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Abstract
During  the  Last  Glacial  Period,  several  climate  changes  characterized  by  rapidity  and  broad

geographical impact have occurred. In most cases, climate proxy records reveal patterns of general

reorganization for atmospheric and oceanic currents, with abrupt modal switches among two or more

states  of  equilibrium.  However,  no  extinction  event  has  been  recorded  following  such  dramatic

environmental  changes,  with the notable exception of  some megafauna species.  This  suggests that

inspecting this past events might provide us of a deeper insight of the dynamics and the strategies that

species and populations adopt to survive abrupt environmental change, a topic which appears to be of

particular interest  in the perspective of the present need to predict  how nature will  respond to the

current climate change. Nevertheless, the short spatial and temporal scales of these events makes the

study of such processes challenging. This project aims to investigate the underlying biotic mechanisms

of response through analysis of paleo-archives and simulations realized by species distribution models.

As such, it is divided in three parts.

The first part aims to collect and organize the existing knowledge about biotic responses to past

abrupt climate changes, to achieve a general overview of the responses, and highlight the current gaps

of knowledge on the topic. This is accomplished by a compilation of the published literature on the

subject, with global geographic coverage and spanning the period comprising the Last Glacial Period

(~120-12 ka  BP)  and  early  Holocene.  The  collected  information  is  classified  by  habitat  and

organization level, in order to infer modal responses and main mechanisms of adaptation. This analysis,

included  in  the  manuscript  presented  in  Chapter 2,  exposes  the  importance  of  microrefugia  and

minority population presence for communities to maintain equilibrium with rapid environmental shifts.

The second part introduces a novel method of investigation of population mechanisms of adaptation

to abrupt climate change, in the form of a species distribution model aiming to reproduce explicitly

some of the key response dynamics. It is fully introduced in the manuscript presented in Chapter 3. The

model takes climate simulation maps and paleo-archives of the taxa of interest as input; it subsequently

produces a climate-driven distribution range simulation and evaluates its likelihood by comparing it

against  the  paleo-archives.  By  testing  the  likelihood  of  the  distribution  range  simulations  against

paleorecords of the taxa under study, the model incorporates a correlative approach to a mechanistic

model. This hybrid nature aims to make the model a tool for studying and testing hypotheses about
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populations response mechanism, since it reproduces explicitly some of the key response dynamics

being process-based; and, at the same time, for statistically reconstructing species traits by their paleo-

archives. The model is tested through a case study of Abies populations in North America during the

transition to Holocene. 

In the third part, displayed in the manuscript comprising Chapter 4, the model is applied to a fossile

pollen database containing information about seven common North American tree taxa with the aim to

analyse their response mechanisms to the environmental changes of last deglaciation. Simulations with

different dispersal models are realized and compared to infer the colonization strategies of the taxa

under  rapid climate changes.  The study shows a prevalent  resort  to  long-range dispersal,  with the

frequency of such events inversely correlated with the ability of the taxa to maintain equilibrium with

the environment.

These  findings  illustrate  the  validity  to  recurring  to  process-based  models  for  reproducing  and

analysing dynamics with brief spatial and temporal resolution as rapid climate-driven distribution range

responses. Explicitly spatial models allow to take into account the stochasticity in the simulated events,

which are an important factor at such short time scales. The maintenance to meta-population structures

appears  as  an  important  feature  for  successful  species  responses  to  abrupt  climate  changes;  in

particular,  long-range dispersal  has  played a  significant  role  in  tree  populations  responses  to  Late

Glacial abrupt climate changes.
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Resumé
Adskillige abrupte klimaforandringer er dokumenteret I paleo-arkiver under og umiddelbart efter den

sidste istid. Dette afslører mønstre af generelle reorganiseringer af atmosfæriske og oceaniske strømme

med abrupte modale skift med to eller flere tilstande af ligevægtige. Dog er ingen uddøen registreret

efter sådanne dramatiske klimaforandringer, med undtagelse af udslettelsen af nogle megafauna. Dette

indikerer at forskning i disse abrupte klimaforandringer kan give dybere indsigt i, hvilke dynamikker

og strategier arter og populationer adopterer for at overleve abrupte miljøforandringer. Set i lyset af det

nutidige  behov  for,  at  forudse  naturens  respons  til  klimaforandringer  er  viden  om disse  fortidige

abrupte klimaforandringer af høj interesse. Dog er det udfordrende at studere disse tidsmæssige korte

forhistoriske klimaforandringer. Formålet af dette tre-delte projekt er at undersøge de underliggende

biotiske  mekanismer  for  arternes  respons  og  geografiske  rækkevidder  gennem  analyse  af  paleo-

arkiverne og geografiske simuleringer.

Den første del har til formål, at evaluere og syntetisere den eksisterende viden om biotiske respons

til forhistoriske klimaforandringer. Dette er for at opnå et generelt overblik over respons, mønstre og

mekanismer og fremhæve de nuværende mangler i viden om emnet. Dette udføres ved, at samle den

publicerede  litteratur  med  global  geografisk  dækning  i  perioden  fra  og  med  den  sidste  istid

(~120-12 ka BP)  og  tidlig  Holocæn.  Den indsamlede litteratur  bliver  klassificeret  under  habitat  og

organisation niveau for at  udlede den modale respons og de overliggende mekanismer af adaption.

Denne analyse er inkluderet i manuskriptet i Kapitel 2 og afdækker vigtigheden af adaption, spredning

og mikro-refugia for populationer, arter og økologiske samfund under abrupte klimaforandringer.

Den anden del introducerer en ny metode, der benytter sig af rummelige simuleringer til, at afdække

hvilke mekanismer, adaptationer in situ og spredninger, der kan forklare de observerede mønstre af

geografiske habitat dynamikker under abrupte klimaforandringer. Disse simulationer er implementeret i

et nyt software kaldet Radis, som er fuldt introduceret i manuskriptet præsenteret i Kapitel 3. Den gør

brug af klima simulerings kort og paleo-arkiver af taxa fordelinger over de forgangne tids perioder som

hoved input; efterfølgende produceres en simulering af arternes spredning drevet af klima, hvorefter

sandsynligheden af tolerance in situ og spredning evalueres ved sammenligning med paleo-arkiverne.

Vores  tilgang har  til  formål,  at  bidrage  til  studie  og  test  af  hypoteser  i  respons mekanismer.  Idet

tilgangen er proces baseret reproduceres nogle af nøgle dynamikkerne. Modellen er testet gennem et
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case studie af Abies populationer i Nord Amerika under overgangen til Holocæn. 

I den tredje del af projektet, som er at finde på manuskriptet i Kapitel 4, bruges modellen med input

fra  databaser  med  fossil  pollen  fra  syv forskellige  almindelige  Nord  Amerikanske  træ  taxa,  til  at

analysere arters respons mekanismer til de miljømæssige forandringer, der foregik under den sidste

istid. Simulationer med forskellige sprednings måder, hvor lang tids sprednings events er inkluderet, og

in situ tolerancer bliver sammenlignet med fortidige distributioner i Nord Amerika for at udlede rollen

af nøgle overlevelses strategier af taxa under hurtige klima forandringer. Dette studie demonstrerer en

fremherskende rolle af tolerance in situ og en sekundær rolle af spredning.

Disse fund illustrerer  validiteten til  gentagne proces  baserede modeller  for reproducerbarhed og

analyse dynamik af geografiske rækkevide dynamikker under abrupte klima forandringer. Udtrykkeligt

de rummelige modeller tillader at indbefatte stokastiske variabler i de simulerede begivenheder, hvilket

er en vigtig faktor for sådanne tids skaler. Opretholdelse af meta-population struktur fremgår som en

vigtig  egenskab  for  succesfulde  arters  respons  til  abrupte  klimaforandringer.  Særligt  lang  distance

spredning har vist sig signifikant i træpopulationers respons til sidste istid abrupte klima forandringer.
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1 Introduction

1.1 Climate change dynamics during last glacial period
The Pleistocene was a geological epoch consisting of several glacial periods divided by intervals of

warmer global temperature, called interglacial periods. The last glacial period occurred from circa 120

ka BP to 11.7 ka BP; it starts after the Eemian interglacial period and it is succeeded by the Holocene,

which  is  the current  geological  epoch.  During the last  glacial  period,  the  climate of  the  Northern

hemisphere was affected by many severe climate changes, and evidence of them has been found in

several climate records around the whole Northern Hemisphere (Voelker 2002; Moreno et al. 2014).

Such rapid climate changes were first observed in ice cores from Greenland. Among paleorecords ,

ice cores provide some of the highest temporal resolutions: the ice is formed by layers of ice generated

by snow fallen every year, therefore they have annual resolution dating back to 60 ka BP (Rasmussen

et  al.  2014).  The  isotopic  composition  of  both  oxygen  and  hydrogen  can  be  used  to  infer  the

temperature  history  of  the  ice  core.  Evaluations  for  the  ratio  of  18O over  16O and deuterium over

hydrogen, expressed in parts per thousand, are indicated respectively with the symbols δ18O and δD.

The fraction of heavier isotopes in an ice layer is dependent on the temperature of the precipitation that

composed  it,  therefore  they  can  be  used  as  proxy  of  temperature  of  the  ice  core  region  for  the

corresponding year.

1.1.1 Dansgaard-Oeschger events

Greenland ice cores enclose data up to the last 120 ka BP. They display several transitions from stadial

(i.e. periods of colder climate) to interstadial (warmer climate), before reverting back to stadial; these

periods  of  warmer  conditions  are  called  Dansgaard-Oeschger  (DO)  events.  The  shifts  towards

interstadial  conditions  occurred  on  time  scale  of  decades,  to  which  followed  a  slow  decline  in

temperature and finally a transition back to stadial spanning some hundreds of years (Fig. 1).

Other records outside Greenland display climate patterns with correspondence to DO events. One of

the first and most important examples comes from the Hulu Cave, located in Eastern China. It is a main

site for paleoclimate records, thanks to its stalagmites which provide for oxygen isotope records dating

back to more than 70 ka BP. In this case, δ18Ο represents a proxy for changes in the ratio of the amount

of summer to winter precipitation, and therefore for intensity of the East Asian Monsoon. The general
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pattern of such records follows, on the long term, the trend of summer insolation, but on short-term

scale  it  shows  shifts  in  accordance  with  millennial-scale  events  observed  in  Greenland

paleorecords (Fig. 2). This suggests a correlations between past Greenland temperatures and intensity

of  summer  East  Asian  Monsoon,  with  the  latter  increasing  in  periods  of  warmer  conditions  for

Greenland (Wang et al. 2001).

Climatic shifts correlating with changes in Greenland temperatures have also been found in marine

sediment cores in tropical North Atlantic and the Arabian sea (Deplazes et al. 2013). In these cases, the

proxy  used  is  sediment  reflectance,  which  is  a  variable  proportional  to  relative  contributions  of

terrigenous and biogenic components and, by analogy with present-day seasonal variations, is used as

proxy for  latitudinal  position of  the Atlantic  inter-tropical  convergence zone (ITCZ) and monsoon

intensity.  Comparison  of  such  paleorecords  with  ice  cores  shows  that  Greenland  interstadials

correspond to periods of higher precipitations of the Indian summer monsoon, and with northwards

migrations  of the ITCZ. Synchronicities  with Greenland records  have been observed repeatedly in

European  and  North  American  records (Voelker  2002;  Moreno  et  al.  2014);  in  Europe,

stadial/interstadial transitions consisted in temperature shifts of lower amplitude but still encompassing

changes of several degrees over the whole continent. Overall, this hints to the DO events consisting of
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Figure 1: Profile of δ18O, a proxy for temperature, as from the Greenland NGRIP record. The data
cover the last glacial period, which spans between the two warm interglacial periods, Eemian and
Holocene.  Climate  variability  is  clearly  shown  throughout  the  whole  glacial  period.  Data
from (Andersen  et  al.  2004),  dated  with  GICC05modelext  chronology,  as  from Rasmussen et  al.
2013.
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Figure 2: (a) Profile of δ18O for the Greenland GISP2 ice core. (b) Profile of δ18O from stalagmites of
Fort Stanton cave, south-western United states. (c) Profile of δ18O of the stalagmites of Hulu Cave,
Eastern China. Blue bars highlight the Younger Dryas and Heinrich events, while the orange numbers
indicate DO events. From Asmerom, Polyak, and Burns 2010.
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Figure  3: Purple: δD signal from EDC (an Antarctica ice core). Blue: Antarctica temperature change
reconstructed from stacked ice cores records. Light green: atmospheric CO2 from EDC. Dark green:
radiative forcing of EDC atmospheric CO2, evaluated as 5.35 W/m2·ln(CO 2 /280 parts per million by
volume). Red: atmospheric CH4 signal from EDC. Gray: δ18O signal from NGRIP Greenland ice core.
From Parrenin et al. 2013.



complex dynamics of  general  reorganization of oceanic and atmospheric  patterns of  hemispherical

scale. 

1.1.2 Deglacial period

The  interval  between  15  and  11  ka  BP  encompasses  the  transition  from  the  Pleistocene  to  the

Holocene. It is widely studied both in climatology and paleoecology because of the several abrupt

climate changes occurring in it and because, being relative recent, there is abundance of records with

high temporal resolution for this period.

This interval, as recorded from Greenland records, is characterized by two periods: the first is called

Bølling Allerød (BA), and it consists of a period of interstadial conditions spanning from 14.7 to 12.7

ka  BP;  then,  to  BA  succeeded  the  Younger  Dryas  (YD),  a  period  during  which  colder  climates

returned, lasting until 11.7 ka BP, when Holocene started. Both the the BA inception and YD-Holocene

transition were rapid warming events, featuring hemispherical atmospheric reorganizations occurring

within 3 years, to which followed temperature changes within ~50 years (Steffensen et al. 2008).

Other high resolution paleorecords show with clarity how such warming in the northern hemisphere

were preceded by a more gradual warming period in the Southern Ocean (SO), and the synchronicity of

northern warming with a more gradual SO temperature drop, likely indicating a release of heat from the

SO toward North Atlantic (Fig. 3). SO temperature changes occurred with a centennial scale time lag

from major reorganizations of oceanic currents and SO phytoplankton productivity changes (Fischer et

al. 2010).

1.1.3 Heinrich events

Heinrich events (HE) are periods of climate cooling, happening during stadial intervals and terminating

with abrupt warmings. They are characterized by discharges of icebergs into North Atlantic, indicating

the close interaction between ice-sheet dynamics, oceans, and atmospherics temperature changes (Bond

et al. 1993).

The main signal for HEs are records of ice-rafted detritus, indicating discharges of ice from the

Hudson Strait into the North Atlantic Ocean. They were accompanied by large influx of meltwater into

the North Atlantic. Despite having left signals on hemispherical scale, their pattern differs from those

of DO events (Hemming 2004). At low latitudes, HEs are recorded as periods of colder climates, with

climate ranges of greater amplitude than DO events (Fig. 4). O the other hands, they are not recorded in

Greenland ice cores, whose traces of stadial conditions appear unchanged by the occurrence of HEs at

5



lower latitudes. A possible indication for HEs, however, can be observed by comparing the difference

between northern and southern Greenland records: a latitudinal gradient in the Greenland δ18Ο signals

is observable, which can be linked to changes in either the sea-ice extent or the North Atlantic sea

surface temperature, as a consequence of major ice rafting events (Seierstad et al. 2014).

HE and DO events show some correlations: firstly,  HE never  occurred during interstadials,  but

usually after warm DO events, as mentioned above; moreover, after a HE, the following DO events

tend to become colder until the next HE occurs, and this sequence of DO events is called a Bond

cycle (Porter and Zhisheng 1995). 

1.2 Theory of last glacial abrupt climate transitions
The Atlantic  Meridional  Overturning Circulation (AMOC) is  the North Atlantic  component  of  the

global thermohaline circulation; it consists in a current of warm water coming from the tropics and

flowing northwards,  until  becoming colder  and therefore sinking.  This  process is  known as North

Atlantic deep-water formation. AMOC is an important component in the maintenance of the current

6

Figure 4: On top: δ18O signal (proxy for temperature) of Greenland GISP core. Bottom: abundance of
N.  Atlantic  N.  Pachyderma (sinistral)  (proxy  for  sea  surface  temperature).  Vertical  dashed  lines
indicate the last five HEs. Adapted from Hemming 2004.



climatic conditions of the North Atlantic, as its flux of warm water contributes to the heat provision of

the region.

Both DO and HE have been linked with variations in AMOC and with perturbations of the deep-

water formation process. According to the presently leading theory, AMOC can switch between three

stable and distinct states of circulation (Fig. 5), each corresponding to a climate condition as observed

from climate paleorecords (Rahmstorf 2002). The “warm” state is analogous to the present-day state of

Atlantic currents, with AMOC flowing until the Nordic Seas, warming up the region. In the “cold”

state, AMOC has a shorter path as North Atlantic Deep Water (NADW) is formed at lower latitudes, in

the open North Atlantic. Finally, in the “off” state, there is no deep-water formation in the Atlantic

whatsoever, ant the ocean comprises entirely waters from the Antarctica. Following this model, the

warm state is responsible for DO events and interstadials, the cold state represents stadial conditions,

and the off state the HE. In this model, feedbacks from the atmosphere and the oceans would transmit

to a global scale the climate changes caused by the transitions between states (Clark et al. 2002).

This theory provides an explanation for the absence of HE at high latitude: during stadial conditions,

being  the  warm  Atlantic  current  already  absent  at  those  latitudes,  Greenland  climate  would  be

decoupled by changes of AMOC, hence its shutting off would bear no further effect to the region’s

climate. Moreover, it offers an explanation for the somewhat counter-intuitive phenomenon of ice sheet

melting and discharging icebergs during cold stadial periods: it is likely that the growth of the ice sheet,

as it would occur throughout a Bond cycle, would eventually make it unstable, to the point where

7

Figure  5:  The  three  sketches  schematize  the  different  water  currents  along  the  Atlantic  for  three
different  periods;  from left  to  right:  stadial,  interstadial,  and HE. The bottom profile  indicates  the
Atlantic sea bottom; the rise at ~ 60° of latitude indicates the shallow sill  between Greenland and
Scotland. Red and blue arrows represent AMOC and the bottom water current, respectively. AMOC
sinks in different regions in the “warm” and “cold” states, originating different NADW regions. In the
“off” state, the Atlantic currents are entirely composed by cold water coming from the Southern Ocean.
From Rahmstorf 2002.



perturbations could trigger its breakdown and therefore causing a AMOC shut-down by the release of

freshwater from the melting icebergs. A hypothesis about the nature of such perturbation has been

offered by a recent model, which takes into account the isostatic uplifting of the bedrock upon which

the ice sheet lies. In this model, the ice sheet is melted on the bottom by warm underwater currents. Its

melting and consequent discharging of icebergs reduces its overall mass, causing its bed to uplift; this,

in turn, distances the ice sheet from the warm subsurface waters, allowing eventually the ice sheet to

grow again. This model offers an explanation to the smallness of the fluctuations triggering HE, and

explains the timing of HE collapses, recoveries, and recurrences (Bassis, Petersen, and Mac Cathles

2017).

The exact nature of the triggers causing such freshwater variations are yet unclear. However, several

climate models simulating AMOC shifts between different circulation states produced patterns similar

to those of recorded abrupt climate changes. Furthermore, such simulations displayed a good fit with

proxy paleorecords (Ganopolski and Rahmstorf 2001; Van Meerbeeck et al. 2011; Peltier and Vettoretti

2014). This supports the theory of DO and HE shifts in Europe being consequences of modifications of

heat transport to the North Atlantic by AMOC weakening or shut-downs. HEs are indeed proven to be

related to the interruption of North Atlantic deep-water formation (Keigwin and Lehman 1994).

However, simulations have also shown that changes in the thermohaline circulation alone during

stadial periods were not enough to justify the degree of cooling above Greenland, which were all of

similar amplitude despite displaying differences in thermohaline circulation reduction; this suggests the

presence of some amplifying feedback mechanism able to extend the effects of deep-water formation

reduction (Elliot, Labeyrie, and Duplessy 2002).  Marine Atlantic sediments suggests that sea ice on

North Atlantic insulated the atmosphere from the heat conveyed by deep currents; the abruptness of

DO  warmings  can  therefore  be  explained  by  the  sudden  heat  release  occurring  when  sea  ice

retracted (Dokken and Jansen 1999).

1.2.1 Bipolar seesaw

Ice  cores  from Antarctica  contain  isotopic  signals  of  δ18O,  as  the  ones  from Greenland,  and  δD

(deuterium, isotope of hydrogen); both are proxies for temperature changes. Such cores date back to

800 ka BP, longer than Greenland ice cores. Antarctica climate records display long term changes,

possibly  driven by astronomical  changes  in  insolation,  and variability  of  shorter,  millennial  scale.

When compared to the Greenland records, these latter fluctuations show some correspondence with DO
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events regarding the last  100 ka BP. Antarctica temperature shifts feature smoother transitions and

lower intensity than the ones from Northern hemisphere, but its peaks in amplitude correspond one-to-

one to DO events as recorded in Greenland (Fig. 6). This coupling is in antiphase, i.e. warming slopes

in the South occur during stadial in the North, and vice versa (Barbante et al. 2006; Jouzel et al. 2007).

Greenland climatic changes lead the changes from Antarctica of ~200 y, hinting to the climatic signal

being propagated by oceanic processes, rather than by the atmosphere (Buizert et al. 2015).

The model of the bipolar seesaw provides an explanation for this inter-hemispherical coupling. It is

called after the seesaw pattern emerging from the synchronicity of Greenland abrupt warmings with

Antarctica cooling events. According to this model, the climatic fluctuations are due to repeated heat

transports across South and the North Atlantic, conveyed by oceanic currents. A heat supply could

provoke  a  change  in  North  Atlantic  ocean  circulation,  reducing  the  density  of  surface  water  and

therefore allowing to flow at higher latitudes before sinking (Knutti et al. 2004). Since SO is wider than

the Northern Atlantic, this would explain the greater time interval needed by the former to reach a

warm state, as well as the abruptness of DO warming events occurring in periods of slow heat release

by the South Atlantic. In other words, the southern heat reservoir would smooth out the abrupt climate

shift occurring in the North Atlantic (Stocker and Johnsen 2003). This model find support in the linear

correlation of the amplitude of Antarctica interstadial temperature changes with the duration of the

correspondent Northern stadial (Barbante et al. 2006).
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Figure 6: In green: δ18O record from NGRIP Greenland ice cores. Numbers indicate DO events. In red:
Antarctica temperature anomaly as  from the record of  EDC ice core.  Vertical  black lines  indicate
correspondences between DO and Antarctica Isotope Maxima (AIM); i.e. peaks of millennial-scale
temperature variability. From Jouzel et al. 2007.



Temperature of SO has been proposed to be the cause of AMOC changes. Timings of Northern and

Southern hemisphere abrupt changes support the hypothesis of NADW formation being triggered by

the Southern Ocean warming and the following Antarctica sea-ice retreat (Bianchi and Gersonde 2004).

Increases in SO temperature lead to a strengthening of AMOC, which in turn make the latter  less

susceptible to perturbations from meltwater influx. This would explain the positive correlation between

length of interstadials and temperature and warmth of the Southern hemisphere (Buizert and Schmittner

2015). 

This  model  fails  to  explain the observed higher  complexity of  feedbacks,  which  requires  more

detailed modelling, as e.g. the correspondences between tropical atmospheric circulation changes and

Antarctic temperature; however, it is able to capture and justify the general climatic patterns (Landais

et al. 2015). 

1.3 Abrupt climate changes
The  raising  concern  about  the  currently  occurring  climate  change  has  contributed  to  the  growing

interest that has developed in the last decades about the mechanisms able to prompt abrupt climate

changes. Abrupt changes are commonly featured by systems which, if submitted to an external forcing,

can switch rapidly between two stable states. Rapidity is here meant qualitatively, to characterize a

transition occurring in time ranges shorter than the forcing which caused it. This kind of behaviour is

also sometimes referred as threshold crossing, or tipping-point. Three features are necessary for this

kind of dynamics: the aforementioned external forcing; resilience to switches, in order to give stability

to each state;  and thirdly,  an amplifying mechanism of  the external  forcing,  so that  the latter  can

eventually overcome the system resilience (Alley et al. 2003; Lenton et al. 2008; Steffen et al. 2018). In

the case of atmospheric and oceanic systems, tipping-point characteristics are easily identified (see

e.g. Fig. 7). However, the factors responsible for the recorded wide geographical spreading of climate

anomalies are often less clear.  General  circulation models tend for example to  under-represent  the

extension of abrupt climate changes.

The last  glacial  abrupt climate changes represent a case in point of disruptive climatic switches

between equilibrium states. Specifically, the NADW is a multi-stable system, since it allows for several

stable  states  self-sustained  by  positive  feedbacks.  The  two  main  equilibrium  states,  and  the  first

historically to be identified as such, are characterized by the presence or absence of NADW formation.

In this case, the positive feedback mechanism is salinity. Water from the thermohaline circulation flows

10



northwards from low latitude Atlantic, and is therefore warmer (and thus lighter) and with a higher

component of salt in respect to the higher latitude waters. Thanks to the net effect of these two features,

during interstadial conditions the warm current can flow until the North Atlantic upper latitudes and

sink once there, thus increasing the net salinity of the region of deep water formation. Deep water

formation, in turn, enhances the circulation, creating a positive salinity-driven feedback.

Such a system features an inner resilience to perturbation: the warming caused by AMOC induces a

flux  of  freshwater  from  surrounding  ice  land  masses,  which  in  turn  decreases  salinity  therefore

reducing the AMOC current itself. However, a threshold can be reached if an excessive increase of

freshwater in the region may decrease the salinity to the point of halting NADW and the circulation

itself.  Models  have  highlighted the  existence of  several  other  multiple  equilibrium states,  between

which the system can switch within scales of centennial order of magnitude or less, through variations

in atmospheric forcing (Lenderink and Haarsma 1994). 
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Figure  7: non-linear behaviour of the North Atlantic thermohaline circulation. Y-axis: thermohaline
circulation,  expressed  as  freshwater  loss  to  atmosphere  in  subtropics.  X-axis:  external  freshwater
forcing  in  arbitrary  units.  Blue  curve  represents  a  state  of  strong  convective  mixing,  red  curve
represents  a  state  of  weak  mixing.  Green  and  orange  arrows  indicate  a process  of  increase  and
successive decrease of freshwater forcing, respectively with strong and weak mixing. In case of strong
mixing, the current is able to return to initial state, while if mixing is weak the freshwater amount
switches off the thermohaline circulation. To be noticed that, in this case, once the threshold is crossed
and the systems skips to the other stable state, the system does not switch back after an equal and
opposite forcing, but needs instead the latter to reduce to zero to achieve a switch of opposite sign (i.e.,
the system shows hysteresis). From Alley et al. 2003.



1.4 Paleoecology of abrupt climate change
Effects of last glacial abrupt climate changes on the biosphere have been widely recorded on a global

scale. They constitute natural experiments to investigate how ecosystems reacts to those changes, and

therefore gaining lessons to anticipate how they may react to the ongoing climate change (Urban et al.

2016). Three strategies are available for species responding to a rapid climate change: disperse to and

colonize to more suitable areas, persist in situ or become extinct (Aitken et al. 2008). However, there

are large gaps of knowledge on the role and magnitude of the mechanisms behind species responses to

past climate change. We know that species responded in the past differently depending on both traits

specificities and how the regional climate was affected by the global climatic dynamics (Lorenzen et al.

2011).

Paleorecords show tree taxa responding to the repeated warmings of late Quaternary by displacing

their range northwards or expanding it from glacial refugia (Williams et al. 2004). However, the speed

of climate and environmental changes poses a challenge to species to adapt and thrive. For example,

trees tend to respond to more gradual climatic changes by adaptive differentiation and dispersal (Petit.

Hu, and Dick 2008). DO warming events, some of which occurred in centennial or decennial scales,

challenge this processes by triggering disequilibrium dynamics between the climate and the optimal

climatic conditions for species.

Adaptation and range shifts of a species are not necessary mutually exclusive strategies;  on the

contrary, they can be correlated. Speed of adaptation affect invasion rate and population growth rate,

which in turn affect dispersal rate and probability of extirpation (Davis, Shaw, and Etterson 2005).

Indeed, adaptation to novel local conditions is inherent in migration itself. This implies that migration

does not simply consist of an expansion of species distribution ranges, but as the combined effort of

population individuals to establish in the new region. Therefore, the more a population features inner

gene flow, the more it increases its chances to disperse and colonize new areas successfully. For this

reason, habitat fragmentation and population isolation are potentially critical for populations that are

subject to rapid climate change. Moreover, a rapid climate change imposing a selective pressure on a

population,  by  extirpating  the  less  fitting  individuals,  can  result  in  genetic  bottlenecks  within

populations   (Jump and  Peñuelas  2005;  Hoffmann and Sgró  2011),  triggering  vortex  dynamics  of

genetic  inbreeding.  The  present  adaptive  differentiation  in  many  living  species  is  a  hint  of  both

dispersal and adaptation having played a role during last  glacial  climate changes (Davis and Shaw
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2001). It is plausible to assume that adaptation as a response to rapid climate changes could have been

relevant for taxa with short time ranges of evolutionary change (Hoffmann and Sgró 2011).

Adaptation cannot be a suitable survival strategy for taxa whose life cycle time is comparable or

greater  than  the  time  scales  of  rapid  climate  changes,  e.g.  tree  taxa;  several  of  which  appear

nevertheless to have coped well during the last glacial period. In such cases, available strategies can

have consisted in retreats into microrefugia (i.e. minor regions of suitable microclimates), intraspecific

phenotypic  variability  and  individual  phenotypic  plasticity (Hof  et  al.  2011).  In  the  study  of  past

responses, it can be challenging to tell apart microevolution and phenotypic plasticity as the feature

responsible  for  a  recorded  resistance  to  climate  change,  even  though  recent  studies  suggest  that

phenotypic plasticity mediates most responses to climate change (Nogués-Bravo et al. 2018).

It must be noted that the traits alone of a species are not sufficient to establish its response to climate

change.  Studies  have  been  unable  to  isolate  genetic  traits  or  dispersal  dynamics  distinguishing

surviving to extinct species. Moreover, in some cases the climate does not appear as the only factor

responsible  for  species’  responses,  as  much  as  a  contributing  factor,  together  with  interspecific

interaction (Lorenzen et al. 2011).

To contribute to fill up the current gaps of knowledge on the role and magnitude of mechanisms such

as dispersal or tolerance in situ in species past reactions to climate change, this research project reviews

the state-of-the-art knowledge on species response mechanisms to climate change (Chapters 2), with a

special emphasis on reactions to abrupt climate change, and synthesises that knowledge in theoretical

predictions and simulations tested against paleoecological records (Chapters 4) implemented in a new

software, Radis (Chapters 3). 

1.4.1 Abrupt responses

Fossil  records from the Northern Hemisphere show that vegetation responses to last  glacial  abrupt

climate  changes  were,  overall,  spatially  synchronous  with  both  bursts  and  collapses  of  their

geographical  ranges,  consistently  with  such  responses  being  driven  by  external  forcing (Williams.

Blois,  and Shuman 2011).  As to  the magnitude and the modality  of  biotic  responses,  they  varied

greatly,  depending  on  the  taxa,  the  ecosystem which  they  belonged  to,  and  the  specific  climatic

outcome that the global shift provoked in the region. In many cases, responses of species to abrupt

climate changes were not isolated, but instead their effects propagated in the ecological networks and

between trophic levels, by instance through food webs (Walther 2010). In general, responses affecting
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not only species or individuals, but also the biotic interactions between them, may induce non-linear

dynamics  in  ecosystems,  including  feedback  processes.  As  discussed  above  for  climatic  systems,

positive feedbacks can be responsible of abrupt behaviours.
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Figure 8: Potential ranges of some megafauna species at 42, 30, 21 and 6 ka BP. Range measurements
are reconstructed by fossil records and paleoclimatic data. From Lorenzen et al. 2011.



Given the potentially catastrophic consequences of an abrupt change in the environment, and thus in

the ecosystem services it provides, research has been focused on how to discern and approach abrupt

changes in ecological systems (Steffen et al.  2018). Abrupt ecological collapses of regime shift are

frequently  preceded  by  a  reduction  of  system  noise  coupled  with  an  increased  resistance  to

perturbation; however, such feature is in some case missing or not statistically detectable (Boettiger,

Ross, and Hastings 2013). Theoretical modelling indicate, as further possible signs of early warning,

specific indicators based on changes in the spatial  structure of an ecosystem, e.g.  increases in the

spatial variance (which may signify the approaching to a bifurcation point), and size changes of the

ecosystem shape pattern (Kéfi et al. 2014). Interestingly, presence of ecological tipping points appear

not only related by the magnitude of the environmental change that a species has to face. Instead, a key

factor to determine the likelihood of success is the permanence of the strategy, i.e. the possibility to

adopt the same strategy throughout the whole period of climate change; conversely, species increase

extinction chance whenever environmental changes forces them to change adaptive strategies  (Botero

et al. 2015). 

Although the specific changes that occurred across different regions varied in rate and direction, these

transitions were consistent with the behaviour expected from unimodal distributions of species along

environmental  gradients.  Spatially  coherent,  abrupt  climate changes  are  indeed expected to  induce

“approximately synchronous ecological responses” (Williams et  al.  2004).  In summary, past  abrupt

climatic changes have triggered biodiversity reactions from genes to ecosystem levels,  providing a

suitable  study system to explore  the mechanisms and strategies  allowing species  to  react  to  those

climatic events.

1.4.2 Megafauna extinctions

Abrupt climate change have pushed dynamics of local extinctions, but few taxa global extinctions may

be explained as a consequence of abrupt climate change. However,  there is  the exception of large

mammal extinctions at the end of the Pleistocene, most likely triggered by a combination of climate

and other factors (Cooper et al. 2015). The complete disappearance of several of these taxa occurred on

a global scale, with the exception of Africa. Such extinctions produced cascading effect in the rest of

their  ecosystems,  by  inducing  alterations  in  the  composition  and  structure  of  some  of  the  plant

communities that composed the habitat of extinct megafauna species (Johnson 2009).

Two are the main theories proposed as an explanation of this phenomenon: lack of adaptation to
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environmental changes, or excessive predation (often dubbed as “overkill”) by humans. The latter, in

particular,  is  often  conceived  as  a  so-called  “blitzkrieg”  model,  in  which  extinction  were  briefly

accomplished  by  early  human  colonizers  within  short  intervals  of  intensive  hunting.  Mechanistic

population  models  hint  to  this  hypothesis,  albeit  no  definite  evidence  has  yet  been  found  to  its

support (Brook and Bowman 2002, 2004).

Both factors  – mainly climate and secondarily humans – seem to have influenced demographic

history  of  some megafauna  species (Lorenzen  et  al.  2011),  but  their  exact  role  in  the  megafauna

extinction is still debated: their contribution to extirpation is difficult to infer statistically, because of

the scarcity of records and the dating errors of the latter. In North America, timings of extinctions event

were closely correlated with those of human colonization, while in Eurasia they occurred ~20 ka after

the arrival of humans. Climate changes also appear to have affected megafauna distribution ranges

(Fig. 8), and extinctions usually occurred after a severe range contraction (Stuart et al. 2004). Some

extinctions  did  occur  in  conjunction  with  abrupt  climate  transition,  and  for  some species  climate

change alone appears a sufficient explanation for extinction (Lorenzen et al. 2011). Nevertheless, that

leaves open the question of why did the extinction occurred in that particular transition, given the many

analogous previous climate transitions (Stuart 1991). Generally, evidence supports the idea that both

climate and human impact had a contribution, with effect varying depending on the timing of human

arrival and on the habitat changes provoked by climate changes (Barnosky et al. 2004; Broughton and

Weitzel 2018).

Although the extinctions of megafauna during the Late Quaternary are not object of this dissertation,

the approach presented in Chapters 3 holds the potential for investigating the likely role of climate

change triggering megafauna geographical range shifts and collapses of those large and iconic animals.

1.5 Reconstructing past ecosystems
This section comprises a brief overview of the most common data types adopted for paleoecological

research, with a particular focus on those that will be adopted in the following chapters.

1.5.1 General circulation models

Numerical models are used to test hypotheses explaining the observed trends in past climate records.

Physical climate models consist of simulations of the dynamics of the climate systems, particularly

atmospheric and oceanic circulations. In a climate simulation, the physical laws governing the climate
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aspect of interest are directly simulated by the internal mechanisms of the model itself.

Validity of models is usually tested by simulating present conditions, so to allow confrontation with

observed data. Simulations are then realized by altering one or more characteristics (called boundary

conditions) of the modern world in order to reflect past conditions. The output is then analysed and

confronted against independent paleoarchives.

General  circulation  models  (GCM) constitute  the  most  complete  representations  of  the  climate

system.  They  simulate  atmosphere  and/or  ocean  three-dimensionally  as  an  amount  of  grid  boxes,

displayed horizontally over latitude and longitude and stacked vertically. Some models also incorporate

ice sheets by simulating them as well as grid boxes; they are especially relevant for long time range

simulations (millennial or more), which is the time scale for most ice sheet dynamics.

Such models operate by reproducing the known physical laws governing atmospheric and oceanic

circulation;  their  start  is  chosen  to  be  an  equilibrium point,  then  a  forcing  (e.g.  solar  heating)  is

imposed, and the development of the system is followed until the successive state of equilibrium. This

last state is used as model output. CGM’s can be used for sensitivity tests, realized by altering one

boundary condition to study the impact that the conditions produces on climate. Alternatively, CGM’s

may provide for full climate reconstructions, where all boundary conditions are set to simulate past

climate.

Climatic data used as input for paleoecological simulations in Chapters 3  and 4 are obtained from

the PaleoView software (Fordham et al.  2017). They, in turn, originate from TraCE21ka, a dataset

which is the output from CCSM3, a global coupled atmosphere-ocean-sea ice-land GCM (Collins et al.

2006).

1.5.2 Biotic archives

Information on past species distributions can be inferred by fossil records. The most numerous amount

of fossile remains originates from plants. Plants can leave also macrofossils, i.e. larger fossil remains,

like fossil leaves and seeds. However, the majority of their fossil remains consists of pollen. The pollen

grains they produce gets sometimes deposited in lakes, and subsequently deposited to the lake bedrock

and conserved in sediments.  Sediments layer  can be dated,  so that the relative number of a given

taxon’s pollen in a layer can be used as proxy for abundance in the surrounding region for the dated

period.  Pollen  data  are  nowadays  collected  in  massive  databases  of  public  use,  e.g.  Neotoma

Paleoecological Database or the European Pollen Database (Fyfe et al. 2009; Blois et al. 2011), which
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provide information about abundance, dating and geolocalization of fossile pollen records.

Ocean basins can also provide sediments. In that case, the biotic information is produced by the

remains of small shell-forming species, which may deposit in layers on the rock bottom of the ocean

and fossilize. They can include animal species (like planktic foraminifera and radiolaria) or plants (like

diatoms and coccoliths, which are algae).

1.5.3 Species distribution models

Since macroecology deals on complex, large-scale processes, its study cannot rely on classic syntactic

scientific approach, which relies on principles of falsification and strong inference. Hence, studies have

therefore  relied  on  numerical  algorithms  to  predict  ecological  patterns  as  e.g.  species  geographic

distributions. Originally, they have been designed with a correlative approach. Correlative models use

data  of  observed  geographical  presences  and  absences  of  a  given  species,  relate  it  with  the

environmental conditions of the region of presences, and use this information to project the likely

environmental  ranges  of  the  species.  This  kind  of  approach  infers  conclusions  by  testing  for

associations between explanatory variables and outcome patterns.

Typical drawbacks of such models are the common lack of recorded absences (which sometimes

requires the creation of statistically created “pseudo-absence” data), possible mismatches between the

realized  and  the  fundamental  niche  of  a  species,  and  the  demand  of  hypothesis  that  the  records

represent the species while in state of equilibrium with the environment. The most critical downside of

correlative  models  is  their  difficulty  in  predicting  biological  responses,  and  that  is  also  because

correlation  between  species  ranges  and  climate  does  not  take  into  account  of  the  underlying

mechanisms,  as  range  dynamics,  species  interactions  and  life  history (Urban  et  al.  2016).  This  is

specially important when studying biotic responses to past climate change, where such mechanism

played key roles (Veloz et al. 2012).

More  recent  models,  called  mechanistic  or  process-based  models,  comprise  such  biological

mechanisms, by simulating them directly and comparing the output with the paleoarchives. In general,

models are defined as process-based if they are “models that characterize changes in a system’s state as

explicit functions of the events that drive those state changes” (Connolly et al.  2017). They follow

therefore  the  same  working  pattern  of  aforementioned  climate  numerical  models,  incorporating

mechanisms and testing for fitting of the predictions against data. This approach allows a deeper focus

on prediction of systems parameter values, and selection of alternative models. Process-base model are
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particularly apt  when studying relations  between biota  and climate,  as they commonly outperform

correlative models in predicting responses to climate changes (Pagel and Schurr 2012).

1.6 Relevance and outline
Several  abrupt  climate change,  of considerable magnitude and less than centennial  scale,  occurred

repeatedly on hemispherical scale. Nevertheless, very few extinctions have been recorded throughout

all that period. This poses an interesting question to paleoecology and conservation ecology, since it

suggests a relevant lacuna in our current knowledge about ecological responses to climate change.

A significant amount of paleoecological data of species during last glacial period has been collected

in the last decades, allowing to shade a light on many macroecological patterns of response to abrupt

climate changes. The challenge is now to draw inferences about the mechanisms and processes that lie

beneath  such  dynamics.  Investigating  the  population  coping  strategies  and  community  response

patterns may give hindsight on fundamental ecosystem features of particular relevance in the face of

dealing with the currently occurring rapid climate change.

We address here such challenge, starting by collecting the current knowledge of biotic responses to

abrupt climate changes occurred in the Last Glacial and early Holocene. Such overview will allow us to

summarize  the  ecological  patterns,  focusing  on  what  constants  they  may  display  among  different

habitats  and  taxa.  We  aim  to  apply  this  information  to  design  a  process-based  model  relating

paleoclimate and species distribution ranges. Purpose of the model is to be used in two ways: firstly, as

a tool to analyse paleoecological data, and provide statistically inferred estimates about the mechanism

that studied taxa adopted; secondly, as an object of investigation itself, by studying its behaviour under

different starting assumptions.

This work is based on three article manuscripts, composing the backbone of Chapters 2,  3 and 4.

The  first  article  (Chapter 2)  reviews  all  published  literature  about  the  topic,  with  the  purpose  of

collecting all so far collected knowledge, exposing eventual general ecological patterns and identifying

current gaps of knowledge. The second article (Chapter 3), exposes the development of a process-based

model intended to be a method to analyse fossil record data, reproduce taxa spatial pattern of response

to climate changes, and test competing ecological hypotheses. Finally, in the third article (Chapter 4)

we use the presented model  to  simulate  geographical  range dynamics of  seven tree taxa in  North

America during the transition from the Pleistocene to the Holocene, and to explore the role of tolerance

in situ and dispersal as mechanism of response.
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2 Biotic responses to last glacial abrupt 
climate changes
Despite the amount of research already produced about the ecology of late Quaternary abrupt climate changes,

the narrowness of this topic and the recentness of the interest that it gained in the scientific community are the

reason of a lack of a comprehensive overview on the topic itself.  Therefore,  the first step to address our

research consisted in realizing a general summary of the already existing knowledge, by collecting all the

relevant literature.

The  topic  has  started  being  inquired  significantly  only  in  the  last  decade,  and  the  interest  is  rapidly

growing. The majority of articles treat data coming from Europe and North America. There is consensus over

the DO events affecting the whole northern hemisphere at least, while having a slower and smaller effect in the

southern. According to the leading theories, climate variability was linked to changes in North Atlantic oceanic

circulation. This could contribute explaining the greater number of studies concerning Northern America and

Europe,  which are  the  world  regions closer  to  North  Atlantic  ocean and therefore  more affected  by any

changes in its circulation. Interestingly, little to none literature was found covering South America; this may

represent a current gap of knowledge, which could be interesting to fill given the high biodiversity of that

particular region.

While it is presumable that abrupt climate changes affected every kind of species, not all taxa have been

equally studied, mainly because of the variable difficulty of getting fossils with a sufficiently high temporal

resolution. This might create gaps of knowledge in our understanding to these paleoecological phenomena.

Plants, whose activities are traceable by high-resolutions paleorecords as fossil pollens in lake or marine cores,

are vastly studied. For the same reason, small or microscopic animals, as  Ostracoda,  Foraminifera and so

forth, whose fossilized shells can sediment in marine records, have been the object of studies on responses of

marine ecosystems. Such leanings on the choice of taxa might bias the conclusions we tried to draw below

about how general ecosystem responds to abrupt climate change. Homo Sapiens is the only mammal widely

chosen  as  subject  for  these  studies,  because  of  the  intersection  of  fields  inclined  to  an  interest  on  it

(archeology, anthropology, biology).  Such studies,  however, rely often on proxies (artefacts, archeological

sites) with a lower temporal resolution in respect of the time scales of the climatic events under exam.

The analysis on published literature about ecology of abrupt climate change is further discussed in the

following manuscript, currently under review at Current Biology and reported here with a few minor edits.
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In 1969, Dansgaard and colleagues identified for the first time several climate changes occurring in

Greenland during the last glacial period. Since then, a number of deep ice cores retrieved from the

Greenland ice sheet have verified the existence of several abrupt climate change (ACC) events. Among

them, the most prominent are 25 major and several minor climate events now known as Dansgaard-

Oeschger (D-O) events; they are characterized by a rapid 10-15 degrees warming followed by a mild

period of century to millennium duration before a more gradual return to full glacial conditions. Similar

rapid  warming  events  have  been  identified  in  a  number  of  other  paleoarchives  in  the  Northern

Hemisphere.  These  findings  have  provoked  wide  interest  in  how  abrupt  climate  change  impacts

biological diversity, and understanding of past biotic responses will be essential to predict how nature

will respond to ongoing climate change. We provide here a coherent set of definitions for different

types of fast climatic and ecological change, including ACC, and a summary of past ACC events. We

synthesize and provide examples of biotic responses from genetic to ecosystem level, to identify and

discuss modal responses and main mechanisms of adaptation. These abrupt climatic and ecological

changes may well have shaped the past, and likely in the future, fate of human civilizations across the

planet. We identify large gaps of knowledge, including the mechanisms triggering species’ resilience

after  an  abrupt  change,  or  changes  in  ecosystem  functioning.  However,  assigning  crucial  causal

relationships between past ACC and biological responses due to constraints in temporal resolution for

biological proxies dating is still a daunting challenge. We advocate for formalizing and unifying the

meaning of abrupt climate change across disciplines, and call for specific research on past ACC periods

to improve future biodiversity scenarios.

2.1 Introduction
It is the year 2300 and the Atlantic Meridional overturning circulation (AMOC) finally collapses after

200 years of weakening. Within few decades, Europe experiences frozen winters, meanwhile droughts
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are more frequent in the Sahel. Potential impacts of a future ACC in natural and anthropogenic systems

are  worrying (Steffen  et  al.  2018),  and they have occurred  in  the  recent  geological  history of  our

planet (Mulitza  et  al.  2008;  Buizert  and  Schmittner  2015).  Scientists  from  different  disciplines

spanning from earth to biological sciences nowadays are looking at the past to find how these changes

have impacted biodiversity (Nogués-Bravo et al. 2018), and to understand and anticipate how future

biodiversity, ecosystems services and the human societies upon which they rely may be impacted from

future ACC (Steffen et al. 2015).

There  is,  however,  significant  ambiguity  in  the  scientific  literature  on  the  terms  used for  such

climate changes. Definitions for “abrupt” change do not frequently match between paleoclimatology

and biological communities, and it is often loosely defined across the scientific literature, including

alternative concepts like fast or rapid change. This lack of clear terminology of these concepts across

studies  may  jeopardize  the  current  understanding  of  the  ecological  and  human  consequences  of

different types of climatic changes, the integration of disciplines and the assignation of biodiversity

responses  to  periods  of  “abrupt”  change,  neither  fast  or  rapid,  as  defined in  recent  reports (IPCC

2013a). 

Herein  we  aim  firstly  to  set  an  unambiguous  terminology  for  the  topic,  by  providing  firstly

definitions of abrupt, rapid and fast climate change as well as abrupt ecological change to clarify the

panchreston of definitions. Then, we summarize abrupt paleoclimatic changes from a climatological

perspective and the ecological responses to late Quaternary abrupt climate changes. Previous studies

looking at biological responses to previous events of climate change have found that migration (Müller,

Pross,  and Bibus 2003;  Lothrop et  al.  2011),  ecological  community turnover (Jackson et  al.  2014;

Ampel  et  al.  2010),  reorganization  of  geographical  ranges (Anderson  et  al.  2011;  Tinner  and

Kaltenrieder 2005), changes in population sizes (Pérez-Folgado et al. 2003; Peros, Gajewski, and Viau

2008), local extinctions (Yasuhara et al. 2008; Schmeisser, Loope, and Wedin 2009) are among the

most  recurrent  responses.  We review relevant  literature  across  marine  and terrestrial  systems and,

across  the  hierarchy of  life  organization,  from individuals,  to  populations  to  communities,  to  find

biological responses generalizable only during periods fitting the definition of “abrupt climate change”

(see Definitions section). Those climatic and ecological shifts had also significant consequences to our

own  species,  as  the  result  of  the  natural  resources  and  services  that  ecosystems  provide  us.  We

therefore synthesize  and discuss  how abrupt  climate change have  shaped the biological  history of

Homo Sapiens sapiens, and the demise and collapse of iconic human civilizations, to place the role of
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abrupt climatic changes in the recent history of the biosphere and of our own species. Finally, we

identify gaps in current knowledge, and suggest fruitful future lines of investigation.

2.2 Abrupt climate changes: discovery and definitions
In a Greenland ice core record, Dansgaard et al. (Dansgaard et al. 1993) found proof of several climate

changes (the D–O events) occurred in Greenland during the last glacial period until 10 ka ago, recorded

as  25  shifts  of  δ18O,  a  proxy  for  temperature.  D–O  events  consisted  of  periods  of  mild  climate

(interstadials), lasting between a few centuries up to tens of thousands of years, between other periods

with glacial conditions (stadials) (Fig. 1). Successive records with improved time resolution (Andersen

et al. 2004) showed their inceptions to last typically ~50 y, while the terminations are in most cases

smoother transitions, spanning hundreds of years (Rasmussen et al. 2014). These temperature changes

were preceded by reorganizations of atmospheric circulation, which in the most rapid recorded case

occurred within periods of 1-3 years (Steffensen et al. 2008). Signals of D–O events have been found

also in paleorecords outside of Greenland (e.g. Europe, North America and Eastern Asia), with patterns

similar to the ones from Greenland (Deplazes et al. 2013; Voelker 2002; Moreno et al. 2014; Shakun

and Carlson 2010; Cosford et al. 2008), suggesting that D–O events had an at least hemispherical scale.

At the onset of D–O events, temperature in Greenland increased up to 16 °C (Kindler et al. 2014); at

lower latitudes the amplitude of the temperature shift was smaller.

The leading hypothesis explaining D-O events is that they are caused by a weakening of North

Atlantic  deep  water  formation,  leading  to  partial  shut  down  of  Atlantic  Meridional  Overturning

Circulation (AMOC) which brings warm waters at high latitudes in North Atlantic (Rahmstorf 2002).

Other rapid climate events occurred in the Late Quaternary, the most notable being: the Younger Dryas

and Bølling-Allerød events, whose classification as D-O is still debated (Fig. 1, bottom right); and the

Heinrich events (HE), rapid cooling events characterized by signals of massive ice stream draining the

Laurentide  ice  sheet  into  North  Atlantic (Andrews  and  Voelker  2018).  These  massive  iceberg

discharges  into  North  Atlantic  likely  caused  Heinrich  events  by  increasing  the  freshwater  influx,

therefore  shutting  down AMOC (Rahmstorf  2002).  Other  important  events  are  the  8.2ka  and  4ka

cooling, occurred on a centennial scale in the comparably stable climate of Holocene (Walker et al.

2012), thus subdividing it into three stages (Cohen et al. 2013). Although it is debatable whether the

two latter can be defined as “abrupt” according to our definition (see below), we will consider them in

this review, given the ample literature of biotic responses to them, and their brief durations which make
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them relevant in the contest of this review.

Although the  existence,  causes  and consequences  of  late  Quaternary  ACC have been receiving

recently much attention, the terms “rapid”, “fast” and “abrupt” climate changes are used widely in

literature to refer to the same climatic changes and are often considered as synonyms. To disentangle

the different  aspects and definitions of different climate change events,  we here review the recent

evolution of the “abrupt climate change” term, and propose a set of definitions.

According  to  the  NRC  report  “Abrupt  Climate  Change” (National  Research  Council  2002),

“technically,  an  abrupt  climate  change  occurs  when  the  climate  system  is  forced  to  cross  some

threshold”;  and  despite  multiplicity  of  formal  definitions  about  ACC,  there  has  generally  been

consensus about the notion of ACC as involving a switch into a new state following a tipping-point

behaviour (Alley et al. 2003; Clark et al. 2002). However, given the interest arisen for these phenomena

in other fields of research, the focus has been, rather than on the study of its physical causes, to the

effects  that  they  unleashed  in  natural  and  human  systems,  and  therefore  more  comprehensive

definitions have been proposed (National Research Council 2013; Clark 2009). Newer definitions of

ACC take in account also of the nature of their consequences: by instance, the 2008 Synthesis and

Assessment Report of U.S. Climate Change Science Program characterises climate changes as abrupt

based on their time span and their effect on other systems (Peter U Clark 2009).

We  suggest  here  a  non-ambiguous  terminology,  proposed  originally  by  Arnell  et  al. (Arnell,

Tompkins, and Neil Adger 2005), to disentangle terms in two categories: those that aim to classify

climatic events by the dynamics of the climate change, and those that refer to their time span. As for

the first  category,  we propose the term “gradual  climate change” for the “classic” type of climate

change, where a change is provoked by the means of direct linear forcing. Instead, for those periods

where the climate system crosses a tipping point and switches to a new state, we propose to define

them as  “abrupt  climate  change”  events.  The same terminology can  be transposed for  changes  in

systems other than the climatic: for example, “abrupt ecological change” as those which consist in a

switch from a stable state to new state. In this sense, abrupt changes in natural and human systems can

occur even if triggered by non-abrupt climate changes. As for the second category, we propose the use

of “rapid climate change” (and solely that) for defining “a large-scale change in the climate system that

takes place over a few decades or less, persists (or is anticipated to persist) for at least a few decades

and causes  substantial  disruptions  in  human and natural  systems” (as  from IPCC, 2013b).  Abrupt

climate changes are usually rapid, but not vice versa, as rapid climate changes can also be simply the
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response to a fast linear forcing (Clark et al. 2002).

Following this terminology, late Pleistocene stadial-interstadial transitions can be considered abrupt.

On the other hand, despite the current climate change being described as rapid, there is low confidence

that it will lead to an abrupt climate event, at least in the current century (Hu et al. 2009; Delworth et al.

2008), with the notable of exception of disappearance of summer Arctic sea ice, an event which has

been evaluated as likely to occur in this  century (IPCC 2013b). However, abrupt ecological events

could  stem  from  it,  therefore  analysing  past  ecological  changes  events  can  help  explaining  and

predicting the future ones. Moreover, with late Quaternary climate events being more abrupt than those

expected  in  the  future,  they  can  provide  a  “worst  case  scenario”  study  case,  to  investigate  the

robustness limits of ecosystems and better understand their resilience.

2.3 Biotic responses to last glacial ACC
The multitude of levels encompassing biological diversity, from genes to ecosystems, have reacted to

past  climatic  changes  by migrating,  by phenotypic or molecular  evolution and when failing going

locally or even globally extinct (Lorenzen et al. 2011; Davis, Shaw, and Etterson 2005). A summary of

most common kind of responses recorded in literature, classified by level of organization, is shown

in Table 1.

It must be noted that in the majority of occasions these reactions were consequence of ACC but in

other times they might have been triggered by events of rapid, gradual climate change. Williams et al.

(2011)  argue  that  the  capacity  to  push an  abrupt  ecological  change relies,  rather  than  in  inherent

properties of climate changes themselves, in the relationships between environment and biota: were

such relationships threshold-like or hysteretic, they would be able to produce regime shifts also in

presence  of  linear  (non-abrupt)  climate  forcing (Williams,  Blois,  and Shuman 2011).  An ACC (as

opposed to a “just” rapid climate change) could thus be signalled either by the presence of synchronous

biotic responses in a geographically extended area, or by a linear or unimodal relationship between the

climate and the biotic trends (Seddon 2017).

2.3.1 Marine systems 

Marine  records  provide  a  unique  window  to  understand  the  velocity  and  the  modality  of  biotic

responses to ACC. They provide evidence of significantly marine faunal turnovers during the last 20 ka

following ACC; for example, turnovers to up to 75% within less than 40 years have been recorded for
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benthic  foraminifera  assemblages,  with  response  lag  time  intervals  varying  from  decades  to

centuries (Cannariato and Cannariato 1999; Yasuhara et al. 2014). During warm interstadial climate

conditions,  marine  species  more  adapted  for  interstadial  climates  were  dominant;  they  reappeared

consistently at the inception of warm climate episodes, but community composition showed differences

in the relative abundances of species from one event to the other. This suggests species responses were

individualistic.  Within marine communities,  ACC prompted full  population recover of species best

suited to novel climate conditions, suggesting marine ecosystems having resilience and a capacity of

fast adjustment to equilibrium with the environment (McKay et al. 2014). This resilience does not rule

out possibility of diversity decreases following ACC: during YD cold event, a north-western Atlantic

benthic  ostracodes  community  saw some of  its  species  increase  opportunistically  in  abundance  in

~100y and reach maximum population within ~1k, while general community diversity decreased, and

recovered only until around 8 ka BP, possibly because of the re-establishment of ventilation (Yasuhara

et al. 2008). Moreover, the same ACC could provoke opposed patterns in different communities: as

opposed to former example of diversity decrease, YD prompted instead an increase in diversity within

a tropical Atlantic diatom community, likely due to a higher nutrient supply promoted by regional

upper ocean mixing during YD (Cermeño, Marañón, and Romero 2013). Ostracod communities ashore

from Iceland increased in diversity during cold events (YD, HE1, 8.2ka) with time lapses of ~100y, and

along with faunal reorganizations; this is ecologically more striking than responses of foraminifera, as

most ostracods lack of a dispersal stage (Yasuhara et al. 2014). These and other responses are not only

synchronous with  ACC (e.g.  with Greenland records),  but  also across  taxa  geographically  distant:

ostracod records and foraminifera records taken from 5000 km apart show high temporal correlation in

community  diversity  through  the  last  20  ka (Yasuhara  et  al.  2014). The  massive  circulation

reorganizations occurring in concurrence with DO and HE altered also the amount  of oxygen and

nutrients of marine ecosystems. Vegetation and sea-surface marine communities as recorded both in

pollen and marine (dinocyst)  records  show concerted responses,  in response to  oceanic circulation

changes and global atmospheric reorganizations (Eynaud et al. 2016).

In  synthesis,  fossil  records  of  marine  ecosystems  show  rapid,  and  often  individualistic  and

opportunistic  community  reorganization  following  ACC.  Such  rapid  responses  were  likely

accomplished by migration from and to refugia consisting in bathymetric and geographic shifts (Fig. 2,

population level). Change of marine currents such as those associated with periods of ACC, and hence

changes in nutrition and oxygen supply, were the most significant factor for marine environmental
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change. Water ventilation is seemingly the variable most regulating benthic ecosystems, while pelagic

ecosystems appear to respond primarily to changes in nutricline depth. 

2.3.2 Terrestrial systems

There is strong support to the key role of ACC controlling biological attributes across different levels

of  the  biological  organization  from  genes  to  ecosystems.  At  the  genetic  level,  modern  genetic

homogeneity of tree populations in Central America is likely due to numerous genetic bottlenecks that

were likely induced by the series of either decline or contractions into disjunct populations caused by

HE during the last 60ky (Correa-Metrio et al. 2012). Moreover,  and despite genetic adaptation was

likely not a predominant strategy to cope with ACC, the repeated climatic turnovers and the following

pulses population contractions and expansion have provoked genetic divergence: populations within

refugia were likely isolated during stadial periods, leading a genetic drift, local selection of the best

adapted genotypes  and allopatric  divergence.  Flora richness  of  southern Europe may in  this  sense

reflect a history of buffering and isolation from extreme climatic events (Tzedakis et al. 2002).

At  the  population  level,  fast  changes  following  unfavourable  climatic  conditions  leading  to

population  declines  and collapses  are  frequently  recorded in  paleoarchives.  Recent  high-resolution

studies on pollen fossil records show significant responses of vegetation to ACC (Heikkilä, Fontana,

and Seppä 2009;  Litwin et  al.  2013;  Seddon,  Macias-Fauria,  and Willis  2015;  Shichi  et  al.  2013;

Shuman, Newby, and Donnelly 2009). Vegetation responses were subject to both steady and abrupt

climate changes, with the latter reversing or accelerating the trends caused by the formers (Shuman,

Newby, and Donnelly 2009; Alexander Correa-Metrio et al. 2012). However, responses, even for the

same  species,  depend  on  context  and  vary  by  regional  climate  specificities:  by  instance,  while

reforestation north of the Alps occurred at  the onset of Bølling-Allerød (BA), it  occurred 1500 yr

earlier south of the Alps, as Mediterranean warming was sufficient for forest spread (Samartin et al.

2012). A notable exception to population recovery of vegetation is hemlock (Tsuga). Tsuga population

in North America suffered a  rapid decline at  ~5ka BP,  never  to fully  recover,  during a period of

regional moisture variability (Shuman, Newby, and Donnelly 2009; Oswald and Foster 2012). Such

decline does not seem to be a direct consequence of an ACC, although rapid climate variability might

have acted as a disturbance source (Booth et al. 2012).

Stadial-interstadial  transitions  generally  drove  large  changes  in  composition  of  and structure  of

vegetations  communities (Nolan  et  al.  2018).  While  subject  to  ACC,  a  key  feature  for  plant
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communities is the capacity to maintain a dynamic equilibrium (i.e. to maintain viable populations

under changing ecological and climatic conditions) with the environment within ≈1.5 ka time scales,

which  has  been  a  classic  assumption  in  the  literature (Prentice,  Bartlein,  and  Webb  1991).  Plant

communities  have  been  observed  to  maintain  dynamic  equilibrium  in  shorter  time  scales,  below

100y (Tinner and Kaltenrieder 2005; Tinner and Lotter 2001) and equilibrium states were maintained

through community turnovers in favour of species more suited to the novel climate conditions (Paus,

Velle, and Berge 2011) (Fig. 2, community level). For example, community shifts from open tundra to

boreal forest occurred in Western Europe during stadial-interstadial transitions and vice versa, while in

mid-Atlantic North America forest assemblages responded to HEs and D-O events by shifting from

subtropical to high boreal (Heikkilä, Fontana, and Seppä 2009; Litwin et al. 2013; Fletcher, Sánchez, et

al.  2010);  in  central  American  lowlands,  instead,  the  climate  driver  of  community  turnover  was

moisture  more  than  temperature,  leading  to  more  severe  assemblage  variation  during  HE-caused

droughts (Correa-Metrio et al. 2012). Although many of species responses were individualistic, abrupt

climate change favoured species with potential for rapid colonizing (i.e. principally climate-driven) and

early-successional taxa (Tinner and Kaltenrieder 2005; Correa-Metrio et al. 2012). Another decisive

factor in determining the success of a species is climate stress trend: while lowering of climate stress

may favour  more  sensitive  species (Tinner  and Lotter  2001),  enhancing climate  stress  can  instead

favour species which are climate resilient but less competitive. By instance,  Populus (poplar, aspen,

cottonwood) populations in North America expanded both after BA-YD cooling and YD-Holocene

warming;  in  both  cases  they  were  favoured  by  the  climate-induced  decline  of  competitor

sequences (Peros. Gajewski. and Viau 2008). Abrupt environmental changes may generate similarly

abrupt  changes  in  inter-specific  interactions,  with  competing  populations  shifting  during  climate

transition from a temporary period of unstable competition to stable coexistence (Jeffers et al. 2011). 

At the species level, ACC events provide a series of natural experiments to understand how species

may survive future climatic changes. The survival of species in microrefugia following abrupt changes

in climatic conditions has also been pointed as key process to understand species ability to adapt to

future  climate  change;  for  example,  South  African  avian  species  have  been shown to  likely  have

survived Heinrich events  by contracting  in  the  Cape region (Huntley  et  al.  2016).  The survival  in

climatic refugia implicitly also assumes the decimation of population across the species range outside

those climatic refugia.  This is the case of two tomato frog populations in Madagascar (Dyscophus

antongilii and Dyscophus guineti), which were abundant during late glacial maximum, but suffered a
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50-fold  population  size  reduction  by  the  end  of  the  glacial  period,  possibly  associated  with  the

inception of Holocene or with the 8.2 ka event (Orozco-Terwengel et al. 2013). In plants, the rapidity

of recolonization on the onset of Holocene suggests the presence of undetected (cryptic) refugia (Birks

and Willis 2008). Refugia closer than expected to the ice sheets would allow them to resist climate

changes  without  otherwise  impossibly  great  latitudinal  dispersal (Shichi  et  al.  2013).  Moreover,

reforestations have been recorded to occur  in the very same region on centennial scales  whenever

climate declines were not severe enough to extirpate refugia, and on millennial scales otherwise. In this

second case, reforestation could happen at the condition that interstadial conditions could hold long

enough  to  permit  species  to  disperse  back  into  the  region (Müller,  Pross,  and  Bibus  2003).  Fast

migrations,  like  altitudinal  shifts  occurring  both  in  Central  Scandinavia  and  in  north-western

Alps (Paus, Velle, and Berge 2011; Blarquez et al. 2010), into climatic by conifer highlights the key

role of mountain areas as “climatic heavens” for species survival. 

The reorganization of species ranges due to ACC exerted dispersal and colonization events, global

extinctions  and  local  extirpations,  modifying  the  resulting  ecological  communities.  Megafauna

community  transitions  (including  regional  replacements  of  populations  by  conspecific,  or  regional

extinctions) followed D-O events, even though it is debated whether such transitions were triggered by

the D-O themselves (Cooper et al. 2015), or by the lack thereof (Mann et al, 2018). In any case, human

presence  possibly  disturbed megafauna meta-population responses  to  climate,  thus  promoting their

extinction; this is also suggested by the high correlation of human arrivals and megafauna extinctions

in a given region (Araujo et al. 2017). Small mammals showed instead an expected high resilience to

extinction, especially in comparison to megafauna, and yet also a high sensitivity to abrupt climate

changes (Blois,  McGuire,  and  Hadly  2010;  Berto  et  al.  2017).  Species-species  interactions  had  a

mediating effect between ACC ad animal community reorganizations. For example, in southern Italy,

only  the  Bølling-Allerød  transition  among  late  Quaternary  ACC prompted a  switch  into  a  small

mammal community from a low diversity state, with dominance of one species (Microtus arvalis), to a

higher diversity state (Berto et al. 2017). Such a difference in response is due to the fact that, of all

climate changes, only Bølling-Allerød transition rearranged the vegetation composition in the area,

most likely as the consequence of crossing a climatic tipping point for vegetation change. 

Much of the current  knowledge on animal  and plant  responses to  abrupt  climate change is  at  the

population and community level, but there is still a significant gap of knowledge on how ecosystems

and their functions, e.g. the sum of energy flows among individuals and species, respond to ACC.
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However,  there  are  some lines  of  evidences  in  the  literature,  showing that  even if  the  ecological

communities shifted during the last 12 ka, the energy flow on the whole ecosystem stayed constant,

thus suggesting resilience of the energy fluxes in ecosystem to ACC (Terry and Rowe 2015). A further

understanding of past responses of biomass production and nutrient cycling in terrestrial ecosystems, as

determined by animal and plant communities, and of the relative role and impact of each ecosystem

”brick”  (i.e.  plants  versus  mega-herbivores)  mediating  ecosystem  states  under  ACC  is  of  utmost

importance (Jeffers et al., 2018) to develop ecosystem-based scenarios for future events of ACC.

2.3.3 Abrupt climate change, humans and societies

Given  the  significant  impact  that  abrupt  climatic  changes  have  had  in  marine  and  terrestrial

environments it is therefore expected to have affected also our own species, Homo sapiens, and human

civilizations. Our review of the literature shows that humans as individuals and the societies that have

emerged,  and  demised,  along  history  have  indeed  experienced  events  of  ACC  triggering  human

migrations, genetic adaptation local extinctions, and civilization collapses (Stewart and Stringer 2012;

DeMenocal 2001).

Humans populations,  their  distribution  and routes  of  dispersal  have  been driven in  the  past  by

climatic  conditions  and  ecosystem  productivity (Eriksson  et  al.  2012;  Giampoudakis  et  al.  2017;

Wooller et al. 2018). Early human global population distributions and migrations out of Africa were

affected by orbital-scale global shifts mainly during glaciation phases. However, numerical dispersal

models indicate that abrupt events such as D-O did affect population distributions differently across

regions despite not affecting the global distribution pattern (Timmermann and Friedrich 2016).  For

example, at the onset of YD, human populations in North America suffered declines or changes in

settlement  patterning,  with  declines  accounting  in  some areas  up  to  50% (Anderson  et  al.  2011);

however, in New England region, onset of YD is followed by colonization events, despite the climate

conditions  becoming  harsher,  possibly  because  the  lowering  temperature  brought  open  favourable

habitats  for  caribou,  which  may  have  in  turn  favoured  human  colonization (Lothrop  et  al.  2011).

However, North American populations could rebound within ~900 years, that is, before cold climate

conditions ended. In Japan, conversely, the number of settlements decreased during YD, suggesting a

contraction of human distributions without trace of migration (Nakazawa et al.  2011).  Later on,  in

central Spain, a more arid climate induced by the 8.2 ka event was followed by disappearing of human

presence from that region, whereas humans appeared at about the same time in a more nearby humid
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area (González-Sampériz et al. 2009).

Different lines of evidence point also to human adaptation at the genomic level, mainly to adapt to

colder  climatic  conditions  or  low  oxygen  regions,  as  an  alternative  strategy  to  adapt  to  climatic

changes. There are traces of genomic adaptation in humans when colonizing colder regions out of

Africa; for example Siberian populations experienced a selection for genetic variants in fat metabolism

as an adaptation to climate change (Cardona et al. 2014). Although these responses are difficult to link

to  specific  moments  of  abrupt  climate  change,  we  can  expect  that  ACC  triggered  significant

evolutionary pressures in allele selection. Adaptive behaviour is also another potential strategy to adapt

to  ACC.  In  Beringia,  the  transition  to  Bølling-Allerød  transformed  the  vegetation  landscapes,

fragmenting  former  steppe  habitats.  To  adapt  to  this  change,  human  population  shifted  dietary

preferences,  switching  from hunting  horse  and mammoth  to  bison and  wapiti,  two  species  which

climate change pushed to higher population densities into restricted patches (Lanoë et al. 2017). 

In recent times, climatic changes have been linked to the thrive and demise of human civilizations,

although  its  attribution  and  causality  is  still  hotly  debated.  The  Akkadian  civilization,  settled  in

Mesopotamia, collapsed following the 4ka event, which caused arid climate regime in its region.

Northern agricultural settlements vanished and populations migrated; the empire fell shortly after,

despite  being  provided  with  storage  technologies  of  food and  water  (Cullen  et  al.  2000).  Other

climatic  events,  even  of  a  rapid  nature  but  not  considered  as  ACC as  defined  here,  have  also

triggered radical societal challenges. The collapse of the Maya civilization co-occurred with the most

severe drought in their history (Douglas et al. 2016) and the end of the Roman civilization occurred

during  the  Late  Antique  Little  Age,  536-660  AD,  a  cold  pulse  triggered  by  intense  volcanic

activity (Sigl et al. 2015). Indeed, this climatic event may have also contributed to the establishment

of  the  Justinian  plague (Büntgen  et  al.  2011),  transformations  in  the  Eastern  Roman

Empire (McCormick  et  al.  2012),  migrations  in  Asia  and spread  of  Slavic  tribes (Büntgen et  al.

2016) and even to political upheavals in China (Fei, Zhou, and Hou 2007). These imprints of ACC

should  be  interpreted  carefully  and  arising  generalizations  subject  to  deep  exploration  when

inferring causal relationships within recorded climate changes and archeological records  (Armit et

al.  2014).  Moreover,  it  has  been  pointed  out  that  rapid  climate  changes  may  not  necessary  be

disruptive, but also influence human societies in more refined ways (Clarke et al. 2016).

Social  and cultural  advancements have also been linked to population increases due to climate-

induced  migrations.  During  late  Pleistocene,  abrupt  wet/dry  climate  shifts,  synchronized  to
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stadial/interstadial  transitions  of  D-O  of  the  Northern  Hemisphere,  occurred  in  southern  Africa.

Archeological findings on the South African coast show pulses of technological advancements during

of  periods  of  humid conditions  in  the region,  namely  stadial  periods  of  northern  hemisphere:  this

suggests  that,  during  droughts  periods  corresponding  to  D-O,  the  South  African  coast  acted  as  a

refugium for humans, and the richness of ecosystem combined with the demographic pulse allowed

technological advancement (Ziegler et al. 2013). 

In  synthesis,  humans  in  the  late  Quaternary  have  experienced  migrations,  behavioural  changes,

extirpations of local populations, and the burst of new technologies under events of rapid and abrupt

climate change. The magnitude and speed of those changes, both rapid and abrupt climate change, have

also triggered or contributed to the demise and spread of civilizations, highlighting the need to prepare

for the societal change of mitigating and adapting to future abrupt changes in climatic and ecological

systems.

2.4 Conclusions
The discovery 50 years ago by Dansgaard and colleagues of recent ACC (Dansgaard et al. 1969) has

largely influenced our understanding of the planetary systems, including its biotic component. Abrupt

climate change has pushed life across the biological hierarchies, shaped current patterns of biological

diversity and regulated ecological processes (Yasuhara et al. 2014; Correa-Metrio et al. 2012). Such

impacts largely varied regionally, mirroring the significant spatial variation of past ACC (Deplazes et

al. 2013; Jennerjahn et al. 2004), highlighting that knowledge of regional, fast-paced climate history is

fundamental  for  the understanding of  biotic  responses  to  ACC. Research on ACC impacts in  past

biological  diversity  will  benefit  of paleoclimatic  simulations  at  high resolution,  both temporal  and

spatial,  instead  of  one-single  site  paleoclimatic  reconstructions.  Such  climatic  reconstructions  will

contribute to explain the role of past  and current paleoclimate variability into shaping biodiversity

distribution patterns (Fordham et al. 2018) and better forecast future scenarios of biodiversity under

climate  change.  Moreover,  paleoenvironmental  reconstructions  should  account  for  a  careful

comparisons of records and, when aiming to infer cause-effect relations, accuracy in the dating and in

the  comparison  of  dating  from  different  records  will  be  crucial.  Overlooking  differences  in

chronological uncertainties might lead to circular narrative reinforcements (Blaauw 2012). Records can

be integrated together in a safer way by deriving their chronologies from independent dating and by

quantifying the correlation uncertainties, as e.g. in the paleoclimatological INTIMATE database (Bronk

37



Ramsey et al. 2014). 

Exploring the links between ACC and biological dynamics by studying paleorecords is shedding

light on the type,  magnitude and speed of those dynamics,  and improving the mechanistic  role  of

processes such as adaptation in situ, dispersal or the significance of climatic refugia or meta-population

structures. The ability to maintain meta-population structure through which populations can disperse

and colonize new habitats when climatic conditions change abruptly will be of utmost importance to

prevent large losses of biodiversity However, this adaptation strategy might be severely reduced by

current anthropogenic habitat fragmentation (Hof et al. 2011). Besides, ecosystems out of equilibrium

with climate are more likely to experience temporary diversity loss, but also to resiliently recover and

reach quasi-equilibrium conditions when climatic conditions improve and are stable across time. A

continuous state of disturbance, as that induced by human domination on the biosphere, might therefore

impede  the  ecosystem  ability  to  maintain  dynamic  equilibrium,  thus  hindering  their  resilience  to

ACC (Kröel-Dulay et  al.  2015).  As these biological dynamics spread across entire ecosystems, the

functions and ecological services they provide to human societies may radically differ to those that

today provide safety planetary boundaries (Steffen et al. 2015).
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Figure 1:  Greenland  temperature  throughout  Late  Quaternary.  On  top:  annual  temperature  of  the
NGRIP site (Andersen et al. 2004) in Greenland versus time for the last 120 ky BP, i.e. before year
2000  AD.  Time  resolution  is  ~20  years.  Gray  rectangles  highlight  D–O  events,  as  classified  by
Rasmussen et al. (Rasmussen et al. 2014), and the Holocene. Red dotted line highlight ACC, namely
the transitions to and from D–O and the transition to Holocene. The label Eemian indicates the last
interglacial  period  before  Holocene.  Temperature  values  before  Holocene  were  reconstructed  by
Kindler et al. 2014; temperature values in the Holocene were obtained by linear regression of δ18O data
(a proxy from temperature) from Andersen et al. 2004 with aforementioned temperature data. Bottom
left:  detail  of the top plot for the period 60-53 ka BP, showing data points as well.  Bottom right:
another  detail  of  the  top  plot,  for  the  period  15-11 ka  BP.  Data  points  are  shown and Holocene,
Bølling-Allerød and Younger Dryas are highlighted, in red or blue depending whether they are warm
and cold periods, respectively; transitions to and from these events are ACC.
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Figure 2: Sketch of general responses to ACC, ordered by level of organization. At population level:
Grey represent region of environmental suitability; small grey dots are microrefugia, blue is population
distribution. Before climate change, species lies within its climatic niche; after an ACC the brief time
range only allows for short migrations and/or range contractions in close microrefugia. Another ACC
of opposite sign would let the dispersal to invert, so that population can recover to initial distribution.
At community level: an ACC may prompt the dominating species to contract or possibly to emigrate,
while some former rare species can take over and others can become extirpated. At ecosystems level:
climate  variability,  such  as  from  ACC,  extirpates  some  of  ecosystem's  species,  especially  if
rare (Cermeño, Marañón, and Romero 2013), thus reducing richness. Species richness recovers shortly
after the re-establishment of climate steadiness.
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Taxa

Marine/lacustrine Terrestrial plants Terrestrial animal Homo

Genetic Divergence (Tzedakis et al. 2002)**

Individual

Productivity
change

(McKay et al. 2014)

Behavioural
change

(Giampoudakis et al. 2017)
(Schmeisser, Loope, and Wedin
2009; Charmantier et al. 2008)

(Lanoë et al. 2017; Rössner et 
al. 2017)

Population

Adaptation (Eynaud et al. 2016)

Replacement (Cooper et al. 2015)

Abundance
variation

(Pérez-Folgado et al. 2003)

(Shuman, Newby, and 
Donnelly 2009; Seppä et al. 
2007; Peros, Gajewski, and 
Viau 2008; Oswald and Foster 
2012)

(Orozco-terWengel et al. 2013)

(Timmermann and Friedrich 
2016; Anderson et al. 2011; 
Van Geel, Buurman, and 
Waterbolk 1996; Ziegler et al. 
2013; Lillios et al. 2016)

Extirpation (Cooper et al. 2015; Ukkonen 
et al. 2011)

(Shea 2008)

Range
expansion or
contraction

(Blarquez et al. 2010; Samartin 
et al. 2012; Bartish, Kadereit, 
and Comes 2006; Patsiou et al. 
2014)

(Nakazawa et al. 2011)

Dispersal

(Blarquez et al. 2010; Paus, 
Velle, and Berge 2011)**, 
(U.C. Müller, Pross, and Bibus 
2003; Giampoudakis et al. 
2017)

(Ukkonen et al. 2011)

(Lothrop et al. 2011; Wooller et
al. 2018; González-Sampériz et
al. 2009; Van Geel, Buurman, 
and Waterbolk 1996; Cortés 
Sánchez et al. 2012; 
Bradtmöller et al. 2012; Ulrich 
C. Müller et al. 2011)

Socio-cultural
reorganization

(Ulf Büntgen et al. 2016; 
Cullen et al. 2000; Clarke et al. 
2016; Ziegler et al. 2013; 
Lillios et al. 2016; Bonsall et al.
2002; Bradtmöller et al. 2012; 
Borrell, Junno, and Barceló 
2015)

Species Extinction (Mann et al. 2018; Araujo et al.
2017; Barnosky et al. 2004)*

Community

Turnover
(Ampel et al. 2010; Yasuhara et
al. 2008; Cannariato and 
Cannariato 1999)

(Shuman, Newby, and 
Donnelly 2009; Heikkilä, 
Fontana, and Seppä 2009; 
Litwin et al. 2013; Seddon, 
Macias-Fauria, and Willis 
2015; Tinner and Lotter 2001; 
Fletcher, Sánchez, et al. 2010; 
A. Correa-Metrio et al. 2012; 
Alexander Correa-Metrio et al. 
2012)

(Terry and Rowe 2015) (Shea 2008)

Composition
shift

(McKay et al. 2014; Cermeño, 
Marañón, and Romero 2013)

(Paus, Velle, and Berge 2011; 
Alexander Correa-Metrio et al. 
2012; Shichi et al. 2013; Tinner
and Kaltenrieder 2005; 
Fletcher, Goni, et al. 2010; 
Nolan et al. 2018)

(Blois, McGuire, and Hadly 
2010; Berto et al. 2017)

Competition (E.S. Jeffers et al. 2011) (Ulrich C. Müller et al. 2011)

Ecosystem

Richness
fluctuation

(Cermeño, Marañón, and 
Romero 2013)

(Huntley et al. 2016)

Diversity
fluctuation

(Yasuhara et al. 2014; Kuhnt et 
al. 2007)

* Contributory effect
** Hypothesized 

Table 1. Literature covered. Summary of literature quoted in this review, categorised by the recorded
(or hypothesised where indicated) biotic responses to ACC.
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3 Radis: Python software for simulating 
and analysing range dynamics in 
response to past climate change
By  enumerating  and  classifying  the  existing  knowledge,  we  collected  an  organic,  coherent  narrative

description of ecological dynamics of response to abrupt climate changes. A step forward requires a model

able to make quantitative predictions, and validate or disprove a theory.

Correlative models, a common class of models for macroecological analysis, relate statistically species

distribution with environmental conditions. Such a phenomenological approach, however, may fail when

applied  to  events  of  such  short  time  range  where  indetermination  and  spatial  dynamics  played  the

important role we saw above. Besides, it is interesting to inquire not only on which effects made species

survival  to  abrupt  climate changes  possible,  but  also  how such  survival  relied  on interactions  among

multiple effects.

For studying processes with these features, more utility can stem from the use of process-based model,

i.e. models that directly simulate the biological process they aim to study. One of the advantages is that in

a  process-based  model  the  processes  under  examinations  are  explicitly  reproduced,  therefore  their

regulating  parameters  have  a  direct  biological  interpretation,  allowing  to  directly  estimate  species

traits (Connolly et al. 2017). Moreover, they are spatially and temporally explicit, i.e. they simulate spatial

dynamics  through  time:  hence,  they  increase  the  chances  to  estimate  complex  interactions  between

processes, and to grasp an eventual role of stochasticity in such processes (Rangel et al. 2018). This kind of

approach stresses the importance of historical processes over a simply deterministic approach (Gotelli et al.

2009).

Therefore, we developed a process-based model able to simulate the particular traits that stood out as

key for coping with abrupt climate change from our previous reviewing research. Simplifications were

inevitable  and  the  most  complex  of  the  relevant  interactions,  namely  the  inter-specific  community

interactions, were left out for the sake of reproducibility. Consequently, the simulation does not aim to

perfectly reproduce all the ecological dynamics under climate change. On the other hand, it will allow to

quantitatively analyse the biological and ecological processes that could be reproduced, and to explore the

nature of  their  interplay.  This is  further  discussed in the following manuscript,  which is  intended for

submission to Ecography and reported here with a few minor edits.

49



Radis:  Python software for simulating and
analysing  range  dynamics  in  response  to
past climate change
Filippo Botta1.2.*, Dorthe Dahl-Jensen1, Damien A. Fordham3, Julia Pilowsky2.3, Carsten Rahbek2, Thiago F. Rangel4, Anders
Svensson1, David Nogués-Bravo2.*

1Center for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Denmark
2Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Denmark
3The Environment Institute and School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
4Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
*Correspondence: botta@nbi.ku.dk, dnogues@snm.ku.dk

Accelerating  climate  change  is  triggering  shifts  in  the  distribution  of  species,  shaping  ecological

communities and the functioning of ecosystems. Historical and paleoecological observations, alike,

indicate that those shifts are the result of the interplay between changing climatic conditions and biotic

processes.  Radis is  a  python-based software that  simulates geographical  range dynamics  over  past

periods of climate change, which are validated against observed patterns in the fossil record or other

sources of historical information (i.e.  museum collections).  The software models and estimates the

relative contribution of two fundamental processes in climate-driven species’ range shifts: tolerance in

situ and  dispersal.  These  processes  are  modelled  resulting  in  thousands  of  possible  distributions.

Validation  data  is  used  to  pinpoint  the  best  set  of  modelled  distributions  using  both  Metropolis-

Hastings and statistical likelihoods. In doing so, Radis estimates the specific magnitude of tolerance

and dispersal needed to reliably project range shifts under past climate change. The software is very

flexible, allowing users to import their own climatic and species distribution information, and to choose

the time step and spatial resolution most suitable for their focal species. It provides graphical outputs to

explore the spatial and temporal dynamics of observed and simulated climatic niches and geographical

ranges, and offers a range of summary statistics. We showcase Radis by demonstrating how the model

can i)  reconstruct  past  changes in  the distribution of  fir  (Abies) in  North America during the late

Pleistocene,  and  ii)  identify  the  relative  roles  tolerance  in  situ and  dispersal  had  on  the  species’

responses  to  rapid  climatic  changes  during  this  period.  Radis can  be  a  useful  tool  to  investigate

underlying mechanism in species’ responses to environmental changes by validating models against

paleorecords and to contribute to the development of biodiversity predictions rooted in past natural

experiments  of  climate  change.  Paleoecologists,  ecologists  and scientists  modelling  and  predicting

50



impacts of climate change in biodiversity will benefit from the ability of Radis to estimate and model

the main mechanisms of species response to climate change.

3.1 Introduction
Several abrupt climate changes (ACC) occurred during the late Quaternary that are similar in rates and

magnitudes  of  warming  to  projected  climate  change (Brauer  et  al.  2014).  These  included  the

Dansgaard-Oeschger (DO) events, where large magnitude changes in temperatures of up to 10-15°C (at

some mid to high latitudes) occurred over decadal to century time-scales, affecting vast regions of the

planet (Alley  et  al.  2003).  These  rapid  climate  change  events  triggered  large  changes  in  the

composition of ecological communities, increased rates of species migrations, variation in the size and

structure of species geographical range and the extinction of some taxa. A stronger understanding of

ecological response to these rapid and large magnitude warming events has the potential to improve our

capacity  to  anticipate  and forecast  how species  will  react  to  future climate change (Dawson et  al.

2011); and resolve important conundrums, including why major extinctions from climate change are

projected for the 21st century, despite there being rare evidence of range-wide extinctions in response

to large scale climate fluctuations during the late Quaternary (Botkin et al. 2007; Hof et al. 2011). That

is with the exception of megafauna, where humans and climate are likely to have combined to have

devastating consequences during the late Pleistocene and early Holocene (Araujo et al.  2017). This

discrepancy between observed and forecast rates of climate driven biodiversity loss suggests that our

ecological understanding of the mechanisms species use to cope with these abrupt changes is likely to

be  incomplete,  jeopardizing  the  potential  for  current  ecological  models  to  accurately  predict

biodiversity loss from future scenarios of climate change (Fordham et al. 2014; Nogués-Bravo et al.

2018).

Most projections of past and future distributions of biodiversity at large spatial scales are done by

species distribution models (SDM) based on correlative approaches, a family of models which has

provided insightful predictions on how biodiversity, from populations to species to whole communities,

reacted to recent and may react to future climate change (Hugall et al. 2002; Strasburg et al. 2007).

However, correlative models are of limited value for exploring the mechanisms responsible for changes

in past species distributions (e.g. adaptation versus dispersal). An alternative strategy is to explicitly

incorporate  potential  mechanisms  under  scrutiny.  Models  with  this  kind  of  approach  are  called

mechanistic (Kearney and Porter 2009) or process-based models (Connolly et al.  2017). In process-
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based models,  a set  of relevant mechanisms are put into action to simulate how the natural world

should look like (i.e. species distributions) under specific combinations of them. The simulated patterns

are then compared against observations from the field (Urban et al. 2016).

Past species distribution patterns can be useful to provide independent validations of biodiversity

future  projections,  thus  increasing  robustness  and  their  ability  to  provide  accurate  scenarios  of

biodiversity  change and policy  recommendations (Nogués-Bravo 2009;  Nogués-Bravo et  al.  2018).

Indeed, biodiversity changes under past climatic changes are being explored with increasing frequency,

to  gain  deeper  insights  in  the  mechanisms  that  allow  species  to  survive  abrupt  climatic

changes (Nogués-Bravo et  al.  2018),  and to determine how well  models replicate observed species

range shifts, including large expansion and collapses, as recorded in the fossil record (Nogués-Bravo et

al. 2008; Lorenzen et al. 2011; Blois et al. 2013; Nogués-Bravo et al. 2016). This is being driven by

open-access to curated and standardising geo-located and radio-carbon dated fossil records (Williams et

al. 2018; Fordham and Nogués-Bravo 2018) and high-resolution paleoclimate simulations (Fordham et

al. 2017), making it possible to reconstruct past geographical range dynamics at decadal to millennial

time intervals (Fordham, Saltré, et al. 2018). Furthermore, these paleo-archives can be used as testing

targets in first-principle simulation models to explain competing mechanisms for coping with climate

change, including survival in situ via adaptation or dispersal and colonization of suitable areas. 

To advance our understanding of the ecological mechanisms that have shaped past and current-day

patterns of biodiversity, we present here Radis (simulator of RApid DIStribution changes), a software

developed in Python to conduct spatially-explicit simulations exploring the magnitude and role of the

main mechanisms involved in geographical range dynamics under climate change to explain species

distributions (Nogués-Bravo et al. 2018). It is rooted in a new generation of process-based models of

biodiversity change in space and time, which are improving our knowledge of the mechanisms that

allow species to thrive, survive or go extinct (Rangel et al. 2018), holding the potential to improve

projections of future disruption to biodiversity from climate change (Fordham et al. 2016). Radis is a

process-based, spatially explicit modelling framework for simulating geographical ranges in response

to past climate change. It explicitly models two main ecological responses to past climatic conditions:

tolerance in situ and dispersal. Being unable to tolerate in situ results in simulated local extirpations or

extinctions. It differs from competing software, such as MigClim (Engler and Guisan 2009), not only

because Radis accounts for the possibility of adaptation in situ, but also for rooting its evaluations in a

unique validation approach of simulations using paleorecords. Specifically, Radis uses an algorithm
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adapted from the Metropolis-Hastings method to explore the parameter space of response mechanisms

to pin-point the specific magnitude of  in situ adaptation and dispersal needed to better replicate the

observed patterns in the fossil record.

There are a number of specific mechanisms to adapt  in situ to changing climates. These include

ecological plasticity, phenotypic change, shifts in behaviour or micro-evolutionary change (Gienapp et

al. 2008; Valladares et al. 2014). Instead of simulating geographical range dynamics for each type of in

situ  adaptation  across  the  entire  geographic  range  of  a  species,  which  would  be  computationally

challenging. Radis simulates adaptation as the ability of a species to modify and adjust its climatic

niche to temporally changing climatic conditions, avoiding local extirpations. Radis simulates dispersal

using a set of probabilistic kernel functions within user-defined boundaries of dispersal (Bullock et al.

2017), which account also for rare long-distance dispersal events (Clark 1998). They are parametrised

to be relevant at a generational time step. Plant species, for example, from centennial to millennial

scales, were, and are still today (Skov and Svenning 2004) out of equilibrium with climate (Woods and

Davis  1988).  This  lagging  is  likely  to  increase  the  spatio-temporal  variance  of  vegetation

response (Prentice,  Bartlein,  and Webb 1991), hindering the ability of deterministic approaches for

inferring responses from paleorecords. Radis allows to simulate and explore the role of rare, stochastic

dispersal events, paving the route to include mechanisms that are fundamental for species to survive

abrupt climate changes.

In summary, our approach and tool, Radis, allows the independent testing of two important and

competing mechanisms that drive the geographic structure and dynamics of species ranges in response

to different rates and magnitudes of past climatic changes, including abrupt episodes of change. Radis

is available for download at the address https://github.com/FBotta/Radis.

3.2 Methods and features
The  geographical  range  of  species  and  their  dynamics  over  time  are  the  result  of  the  interaction

between  abiotic  dynamics  and  biological  processes.  Species  react  to  climate  change  by  tolerating

climate change in situ or migrating; when these two response strategies fails, we would expect local

extirpations.  Radis  simulates distributions of species using two important mechanistic  responses to

climate  change,  tolerance  in  situ and  dispersal,  resulting  in  colonization  and  extirpations  of  local

populations. This is done by a process where the simulated species ranges under climate change are

validated iteratively against past distributions recorded in the fossil record.
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To identify the mechanisms driving geographical  range dynamics under periods of past  climate

change. Radis requires: 1) fossil record data, with dating and coordinates; and 2) time series of maps of

climatic conditions.

Radis  simulates  tolerance  in  situ by  testing  the  species  distribution  range  simulations  against

different values of breadth and position of their climatic niche. The software also simulates continuous

dispersal  event  by  implementing  it  on  a  discretely spatially  fragmented  lattice  grid.  Dispersal  is

modelled as a probabilistic event from one occupied cell towards an unoccupied cell; the probability of

the event is mediated by a kernel function. Radis is provided with three possible shapes for the kernel

well  supported in the literature (Bullock et  al.  2017);  allowing users to choose among them before

starting the simulation. In this type of modelling, the dispersal considered here is the natal dispersal,

scaled  up  to  a  generational  level. Accordingly,  it  is  recommended  to  choose  a  time  step  length

matching the generation time of the studied taxon. 

The  work  flow of  simulations  in  Radis  starts  by  importing  the  dated  and  georeferenced  fossil

localities  and  the  paleoclimatic  maps,  usually  arising  from  atmosphere-ocean  general  circulation

models (e.g. Fordham et al. 2017). Every raster climate map for a given climatic variable represent a

climate layer, and the time steps are defined by the dating of the layer. For instance, if the climate layer

represents climatic conditions spaced apart 100 years, the time steps of the simulation will be 100 y

long. The duration of each time step (i.e. annual, decadal, centennial or other) and the starting and

finishing times of the simulations are user-defined. In a second phase, Radis evaluates the simulation

likelihood against the fossil record database provided by the user. Radis uses a Metropolis-Hastings

algorithm (Mihaylova et al. 2014) to pin-point the set of simulations better explaining the observed

patterns in the fossil record (Fig. 1).

Radis  needs  to  read  all  the  aforementioned  data,  which  depending  on  their  size  can  take  a

considerable amount of time. To improve computing time efficiency, Radis saves a copy of them as

binary data, so that for future launches the user can choose to load them directly instead of formatting

the same data  a  second time.  Radis  saves automatically  two files.  The first  is  one called “Input”,

containing the climatic, fossil data given by the user; and a second one called “Dist”, containing the

distance matrix of the shapefile defining the grid-cells constituting the study area (see section 3 of SI).

The output of Radis consists of a binary data file storing: 1) for every parameter, the sequence of all

values  that  it  assumed throughout  the  Metropolis-Hastings  (see below);  2)  the  sequence of  values

likelihood  assumed  throughout  the  Metropolis-Hastings,  i.e.  the  sequence  of  likelihoods  of  every
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simulation; 3) the representation of the simulation which performed the highest likelihood. An extra

script is provided in the same download page to allow for a visualization of the results, including

visualizations for: likelihood and parameters versus number of iteration; kernel function of iteration

with highest likelihood; best simulated niche, i.e. niche corresponding to the MH iteration with highest

likelihood; distribution range maps of best simulation, i.e. simulation corresponding to the MH iteration

with highest likelihood (see section 9 of SI).

3.2.1 Response processes and simulated distributions

Radis  simulates  both tolerance  in  situ  and dispersal  as  the  two main  response mechanisms.  Radis

simulates tolerance by changing between simulations the species’ climatic niche, so to persist in grid-

cell  under  different  climatic  conditions  than  experienced  before.  Conceptually,  the  climatic  niche

(sensu the Grinnellian niche in (Soberón 2007)) is understood in Radis as the set of climatic conditions

for which the intrinsic growth rate of populations are not negative. Radis estimates the climatic niche

(or  climatic  envelope)  mathematically  using  the  Mahalanobis  distance  (MD) (Fig. S1),  which  is  a

computationally  efficient  approach  for  defining  the  suitability  of  climatic  conditions  for  a

species (Farber and Kadmon 2003). The approach has been shown to be successful in explaining past

geographical dynamics across the Late Quaternary (Nogués-Bravo et al. 2008). 

Radis  allows a species to  survive across varying degrees of tolerances,  ranging from full  niche

conservatism to full niche lability (species being able to live in any kind of climatic conditions). In

those grid-cells for where tolerance levels are not high enough to survive in situ, Radis will simulate

local extinctions. Tolerance in situ is defined in Radis using two parameters defining the climatic niche

of any species: the centroid of the Mahalanobis ellipsoid and its breadth. These two parameters allow

users to simulate not only the ability of a species to shift the average conditions in which it inhabits (i.e.

the centroid), but also the variability of climatic conditions that a species can persist in after an event of

climate change as result of local adaptation (Richards et al.  2006). Before simulations starts, Radis

evaluates the niche breadth and the centroid empirically using the georeferenced dated fossil record and

the paleoclimatic simulations from user-defined period and area. Then, it allows the user to use such

evaluated niche for the simulations, or alternatively to arbitrarily define any kind of climatic niche

based on centroid niche positions and its breadth, allowing using Radis in a virtual species fashion.

During the simulation, Radis checks whether a climate condition lies within the niche of a species, and

it  calculates the Mahalanobis distance of that climate condition to the centroid of the niche: if the
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distance is less than the niche breadth, then the climate condition lies within the niche of that species.

Both niche centre and breadth are parameters whose space is explored by the Metropolis-Hastings (see

section below). 

Dispersal  has  been shown to  be a  key response of  plant  and animals  during events  of  climate

change; regional and global plant migrations patterns have been recorded during the late glacial period,

and macrofossil records document dispersal events during the same periods for populations of small

mammals, megafauna, and humans (Jackson and Overpeck 2000; Ukkonen et al.  2011; Berto et al.

2017; Fordham et al. 2016; Giampoudakis et al. 2017). In Radis, the ability to disperse is modelled

using a dispersal kernel function  f(x),  from which there are three possibilities: linear, step-like and

exponential (Fig. S2). These are well supported dispersal types by paleo-archives (Clark 1998; Bullock

et al. 2017). When checking for a possible dispersal through a distance x. Radis picks a random number

between 0 and 1; if the value is lower than f(x), then dispersal occurs. Each of the kernel functions are

characterized by one dispersal parameter, which is different for every of the three kernel functions but

it is called α for all the three of them. Regardless of what kernel function the user chooses, α is a

parameter whose space is explored by the MH (see below). The linear kernel is as follows:

(1)

in this case α represents the ratio between the distance where the function reaches 0 and the maximum

possible distance  M. All the other parameters of the functions except α, as by instance  M for kernel

function (1), are fixed during simulation. M is set to 100 km, but this value can be manually changed by

the user (see section 8 of SI). For the step-like kernel, α is the ratio between the position of the step and

the maximum possible distance M (with, again, M being fixed but manually settable to other values).

The function for the exponential dispersal mode is as follows:

(2)

namely an average,  weighted on  ρ,  of  two components:  a  Gaussian  distribution and a  “fat-tailed”

distribution, which accounts for rare long-distance dispersals events. The contribution of the “fat-tail”

to  the  kernel  is  governed  by  α,  called  distance  parameter  which  can  assume  values  in  the

range [0. 1] (Clark 1998). D, σ and ρ are constants; they can be set by the user but do not change during

or between simulations (see section 8 of SI).

The  simulated  species  geographical  ranges  are  the  result  of  the  combination  of  a  variety  of

magnitudes  of  tolerance  in  situ  and  dispersal  simulated  over  the  geographical  lattice  of  changing
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climatic  conditions.  At the start  of a simulation,  the species occupies the grid cells  where climate

conditions are satisfying the niche conditions. In other words, the species at the beginning is found in

every grid cell having climate conditions lying within its climatic niche as defined by the Mahalanobis

ellipsoid. Then, for a user-defined number of time steps. Radis updates the climate maps, and for every

time step it simulates the consequent responses of the species distribution range. It locates those grid-

cells with suitable climatic conditions under different magnitudes of tolerance in situ. From those grid-

cells with suitable climatic conditions, the species will attempt to disperse to any other cell with a

suitable climate according to it dispersal function. For every grid cell, and if the novel climate lies

outside the species’ niche, the species is removed from that grid cell, producing a local extirpation. The

results ins a time series of species distribution maps; an example of this is shown in Fig. 2d.

3.2.2 Parameter optimization and model validation

A Metropolis-Hastings (MH) algorithm is a subset of Markov chain Monte Carlo methods (MCMC)

that can be used for stochastic optimization of parameters (Mihaylova et al. 2014). At the start of a

Radis launch, the user can choose to have the software perform one single simulation, and evaluate its

likelihood; or instead she can choose a user-defined number of iterations, where every iteration consists

of one single distribution range simulation and its  likelihood evaluation (see section 3 of SI).  The

parameters  space  explored  is  within  the  boundaries  of  three  axis:  α  or  dispersal  parameter,  the

coordinates of the niche centroid, and the niche breadth. Therefore, through the MH, Radis searches the

values of α, niche breadth and niche centroid that maximize the likelihood of predicting the patterns of

species distributions observed in the fossil record.

While Radis adopts the MH algorithm, its results differ substantially from those of a usual Markov

chain produced by a MH. MH algorithms usually evaluate likelihood of a step i by the use of a given

function  f(xi), where  xi is the vector of parameters for step  i. In the case of Radis, the evaluation of

likelihood  is  based  on  the  result  of  the  simulation,  which  is  a  process  that  may  involve  random

processes, i.e. rare long-distance dispersal events. Therefore, for the same combination of parameters,

different  simulations  can  be  produced,  which  will  lead  to  different  values  of  likelihood.  Hence,

differently from usual results of MH, the Markov chain of parameters produced by a Radis run does not

feature a convergence in the space of parameters. Instead, it endlessly explores the parameter space,

eventually finding a parameter combination corresponding to a maximum likelihood. Information about

the  processes  determining  species  range  dynamics  under  climate  change  can  thus  be  inferred  by
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considering the parameters values producing the highest likelihood values.

At the end of a simulation i, Radis evaluates its likelihood Li according to the following formula:

(3)

where pT (aT) is the total number of fossil presences (absences), respectively, about the given species

within the region and the time interval considered by the simulation, and pi (ai) is the number of times

that the simulation has featured a presence (absence) in a grid cell  where the corresponding fossil

archives records a presence (absence) (see section 5 of SI).

3.2.3 Identifying the relative contribution of tolerance and dispersal

Once a maximum likelihood, and thus an optimal combination of parameters has been found, the user

may  be  interested  into  quantifying  the  contribution  that  each  response  strategy  provides  to  the

geographical  range  dynamics  under  climate  change.  For  this  purpose,  Radis  can  be  used  to  run

sensitivity tests. Sensitivity test can be executed by having one or several parameters “fixed”, i.e. not

letting them change throughout the MH, and thus letting only one parameter vary during the MH.

For example: if the user wishes to study the relevance of dispersal for a given taxon, she can do so by

launching Radis with the niche breadth and niche centroid parameters kept fixed, therefore letting only

α change value. The user can in this way verify how much the variation of α throughout all its possible

values  influences  the  total  likelihood,  and  estimate  the  contribution  of  dispersal  by  the  range  of

likelihood values obtained during the run. 

Analogously, a sensitivity test can be run for each parameter, thus quantifying the relative contribution

of dispersal and tolerance in situ, to explain geographical species range dynamics (see section 7 of SI

for details).

3.3 Example: Abies under late glacial climate changes
We provide here a working example of Radis, where we considered the fir tree taxon (Abies) during the

period 15-10 ky BP in North America. During this time interval, both the transition to Younger Dryas

and  to  Holocene,  two well  studied  abrupt  climate  changes,  occurred,  and their  effect  on  regional

climate was particularly intense in North America.

Paleo-archives indicate  Abies populations in North America to be small and scattered during Late

Glacial Maximum (LGM). Later, during deglacial period,  Abies population expanded north-eastward

following an increase in precipitation and temperature, and dispersing rapidly northward following the
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retreat of ice sheet after 15 ka BP. It established along the Appalachians around 10 ka BP, acquiring its

present-day distribution at around 8000 ka BP (Prentice, Bartlein, and Webb 1991).

Two  climatic  variables  were  chosen:  average  annual  temperature  and  annual  precipitation.

Paleoclimatic  simulated  data  were  obtained  as  raster  maps  of  2.5°  resolution  from  the  software

PaleoView (Fordham et al. 2017), and then downscaled to 10’ (Fig. S3). Fossil data were compiled

from the fossil pollen relative abundance database used by (Nogués-Bravo et al. 2016), whose original

source was in  turn the Neotoma Palaeoecology Database (http://www.neotomadb.org). The dataset

spans the 21-10 ky BP period, and it  comprises 934 recorded presences and 269 absences for  Abies

along North America; an example of its geographic extent can be seen in Fig. S1(b, c). The number of

fossil data is not evenly distributed in time; on the contrary, it increases as time approximates to the

present time, so that there are only 20 records for 21 ky BP, and 234 data for 10 ky BP. This might

introduce a bias for niche evaluation during LGM, as it relies on a lower number of records.

A preliminary analysis, performed by crossing the climatic and pollen data, shows two different

climatic  niches  for  the  two  periods  21-16  ky  BP  and  15-10  ky  BP (Fig. 2c).  The  first  interval

corresponds  roughly  to  the  period  of  the  Late  Glacial  Maximum  (LGM),  while  the  second  one

represents  circa  the  deglacial  period;  it  includes  periods  of  warmer  climate,  and three  main  rapid

climate changes, namely the transitions to Bølling-Allerød, to Younger Dryas and to Holocene.

During the LGM, Abies was inhabiting across its geographical range areas ranging average annual

temperatures between -20.5 to 8.1 °C, and average annual precipitation between 344.4 and 2047.1

mm/year. During deglacial period, Abies inhabited areas with warmer temperatures, ranging from -19.4

to 17.8 °C, and similar rainfall conditions ranging between 275.9 and 2415.7 mm/year. This hints to an

increased tolerance to higher temperatures. The centre of the niche shifted as well between the two

periods, from (-2.18 °C, 1332.2 mm/year) during LGM to (-1.06 °C, 850.4 mm/year) during deglacial

period, indicating an increasing tolerance to dryer climate as well; the two niches are shown in Fig.  2c.

This apparent difference of the climate niches evaluated from records of the two period raises the

question on whether the niche has changed following the abrupt changes of climatic regimes. Tree

species  in  the  past  has  been  shown  to  be  able  to  inhabit  different  climatic  conditions  through

time (Maiorano et al. 2013; Nogués-Bravo et al. 2016), even though it has been suggested that Abies

taxa had a broader niche in the past (Tinner et al. 2013). Radis was thus set to start the simulations

given the climatic niche of Abies during the LGM, and the initial MH niche parameters, centroid and

breadth, were set as those for the evaluated LGM niche.
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Simulations were run for each of the three different types of dispersal. A subset of the simulations of

range dynamics were able to accurately predict the distribution of Abies under climate change events at

the end of the Pleistocene. Maximum likelihood achieved were 83.7% for step-like kernel, 80.6% for

linear kernel, and 84.6% for exponential kernel (first two not shown, last MH run shown in Fig. 2a).

During the deglacial period,  Abies  presence is recorded at middle latitudes, mainly in eastern North

America,  with minor  regions  of  presences  along the  Pacific  coast  and the Rocky Mountains.  Our

simulation  correctly  recreated  the  retraction  of  the  south  front  and  an  expansion  eastward  for

populations in eastern North America (Fig. 2d). Interestingly, the simulation represented also areas of

presences on north-western regions where no presence was observed.

We evaluated also the relative role of tolerance in situ and dispersal by running sensitivity test. A

sensitivity  test  was  run  for  every  of  the  four  parameters,  following  the  instructions  described  in

section 7 of SI.  In this  way we could also verify whether other combinations of parameters  could

perform on a comparable level. For all the four parameters, the variance of top percentile values was

low, hinting that all top percentile likelihood simulations explained the paleorecord pattern by the same

mechanisms.  Therefore,  Radis  finds  the  highest  likelihood  simulation  aforementioned,  and  the

parameter  combinations it  entails,  as the most plausible  explanation for the patterns of Abies past

distributions. Radis estimated an average value of α = 0.24. Successively, a sensitivity test was run on

the α parameter, by launching again Radis with the first three parameters fixed to the optimal values

found in the former launch, and letting only α vary. The sensitivity test refined the initial results, by

finding a likelihood equal to 85.6% for α = 0.64. However, the sensitivity test  did not show great

variance in output following differences in α: likelihood varied only of a 17.2% between the worse and

best fitting simulation. The results of the evaluation suggest that Abies relied on long range dispersal as

a survival strategy during rapid climate change, but was not as crucial as the climatic resilience hinted

by  its  wide  climatic  niche.  This  pin-points  to  a  larger  influence  of  niche  tolerance  compared  to

dispersal as survival mechanism for Abies taxa. Moreover, Radis evaluates a niche that is considerably

wider than the one that was estimated by the fossile data (Fig. 2c), and the estimated niche comprises

recorded presences of LGM.

In  conclusion,  according  to  the  analysis  performed  by  Radis,  a  plausible  explanation  to  the

geographical range dynamics of Abies is that the main response of the North American fir species to

deglacial abrupt climate changes was via tolerance in situ, allowing them to persist in their already

occupied regions despite climate shifts. Long range dispersal was another likely necessary strategy, but
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its contribution was less pivotal to the geographical range dynamics.

3.4 Conclusions
With IPCC reports projecting accelerating climatic changes within this century is more needed than

ever  to  unveil  the  mechanisms  that  allow  species  to  react  and  adapt  to  climate  change  to  avoid

extinctions. A necessary step for this purpose is to understand the processes that underpin species range

shifts,  by  exploring  and  identifying  the  mechanisms allowing  species  to  adapt  to  climate  change.

Moreover,  biodiversity  scenarios  and  quantitative  forecasting  are  also  in  need  of  independent

validations  to  enhance  their  relevance  for  policy  guidelines  and conservation  approaches (Nogués-

Bravo et al. 2018). Radis helps to pave the road for investigating those mechanisms using paleorecords

to validate simulations of geographical range dynamics. It can therefore help investigating the climate-

driven dynamics of species geographical ranges by providing a process-based approach rooted in first-

principles. The spatially explicit simulation is designed with a special emphasis for the mechanisms

that are relevant at the time scale for which much of the fossil record is dated, namely the last 50 ky.

Radis allows also to explore the role of rare events like long-dispersals, which has been suggested to

drive geographical range dynamics in trees, e.g. in the cases of colonisations of central and northern

refugia in North America and Europe (Willis, Rudner, and Sümegi 2000).

Radis comes to respond recent calls on the need to validate models and explore mechanisms using

paleorecords (Nogués-Bravo et  al.  2018).  The use of  paleorecords  as  information  source  has  been

proven to significantly improve process-based model inferences on species dispersal and extirpation

rates (Pearse et al. 2018). Despite the potential of simulations approaches as illustrated by Radis, the

integration of empirical data into pure correlative species distribution models is expected to lead also to

robust and validated predictions of demographic environmental responses (Fordham et al. 2014).

However, our modelling approach and tool do not come without challenges. Both the fossil record

and the paleoclimatic simulations are sensitive to potential biases (i.e. fossilization potential, dating

uncertainties, limited spatial resolution of paleoclimatic simulations) which are of particular relevance,

considering the  importance for  rapid biotic  responses  of  small-scale  dynamics,  both  spatially  (e.g.

migrations  to  and from climatic  microrefugia)  and temporally  (e.g.  in  responses  to  abrupt  climate

changes). As those uncertainties cannot be completely eliminated, they may limit the ability of our

approach to fully apprehend the climatic niche of species. However, and at the same time, temporal

series of climatic niches based on paleorecords are closer to the fundamental niche of species that
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estimates of climatic niches based only in contemporary records (Nogués-Bravo et al. 2016). Moreover,

our modelling approach does not incorporate demographics dynamics and inter-specific interactions.

However, models lacking of explicit population dynamics to model species distributions have shown to

perform equally good as more complex models (Fordham, Bertelsmeier, et al. 2018).

Radis has been developed using the Late Quaternary as testing ground. However, Radis is able to

deal with information recording recent shifts of species ranges under recent climatic trends (i.e. the last

century),  allowing  to  explore  the  relevance  of  the  main  mechanisms in  shorter  time  scales,  more

relevant  to  anticipate  how  species  will  react  in  the  coming  century  to  ongoing  climate  change.

Moreover,  Radis  can  be  used  by  future  users  to  simulate  range  dynamics  under  future  climatic

conditions based on tested predictions in the past, opening the door to provide future tested biodiversity

scenarios.
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Figure 1: Diagram of Radis work flow. On the top left square the data requirements are shown, which are:
rasters  maps of climate variables an ASCII file  containing fossil  records and a shapefile  (optional) for
clipping the raster region. Moreover, at this step the user must choose the shape of the kernel function
among the three available. Top right: sketch showing the distribution range simulation for N time steps, and
a comparison of the simulated distribution range (shaded area) with fossil data (green diamonds = recorded
presence; white diamonds = recorded absence). Radis iterates this x times, performing a MH algorithm (see
section 6 of SI). Bottom: Radis output. At MH completion, Radis saves a binary file containing the values
that likelihood and the parameters had during MH. In (a) are shown: on top, likelihood versus iteration
number; below, the four plots show the four variables whose space was explored by the MH, plotted versus
iteration number: (i, ii) coordinates of the niche centre, (iii) niche breadth and (iv) one the α parameter. In
all these plots, the red vertical line highlights the iteration x0, which is the one with highest likelihood. In the
plot (b) on the centre, a visual example of the parameter optimization is shown: the red and blue ovals
represent the niche of iteration 0 and x0, respectively. Dots represent climate at grid cell occupied by fossil
records, for the interval covered by the simulation. Plot (c) show kernel functions for α of iteration x0 (red),
for α=0.01 (black continuous line), and for α=1 (black dashed line). The last two are intended to show
visually the possible range of kernel function, as α can assume values in the interval (0.1].
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Figure 2: Results of the exemplary analysis exposed in the article. It consists of a Radis run for Abies
(fir tree) taxon on North America for the period 15-10 ka BP, with an exponential dispersal kernel, for
104 iteration. Plots are generated by the ancillary script visualize_results.py. (a): on the left, plots of
values of likelihood and parameters versus number of iteration throughout MH. In the example shown,
there  are  two  climatic  variables,  average  annual  temperature  (“tmean”)  and  average  annual
precipitation per day (“prec”).  Units of the y-axes are:  unit-less for likelihood and α, Mahalanobis
distance  for  niche  breadth,  °C  for  temperature,  mm/day  for  precipitation.  The  vertical  red  line
highlights the best iteration, i.e. the iteration with highest likelihood value (73.4%). On the right: in
blue, normalized histograms of the values of left plots; in orange, same, but only for iterations featuring
top percentile of likelihood. The latter are normalized to 0.5% for purposes of visual compatibility.
Units of the x-axis are the same of y-axis for the corresponding left plot. (b): kernel function of best
iteration (red), which has α=0.24; kernel with lowest and highest possible values for α (0.01 and 1,
respectively) are also shown for comparison. (c): niche of best iteration (in blue), of direct evaluation of
data from period 21-16 ky BP (in red), and of of direct evaluation of data from period 15-10 ky BP (in
green). Ovals represent niche breadths, and diamonds the niche centres. Units on the axes are °C for
average  annual  temperature  and mm/day  for  the  average  annual  precipitation.  Big  and small  dots
indicate  values  of  climate  maps  in  correspondence  to  fossil  recorded  presences  and  absences,
respectively;  colours  indicate  dating,  according  to  the  legend  shown  in  the  top  left  corner.  (d):
simulation of best iteration, i.e. the simulation with the highest likelihood. Climatic variable shown is
average  annual  temperature  (in  °C);  shaded  areas  indicate  simulated  presence;  green  and  white
diamonds indicate recorded fossile presences and absences, respectively. The simulation spanned the
period 15-10 ky BP, with time steps of 100 y; the maps here display 1 time step out of 10.
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Radis:  Python software for simulating and
analysing  range  dynamics  in  response  to
past climate change
Supplementary information
1. Input data

Radis requires to be provided the following two input data files:

1. a  text  ASCII  table,  containing  fossil  record data,  their  dating and their  coordinates.  Four  of  its

columns  must  have  the  following  headers  :  “longitude”,  “latitude”,  the  species’  name,  and

“yearBP”. Respectively, they must contain: longitude, latitude, abundance or presence/absence of

the species, and dating expressed in years BP. For example (in case of pollen abundance):

longitude latitude Quercus Juniper yearBP

-60.41 30.15 2.45 0.48 15000

-60.41 30.15 1.93 4.29 14000

-60.41 30.15 0.97 3.65 15000

etc.

In case of presence/absence data, they have to indicated with 1 and 0, respectively. For example:

long lat Homo_Sapiens yearBP

43.880 11.09 0 9000

43.880 11.09 1 8000

43.880 11.09 1 7000

41.89 12.48 1 5000

etc.

2. a time series of climatic maps in any raster format. All the rasters for one climatic variable must be

contained in one folder each. The folders need to contain only climate rasters. For example, if the

user wants to use three climatic variables, being “summer temperature”, “winter temperature” and

“precipitation”, she needs to have the climate raster maps organized in three folders, e.g.:

/home/rasters/sum_t

/home/rasters/win_t

/home/rasters/prec

where the first one contains all and only rasters of displaying “summer temperature” variable, the
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second one all and only rasters of “winter temperature”, and the last one all and only rasters of

“precipitation” variable.

where the first one contains all and only rasters of displaying “summer temperature” variable, the

second one all and only rasters of “winter temperature”, and the last one all and only rasters of

“precipitation” variable.

Every raster file name must contain one number indicating its dating, expressed in years BP. E.g.,

in the folder home/rasters/prec there can be rasters named:

raster_prec_14200_Europe

raster_prec_14100_Europe

raster_prec_14000_Europe

etc.

where raster_prec_14200_Europe must contain a climate map of 14.2 ky BP, and so on.

3. Optionally, the user may optionally choose to “clip” the region covered by the raster. This can be

desirable in case the region is wider the the area of interest, and/or if the rasters cover areas where the

species under study cannot  disperse (e.g.  bodies  of  water  when the species are  terrestrial).  In  this

eventuality, the user can upload a shapefile, and Radis will cut off all the raster grid cells outside of it

before the simulation starts. The user can also choose to use two different regions, one for simulation

and one for niche evaluation; in this case, she can upload two shapefiles, one for the simulation area

and the other for niche evaluation (see niche shapefile in the following section).

2. Setting the variables

Before  launching  Radis,  the  user  has  to  set  the  variables  by  writing  them  in  the  file

radis_variables.txt. They are the following:

main interval: the start and the end of the time interval within which Radis has to download climatic

and fossile data, expressed in years BP, and divided by a comma. This interval must comprise the

simulation interval and the niche evaluation interval (Fig. S4). For example:

main interval: 16000, 11000

niche evaluation: the start and the end, expressed in year BP and divided by a comma, of the niche

evaluation time interval, i.e. the interval within which Radis will use fossile data to evaluate the initial

niche (as in Fig. S4).

simulation interval: the start and the end of the simulation time interval, i.e. the interval in which

the simulations run, expressed in year BP.
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time step length: the time interval corresponding to one time step of the simulation, expressed in

years.

climate variables: Only necessary in case a “general input data file” is not loaded, the names of the

climate variables, separated by a comma. For example:

climate variables: summer_temperature, winter_temperature, mean_precipitation

rasters [climate variable1], rasters [climate variable1], etc.: Only necessary in case a

“general input data file” is not loaded. The folder where the rasters containing climate maps for the

given climate variable are located. There must be one “rasters [climate variable]” line for every

climate variable written in  the field  climate variables.  The field must be indicated by “raster”

followed  by  the  name  of  the  relative  climatic  variable,  e.g.:  “rasters  summer_temperature:”,  For

example:

rasters summer_temperature: /home/rasters/sum_t

rasters winter_temperature: /home/rasters/win_t

rasters precipitation: home/rasters/prec

fossile data:  The address of the ASCII file containing all information about fossile data for the

taxon of interest. Only necessary in case a “general input data file” is not loaded. 

species: The species or taxon of interest. Only necessary in case a “general input data file” is not

loaded. The name written here must be the same present on its column in the fossile data file, e.g.

Quercus or Homo_Sapiens.

dating error: write here the error, expressed in years, over the dating in the column “yearBP” of the

fossile data file. Only necessary in case a “general input data file” is not loaded. 

abundance threshold: optional. The threshold below which the abundance percentage of the given

species  does  not  indicate  presence.  If  this  field  is  left  empty  or  commented  out,  threshold  is

automatically set to 0. Skip this field if the fossile data file contains presence/absence data instead of

abundance. Only necessary in case a “general input data file” is not loaded. 

shapefile: optional. Address of the shapefile that can be used to clip the climate raster maps. If left

empty or commented out, the simulation will run by using all the rasters grid cells; otherwise, it will

use only the grid cells within the shapefile. Only necessary in case a “general input data file” is not

loaded. 

maximum  distance:  The  maximum  distance,  expressed  in  kilometres,  above  which  dispersal  is

possible. During simulations, dispersal will not occur if at a distance greater than this (see section 4).
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Only necessary if the user chooses not to load a “distance matrix file” (see section 3).

niche shapefile: optional. Address of the shapefile that can be used to clip the climate rasters maps

for niche evaluation. If left empty or commented out, the niche will be evaluated by using data for the

whole region encompassed by the climate rasters; otherwise, it will be evaluated using only climate and

pollen data from within the shapefile. Only necessary if the user chooses not to load a formatted niche

evaluation input data file (see Section 5).

kernel name:  the  shape  of  the  kernel  function  to  be  used  for  dispersal.  It  can  be “exponential”,

“linear”, or “step”, which correspond respectively to: a Gaussian distribution with “fat-tail” accounting

for long dispersals, a linear distribution, a step-like function.

initial condition: this variable can assume two values: “niche” or “record”. If the former is chosen,

the simulations will start with the species occupying every grid cell whose climate lies within its niche.

If the latter is chosen, they will  start with species occupying every grid cell  within a radius of 40

kilometres  from a  recorded  fossile  presence.  The  value  of  100  km is  fixed,  but  can  be  changed

manually by the user (see Section 8).

number of iterations: how many iterations the MH must comprise. Set to 0 for a single simulation.

If  this  variable is set  to 0, then Radis will  run one single simulation instead of a MH comprising

several.

save frequency: This variables sets how often will a “checkpoint” occur, i.e. how often do data have

to be saved. If for example the user sets “number of iterations” to 10000 and “save frequency” to 10.

Radis will save the results every 1000 iterations. Only necessary if number of iterations > 0.

range [climate variable1],  range [climate variable2],  etc.:  the  minimum and maximum

values the climate variables can take during the MH. Only necessary if number of iterations > 0.

They need to be separated by a comma, as in the following example:

range summer_temperature: 0, 30

range winter_temperature: -10, 10

range precipitation: 0, 20

range breadth: the minimum and maximum values the niche breadth can take during the MH. They

need to be separated by a comma, as in the ranges for climate variables. Only necessary if number of

iterations > 0.

range alpha: the minimum and maximum values the parameter α can take during the MH. They need

to be separated by a comma, as in the ranges for climate variables.  Only necessary if  number of

72



iterations > 0.

general input data: Optional. address of the general input data file.

niche input data: Optional. address of the niche evaluation data file.

distance matrix: Optional. address of the file containing the distance matrix.

recovery data: the address of the partial results file, in case the users wants to recover a former MH.

Only necessary if the uses chooses to recover a previously halted MH, by starting over from a partial

results data file saved at a checkpoint (see Section 3). 

3. Starting Radis

Radis  runs  on  Python  version  3.4  or  later.  It  requires  to  have  previously  installed,  the  package

GDAL/OGR, version 2.1.4 or later,  besides the usual standard scientific packages (NumPy version

1.15.1 or later, SciPy). To start Radis, the user needs to have the following three files in one folder:

 radis_launcher.py

 radis_functions.py

 radis_variables.txt

First, the  variables have to be set by writing them in  radis_variables.txt (see Section  2). Then,

Radis can by launched by running the prompt command

python radis_launcher.py

if on Linux or

py radis_launcher.py

if on Windows. The command must be executed in the folder where the scripts are.

After being launched, Radis formats the input data and saves them as binary data files, so that in future

launches they can be directly loaded instead of having to be formatted again. The three data files that

Radis saves automatically are:

 “general input data file”: contains all information on climate, fossile data and geography;

 “distance matrix file”: contains the distance matrix of the grid where the simulations run;

 “niche evaluation data file”: the same kind of “general input data file”; however, its data are used

for niche evaluation instead of simulation.

The same file can be chosen both as “general input data file” and “niche evaluation data file”. Niche

evaluation data file and general input data file must be created for the same species and with the same

main interval (see “main interval” in Section  2). The user is asked at the beginning of every launch

whether she wishes to load some or all of them.
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Metropolis-Hastings (MH) can be time consuming. To avoid wasting time in case the run halts before

the end. Radis saves at certain iterations (“checkpoints”) the partial results, i.e. the results obtained

until that iteration. Frequency of checkpoints is set by the user (see “save frequency” in Section 2). The

partial results file can then be loaded in a successive launch so that the MH will be rebooted from that

checkpoint instead of starting over. When launched, Radis asks the user whether it has to start a new

MH or recover an old one. In the latter case, it loads the partial results from the file address given by

the user (see “recovery data” in Section 2).

4. Distance matrix

To evaluate dispersal probability in simulations. Radis needs the values of distances between grid cells.

Distances below maximum distance are stored in  a NumPy 2-dimensional  array called  DQ;  greater

distances are not stored.  It  is recommended that maximum distance is set  to a value above which

dispersal is very unlikely or impossible for the taxon under exam. The purpose of this cut-off is to to

avoid overflow errors by storing useless information.

An ancillary file called weris is also created and saved together with the distance matrix. It contains all

the positions of every grid cell within DQ. It is used by Radis to have information about which grid cells

are  available  for  dispersal  attempts.  Both  DQ and  weris,  as  soon  as  they  are  evaluated,  are

automatically saved as binary data files in the distance matrix file.

5. Likelihood evaluation

After  a  simulation is  completed,  Radis  evaluates  its  likelihood by comparing  it  with  the provided

paleorecords. Every paleorecord has a corresponding grid cell, which is the grid cell where the record

lies within. To every record corresponds a dating interval, and in turn the dating interval corresponds to

one or several time steps. 

As an example, Fig. 5a shows a detail of a simulation having time resolution of 200 y, and records with

a dating error of 400 y; therefore, to each paleorecords corresponds an interval of five time steps. In the

cases  where  the  dating  error  is  smaller  than  the  time  step  resolution,  then  only  one  time  step

corresponds to the paleorecord. Radis checks whether the simulation in the grid cell of the paleorecord

during those five steps. In case the the paleorecord is a presence. Radis considers a correct guess if the

simulation reports presence of at least on of those time steps; if the paleorecord is an absence. Radis

considers a correct guess if the simulation reports presence of all the time steps.

This kind of evaluation is performed for every paleorecord, across the whole simulation, and likelihood
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for  the  simulation  is  then  calculated  according  to  equation  (3).  Figure 5b  shows  an  example  of

likelihood evaluation. It represents a sketched, simplified example where dating error is smaller than

time  step  resolution,  therefore  to  every  paleorecord  corresponds  only  one  time  step,  instead  than

several. In this example, the simulations consists of three time steps, and there are paleorecords dating

12 ky BP and 11.6 ky BP, but there are no records dated 11.8 ky BP. The ratio of correctly guessed

presences out of total number of recorded presences is 6/7=~85%, while the ratio of correctly guessed

absences out of total number of recorded absences is 4/5 = 80%.

6. Optimization process

The parameters optimized by the MH are: the coordinates of the niche centre, which are as many as the

climate variables are, the niche breadth D and the dispersal parameter α. The users sets the value they

will have for iteration 0, then during MH the optimization process will change their value. At iteration

i, one parameter x with current value pi,x is randomly chosen, and a new value px* for x is proposed as

in the following:

(4)

where ( px
min , px

max )  correspond to the limits set by the user, if i is a niche centre coordinate; to (0,5),

for D; and to (0,1), for α. After the simulation, likelihood Li for iteration i is evaluated as in formula 3

of main paper. With probability:

(5)

the  proposed step  px* in  the  space  of  parameters  is  then  accepted  for  the  following iteration,  i.e.

pi+1, x=px
∗ .

7. Sensitivity tests

Sensitivity tests can be realized by fixing one or several of the parameters during the MH. To fix one

parameter, the user has to set its range interval to 0. For example, say that that the user uses three

climatic variables,  summer_temperature,  winter_temperature and  precipitation, and she wants

to  run  a  sensitivity  test  on  the  α  parameter.  This  can  be  done  by  writing  the  following  in  the

radis_variables.txt file (see also “range” in Section 2):

range summer_temperature: 0, 0

range winter_temperature: 0, 0

range precipitation: 0, 0

range breadth: 0, 0
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range alpha: 0, 1

In  this  way,  the  range  intervals  of  every  parameter  except  α  are  0;  therefore,  α  will  be  the  only

parameter  varying.  To  be  noticed  that  the  ranges  limits  do  not  need  to  be  0;  the  same  can  be

accomplished by setting them to any value. By instance

range summer_temperature: 5, 5

would work as well. All it matters for a parameter to be fixed is that its range interval has 0 length.

8. Constants

Some values are fixed and not meant to change during a run. Such constants are:

Constant Name used in the script Value Meaning

— SCALE 36 (km) Scale value for x when using exponential kernel

Μ NUL_KER 100 (km) As used in equation (1)

ρ RATIO 0.5 As used in equation (2)

σ SIGMA 0.3 As used in equation (2)

ε STEP 0.01 As used in equation (4)

— CLUSTER 100 (km) See “initial condition” in Section 2 

If the user wishes to change such constants before a run, she can do so by re-writing the new values

manually. They can be found in the radis_functions.py script from line 21 to line 27.

9. Output

At  every  checkpoint  and  at  the  end of  MH (or  at  the  end  of  the  simulation  in  case  number of

iterations is  set  to  0).  Radis  saves  an  output  file.  It  consists  of  a  .npz archive  containing  the

following arrays saved as binary data:

 IniSim.npy: a NxT array containing the simulation corresponding to the first iteration of MH, where

N is the number of grid cells  and  T the number of time steps of the simulation.  Presences are

indicated with 1, absences with 0.

 TopSim.npy:  same  as  IniSim.npy,  but  it  contains  the  best  simulation,  i.e.  the  simulation

corresponding to the MH iteration with highest likelihood. In case number of iterations is set

to 0, IniSim.npy = TopSim.npy.

 Vars.npy: a  MxI  array containing the values assumed  parameters (niche centre coordinates,  D, α)

during the MH, where M is the number of parameters (i.e. number of climatic variables + 2) and I

the number of iterations.

 Fit.npy: a  I-length array containing the likelihood of every simulation performed during the MH,
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where I is the number of iterations.

 SY.npy: a 6-length array containing all interval values.

For a quick look at the data, an extra script called visualize_results.py is provided for download in

the same web page of the other Radis scripts. It must be launched while in the same folder of the other

Radis  scripts.  visualize_results.py requires  Python  version  3.4  or  later  and  the  package

Matplotlib. In order to work, it requires 3 formatted data files: 1) the “general input data file” created

during  the  run,  2)  the  “niche  evaluation  data  file”  created  during  the  run,  and 3)  the  output  file.

Launching visualize_results.py results in plots showing the results obtained in the output file (as

in Fig. 2), plus a text file containing, among other recap information, the values of parameters during

the  iteration  with  highest  likelihood  (i.e.  the  parameters  governing  the  simulation  saved  in

TopSim.npy) and the average of parameters of the iterations within the top percentile of likelihood.

77



Figure S1: Example of niche evaluation, based on paleoclimate simulations and a fossil records. Plot
(a) shows a 30 year mean annual temperature (°C) for 16 ky BP. Green diamonds indicate locations for
Abies fossils recorded fossile presence dated 16 ka BP (taking in account of dating uncertainty), while
empty  diamonds  show  recorded  absences.  Plot  (b):  same  as  (a),  but  climatic  variable  is  average
precipitation per day (mm/day). Plot (c): scatter plot of climates for every grid cell where Abies was
recorded (i.e. where a green diamond is present in the (b) and (c) plots), for six different time periods
(see legend below plot); the purple points indicate a dating of 16 ky BP, i.e. they correspond to climate
values of grid cells containing the green diamonds displayed in the plots on the right. The values of all
the  points  are  averaged  to  estimate  a  niche  centre  (black  diamond)  and  Mahalanobis  distance  is
calculated, so to evaluate a niche (area within the black line). The black line represents niche breadth:
in  the example shown, it  is  drawn at Mahalanobis distance equal  to 2,  which for the case of two
variables is equivalent to 2 standard deviations from the niche centre. Radis performs such evaluation
before  starting  the  MH  letting  the  user  adopt  the  parameters  of  such  evaluated  niche  as  initial
parameters for the MH run. 
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Figure S2: The three different kernel functions in Radis: (a) step-like, (b) linear, and (c) exponential.
The latter is a weighted average of a Gaussian and a “fat-tail” distribution, as in (Clark 1998). For
every plot, several plots of the same functions with different values of the α parameter (values in the
legend on the bottom) are displayed; α is user-definable and one of the parameters of the MH. Note
that, differently from the first two plots, in plot (c) the y-axis is logarithmic.
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Figure  S3:  Comparison  between  experimental  climatic  data  and  the  simulated  climatic  data  from
PaleoView; the latter were used for the example shown in the paper. On top: profile of δ 18O, a proxy
for temperature, from Greenland NGRIP record. Bottom: average annual temperature of Greenland,
from downscaled simulated data obtained by PaleoView.
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Figure S4: two sketches illustrating two possible examples of values for the three user-defined time
intervals. Every rectangle represent a time step. For every time step within the main interval. Radis
attempts to load both climatic and fossile data. In (a), length of a time step is 200 y; niche is evaluated
between 18-17 ky BP, and the simulations run in the interval 16.4-15 ky BP; in (b), length of a time
step is 100 y; niche is evaluated between 12-12.4 ky BP, and the simulations run in the interval 12.5-
11.7 ky BP. The main interval must contain or be wider than the other  two intervals,  which may
overlap. To be noted that it is not necessary to provide climate raster maps for every time step.
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Figure S5: (a) How Radis evaluates correct guesses to paleorecords. Every of the five main squares
represents a detail  of a  simulation grid,  with the dating on top of them expressed in ky BP. Two
paleorecords, one presence and one absence, are recorded at 12.0 ky BP. The dating error is 400y,
which means that it  cover five time steps, from 12.4 to 11.6. Radis considers the simulation to be
correctly guessing a recorded presence if, in the interval defined by the dating error, the corresponding
grid cell is occupied for at least one time step. In the example shown, the cell corresponding to the
recorded presence is the top right, and it is occupied by the simulated taxon in the last two time steps.
Therefore, Radis counts a correct guess of the recorded presence. On the other hand, Radis considers
the simulation to be correctly guessing a recorded absence only if, in the interval defined by the dating
error, the corresponding grid cell is empty for all time steps. In the example, the cell corresponding to
the recorded presence is the bottom left, and it is occupied by the simulated taxon in the last time step.
Therefore, Radis does not count a correct guess for the recorded absence. (b) How Radis calculates
likelihood. The simulated distribution range is represented by the squares in grey, and the three figures
represent three following time steps. In the example, the dating error on the paleorecords is <200 y, i.e.
smaller than one time step. Green and white dots indicate recorded presence and absence, respectively.
After  having  executed  the  simulation,  Radis  evaluates  its  likelihood  by  comparing  it  with  the
paleorecords. This evaluations relies on counting the correct guesses. The simulation correctly guesses
6 out of the 7 recorded presences, and 4 out of the 5 recorded absences. Thus, according equation (3):
pi = 6, pT = 7, ai = 4, aT = 5, to which follows that L = 80%.
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4 Tolerance and dispersal influenced 
North American tree distributions during
the deglacial period
North America provides an abundance of fossil pollen paleo-archives, while at the same time being a

region heavily affected by the climate shifts of the late glacial period. In particular, the transitions from

the Late Glacial Maximum to the Holocene induced reorganizations of vegetation communities and

biomes  of  continental  scale.  The  scale  and  magnitude  of  environmental  and  ecological  changes,

coupled with the considerable amount of fossil vegetation records, makes the continent a particularly

suited region for studying the effects of past rapid climate transitions on vegetation taxa.

In this research, we focus on seven North American tree taxa, chosen for the ampleness of fossil data

and the reduced number of comprising species; we analyse their response mechanisms to deglacial

transitions,  performing  the  research  entirely  by  the  means  of  the  model  developed  in  the  former

chapter. This study is both intended as a testing of potentialities and limitations of the novel method,

and as an inquiry of response mechanism of vegetation populations to paleoclimatic rapid transitions,

through the investigation of a meaningful case study. The resulting analysis is fully presented in the

following manuscript, which is intended for submission to Journal of Biogeography and reported here

with a few minor edits.
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Past evidences of vegetation responses to last glacial climate changes challenge the current theories and

future projections of biotic responses, suggesting that the mechanisms responsible for the observed

patterns in the fossil record are yet to be clarified. On the other hand, the accumulation of knowledge

and data provide the opportunity for in-depths analysis of the patterns observed in paleorecords and for

tests of ecological theories. Fruitful testing of hypotheses regarding biotic processes can be realized by

integrating  such  response  mechanisms  into  spatially-explicit  simulation  models.  We  apply  here  a

recently developed process-based model simulating species distribution ranges and featuring two key

mechanisms, namely dispersal and tolerance in situ,  to seven North American tree taxa during the

deglacial  period.  By validating the simulation against  paleorecords,  we test  concurring hypotheses

about tree dispersal, and quantify the contribution of colonization and tolerance in situ to the resulting

distribution patterns. Tolerance appears as the main strategy, except for taxa  Fagus and  Tsuga, for

which  dispersal  was the  main mechanisms to  explain their  range  dynamics  under  climate change.

Although simulations could not capture completely the observed distribution dynamics, they attained a

high degree of consistency with paleo-archives,  confirming the efficacy of simulating geographical

range dynamics based in a reduced but general number of first-principle processes.

4.1 Introduction
Climate change is accelerating across all regions of the planet (Urban 2015) and their impacts on the

distribution of species, possible extinctions, functioning of ecosystems and the services they provide

are of utmost importance (Pecl et al. 2017). Scientists are coming back to the past to better understand

what are the strategies or mechanisms allowing species to cope with abrupt climatic and environmental

changes (Nogués-Bravo et al. 2018). Thanks to accumulation of knowledge and data by paleoecologists

and scientists of related disciplines (Williams et al. 2004; Moreno et al. 2014) we do know, with an
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acceptable degree of confidence, the past patterns of species distributions under climate change, mainly

for those taxa and regions of the world that has been subject to a more intense scrutiny, like tree species

in North America during the Late Quaternary. We are however not close yet to fully apprehend what

are the mechanisms underpinning the observed patterns in the fossil record (Nogués-Bravo et al. 2018).

The  recent  integration  of  species  distribution  models,  correlative  based  approaches,  and

paleorecords have provided already significant insights on the controlling role of climate change in

species abundances, distributions or past ecological community turnovers (Nogués-Bravo et al. 2008;

Lorenzen et al. 2011; Nogués-Bravo et al. 2016) and on the magnitude of geographical range shifts

under different magnitudes of past climate change. They have provided also insights on the role of

adaptation, tolerance or dispersal to explain species distributions (Hugall et al. 2002; Strasburg et al.

2007). However, their correlative nature reduces their potential to gain deeper insights on the role of

mechanisms driving species responses to climate change. There are alternative modelling approaches

rooted in the incorporation of mechanisms, and relevant species-specific data, or in the simulation or

first  principles,  or  processes,  arising  from  theories  and  hypothesis  on  the  drivers  of  species

geographical ranges (Connolly et  al.  2017; Rangel et al.  2018). We apply here a recent developed

framework (Botta et al., manuscript in preparation) to simulate range dynamics under climate change

based  on  two  main  mechanism:  tolerance  in  situ (species/populations  adapt  to  the  new  climatic

conditions) and dispersal (species disperse to areas of suitable climatic conditions).

We simulate both tolerance in situ and dispersal as the two main response mechanisms. We define

tolerance as the ability of a species to change their climatic niche to persist in grid-cell under different

climatic conditions than experienced before. The climatic niche (sensu the Grinnellian niche in Soberón

2007) is define as the set of climatic conditions for which the intrinsic growth rate of populations are

not  negative.  We  estimate  the  climatic  niche  (or  climatic  envelope)  mathematically  using  the

Mahalanobis distance (Farber and Kadmon 2003). The approach has been shown to be successful in

explaining past geographical dynamics across the Late Quaternary (Nogués-Bravo et  al.  2008). We

define dispersal as the ability of a species to migrate and colonise a suitable climatic area. We simulate

dispersal  using  a  set  of  probabilistic  kernel  functions  within  user-defined  boundaries  of

dispersal (Bullock et al. 2017), which account also for rare long-distance dispersal events (Clark 1998).

Finally,  simulations  are  tested  against  recorded  spatio-temporal  trends  in  the  fossil  record.  This

validation steps allow us to identify the specific contributions of tolerance in situ and dispersal to

replicate, via simulations the observed patterns of species range shifts in the fossil record.
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We apply this framework to six tree taxa in North America from 15 to 10 kyr BP. This time interval

roughly corresponds to the last  deglacial  period,  as it  lies approximately between the Late Glacial

Maximum (LGM) and Holocene; it encompasses several rapid climate shifts (Steffensen et al. 2008),

thus  providing  a  remarkable  temporal  frame  to  study  species  geographical  range  dynamic.  LGM

occurred between 26.5 until approximatively 14.5 ka BP (Mix, Bard, and Schneider 2001; Clark et al.

2009).  Climate reconstructions  estimate the average global  temperature during LGM to be ~4.9°C

colder in respect to the peak interglacial conditions of Holocene (Shakun and Carlson 2010). North

American  continent  was  partially  covered  by two  ice  sheets:  the  Laurentide  ice  sheet,  centred  in

Canada and extending as south as 38° N, and the smaller Cordilleran ice sheet, located over the Rocky

Mountains (Clark and Mix 2002); the ice sheet  influenced the climate of the continent by displacing

atmospheric currents (Bartlein et al. 1998). During the LGM, eastern North America was dominated by

forest of cold-tolerant conifers (Shuman, Bartlein, and Webb III 2005), while open forests were present

in the south-west (Wagner et al. 2010; Asmerom, Polyak, and Burns 2010). Both south-eastern and

north-western United States were also partly covered by open forests (Whitlock 1992; Webb III et al.

1998). 

The  LGM was  followed  by  the  Late  Glacial  period,  an  interval  of  climate  warming  spanning

approximatively between 16 and 11 ka BP. In this period, which comprises the transition to Holocene,

the Northern Hemisphere,  climate experienced several  rapid transitions,  before eventually  reaching

present-day climate conditions (Fig. 3 of Chapter 1). The most rapid rates of changes in North America

are associated with the transition to and from the Younger Dryas period (Williams et al. 2004; Shuman,

Bartlein, and Webb III 2005).

The biomes of North America tracked closely climate variability during this period, with time lags

of  centennial  scale  or  shorter (Peteet  2000),  and  experienced  general  profound  reorganizations

(Williams et al. 2004). In eastern North America, tundra and open forest grew along the Laurentide ice

sheet,  extending between 30° N and 34° N.  Tundra  was predominant  in  the  continent  interior;  in

particular, taxa like Fagus and Ulmus, along with other temperate hardwood taxa, grew near the Lower

Mississippi  valley  and;  warm-temperate  taxa  and  open  vegetation  occupied  present-day

Florida (Jackson et al. 2000). Western North America was dominated by open conifer woodlands in the

south and by tundra landscape in the north-west (Jackson et al. 2005). In contrast, during the Holocene,

cool  and temperate  conifer  and hardwoods  forests  developed large  and widespread populations  in

eastern  North  America;  more  northerly,  taiga  became  the  dominant  biome;  warm  mixed  forest
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dominated the Florida peninsula (Prentice et al. 2000; Jackson et al. 1997). 

The magnitude of late glacial climate change in North America, and the richness of paleo-archive

vegetation records in the region provides therefore a remarkable system to simulate range dynamics

and test  the  magnitude  of  tolerance  in  situ  and dispersal  to  explain  the  observed patterns,  and to

tackling the "Quaternary conundrum" (Botkin et al. 2007), namely the seemingly paradoxical hiatus

between future projections of biotic responses in species distribution models and the past evidence. In

this chapter, we aim at enhancing the current knowledge on how two relevant mechanisms may played

a determinant  role  to  explain  species  reactions  to  climate  change in  seven tree  taxa:  Abies,  Acer,

Betula, Fagus, Salix, Tsuga, Ulmus (respectively fir, maple, birch, beech, willow, hemlock and elm).

Using  hundreds  of  dated  and  georeferenced  records  of  pollen  fossil  abundance,  paleoclimatic

simulations  and  a  recently  launched  software  to  simulate  species  range  dynamics  (Botta  et  al.,

manuscript  in  preparation)  we  estimate  the  ability  of  those  two  mechanism to  replicate  observed

patterns, identify the contribution of tolerance and dispersal to the observed patterns, and discuss how

our findings may contribute to better anticipate future reactions of species to on-going climate change

and enhance forecasting modelling and future biodiversity scenarios.

4.2 Data and methods
Pollen data were provided by the database from (Nogués-Bravo et al. 2016), which features data from

North America spanning the period 21-0 ka BP. These data, in turn, were obtained from the Neotoma

Paleoecology  Database  to  be  spaced  at  1000  years  intervals,  and  consist  of  both  presences  and

absences. From the database, seven taxa were chosen for the current analysis:  Abies, Acer, Betula,

Fagus, Salix, Tsuga, Ulmus (fir, maple, birch, beech, willow, hemlock and elm). Taxa were chosen for

the abundance of both presence and absence data on the whole continent. Number of sites and number

of individual recorded presences are reported in Table 1.

We have developed a new software,  Radis (Botta et  al.,  manuscript  in preparation),  to  simulate

range dynamics and pinpoint the roles of dispersal and tolerance in situ under climate change. Radis

simulates tolerance in situ by simulating several breadths and positions of their climatic niche and then

testing it against observations from paleo-archives. The software also simulates continuous dispersal

event by implementing it on a discretely spatially fragmented lattice grid. Dispersal is modelled as a

probabilistic event from one occupied cell towards an unoccupied cell; the probability of the event is

mediated  by  a  kernel  function.  Radis  is  provided  with  three  possible  shapes  for  the  kernel  well
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supported in the literature (Bullock et al. 2017), allowing users to choose among them before start the

simulation. In this type of modelling, the dispersal considered here is the natal dispersal, scaled up to a

generational  level.  Accordingly,  it  is  recommended  to  choose  a  time  step  length  matching  the

generation time of the studied taxon. More details on the full methodology and protocols can be found

in (Botta et al., manuscript in preparation).

The climatic niche of taxa was set as being two-dimensional, over two climatic variables: average

annual temperature (in °C), and average annual precipitation per day (in mm/day). This choice is a

compromise between capturing the patterns of taxa in relation to insolation and moisture, which are the

most fundamental climate-driven requirements for vegetation, while at the same time keeping low the

number of climate variables in order to hasten the running time. This means that runs performed with

Radis will be based on four parameters: the two coordinates of the niche centre, plus the niche breadth

and the dispersal parameter α. 

We use  paleoclimatic  simulations  from PaleoView software (Fordham et  al.  2017).  They  were

downloaded  as  30-year  averages  in  100y  intervals,  spanning  the  period  16-8  ka  BP.  PaleoView

provides raster maps with a 2.5x2.5 latitude/longitude resolution. This amounts to an average distance

between one grid cell to its neighbour of ~100 km or greater. Considering the time resolution we chose,

this spatial resolution would make dispersal possible only for tree dispersal velocities of one order of

magnitude greater than those estimated by fossil records (Ordonez and Williams 2013). Therefore, no

plausible dispersal event could occur in the simulation. To obviate the problem, climatic maps were

subjected  to  linear  statistical  downscaling  (Fig. 1),  by  linear  regression  with  the  WorldClim

database (Hijmans et al. 2005). Changes in coastline profile were disregarded, as simulations show a

negligible change for the period and region of interest (Fordham et al. 2017).

For every taxa, climate niche was estimated by geographically crossing pollen and climatic data for

the period 16-15 ka BP. This interval is chosen for featuring glacial condition in North America, and at

the same time preceding the main deglacial abrupt climate change, namely Bølling-Allerød transition

(~14,700 ka BP). In this way, we aimed to estimate the realized niche of taxa before facing abrupt

climate transitions; such estimated niche is the starting niche for the evaluations. The only exception to

this choice was Fagus, whose data for that period were scarce; therefore, in this case, we chose 13-12

ka BP for the niche evaluation, a period intersecting Younger Dryas and thus mostly displaying stadial

conditions.

Radis was launched for every taxa three times, each one for every kernel. Launches was set to
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comprise 104 iterations each. Simulation period was the interval 15-10 ka BP, a period comprising the

transitions to Bølling Allerød and to Holocene. For Fagus, simulation period was 12-8 ka BP because

of a lack of data for the 15-10 ka BP.

A  Radis  run  performs  a  Metropolis-Hastings  algorithm,  where  every  iteration  consists  of  a

distribution  range  simulation  for  a  user-defined  time  interval.  The  parameters  of  the  Metropolis-

Hastings are niche centroid coordinates (thus, in the current research, average annual temperature and

average annual  precipitation),  niche breadth,  and the dispersal  parameter  α.  The latter  depends on

which dispersal kernel function the users chooses among the three available (Botta et al., manuscript in

preparation); the three kernel functions differ by shape, being one step-like, one linear, and one a mixed

of  normal  and  “fat-tail”  distribution (Clark  1998). For  every  iteration  of  the  Metropolis-Hastings

algorithm, a particular combination of values for the parameters is chosen. That combination is then

used for the simulation of the corresponding iteration.

Then, for every iteration, a likelihood evaluation of the corresponding simulation is then performed,

by comparing the simulation itself to the paleo-archives (for detailed explanation of likelihood estimate

see Botta  et  al.,  manuscript  in  preparation).  Let  us  consider,  for  a  given  Radis  run,  the  iteration

attaining the highest likelihood value.  As for every iteration, a parameters values combination will

correspond to that iteration. In this analysis, we consider that specific parameter value combination as

the parameter evaluation of that Radis run. Consequently, we consider the highest likelihood value

obtained  in  the  run  to  be  the  likelihood  of  the  parameter  evaluation  and  of  the  corresponding

simulation.

For every taxa, three separated runs were launched, each with one of the three kernels; this was

meant to evaluate, for every taxon, which kernel could best describe the paleorecord patterns. For every

taxon,  the  highest  likelihood  value  attained  in  each  of  the  three  runs  was  recorded.  The  kernel

corresponding to  the  highest  value of  the  three was chosen for  the given taxon.  We consider  the

simulation corresponding to such likelihood value to be the “best simulation”, and the parameter values

combination to be the parameter estimate for the given taxon.

Next, a sensitivity test was performed for each of the four parameters, while the other three were

fixed at the values corresponding to those of the highest likelihood run. For each of this sensitivity test,

both the maximum and the minimum values were recorded. The absolute difference between these two

values  was  calculated  as  en  evaluation  of  the  contribution  of  the  relative  parameter  to

likelihood (see SI).
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4.3 Results
Results are shown in Tables   2, 3 and 4. All simulations realized a likelihood value superior to 50%

(Table 2), the worst being simulation of Acer (52.2%) and the best being simulation of Abies (83.6%).

The simulations could reproduce several of the known dynamics having occurred to the taxa (Fig. 2).

They  featured  the  northward  Betula  and  Abies  expansion  following  deglaciation  on  the  formerly

glaciated area,  and the  rapid north-eastward colonization of  Fagus  following Holocene,  which  are

dynamics consistent with former studies (Prentice, Bartlein, and Webb 1991; Williams et al.  2004).

However, the simulations failed to reproduce the recorded Midwest expansion of  Abies and  Ulmus

during 15-12 ka BP. Moreover, simulations for  Betula and  Salix  presented an obvious error as they

simulated taxa distribution ranges on the north-eastern part  of the continent, thus overlapping with

presence of ice sheet. 

The parameter evaluation performed for every taxon (values reported in Table 2) allows for a niche

reconstruction for every taxa during the 15-10 ky BP (12-8 ky BP for Fagus); we label such estimated

niche “deglacial  niche”.  They are  shown in Fig. 3,  together  with niche estimate  for  the preceding

millennium, namely the period 16-15 ky BP (13-12 ky BP for Fagus). Deglacial niches feature a wider

breadth in respect of the estimate for the preceding millennium, with the exception of  Betula and

Ulmus.

The sensitivity tests showed the niche breadth being the most relevant parameter for all taxa, since

its contribution to total likelihood amount for every taxa no less than 98%, with the exception of Salix,

to which the contribution of niche breadth to likelihood was 87.52% (Table 4).  Temperature niche

centre  contributed  for  more  than  50%  of  likelihood  for  every  taxon;  precipitation  niche  centre

contributed for more than 50% for every taxon except Betula (44.26%) and Tsuga  (17.40%).

Dispersal appeared as the least relevant mechanism contributing to likelihood to paleorecords, since

it amounted for less then 40% for every taxon; the two exceptions were  Fagus (63.97%) and Tsuga

(67.74%). Best performing kernel was linear for all taxa, except Salix (whose best performing kernel

was step-like), and Abies and Ulmus (whose best performing kernels were exponential).

4.4 Discussion and conclusions
Our simulations of species geographical ranges over a period of abrupt climate change are able to

reproduce  several  of  the  observed patterns,  contractions  and shifts  of  these  7  plant  taxa  in  North
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America based only in two processes, tolerance in situ and dispersal. Those results together suggest a

past  biogeographical  scenario  in  which  species  experienced  different  climatic  conditions  in  situ,

reflecting expansions of the climatic niche breadth and changes in their average conditions, at the same

time that dispersal events contributed to the re-organization of their geographical ranges.

Our simulations adequately explain overall the observed patterns of geographical range dynamics.

They comprise the east-ward dispersal of Abies, as well as its presence patterns by the Pacific coast ant

the  Rocky  Mountains;  and  the  rapid  migration  north-eastwards  of  Fagus during  early  Holocene.

However, our simulated ranges and the observed distributions disagree in specific regions of North

America. Firstly, simulations for  Acer and  Salix  presented an obvious error as they simulated taxa

distribution ranges in the north-east part of the continent, thus overlapping with the known range of the

Laurentide ice sheet. Moreover, the simulations failed to reproduce the recorded Midwest expansion of

Abies and Ulmus during 15-12 ka BP. Finally, the simulated ranges did not show any detectable effect

of the inversion of climatic trend caused by Younger Dryas cooling.

As for the overlapping with ice sheet, the disagreements may be the consequence of to the fact that

ice sheets (or any other geographical obstacle to colonization) are not explicitly simulated by Radis:

indeed, the software does not directly simulate climatic conditions, but instead it takes them as user-

provided input. On the other hand, mismatches in the dispersal simulations of  Abies  and Ulmus may

instead be imputable to the nature of the kernel used for both taxa, namely exponential: errors in the

setting  of  the  constants  ρ  and  σ,  components  of  the  exponential  kernel,  might  have  resulted  in

underestimation  of  dispersal  ranges.  Finally,  the  lack  of  discernible  effect  of  the  Younger  Dryas

cooling is likely an consequence of the smoothing of climatic simulation data caused by the time step

spacing;  adopting time steps  shorter  than 100y for  the  simulations  is  likely to  better  expose brief

climatic trends, and incorporate them in the simulations.

Tolerance in situ is overall the best supported mechanism, suggesting a priority role of the ability to

survive in situ under changing climatic conditions. We observe wider deglacial niches than the ones

estimated by glacial conditions for the taxa  Abies,  Acer,  Fagus,  and Tsuga  (Fig. 3). This points to  a

shift  of  the  realized  niche  for  such  taxa  within  a  larger  fundamental  niche (Nogués-Bravo  2009).

Evidence for climate-induced changes in the realized niches through time have indeed been proven for

some  Abies  and  Fagus species (Maiorano et  al.  2013) but also for many other plant taxa in North

America (Nogués-Bravo et al. 2016).

Between the LGM and the deglacial period, the nice breadth of Betula, Salix and Ulmus maintained
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constant and the niche centre translated (Fig. 3), hinting to a niche shift occurred during the deglacial

transition.  Interestingly,  the  niche  centre  shifted  towards  colder  conditions,  despite  the  continental

temperature  increase.  Such  shift  is  accompanied  with  a  rapid  migration  northwards,  therefore  it

suggests  a  rapid  recolonization  of  formerly ice  sheet  covered regions.  The limited contribution of

precipitation niche centre parameter for Tsuga likelihood (Table 3) is coherent with former studies of

present-day  Tsuga  species niches, attributing summer temperature as the most influential factor for

growth, with precipitation only playing a limiting factor regionally (Gedalof and Smith 2001). This is

somewhat  paradoxical,  considering  the  well-studied  mid-Holocene  decline  of  Tsuga populations

following period of moisture variability; however, it has already pointed out by former studies that

evidence points to the Tsuga population trough not being directly related consequence to abrupt climate

changes (Booth et al. 2012).

Whether these changes in the climatic niche of species are the result of fast adaptations to climate

change via ecological plasticity or micro-evolutionary change (Gavin et al. 2014) is beyond the ability

of our simulations to discern. In the case of Ulmus, a taxon for which dispersal was evaluated not as

rapid as the other taxa, the niche shift might stem from an overestimation from the abundance threshold

value chosen to translate relative pollen fossil abundances in presence/absences. Other relevant factor

to understand the ability of species to survive in situ are the presence of refugia and microrefugia

(specifically, in situ refugia or climate relicts, i.e. resulting from range contractions). Climatic refugia

can contribute to the high influence of tolerance in situ, as persistence in refugia reduces the need of

species to rapidly increase their ability to change their climatic physiological constraints via plasticity

or evolutionary change (Gavin et al. 2014).

The role of dispersal as a strategy to cope with climate change has been largely acknowledged as a

strategy for plants to cope with fast climatic changes. Reconstruction of past migrations rates for North

America  taxa  report  northwards  individual  taxa  velocities  up  to  2.7  km/decade  for  the  northern

boundaries, with velocities being faster during periods of rapid temperature changes. Our simulations

support a biogeographic scenario in which dispersal played a relevant role but of secondary order for at

least 5 of the analysed taxa; the exceptions to these patterns were Fagus and Tsuga, where sensitivity

tests  showed dispersal  contributing  the  63.97% and 67.74%, respectively,  to  explain  the  observed

responses. The greater amount of α value contribution to likelihood of  Fagus and  Tsuga distribution

models  suggest  dispersal  at  great  ranges  whilst  out  of  equilibrium with  climate,  a  pattern  already

observed in paleo-archives for these taxa (Davis et al. 1986).
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The  best  supported  dispersal  mode was  linear  or  step-like,  suggesting  an  scenario  of  species

geographical ranges advancing north cohesively.  The exception to this  trend are  Abies and  Ulmus,

whose α values are however equal or greater than 0.73. This equates to simulations with long range

dispersal, as both the linear and the step-like kernels are of 1-2 orders of magnitude greater than the

exponential for dispersal greater than 30 km. This stresses the critical impact of long distance seed

travels in tree responses to global climate changes (Cain, Milligan, and Strand 2000).

By the analysis conducted with Radis, it can be concluded that the most important response of the

studied taxa to deglacial abrupt climate changes has been tolerance in situ. Niche have shifted during

the deglacial transitions, suggesting a wider fundamental niche. In some cases (Abies  and Fagus) a

wider  niche  was  indeed  estimated.  Taxa  appeared  to  have  maintained  equilibrium  with  the

environment, except for Fagus and Tsuga, which relied mostly on long range dispersal. Acer, Salix and

Ulmus  featured long-range dispersal as well,  although dispersal events were not a major feature to

reproduce paleo-archives patterns. This is coherent with hypothesis of trees responding to Pleistocene

climate  changes  by  rare  events  of  long  distance  dispersal (Powell  and  Zimmermann  2004).  The

findings suggest that taxa may in future respond effectively by rapid long-range dispersal provided that

this strategy is not impaired by habitat fragmentation (Hof et al. 2011).

A possible source of error for the approach used here stems from the different methods employed

for  niche  evaluation;  LGM  niche  has  been  estimated  by  crossing  fossil  data  with  paleoclimatic

simulation  data,  while  the  deglacial  niche  originates  from  the  outcome  of  the  simulations  and

validations. The validity of the comparison between the two niches can be checked by executing a

Radis run where the period of niche evaluation and simulation are inverted.

Systematic error can also arise by the employment of data from a limited time interval. This may

indeed lead to underestimating of a taxon’s niche,  as arguably realized niches at  any given period

denote only a subset of the climatic conditions in which the taxon can survive; such an issue has been

pointed out  for SDM using niche reconstructions  based on contemporary data (Veloz et  al.  2012).

Analogously, simulating species distributions for a short time interval may lead to under-representation

of the climatic niche, should the interval not feature a wide enough variety of climates. Recurring to

fossil data dating to both glacial and interglacial conditions could reduce the possibility to simulate

distribution ranges during no-analog climates. On the other hand, caution must be taken  when using

records from different periods; the amount of pollen data increases the closer to the present, therefore

evaluating a niche with data spanning a long time range could lead to an overestimation of the most

93



recent climates.

For two of the taxa considered (Fagus and  Tsuga), the high values of likelihood attained by the

distribution range simulations showed to be greatly influenced by the magnitude of dispersal.  It has

already been pointed out that implementing population processes as dispersal and extirpation in SDM

can possibly increase the quality of the projections, as it allows to incorporate variability of equilibrium

between species distributions and climate (Nogués-Bravo 2009). The cases considered in this study

further  indicate  that  models  including  population  mechanisms  can  better  capture  the  distribution

patterns as recorded in the paleo-archives

Since  the  simulations  do  not  model  species  abundances,  some  essential  dynamics  might  be

overlooked. An example of this is given by the simulations of  Fagus. The pollen record displays a

presence concentrated in the south-west before 10 ka BP and in the north-east and Midwest after. This

particular pattern is due to the choice of abundance threshold adopted for the evaluation. A possible

explanation could be a  massive and rapid dispersal;  however,  reconstructed distributions taking in

account of abundance differences among sites show this pattern as the consequence of a decrease of

south-western population and increase of the south-eastern population (Williams et al.  2004). Radis

evaluation hints in the direction of this latter explanation, since its best simulation features a presence

in both regions (Fig. 2). Future development of the method including species abundance modelling will

allow to incorporate such demographic dynamics, which can improve explaining the patterns recorded

in paleo-archives.

A still  open question consists  in  how the individualistic responses here inquired resulted to the

second order of responses in the vegetation communities. Future lines of research could tackle this

issue  by  overlapping  the  single  taxon  simulations  and  modelling  the  mutual  relations  between

coexisting species. In this way progress might be done in bridging the gap between the individualistic

strategies of species and the resulting emerging patterns of biomes.
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Figure 1: Example of statistical downscaling for paleoclimate raster maps. Top left: “raw” data from
PaleoView, with resolution 2.5°, to be downscaled. Map show average annual temperature, averaged
over 30 years around 16 ka BP. Bottom left: PaleoView simulated average annual temperature for the
interval 1960-1990. Top right: recorded average annual temperature for the interval 1960-1990 from
WorldClim. Bottom right: downscaled data of temperature map shown top left. It is obtained as the
sum of present observed data plus the anomaly, i.e. the difference between past and present simulated
climate maps, interpolated so to have same spatial resolution of top right map (anomaly map not shown
here).
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Figure 3: Niches as estimated by Radis evaluations, for all considered taxa. Niches centres are indicated
by diamonds, and the corresponding niche breadths by oval line. Red niches (“LGM niches”) represent
correlative evaluation performed over fossile and climate data from the period 16-15 ky BP (13-12 ky
BP for Fagus). Blue niches (“deglacial niches”) represent the result of Radis evaluation for the period
15-10 ky BP (12-8 ky BP for Fagus): they are reconstructed by the taxa parameter estimate shown in
Table 2. Dots indicate fossile data, and their dating is indicated by their colour, according to the bottom
right legend; big and small dots indicate, respectively, presence and absence. Units are average annual
temperature (in °C) for x-axis and average annual precipitation for y-axis (in mm/day).
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ky BP

21 20 19 18 17 16 15 14 13 12 11 10 9 8

N
. o

f 
re

co
rd

ed
 p

re
se

nc
es

fir Abies 16 18 16 17 27 40 61 99 128 150 175 188 209 226

maple Acer 11 9 13 15 22 37 58 95 123 135 168 176 191 201

birch Betula 17 17 18 24 36 53 77 115 153 184 219 226 259 278

beech Fagus 8 8 8 8 18 24 39 81 98 92 123 141 167 180

willow Salix 18 16 18 24 37 54 79 117 157 194 222 233 265 282

hemlock Tsuga 2 5 10 9 22 32 45 84 115 97 114 131 155 153

elm Ulmus 11 10 10 11 21 30 51 87 113 120 144 155 174 186

Total n. of sites 20 21 21 28 41 57 84 119 158 195 224 234 269 286

Table 1: Overview of the dataset used, which is taken from (Nogués-Bravo et  al.  2016). The table
reports the number of sites per period time, and the number of recorded presences per period of time
and per taxon.
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kernel parameters

taxa step-like linear exponential
Temperature

(°C)
Precipitation

(mm/day)

niche breadth
(Mahalanobis

distances)

dispersal
parameter (α)

Abies 0.790 0.812 0.836 -0.27 5.77 3.50 0.81

Acer 0.496 0.522 0.488 -3.04 3.43 3.35 0.75

Betula 0.655 0.662 0.631 -6.98 0.86 1.90 0.96

Fagus 0.788 0.827 0.154 6.76 3.33 3.25 0.99

Salix 0.777 0.743 0.767 -14.55 0.51 2.85 0.98

Tsuga 0.761 0.767 0.665 6.67 5.01 2.35 0.99

Ulmus 0.683 0.659 0.734 -5.97 2.00 1.65 0.65

Table 2: Best likelihoods obtained for distribution range simulations of given taxa executed with Radis.
Every taxon was tested for the three different kernels. Highlighted in red is the highest likelihood
obtained for each taxon; they correspond to the best simulation (shown in Fig. 2) and to the parameter
values combination displayed in in columns 4–7 of this table.
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taxa kernel temperature precipitation niche breadth dispersal (α)

Abies linear

max 0.84 0.84 0.84 0.85

min 0.13 0.01 0 0.69

Acer linear

max 0.53 0.52 0.53 0.53

min 0.02 0 0 0.47

Betula linear

max 0.66 0.66 0.66 0.66

min 0.11 0.37 0 0.41

Fagus linear

max 0.83 0.83 0.83 0.83

min 0.34 0.1 0 0.3

Salix step-like

max 0.78 0.78 0.78 0.78

min 0.15 0.26 0.1 0.64

Tsuga linear

max 0.77 0.78 0.77 0.78

min 0.12 0.64 0 0.25

Ulmus exponential

max 0.74 0.74 0.75 0.75

min 0 0.01 0 0.54

Table 3: Sensitivity tests for the taxa traits. First column indicates the taxon name. Second column
indicates which kernel has been used for the given taxon. For each taxon, four sensitivity tests were
run, one for each of the four parameters. They consisted in fixing the other three parameters, then
recording  the  maximum  and  minimum  likelihood  so  obtained.  The  result  values  are  shown  in
columns 4–7.
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contribution

taxa temperature precipitation niche breadth dispersal (α)

Abies 85.05% 98.82% 100.00% 18.09%

Acer 96.95% 100.00% 100.00% 11.39%

Betula 84.04% 44.26% 99.85% 37.65%

Fagus 59.25% 88.39% 100.00% 63.97%

Salix 80.69% 66.92% 87.52% 17.25%

Tsuga 84.42% 17.40% 100.00% 67.74%

Ulmus 100.00% 98.38% 100.00% 28.23%

Table  4: absolute differences,  expressed in percentage,  of the maximum and minimum likelihoods
obtained in the sensitivity tests; they evaluate the contribution of dispersal in the taxa response patterns.
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Tolerance  and  dispersal  influenced  North
American  tree  distributions  during  the
deglacial period
Supplementary information
Once Radis has been run for a given taxon, period and geographic area, it produces an evaluation of the

taxon’s traits as a combination of parameter values. Let us take for example the Radis analysis for

Tsuga, over North America, for the period 15-10 ky BP, using a linear kernel. The result of Radis

analysis  can  be  seen  in  Table 2:  the  best  likelihood  value  obtained  is  76.7%.  The  corresponding

combination of parameter values is the following:

tmean = 6.67

(1)
prec = 5.01

breadth = 2.35

α = 0.99
This combination, correspondent to the highest likelihood value found by the Metropolis-Hastings run,

represents the evaluation of Radis for the corresponding traits of Tsuga: niche centroid coordinates  for

average annual temperature and precipitation (labelled “tmean” and “prec”, respectively), niche breadth

(“breadth”) and dispersal parameter (“α”).

The following question is how much the likelihood of this parameter combination owes to every

single  parameter.  A way to  answer  to  this  is  to  run  Radis  again  while  keeping  fixed  3  out  of  4

parameters (or, more generally, x-1 out of x, where x is the total number of parameters) to values (1),

while letting the remaining one vary. Radis will then explore all the domain interval of this remaining

parameter, and evaluate all the corresponding likelihood values. In this way, it can be seen how much

the likelihood changes, starting form the best likelihood value that corresponds to the (1) combination;

this operation can be executed for each of the parameters. In other words, we start with the maximum

likelihood parameter combination, then we “turn the knobs” of each parameter separately, and see how

that affects likelihood.

An  example  of  this  analysis,  performed  for  the  aforementioned  Tsuga  example,  can  be  seen

in Fig. S1.  It  shows  two  sensitivity  test;  (a)  is  performed  over  dispersal  parameter  α  and  (b)  is
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performed over niche breadth. The result of the sensitivity test for α gives:

 Likelihood α value Iteration #

Max. likelihood 77.8% 0.86 2521

Min. likelihood 25.1% 0.36 6853
The Metropolis-Hastings algorithm starts  with values  combination (1).  Then, the sensitivity test

“turns  the  knobs”  for  α,  so  that  likelihood  is  evaluated  for  the  α  values  in  the  domain

interval [0, 1] (Fig. 1a). The maximum likelihood value obtained is 77.8%, therefore the combination

tmean = 6.67

(2)
prec = 5.01

breadth = 2.35

α = 0.86
represents  a  refine  in  respect  to  combination  (1),  since  combination  (2)  corresponds  to  a  higher

likelihood value. The minimum likelihood value obtained in the sensitivity test is 25.1%. This means

the fraction of likelihood affected by α is:

(3)

We dub this values as the “contribution” of α to the total likelihood, i.e. to what extent the likelihood of

the evaluated parameter combination can be affected by variations of α.

All values of Table 4 are calculated with the approach of formula (3). This explains why the values

of  every  row do  not  add  up  to  100%:  as  we  saw in  the  example  above,  all  values  derive  from

independent sensitivity tests; the percentages simply indicate how much the corresponding parameters

can affect the best likelihood value.
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Figure S1: Two sensitivity tests conducted for  Tsuga. In both cases, all parameters except one were
fixed; in  this  way, the remaining parameter  explored its  whole domain interval.  Likelihood values
were, as usually, evaluated for every iteration, as shown by black plots on top. The iterations in which
maximum and minimum likelihood values are obtained are highlighted with a red and blue vertical
line, respectively. Plots (a) show the result of a sensitivity test for dispersal parameter α. Maximum and
minimum likelihood values obtained are 77.8% and 25.1%, respectively, and they correspond to the
values of 0.86 and 0.36, respectively. Plots (b) show the result of a sensitivity test for breadth niche
parameter. Maximum and minimum likelihood values obtained are 76.8% and 0%, respectively, and
they correspond to the values of 2.35 and 0.35, respectively.
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5 Conclusions and outlook
The last glacial period was characterised by several global abrupt climate shifts,  likely induced by

intrinsic  amplifying feedback mechanisms within atmospheric  and oceanic circulations.  The global

transitions  drove  a  variety  of  environmental  changes  on  regional  scale,  whose  magnitudes  and

modalities  depended  on  the  geographic  and  hydrological  specificities  of  the  various  areas.  Such

environmental shifts affected the biosphere, inducing ramifications and cascading consequences across

all  ecological levels.  The plethora of fossil  paleorecords hints  to severe ecological reorganizations,

including  different  degrees  of  equilibrium/disequilibrium  with  climate  across  populations  and

communities.

The wide phenomenological knowledge on the biotic responses to abrupt climate changes leaves

still  open  questions  about  the  nature  and  the  functioning  of  the  response  mechanism behind  this

outcome.  This  project  represents  an  attempt  to  investigate  on  these  response  mechanisms,  by

highlighting the general response patterns and developing a mechanistic model to simulate and analyse

the key mechanisms behind geographical range dynamics.

The first part of the thesis, exposed in Chapter 2, reviews and summarizes the knowledge about the

biotic responses to past abrupt climate changes, focusing on Last Glacial and early Holocene. The wide

variety of recorded patterns is drawn by a review of published literature comprising global coverage,

where responses are analysed and classified by habitat  and organization level. It is shown that the

ability  to  maintain  equilibrium  with  the  environment  is  reportedly  featured  throughout  different

communities  and  habitats,  with  responses  lags  depending  on  the  specificities  of  the  interspecies

relationships and the regional outcomes of the global climatic reorganizations. Such feature relies on

the capacity of populations to migrate and on the variety of regional climates, which increases the

possibility of presence of micro-refugia. Under abrupt climate change, rare species may become more

frequent and vice versa: whenever the novel climate results advantageous for their climatic niche or

causes more favourable interspecies relations, their individualistic responses may result in repopulating

communities  undergoing  population  stress  and  diversity  loss.  Nevertheless,  climate  variability  on

ecosystems exerts  a  jeopardizing  stress,  which  increases  probability  of  local  extirpations  if  acting

concomitantly with other disturbance sources.

In the second part of the thesis, corresponding to Chapter 3, a novel method for studying responses
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of species geographical ranges to past abrupt climate changes is presented. Such model takes climate

simulation maps and paleorecords as input, then uses the former to realize process-based distribution

range simulations and the latter to validate them. Therefore, it consists of a process-based model where

species mechanisms under study are explicitly modelled, hybridized with a correlative approach via

confrontation of the simulated responses with recorded paleo-archives. The validity of the method was

proved by testing it for the  Abies taxa in North America during the deglacial period, in which the

transitions to Bølling-Allerød, Younger Dryas and Holocene climate periods occur. This case study

evaluated, with a ~85% likelihood, tolerance in situ as the main mechanism of response, and long range

dispersal  as  secondary.  The proposed method,  despite  representing  a  drastic  simplifications  of  the

mechanisms under study, succeeds in capturing some key geographical dynamics.

Lastly, in Chapter 4 the novel method is adopted to a dataset comprising seven taxa (Abies,  Acer,

Fagus, Salix, Tsuga and Ulmus) in order to investigate the responses of North American vegetation to

the abrupt environmental changes occurring during the deglacial  period. According to the analysis,

tolerance  in  situ was  overall  the  primary  mechanism to  react  to  abrupt  climate  change.  Dispersal

seemingly played a secondary role, except for Fagus and Tsuga.

The presented  model  paves  the  way to future elaborations  of  process-based models  as  tools  to

understanding the relations of species and ecosystems with a rapidly changing climate. Given the high

level of variability of the population responses, and the entanglement of the ecological networks, a line

of further development will consist of reproducing species-species interactions, e.g. competition for

resources. This will allow to simulate the community responses as summarized in Chapter 2, which for

simplicity reasons could not be taken in account in the model described in Chapter 3.

Future lines of investigations may take the inquiry further by incorporating explicit simulations of

other  mechanisms,  for  other  relevant  species  and  including  population-level  traits,  developing  the

current  method  to  an  eco-evolutionary  dynamic  model.  This  would  require  a  modelling  for  key

processes as gene flow, mutation, as intra-specific genetic variability, as well as demographic effects.

The latter, in particular, will become necessary when adopting the method of process-based modelling

for studying species with short life cycles. This will make the method, that is here tested only on tree

taxa, relevant and applicable to a wider number of species.

It  would  also be worthwhile  to  expand the use  of  the model  by adopting it  to  simulate  future

distribution ranges. Such line of study is particularly relevant given the current urgency to confront the

present climate change and its repercussions on the biosphere. Geographical models of species ranges
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face often the issue of discrepancy of results obtained in confront to the historically reported responses.

Such divergences raise questions on whether such divergence can be imputable to the anthropogenic

influence,  or  to  overlooked  population  dynamics.  These  issues  highlight  the  need  for  continued

development of more accurate models and further inquiries. It would be interesting, for example, to

adopt  the presented method to cross  the  results  of  present-day distribution  range simulations  with

simulated processes evaluated by paleo-archives, or to double-check the likelihood of past simulations

with present-day recorded distribution range changes. Such kind of analyses are a relevant future line

or research in the perspective to help bridging the current gap between recorded past, and simulated

future, ecological responses.
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Appendix: Software code
Here are presented integrally the two scripts which comprise Radis.

radis_launcher.py
# -*- coding: utf-8 -*-
"""
Radis — Launching module
"""
import warnings
import numpy as np
import pandas as pd
import radis_functions as rf
warnings.filterwarnings("ignore")

# %% Read variables file
df = pd.read_csv("radis_variables.txt", index_col=0, comment="#",
                 header=None, engine='python', sep=':')
SY = np.zeros(7, dtype=int)
SY[0:2] = np.array(df.loc['main interval', 1].split(","), dtype=float)
SY[6] = float(df.loc['time step length', 1])

# %%  Load data
print("\n\n#======== Loading geographical, climatic and biotic data ========#")
print('Main interval: ' + str(SY[0]) + " — " + str(SY[1]) + ' yBP')
print('Length of one time step: ' + str(int(SY[6])) + " y")
loadyn = input('Already got formatted input data file? (Y/N) ')
CHECK = False
while not CHECK:
    if loadyn == "Y":
        InpAdd = df.loc['general input data', 1].strip()
        print('Address of Input data: ' + InpAdd)
        Input = np.load(InpAdd)
        for file in Input.files:
            if file != "SY":
                vars()[file] = Input[file]
                if (str(Input[file].dtype)[0:2] == "<U"):
                    if (Input[file].shape == ()):
                        vars()[file] = str(Input[file])
        if np.any(Input["SY"][0:2] != SY[0:2]):
            print("\n\tWarning: main interval from input file " +
                  "not corresponding")
        CHECK = True
    elif loadyn == "N":
        if "shapefile" in str(df.iloc[:, 0]):
            ShpAdd = str(df.loc['shapefile', 1]).strip()
            if ((not ShpAdd == "") & (not ShpAdd == "None") &
               (not ShpAdd == "nan")):
                ShpName = ShpAdd.split("/")[-1].split(".")[0]
                print("Address of shapefile: " + ShpAdd)
            else:
                ShpAdd = ""
                ShpName = ""
        else:
            ShpAdd = ""
            ShpName = ""
        FossAdd = df.loc['fossile data', 1].strip()
        species = df.loc['species', 1].strip()
        thres = 0.
        if "abundance threshold" in df.iloc[:, 0]:
            thres = float(df.loc['abundance threshold', 1])
        error = int(df.loc['dating error', 1])
        ClimNames = np.array(df.loc['climate variables',
                                    1].strip().split(","))
        ClimFolds = []
        for i, clim in enumerate(ClimNames):
            ClimNames[i] = clim.strip()
            ClimFolds.append(df.loc['rasters ' + ClimNames[i], 1].strip())
        print("Climate variables:", ClimNames)
        print("Address of rasters:", ClimFolds)
        print('Address of fossile data: ' + FossAdd)
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        print('Species name: ' + species)
        print('Error on the fossile data: ' + str(error))
        if "abundance threshold" in df.iloc[:, 0]:
            print("Threshold on " + species + " abundance: " + str(thres))
        FossName = FossAdd.split("/")[-1].split(".")[0]
        (Coords, ClimMat, fos_ind, fos_ts,
         fos_ab) = rf.inp_function(ShpAdd, FossAdd, species,
                                   [SY[0], SY[1], SY[6]], False, ClimNames,
                                   ClimFolds, error)
        InpAdd = rf.save_formatted(Coords, ClimMat, fos_ind, fos_ts,
                                   fos_ab, SY, species, ShpName, FossName,
                                   ClimNames, ClimFolds, FossAdd, ShpAdd,
                                   thres, error, False)
        CHECK = True
    else:
        loadyn = input('Answer must be either "Y" or "N". ')
        CHECK = False

SY[0:2] = np.array(df.loc['main interval', 1].split(","), dtype=float)
SY[6] = float(df.loc['time step length', 1])
NumCells = Coords.shape[0]
NumClim = len(ClimNames)
nVars = NumClim + 2

# %%  Make Dists and DistID
print("\n\n#=================== Creating distance matrix ===================#")
distyn = input('Already got a formatted distance matrix file? (Y/N) ')
CHECK = False
while not CHECK:
    if distyn == "Y":
        dis_add = df.loc['distance matrix', 1].strip()
        print('Address of distance matrix: ' + dis_add)
        DQ = weris = []
        Ds = np.load(dis_add)
        for file in Ds.files:
            vars()[file] = Ds[file]
        if DQ.shape[0] != NumCells:
            print("\nWarning: Distance matrix not compatible with input data")
        CHECK = True
    elif distyn == "N":
        cut = float(df.loc['maximum distance', 1])
        print("Maximum distance: " + str(cut) + " km")
        dis_add, DQ, weris = rf.format_dist(Coords, cut)
        print("Distance matrix saved as " + dis_add + ".npz")
        CHECK = True
    else:
        distyn = input('Answer must be either "Y" or "N". ')
        CHECK = False
 
# %% Initiate MH
print("\n\n#====================== Simulation setting ======================#")
SY[4:6] = np.array(df.loc['simulation interval', 1].split(","), dtype=float)
newyn = input('Starting a new run? (Y/N) ')
CHECK = False
while not CHECK:
    if newyn == "Y":
        print("\n\t#============= Evaluating initial niche " +
              "=================#")
        SY[2:4] = np.array(df.loc['niche evaluation interval', 1].split(","),
                           dtype=float)
        print('\tNiche evaluation interval: ' + str(SY[2]) + " — " +
              str(SY[3]) + ' y BP')
        nichyn = input('\tAlready got niche evaluation data file? (Y/N) ')
        CHECK = False
        while not CHECK:
            if nichyn == "Y":
                NicAdd = df.loc['niche evaluation data', 1].strip()
                print('\tAddress of niche evaluation data: ' + NicAdd)
                InputNiche = np.load(NicAdd)
                cmn = InputNiche["ClimMat"]
                nfi = InputNiche["fos_ind"]
                nft = InputNiche["fos_ts"]
                nfa = InputNiche["fos_ab"]
                if np.any(InputNiche["SY"][0:2] != SY[0:2]):
                    print("\nWarning: main interval from niche evaluation" +
                          " file not corresponding\n")
                CHECK = True
            elif nichyn == "N":
                if "niche shapefile" in str(df.iloc[:, 0]):
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                    NicheShpAdd = str(df.loc['niche shapefile', 1]).strip()
                    if ((not NicheShpAdd == "") & (not NicheShpAdd == "None") &
                       (not NicheShpAdd == "nan")):
                        NicheShpName = NicheShpAdd.split("/")[-1].split(".")[0]
                        print("\tAddress of shapefile: " + NicheShpAdd)
                    else:
                        NicheShpAdd = ""
                        NicheShpName = ""
                else:
                    NicheShpAdd = ""
                    NicheShpName = ""
                (nCo, cmn, nfi,
                 nft, nfa) = rf.inp_function(NicheShpAdd, FossAdd, species,
                                             [SY[0], SY[1], SY[6]], True,
                                             ClimNames, ClimFolds, error)
                FossName = FossAdd.split("/")[-1].split(".")[0]
                NicAdd = rf.save_formatted(nCo, cmn, nfi, nft, nfa, SY,
                                           species, NicheShpName, FossName,
                                           ClimNames, ClimFolds, FossAdd,
                                           NicheShpAdd, thres, error, True)
                CHECK = True
            else:
                nichyn = input('Answer must be either "Y" or "N". ')
                CHECK = False
        n_cen, n_cov = rf.make_niche(SY, cmn, thres, nfi, nft, nfa)
        VarsIn = np.zeros(NumClim+2, dtype=float)
        for i in range(NumClim):
            VarsIn[i] = float(input("\tCenter of " + ClimNames[i] + ": "))
        VarsIn[-2] = float(input('\tNiche breadth: '))
        VarsIn[-1] = float(input('\tAlpha: '))
        NumIter = int(df.loc['number of iterations', 1])
        Vars = np.zeros((NumIter+1, nVars), dtype=float)
        tst = np.array((SY[0]-SY[0:SY.size-1])/SY[6], dtype=int)
        fit = np.zeros(NumIter+1, dtype=float)
        init = 0
        Vars[0, :] = VarsIn
        TopSim = np.zeros((NumCells, tst[1]+1))
        IniSim = np.zeros((NumCells, tst[1]+1))
        k_name = df.loc['kernel name', 1].strip()
        i_name = df.loc['initial condition', 1].strip()
        lims = np.array([[-100., 100.] for i in range(NumClim+2)])
        if NumIter > 0:
            for ii, clim in enumerate(ClimNames):
                a = np.where(df.index == 'range ' + clim)[0]
                if len(a) > 0:
                    lims[ii] = np.array(df.iloc[a[0], 0].split(","))
                else:
                    print("\nWarning: missing range for " +
                          clim + ", imposing " + str(lims[ii]))
            lims[-2] = np.array(df.loc['range breadth', 1].split(","))
            lims[-1] = np.array(df.loc['range alpha', 1].split(","))
        CHECK = True
    elif newyn == "N":
        RecAdd = df.loc['recovery data', 1].strip()
        Rec = np.load(RecAdd)
        for file in Rec.files:
            if file != "SY":
                vars()[file] = Rec[file]
                if (str(Rec[file].dtype)[0:2] == "<U"):
                    if (Rec[file].shape == ()):
                        vars()[file] = str(Rec[file])
        NumIter = Vars.shape[0]-1
        SY[4:-1] = Rec["SY"][4:-1]
        init = np.where(~np.logical_and(np.all(Vars == 0, axis=1),
                                        fit == 0))[0][-1]
        print("Address of partial result: " + RecAdd)
        print("Last iteration: " + str(init))
        CHECK = True
    else:
        newyn = input('Answer must be either "Y" or "N". ')
        CHECK = False

print('\nSimulation interval:', SY[4], "—", SY[5], ' y BP', end=" ")
Int = np.array(range(int(SY[5]), int(SY[4]+SY[6]), int(SY[6])))
for ii, clim in enumerate(ClimNames):
    missing = []
    for year in Int:
        tst = int((SY[0]-year)/SY[6])
        if np.all(np.isnan(ClimMat[:, ii, tst])):
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            missing.append(year)
    if missing != []:
        print("\nWarning: missing " + clim + " raster for years " +
              str(missing) + " BP\n")

print('\nKernel: ' + k_name + '\nInitial distribution: ' + i_name)
if k_name not in rf.print_kers():
    print('\nWarning: kernel name must be one of', rf.print_kers(), '\n')
if i_name not in rf.print_indis():
    print('\nWarning: initial condition must be one of', rf.indis.keys(), '\n')

print('Num. iterations: ' + str(NumIter))
if NumIter > 0:
    sav_fre = int(df.loc['save frequency', 1])
    print('Frequency of saves: 1/' + str(sav_fre))
else:
    sav_fre = 0

# %% Metroplis-Hastings algoritm
print("\n\n#================ Starting Metropolis-Hastings ==================#")
rf.MH(DQ, weris, ClimMat, Vars, fit, n_cov, k_name, thres, init, NumIter, lims,
      sav_fre, InpAdd, dis_add, ShpName, SY,
      error, Coords, TopSim, IniSim, i_name, species, fos_ts, fos_ind, fos_ab)
print("Metropolis-Hastings complete.\n\n")
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radis_functions.py
# -*- coding: utf-8 -*-
"""
Functions to be used by Radis
"""
import re
import os
import copy as cp
import numpy as np
import random as rn
from os import listdir
from osgeo import gdal, ogr
from os.path import isfile, join
from scipy.spatial.distance import cdist

# %%  Constants ============================================================= #
"""
Μ: Maximum distance for step-lie and linear kernels
SCALE: Scale value for exponential kernel
RATIO, SIGMA: constants of exponential kernel
STEP: relative length of MH steps
CLUSTER: ray of presence around paleorecord for initial condition
See section 8 of SI
"""
NUL_KER = 100000
SCALE = 36000
RATIO = 0.9
SIGMA = 0.3
STEP = 0.01
CLUSTER = 100
R = 6371.0

# %%  All Radis functions =================================================== #
def get_scale():
    return SCALE

def get_nul_ker():
    return NUL_KER

def com_nan(func, aa, thresh):
    """Eliminate NaN warnings """
    out = ~np.isnan(aa)
    out[out] = func(aa[out], thresh)
    return out

def save_dist(filename, array, distid):
    """To save csr sparse matrices in a compact way"""
    np.savez(filename, data=array.data, indices=array.indices,
             indptr=array.indptr, shape=array.shape, distid=distid)

def geodis(cord_2, cord_vec):
    """Calculate distance between geographical coordinates in metres """
    la1 = cord_vec[:, 1]
    lo1 = cord_vec[:, 0]
    lo2 = cord_2[0]
    la2 = cord_2[1]
    lat1 = np.radians(la1)
    lon1 = np.radians(lo1)
    lat2 = np.radians(la2)
    lon2 = np.radians(lo2)
    dlon = lon1 - lon2
    y = np.sqrt((np.cos(lat2) * np.sin(dlon))**2 +
                (np.cos(lat1)*np.sin(lat2) -
                 np.sin(lat1)*np.cos(lat2)*np.cos(dlon))**2)
    x = np.sin(lat1)*np.sin(lat2) + np.cos(lat1)*np.cos(lat2)*np.cos(dlon)
    c = np.arctan2(y, x)
    distance = np.round(2 * R * c * 1000)
    return distance
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def format_dist(Coords, cut):
    """Make distance matrix"""
    nc = Coords.shape[0]
    distids = []
    distarr = []
    tmpmax = 0
    arr_id = np.arange(nc)
    for x in range(nc):
        print("Calculating distances... " + str(round(100*(x/nc), 1)),
              end="%   \r")
        tmpdis = geodis(Coords[x], Coords)
        tmpdis[tmpdis > cut*1000] = 0
        distids.append(arr_id[np.where(tmpdis > 0)])
        distarr.append(np.array(tmpdis[np.where(tmpdis > 0)], dtype=int))
        tmp = len(distids[x])
        if tmp > tmpmax:
            tmpmax = tmp
    print("Calculating distances... done.   ")
    SQ = np.full([nc, tmpmax], np.nan, dtype=float)
    DQ = np.full([nc, tmpmax], np.nan, dtype=float)
    weris = np.full((nc, tmpmax, 2), np.nan)
    for ii in range(nc):
        print("Formatting distance matrix... " + str(round(100*ii/nc, 1)),
              end="%   \r")
        SQ[ii, 0:len(distids[ii])] = distids[ii]
        DQ[ii, 0:len(distarr[ii])] = distarr[ii]
        for jj in range(len(distids[ii])):
            isq = int(SQ[ii, jj])
            iw = np.where(np.all(np.isnan(weris[isq]), axis=1))[0][0]
            weris[isq, iw, 0], weris[isq, iw, 1] = ii, jj
    print("Formatting distance matrix... done.   ")
    nn = 0
    for ii in range(DQ.shape[0]):
        if np.isnan(DQ[-ii, -ii]):
            nn = -ii
            break
    if nn == 0:
        an = np.where(np.isnan(DQ))
        weris[np.isnan(weris)] = [an[0][0], an[1][0]]
    else:
        weris[np.isnan(weris)] = nn
    weris = np.array(weris, dtype=int)
    save_add = ("Dist_" + str(nc) + "_%r" % int(cut))
    np.savez(save_add, DQ=DQ, weris=weris)
    del SQ, distids, distarr
    return save_add, DQ, weris

def save_formatted(Coords, ClimMat, fos_ind, fos_ts, fos_ab, sy, species,
                   shp_name, foss_name, clim_names, clim_folds, foss_add,
                   shp_add, thres, error, nyn):
    """Save formatted data"""
    if nyn:
        print("\t", end="")
    print("Saving formatted data... ", end="\r")
    save_add = species + "_" + foss_name
    if not shp_name == "":
        save_add += "_" + shp_name
    for climfold in clim_folds:
        save_add += "_"+climfold.split("/")[-1]
    save_add += "_%i_%i_%i" % (sy[0], sy[1], sy[6])
    if nyn:
        save_add = "niche_evaluation"
    else:
        save_add = "general_input"
    np.savez(save_add, fos_ind=fos_ind, fos_ts=fos_ts, fos_ab=fos_ab,
             ClimMat=ClimMat, Coords=Coords, SY=sy, ClimNames=clim_names,
             ClimFolds=clim_folds, species=species, FossAdd=str(foss_add),
             thres=thres, error=error, ShpName=shp_name)
    text = str(save_add + ".npz contains\n\n" +
               "- climate data from rasters in folders")
    for fold in clim_folds:
        text += "\n"+str(fold)
    text += "\n\n- fossile data with error " + str(error) + "y for " + \
            str(species) + " (abundance threshold " + str(thres) + \
            ") from file\n" + foss_add
    text += "\n\nformatted for Radis for the period " + str([int(sy[0]),
                                                             int(sy[1])]) + \
            " BP at a resolution of " + str(int(sy[6])) + \
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            " years"
    if shp_add != "":
        text += " and adapted for the shapefile " + shp_add
    text_file = open(save_add + ".txt", "w")
    text_file.write(text)
    text_file.close()
    if nyn:
        print("\t", end="")
    print("Saving formatted data... saved as " + save_add + ".npz")
    return save_add

def make_niche(sy, cmn, thres, nfi, nft, nfa):
    """Evaluate niche"""
    tst = np.array((sy[0]-sy[0:sy.size-1])/sy[6], dtype=int)
    if len(nft.shape) == 3:
        con_fos = np.where(((np.nanmin(nft[0, :, :], axis=1) < tst[2])) |
                           ((np.nanmax(nft[0, :, :], axis=1)) > tst[3]))
        if con_fos[0].shape[0] == nft.shape[1]:
            n_cen = np.zeros(cmn.shape[1])
            n_cov = np.identity(cmn.shape[1])
            print("\tWarning: missing data in niche evaluation period. " +
                  "Imposing")
            for row in n_cov:
                print("\t", row)
            print("\tas evaluated niche covariance.")
        else:
            nft_c = cp.deepcopy(nft)
            nft_c[0, con_fos, :] = np.nan
            fosnan = np.where(np.isnan(nft_c))[1:3]
            fos_tsint = np.array(nft_c, dtype=int)
            fos_tsint[0, fosnan[0], fosnan[1]] = 0
            mask_pre = (nfa > thres)
            cmc = np.array(cmn[nfi, :, fos_tsint], dtype=float)[0]
            cmc[fosnan[0], fosnan[1], :] = np.nan
            cmc = cmc[mask_pre]
            nich_clim = np.reshape(cmc, (cmc.shape[0]*cmc.shape[1],
                                         cmc.shape[2]))
            nich_clim = nich_clim[np.all(~np.isnan(nich_clim), axis=1), :]
            n_cen = np.mean(nich_clim, axis=0)
            n_cov = np.cov(nich_clim, rowvar=0)
            print("\tEstimated Niche mean: " + str(n_cen))
    else:
        n_cen = np.zeros(cmn.shape[1])
        n_cov = np.identity(cmn.shape[1])
        print("\tWarning: missing data for niche evaluation. Imposing")
        for row in n_cov:
            print("\t", row)
        print("\tas evaluated niche covariance.")
    return n_cen, n_cov

def prepare_evaluation(fos_ts, fos_ab, tst, thres):
    if (len(fos_ts.shape)) == 3:
        con_fos = np.where((np.nanmax(fos_ts[0, :, :], axis=1) < tst[4]) |
                           ((np.nanmin(fos_ts[0, :, :], axis=1)) > tst[5]))
        ind_fos = np.where((np.nanmax(fos_ts[0, :, :], axis=1) >= tst[4]) &
                           ((np.nanmin(fos_ts[0, :, :], axis=1)) <= tst[5]))
        '''
        # Change to this for more conservative comparison (whole interval in) #
        con_fos = np.where((np.nanmin(fos_ts[0, :, :], axis=1) < tst[4]) |
                           ((np.nanmax(fos_ts[0, :, :], axis=1)) > tst[5]))
        ind_fos = np.where((np.nanmin(fos_ts[0, :, :], axis=1) >= tst[4]) &
                           ((np.nanmax(fos_ts[0, :, :], axis=1)) <= tst[5]))
        '''
        fos_ts[0, con_fos, :] = np.nan
        fosnan = np.where(np.isnan(fos_ts))[1], np.where(np.isnan(fos_ts))[2]
        fos_tsint = np.array(fos_ts, dtype=int)
        fos_tsint[0, fosnan[0], fosnan[1]] = 0
        mkp, mka = fos_ab > thres, fos_ab <= thres
        ngp, nga = sum(mkp[ind_fos]), sum(mka[ind_fos])
        if (fos_ts.shape[1] - len(con_fos[0])) == 0:
            print("\nWarning: no record data to evaluate likelihood\n")
    else:
        fosnan = np.zeros(1, dtype=int)
        fos_tsint = np.array(fos_ts, dtype=int)
        ngp = 0
        nga = 0
    return ngp, nga, mkp, mka, fosnan, fos_tsint
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def MH(DQ, weris, cm, vas, fit, n_cov, k_name, thres, init, num_iter,
       lims, sav_fre, save_add, dis_add, shp_name, sy, error,
       Coords, TopSim, IniSim, i_name, species, fos_ts, fos_ind, fos_ab):
    """Metropolis - Hastings on simulation"""
    num_cells = Coords.shape[0]
    nvas = vas.shape[1]
    er_ts = int(error/sy[6])
    if cm.shape[1] > 1:
        VI = np.linalg.inv(n_cov)
    else:
        VI = n_cov**0.5
    tst = np.array((sy[0]-sy[0:sy.size-1])/sy[6], dtype=int)
    ngp, nga, mkp, mka, \
        fosnan, fos_tsint = prepare_evaluation(fos_ts, fos_ab, tst, thres)
    if i_name == "record":
        mask_init = init_rec(num_cells, fos_ab, fos_ind, fos_ts,
                             tst, thres, Coords, cp.deepcopy(DQ), weris)
    else:
        mask_init = np.zeros(num_cells, dtype=bool)
    # =========================== The MH algoritm =========================== #
    if init > 0:
        TopFit = max(fit)
        topit = np.where(fit == TopFit)[0][0]
    for it in range(init, num_iter+1):
        print("Iteration n." + str(it) + "...    ", end="\r")
        # =========== Propose step in the variable space ==================== #
        if it > 0:
            while True:
                t_vas = cp.deepcopy(vas[it-1, ])
                ind = np.random.randint(0, nvas)
                t_vas[ind] = (t_vas[ind] + rn.choice([+1, -1]) * STEP *
                              (lims[ind, 1] - lims[ind, 0]))
                floor = lims[ind, 0] < t_vas[ind]
                roof = t_vas[ind] < lims[ind, 1]
                if (floor and roof):
                    break
        else:
            t_vas = vas[0, :]
        Sim, TmpFit = simulation(num_cells, tst, DQ, weris, cm,
                                 t_vas, VI, k_name, thres,
                                 er_ts, Coords, i_name,
                                 mask_init, fos_tsint, fosnan,
                                 fos_ind, fos_ab, mkp, mka, ngp, nga)
        # ==================== Accept or reject step ======================== #
        if it == 0:
            TopSim = Sim
            IniSim = Sim
            fit[0] = TmpFit
            TopFit = TmpFit
            topit = 0
        else:
            if fit[it] == 0:
                sog = 1
            else:
                sog = min(1, TmpFit/fit[it-1])
            if np.random.rand() < sog:
                vas[it] = t_vas
                fit[it] = TmpFit
                if TmpFit > TopFit:
                    TopFit = TmpFit
                    TopSim = Sim
                    topit = it
            else:
                vas[it, ] = vas[it-1, :]
                fit[it] = fit[it-1]
        # ========================== Checkpoint ============================= #
        if (it == 0 or ((it) % np.ceil(num_iter/float(sav_fre)) == 0) and
                (init != it)):
            print("Checkpoint " + str(it) + "...", end="\r")
            if len(TopSim.shape) == 3:
                TopSim_fix = TopSim[:, 0, :]
            else:
                TopSim_fix = TopSim
            res_add = save_results(vas, fit, k_name, TopSim_fix, n_cov,
                                   IniSim, num_iter, save_add, topit, i_name,
                                   dis_add, shp_name, sy, it, species, lims)
            print("Checkpoint " + str(it), end="... ")
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            if it < num_iter:
                print("Partial", end=" ")
            else:
                print("Final", end=" ")
            print("results saved at " + res_add + ".npz")

def kernel_step(dcalc, var):
    """Kernel step function"""
    var = var*NUL_KER
    ker = np.array(dcalc < var, dtype=int)
    return ker

def kernel_linear(dcalc, var):
    """Kernel linear function"""
    var = float(var*NUL_KER)
    ker = (-1/var)*dcalc+1
    return ker

def kernel_exponential(dcalc, alpha):
    """Kernel exponential function"""
    dist = dcalc/SCALE
    gau = (np.exp(-0.5*np.power(np.abs(dist/SIGMA), 2)) /
           (SIGMA*(2*np.pi)**0.5))
    fat = np.exp(-np.power(np.abs(dist/alpha), 0.5))/(4*alpha)
    ker = RATIO*gau + (1-RATIO)*fat
    return ker

kernels = {'linear': kernel_linear,
           'exponential': kernel_exponential,
           'step': kernel_step}

def print_kers():
    return list(kernels.keys())

def dispersal(Sim_step_before, dc, vas, k_name, DQ, weris):
    FR = np.where([Sim_step_before == 0])[1]
    ava = FR[com_nan(np.less_equal, dc[FR], vas[-2])]
    if len(ava) > 0:
        if len(FR) == 1:
            DQ[weris[FR][:, 0], weris[FR][:, 1]] = np.nan
        elif len(FR) > 1:
            DQ[weris[FR][:, :, 0], weris[FR][:, :, 1]] = np.nan
        ker = kernels[k_name](DQ[ava], vas[-1])
        rand = np.random.rand(ker.shape[0], ker.shape[1])
        pas = np.any(rand < ker, axis=1)
        migrated = ava[pas]
    else:
        migrated = np.array([], dtype=int)
    return migrated

def mahal(clim_map, nich_cen, VI):
    """Calculate Mahalanobis distance from niche centre for all grid cells"""
    clt = np.array(clim_map, dtype=float)
    if nich_cen.shape[1] > 1:
        dc = cdist(clt, nich_cen, 'mahalanobis', VI=VI)[:, 0]
    else:
        dc = (np.abs(clt - nich_cen)/VI)[:, 0]
    return dc

def init_niche(nc_cs, ClimMatIn, VI, br):
    """Start simulations by occupying all available grid cells"""
    dcst = mahal(ClimMatIn, nc_cs, VI)
    mask_init = com_nan(np.less_equal, dcst, br)
    return mask_init

def init_rec(num_cells, fos_ab, fos_ind, fos_ts, tst,
             thres, Coords, DQ, weris):
    """ Start simulations by occupying grid cells around records"""
    mask_pre = (fos_ab > thres)
    pi = fos_ind[mask_pre]
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    pt = fos_ts[:, mask_pre, :]
    fil_pt = ((np.nanmin(pt[0, :, :], axis=1) <= tst[4]) &
              (tst[4] <= np.nanmax(pt[0, :, :], axis=1)))
    PolAb = [pi[fil_pt, 0]]
    mask_init = np.zeros(num_cells, dtype=bool)
    for i in range(num_cells):
        tmp = np.intersect1d(weris[i, :, 0], PolAb)
        if len(tmp) > 0:
            j = np.in1d(weris[i, :, 0], tmp)
            a = DQ[weris[i, j, 0], weris[i, j, 1]] < CLUSTER*10000
            if np.any(a):
                mask_init[i] = True
    return mask_init

indis = {'niche': init_niche, 'record': init_rec}

def print_indis():
    return list(indis.keys())

def simulation(num_cells, tst, DQ, weris, cm, vas, VI, kn,
               thres, er_ts, Coords, i_name, mask_init,
               fos_tsint, fosnan, fos_ind, fos_ab, mkp, mka, ngp, nga):
    """Simulate distribution range and evaluate likelihood"""
    nc_cs = np.array([vas[0:cm.shape[1]]])
    Sim = np.zeros([num_cells, tst[1]+1])
    if i_name == "niche":
        mask_init = init_niche(nc_cs, cm[:, :, tst[4]], VI, vas[-2])
    Sim[mask_init, tst[4]] = 1
    for t in range(tst[4]+1, tst[5]+1):
        dc = mahal(cm[:, :, t], nc_cs, VI)
        Sim[dispersal(Sim[:, t-1], dc, vas, kn, cp.deepcopy(DQ), weris), t] = 1
        Sim[(com_nan(np.less_equal, dc, vas[-2])) & (Sim[:, t-1] == 1), t] = 1
    if len(fos_tsint.shape) == 3:
        sim_check = np.array(Sim[fos_ind, fos_tsint], dtype=float)
        sim_check[0, fosnan[0], fosnan[1]] = np.nan
        bb = sim_check[0, mka][~np.all(np.isnan(sim_check[0, mka]), axis=1)]
        rgp = np.sum(np.any(sim_check[0, mkp] == 1, axis=1))
        rga = np.sum(np.all((bb == 0) | (np.isnan(bb)), axis=1))
        tmp_fit = np.nanmin([rgp/ngp, rga/nga])
        if np.isnan(tmp_fit):
            tmp_fit = 0
    else:
        tmp_fit = 0
    return Sim, tmp_fit

def save_results(vas, fit, k_name, topsim, n_cov, inisim, num_iter, save_add,
                 topit, i_name, dis_add, shp_name, sy, it, species, lims):
    """Save results of MH"""
    save_path = "Results/" + str(shp_name) + "_" + str(species) + "_" + \
                str(topsim.shape[0]) + "/"
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    res_add = cp.deepcopy(save_path)
    for ii in range(len(vas[0, :])):
        res_add += "%s" % (vas[0, ii])
        if ii != len(vas[0, :])-1:
            res_add += "_"
    if (it < num_iter):
        res_add += "_%i" % (it)
    np.savez(res_add, TopSim=topsim, IniSim=inisim, Vars=vas, fit=fit,
             SY=sy, k_name=k_name, i_name=i_name, n_cov=n_cov, lims=lims,)
    text = str(res_add + ".npz contains results from a MH of " + str(it) +
               " out of " + str(num_iter) + " iterations. It was launched" +
               " with dataset" + " stemming from:\n\n" + save_add + "\n" +
               dis_add + "\nKernel function: " + str(k_name) +
               "\n\n" + "Initial variables were set to: " + str(vas[0, :]) +
               "\nBest iterations was number " + str(topit) +
               " with likelihood " + str(np.round(fit[topit], 2)) +
               " and featured variables: " + str(vas[topit, :]))
    text_file = open(res_add + ".txt", "w")
    text_file.write(text)
    text_file.close()
    return res_add
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def inp_function(shp_add, foss_add, species, y_in, nyn,
                 climnames, clim_folds, error):
    """Format input data"""
    numclim = len(climnames)
    NumSteps = int((y_in[0]-y_in[1])/y_in[2]+1)
    # ========================== Read climatic data ==========================#
    onlyfiles = [""] * numclim
    click = 0
    for nc in range(numclim):
        click_proj = 0
        onlyfiles = [f for f in listdir(clim_folds[nc]) if
                     isfile(join(clim_folds[nc], f))]
        ras_year = []
        for fil in onlyfiles:
            ras_year.append(int((re.findall('\d+', fil))[0]))
        missing = []
        all_year = list(range(y_in[0], y_in[1]-y_in[2], -y_in[2]))
        for year in all_year:
            if year not in ras_year:
                missing.append(year)
        if missing != []:
            print("\n", end="")
            if nyn:
                print("\t", end="")
            print("Warning: missing " + climnames[nc] +
                  " raster for years " + str(missing) + " BP\n")
        for fil in onlyfiles:
            if nyn:
                print("\t", end="")
            print("Formatting " + climnames[nc] + " rasters... " +
                  str(round(100 * float(onlyfiles.index(fil) /
                      len(onlyfiles)))), end="%    \r")
            tmpyear = int((re.findall('\d+', fil))[0])
            if y_in[0] >= tmpyear and tmpyear >= y_in[1]:
                tmst = int((y_in[0]-tmpyear)/y_in[2])
                ras_add = clim_folds[nc] + "/" + fil
                raster = gdal.Open(ras_add)
                nod = raster.GetRasterBand(1).GetNoDataValue()
                if shp_add is not "":
                    if (raster.GetProjection() == ""):
                        if (click_proj == 0):
                            if nyn:
                                print("\t", end="")
                            print(" " * 60 + "\nWarning:  missing "
                                  "projection of " + climnames[nc] +
                                  " rasters, using shapefile's\n")
                            click_proj = 1
                        driver = ogr.GetDriverByName('ESRI Shapefile')
                        dataSource = driver.Open(shp_add, 0)
                        layer = dataSource.GetLayer()
                        spatialRef = layer.GetSpatialRef()
                        ShpProj = spatialRef.ExportToWkt()
                        dest_geo = raster.GetGeoTransform()
                        rBandAr = raster.GetRasterBand(1).ReadAsArray()
                        xcount, ycount = rBandAr.shape[0], rBandAr.shape[1]
                        rvirt = gdal.GetDriverByName('MEM').\
                            Create('', ycount, xcount, 1, gdal.GDT_Float32)
                        rvirt.SetGeoTransform(dest_geo)
                        outband = rvirt.GetRasterBand(1)
                        outband.SetNoDataValue(nod)
                        outband.WriteArray(rBandAr)
                        rvirt.SetProjection(ShpProj)
                        raster = rvirt
                    rclip = gdal.Warp('', raster, format='MEM',
                                      cropToCutline=True,
                                      cutlineDSName=shp_add)
                    raster = rclip
                rar = np.array(raster.ReadAsArray())
                hr, lr = rar.shape[0],  rar.shape[1]
                (x0, xsz, _, y0, _, ysz) = raster.GetGeoTransform()
                if click == 0:
                    NumCells = rar.shape[0] * rar.shape[1]
                    Coords = np.zeros([NumCells, 2])
                    ClimMat = np.full([NumCells, numclim, NumSteps],
                                      np.nan, dtype="float32")
                    for yy in range(hr):
                        for xx in range(lr):
                            xc = xx * xsz + x0 + xsz/2
                            yc = yy * ysz + y0 + ysz/2
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                            Coords[xx+yy*rar.shape[1], :] = np.array([xc, yc])
                    click = 1
                for yy in range(hr):
                    ClimMat[lr*yy:lr*(1+yy), nc, tmst] = rar[yy]
        if nyn:
            print("\t", end="")
        print("Formatting " + climnames[nc] + " rasters... done.     ")
    ClimMat[ClimMat == nod] = np.nan
    # ========================= Read fossile data ============================#
    if nyn:
        print("\t", end="")
    print("Formatting fossile data...", end="")
    species = str(species)
    foss_index = np.loadtxt(foss_add, skiprows=0, dtype=str)[0]
    f_raw = np.loadtxt(foss_add, skiprows=1, dtype=str)  # , dtype=float)
    sp_col = np.where(foss_index == np.array(species))[0][0]
    lat_col = np.where(foss_index == np.array(str("latitude")))[0][0]
    long_col = np.where(foss_index == np.array(str("longitude")))[0][0]
    ybp_col = np.where(foss_index == np.array(str("YearBP")))[0][0]
    w = np.abs(xsz)
    h = np.abs(ysz)
    x1 = rar.shape[1]*xsz + x0
    y1 = rar.shape[0]*ysz + y0
    tst = np.array((y_in[0]-y_in[0:2])/y_in[2], dtype=int)
    ls_ts = np.array(range(tst[0], tst[1]+1))
    ls_sy = np.array(range(y_in[0], y_in[1]-y_in[2], -y_in[2]))
    tmp_ind = np.zeros(f_raw.shape[0], dtype=int)
    tmp_ts = np.zeros([f_raw.shape[0], 2], dtype=int)
    tmp_ab = np.full(f_raw.shape[0], np.nan)
    ml_sit = np.ones(f_raw.shape[0], dtype=int)
    for ii, row in enumerate(f_raw):
        r_ybp = float(row[ybp_col])
        r_lon = float(row[long_col])
        r_lat = float(row[lat_col])
        r_sp = float(row[sp_col])
        if y_in[0] >= r_ybp and r_ybp >= y_in[1]:
            en_per = r_ybp-error
            in_per = r_ybp+error
            in_ind = np.where(ls_sy <= in_per)[0][0]
            en_ind = np.where(ls_sy >= en_per)[0][-1]
            in_ts = ls_ts[in_ind]
            en_ts = ls_ts[en_ind]
            if ((x0 < r_lon) & (r_lat > y1) &
               (x1 > r_lon) & (r_lat < y0)):
                    xx = int((r_lon - x0)/w)
                    yy = int((y0 - r_lat)/h)
                    ind_cel = xx+yy*rar.shape[1]
                    if ~np.all(np.isnan(ClimMat[ind_cel, :, in_ts:(en_ts+1)])):
                        a = np.where(tmp_ind == ind_cel)[0]
                        b = np.where((tmp_ts[:, 0] == in_ts) &
                                     (tmp_ts[:, 1] == en_ts))[0]
                        c = np.intersect1d(a, b, assume_unique=True)
                        if len(c) == 0:
                            tmp_ab[ii] = r_sp
                            tmp_ind[ii] = ind_cel
                            tmp_ts[ii] = [in_ts, en_ts]
                        else:
                            tmp_ab[c[0]] += r_sp
                            ml_sit[c[0]] += 1
    tmp_ab = tmp_ab / ml_sit
    em_ln = np.where(np.isnan(tmp_ab))[0]
    fos_ab = np.delete(tmp_ab, em_ln, axis=0)
    tmp_ind = np.delete(tmp_ind, em_ln, axis=0)
    tmp_ts = np.delete(tmp_ts, em_ln, axis=0)
    track_ind = np.array(range(NumCells))
    spf = np.where(np.all(np.all(np.isnan(ClimMat), axis=1), axis=1))[0]
    ClimMatNew = np.delete(ClimMat, spf, axis=0)
    CoordsNew = np.delete(Coords, spf, axis=0)
    track_indNew = np.delete(track_ind, spf, axis=0)
    fos_ind = np.zeros(len(tmp_ind), dtype=int)
    for ii, ni in enumerate(track_indNew):
        if ni in tmp_ind:
            fos_ind[np.where(tmp_ind == ni)[0]] = ii
    fos_ind = np.rot90(np.array([fos_ind]), k=3)
    if len(tmp_ts) > 0:
        wt_all = np.max(tmp_ts[:, 1]-tmp_ts[:, 0] + 1)
        fos_ts = np.full([1, tmp_ts.shape[0], wt_all], np.nan)
        for ii, row in enumerate(tmp_ts):
            ts_int = np.array(range(row[0], row[1]+1))
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            fos_ts[0,
                   ii, range(len(ts_int))] = np.array(range(row[0], row[1]+1))
    else:
        fos_ts = tmp_ts
    print(" done.")
    if (len(tmp_ts) == 0) & (not nyn):
        print("\nWarning: missing data for likelihood evaluation\n")
    return CoordsNew, ClimMatNew, fos_ind, fos_ts, fos_ab
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