2 that shows the covariance between Ωm,0 and w0.
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4.6 Adding Uncertainties

4.6.1 Simple Approach

In order to estimate the uncertainty on the peculiar velocity correction we add the sources of
uncertainty in quadrature.

σ2
z,pec =

σ2
LT + σ2

SN + σ2
MD

c2
(4.7)

where the uncertainties are σLT from the limits of linear theory, σSN from shot noise, and σMD

from missing data in units of km s−1. Linear theory assumes that the universe is statistically
isotropic and homogeneous containing only Gaussian density fluctuations. On smaller scales this
is not strictly the case, including the scales at which the peculiar velocity correction is relevant;
that is the source of the σ2

LT term. From Carrick et al. (2015) and correspondence with Prof.
Michael Hudson we estimate that this term is of order 150 km s−1. From Prof. Michael Hudson
we additionally have that the shot noise term, σ2

SN, is of order 125 km s−1, and the missing data
term, σ2

MD, is of order 100 km s−1. Together this gives a σz,pec ≈ 0.0007 (corresponding to a
peculiar velocity uncertainty of 220km s−1). The total uncertainty in the observed redshift is then
σz = (1 + zcor)σz,pec (see Davis et al. (2011), Eq. A1). For practical reasons it is easier to convert
this uncertainty on redshift to an uncertainty on the distance modulus, µ, using the relation (Davis
et al. (2011), Eq. A4)

σµ(zcor) = σz
5

ln (10)

[
(1 + zcor)

zcor(1 + zcor/2)

]
= σz,pec

5

ln (10)

[
(1 + zcor)

2

zcor(1 + zcor/2)

]
(4.8)

where zcor is the redshift of the galaxy in question in the CMB frame corrected for peculiar ve-
locities. In the derivation of equation 4.8 an empty universe is assumed. At high redshift this is
a poor assumption, but for redshifts up to and under z = 0.1 this assumption gives at worst rise
to a 2% fractional error in σµ when comparing the σµ for the assumed empty universe to that of a
Ωm,0 = 0.3, ΩΛ,0 = 0.7 ΛCDM universe.

4.6.2 Correlated Approach

We could choose to build upon the approach of the previous subsection by taking into account
spatial correlations in the peculiar velocity corrections. Like previously we have an uncertainty on
the redshift σz,cor given by

σ2
z,pec =

σ2
LT + σ2

SN

c2
(4.9)

where we still have a term from the limits of linear theory and shot noise, but not for the missing
data. Rather, to more properly take into account the effects of the missing data we add a term
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σ2
MD/c

2 to the diagonal of the data covariance matrix

Σ =




σ1,1 + σ2
MD/c

2 σ1,2 · · · σ1,n

σ2,1 σ2,2 + σ2
MD/c

2 · · · σ2,n

...
...

. . .
...

σm,1 σm,2 · · · σm,n + σ2
MD/c

2



. (4.10)

In the above σm,n is shorthand for the multiplication σm σn. The reason why this approach is more
appropriate is that the uncertainties of galaxies in close proximity are correlated. If we have large
uncertainties for one particular supernova then nearby supernovae are likely to also have large
uncertainties. To calculate the values to add to the diagonal of Σ we would have to simulate our
sample of SNe multiple times. This is not trivial, as it is crucial to get the assumptions made when
performing these simulations right. Considering the size of the uncertainties and the potential
impact of this effect (see e.g. table 4.1 and the figure attached below) we have chosen to not
perform these simulations, and stick with the approach of section 4.6.1.
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Figure 4.2: Corner plot showing the covariance between fitted parameters and maximum likeli-
hood parameters and associated 68% likelihood marginalised uncertainties for the f = 0.0 case.
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Chapter 5

Discerning Dark Energy Models with
High-Redshift Standard Candles

This chapter contains the paper ”Discerning dark energy models with high-redshift standard can-
dles” by Andersen, P., and Hjorth, J., 2017, MNRAS, doi: 10.1093/mnras/stx1975

5.1 Abstract

Following the success of type Ia supernovae in constraining cosmologies at lower redshift (z . 2),
effort has been spent determining if a similarly useful standardisable candle can be found at higher
redshift. In this work we determine the largest possible magnitude discrepancy between a con-
stant dark energy ΛCDM cosmology and a cosmology in which the equation of state w(z) of
dark energy is a function of redshift for high redshift standard candles (z & 2). We discuss
a number of popular parametrisations of w(z) with two free parameters, wzCDM cosmologies,
including the Chevallier-Polarski-Linder and generalisation thereof, nCPL, as well as the Jassal-
Bagla-Padmanabhan parametrisation. For each of these parametrisations we calculate and find
extrema of ∆µ, the difference between the distance modulus of a wzCDM cosmology and a fidu-
cial ΛCDM cosmology as a function of redshift, given 68% likelihood constraints on the param-
eters P = (Ωm,0, w0, wa). The parameters are constrained using cosmic microwave background,
baryon acoustic oscillations, and type Ia supernovae data using CosmoMC. We find that none of
the tested cosmologies can deviate more than 0.05 mag from the fiducial ΛCDM cosmology at
high redshift, implying that high redshift standard candles will not aid in discerning between a
wzCDM cosmology and the fiducial ΛCDM cosmology. Conversely, this implies that if high red-
shift standard candles are found to be in disagreement with ΛCDM at high redshift, then this is a
problem not only for ΛCDM but for the entire family of wzCDM cosmologies.

5.2 Introduction

The concordance ΛCDM model, containing a dark energy (Λ) component with constant equation
of state and a cold dark matter (CDM) component, has been successful in explaining observations
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of a large number of cosmological probes, including supernovae (SNe), baryon acoustic oscilla-
tions (BAO) and the power spectrum of the cosmic microwave background (CMB). Anomalies do
however exist (Ade et al., 2016), and a number of alternatives to ΛCDM have been proposed. One
proposed modification is allowing the equation of state to vary with redshift. We call this family
of models wzCDM models. A number of other alternative modifications include modified gravity,
such as f(R) models (Buchdahl, 1970; Sotiriou and Faraoni, 2010) where the Ricci scalar R is
replaced with a function of R, or redshift remapping (Wojtak and Prada, 2017) where the assump-
tion of a a = (1 + z)−1 relation between the scale factor a and redshift z is broken in favour for a
relation that is a function of redshift. In this work we focus exclusively on the first kind of models,
the wzCDM cosmologies.

Type Ia supernovae (SNe) are used as standard candles at lower redshifts. At redshifts of z & 2

they are less useful, in part due to the decreasing Ia SNe rate (Rodney et al., 2014). Recently a
range of high redshift standard candles have been proposed, including active galactic nuclei (AGN)
(King et al., 2013; Hönig et al., 2017), gamma ray bursts (GRB) (Amati et al., 2016), gamma ray
burst supernovae (GRB-SNe) (Li et al., 2014; Cano, 2014), superluminous supernovae (SLSNe)
(Inserra and Smartt, 2014; Scovacricchi et al., 2016), quasars (Risaliti and Lusso, 2015; Lopez-
Corredoira et al., 2016) and high redshift HII galaxies (Terlevich et al., 2015). In this work we
investigate the usefulness of such high redshift standard candles for constraining dark energy mod-
els. We choose to neither use a Fisher matrix approach, where ΛCDM parameters are assumed,
nor to assume a ΛCDM cosmology to generate mock datasets. Rather, we introduce the quantity
∆µ(z) which is defined as the difference between the distance modulus of a wzCDM cosmology
and fiducial ΛCDM cosmology as a function of redshift. Fiducial ΛCDM cosmology is in this
work defined as the best fitting ΛCDM cosmology. Previous work has applied a similar approach
(Perlmutter and Schmidt, 2003; Aldering et al., 2007) to argue that discerning a non-constant dark
energy component from a constant dark energy will require high precision measurements. Since
then the amount of data to constrain proposed cosmologies has grown, not only in quantity but also
extended to increasingly higher redshifts. This allows us to revisit this approach, specifically ask-
ing whether any wzCDM cosmology can deviate significantly in predicted distance modulus from
fiducial ΛCDM at high redshift, given current cosmological constraints. If wzCDM cosmologies
are indistinguishable from the fiducial ΛCDM cosmology at high redshifts, this would imply that
high redshift (z & 2) data points will have limited usefulness over low redshift (z . 2) equiva-
lents when discerning between the two types of cosmologies. Additionally it would imply that if
precise measurements of standard candles at high redshift are shown to be in disagreement with
ΛCDM cosmology, this would not only challenge ΛCDM cosmology but also the entire family of
wzCDM cosmologies.

Quintessence is a proposed form of dark energy (Ratra and Peebles, 1988; Caldwell et al.,
1997; Tsujikawa, 2013), which introduces a scalar field that is minimally coupled to gravity to
explain the apparent accelerated expansion observed at low redshifts. In this work we use theo-
retical concepts from quintessence to guide us in determining which wzCDM models to test. In
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quintessence exists two subgroups of dark energy models, the thawing (Scherrer and Sen, 2008;
Chiba, 2009; Gupta et al., 2015) and the freezing (Scherrer, 2006; Sahlén et al., 2007; Schimd
et al., 2007) models. In thawing dark energy models the scalar field is nearly frozen due to the po-
tential being dampened by Hubble friction in the early matter dominated universe, with the scalar
field then starting to evolve once the field mass is below the Hubble expansion rate. In freezing
dark energy models the potential is steep enough in the early universe that a kinetic term devel-
ops. At later stages the evolution of the field, and therefore also the evolution of the equation of
state, steadily slows down as the potential is tending towards being shallow. These two families
of models produce distinct behaviours for the evolutions of the equation of state. The equation of
state function w(z) of thawing dark energy models are generically convex decreasing functions
of redshift, while freezing dark energy models produce w(z) functions that are convex increasing
functions of redshift. Phenomenological parametrisations of w(z) with two free parameters can
produce either convex increasing or decreasing behaviour, but not both, making them more suited
to fit either an underlying freezing or thawing dark energy model (Pantazis et al., 2016).

The w(z) parametrisations investigated in this work will include some generalisations of
ΛCDM, limited to two parameters w0 and wa where w0 is a constant term and the magnitude
of wa determines the strength of the evolution with redshift. Specifically we investigate the
Chevallier-Polarski-Linder (CPL) (Chevallier and Polarski, 2000; Linder, 2003) and Jassal-Bagla-
Padmanabhan (JBP) (Jassal et al., 2004) parametrisations as well as the nCPL generalisation of
Pantazis et al. (2016).

In section 5.3 we introduce and motivate the parameter ∆µ, and discuss previous work that
has used a similar approach. Then in section 5.4 we discuss parametrisations of w(z) and the
reasoning behind choosing the subset of parametrisations adopted in this paper. In section 5.5, we
describe the method used to derive extrema of ∆µ for the chosen parametrisations, and in section
5.6 we present the results. Finally in section 5.7 we discuss the implications of our results for
using high redshift standard candles to constrain dark energy models.

5.3 The ∆µ parameter

Previous works have discussed the utility of high redshift standard candles in constraining cos-
mological parameters (King et al., 2013; Scovacricchi et al., 2016) by using either Fisher matrix
formalism or simulating data from a high redshift standard candle. While these approaches are
appropriate for forecasting the constraining power of a survey, they are less suited for our purpose.
Therefore we introduce the ∆µ parameter, given as ∆µ(z, P ) = µwzCDM(z, P ) − µΛCDM(z).
Here µwzCDM(z, P ) is the distance modulus of a wzCDM cosmology given a set of parameters
P = (Ωm,0, w0, wa), and µΛCDM(z) the distance modulus of the best fitting ΛCDM cosmology,
for a given redshift z.
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Looking at the differences in magnitude as a function of redshift predicted by different cos-
mologies has been done before in the literature. Perlmutter and Schmidt (2003) plot the magnitude
difference between a (Ωm,0, ΩΛ,0)=(0.3, 0.7) ΛCDM cosmology and a wCDM cosmology where
the equation of state of dark energy is allowed to vary between w = −1.5 and w = −0.5, out to
a redshift of z = 1.7. Within the parameter range they find a maximum magnitude difference of
approximately ∼0.3 mag. Aldering et al. (2007) determine the magnitude difference between a
ΛCDM cosmology with w = −1 and wCDM cosmologies with w = +1, w = 0, and w = −∞,
respectively, in the redshift range [1.7,3]. The maximum magnitude difference they find is less than
0.04 mag. In this work we define a method that for a chosen wzCDM cosmology selects a range
of parameter values P = (Ωm,0, w0, wa) which reflect how strongly constrained the parameters
are by the data. This is done by selecting all parameter values that lie within the 68% likelihood
contour spanning the Ωm,0, w0, and wa parameter space, given observational constraints. The
method is described in detail in section 5.5 and Appendix E.

5.4 Dark Energy Equation of State Parametrisations

Testing all proposed models for w(z) is not possible so a sample thereof must be chosen. We use
concepts from quintessence dark energy models as a guide. Specifically we apply the predicted
evolution of w(z) from the two subclasses of quintessence, the thawing and freezing models.
In quintessence, thawing models produce convex decreasing w(z) functions of redshift whereas
freezing models produce convex increasing w(z) functions of redshift. For a review of current
constraints on some freezing and thawing quintessence models see Dhawan et al. (2017). When
going beyond thawing and freezing quintessence, phenomenological models can produce concave
behaviour of w(z) and also enter the phantom regime where w(z) < −1. This is illustrated in
Fig. 5.1. In this work we do not exclude solutions where the w(z) function enters the phantom
regime. However, we clearly indicate any results in both figures and discussion that arise from
such phantom models.

Regardless of whether the phantom regime is excluded, models better suited for fitting an un-
derlying thawing cosmology are unable to deviate significantly from the fiducial w = −1 at high
redshifts unless they also do so at low redshifts. The bulk of the current cosmological constraints
exists at low redshifts. We therefore expect that models better suited for fitting an underlying
freezing dark energy are able to deviate from fiducial ΛCDM cosmology at higher redshifts more
than models better suited for fitting an underlying thawing dark energy model. This motivates
dividing phenomenological models into two categories, those better suited for fitting an underly-
ing thawing dark energy and those better suited for fitting and underlying freezing dark energy.
Pantazis et al. (2016) show that CPL, JBP, and n=3 nCPL (n3CPL) are better suited for fitting
an underlying thawing cosmology and a n=7 nCPL (n7CPL) model is better suited for fitting an
underlying freezing cosmology.

A phenomenological model better suited for fitting an underlying thawing dark energy can re-
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Figure 5.1: A plot of the equation of state parameter as a function of redshift for the CPL (blue)
model and n7CPL (green) model. Looking at the full lines this figure illustrates the convex de-
creasing and increasing behaviour of thawing and freezing dark energy models, respectively. If
the w(z) are allowed to enter the phantom regime where w(z) < −1 then the dashed concave
behaviour becomes possible. In the phantom regime we see the CPL function being concave
instead of convex, and increasing instead of decreasing. Likewise the n7CPL model in the phan-
tom regime changes behaviour to become concave instead of convex, and decreasing instead of
increasing.
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produce observables for a cosmology with a freezing dark energy. Putter and Linder (2008) show
that the CPL model reproduces distances of freezing dark energy models, such as the supergravity
inspired SUGRA model, to within 0.1%. However, as shown by Pantazis et al. (2016), fitting a
freezing dark energy with a model better suited for fitting an underlying thawing dark energy, and
vice versa, can lead to incorrect values of w(z = 0) or phantom behaviour which are not present
in the underlying cosmology.

We therefore include the CPL model (Chevallier and Polarski, 2000; Linder, 2003)

wCPL = w0 + wa(1− a) = w0 + wa
z

1 + z
, (5.1)

the JBP model (Jassal et al., 2004)

wJBP = w0 + wa(1− a)a = w0 + wa
z

(1 + z)2
, (5.2)

and the nCPL model (Pantazis et al., 2016)

wnCPL = w0 + wa(1− a)n = w0 + wa

(
z

1 + z

)n
, (5.3)

where we, guided by Fig. 16 of Pantazis et al. (2016), choose a n3CPL and a n7CPL cosmology.
Since models appropriate for fitting an underlying freezing dark energy are much less constrained
in especially the wa parameter, running CosmoMC until convergence takes much longer time for
this type of model than for the models better suited for fitting an underlying thawing dark energy.
Therefore only one model of the first type is included, namely the n7CPL model.

5.5 Method

To derive 68% likelihood constraints on the models described in the previous section, the Cos-
moMC (Lewis and Bridle, 2002; Lewis, 2013) MCMC tool was utilised. All cosmologies were
fit with the same data, including observations of type Ia supernovae from the Joint Light-Curve
Analysis, baryon acoustic oscillations from SDSS-III and 6dF and the cosmic microwave back-
ground from the Planck Collaboration. For more details and references to the data sets used see
Appendix F. To allow maximum flexibility in the fitting routines all parameters for the datasets
used were kept free for CosmoMC to fit, e.g. the stretch and colour parameters α and β for the JLA
sample. Since our focus is to investigate the effects of different dark energy models, and to limit
computation time, we assume flatness, and neglect radiation. For each of the models described
above (CPL, nCPL, and JBP) we derive the 3-dimensional likelihood contours of Ωm,0, w0, and
wa. When searching for extrema of ∆µ(P, z) as a function of redshift, only the parameter values
P = (Ωm,0, w0, wa) that lie on the surface of the 68% likelihood volume are used. Appendix E
discusses how this is possible by applying the extreme value theorem.

67



CHAPTER 5. DISCERNING DARK ENERGY MODELS WITH HIGH-REDSHIFT
STANDARD CANDLES

For a Hubble constant in units of km s−1Mpc−1, the distance modulus is given by

µ(P, z) = 5 log10 [D′L(P, z)] + 5 log10 [c/H0] + 25 + σm, (5.4)

where D′L(P, z) is the unitless luminosity distance (D′L=DLH0 c
−1), DL is the luminosity dis-

tance, and σm is a constant representing how far this magnitude is from the correct intrinsic ab-
solute magnitude of the observed supernovae. σm and 5 log10 [c/H0] are both additive terms, and
combined in a parameter K to be marginalised over,

K = 5 log10 [c/H0] + 25 + σm. (5.5)

The marginalisation process is performed by minimising the sum

χ2(K ) =
∑

i

(
µwzCDM,i(P, z)− µJLA,i

σi,JLA

)2

=
∑

i

(
5 log10 [D′L(P, z)wzCDM,i] + K − µJLA,i

σi,JLA

)2
(5.6)

by varying K . The sum goes over the JLA type Ia SNe (Betoule et al., 2014b) with distance mod-
ulus µJLA,i and associated uncertainty on the distance modulus σi,JLA. The scheme explained
above to recover K is similar in purpose to the process described in Appendix A.1 of Goliath et al.
(2001). The process of finding the value of K that minimises Eq. 5.6 is done for all parameter val-
ues P = (Ωm,0, w0, wa) that lie on the surface of the 68% likelihood contour. Having determined
the value K that minimises Eq. 5.6, we can calculate ∆µ as a function of redshift for parameters
P of, e.g., the CPL model

∆µCPL(P, z) =

µCPL(P, z) +KCPL(P )− (µΛCDM,bf(z) +KΛCDM,bf ).
(5.7)

In summary the process to derive ∆µ values for a given dark energy model is

1. Run CosmoMC for given dark energy model.

2. Derive from CosmoMC output 68% likelihood contours for parametersP = (Ωm,0, w0, wa).

3. Calculate K for all parameter values P = (Ωm,0, w0, wa) on 68% likelihood contour.

4. Calculate ∆µ(P, z) for all parameter values P = (Ωm,0, w0, wa) on 68% likelihood con-
tour.

The above process would not be necessary ifH0 and the absolute magnitude of the standard candle
were known exactly. If they were known, their values could be substituted directly into Eq. 5.4.
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Figure 5.2: ∆µ(z, P ) as a function of redshift for the tested cosmologies. The green and
red lines show ∆µ(z, P ) curves for a representative subsample of all tested parameters P =
(Ωm,0, w0, wa). Green lines correspond to ∆µ values from a dark energy model that crosses the
phantom divide, w < −1, where red lines are models where for all redshifts w ≥ −1. Like-
wise the black dashed lines show extrema when placing no restrictions on evolution of equation
of state and red dashed lines showing extrema when excluding models where the equation of state
enters the phantom region. (a) ∆µ plot for the CPL wzCDM cosmology showing the extrema
of ∆µ(z, P ) as a function of redshift given the 68% likelihood constraints derived using Cos-
moMC, ignoring the marginalisation constant K from Eq. 5.5. (b) ∆µ plot for the CPL wzCDM
cosmology, showing the extrema of ∆µ(z, P ) as a function of redshift, given the 68% likelihood
constraints derived using CosmoMC. The dark grey shaded area is where all parameters Ωm,0, w0,
wa have been allowed to vary, and the light grey hatched where only Ωm,0 varies and w0 and wa
are fixed at the ΛCDM values of w0 = −1 and wa = 0 respectively. The plot illustrates that most
of the magnitude discrepancy with the best fitting ΛCDM comes from the uncertainty in Ωm,0,
rather than the choice of dark energy model and uncertainty in w0 and wa. (c) ∆µ plot for the
CPL wzCDM cosmology, showing the extrema of ∆µ(z, P ) as a function of redshift, given the
68% likelihood constraints derived using CosmoMC. Black dashed lines show extrema for ∆µ.
Red dashed lines show extrema for ∆µ excluding dark energy models that at any redshift has a
phantom value for the quation of state of dark energy, w < −1. (d) Like panel (c) but for the JBP
wzCDM cosmology. (e) Like panel (c) but for the n3CPL wzCDM cosmology. (f) Like panel (c)
but for the n7CPL wzCDM cosmology.
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5.6 Results

The results are shown in Fig. 5.2. Before discussing them we address two important topics. Firstly,
the effects of the constant K (Eq. 5.5). Secondly, how large a part of ∆µ that originates from
uncertainty in Ωm,0 and how large a part that comes from the choice of dark energy model and
uncertainty in w0 and wa. In discussing these topics we only investigate the CPL model in detail
and summarise results for the JBP, n3CPL, and n7CPL models; an in-depth discussion for the
latter three models can be found in Appendix G.

5.6.1 Effects of K

∆µ values for a representative sample of the parameters P = (Ωm,0, w0, wa) lying on the 68%
likelihood surface of Ωm,0, w0, wa parameter space for the the CPL cosmology are shown in panel
(a) of Fig. 5.2. Importantly in this figure the marginalisation constant K from Eq. 5.5 has been
ignored. As one would then expect, ∆µ → 0 for z → 0. However, ignoring the marginalisation
constant K gives an incomplete picture. Neither the Hubble constant nor the intrinsic absolute
magnitude of the type Ia SNe are known precisely. If they were then panel (a) would be appropri-
ate, but since they are not we must include the marginalisation parameter K. The ∆µ values for
the CPL cosmology, including the marginalisation constant K, are shown in panel (c) of Fig. 5.2,
with the extrema of ∆µ shown as dashed lines. Including the marginalisation constant introduces
scatter around z ≈ 0, which is due to the fact that the values of K differ for different parameter
values. Furthermore, the extrema of the ∆µ values become smaller. This is to be expected, as the
marginalisation process finds the value of K that minimises the difference between the distance
moduli of the cosmological models and the observed SNe Ia magnitudes, for both the wzCDM
and the ΛCDM cosmology. This decreases any disagreement that might exist between the pre-
dicted distance moduli of wzCDM and ΛCDM cosmology. This result also holds true for the JBP,
n3CPL, and n7CPL cosmologies, i.e. including K causes scatter around z = 0 and a narrower
distribution of ∆µ values.

5.6.2 ∆µ contribution from Ωm,0 versus w0 and wa

When looking at the extrema of ∆µ as a function of redshift it is not straightforward to disentangle
how large a part of the magnitude difference is caused by uncertainty in Ωm,0 and how much stems
from the choice of CPL wzCDM cosmology and associated uncertainty in w0 and wa. Therefore
we produce panel (b) of Fig. 5.2. The dark grey shaded area in panel (b) of Fig. 5.2 is the range
of possible ∆µ values when all parameters, Ωm,0, w0, and wa have been allowed to vary. The
light grey hatched area is where only Ωm,0 varies and w0 and wa are fixed at the ΛCDM values of
w0 = −1 and wa = 0 respectively. Panel (b) of Fig. 5.2 illustrates that most of the magnitude dis-
crepancy with the best fitting ΛCDM comes from the uncertainty in Ωm,0, rather than the choice
of dark energy model and uncertainty in w0 and wa. Figures analogous to panel (b) of Fig. 5.2,
but for the JBP, n3CPL, and n7CPL cosmologies can be found in Appendix G. They likewise
show that the majority of the discrepancy with the best fitting ΛCDM cosmology comes from the
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uncertainty in Ωm,0, rather than the choice of wzCDM model and uncertainty in w0 and wa.

5.6.3 Thawing Models

In this subsection the results for the models better suited for fitting an underlying thawing model
are presented, namely the results of the CPL, JBP, and n3CPL models. In panels (c), (d), and
(e) of Fig. 5.2, ∆µ values are plotted for a representative sample of the parameter values P =

(Ωm,0, w0, wa) on the 68% likelihood contours of the CPL, JBP, and n3CPL cosmologies. The
overall agreement between the models is remarkable. The extrema of ∆µ for all three models are
found at redshift z ∼ 2, which aligns with the prediction of ΛCDM that dark energy has negligible
influence at larger redshifts. Our results are consistent with the findings of King et al. (2013) who
use Fisher matrix analysis to show that a long redshift baseline is important to achieve tight con-
straints on w0 and wa for the CPL cosmology, but any measurements beyond a redshift of z ∼ 2

provide negligible additional constraints compared to that of a lower redshift equivalent.

The maximum absolute value of ∆µ when placing no restrictions on the evolution of the
equation of state of dark energy is approximately 0.05 mag for all models discussed in this sec-
tion. When discarding results where the equation of state enters the phantom regime the lower
limits are not strongly affected, but the upper extrema reduces to approximately 0.03 mag.

These results imply that the additional power of high redshift standard candles to discern be-
tween ΛCDM and CPL, JBP, and n3CPL cosmology is limited when compared to low redshift
standard candles. It also indicates that CPL, JBP, and n3CPL cosmology can only deviate slightly
from ΛCDM at large redshifts.

5.6.4 Freezing Model

In this subsection the results for the model better suited for fitting an underlying freezing cosmol-
ogy, namely the n7CPL model, are presented. In panel (f) of Fig. 5.2 a representative sample of
∆µ values as well as the extrema as dashed lines are plotted for the n7CPL cosmology. Overall
the similarity to the corresponding plots for the CPL, JBP and n3CPL models is strong. In Fig. 5.3
the ∆µ extrema for all tested cosmologies are overplotted for comparison. It is apparent that the
CPL, JBP, and n3CPL models give similar results at both low and high redshift. As expected the
n7CPL model has the largest extrema at high redshift, but only slightly larger values. This analy-
sis suggests that the conclusion for the n7CPL cosmology is similar to that of the CPL, JBP and
n3CPL cosmologies. Given current constraints they are all unable to deviate significantly from
fiducial ΛCDM at high redshifts. For the n7CPL model most of the disagreement with the fiducial
ΛCDM comes from the uncertainty in Ωm,0, rather than the choice of dark energy or uncertainty
in w0 and wa, just as was the case with the CPL, JBP, and n3CPL models.
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Figure 5.3: The extrema of ∆µ for the CPL, JBP, n3CPL, and n7CPL models. The figure illus-
trates that the models better suited for fitting an underlying thawing dark energy, CPL, JBP and
n3CPL, all give very similar results. The one model better suited for fitting an underlying freezing
dark energy, n7CPL, has only slightly larger extrema for ∆µ at high redshift. The red and orange
lines show the extrema of the CPL and n7CPL excluding phantom models. The non-phantom
extrema of the JBP and n3CPL models are indistinguishable from those of the CPL model and are
therefore not shown.
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5.7 Discussion

Our analysis shows that none of the tested cosmologies can deviate significantly from fiducial
ΛCDM cosmology at high redshift, given current cosmological constraints. As a consequence,
high redshift (z & 2) standard candles will not add significant additional constraints over that of
low redshift equivalent standard candles, when discerning between ΛCDM cosmology and CPL,
JBP, n3CPL, or n7CPL cosmology. Since our analysis further shows that the bulk of the dis-
agreement with the fiducial ΛCDM cosmology for all tested models primarily comes from the
uncertainty in Ωm,0, rather than the choice of dark energy model and uncertainty in w0 and wa,
we conjecture that if the analysis was to be carried out for any other wzCDM cosmology, it would
arrive at results very similar to those of our analysis. The choice of dark energy model seems to
have negligible impact on high redshift behaviour, regardless of whether we consider the models
better suited for fitting an underlying freezing or thawing cosmology.

From our analysis alone it is not possible to conclude that in general no other model bet-
ter suited for fitting an underlying freezing dark energy could significantly deviate from fiducial
ΛCDM at high redshifts. Linder (2017) investigated a number of freezing dark energy models.
Specifically, Linder (2017) produced two parameter functions to calculate observables, such as
the dark energy equation of state, for a number of models including the inverse power law (IPL)
and supergravity (SUGRA) models. Combined these models span a wide range of possible be-
haviours for the dark energy equation of state as a function of redshift. Linder (2017) shows that
the observables of these complicated models can be approximated with a phenomenological func-
tion of two parameters. Varying just these two parameters is sufficient to reproduce the behaviour
of these more complicated models with many parameters to within 2.4% accuracy in the equation
of state. The findings of Linder (2017) are not directly transferable to our analysis, but indicate
that the complicated behaviour of these dark energy models can be reproduced reliably with just
two free parameters. This suggests that even more complicated dark energy models may have very
similar behaviour in the equation of state of dark energy, and that our test of the n7CPL model may
therefore be representative for the much larger family of possible wzCDM models better suited for
fitting an underlying freezing dark energy. This indicates that no wzCDM cosmology with only
two free parameters for the dark energy redshift behaviour, either thawing or freezing, can deviate
significantly from the best fitting ΛCDM at high redshift.

At high redshift additional observational effects beside precision of measurements can impact
the usefulness of standard candles. Holz and Linder (2005) discuss the effects of gravitational
lensing, noting that since the amplification probability distribution is skewed towards deamplifi-
cation, gravitational lensing will introduce a bias in the measured magnitudes. Holz and Linder
(2005) find that for a standard candle with intrinsic dispersion of 0.1 mag at redshift 2, gravita-
tional lensing introduces an offset with a mode of 0.03 mag. This effect is of similar size to the
maximum offset of 0.05 mag we find for the models tested in this work. This further strengthens
the argument that if high redshift standard candles are found to be in disagreement with ΛCDM
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cosmology, no wzCDM cosmology will be able to resolve that disagreement.

Current or future surveys investing time into measuring high redshift (z & 2) standard candles
could do so for a number of reasons. If the goal is to discern any wzCDM model of the types
tested here from a standard ΛCDM cosmology then the time is best spent observing at redshifts
of z ∼ 2 or lower. However, if the goal is to determine whether the predictions of ΛCDM hold
true at high redshift then going to z & 2 or higher is recommended, since in this regime there is
the added bonus that if ΛCDM is found to give incorrect predictions, then so will any wzCDM
cosmology of the kinds tested in this work.
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Chapter 6

Summary and outlook

Looking back at the last century of progress within cosmology, it is remarkable how much progress
we have made in answering the questions that existed at the time. At the same time we did however
unearth a plethora of questions that still today demand an answer. The discovery of dark energy
and dark matter implicates that the baryonic universe that we are a part of only make up roughly
five percent of the total energy balance. It could therefore be argued that what we have learnt in
the last century of doing cosmology is that we now know that we really know very little about the
actual makeup of the universe.

Understanding the physics of the type Ia supernova progenitor is crucial if supernova cosmol-
ogy is to remain competitive in the future. While there is not solid evidence either way, observa-
tions suggest that there may exist more than one type Ia supernova progenitor channel. This has
a direct impact on supernova Ia cosmology. See e.g. Zhang et al. (2017) section 3.2.2 where an
extra corrective magnitude term ∆MB is added to magnitude of type Ia supernovae in the most
massive galaxies. This can seem like an ad hoc solution to a problem that exists because the un-
derlying physics of the observed object, in this case a type Ia supernovae, is not fully understood.
One avenue that allows us to probe the underlying physics is through understanding the delay time
distribution of the proposed type Ia supernova progenitors. Delay time distributions also play a
role in chemical evolution modelling and modelling proposed surveys of type Ia supernovae. It is
with this motivation that chapter 2 discusses two complimentary approaches to describing super-
nova rates and whether the two approaches can be reconciled. One of the approaches is to measure
volumetric rates, while the other looks at averaged rates measured in individual galaxies, typically
held up against galaxy properties such as stellar mass and star formation rate. The approach in
chapter 2 is to assume a delay time distribution going as τ−1 with a transition to being constant
at short delay times. From this delay time distribution a model to predict type Ia supernova rate
from stellar mass and star formation rate of a galaxy is derived. This model is in excellent agree-
ment with the current observational constraints. The model is then compared to the A+B model
through various measures for goodness of fit. For all measures the A+B model performs worse. It
is especially in the high specific star formation rate regime that the performance of the A+B model
is poor, and the fact that this disagreement exists with a model based on a ∼τ−1 delay time dis-
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tribution suggests that there is tension between the A+B model and the τ−1 delay time distribution.

There are two points in which the study of chapter 2 can improve significantly. One is in
the range in which it makes predictions. In the domain where specific star formation rate values
are log sSFR & −9 there is very little data available to constrain models. It is therefore not
possible to either confirm or deny whether the developed model is valid in this high specific star
formation rate regime. As star formation rate scales (in a non trivial way) with redshift, as more
type Ia supernova are observed at larger redshifts it will become possible to constrain models
in this regime. Already today there exists data from surveys, e.g. the Ia supernova sample of the
Dark Energy Survey, which has so far not been analysed to constrain Ia supernova rates. Upcoming
surveys that have just started, like the Zwicky Transient Facility, will also be able to add additional
constraints. When these samples are analysed and added to the current data it justifies spending
some additional time looking at the statistical modelling. While the A+B model is fairly simple
in that it only has two free parameters whose likelihood profiles are fairly gaussian in nature, that
is not the case for the more complicated models such as that of Smith et al. (2012), Graur et al.
(2015a) or the one presented in chapter 2. Bayesian modelling of the data is a way to improve the
statistical rigour and aid in solidifying which model best fits the available data. Especially when it
comes to the uncertainties Bayesian modelling will be a significant leap forward, compared to the
methods applied in 2.

In chapter 3 we look at utilising peculiar velocities of type Ia supernovae as a signal, specif-
ically we investigate the effects that survey geometry and incomplete sampling of the surveyed
volume can have on what bulk flow we should theoretically expect to observe. In order to do this
we developed two separate numerical methods that take as input the survey geometry and sam-
pling rate and gives as output the likelihood distribution of bulk flows from linear theory. The two
methods are in good agreement and predict bulk flows within a few percent of one another. We
find that survey geometry and in particular sampling effects can significantly influence the linear
theory prediction. This may explain why some estimates of the local bulk flow are in apparent
disagreement with theory, see e.g. Feindt et al. (2013) where the observed type Ia supernovae
are divided into bins, and the bins with fewer supernovae predict larger bulk flow velocities. The
conclusion is a recommendation that measured bulk flows are not compared to the prediction from
linear theory assuming spherical survey geometry and perfect sampling. Rather they should be
compared to the linear theory prediction that takes into account the specific survey geometry and
sampling rate of the survey in question. Some comparisons between theory and observation in
the literature have focused exclusively on the maximum likelihood bulk flow velocity predicted
by linear theory. While it is simpler to compare observed bulk flows against this one value, it can
result in incorrect or misleading conclusions since the theoretical prediction is not a single value,
rather it is a likelihood distribution. We therefore also stress the necessity of folding this entire
likelihood distribution into any comparison of theory and observations.

While we show that observational effects such as survey geometry and sampling rates are im-
portant, there are multiple opportunities to go even further in improving the methodology when
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constraining parameters such as Ωm,0 and σ8 with peculiar velocities and bulk flows. One avenue
is to improve the statistical modelling. This could be done using e.g. STAN, which is open source
software for Bayesian statistical inference, to fully take into account the likelihood distribution
from theory. Another approach is to improve the quality and quantity of data. With current type
Ia supernova data the bulk flow constraints are not tight enough to derive competitive constraints
on cosmological parameters. Upcoming surveys such as the Zwicky Transient Facility (Bellm
and Kulkarni, 2017) will observe and derive distances to a large number of type Ia supernovae
which will help tighten the constraints from bulk flows in two ways. Firstly it will decrease the
uncertainties on the measured bulk flow. Secondly the survey geometry will be close to hemi-
spherical, including the galactic band that so far has been avoided in similar surveys, and the large
number of observed Ia supernovae allows for much better sampling of the surveyed volume. The
effects of non-spherical survey geometry and sampling is that the worse sampling and the more
non-spherical the survey geometry is the wider the theoretical distribution of bulk flows becomes.
The high sampling rate and much improved survey geometry of the Zwicky Transient Facility will
therefore help tighten the theoretical prediction of bulk flows from linear theory, which will make
it easier to determine whether or not the theoretical prediction and observations are in tension.

Peculiar velocities of type Ia supernovae contribute to the observed redshifts of the supernova.
If the peculiar velocities were distributed isotropically they could simply be interpreted as a source
of scatter on the cosmological redshifts. As the local environment is embedded in a bulk motion,
these peculiar velocities will however induce a non-trivial systematic redshift effect. In the con-
text of type Ia supernova cosmology we are interested in the cosmological redshift of the type Ia
supernovae, and it is therefore necessary to correct the observed redshifts for the effects of these
peculiar velocities. In chapter 4 is a discussion of how previous type Ia supernova cosmology
studies have corrected for the systematic redshift effects of peculiar velocities and whether these
methods are sufficient for the Dark Energy Survey type Ia supernova sample. The uncertainties
on the peculiar velocity fields used in these corrections can be quite large. An analysis of the
uncertainty on the 2M++ peculiar velocity field used for peculiar velocity correction in the Dark
Energy Survey is therefore carried out in chapter 4. The uncertainties on the peculiar velocity field
include contributions from the limits of linear theory, shot noise, and missing data and add up to
a redshift uncertainty of roughly σz,pec ≈ 0.0007 which equates to an uncertainty of 220 km s−1.
To determine whether it is necessary to go beyond this method of peculiar velocity correction we
wish to determine how large the systematic effects of peculiar velocity are relatively to the statis-
tical uncertainty. To determine this we therefore fit the Dark Energy Survey 3-year Ia supernova
sample first with no modifications and thereafter with a synthetic dipole introduced. This syn-
thetic dipole systematically shifts all redshifts below redshift 0.1 (above this redshift the effect is
still there, but is insignificant). The size and direction of the synthetic dipole is varied in the range
[-160,160] km s−1. We then look at the shift in the cosmological parameters of interest, Ωm,0 and
w0, between the unmodified sample and the samples with a synthetic dipole included. We find
that w0 is nearly unaffected but that Ωm,0 in extreme cases is shifted roughly ∼10%. Since this
is still below the statistical uncertainty of the Dark Energy Survey 3-year Ia supernova sample the
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conclusion is that in this case the current method of peculiar velocity correction is sufficient.

It should be noted that the conclusion reached in chapter 4 is relevant for the Dark Energy
Survey Ia supernova sample, and other samples with similar redshift distribution and number of
supernovae in their sample. For future surveys with larger number of Ia supernovae the statistical
uncertainty will become smaller, and the systematics will therefore become more important, rela-
tively speaking. While the constant redshift uncertainty of σz,pec ≈ 0.0007 found in chapter 4 is a
sort of averaged out worst case scenario there may be large differences in the local uncertainties of
the peculiar velocity field used as the source of peculiar velocities. Specifically some areas of the
sky are sampled much more sparsely than others, and in these sparsely sampled regions the pecu-
liar velocity field will have larger uncertainties. Another effect that may be important to propagate
in the uncertainty budget is correlations between the peculiar velocities of nearby Ia supernovae.
Since the density field is smooth in nature and the peculiar velocity field is derived from the den-
sity field these correlations may be quite strong. It is therefore crucial for future Ia supernovae
surveys intended for cosmological use to study the potential influence of peculiar velocity effects
on their sample and uncertainties. A survey that in particular is interesting in the context of type Ia
supernova cosmology and peculiar velocities is the Zwicky Transient Facility which had first light
in late 2017. What makes the Zwicky Transient Facility interesting is the combination of three
factors. First that they expect to observe over five thousand type Ia supernovae per year, which
will significantly decrease the significance of statistical uncertainties. Secondly that they will ob-
serve their own sample of low redshift type Ia supernovae to be used in e.g. peculiar velocity
corrections and thirdly that they will also be observing in the galactic plane which will improve
the sampling rate in regions that have historically suffered from very poor sampling. So similar
to the case of bulk flows the Zwicky Transient Facility promises to bring significant progress to
the area of peculiar velocity corrections which will aid in keeping future cosmological constraints
from type Ia supernovae competitive.

In chapter 5 the utility of high redshift standard candles in discerning between dark energy
models is investigated. This is done by introducing the parameter ∆µ(z) which is the largest pos-
sible magnitude difference between a ΛCDM and some other cosmology at a given redshift, given
68% likelihood constraints. These constraints are derived using CosmoMC and cosmic microwave
background, baryon acoustic oscillations, and type Ia supernova data. The non-standard cosmolo-
gies are restricted to wzCDM cosmologies where the equation of state of dark energy is modelled
with two free parameters, w0 which is constant with redshift and wz which has some model de-
pendent evolution with redshift. The wzCDM models tested include models classified as thawing,
which if they are w ≈ −1 at low redshift can not deviate from this significantly at larger redshifts,
and freezing models which have more freedom to deviate from w ≈ −1 at larger redshifts and
still have a value of w close to -1 at low redshifts. However neither freezing or thawing models of
dark energy can deviate significantly from ΛCDM at high redshifts given current constraints, all
deviating less than 0.05 magnitudes from ΛCDM cosmology. The reason why all the tested mod-
els yield comparable results for ∆µ(z) is that the majority of the contribution to ∆µ(z) comes
from the uncertainty in Ωm,0 rather than the uncertainty in w0 and wz . The implication is that if
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the question asked by future cosmologists is which of the proposed wzCDM cosmologies best fit
the observations, then high redshift surveys going beyond redshift of z ≈ 2 will not significantly
aid in this effort more than observations at redshifts at or slightly below redshift z ≈ 2. If however
the question asked is whether ΛCDM accurately describes the observed magnitudes of standard
candles in the z & 2 regime then going to higher redshift makes more sense as the discussion in
chapter 5 implies that if there is disagreement between observations and ΛCDM at high redshift,
then this disagreement will also exist for wzCDM cosmologies. It will then be possible to poten-
tially falsify not only ΛCDM but also the entire family of wzCDM cosmologies.

In the context of type Ia supernovae cosmology the results of chapter 5 are interesting, as
observing type Ia at redshifts larger than z ≈ 2 poses significant challenges. These challenges
are in part due to the optical light from type Ia supernovae being shifted into the near-infrared or
infrared spectrum at these redshifts which is difficult to observe from ground based telescopes.
Another challenge is that the type Ia rates at larger redshifts may be decreasing (Rodney et al.,
2014), which would imply that there simply are not that many type Ia supernovae to be observed
at these redshifts. That ∆µ(z) plateaus at a redshift of ∼2 indicates that even though it appears
unlikely that type Ia supernovae will be observed at significantly above redshift two, they will
still likely be a competitive probe of dark energy in the future. Current surveys, such as the
Dark Energy Survey, have observed type Ia supernovae out to a redshift of ∼1.8 from ground
based telescopes while type Ia supernovae have been observed out to a redshift of ∼2.5 by space
telescopes. At much larger redshifts exists other standard candles such as active galactic nuclei,
quasars, gamma ray bursts, gamma ray burst supernovae, superluminous supernovae, and high
redshift HII galaxies. Some of these standard candles have been suggested to be viable up to
a redshift of ∼10 (Demianski et al., 2018). While it will be extremely difficult to distinguish
between various wzCDM cosmologies at these redshift (or rather practically impossible), there is
still some value in extending cosmological inquiries to these redshifts. In particular it will be useful
in testing the underlying assumptions that are typically made when testing ΛCDM and wzCDM
cosmologies, e.g. the assumption of flatness and general relativity, as e.g. f(R) modifications to
general relativity benefit from having observations spanning a large range of redshifts

Going slightly beyond the focus of this thesis on type Ia supernovae there are some very in-
teresting developments in astronomy lately which will impact cosmology, including Ia supernova
cosmology. Specifically the observation of a binary neutron star merger (Abbott et al., 2017b) in
the nearby universe where an optical counterpart in the form of a kilonova (Abbott et al., 2017c)
was observed. These observations enable binary neutron star mergers to be used as standard sirens
and distances to the host galaxy that are independent of the distance ladder to be determined. Cur-
rently the single observed event constraints the Hubble constant to a precision of H0 = 70.0+12.0

−8.0

km s−1 Mpc−1. See figure 6.1 for the full confidence interval. As the number of observed binary
neutron star mergers increases, so does their utility. The current binary neutron star merger rate
estimate of R = 1540+3200

−1220Gpc−3yr−1 (Abbott et al., 2017b) combined with LIGO currently hav-
ing a detection horizon of∼190 Mpc (Abbott et al., 2017c) for these events results in an estimated
∼44 events observed per year. The interferometers of both the LIGO and Virgo experiments are
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Figure 6.1: Blue curve is the marginalised posterior density for the Hubble constant. 1-σ and 2-σ
constraints from the Planck Collboration (Planck Collaboration, 2016) and SHoES (Riess et al.,
2016b) are shown as the green and orange shadings respectively. The maximum a posteriori value
and 68.3% likelihood interval is H0 = 70.0+12.0

−8.0 km s−1 Mpc−1. Reproduced from Abbott et al.
(2017a).

undergoing continuous upgrades to their sensitivity and additional experiments such as IndIGO
in India and KAGRA in Japan will be coming online in the coming years. This will contribute
immensely to the ability to localise observed events, observe events at larger distances, and impor-
tantly the sheer volume of observed events. There are at least two use cases where binary neutron
star mergers can help push type Ia supernova cosmology forward. If a sufficiently large amount of
binary neutron star mergers and their optical counterpart are observed it will make it possible to
probe the local bulk flow through these observations. These observations will be completely in-
dependent of the distance ladder and depend almost exclusively on the assumed model of gravity,
typically general relativity. The crucial part here is that a sufficient number of events are observed
such that the degeneracy between distance and inclination of the merger event can be broken. An-
other use case for binary neutron star merger events is as calibration for the absolute luminosity of
type Ia supernovae. Calibration is one of the most significant sources of systematic uncertainty. If
we can improve the calibration of the absolute magnitude of type Ia supernovae it will therefore
have a huge impact on the overall uncertainty of future surveys. Today typically cepheid variable
stars are used as calibration. The question becomes how many neutron star merger events need to
be observed in galaxies where a type Ia supernovae has also been observed before this becomes a
competitive calibration method. Both of these questions are very much open, and depend strongly
on the rate estimate which is currently highly uncertain. Whether competitive multi-messenger
cosmology arrives in the near or more distant future is currently impossible to say, although it will
be an interesting journey regardless of the timeframe.
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Resume på Dansk

I de sidste årtier har det faktum at type Ia supernovaer kan bruges som standardlys spillet en cen-
tral rolle i at bestemme de kosmologiske parametre fra den kosmologiske standardmodel til høj
præcision. På trods af den prominente rolle har vi endnu ikke identificeret det underliggende fy-
siske system som leder til type Ia supernovaer. For at kunne forstå alle systematiske bidrag til
den usikkerhed der er associeret med at observere type Ia supernovaer er det nødvendigt at vi er i
stand til pålideligt at identificere det fysiske system som har ledt til den på gældende supernova.
En måde at begrænse modellerne for disse fysiske systemer er ved at sammenligne den forsinkelse
mellem stjernedannelse og supernova eksplosion vi observerer og den forudsagt af forskellige
modeller. På den baggrund sammenligner vi to forskellige måder at måle type Ia supernovaraten
på og forener dem i en ny model. Vi finder at den nye model er i god overenstemmelse med
data og er foretrukket i forhold til den nuværende koncensusmodel. For at modellen kan anvendes
i regioner med høj stjernedannelse er det dog nødvendigt med flere observationer i det regime.
Type Ia supernovaer kan bruges til at få indsigt i den samlede bevægelse i forhold til den kos-
miske baggrundsstråling. Nogle studier har fundet at denne bevægelse er større end hvad der er
i overensstemmelse med den kosmologiske standardmodel. Vores studie finder at hvis man tager
højde for geometri og hvor komplet volumenet er observeret er denne samlede bevægelse ikke læn-
gere i modstrid med den teoretiske model. Supernovaers egenbevægelse kan systematisk påvirke
den observerede rødforskydning hvilket igen kan føre til at de udledte kosmologiske parametre kan
påvirkes systematisk. Med fokus på de type Ia supernovaer Dark Energy Survey har observeret
bestemmes det at den nuværende standard metode for at korrigere for disse effekter er tilstrække-
lig også for Dark Energy Survey. Denne korrektion for egenbevægelse skal dog associeres med en
hvis usikkerhed da det datasæt som egenbevægelserne tages fra også er usikkert. På baggrund af
den success som type Ia supernovaer har haft som standardlys ved lavere rødforskydninger har der
været søgt efter et tilsvarende standardlys ved højere rødforskydninger. Vi undersøger derfor den
potentielle nytteværdi af disse foreslåede standardlys i forhold til at sortere nogle af de modeller
der findes for mørk energi fra. Vi finder at fordi ingen af de undersøgte modeller kan afvige sig-
nifikant fra standard kosmologi vil standardlys ved højere rødforskydninger ikke bidrage mere end
standardlys ved lavere rødforskydninger. Det inverse argument betyder dog også at hvis et stan-
dardlys afviger fra den standard kosmologiske model ved højere rødforskydninger vil det være et
problem ikke bare for standardkosmologien, men ogsåfor alle de testede modeller for mørk energi.
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Appendices

A ML and MV Bulk Flow Estimators

To compare the measured bulk flow with theoretical predictions, it is necessary to have a method
to turn the individually observed peculiar velocities into a bulk flow. In this paper we focus on two
estimators, the Maximum Likelihood (ML) and the Minimum Variance (MV) estimators. In the
original paper introducing the MV estimator (Watkins et al., 2009) there were a few typographic
errors and unexplained terms; for completeness and to help others avoid confusion the procedures
used to carry out the ML and MV estimators in this work are explained in this appendix.

Maximum Likelihood

The ML estimator is by far the easiest of the two to implement and is computationally much
cheaper than the MV estimator. The result of the ML estimator is a vector containing the velocity
components corresponding to each of the three spatial dimensions. Each of the three components
is given by a sum over the individual peculiar velocity components multiplied by some weight.
The sum has the form

ui =
∑

n

wi,nSn (1)

where i is the placeholder for either the x, y, or z index and the sum goes over all n peculiar
velocities. Sn is the n’th measured peculiar velocity, wi,n is the associated weight for that peculiar
velocity and ui is the calculated bulk flow where again i = (x, y, z). This equation holds true for
both the ML and the MV estimators. Where they differ is how they go about calculating the wi,n
weights.

For the ML estimate the weights are given by

wi,n =
∑

j

x̂j · r̂n
(σ2
n + σ2

?)
A−1
ij . (2)

The sum is over the j = (x, y, z) components, and x̂j · r̂n is the projection of the unit vector r̂
pointing from the observer to the galaxy in question. σn is the uncertainty on the velocity of the
n’th measurement, and σ? is a constant of order 250 km s−1 meant to account for the non-linear
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flows on smaller scales. Finally A−1
ij is the inverse of matrix Aij given by

Aij =
∑

n

(x̂i · r̂n)(x̂j · r̂n)

(σ2
n + σ2

?)
. (3)

In practise when calculating the ML weights the first step is to calculate the Aij matrix, taking
advantage of the symmetry Aij = Aji. The inverted matrix A−1

ij is then computed, and the
weights wi,n are calculated. This is a fairly simple process, and is cheap in computation time
needed.

Minimum Variance

For the Minimum Variance estimator, first an ideal survey is constructed by generating x,y,z co-
ordinates uniformly randomly in the range [−4RI ; 4RI ] and then drawing points according to the
distribution n(r) ∝ r2 exp (−r2/2R2

I). This constructed ideal survey is spherically symmetric
and isotropic. It is constructed such that the window function of the MV method is sensitive in the
range where we wish to probe the bulk flow, namely on scales of RI . In order to stay consistent
RI will be set to 50 Mpc h−1 in this work, unless otherwise stated. The number of points in the
constructed ideal survey is set to 1200 throughout this work. It was found that increasing the num-
ber of points in the ideal survey beyond 1200 did not contribute to the stability of the MV method
but only served to increase the already considerable computation time.

For readability matrix notation is used so that wi,n becomes column matrix wi of n elements.
wi is computed with

wi = (G + λP)−1Qi. (4)

G is a symmetric square n by m matrix where n and m correspond to the n’th and m’th measure-
ment. The matrix G is the covariance matrix for the individual velocities Sn and Sm. In linear
theory we can write the matrix elements Gnm as a sum of two terms

Gnm = 〈SnSm〉 (5)

= 〈vnvm〉+ δnm(σ2
? + σ2

n). (6)

The second term is known as the noise term and is the Kronecker delta function; 0 for n 6= m but
σ2
? + σ2

n when n = m. The first term is the geometry term which is given by

〈vnvm〉 =
Ω1.1
m H2

0

2π2

∫
dk P (k) fmn(k) (7)

where H0 is the Hubble constant in units1 of h km s−1 Mpc−1, and Ω1.1
m is the growth of structure

parameter f2 ≈ Ω1.1
m . P (k) is the matter power spectrum, which in this work is calculated using

COPTER (Carlson et al., 2009; Lewis et al., 2000; Howlett et al., 2012). The function fmn(k) is

1Which is always 100, per definition of h = (H0/100) km s−1 Mpc−1.
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the angle averaged window function which is explicitly given as

fmn(k) =

∫
d2k̂

4π
(r̂n · k̂)(r̂m · k̂)× exp[ikk̂ · (r̂n − r̂m)]. (8)

Although Eq. 8 is often quoted in the literature as the function used to calculate fmn(k) it is far
from being a practical expression and in reality the expression used is from Ma and Zhang (2011)
who showed that we can express the angle averaged window function as

fmn(k) =
1

3
cos(α(j0(kA)− 2j2(kA))) +

1

A2
j2(kA)rnrmsin2(α) (9)

where
A = ( r2

n + r2
m − 2rnrmcos(α) )0.5 (10)

and α is the angle between the n’th and m’th galaxy given by

α = arccos(r̂n · r̂m). (11)

The j0(x) and j2(x) functions are spherical Bessel functions given by

j0(x) =
sin(x)

x
, j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2
. (12)

Putting all this together gives us the Gnm elements. Finding the Pnm elements of P is then fairly
simple as it is simply the k = 0 limit of fnm which is

Pnm =
1

3
cos(α). (13)

The principal idea of the MV method is to minimise the variance between the bulk flow measured
by the galaxy survey and the bulk flow that would be measured by an ideal survey. The G and
P matrices are the components of the weight that take as input the measured data. The last com-
ponent, the Q matrix, takes as input the position and peculiar velocities from the galaxies of the
constructed ideal survey. It is calculated in much the same way as the Gnm elements with the Qi,n
elements being given by

Qi,n =

N ′∑

n′=1

w′i,n′〈vn′vn〉 (14)

and

〈vn′vn〉 =
Ω1.1
m H2

0

2π2

∫
dk P (k) fn′n(k), (15)

where fn′n(k) is analogous to Eq. 9 but with the difference that n′ and n run over the galaxies
in the constructed ideal survey, in contrast to n and m that run over the galaxies from the actual
observed galaxies of our survey. The ideal weights w′i,n′ will be given by

w′i,n′ = 3
x̂i · r̂n
Nideal

(16)
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where Nideal is the total number of galaxies in the constructed ideal survey.

The final step is to solve for the value of λ, which is a Lagrange multiplier inherent from the
minimisation process. It enforces the normalisation constraint

∑

m

∑

n

wi,nwi,mPnm =
1

3
. (17)

A simple method to solve for λ is to vary λ and calculate the above sum, until a value for λ that
makes the above equality true is found.

Calculating the MV bulk flow vector is a rather involved process and is orders of magnitude
more expensive computationally than the ML estimator. In this work the analysis is done using
mainly the ML estimator, with the MV estimator only being tested in a more limited scenario. If
computation time was no concern then the full analysis could be carried out for the MV estimator
as well.

The implementation of the MV estimator used in this work is based on that of Dr. Morag
Scrimgeour which is available at https://github.com/mscrim/MVBulkFlow.

B Mock Galaxy Surveys versus Dark Matter Halos

As explained in section 3.3 the full HR2 dataset consists of DM halos, not individual galaxies.
To test that this does not affect our results, we apply a mock SDSS-III galaxy catalogue produced
from the HR2 cosmological DM halo simulation. This mock catalogue lies in a sphere with radius
1 Gpc h−1 and origin at (x, y, z) = (1.8, 1.8, 1.8) Gpc h−1. From the full HR2 DM halo simulation
we slice a sphere that also has radius 1 Gpc h−1 and origin at (x, y, z) = (1.8, 1.8, 1.8) Gpc h−1.
The distributions of bulk flow magnitudes using the ML estimator are then calculated for both
the SDSS-III mock catalogue and the sliced sphere of DM halos. The distributions are shown in
Figure 2 and the most probable and RMS values are shown in Table 1. We see that for the same
number of galaxies per bulk flow, n, the distributions look very similar. From Figure 2 and Table
1 we can see that the distributions of bulk flow magnitudes, as well as their most probable values
and RMS values, are in good agreement. This shows that it is indeed possible to use the DM halos
of the full HR2 simulation to perform our analysis, including investigating the effects of survey
geometry on the measurements of bulk flow magnitudes.

C Estimating Peculiar Velocity Measurement Uncertainty

To estimate the peculiar velocity measurement uncertainty, σv,Ia, as a function of redshift we
follow the approach of Davis et al. (2011). Using the terminology of Davis et al. (2011) the
measurement uncertainty is

σv,Ia = c · σz = c · σµ ·
ln (10)

5

z̄(1 + z̄/2)

1 + z̄
(18)
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SDSSIII Mock DM Halo
n : 50 - (180+99

−83)km s−1

n : 100 - (147+79
−66)km s−1

n : 500 - (101+52
−44) km s−1

(180+99
−83)km s−1

(145+77
−65)km s−1

(110+55
−47)km s−1

Table 1: Most probable bulk flow with upper and lower 1-σ bounds for bulk flow magnitude distri-
butions of SDSSIII mock survey galaxy catalogue and DM halo slice of the full HR2 simulation,
for varying number of galaxies per bulk flow calculation, n. The numbers should be compared
across horizontally. All the numbers are within 0.1 σ of each other, which shows that using DM
Halos gives comparable results to using a mock galaxy catalogue.

0 100 200 300 400 500
Most Probable Bulk Flow [kms−1]

0.000

0.003

0.006

0.009
n : 50, Mock
n : 50, DM Halo
n : 100, Mock
n : 100, DM Halo
n : 500, Mock
n : 500, DM Halo

Figure 2: ML bulk flow magnitude distributions for SDSS-III mock galaxy catalogue subsamples
and DM halo subsamples, both taken from the same position in the full HR2 simulation. The
bulk flow magnitude distributions for the DM halo subsamples are labelled ‘DM Halo’, with the
distributions for the SDSS-III mock catalogue samples labelled ‘Mock’. The individual pairs of
bulk flow magnitude distributions (e.g. n = 500, n = 100 and n = 50) all show similar behaviour
in their bulk flow velocity distributions.
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where c is the speed of light in vacuum, z̄ is the recession redshift and σµ is the uncertainty on
the distance modulus measurement. To obtain an estimate for the peculiar velocity measurement
uncertainty one has to assume a value for σµ, we have chosen to set σµ = 0.1 throughout this
paper, as it is the optimistic value of σµ that modern type Ia SNe surveys can achieve, although it
is a bit lower than what was possible for legacy surveys where a value of σµ = 0.15 would be more
appropriate. To reiterate the point made in section 3.6, using a larger uncertainty in the peculiar
velocity measurements will only increase the variance in each component of the bulk flow vector,
and any potential biases. Hence by adopting an optimistic error, we are in fact being conservative
in our estimates of potential biases.

D Dark Energy Equation of State Parametrisations

nCPL

When working with a nCPL cosmology (w(a) = w0 +wa(1− a)n), the solution to the continuity
equation

ΩΛ(z) = ΩΛ,0 exp

[∫ a

a0

−3(1 + wΛ(a))

a
da

]

ΩΛ(z) = ΩΛ,0f(a)

(19)

for the chosen value of n, determines how dark energy evolves with time in the chosen cosmology.
Here f(a) is shorthand notation for the function describing the evolution of dark energy with scale
factor or redshift. ΩΛ is the energy density of dark energy normalised with the critical energy
density, the subscript 0 indicating the value at the present day. The integral on the right hand side
of Eq. 19 is of particular interest, as deriving a general solution would enable directly observing
the behaviour of dark energy for the chosen value of n for the nCPL cosmology. Using that in the
nCPL cosmology wnCPL(a) = w0 + wa(1− a)n and substituting gives

f(a) =

∫ a

a0

−3(1 + w0 + wa(1− a)n)

a
da (20)

which has the solution

f(a) = −3

[
wa(1− a)n

(
a−1
a

)−n
F (n, a)

n
+ (w0 + 1) log (a)

]
(21)

with F (n, a) being a power series from the hypergeometric function 2F1(−n,−n; 1 − n; 1
a) and

using that a0 = 1.

Although the general solution is rather unpleasant to work with, specific cases where n =

1, 2, 3 can be easily solved. The solution for n = 1 is

ΩΛ(a)n=1 = ΩΛ,0a
−3(1+w0+wa) exp (−3wa(1− a)). (22)
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For n = 2

ΩΛ(a)n=2 = ΩΛ,0a
−3(1+w0+wa) exp

(
−3

2
wa(1− a)(3− a)

)
. (23)

For n = 3

ΩΛ(a)n=3 =ΩΛ,0a
−3(1+w0+wa)×

exp

(
−1

2
wa(1− a)(2a2 − 7a+ 11)

)
.

(24)

Inspired by Pantazis et al. (2016) the solution for the n = 7 case is also derived.

ΩΛ(a)n=7 = ΩΛ,0a
−3(1+w0+wa) exp [− 1

140
wa(1− a)×

(60a6 − 430a5 + 1334a4 − 2341a3 + 2559a2 − 1851a+ 1089)].

JBP

Similar to the approach in the previous section the continuity equation for the JBP parametrisation,
w(a)JBP = w0 + wa(1− a)a, is solved yielding

ΩΛ(a)JBP = ΩΛ,0a
−3(1+w0) exp

(
3

2
wa(1− a)2

)
. (25)

E Application of Extreme Value Theorem

When determining the extrema of ∆µ in the space of 68% likelihood (Ωm,0, w0, wa) values it is
helpful to apply the extreme value theorem to state that extrema do exist, and they exist only on
the boundary. First, in order for this argument to hold true, we need to prove that ∂∆µ

∂λi
6= 0 for all

allowed values of one or more of the parameters λi ∈ (Ωm,0, w0, wa). For the following math to
be as simple as possible, we will focus on the case where λi = w0. First, we define the needed
equations. We simplify ∂∆µ

∂w0
by noting that

∂∆µ

∂w0
=
∂(µwzCDM − µΛCDM )

∂w0

=
∂µwzCDM
∂w0

− ∂µΛCDM

∂w0

=
∂µwzCDM
∂w0

− 0

=
∂µwzCDM
∂w0

=
∂µ

∂w0

(26)
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where for simplicity we defined µ = µwzCDM in the final line. Following King et al. (2013) the
equations needed now are

∂µ

∂w0
=

5

D
′
M ln (10)

∂D
′
M

∂w0
, (27)

where D
′
M is the dimensionless tangential comoving distance D

′
M = (H0/c)DM . In the limit

where the curvature term Ωk approaches zero, i.e. a cosmology that is close to flat, this gives

lim
Ωk→0

∂D
′
M

∂w0
=
∂χ
′

∂w0
, (28)

∂χ
′

∂w0
= −1

2

∫ z

0

1

E(z′)3

∂E(z
′
)

∂w0
dz
′
, (29)

∂E(z)

∂w0
= Ωx

∂f(z)

∂w0
, (30)

∂E(z)

∂w0
= 3Ωxf(z) ln (1 + z), (31)

and finally

E(z) = H(z)2/H2
0 = E(z)2, (32)

E(z)2 = Ωm,0(1 + z)3 + Ωk(1 + z)2+

ΩΛ,0 exp

(
3

∫ z

0
[1 + w(z

′
)]

dz
′

1 + z′

)
.

(33)

If we show that all terms added in the above equations have the same sign, that is they are either
positive or negative for all values of z, it follows that they never cancel out and will therefore never
sum to zero. Noting that

1. E(z) is for flat cosmologies only ever positive,

2. f(z) > 0 for nCPL and JBP parametrisations,

3. and z > 0

it follows that ∂∆µ
∂w0

is only ever negative, if we restrict ourselves to work with flat cosmologies.
Applying the extreme value theorem, it is apparent that there are no critical points, so the extreme
values of ∆µ exist on the boundary. This argument reduces the dimensionality of the problem by
one from three to two, saving a large amount of computation time in searching for the extreme
values of ∆µ.

F Data Analysis

In this work CosmoMC (Lewis and Bridle, 2002; Lewis, 2013), utilising CAMB (Lewis et al.,
2000; Howlett et al., 2012), PICO (Fendt and Wandelt, 2006), and CMBFAST (Seljak and Zaldar-
riaga, 1996; Zaldarriaga et al., 1998) was used extensively. The datasets used include observations
of the cosmic microwave background from the Planck Collaboration (Ade et al., 2016; Planck
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Collaboration, 2015; Adam et al., 2016) and BICEP-Planck (Ade et al., 2015), observations of
baryon acoustic oscillations from SDSS-III (Anderson et al., 2014a), 6dF (Beutler et al., 2011),
MGS (Blake et al., 2011; Padmanabhan et al., 2012; Anderson et al., 2014b; Ross et al., 2015)
as well as supernova data from the Joint Light-Curve Analysis (Betoule et al., 2014b). For anal-
ysis of the output chains of CosmoMC this work made use of Astropy, a community-developed
core Python package for Astronomy (Astropy Collaboration, 2013). For details on how the out-
put chains of CosmoMC were analysed and plots of the results were produced see the GitHub
repository at https://github.com/per-andersen/Deltamu.

G Additional Plots

In Fig. 3 plots analogous to panels (a) and (b) of Fig. 5.2 are shown for the JBP, n3CPL, and
n7CPL models. First, in panel (a), (c), and (e) it is shown that the largest contribution to the
extrema of ∆µ comes from the uncertainty in Ωm,0, rather than the choice of dark energy model
and uncertainty in w0 and wa, just like for the CPL model. In panels (b), (d), and (f) the effect
of K on the JBP, n3CPL, and n7CPL models is shown to be similar to that on the ∆µ of the
CPL model; not including K removes the scatter around z = 0 and widens the distribution of ∆µ

somewhat, increasing the extrema of ∆µ at high redshifts.

H Additional Fitting Details

As discussed in the main body of this work we apply a grid method to derive maximum likelihood
parameters for the models introduced in this work. Grid methods are typically computationally
expensive, with the computational workload quickly increasing with the number of dimensions.
In our case, the maximum number of free parameters to fit in one model is four, which is the
regime where MCMC methods such as EMCEE can be substantially cheaper computationally than
grid methods. The MCMC approach was however found to be unsuitable, due to many local
extrema effecting the marginalised likelihoods. The one dimensional marginalised likelihoods
could for one parameter have a maximum at the global maximum likelihood while for others have
a maximum at some value not near the global maximum likelihood region. This also meant that
while the likelihood grid was utilised to find the maximum likelihood fit, it suffers from the same
issues as the MCMC approach when used to estimate uncertainties. Therefore a bootstrapping
approach was attempted. In this approach the the data is resampled with replacement and then
refit multiple times, to derive distributions for all parameters from which uncertainties can be
estimated. This proved to be computationally too expensive, as for each resampling of the data the
grid method had to be rerun. Finally the Fisher matrix method was used to estimate uncertainties.
First the Fisher matrix method was applied to the A+B model, which yielded uncertainties in
agreement with those of the MCMC method to within 1%. The Fisher matrix method was then
used to estimate uncertainties for the piecewise model and the smooth logarithm parametrisation,
respectively.

90



0.08

0.04

0.00

0.04

0.08

∆
µ

(a) JBP
JBP, w0 = − 1, wa = 0

JBP(b)

0.08

0.04

0.00

0.04

0.08

∆
µ

(c) n3CPL
n3CPL, w0 = − 1, wa = 0

n3CPL(d)

0 2 4 6 8

Redshift

0.08

0.04

0.00

0.04

0.08

∆
µ

(e) n7CPL
n7CPL, w0 = − 1, wa = 0

2 4 6 8

Redshift

n7CPL(f)

Figure 3: Plots analogous to panels (a) and (b) of Fig. 5.2, but instead of the CPL model for the
JBP, n3CPL, and n7CPL models.
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F. K. Röpke, M. Kromer, I. R. Seitenzahl, et al. CONSTRAINING TYPE Ia SUPERNOVA MOD-
ELS: SN 2011fe AS A TEST CASE. The Astrophysical Journal, 750(1):L19, may 2012. ISSN
2041-8205. doi: 10.1088/2041-8205/750/1/L19.

Ashley J. Ross, Lado Samushia, Cullan Howlett, et al. The clustering of the SDSS DR7 main
Galaxy sample - I: A 4 per cent distance measure at z = 0.15. Monthly Notices of the Royal
Astronomical Society, 449(1):835–847, sep 2015. ISSN 13652966. doi: 10.1093/mnras/stv154.

A. J. Ruiter, K. Belczynski, S. A. Sim, et al. Delay times and rates for Type Ia supernovae and
thermonuclear explosions from double-detonation sub-Chandrasekhar mass models. Monthly
Notices of the Royal Astronomical Society, 417(1):408–419, oct 2011. ISSN 00358711. doi:
10.1111/j.1365-2966.2011.19276.x.

Martin Sahlén, Andrew R. Liddle, and David Parkinson. Quintessence reconstructed: New con-
straints and tracker viability. Physical Review D - Particles, Fields, Gravitation and Cosmology,
75(2):023502, jan 2007. ISSN 15507998. doi: 10.1103/PhysRevD.75.023502.

H. Saio and K. Nomoto. Evolution of a merging pair of C + O white dwarfs to form a single
neutron star. Astronomy and Astrophysics, 150(1):L21–L23, 1985.

Evan Scannapieco and Lars Bildsten. The Type Ia Supernova Rate. The Astrophysical Journal,
629(2):L85–L88, aug 2005. ISSN 0004-637X. doi: 10.1086/452632.

Robert J. Scherrer. Dark energy models in the w - w’ plane. Phys. Rev., D73(3):43502, feb 2006.
ISSN 1550-7998. doi: 10.1103/PhysRevD.73.043502.

104



Robert J. Scherrer and A. A. Sen. Thawing quintessence with a nearly flat potential. Physi-
cal Review D - Particles, Fields, Gravitation and Cosmology, 77(8):083515, apr 2008. ISSN
15507998. doi: 10.1103/PhysRevD.77.083515.

C. Schimd, I. Tereno, J. P. Uzan, et al. Tracking quintessence by cosmic shear. Constraints from
VIRMOS-Descart and CFHTLS and future prospects. Astronomy and Astrophysics, 463(2):
405, feb 2007. ISSN 00046361. doi: 10.1051/0004-6361:20065154.

D. Scolnic, A. Rest, A. Riess, et al. SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH
THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA
SAMPLE. The Astrophysical Journal, 795(1):45, oct 2014. ISSN 1538-4357. doi: 10.1088/
0004-637X/795/1/45.

D. Scolnic, S. Casertano, A. Riess, et al. SUPERCAL: CROSS-CALIBRATION OF MULTIPLE
PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH
TYPE Ia SUPERNOVAE. The Astrophysical Journal, 815(2):117, dec 2015. ISSN 1538-4357.
doi: 10.1088/0004-637X/815/2/117.

Dario Scovacricchi, Robert C. Nichol, David Bacon, Mark Sullivan, and Szymon Prajs. Cosmol-
ogy with superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 456
(2):1700–1707, feb 2016. ISSN 0035-8711. doi: 10.1093/mnras/stv2752.

Morag I. Scrimgeour, Tamara M. Davis, Chris Blake, et al. The 6dF Galaxy Survey: bulk flows
on 50-70 h -1 Mpc scales. Monthly Notices of the Royal Astronomical Society, 455(1):386–401,
jan 2016. ISSN 0035-8711. doi: 10.1093/mnras/stv2146.

Ivo R. Seitenzahl, Franco Ciaraldi-Schoolmann, Friedrich K. Röpke, et al. Three-dimensional
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