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Preface

The research presented in this thesis was carried out in the X-ray and
Neutron Science section (XNS) of the Niels Bohr Institute (NBI) at the
University of Copenhagen from the 1st of April 2016 to the 31st of March
2019 under supervision of Professor Kell Mortensen from XNS at NBI
and co-supervision of Associate Professor Jacob Kirkensgaard from XNS
NBI, Professor Ole Hassager and Researcher Qian Huang from the Danish
Polymer Center at the Technical University of Denmark, and Assistant
Professor Nicolas Alvarez from Drexel University, Philadelphia, USA.

The research presented in the thesis combines extensional rheology
and scattering techniques to deepen our understanding of the relaxation
processes in polymer melts exposed to fast uniaxial extensional flow
and of how they depend on molecular architecture and molecular size
distributions, which is interesting both from a fundamental scientific point
of view but also related to application where the choice of processing
conditions strongly depend on the relaxation of the melt.
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Abstract

Understanding how the molecular conformation of polymer molecules
change with uniaxial extension, relaxation, and molecular architecture
as well as blend dispersity is relevant both from an application and
fundamental science point of view: appropriate processing conditions
depend strongly on the molecular conformation and detailed information
about molecular conformations may provide tests for polymer models and
theories for the molecular interactions in the melt. In this thesis we show
three examples of how the combination of controlled non-linear uniaxial
extension and controlled relaxation following extension in combination
with scattering techniques can provide deep insight to the conformation
of polymer molecules during flow and relaxation.

We study the relaxation of a mono-disperse melt of relatively short,
but entangled, linear polystyrene using small-angle neutron scattering
and show that the recently published framework of spherical harmonics
expansion is sensitive enough to chain length changes during relaxation
to resolve chain retraction as proposed by Doi and Edwards even for
short molecules. We also study the relaxation of local orientation probed
by wide-angle X-ray scattering in a bi-disperse polystyrene melt relative
to that in the pure melt of the short component and find that the local
orientation in the blend is larger and that the local orientation relaxes as
a power law with the same exponent in both melts. Finally, we study
end-deuterated three-armed polystyrene stars in small-angle neutron
scattering to test the hypothesis that branched polymers take a quasi-
linear molecular conformation during fast extensional flow and that the
quasi-linear conformation last well into the relaxation. We find that at
least the scattering patterns corresponding to short relaxation times are
consistent with a quasi-linear conformation.
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Resumé

En dybere forståelse af, hvordan polymeres molekylære konformation
påvirkes af forlængelse, relaksation og molekylearkitektur såvel som af
molekylemasse og dennes dispersitet, er vigtigt både fra et anvendelses-
og et grundvidenskabeligt synspunkt: Passende processeringsparametre
afhænger kraftigt af den molekylære konformation, og detaljeret informa-
tion om denne kan bruges til at teste validiteten af modeller og teorier for
polymerers molekylære vekselvirkninger i en smelte.

I denne afhandling demonstrerer vi gennem tre eksempler, hvorledes
polymersystemer udsat for kontrolleret ikke-lineær forlængelse og efter-
følgende relaksation, som dernæst undersøges ved hjælp af spredning-
steknikker, kan give dyb indsigt i polymermolekylekonformation under
strømning og relaksation.

Vi undersøger relaksationen af en monodispers smelte af relativt korte,
men stadig sammenfiltrede, lineære polystyrenmolekyler i småvinkelneu-
tronspredning og viser, at det nyligt udgivne dataanalyseværktøj baseret
på udvikling i sfærisk harmoniske funktioner er følsomt nok for ændringer
i kædelængde, selv for korte kæder, til at observere kædesammentrækn-
ing under relaksation som forudsagt af Doi og Edwards. Vi undersøger
også, hvorledes den lokale orienteringsgrad relakserer ved at anvende
vidvinkelrøntgenspredning på en bidispers polystyrensmelte og på en
ren smelte af de korte kæder. Vi finder, at den lokale orienteringsgrad er
højere i polymersmelten med både korte og lange kæder, og at graden af
lokal orientering for begge smelter aftager som en potenssammenhæng
med samme eksponent. Endelig studerer vi en smelte af endedeutererede
trearmede stjerneformede polystyrenmolekyler ”mærket” med deuterium
i enderne for at teste hypotesen, at de tager en kvasilineær molekylær
konformation under hurtig forlængelsesstrømning, og at den kvasilineære
konformation varer vel ind i relaksationen. Umiddelbart efter stræk finder
vi, at neutronspredningsdata er konsistent med en kvasilineær molekylær
konformation.
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Thesis Outline

The thesis consists of four chapters: Introduction, Wide Angle X-ray
Scattering on Bi-disperse Polystyrene, Small Angle Neutron Scattering
on End-labeled Three-Arm Stars, and Chain Retraction in Spherical Har-
monics Expansion. Here I present the main findings of the chapters and
specify my contributions to the work and who I collaborated with.

Chapter 1: Introduction

This chapter presents the research question of the thesis in the context of
previous work combining extensional rheology and scattering techniques
and provides the needed background knowledge on polymer physics and
rheology, with emphasis on non-linear extension using the filament stretch
rheometer (FSR), and scattering techniques. All three topics have many
fascinating facets worthwhile to study and describe in detail. However,
since many good introductions to the topics have been written already, I
have decided to keep the chapter brief and focused on the content needed
specifically for chapters 2-4.

Chapter 2: Wide Angle X-ray Scattering on Bi-disperse Polystyrene

This chapter presents our study on the relaxation following fast extensional
flow of a bi-disperse polystyrene melt compared to the pure melt of short
chains in wide angle x-ray scattering. It is known from a previous small-
angle neutron scattering experiment that the short chains are stretched
about 50 % more and remain stretched longer into the relaxation after flow
in the blend with long chains, which was attributed to nematic effects,
i.e. preferred alignment of neighboring molecules on Kuhn segment
scale. Whereas the length scales probed by small angle neutron scattering
scattering correspond to the overall size of the molecule, the length scales
probed by wide angle x-ray scattering correspond to distances between
neighboring monomers or Kuhn segments and may therefore serve as
a test of the nematic interactions hypothesis. Furthermore, if a firm
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connection between the results obtained in small angle neutron scattering
and wide-angle x-ray scattering can be established, it may be possible
to continue the study of dispersity employing home source x-rays in
stead of large scale facility neutrons. We quantify the local orientation by
calculation of Hermans’ orientation factor from the 2D WAXS patterns of
FSR-filaments quenched at different relaxation times after fast extensional
flow. We find a larger local orientation in the blend than in the pure
melt and that the relaxation of the local orientation in both melts follow
power laws with the same exponent suggesting that the relaxation of local
orientation as measured by WAXS consists of several processes that are
independent of chain length.

I have measured the WAXS-pattern for the samples and analyzed
the data, partly in collaboration with our student Sidsel Lefmann. The
interpretation of the results was done in collaboration with Kell Mortensen,
Jacob Kirkensgaard, Ole Hassager, Qian Huang and Sara Wingstrand.

Chapter 3: Small-Angle Neutron Scattering on Three-Arm Stars

This chapter presents our work on the relaxation of an end-deuterated
three-arm star following fast extensional flow. Previous experimental and
theoretical work has suggested that in fast extensional flow, branched
polymers behave like linear polymers because they take a quasi-linear
molecular conformation. In this work we test the hypothesis by analyzing
small angle neutron scattering patterns from a samples series of FSR-
filaments of the end-deuterated star melt quenched immediately after
cessation of the extensional flow and at different relaxation times. We find
that the stars to some degree preserve their quasi-linear conformation at
least up until a relaxation time of t = 200 s ≈ 0.5τR where τR is the Rouse
time of the star backbone.

The analysis and interpretation of the scattering pattern for the sample
quenched immediately after cessation of flow and the scattering pattern
for the fully relaxed star has been published in Mortensen et al. ”Structural
Studies of Three-Arm Star Block Copolymers”.

I have calculated the RPA-structure factor, repeated the data analysis
presented in the publication mentioned above and analyzed the remain-
ing scattering patterns. The interpretation of the results was done in
collaboration with Kell Mortensen, Ole Hassager, and Qian Huang.
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Chapter 4: Chain Retraction in Spherical Harmonics Expansion

This chapter presents our work on studying chain retraction during
polymer relaxation by expanding 2D small angle neutron scattering
data in spherical harmonics, which has recently been proposed as a
framework for analyzing 2D data for uniaxially extended polymer melts.
We reach the conclusion that the spherical harmonics expansion is so
sensitive to changes in the overall chain length that we see chain retraction
for polystyrene chains of about six entanglement segments. I initiated
the project, implemented the expansion framework, and analyzed the
data. The quantitative comparison to the tube model predictions for
chain retraction was done in collaboration with Ole Hassager, and the
interpretation of the results was done in collaboration with Ole Hassager,
Kell Mortensen, Qian Huang, Jacob Kirkensgaard, and Kristoffer Almdal.

Appendix 1: Small Angle X-ray Scattering on FSR filaments

This appendix contains preliminary work of small-angle X-ray scattering
on filaments prepared on the filament stretch rheometer. The purpose of
the project is to understand the origin of the often cross-shaped features
at small q in the 2D scattering patterns from FSR-filaments first observed
in small-angle neutron scattering. At first we thought it was due to
surface cracks appearing during the fast quench procedure, later we have
discussed whether it could be due to crazing or elongated bubbles in the
stretched filaments. Currently, it is still an open question.

The work has been carried out in collaboration with Peter Jeppe
Madsen, who prepared commercial polystyrene extracted with CO2 and
Wendi Wang who prepared the filaments specific for this project. The
interpretation of the data was done in collaboration with Peter Jeppe
Madsen, Wendi Wang, Ole Hassager, Qian Huang, and Kell Mortensen.

Appendix 2: Publications and manuscripts

This appendix contains a list of publications that I have contributed
to during my PhD-studies and a list of future publications based on
the work described in the thesis. Furthermore the appendix contains a
reprint of the publication ”Structural Studies of Three-Arm Star Block
Copolymers” by Mortensen et al. on the end-deuterated stars immediately
after deformation and in the fully relaxed state and the draft manuscript
for our coming publication on chain retraction seen in spherical harmonics
expansion.
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Chapter 1

Introduction

Polymer melts are viscoelastic and thus behave like solids on short time
scales and simple fluids on longer timescales. The viscoelastic properties
in polymer melts originate from their complex composition of macro-
molecules of varying size, size distribution and molecular architecture.
Their mechanical response to external deformation is intimately linked
with the molecular conformation in the melt, and the discipline of polymer
melt rheology establishes the connection between external deformation
and mechanical response and thus molecular conformation.

If we can establish the molecular conformation as a function of molecu-
lar parameters and external deformations, we may answer the fundamental
question: How do polymer molecules interact in the melt? The behavior
of polymer melts exposed to small deformations is well captured by the
tube model, in which the motion of a single chain is modeled as if it
moves in a tube instead of the complicated network of all the other chains.
However, more experimental, theoretical, and numerical work is needed
to understand polymer interactions under large deformations and during
the following relaxation. In this thesis we expose polymer melts to uniaxial
extension.

About fifteen years ago controlled extensional flow experiments on
polymer melts able to go to large deformation, Hencky strains of at least
five [1], were made possible with the filament stretch rheometer developed
at the Technical University of Denmark[1] and the subsequent commercial
version [2], which provide possibilities for new tests of polymer melt
models and interaction theories. Bach et al. [1] measured the transient and
steady state elongational viscosity of two monodisperse linear polystyrene
melts, Nielsen et al. [3] for bidisperse polystyrene melts, and Nielsen
et al. [4] for branched polymers. Experiments on stress relaxation are
usually restricted to rather small strains due to progressive thinning of the
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4 CHAPTER 1. INTRODUCTION

sample leading to necking. The filament stretch rheometer can counteract
the progressive thinning and thus allow for constant strain relaxation.
Nielsen et al. [5] measured the stress relaxation of monodisperse linear
polystyrene, Huang et al. [6] measured it for commercial low density
polyethylene which is branched and polydisperse, and Huang et al. [7]
measured the stress relaxation for very well defined branched polymers.

From the extensional viscosity and the stress relaxation, one can form
hypotheses on the molecular conformation, e.g. [7, 8] and see whether
the rheological response is consistent with a given model. However,
these experiments are particularly powerful when combined with ex-
situ scattering techniques that allow for an independent, and more direct,
measurement of the molecular conformation. Hassager et al [9] studied the
molecular stretching in polystyrene melts under fast elongation using the
filament stretch rheometer and ex-situ small angle neutron scattering. They
employed that deuterium scatters neutrons differently from hydrogen
to label the center part of a fraction of the molecules. They found that
the radius of gyration of the center labeled part parallel to the stretching
direction scaled as a power law of the stretching rate showing that finite
extensibillity of the chain does not affect the extensional stress behavior of
linear polystyrene. In the papers Hengeller et al. [8] and Kirkensgaard et al.
[10] the combination of filament stretch rheometer experiments and ex-situ
small angle neutron scattering was used to study a bi-disperse polystyrene
melt with a fraction of the short chains labeled using deuterium. They
found that even though the stress in the melt was carried primarily by the
long chains, the short chains were stretched more in the blend than in the
pure melt and their relaxation was prolonged due to the presence of the
long chains. The last example in particular is remarkable since it shows
how scattering may provide information on molecular conformation that
extensional rheology cannot for complex systems.

There is great potential in further experiments that combine filament
stretch rheometry and ex-situ neutron scattering, e.g. on branched poly-
mers to provide more data to test polymer melt models. It would also
be interesting to see whether other ex-situ scattering techniques could
provide new insights to the molecular conformation. In this thesis we
demonstrate how wide angle X-ray scattering may supplement small
angle neutron scattering in the studies of molecular conformation. We
also show how the combination of filament stretch rheometry and small
angle neutron scattering on well-defined branched polymers deuterated to
provide information on the molecule ends reveal that branched polymers
take a quasi-linear conformation during fast extensional flow and main-
tain that conformation into the relaxation. Finally we demonstrate how
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advanced analysis methods of small-angle neutron scattering data can
lead to even more detailed information about the molecular conformation
during extension and relaxation.

The remaining part of this chapter introduces basic concepts of poly-
mer physics, a few polymer models, extensional rheology of polymer
melts using the filament stretch rheometer, as well as concepts of small
angle neutron and wide angle X-ray scattering techniques serving as a
background for the next three chapters presenting our work.

1.1 Polymer Models

There are many good introductions to polymers and polymer molecules
available. This section is based on two of them ”Polymer Physics” by
Michael Rubinstein and Ralph Colby [11] and ”Introduction to Polymer
Physics” by Masao Doi [12], and unless otherwise specified, these are the
sources for the content presented here.

Polymers are macromolecules consisting of a large number N′ of small
repeated units, monomers, N′ > 100 is required before a molecules is
called a polymer[12] but N′ may be much bigger, e. g. ultra high molecular
weight polyethylene used in total joint replacements reach N′ ∼ 200, 000
[13]. Polymer molecules can have different architectures such as linear,
branched, or closed. In a linear molecule all monomers sit on the backbone
of the molecule that has only two ends. A branched molecule on the other
hand has branches growing from the backbone and may have many ends.
In this thesis, we work with a specific type of branched polymers, namely
stars where all the branches or arms grow from the same point, the branch
point. In a closed architecture there are no free ends, where the simplest
example is a ring. Polymers can be made up by only one type of monomers,
a homopolymer, or two or more types, copolymers. Copolymers can have
different sequences of the different types of monomers. In this thesis, we
work with block copolymers of two different monomer types where the
molecule consists of blocks containing only type A and blocks containing
only type B. We use hydrogenous and deuterated styrene to form block
copolymers.

Amorphous polymers have two states: The glass and the melt. In
the glass at lower temperatures, the chains are frozen in, and in the melt,
at higher temperatures, the molecules are free to move. The transition
between the melt and the glass state occurs at the glass transition temper-
ature Tg. The rheological properties of polymer melts, which we define
below, depend on the size of the polymer molecules, i.e. the number of
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monomers and thus degree of polymerization N′. For scientific studies,
we often desire a monodisperse melt where all chains have the same size.
However, in a synthesized ensemble of molecules there will be a, poten-
tially small, spread in molecule size, or molar mass M. The molar mass
distribution is often characterized by two numbers, the number-average
molar mass Mn and the weight-average molar mass Mw:

Mn =
∑

N′
nN′MN′ (1.1)

Mw =

∑
N′ nN′M2

N′∑
N′ nN′MN′

(1.2)

where nN′ is the number fraction of molecules with degree of polymer-
ization N and M′

N is the molar mass of molecules with degree of poly-
merization N′. For a fully mono-disperse melt Mn = Mw. To characterize
the deviation from monodispersity, the polydispersity, the polydispersity
index PDI = Mw

Mn
is often used.

Not only do we need a statistical description when we characterize a
melt, or ensemble of polymer molecules, but also when we characterize
a single molecule due to the large number of monomers. In the next
subsection we present a model for a single, ideal, polymer molecule.

1.1.1 Ideal Chain

The basic assumption in the description of an ideal chain is that monomers
that are far apart along the backbone of the chain do not interact even if
they are in close proximity to each other.

To characterize the ensemble of molecular conformations of the ideal
chain, we could consider the end-to-end vector, ~R. If we define the bond
vector ~ri as the vector pointing from monomer ni−1 to ni, the end-to-end
vector is simply

~R =

N′∑

i=1

~ri. (1.3)

Now the ensemble average, either over all molecules in a melt or all
possible configurations of a single chain, of the end-to-end vector 〈~R〉 = 0
since ~R′ is as likely as −~R′. We therefore consider the mean-square
end-to-end distance 〈R2〉 instead



1.1. POLYMER MODELS 7

〈R2〉 =

N′∑

i=1

N′∑

j=1

〈~ri · ~r j〉. (1.4)

For a freely jointed chain where there are no correlations between the
direction of different bond vectors each of length l, we find

〈R2〉Freely joint = N′l2. (1.5)

However, if we allow for correlations between monomers close to each
other along the chain, one can show that

〈R2〉 ' C∞N′l2. (1.6)

where C∞ is Flory’s characteristic ratio that tends to be larger for polymers
with bulky side groups such as polystyrene, which means that they are
stiffer. Polymers have many universal properties that are independent
of the type of monomers from which they are form. We therefore define
the equivalently freely joint chain with longer, effective bonds, or Kuhn
segments, of length b. The equivalent freely joint chain is defined such that
it has the same mean square average end-to-end vector 〈R2〉 and contour
length Rmax as the actual chain such that

〈R2〉equiv = Nb2 (1.7)
Rmax = Nb (1.8)

where N is the number of Kuhn segments.
Provided that N is large enough, the statistical properties of the chain

does not depend on the detail of the model. We therefore choose the
Gaussian model since it is mathematically simplest. The Gaussian model
assumes that the individual bond vector ~r possesses some flexibility and
is Gaussian distributed

p
(
~r
)

=
( 3
2πb2

) 3
2

exp
(

3~r2

2b2

)
. (1.9)

In terms of position vectors of the segments, ~Rn, we may express the
probability distribution as
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P({~Rn}) =
( 3
2πb2

) 3
2

exp
(

3~r2

2b2

)
. (1.10)

Using this probability distribution we determine the pair correlation
function g(~r) as

g(~r) =
1
N

N∑

m=1

N∑

n=1

〈
δ
(
~r −

(
~Rm − ~Rn

))〉
. (1.11)

The structure factor S(~q) is the Fourier transform of the pair correlation
function

S(~q) =

∫
d~rg(~r)ei~q·~r =

1
N

N∑

m=1

N∑

n=1

〈
exp

[
i~q ·

(
~Rm − ~Rn

)]〉
. (1.12)

It is measurable with small angle scattering as we describe below. With
Eq. 1.10 and substituting the sums in Eq. 1.12 with integrals, one can show
that

S(~q) =
1
N

∫ N

0
dm

∫ N

0
dn exp

(
−~q

2|n −m|b2

6

)

=N
2

q4R4
g

(
e−q2R2

g + q2R2
g − 1

)

=Nh(qRg) (1.13)

where h(qRg) is the Debye function and Rg is the radius of gyration of the
polymer. The radius of gyration is defined as

R2
g =

1
2N2

N∑

m=1

N∑

n=1

〈(
~Rm − ~Rn

)2
〉
. (1.14)

The radius of gyration is a more convenient measure of the polymer size
than the end-to-end vector since it is directly measurable in experiments
as we show below and since it can also be defined for branched polymers.
For a linear chain the radius of gyration is given by

Rlinear
g =

√
Nb2

6
. (1.15)

In the next two subsections we discuss polymer dynamics and present
the Rouse model that describes short, unentangled, polymer melts and
the tube model for entangled polymer melts.
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1.1.2 Rouse Model

The Rouse model captures the dynamics of short polymer molecules.
In the Rouse model, the chain is represented by N beads connected by
springs. The beads only interact through the connecting springs. Each
bead experiences a drag force proportional to its velocity with friction
coefficient, ζ, as it moves through the melt. One can show that the position
of the beads, taken to be a continuous variable in the bead number n, the
monomer position vector ~R(n) will fulfill the partial differential equation

∂~R(n, t)
∂t

=
−1
ζ

∂~R2(n, t)
∂n2 + ~η(n, t) (1.16)

where ~η(n, t) is a random force. With the boundary condition ∂~R
∂n = 0, the

differential equation can be expressed in terms of a Fourier series where
the p’th component fulfills

~Xp(t) =
1
N

∫ N

0
dn cos

(pπn
2N

)
~R(n, t). (1.17)

It can be shown that the auto correlation of these Fourier modes is

〈~Xp(t)~X(0)p〉 ∼ et/τp for p = 1, 2, . . . (1.18)

The longest of the characteristic times, τp=1, can be shown to equal the
rotational relaxation time and the time it takes the polymer molecule
center of mass to diffuse a distance comparable to the size of the molecule.
This characteristic time, is called the Rouse time

τR ≈ ζb2N2

kBT
(1.19)

where kB is Boltzmann’s constant and T is temperature.

1.1.3 Tube Model

In a polymer melt of chains, the motion of an individual chain is hindered
by the other molecules especially in the lateral direction. It was proposed
by de Gennes[14] to explain the rheological response of a polymer melt
by considering the motion of a test chain moving in a three dimensional
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a

a

Figure 1.1: Tube model cartoon. In the tube picture, the motion of the polymer
chain is described as if it takes place in a tube formed by the obstacles of the other
chains.

network of obstacles that it cannot pass but move between in a snake-like
motion, reptation. Doi and Edwards build on the tube concept of de
Gennes in a series of papers describing the equilibrium state [15] and the
non-equilibrium state [16] of polymer melts. The constitutive equation
for times longer than the Rouse time, relating the stress in a given point to
the local deformation in that point, is derived in Doi and Edwards [17]

In the tube model, the primitive chain is a freely joint chain, as described
above, of step length a and arc length L. The averaged square end-to-end
distance is in the tube picture Za and for the real chain, according to Eq. 1.7,
Nb2, which gives Z = Nb2/a. The step length a is the characteristic spacing
of the network of obstacles and the tube diameter. The steps in the freely
joint chain is called entanglement segment and thus Z is also the number
of entanglement segments. See Fig. 1.1 for a cartoon of a polymer melt in
the tube picture.

Under rapid deformation, the tube is oriented and initially expanded.
During relaxation, the initial expansion relaxes at a short time scale τR

whereas the orientation relaxes on a longer time scale: the disentanglement
or reptation time

τd ≈ ζb4N4

kBTa2 . (1.20)

If τd � τR, the tube model predicts that the chain will retract during the
initial t ≤ τR relaxation. In Chap. 4 we test the chain retraction hypothesis.

GLaMM-model

Since the original work of de Gennes and Doi and Edwards, tube theory has
been modified to include constraint release and contour length fluctuations
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due to discrepancies between the experimentally observed rheological
behavior of polymer melts and that predicted by tube Doi-Edwards tube
theory[18]. Constraint release is a modification to tube theory that takes
into account that if one chain moves away from an entanglement, the
lateral motion of the neighboring chain is also eased. In the linear regime,
the motion of the chain is through reptation[18] and in the non-linear
regime the chain motion releasing an entanglement could also be due to
chain retraction[19]. Contour length fluctuations takes the fluctuations
in chain length due to thermal fluctuations into account [20], which
can also be seen as the inclusion of the higher order Rouse modes [21].
The GLaMM-model[18] is widely considered the state of the art tube
theory [22]. It incorporates reptation, chain stretch, convective constraint
release and contour length fluctuations in a microscopic stochastic partial
differential equation, which describes the dynamics of polymer chains
down to a length scale of the tube diameter.

1.2 Polymer Melt Rheology
Rheology is the science of general flow properties [23], and the aim of
polymer melt rheology is to establish a relation between the flow deforma-
tion of a polymer melt and the stress induced in the melt. Polymer melts
are viscoelastic due to complex microstructure of the macromolecules:
Their chain lengths, architectures, and molecular weight dispersities, and
their interactions, entanglements. Here we focus on extensional rheology.

For uniaxial extension we characterize the deformation by the stretch
ratio λ and the Hencky strain ε

λ(t) =
L(t)
L0

(1.21)

ε(t) = ln [λ(t)] (1.22)

where L(t) is sample length at time t and L0 is the initial sample length.
True stress, σ, is force per area which for a cylindrical sample gives

σ(t) =
F(t)
πR(t)2 (1.23)

where F is the magnitude of the force and R is the sample radius.
There is not yet a full theory of viscoelastic materials but in the regime

of small deformations, their behavior is captured by linear viscoelasticity.
The following account for linear viscoelasticity is based on the lecture
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notes [24]. Consider a shear deformation of magnitude γ occurring at
t = t0 where the particles in the material are shifted by

∆x =x(t) − x(t0) = γy(t0)
∆y =∆z = 0. (1.24)

The shear stress as a function of time is then given by

σxy(t) = G(t − t0)γ(t, t0) (1.25)

where G(t − t0) is the relaxation modulus. If multiple subsequent defor-
mations are applied, the shear stress is given by

σxy(t) =

∫ t

−∞
dt′G(t − t′)γ̇xy(t′) (1.26)

where γ̇xy(t′) is the instantaneous deformation rate.
In an experiment with constant shear rate, the shear viscosity is defined

as

ηshear =
σxy(t)
γ̇xy

=

∫ t

−∞
dt′G(t − t′) (1.27)

The linear shear viscosity and extensional viscosity are related through
Trouton’s ratio [9]

ηextension = 3ηshear (1.28)

and that is used to calculate the Linear Viscoelastic Envelope (LVE) for
uniaxial extension. Deviations from the LVE show that the extensional
rheology is non-linear.

We expect to see linear extensional rheology for Hencky strain rates
ε̇ < 1/τd, non-linear extensional rheology with tube orientation for 1/τR >
ε̇ > 1/τd and with chain stretching for ε̇ > 1/τR. These conditions may
also be expressed in terms of the dimensionless Weissenberg number
Wii = ε̇τi that relates the deformation rate with the characteristic time of
the material’s relaxation mode i[8, 9, 25].
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Oven

Force
transducer

Laser

Figure 1.2: Schematic drawing of the
filament stretch rheometer. The FSR
consists of two plates, in gray, between
which the filament is stretched, and
a laser. The top plate is connected to
a motor allowing for vertical motion,
and the bottom plate in connected to
a force transducer that measures the
force. The filament diameter is mea-
sured from its shadow due to the laser.
The filament and the plates are placed
inside an oven to allow for experiments
at elevated temperatures.

1.2.1 Filament Stretch Rheometer

In this thesis we use the Filament Stretch Rheometer (FSR) to create an
extensional flow and measure the extensional rheology of polymer melts.
The principle of the FSR and the experimental procedure is described
in a number of publications, e.g. [1, 5, 4], and we base the following
presentation of the instrument on those sources. Basically the FSR consists
of two round plates, the top plate that is connected to a motor and the
bottom plate connected to a force transducer, and a laser with which the
diameter of the filament can be measured, see Fig. 1.2. The initial sample
is disc-shaped with a diameter of approximately 8 mm and a height of
about 2 mm. The sample is heated above Tg before the experiment starts.

If ideal extension could be obtained for the sample, the disc would
be stretched to a cylinder, and the stretch ratio λ and Hencky strain ε
would be defined relative to the full filament length as in Eq. 1.21 and 1.22.
However ideal extension is not achievable for the entire sample do to the
non-slip condition at the plates. For polystyrene, the stretched filaments
have a shape similar to that in Fig. 1.2 where the center part of the filament
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is very close to a cylinder. Now in principle if we could keep track of the
length change of this center part, we could still define λ as in Eq. 1.21. This
however is still challenging so instead we use that polystyrene melt, and
polymer melts in general, are to a good approximation incompressible,
and so we measure the diameter D(t) of the central part instead of its
length. In this way

λ =
D2

0

D(t)2 (1.29)

ε(t) = − 2 ln
(

D(t)
D0

)
. (1.30)

The implemented control scheme takes inputs from the diameter and
force measurements and compute the next deformation step, i.e. the next
movement of the top plate. In this way, it is possible to perform controlled
stretching experiment, e. g. with fixed Hencky strain rate ε̇ to a certain
final Hencky strain ε f , which is the procedure used in the work presented
in this thesis.

Often the data is plotted in terms of the stress growth coefficient

η̄+ =
〈σzz − σrr〉corr

ε̇
. (1.31)

The average difference between the axial and radial stress in the mid-
filament plane for pure extension is obtained from a general force
balance[26]. For large Hencky strains, a filament that is symmetric
in the mid-filament plane and rotational symmetric, and negligible surface
tension and inertia the average difference is given as

〈σzz − σrr〉 (t) =
F(t) − 1

2mg
πR2(t)

, (1.32)

where F(t) is the force measured by the force transducer, m is the mass of
the filament, g is the gravitational acceleration, and R(t) is the radius of
the filament in the mid-filament plane.

At lower Hencky strains, the shear stress contributes due to the small
initial ratio between length and ratio, or aspect ratio Λ0 = L0/R0. The
corrected average stress difference is [27]

〈σzz − σrr〉 (t) =
F(t) − 1

2mg
πR2(t)


1 +

D(t)/D0 · exp
(
−Λ−3

0

)

3Λ2
0


 (1.33)
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To concentrate the stress in the mid-filament plane, the samples are
often prestretched at a very low rate ε̇ < 1/τd to obtain a cylindrical
center piece. The sample is annealed until no force is detected before the
experiment is initiated [5].

Controlled Strain Relaxation

The control scheme is extended to perform constant strain relaxation
experiments [5]. Due to the non-slip condition at the plates, the center part
of the filament is elongated more than the parts closer to the end plates.
For this reason, true stress relaxation of the center part is not measured
simply by stopping the plate motion and collecting stress data since the
parts of the filament with different elongations will relax differently. The
different relaxation may even lead to flow and thinning of the center
part. To counteract the thinning, the top plate is lowered at a suitable rate
determined through the diameter measurements.

Quenching Samples for Ex-situ Scattering

We combine extensional rheology measured using the filament stretch
rheometer with ex-situ scattering. To prepare samples for ex-situ scat-
tering we utilize that polystyrene has a glass temperature of Tg ∼ 100◦C.
The rheological measurement are carried out at temperatures above Tg,
typically at T ≈ 130◦ C, and by rapidly cooling the filament at any point
of the experiment, we may preserve the molecular conformation at that
point for ex-situ scattering. It is reasonable to assume that the molecular
conformation is preserved if that the rapid cooling, or quench, is fast
enough compared to the molecular relaxation. We quench the filament
by opening the oven and applying a soft flow of nitrogen to the filament.
After opening the oven, the filament is cooled by 10 K/s [10], and so the
filament is cooled below the glass transition in about 3 s. If the shortest
characteristic relaxation time of the polymer molecules, i.e. the Rouse
time τR, is much longer than the quench time, the molecular conformation
is to good approximation preserved during quenching. If the amount of
material permits, we often quench several filament for given experimental
parameters to increase the sample volume for neutron scattering.

1.3 Scattering Techniques
In this thesis, we employ small angle neutron scattering and wide angle X-
ray scattering to study the molecular conformation of polymer molecules.
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~k′

~k′
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~q

Figure 1.3: Scattering geometry. The incoming plane wave with wave vector ~k is
scattered by the sample at the angle 2ϑ into a plane wave of wave vector ~k′. The
scattering vector ~q is defined as ~q = ~k′ −~k.

There exist many good introductions to scattering techniques, see e.g.
[28, 29] so here we provide only a brief overview of the most essential
concepts that we use in Chap. 2, 3, and 4.

1.3.1 Scattering Geometry

The scattering geometry is illustrated in Fig. 1.3 were we see a incoming
plane wave with wave vector~k that hits the sample. Inside the sample the
beam is scattered by multiple scatterers each of which emits a spherical
wave. The emitted waves interfere and far from the sample the result of
interference resembles an outgoing plane wave at an angle of 2ϑ1 relative
to the incoming beam with wave vector~k′. We call 2ϑ the scattering angle.
If the scattering is elastic, which we assume throughout this thesis, energy

and thus wave number, or wave vector length, is conserved
∣∣∣∣~k
∣∣∣∣ =

∣∣∣∣~k′
∣∣∣∣ = 2π

λ ,
where λ is the wavelength of the incoming and outgoing plane wave2. It
is convenient to express the scattered wave relative to the incoming wave
in terms of the scattering vector ~q. From the geometry in Fig. 1.3, we see
that

1We choose the symbol ϑ for the scattering angle to avoid confusion with the polar
angle in spherical coordinates in Chap. 4

2Note that we also use λ for the stretch ratio. The meaning of the symbol should be
clear from the context.
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q

I(q) Small Angle
Scattering

Wide Angle
Scattering

Figure 1.4: Scattering curve: Small and wide angle X-ray. The scattering intensity
curve I(q) at low q contain information about shapes and sizes of labeled polymer
molecules, and high q data provide information about the internal structure.

~q =~k′ −~k (1.34)

q =
4π
λ

sinϑ. (1.35)

In Fig. 1.4 we show a generic scattering curve of a labeled polymer
in the melt showing that the scattering intensity I(q) at low q provide
information of the large molecular scales whereas the scattering data at
high q provide information of the small molecular scales.

In this thesis, we study polymer melts, which exposed to uniaxial
extension in the FSR and subsequently quenched, in small angle neutron
scattering and wide angle X-ray scattering. Small angle neutron scattering
and wide angle X-ray scattering are the topics of the following sections.

1.3.2 Small Angle Neutron Scattering of Polymer Chains

In the small angle regime, the scattering intensity I(q) from a polymer
sample of a homogeneous mix of two types of monodisperse linear
polymers with a relative scattering contrast, e. g. hydrogenous and
deuterated polystyrene as we will work with later, is [22]
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I(~q) =I(~q)coherent + Iincoherent (1.36)

I(~q)coherent =(∆ρ)2φ(1 − φ)nN2S(~q) (1.37)

where I(~q)coherent is the coherent scattering intensity that contain infor-
mation about the molecular structure[29] and Iincoherent is the incoherent
scattering intensity that is a constant background. The coherent scattering
intensity is proportional to the scattering length difference ∆ρ between
the two polymer species in the sample, the fraction of the labeled species
φ, the number density n, the number of monomers in the labeled species
N, and the structure factor S(~q), which for an ideal Gaussian chain is given
by Eq. 1.13.

Selective Deuteration

For the SANS experiments on polystyrene described in this thesis, the
scattering contrast is provided by selective deuteration where hydrogen
atoms are replaced by deuterium atoms in specific molecules or parts of
molecules that one wishes to obtain information about. The coherent scat-
tering length densities of hydrogenous polystyrene, ρh-PS, and deuterated
polystyrene, ρd-PS, are

ρh-PS =1.399 · 10−6 Å
−2

(1.38)

ρd-PS =2.544 · 10−6 Å
−2
. (1.39)

The difference originates from the difference in coherent scattering lengths
of hydrogen and deuterium: bcoh, H = −3.741, bcoh, D = 6.671. In Chap. 4
we use selective deuteration to label some chains in the melt. In Chap. 3
we use selective deuteration to label the ends of star polymers. In the
latter case, the structure factor is no longer given by Eq. 1.13, and we
therefore calculate the appropriate structure factor using the random
phase approximation in Chap. 3.

Radius of Gyration

From small angle scattering experiments, the polymer radius of gyration
can be extracted in a model independent way through Guinier analysis
based on the low q limit, qRg . 1, of the intensity

I(q) ≈e−
1
3 q2R2

g . (1.40)
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In practice however, the available q-range may not reach qRg . 1 due to
the large size of the polymer molecules and models such as Eq. 1.13 may
be employed to extract Rg through fitting procedures.

1.3.3 Wide Angle X-ray Scattering

For larger values of q, the internal structure of the molecule appear in
the scattering intensity. Characteristic distances , d, in the molecule or
between molecules will appear as peaks in the scattering intensity I(q) for
certain q-values, q∗. The characteristic distance d that cause a peak in I(q)
at q∗ can be determined as d = 2π

q∗ .

Scattering Contrast

X-rays interact with electrons and so there is no scattering contrast between
hydrogenous and deuterated polystyrene, but scattering contrast between
polystyrene and air. We use wide angle X-ray scattering to study the
alignment of Kuhn segments between neighboring polymer chains in
Chap. 2. On this length scale, the scattering contrast is due to variations in
the electron density in polystyrene. In App. A, we use small angle X-ray
scattering to study the excess scattering at small q, and on that length
scale, the scattering contrast originates from larger domains of air relative
to domains of polystyrene.





Chapter 2

Wide-Angle X-ray Scattering on
Bi-disperse Polystyrene

In this chapter we present our results on the relaxation of local orientation
of a bi-disperse polystyrene melt after exposure to fast extensional flow
measured using wide angle X-ray scattering (WAXS). The purpose of
the study is two-fold: From a previous small angle neutron scattering
(SANS) experiment[10] it was found that the short chains were stretched
50 % more in the presence of the long chains in the blend relative to
the pure melt of short chains, and that the stretching relaxation was
significantly prolonged in the blend. As a hypothesis, the increased
stretching and prolonged relaxation was attributed to nematic interactions,
i.e. orientational coupling between Kuhn segments on neighboring
chains[10]. The SANS-study probed length scales on the order of the
over all size of the molecule whereas wide angle X-ray scattering probes
length scales on the order of the distance between neighboring molecules
and may therefore provide direct insight into the nematic interaction
hypothesis. Furthermore, if it is possible to establish a close connection
between the results from sans and WAXS, future studies of bi-disperse
melts may be carried out using WAXS in stead of SANS which would be
beneficial since an X-ray home source may be used instead of large scale
facility neutrons.

2.1 Introduction

Studying bi-disperse blends is, apart from being interesting on its own,
a stepping stone towards understanding polydisperse blends. From an
application point of view, understanding and being able to model the

21
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effects of polydispersity on rheological behavior and chain conformation
is paramount since commercial polymers are often polydisperse and that
affects their viscoelatic properties strongly[30]. It is also an interesting
problem from a fundamental science point of view since the original
Doi-Edwards tube model [16] describes the behavior of infinite chains
and therefore inherently cannot capture the effect of molecular weight dis-
tributions. Polydisperse melts of arbitrary molecular weight distributions
are very complex and therefore model systems such as bi-disperse melts
composed of two molecule lengths each with a narrow molecular weight
distribution are studied instead. In the following we focus on studies of
the extensional rheology and local orientation in bi-disperse melts.

2.1.1 Extensional Rheology of Bi-disperse Blends

Wagner et al. [31] studied polystyrene blends of a short polydisperse
component to which a small volume fraction of super high molecular
weight polystyrene was added. They found that the degree of strain
hardening in the blends would increase with increasing amounts of the
super high molecular weight component. Later, Nielsen et al. [3] studied
the steady state extensional viscosity of bi-disperse blends and found
a maximum as function of applied strain rate which increased with
decreasing amounts of the long chain component. Though that opposes
the conclusion of Wagner et al, the discrepancy is most likely due to the
large difference in long chain lengths between the two studies where
the long chain in Wagner et al. has Mw = 3320 kg/mol and Mw = 15400
kg/mol while in the work of Nielsen et al. the long chain has Mw = 390
kg/mol. Auhl et al. [32] studied the onset of chain stretch of long chains
when diluted by shorter chains using two blend series of isoprene. They
found that the long chains stretch at lower Hencky strain values in the
blend than in the pure melt of long chains, which they explain using the
concepts of ”fat” and ”thin” tubes, where the ”fat tube” is made up by
entanglements with other long chains only and the ”thin tube” is made
up by entanglements with both long and short chains. The constraint
release rate, where some of the constraining chains move away, is larger
for entanglements with short chains. In the situation where the strain is
low enough that the thin tube has time to equilibrate to the long tube, the
relevant long chain stretch is in relation to the fat tube, which can relax
through the motion of the chain along the thin tube.
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2.1.2 Local Orientation and Nematic Interactions

The hypothesis from the neutron scattering study by Kirkensgaard et
al. [10] was that the increased stretching and longer relaxation time of
the short chains was due to nematic interactions with the very stretched
long chains. Other studies of bi-disperse melts[30, 33, 34] have also seen
prolonged relaxation of short chains in a blend with long chains, and we
get back to those in the next subsection. In this subsection we define
nematic interactions. According to Doi et al. [35] nematic interactions lead
to two, related, order parameters:Sαβ for the tube segments and Qαβ for the
Kuhn segments. They show, under the assumption that the orientational
order of the individual bond is small or that they chain is still in the
Gaussian regime[36], that the two order parameters averaged over the
whole chain will be related as

Q̄αβ(t) =
1

1 − ε S̄αβ(t) (2.1)

where ¯denotes an average over the full chain by integration along the
contour length and the parameter giving the strength of the nematic
interactions ε > 0 in the case of nematic interactions.

For a bidisperse melt they introduce order parameters for each species,
short S and long L: Q̄L

αβ, Q̄S
αβ, S̄L

αβ, and S̄S
αβ. Doi et al. find that for a blend

of volume fraction φL of long chains and φS of short chains the order
parameters are related in the following way

Q̄S
αβ(t) =S̄S

αβ(t) + ε
(
φLQ̄L

αβ + φSQ̄S
αβ

)

Q̄L
αβ(t) =S̄L

αβ(t) + ε
(
φLQ̄L

αβ + φSQ̄S
αβ

)

φLQ̄L
αβ(t) + φSQ̄S

αβ(t) =
1

1 − ε
(
φSS̄S

αβ + φLS̄L
αβ

)
. (2.2)

These predictions can be tested experimentally if the four order parameters
can be measured.

Experimental Studies of Nematic Interactions

The predictions of Doi et al. described in the previous section was used to
explain the findings of Kornfield et al.[30] who studied bidisperse blends
of polyisoprene, where also the short component holds several entangle-
ments, in relaxation after step shear strain using infrared dichroism and
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birefringence. Their samples are bidisperse blends with varying mixing
ratios of short and long chains. For each mixing ratio, two samples are
prepared one where only short chains are deuterated and one where
only long chains are deuterated. Each sample has 10 vol-% deuterated
polymers. With infrared dichroism they can measure the bond orientation
in the labeled chains and with birefringence they can measure the bulk
orientation. Their shear strain is within the linear viscoelastic regime.
They clearly see that for blends with φL < 0.5, the longest relaxation
of the long component is shortened and that the relaxation of the short
component increases significantly with increasing φL, and for φL < 0.5 the
increase is at least two orders of magnitude. They interpret the prolonged
relaxation of the short component as a combination of anisotropy in the
orientation of Rouse segments and nematic interactions. They show that
if both the bulk orientation and the orientation of the short component
can be obtained for long relaxation times where the pure melt of the short
component would be fully relaxed, any residual orientation of the short
component will be due to nematic interactions and proportional to the
bulk orientation with the parameter ε as constant of proportionality.

Infrared dichroism was also used to study the orientation of the
components in a bidisperse melt in uniaxial extension by Tassin et al.[33].
They studied polystyrene blends with two different lengths of the short
components Mw =10 kg/mol and Mw =27 kg/mol and two different lengths
of the long component Mw =163 kg/mol and Mw =1190 kg/mol with 15
wt-% short chains. The molded films that were stretch to λ = 4 at T = 115◦

C just above Tg = 108◦ C. In accordance with the findings of Kornfield
et al. They found that the orientation of the long component, Mw =1190
kg/mol, is independent of the length of the short component, but that the
orientation of the short component, Mw =10 kg/mol, depend on the length
of the long chains. Furthermore they established a connection between the
residual orientation of the short component and the orientation of the long
chains and from that they establish that ε = 0.26 ± 0.03 for polystyrene,
see Eq. 2.2.

Hayes et al. [34] combined infrared dichroism and SANS to establish a
connection between the local orientation of the short chain relative to the
long chain and the resulting SANS pattern for deuterated short chains.
They also worked with polystyrene and three different chain lengths, one
long and two short: Mw =1920 kg/mol, Mw =180 kg/mol, and Mw =17
kg/mol also molded to films each with 15 wt-% deuterated short chains
and stretched to λ = 4 at T = 115◦ C. They find that in the mixture of the
long and middle-length chain the local orientation of the two chain types
in the blend is initially almost the same, whereas the short chain is clearly
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less oriented even from the start of relaxation. They too find residual
orientation of the short chains after the pure material would have relaxed.

2.1.3 Motivation for Studying the SiS and SiL samples

Based on the previous studies, experimental data for the stress relaxation
following steady state of extensional flow was missing for bi-disperse
melts which motivated the extensional rheology study[8] of the bi-disperse
blend of 50-50 wt-% Mw = 95 kg/mol and Mw = 545 kg/mol polystyrene
and the pure melt of Mw = 95 kg/mol polystyrene, which we refer to as
the Short-in-Long (SiL) and Short-in-Short (SiS) samples respectively. The
extensional rheology study was followed by a SANS study[10] that focused
on the chain conformation of the short chains in the blend relative to the
pure melt of short chains since the relaxation of the blend indicated that
the long chains carried most of the stress, and it was therefore interesting
to see if and how the short chains were affected by the presence of the long
chains. The current WAXS study is aimed at studying nematic interactions
in fast extensional flow because it might explain the observations from
SANS. As we learned from the experiments and theory described above,
this will show up as prolonged local orientation of the short chains.

The chapter is structured in the following way: As background for
the WAXS study we first review the earlier work on the Short-in-Short
and Short-in-Long samples and present the WAXS pattern of polystyrene,
its relation to the molecular structure, and how it is affected by uniaxial
deformation. Then we present our experimental procedure, WAXS data
for the Short-in-Short and Short-in-Long samples and our analysis. In the
two following sections we discuss our results and conclude on our work.

2.2 Prior Studies of the Short-in-Short and
Short-in-Long Blends

The samples have previously been studied in SANS which resulted in
[10]: ”Nematic effects and strain coupling in entangled polymer melts
under strong flow” in Phys Rev E in 2016 by J. J. K. Kirkensgaard et al..
The SANS study builds on a rheological study published in [8]: ”Stress
relaxation of bi-disperse polystyrene melt - Exploring the interactions
between long and short chains in non-linear rheology” in Rheol. Acta
in 2016 by L. Hengeller et al.. In this section we describe the samples in
detail and review the findings of the previous studies relevant for the
WAXS study.
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h-PS545 h-PS95 d-PS86 d-PS80
SiS, SANS (wt-%) 90 10
SiL, SANS (wt-% ) 50 40 10
SiS, Rheo (wt-%) 100
SiL, Rheo (wt-% ) 48.9 50.1
Mw (kg/mol) 545 95.1 86.3 80
PDI 1.12 1.07 1.02 1.02
Z 41 7
τR (s) 705 20.1
τd (s) 23000* 169

Table 2.1: Sample composition Short-in-Short and Short-in-Long. SiS(L)
is short for Short-in-Short (Long) and SANS (Rheo) mark the samples
for SANS (Rheology) experiments. The blend composition are given as
weight percentage of the four components that are characterized by their
weight averaged molecular weight Mw and their polydispersity index
PDI. The letter h or d in the component names indicate whether the
component is fully hydrogenous or deuterated. The characteristic times
of the components are for T = 130◦ C, well above the glass transition
temperature Tg ' 100◦ C. The reptation time of h-PS545, marked by
a *, is taken as the terminal relaxation time of the blend found through
multi-mode Maxwell spectrum analysis. The table combines Tab. 1 from
Kirkensgaard et al. [10] and Tab 1 and 2 from Hengeller et al. [8].

2.2.1 Materials

The samples consist of two polystyrene blends that we refer to as Short-in-
Short and Short-in-Long or SiS and SiL for short. For the extensional rheol-
ogy study, the Short-in-Short sample was pure hydrogenous polystyrene
of a molecular weight Mw = 95 kg/mol, and the Short-in-Long sample
was a 50-50 wt-% mixture of the same Mw = 95 kg/mol polystyrene and
a Mw = 545 kg/mol polystyrene. The latter is about a factor of six longer
than the short component and the blend thus has a ratio of one long to
six short chains. For the later neutron scattering experiments, 10 wt-% of
the blends consisted of short, deuterated chains with a molecular weight
close to that of the hydrogenous short chains. The detailed compositions
of the blends are summarized in Tab. 2.1.

The molecular weights are chosen such that the Rouse and reptation
times of the two components are well separated, and the short chain
carries at least a couple of entanglements.
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2.2.2 Non-linear Extensional Rheology Study

The rheological study focused on the relaxation of a bi-disperse melt
that has reached steady state after being exposed to non-linear uniaxial
extension. The blend and the components were characterized in linear
rheology using small amplitude oscillatory shear and in non-linear uniaxial
extensional rheology both during stretching and the following relaxation.

Linear Rheology

From the linear rheology investigate by small amplitude oscillatory shear,
it was found that the long chains relax faster in the blend than in the pure
melt as estimated following the approach in ref. [3].

Non-Linear Rheology

From the non-linear extensional rheology during stretching it was found
that steady state is reached for the blend at Hencky strains ε > 3.

The relaxation following non-linear extension to steady state was
studied for several deformation rates. Only for the lowest rate ε̇ = 0.003 s−1

at T = 130◦ it is possible to stretch the pure long component. The relaxation
after reaching a final Hencky strain of ε f = 3.5 for the pure long and
pure short melt and blend is shown in Fig. 2.1a. It is apparent that the
stress in the pure long component is more than one order of magnitude
larger than the stress in the pure short component and that the stress in
the blend is only about a factor of two lower than the stress in the pure
long component. If the stress decay curve for the pure long component is
scaled to superimpose the stress decay curve of the blend, it is clear that
the stress relaxation of the blend is dominated by the stress relaxation of
the long component.

The relaxation of the short component and the blend was also studied
after a more rapid deformation of ε̇ = 0.1 s−1 up to ε f = 3.5, see Fig. 2.1b.
From this figure three relaxation regimes of the blend were identified:
Fast relaxation ranging approximately up to 20 s, dominates, the inter-
mediate regime approximately 20-700 s, and the terminal regime from
approximately 700 s. The fast regime is characterized by a steep slope
and a ”knee”. The time 20 s corresponds to the Rouse time of the short
component, so the relaxation in this regime is interpreted as relaxation
of stretching of both components. In the intermediate regime, the short
chains are expected to reptate while the long chains are still retracting. In
the terminal regime the stress decay coefficient follow a power law, and it
is expected that in this regime the short chains are essentially equilibrated
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(a)

(b)

Figure 2.1: Extensional stress decay coefficient for the short and long components
and the blend versus relaxation time. In a) the stress decay coefficient following a
stretch of ε̇ = 0.003 s−1 up to ε f = 3.5 is plotted for the short and long components
and the blend in black pentagons, hexagons, and rhombi respectively. The red
hexagons are the data for the long component superimposed on the blend data.
In b) The stress decay coefficient for the short component and the blend following
a more rapid deformation of ε̇ = 0.1 s−1 up to ε f = 3.5 versus relaxation time.
The figures are from [8]
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while the long chains reptate. These observation raised the question: If
the long chains carry the stress, what happens to the short chains? Are
they in some way affected by the long chains, e.g. by an increased degree
of stretching? And can we confirm the proposed relaxation mechanisms
in the three regimes?

2.2.3 Small-Angle Neutron Scattering

The natural tool to answer these questions is small-angle neutron scattering
where selective deuteration, see Sec. 1.3.2, can be used to highlight chain
conformation of specific molecules, here we choose to focus on the short
molecules. In the following we summarize the neutron scattering study
by Kirkensgaard et al. with emphasis on the results that we will connect
to the current WAXS study.

Quenched samples

For neutron scattering the samples were prepared as described in Sec. 1.2.1.
Two sample series were prepared: a Hencky strain rate series and a
relaxation time series. The sample series for varied Hencky strain rate
contained SiS and SiL samples stretched with ε̇ = 0.003, 0.03, 0.1 s−1. The
rates are chosen such that they relate to the Rouse and reptation time of the
short components as follows: ε̇ = 0.003 s−1 < 1/τS

d , 1/τS
d < ε̇ = 0.03 s−1 <

τS
R, ε̇ = 0.1 s−1 > τS

R. For the largest rate we thus expect the short chains
to be oriented and stretched by the flow, for the intermediate rate we
expect the chains to be oriented but not stretched, and for the lowest rate
we expect the chains to remain in their equilibrium conformation. The
samples for the relaxation time series are quenched immediately after
stretching, after 10 s of relaxation, 20 s, 80 s, and 320 s for both samples, and
1260 s and 13000 s for the SiL samples. That corresponds to one sample
for each material in the first relaxation regime, one on the border to the
intermediate regime, two in the intermediate regime, and two samples in
the terminal regime for the SiL-sample. All experiments were performed
at T = 130◦. For each neutron scattering sample a number of filaments
were produced to increase the sample volume. Due to e.g. variations in
filament diameter, some samples consisted of more filaments than others.
The number of filaments per sample are listed in Tab. 2.2.
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SiS SiL
ε̇ = 0.003s−1, t = 0 s 1 4
ε̇ = 0.03s−1, t = 0 s 2 7
ε̇ = 0.1s−1, t = 0 s 6 9
ε̇ = 0.1s−1, t = 10s 4 4
ε̇ = 0.1s−1, t = 20s 4 9
ε̇ = 0.1s−1, t = 80s 4 4
ε̇ = 0.1s−1, t = 320s 3 4
ε̇ = 0.1s−1, t = 1260s - 4
ε̇ = 0.1s−1, t = 13000s - 1

Table 2.2: Number of filaments per SiS and SiL sample.

Experimental Settings and Data Correction

The SiS-samples were measured at QUOKKA at Australia’s National
Science and Technology Institute and the SiL-samples at SANS-1 at the Paul
Scherrer Institute in Switzerland. At both instruments three overlapping
settings were used to obtain a covered q-range of 0.005 − 0.25 Å

−1
. The

data was corrected by adjusting detector efficiency using incoherent
water scattering and subtracting a background sample consisting of non-
deuterated polystyrene filaments[10]. The publication focused on the
relaxation time series and the 5 m setting data sets were sufficient to cover
the needed q-range. The other data sets are not yet published.

2D data

Kirkensgaard et al. plotted the corrected 2D data for the intermediate
q-setting as iso-intensity curves, which is shown in Fig. 2.2 and 2.3 with
2D-fits described in the following section. The scattering patterns follow
the general trends that the patterns corresponding to immediately after
extension are most anisotropic, and as relaxation progresses, isotropy is
regained. However the patterns for the SiL-samples remain anisotropic
much further into the relaxation, visibly up to 80 s, compared to the
SiS-samples. Also the anisotropy of the two samples look qualitatively
different. For the SiL-samples the anisotropic scattering patterns have a
clear lozenge shape whereas the scattering patterns for the SiS-sample
look elliptical at least for t ≥ 10 s.
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Figure 2.2: 2D SANS data for the Short in Short and Short in Long as a function
of relaxation time. In the left column we present the data for the Short in Long
sample and in the right column we present data for Short in Short. The Relaxation
time increases from the top row to the bottom row. The units on the axes is nm−1.
The figure is from Kirkensgaard et al. [10].
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Figure 2.3: 2D SANS data for the Short in Short and Short in Long as a function
of relaxation time. In the left column we present the data for the Short in Long
sample and in the right column we present data for Short in Short. The Relaxation
time increases from the top row to the bottom row. The units on the axes is nm−1.
The figures are from Kirkensgaard et al. [10].

Analysis

Kirkensgaard et al. fitted the data to the modified Warner-Edwards
model with dangling ends [37] for the SiS and SiL samples respectively.
The original Warner Edwards model derives the scattering pattern for a
deformed polymer network containing some fully deuterated chains where
the chains are confined to ”tubes” of localizing potentials. The Warner-
Edwards model was incapable of reproducing the Lozenge patterns in the
scattering experiments by Straube et al.[38] who therefore modified the
model phenomenologically by including deformed tube parameters. The
potentially deformed tube parameters were included on the microscopic
level in Read et al. [37] who also showed that the origin of the Lozenge



2.2. PRIOR STUDIES OF SIS AND SIL BLENDS 33

patterns is that the outer parts of the chains can relax while the center
remains confined in the tube described by the fraction of ”dangling ends”
f . In this way, the tube diameter d in direction µ is given as dµ = d0λνµ,
where λµ is the strain in direction µ, and λνµ is the effective strain on the
polymer tube. In ref. [37], fits to data from ref. [38] are performed with
the value ν = 0 corresponding to no deformation, and the value ν = 1/2
that has been proposed for deformed tube potentials[39, 40].

Due to the much larger macroscopic stretch ratios applied in this study,
the potential nematic interactions, and the extension to relaxation both
the fraction of dangling ends and the coupling exponent ν was included
as fitting parameters with constraints that the fraction of dangling ends,
for the SiL samples, should increase monotonically during the relaxation,
the tube diameter should tend towards isotropy ν = 0, and the effective
strain λνz felt by the short chains should decrease monotonically with
relaxation[10].

The time evolution of the effective strain, λνz can be calculated from
Tab. 2 in ref. [10]. The result is plotted in Fig. 2.4. It is evident that the
short chain are stretched about a factor of 1.5 more in the presence of
long chains than in the pure melt of short chains and that they remain
stretched for quite some time longer reaching approximately the initial
level of microscopic stretch ratio for the pure short material after 320 s of
relaxation.

2.2.4 Nematic interactions hypothesis

The increased and prolonged stretching was explained by nematic inter-
actions between the polymer chains meaning that the Kuhn segments of
neighbouring chains prefer to align. Since the long chains are stretched
by the flow, WiL

R ∼ 70� 1, the short chains will stretch more in the blend
because they will prefer to align with their stretched surroundings. The
WAXS study of the sample was initiated to test whether we could see this
alignment on the Kuhn segment level. The section sets up the framework
for answering this question by relating the scattering pattern of, stretched,
polystyrene to its molecular structure and describing the mathematical
description of segment alignment as measured by WAXS.
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Figure 2.4: Relaxation of microscopic stretch ratio SiS and SiL. The microscopic
stretch ratio λνz with errorbars as a function of relaxation time trel is calculated
from Tab. 2 in ref. [10]. The upper red points correspond to SiL-data and the
lower blue points correspond to SiS data. The data point at 0 s of relaxation is
plotted at trel = 0.05 s.

2.3 Wide-Angle X-ray Scattering on Stretched
Polystyrene

In the following section we will analyze the WAXS data for the samples
above. In this section we describe the scattering pattern from polystyrene
and discuss how it is affected by stretching. We also explain how orien-
tation can be quantified from WAXS patterns for amorphous polymers.
The knowledge about the origin of the scattering pattern and methods
for quantifying the orientation is important to choose the right analy-
sis method to test the nematic interaction hypothesis from the previous
section with our WAXS measurements.
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2.3.1 Scattering Pattern and Molecular Structure of
Polystyrene

The scattering pattern of polystyrene in the q = 0.2 − 2 Å−1 range is
characterized by two rings centered at approximately q = 0.7 Å

−1
and

q = 1.3 Å
−1

corresponding to characteristic distances of approximately 9
Å and 5 Å. The scattering pattern of polystyrene is illustrated in the left
panel of Fig. 2.5a. The right panel of the figure illustrates the effect on the
scattering pattern when the sample is stretched, here along the vertical
axis as illustrated by the filament cartoon in the middle of the figure.
Stretching the sample causes the inner ring to split into two arcs and
the outer ring has enhanced intensity parallel to the stretching direction
and becomes visibly elliptical. In Fig. 2.5b we show 1D data to further
illustrate the effect of stretching.

Early Experiments

That the WAXS pattern of polystyrene is affected by stretching has been
known for almost a century. The origin of the X-ray scattering patterns of
polymers, including polystyrene, was studied extensively by J. R. Katz
from the late 1920s[41]. He compared the scattering patterns of polymers
with those of about 400 non-polymerized liquids, e.g. the scattering pattern
of polystyrene to that of liquid styrene. For some polymers, including
polystyrene, he found that the scattering pattern of the polymer contains
the same features as the scattering pattern from the monomeric liquid, the
outer ring, with another ring added of corresponding to a larger distance,
the inner ring for polystyrene. Due to this observation, Katz called the
inner ring the polymerization ring. As he writes, the origin of this ring has
been an unsolved question for a long time already in the 1930s, but the fact
that the inner ring forms arcs upon stretching led to the conclusion that
it corresponds to the distance between neighboring polymer molecules.
To the best of our knowledge, the earliest experiment with stretching
polystyrene was performed by M Hühnemörder 1927. She observed that
upon stretching polystyrene heated above the glass transition temperature,
Tg with 3000 to 4000 %, the inner ring was transformed into two arcs
perpendicular to the stretching direction and that the outer rings turned
elliptical, with the major axis parallel to the stretching direction and
increased scattering intensity also parallel to the stretching direction[42]
in agreement with our findings illustrated in Fig. 2.5.
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Figure 2.5: Scattering pattern from relaxed and stretched polystyrene. In a)
the raw 2D patterns are shown for an isotropic sample, SiL 1260 s, and most
anisotropic sample, SiL 0 s. The filament sketch illustrates the stretching direction
and the tiny gray dot shows the X-ray beam hitting the filament. In b) we plot
sector averages corresponding to (0.0 ± 2.5)◦ and (90.0 ± 2.5)◦ for the anisotropic
and (90.0 ± 2.5)◦ for the isotropic samples.
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Recent Molecular Dynamics Simulations

More recently the structure of polystyrene melts, i.e. the molecular confor-
mations and molecules packing, has been investigated using Molecular
Dynamics simulations e.g. [43, 44, 45]. The study by Ayyagari et al. ”Struc-
ture of Atactic Polystyrene: A Molecular Dynamics Simulation Study” in
Macromolecules from 2000 [43] is especially interesting for establishing
the connection between the molecular conformation and packing and
their connection to the WAXS patterns of polystyrene. They perform a
molecular dynamics simulation of atactic polystyrene and its dimer to
investigate which inter- and intramolecular correlations that contribute
to each of the rings in the WAXS pattern. As they write in the begin-
ning of the paper, though polystyrene has been studied extensively over
several decades, the origin of the ”polymerization” peak is not yet well
understood. From their simulations of 16 chains containing 21 monomers
each, Ayyagari et al. derive a scattering pattern that they find compares
well to the experimental data from ref. [46], see Fig. 2.6a. Through their
simulation they can also determine the correlations that contribute to
each peak of the two most pronounced peaks in the scattering pattern
at q ≈ 0.7 Å−1 and q ≈ 1.3 Å−1, which we refer to as the inner and outer
peak in the following. They conclude that the inner peak is dominated
by backbone-backbone correlations between neighboring molecules and
the outer peak dominated by phenyl-phenyl correlations, see Fig. 2.6b.
They also find that the inner peak is present in the structure factor of the
simulated dimers and so they question the validity of the polymerization
peak” nomenclature.

In the following work we focus on the inner peak since backbone-
backbone correlations are the most relevant for studying local orientation
and thereby the potential nematic interactions.

2.3.2 Segment Orientation Distribution Function

Some of the first work quantifying the segment orientation in fibers was
done by Hermans in the 1930s and 1940s through what is now known
as Hermans’ orientation factor, and in the early 1940s Muller argued
that Hermans’ orientation factor is the second moment of the orientation
distribution function expanded in spherical harmonics functions of even
order[47]. In this chapter we characterize the segment orientation in terms
of Hermans’ orientation factor or the second moment of the distribution
function only, but in Chap. 4, we characterize SANS patterns using
spherical harmonics expansion to higher orders. As Winddle argues [48],



38 CHAPTER 2. WAXS ON BI-DISPERSE POLYSTYRENE

(a)

(b)

Figure 2.6: Results of MD simulation by Ayyagari et al. In a) the resulting
scattering profile from the MD simulation is plotted with an experimental
scattering profile from ref. [46] showing two pronounced peaks at small q, which
are discussed in the following. In b) the inter- and intramolecular correlations are
mapped to the peaks in the scattering pattern. Correlations marked with dashed
arrows contribute to the inner peak at q ≈ 0.7 Å−1, and correlations marked with
fully drawn arrows contribute to the outer peak at The arrow width represents
the relative contributions. The figures are from Ayyagari et al. [43].
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the orientation factor found through analysis of WAXS data not only
provides information on semi-crystalline polymers with sharp peaks, but
also for amorphous polymers with more diffuse and overlapping scattering
peaks. Furthermore Winddle argues that information on chain packing
of polystyrene can be obtained by studying the orientation of the inner
ring as argued above. Pick et al. [49] argues that even though the diffuse
scattering gives rise to challenges regarding background subtraction and
a systematic underestimation of the orientation due to intrinsic disorder,
WAXS has major advantages over other techniques that could be used
because it is sensitive only to alignment and not e.g. side group rotation
and there is no need for a specific model of the chain conformation to
analyze the data.

We calculate Hermans’ orientation factor or the second moment of the
segmental distribution function relative to a chosen axis using

f (q∗) =

∑
i I(q∗, θi)P2(cosθi) sinθi∑

i I(q∗, θi) sinθi

P2(cosθ) =
1
2

(
3 cosθ2 − 1

)
(2.3)

where I(θi) is the intensity at a given angle θi relative to the chosen axis for
a specific q-value q∗ or averaged over a specific q-range q∗ ± ∆q∗. The two
summations need identical limits and should cover an integer number
of quadrants for Eq. 2.3 to be a meaningful quantity. In the following
analysis we calculate the orientation relative to the filament axis, which
we align vertically. If the scattering pattern is fully oriented parallel to
the chosen axis, f = 1, if it is isotropic f = 0, and if it is fully oriented
perpendicular to the chosen f = −1

2 .

2.4 WAXS Analysis of SiS and SiL samples

In this section we described how we measured the samples in WAXS,
reduced the data and extracted the second moment of the distribution
functions. In the next section we compare our orientation factors with
other studies that have looked at the orientation of stretched polystyrene
in WAXS and the previous rheology and SANS study on the SiS and SiL
samples.
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2.4.1 Raw Data

2D data-patterns were measured on the SAXS-instrument at the Niels Bohr
Institute. The wavelength is λ = 1.54Å and a sample-detector distance
of 10 cm resulting in a maximal value of q = 2.5 Å. All filaments were
measured in the mid-filament plane, see Fig. 2.5a. We plot one 2D data set
for each sample, e. g. the 2D data for one out of nine filaments of SiL 0
s, in Fig. 2.7, 2.8, and 2.9. From Fig. 2.7 and 2.8, which show the 2D data
for increasing relaxation time for the two materials, we see that SiL 0 s is
the most oriented sample with clear ellipticity of the outer ring and the
formation of arcs of increased intensity in both rings. The SiL-samples are
more anisotropic, and for both materials the anisotropy decays rapidly
with relaxation time. In Fig. 2.9 all filaments are quenched immediately
after reaching a final Hencky strain ε f = 3, but the Hencky strain rate
ε̇ varies. For all rates the SiL-filaments are more anisotropic than the
corresponding SiS-filaments, and the degree of anisotropy decreases with
decreasing rate.

2.4.2 Data Reduction and Analysis

The goal of the data analysis is to compute the degree of orientation
using the second moment of the orientation distribution as presented in
Sec. 2.3.2 and Eq. 2.3 with I(q∗, θ) corresponding to the inner ring as argued
in Sec. 2.3.2. The goal of the data reduction is therefore to achieve I(θ) for
the inner peak. A main obstacle is to estimate and subtract the background
from the tail of the outer peak and other contributions such as thermal
fluctuations. At first glance this seemed like a straight forward task, but it
turned out to contain a number of challenges. Here we present the final
data reduction procedure, but to argue why we made specific choices we
also describe some earlier stages of the reduction and show their output.
The first iteration of the reduction procedure relied on SAXSgui which is
a Matlab based software package for data analysis provided by SAXSlab.
In the later iterations we replaced many of the SAXSgui routines by our
own which improved the outcome.
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(a) SiL 0 s (b) SiS 0 s

(c) SiL 10 s (d) SiS 10 s

(e) SiL 20 s (f) SiS 20 s

Figure 2.7: 2D WAXS data for SiL and SiS during relaxation 0 s to 20 s. Left panel
is SiL-data and right panel is SiS-data.
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(a) SiL 80 s (b) SiS 80 s

(c) SiL 320 s (d) SiS 320 s

Figure 2.8: 2D WAXS data for SiS and SiL during relaxation 80 s to 320 s. Left
panel is SiL-data and right panel is SiS-data.

Reduction to I(θ) in SAXSgui

In our first approach we used SAXSgui for the full data reduction that
consisted of finding the center of the detector image, q-calibration of the
data set using silver behenate as standard, masking out the beamstop and
the dead pixels, and reducing the 2D data I(q, θ) to two types of 1D data:
I(q) averaged for θ = θ0±∆θ and I(θ) averaged for q = q0±∆q. We call the
first type of average a sector average and the second type a ring average.

At this point we measured only one filament of each sample assuming
that the orientation is given to high precision based on the material and
processing conditions. For each filament we performed a ring average
without subtracting any background. We chose the summation range,
q = q0 ± ∆q, by using the in-built fitting routine to fit a Lorentzian on
a sloped background to the inner peak of I(q) averaged over the full
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(a) SiL ε̇ = 0.1 s−1 (b) SiS ε̇ = 0.1 s−1

(c) SiL ε̇ = 0.03 s−1 (d) SiS ε̇ = 0.03 s−1

(e) SiL ε̇ = 0.003 s−1 (f) SiS ε̇ = 0.003 s−1

Figure 2.9: 2D data SiL and SiS for varying deformation rates. The left column
is data for SiL and the right column is data for SiS. The Hencky strain rates are
ε̇ = 0.1 s−1 > 1/τS

R, 1/τS
R > ε̇ = 0.03 s−1 > 1/τS

d , and 1/τS
d > ε̇ = 0.003 s−1.
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detector. The summation range of the ring average was then determined
as q∗±kσq were q∗ is the center value and σq is the half width half maximum,
HWHM. We chose several values of the factor k = 0.25, 0.5, 1 to investigate
the effect of the width of the averaging window. The obtained I(θ) for
SiL 0 s is plotted in Fig. 2.10a. It is evident that the data reduction is
somehow flawed due to the non-smooth behavior at at θ ≈ 50◦, 70◦

and 310◦ corresponding well to the location of the beamstop, and the rows
of missing pixels for read-out.

First Analysis of Reduced Data

The orientation factor was calculated using the data corresponding to
180◦-270◦ and an approach very similar to that of Vancso et al. [50] who
fitted their I(θ) found by peak-fitting, as described in the next section, to

y(θ) = sin(aθ)2b + k, (2.4)

and used the integral version of Eq. 2.3 replacing I(θi) with the fit result
y(θ) multiplied by a factor of -2 to correct for the fact that full orientation of
the segments along the filament axis, i.e. full orientation of the scattering
pattern perpendicular to the filament axis gives f = −1/2. The result of
applying this method to our ring averaged data is plotted in Fig. 2.10b.

This first study showed that the initial degree of orientation differ for
SiS and SiL. Comparing to the microscopic strain ratio from Fig. 2.4 the
data for the SiS-samples qualitatively follow the same trend in the two
plots whereas the SiL orientation from WAXS decays more rapidly than the
microscopic strain ratio. However we knew that ignoring the background
introduces a systematic error, and it was also unclear if the data points
with very low degree of orientation did in fact have zero orientation within
uncertainty. We therefore decided to measure all filaments for each sample
in the mid-filament plane and to improve the data analysis by estimating
and subtracting a background.

Our I(θ) Reduction Routine

We decided to estimate the background by fitting sector averages, I(q) of
the 2D data to a two-peak profile on a constant background. Then we
could use the amplitude of the inner peak, A1 as a function of θ to compute
the orientation factor in this way removing the tail of the outer peak and
the constant background. Even though SAXSgui has a batch mode, it is
not capable of performing several sector averages on a single data in file in
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Figure 2.10: Data averaged in SAXSgui and resulting orientation factors. In a) data
for SiL 0 s averaged in SAXSgui over the q-intervals specified by q∗1 ± k ·HWHM,
where q∗1 is the coordinate of the peak center, k=1, 0.5, 0.25, and HWHM is the
half width half maximum of a Lorentzian. Both q∗1 and HWHM are found using
the fitting routine in SAXSgui for a Lorentzian peak on a sloped background. In
b) the orientation factor for the time relaxation series of SiS and SiL using data
averaged in SAXSgui over q∗1 ± 0.25 ·HWHM.
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(a) (b)

Figure 2.11: 2D data masked in a) and artificially filled in b) as described in the
main text.

a batch mode sense, e.g. average the data in 360/∆θ sectors of width ∆θ.
Therefore performing sector averages of all data files in SAXSgui while
potentially varying ∆θmanually appeared as an inefficient approach with
large probability of error, and so we put effort into the option of modifying
the source code of SAXSgui, kindly provided by SAXSlab, to add the
functionality or finding another readily made analysis software for the
purpose, unfortunately without success. In the end we decided to write
our own data reduction procedure using SAXSgui when convenient. In
the next two subsubsection we describe our data reduction in two steps:
Obtaining sector averages and obtaining I(θ) without background.

Sector Averages First we assign each pixel a q-value using silver behenate
as a standard, the beam center read off through SAXSgui, and the size
of each pixel and assign each pixel a θ-value relative to the vertical axis
based on its position on the detector. We use the SAXSgui tool Maskmaker
to make a mask to cover the dead pixels in the two stripes, the detector
edge, the pixels covered by the beam stop and the few ”dead” pixels on
the detector, and apply the mask to our data. We then use fiber symmetry,
i.e. that the scattering intensities in the four quadrants are related through
a horizontal and a vertical mirror plane, to replace the masked out pixels
by an average of the up to three pixels most closely related to it by fiber
symmetry, see Fig. 2.11. After assigning a q- and θ-value to each pixel and
filled the missing pixels after masking out data, we average the data in
q and θ bins of width 2∆q and 2∆θ respectively, where each pixel only
counts in one bin based on the q and θ value of its center.
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Background Estimation: Choice of Two-Peak Profile We decided to
estimate the background by fitting a two-peak profile to each sector.
Fitting both peak will allow us to subtract the tail of the outer peak from
the inner peak. To account for the remaining background in a simple way,
we decided to model it as a constant for each sector. Since we do not
have theoretical knowledge of the peak profiles, we decided to work with
simple models and therefore we restricted each peak to be modeled either
as a Gaussian or as a Lorentzian thus excluding e.g. Voigt functions. The
four potential two-peak profiles are then given as

yGG(A1, q∗1, σ1,A2, q∗2, σ2, k) =A1e−
1
2 (q−q∗1)2/σ2

1 + A2e−
1
2 (q−q∗2)2/σ2

2 + k

yGL(A1, q∗1, σ1,A2, q∗2, γ2, k) =A1e−
1
2 (q−q∗1)2/σ2

1 + A2

(
1 +

(q − q∗2)2

γ2
2

)−1

+ k

yLG(A1, q∗1, γ1,A2, q∗2, σ2, k) =A1

(
1 +

(q − q∗1)2

γ2
1

)−1

+ A2e−
1
2 (q−q∗2)2/σ2

2 + k

yLL(A1, q∗1, γ1,A2, q∗2, γ2, k) =A1

(
1 +

(q − q∗1)2

γ2
1

)−1

+ A2

(
1 +

(q − q∗2)2

γ2
2

)−1

+ k

(2.5)

where the first capital letter G(L) means that the inner peak is modeled
as a Gaussian (Lorentzian) and the second gives the model for the outer
peak.

Some of the data files show a slight upturn at the smallest values of q.
This could be included in the fit by assuming a more complicated model
for the background, but to keep the model simple, we instead chose to
only fit data for q > 0.25 Å−1.

As a first attempt of choosing the most suitable two-peak profile, we
fit the three sectors that we expect to be most extreme: A horizontal sector
of the most oriented sample, a vertical sector of the most oriented sample,
and a horizontal (or vertical) sector of the least oriented sample. The
reason for this approach is the assumption that if a given two peak-profile
fit these three sectors well, it should also fit all sectors in between well.
The most oriented sample is SiL 0 s and we choose SiS 320 s as the least
oriented sample. The resulting fits are shown in Fig. 2.12, 2.13 and, 2.14
and the χ2-values of the fits are listed in Tab. 2.3. Overall, all four two-peak
profiles describe the data reasonably well. However, closely inspecting
the fits around the peak positions shown in the insets and taking the
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Figure 2.12: Isotropic data fitted to two-peak profiles. The two insets show
zoom-ins on the two peaks. The letter combinations GG, GL, LG, and LL label
the two-peak profiles: G for Gaussian and L for Lorentzian. The first letter gives
the profile fitted to the inner peak.

χ2-values for the vertical sector of the anisotropic data set into account,
the double Lorentz profile performs best, but the Gauss-Lorentz profile is
only slightly worse. Based on these considerations we only consider the
double Lorentz and the Gauss-Lorentz profile in the following.

Background Estimation for All Sector Averages Before we test the two-
Lorentz peak profile fitted to all sector averages of a single 2D set, we
define what we expect of a successful two-peak profile. In Fig. 2.15 we
plot representative I(θ) profiles, SiL 0 s - 320 s, from the averaged data
obtained as described in Sec. 2.4.2. If a given two-peak profile successfully
describes data, and we can subtract a meaningful I(θ) for the inner peak
with the background subtracted, we expect the resulting profiles to look
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Figure 2.13: Perpendicular sector of anisotropic data fitted to two-peak profiles.
The two insets show zoom-ins on the two peaks. The letter combinations GG,
GL, LG, and LL label the two-peak profiles: G for Gaussian and L for Lorentzian.
The first letter gives the profile fitted to the inner peak.

G-G G-L L-G L-L
Horisontal sector oriented 4.9 4.9 3.8 4.1
Vertical sector oriented 6.1 1.2 7.5 1.3
Isotropic 3.2 2.4 3.7 2.5

Table 2.3: χ2 for the four two-peak profiles fitted to the perpendicular and
parallel sector of anisotropic data and isotropic data.



50 CHAPTER 2. WAXS ON BI-DISPERSE POLYSTYRENE

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

200

400

600

800

1,000

1,200

q (Å
−1

)

I(
a.

u)
Parallel
GG
GL
LG
LL

0.55 0.6 0.65 0.7 0.75 0.8

275
300
325
350

q (Å
−1

)
I(

a.
u)

1.2 1.25 1.3 1.35 1.4 1.45

850

950

1,050

q (Å
−1

)

I(
a.

u)

Figure 2.14: Parallel sector of anisotropic data fitted to two-peak profiles. The
two insets show zoom-ins on the two peaks. The letter combinations GG, GL,
LG, and LL label the two-peak profiles: G for Gaussian and L for Lorentzian. The
first letter gives the profile fitted to the inner peak.

qualitatively like the data profiles but with a larger degree of orientation.
Fitting all sectors of given 2D data sets to the LL peak profile result

in the following plots of the intensities of the inner and outer peak and
their center q-value Fig. 2.16. The amplitudes of the inner peak show a
strange upturn at the smallest and largest angles and the curves for the
outer peak are not smooth. We therefore also fit the sectors to the GL peak
profile, see Fig. 2.17. The upturn is smaller but still present and the curves
are now less smooth. We believe this is due to a coupling of the fitting
parameters, and to remedy this, we now estimate the constant background
by fitting full azimuth averages of the data sets to the given two-peak
profile. We then lock the value of the constant term in the following fits of
the individual sectors to that determined from the fit to the full azimuthal
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average. For the LL-profile the result is plotted in Fig. 2.18 where the
curve shape for t ≥10 s differs from that of the actual data in Fig. 2.15. For
the GL-profile the result is plotted in Fig. 2.19. The curves are smooth
and look qualitatively like the data and the strange upturn is gone. We
therefor consider the GL-fit with locked background as the best procedure
for estimating the intensity of the inner peak.

The reduction procedure however still needs improvements. Fig. 2.19b
show that the amplitude of the outer peak found by this procedure does
not vary smoothly with θ, and the q value of the center of the peaks
as a function of azimuthal angle q∗1(θ) and q∗2(θ) respectively vary in an
irregular way, see Fig. 2.20. From the 2D data we expect the peak position
of the outer ring to vary with maximum at θ = 0◦, 180◦ and the position
of the inner ring to be at least close to constant. However, from the
data reduction we find that the peak positions shift in an irregular way.
Nevertheless, for the current analysis we find that the peak amplitude
A1(θ) found from the GL profile with a locked background is sufficiently
accurate for further analysis despite the inaccuracies described in this
section.

2.4.3 Results

From the A1(θ) profiles found as described in the previous section, we
now calculate the orientation faction from Eq. 2.3 for each filament. In
the following analysis we use one measurement for each filament taken
in the mid-filament plane. For the most stretched filaments, it can be
difficult to determine the mid-filament plane accurately since a large part
of the filament is cylindrical. To test the influence of measuring away from
the mid-filament plane, we scan a filament from SiL t = 0 s of relaxation
sample in steps of 1 mm and calculate the orientation factor at each position.
The result is plotted in Fig. 2.21. We see that the orientation factor varies
slightly along the filament, and it seems to be systematically larger towards
the ends of the filament. For consistency in measurements between
filaments it is therefore important to measure at the middle. However
the variation along the specific filament,

∣∣∣ f
∣∣∣
filament scan

= 0.149 ± 0.002 is
much smaller than the variation between all the SiL t = 0 s filaments∣∣∣ f

∣∣∣
all SiL t = 0 s filaments

= 0.14 ± 0.02. Therefore it is not a concern if the
measurement is taken slightly away from the mid-filament plane.

For samples with more than one filament, we take the mean and the
standard deviation of the resulting orientation factors. In Fig. 2.22 we plot
the orientation factors as function of Hencky strain rate, and in Fig. 2.23a we
plot the orientation factor for the relaxation series of SiS and SiL stretched
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Figure 2.15: SiL data averaged over q = (0.6750 ± 0.0025) Å−1 in a) and
q = (1.2850 ± 0.0025) Å−1 in b) for t =0, 10, 20, 80, and 320 s.
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Figure 2.16: SiL peak amplitudes from LL-fit with free background. In a) the
peak ampltude of the inner peak and in b) the peak amplitude of the other peak
for 0, 10, 20, 80, 320 s.
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Figure 2.17: SiL peak amplitudes from GL-fit with free background. In a) the
peak amplitude of the inner peak and in b) the peak amplitude of the outer peak
for 0, 10, 20, 80, 320 s.
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Figure 2.18: SiL peak amplitudes from LL-fit with locked background. In a) the
peak ampltude of th inner peak and in b) the peak amplitude of the other plot for
0, 10, 20, 80, 320 s.
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Figure 2.19: SiL peak amplitudes from GL-fit with locked background. In a) the
peak ampltude of th inner peak and in b) the peak amplitude of the other plot for
0, 10, 20, 80, 320 s.
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Figure 2.20: Peak positions determined through GL-fit with locked background.
The position of the inner peak is plotted in a) and the position of the outer peak
is plotted in b). The inset are zoom-ins.
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a tquench b χ2

SiS 0.046±0.006 0.7±0.4 0.4± 0.03 5.4
SiL 0.17±0.03 1±1 0.39±0.03 4.0
SiL* 0.14±0.02 0.9±0.6 0.34±0.02 9.6

Table 2.4: Fitting parameters for power law decay of local orientation.
In the SiL* row the data point at t =13000 s that consists of only one
measurement was assigned the errorbar of the SiL 1260 s data point.

to ε̇ = 0.1 s−1. We see that for all processing conditions, the SiL-samples
are most oriented and that the orientation for both materials increases
with increasing strain rate and decreases with increasing relaxation time.
From Fig. 2.23 we thought it would be possible to determine a model
for how the orientation decreases with time, and we found that it is well
described by a power law if we allow for an additional constant quench
time as a time off-set. We thus fit the data to

y = A ∗ (t + tquench)b (2.6)

and obtain the fitting results listed in Tab. 2.4. In the first fit to the SiL-data
the fitting routine excludes the last data point since it does not have
errorbars associated because it consists of one measurement only. In the
second fit to the SiL-data we gave the last data point the same errorbars
as the orientation for t=1260 s. The fits are shown in Fig. 2.23b where
tS/L
quench ∼ 1 s has been added to the relaxation time. As we see the exponents

for the two first fits are consistent within the uncertainties. Comparing
the first and the second fit to the SiL data we see that the exponent is
sensitive to the last data point and in general to the orientation at the longer
relaxation times. It is therefore possible that these results are sensitive to
background subtraction.
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the systematics.
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Figure 2.22: Orientation factor f as function of Hencky strain rate ε̇. The rates
relate to the characteristic time scales of the short chains in the following way:
ε̇ > 1/τS
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Figure 2.23: Orientation factor f as function of relaxation time t. In a) the absolute
value of the orientation factor

∣∣∣ f
∣∣∣ is plotted as a function of relaxation time log(t)t.

In b) The data is plotted on double log scale and tquench found from fitting to
Eq. 2.3 has been added to the relaxation time. The last data point for the SiL-series
is not included in the fully drawn fit but in the dashed.
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2.5 Discussion
In this section we discuss the validity of the obtained orientation factors,
how they compare to the effective strain derived from the SANS-study,
and how they relate to the nematic interaction hypothesis.

2.5.1 Data Reduction

As mentioned in the previous section the data reduction procedure has
room for improvements since it does not accurately capture the peak
positions. This could be due to the simple peak models we have employed
consisting of Gaussians and Lorentzian. Both Gaussians and Lorentzians
are symmetric, but the peak profiles of the scattering pattern are not
necessarily symmetric since each peak has contributions from two or more
characteristic distances as argued in Sec. 2.3.1. It may also be due to errors
or inaccuracies in the reduction procedure such as incorrect image centers,
too simple an approach for replacing the masked pixels, or perhaps the
procedure for locking the constant background or the choice of a constant
background itself. However, by manual inspection of a selection of sector
averages and their fitted profile, it appears consistent that the peak height,
which we use in the further analysis, is captured well even though the
position is not, and the suggested improvements of the analysis will
therefore most likely not affect the conclusions.

2.5.2 Orientation Factors for Stretched Polystyrene in
Literature

The found values of
∣∣∣ f

∣∣∣ ≤ 0.18 where
∣∣∣ f

∣∣∣ = 0.5 would correspond to ideal
perpendicular alignment. If we take the intrinsic disorder described in
Sec. 2.3.2 into account and use the correction factor for polystyrene from
ref. [50] we get

∣∣∣ f
∣∣∣
corr
≤ 0.22 which shows that the material could be

oriented more on this length scale. Fig. 2.22 show a clear correlation
between the Hencky strain rate applied and the resulting orientation
suggesting that if the SiL-material was deformed at a larger rate, the
resulting orientation would increase. Given the three data points for each
material, the orientation seems to increase linearly with applied rate, but
more data points are needed to test this hypothesis.

To assess whether the orientation factors we found are reasonable,
we compare to the values found in an earlier study by Vancso et al.
in ref. [50]. They stretched flat tensile test specimens of polystyrene at
temperatures very close to the glass transition temperature, Texp = 108, 112◦
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and Tg = 107 − 114◦ determined by Differential Scanning Calorimetry, at
different but constant clamp speeds. The material they use has Mw = 287
kg/mol and a PDI=2.4. They report values corrected for the intrinsic
disorder of

∣∣∣ f
∣∣∣
Vancso

≤ 0.3. Though it is not straight forward to compare the
stretching procedures, we do consider it reasonable that larger degrees
of orientation can be obtained if the sample deformation is done at
temperatures so close to the glass transitions where the sample relaxation
is very slow.

2.5.3 Comparison of Orientation Factor and Effective
Strain, and Stress

If we compare Fig. 2.4 and 2.23, we see that it is common for both the
orientation factor relaxation and effective strain relaxation that the SiL-
series has a larger initial value. To see whether the effective strain can
also be described by a power law if the quench time is taken into account,
we plot the effective strain on log-log scale and subtract one to account
for the fact that λνz = 1 in equilibrium whereas f = 0 in equilibrium, see
Fig. 2.24. We clearly see that the effective strain and the local orientation
relax qualitatively differently. Since we have not yet established a firm
connection between the effective strain found from SANS and the local
orientation found from WAXS, it is currently not possible for use WAXS
instead of SANS to study the effect of polydispersity as we had hoped.

Nematic Interactions and Orientation from WAXS

The WAXS study was initiated to test the nematic interaction hypothesis
from the previous SANS study. In the introduction, we described the
experiments by Kornfield et al.[30], Tassin et al. [33], and Hayes et al.[34].
They all see a prolonged relaxation of the local orientation of short chains
in blends with long chains and conclude it is due to nematic interactions
so the hypothesis is supported by literature. However, it is not easy to
interpret our results from WAXS in the context of nematic interactions
due to the lack of scattering contrast between short and long chains in
our experiment. We obtain information on on the local orientation of the
short chains in the pure melt of short chains Q̄S

αβ(t) through f , but for the
blend we obtain information on the mix of local orders of the two species
φLQ̄L

αβ(t) + φSQ̄S
αβ(t) through f .
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Figure 2.24: Relaxation of microscopic stretch ratio SiS and SiL. The microscopic
stretch ratio λνz with errorbars as a function of relaxation time trel is calculated
from Tab. 2 in ref. [10]. We subtract the equilibrium value λνz,eq = 1. The upper
black curve corresponds to SiL-data and the lower red curve corresponds to
SiS-data. The relaxation times are shifted by tL/S

quench < 1 s, see Tab. 2.4.

As stated in Sec. 2.1.2, the following relation between the order pa-
rameters Q̄S

αβ(t), Q̄L
αβ(t), S̄S

αβ(t), and S̄L
αβ(t) is expected in case of nematic

interactions:

φLQ̄L
αβ(t) + φSQ̄S

αβ(t) =
1

1 − ε
(
φSS̄S

αβ + φLS̄L
αβ

)
. (2.7)

From the sans experiment we obtain information on S̄S
αβ, but we still miss

information on Q̄L
αβ(t) and S̄L

αβ(t) to determine whether nematic interactions
could explain the increased stretching observed in neutron scattering.

2.5.4 Power Law Relaxation

That the orientation factors relax following power laws probably means
that several relaxation mechanisms occur on different time scales, and
that the exponents are the same for SiS and SiL suggests that the Kuhn
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segments relax similarly independent on whether they belong to short or
long chain such that only the initial degree of stretching is affected by the
chain length. Unlike in the SANS study, there is no scattering contrast
between the short and long chains in X-rays and so it is hard to tell whether
the higher initial orientation is the result of a simple mixture between less
oriented short chains and more oriented long chains or whether there
is an interaction between them. However it should also be noted that
the exponent of the fit is quite sensitive to the orientation factors at long
relaxation times and that the quality of the fit is quite sensitive to the fitted
quench time, as described above, so it is very important to ensure that
these values are as accurate as possible.

The stress relaxation of the blend also shows a power law behavior
over at least two decades, see Fig. 2.1b though that has an exponent about
twice as large astress ∼ −0.8. The origin of this power law behavior is
currently not understood either.

Segment Orientation and Tube Model Expectations

The lowest strain rate ε̇ = 0.003 s−1 < 1/τd = 1/169 s−1 ≈ 0.05 s−1 meaning
that we do not expect orientation of the tube segments during deformation.
With that in mind, it is interesting that even the SiS-filaments stretched
at this rate show a slight degree of orientation. If it is true that there is
orientation on the Kuhn segment level even though we do not expect
orientation at the tube segment level, this could be due to nematic interac-
tions. If it is an artifact of the data reduction, it could also be the case for
the data points corresponding to long relaxation times, and as described
above, the value of those influence the value of power law exponent a lot.
It would therefore be an important check of the data reduction procedure
to test if zero orientation can be reached in other, potentially unstretched,
samples.

2.5.5 Future Experiments

It may be worthwhile to look into the potential of infrared dichroism
for studying our samples, but care should be taken in designing the
experiment since the techniques are sensitive to the optical path length
which may be problematic with our cylindrical specimens.

To gain a better understanding of the relaxation of local orientation
as measured by WAXS, it would be most interesting to repeat the study
with a bi-disperse melt where the pure melt of the long component could
be stretched at the same strain rate as the blend and the pure short
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component. This could be realized by stretching the current melt at a rate
of up to at least ε̇ = 0.01 s−1 at T = 130◦ C which was done in ref. [51].
It is still faster than the inverse of the reptation of the short component
1/τS

d ≈ 0.005 s−1 but slower than the inverse of the Rouse time of the short
chain 1/τS

R ≈ 0.05 s−1 so we would expect only orientation of the tube
segments and not stretching in the pure blend of short chains.

Another approach could be to prepare another blend where the long
chain is shorter. With such a material, it would be interesting to see if
the relaxation too follows a power law with the same exponent for both
components and the blend, and how the initial level of orientation of
the blend compares to that of both pure components. It would also be
interesting to vary the composition of the blend and see how that affects
the relaxation. The question is then which chain lengths to use. The short
chain should probably not be much shorter since it currently holds only
Z ∼ 6 entanglements, and we would like to keep the long chain long
enough relative to the short chain that the Rouse and reptation times of
the two components are well separated. From Tab. 2.1, we know that the
reptation time of the short chain τS

d = 169 s and the Rouse time of the long
chain is τL

R = 705 s. Maybe a separation of τL′
R = 2τS

d ≈ 0.5τL
R is sufficient,

and in that case the long component could be shortened by a factor of
1/
√

2 since τR ∼ N2 and so have Mw ≈400 kg/mol. It should be possible to
stretch this component at ε̇ = 0.1 s−1 at T=130◦ according to Nielsen et al.
[3].

2.6 Conclusion
This chapter presented a wide-angle X-ray scattering study on a bi-
disperse polystyrene blend that was previously characterized in non-
linear extensional rheology and small angle neutron scattering. The
thorough study combining several techniques is most relevant since a
deep understanding of the bi-disperse melt will help us to understand the
effect of polydispersity on the rheological behavior of polymer melts. The
previous SANS-study, where some of the short chains were deuterated,
showed that the short chains were stretched about 50 % more in the
presence of the long chains for the same stretching parameters and that the
stretching relaxed much slower than in the pure melt. Nematic interactions
were put forward as a possible explanation for these observations, and
the WAXS study was initiated to test this hypothesis. WAXS could be
a suitable technique since it can probe length scales corresponding to
the distance between neighboring molecules, but it is challenging since
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there is no scattering contrast between the long and short chains in WAXS
unlike in SANS. The signal from the blend therefore contains contributions
from both the long and short chains unlike SANS. In the WAXS study
we quantified the local orientation using Hermans’ orientation factor
calculated for the peak at q ≈ 0.7 Å−1 that is dominated by interchain
correlations. We found that the orientation factor is always larger for the
blend than for the pure short chain material, and that it increases with
increasing strain rate and decreases with increasing relaxation time as
expected. Surprisingly, if we correct for the quench time, we find that the
orientation decreases as a power law of the relaxation time with the same
exponent for both materials but different initial degrees of orientation
suggesting that the relaxation of local orientation as measured by WAXS
consists of several processes and is independent of chain length. We were
not able to fully establish a connection between the previous SANS results
and the new WAXS results suggesting that more experiments are needed.
One such experiment could be to repeat the WAXS study for a system
where also the pure long chain material can be stretched with the same
stretching parameters.





Chapter 3

Small Angle Neutron Scattering
on End-labeled Three-Arm Stars

In this chapter we present the results of our small angle neutron scatter-
ing (SANS) study on end-deuterated three armed star polymers in fast
extensional flow. Theoretical work has predicted that in fast extensional
flow, star polymers collapse into a quasi-linear conformation and thus
have the same rheological behavior as a linear molecule of the same span,
i.e. same backbone length [52]. This hypothesis was tested in a previous
study on the extensional rheology during stretching and relaxation of a
linear molecule and two stars: one with a short third arm and one with
three arms of the same length [7]. It was found that during stretching
at fast rates, the stars did in fact show the same rheological responses as
the melt of linear molecules. Early in the relaxation, the melts showed
the same response but for longer relaxation times, their behavior devi-
ated. These works led to the hypothesis that in fast extensional flow,
star molecules take a pseudo-linear conformation which remain some
time into the relaxation. This SANS study was then initiated to track
the molecular conformation during relaxation following fast extensional
flow by analyzing a sample series quenched at varying relaxation times.
The molecules were end-deuterated to obtain information on end-to-end
correlations.

The analysis and interpretation of the scattering for the sample
quenched immediately of the cessation of extensional flow and for the
sample after full relaxation is previously published in Mortensen et al.
[53], which is included in this thesis in App. B.

The chapter begins with an introduction to rheological and scattering
experiments on branched polymers followed by a brief summary of
the extensional rheology experiments that led to the hypothesis tested

69
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in this SANS study. Then we present the calculation of the random
phase approximation structure factor for star block copolymers used for
analyzing SANS data for the fully relaxed stars, the sans experiment and
data reduction and analysis. Finally, we discuss our results and conclude
on our findings.

3.1 Introduction

The molecular architecture, and the following molecular conformation,
and rheological properties of polymer melts are closely related. The tube
model has proven successful in the description of rheology of melts of
linear molecules [54]. However, many commercial polymers such as low
density polyethylene are branched, so apart from the fundamental question
of how branching affects the rheological properties of polymer melts and
the conformation of the molecules, a model that relates branching and
rheological properties is also desired for application.

Branched polymers with several branching points and long, i.e., en-
tangled, side chains are both very strain hardening and shear thinning.
This behavior was captured by the molecular constitutive equation for the
simple case of pom-pom molecules, which are molecules with a single
backbone and two branch points from which several branches may grow
[55]. Under sufficiently large strain where the tension in the backbone
connecting the two branch points overcomes the entropic tension in the
branches, the branch points are sucked into the tube of the backbone. This
is called ”branch point withdrawal” [56].

The theory of branch point withdrawal was tested in a set of SANS ex-
periments on well defined H-branched molecules, i.e. pom-pom molecules
with only two branches in each end. In ref. [57] and [54] end-deuterated
H-branched molecules were studied and in ref. [58] backbone deuterated
H-branched molecules were studied.

Branched polymers have also been studied using the filament stretch
rheometer. Nielsen et al. stretched polystyrene melts of asymmetric stars
with an average of 3.3 arms and pom-pom molecules with an average of
2.5 arms to steady state [4] each arm holding about two entanglements,
and Huang et al. later studied a symmetric three arm star, an asymmetric
three arm star and a linear molecule all of the same backbone span [7].
Also semi-crystalline, branched polymers have been studied, e.g. refs.
[59, 60] showing that crystalline orientation in low density polyethylene is
associated with backbone stretch and rather than macroscopic stretch and
that flow induced nucleation and growth of elongated crystal structures,
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shishes, stabilize filaments elongated at temperatures slightly above the
glass transition temperature respectively.

Based on the experiment by Nielsen et al., Ianniruberto and Marrucci
suggested that in steady state of fast extensional flow, the branched
polymers of Nielsen et al. take a quasi-linear chain conformation that for
the stars is due to alignment with the flow [52].

3.2 Extensional Rheology of Stars and Linear
Molecules of Comparable Backbone Length

Based on the work of Ianniruberto and Marrucci mentioned above, Huang
et al. [7] decided to test the hypothesis that branched polymers (with
a single branch point) behaves like linear molecules in fast extensional
flow. The work resulted in ref. [7] ”Dynamics of Star Polymers in Fast
Extensional Flow and Stress Relaxation” by Q. Huang et al. published in
Macromolecules in 2016. The hypothesis was tested by measuring the
extensional rheology for increasing Hencky strain rates and the relaxation
following extension for a linear molecule, and two stars all with the same
backbone length, see next section. They found that for sufficiently large
Hencky strain rates, the stress growth coefficient η̄+(t) overlapped for
melts of all three types of molecules and that the normalized stress curves
also overlap initially during relaxation. In the following subsections, we
describe the samples and the measurements of the extensional rheology.

3.2.1 Samples

The study involved three different molecular structures: A linear polystyrene
Lin180, a symmetric polystyrene star Star90 and an asymmetric polystyrene
Star20. The molecules are sketched in Fig. 3.1. All three molecules had
a backbone with a molecular weight of approximately 180 kg/mol. For
Star20 and Star90 a third arm branches out from a branch point in the
middle of the backbone. . The third arm has a molecular weight of 20
kg/mol and 90 kg/mol respectively. The Rouse time, τR, of the molecules,
which is determined by the backbone length, is about 87 s at T = 130◦ [7]
and 405 s at T = 125◦ [53].
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(a) (b) (c)

Figure 3.1: Molecular architecture of Lin180 in a), Star90 in b), and Star20 in c).

3.2.2 Extensional Rheology of Lin180, Star90, and Star20

This section presents the main findings of the above mentioned publication
by Huang et al. in ref [7]. The extensional rheology for the three blends
was measured on the filament stretch rheometer described in Sec. 1.2.1.
The extensional rheology was measured at a range of Hencky strain rates
ε̇= 0.0003, 0.003, 0.01, 0.03, 0.1, 0.2 s−1. All measurements except the lowest
rate were performed at temperature T = 130◦ C. The measurement for the
lowest rate was performed at T = 150◦0 C and shifted to T = 130◦ C using
time temperature superposition. The results of Huang et al. on the stress
growth coefficient η̄+(t) for the three materials and the different Hencky
strain rates is shown in Fig. 3.2a. For increasing strain rate, the three
curves overlap more and more. For ε̇ > 0.03 s−1, 1/τR ≈ 0.015, the overlap
is almost perfect. This figure supports the hypothesis of Ianniruberto and
Marrucci from ref. [52] that entangled melts of branched polymers, single
branch point i.e. stars or pom-poms, behave like linear polymers in fast
extensional flow.

Huang et al. went further and measured the relaxation following to a
final Hencky strain ε f = 3.2 at Hencky strain rate of ε̇ = 0.03 s−1. Their
[7] results on the normalized stress as a function of relaxation time is
reproduced in Fig. 3.2b. The relaxation is described in terms of three
regions: In region I, all three curves overlap, in region II, the relaxation
of Star20 deviates from the other two curves, and in region III, all three
curves differ. In terms on the Rouse time of the molecules, the transition
from region I to II occur at t ≈ 0.2τR, and the transition from region II to
III occur at t ≈ 6τR.



3.2. EXTENSIONAL RHEOLOGY OF STAR AND LINEAR CHAINS 73

If the relaxation in region I is dominated by arm retraction and that the
arms relax independent of each other and simultaneously, it is reasonable
that the curves overlap. In region II, the short arm of Star20 is fully relaxed
and acts like an solvent diluting the system, and therefore it relaxes
differently than Lin180 and Star90 that continue to relax through arm
retraction. In region III, the relaxation of all three melts is well described
by the Doi-Edwards model using the multi-mode Maxwell relaxation
modulus as memory function. Another interesting observation is that if
the relaxation curve for Star20 is shifted vertically it overlaps well with
the curve for Star90 from the middle of region II and into region III, see ref.
[7], suggesting that the remaining two arms of Star20 relax through the
same mechanisms as Star90 and Lin180 in this time interval. Based on this
figure, the hypothesis was formed that Star90 remains in a quasi-linear,
i.e. Lin180-like, conformation through region I and II in the relaxation.
We aim to test this hypothesis with a small angle scattering experiments
on a relaxation series of end-deuterated star melt following fast uniaxial
extension.
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(a)

(b)

Figure 3.2: Extensional rheology for linear and star shaped molecules. In a) the
stress growth coefficient η̄+ as function of time t after the onset of extension
and in b) normalized stress as function of time after the onset of relaxation. All
experiments were carried out at, or using the time-temperature superposition
principle, shifted to T = 130◦. The figures are from Huang et al. [7]
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3.3 Random Phase Approximation Structure
Factor

In the next section, we present the small angle neutron scattering study
on melts of three-armed end-deuterated star polymers exposed to fast
uniaxial extension and allowed to relax for different times. The end-
deuterated stars of the SANS study are block copolymers where each
arm has a large block of hydrogenous polystyrene by the branch point
and a short block of deuterated polystyrene in the end, and all arms are
symmetric in the sense that they have the same degree of polymerization
N and same deuteration fraction f . One of the samples corresponds to the
fully relaxed state of the end-labeled stars. We expect that the structure
factor of this sample will be described by the random phase approximation
structure factor, which we calculate in this section for a generalized g arm
star with degree of polymerization N and fraction f of monomer type A
and fraction 1 − f of monomer type B.

The simpler case of linear AB block copolymers shows an intriguing
phase diagram where as a function of the fraction f of monomer type
A and the product of the Flory-Huggins interaction parameter and the
degree of polymerization, χN, a disordered and several ordered phases
occur. In the ordered phase the block copolymers micro phase separate
thus creating domains with a higher concentration of monomer type A or
type B. Leibler wrote a microscopic theory that predicts the microphase
separation transition, the transitions between the microphase separated
states of different symmetry, and the structure factor in the disordered
state using the random phase approximation (RPA) [61].

3.3.1 Structure Factor Calculation

We generalize the Leibler structure for linear AB diblock copolymers to
symmetric stars where all g arms are AB diblock copolymers with the
same degree of polymerization N and fraction of monomers of type A, f ,
see Fig. 3.3 for a sketch of the molecule. We follow the approach in ref.
[12] in the calculation.
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(1 − f )N

N

g

B

A

Figure 3.3: Sketch of g-armed end-labeled star. The star has g arms that each
consists of N monomers. The outer f N monomers are deuterated.

The structure factor as function of scattering vector ~q is given as

S(~q) =
1

SAA(~q)+SBB(~q)+2SAB(~q)
SAA(~q)SBB(~q)−S2

AB(~q) − 2χ
(3.1)

and the contribution from correlations between X,Y = A,B monomers,
SXY, is given as

SXY(~q) =
1

NX + NY

NX∑

n=1

NY∑

m=1

〈
ei~q(~Rn−~Rm)

〉
(3.2)

where the average 〈. . .〉 is for an ideal chain with Gaussian statistics and ~Rn

is the position vector of the n’th monomer. If the total number of monomers
is large, the summation can be replaced by an integral [12]. In the following,
we employ this replacement to calculate the different contributions. We
choose to keep the contributions for monomers belonging to the same and
different arms separate. This explicit separation will be useful later when
we calculate the limits of the structure factor for small and large qRg.

We first calculate the contribution from correlations between monomers
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of type B, i.e. the inner block:

SBB(q) =
1

gN




g
∫ (1− f )N

0
dn

∫ (1− f )N

0
dn′e−α|n−n′|

︸                                   ︷︷                                   ︸
Intra-chain contribution, SI

BB(q)

+ g(g − 1)
∫ (1− f )N

0
dn

∫ (1− f )N

0
dm e−α(n+m)

︸                                             ︷︷                                             ︸
Inter-chain contribution, SII

BB(q)




(3.3)

where we have defined α ≡ Nb2

6 q2 = R2
gq2/N for notational simplicity. The

prefactors g and g(g− 1) arise due to combinatorics: There are g arms that
each contribute with intra-chain correlations and each arm has inter-chain
correlations with g − 1 other arms.

We first calculate the intra-chain contribution

SI
BB(q) =

1
N

∫ (1− f )N

0
dn

∫ (1− f )N

0
dn′e−α|n−n′|

=
2
N

∫ (1− f )N

0
dn

∫ n

0
dn′e−α(n−n′)

=
2

Nα

∫ (1− f )N

0
dn (1 − e−αn)

=
2

Nα

[
(1 − f )N +

1
α

(
e−α(1− f )N − 1

)]

=
2

Nα2

[
e−α(1− f )N + (1 − f )Nα − 1

]

x ≡ Nα

=
2N
x2

[
e−(1− f )x + (1 − f )x − 1

]

=Nh(1 − f , x) (3.4)
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where h( f , x) is the generalized Debye function [61]:

h( f , x) =
2
x2

[
e− f x + f x − 1

]
(3.5)

x =
N2b2

6
q2 = R2

gq2. (3.6)

Then we calculate the inter-chain contribution

SII
BB(q) =

g − 1
N

∫ (1− f )N

0
dn

∫ (1− f )N

0
dme−α|n+m|

=
g − 1

N

[∫ (1− f )N

0
dne−αn

]2

=
g − 1
Nα2

[
e−α(1− f )N − 1

]2

=
g − 1
Nα2

[
e−2α(1− f )N − 2e−α(1− f )N + 1

]

=
(g − 1)N

x2

[
e−2(1− f )x − 2e−(1− f )x + 1

]

=
(g − 1)N

2
[
h(2(1 − f ), x) − 2h(1 − f , x)

]
(3.7)

The calculation of SAA(q) and SAB(q) are carried out in the similar ways.
For SAA(q) we get

SAA(q) =
1

gN




g
∫ N

(1− f )N
dn

∫ N

(1− f )N
dn′e−α|n−n′|

︸                                ︷︷                                ︸
Intra chain contribution, SI

AA(q)

+ g(g − 1)
∫ N

(1− f )N
dn

∫ N

(1− f )N
dme−α(n+m)

︸                                         ︷︷                                         ︸
Inter chain contribution, SII

AA(q)




SI
AA(q) = Nh( f , x) (3.8)
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SII
AA(q) =

(g − 1)N
2

[
h(2, x) + h(2(1 − f ), x) − 2h(2 − f , x)

]
, (3.9)

and for SAB(q) we get

SAB(q) =
1

gN




g
∫ N

(1− f )N
dn

∫ (1− f )N

0
dn′e−α|n−n′|

︸                                  ︷︷                                  ︸
Intra chain contribution, SI

AB(q)

+ g(g − 1)
∫ N

(1− f )N
dn

∫ (1− f )N

0
dme−α(n+m)

︸                                           ︷︷                                           ︸
Inter chain contribution, SII

AB(q)




SI
AB(q) =

N
2

[
h(1, x) − h( f , x) − h(1 − f ), x

]
(3.10)

SII
AB(q) =

(g − 1)N
2

[
h(2 − f , x) − h(1, x) − h(2(1 − f ), x) + h(1 − f , x)

]
.

(3.11)

The structure factor is found by combining Eq. 3.1, 3.4, 3.7, and 3.8-3.11.

3.3.2 Cases: g = 1, g = 2, and g = 3

To validate the found expression, we check that it reduces to the known
expressions for g = 1 and g = 2 that are linear AB diblock copolymers
and ABA triblock copolymers respectively. In the case of ABA triblock
copolymers, the A blocks are symmetric.

Linear AB block Copolymer, g = 1

For g = 1, the molecule is a linear AB diblock as described by Leibler[61].
For a linear AB diblock, there are no inter-chain contributions, and we
obtain the following expressions:

SAA(q) = Nh(1 − f , x)
SBB(q) = Nh( f , x)
SAB(q) = N/2

[
h(1, x) − h( f , x) − h(1 − f , x)

]

which is the same result as in refs. [61, 12].
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Linear Triblock Copolymer, g = 2

The result for a two armed star, or linear triblock copolymer is given
in ref. [9]. However, they use a slightly different notation where N∗

is the total number of monomers in the triblock and the number of
deuterated monomers in each end, f ∗N∗, is also calculated relative to the
total number of monomers in the molecule. Also they mix their triblocks
with homopolymer molecules such that the volume fraction of triblocks
is φ. To compare our result to theirs, we need to convert either of the
expressions to the other notation. We choose to convert ours such that
it is given in both notations if the other notation turns out to be more
convenient in some context. We therefore first convert our expression to
the notation of Hassager et al. and then evaluate the expressions for g = 2.
The variables in the two notations are linked in the following way

x =x∗/g
f = f ∗g

Prefactor N =N∗/g (3.12)

which means that the Debye functions transform as follows

h( f , x) =g2h( f ∗, x∗)

h(1 − f , x) =g2h((1 − g f ∗)/g, x∗)

h(2(1 − f ), x) =g2h(2(1 − g f ∗)/g, x∗)

h(2 − f , x) =g2h((2 − g f ∗)/g, x∗)

h(2, x) =g2h(2/g, x∗)

h(1, x) =g2h(1/g, x∗). (3.13)

In the notation of Hassager et al., the inter and intra-chain contributions
to SAA, SBB, and SAB for a g armed star are given as

SI
BB(q) =gN∗h((1 − g f ∗)/g, x∗)

SII
BB(q) =

N∗g(g − 1)
2

[
h(2(1 − g f ∗)/g, x∗) − 2h((1 − g f ∗)/g, x∗)

]

SI
AA(q) =gN∗h( f ∗, x∗)

SII
AA(q) =

N∗g(g − 1)
2

[
h(2/g, x∗) + h(2(1 − g f ∗)/g, x∗) − 2h((2 − g f ∗)/g, x∗)

]

SII
AB(q) =

N∗g
2

[
h(1/g, x∗) − h( f ∗, x∗) − h((1 − g f ∗)/g, x∗)

]
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SII
AB(q) =

N∗g(g − 1)
2

[
h((2 − g f ∗)/g, x∗) − h(1/g, x∗) − h(2(1 − g f ∗)/g, x∗)

+h((1 − g f ∗)/g, x∗)
]
. (3.14)

For g = 2 we get

SI
BB(q) =2N∗h((1 − 2 f ∗)/2, x∗)

SII
BB(q) =N∗

[
h((1 − 2 f ∗), x∗) − 2h((1 − 2 f ∗)/2, x∗)

]

SI
AA(q) =2N∗h( f ∗, x∗)

SII
AA(q) =N∗

[
h(1, x∗) + h((1 − 2 f ∗), x∗) − 2h((1 − f ∗), x∗)

]

SII
AB(q) =N∗

[
h(1/2, x∗) − h( f ∗, x∗) − h((1 − 2 f ∗)/2, x∗)

]

SII
AB(q) =N∗

[
h(1 − f ∗, x∗) − h(1/2, x∗) − h((1 − 2 f ∗), x∗) + h((1 − 2 f ∗)/2, x∗)

]
,

(3.15)

which when combining the inter and intra-chain contributions give

SBB(q) =SI
BB(q) + SII

BB(q) = N∗h((1 − 2 f ∗), x∗)

SAA(q) =SI
AA(q) + SII

AA(q) = N∗
[
2h( f ∗, x∗) + h(1, x∗) + h((1 − 2 f ∗), x∗)

−2h((1 − f ∗), x∗)
]

SAB(q) =SI
AB(q) + SII

AB(q) = N∗
[
h(1 − f ∗, x∗) − h( f ∗, x∗) − h((1 − 2 f ∗), x∗)

]
(3.16)

consistent with the expression in ref. [9] for φ = 1.

Three Armed Stars, g = 3

For the current stud,y the relevant case is g = 3. For this case, we obtain

SI
BB(q) =Nh(1 − f , x)

SII
BB(q) =N

[
h(2(1 − f ), x) − 2h(1 − f , x)

]

SI
AA(q) = Nh( f , x)

SII
AA(q) = N

[
h(2, x) + h(2(1 − f ), x) − h(2 − f , x)

]

SI
AB(q) =

N
2

[
h(1, x) − h( f , x) − h(1 − f ), x

]

SII
AB(q) =N

[
h(2 − f , x) − h(1, x) − h(2(1 − f ), x) + h(1 − f , x)

]
. (3.17)
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3.3.3 Limiting Behaviors

We also check the validity of the structure factor for a three armed star,
Eq. 3.17 and 3.1, by examining its behavior in the limits qRg = x� 1 and
qRg = x � 1 where we expect S(q)→ 0. In the low q limit, the structure
factor tends to zero because we consider a region much larger than the
length of the individual chains and the concentration of segments of type
A (and B) is constant. The high q limit of the structure factor reflects the
insensitivity to the interaction between monomers of type A and B on
short length scales.

We test the structure factor expression in the limits of qRg = x� 1 and
qRg = x� 1 . In the high q-limit, the generalized Debye functions can be
approximated as

h( f , x) =
2
x2

(
e− f x + f x − 1

)
≈ 2 f

x
. (3.18)

With this approximation of the generalized Debye functions, the
structure factor contributions are approximately given by the following
expressions:

SI
BB(q) =Nh(1 − f , x) ≈ N

2(1 − f )
x

SII
BB(q) =

(g − 1)N
2

[
h(2(1 − f ), x) − 2h(1 − f , x)

]

≈ (g − 1)N
2

[
4(1 − f )

x
− 4(1 − f )

x

]
= 0

SI
AA(q) = Nh( f , x) ≈ N

2 f
x

SII
AA(q) =

(g − 1)N
2

[
h(2, x) + h(2(1 − f ), x) − 2h(2 − f , x)

]

≈ (g − 1)N
2

[
4
x

+
4(1 − f )

x
− 4(2 − f )

x

]
= 0

SI
AB(q) =

N
2

[
h(1, x) − h( f , x) − h(1 − f ), x

] ≈ N
2

[
2
x
− 2 f

x
− 2(1 − f )

x
, x

]
= 0

SII
AB(q) =

(g − 1)N
2

[
h(2 − f , x) − h(1, x) − h(2(1 − f ), x) + h(1 − f , x)

]

≈ (g − 1)N
2

[
2(2 − f )

x
− 2

x
− 4(1 − f )

x
+

2(1 − f )
x

]
= 0. (3.19)
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We thus find that, in the limit of qRg � 1, the inter-chain correlations
do not contribute to the structure factor, and the limiting value of the
structure factor then becomes

S(q) ≈ SAASBB − S2
AB

SAA + SBB + 2SAB
≈ SAASBB

SAA + SBB
≈ N 2 f

x N 2(1− f )
x

N 2 f
x + N 2(1− f )

x

=N
4 f (1 − f )

2x
=

12 f (1 − f )
b2q2 (3.20)

which is consistent with the result in Doi [12]. For f = 0 or f = 1, the block
co-polymer is a homopolymer and the structure factor and thus scattering
intensity is zero as required.

The low q limit qRg � 1 is

S(q) ≈ 2
3

f 2(1 − f )2Nx (3.21)

which is also consistent with the result for one arm obtained in [12]. In
both limits, the number of arms does not affect the structure factor, but it
may affect the structure factor for qRg ∼ 1.

3.3.4 Plots of the Structure Factor

To gain intuition for the structure factor in the region qRg ∼ 1, we vary f ,
N, g through a few values and plot the results in Fig. 3.4 and 3.5. We study
how the peak shifts as a function of the parameters. Later, we apply the
RPA-structure factor to describe a star with parameter values f = 0.075,
g = 3, and N = 135 and therefore these values are the starting points for
all plots. The structure factor peaks at qRg ∼ 1 due to the correlation hole
effect where the probability of two monomers of the same type belonging
to different chains close to each other is slightly decreased [61]. In the
following, we characterize the influence of the parameters f , g, and N
through shifts in the peak position.

In Fig. 3.4, we see that the peak shifts slightly towards smaller q with
increasing number of arms g or increasing degree of polymerization N
which is reasonable since an increasing number of arms or increasing
degrees of polymerization increases the radius of gyration, Rg. In Fig. 3.5,
we see that the peak shifts to larger values of q for decreasing f which
is consistent with the behavior for linear polymers in Leibler’s work
[61]. Though in principle, the RPA-structure factor for a g-armed star
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can be evaluated for any value of g, we only expect it to describe stars
with few arms well because it does not take exclude volume interactions
into account, and they become increasingly important as we increase the
number of arms g.

In Fig. 3.6, we plot the structure factor and the high-q limit and see that
for q > 0.2 Å−1, they deviate with less than 5%. This will be important in
Sec. 3.4.3 where we use the high-q limit of the structure factor to estimate
the incoherent background in SANS data.
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Figure 3.4: RPA-structure factor sensitivity to number of arms g and degree of
polymerization in each arm N. In a) we increase the number of arms from one to
three keeping N = 135 and f = 0.075 fixed, and in b) we vary N while keeping
g = 3 and f = 0.075 constant. The insets show the peak position q∗ as a function
of the varied parameter g or N respectively.
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Figure 3.5: RPA-structure factor sensitivity to deuterated fraction f . We plot the
structure factor S(q) for three different deuteration fractions while keeping g = 3
and N = 135 fixed. The inset shows the peak position q∗ as a function of f .
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Figure 3.6: Comparison of RPA structure factor and high q-approximation. Inset
shows that for q > 0.2 Å−1 the deviation between the structure factor and the
approximation is 5% or less.
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3.4 Small Angle Neutron Scattering
In this section, we introduce the samples for neutron scattering and the
experimental setup at QUOKKA and present the 2D data and our results.

3.4.1 Samples

For studying three-armed stars in non-linear extensional flow using SANS
end-deuterated stars were synthesized to obtain information on end-to-
end correlations. The end-deuterated star is sketched in Fig. 3.7. The
three armed stars have a molecular weight of Mw = 309.1 kg/mol and
a polydispersity index of PDI=1.3. The end of each arm is deuterated
corresponding to a deuteration fraction of 7.5 %. The molecules are
synthesized and their molecular weight is measured by Ph.D. Andriy
Dorokhin, see ref.[62].

Extensional Rheology

All samples were stretched using the filament stretch rheometer at a
Hencky strain rate of 0.06 s−1 at T=125 ◦ C to a final Hencky strain of ε f = 3
and quenched at different relaxation times ranging from no relaxation to
full relaxation (FR) as listed in Tab. 3.1.

3.4.2 Experimental Settings

The SANS experiment was performed by Chris Garvey, instrument sci-
entist at the small angle neutron scattering instrument QUOKKA at
Australia’s nuclear science and technology organization (ANSTO), using
four instrument settings. The settings are summarized in Tab. 3.2.

Figure 3.7: End-deuterated star.
Black represents hydrogenous
polystyrene and red deuterated
polystyrene. The three arms are
symmetric such that the deuter-
ation fraction in each arm is the
same.
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Hencky strain rate (s−1) at T=125 ◦ C Relaxation time (s)
0.06 0

5
200

4000
Fully relaxed (FR)

Table 3.1: The sample series for end-labeled stars measured at ANSTO

2 m 5 m 14 m 20 m
Wavelength (Å), ∆λ/λ = 0.1 5 5 5 8
Source-Sample distance (m) 14 10 14 20
Sample-Detector distance (m) 2 5 14 20
Measurement time (h) 0.25 1 3 9
Covered q-range (Å−1) 0.25 1 3 9

Table 3.2: Instrument settings for QUOKKA. The end-labeled samples
were measured at QUOKKA using the four instrument settings 2 m, 5 m,
14 m and 20 m.

3.4.3 Data Reduction

The obtained 2D SANS data was corrected for the measured scattering
intensities for the blocked beam and the empty beam and for detector
sensitivity using the QUOKKA-macro for Igor Pro. Furthermore, the data
was rotated to account for the slight sample rotation, and the incoher-
ent scattering was estimated and subtracted using code written for the
purpose.

Data Reduction in Igor Pro

All 2D patterns, ISAM, were corrected to obtain ICOR by subtracting the
measured scattering intensities from the blocked beam, IBCK, and empty
beam, IEMP, weighted by the respective transmissions T̃ using

ICOR = (ISAM − IBCK) − T̃SAM

T̃EMP
(IEMP − IBCK) . (3.22)

The blocked and empty beam subtracted data is corrected for detector
sensitivity, by dividing the 2D scattering data pixel by pixel with the 2D
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scattering pattern of an isotropic scatterer, here plexiglass. We present the
resulting 2D patterns in the next subsection.

Qualitative Analysis

Looking first at the 2D data from the 2 m, 5 m and 14 m settings, Fig. 3.8, 3.9,
and 3.10 we see that the scattering patterns change from highly anisotropic
to close to ideally isotropic with relaxation time. The striking character
of the anisotropy of the 0 s, 5 s and partly 200 s patterns is most clearly
seen from the 5 m and 14 m settings. The 0 s and 5 s scattering patterns
are characterized by four horizontal lines: Two with high intensity on
the horizontal axis and two with lower intensity above and below the
beamstop. The latter are most visible in the 14 m setting, Fig. 3.10. We
sketch the scattering in pattern in Fig. 3.11 for clarity.

For the 200 s sample, the bright peaks on the horizontal axis are absent,
and the peaks above and below the beamstop are shifted slightly towards
larger q. We return to the quantitative interpretation of these features in
Sec. 3.4.4. The lines are not perfectly horizontal due to sample rotation,
which we discuss in Sec. 3.4.3. In the 14 m setting, it is also apparent that
all five patterns have bright spots on each side of the beamstop on the
horizontal axis and the fully relaxed sample also has excess scattering
on the vertical axis. In the 20 m setting, we only see this scattering, see
Fig. 3.12. It is the topic of Chap. A. Furthermore, there seem to be an issue
with overestimation of the background for the 200 s and 4000 s samples in
the 14 m setting. This is most likely due to issues with the transmissions of
the samples leading to the subtraction of too much background. However,
the results of this study rely, not on the absolute scattering intensity, but
on the position of the maxima in intensity, and the following conclusions
are therefore not affected by this issue.

Sample Alignment and Data Rotation

Most samples are made from several filaments. The individual filaments
need to be aligned to each other to avoid smearing of the features in
the scattering pattern. This is relatively easy to achieve for samples
corresponding to larger final Hencky strains and short relaxation times
since they are very close to cylindrical in shape and can therefore be packed
closely. For filaments corresponding to longer relaxation times, the shape
approaches an hour glass and thus relative alignment is more challenging.
However this only posses a challenge at the longest relaxation times where
the scattering patterns are isotropic. An example of filament alignment
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(a) t = 0 s (b) t = 5 s

(c) t = 200 s (d) t = 4000 s

(e) FR

Figure 3.8: 2D data corrected for empty and blocked beam, 2 m setting.
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(a) t = 0 s (b) t = 5 s

(c) t = 200 s (d) t = 4000 s

(e) FR

Figure 3.9: 2D data corrected for empty and blocked beam, 5 m setting.
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(a) t = 0 s (b) t = 5 s

(c) t = 200 s (d) t = 4000 s

(e) FR

Figure 3.10: 2D data corrected for empty and blocked beam, 14 m setting.
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q‖

q⊥

Figure 3.11: Schematic drawing of 0 s scattering pattern. The green lines show
the peaks on the horizontal axis and the orange lines the peaks above and below
the beamstop.

(a) t = 0 s (b) t = 200 s

(c) t = 4000 s (d) FR

Figure 3.12: 2D data corrected for empty and blocked beam, 20 m setting.
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Figure 3.13: Samples for Neu-
tron Scattering. The sample con-
sists of several filaments aligned
and attached to a cadmium ring
and loaded in the sample holder.
The sample is the end-labeled
star for t = 5 s measured at
QUOKKA in December 2016.
Photo: Chris Garvey.

is shown in Fig. 3.13. When the filaments are aligned to each other the
samples are attached to a cadmium ring that is mounted in a sample
holder. In mounting the ring, perfect (vertical) alignment is difficult to
achieve, see Fig. 3.13. For this reason, the peaks on the horizontal axis in
e.g. Fig. 3.9 form lines slightly tilted from the horizontal axis.

In the following analysis, we need to take the sample rotation into
account, and we choose to rotate the data before further analysis.

Determination of Rotation Angle For the end-labeled data sets corre-
sponding to t = 0 s and t = 5 s the rotation angle is found using the peaks
on the horizontal axis and the data sets from the 5 m setting The steps
of the procedure are illustrated for the t = 5 s in Fig. 3.14. For single
columns of the data, the intensity as function of pixel number is fitted to
find the position of the center of the peak on the horizontal axis, see inset
on Fig. 3.14a. The analytical expression fitted to data is not important as
long as it captures the peak position well. We make a simple choice and
fit the intensity for the center part of the pixel columns to the sum of two
Gaussians with the same center but different

Ifit(x) = A1 exp
(
−(x − x0)2/σ2

1

)
+ A2 exp

(
−(x − x0)2/σ2

2

)
+ k. (3.23)
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We show an example of the intensity for a pixel column fitted with the
expression above in Fig. 3.14a.

Next, we plot the peak center found from the fits as a function of pixel
column number to a first degree polynomial with slope a, see Fig. 3.14b.
The sample rotation angle χ is found as χ = arctan a. In the case of the 5
s samples, a = −0.0498 → θ = −2.8◦. We therefore rotate the scattering
pattern by −θ = 2.8◦. The rotated data is shown next to the data before
rotation for the 5 s sample in the 5 m setting in Fig. 3.15. The data sets for
all detector settings for each sample are rotated by the same angle. We
attempted to find the rotation angle for the t 200 s using the peaks above
and below the beamstop and found that it was well aligned as is. The
4000 s and fully relaxed data sets were not rotated.

Sectors and Slabs

In the following sections, we will use two different averages over the area of
the detector that we will call sectors and slabs. We define sectors as an area
that spans an angular range from the beam center and out to the detector
edge, like a slice of a pie, and slabs as vertical or horizontal rectangles. We
illustrate sectors and slabs in Fig. 3.16. Due to the symmetry of uniaxial
extension, the scattering intensities in the four quadrants are related and
therefore we find up to four equivalent sectors or slabs illustrated in red
and blue on the figure. By averaging over a sector or slab, we obtain 1D
data I(q).

Background Subtraction

In Sec. 3.4.3 we described how the measured scattering intensity was
corrected for the blocked and empty beam and detector efficiency. Here, we
show how we estimate and subtract the incoherent background originating
from the sample.

Due to the cylindrical shape of the filaments and that a sample may
consist of multiple filaments, the amount of material across the area of
the sample and that makes it hard to choose a sample to estimate the
incoherent background from. In principle, one could use a sample with the
exact same distribution of fully hydrogenated filaments, but this is hard
to realize in practice since it would require all samples to have identical
dimensions, i.e. not vary in diameter or number of filaments, or a different
background sample for each sample. In addition, the excess scattering at
small q vary from sample to sample, see e.g. Fig. 3.10 and may also do so
between background samples. Instead we use that the scattering intensity
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Figure 3.14: Intermediate steps for rotating 2D data, here 5 m setting for 5 s
relaxation. In a) the scattering intensity in each pixel row is plotted for pixel
column 40, see inset. The intensity is fitted to Eq. 3.23. In b) the found peak
position is plotted as a function of pixel column and fitted to a straight line. The
inset is a zoom of the same plot.
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(a) (b)

Figure 3.15: Rotation of end-labeled 5 s scattering pattern. In a) the original 2D
data, in b) the rotated 2D data. See Fig. 3.14 for intermediate steps.

(a) (b)

Figure 3.16: Illustration of sectors in a) and slabs in b).
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is dominated by the incoherent scattering, which is independent of q, for
sufficiently large values of q, .

To estimate the incoherent background for the end-deuterated star
samples we use that the high q limit of the random phase approximation
structure factor S(q) ∼ q−2 is within 5 % of S(q) for q > 0.2 Å−1, see Eq. 3.20
and Fig. 3.6, and fit I(q) for sector averages at (45 ± 5)◦ and q > 0.2 Å−1 to

y = Aq−2 + b, (3.24)

and use b as our estimate for the incoherent background. We fit to the
45◦-sector because we consider it the most neutral region for the stretched
samples. In Fig. 3.17, we show the overlap of the 45◦-sectors from the 2 m,
5 m, and 14 m setting after an arbitrary scaling. The 2 m data fulfilling
q > 0.2 Å

−1
is fitted to Eq. 3.24 . We then scale all data sets to account for

varying material amounts in the different samples and subtract the scaled
incoherent background. We do this by scaling the incoherent background
from all 2 m sectors to the same, but otherwise arbitrary, value. For the
2 m data we then subtract the scaled incoherent background. For the 5
m and 14 m setting, we also scale by the arbitrary factor that gave the
overlap in Fig. 3.17 before subtract. The resulting 2D patterns for the 5 m
and 14 m setting are shown in Fig. 3.18 and 3.19.

3.4.4 Data Analysis

After the data reduction presented in the previous section, we are now
ready to analyze the data. As mentioned in the beginning of the chapter, the
data for the 0 s relaxation and fully relaxed samples and their interpretation
are already published in Mortensen et al.[53]. Here, we give a brief
summary of the findings of the publication and discuss the remaining
three data sets in more detail.

Fully Relaxed Sample

For the fully relaxed scattering pattern, we assume that the hydrogenous
and deuterated segments are uniformly mixed, i.e. that there is no
microscopic phase separation. In this case, the scattering intensity is given
by the random phase approximation structure factor, which we calculate
in Sec. 3.3. Due to the extra scattering at small q, we omit the sectors
(0 ± 20)◦, (180 ± 20)◦, (90 ± 10)◦, and (270 ± 10)◦, the remaining sectors are
averaged for the 5 m and 14 m setting. The resulting I(q) is plotted in
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Figure 3.17: Overlap for 2 m, 5 m and 14 m setting and background estimation.
For each detector setting the 45◦-sector is plotted. The 5 m and 14 m data are
arbitrarily scaled to match the 2 m setting data. The data for q < 0.2 Å

−1
is fitted

to Eq. 3.24 for incoherent background estimation.

Fig. 3.20 with two fits of the RPA structure factor from Eq. 3.1 to data. In
the first fit, the structure factor is fitted with an overall amplitude as the
only parameter, which we refer to as scaled, and in the second fit molecular
parameters f and N and an overall amplitude were fitting parameters. The
scaled RPA-structure factor describes the data for q > q∗, where q∗ denotes
the maximum of the structure factor, reasonably well though there are
systematic deviations. The scaled RPA-structure factor predicts q∗ to occur
at smaller q than what we see in the data, and that may imply a slight
overestimate of the molecular weight, see Sec. 3.3. Also we see a slight
upturn at the smallest values of q. It could be due to remaining excess
scattering or due to polydispersity though that should also shift the peak
further towards small q [63, 64] and thus increase the discrepancy between
the theoretical prediction and the experimental data. Interestingly in the
same reference [63], Bates et al. find that RPA overestimates q∗ for most of
their linear diblock copolymers, which they explain by deviations from
Gaussian statistics close to the spinodal curve. We, however, do not expect
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(a) t = 0 s (b) t = 5 s

(c) t = 200 s (d) t = 4000 s

(e) FR

Figure 3.18: Background subtracted and scaled 2D data, 5 m setting. The
subfigures show the 2D data for all five samples after rotation, background
subtraction and scaling.
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(a) t = 0 s (b) t = 5 s

(c) t = 200 s (d) t = 4000 s

(e) FR

Figure 3.19: Background subtracted and scaled 2D data, 14 m setting. The
subfigures show the 2D data for all five samples after rotation, background
subtraction and scaling.
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Figure 3.20: Scattering intensity from the fully relaxed sample compared to the
RPA-structure factor. The scattering intensity, I(q), is averaged over all sectors
not affected by the excess scattering. The data is fitted to the RPA-structure factor
twice. For the first fit, shown with a fully drawn line, only the overall scaling
was included as a fitting parameter. For the second fit, shown with a dashed line,
also the molecular parameters f and N were included as fitting parameters.

to be near the spinodal since we have relatively small χN. In further
analysis, one could include polydispersity to see how it affects the result.
To include polydispersity in a simple way, one could approximate the
polydispersity by considering a finite number of molecular populations
varying slightly in the length of the individual blocks as in ref.[58]. It
would also be interesting to see how excluded volume effects impact the
result.

Lastly, from the second fit where not only the over all scaling but also
the molecular parameters f and N were fitted, we obtain the curve with
the dashed line in Fig. 3.20, and find that N = 99 ± 1 and f = 0.104 ± 0.002.

Sample Relaxed for 0 s

As mentioned in Sec. 3.4.3, the scattering pattern is dominated by four
stripes, two on the horizontal axis and two shifted away from the horizon-
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tal axis along the vertical axis, see Fig. 3.21 for a sketch of the idealized
scattering pattern. The centers of the peaks on the horizontal axis, perpen-
dicular to the direction of extension, are q∗⊥ = ±0.06 Å

−1
corresponding to

a characteristic distance d⊥ ∼100 Å, and the centers of the peaks shifted on
the vertical axis, parallel to the direction of extension, are q∗‖ = ±0.005 Å

−1

corresponding to a characteristic distance of d‖ ∼1300 Å. We assign the
peaks to correlations between two deuterated ends. The horizontal peaks
correspond to the distance between two deuterated ends of the molecule
pointing in the same direction relative to the flow, d⊥, and the vertical
peaks correspond to the distance between two ends pointing in opposite
directions relative to the flow, d‖. The horizontal width of the peaks on the
vertical axis may simply reflect that the scattering domains are elongated
along the stretching direction. The horizontal width of the peaks on
the horizontal axis may have the same origin, but could also be caused
by some variation in d⊥. If we relate the characteristic distances to the
molecular parameters, d⊥ ∼100 Å corresponds to the tube diameter for
polystyrene of a = 85 Å, and d‖ ∼1300 Å indicates that the tube segments
of the star are not only aligned but also slightly stretched by the flow. We
conclude that the segments are stretched from the following calculation:
The tube contour length between two ends is

Ltube = 2Za ≈ 1040 Å (3.25)

where a is the tube diameter and Z is the number of entanglements in
one arm. The factor of 2 accounts for the fact that two deuterated ends
are separated by two arms. The number of entanglement segments in
one arm Z is calculated as the ratio of the molecular weight of one arm
Mw = 101.7 kg/mol and the entanglement molar mass for polystyrene
Me=16.6 kg/mol:

Z =
Mw

Me
≈ 6. (3.26)

Since d‖ > Ltube, the tube segments must be, slightly, stretched. For
comparison, we also calculate the chain contour length

Lchain = 2Nb = 2
√〈R2〉

b
= 2

√
0.437Mw[g/mol]

b
≈ 4940 Å (3.27)

where N is the number of Kuhn segments in one arm, b = 18 Å is the
Kuhn segment length for polystyrene, and R is the end-to-end vector. We



3.4. SMALL ANGLE NEUTRON SCATTERING 105

Figure 3.21: Idealized 0 s scattering pattern. The scattering pattern is dominated
by two types of horizontal streaks

find that Lchain > d‖ > Ltube and conclude that the chain is far from fully
stretched.

The description of the molecular conformation in terms of a tube
picture describes the data well, but it may be unclear how to think about
tubes for the fully extended, and even slightly stretched, ”tubes” since
there will be no entanglements in this situation. However, since we stretch
the material so fast it may be that the chains have a memory of a virtual
tube.

Scattering Patterns of Relaxation

Qualitatively the 5 s pattern looks very similar to the 0 s pattern, and
the 4000 s pattern appears isotropic like the fully relaxed, omitting the
scattering at small q from consideration though the ring of maximum
intensity appear to be at slightly smaller q. The 200 s pattern is to some
extend similar to the 0 s and 5 s pattern as it does not have the horizontal
peaks but the vertical peaks, which are shifted to larger q. In the following,
we reduce the data to I(q)-curves using the sector and slab averages shown
in Fig. 3.16.

For the 5 s and 200 s patterns, we reduce the data over slabs corre-
sponding to the horizontal peak and crossing the peak on the vertical axis
respectively in Fig. 3.22. For clarity, we present the same slab averages
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of all data sets. We see that the horizontal peak shifts slightly towards
smaller q⊥ during the first 5 s of relaxation. For 200 s, there appear to be
a peak at around q = 0.02 Å−1. That there is a peak in the t=200 s data is
supported by the more convincing presence of a peak at roughly the same
q-value in the 4000 s data. However, the origin of these peaks is currently
unknown. To determine the peak positions, we fit the slab averaged data.
Since we do not have a model for the peak shapes, we choose a Gaussian
on a sloped background for the horizontal peaks and a Gaussian on a
constant background for the peaks on the vertical axis:

yfit, horizontal =A1q−b + A2e−
(q−q0)

2σ2 (3.28)

yfit, vertical =A2e−
(q−q0)

2σ2 + k. (3.29)

The black lines representing the fit covers the data range used for the fit.
In the figure insets, we plot the position of the peak centers as function
of relaxation time. We see that the peak shifts non-monotonically from
the position immediately after stretching to the equilibrium position at
the longest relaxation time. We interpret the initial shift towards smaller q
from the 0 s pattern to the 5 s pattern as the two arms oriented in the same
direction relative to the flow moving somewhat further apart during the
first 5 s of relaxation, which is consistent with our expectations. We come
back to interpretation of the remaining horizontal slabs after discussing
the relaxation of the peak on the vertical axis and the 4000 s scattering
pattern.

For the peak on the vertical axis, the peak shifts towards larger values
of q‖ with relaxation time at least up to t=200 s. This is consistent with
the molecule retracting from its oriented and slightly stretched state. The
peak shift from 0 s to 200 s corresponds to a length change along the axis of
stretching from d0 s

‖ ∼ 1300 Å to d200 s
‖ ∼ 550 Å. The distance of d200 s

‖ ∼ 550
Å is approximately twice the statistical end-to-end vector length for two
star arms with Mw = 203.4 kg/mol which is R2 arms ∼ 300 Å calculated as√〈R2〉 =

√
0.437Mw[g/mol].

For the 4000 s data, we first conclude that pattern is in fact isotropic by
plotting the sectors parallel and perpendicular to the flow in Fig. 3.23a
and see that they are consistent within the errorbars for most values of
q. For some small q-values the intensity of the horizontal and vertical
sector deviate, but this is most likely due to the overall low scattering
intensity recorded for this sample, see e.g. Fig. 3.10. Having concluded
that the 4000 s scattering pattern is isotropic, we average the scattering
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Figure 3.22: Horizontal and vertical slabs during relaxation. In a) intensity in the
slab characterized by q‖ = [−0.01, 0.01] Å−1 surrounding the horizontal peak is
plotted as a function of q⊥ for the relaxation steps using the 5 m setting data. In
b) intensity in the slab characterized by q⊥ = [−0.01, 0.01] Å−1 crossing the peak
on the vertical axis is plotted as a function of q‖ for the relaxation steps using the
14 m setting data. The FR-data is only shown for q‖ > 0.015 Å−1 due to the large
amount of excess scattering at small q. Black lines are fits to Eq. 3.28 in a) and
Eq. 3.29 in b). The insets show the peak positions found from the fits.
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intensity over the full detector except the two horizontal sectors (0 ± 10)◦

and (180 ± 10)◦ and compare it to the RPA-structure factor where we fit
a scaling factor only and not any molecular parameters. The result is
plotted in Fig. 3.23b. Interestingly, we see that the maximum scattering
intensity for the 4000 s pattern occurs at smaller q than the RPA-structure
factor predicts on the contrary to the RPA-structure factor compared to
the fully relaxed Fig. 3.20. We therefore conclude that after 4000 s the star
conformations are isotropic as in equilibrium, but somehow swollen to a
larger size.

The 200 s scattering pattern shares features with both the 0 s and 5 s
patterns, apparent in the vertical direction, and the 4000 s pattern apparent
in the horizontal direction. The clear peaks in the vertical direction shows
that a characteristic separation between scattering domains pointing in
opposite directions relative to the flow direction remains at least during
the first 200 s of relaxation. The absence of the horizontal peaks show
that there is no longer a characteristic distance between domains pointing
in the same direction relative to the flow. That the neighboring domains
are more free in their positions may also explain why the peaks on the
vertical axis are broadened relative to the earlier relaxation times. The
peak position on the 200 s horizontal slab has almost the same center as
the corresponding peak on the 4000 s slab so the two peaks may have the
same origin, and the 200 s pattern may therefore contain contributions
from a population of molecules with isotropic conformations.
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Figure 3.23: Analysis of the 4000 s pattern. In a) we show the overlapping
horizontal and vertical sectors, and in b) we show how it compares to the scaled
RPA-structure factor.
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3.5 Discussion

It is most interesting to compare the conclusions from the stress relaxation
in Sec. 3.2.2 to the conclusions based on the neutron scattering data in
Sec. 3.4.4. The stress relaxation curves for Star90 and Lin180 follow each
other through out region II which in terms of the Rouse time of the
molecules at T = 130◦ C has an upper limit at t ≈ 6τR. This could lead us
to think that the quasi-linear conformation of the star is preserved at all
t < 6τR. But from neutron scattering we learn that already at t ≈ 0.5τR

at T = 125◦ C, the correlation between the two ends aligned in the same
direction relative to the flow is gone, and that suggests that the molecules
no longer take a quasi-linear conformation. However, the rheological
behavior may depend only on the stretching along the direction of flow,
which could explain why the relaxation curves still follow each other.

To deepen our understanding of the relaxation apart from more data
point for 5 s< t < 200 s, it would be very interesting to perform a scattering
experiment on a linear polymer of the same span and the same deuteration
fraction to see how the scattering patterns compare. We would expect
to see only the vertical peaks, and that they would relax in a similar
way as the peaks on the vertical axis in the star patterns. Also, it would
be interesting to perform scattering experiments on three-armed stars
of comparable sizes with different deuteration schemes, i.e. an overall
deuteration to provide information on the overall molecular conformation.
Another approach to learn more about the relaxation of star polymers
could be to perform simulations of star polymers in extensional flow
and the following relaxation and generate scattering patterns from the
simulation. If such a simulation for end-labeled stars could produce
relaxation snap shots in agreement with the measured data, the simulation
could give knowledge about the relaxation between our quench times.

3.6 Conclusion

Based on previous experimental and theoretical work, Huang et al.[7]
studied two types of star molecules and a linear molecule of the same
span in extensional flow and the following relaxation. Their findings
confirmed that in fast extensional flow, the star molecules and the linear
molecule had the same rheological response during deformation and in
the initial relaxation, supporting the idea that the branched molecules take
a quasi-linear conformation. To investigate this further, SANS on end-
deuterated samples was conducted on samples representing a relaxation
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time series. We found that immediately after cessation of the flow the
scattering pattern from the melt is consistent with the stars taking a quasi-
linear conformation. However the scattering pattern soon after t ≈ 1/2τR

is no longer fully consistent with the quasi-linear conformation. More
work is needed to obtain a quantitative understanding of the relaxation.





Chapter 4

Chain Retraction in Spherical
Harmonics Expansion

The Doi-Edwards tube model[16] predicts chain expansion during de-
formation of linear polymers and subsequent chain retraction during
the following relaxation. Deformation, such as extensional flow, will
orient the molecules along the direction of flow and stretch the contour
length of the molecules leading to an elongated molecular conformation.
Stretching and orientation will relax through two mechanisms: Rouse
relaxation and reptation. The characteristic time of the Rouse relaxation,
τR, scales with the number of entanglement segments, Z, as τR ∼ Z2 and
the characteristic time of reptation or disentanglement τd, scales with the
number of entanglement segments, Z, as τd ∼ Z3.4[12]. As Z increase these
relaxation modes become decoupled in time.

Doi and Edwards[16] showed that this decoupling of the relaxation
leads to chain retraction. During the initial part of the relaxation, the
molecule preserves its overall orientation but the contour length relaxes
back to its equilibrium length. The contour length relaxation will cause
the molecule to shrink in all dimensions during the Rouse relaxation.
Interestingly, this will also cause the radius of gyration perpendicular
to the flow direction to increase towards the equilibrium value in a non-
monotonic way during relaxation with a minimum at t ∼ τR. Doi and
Edwards propose to test this hypothesis using an experimental technique
that can resolve the radius of gyration components as a function of
relaxation time to test the hypothesis[16].

The chain retraction hypothesis has been tested in several experiments
where polymer samples were stretched above the glass transition tem-
perature and allowed to relax for different time before they were cooled
below the glass transition. Ex-situ small angle neutron scattering (SANS)

113
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experiments[65, 66, 67] were used to measure the single chain structure
factor for the different relaxation times through selective deuteration.
The experiments lead to different results. Boue et al. [65] stretched a
polystyrene sample of Mw ∼ 650 kg/mol, corresponding to Z ≈ 45, with
15 % deuterated chains to a stretch ratio of λ = 3. They samples were
allowed to relax for different times before the samples were quenched.
The determined the perpendicular radius of gyration as a function of
relaxation time and found a monotonic increase and thus their findings
contradict the chain retraction hypothesis. The authors suggested that
the apparent monotonic increase could be due to insufficient separation
of the characteristic times, i.e. the molecules are too small, or polydis-
persity smearing out the effect. Mortensen et al.[66] studied a sample of
2M-Dalton poly(polyethylenepolyethylene-co-ethylene) with 2% partially
deuterium labeled polymers. They stretched polymer films by a factor
of 3 and saw a non-monotonic increase in the perpendicular radius of
gyration with a few data points. Blanchard et al. [67] worked with a
polyisoprene sample of Z = 58 stretched to λ = 1.7, and they clearly see a
non-monotonic increase in R⊥g . It was also reported necessary to include
chain retraction in the model to fit the SANS data in the studies by Bent et
al.[68] and Graham et al. [69] where the polymer deformation was created
using a flow cell. In conclusion there seems to be experimental evidence
for the chain retraction hypothesis.

However the conclusion that chain retraction occurs based on the
results mentioned above was recently questioned by Wang et al. in
”Fingerprinting Molecular Relaxation in Deformed Polymers” published
in Phys. Rev X in 2017[22]. They question whether the Rg, which is a coarse
grained quantity giving information on the larger scales of the molecular
conformation, is appropriate for testing the chain retraction hypothesis.
Also it is an experimental challenge to determine at least the radius of
gyration parallel to the direction of extension in a model independent
way by Guinier analysis. In ref. [22] they combine and extend previous
2D scattering data analysis methods using spherical harmonics functions.
They show how chain retraction, as defined by Doi and Edwards[16],
will have a clear model independent signature in the spherical harmonics
expansion. They perform an experiment on polystyrene with Z ≈ 34
stretched to λ = 1.8, expand the relaxation series in spherical harmonics
and find no signs of the predicted signature and conclude that either chain
retraction does not occur or it is screened by other effects not included in
the tube model.

Inspired by the potential strengths of the spherical harmonics frame-
work in the analysis of 2D data for uniaxially extended polymer melts in
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general, we decided to implement the framework and reanalyze an old
SANS data series for linear polystyrene. The data series was presented
in Chap. 2 as the data for the Short-in-Short sample. The chains have
approximately six entanglement segments, Z ≈ 6, and the melt is stretched
to a macroscopic stretch ratio of λ = e3 ≈ 20. We wondered how the
differences in chain length and stretch ratio would show up in the spherical
harmonics expansion and remarkably we found the signature of chain
retraction that Wang et al. [22] derived from the Doi-Edwards model. [16]

In this chapter we first introduce the spherical harmonics expansion
framework for single chain structure factors of uniaxially extended poly-
mer melts, then we present the SANS-data sets and their expansions in
spherical harmonics. Finally we present how the spherical harmonics
expansion of the data sets show the signature of chain retraction and
discuss our results.

4.1 Spherical Harmonics Expansion
Framework

The framework is developed for structure factors for deformed polymer
materials by Wang et al. [22]. However it may prove useful in the analysis
of small angle scattering data from other soft matter or amorphous systems
for which the structure factor is a smoothly varying function. Since the
framework is so new and since we would like to end the chapter with a
detailed analysis of what we learn from the expansion, it will be fruitful
with a detailed description on how to set up the framework instead of a
simple reference.

In this section we introduce the spherical harmonics expansion frame-
work and employ the symmetry of uniaxial extension to simplify the
expansion. While we establish the framework, we assume that the analytic
expression for the structure factor, S(~q) is known. In the next subsection we
describe how to employ the framework given an experimental scattering
intensity I(~q).

4.1.1 General Framework

The starting point in setting up the framework is to write the single-chain
structure factor S(~q) in a basis of spherical harmonics functions as

S(~q) = S(q, θ, φ) =

∞∑

l=0

l∑

m=−l

Sm
l (q)Ym

l (θ, φ). (4.1)
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The integers l and m are the degree and order of the spherical harmonics
functions Ym

l (θ, φ), and Sm
l (q) are the q-dependent expansion coefficients,

which we will later use to represent the structure factor. We follow the
coordinate convention of physics such that θ ∈ [0, π] is the angle with
respect to the positive z-axis, or the polar angle and φ ∈ [0, 2π] is the angle
from the positive x-axis in the xy-plane, or the azimuthal angle. To avoid
confusion we stress that we labeled the scattering angle 2ϑ in Sec. 1.3.1.

Our basis functions the spherical harmonics can be represented as
complex or real valued. Since the structure factor is a real valued function,
it seems most natural to choose the real representation. However, the
two representations coincide for m = 0 which, as we argue below, are the
relevant harmonics when the series expansion has to fulfill the symmetries
of uniaxial extension.

The real spherical harmonics functions are defined as:

Ym
l (θ, φ) =



√
2(2l+1)(l−|m|)!

4π(l+|m|)! P|m|l (cosθ) sin
(
|m|φ

)
for m < 0√

(2l+1)
4π P0

l (cosθ) for m = 0√
2(2l+1)(l−m)!

4π(l+m)! Pm
l (cosθ) cos

(
mφ

)
for m > 0.

(4.2)

Here Pm
l (x) are the Legendre polynomials of degree l and order m and the

prefactors are chosen to ensure orthonormality of the basis. Our definition
deviate from that in ref. [22] by including the conventional

√
1/(4π) in the

refactors We show the orthonormality of the basis below after we have
employed uniaxial symmetry to reduce the number of basis functions.

4.1.2 Uniaxial Symmetry Restricts the Basis

It is convenient to discuss uniaxial symmetry relative to a defined coordi-
nate system. The natural choice is to orient the z-axis parallel to the axis of
uniaxial extension and set up the experiment such that the incoming beam
is perpendicular to the axis of extension, i.e. in the x, y-plane. We discuss
the choice of coordinate system in more detail in the next subsection.

Uniaxial symmetry of the samples and therefore the structure factor
both restricts the degree l and order m of the harmonics functions with
a non-zero expansion coefficient in Eq. 4.1 and thereby greatly limit
the number1 of basis functions needed. The uniaxial symmetry of the
structure factor means that it should be invariant under rotation around

1Though of course we still need infinitely many for an exact expansion
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the extension axis, i.e. under change in φ, and invariant under reflection in
the horizontal plane, i.e. under θ→ π − θ. The invariance under change
in φ is achieved only if the orders of all terms in the expansion are m = 0,
and the invariance under θ→ π − θ is achieved only if the degrees of all
terms in the expansion are even since the Legendre polynomials fulfill
P0

l (−x) = (−1)lP0
l (x) or P0

l (cos(π − θ)) = (−1)lP0
l (cos(θ)). The structure

factors for unixially extended samples can then be expanded as

S(~q) = S(q, θ) =
∑

l=2l′
S0

l (q)Y0
l (θ) =

∑

l=2l′
S0

l (q)
√

2l + 1P0
l (cosθ). (4.3)

4.1.3 Measured Structure Factor

The measured coherent scattering intensity is proportional to a 2D cross
section of the structure factor. As stated above, the experimental setup
and our choice of coordinate system are such that the axis of extension is
parallel to the z-axis and the axis of the incoming beam is in the xy-plane.
It does not matter how we choose the axis of the incoming beam because
S(~q) is independent of φ, but to make a choice, we follow ref. [22] and
choose the coordinate system such that the axis of the incoming beam
is along the y-axis, see Fig. 4.1. With this choice of coordinates, the two
dimensional structure factor becomes

S(qx, qy = 0, qz) = S(q, θ, φ = 0) = S(q, θ) =
∑

l=2l′
S0

l (q)
√

2l + 1P0
l (cosθ).

(4.4)

In the following, when we refer to spherical harmonics expansion of
the structure factor, it will be implicit that we refer to Eq. 4.4, i.e. we
refer to the cross section that will be measured and we assume uniaxial
symmetry of our sample.

Orthonormality of Spherical Harmonics Functions of degree l = 2l′

and order m = 0

To ensure that the expansion coefficients are unique, the chosen basis
has to be orthogonal on the relevant interval, here cosθ = [−1, 1] and
φ = [0, 2π]. The spherical harmonics functions relevant for the spherical
harmonics expansion constitute an orthonormal basis such that
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θ

x

y
z

Figure 4.1: Sketch of experimental setup for SANS on filaments with choice
of coordinate system illustrated. The sample is shown as a single, vertical
filament. The dashed lines show the incoming and scattered neutron beam. The
parallelogram represents the detector and the ellipsis illustrates the scattering
intensity for a non-relaxed sample. The coordinate system is chosen such that the
axis of uniaxial extension is parallel to the z-axis and the incoming beam parallel
to the y-axis. With this choice of coordinate system, the measured cross section of
the structure factor is given in Eq. 4.4. The angle θ is the polar angle in spherical
coordinates and is defined relative to the positive z-axis.

∫ 1

−1
d cosθ

∫ 2π

0
dφ

[
Y0

l (θ, )
]∗

Y0
l′(θ) = δll′ . (4.5)

It can be seen because the integration over φ simply yields a factor of
2π and the integral over θ yields

∫ 1

−1
d cosθP0

l (cosθ)P0
l′(cosθ) =

2
2l + 1

δll′ . (4.6)

The orthogonality of the Legendre polynomials can be shown using
the Rodrigues formula for the associated Legendre polynomials and
integration by parts[70]:

Pl(x) ≡ 1
2ll!

( d
dx

)l (
x2 − 1

)l
(4.7)

Determination of Expansion Coefficients

Because the basis of spherical harmonics is orthogonal the q-dependent
expansion coefficients in Eq. 4.4 can be determined uniquely and because
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the basis is orthonormal, the coefficients can be determined by integrals
of the form

S0
l (q) =

∫ 2π

0
dφ

∫ π

0
dθS(q, θ)Y0

l (θ) sinθ. (4.8)

Wang et al. [22] define the spherical harmonics functions with a slightly
different prefactor containing the factor 2π from the φ-integral in Eq. 4.8 in
which they need a prefactor of 1/2 to correct for the lack of normalization
of their basis.

Legendre Polynomials of Degree l ≤ 10 and order m = 0

Now we have our basis functions. As a reference, we write the first few
out explicitly and plot them as a function of cosθ in Fig. 4.2.

The spherical harmonics of degree l ≤ 10 and order m = 0 are

Y0
0(cosθ) =

√
1

4π

Y0
2(cosθ) =

√
5

4π
1
2

(
3 cos2 θ − 1

)

Y0
4(cosθ) =

√
9

4π
1
8

(
35 cos4 θ − 30 cos2 θ + 3

)

Y0
6(cosθ) =

√
13
4π

1
16

(
231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5

)

Y0
8(cosθ) =

√
17
4π

1
128

(
6435 cos8 θ − 12012 cos6 θ

+6930 cos4 θ − 1206 cos2 θ + 35
)

Y0
10(cosθ) =

√
21
4π

1
256

(
46189 cos10 θ − 109395 cos8 θ + 90090 cos6 θ

−30030 cos4 θ + 3465 cos2 θ − 63
)

(4.9)

4.1.4 Summary

In this subsection we have set up the general framework for expanding
structure factors in terms of spherical harmonics, using the symmetry of
uniaxial extension to reduce the number of basis functions needed for
our analysis, and shown how to determine the expansion coefficients. By
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Figure 4.2: The low order Legendre polynomials of even degree l = 2l′ and order
m = 0 consistent with the symmetry of uniaxial extension. The subfigures show
the Legendre polynomials in ascending degree from a) to f).
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determining the expansion coefficients, we can represent the structure
factor in terms of the q-dependent expansion coefficients. As we will see
below in Sec. 4.3.3, this data representation allows us to study the time
evolution of the different modes in the data.

4.2 Experimental Data

In the precious section we established the framework of spherical har-
monics expansion, and in the next we will apply it in the analysis of
experimental data. In this section, we will describe the samples and
reduction procedure used to obtain the reduced 2D data.

4.2.1 Samples

The samples for this study are the Short in Short-samples described in
Chap. 2 and therefore we only give a short summary here. The samples
are a relaxation series for a blend of 90% h-PS of Mw =95 kg/mol and 10%
d-PS of Mw =80 kg/mol stretched in the Filament Stretch Rheometer with
a constant Hencky strain rate of ε̇ = 0.1 s−1 at a temperature of T = 130◦ C
to a final Hencky strain of ε f = 3 and allowed to relax for 0 s, 10 s, 20 s, 80
s, or 320 s respectively at T = 130◦ C. In terms of the Rouse time for the
deuterated component, τR = 15 s, the relaxation times are 0 · τR, 0.7 · τR,
1.3 · τR, 5.3 · τR, 21.3 · τR. The deuteration percentage is chosen such that it
is a reasonable assumption that the scattering pattern originates from the
single chain structure factor and not composition fluctuations.

4.2.2 Measurements and Instrumental Settings

The samples were measured at the Small Angle Neutron Scattering
instrument QUOKKA at Australia’s Nuclear Science and Technology
Organization in 2015. The samples were measured with neutrons of a
wavelength of λ = 5 Å with a sample-detector distance of 14 m, 5 m, and
2 m respectively. The data from the 5 m setting is previously published in
[10].

4.2.3 Data Reduction

The data was corrected for detector sensitivity and the measured intensity
for blocked and empty beam as described in Sec. 3.4.3. The incoherent
scattering was estimated and corrected for by subtraction as described
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in Sec. 3.4.3 with the only difference that the large q-data is fitted to the
high q limit of the Debye structure factor. The Debye structure factor, see
Sec. 1.1.1, and the high q limit is given by

S(q) =
2

q4R4
g

(
e−q2R2

g + q2R2
g − 1

)
(4.10)

S(q) ≈ 2
q2R2

g
for qRg � 1. (4.11)

We plot the Debye structure factor and the high parameters in Fig. 4.3. For
qRg > 3, the deviation between the high q-limit and the Debye structure
factor is 10 % or less and so we fit data fulfilling q > 3/Rg and θ = (45± 5)◦.
The fitting parameters are an amplitude and a constant offset, and we thus
fit to

y = Aq−2 + b. (4.12)

The constant offset b is then our estimate of the incoherent background.
All data sets were scaled arbitrarily to b = 1 before subtraction to account
for varying material amount across samples.

The reduced 2D data are shown in Fig. 4.4 for the 14 m setting and
Fig. 4.5 for the 5 m setting.

4.2.4 Qualitative Analysis

The overall trend in the data is that the scattering corresponding to no
relaxation is most anisotropic and as the relaxation time increases, the
isotropy of the equilibrium conformation, as described in Sec. 1.1.1, is
regained.

Scattering at small q

However the scattering patterns also have a cross-shaped feature for the
smallest values of q, which is most prominent for the scattering patterns
corresponding to the longest relaxation times. However as we will argue
in App. A, we are confident that it originates from voids or cracks formed
in the filament during stretching and the subsequent quenching. Therefore
it is unrelated to the molecular conformation which is the target of this
analysis. For this reason we will base our conclusions regarding the
molecular conformation on the data for q ≥ 0.008Å

−1
.
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Figure 4.3: The Debye structure factor and its high q limit. The Debye structure
factor is plotted as function of q with a fully drawn line. The dashed line show
its high q limit as approximation. The inset shows a zoom-in around qR0

g ≈ 3.

4.2.5 Summary

In this section we described how we obtained a reduced 2D data set that
corresponds to a relaxation time series of 80 kg/mol deuterated polystyrene
in a matrix of 95 kg/mol fully hydrogenous polystyrene. A qualitative
analysis of the 2D patterns show that the degree of anisotropy in the
patterns decrease with increasing relaxation time as expected. For further
analysis of the data set, we implement the spherical harmonics expansion
framework.
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(a) t = 0 · τR (b) t = 0.7 · τR

(c) t = 1.3 · τR (d) t = 5.3 · τR

(e) t = 21.3 · τR

Figure 4.4: 2D SANS data 14 m setting for Short in Short-samples. The relaxation
time increases from a) to e), and is given in terms of the Rouse time, τR = 15 s.
The data is plotted on log10 scale. All intensities less than one have arbitrarily
been rounded up to one for the visualization on log scale.



4.2. EXPERIMENTAL DATA 125

(a) t = 0 · τR (b) t = 0.7 · τR

(c) t = 1.3 · τR (d) t = 5.3 · τR

(e) t = 21.3 · τR

Figure 4.5: 2D SANS data 5 m setting for Short in Short-samples. The relaxation
time increases from a) to e), and is given in terms of the Rouse time, τR = 15 s.
The data is plotted on log10 scale. All intensities less than one have arbitrarily
been rounded up to one for the visualization on log scale.
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4.3 Spherical Harmonics Expansion of
Experimental Data

In this section we implement the spherical harmonics expansion for
experimental data, and show the representations of the 2D data sets in
Fig. 4.5 and Fig. 4.4 in terms of the q-dependent expansion coefficients. In
the following section we discuss chain retraction relative to the expansion
of our data.

4.3.1 Extraction of Expansion Coefficients from Data

For experimental data we need to discretize Eq. 4.8 to obtain the q-
dependent expansion coefficients S0

l (q). Also, as mentioned in Sec. 4.2.3
our data reduction adjusts the sample volume between samples so that we
obtain I(q, θ) ∝ S(q, θ). For our experimental data we therefore determine
the spherical harmonics expansion of the scattering intensity, I(q, θ), and
we find the expansion coefficients by a sum instead of an integral :

S0
l (q) =

π/∆θi∑

i

I(q, cosθi)Y0
l (cosθi) sinθi∆θ. (4.13)

The error on S0
l (q), σI(q,cosθi), is found by error propagation:

σS0
l (q) =

√√
π/∆θi∑

i

(
σI(q,cosθi)Y

0
l (cosθi) sinθi∆θ

)2
. (4.14)

We obtain I(q, cosθi) by assigning each pixel a q- and θ-value based
on the position of its center relative to the beam center and averaging
all pixels for which the centers fall in the same q, θ-bin. The chosen bin
widths, ∆q and ∆θ respectively, should be large enough to avoid empty
bins and small enough to not average out the features of interest. For this
analysis, we settled on ∆q = 0.001 and ∆θ = 5 as a compromise. We only
calculate the expansion for q-values where no θ-bin is empty.

4.3.2 Spherical Harmonics Expansion of Data

With our choice of parameters, the 2D data presented in Fig. 4.5 and
Fig. 4.4 can be represented in terms of the first six expansion coefficients
as shown in Fig. 4.6 where data from both detector settings are shown.
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We can see that although the data from the two detector settings have
not been scaled, the expansion coefficient curves overlap nicely except
for the sample corresponding to t = 5.3τR, Fig. 4.6d, but it looks like the
overlap would be ensured by scaling the two curves. We have not done it
here to give the most honest demonstration of the framework. We also
see that all expansion coefficients fulfill S0

l (q)→ 0 for increasing q since
I(q)→ 0. The tendency of the expansion coefficients for q→ 0 varies due
to the excess scattering at small q that we discussed in Sec. 4.2.4 and will
return to in Chap. A. The last observation we make is that the expansion
coefficients can take both positive and negative values and that their
magnitude decreases with increasing relaxation time, which is consistent
with the molecules regaining their isotropic equilibrium conformation.

4.3.3 Time Evolution of Expansion Coefficients

In the previous section we described how the amplitude of the expansion
coefficients of the anisotropic harmonics decreases as a function of relax-
ation time. However, the amplitude decrease is not the only change with
relaxation time. As we see in Fig. 4.7, the S0

l (q) curves for the anisotropic
modes have a maximal amplitude2 for some value of q and the maximal
amplitude shifts towards larger values of q with increasing relaxation
time. This will be an essential point in Sec. 4.1.3 when we discuss chain
retraction in the spherical harmonics expansion. We also see that the
higher order modes decay more rapidly with relaxation time.

4.3.4 Modeling the Scattering Pattern from Expansion
Coefficients

In figure Fig. 4.6 we represented the reduced data in terms of the expansion
coefficients of the first six expansion terms. But how well do the truncated
expansion series represent the measured data? To answer this question
we model the t = 0τR data set from the 14 m setting, Fig. 4.4a. For clarity,
we first plot the basis functions from Sec. 4.1.3 in 2D in Fig. 4.8. The
modeled data sets are shown in Fig. 4.9. For each subfigure we include
one more term in Eq. 4.13. In this way subfigure a) shows the result if
we truncate the sum at l = 0, sub figure b) if we truncate at l = 2, and
finally subfigure f) if we truncate at l = 10. As we add more harmonics,
the modeled data approaches the experimental data. But the truncation
of the expansion series introduces spurious wiggles in the reconstructed

2If we ignore the data points at small q that are dominated by the excess scattering.
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Figure 4.6: Expansion coefficient representation of data for relaxation time series.
The subfigures show the relaxation time ”snap shots”. The relaxation times are
given in terms of the Rouse time for the deuterated component, τR = 15 s. The
error bars are smaller than the markers and calculated using Eq. 4.14.
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Figure 4.7: Expansion coefficients as function of relaxation time. The expansion
coefficients S0

l (q) are plotted for increasing orders in subfigures a)-f).
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scattering pattern even for l = 10. In Fig. 4.10 we plot the difference
between the experimental t = 0τR data set and the modeled data sets
shown in Fig. 4.9.

4.3.5 Qualitative Interpretation of Expansion Coefficient
Plots

As we described in Sec. 4.3.2, the expansion coefficients may take both
positive and negative values, and their profile amplitude decays with
increasing relaxation time, in Sec. 4.3.3 we showed that the maximal
amplitude shifts towards larger values of q with increasing relaxation
time, and in Sec. 4.3.4 we reconstructed the scattering pattern using
the expansion. In this section we discuss why some coefficients are
negative while others are positive and how we can interpret the q-values
of maximum amplitude magnitude. If we choose the 14 m t = 0τR data set,
see Fig. 4.4a, as an example, the aim of this subsection is to understand
why the expansion coefficient plot, see Fig. 4.11b, is as it is.

The scattering pattern is characterized by a horizontal streak. For small
values of q the model of the scattering pattern including only S0

0(q)Y0
0(cosθ)

and S0
2(q)Y0

2(cosθ), i.e. Fig. 4.9b captures the horizontal streak well, but
Y0

2(cosθ), see Fig. 4.8b, has its maximum intensity on the vertical axis and
minimum intensity on the horizontal axis. Therefore S0

2(q) must be negative.
As we move out to larger q, the two-term reconstruction overestimates the
intensity away from the horizontal axis, but adding increasing amounts
of Y0

4(cosθ) will mend this and so S0
4(q) starts to increase. In this way the

higher order spherical harmonics peak at increasing values of q, and their
expansion coefficients have alternating signs. We interpret the peaks or
dips in the expansion coefficients S0

l (q) as the q-range where the symmetry
of Y0

l (cosθ) is most present in the data. In the following we loosely use
peaks in S0

l (q) to refer to both dips and peaks because we are interested in
the q-values where Y0

l (cosθ) contribute the most and not the sign of the
expansion coefficient.

4.3.6 Fitting Approach as an Alternative to Summation

In the presented analysis we have found the expansion coefficients using
the sum in Eq. 4.13, but in our first implementation, we instead fitted I(q, θ)
to a linear combination of the basis functions. The linear combination fitted
to I(q, θ) would then have a weight in front of each basis function as fitting
parameters. These fitted weights should then be the expansion coefficients
S0

l (q) according to Eq. 4.8 and the orthonormality of the basis functions
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(a) Y0
0(q, θ) (b) Y0
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(c) Y0
4(q, θ) (d) Y0

6(q, θ)

(e) Y0
8(q, θ) (f) Y0
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Figure 4.8: 2D basis functions for reconstruction of 2D scattering patterns plotted
on linear scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Modeled scattering patterns on logarithmic scale. The scattering
pattern corresponding to no relaxation measured in the 14 m setting Fig. 4.4a is
modeled with Eq. 4.4 and Eq. 4.13. For each subfigure we add one more harmonic
such that a) is the model only including l = 0, in b) the expansion is truncated
at l = 2, and in f) we use all harmonics up to l = 10. The modeled patterns are
plotted on log10 scale, and modeled intensities < 1 are artificially set to 1 for
visualization on log scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Difference between experimental and modeled intensities. In each
subfigure we plot the scattering pattern corresponding to no relaxation measured
in the 14 m setting Fig. 4.4a with the modeled scattering pattern from Fig. 4.9.
For each subfigure we add one more harmonic such that in a) we subtract only
the l = 0 term in the expansion, in b) we subtract the l = 0 and l = 2 terms, and in
f) we subtract all terms up to l = 10. The difference between the experimental
data and the modeled data is plotted on linear scale.
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Figure 4.11: Comparison of 2D pattern and coefficient plot. In subfigure a) the
reduced 2D scattering pattern corresponding to no relaxation is shown and in
subfigure b) the expansion coefficient plot for the same data is shown.
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in Eq. 4.6. This approach was originally chosen over the summation
approach to provide a systematic way of determining the needed number
of expansion coefficients to describe the data through the goodness of
fit, e.g. the reduced chi-square parameter χ2

red. However in the fitting
approach, the resulting values of the different expansion coefficients vary
with the number of harmonics functions included in the fit. We illustrate
this in Fig. 4.12. This is not the case using the summation since each
expansion coefficient is calculated independently. The fitting approach
may still be justified in certain situations such as in the case of incomplete
data, but one should be careful to include enough harmonics above the
desired ones.

4.3.7 Summary

In this section we established the framework of spherical harmonics
expansion from Sec. 4.1 for analysis of the experimental data presented
in Sec. 4.2, and we may therefore represent the data in terms of the q-
dependent expansion coefficients. In the next section we will see how this
representation can help answering whether chain retraction occurs or not
in our system.
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Figure 4.12: Comparison of fit and sum extraction of expansion coefficients. The
subfigures show the six expansion coefficients determined by fit (colored circles),
and summation (crosses) in ascending order from S0

0(q) in a) and S0
10(q) in f). The

legend in each figure indicate the harmonic of largest degree included in the fit.
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4.4 Chain Retraction in Spherical Harmonics
Expansion

In this section we present the quantitative predictions of chain retraction
in the original Doi-Edwards tube model and show the expected finger
print of chain retraction in the spherical harmonics expansion. Using our
experimental data, we look for chain retraction in the relaxation of the
radius of tension components and in the spherical harmonics expansion
of the data. Towards the end of the chapter we relate our findings to those
of Wang et al. [22] and molecular simulations by Hsu and Kremer [71],
and finally we discuss and conclude on our findings.

4.4.1 Chain Retraction in the Tube Model

In the paper ”Dynamics of Concentrated Polymer Systems, Part 2 - Molecu-
lar Motion under Flow” from 1978 [16], Doi and Edwards discuss polymer
dynamics in the tube model under macroscopic deformation and the
following relaxation. As described above chain retraction occur as a
consequence of the initial chain expansion and the decoupling of the
two relaxation modes, Rouse and reptation, should make it visible as a
non-monotonic increase in R⊥g . In this section we present the findings
of Doi and Edwards and show how they can be used to quantify the
effect of chain retraction. We follow Doi and Edwards [16] closely and
adapt their notation such that unprimed variables, e.g. x describe the
system before deformation, primed variables, e.g. x′, represent quantities
immediately after deformation, and double primed variables, e.g. x′′,
represent quantities after the Rouse relaxation processes.

Regarding deformation, Doi and Edwards assume that the molecules
deform affinely with the macroscopic deformation such that the end-to-
end vector of the i’th tube segments, ~ri, changes during the deformation
such that

~ri
′
= E · ~ri (4.15)

where E is the macroscopic deformation tensor. In the following, we
consider uniaxial extension along the z-axis and incompressibility, and
then the macroscopic deformation tensor is

E =



1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ


 . (4.16)
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As measures for the deformation of the molecule we first study the
end-to-end vector and later the radius of gyration tensor. The tensorial
average of the end-to-end vector V is defined as

〈
Vα(t)Vβ(t)

〉
=

〈 N∑

i j

riα(t)r jβ(t)
〉

0

(4.17)

where N is the number of tube segments in equilibrium, α, β = x, y, z, and
subscript 0 indicates that the average is over the equilibrium segment
distribution, which is isotropically distributed (in three dimensions) such
that

〈
riαr jβ

〉
0

=
a2

3
δi jδαβ (4.18)

where a is the length of a tube segment and tube diameter.
The tensorial average of the end-to-end vector then becomes

〈
Vα(t)Vβ(t)

〉
=

N∑

i j

〈
riαr jβ

〉
0

=
Na2

3
δαβ. (4.19)

After deformation the tensorial average becomes

〈
V′α(t)V′β(t)

〉
=

N∑

i j

〈(
E · ~ri

)
α

(
E · ~r j

)
β

〉

0

=

N∑

i j

∑

γδ

EαγEβδ
〈
riγr jδ

〉
0

=
a2

3

N∑

i j

δi j

∑

γδ

EαγEβδδγδ

=
Na2

3

∑

γ

EαγEβγ. (4.20)

In the frame where E is diagonal, i.e. the Cartesian coordinates for the
deformation defined in Eq. 4.16, the tensorial average of the end-to-end
vector immediately after deformation becomes

〈
V′α(t)V′β(t)

〉
=

Na2

3
λ2
αδαβ. (4.21)
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With this result it can be shown that the mean square end-to-end
distance

〈
V′2

〉
0 is always larger than

〈
V2〉

0 if the volume is conserved
during deformation[16].

Now we calculate the tensorial average of the end-to-end vector after
Rouse relaxation. To do that, we need to consider that the number of
entanglements decrease during the Rouse relaxation. Doi and Edwards
assumes that the monomer density per arc length of the chain goes back to
the equilibrium value a/b2 after the Rouse relaxation. As a consequence the
average number of monomers per segment

〈
n′′i

〉
increases relative to the

state immediately after deformation and thus the number of entanglement
segments N′′ decreases

N′′ =
N0〈
n′′i

〉 (4.22)

where N0 is the number of monomers in the chain. Doi and Edwards
argue that the assumption of equilibrium monomer density per arc length
leads to an average number of monomers per segment of

〈
n′′i

〉
=

a
∣∣∣~r′i

∣∣∣
b2 . (4.23)

(4.24)

Now introducing the isotropically distributed unit vector ~u, we show that

〈
n′′i

〉
=

a
〈∣∣∣E · ~ri

∣∣∣
〉

0

b2 .

=
a2

〈∣∣∣E · ~u
∣∣∣
〉

0

b2 . (4.25)

In this way we get the new number of entanglement segments

N′′ =
N0

a2〈|E·~u|〉0
b2

=
N〈∣∣∣E · ~u

∣∣∣
〉

0

. (4.26)

The resulting tensorial average of the end-to-end vector after the Rouse
time is given by Eq. 4.20 with N→ N′′:

〈
V′′α (t)V′′β (t)

〉
=

〈
V′α(t)V′β(t)

〉

〈|E · u|〉0 (4.27)
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And we thus see that the end-to-end vector shrinks during the first
relaxation.

For the radius of gyration tensor Iαβ that fulfills TrI =
〈
~R2

g

〉
, one can

show that[16]

Iαβ(t = 0) = δαβλ
2
α

〈
S2〉

0

3
(4.28)

Iαβ(t ' τR) =
Iαβ(t = 0)
〈|E · u|〉0 (4.29)

where 〈S2〉0 is the mean square radius of gyration in equilibrium. In
conclusion the tube model predict that the characteristic dimensions of
the molecules shrink by a factor of 1/ 〈|E · u|〉0 during Rouse relaxation
and before reptation takes over. Note that e.g. Iαα = R2

g,⊥ so therefore the
radius of gyration components will shrink by

√〈|E · u|〉0 during the first
t ' τR according to the Doi-Edwards tube model.

Molecular Shrink Factor

For later quantitative tests of the chain retraction hypothesis, we would
like to evaluate 〈|E · u|〉0 for given values of λ and we therefore calculate
〈|E · u|〉0 here. We use that u is a unit vector and express it in spherical
coordinates. Using the deformation matrix from Eq. 4.16 we obtain |E · u|:

E · u =



λ−

1
2 cosφ sinθ

λ−
1
2 sinφ sinθ
λ cosθ


 (4.30)

|E · u| =
√
λ−1 sin2 θ + λ2 cos2 θ. (4.31)

The average 〈. . .〉0 is over the equilibrium distribution of u, which is
isotropic:

〈|E · u|〉0 =
1

4π

∫ π

0
dθ

∫ 2π

0
dφ|E · u| sinθ

=
1
2

∫ π

0
dθ

√
λ−1 sin2 θ + λ2 cos2 θ sinθ

=
1

2
√
λ

∫ π

0
dθ

√
1 + (λ3 − 1) cos2 θ sinθ. (4.32)
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To solve the integral, we perform a series of substitutions. In the first
substitution we define y

y = cosθ

dθ = − 1
sinθ

dy

〈|E · u|〉0 =
−1

2
√
λ

∫ −1

1
dy

√
1 + (λ3 − 1)y2

=
1√
λ

∫ 1

0
dy

√
1 + (λ3 − 1)y2. (4.33)

The second substitution is carried out by defining v

v = arctan
(√

(λ3 − 1)y2
)

dy =
sec2(v)√
λ3 − 1

dv

〈|E · u|〉0 =
1√
λ

∫
dv

√

1 + (λ3 − 1)
(

tan v√
λ3 − 1

)2 sec2(v)√
λ3 − 1

=
1√

λ(λ3 − 1)

∫
dv

√
1 + tan2 v sec2(v)

In the next steps we use the following relation between sec(x) and tan(x)
as well as the reduction formula for integrals over secn(x)

sec2 v = tan2 v − 1∫
dx secn(x) =

n − 2
n − 1

∫
dx secn−2(x) +

secn−2(x) tan(x)
n − 1

.

We can now solve the integral

〈|E · u|〉0 =
1√

λ(λ3 − 1)

∫
dv sec3(v)

=
1

2
√
λ(λ3 − 1)

(∫
dv sec(v) + sec(v) tan(v)

)

=
1

2
√
λ(λ3 − 1)

[ln (|tan(v) + sec(v)|) + sec(v) tan(v)] . (4.34)
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We now substitute back to the integral over y and obtain the final result

〈|E · u|〉0 =
1√
λ

∫ 1

0
dy

√
1 + (λ3 − 1)y2

=




1

2
√
λ(λ3 − 1)

(
ln

(∣∣∣∣∣
√

(λ3 − 1)y2 − 1 +
√

(λ3 − 1)y2

∣∣∣∣∣
)

+
√

(λ3 − 1)y2 − 1
√

(λ3 − 1)y2
)]1

0

=
1

2
√
λ(λ3 − 1)

[
ln

(∣∣∣∣
√
λ3 +

√
(λ3 − 1)

∣∣∣∣
)

+
√
λ3
√
λ3 − 1

]

=
1
2


λ +

1√
λ(λ3 − 1)

ln
(∣∣∣∣
√

(λ3 − 1) +
√
λ3

∣∣∣∣
) . (4.35)

We see that for λ� 1

〈|E · u|〉0 ∼ 1
2
λ. (4.36)

Our result is consistent with that of Boue et al.[65]. The molecular stretch
factor 〈|E · u|〉0 is plotted as a function of macroscopic stretch factor λ in
Fig. 4.13.

4.4.2 Tube Model Chain Retraction in Spherical
Harmonics Expansion

In the previous section we established how the Doi-Edwards tube model
predicts that the radii of gyration will change during relaxation. In this
section we show the fingerprint of chain retraction in the Doi Edwards
model. From Eq. 4.28 and an affine uniaxial extension along the z-axis of
magnitude λ we know that the diagonal radius of gyration components
will be given as

Rx
g =Ry

g = R⊥g = R0
g/
√
λ

Rz
g =R‖g = λR0

g. (4.37)

The structure factor will then be given by the Debye function, as in
Sec. 4.2.3,
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Figure 4.13: Molecular stretch
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0
as function of macroscopic stretch λ for

affine deformation.

S(~q) =
2
x2

(e−x + x − 1) (4.38)

with a modification of x:

x =
(
q‖R‖g

)2
+

(
q⊥R⊥g

)2
(4.39)

that takes the differences in radius of gyration into account. After com-
pletion of the Rouse relaxation all components of the radius of gyration
tensor will shrink by the factor in Eq. 4.35 for τd � τR, see Eq. 4.29,
which gives rise to the non-monotonic increase in R⊥g as described in
the previous subsection. To show the finger print of chain retraction we
simulate the structure factor immediately after affine deformation of λ = 3
for molecules of R0

g = 80 Å and for the same molecules exposed to the
deformation and allowed to complete the Rouse relaxation. The results
are shown in Fig. 4.14a and 4.14b. The scattering pattern corresponding
to complete Rouse relaxation share all features with the pattern from
immediately after deformation except that they occur at larger q-values
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consistent with the molecule preserving its orientation while shrinking
in all dimensions back to the equilibrium length. The similarity is much
clearer in the spherical harmonics expansion of the two structure factors
in Fig. 4.14c. All the expansion coefficients have the exact same shape for
both patterns but is shifted horizontally after the Rouse relaxation. Here
Wang et al. [72] point out not only the horizontal shift in i.e. the minimum
of S0

2(q) as a sign of chain retraction but also the feature of ”anisotropy
inversion” where if we consider q-values somewhat larger than that of
the minimum of S0

2(q), the degree of anisotropy increase with relaxation
instead of decreasing as expected, but as we see from Fig. 4.14c for the
same q-values also S0

0(q) increase. We therefore consider it to simply be a
direct consequence of the horizontal shift.

4.4.3 Chain Retraction in Experimental Data

In this subsection we analyze our data for signs of chain retraction using
first radius of gyration analysis and the spherical harmonics expansion.

Radius of Gyration Analysis

As described in the the beginning of the chapter, previous experimental
tests of the chain hypothesis mostly consisted of radius of gyration analysis
where the time dependence of R‖g and R⊥g is compared to the prediction
in Eq. 4.28 and 4.29. Especially a non-monotonic increase in R⊥g (t) with
minimum at t ≈ τR is taken as support for the chain retraction hypothesis.

As an initial test of whether we see signs of chain retraction in our data,
we first determine R‖g(t) and R⊥g (t) from the relaxation series by fitting
sector averages parallel to the stretch direction at 0±10◦ and perpendicular
to it at 90 ± 10◦ to the Debye function with the radius of gyration Rg and
an arbitrary scaling factor A as fitting parameters:

y = A · 2
q4R4

g

(
e−q2R2

g + q2R2
g − 1

)
. (4.40)

Due to the excess scattering at low q, only data for q > 0.015 Å−1 was
included in the fit. The resulting radii of gyration for each sample are then
plotted as a function of relaxation time in Fig. 4.15. There are no indication
of a non-monotonic increase in R⊥g (t). Based on this analysis, we should
conclude that chain retraction does not occur in our system. However,
as we will see below we reach a different conclusion using the spherical
harmonics expansion.
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Figure 4.14: Spherical harmonics expansion of the affinely deformed Debye
structure factor before and after completion of Rouse relaxation. In a) we plot the
Debye structure factor deformed affinely with macroscopic stretch of λ = 3 and
and b) we plot the structure factor after completion of the Rouse relaxation, both
on a linear scale. In c) we plot the spherical harmonics expansion of both structure
factors where fully drawn lines are for the structure factor after deformation and
the dashed lines are for the structure factor after completion of Rouse relaxation.
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Figure 4.15: Radius of gyration tensor components R⊥/‖g /R0
g normalized to the

equilibrium value R0
g = 78.2Å [10] as function of relaxation time t/τR normalized

by the Rouse time τR ≈ 15 s.

Spherical Harmonics Expansion

In this section we present our results on spherical harmonics expansion of
the data sets shown in Sec. 4.3.2 in the context of chain retraction. In this
discussion we focus on the evolution of S0

2(q) which is the coefficient of the
leading anisotropic contribution. We reproduce Fig. 4.7b in Fig. 4.16. As
discussed above, we see that the dip in S0

2(q) shifts horizontally towards
larger q and its amplitude decreases during relaxation. Here we compare
the horizontal shift to the quantitative predictions of the tube model. To
do that we need to determine the positions of the minima in S0

2(q) as a
function of time and λ for our experiment. We determine the minima
by fitting sixth degree polynomials to S0

2(q) for t = 0 · τR, t = 0.7 · τR, and
t = 1.3 · τR. Using the fit coefficients, we and the result is plotted in the
inset of Fig. 4.16.

To determine λ we first consider the measured macroscopic stretch
ratio: we stretch the samples to a Hencky strain of ε = 3 leading to
λmacro ≈ 20. The molecular stretch ratio λ in our case however must be
smaller because we stretch to ε = 3 to make sure that we reach steady
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Figure 4.16: The expansion coefficient S0
2(q) for varying relaxation times as a

function of qR0
g where the equilibrium radius of gyration is R0

g = 78.2 Å[10]. The
inset shows the minima q∗ as a function of relaxation time t.

state, i.e. the molecular stretch does not change with macroscopic stretch.
Simply plotting (not shown here) the Debye function in Eq. 4.38 and
comparing the result to the 2D pattern corresponding to t = 0 s relaxation,
see e.g. Fig. 4.11a, reveal that we have λ ∼ 5 and not λ ∼ 20. That
we stretch slightly past the point of steady state alone cannot explain
the small value of λ relative to λmacro, but a non-coupling between the
macroscopic stretch and the molecular stretch has been proposed such that
λ = λνmacro[40, 39, 37, 73] where the value ν = 1/2 was proposed in [39, 40].
A non-affine coupling of the molecular and macroscopic stretch ratio with
an exponent value of ν = 1/2 would correspond to λ ∼ 4. To determine the
value of λmore accurately we first assume affine deformation, i.e. that the
radii of gyration have the relations of Eq. 4.37 and fit the t = 0τR data set
from the 14 m setting to the Debye function in Eq. 4.38 in a least squares
sense with λ and an overall amplitude of the structure factor as fitting
parameters. The resulting value of the molecular stretch is λaffine = 3.4
and the difference pattern between the data set and the best fits is plotted
in Fig. 4.17a where we see systematic deviations.
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(a)

(b)

Figure 4.17: Difference between 14-m setting data set for t = τR and best fit to
the modified Debye structure factor, affine and non-affine. In a) assuming affine
deformation i.e. R⊥g = λR0

g and R‖g = 1/
√
λR0

g and in b) not assuming affine

deformation i.e. R⊥g = λ⊥R0
g and R‖g = λ‖R0

g with λ‖ , 1/
√
λ⊥.
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We also fit to the Debye function in a non-affine sense where we allow
for λ⊥ , 1/

√
λ‖ thus having λ⊥, λ‖, and an overall amplitude of the

structure factor as fitting parameters. The results are λ‖non-affine = 3.5 and

λ⊥non-affine = 0.60 where 1/
√
λ‖non-affine = 5.3. The difference between the

data and the fit is shown in Fig. 4.17b. As we see in both plots of the
difference between the data and the Debye functions there are systematic
deviations and so neither describes the data at all length scales. Since the
values of the λ are so similar in the two cases and since the introduction
of an extra fitting parameter does not improve the fit significantly, we
conclude that λ = λaffine = 3.4 in our analysis. However, Kirkensgaard et
al. found λ = 4.3 ± 0.3 so in the following we compare the quantitative
predictions of the tube model to the found minima in S0

2(q) using both
λ = 3.4 and λ = 4.3. For these values of λ, the molecular shrink factors
from Eq. 4.35 are

√
〈|E · u|〉0 (λ = 3.4) =1.4 (4.41)

√
〈|E · u|〉0 (λ = 4.3) =1.5. (4.42)

The ratio q∗t=0.7·τR
/q∗t=0·τR

= 1.5 and q∗t=1.3·τR
/q∗t=0·τR

= 1.7. If λ = 4.3, and
we assume that Rouse relaxation is approximately completed at t = 1.3 · τR

the dip shift found from fitting the data curves is slightly larger than but
yet consistent with the quantitative predictions of the Doi Edwards tube
model. Comparing the experimental relaxation series of S0

2(q), Fig. 4.16,
to the theoretical expectation, the blue dashed curve relative to the blue
fully drawn curve in Fig. 4.14c, we do not have the ideal signature since
we apart from the horizontal shift also see a decrease in the amplitude of
the S0

2(q)-profile during the initial relaxation t ≤ 1.3τR. This is probably
due to the relatively short chain length leading to less separated Rouse
and reptation times, τd ≈ 10τR, than for longer chains.

4.5 Discussion

In the previous section we showed that the radius of gyration analysis
of our data lead to the conclusion that chain retraction does not occur,
meaning that the Doi-Edwards tube model is incorrect, whereas the
spherical harmonics expansion analysis clearly support the Doi-Edwards
model. In this section we compare our results to those of Wang et al.[22]
who did not see chain retraction in the spherical harmonics expansion
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of their data and to those of Hsu and Kremer [71] who performed a
molecular dynamics simulation and showed how the effect depends on
the magnitude of the initial deformation and discuss the origin of our
apparently contradicting findings on whether chain retraction occurs or
not.

4.5.1 Comparison with Experiment by Wang et al.

In Wang et al.[22] where the compiled spherical expansion framework
was first published, the authors too used the framework to test the chain
retraction hypothesis. Their conclusion was that either chain retraction
did not occur or it was somehow screened by other non-linear effects in
the relaxation that were not included in the tube model[22], and in this
way they challenged the tube model. That we reach opposing conclusions
must be due to differences in the performed experiments and we therefore
describe the experiment of Wang et al. in detail here.

Wang et al. also worked with a polystyrene melt but of a larger
molecular weight Mw = 450 kg/mol. They stretched their melt at T = 130◦

C at which temperature the Rouse time of there hydrogenous component
is τWang

R = 592 s determined by the Osaki formula. They stretched
their samples on a RSA-G2 Solids Analyzer from TA Instruments up to
macroscopic stretch ratio λ = 1.8 at constant stretch ratio rate such that

λ(t) = l0(1 + 40t/τR) (4.43)

where l0 is the initial sample length. Our stretching scheme is graphically
compared to that of Wang et al. in Fig. 4.18 in terms of Hencky strain
ε = exp(λ), and Rouse Weissenberg number WiR both as functions of
time. We see that both stretching schemes result in a Rouse Weissenberg
number WiR > 1 which means that we expect chain stretch in both cases,
see Sec. 1.2.

They used the GLaMM-model, see Sec. 1.1.3 to predict how S0
l (q) should

change with relaxation time, i.e. how the dip should shift to larger values
of q, see Fig. 4.19a, but when they analyzed their experimental data, see
Fig. 4.19a, the predicted dip shift was absent. Based on the absence of the
shift, they concluded that either chain retraction does not occur or it was
somehow screened by other non-linear effects in the relaxation that were
not included in the tube model[22].
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Figure 4.18: Comparison of stretching schemes. In a) we plot Hencky strain ε as
function of time t, and in b) we plot Hencky strain rate non-dimensionalized by
the Rouse time ε̇τR. In both figures the dashed blue line illustrates our stretching
scheme and the red line that of Wang et al..
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Figure 4.19: Results of Wang et al.. The figure shows the results from Wang et
al. using the spherical harmonics expansion. The plot in a) show the expansion
coefficient S0

2(q) plotted for various lengths of relaxation times as calculated from
the GLaMM-model, and the plot in b) show S0

2(q) for the same relaxation times as
calculated from experimental data. The black dashed line show the q-value of
the minimum for t = 0τR and the gray dashed line the GLaMM-prediction of the
q-value of the minimum after full retraction. The figures are from [22].
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4.5.2 Molecular Dynamics Simulations

The study of Wang et al. has been followed up by two molecular dynamics
(MD) simulations papers. The first paper by Xu et al. [74] present a non-
equilibrium molecular dynamics simulation that mimic the experimental
conditions in Wang et al.[72] using a coarse-grained bead spring model
for 250 chains with Z ' 33 using 2000 beads per molecule stretched
to λ = 1.8 at constant λ̇ with an initial Rouse Weissenberg number
of WiR(t = 0) = 41.8. Their findings are in good agreement with the
experimental results of Wang et al. namely that there is no horizontal
shift in S0

2(q) and R⊥g calculated in real space from the bead distribution
increases monotonically to the equilibrium value.

Hsu and Kremer however also performed an MD-simulation covering
a larger part of parameter space [71] where they vary both the number
of entanglements Z ≈ 18, 36, 72 and the stretch ratios varying between
λ = 1.0 − 5.0. Regarding radius of gyration analysis, they find for λ = 5.0
and Z ≥ 36, R⊥g increases non-monotonically though the effect is not
nearly as pronounced as predicted by the GLaMM-model. With respect
to the spherical harmonics expansion of the structure factor, we show
their findings in Fig. 4.20. From Fig. 4.20a we see that the anisotropy in
the structure factor of the deformed polymers is more pronounced with
increasing λ and shifts to smaller values of q. From Fig. 4.20b and c we
see that the minimum of S0

2(q) shifts to larger values of q during relaxation
but also that the GLaMM-model overestimates the effect relative to the
simulated data and even more so for longer chains. Hsu and Kremer
conclude that Wang et al. do not see chain retraction in their experiment
either because the number of entanglements Z or the stretch ratio λ is not
big enough.

4.5.3 Requirements for Observing Chain Retraction

Based on our results, the results by Wang et al. [22], and by Hsu and
Kremer[71] we conclude that for observing chain retraction in the spherical
harmonics expansion a sufficiently large λ is needed. In other experiments
the spherical harmonics expansion was used to analyze scattering data
for shorter polystyrene chains, Mw = 197 kg/mol in ref. [72] and Mw = 101
kg/mol in ref. [75] than in Wang et al. [22], stretched to λ = 1.8 also dip
not show the signature of chain retraction.

To observe chain retraction in radius of gyration analysis seem to
require Z & 58[67] also consistent with the findings of Hsu and Kremer[71]
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Figure 4.20: MD-results by Hsu and Kremer. In a) they show for varying numbers
of monomers N, or number of entanglements Z, that the dip in S0

2(q) immediately
after deformation increases in magnitude and shifts towards smaller values of
q for increasing values of the stretch ratio λ. Subfigure b) and c) show that
the GLaMM-model (lines) overestimates the dip shift relative to simulated data
(varying markers) during relaxation. The figure is from Hsu and Kremer [71].
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where the largest simulated molecule, Z ≈ 72, at large strain show slight
non-monotonic increase in R⊥g (t).

It is remarkable that chain retraction is detectable even for as short
molecules as we are working with Z ≈ 6. However, this is only the
case in the spherical harmonics expansion and not in radius of gyration
analysis. This may be because the spherical harmonics expansion is
sensitive to the full chain length and not only the change in radius of
gyration. The end-to-end vector R of a linear polystyrene molecule of
Mw = 80 kg/mol is R =

√
0.437Mw[g/mol] ≈ 190 Å compared to the

perpendicular radius of gyration immediately after deformation which
we determined to Rg ⊥ (t = 0) ≈ 50 Å. We know from Eq. 4.27 and 4.29
that the relative change in the two quantities is the same, but the absolute
change in end-to-end vector length is clearly much larger, and that could
be the reason why we see chain retraction in the spherical harmonics
expansion and not in radius of gyration analysis.

4.5.4 Spherical Harmonics Expansion in General

From our results and the results of Wang et al.[22], Wang et al.[72], and
Lam et al.[75] the spherical harmonics expansion framework seem to
have a large potential for increasing our understanding of polymer melts
under uniaxial deformation and the following relaxation since it appears
to be more sensitive to changes in conformation than radius of gyration
analysis. It will be most interesting to see what we will learn in the future
by analyzing more data in this framework.

4.6 Conclusion
In this chapter we showed how to implement the framework of spherical
expansion for analysis of 2D scattering patterns for polymer melts exposed
to uniaxial extension. We applied the framework to the analysis of
the relaxation of a relatively short polystyrene chain, with number of
entanglements Z ∼ 6, and saw that the spherical harmonics expansion
framework is so sensitive to changes in molecular conformation that it
can resolve chain retraction even for these relatively short chains. Based
on other experiments and simulations we find that it is a requirement that
the chains are stretched sufficiently in the initial deformation. From what
we know from our and other experiments is that λ = 1.8 is insufficient
and λ ≈ 4 is sufficient.



Chapter 5

Conclusion and Outlook

The study of polymer materials under deformation is highly interesting
both from an application point of view, since product properties depend
on processing conditions, and from a fundamental scientific point of view
because the interactions of polymer molecules under rapid deformation is
not yet fully understood.

With the advance of the filament stretch rheometer, it is now possible
to perform controlled, potentially large and fast, uniaxial extension and
controlled relaxation following uniaxial extension of polymer melts. This
provides completely new tests for polymer models and theories for their
interactions.

Polymer rheology is intimately linked to molecular conformation and
thus architecture and dispersity. Based on the rheological response of a
polymer melt, hypotheses can be formed on the molecular conformation.
The molecular conformation can be probed more directly using scattering
techniques such small angle neutron scattering. The combination of exten-
sional rheology and scattering techniques thus provide two independent
measurements on molecular conformation

Here we presented work combining controlled extensional flow and
the following controlled relaxation with small angle neutron scatter-
ing and wide angle X-ray scattering. We worked with three systems:
mono-disperse linear polymers, a bi-disperse melt as a stepping stone
towards polydisperse systems, and three-armed stars as a model system
for branched polymers.

We studied the relaxation of a mono-disperse linear polystyrene using
the recently published spherical harmonics expansion framework on small
angle neutron scattering data. The Doi-Edwards tube model propose that
due to the decoupling of the relaxation of stretching and orientation of
the chain following deformation, the stretched chain will initialize retract
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to its equilibrium contour length causing it to shrink in all dimensions.
This hypothesis was recently challenged due to the absence of the chain
retraction signature predicted from the Doi-Edwards model in experimen-
tal data expanded in spherical harmonics. In our experiment however,
the signature is clearly present. We believe the difference in conclusions is
due to the fact that our stretching procedure stretches the molecules more.

The chains from the monodisperse sample described above was also
mixed with longer chains to form a bidisperse melt. Previous small angle
neutrons scattering studies showed that the short chains are stretched
more and remain stretched longer in the blend on length scales of the
full molecules, and that effect was attributed to nematic interactions, i.e.
preferred orientational alignment of Kuhn segments. We set out to study
the nematic interaction hypothesis in wide-angle X-ray scattering that
probes distances on the order of the separation between neighboring
Kuhn segments. The local orientation was more pronounced in the blend,
but due to the lack of scattering contrast between long and short chains
in wide angle X-ray scattering we could not infer nematic interactions
in the system. An interesting observation is that the local orientation
relaxation follows a power law with the same exponent for the pure melt
and the blend indicating multiple relaxation processes on this length scale
independent of chain length.

We also studied the relaxation of a three-armed end-deuterated star in
small angle neutron scattering to the hypothesis that branched polymers
behave like linear polymers in fast extensional flow because they adopt
a quasi-linear conformation that remain well into the relaxation. The
scattering patterns corresponding to very short relaxation time fully
support the hypothesis, but deviations from the quasi-linear conformation
appear at shorter relaxation times as seen by neutron scattering than as
seen by rheology.

The presented projects opened new and exciting questions for future
work such as: What mechanisms cause the relaxation of local orientation
in pure melts and bidisperse melts to follow power laws with the same
exponent? What is the range of validity for the structure factor of g-armed
stars if we add more arms? What is the origin of the isotropic but swollen
state, relative to equilibrium, of the three-armed stars at long relaxation
times? If the spherical harmonics expansion is so sensitive to changes in
the molecular conformation, what could we learn from applying it to data
for other molecular architectures or dispersities? All molecules studied in
this thesis have free ends, so another direction for future research could be
to study the effect of free molecule ends e.g. by studying ring polymers
that close on themselves and thus have no free ends.



Appendix A

Filament Scattering

Scattering techniques have proven most useful in testing hypotheses,
potentially based on rheological data, regarding molecular conformation
during extensional flow or the following relaxation. We routinely study
molecules of Mn = 100 kg/mol or more corresponding to an equilibrium
radius of gyration Rg > 75 Å. If we are to observe the Guinier region, we
need reliable scattering intensities at small q meaning q < 1/Rg = 0.015
Å−1 in the case of Rg = 75. The data quality at small q in our experiments
is currently limited by both the possible number of counts, which is
controlled by the available amount of sample and to some extent the
acquisition time of the experiment. However, the data quality at small q is
also limited by excess scattering typically cross-shaped, which apparently
comes from the sample itself. We hope to find the origin of this excess
scattering in order to be able to eliminate it from future experiments or
knowing its origin be able to include it in the data analysis in an educated
way. This appendix presents our preliminary work on establishing the
origin of the excess scattering.

A.1 Excess Scattering in Small-angle Neutron
Scattering

The excess scattering was first observed in small-angle neutron scattering.
It appeared in data sets for several samples measured both at SANS-1 at PSI
and QUOKKA at ANSTO which made it clear that it was neither an issue
with a single sample or instrumental background. Furthermore the excess
scattering also appears in both blends of hydrogenous and deuterated
polystyrene with a narrow molecular weight distribution and commercial
polystyrene of hydrogenous polystyrene with a broad molecular weight
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(a) SANS, deuterated (b) SANS, hydrogenated

Figure A.1: Examples of excess filament scattering as seen in neutron scattering.
In a) the scattering pattern for a monodisperse melt of Mn = 95 k with 10 wt-%
deuterated molecules, relaxed for 80 s or t ≈ 5.3τR in b) the scattering pattern for
commercial polystyrene, fully relaxed.

distribution, see Fig. A.1. The scattering contrast responsible for the
scattering is thus not due to the scattering length density difference
between hydrogenous and deuterated polystyrene, and so we propose
that it originates from scattering contrast between polymer and air. This
may be due to trapped air in the sample or surface cracks.

A.2 Surface Crack Hypothesis

Discussions with Professor Hiroshi Watanabe lead us to form the hypothe-
sis that the scattering contrast was due to surface cracks appearing during
the filament quench procedure where the oven is rapidly opened and
the filaments cooled by a flow of nitrogen at room temperature. Rapid
quenching could cause surface cracks because the density of polystyrene
increases with decreasing temperature and during the rapid quenching
the surface cools down faster than the center of the filament. If the density
of the outer layer increases sufficiently, it may form cracks.

To test this hypothesis we compared two filaments of the same material
and stretched in the same way. One filament was quenched following the
above described procedure while the other filament was allowed to cool to
room temperature before the oven was opened, which is a gentle cooling
procedure. The filaments were prepared from commercial polystyrene
that was dried in a vacuum oven and stretched very slowly as described
as prestretching in Sec. 1.2.1. If the scattering contrast is in fact due to air
in the samples, there will also be scattering contrast in Small-angle X-ray
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(a) SAXS, fast (b) SAXS, slow (c) SAXS, slow, wet

Figure A.2: Comparison of quench procedures. In a) we show the pattern from
the sample rapidly quench, in b) the scattering pattern from the slowly cooled
sample, in c) we see the pattern from a filament produced in the same way as that
in b) only it was not dried as much in the vacuum oven. All three are qualitatively
similar.

scattering (SAXS). We therefore performed the following measurements
were performed using the home source X-ray setup at the Niels Bohr
Institute. The scattering pattern for these samples are shown in Fig. A.2
a) and b). The pattern in Fig. A.2c was unintentionally produced by too
short drying in the vacuum oven before stretching. All three scattering
patterns qualitatively show the same excess scattering pattern, and we
conclude that the rapid quenching is not the cause of the excess scattering.
The less dried sample seem to scatter more overall, which we will come
back to later.

A.3 Time Dependence of Excess Scattering
If we compare the scattering patterns presented in Chap. 3 and 4, i.e.
Fig. 3.10 and 4.4, it looks like the vertical feature in the excess scattering
appears with increasing relaxation time or, as in Fig. A.2, for samples
stretched slowly. To test this hypothesis, we measure a single filament
from each of the Short in Short-sample in the mid-filament plane with
SAXS. The results are shown in Fig. A.3. There seems to be a weak
time dependence. A time dependence in the vertical part of the excess
scattering would be expected if it has its origin in air bubbles in the
filament elongated by the extensional flow. For short relaxation times
the bubbles may be so elongated that their scattering was hidden by the
beam stop and for longer relaxation times they would relax back towards
spherical bubbles, which would cause the excess scattering to appear at
larger values of q and become detectable.
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(a) 0 s (b) 10 s

(c) 20 s (d) 80 s

(e) 320 s

Figure A.3: Excess scattering and relaxation time. Scattering from the midplane
of filaments corresponding to a relaxation series of a monodisperse 95 kg/mol
melt.
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A.4 Reproducibility of Filament Scattering
To test whether the excess scattering is a global or a local phenomenon we
measured the remaining three 80 s-filaments in the mid-filament plane and
scanned the first filament measuring SAXS patterns at different positions
along the filament axis separated by 0.5 mm. The results are shown in
Fig. A.4 and A.5. The scattering contrast leading to the excess scattering
varies along a single filament and between filaments produced in the same
way.

(a) t=80 s, sam. 1 (b) t=80 s, sam. 2

(c) t=80 s, sam. 3 (d) t=80 s, sam. 4

Figure A.4: Scattering from the mid-filament plane after 80 s of relaxation for
four different filaments.
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(a) t=80 s, sam. 1, pos1 (b) t=80 s, sam. 1, pos2

(c) t=80 s, sam. 1, pos3 (d) t=80 s, sam. 1, pos4

(e) t=80 s, sam. 1, pos5 (f) t=80 s, sam. 1, pos6

Figure A.5: Scan of 80 s filament 1. The positions are separated by 0.5 mm along
the filament axis.
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A.5 Craze Hypothesis
Potentially crazes, thin patches where the filament is kept together by thin
threads of polymers, see e.g. [76] for images, or some precursor to crazes.
We therefore also scanned a visually crazed polystyrene sample and the
results are shown in Fig. A.6 and A.7. There clearly is a large variation
along the crazed filament and we believe the prominent scattering patterns
appear when we measure the scattering from a craze. However it looks
qualitatively different with broad feature and it is therefore not convincing
that crazes are the origin of the excess scattering.
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(a) position 19.3 (b) position 19.2 mm

(c) position 19.1 mm (d) position 19.0 mm

(e) position 18.9 mm (f) position 18.8 mm

(g) position 18.7 mm (h) position 18.6 mm

Figure A.6: Scattering patterns for the crazed sample scan along filament axis 1/2
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(a) position 18.5 mm (b) position 18.4 mm

(c) position 18.3 mm (d) position 18.2 mm

(e) position 18.1 mm (f) position 18.0 mm

(g) position 17.8 mm (h) position 17.6 mm

Figure A.7: Scattering patterns for the crazed sample scan along filament axis 2/2
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A.6 Residual Solvent
Though we still do not have a well supported hypothesis of the origin of
the excess scattering we went back to the initial surface crack experiment
where we saw that the less dried sample scattered more. No matter the
origin of the scattering, could we avoid it by further minimizing the
amount of residual solvent in the melt? For this purpose commercial
polystyrene was treated with CO2 to further extract solvent and a filament
was prepared and scanned. The results are shown in Fig. A.8. The
scattering patterns seem to have significantly less excess scattering that
is more uniform along the filament than those from the scan of the
80 s filament in Fig. A.5 but there are still signs horizontal and vertical
scattering, but this may very well be residual slit scattering from the
instrument.

A.7 Discussion and Conclusion
At least part of this horizontal and vertical scattering is due to background
from the collimation slits. Unfortunately, it is not straight forward to
subtract a reliable instrumental background since the cylindrical geometry
makes the effective transmission factor non-trivial to measure, and so
we may compare scattering patterns within the same figure since they
were measured at the same time and thus will have the same instrumental
background and comparable sample geometries, but new measurements
are needed to be able to compare e.g. the 80 s filament and the CO2 extracted
filament. We thus still believe that the amount of excess scattering depend
on residual solvent in the filaments though further studies are needed for
a final conclusion.
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(a) position -0.5 mm (b) position 0 mm

(c) position +0.5 mm (d) position +1.0 mm

(e) position +1.5 mm

Figure A.8: Extracted sample scan along filament axis in steps of 0.5 mm.
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B.1 Structural Studies of Three-Arm Star Block
Copolymers Exposed to Extreme Stretch
Suggests a Persistent Polymer Tube

The article presents our findings on the structure of an end-deuterated
three-armed block copolymer star immediately after fast extensional flow
and in equilibrium.

Abstract

We present structural small-angle neutron scattering studies of a three-
armed polystyrene star polymer with short deuterated segments at the
end of each arm. We show that the structure factor of the three-armed
star molecules in the relaxed state agrees with that of the random phase
approximation of Gaussian chains. Upon exposure to large extensional
flow conditions, the star polymers change conformation resulting in a
highly stretched structure that mimics a fully extended three-armed tube
model. All three arms are parallel to the flow, one arm being either in
positive or negative stretching direction, while the two other arms are
oriented parallel, right next to each other in the direction opposite to the
first arm.

My contribution

I calculated the random phase approximation structure factor and critically
revised the manuscript.
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We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer
with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star
molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains.
Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a
highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel
to the flow, one arm being either in positive or negative stretching direction, while the two other arms are
oriented parallel, right next to each other in the direction opposite to the first arm.
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The flow and deformation of macromolecules are
ubiquitous in nature as well as industry. A microscopic
understanding of such macromolecular flow behavior has
accordingly significant interest. Important parameters for
the flow behavior include both the molecular chemistry and
the molecular architecture, but also the exact flow con-
dition. The tube model of polymers proposed and described
by de Gennes [1] and Doi and Edwards [2] has proven to
make a very good theoretical basis for the observed flow
characteristics of linear chains [3,4], even though some
modifications have been proposed to account for details in
the experimental findings [4–8]. Large strain amplitudes
can be expected to show further complications beyond the
properties of the linear regime described in the tube
model [9,10].
It has been questioned whether the tube model can

describe branched and other types of complex polymer
systems [11]. Star polymers, for example, have been the
subject of several studies in both melts and solutions
[11–20]. Dondos et al. discussed the elongation of star-
shaped polystyrenes in flowing solutions, showing how
the molecular deformation depends on their number of
branches [13]. Ripoll et al. made mesoscale simulations
showing that star polymers in shear flow change from
linear-polymer-like to capsule-like behavior with increas-
ing functionality [17]. Xu and Chen made a coarse
grained molecular dynamic simulation, showing that star
polymers align and deform for shear rates beyond a

critical value [19]. Huang et al. measured the nonlinear
rheology of three-arm star polymer melts in fast exten-
sional flows [20], showing that the extensional viscosity
of star polymers was identical to that of linear polymer in
agreement with theoretical predictions [21]. While the
agreement between the extensional viscosity and the
model prediction is significant, it provides at best an
indirect confirmation that branched polymers in strong
extensional flows become quasilinear by aligning the
arms.
In this Letter, we present experimental studies of the

simplest complex polymer system that provides direct
evidence from which the arm configuration in strong
extensional flow may be tested. By using a deuterium
labeled three-arm star, we show that the configuration
corresponds very well to that of a fully extended three-
armed tube. This does not necessarily imply that all
dynamics of a star polymer can be associated to a tube
model, and one may claim that the basis of the tube model,
the entanglements, disappear when a tube becomes fully
extended. However, it is striking how well the character-
istics of a three-armed tube can explain our rather distinct
experimental observations.
The Letter is restricted to the structure as measured in the

relaxed state, and immediately after stopping the flow. The
aim of the synthesis was for three-armed polystyrene star
polymers labeled by hydrogen-deuterium exchange at the
very end of each polymer arm, as sketched in Fig. 1, to
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obtain contrast for neutron scattering experiments. The
deuterated blocks are chosen to be relatively small to get
more precise and easily accessible information on the star
polymer deformation, even though the small size causes
rather weak scattering and thereby somewhat noisy data.
The resulting molar masses of the polystyrene samples
were determined using size exclusion chromatography with
nonstabilized tetrahydrofuran (THF) as the eluent and
applying a column set consisting of a 5 μm guard column
and two 300 × 8 mm2 columns. The system was equipped
with a triple detector system consisting of a combined
Viscotek model 200 differential refractive index (DRI), a
differential viscosity detector, and a Viscotek (LD 600)
right angle laser light scattering detector (RALLS). The
overall molar mass is calculated based on both the RALLS
and DRI signal, whereas the polydispersity is based on
calibration with polystyrene standards. The synthesis of
three-arm polystyrene-b-polystyrene-d8 star block poly-
mers was carried out in freshly distilled THF in three stages
[22]. Synthesizing short narrow molar mass distribution
polymer blocks is difficult in polar solvents due to high
polymerization rates compared to the mixing rate and
results in high polydispersity. The problem was minimized
by performing the reactions of the labeled linear polysty-
rene-d8 polymer at −108 ° C, close to the freezing point of
the solvent. The resulting polymers have a molar mass of
Mw ¼ 7.7 kg= mol with a polydispersity of 1.14. During
the second stage the nondeuterated monomers were added
while the reaction mixture was heated up to −78°C. The
polydispersity of the full block copolymer arm is 1.40 due
to incomplete homogeneity in the synthesis in this step. The
resulting linear PS-PSd block copolymer has total molar
massMw of 101.7 kg=mol corresponding to a mass fraction
of deuterated polystyrene f equal to 0.075. The final star
formation stage was made at −78 °C with methyltrichlor-
osilane as the coupling agent. The resulting polystyrene star
polymer solution was fractionated and dried in vacuum at
50 °C for 24 h, resulting in an amorphous sample of three-
arm block copolymer stars with molar mass equal to

309.1 kg=mol and polydispersity equal to 1.30. The
relative large polydispersity may reflect a small amount
long linear block copolymers, which may be the conse-
quence of nonoptimal temperature during the polymer
synthesis. The quality of the polymer was investigated
further using rheology comparing the polymer of the
present Letter with that of a well-defined low-PDI three-
arm fully protonated PS star (PDI < 1.1) [20]. Rheology
measurements show that the relaxation of the partly
deuterated material is only slightly slower at low frequency,
indicating some side product of a high-molar mass lin-
ear PS.
For polystyrene, the polymer end-to-end statistical length

is
ffiffiffiffiffiffiffiffiffi

hR2∘i
p

½Å� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.437Mw½g=mol�p

, the Kuhn segment
length is b ¼ 18 Å, the entanglement molar mass is Me ¼
16.6 kg=mol and the tube diameter is a ¼ 85 Å [23]. With
the molar mass (M ¼ 101.7 kg=mol) for each arm,
the number of entanglements is Z ¼ 101.7=16.6 ≈ 6, and
the equilibrium end-to-end length is R∘ð1 armÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.437 × 101.700
p

Å ≈ 210 Å. The number of segments
in each arm is Narm ¼ ðR∘=bÞ2 ¼ ð210=18Þ2 ¼ 135, and
thus the total number of segments in the star polymer,
N ¼ 3Narm ¼ 405.
The samples were stretched with the VADER 1000,

Rheo Filament ApS. As shown by Hengeller et al. exten-
sional steady state flow conditions are established beyond
a Hencky strain of ϵ ¼ 3, which is the Hencky strain
applied in the present study [24]. The applied strain rate for
the stretched sample was _ϵ ¼ 0.06 s−1, performed at
T ¼ 125 °C. The equilibrium Rouse time of a linear chain
of the same span MW is 450 s at 125 °C [20]. The
nondimensional stretch rate based on this time constant
is significantly greater than unity so we expect that the
molecules are highly oriented and nonlinearly stretched.
The samples were quenched with a cooling rate of about
10 K=s as described in Kirkensgaard et al. [10]. Since the
glass transition temperature is 105 °C, the melt solidifies in
a time much shorter than the Rouse time. Therefore, the
molecular configurations in the solid samples are assumed
to be identical to those in the melt at the time of quench.
The large deformation does, according to previous related
studies, not cause degradation of the complex polymer
molecules [20].
The structural studies were performed using small-angle

neutron scattering (SANS). SANS data were obtained using
the SANS-1 instrument at PSI, Switzerland and Quokka at
ANSTO, Australia. Results obtained by the two instru-
ments agree perfectly. The results shown below are all
obtained using the Quokka instrument, where two instru-
mental settings were applied, both with 5 Å neutrons with
10% wavelength resolution and the collimation defined by
a source diameter of 50 mm and a pinhole in front of the
sample with a diameter of 10 mm. One instrumental setting
had 10 m collimation length and 5 m sample-to-detector

FIG. 1. Schematic illustration of the star copolymer where each
arm is a polystyrene block copolymer of total 101.7 kg=Mol
molar mass, made up of a 94 kg=Mol normal PS block near the
star center, and 7.7 kg=Mol deuterated end blocks (PSd).
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distance, giving a q range equal to 0.01 − 0.15 Å−1, while
the second setting used collimation length and sample-to-
detector distance both equal to 14 m, giving a q range
of 0.004 − 0.06 Å−1.
Figure 2 shows the 2D scattering function of the fully

relaxed star polymer. The rather poor statistics is due to a
limited amount of material and only rather small scattering
units in the labeled polymer. Unfortunately, this sample is
affected by artificial small-angle scattering, which arises
from the sample itself, but is likely related to cracks that we
only realized after finishing the SANS measurements. The
other measured samples do not have similar problems.
Fortunately, the significant small-angle scattering does not
disturb the main scattering characteristics of the correlation
peak.The cylindrical shape of the samplegives further rise to
some small angle scattering horizontally near the beamstop.
Figure 2(b) shows the azimuthally averaged structure

factor IðqÞ, where q ¼ 4π=λ sinðθÞ is the scattering vector,
λ being the neutron wavelength and θ half the scattering
angle. The averaged data exclude the striped area in
Fig. 2(a) to limit the effect of artificial background. The
incoherent scattering corresponding to pure polystyrene
was subsequently subtracted [25], to show the pure star-
block copolymer form factor. The SANS scattering pattern
of the relaxed sample is characterized by a broad peak
centered at q� ¼ 0.03 Å−1, corresponding to a character-
istic length scale of d ¼ 2π=q� equal to 210 Å.
If we assume an ideal random position of the star

molecules, there will be no intermolecular correlations.
The scattering pattern will accordingly be dominated by the
form factor of a single star molecule, which can be
calculated based on a random phase approach equivalent
to the calculation of a diblock copolymer melt developed
by Leibler [26]. Using such a RPA method, strictly
following the calculations of M. Doi [27], the form factor
can be expressed as

IðqÞ ¼ N
S=W − 2χN

ð1Þ

withN being the total degree of polymerization, χ being the
Flory-Huggins interaction parameter, and S and W are
given by

S ¼ SAA þ SBB þ 2SAB

and

W ¼ SAASBB − S2AB

respectively, where the partial structure factors for a three-
arm star polymer are given by [28–31]

SAA ¼ −3h½ð1 − fÞ=3� þ 3h½2ð1 − fÞ=3�
SBB ¼ 3fhðf=3Þ þ hð2=3Þ þ h½2ð1 − fÞ=3�

− 2h½ð2 − fÞ=3�g
SAB ¼ 3=2h½ð1 − fÞ=3� − 3=2hð1=3Þ − 3=2hðf=3Þ

þ 3fh½ð2 − fÞ=3� − h½2ð1 − fÞ=3�g; ð2Þ

where hðxÞ is the generalized q-dependent Debye function
introduced by Leibler:

hðxÞ ¼ 2=ðqRg;NÞ4fxðqRg;NÞ2 þ exp ( − xðqRg;NÞ2) − 1g
ð3Þ

where Rg;N is the radius of gyration of a linear polymer with
similar degree of polymerization (N). Heinrich et al. made
a corresponding analysis on end-labeled H-shaped mole-
cules, studying the conformational changes upon more
gentle stretching [32].
While small-angle neutron scattering is typically done on

an absolute scale, this is not trivial for the cylindrical
samples, where transmission and thickness vary over the
beam. In attempt, anyway, to give our data on an absolute
scale, we presuppose that the asymptotic high-q scattering
is dominated by incoherent scattering from pure polysty-
rene [25]. The data shown in Fig. 2 have thus been

(a) (b)

FIG. 2. Small-angle neutron scattering study of the relaxed star-polymer system. (a) The 2D scattering pattern as obtained in the SANS
instrument. (b) The azimuthally averaged intensity versus scattering vector, as obtained from the nonstriped area in (a).
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normalized using the incoherent scattering from polysty-
rene. The incoherent scattering was subsequently sub-
tracted, to show the pure star-block copolymer form factor.
The solid line in Fig. 2 shows the RPA form factor

calculated according to Eqs. (1) and (2) using the known
molecular parameters given above, i.e., N ¼ 405,
f ¼ 0.075. The Flory-Huggins interaction parameter
χðPS − PSdÞ ¼ 0.004 [33]; however, the scattering func-
tion is rather insensitive to changes in χ, reflecting that the
system is far from any microphase separation. The theo-
retical scattering function is arbitrarily multiplied by 1.05,
to fit the experimental data, which absolute intensity is
anyway somewhat uncertain, according to the discussion
above. The experiment and the theory agree very well, but
the peak position is slightly shifted relative to the theo-
retical expectation, which can be explained by an effective
segment-number N somewhat smaller than expected, or it
may reflect a small fraction of two-arm stars.
The experimental 2D-SANS data, as obtained immedi-

ately after elongational flow, is shown in Fig. 3. The data
show a very characteristic pattern dominated by two sets of
correlation peaks: one pair at the horizontal axis around
q⊥ ¼ �0.06 Å−1 [Figs. 3(a) and 3(c)] and another pair
centered at the vertical axis around qk ¼ �0.005 Å−1

[Figs. 3(b) and 3(d)]. Both sets of correlation peaks have
very large horizontal dispersions, i.e., perpendicular to the
flow direction, while being highly confined vertically
parallel to the flow. The characteristics are further clear
from Figs. 3(c) and 3(d), showing intensity averaged over
slabs parallel to, respectively, q⊥ and qk, as expressed in the
figures. The SANS pattern has additional horizontal scatter-
ing near the beamstop,which is attributed reflection from the
thin, cylinder shaped samples. This scattering is not dis-
cussed further. The pattern is further characterized by an
underlying close-to ellipsoidal contour pattern, which may
reflect the form factor of the deformed deuterated chains.
To make the discussion more clear, we have combined

the two data sets into one, and given a schematic illustration

of the findings, as shown in Figs. 4(a) and 4(b), respec-
tively. It is interesting to note that the two types of peaks do
not merge; i.e., they are not part of a common ellipsoidal (or
other simple) correlation ring as might have been expected
to emerge from “deformation” of the relaxed pattern shown
in Fig. 2. The peaks, on the contrary, make up four stripes
running parallel in the two-dimensional detector plane, as
also clear from Fig. 3(d) showing constant peak value
q�k ¼ �0.005 Å−1. This strongly indicates that the two
types of structures reflect properties of uncorrelated origin.
To discuss the origin of the scattering pattern, we note

that the molecules must be highly stretched, implying that
the RPA model should not be used. On the contrary, we
propose a most simple model with geometrically simple,
stretched objects where the scattering peaks as a conse-
quence of the Fourier transformation simply reflect dis-
tances between the labeled blocks.
The two peaks centered on the vertical qk axis at q�k ¼

�0.005 Å−1 have character of horizontal streaks extending
to rather large q⊥ values (beyond the q�⊥ of the “horizontal”
peaks discussed below). Such characteristics may have a
very simple origin. The Fourier transform, and thereby the

(a) (b)

(c)

(d)

FIG. 3. Experimental small-angle neutron scattering results of a star-polymer system exposed to elongational stretching (vertically)
using two instrumental settings at the Quokka instrument: neutron wavelength λ ¼ 5 Å and sample to detector distance equal 5 m (a)
and 14 m (b), respectively. (c) The horizontal peak intensity versus q⊥ as averaged over a qk slab. (d) The intensity of the vertical peak
versus qk as averaged over different q⊥ slabs.

(a) (b)

FIG. 4. Small-angle neutron scattering study of star-polymer
system exposed to elongational stretching. (a) The 2D exper-
imental scattering pattern as obtained in the SANS instrument.
(b) A schematic illustration of the findings to clarify the
discussion in the text.
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scattering pattern, of a simple one-dimensional model with
two elongated scattering domains aligned in the flow
direction will have exactly such characteristics with the
peak-width being relatively confined in the vertical direc-
tion parallel to flow, but broad perpendicular to the flow
determined by the width of the deuterated block. The
pattern thus reflects the correlation between two
7.5 kg=mol deuterated blocks parallel to the flow, one
block in positive and one in negative stretching direction,
where the center value q�k ¼ 0.005 Å−1 corresponds to a

distance of roughly 1300 Å.
The two peaks centered on the horizontal q⊥ axis are also

very broad parallel to q⊥ while being very confined in the
qk direction parallel to the flow. The center values q�⊥ ¼
�0.06 Å−1 correspond to a distance of the order of 100 Å.
The origin of these peaks must be correlations between two
deuterated blocks that have oriented into the same direction
relative to flow. The significant confinement in the vertical
direction implies that the two scattering domains are
positioned in the same plane perpendicular to flow,
implying that in a given star molecule, both chains are
stretched by the same factor. The large horizontal width of
the reflections may have two origins: it may reflect
diversity in distance between the domains and it may
reflect the form factor of the stretched deuterated blocks.
Some variation in the distance is reasonable, and the
stretched chain may very well be relatively thin, as also
argued for the horizontal width of the other pair of peaks.
To understand these findings on the molecular level, it is

relevant to look into the characteristic polystyrene dimen-
sions given above. The horizontal peaks are attributed to
correlation between the deuterated domains of two arms
that are stretched into the same direction relative to the flow
(Fig. 5). The distance of roughly 100 Å resulting from the
horizontal peaks is, with the given statistics, very close
to the tube diameter a ¼ 85 Å and thereby the tube

center-to-center distance. While this may be fortuitous
we suggest that the two arms do not constitute a common
tube, but make up individual tubes separated with roughly
two times their radius, thus giving rise to the pronounced
correlation peak.
With the molar mass (Mw ¼ 101.7 kg=mol), the one-arm

chain contour length is Rmaxð1 armÞ ¼ R2∘=b ¼ 2480 Å,
while the tube contour length is Le ¼ Za ¼ 520 Å.
A fully stretched star polymer would have a total ex-
tension corresponding to two fully extended chains, i.e.,
RmaxðstarÞ ¼ 2 × 2480 Å ¼ 4960 Å. The total length of a
fully extended tube of the star polymer is correspondi-
ngly given by the sum of the tube length of two arms,
2Le ¼ 2Za ¼ 1040 Å. This value is, with our experimental
resolution,verycloseto theexperimentalvalueobtainedfrom
the vertical peaks, equal to 1300 Å, though indicating slight
stretching. Our interpretation of the experimental scattering
patternis thus thatofasimple three-armedtubethat retains the
tubecharacteristics,whilebeing fullyextendedparallel to the
flow, as sketched in Fig. 5.
Even though our proposed tube picture may be some-

what naive, it describes very well the properties of the
experimental findings. We should admit that the tube model
may not make much sense for a fully extended tube, since
such a system no longer has entanglements. The studied
polymer system has, however, been exposed to a stretching
that is fast relative to typical relaxation mechanisms, and
one may accept that the chains still have the memory of a
virtual tube, within which they appear confined. Without
the physical tube, however, it is not clear what will happen
during relaxation from the extended configuration; whether
the chain relaxation will still be dominated by a virtual
tube, or at which stage a new tube can be defined.
A simple comparison would be that of a simple two-arm

star-block copolymer, i.e., a linear tri-block PSd-PS-PSd
polymer. Exposed to a similar mechanical strain, we would
predict that the resulting SANS pattern would be restricted
to the two “vertical” scattering streaks. We are planning
such experiments.
In summary, we have shown that three-armed star

molecules of similar block copolymer arms behave in
accordance with the random phase approximation of
Gaussian chains in the relaxed state. Upon exposure to
large extensional flows, the polymer arms change con-
formation to a highly stretched structure that mimics that of
a fully extended three-armed tube model, with one arm in
one direction and the two other arms in the opposite
direction on the flow axis. The two arms pointing in the
same direction are parallel and their associated tubes are
right next to each other.

This work was funded from the Independent Research
Fund Denmark, Technology and Production (DFF–4005-
00112), and the Danish Research Infrastructure via
DANSCATT (SFU–7055-00005B). Q. H. would like to

FIG. 5. Schematic figure of the stretched star block copolymer,
illustrating the fully extended three-armed tube with two of the
tube arms positioned right next to each other.
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178 APPENDIX B.2. CHAIN RETRACTION

B.2 Chain retraction during polymer relaxation
confirmed using spherical harmonics
expansion of small angle neutron
scattering data

The manuscript presents our findings on chain retraction during the
relaxation of linear polymer chains after deformation using the spherical
harmonics expansion framework recently proposed for analysis of 2D
scattering patterns from uniaxially deformed polymer melts.

Abstract

Small-angle neutron scattering data on stretched polymer melt shows
unambiguous chain retraction immediately after large uniaxial stretching.
The sample was a linear polystyrene melt of 90 % 95 kg/mewl and 10
% 80 kg/mol deuterium-labeled chains exposed to a macroscopic stretch
ratio of 20 resulting in a chain stretch ratio of about 4. The 2D small-
angle neutron scattering data was analyzed using a spherical harmonics
expansion that provides high sensitivity to polymer deformation. Our
results and conclusion differ from previous experiments performed by
another group analyzed using the same method, but our results agree
with recent computer simulations. The difference in conclusions is likely
a matter of different polymer sizes and stretch ratios.

My contribution

I initiated the project and implemented the spherical harmonics expansion
framework. I am the driving force in the analysis and interpretation and I
wrote the manuscript draft.
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Small-angle neutron scattering data on stretched polymer melt shows unambigous chain retrac-
tion immediately after large uniaxial stretching. The sample was a linear polystyrene melt of 90 %
95 kg/mol and 10 % 80 kg/mol deuterium-labeled chains exposed to a macroscopic stretch ratio of
20 resulting in a chain stretch ratio of about 4. The 2D small-angle neutron scattering data was an-
alyzed using a spherical harmonics expansion that provides high sensitivity to polymer deformation.
Our results and conclusion differ from previous experiments performed by another group analysed
using the same method, but our results agree with recent computer simulations. The difference in
conclusions is likely a matter of different polymer sizes and stretch ratios.

The validity of the tube model [1] for non-linear rhe-
ology has been discussed for decades and was recently
reapproached by Wang et al. [2] and Hsu and Kremer
[3]. Wang et al. proposed a new analysis method for
2D small-angle scattering data from uniaxially extended
polymer melts expanding the data in spherical harmon-
ics. From the Doi-Edwards tube model and the GLaMM-
model they predicted the signature of chain retraction in
the spherical harmonics expansion, but in their subse-
quent analysis of data from a polystyrene melt the sig-
nature was absent. Therefore they concluded that either
chain retraction does not occur or other nonlinear ef-
fects, not yet included in the tube model, screen chain
retraction. However numerical studies of Hsu and Kre-
mer showed that the predicted signature of chain retrac-
tion should occur, but also that its significance increases
with increasing molecular stretching. In this paper we
show experimentally that the predicted signature of chain
retraction in the spherical harmonics expansion do oc-
cur for chains of Mw = 80 kg/mol under a macroscopic
stretch ratio of about 20 and a resulting molecular stretch
ratio of about 4.

Chain retraction during relaxation after a sufficiently
rapid deformation means that the molecule initially
shrinks in all dimensions and is a consequence of the
decoupled orientation and stretching relaxation in the
tube model. If the deformation of a polymer chain is
fast enough compared to the chain relaxation dynamics,
the chain will be both oriented and stretched by the de-
formation. To return to its equilibrium conformation,
it thus has to relax both orientation and extension, and
from the tube model it follows that the two relaxations
are decoupled in time such that the molecular stretch re-
laxes on a short time scale, τR, in a Rouse-like manner
and the chain orientation relaxes on a much longer time
scale, τd, through reptation into a new tube. The rep-
tation time scales as τd ≈ 3ZτR where Z is the number

of entanglements so the decoupling is more significant
for longer chains. The decoupling of the two relaxation
modes leads to chain retraction where the molecule dur-
ing the initial relaxation t . τR after deformation will to
first approximation preserve its orientation, but shrink
in all dimensions.

Doi and Edwards proposed to test the chain retrac-
tion hypothesis by by extracting the elements of the ra-
dius of gyration tensor corresponding to parallel, Rg‖,
and perpendicular, Rg⊥, to the stretch direction from
small angle scattering experiments.[1] If chain retrac-
tion occurs, all elements of the radius of gyration ten-
sor will shrink during the Rouse-like relaxation. For Rg⊥
in particular this means that it will initially shrink be-
fore it increases to the equilibrium value. This has been
attempted in several experiments and some see a non-
monotonic increase in Rg⊥(t)[4, 5] whereas others do
not.[6] The absence of signs of chain retraction in the
latter experiments is explained by too short molecules
or too larger polydispersity[6]. Other experiment report
that including chain retraction in the model is needed to
fit data.[7, 8]

Based on the differing conclusions in the previous ex-
perimental work, a new model-free approach more sensi-
tive to changes polymer deformation is needed to test the
chain hypothesis. The recent, detailed work of Wang et
al. [2] offers a comprehensive and model free framework
for analyzing anistropic 2D scattering data from uniaxi-
ally extended polymer melts using a spherical harmonics
expansion. Their framework combines and refines earlier
work using expansion techniques. The spherical harmon-
ics expansion could be more suitable for testing the chain
retraction hypothesis than radius of gyration analysis be-
cause it is sensitive to the overall chain length and the
separation of the isotropic from the anisotropic contribu-
tions to the pattern increases the sensitivity to polymer
deformation.
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We use the spherical harmonics expansion on SANS
data for polystyrene samples stretched using a filament
stretch rheometer to test the chain retraction hypothesis.
Our samples are melts of 10 wt-% of Mw = 80 kg/mol
fully deuterated polystyrene with a polydispersity index
of PDI=1.02 and 90 wt-% of Mw = 95 kg/mol hydro-
genated polystyrene with PDI=1.07. The samples were
previously studied and described in ref. [9, 10]. Both the
95 kg/mol hydrogenated PS and the 80 kg/mol deuter-
ated PS were synthesized through anionic polymerisation
as described in [9]. The calculated chain Rouse time for
the deuterated component is τdR = 15 s and for the hy-
drogenated component τhR = 20 s for the hydrogenated
component at T = 130◦.

The filaments were stretched at elevated temperatures
and allowed to relaxation a certain time after deformation
before the rapidly cooled below the glass transition tem-
perature to preserve the molecular conformation. The fil-
aments where stretch on the commercial filament stretch
rheometer VADER-1000, Rheo Filament ApS. The in-
strument consists of two plates and a laser in an oven.
The bottom plate is connected to a force transducer and
the top plate to a motor that allows for vertical motion.
The laser tracks the diameter of the mid-filament, and
the oven allows for controlled, elevated temperatures. We
describe the deformation in terms of macroscopic stretch
ratio λm and Hencky strain ε:

λm =
L(t)

L(0)
=

(
R(0)

R(t)

)2

(1)

ε(t) = ln(λm) (2)

where L(t) is the length of the central part of the filament
pre-stretched to an approximately cylindrical shape, and
R(t) is the radius of the filament both as a function of
time t. Due to the non-perfect cylindrical shape, the fil-
ament radius provides a better measure of the mid-plane
strain than the filament mid-segment length. A feed-back
mechanism that allows for controlled deformation and re-
laxation has been implemented [11]. We stretched the
samples at a constant Hencky strain rate of ε̇ = 0.1s−1

at a temperature of T = 130◦C up to a final Hencky
strain ε = 3 where steady flow is obtained [9], and al-
lowed to relax under constant Hencky strain for 0, 10, 20,
80, and 320 s approximately corresponding to 0·τdR, 0.7
·τdR, 1.3·τdR, 5.3·τdR, and 21.3·τdR before they were rapidly
cooled below the glass transition temperature to preserve
the molecular conformation as described in refs. [9, 10].
If the experimental parameters are such that the defor-
mation is faster than the Rouse relaxation of the chains i.
e. the deformation rate ε̇ = 0.1 s−1 is larger than the in-
verse of the relaxation time 1/τdR = 0.15 s−1 or the Rouse
Weissenberg number WiR = ε̇τR > 1 [12], we expect the
chains to stretch during deformation. In our experiment
WiR = 1.5.

For neutron scattering, the samples consisted of sev-
eral aligned, quenched filaments attached to a Cadmium-
ring. The SANS data was measured on QUOKKA at

the Australian Nuclear Science and Technology Organi-
sation. We include data from two detector settings with
a sample detector distance of 14 m and 5 m respectively
and a wavelength of 5 Å in our analysis. The data from
the 5 m setting is previously published in [10]. The
data was reduced by subtracting a blocked beam mea-
surement and an estimate of the incoherent scattering
intensity by assuming a constant incoherent background
and Gaussian coil statistics. The data taken at 45± 10◦

relative to the stretching direction for each sample was
averaged, and the data fulfilling qRg0 > 2.75 was fit-

ted to I(q) = aq−2 + b. Here Rg0 = 78.2 Å [10] is
the equilibrium radius of gyration and q the scattering
vector. Before subtracting the incoherent background,
b, the data sets were arbitrarily scaled to b = 1 to ac-
count for varying material amounts across samples. As
can be seen in Fig. 1 the scattering patterns change from
highly anisotropic, extending in the direction perpendic-
ular to stretching, to isotropic as a function of relaxation
time. Unfortunately, the scattering patterns have a cross-
shaped contribution at very small q, most clear in the
sample relaxed for 80 s. Fully understanding this part of
the scattering pattern is ongoing work, but we are con-
fident that the additional scattering at low q originates
from cracks developed during the preparation of the fil-
aments and thus has no relation to the polymer confor-
mation. We therefore exclude the data corresponding to
the smallest q-values as marked by rings in Fig. 1 from
the spherical harmonics analysis.

The data is analyzed using the spherical harmonics
expansion approach explained in detail in [2]. In the
following we focus on our implementation and therefore
only state the most essential equations from ref. [2]. The
structure factor can be decomposed in an orthogonal ba-
sis of spherical harmonics Y ml (θ) with even l and m = 0
due to the symmetry of uniaxial extension:

S(~q) =
∞∑

l,even

S0
l (q)Y 0

l (θ) (3)

Y 0
l (θ) =

√
2l + 1P 0

l (cos θ) (4)

where S0
l (q) are expansion coefficients, P 0

l (x) are asso-
ciated Legendre polynomials, and θ is the polar angle
in the spherical coordinates and relates to data as de-
fined in Fig. 1a, i.e. the scattering angle is 2ϑ, and
the scattering vector magnitude is therefore defined as
q = 4π/λ sinϑ. The coherent scattering intensity is then
proportional to the qy = 0 cross section of the struc-
ture factor, Icoh(~q) ∝ S(qx, qy = 0, qz), see Fig. 1a. By
expanding Icoh(~q) in spherical harmonics , the isotropic
and anisotropic contributions to the scattering pattern
are separated. We implemented the spherical harmon-
ics expansion by averaging the data in narrow q and θ

intervals with ∆q = 0.001Å
−1

and ∆θ = 5◦. For each
q-interval, Icoh(θ) is fitted to eq. 3 truncated at l = 8 by
minimizing the χ2. The data can now be represented in
terms of the q-dependent expansion coefficients S0

l (q).
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FIG. 1: 2D SANS data on uniaxially extended
polystyrene. The stretching direction and polar angle θ

are defined in a). Subfigure b)-f) show data for
relaxation time of 0·τdR, 0.7 ·τdR, 1.3·τdR, 5.3·τdR, and

21.3·τdR all measured with a sample-detector distance of
14 m and wavelength 5 Å on QUOKKA at ANSTO.

To look for signs of chain retraction, we plot the ex-
pansion coefficient of the leading anisotropic component,
S0
2(q) for all samples, see Fig.2. The center of the dip is to

first approximation a measure of the overall chain length
and only weakly dependent on anisotropy while the am-
plitude is highly dependent on the degree of anisotropy.
Thus if chain retraction occurs, the center of the dip
should shift to larger q during t . τR[2] to reflect the
molecule shrinking while preserving its orientation as
mentioned above. From Fig. 2 it is evident that the dip
shifts towards larger q during t . τdR even though the
exact location of the minimum for t = 0 · τdR is hard to
determine due to the limited data at small q. We also
observe that S0

2(q) relaxes quite fast. After 5.3 · τdR the
amplitude of S0

2(q) is very small, even though the repta-
tion time is approximately τd ≈ 8 · τdR. The innermost
data points should not be fully trusted since they do not
follow the expected trend that S0

2(q) → 0 for q → 0 due
to the additional scattering at small q. We assign the the
dip shift to chain retraction.

Next we compare the magnitude of the dip shift to

quantitative predictions on the tube model to determine
how well the tube model captures the relaxation be-
haviour after extreme extension. The tube model pre-
dicts that the molecules deform affinely with the macro-
scopic stretch such that each bond vector u is trans-
formed as ũ = E · u where E is the deformation matrix.
For a uniaxial extension with stretch ratio of λ along the
third coordinate we obtain

E =




1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ


 . (5)

We denote the stretch ratio λ here to prepare for a dis-
tinction between the macroscopic stretch ratio λm and
the molecular stretch ratio λ motivated by the discus-
sion below. The deformation λ will lead to an elliptical
scattering pattern that can be modeled by a modified
Debye function such that

S(~q) =
2

x2
(
e−x + x− 1

)

x = (q‖Rg‖)
2 + (q⊥Rg⊥)2 (6)

where Rg‖ = λRg0 and Rg‖ = 1/
√
λRg0.

During Rouse relaxation the dip shifts to large values
of q because all the bond vectors shrink isotropically by
a factor of 〈|E · u|〉0[1]. As a consequence the ratio of
the q-coordinates of the minima, q∗, will have the fol-
lowing relation: q∗R-relaxed/q

∗
t=0 =

√
〈|E · u|〉0 where the

subscript R-relaxed means after full Rouse relaxation. As
a function of λ using the deformation matrix in eq. 5 we
find

〈|E · u|〉0 = 1/2
[
λ+ 1/

√
λ4 − λ ln

(√
λ3 − 1 +

√
λ3
)]
.

(7)

Now we determine the dip shift in the experimental data
and compare it to the theoretical expectations. The ex-
perimental data suggests a minimum in S0

2(q) for t = 0τdR
at q∗

t=0τd
R
≤ 0.011 Å

−1
given the data limit. We assume

q∗
t=1.3τd

R
≈ q∗R-relaxed since the data set for t = 5.3τdR

is so affected by the cross-shaped scattering at small q.

For t = 1.3τdR we find q∗
t=1.3τd

R
= (0.018 ± 0.003) Å

−1

where the uncertainty is due to the broad minimum of
the curve, see fig. 2. These numbers give rise to a ra-
tio of q∗

t=1.3τd
R
/q∗t=0 = 1.4− 1.9 using the upper limit for

q∗
t=0τd

R
and q∗

t=1.3τd
R

= (0.018 ± 0.003) Å
−1

. To compare

to the theoretical predictions we need to firstly determine
λ. As mentioned above the original Doi Edwards the-
ory predicts that the molecules deform affinely with the
macroscopic stretch ratio such that λm = λ. However,
in later theoretical and experimental work it is proposed
that the relation is non-affine [13–16]. In our experiment
we even stretch until steady state where we assume that
the molecular stretch is no longer affected by the macro-
scopic stretch. So to determine λ we therefore fit the data
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set corresponding to the smallest q values (14 m with the
same exclusion of small q as above) for t = 0 · τdR to the
modified Debye function, eq. 6, in a least squares sense
including two free parameters: λ and an overall scaling
factor to account for e.g. sample volume. We obtain an
effective extension ratio for the chains λ = 3.4. However,
the modified Debye function fitted to data shows minor
but systematic deviations, and we therefore consider the
found value of λ approximate. The mid-range q data
(5m) was previously analyzed using the more advanced
Warner-Edwards model in ref. [10] and that analysis lead
to λ = 4.2. In the following we therefore compare exper-
imental data to the theoretical expectations using both
values of λ.

We determine the theoretical minimum S0
2(q) at t =

0·τdR by expanding the modified Debye function of λ = 3.4
and λ = 4.2 respectively in spherical harmonics the same
way as for the experimental data. The found minima

are q = 0.012Å
−1

for λ = 3.4 and q = 0.011Å
−1

for
λ = 4.2. The ratio q∗R−relaxed/q

∗
t=0 is determined by cal-

culating
√
〈|E(λ · u|〉0 for both values of λ. For λ = 3.4

we obtain
√
〈|E(λ · u|〉0=1.3 and for λ = 4.2 we obtain√

〈|E(λ · u|〉0 =1.5. Both q∗
t=0τd

R
and the ratio are more

consistent with λ = 4.2 found using the Warner Edwards
model than with λ = 3.4 though both ratios are low
compared to the interval calculated from the data. How-
ever, the low ratios are most likely due to an overestimate
of q∗

t=0τd
R

, but the assumption q∗
t=1.3τd

R
≈ q∗R-relaxed will

also lead to a smaller ratio since q∗
t=1.3τd

R
≤ q∗R-relaxed.

The theoretical expectation from the description of the
relaxation in the Doi Edwards tube model is consistent
with the experimental data provided that the molecular
stretch ratio is allowed to deviate from the macroscopic
stretch ratio, i.e. the microscopic strain coupling is non-
affine.

We have now analyzed our data using the spherical
harmonics framework of Wang et al. and concluded that
chain retraction occurs. This is a remarkable conclusion
since Wang et al. used the same framework to look for
chain retraction in a melt of much longer chains, but did
not see it. We believe that the difference in conclusion is
due to variations in the macroscopic stretch procedure,
or the resulting molecular stretch factor λ.

Wang et al. performed a thorough analysis of exper-
imental data on well-entangled polystyrene, Mw = 510
kg/mol, uniaxially extended to a final stretch ratio of
λm = 1.8 using an RSA-G2 Solids Analyzer from TA In-
struments at a temperature of T = 130◦C with constant
crosshead velocity of v = 40L(0)/τR and thus constant
stretch ratio rate and varying ε̇. Their stretch parame-
ters and choice of chain length is such that they stretch
at a Rouse Weissenberg number WiR of initially 40 and
above 20 in the end of the experiment so as explained
above, the chains are expected to stretch during the ex-
periment. In our experiment WiR = 1.5 so more than a
factor of 10 lower, but our macroscopic stretch ratio λm
is more than a factor 10 larger.
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FIG. 2: Expansion coefficient of the leading anisotropic
component S0

2(q) as function of scattering vector
magnitude q during relaxation after uniaxial extension.

The findings of Wang et al. were supported by a non-
equilibrium molecular dynamics simulation by Xu et al.
[17] with parameters comparable to those in the experi-
ment in Wang et al. [2]. They too reach the conclusion
that the signature of chain retraction is absent. How-
ever, Hsu and Kremer performed a molecular dynamics
simulation [3] covering a larger part of parameter space
than the present and previous experiments and simula-
tion. They do in fact see the signature of chain retraction
in the spherical harmonics expansion for certain param-
eters. The simulation both shows that the dip in S0

2(q)
at t = 0 increases for larger molecular stretch ratios and
that the GLaMM-model [18], with which Wang et al.
make quantitative predictions of the time evolution of
S0
2(q), overestimates the dip shift magnitude during re-

laxation more severely for longer molecules. Potentially
Wang et al. could have seen a dip shift for their system
if they had stretched to larger values of λm. Hsu and
Kremer suggest that there are other not yet understood
relaxation modes in the nonlinear regime as an explana-
tion for the overestimation.

We would also like to point out that it is remarkable
how well the tube model captures the behaviour of our
data when we consider that our chains are relatively short
with a number of entanglements Z ≈ 5− 6 and that the
Doi-Edwards tube model describes Z → ∞ chains and
therefore in general captures the behaviour better with
increasing Z.

I. CONCLUSION

In conclusion, we shown chain retraction during poly-
mer relaxation with the spherical harmonics expansion
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method to analyze anisotropic 2D small angle neutron
scattering data from uniaxially deformed polymer sam-
ples proposed by Wang et al.. This is remarkable since
the chain retraction hypothesis Most likely, the oppos-
ing conclusions originate from the differences in chain
lengths and molecular stretch ratios between the two ex-
periments. This interpretation is supported by a molec-
ular dynamics simulation by Hsu and Kremer that fur-
ther shows that the GLaMM-model overestimates the dip

shift increasingly with increasing chain length. Our ob-
servation of the chain retraction signature in the spheri-
cal harmonics expasion viewed in relation to the work of
Wang et al. and Hsao and Kremer, indicate that there
may be other relaxation mechanisms at play than those
already understood.

We thank ANSTO for beamtime, DanScatt and Danish
Council for Independent Research for funding, Andriy
Dorokhin for polymer synthesis and Ludovica Hengeller
for rheological experiments and sample preparation.
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