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Handed in: 18 August 2019





i

Abstract

The field of thermoelectricity has gained increasing interest during the last decades,
partly due to the advances in nanoscience. In the first part of this thesis, different
aspects of the Seebeck effect in nanoscale systems are studied. We derive a mathe-
matical tool to calculate local electric currents in single molecule junctions and use
it to analyze thermoelectrically driven ring currents. Additionally, the expression is
used to study the connection between ring currents and destructive interference in
both electrically and thermoelectrically driven junctions. The Seebeck coefficient of
single molecules is rather small, but when organic molecules are put together to form
organic semiconductors, the Seebeck coefficient increases significantly. We will show
that the thickness dependent Seebeck coefficient of a layered organic crystal can be
described by band bending at the crystal-metal interfaces.

Recent research has shown that a spin-polarized current can flip a magnetic mo-
ment so that it points antiparallel to the magnetic field. In the second part of this
thesis, we will show that even an ordinary charge current can flip magnetic moments,
when at least two moments are present. An equation of motion is derived for two
spins that couple to a current carrying metal and the explicit expressions and length
dependence of the nonequilibrium torques are presented. We show that the nonequi-
librium torques can drive the spin system into several unexpected configurations such
as pointing antiparallel to the magnetic field.
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Dansk resume

Forskningen inden for termoelektricitet har i de sidste årtier oplevet en stigende
interesse, hvilket blandt andet skyldes de store fremskridt inden for nanoscience.
Den første del af denne afhandling undersøger forskellige aspekter af Seebeck ef-
fekten på nanoskala. Vi udleder et matematisk udtryk til at beregne lokale elek-
triske strømme i molekylære kontakter og bruger det til at analysere termoelektrisk
drevne ringstrømme. Udtrykket bliver yderligere brugt til at undersøge sammenhæn-
gen mellem ringstrømme og destruktiv interferens i både elektrisk og termoelektrisk
drevne systemer. Seebeck koefficienten af enkelte molekyler er forholdsvis lille, men
når organiske molekyler sættes sammen til organiske halvledere, så stiger Seebeck ko-
efficienten betragteligt. Vi viser, at den tykkelsesafhængige Seebeck koefficient af en
organisk krystal kan beskrives ved hjælp af “band bending” i området tæt på met-
alkontakterne.

Nyere forskning har vist, at en spin-polariseret strøm kan vende et magnetisk
moment, så det peger i modsatte retning af det magnetiske felt. I den anden del
af denne afhandling viser vi, at selv en upolariseret strøm kan vende magnetiske
momenter, så længe der er mere end to af dem. Vi udleder en bevægelsesligning for
to magnetiske momenter, der er koblet via et strømførende metal, og vi beregner de
eksplicitte udtryk for ikke-ligevægts drejningsmomenterne. Vi demonstrerer, at de
nye drejningsmomenter kan tvinge spinsystemet ind i uventede konfigurationer, for
eksempel så de begge peger i modsatte regning end det magnetiske felt.
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Thesis overview

This thesis is divided into two parts. The first part studies different aspects of Seebeck
coefficient measurements in nanoscale junctions. The second part studies a two-spin
system connected to a current carrying metal. To give an overview of the thesis, we
will here go through the content and important findings in the different chapters.

After an introduction to some important theory and concepts regarding thermo-
electricity in Chapter 1, local electric currents in single molecule junctions are studied
in Chapter 2. The developed theory can be used to calculate local currents driven
by either an electric potential difference, a temperature difference, or both. We will
derive an analytic expression for the bond transmission in single molecule junctions in
Sec. 2.2.1. The analytic expression can be used to explain different features of the local
currents: it is used to predict the current patterns in symmetric junctions (Sec. 2.3.1)
and to explain the symmetry in energy in alternant molecules (Sec. 2.3.2). Finally, in
Sec. 2.3.3, the analytic expression is used to get a better understanding of why local
ring currents change direction in some cases, when the energy passes through a point
of destructive interference.

Chapter 3 builds on the theory developed in Chapter 2. We will consider the
specific case in which a temperature and an electric potential difference are applied
so that the net current cancels. This is the Seebeck measurement condition in which
local currents can still flow. We will consider different molecular junctions to see
that a variety of ring current patterns can appear. A low-temperature approximation
for the ring currents is derived in Sec. 3.1.1 and the feature that the ring currents
cancel twice around some destructive interference points is explained mathematically
in Sec. 3.1.2. Finally, in Sec. 3.2, we will study gated graphene nanoribbons and show
that thermoelectrically driven ring currents exist here as well.

In Chapter 4, the thickness dependence of Seebeck coefficients is studied in organic
crystals. In Sec. 4.1, we present the experimental results of BDT crystals, which show
that the Seebeck coefficient increases with thickness and saturates with a characteristic
length of around 30 nm. This length is comparable to the length of the band bending at
the metal-BDT interface and in Sec. 4.2, we set up two theoretical models that connect
the these effects. A 1D and 3D model are used, which both fit the experimental data
well. The 3D model in Sec. 4.2.2 shows the existence of thermoelectrically driven
ring currents in the setup. Finally, we will discuss some challenges regarding the
temperature drop in the experimental setup in Sec. 4.3.

In the second part of the thesis, we will study two spins which are in contact
with a nonequilibrium electronic environment. After an introdution in Chapter 5, we
will use the Feynman-Vernon influence functional approach to derive the equations of
motion for two spins in Chapter 6. The derivation is quite technical and an overview
of the procedure is found in the beginning of Sec. 6.2. The nonequilibrium conditions
give rise to two “new” torques and we present the explicit expressions for the torques
for the particular model in Sec. 6.2.5.

In Chapter 7, we will study the derived equations of motion in a more general
sense in order to understand how the new torques affect the dynamics of a two-
spin system. In Sec. 7.2, we will do a linear stability analysis, which shows that
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the nonequilibrium torques can drive the spin system into unexpected configurations.
Numerical simulations of the spin trajectories are presented for some of the interesting
cases in Sec. 7.3.
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Part I

Thermoelectricity
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Chapter 1

Introduction to thermoelectricity

This chapter is partially based on the author’s master’s thesis. The thesis is cited as
Ref. [1].

In 1820, the Danish scientist Hans Christian Ørsted did his famous experiment in
which he observed the deflection of a magnetic needle close to a current carrying
wire. Together with e.g. Michael Faraday’s discovery of electromagnetic induction,
this demonstrated the connection between electricity and magnetism [2]. Inspired by
Ørsted, the Estonian-German scientist Thomas Johann Seebeck did a similar experi-
ment; he formed a loop by connecting two different materials, heated the loop at one
of the material junctions, and he observed the deflection of a magnetic compass needle
in the center of the loop [3, 4]. Seebeck wrongly concluded that his observation was
due to a thermomagnetic effect. A few years later, he was corrected by Ørsted, who
wrote ”Seebeck . . . has discovered that one can establish an electric circuit in metals
without the interposition of any liquid. One establishes the current in this circuit
by disturbing the equilibrium of temperature” [5]. Ørsted therefore understood that
a temperature difference can drive an electric current, and he suggested the name
thermoelectric1 for circuits driven by temperature differences.2

Seebeck’s observations mark the beginning of the field of thermoelectricity. In the
1830s, the French physicist Peltier discovered that an electric current can transfer
heat [6, 7]; an effect now known as the Peltier effect. The Seebeck and Peltier effects
are closely related and in the decades after the observations, it was shown that both
effects can be described by the so-called Seebeck coefficient, S.3 To linear order, the
electric and heat current densities in a material can be written as [6, 9]

je = −σ∇V − σS∇T (1.1)
jq = −κ∇T − TσS∇V (1.2)

where σ is the electrical conductivity, S is the Seebeck coefficient (also known as
thermopower), and κ is the thermal conductivity.4 The coefficients in front of the
gradients are generally tensors, but we will here consider the materials to be isotropic.
The first terms in Eqs. (1.1) and (1.2) are the ordinary Ohm’s and Fourier’s laws,
while the second terms are the thermoelectric contributions. The Seebeck coefficient
and the measurement hereof is the focus in this thesis, and we will return to it shortly.

1In Ørsted’s own words: ”It will from now on doubtless be necessary to distinguish this new
class of electric circuits by an appropriate term; and as such I propose the expression thermoelectric
circuits . . . ” [5].

2This paragraph is similar to the introduction given in Ref. [1].
3A relation known as the first Thomson relation [6]. The connection between the two effects is

a result of the more general symmetry in thermodynamic systems known as Onsager’s reciprocal
relations [8].

4κ = λ
(

1 + σS2T
λ

)
, where λ is the thermal conductivity in the case of je = 0. See e.g. Refs. [1, 9].
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It is obvious from the above, that the Seebeck effect can be used to turn thermal
energy into electric energy. A device with this property is known as a thermoelectric
generator. A closely related application is the thermoelectric cooler, which can use
electrical energy to transfer heat. The efficiency of a thermoelectric material in either
of these devices depends on the material properties via the so-called figure of merit,
ZT = S2Tσ/κ [10]. The efficiency increases with ZT , and to obtain large efficiencies,
both the electrical conductivity and Seebeck coefficient have to be large, while the
thermal conductivity is small. During the first half of the 20th century, a lot of effort
was put into improving the efficiency, but the progression stagnated [11]. With the
new tools from nanoscience and an increasing interest in green technologies, the field
of thermoelectrics has received more interest in the last two decades. A lot of different
systems have been investigated in order to obtain large ZT-values. Some examples
are nanostructured composites [12, 13], thin films [14], silicon nanowires [15], carbon
nanotubes [16], and single molecule junctions [17]. The largest ZT value to date has
been observed in SnSe single crystals, which have a layered crystal structure [18].

In addition to the possible applications, the material property provided by ther-
moelectrics, the Seebeck coefficient, can be used to study the fundamental transport
mechanism in materials and nanoscopic systems. In this thesis, we will focus on this
fundamental research branch in the field of thermoelectrics. We will start by studying
the Seebeck coefficient in Sec. 1.1 and then move on to the concept of electric ring
currents in Seebeck coefficient measurements in Sec. 1.2.

1.1 The Seebeck coefficient

The Seebeck coefficient can be measured in the following way: A temperature differ-
ence is applied across a system of interest, which drives an electric current (as well as a
thermal current). An electric potential difference builds up and it will drive an electric
current in the opposite direction. Eventually, a steady-state situation is reached in
which the opposing currents cancel each other, and the Seebeck coefficient is obtained
from the measured temperature and electric potential differences5

S = −∆V

∆T
. (1.3)

If the system is a homogeneous and isotropic material, the measured Seebeck coeffi-
cient is the same as the S in Eqs. (1.1) and (1.2). When the measurement is performed
on a system composed of multiple materials, the measured value will be some com-
bination of the Seebeck coefficients of the individual materials. In Sec. 1.1.3, we will
consider some simple cases with multiple components.

The magnitude of the Seebeck coefficient varies strongly between different classes
of materials. In metals, it is small and typically below 10µV/K [6, 19]. In semicon-
ductors, on the other hand, it is typically hundreds of µV/K and can reach values
above 1000µV/K [19]. These facts have been known for a long time, but since our
research group was puzzled about large Seebeck coefficients in organic crystals (see
Chapter 4), we will here go through the theoretical description of the large differences.
To do so, we will make a little detour and start out by considering the Seebeck coef-
ficient in a mesoscopic system, i.e. a system in which the coherence length is longer
than the sample size [20]. The general expression for the Seebeck coefficient is similar
in both cases, and we will return to the bulk materials in Sec. 1.1.2.

5With the sign convention in Eq. (1.3), the Seebeck coefficient is positive (negative) in a p-type
(n-type) semiconductor.
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1.1.1 Seebeck coefficient in mesoscopic systems

A general way to describe coherent transport of charges is by using the Landauer
formula [21]. Here a sample is placed between two contacts (denoted the left and
right contact), and the electric current through the sample is

I =
2e

h

∫
dE T (E)

[
nLF (E)− nRF (E)

]
, (1.4)

where T (E) is the so-called transmission function, which describes the quantum me-
chanical probability for a charge to travel through the sample. The contacts are con-
sidered to be independent electron reservoirs so that nαF = [1 + exp(βα(E − µα))]−1 is
the Fermi function for contact α with chemical potential µα and inverse temperature
βα = (kBTα)−1. If the temperature and potential differences between the contacts
are small, the current can be taken to linear order in ∆V and ∆T . We can expand
the Fermi functions around the temperature T = (TL +TR)/2 and chemical potential
µ = (µL + µR)/2 so that

nLF (E)− nRF (E) ≈ −n′F (E)[−e∆V + β(E − µ)kB∆T ], (1.5)

where β = (kBT )−1 and n′F (E) is the derivative of the Fermi function at T and
µ. By inserting this into Eq. (1.4), we get the linear expression for the current. As
mentioned earlier, the Seebeck coefficient is measured by applying both a potential
and temperature difference so the the electric current cancels. By using I = 0 in
the equations above, we arrive at the general expression for the Seebeck coefficient,
S = −∆V

∆T ,

S = −kB
e

∫∞
−∞ dE T (E)E−µkBT

[−n′F (E)]
∫∞
−∞ dE T (E)

[
−n′F (E)

] , (1.6)

where kB/e = 86µV/K is a useful quantity to remember. This expression has very
different behaviors in different regimes. We will start by considering the low temper-
ature case, which is e.g. used in single molecule studies [22, 23]. The derivative of
the Fermi function is a symmetrically peaked function with a center at E = µ and a
width of around 2kBT . At low temperatures, it becomes narrow and for T → 0, it
turns into a Dirac delta function, −n′F (E) = δ(E−µ). In this low-temperature limit,
it is therefore the interval close to µ that dominates the integrals. If the transmission
function is a slowly varying functions on the scale of kBT , we can do a Sommerfeld
expansion of both the numerator and denominator in Eq. (1.6). For a general function
g(E),

∫∞
−∞ dE g(E) [−n′F (E)] ≈ g(µ) +

π2k2
BT

2

6 g′′(µ), so that

SSM ≈ −
kB
e

π2kBT

3

d ln[T (E)]

dE

∣∣∣∣
E=µ

, (1.7)

where the subfix “SM” indicates that it is an approximation used in single molecules.
We see that the Seebeck coefficient is proportional to the temperature, and it depends
on the slope of the transmission function, T ′(µ)/T (µ). To demonstrate the validity
of the approximation, consider the transmission function shown in Fig. 1.1a. It is
constructed of two Lorentzian-like functions L = a2/((E −E0)2 + a2) placed at E0 =
−1 eV and E0 = 1 eV for a = 0.1 eV. The Seebeck coefficient for this transmission
function is shown in Fig. 1.1b at T = 100 K, where the solid line is calculated using
Eq. (1.6) and the dashed line is calculated using Eq. (1.7). As seen, there is a good
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Figure 1.1: a) Transmission function constructed as the sum of two
Lorentzian-like functions, L = a2/((E − E0)2 + a2), with E0 = −1 eV
and E0 = 1 eV. The plotted T (E) is for a = 0.1 eV. b) The Seebeck
coefficient for the transmission function in (a) at temperature T =
100 K. The solid line is calculated using Eq. (1.6), while the dashed
line is from the approximation in Eq. (1.7). c) The Seebeck coefficient
in the case of narrow Lorentzian-like functions, a = 10−5 eV, at T =

300 K. The dashed lines are obtained from Eq. (1.8).

agreement between the general and the approximate calculations.
The above approximation is not always true. If the transmission function is zero

at E = µ, the dominant contribution to the integrals does not come from the interval
around µ. Consider for example a transmission function that has a very narrow single
peak at E0.6 In this case, Eq. (1.6) reduces to

Sdelta =
kB
e

µ− E0

kBT
. (1.8)

6Think of it as a delta function. However, the transmission function represents a probability and
can therefore not take values above 1.
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This model has e.g. been studied in the search for the optimal thermoelectric material
[24–26]. We see that the Seebeck coefficient is proportional to the energy difference
between the transport level, E0, and the chemical potential. It is obviously only the
point E = E0 that contributes to the integrals in Eq. (1.6). If we use a transmission
function with a finite width, there will be a crossover between the two approximations.
As an example, consider the double-Lorentzian transmission function in Fig. 1.1a, but
now with narrow peaks compared to the thermal energy, a = 10−5 eV. For this trans-
mission function, the Seebeck coefficient at T = 300 K is as shown in Fig. 1.1c. Close
to the transmission peaks, we see that Eq. (1.8) (dashed lines) is a good approxima-
tion. In these regions, it is the intervals close to the transmission peaks that dominate
the integrals. When moving µ away from the E0’s, there is a cross-over and in the
interval −0.5 eV < µ < 0.5 eV, Eq. (1.7) is again a good approximation.

From the above description, we see that small Seebeck coefficients are obtained
when the transport takes place at the chemical potential. This is typically the case in
single molecule junctions, where the experimentally obtained Seebeck coefficients are
a few tens of µV/K [27–29]. It is also the case in metals, which we will now consider.

1.1.2 Seebeck coefficient in bulk materials

In bulk materials, the general expression for the Seebeck coefficient is very similar to
the one presented in Eq. (1.6) [30]. It can be derived from the Boltzmann equation
using the relaxation time approximation to be [31]

S = −kB
e

∫∞
−∞ dE σ(E)E−µkBT

[−n′F (E)]
∫∞
−∞ dE σ(E)

[
−n′F (E)

] . (1.9)

Here σ(E) is a measure of how well electric charge is conducted in the material,7 and
it is proportional to the density of states and the relaxation time. Eq. (1.9) is the
same as Eq. (1.6), but with σ(E) instead of T (E), and we can therefore use the same
approximation as before. For metals, the conduction takes place at the Fermi level,
and the Seebeck coefficient is therefore given by Eq. (1.7) with T (E) → σ(E). This
expression is known as Mott’s formula [32, 34].

In non-degenerate semicondutors, the Fermi level is in the band gap in which σ(E)
is zero. The transport is dominated by carriers in either the valence or conduction band
and the transport properties depend on the energy difference between the chemical
potential and the transport band edge. Consider a p-type semiconductor in which
holes in the valence are the charge carriers. If we consider the band edge to be sharp,
so that σ(E) is only non-zero for E < Ev, we can rewrite equation (1.9) as

SSC =
kB
e

[
µ− Ev
kBT

+Av

]
, (1.10)

where

Av =

∫ Ev
−∞ dE σ(E)Ev−EkBT

[−n′F (E)]
∫ Ev
−∞ dE σ(E)

[
−n′F (E)

] . (1.11)

The Seebeck coefficient of a non-degenerate semiconductor is therefore directly pro-
portional to the energy difference between the chemical potential and the band edge
[30, 33–37]. For n-type semiconductors, the transport takes place in the conduction

7The actual conductivity of the material is given by σ =
∫

dE σ(E) [−n′F (E)]. For more details
about σ(E), see e.g. Refs. [31, 32]. In the literature, −n′F (E)σ(E) is sometimes expressed as σ(E)
and referred to as the differential conductivity [27, 33].



Chapter 1. Introduction to thermoelectricity 9

band, and the Seebeck coefficient is SSC,c = kB
e

[
µ−Ev
kBT

−Ac
]
[34]. The positive and

dimensionless constant Av depends on the shape of σ(E) close to the valence band
edge. In both conventional and organic semiconductors, Av is typically between 2 and
4 [33, 38]. The expression for the Seebeck coefficient in semicondutors in Eq. (1.10)
will be useful in Chapter 4, where we will analyze measured Seebeck coefficients of
organic semiconductors.

1.1.3 Seebeck coefficient in parallel and series

As described in the beginning of Sec. 1.1, the measured Seebeck coefficient in Eq. (1.3)
is the same as S’s in Eqs. (1.1) and (1.2), when the system is a single homogeneous
material. However, if the setup is composed of different materials, the measured
Seebeck coefficient is a combination of the Seebeck coefficients in the setup. Consider
the macroscopic version of the transport equation in Eq. (1.1), I = G∆V + GS∆T ,
where G is the electrical conductance. If two components are connected in parallel,
as shown in Fig. 1.2, and the Seebeck measurement condition I = 0 is used, we get
the effective Seebeck coefficient of the setup [39]

Sparallel =
G1S1 +G2S2

G1 +G2
. (1.12)

The effective Seebeck coefficient is therefore the sum of the components weighted by
their electrical conductances. If the components are connected in series, the effective
Seebeck coefficient is

Sseries =
S1Rq1 + S2Rq2
Rq1 +Rq2

, (1.13)

where Rq2 is the thermal resistance. We can also formulate Eq. (1.13) as Sseries =
(S1∆T1 + S2∆T2)/∆T , where ∆Ti is the temperature drop across sample i, while
∆T = ∆T1 + ∆T2. In series, the measured Seebeck coefficient is therefore the sum
weighted by the temperature drop. Despite the simplicity of Eqs. (1.12) and (1.13),
these expressions will be very useful in Chapter 4.

1.2 Local currents

Since the Seebeck coefficient is measured under the zero-net-current-condition, I =
0, it is usually assumed that local electric currents cancel as well. However, this
is not necessarily true. A simple case in which a local current exists is when two
thermoelectric elements are connected in parallel as shown in Fig. 1.2. Even though
no electric current flows through the parallel setup, a ring current

Iring =
S2 − S1

R1 +R2
∆T (1.14)

flows in the loop [1, 39]. This might seem surprising at first sight, but it is basically
the same as Thomas Seebeck observed in his original experiment. As explained, he
connected two different materials in a loop and heated one of the material junctions,
which drove an electric current in the loop. No electric current was flowing through
his system, and it can therefore be thought of as the setup in Fig. 1.2.

Internal electric currents can also exist in a bulk material if it is either anisotropic
[41, 42] or inhomogeneous [43, 44]. Their existence in an inhomogeneous isotropic
setup can easily be shown by rewriting Eq. (1.1). If we divide it by σ and take the
curl, we get ∇× (je/σ) = −∇S ×∇T . If the gradient of the Seebeck coefficient has
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R1, S1

R2, S2

Iring

TH TC

I=0

Figure 1.2: Schematic illustration of two thermoelectric elements
connected in parallel. The electric ring current Iring flows in the loop
even though no net current is flowing. The figure is from Ref. [40].

a component perpendicular to the temperature gradient, ∇S × ∇T 6= 0, somewhere
inside the sample, local electric currents consequently have to exist.

An example of an inhomogeneous system is shown in Fig. 1.3a, where a small
cylinder of one material is placed in the center of a larger cylinder of another material
(a thought example presented in Ref. [1]). When a temperature difference is applied
between the top and bottom, and the Seebeck measurement condition, I = 0, is
reached, the question is how the effective Seebeck coefficient is calculated. If we
could neglect the local currents, the approach would be to solve the steady-state heat
equation to obtain the temperature distribution, from which the potential distribution
could be calculated, E = S∇T . However, the thermoelectric terms in je and jq
in Eqs. (1.1) and (1.2) affect the temperature distribution and due to the possible
existence of local electric currents, Eq. (1.1) cannot simply be rewritten as E = S∇T .
The proposed solution in Ref. [1] was to solve the coupled continuity equations

∇ · je = 0

∇ · jq = 0
(1.15)

with fixed boundary conditions, ∆T and ∆V , so that the electric current through the
setup vanished. This procedure allows internal electric currents to exist even though
the net current cancels. In the case of the setup in Fig. 1.3a, the local electric currents
in a cross section of the cylinder are shown in Fig. 1.3b. We see that ring currents flow
around the material boundary, which is (almost) parallel to the temperature gradient.
Even though current passes through the top and bottom surfaces locally, the total
current through the surfaces is zero. Internal ring currents like the ones shown in
Fig. 1.3b are sometimes refered to as thermoelectric Eddy currents in the litterature
[42, 43, 45].

Thermoelectrically driven ring currents also exist in single molecule junctions,
where the calculation is fully quantum mechanical [1, 40]. This was one of the main
results in Ref. [1], and an example is shown for a meta-coupled benzene molecule in
Fig. 1.3c. Again, the electric ring current exists even though no net current flows
through the junction. We will study these thermoelectrically driven currents in depth
in Chapter 3. But first, we will develop the theory to describe local electric currents
in single molecule junctions in general.
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a) b)

c)

Cold Hot

I=0

Iring

Figure 1.3: Internal electric current loops in Seebeck measurements.
a) An inhomogeneous cylinder setup in which the grey and brown re-
gions have different material properties. b) Electric current densities
in a cross section of the cylinder setup in a Seebeck measurement with
I = 0. Here, a temperature difference is applied between the bottom
and top surfaces, while the sides are considered to be thermally and
electrically insulated. c) A molecular junction with meta-coupled ben-
zene. In a Seebeck measurement, a ring current exists in the benzene

molecule. (a) and (b) are from Ref. [1] and (c) is from Ref. [40].
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Chapter 2

Local currents in single molecule
junctions

This chapter is based on the paper ’J. Phys. Chem. C 2019, 123, 6, 3817-3822’ and its
supporting information written by the author and Per Hedegård. The paper is referred
to as Ref. [40] in this thesis. In this chapter, we will consider the results that are ap-
plicable to nanoscale junctions in general, i.e. the transport can for example be driven
by a potential difference alone. We will return to the specific case of thermoelectrically
driven ring currents in Chapter 3.

Around 20 years ago, the first conductance measurements were done on single
molecule junctions (SMJ) [46–48]. A SMJ is a metal-molecule-metal configuration,
which can be formed by for example using mechanical break junctions or scanning
tunneling microscopy. These experimental techniques allow researchers to study prop-
erties of individual molecules, and their discovery marks the beginning of the field of
molecular electronics [49]. The field is interesting from a fundamental research per-
spective, but it has also gained a lot of interest because molecules might be important
components in future electronic devices [50].

In this chapter, we will study local electric currents in nanoscale setups and in
particular in single molecule junctions. Our motivation for the study was to under-
stand thermoelectrically driven currents, which will be the topic of Chapter 3. Many
groups have investigated the pathways of an electric current through single molecule
junctions [51–56]. When only a potential difference is driving the current, the local
currents in ring structured molecules can be split up into ring and transverse com-
ponents [57]. The interplay between such ring currents and interference features has
been studied by Ernzerhof et al. and Solomon et al. [51, 58]. They showed that when
the energy passes through a point of destructive interference,1 there can be a change in
the direction of the ring currents. In Sec. 2.2.1, we will derive an analytic expression,
which can explain this observation. Our analytic expression can also be used to do a
qualitative prediction of the current patterns in symmetric junctions.

2.1 Introduction to NEGF

A useful tool to study quantum transport in nanoscale systems is the non-equilibrium
Greens function method (NEGF). We will here go through the basics of NEGF, but
more detailed descriptions can be found elsewhere [21, 59]. We will consider the
electrons to be non-interacting, so that we can operate in the single particle picture.

1A molecule is said to have destructive interference at the energy E0 if T (E0) = 0.
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The Hamiltonian of the system, H, is split into the following components

H = HL +HM +HR +HLM +HML +HRM +HMR (2.1)

where HL (HR) is the Hamiltonian for the left (right) lead, HM is the Hamiltonian
describing the molecule, andHαβ describes the coupling between α and β. This can be
done by using (L+M+R)H(L+M+R), where L,M , and R are projection operators
that project unto the left lead, molecular, and right lead subspaces respectively. It
is assumed that the left and right leads are not directly connected. The different
elements of the Hamiltonian are illustrated schematically in Fig. 2.1a.

We are interested in the retarded Greens function defined by (E −H + iη)G = 1,
where η is a positive infinitesimal. By using the projection operators, we can get the
full Greens function of the molecule2

GM =
1

E −HM + ΣL + ΣR
, (2.2)

where
Σα = HMαG

0
αHαM (2.3)

is the self-energy from lead α, while G0
α(E) = (E −Hα + iη)−1 is the free propagator

in lead α. The Greens function GM is important when we want to calculate different
properties of the junction. The transmission through a junction is e.g. given by

T (E) = Tr
[
ΓLG

†
MΓRGM

]
, (2.4)

where Tr[A] denotes the trace of the matrix A, while Γα = −2 Im Σα. This expression
is sometimes referred to as the Caroli formula [60, 61]. As explained in the beginning
of Sec. 1.1.1, the transmission function can be used to calculate the electric current
through a junction by using the Landauer formula in Eq. (1.4).

In the following, we want to calculate the local currents in molecular junctions.
We are therefore interested in calculating the expectation value of an observable in the
molecular subspace, A = MAM . To do so, the contributions from all the scattering
states incoming from both the left and right leads need to be summed up. This can
be done in a neat way in NEGF by using the single particle nonequilibrium density
matrix [21, 59, 62, 63]

ρM = 2
∑

α,k

nαF (Ek)M |ψαk〉〈ψαk|M (2.5)

=
1

π

∑

α

∫
dE nαF (E)GMΓαG

†
M , (2.6)

where |ψαk〉 is the scattering state incoming from lead α with the quantum number
k. The derivation from Eq. (2.5) to Eq. (2.6) is shown in Appendix A.1. With this,
the nonequilibrium expectation value is just 〈A〉 = Tr[ρMA] [63], which will be useful
in the following section.

2This can be done by rewriting the three equations L(E−H+iη)GM = 0,M(E−H+iη)GM = 1,
and R(E −H + iη)GM = 0 as done in e.g. Ref. [59] in matrix form. The molecular Greens function
is GM = MGM .
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1 N

Figure 2.1: Schematic illustration of a single molecule junction. The
grey oval represents the molecule, which is connected to the left and
right contacts. a) A general junction in which multiple elements couple
the molecule to the contacts. b) A situation in which the left lead
couples to site 1 on the molecule, while the right lead couples to site

N .

2.2 Local currents

We now want to calculate the local electric currents in a junction. We will work with
tight-binding Hamiltonians

H =
∑

i

εi |i〉〈i| −
∑

〈ij〉
tij (|i〉〈j|+ |j〉〈i|) , (2.7)

where |i〉〈i| is the atomic orbital for atom i, εi is the onsite energy, and tij is the real
and positive hopping matrix element between atoms i and j. With this Hamiltonian,
the local current operator is3

Îij =
ie

~
tij (|i〉〈j| − |j〉〈i|) , (2.8)

which describes the electric current between the local orbitals i and j. To get the
actual local current, we need to take into account the contributions from all the
scattering states. Adding up all these contributions by using Iij =

〈
Îij

〉
, as described

in the previous section, we get [62]

Iij =
2e

h

∫
dE Tij(E)

[
nLF (E)− nRF (E)

]
, (2.9)

3For the derivation, see e.g. Ref. [62].
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where the bond transmission is given by

Tij(E) =
~
e
Tr[ΓLG

†
M ÎijGM ]. (2.10)

To obtain this result, we used that Tr
[
GMΓLG

†
M Îij

]
= −Tr

[
GMΓRG

†
M Îij

]
. This is

physically intuitive, since it implies that the local currents vanish for ∆V = ∆T =
0. In Appendix A.2, it is shown that the relation is true for any observable that
reverses under time-reversal. With Eqs. (2.9) and (2.10), it is possible to calculate the
local electric currents for any junction under the applied temperature and potential
differences ∆T = TL − TR and ∆V = −(µL − µR)/e. If the the current is driven by
a small potential difference, we can expand the Fermi functions to first order in the
µ’s, and at low temperatures

IVij ≈
2e2

h
Tij(µ)∆V. (2.11)

Though the bond transmission in Eq. (2.10) is easy to calculate, the compact
expression is not easy to interpret. In the following section, we will see that the
expression for the bond transmission can be put on a simpler form in most single
molecule junctions.

2.2.1 Local currents in single molecule junctions

In this section, we will see that the bond transmission in Eq. (2.10) can be put on a
simpler form, when the self-energies can be written as

ΣL = aL |1〉〈1|
ΣR = aR |N〉〈N | ,

(2.12)

where |1〉 and |N〉 are some orbitals on the molecule. This is the case when the
leads only couple to the molecule at single atomic sites as illustrated schematically in
Fig. 2.1b. This is usually a good assumption in single molecule junctions, since the
molecule is often connected to the contacts via molecular anchor groups such as the
thiol group in Fig. 1.3c, and it is widely used in theoretical studies [55, 57, 64, 65].
If the contact is modeled as a 1D tight-binding chain, the self-energies can also be
written as in Eq. (2.12), where |1〉 and |N〉 can be any linear combination of atomic
orbitals.4

For a junction with the self-energies in Eq. (2.12), the bond transmission in
Eq. (2.10) can be put on a simpler form. This discovery was initially made by the
author by using the transfer matrix method,5 but it is easier to get a general result
with the NEGF method. In Appendix A.3, we derive that

Tij(E) = γij(E)T (E) (2.13)
4Take the example where the left 1D chain couples to two sites, HML = −tc1 |1〉〈a| − tc2 |2〉〈a| =

−tc |L〉〈a|, where |a〉 is the outermost orbital of the 1D chain and |L〉 = tc1
tc
|1〉+ tc2

tc
|2〉. In this case,

the left self-energy can be written as ΣL = HMLG
0
LHLM = t2c 〈a|G0

L|a〉 |L〉〈L|.
5Using the transfer matrix method, we first modeled the leads as semi-infinite chains of atoms

for which the result in Eqs. (2.13) and (2.14) is true. We studied different concrete models for the
leads just as in chapter 3 in Ref. [66]. However, we switched to the NEGF method in which the
information about the leads is kept in the self-energies.
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where γij(E) only depends on the isolated molecule

γij(E) = tij
G0

1iG
0
jN −G0

1jG
0
iN

G0
1N

. (2.14)

Here G0
ij = 〈i|(E − HM )−1|j〉 is an element of the Greens function of the isolated

molecule. It is intuitive, that the bond transmissions go to zero with the transmission.
However, the above factorization of the bond transmission is interesting since all the
information about the leads is contained in the transmission function, T , while the
local information is found in γij(E). The analytic expression in Eqs. (2.13) and (2.14)
is one of the main results of this chapter, and we will use it to analyze local currents
in the following sections. It has previously been found by Tsai et al.,6 that the local
transmission is proportional to (G0

1iG
0
jN −G0

1jG
0
iN ), and that it is the only factor that

depends on the sites i and j [67]. However, Tsai et al. did not realize that it could be
put on the simple form in Eqs. (2.13) and (2.14).

In Fig. 2.2, the local transmissions are plotted for an anthracene and a biphenyl
junction. The tight-binding setup and parameters are the same as in Chapter 3, but
the numbers are not relevant for the discussion in this chapter. We see that some
paths in the molecules are described by the same bond transmission, and these are
marked with the same colors. Additionally, we observe that the bond transmissions are
symmetric around E = 0. In the following sections, we will use our derived analytic
tool in Eqs. (2.13) and (2.14) to describe these observations. Both of the junctions
in Fig. 2.2 have been investigated by Rai et al. [57], but they did not explain these
features.

The current patterns in Fig. 2.2 can in principle by modified by a magnetic field,
which itself induces ring currents in the molecule. In this way, some of the bond
currents could be turned off and a variety of current patterns could be obtained.
However, it has been studied theoretically whether the local currents can be controlled
by a magnetic field and unrealistically large fields are required to do so [68, 69].

The simplification in Eq. (2.13) is only true in the single channel case, i.e. when
only one transport channel carries the current. In the case of multiple channels, the
self-energies cannot be put on the simple form in Eq. (2.12). We have put a lot of
effort into deriving an expression similar to Eq. (2.13), which is applicable in the
multi-channel case, but we were not able to do so. A natural way to express the local
currents, though, is to use the basis of transmission eigenchannels. A transmission
eigenchannel |p〉 is an eigenvector of t†t, where t is the transmission matrix [20, 70, 71],

t†t |p〉 = T p |p〉 . (2.15)

Here T p is the transmission probability of eigenchannel p. The full transmission
function is T = Tr

[
t†t
]
and by comparing this expression to the Caroli formula in

Eq. (2.4), we see that NEGF analogue is obtained by defining t ≡ Γ
1/2
R GMΓ

1/2
L [72].

In other words, |p〉 is an eigenvector of Γ
1/2
L G†MΓRGMΓ

1/2
L . Using this basis, the bond

transmission in Eq. (2.10) can be written as

Tij =
∑

p

T pij , (2.16)

where the T pij ’s are eigenvalues of the matrix ~
eΓLG

†
M ÎijGM . This choice of basis has

the advantage, that only a few eigenchannels carry the current in narrow junctions
6The author realized this while writing the thesis.
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Figure 2.2: Bond transmissions for an anthracene junction in (a)
and a biphenyl junction in (b). The directions of positive transmission
are indicated with arrows on top of the bonds and the colors relate
the different bonds to the graphs. The tight-binding parameters used
in the calculation are the same as in Chapter 3. The HOMO/LUMO

energies are ±1.04 eV for anthracene and ±1.76 eV for biphenyl.

[70]. Consequently, most of the eigenchannels are “closed”, T p = 0, and the same goes
for most of the local current contributions, T pij = 0.

2.3 Analysis of local currents in single molecule junctions

With the analytic tool derived in the previous section, we can now analyze different
types of molecular junctions. In Sec. 2.3.1, we develop a tool to predict current pat-
terns in symmetric junctions. In Sec. 2.3.2, we show that the bond transmissions in
alternant molecules is symmetric in energy, and finally we build some mathematical
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understanding about the connection between local currents and destructive interfer-
ence in Sec. 2.3.3.

2.3.1 Qualitative prediction of currents

The current patterns shown in Fig. 2.2 can be predicted qualitatively from a symmetry
argument which follows from Eq. (2.14). The prediction rule is illustrated graphically
in Fig 2.3 and it is based on the following argument: Consider a molecule that is
invariant under a rotation OR, which interchanges site 1 and site N

O†RHMOR = HM . (2.17)

The rotation will take site i into site i′, OR |i〉 = |i′〉. Using this symmetry, we can
rewrite the numerator in Eq. (2.14)

G0
1jG

0
iN = 〈1|G0|j〉 〈i|G0|N〉

= 〈1|O†RG0OR|j〉 〈i|O†RG0OR|N〉
=
〈
N
∣∣G0
∣∣j′
〉 〈
i′
∣∣G0
∣∣1
〉

= G0
1i′G

0
j′N .

(2.18)

By doing this on both terms in Equation (2.14), we get γij = −γi′j′ and consequently

Iij = −Ii′j′ , (2.19)

where Iij is the local current in Eq. (2.9). This fact can be used to graphically predict
the current pattern in a molecular junction with a symmetry: Draw a current between
all the connected sites in the molecule, rotate one contact point into the other and
reverse the currents. According to Eq. (2.19), the current pattern before and after
the operations has to be the same. This is illustrated for a naphthalene junction in
Fig. 2.3. Notice that the result Iij = −Ii′j′ is true for any applied bias or temperature
difference and can therefore also be used to qualitatively predict the through-current.
This symmetry argument can e.g. be used to predict the current patterns in the
symmetric junctions in Refs. [57, 73].

We also tried another approach to understand and predict the current pattern.
One could naively think that the current patterns can be understood by looking at
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO), since these are closest to the chemical potentials of the contacts. We
have examined this by decomposing the molecular part of the scattering states into
the molecular orbitals, but we found that not only the HOMO and LUMO contribute
to the currents. The weights of the molecular orbitals were found to be distributed in
an unsystematic manner.

2.3.2 Alternant molecules

Many of the molecules studied in e.g. Ref. [57] and in Chapter 3 are so-called alter-
nant hydrocarbons. An alternant hydrocarbon is a conjugated molecule in which the
carbon atoms can be divided into two sub-lattices (historically called the starred and
unstarred atoms) in such a way that starred atoms only connect to unstarred atoms
and vice versa [74, 75]. Examples of alternant molecules are benzene, naphthalene,
and anthracene. These molecules follow the Coulson-Rushbrooke pairing theorem
which e.g. states that the molecular orbital energies are symmetrically spread around
a zero-energy level and that there is a sign change of the molecular orbitals in one



Chapter 2. Local currents in single molecule junctions 19

 

 

 

Rotate molecule and
reverse current

 

Compare

 

Figure 2.3: Graphical procedure to predict the local current patterns
in symmetric junctions. Initially guessed currents are marked with
different colors in the top left of the figure. After rotating one contact
point into the other and reversing the currents, the local currents are
unchanged. We can therefore compare the currents before and after
the operations in order to obtain the local current pattern. Notice
that the initially drawn arrows could as well point in the opposite

directions.

of the sublattices when comparing a symmetry pair such as the HOMO and LUMO
[74, 75]. Using the Coulson-Rushbrooke pairing theorem, we show in Appendix A.4
that

G0
ij(−E) = ∓G0

ij(E), (2.20)

where the upper (lower) sign is when i and j are on the same (different) sub-lattice.
By using this symmetry in Eq. (2.14), we get that γ is an even function in energy for
alternant hydrocarbons

γij(E) = γij(−E). (2.21)

This is exactly what we observed in Fig. 2.2 for anthracene and biphenyl, which are
both alternant molecules.

2.3.3 Interference and local currents

As described in the introduction, the connection between local currents and interfer-
ence has been studied in the literature. Both Ernzerhof et al. and Solomon et al.
have observed that the local transmissions can have opposite signs when comparing
energies slightly below and above the an energy of destructive interference [51, 58]. In
this section, we will use Eqs. (2.13) and (2.14) to build some understanding about this
observation. We will start by considering the total transmission through a junction.
For the self-energies in Eq. (2.12), the transmission is

T (E) = |G1N |2kLkR, (2.22)
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where kα = −2 Im aα and G1N = 〈1|GM |N〉. We can write the Greens function of
the molecule as a Dyson equation (omitting again the subscript M on all G’s)

G = G0 +G0 (ΣL + ΣR)G

= G0 + aLG
0 |1〉〈1|G+ aRG

0 |N〉〈N |G.
(2.23)

Consider now the element that appears in Eq. (2.22). We can rewrite it as

G1N = G0
1N

1 + aRGNN
1− aLG0

11

. (2.24)

Destructive interference occurs at the energy E0 when T (E0) = 0 and consequently
G1N = 0. The interesting destructive interference points are the ones that are related
to the structure of the molecule. Since the fraction in the above equation depends
on the leads, we are only interested in interferences at which G0

1N = 0. Inserting
Eqs. (2.14), (2.22), and (2.24) into Eq. (2.13), we arrive at

Tij ∝ tij
(
G0

1iG
0
jN −G0

1jG
0
iN

)
G0

1N (2.25)

where the proportionality factor depends on the leads.7 With this expression, we can
calculate whether there is a sign change in the bond transmission or not by analyzing
the elements of G0

M = (E − HM )−1. We will now go through a few examples that
have been studied in the literature.

Benzene has only four different Greens function elements: G0
11, G0

12, G0
13, and

G0
14. An ortho-coupled benzene junction has been investigated in Ref. [58], in which

it was shown that the local currents have different signs slightly below and above the
LUMO energy, εLUMO = −tM , where tM is the hopping amplitude on the molecule.
By plotting the the four different Greens function elements, it is seen that they all
have opposite signs below and above εLUMO. From Eq. (2.25) it is therefore clear that
the bond transmissions have a sign change.

Meta coupled benzene has destructive interference at E = 0.8 Around this energy,
the Greens function elements G0

11 and G0
13 change sign. If we index the atoms with

increasing numbers around the ring and consider the leads to couple to sites 1 and 5,
the bond transmission from site 1 to 2 is for example

T12 ∝ tM
(
G0

11G
0
25 −G0

12G
0
15

)
G0

15

= tM
(
G0

11G
0
14 −G0

12G
0
13

)
G0

13,
(2.26)

where G0
15 = G0

13 and G0
25 = G0

14 for symmetry reasons, and where tM is again the
hopping amplitude in the molecule. Since only G0

11 and G0
13 change sign, there is

no sign change in T12 around E = 0. This was also observed by Solomon et al. (see
Fig. S4 in Ref. [51]). However, by introducing next-nearest (NN) neighbor coupling in
the meta-coupled benzene junction, they found that the transmission between some of
the NN sites reversed (See Figs. 3 and S4 in Ref. [51]). This can again be explained by
Eq. (2.25): A lot of new Greens function elements are introduced by the NN neighbor
coupling. For the bond transmissions that reverse, the G0

1N in Eq. (2.25) has a sign
change, while the parenthesis factors do not.

7The proportionality factor is ∣∣∣∣1 + aRGNN
1− aLG0

11

∣∣∣∣2 kLkR,
8E = 0 is the energy right between the HOMO and LUMO.
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The above two examples demonstrate that the derived analytic tool in Eqs. (2.13)-
(2.14) can be used to analyze the reversal of the local currents around a point of
destructive interference. One can probably get a better understanding of the current
reversals by looking deeper into the connection between the Greens function elements
in Eq. (2.25).

2.4 Conclusions

In this chapter, we have described the theory to calculate local currents in the NEGF
formalism. In the case of single molecule junctions, we have shown in Sec. 2.2.1
that the bond transmission can be written as a product between the transmission
function and a function γij , which only depends on the properties of the isolated
molecule. The analytic expression for γij in Eq. (2.14) is a useful tool when we want
to analyze the local currents in a junction: In Sec. 2.3.1, we used it to develop a
graphical procedure to predict current patterns in rotationally symmetric molecules
(including the marked contact points). In Sec. 2.3.2, we described mathematically
why the bond transmission is symmetric in energy in alternant molecules. Finally,
we used the analytic tool to build some understanding about the connection between
local currents and interferences in Sec. 2.3.3. We showed that the reversion of local
currents when passing through a point of destructive interference can be described by
sign changes in the elements of the Greens function of the isolated molecule, GM .
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Chapter 3

Thermoelectrically driven ring
currents

This chapter is based on the paper ’J. Phys. Chem. C 2019, 123, 6, 3817-3822’
and its supporting information written by the author and Per Hedegård. The paper is
referred to as Ref. [40]. This chapter builds on the results from the previous chapter
and considers the special case in which temperature and electric potential differences
are applied so that the net current cancels. Thermoelectrically driven ring currents in
single molecules were initially discovered during the author’s master’s project [1].

With the theory described in Chapter 2, we will now calculate and analyze the ther-
moelectrically driven ring currents introduced in Sec. 1.2. First, we will go through
the single molecule results from Ref. [40]. We will then move on to the low tem-
perature approximation of the currents and describe mathematically why the local
currents change direction twice close to some interference points. Finally, in Sec. 3.2,
the existence of ring currents in a quantum mechanical calculation of gated graphene
nanoribbons is presented.

3.1 Thermoelectrically driven ring currents in single molecules

We will use tight-binding Hamiltonians to describe the single molecule junctions as
illustrated for para-coupled benzene in Fig. 3.1. Here tM is the hopping element in
the molecule, tc is the coupling between the leads and the molecule, and tL (tR) is the
hopping element in the left (right) lead. The model parameters are chosen as shown in
Table 3.1. Especially the coupling, tc, and the position of µ relative to the molecular
orbitals are difficult to estimate and they vary from junction to junction. Our choice
of parameters results in a conductance G ≈ 10−3G0 for para-connected benzene at
µ = 0.7 εLUMO.

The local currents are calculated using Eqs. (2.9) and (2.10),1 in which the self-
energies of the leads are needed. As illustrated in Fig. 3.1, we use semi-infinite chains
to model the leads. For these leads, analytic expressions for the self-energies can
be derived by following the procedure in Ref. [66]. The derivation is shown in Ap-
pendix A.5.1. In this chapter, we are interested in local currents in Seebeck-type
experiments, where the electric currents through the junctions cancel. For a tem-
perature difference ∆T = TL − TR and a fixed µL, we therefore use the condition
I = 0 in the Landauer equation in Eq. (1.4) to obtain µR. Inserting these ∆T and
∆V = −(µL − µR)/e into Eq. (2.9), we can obtain the thermoelectrically driven
currents.

1We can as well use Eqs. (2.13) and (2.14), which give the same results.
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Table 3.1: The tight-binding parameters used in the single molecule
calculations.

Parameter Value

tM 2.5 eV
tL = tR 5 eV
tc 0.6 eV
εM = εL = εR 0
TL 295 K
TR 300 K

tLtL tc tRtc
tR

TL, μ L TR, μ R

 

tM

Figure 3.1: Illustration of the tight-binding model for a para-
connected benzene junction. The leads are modeled as semi-infinite

1D chains.

The results for different benzene, naphthalene, and anthracene junctions are shown
in Figure 3.2. We see that very different current patterns can be obtained depending
on how the molecules are connected to the leads. The benzene results demonstrate
that the paths of the ring have to differ for a current to exist. In naphthalene, ring
currents of either opposite or same directions can be generated depending on how
the molecule is connected to the contacts. In the case of two adjacent ring currents
with same direction and intensity, the current pattern is a single current along the
perimeter of the naphthalene molecule. In anthracene, we see that two separated ring
currents of opposite directions can be generated and that ring currents of different
intensities can exist. The thermoelectrically driven local currents are small, but they
are very sensitive to the choice of parameters. As an example, if we set tc = 0.5 tM ,
the resulting ring current in meta-coupled benzene is 0.34 nA for µL = 0.8 εLUMO.

Due to the symmetries of the junctions in Fig. 3.2, the current patterns can be
predicted by using the rules developed in Sec. 2.3.1.2 Since no current flows through
the junction, the initial guess in the graphical procedure is simpler and it is shown
for one of the anthracene junctions in Fig. 3.3. Remember that the procedure does
not say anything about the direction and strength of the current; it just predicts the
pattern.

Suppose now that we can gate the molecule in the junction and thereby shift the
molecular orbital energies relative to the chemical potential. In Fig. 3.4, the ring
currents are plotted as a function of the chemical potential for six different molecular
junction. The clockwise currents are plotted as solid lines, while the counterclockwise
currents are represented by dashed lines. The three molecules to the left are alternant,
and we observe that the ring currents are odd as a function of µ. We will explained

2The rules apply to all the junctions in Fig. 3.2 except for the substituted benzene in the upper
right of the figure, which is not symmetric.
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23 pA 6.1 pA

1.4 pA 1.4 pA 1.5 pA 1.5 pA

6.6 pA 6.6 pA 0.9 pA 0.9 pA1.2 pA

Figure 3.2: Electric bond currents for different single molecular junc-
tions at µL = 0.8 εLUMO. The arrows together with the colors indicate
the directions of the ring currents, while the blue and red dots indicate

the cold and hot contacts, respectively.

this feature in the following section. The naphthalene junction (the middle left in
Fig. 3.4) has destructive interference at ±1.27 eV around which the ring currents
change sign twice. This interesting behavior is different from the currents discussed in
Sec. 2.3.3, which only change sign once close to some destructive interference points.
We will return to this observation in Sec. 3.1.2. The three junctions to the right in
Fig. 3.4 show how the currents can behave in non-alternant molecules. One interesting
observation here is that the azulene junction in the bottom right of Fig. 3.4 has no
destructive interference between the HOMO and LUMO, but one of the ring currents
turns off at µ = 0.

Thermoelectrically driven ring currents can be observed by measuring the induced
magnetic field just as Thomas J. Seebeck did 200 years ago. As the system gets
smaller, this becomes more difficult. If we approximate a benzene unit as a ring with
radius r = 1.4 Å, a ring current of 1 pA would induce a magnetic field of B = 4.5 nT
in the center of the ring according to the Biot-Savart law.

3.1.1 Low temperature approximations

Under the zero-net-current condition, local currents are related to the slope of γij . To
show this, we expand the Fermi functions in Eq. (2.9) to linear order in the temper-
atures and potentials, nLF (E) − nRF (E) ≈ −n′F (E)[−e∆V + β(E − µ)kB∆T ]. With
this, we can express the total current as

I =
2e

h
[−e∆V 〈T 〉+ kB∆T 〈T x〉] = 0, (3.1)

where we have introduced x = β(E − µ) and the notation

〈g(E)〉 =

∫
dE [−n′F (E)]g(E). (3.2)
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Compare

Rotate molecule and
reverse current

 

Figure 3.3: For the anthracene junction, we draw an initial guess
for the ring currents. The colors indicate that the currents can have
different amplitudes and directions. After a rotation, which brings site
1 into site N and a reversal of the currents, the currents have to be
unchanged. The symmetry argument predicts the results in Fig. 3.2.

By rearranging Eq. (3.1), we get the connection between the potential difference and
the temperature difference, e∆V = kB∆T 〈T x〉〈T 〉 . Here −kB

e
〈T x〉
〈T 〉 is just the Seebeck

coefficient shown in Eq. (1.6). Using the introduced notation for the local currents in
Eq. (2.9) (omitting the subscripts of γ)

Ĩij =
2e

h
[−e∆V 〈γT 〉+ kB∆T 〈γT x〉]

=
2e

h
kB∆T

[
〈γT x〉 − 〈T x〉〈T 〉 〈γT 〉

]
,

(3.3)

where the tilde in Ĩij indicates that it is a local current under the zero-net-current
condition. We can now do a Sommerfeld expansion to evaluate the brackets. For a
general function g(E), which is smooth on the scale of kBT ,

〈g(E)〉 ≈ g(µ) + cg′′(µ)

〈g(E)x〉 ≈ 2βcg′(µ),
(3.4)

where c = π2/(6β2) [6]. Including only the lowest order terms, we get the low tem-
perature approximation

Ĩij(µ) ≈ 2e

h

π2

3
(kBT )(kB∆T ) γ′ij(µ)T (µ). (3.5)

The above approximation is good at low temperatures away from interference points
and resonances. To obtain strong local currents, Eq. (3.5) indicates that γij(E) has
to be steep at the chemical potential and that the transmission through the molecule
has to be large. For alternant molecules, we found in Sec. 2.3.2 that the γij ’s are even
in energy. Consequently, Ĩij(−µ) = −Ĩij(µ) for alternant molecules.

Close to destructive interferences (about 10 kBT ), we need to include more terms



Chapter 3. Thermoelectrically driven ring currents 26

-2 -1 0 1 2

10-17

10-13

10-9

μ[eV]

R
in

g
cu

rr
en

t[
A

]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

10-15

10-14

10-13

10-12

10-11

10-10

10-9

μ[eV]

R
in

g
cu

rr
en

t[
A

]

-1.0 -0.5 0.0 0.5 1.0

10-18

10-16

10-14

10-12

μ[eV]

R
in

g
cu

rr
en

t[
A

]

-4 -2 0 2

10-12

10-11

10-10

10-9

10-8

10-7

10-6

μ[eV]

R
in

g
cu

rr
en

t[
A

]

-1.5 -1.0 -0.5 0.0 0.5 1.0

10-14

10-13

10-12

10-11

10-10

μ[eV]

R
in

g
cu

rr
en

t[
A

]

-1.5 -1.0 -0.5 0.0 0.5 1.0
10-15

10-14

10-13

10-12

10-11

10-10

10-9

μ[eV]

R
in

g
cu

rr
en

t[
A

]

Figure 3.4: Ring currents plotted as a function of the chemical po-
tential of the left lead relative to the molecular orbital energies. The
chemical potential of the right lead is calculated so that there is no
through current. The currents are calculated using Eq. (2.9) with the
parameters in Table 3.1. Solid lines represent clockwise currents while
dashed lines represent counterclockwise currents. The HOMO and

LUMO are shown as vertical lines.

in the Sommerfeld expansion, which give a correction to Eq. (3.5). We will do this in
the following section.

3.1.2 Thermoelectrically driven currents close to destructive inter-
ferences

Close to destructive interference, we have to be a bit more careful. At an energy
of destructive interference E0, the transmission function is zero, T (E0) = 0, and we
need to include the second order derivative term in the expansion of 〈T 〉. Combining
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Eqs. (3.3) and (3.4), we get (all the functions below are evaluated at E = µ)

Ĩij ≈
2e

h
2βckB∆T

[
(γT )′ − T ′

T + cT ′′
(
γT + c(γT )′′

)]
(3.6)

=
2e

h

π2

3
(kBT )(kB∆T )

[
γ′T − cT ′γ

′′T + 2γ′T ′
T + cT ′′

]
. (3.7)

At low temperatures, the second term in the brackets is small. Even at room tem-
perature, c ≈ 10−3(eV)2. However, as we will see in the following, the term plays an
important role close to some destructive interference points.

As explained in Sec. 2.3.3, the interesting destructive interferences occur at en-
ergies E0 where G0

1N (E0) = 0. Since G0
1N appears in the denominator of γij ,3 γij

has a pole at E0 unless the numerator cancels as well. An example in which the nu-
merator does cancel is meta-coupled benzene as plotted in the upper left of Fig. 3.4.
Meta-coupled benzene has destructive interference at E = 0, T (0) = 0, but γij is
continuous in the domain around this energy, since its numerator cancels. The reason
is that benzene is an alternant molecule so that γij is an even function in energy as
explained in Sec. 2.3.2. When the interference occurs at such a symmetry point,4 the
ring currents are well described by the approximation in Eq. (3.5), which is demon-
strated for meta-coupled benzene in Fig. 3.5a. Here the blue curve is calculated using
Eq. (2.9) and (2.10), while the dashed is obtained from Eq. (3.5). Notice that the
currents are extremely small, but this is just an example to show the consequence of
the symmetry in alternant molecules.

If we modify one of the onsite energies in the meta-coupled benzene, it is no longer
alternant and the interference point is shifted. As a consequence, the ring current will
now get a peak on top of the low-temperature approximation as shown in Fig. 3.5b.
This can be understood in the following way: For the modified benzene junction, γij
has a pole at E0 = −0.025 eV. Close to a E0, we can write the most dominant terms
of the transmission function and γij as

T (E) ≈ t0β2(E − E0)2,

γ(E) ≈ 1

β

γ0

E − E0
,

(3.8)

where we have included the β’s to keep the coefficients, t0 and γ0, unitless. Inserting
these into Eq. (3.7), we get

γ′T − cT ′γ
′′T + 2γ′T ′
T + cT ′′ = βt0γ0

[
−1 +

4c

(µ− E0)2 + 2c

]

= −βt0γ0
(µ− E0)2 − 2c

(µ− E0)2 + 2c
.

(3.9)

Consequently, the thermoelectrically driven ring currents can be expressed as

Ĩij ≈
2e

h

π2

3
(kBT )(kB∆T )γ′(µ)T (µ)

[
(µ− E0)2 − π2

3 (kBT )2

(µ− E0)2 + π2

3 (kBT )2

]
, (3.10)

where we used that γ′(µ)T (µ) = −βt0γ0. We recognize the first part as the low
3See Eq. (2.14).
4By symmetry point, we mean the energy exactly between the HOMO and LUMO. According

to the Coulson-Rushbrooke pairing theorem, the molecular orbitals are distributed symmetrically
around this energy [74].
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Figure 3.5: Thermoelectrically driven ring currents close to interfer-
ence points, E0, marked with vertical grey lines for the temperatures
TL = 95 K and TR = 100 K. The blue curves are calculated using
Eqs. (2.9) and (2.10), the dashed lines are calculated using Eq. (3.5),
and the dot-dashed lines are calculated using Eq. (3.10). a) Meta-
coupled benzene for which E0 = 0. b) Meta-coupled benzene with a
modified onsite energy, ε = 0.01 tM , at the site marked with a larger
green circle. Here E0 = −0.025 eV. c) A naphthalene junction for
which E0 ≈ 1.27 eV. The currents for the naphthalene junction are

also plotted in Fig. 3.4.
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temperature approximation in Eq. (3.5). The function in the square brackets is +1
when the chemical potential is far away from E0, it is −1 when µ = E0, and it is
zero when µ = E0 ± π√

3
kBT . Consequently, the local currents cancel twice around

a destructive interference point with no special symmetry. The approximation in
Eq. (3.10) is plotted as a dot-dashed line in Fig. 3.5b, and we see that it is just on top
of the exactly calculated curve. The two approximations in Eqs. (3.7) and (3.10) are
also plotted for a naphthalene junction in Fig. 3.5c.5 Again, we see a good agreement
between Eq. (3.10) and the correct calculation (except for a slight shift).

3.2 Ring currents in graphene nanoribbons

Gated graphene ribbons is another example of nanoscopic junctions in which we expect
internal electric currents to exist [1]. Consider the system shown in Fig. 3.6, where
a zigzag graphene ribbon is gated at roughly one half of the ribbon width in a short
region. The gating modifies the charge density and therefore the Seebeck coefficient
[76], and classical field theory indicates that local currents have to exist in a zero-
net-current measurement since ∇ ×

(
j
σ

)
= ∇T × ∇S 6= 0. We model the junction

by assuming that the ungated regions to the left and right are semi-infinite ribbons.
We use a tight-binding Hamiltonian and again consider only nearest neighbor hopping
since this is sufficient to show the effect. The gated region is modeled by modifying the
onsite energies. The self-energies are calculated from an iterative procedure [77, 78],
which is shown in Appendix A.5.2, and the currents then follow from Eq. (2.9).

We use the same hopping amplitude, tM , and temperatures as shown in Table 3.1.
The chemical potential for the left lead is set to µL = 0.5 eV, while the chemical
potential for the right lead is set so that no current flows through the junction. The
onsite energies in the gated region are set to εG = 0.6 eV, while those in the ungated
region have ε = 0. The resulting bond currents are shown in Fig. 3.6, where the large
black arrows are averages of the six bond currents in each honeycomb unit. The bond
currents are shown with small arrows on top of the bonds, the longest of which has
the current intensity Ĩmax = 0.6 nA. Currents smaller than the cutoff 0.02 Ĩmax are
not shown. To get a rough estimate of the generated magnetic field in the graphene
ribbon, we consider a current of 1 nA that flows in a ring with radius 5 Å. This
generates a magnetic field of 1µT in the center of the ring. A larger temperature
difference would of cause lead to stronger currents and therefore increase the resulting
magnetic field.

3.3 Conclusions

In this chapter, we have calculated and analyzed thermoelectrically driven ring cur-
rents in single molecule junctions. By using the theory developed in Chapter 2, we
have shown that the ring currents are related to the slope of the function γij . In
Sec. 3.1.2, we showed that the ring currents change direction twice when the chem-
ical potential is passed through an energy of destructive interference. Finally, we
demonstrated the existence of ring currents in gated graphene nanoribbons.

5This is the same junction as the one plotted in the middle left of Fig. 3.4.
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 TL, μL  TR, μR VG

Figure 3.6: Local electric currents in graphene under a zero-net-
current Seebeck measurement. The gate is modeled by the onsite-
energies εG = 0.6 eV in the grey region and the chemical potential
of the left lead is chosen as µL = 0.5 eV. The small arrows in the
bonds are obtained from calculation and the longest of these has the
current intensity 0.6 nA. The big black arrows show the average of the
six currents in the particular benzene unit. The leads are modeled as
semi-infinite graphene nanoribbons with the same width as the main

region.
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Chapter 4

Thickness dependent Seebeck
coefficient in BDT crystals

The results in this chapter are collected in the paper draft in Appendix C. The paper
is not published yet, which is mainly due to the challenges described in Sec. 4.3. The
experimental results in this chapter were obtained by our collaborating group lead by
professor Xiaohui Qiu at the National Center for Nanoscience and Technology at
University of Chinese Academy of Sciences, Beijing.

As mentioned in Sec. 1.1.1, organic single molecule junctions typically have Seebeck
coefficients of a few tens of µV/K. When the organic molecules are put together to
form organic solids, the Seebeck coefficient can reach values higher 1000µV/K [38, 79–
81]. These differences are well understood, and they demonstrate that the transport
mechanisms are different in the two cases. However, the crossover from single (or
few) molecules to the microscopic regime is not well understood. This was one of the
motivations for the research project described in this chapter.

The reason for the large Seebeck coefficients in some organic solids is that they
are organic semiconductors. Organic semiconductors can have different structures,
but large Seebeck coefficients can be obtained in both polycrystalline [81], amorphous
[79], and single crystal structured organics [38, 80]. While inorganic semiconductors
have continuous energy bands, organic semiconductors have discrete levels from the
molecular orbitals [82]. For single crystal organics, which we will study in this chapter,
it is still under debate whether the transport is band-like or not [83]. However, the
Seebeck coefficient can be described by Eq. (1.10) in either case [33], and we will use
the terms valence band and HOMO levels interchangeably.

Thickness dependence of the Seebeck coefficient has been studies in different sys-
tems. In single molecule junctions where the length can be altered by e.g. using a
longer chain, several studies have been done [22, 23, 84–86]. As the length increases,
the Seebeck coefficient can either increase or decrease, and it can even change sign.
The Seebeck coefficient can be described by Eq. (1.7) in these cases and the observa-
tions are therefore due to the fact that (the slope of) the transmission function changes
with the length of the molecule. The thickness dependence has also been studied in
layered structures such as SnTe thin films [87], few-layered MoS2 [88], and bismuth
telluride nanoplates [89]. In these studies, the samples are mainly in the degenerate
limit, so that the Seebeck coefficient is explained by Mott’s formula.1 Common for
Refs. [87–89] is that the thermoelectric properties are studied in the in-plane direction.

In this chapter, we will study the thickness dependent Seebeck coefficient of an
organic single crystal semiconductor. In contrast to the mentioned studies of layered
structures, we will investigate the out-of-plane Seebeck coefficient. We will start by

1See the text below Eq. (1.9).
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describing the setup and the experimental results in Sec. 4.1. In Sec. 4.2, we will study
the connection between band bending and the Seebeck coefficient, and we will set up
two models to describe the experimental results. Finally, the challenge of knowing the
temperature difference in our setup is explained in Sec. 4.3.

4.1 BDT and experiments

We will work with experimental results obtained from crystals of the molecule α, α-
bis(dithieno[3,2-b:2,3-d]thiophene), which we will refer to as BDT. The structure of
BDT is shown to the left in Fig. 4.1a. The energy gap between the HOMO and
LUMO of BDT has been determined experimentally to be 2.8 eV [90], while density
functional theory predicts 3.2–3.6 eV [91]. From the BDT molecules, single crystals
can be grown with the packing structure shown in Fig. 4.1a [90, 92], and the formed
crystals are p-type semiconductor [90–92]. The samples were handled in atmospheric
conditions and the crystals can therefore be contaminated by e.g. oxygen. Oxygen
acts as a p-dopant in organic semiconductors, but different studies indicate that the
doping is uniform [93, 94], which is important here.

To study the thickness dependence of the Seebeck coefficient, Seebeck measure-
ments were done on samples with thicknesses ranging from 8 nm to 220 nm (the ex-
periments were done by our collaborators at UCAS, Beijing). The BDT crystals
were placed on a gold substrate and the setup was heated from underneath. A self-
modified atomic force microscope (AFM) tip was brought into contact with the sample
as shown in Fig. 4.1b, and the potential difference generated by the temperature dif-
ference across the sample was measured

Smeasured = −∆V

∆T
. (4.1)

Due to the small size of the setup, it was not possible to measure the temperature
difference across the sample directly. Instead, the temperature of the Au substrate
was measured using a thermocouple, while the temperature of the cantilever was
measured in the neighboring air. It would be ideal if we knew the temperature of
the tip. This could in principle be achieved by using a thermocouple tip [95, 96].
Our experimental group put a lot of effort into obtaining the Seebeck coefficients in
such a setup, but with no success, and we therefore have to treat the data at hand.
The challenge of knowing the temperature drop across the sample was addressed in
the author’s master’s thesis [1], where the modeling indicated that the temperature
mainly drops across the sample. For now, we will therefore assume that the measured
Seebeck coefficients are indeed the Seebeck coefficients of the samples, and we will
return to the challenge of the temperature in Sec. 4.3.

The measured Seebeck coefficients are shown in Fig. 4.1c. For thin samples, S ≈
100µV/K, and the Seebeck coefficient then increases with thickness until it saturates
at S ≈ 400µV/K for thick samples. The characteristic length of the saturation curve
is b ≈ 30 nm at which the values are half-way between the initial and saturation values.
The large values for thick samples puzzled our group for quite some time, but with the
knowledge that BDT crystals are semiconductors and the fact that semiconductors
have large Seebeck coefficients, this is now easy to understand. The positive values of
Smeasured show that BDT is a p-type semiconductor as expected [90–92].
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Figure 4.1: a) The BDT molecule to the left and the packing struc-
ture in BDT crystals to the right. b) Illustration of the experimental
setup used to obtain the Seebeck coefficients in (c) for different sample
thicknesses. All experiments were done by our collaborators at UCAS,

Beijing. Figures (a) and (b) were preduced by our collaborators.

4.1.1 Band bending

When two materials are brought into contact with each other, charges will move from
one material to the other if the materials have different chemical potentials (relative
to the vacuum energy) [97]. The transferred charges will stay close to the junction
forming a charged region. Consider a metal in contact with a p-type semiconductor:
Since the electric field has to be zero in the metal, the charges on the metal side are
located at the junction. However, on the semiconductor side, the charges can spread
into the material with a characteristic length known as the Debye length, λD. The
electric potential from the accumulated charges will cause the energy bands of the
semiconductor to bend. The bands can bend in different directions depending on the
chemical potentials of the materials. If electrons are injected from the metal into the
p-type semiconductor, the bend bands will act as a barrier for the holes. This is known
as a Schottky barrier. On the other hand, if holes are injected from the metal into
the p-type semiconductor, the formed layer is known as an accumulation layer, which
does not have the effect as a barrier. We will return to the mathematical description
of band bending in Secs. 4.2.1 and 4.2.2.

To study the band bending in BDT crystals, Kelvin probe force microscopy (KPFM)
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was used to measure the surface work function. The surface work function is the en-
ergy required to remove an electron from the surface of the material to the vacuum
close to the surface. We will here give a short description of the KPFM technique; a
more thorough description can be found elsewhere [98, 99]. In KPFM, a conducting
AFM tip is brought into electric contact with the sample. Depending on the surface
work function of the sample relative to the work function of the AFM tip, charges
will be exchanged. When the AFM tip is brought close to the sample after contact,
an attractive electrostatic force between the sample and the tip is present due to the
exchanged charges. When an external bias is applied with the same magnitude as
the difference in work functions, the force cancels. KPFM can therefore be used to
measure the surface work function [99].

Au BDT
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Figure 4.2: a) KPFM measurement of BDT samples of different
thicknesses. The experiment was done by our collaborators at UCAS,

Beijing. b) Schematic illustration of the band bending.

The results of the KPFM measurements are shown in Fig. 4.2a (the experiments
were done by our collaborators). We see that the surface work function decreases for
thicker samples and the results seem to follow a typical band bending curve. However,
KPFM is not a direct measure of band bending since the surface work function can
be affected by e.g. surface dipoles created by absorbents [99]. Additionally, while we
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are interested in the band bending profile inside a sample, the results in Fig. 4.2a
only show what goes on at the surface of multiple individual samples [100]. However,
the KPFM results give us the direction of the band bending, as shown schematically
in Fig. 4.2b, which shows that holes are injected into the BDT crystals forming an
accumulation layer at the interface. It also gives a rough estimate of the Debye length,
which is comparable to the characteristic length of the Seebeck coefficients in Fig. 4.1c.
This observation indicates that the saturation curve of Smeasured(d) could be due to
the band bending: a connection that we will study in the following sections.

To get an additional independent measurement of the band bending in BDT, we
tried to use Raman spectroscopy on the different sample thicknesses. The author
build a model to extract information about the band bending, but the result was not
realistic. We will here give a short description of the model: The accumulated charges
close to the substrate give rise to an electric field. This field can affect the vibrational
modes of the BDT molecules close to the surface via the so-called vibrational Stark
effect [101]. Since the Raman signal is the sum of signals from all the BDT molecules
in a crystal, one can expect the band bending to introduce an assymetry in the
peaks. This was indeed observed in the experimental data, which showed an increasing
asymmetry with increasing sample thickness (for some of the Raman peaks). The
author build a simple model and fitted it to one of the experimentally obtained Raman
peaks (for all thickness simultaneously). The best fit was obtained for λD = 3 nm and
a difference dipole of 3 Debye. According to the litterature, compounds similar to BDT
have difference dipoles of around 0.03–0.12 Debye [101, 102]. The obtained value is
therefore unrealistically high, while the Debye length is small compared to the one
indicated by the data in Fig. 4.2a. Possible explanations are that the electric field is
too small for the band bending to play a role and that the observed asymmetry of the
peaks is due to lattice deformations close to the substrate. We therefore continued
with the KPFM measurements as the only indicator for the band bending.

4.2 Band bending and Seebeck coefficient

Since charges are injected into the semiconductor in a metal/semiconductor junc-
tion, one can expect that the band bending affects the transport properties of the
semiconductor. It has been shown theoretically [103] as well as experimentally [104,
105] that the inclusion of metallic nanoparticles in semiconductors can increase the
Seebeck coefficient. These observations are described by the band bending at the
metal/semiconductor interfaces, which gives rise to an energy-filter effect: the scatter-
ing time of the charge carriers is strongly energy dependent. Another study measured
the in-plane Seebeck coefficient of bismuth telluride nanoplates of different thicknesses
[89]. Due to oxygen and nitrogen exposure from the air, the energy bands bend at the
surfaces of the nanoplates. In their analysis, they show that band bending is essential
in order to describe the thickness dependence of the transport properties [89].

We will now follow a similar procedure as in Ref. [89] and show that the obser-
vations in the Seebeck measurements in Fig. 4.1c can be described by band bending.
In contrast to the work in Ref. [89], the BDT measurements are done in the direction
perpendicular to the band bending interface. To the knowledge of the author, this
has not been done before.

Since the transport direction is along the crystal c-axis shown in Fig. 4.1a, each
of the molecular layers in the BDT crystals have a thickness of around 5Å. Even the
thinnest BDT sample (d = 8 nm) therefore has around 16 layers of molecules. The
thinnest sample consequently has thousands of BDT molecules in the volume close to
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the AFM tip. Because of this large number of molecules, it is reasonable to assume
the material to be continuous with locally defined transport properties, and we will
use the classical transport equations to treat the problem. We will start out by using
a 1D model to demonstrate the connection between band bending and thermopower.
In Sec. 4.2.2, we will move on to a more sophisticated 3D model, which takes into
account the geometry of the setup.

4.2.1 Theoretical explanation: 1D model

We will start by neglecting the 3D geometry of the setup in Fig. 4.1b and consider
the transport to be one-dimensional. In order to build a model that includes both the
band bending and the Seebeck coefficient, we will consider the following three steps:
(1) Given a position dependent Seebeck coefficient, calculate the effective Seebeck
coefficient.2 (2) For a band bending profile, determine the position dependent Seebeck
coefficient. Finally, (3) determine the band bending profile. The model will eventually
be fitted to the experimentally obtained Seebeck coefficients.

The electric field generated by the Seebeck effect is E = Slocal(x)dT
dx , where

Slocal(x) is the position dependent Seebeck coefficient. The potential difference across
the sample is ∆V = −

∫ d
0 dxSlocal(x)dT

dx and since phonons dominate the heat trans-
port in organic crystals, we can consider the temperature gradient to be constant.3

With this, the effective Seebeck coefficient, S = −∆V/∆T , is

S(d) =
1

d

∫ d

0
dxSlocal(x), (4.2)

which is the continuous analogue to Sseries in Eq. (1.13) with identical thermal re-
sistances. If the BDT crystal is a non-degenerate semiconductor at all positions, we
can model the local Seebeck coefficient by Eq. (1.10). We assume that the transport
levels around the HOMO energy are narrowly distributed so that the constant Av in
Eq. (1.10) can be neglected4

Slocal(x) =
kB
e

(
µ− εH(x)

kBT

)
, (4.3)

where εH(x) is the HOMO energy level (or valence band edge) at position x. With
these two equations, we can calculate the effective Seebeck coefficient when the band
bending profile is known.

To model the band bending, we use Poisson’s equation ∇2V (r) = −ρ(r)
ε . We will

keep it in the 3D form so that we can reuse the expressions in the proceeding section.
The charge density is ρ(r) = e [p(r)− nd], where p(r) is the density of holes, while nd
is the density of dopants. Oxygen is an example of a dopant and as described earlier,
we expect its concentration to be uniform [93, 94]. Using the standard equations for
semiconductors (see e.g. Ref. [97]), we can rewrite Poisson’s equation as

∇2V (r) =
end
ε

(
1− exp

[
eVbulk − eV (r)

kBT

])
, (4.4)

where Vbulk is the bulk potential in thick samples. We will now follow the text books
and linearize the above differential equation. The reason is that the above is very

2By effective Seebeck coefficient we mean the one that would be measured.
3Phonons are not affected by the band bending.
4This is equivalent to the narrow band approximation, which is good in the case of a polaronic

transport model. See e.g. Sec. 1.5.4 in Ref. [33].
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difficult to solve in the 3D case. The linearization is a good approximation when
e(Vbulk− eV (r))� kBT , which is unfortunately not the case for BDT. As the KPFM
results in Fig. 4.2a indicate, the bands bend more than the thermal energy (kBT ≈
25 meV). However, the linearized equation captures the shape of the band bending,
and we will therefore use it as a model,

∇2V (r) ≈ 1

λ2
D

[V (r)− Vbulk] , (4.5)

where we defined the Debye length λD =
√

e2nd
εkBT

, which will be used as a fitting
parameter. In the 1D case, we can write the solution to the above equation as V (x) =
Vbulk + V1ex/λD + V2e−x/λD . The position dependent valence band edge is εH(x) =
ε0−eV (x), where ε0 is the band edge energy of BDT before contact. If we assume the
work functions of the two contacts connecting BDT to be equal, εH(0) = εH(d) = ε0,
we get the solution

εH(x) = ε0 + (εbulk − ε0)

[
1− 1

1 + exp(−d/λd)
(

e−x/λd + e(x−d)/λd
)]
, (4.6)

where εbulk− ε0 = −eVbulk. Here εbulk is the valence band edge in the bulk of a thick
sample and d is again the sample thickness. By combining Eqs. (4.2), (4.3), and (4.6)
and performing the integral, we get an expression for the effective Seebeck coefficient

S(d) =
kB
e

[
µ− εbulk
kBT

+
2λd
d

εbulk − ε0

kBT
tanh

(
d

2λd

)]
. (4.7)

With Eq. (4.7), we now have an analytic model, which can be fitted to the experimen-
tally obtained Seebeck coefficients in Fig. 4.1c. The best fit curve is shown together
with the experimental data in Fig. 4.3a, where we see that the model fits the data
very well. The values for this curve are (the energies are relative to µ = 0)

λD,1D = 10.4 nm

ε0,1D = −0.029 eV

εbulk,1D = −0.115 eV.

(4.8)

The valence band edge for a d = 200 nm sample is shown in Fig. 4.3b, where we have
set µ = 0. This band bending profile is comparable to the experimentally obtained
surface work functions shown in Fig. 4.2a.

The above analysis is an evidence that the observed thickness dependence of the
Seebeck coefficient is due to band bending. As mentioned, the analysis is similar
to the one done by Pettes et al. [89], but our experiment is done perpendicular to
the band bending interface. Since we used a tip as one of the metal contacts, there
are several three-dimensional effects that can play a role. There is for example a
thermal constriction resistance associated with the heat transfer into the small BDT-
tip interface, heat can be transported through the sorrounding air, and so on. We
will therefore do a similar analysis as the above, but with the 3D geometry of the
setup taken into account. This also gives rise to a theoretical finding: the existence
of internal electric currents.
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Figure 4.3: a) The best fit of the 1D model together with the exper-
imental data. b) The band bending in a 200 nm thick sample for the

best fit parameters of the 1D model.

4.2.2 Theoretical explanation: 3D calculations

As motivated above, we will now do a more thorough calculation in which the 3D
geometry is included. Due to the complicated geometry, we will solve the differential
equations numerically and we need to specify the dimensions and transport properties
of the setup. The calculation region will include the sample, the Au substrate, a small
part of the tip (100 nm), and the air surrounding the tip. A tip-sample contact radius
of 10 nm is used. The sample is anisotropic since it e.g. conducts electricity easier in
the π-π stacking direction. However, to make the calculation easier, we will ignore
the anisotropy so that the calculation region becomes cylindrically symmetric, which
reduces the problem to 2D. As a side node, the author tried to include an anisotropic
electrical conductivity in the calculation, which did not affect the result significantly.

Just as the Seebeck coefficient is affected by the band bending, so is the electrical
conductivity. The conductivity is proportional to the number of charge carriers, which
increases in the BDT experiments due to hole injection from the substrate. The
number of holes is p(r) ∝ exp

[
−µ−εH(r)

kBT

]
where εH(r) is again the position dependent
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Table 4.1: Electrical conductivities, thermal conductivities, and See-
beck coefficiens at room temperature. The transport properties of the
metals are from Refs. [6, 106]. *) σ0 is the prefactor used in Eq. (4.9).
**) The thermal conductivity of BDT is not known, but typical values
of organic films are 0.2–0.7 W m−1 K−1 [107]. ***) From Ref [108].

Material σ [S/m] κ [W m−1 K−1] S [µVK−1]

Au 4.6× 107 317 1.9
Pt 9.6× 106 72 −5.3
BDT σ0 = 102∗ 0.3∗∗

Air 0 0.026∗∗∗ 0

valence band edge, and we can therefore write the position dependent conductivity as

σ(r) = σ0 exp

[
−µ− εH(r)

kBT

]
. (4.9)

The conductivity of the BDT crystals have been measured to be around 10 S/m (see
Appendix C) and we use σ0 = 102 S/m, which leads to local conductivities of around 1–
30 S/m for the band bending profile in Fig. 4.3b. The rest of the transport parameters
are independent of the band bending, and they are listed in Tab. 4.1.

In order to calculate the effective Seebeck coefficient, we will follow a procedure
similar to the one used in Sec. 4.2.1. For each sample thickness, the following steps
are performed

1. Band bending profile: The differential equation in Eq. (4.5) is solved with the
fixed boundary condition V (rboundary) = 0 at both the Au and tip contact
regions. λD and Vbulk are inputs in this step. The valence band edge is εH(r) =
ε0 − eV (r).

2. Local Seebeck coefficient: The local Seebeck coefficient is calculated using Eq. (4.3).

3. Effective Seebeck coefficient: By solving the coupled differential equations ∇ ·
je = 0 and ∇ · jq = 0 simultaneously under the zero-net-current condition as
described in Sec 1.2, the effective Seebeck coefficient can be obtained.

With the input parameters λD, Vbulk, and ε0, the effective Seebeck coefficient is cal-
culated for all thicknesses. An optimization procedure is run in order to obtain the
parameters that describe the experimental data in Fig. 4.1c best. The best-fit param-
eters are (the energies are again relative to µ = 0)

λD,3D = 25.8 nm

ε0,3D = −0.029 eV

εbulk,3D = −0.156 eV

(4.10)

The fitted curve is plotted together with the experimental data in Fig. 4.4a, and again,
we see a good agreement. The local Seebeck coefficient in the cross section of a 45 nm
thick BDT sample is plotted in Fig. 4.4b. Here the sample is in contact with the Au
substrate on the lower part of the plot (z = 30 nm), and it is in contact with the tip
in the region −10 nm < r < 10 nm and z = 75 nm.5 Close to the metal interfaces, the

5Remenber that the system is considered to be cylindrically symmetric. The symmetric part to
the left of r = 0 is shown to make the plot easier to read
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Seebeck coefficient is smallest, while it takes larger values away from the interfaces.
Due to the small BDT-tip contact area, there are great variations in Slocal in the
r̂-direction, which illustrates the importance of the three-dimensional model.
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Figure 4.4: a) The experimental Seebeck coefficients and the effective
Seebeck coefficient calculated using the 3D model with the parameters

in Eq. (4.10). b) The local Seebeck coefficient for d = 45 nm.

The Debye length obtained with the 3D model is about 2 times larger than the
one obtained in the 1D analysis. This can be explained by the thermal constriction
resistance, which causes the main temperature drop to occur close to the sample-tip in-
terface. This is seen in the temperature map of a 45 nm thick BDT sample in Fig. 4.5a.
Since the electric field generated by the Seebeck effect is E(r) ≈ Slocal(r)∇T , it is
therefore mainly the band bending around the BDT-tip interface that affects the mea-
sured Seebeck coefficient. Put differently, the Seebeck coefficient in the 1D model is
affected by two band bending regions, while it is only affected by one in the 3D model.

As explained in the introduction in Sec. 1.2, local currents can exist in Seebeck
measurements even though the through current is zero. We can calculate the local
currents in the 45 nm thick BDT sample by inputting the temperature and electric
potential maps in Figs. 4.5a and 4.5b into Eq. (1.1). This yields the current densities
shown in Fig. 4.5c. We see that the local electric currents in the sample follow a
ring pattern. Electric current enters the sample from the Au substrate far away from
the tip and then exits the sample close to the tip. Remember that the in and out
going currents cancel each other. The current density, jz, in the sample close to the Au
substrate (z = 35 nm) is plotted in Fig. 4.5d. This illustrates that the current densities
are very small, but if we integrate them up, we find that a current of I ≈ 0.1 nA flows
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Figure 4.5: Calculation results for a sample of thickness d = 45 nm.
a) and b) Temperature and electric potential maps of a cross section
of the setup. c) Local electric currents in the sample. Notice that
the total current through the setup is zero. d) The current density jz

plotted along the line at z = 35 nm.

through the disk at (0 < r < 45 nm, z = 35 nm). Even though the ring current is
small, it has to be included in the calculation in order to do it correct [1], and it is
interesting from a theoretical perspective.

4.3 The challenge of knowing the temperature drop

The analysis done in Sec. 4.2 demonstrates that band bending can be observed directly
in a Seebeck coefficient measurement. However, as mentioned in the beginning of the
chapter, the described analysis is based on the assumption that the measured Seebeck
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coefficient is the same as the Seebeck coefficient of BDT crystal. Since the temperature
is measured far (relative to the sample thickness) away from the sample, there can be
temperature drops in other parts of the setup. This has led to different views on how
to interpret the data, and it is the main reason why the paper draft in Appendix C is
not finished and published. In the following, the author will argue that the analysis
in Sec. 4.2 is valid and explain the opposing view on how to treat the data.

Temperature drop across the sample

It is very difficult to estimate the relation between the measured temperatures and the
temperature across the sample. In a scanning thermal microscope, a thermocouple
tip is used so that the temperature is known at the tip itself. Even in this case, it is
difficult to know the exact temperature across the sample [96, 109, 110]. We will start
by considering the simple model in Fig. 4.6, which, despite its simplicity, illustrates
one of the challenges. For a more complex model, see e.g. Ref. [110]. The components
in Fig. 4.6 are connected in series and the Seebeck coefficient is therefore given by
Eq. (1.13). If we simplify the sample as a cylinder so that the thermal resistance is
Rq,s = d/(κsAs), we can write

S =
SsRq,s + SARq,A
Rq,s +Rq,A

(4.11)

≈ Ssd+ c

d+ b
(4.12)

where b = κsAsRq,A and c = κsAsSARq,A. Since the tip and substrate are metals, they
have small Seebeck coefficients and we can neglect c. From the model in Eq. (4.12), it
is clear that the Seebeck coefficient starts out at S(d = 0) = c/d and then saturates
at the value Ss for thick samples. If we assume the Seebeck coefficient of BDT to be
constant as a function of thickness, we can fit Eq. (4.12) to the experimental data in
Fig. 4.1c. This gives a good fit with bfit ≈ 32 nm.

In the beginning of this research project, we were convinced that the observed
saturation curve in the thickness dependent Seebeck coefficients was indeed due to
the varying temperature drop. However, we were not able to describe the large value
of b = 32 nm. A thorough attempt was done in the author’s master’s thesis, where the
thermal resistance of the sample and parts of the tip were modeled using the FEM,
while the remaining components were calculated by hand [1]. Inserting the obtained
values into Eq. (4.11), we obtained a characteristic length of b ≈ 1 nm (see Sec. 2.1.2
in Ref. [1]), which indicates that the temperature mainly drops across the sample.
This is the reason that we have assumed the measured Seebeck coefficients to be the
Seebeck coefficients of the BDT crystals in Sec. 4.2.

A proper analysis will include both the band bending and the varying temperature
drop. This can be done by following the procedure in Sec. 4.2.2 and additionally
calculating Rq,s in Eq. (4.11) using the FEM, while using Rq,A as a fitting parameter.
In the paper draft in Appendix C, we used a flat prior with a minimum value for Rq,A,
and the calculation ended up at this minimum limit.6

To add to the complication of the temperature drop, the temperature is actually
measured in the surrounding air. If we take heat conduction through air into account
in the Fourier/Ohm’s law analysis, an additional constant shows up,

S ≈ k Ssd

d+ b̃
, (4.13)

6If no prior knowledge is used, the best fit value is Rq,A = 0.
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Figure 4.6: A simple 1D model of the setup used to illustrate the
connection between the measured temperature difference and the tem-
perature drop across the sample. ’s’ refers to the BDT sample, while

the component ’a’ includes the remaining parts of the setup.

which is derived in Appendix B.1. The length b̃ depends on the heat conduction
through air. The constant k is independent of the sample thickness and it was mea-
sured by our collaborators at UCAS to be k = 0.58, but the author does not have
sufficient information to describe the measurement here. The constant was included
in the paper draft in Appendix C.

Different view on the how to treat the data

The challenge of knowing exactly what is measured split our research group into two.
I (the author) will here give a short description of the other view on how to treat the
data and why I think the treatment is not correct.

The effective Seebeck coefficient is S(d) = Ss(d)·d
d+b , just as in Eq. (4.12). It is

assumed that Ss(d) is constant for thick samples (d > 20 nm) so that S(d) can be
fitted to the experimental data to get rid of the temperature issue. The data is then
rewritten on the form

Ss(di) = Si

(
1 +

bfit
di

)
, (4.14)

where Si is the measured Seebeck coefficient for a sample of length di. In this way, the
Seebeck coefficient of the sample is plotted directly. The resulting representation of the
data shows an almost constant Ss for thick samples. As the samples get thinner, the
spread around the constant value increases. Finally, the thinnest sample of thickness
d = 8 nm has a Seebeck coefficient about 35 % larger than the other data points. This
single data point indicates an enhancement of the Seebeck coefficient for thin samples,
and it has been the main focus in the other part of the group.

There are several reasons that I do not agree with the above procedure. First of
all, there is no good physical argument that the BDT Seebeck coefficient should be
constant for thicknesses above 20 nm. In fact, the KPFM results in Fig. 4.2 indicate
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that the band bending affects samples up to d ≈ 100 nm and as described in the pre-
ceding sections, the transport properties are affected by band bending. Additionally,
if the thickness dependence of the sample itself can be described by the saturation
curve Ss(d) = Sconstd/(d+ bBDT), it is not possible to separate the two effects. This
is seen mathematically by inserting this Ss(d) into Eq. (4.12) (neglecting the constant
c)

S(d) =
Sconst · d
d+ bBDT

d

d+ b

=
Sconst · d

d+ (b+ bBDT) + b·bBDT
d

(4.15)

from which it is clear that b and bBDT cannot be separated.
Secondly, by representing the data as in Eq. (4.14), small deviations in Si will

appear large for thin samples due the the last term in the parentheses. This is why
a larger spread is observed in the data for thinner samples in this representation.
Additionally, the hypothesis is based on a single data point at d = 8 nm.

Finally, there is no physical theory that supports the idea of an enhanced Seebeck
coefficient for the thinnest sample. A possible explanation is the change in dimension-
ality from 3D to 2D [25, 111], but the 8 nm sample contains multiple layers of BDT
molecules and it has not been possible to set up a model that supports the idea.

4.4 Discussion

In this chapter, we have studied the thickness dependence of Seebeck coefficients in
BDT crystals. The experimental results showed that the Seebeck coefficient of the
thinnest sample is around 100µV/K and it then increases with thickness until it
saturates at around 400µV/K for thick samples. Additionally, KPFM measurements
demonstrated the existence of energy band bending in the BDT samples close to a
Au-BDT interface. We have set up two models, that connect these experimental
observations and therefore indicate that the observed thickness dependence of the
Seebeck coefficient is due to band bending. In the model in Sec. 4.2.1, we approximated
the setup to be one-dimensional, which was sufficient to get a good fit to the data.
In Sec. 4.2.2, we took into account the geometry of the setup, which e.g. revealed
the existence of ring currents in the thermoelectric setup. Both models give a Debye
length of a few tens of nanometers, which is consistent with the results from the
KPFM measurements.

To the knowledge of the author, our study is the first in which the thickness depen-
dence of the out-of-plane Seebeck coefficient is measured. In contrast to the work by
Pettes et al. [89], which studies the in-plane Seebeck coefficient, we have demonstrated
that band bending can be observed directly in a series of Seebeck coefficient measure-
ments. However, our setup has some disadvantages. As described in Sec. 4.3, it is
difficult to know the actual temperature drop across the sample. As a consequence,
we can not be sure that the measured Seebeck coefficient is that of the sample. The
length dependence of Smeasured is therefore due to a combination of the band bend-
ing and the temperature effect, but as we argue in Sec. 4.3, the band bending effect
dominates.
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Part II

Spins out of equilibrium
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Chapter 5

Introduction

In this second part of the thesis, we will stay within the topic of nonequilibrium
physics, but we will move to a quite different system. We will turn off the temperature
difference and instead study how an electric current influences the “motion” of localized
magnetic moments. In the following chapters, we will derive the equation of motion
(EOM) for a two-spin system and we will see that an electric current can drive the
system into unexpected configurations.

When a quantum mechanical system is in contact with an environment (a bath),
it can loose its phase and therefore its quantum mechanical character. One can think
of it as if the environment is doing measurements on the quantum system, which
“collapses” the system wavefunction. The system consequently turns classical. As an
example, it has been shown that in the semiclassical limit, the dynamics of a quantum
mechanical particle follows a Langevin equation, when it is interacting with an envi-
ronment of a large number of harmonic oscillators [112, 113]. The environment gives
rise to frictional and fluctuating forces, and these are connected via the fluctuation–
dissipation theorem. If the system has two or more degrees of freedom, the interaction
with the environment can couple these degrees of freedom. In equilibrium, the forces
are symmetric in the coordinates; i.e. if the force on one mode is given by fx = −ky,
then there is a similar force on the other given by fy = −kx.

When the environment is brought out of equilibrium, new “forces” appear in the
EOMs.1 This has been studied for atoms coupled to electronic reservoirs out of
equilibrium [114–117]. The nonequilibrium conditions give rise to forces that are
antisymmetric in the coordinates. I.e. if the force on one is fncx = −ay, it is fncy =
ax on the other, where the coefficient a vanishes when the system is brought to
equilibrium. This is a non-conservative force field, which means that energy can be
pumped into the system when it moves along a closed trajectory. Consequently, energy
leaves the system when it follows the trajectory in the opposite direction. In the case of
atoms in a nonequilibrium electronic environment, antisymmetric velocity dependent
forces also appear. A simple example of such forces is fLx = bẏ and fLy = −bẋ. This
is the antisymmetric version of friction, but it is more like a Lorentz force; it cannot
change the energy of the system.

In this thesis, we will consider a system of two localized magnetic moments which
couple via a simple current-carrying metal. We will often refer to the moments as
spins. In Sec. 5.1, we will start by introducing the equilibrium version in which the
well-known RKKY interaction couples the two spins. In Sec. 5.2, the literature on
spins coupled to a nonequilibrium electronic bath is reviewed. The calculation of the
EOM for a two-spin system coupled to a nonequilibrium metal is carried out in the
following chapter.

1In the case of angular momenta, we have torques instead of forces. This is the reason for the
quotation marks.
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5.1 Coupled spins in equilibrium

5.1.1 The RKKY interaction

As mentioned, localize moments in a metal can couple via the conduction electrons.
This was first discovered for nuclear spins that couple to conduction electrons through
the hyperfine interaction [118], and later for d-electron spins [119, 120]. The indirect
interaction is known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction after
its founders. We will here briefly go through the derivation of the interaction and many
of the introduced elements will be used in Chapter 6, where nonequilibrium effects
are to be included.

Consider a system of two localized spins in a metal as illustrated schematically in
Fig. 5.1. The system is described by the Hamiltonian

H = H0 +Hint, (5.1)

where the Hamiltonian for the isolated systems is

H0 =
∑

kσ

εkc
†
kσckσ −B · (S1 + S2). (5.2)

Here the creation (annihilation) operator creates (removes) an electron with wave
number k and spin σ. We consider the conduction electrons to be free-electron-like,
so that the dispersion can be written as εk = ~2k2

2m , where m is the effective mass. B
is the field in which direction the spins preferably want to point and we have chosen
the spin operators S to be dimensionless so that B has units of energy. B is related
to the real magnetic field by B ≡ ~γBmagnetic = −gµBBmagnetic, where γ is the
gyromagnetic ratio, µB is the Bohr magneton, and g is the g-factor.

S2
S1

R2-R1

Figure 5.1: Illustration of two localized spins in a metal.

The conduction electrons interact with the localized spins via a direct exchange
coupling. We can write the interaction as Hint = −∑n

∫
dr Jr(r − Rn)Sn · s(r),

where Rn is the position of spin n, Jr(r−Rn) is the exchange coupling, while s(r) is
the spin density of the conduction electrons. The interaction is short range and can
be approximated by a delta function [120, 121], Jr(r −R) = J0δ(r −R), so that

Hint = −J0 [S1 · s(R1) + S2 · s(R2)] . (5.3)
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However, the interaction of course has a finite width, which one has to keep in mind.
The spin density of the conduction electrons is

s(r) =
1

2

(
ψ†↑(r) ψ†↓(r)

)
σ

(
ψ↑(r)
ψ↓(r)

)

=
1

2V
∑

kk′
e−i(k−k

′)·r∑

σσ′
c†kσσσσ′ck′σ′ ,

(5.4)

where we inserted the field operator, ψσ(r) = 1√
V
∑
k eik·rckσ. Notice that with the

above definition of Hint, the exchange coupling J0 has units of m3 J.
If the interaction is considered as a perturbation, the first order process will cause

the conduction electrons to spin-polarize [120] - a polarization that oscillates and
decays when moving away form the localized spins. The second order processes allow
the transfer of angular momentum from one localized spin to the other. One way
to think about it is that the polarized conduction electrons from one localized spin
interact with the other. Second order perturbation theory will therefore lead to an
effective Hamiltonian for the localized spins, which are indirectly coupled via the
conduction electrons

Heff = −B · (S1 + S2) + J(R)S1 · S2 + Elocal (5.5)

where R = |R2 −R1| is the distance between the spins as seen in Fig. 5.1. At low
temperatures, the indirect exchange coupling is [118, 120]

J(R) =
J2

0k
6
F

4π3εF
F (2kFR), (5.6)

where εF is the Fermi energy and kF is the Fermi wave number. The distance depen-
dent function is

F (x) =
x cosx− sinx

x4
, (5.7)

which goes as F (x) ≈ x−3 cosx for large x. If the exchange coupling is negative (pos-
itive), the spins preferably align (anti-align) and we call the coupling ferromagnetic
(antiferromagnetic). Since the coupling oscillates, the spins will be ferromagnetically
coupled at some distances and antiferromagnetically coupled at others.

The term Elocal in Eq. (5.5) includes the first and second order correction that only
involves the localized spins separately. All these corrections are constants. However,
with the model in Eq. (5.3), one will encounter diverging second order terms. The
reason is the delta function potential, which was chosen to make the calculation easier.
Giving the potential a finite width, which can be done by setting a cutoff for the Fourier
components of Jr(r −R), the integrals will converge.

Magnetic dipole-dipole interactions are also present between the localized spins,
but they are weak compared to the RKKY interaction [122], and they are therefore
neglected in this thesis.

5.1.2 Equation of motion

Having established the mechanism for the exchange interaction of interest, we will now
consider how a spin system evolves in time. To do so, we can study the time derivative
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of the spin operator using the Heisenberg equation of motion, dŜ1
dt = i

~

[
Heff, Ŝ1

]
,

dŜ1

dt
= −1

~
B × Ŝ1 +

J

~
Ŝ2 × Ŝ1, (5.8)

where the commutation relation [Ŝαi , Ŝ
β
j ] = iδijεαβγŜ

γ
i was used. The same equation

holds for 1↔ 2. We have included hats in the above equations to stress that the Ŝ’s
are quantum mechanical operators. If we remove the hats and consider the S’s as
classical angular momentum vectors, Eq. (5.8) becomes the Landau-Lifshitz equation
[123]. In the classical version of Eq. (5.8), the spin vectors will precess around their
local field forever. However, in real systems, the spins will relax to the ground state
after some time. To ensure this, a relaxation term was suggested by Gilbert in 1956
[124],

dS1

dt
= −B1 × S1 + η0

dS1

dt
× S1, (5.9)

where η0 is the Gilbert damping constant and B1 = (B − JS2)/~ is the local field
felt by spin 1. The above equation is known as the Landau-Lifshitz-Gilbert (LLG)
equation. Landau and Lifshitz also suggested a phenomenological relaxation term,
−λS × (S ×B), which is mathematically equivalent to the Gilbert term [124, 125].

Even though the phenomenological LLG equation has been known for about 60
years and is in good agreement with experiments, the microscopic origin of the re-
laxation is still under debate [126]. Several theories give rise to Gilbert damping,
including coupling to phonons [127] and spin-orbit coupling [128]. The coupling to
conduction electrons also gives rise to Gilbert damping [129–131], and it has the form2

η0 =
π

8
J2

0ρ(εF )2, (5.10)

when the Hamiltonian is defined as in Eqs. (5.1)–(5.3). Here ρ(εF ) = mkF
π2~2 is the

density of states at the Fermi energy. In the case of two (or more) spins, the interaction
in Eq. (5.3) also introduces non-local damping terms of the kind η1Ṡ2×S1 [131, 132],
which we will see in our derivation in Chapter 6 as well.

5.2 Spins in nonequilibrium conditions

Based on the previous sections, it is now interesting to ask what happens to the
dynamics of a spin, when the conduction electrons are brought out of equilibrium.
This has been studied for single magnetic moments [133, 134] and single magnetized
regions [129]. Bode et al. did a theoretical study of a single-molecule magnet in a
junction with spin-polarized leads [133]. They found that a potential difference gives
rise to non-conservative torques, which can force the moment to point anti-parallel
to the magnetic field. However, when the spin polarization is turned off, they are
left with the standard LLG equation. The concept of spin-transfer torques has been
known for quite some time [135, 136] and there has in general been a large focus on
how spin-polarized currents affect magnetic systems. As Brataas et al. state in the first
sentence of their Nature Materials review: “The magnetization of a magnetic material
can be reversed by using electric currents that transport spin angular momentum” [137].
However, as we are about to demonstrate, the magnetization can also be reversed by
a charge current.

2 The Gilbert coefficient is stated in [130, 131], but some rewriting is required.



Chapter 5. Introduction 50

When two magnetic moments couple to conduction electrons, nonequlibrium con-
ditions can modify the RKKY interaction. This has been shown in both a tunnel
junction [138] and a two-dimensional electron gas [139]. However, the nonequilibrium
effects on multiple magnetic moments have not been studied much in the literature.
This was one reason for looking into the field, but after finishing the calculation in
Chapter 6, we discovered that a similar study had already been done. Onoda et al.
calculated the EOMs for multiple spins coupled via conduction electrons that carry
both charge and spin currents [131]. In addition to the torques from the spin-polarized
current, they found that a charge current renormalizes the exchange torques and gives
a correction to the non-local damping.3 They did not calculate, or at least present,
the explicit expressions for the torques generated by the charge currents. Furthermore
the article by Onoda et al. focuses on the spin current, but there is some unexplored
interesting physics in the EOMs induced by the charge current as well. We will take
a closer look at these points in the following chapters.

3This is expressed using the words from Ref. [131]. As we will see in the following chapters, the new
torques are more than just corrections to the equilibrium terms, since they appear antisymmetrically
in the EOMs.
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Chapter 6

Coupled spins out of equilibrium

Some of the results in this chapter are included in the paper draft in Appendix F.

In this chapter, we will calculate the equation of motion (EOM) for a two-spin
system, which is in contact with a simple metal out of equilibrium. In contrast to
the studies of nonequilibrium effect on atomic motion [114–117], we will calculate the
effect of an electric current rather than an applied bias. The current is included by
shifting the Fermi sphere as shown in Fig. 6.1 and this will be included in the density
matrix in Sec. 6.2.3. As mentioned in the previous chapter, this is similar to the work
done in Ref. [131].

To describe the system, we will use the Hamiltonian in Eqs. (5.1)–(5.3), which was
used to derive the RKKY interaction. We will again go to second order in the local
exchange in order to find how the indirect coupling affects the dynamics of the spins.
The derivation in this chapter is rather technical, but our goal can be expressed as
follows: as the localized spins rotate in an electronic environment, they can excite
electron-hole pairs of the electron gas. These electron-hole pairs act back on the spins
as torques, which are the ones we are interested in. Before doing the derivation, some
important mathematical tools will be introduced.

6.1 Introduction to coherent states

Coherent states are important, when we will construct different path integrals in the
following. In this section, we will briefly introduce both spin and fermionic coherent
states.

6.1.1 Spin coherent states

When constructing a spin path integral, it is convenient to use spin coherent states.
A spin coherent state for a single spin can be defined as [140]1

|a〉 ≡ e−iφS
z
e−iθS

y |↑〉 , (6.1)

where |↑〉 = |S,m = S〉, so that Sz |↑〉 = S |↑〉. We have considered the spin operators
to be dimensionless. The rotation operators in front rotate the state, |↑〉, so that it
will point ’up’ along the vector with spherical polar angles θ and φ. A useful property
of the spin coherent state is therefore that the expectation value of the vector of spin
operators is

〈a|Ŝ|a〉 = Sn = S




sin θ cosφ
sin θ sinφ

cos θ


 , (6.2)

1It is normally defined with a phase factor e−iψS , which is excluded here.
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kx

ky

Δk

j

Figure 6.1: The electronic system is brought out of equilibrium by
displacing the Fermi sphere. The figure shows a cross section of the
sphere displaced by ∆k, which is taken to be along kx in this figure.
The electronic states are occupied in the grey region. The displace-
ment, ∆k, is small compared to the Fermi wave number, kF , but it is

exaggerated here for visualization purposes.

where n is a unit vector pointing along the direction determined by the spherical polar
angles θ and φ. This can be shown by using [140]2

eiθS
i
Sje−iθS

i
= Sj cos θ − εijkSk sin θ, (6.3)

which is true for i 6= j (for i = j, it is simply eiθS
i
Sie−iθS

i
= Si). We can write the

identity operator for a single spin in terms of the coherent states as [141]

1 =
2S + 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ |a〉〈a| . (6.4)

The identity is an important ingredient when constructing the spin path integral.
In the particular problem at hand, we consider a system with two spins. The spin

coherent states are therefore

|a1, a2〉 =
(

e−iφ1Sz1 e−iθ1S
y
1

)
⊗
(

e−iφ2Sz2 e−iθ2S
y
2

)
|↑↑〉 . (6.5)

To keep the notation as simple as possible, we will use |a〉 to denote the two-spin
coherent state unless otherwise stated. The spin identity operator in the two-spin
case is 1 = 11 ⊗ 12, where the individual identities are defined as in Eq. (6.4), and we
will use the short hand notation 1 =

∫
da |a〉〈a|.3

2This expression can be derived by writing the exponential operators as power series and then
evaluating the emerging commutators.

3Written out, the identity is

1 =

(
2S + 1

4π

)2 ∫ π

0

dθ1 sin θ1

∫ 2π

0

dφ1

∫ π

0

dθ2 sin θ2

∫ 2π

0

dφ2 |a1, a2〉〈a1, a2| (6.6)
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6.1.2 Fermionic coherent states

In this subsection, we will give a brief introduction to fermionic coherent states. For
a more thorough description, see e.g. Ref. [140]. The fermionic coherent state |η〉 is
an eigenstate of the fermionic annihilation operators

ckσ |η〉 = ηkσ |η〉 . (6.7)

Since the fermionic operators anti-commute, so do the eigenvalues ηkσ, which are
known as Grassmann numbers. We therefore have that ηkσηk′σ′ + ηk′σ′ηkσ = 0 and
consequently η2

kσ = 0. The coherent states are defined as

|η〉 = e−
∑

kσ ηkσc
†
kσ |0〉 , (6.8)

which can be written as |η〉 =
∏
kσ(1 − ηkσc

†
kσ) |0〉 due to the property η2

kσ = 0.
Similarly, the adjoint of the coherent state is defined as 〈η| = 〈0| e−

∑
kσ ckσ η̄kσ , where

η̄kσ is a Grassmann number independent of ηkσ. With these ingredients, we can write
the overlap between two coherent states, the identity operator in the Fock space, and
the trace of an operator O as4

〈
ηi
∣∣ηj
〉

= e
∑

kσ η̄
i
kση

j
kσ (6.9)

1F =

∫
d(η̄, η) e−

∑
kσ η̄kσηkσ |η〉〈η| (6.10)

Tre[O] =

∫
d(η̄, η) e−

∑
kσ η̄kσηkσ 〈−η|O|η〉 , (6.11)

where d(η̄, η) is short hand notation for
∏
kσ dη̄kσ dηkσ and 〈−η| = 〈0| e

∑
kσ ckσ η̄kσ .

Eqs. (6.9)–(6.11) will be useful in Sec. 6.2.3, where we will construct the functional
integral.

6.2 Feynman-Vernon theory

To solve the problem of two spins coupled by a nonequilibrium electronic bath, we
will use the influence functional method proposed by Feynman and Vernon [142].
The Feynman-Vernon method is quite technical and for a short and comprehensible
overview, see e.g. Ref. [143]. The basic idea is to trace out the electronic degrees of
freedom in the density matrix. This gives the reduced density matrix of the spin sys-
tem, which contains the information from the electronic bath in the so-called influence
functional. By doing a perturbative expansion and some rewriting of the influence
functional, the contribution from the electrons will show up in the action from which
the EOMs can be read of.

The author has tried to present the derivation in a concise way with most of the
technicalities collected in Appendix D. Here is an overview of what we are about to
go through:

• In Sec. 6.2.1, we will trace out the electronic degrees of freedom. The resulting
reduced density matrix can be written as a double path integral over spin paths,
which are coupled by the influence functional.

4For the derivations, see e.g. Ref. [140].
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• In Sec. 6.2.2, we will consider the double path integral without the influence
functional. In the semiclassical approximation, we will see that the average of
the two paths follows the classical EOM for uncoupled spins in a magnetic field.

• In Sec. 6.2.3, the influence functional is written as a functional integral over
Grassman numbers. The integral is performed and we do an expansion to sec-
ond order in the local exchange coupling, J0. The second order term gives a
contribution which can be written in terms of the average and difference spin
paths.

• In Sec. 6.2.4, the spins are assumed to be slow compared to the electrons, which
leads to time-local EOMs for the spins.

• In Sec. 6.2.5, explicit expressions for the coefficients in the EOMs are derived.
We arrive at the well known expressions for the RKKY coupling and the Gilbert
constant. We present, for the first time, the nonequilibrium coefficients and
their distance dependences. Finally, in Sec. 6.2.6, we estimate how large the
nonequlibrium terms are in realistic systems.

6.2.1 The reduced density matrix

In this section, we will trace out the electronic degrees of freedom to obtain the
reduced density matrix for the spins. The section is written with inspiration from
Refs. [112, 113, 115, 142].

The whole system includes both the spins and the electronic bath. It can be
described by the the total density matrix ρ̂tot(tf ) = e−iHtf ρ̂tot(0)eiHtf , where the
Hamiltonian is defined as in Eqs. (5.1)–(5.3), tf is a time, and we have set ~ = 1.
We will assume that the spin system and the bath are initially uncorrelated so that
ρ̂tot(0) = ρ̂s(0) ⊗ ρ̂e(0), where s and e refer to spins and electrons, respectively. The
out-of-equilibrium condition will be included in ρ̂e(0), which we will return to in
Sec. 6.2.3. We are only interested in the information about the spin system, and we
can therefore trace out the electronic degrees of freedom to obtain the reduced density
matrix for the spins

ρ̂red(tf ) = Tre
[
e−iHtf ρ̂tot(0)eiHtf

]
. (6.12)

Taking an element of this reduced density matrix, we get

ρred(a1, b1, tf ) =
〈
a1
∣∣ρ̂red(tf )

∣∣b1
〉

=

∫
da0

∫
db0 Tre

[
〈a1|e−iHtf |a0〉 〈a0|ρ̂tot(0)|b0〉 〈b0|eiHtf |b1〉

]

=

∫
da0

∫
db0 J (a1, b1, tf ; a0, b0, 0)ρs(a

0, b0, 0)

(6.13)

where 1 =
∫

da |a〉〈a| is short for the identity in Eq. (6.6). Both a and b refer to spin
coherent states and the superscripts are used to distinguish the different states. The
superscript will later be used as a time index. The introduced propagator for the
reduced density is

J (a1, b1, tf ; a0, b0, 0) = Tre
[
ρ̂e(0)

〈
b0
∣∣eiHtf

∣∣b1
〉 〈
a1
∣∣e−iHtf

∣∣a0
〉]
, (6.14)

which describes the dynamics of the system. Eq. (6.14) can be written as a spin
path integral by using the spin coherent states introduced in Sec. 6.1.2. To do so, we
split the time evolution operator into tiny time steps, e−iHtf = limN→∞

∏N
n=1 e−iH∆t,
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where tf = N∆t. We insert identities of spin coherent states as defined in Eq. (6.4)
in between all the exponential operators. Since ∆t is very small, it is reasonable to
expand e−iH∆t to first order in ∆t, e−iH∆t ≈ 1− iH0,e∆t− iH0,s∆t− iHint∆t. Here
H0,e (H0,s) denotes the Hamiltonian of the isolated electronic (spin) system as defined
in Eq. (5.2). By doing this, we can rewrite the elements as

〈
ai+1

∣∣e−iH∆t
∣∣ai
〉
≈ e−i∆t[i〈∂tai|ai〉+〈ai|H0,s|ai〉]e−i∆t[H0,e+〈ai|Hint|ai〉], (6.15)

where we used the notation
〈
∂ta

i
∣∣ = (

〈
ai+1

∣∣−
〈
ai
∣∣)/∆t and used that in the continuum

limit, N → ∞,
〈
ai+1

∣∣H
∣∣ai
〉
≈
〈
ai
∣∣H
∣∣ai
〉
. Since the first exponential factor is just a

function, we can take all these out in front and write

〈
a1
∣∣e−iHtf

∣∣a0
〉

=

∫
Da eiS[a] lim

N→∞

N∏

i=1

e−i[H0,e+〈ai|Hint|ai〉]∆t

=

∫
Da eiS[a]U [a],

(6.16)

where Da =
∏2
n=1

∏N
i=2

2S+1
4π

∫ π
0 dθin sin θin

∫ 2π
0 dφin and U [a] is the forward time evolu-

tion operator of the electronic system, when the spins follow path a. The introduced
S[a] denotes the action for the spin system, which we will return in the following
section. Similarly, U †(b) will show up in

〈
b0
∣∣eiHtf

∣∣b1
〉
, which is the backward time

evolution operator when the spins follow path b. With this notation, we can write the
density matrix propagator in Eq. (6.14) as

J (a1, b1, t; a0, b0, 0) =

∫
Da

∫
Db eiS[a]−iS[b]F [a, b], (6.17)

where
F [a, b] = Tre

[
ρ̂e(0)U †[b]U [a]

]
(6.18)

is the influence functional. The influence functional describes the influence of the
electronic environment on the spin system. One way to think about the double path
integral in Eq. (6.18) is that the spins follow path a forward in time and path b
backward in time. In the case where the spins do not interact with the bath, J0 = 0,
we get that U †U = 1 and consequently F = 1. We are therefore left with a double
path integral of the spin system alone, which means that the spins propagate freely
both forward and backward in time. On the other hand, when the spins interact with
the electrons, J0 6= 0, the influence functional will couple the forward and backward
paths. The get the contribution from the electronic bath to the spin action, we can
put the influence functional on the form

F [a, b] = ei∆S[a,b], (6.19)

where ∆S[a, b] = −i lnF [a, b] is known as the influence phase [142]. It is clear that
when F [a, b] = 1, the electronic contribution to the action vanishes, ∆S[a, b] = 0.
Before taking a closer look at influence functional in Sec. 6.2.3, we will consider the
spin action.
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6.2.2 The spin action

The spin action was introduced between Eq. (6.15) and (6.16). Taking the continuum
limit, we can write it as

S[a] = −
∫ tf

0
dt [ 〈a(t)|H0,s|a(t)〉+ i 〈∂ta(t)|a(t)〉] . (6.20)

The first term is easily evaluated by using Eq. (6.2),

〈a(t)|H0,s|a(t)〉 = −SB ·
[
n+

1 (t) + n+
2 (t)

]
, (6.21)

where the introduced unit vector n+
n (t) describes the orientation of spin n at time

t on the forward path, a. Similarly, we will later use the superscript “−” for the
vectors on the backward path, b. The second term in Eq. (6.20) is (for a single spin
for simplicity)5

i 〈∂ta|a〉 = i 〈↑|
(
∂

∂t
eiθSyeiφSz

)
e−iφSze−iθSy |↑〉

= i 〈↑| eiθSy
(
iθ̇Sy + iφ̇Sz

)
eiφSze−iφSze−iθSy |↑〉

= −θ̇ 〈↑| eiθSySye−iθSy |↑〉 − φ̇ 〈↑| eiθSySze−iθSy |↑〉
= −Sφ̇ cos θ

(6.23)

where we used Eq. (6.3). This second contribution to the action is a so-called
Wess-Zumino action [140]. It is a topological term, since it is invariant under any
reparametrization of the time and it describes the accumulated Berry phase as the
spin moves on the sphere [144].

With the above expressions, we can write the difference action in Eq. (6.17) as

S[a]− S[b] = S
∑

n=1,2

∫ tf

0
dt
{
B ·

[
n+
n − n−n

]
+
[
φ̇+
n cos θ+

n − φ̇−n cos θ−n
]}

(6.24)

where the angles θ±n (t) and φ±n (t) are the ones that describe the vector n±n (t).
As described in the beginning of Chapter 5, the electronic environment “collapses”

the wavefunction of the spin system, so that the spins turn classical. Mathematically,
this is caused by the influence functional, which will suppress contributions of histories
for which the difference vectors, n+

n −n−n , are large. Because of this, it makes sense to
expand the action in Eq. (6.24) to low order in the differences. In Appendix D.1, we
expand the double action to first order in the difference angles, θ+

n − θ−n and φ+
n −φ−n ,

and carry out the difference angle integrals. With this, we find that the unit vector
nn described by the average angles θn = 1

2(θ+
n + θ−n ) and φn = 1

2(φ+
n + φ−n ) follows

the classical equation of motion

ṅn = −B × nn. (6.25)
5For two spins, it is just

(∂t 〈a1, a2|) |a1, a2〉 = 〈↑↑|
[(
∂tR

†
1

)
⊗R†2 +R†1 ⊗

(
∂tR

†
2

)]
(R1 ⊗R2) |↑↑〉 (6.22)

where Rn = e−iφnS
z
ne−iθnS

y
n . It is therefore the sum of the two individual contributions as in

Eq. (6.23).
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In other words, the unit vector pointing in the direction between the forward and
backward vectors, n+

n (t) and n−n (t), will precess around the magnetic field.
Say that we want to add a torque −f×nn to the EOM by hand. In the introduced

formalism, we could do this by adding a term S
∫

dtf ·(n+
n −n−n ) to the double action

in Eq. (6.24). The purpose of this chapter is to derive the torques that are caused by
the interaction with the electronic system. If the influence functional therefore gives
rise to contributions on this form (vectors dotted with n+

n − n−n ), the torques can
be read off directly from the action. As we will see in the following, a perturbative
expansion of the influence phase will indeed add such contributions to the action, and
these are the ones we are interested in.

6.2.3 The influence functional

We will now return to the influence functional defined in Eq. (6.18). To get on from
here, we need to be more specific about the initial density matrix for the electrons.
As shown in Fig. 6.1, the electrons are brought out of equilibrium by displacing the
Fermi sphere. The initial density matrix for the electrons can therefore be written as

ρ̂e(0) =
1

Z
e
−β∑kσ

(
εk−∆k−µ

)
c†kσckσ (6.26)

where the partition function is Z =
∏
kσ

(
1 + e

−β
(
εk−∆k−µ

))
.

We can write Eq. (6.18) as a coherent state functional integral by splitting the time
evolution operators into small time steps and inserting unit operators as defined in
Eq. (6.10). This is done in detail in Appendix D.2 by following the discrete procedure
in e.g. Refs. [140, 145]. In this way, the influence functional takes the form

F [a, b] =
1

Z

∫
D(η̄, η) exp


i
∑

ij

∑

kσ

∑

k′σ′

η̄ikσ

(
(G−1

0,k)ijδk,k′δσ,σ′ + Ṽ ij
kσ,k′σ′

)
ηj
k′σ′


 .

(6.27)

Here the interaction part is Ṽ ij
kσ,k′σ′ = λi∆t V

λi
kσ,k′σ′(ti)δi,j+1, where λi = ±1 when ti

is on the forward/backward time path and

V ±
kσ,k′σ′(t) =

SJ0

2V
∑

n=1,2

e−i(k−k
′)·Rn n±n (t) · σσσ′ . (6.28)

The vectors n+
n and n−n are again the orientations of spin n on the forward and

backward paths, respectively (initially referred to as a and b). The inverse Greens
function, G−1

0,k, is defined in Eq. (D.17). The Greens function itself takes the form

G0,k(t, t′) = ie−iεk(t−t′)
(
nF (εk−∆k − µ)− θ(t− t′) nF (εk−∆k − µ)

nF (εk−∆k − µ)− 1 nF (εk−∆k − µ)− θ(t′ − t)

)

(6.29)
in the continuum limit, where nF (ε) is the Fermi function and θ(t) is the Heaviside
step function. The upper left element of the (2 × 2) matrix is the Greens function
when both times are on the forward time contour, the upper right element is when t
is on the forward and t′ on the backward contour, and so on.
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We can now perform the functional integral in the influence functional in Eq. (6.27)

F [a, b] =
1

Z
det
[
iG−1

0 + iṼ
]

=
1

Z
det
[
iG−1

0 (1 +G0Ṽ )
]

=
1

Z
det
[
iG−1

0

]
· det

[
1 +G0Ṽ

]

= eTr ln(1+G0Ṽ ),

(6.30)

where we used the properties det(AB) = det(A) det(B) and det(A) = eTr lnA. The
determinants and traces in Eq. (6.30) are over both time, k, and σ. We used that Z =
det
[
iG−1

0

]
, which can e.g. be seen from the fact that F [a, b] = 1 for J0 = 0 as described

below Eq. (6.18). The matrix logarithm B = ln(A) means that the matrices are
connected as A = eB. For a small coupling J0, G0Ṽ is small and the matrix logarithm
above can be written as a power series ln

(
1 +G0Ṽ

)
= G0Ṽ − 1

2G0Ṽ G0Ṽ + · · · . To
second order in the coupling, we therefore get

F [a, b] ≈ eTr[G0Ṽ ]− 1
2

Tr[G0Ṽ G0Ṽ ]. (6.31)

This expansion of the matrix logarithm is our perturbative expansion. We go to
second order, which means that we include processes to second order in the local
exchange interaction. We therefore expect the RKKY interaction to show up in our
result. With the expression in Eq. (6.31), the influence functional is on the desired
form as shown in Eq. (6.19) and the next step is to evaluate the traces.

The first order term in the influence phase in Eq. (6.31) cancels because of the
trace over the electron spin degrees of freedom and the fact that Tr[σi] = 0, where
i = (x, y, z). The trace in the second order term is performed in Appendix D.3 and it
can be written as

−1

2
Tr
[
G0Ṽ G0Ṽ

]

=
S2J2

0

4V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

∫ tf

0
dt

∫ tf

0
dt′ e−i(εk−εk′ )(t−t

′)

×
{[

nF (εk−∆k − µ)− θ(t− t′)
] [
nF (εk′−∆k − µ)− θ(t′ − t)

]
n+
n (t′) · n+

m(t)

+
[
nF (εk−∆k − µ)− θ(t′ − t)

] [
nF (εk′−∆k − µ)− θ(t− t′)

]
n−n (t′) · n−m(t)

+ nF (εk−∆k − µ)
[
1− nF (εk′−∆k − µ)

]
n−n (t′) · n+

m(t)

+ [1− nF (εk−∆k − µ)]nF (εk′−∆k − µ)n+
n (t′) · n−m(t)

}
.

(6.32)

In the derivation, it is used that Tr[σiσj ] = 2δij , which leads to the dot products.
The two last terms in the curly brackets are actually the same, which can be seen
by interchanging k ↔ k′, n ↔ m, and t ↔ t′. However, it is easier to arrive at the
desired form when we keep them as two separate terms.

We will now introduce the average and difference vectors

Qn =
n+
n + n−n

2
ζn = n+

n − n−n
(6.33)
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so that n+
n = Qn+ζn/2 and n−n = Qn−ζn/2. Using these, we can rewrite Eq. (6.32)

as (see Appendix D.3)

−1

2
Tr
[
G0Ṽ G0Ṽ

]
= iSQζ + iSζζ (6.34)

with

iSQζ =
S2J2

0

2~2V2

∑

nm

∫ tf

0
dt

∫ tf

0
dt′
∫

dωΛnm(ω,∆k)e−iω(t−t′)ζm(t) ·Qn(t′)θ(t− t′)

(6.35)
and

iSζζ =
S2J2

0

8V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]

× coth

(
εk−∆k − εk′−∆k

2kBT

)∫ tf

0
dt

∫ tf

0
dt′ e−i(εk−εk′ )(t−t

′)ζn(t′) · ζm(t).

(6.36)

The introduced effective electron-hole pair density of states is

Λnm(ω,∆k) =
∑

kk′

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]
e−i(k−k

′)·(Rn−Rm)δ(ω − εk + εk′),

(6.37)

which has units of inverse energy. As we will see in the following, Λnm(ω,∆k) is an
important function from which we can calculate the torques caused by the coupling
to the electrons. This can already be seen in Eq. (6.35), from which time-non-local
torques can be read off by following the argument stated in the end of Sec. 6.2.2. We
will return to the torques shortly. The function Λnm(ω,∆k) has the properties

Λ∗nm(ω,∆k) = Λmn(ω,∆k) (6.38)
Λ∗nm(ω,∆k) = −Λnm(−ω,∆k) (6.39)
Λ∗nm(ω,∆k) = Λnm(ω,−∆k), (6.40)

which will be useful in the following discussion. One thing to notice now is that the
real part of Λ describes the equilibrium effects from the electrons, while the imaginary
part gives the nonequilibrium contributions. This can be seen by expanding Eq. (6.40)
to first order in ∆k (we only go to linear order in the electric current) and then taking
either the real or imaginary part.
Sζζ is second order in the difference vectors and it is imaginary.6 Contributions

of this kind give rise to stochastic torques, which has been shown by e.g. Fransson
and Zhu for a single spin in a tunnel junction [134]. They do a Hubbard-Stratonovich
transformation, which introduces the stochastic torque and its probability distribu-
tion. In this thesis, we focus on the new torques in the two-spin system and we did
therefore not study the stochastic torques any further. However, an important thing
about the contribution Sζζ is that it suppresses histories for which the difference vec-
tors are large. We used this assumption in Sec. 6.2.2 to obtain the EOMs. As a
side note, in Refs. [115, 116], which study atoms coupled via an electronic bath, the
analogue of Eq. (6.36) is written by using the effective electron-hole pair density of

6The exchange of k and k′ in Eq. (6.36) gives the complex conjugate and all k-values are summed
over. Remember the i on the left hand side of the equality sign.
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states as well. However, this can not be done in our case due to the k-dependence in
the hyperbolic cotangent.7

One way to go on from Eq. (6.35) is to Fourier transform both the step function
and Qn(t′) [116]. In Appendix D.3.1, we show that

iSQζ = i
πS2J2

0

2V2

∑

nm

∫ tf

0
dt

∫
dω

2π

{
H{Re Λnm} (ω) + Im Λnm(ω,∆k)

+ i
[
−Re Λnm(ω) +H

{
Im Λnm(ω′,∆k)

}
(ω)
]}
ζm(t) ·Qn(ω)e−iωt,

(6.41)

where the Hilbert transform is defined as

H{f(ω′)}(ω) =
1

π
P
∫

dω′
f(ω′)
ω − ω′ . (6.42)

Here P indicates the Cauchy principal value of the integral. With Eq. (6.41), we
have split the influence of the electrons into four different contributions. The two
terms involving the real part of Λ are equilibrium terms, while the two terms that
include the imaginary part of Λ are nonequilibrium contributions (see Eq. (6.40)).
From the property in Eq. (6.38), we see that the equilibrium terms are symmetric
under exchange of the spin indices (Re Λ12 = Re Λ21), while the nonequilibrium terms
are anti-symmetric under the same exchange.

6.2.4 Slow spin approximation

The action in Eq. (6.41) gives rise to time-non-local torques in the EOMs. However, we
will now assume that the spins are slow compared to the electrons, which will make the
EOMs local in time. This assumption is widely used for magnetic molecules in tunnel
junctions [133, 134, 144, 146], and for studies calculating the spin relaxation constant
in bulk materials, Sayad et al. write: “... these studies rely on two, partially related,
assumptions: (i) the spin–electron coupling J is weak and can be treated perturbatively
to lowest order ... (ii) The classical spin dynamics is slow as compared to the electron
dynamics. These assumptions appear as well justified but they are also necessary to
achieve a simple effective spin-only theory by eliminating the fast electron degrees of
freedom” [147]. Based on this, it seems reasonable to use the approximation here.

In our formalism, the information about the electrons is kept in the four functions
in the curly bracket in Eq. (6.41). If the spins are slow compared to the electrons, the
functionQn(ω) is narrow in frequency compared to the functions in the curly brackets,
and we can expand these four functions to first order in the frequency.8 By using
the property in Eq. (6.39) and that the Hilbert transform of an even/odd function
f(ω) = ±f(−ω) is H{f(ω′)}(ω) = ∓H{f(ω′)}(−ω), the slow-spin-approximation

7The difference between our calculation and the calculations in Refs. [115, 116] is that we use
a shifted Fermi sea to incorporate the nonequilibrium conditions, while Refs. [115, 116] have two
electrodes with different electrochemical potentials.

8As we will see in the following, this way of doing the approximation will lead to an infrared
divergence in one of the terms, namely the ∂

∂ω
H{Im Λnm} (ω)

∣∣
ω=0

term in Eq. (6.43). If we expand
Λnm(ω) instead of its Hilbert transform, the term H{Im Λnm} (ω) in Eq. (6.41) will cancel and we
will get an ultraviolet divergence of the H{Re Λnm} (ω) term. With the expansion described in
the main text, the latter term will give the equilibrium RKKY coupling, and we can deal with the
infrared divergence by introducing a cutoff. We will return to this in Sec. 6.2.5.
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leads to

iSQζ ≈ iπS
2J2

0

2V2

∑

nm

∫ tf

0
dt

{
[H{Re Λnm} (0) + Im Λnm(0,∆k)] ζm(t) ·Qn(t)

+

[
∂

∂ω
Re Λnm(ω)

∣∣
ω=0
− ∂

∂ω
H
{

Im Λnm(ω′,∆k)
}

(ω)
∣∣
ω=0

]
ζm(t) · Q̇n(t)

}
,

(6.43)

where we have used that Q̇n(t) =
∫

dω (−iω)Qn(ω)e−iωt. Inserting this action back
into Eq. (6.17), we arrive at

J (a1, b1, t; a0, b0, 0) ≈
∫
Da

∫
Db eiS

∑
n

∫
dt′{Beff,n·ζn+[φ̇+

n cos θ+
n−φ̇−n cos θ−n ]}, (6.44)

where the influence of the electrons is included in the effective magnetic field

Beff,n = B +
πSJ2

0

2V2

∑

m

[
H{Re Λmn} (0)Qm + Im Λmn(0)Qm

+
∂

∂ω
Re Λmn(ω)

∣∣
ω=0

Q̇m −
∂

∂ω
H{Im Λmn} (ω)

∣∣
ω=0

Q̇m

]
.

(6.45)

As explained in Sec. 6.2.2, the EOMs can be read off directly from the action in the
semiclassical approximation, and the important part of the action is the vector dotted
with the difference vector (see Appendix D.1). Just as in Eq. (6.25), we can therefore
write out the EOMs as

ṅ1 = −1

~
B × n1 + (J + σ)n2 × n1 + η0ṅ1 × n1 + (η1 + χ)ṅ2 × n1

ṅ2 = −1

~
B × n2 + (J − σ)n1 × n2 + η0ṅ2 × n2 + (η1 − χ)ṅ1 × n2,

(6.46)

where the introduced coefficients are (reintroducing ~)

J = −πSJ
2
0

2~V2
H
{

Re Λ12(ω′, 0)
}

(0)

η0 = −πSJ
2
0

2V2

∂

∂~ω
Re Λ11(ω, 0)

∣∣
ω=0

η1 = −πSJ
2
0

2V2

∂

∂~ω
Re Λ12(ω, 0)

∣∣
ω=0

σ = −πSJ
2
0

2~V2
Im Λ21(0,∆k)

χ =
πSJ2

0

2V2

∂

∂~ω
H
{

Im Λ21(ω′,∆k)
}

(ω)
∣∣
ω=0

.

(6.47)

The first three coefficients in Eq. (6.47) are equilibrium coefficients, which can be seen
from Eq. (6.40) and the text below, while the last two are nonequilibrium coefficients.
The EOMs in Eq. (6.46) share the coefficients in Eq. (6.47), which can be understood
from the property in Eq. (6.38). The property gives that the (non-)equilibrium terms
are even (odd) under the exchange of spin indices and that Im Λ11(ω) = 0. The well-
known equilibrium terms are: the standard precession due to the magnetic field, a
precessional term due to the exchange coupling J , and a Gilbert damping term with
the coefficient η0. Additionally, there is an equilibrium non-local relaxation term with
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the coefficient η1, which has been discussed in the literature [131, 132]. The more
interesting result is the nonequilibrium terms with coefficients σ and χ, which are odd
under the exchange of the spin coordinates, 1↔ 2. As mentioned earlier, these terms
have already been presented by Onoda et al. [131]. However, Onoda et al. did not
show the expressions for the coefficients, which we will do in the next section.

In our theoretical setup, we chose a simple metal to make the calculation as simple
as possible. However, the derived EOMs would most likely show up in other two-spin
systems coupled by a nonequilibrium electronic bath. An example could be magnetic
molecules in a tunnel junction. We therefore consider the result in Eq. (6.46) to be
rather general, and in Chapter 7, we will study the dynamics of a system with such
EOMs. But first, we will calculate the coefficients in Eq. (6.47) for the simple model
chosen in this chapter.

6.2.5 The final result

Now that we have established the nonequilibrium EOMs for the two spins in Eq. (6.46),
we would like to calculate the explicit expressions for the coefficients in Eq. (6.47). To
make the calculations easier, we assume that the temperature is low so that µ = εF
and n′F (ε− µ) = −δ(εF ). For the first four coefficients in Eq. (6.47), the calculations
are long but straight forward, and they are presented in Appendices D.4.1–D.4.3. For
the coefficient χ, the integral diverges due to the electron-hole pair excitations with
small energies. The small energies mean that the excitations are slow. However, we
assumed in Sec. 6.2.4 that the electrons are fast compared to the spins and we will
therefore introduce a cutoff δε below which we shall neglect the excitations. The
derivation of χ is presented in Appendix D.4.4. The results are

J(R) = −πSJ2
0ρ(εF )2 εF

~
F (2kFR)

η0 =
πSJ2

0

8
ρ(εF )2

η1(R) =
πSJ2

0

8
ρ(εF )2

(
sin(kFR)

kFR

)2

σ(R) = −πSJ
2
0

2
ρ(εF )2L(kFR)

εF
~

∆k ·R
kFR

χ(R) = −SJ2
0ρ(εF )2L(kFR)

εF
δε

∆k ·R
kFR

.

(6.48)

Here ρ(εF ) = mkF
π2~2 is the density of states at the Fermi energy, R = R2 − R1 is

the position vector between the two spins, F (x) = x cos(x)−sin(x)
x4 is the function that

appears in the RKKY interaction in Eq. (5.6), and

L(x) = sin(x)
x cos(x)− sin(x)

x3
. (6.49)

The distance dependent functions are plotted in Fig. 6.2. All of them oscillate and
decay, and obviously sin2(x)/x2 only takes positive values. The units of the different
constants in the EOMs are the following: ρ(εF ) has units of 1/(m3 J), J0 has units
of m3 J, S is dimensionless, and B has units of Joule. The η’s and χ are therefore
dimensionless, while J and σ have units of s−1.

The EOMs in Eq. (6.46) are obtained from a perturbative expansion to second
order in the local exchange coupling. The equilibrium terms should therefore be the
same as the ones obtained from standard perturbation theory. Indeed, we see that the
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Figure 6.2: Plots of the distance dependent functions in Eq. (6.48).
The solid lines describe equilibrium terms, while the dashed line de-
scribes the nonequilibrium coefficients. Notice that F (2x) is multiplied

by a factor of 10 to make it easier to compare the functions.

indirect exchange, J(R), in Eq. (6.48) is the same as RKKY exchange in Eq. (5.6),
while the obtained Gilbert coefficient, η0, is the same as in Eq. (5.10). To get the
relaxation terms to take energy out of the spin system, we will see in Chapter 7 that
the η’s have to be positive. This is indeed the case in Eq. (6.48). However, the
sign of the indirect exchange seems to be wrong,9 but the author was not able to
find the mistake. The nonequilibrium terms are proportional to ∆k · R and they
therefore vanish when the position vector between the spins is perpendicular to the
current direction. The equilibrium terms only depends on the distance itself since the
equilibrium electron gas is homogeneous.

6.2.6 Estimating the nonequilibrium coefficients

To get an idea of the magnitude of the nonequilibrium coefficients, we can compare
them to the equilibrium ones. By taking taking ∆k to be parallel with R, we can
write

σ(R)

|J(R)| = −1

2

∆k

kF

L(kFR)

|F (2kFR)| (6.50)

and

χ(R)

η0
= − 8

π
L(kFR)

εF
δε

∆k

kF
. (6.51)

To get a rough numeric estimate, consider a typical metal such as copper for which
kF ≈ 1010 m−1, εF ≈ 4 eV, and ne ≈ 1029 m−3 [6]. The magnitude of the current
density is given by j = enev, where the average velocity of the electrons is v = ~∆k/m.
For a cross section area of 1 mm2 and an electric current of I = 1 A, the current
density is 102 A/cm2, which gives ∆k = m

~
1
ene

j ≈ 0.5 m−1. We choose an energy
cutoff which corresponds to the Larmor frequency of a free electron in a magnetic field
Bmagnetic = 0.01 T. This corresponds to the field from a small bar magnet. Remember
that B ≡ ~γBmagnetic, where Bmagnetic is the strength of the actual magnetic field.

9If we insert Eq. (5.6) into Eq. (5.8), we see that the sign is different from the one obtained in
Eqs. (6.46) and (6.48).
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The gyromagnetic ratio of a free electron is γ ≈ 1.8× 1011 rads−1T−1 and the cutoff
energy is therefore

δε = ~γBmagnetic ≈ 10−6 eV. (6.52)

Finally, we choose a distance so that kFR = 7, which corresponds to a distance of
R = 7Å in the specific case. Inserting all these numbers into Eqs. (6.50) and (6.51),
we get

∣∣∣σ
J

∣∣∣ ≈ 10−8

∣∣∣∣
χ

η0

∣∣∣∣ ≈ 5× 10−6.
(6.53)

So in the specific case, the nonequilibrium coefficients are small compared to the
equilibrium coefficients.

The coefficients obviously get larger if we increase the current. Consider for ex-
ample a copper nanowire with radius r = 100 nm through which a current density of
106 A cm−2 can flow without destroying the wire [148].10 The wire is sufficiently large
for our bulk calculation to be reasonable, and we therefore obtain coefficients that
are a factor of 104 larger than those in Eq. (6.53). The nonequilibrium coefficients
are therefore still small compared to the equilibrium ones, but they can possibly take
larger values in e.g. a nanoscale junction. However, the calculation of such a system
would require another theoretical setup than the one used in this chapter.

6.3 Conclusions and outlook

In this chapter, we have used the Feynman-Vernon influence functional approach
to derive the EOMs for two spins that couple indirectly via an electron gas out of
equilibrium. The resulting equations in Eq. (6.46) include the torques from precession,
the RKKY exchange coupling, and local and non-local relaxations terms. In addition
to these equilibrium terms, the nonequilibrium condition gives rise to two new torques
characterized by the coefficients σ and χ. σ is “added” to the exchange coupling, while
χ is “added” to the non-local relaxation coefficient, but both of them show up anti-
symmetrically in the EOMs. I.e. while the exchange torque is (J + σ)n2 × n1 in one
EOM, it is (J − σ)n1 × n2 in the other. Both σ and χ are proportional to ∆k ·R,
so that they vanish when the vector between the spins is perpendicular to the current
direction. They have the same sign and vary as sin(2kFR)/R2 for large distances.
They therefore decay slower than the RKKY coupling, which varies as cos(2kFR)/R3

for large distances.
The nonequilibrium coefficients are small compared to the equilibrium coefficients.

In Sec. 6.2.6, we estimated them to be around four orders of magnitude smaller com-
pared to the equilibrium coefficients in a copper nanowire. For a future project, it
would be interesting to study whether larger values could be obtained in other systems.

The spins studied in this chapter are quantum angular momenta, which have a
limited Hilbert space. The described theory can therefore be used to study other
systems with limited Hilbert spaces. An example could be two quantum dots that
couple via a current carrying wire. This would be an interesting problem for a future
project.

10According to Ref. [148], the the maximum current density at room temperature is 3.9 ×
107 A cm−2.
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Chapter 7

Study of the spin equations of
motion

Some of the results in this chapter are included in the paper draft in Appendix F.

In Chaper 6, we established the equations of motion for two spins coupled to a
Fermi sphere out of equilibrium. We calculated the explicit expressions for the different
torques and showed, for the first time, the distance dependence of the nonequilibrium
torques. Even though the EOMs in Eq. (6.46) were calculated from a specific model,
one can expect that the nonequilibrium torques show up in other systems where the
spins couple to electronic degrees of freedom. That could for example be two spins
placed in a nanoscopic junction or two spins connected to a two-dimensional electron
gas out of equilibrium.

In this chapter, we will study the EOMs in Eq. (6.46) and assume that the nonequi-
librium coefficients, σ and χ, can take larger values than estimated for the specific
model in Sec. 6.2.6. We will additionally assume, that the coefficinets can have dif-
ference signs. This study was originally started by Kasper Bonfils and his results can
be found in Ref. [149]. Here we will start in Sec. 7.1 by doing some rewritings of
the EOMs, which will illustrate that the equations are quite difficult to interpret. In
Sec. 7.2, we will do a linear statility analysis, which allows us to check the stability for
different sets of coefficients. The stability diagrams for different regions in parameter
space will be shown and discussed in Sec. 7.2.4. Finally, numerical simulations of the
two spins are done in Sec. 7.3.

To keep this chapter as short and simple as possible, we will most often only
consider the the equation for spin 1. However, as is seen in Eq. (6.46), the equation
for spin 2 is obtained by

1↔ 2

σ → −σ
χ→ −χ.

(7.1)

7.1 Analytic considerations

Even the standard Landau-Lifshitz-Gilbert equations for coupled spins is a hard prob-
lem to analyze [150]. Here we have additional terms which do not make it easier.
However, we will start by doing some rewritings of the EOMs to see if it can give us
some understanding of the different terms. As a starter, we will consider a single spin
in a magnetic field. We will then move to the full two-spin equations.
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Single spin in a magnetic field

As a simple start, we will consider the equation for a single spin in a magnetic field

n = −B × n+ η0 ṅ× n. (7.2)

We know that the spin precesses about the magnetic field axis, and the Gilbert term
causes the spin to relax towards the direction of the magnetic field. This relaxation
can be seen mathematically by

B · ṅ = η0B · (ṅ× n)

= η0B · [−(B × n)× n+ η0(ṅ× n)× n]

= η0B · [[B − n(n ·B)]− η0ṅ]

=
η0

1 + η2
0

[
B2 − (n ·B)2

]
.

(7.3)

The fraction is a positive number smaller than 1/2, since η0 is positive. The square
bracket factor is positive until n is parallel to the magnetic field, where it becomes
zero. Consequently, n ·B will increase until n ‖ B. If we choose B = Bẑ and use
η0 � 1, so that we can neglect the denominator, the solution is

nz(t) =
1 + nz0 − [1− nz0] e−2η0Bt

1 + nz0 + [1− nz0] e−2η0Bt
, (7.4)

where nz0 = nz(0). nz(t) is half way between nz(0) and 1 at the time t1/2 =
1

2Bη0
ln
(

3+nz0
1+nz0

)
.

The full equations

If we use the full EOMs for the two spins, the rewriting similar to the above becomes
quite tedious. If we neglect terms to second order in η0, η1, and χ, we show in
Appendix E.1 that

ṅz1 = (J + σ) (n2 × n1) · ẑ + η0B
[
1− (nz1)2

]
+ (η1 + χ)B [n1 · n2 − nz1nz2]

+ [(η0 − η1)J + (η0 + η1)σ − Jχ] [(n1 · n2)nz1 − nz2] .
(7.5)

All the terms, except for the standard Gilbert relaxation considered above, depend
on the orientation of the other spin. Since both spins rotate and can take any config-
uration at a particular time, the above expression is difficult to analyze.

We can also derived an expression for the time derivative of the energy Ė =
−SB ·∑i ṅi + JS(ṅ1 ·n2 + ṅ2 ·n1).1 However, this resulted in an expression that is
even more complicated than the above, and it is therefore not shown. One important
to learn from the change in energy is that the terms including χ drop out. The
nonequilibrium torques +ṅ2 × n1 and −ṅ1 × n2 in the EOMs consequently do not
change the energy of the spin system. These torques are therefore reminiscent of a
Lorentz force. The change in energy caused by the σ-torques is Ėσ = 2σ(n1×n2) ·B.
To build a deeper understanding of the full EOMs, we will now do a linear stability
analysis.

1The easiest way to do this is to insert Eq. (E.5) into the expression for Ė.
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7.2 Linear stability analysis

In this section, we will do a linear stability analysis of the EOMs. This allows us
to find the stable configuration of the spins for a set of coefficients. For the rest of
this chapter, we will use a scaled version of the EOMs in Eq. (6.46). By scaling the
equations with |J |, we get

∂τn1 = −B̃ × n1 + (pJ + σ̃)n2 × n1 + η0(∂τn1)× n1 + (η1 + χ)(∂τn2)× n1

∂τn2 = −B̃ × n2 + (pJ − σ̃)n1 × n2 + η0(∂τn2)× n2 + (η1 − χ)(∂τn1)× n2,
(7.6)

where pJ = J/|J | indicates the sign of the indirect exchange coupling, τ = |J |t is the
rescaled time, and

B̃ =
B

~|J |
σ̃ =

σ

|J | ,
(7.7)

which are all dimensionless. The advantage of this rewriting is that we get rid of the
units.

In the following subsections, we will go through the different steps of the linear
stability analysis. In short, the different steps are

1. In Sec. 7.2.1, we will find the fixed points v0 of the EOMs for which ṅ1 = ṅ2 = 0.
Here v0 = (θ0

1, φ
0
1, θ

0
2, φ

0
2) describes a configuration of the spins.2

2. We will linearize the EOMs around the fixed points to get equations of the form
∂τδv = Mδv. Here δv = v − v0 is the deviation from the fixed point and M
is the stability matrix. In Sec. 7.2.2, we will do the linearization around the
ferromagnetic and antiferromagnetic configurations, which is quite simple and
instructive. The general linearization in Sec. 7.2.3 is more tedious.

3. The solution to the linear differential equations in the previous step is

δv(τ) = eMτδv(0)

=
∑

i

cie
λiτui,

(7.8)

where ui is an eigenvector of M with eigenvalues λi, while δv(0) =
∑

i ciui.
The fixed point v0 is stable if all the real parts of the eigenvalues are negative,
Reλi < 0 for all i.

The last point can be understood as follows: If we make a small arbitrary rotation of
the spins away from a fixed point, the new state δv(t) can be decomposed into the
eigenvectors of M . Since the deviation is small, the linearization is a good approxi-
mation. If all the real parts of the eigenvalues are negative, the deviations will decay
and the spins return to the fixed point. This is true for any small rotation. On the
other hand, if just one of the eigenvalues has a positive real part, the fixed point is
unstable. The reason is that these components will increase in time so that the spins
rotate away from the fixed point.

2In Sec. 7.2.2, where the linearization is done around the ferromagnetic and antiferromagnetic
configurations, we will use Cartesian coordinates, v0 = (x0

1, y
0
1 , x

0
2, y

0
2). The stated representation of

the fixed points, v0 = (θ0
1, φ

0
1, θ

0
2, φ

0
2), is used in Sec. 7.2.3.
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The small rotations mentioned above can be caused by the stochastic torques from
the electronic bath [133, 134]. We did not consider these torques in the derivation of
the EOMs in Chapter 6. However, they are just the analogue to the fluctuating forces
on atoms that couple to an environment [112].

7.2.1 Fixed points

We consider the fixed points of the coupled differential equations in Eq. (7.6) where
ṅ1 = ṅ2 = 0. In a fixed point, Eqs. (7.6) reduce to

B̃ × n1 = (pJ + σ̃)n2 × n1

B̃ × n2 = (pJ − σ̃)n1 × n2.
(7.9)

It is easy to see that the ferromagnetic configurations (↑, ↑) and (↓, ↓) are solutions
to the above equations, where the first (last) arrow refers to spin 1 (2) while ’up’
refers to the direction of the magnetic field. When both spins point antiparallel to the
magnetic field, the energy contribution −B · S is maximized and it is intuitively not
an important configuration to consider. However, as we will see later, (↓, ↓) is actually
a stable configuration under some conditions. The antiferromagnetic configurations,
(↑, ↓) and (↓, ↑), are of course solutions to Eqs. (7.9) as well.

When the coupling is antiferromagnetic, pJ = 1, the spins will tend to point in
opposite directions in order to minimize the energy contribution Jn1 ·n2. However, it
competes with the magnetic field, −B ·S, and the result is a canted spin configuration,
which is also a fixed point of Eq. (7.9). For the magnetic field B̃ = B̃ẑ, we can write
it as φ1 − φ2 = π and [149]

θcan1 = cos−1

(
B̃2 − 4pJ σ̃

2B̃(1− σ̃)

)
, (7.10)

which is a physical solution to Eq. (7.9) for |σ̃| < B̃/2 < 1 (see Appendix E.2). The
canted spin configuration is plotted in Fig. 7.1, where φ1 = 0 was chosen to make it
easier to visualize. However, the configuration is a fixed point for any choice of φ1 as
long as ∆φ = π. For σ̃ � 1, we can rewrite Eq. (7.10) as

nz,can1 = cos θcan1 ≈ B̃

2

{
1 +

[
1−

(
2

B̃

)2
]
σ̃

}
. (7.11)

Under equilibrium conditions, the canted configuration is symmetric, θcan1 = θcan2 . σ̃
skews the configuration by forcing one spin closer to the magnetic field, while forcing
the other spin away as seen in Fig. 7.1. Remember that the angle for spin 2 is obtained
by the changes in Eq. (7.1).

We described the canted configuration as a result of the competition between the
antiferromagnetic coupling and the magnetic field. However, as we will see later, the
current can make the canted configuration stable even when the coupling is ferromag-
netic.

7.2.2 Linearization of the EOM around ferromagnetic and antifer-
romagnetic configurations

In this section, we will linearize the EOMs around the spin configurations (↑, ↑),
(↓, ↓), (↑, ↓), and (↓, ↑). The procedure cannot be used to check whether the canted
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Figure 7.1: The canted spin configuration, which satisfies Eq. (7.9).
The black arrow indicates the magnetic field direction and the blue
(red) arrow is spin 1 (2). The parameters B̃ = 1 and σ̃ = 0.2 are used
and the angles are calculated using Eq. (7.10). The figure is generated

in Mathematica.

configuration is stable, but it is simple and instructive, and the stability matrix can be
put on a compact analytic form. In Sec. 7.2.3, we will follow a more general procedure,
which can be used to check the stability of all fixed points.

When the spins are close to pointing either up or down, we can write their vectors
as

n1 ≈



x1

y1

p1


 , n2 ≈



x2

y2

p2


 , ṅ1 ≈



ẋ1

ẏ1

0


 , ṅ2 ≈



ẋ2

ẏ2

0


 , (7.12)

where the x’s and y’s are small and where pi = ±1 indicates that spin i points
up/down. We can work out the different cross products in Eq. (7.6) and keep only
terms up to first order in the coordinates:

B̃ × n1 ≈ B̃(−y1x̂+ x1ŷ)

n2 × n1 ≈ (p1y2 − p2y1)x̂+ (p2x1 − p1x2)ŷ

ṅ1 × n1 ≈ p1(ẏ1x̂− ẋ1ŷ)

ṅ2 × n1 ≈ p1(ẏ2x̂− ẋ2ŷ).

(7.13)

The remaining cross products are easily seen by exchanging 1↔ 2 in the desired way.
Collecting the terms with time derivatives on one side of the equality sign, we can
write

A∂τv = Cv, (7.14)
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where v = (x1, y1, x2, y2)T and

A = 1− η0

(
p1a 0
0 p2a

)
− η1

(
0 p1a
p2a 0

)
− χ

(
0 p1a
−p2a 0

)

C = B̃

(
a 0
0 a

)
+ pJ

(
−p2a p1a
p2a −p1a

)
+ σ̃

(
−p2a p1a
−p2a p1a

)
.

(7.15)

The introduced (2×2) matrix is a = iσy, where σy is a Pauli matrix. We can rearrange
Eq. (7.14) to get

∂τv = M c(p1, p2)v, (7.16)

where M c(p1, p2) = A−1(p1, p2)C(p1, p2) is the stability matrix. This matrix can be
used to check the stability of the different configurations (p1, p2) in different regions of
the parameter space. The subscript is used to indicate that the stability matrix uses
Cartesian coordinates. In the ferromagnetic cases, p2 = p1, we can write the above
matrices in the compact form

A(p1, p1) = 1− p1 [η0τ 0 + η1τ x + χ iτ y]⊗ a
C(p1, p1) =

[
B̃τ 0 + p1 pJ (τ x − τ 0) + p1σ̃ (iτ y − τ z)

]
⊗ a

(7.17)

where the τ ’s are Pauli matrices and “⊗” denotes the Kronecker product. These
matrices are easy to type into some mathematics software to calculate the eigenvalues
for a desired point in parameter space and therefore check for stable points as explained
in the beginning of Sec. 7.2. It would be nice to get an analytic expression for the
hyperplanes in parameter space where the eigenvalues pass through zero, potentially
marking a phase boundary between two different stable regions. The author attempted
to do so but did not manage to reduce it to a simple expression.

Similarly, for the antiferromagnetic configuration, where p2 = −p1, we can write
the matrices as

A(p1,−p1) = 1− p1 [η0τ z + η1 iτ y + χτ x]⊗ a
C(p1,−p1) =

[
B̃τ 0 + p1pJ(τ z + iτ y) + p1σ̃(τ 0 + τ x)

]
⊗ a.

(7.18)

The presented stability matrix can only be used when the spins point either up or
down. To study the canted spin configuration, we therefore have to follow a more
general approach.

7.2.3 General linearization

The stability of the canted spin configuration for the EOMs in Eq. (7.6) has been
investigated by Kasper Bonfils [149]. In his thesis, the EOMs were iterated by inserting
the expressions for ṅ on the right hand side of the equations. Terms of second order in
η0 and χ were then neglected (η1 was not included in his analysis) and the equations
were expanded to first order in the angles around the fixed points. For Bonfils’s final
analytic expression, see Sec. 4.2 in Ref. [149].



Chapter 7. Study of the spin equations of motion 71

Here, we will not restrict the analysis to first order in η’s and χ. We will start by
rewriting the EOMs as

(
1 + η0 [n1]× (η1 + χ) [n1]×

(η1 − χ) [n2]× 1 + η0 [n2]×

)(
∂τn1

∂τn2

)
=

(
−B̃ × n1 + (pJ + σ̃)n2 × n1

−B̃ × n1 + (pJ − σ̃)n1 × n2

)

A

(
∂τn1

∂τn2

)
= F ,

(7.19)

where [n1]× is the cross product matrix so that [n1]×n2 = n1 × n2. With this, we
can write (

∂τn1

∂τn2

)
= A−1F . (7.20)

Since the lengths of the n’s are constant, the above can be represented as a (4× 1)
vector: two dimensions for each spin just as in Sec. 7.2.2. If we use Cartesian co-
ordinates in Eq. (7.20), we can rotate the n’s into their respective spherical polar
coordinate system in which the ρ̂ components drop out. We could not start out
with this choice of coordinates since the coupled differential equations in Eq. (7.19)
require a shared coordinate system. The time derivative in spherical polar coordi-
nates is ṅ1 = θ̂θ̇1 + φ̂ sin θ1φ̇1, so we need to divide the φ̂ components by sin θ to get
∂τv = (∂τθ1, ∂τφ1, ∂τθ2, ∂τφ2)T on the left hand side; this step requires that sin θ 6= 0.
Finally, we can expand the right hand side to first order in the angles around the fixed
point to get

∂τ




δθ1

δφ1

δθ2

δφ2


 = M(B̃,v0)




δθ1

δφ1

δθ2

δφ2


 , (7.21)

where δθi = θi − θ0
i is the deviation from the fixed point angle and where the sta-

bility matrix is written as a function of the magnetic field and the fixed point. The
mathematical description of how to get from Eq. (7.20) to Eq. (7.21) is found in
Appendix E.3 and the expression for the stability matrix is given in Eqs. (E.18)–
(E.20). As mentioned, the stability matrix includes the fractions 1/ sin θ0

1 and 1/ sin θ0
2,

and it can therefore not be used to check the stability of the ferromagnetic config-
uration (θ0

1, φ
0
1, θ

0
2, φ

0
2) = (0, 0, 0, 0) with B̃ = B̃ẑ, etc., which caused some prob-

lems in Ref. [149]. However, if we just rotate the magnetic field, we find that
M
(
B̃x̂, (π/2, 0, π/2, 0)

)
has exactly the same eigenvalues asM c(+1,+1) in Eq. (7.16).

Consequently, the stability matrix in Eq. (7.21) can be used to check the stability of
all the fixed points found in Sec. 7.2.1.

7.2.4 Stability diagrams

With the stability matrix in Eq. (7.21), we can now use the procedure described
in the beginning of Sec. 7.2 to check the stability at different points in parameter
space. Unless otherwise stated, we will use the following magnetic field and relaxation
coefficients

B̃ = 1

η0 = 0.01

η1 = η0/2.

(7.22)
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Here the η0 = 0.01 is a typical value for metallic ferromagnets [151, 152].
The stability diagram in the case of antiferromagnetic coupling is shown in Fig. 7.2.

As expected, the canted configuration is stable in the equilibrium case, (σ, χ) = (0, 0),
where the exchange coupling and magnetic field compete. Remember that the spin
configurations of the canted spin region in Fig. 7.2 are different for the different σ
values as stated in Eq. (7.10). As σ and χ become sufficiently large and of oppo-
site sign, the ferromagnetic configuration (↑, ↑) becomes stable. In this region, the
nonequilibrium terms therefore drive the system into a configuration where the en-
ergy contribution JS1 · S2 is maximized. This is a quite interesting result, and we
will return to the possible applications of this later.
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Figure 7.2: Stability diagram with J > 0 and the parameters in
Eq. (7.22).

The same analysis is done in the case of ferromagnetic coupling, and the result is
shown in Fig. 7.3. As expected, the equilibrium configuration is ferromagnetic pointing
along the magnetic field, but as σ and χ become sufficiently large and of opposite sign,
the spins will end up pointing antiparallel to the magnetic field. This is surprising
since it maximizes the energy contribution from the magnetic field, −∑iB ·Si. If σ
and χ are large and of same sign, the canted configuration becomes stable, while none
of the fixed points are stable in the white region in Fig. 7.3. The presented stability
diagrams will be confirmed in Sec. 7.3 by running numerical simulations of the spin
system.

The stability diagrams in Fig. 7.2 and 7.3 are both symmetric under the inversion
(σ, χ) → (−σ,−χ). This can be understood from the symmetry in the EOMs in
Eq. (7.6): after doing the exchange (σ, χ) → (−σ,−χ), spin 1 will follow the same
EOM as spin 2 did before the exchange (and vice versa). Consequently, if they end
up in the configuration (θ1, φ1, θ2, φ2) = (θa, φa, θb, φb) for (σ, χ), they will end up in
the configuration (θb, φb, θa, φa) for (−σ,−χ).
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Figure 7.3: Stability diagram with J < 0 and the parameters in
Eq. (7.22).

To get an idea of the effects of the different parameters, six different stability
diagrams for different values of B̃ and η0 are plotted in Fig. 7.4. The diagrams
in the left column have antiferromagnetic coupling, while the right diagrams have
ferromagnetic coupling. Only a single parameter is changed in the diagrams when
compared to the plots in Figs. 7.2 and 7.3, and the varied parameter is shown to the
left of the rows.

In the upper row of Fig. 7.4, the magnetic field is small compared to the indirect
exchange. This does not affect the boundaries of the (↑, ↑) and (↓, ↓) phases signifi-
cantly when compared to the cases with B̃ = 1. As mentioned below Eq. (7.10), the
canted spin configuration is a physical solution when |σ̃| < B̃/2 < 1. This limit
has become clear now that the magnetic field is smaller, and it can be understood as
follows: as σ̃ increases positively from 0, spin 1 is forced downwards, while spin 2 is
forced upwards and at σ̃ = B̃/2, the antiferromagnetic configuration (↓, ↑) is reached.
The opposite is true when σ̃ takes negative values.

In the middle row in Fig. 7.4, the magnetic field dominates over the exchange
torque, and the ferromagnetic configuration (↑, ↑) is stable in equilibrium no matter
the sign of the exchange coupling. Both diagrams show that the system turns chaotic
when the nonequilibrium parameters are large. In the lower row of Fig. 7.4, the
relaxation parameters, η0 and η1, are lowered by a factor of 10, when compared
to Figs. 7.2 and 7.3. As a consequence, the phase boundaries are drawn closer to
(σ̃, χ) = (0, 0). The composition of phases are not affected by this change.
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Figure 7.4: Stability diagrams obtained from linear stability analy-
sis. The left (right) diagrams have antiferromagnetic (ferromagnetic)
coupling. In all diagrams, a single parameter is changed when com-
pared to the diagrams in Figs. 7.2 and 7.3. Unless stated to the left,

the parameters are therefore as in Eq. (7.22).
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7.3 Numerical calculations

As an additional tool, we can simulate the spin system numerically. This can be done
by using Euler’s method on Eq. (7.20) so that

(
n1(τ)
n2(τ)

)
=

(
n1(τ −∆τ)
n2(τ −∆τ)

)
+ ∆τA−1(τ −∆τ)F (τ −∆τ). (7.23)

By choosing a set of parameters (B̃, η0, and so on) and the initial spin configuration
n1(0) and n2(0), the above equation allows us to calculate the orientation of the
spins at any desired time τ in the future. We use Cartesian coordinates in the above
equation, which means that numerical errors can cause the length of the vectors to
change. The lengths of the vectors can therefore be used as a measure of the numerical
error [125].

We will start by considering a few trajectories of the spins. For three different
points in parameter space, which are all included in the stability diagrams in Figs. 7.2
and 7.3, we let the spin system evolve until they stop moving. The initial state is
arbitrarily chosen to be (θ0

1, φ
0
1, θ

0
2, φ

0
2) = (0.3π, 0, 0.4π, 0.8π). The results are shown

in Fig. 7.5, where the left blue spin is spin 1, while spin 2 is red and to the right. The
initial orientations are indicated with dots, while the arrows show the final orienta-
tions. In Fig. 7.5a the coupling is antiferromagnetic, but the spins end up pointing
parallel to the magnetic field. In Figs. 7.5b and 7.5c, the coupling is ferromagnetic,
but the spins end up in the canted configuration and (↓, ↓), respectively. In all three
cases, the final orientations agree with the stability diagrams in Figs. 7.2 and 7.3.
However, it is difficult to learn a lot from these trajectory plots.

To do a more thorough investigation of the final orientations of the spins, we
can do a numerical raster scan of the parameter space. This can be thought of as
a way to verify the stability diagrams obtained in Sec. 7.2.4. We will use a time
step size of ∆τ = 10−4 and allow the system to evolve for 107 steps. The system is
considered to be stable when both spins are slower than |∂τni| < 0.05 for 105 time
steps. For the calculations that reach this stability criterion, it is checked whether
the final configuration is close to any of the fixed points described in Sec. 7.2.1.
The stable configuration (θfinal1 , θfinal2 ) is identified with the fixed point (θfix1 , θfix2 ) if
|θfinali − θfixi | < 0.08 for both spins.

The result is shown in Fig. 7.6 in the case of ferromagnetic coupling. Each of
the 441 points represent a numerical simulation as described above and the black
lines are the same as in Fig. 7.3 obtained from the linear stability analysis. If the
simulation did not reach the stability criterion or if the stable point was not identified
with a fixed point, the calculation was marked as ’not specified’. The result is in good
agreement with the stability diagram in Fig. 7.3. However, when close to a phase
boundary, the simulation times were not long enough for the system to reach stable
points. Additionally, the system reached the canted spin configuration in some cases
in the 1st quadrant in Fig. 7.6 in which a chaotic state was expected. Possible reasons
are that the chosen stability criterion is not strong enough or that the chosen initial
configurations by luck run into the canted configuration. Optimally, the calculation
should therefore be done for different initial configurations. Another explanation could
be that the Euler method is too simple to simulate the spin EOMs. In most of the cases
in which stability is reached, the vector lengths are close to unchanged, which indicates
that the numerical errors are small. In some of the stable calculations, however, the
vector lengths increased with ∼ 3% and in some of the chaotic calculations the errors
were even larger. Despite the numerical errors, the result in Fig. 7.6 is in good
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agreement the result from the stability analysis.

7.4 Conclusion

In this chapter, we have studied the behavior of a two-spin system that follows the
equations of motion discovered in Chapter 6. We found that the nonequilibrium
torque-dependent torques (χṅ2 × n1 and −χṅ1 × n2) do not change the energy of
the spin system. A linear stability analysis showed that the nonequilibrium torques
can drive the spin system into unexpected configurations. As examples, the spins can
end up in the canted (and antiferromagnetic) configuration even though the coupling
is ferromagnetic and they can end up pointing antiparallel to the magnetic field in
the ferromagnetic case. These interesting cases are obtained when the nonequilib-
rium coefficients, σ and χ, are large. Compared to the equilibrium coefficients, we
approximately need |σ| > 0.1|J | and |χ| > 10 η0.

The findings in this chapter suggest a new way to prepare a spin system. Instead
of applying a magnetic field, the system can be prepared with an electric current.
With the current, different configurations can be obtained; not just the ferromagnetic
configuration.
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pJ = 1, σ = −0.3, χ = 0.3

pJ = −1, σ = 0.25, χ = 0.25

pJ = −1, σ = −0.3, χ = 0.3

a)

b)

c)

Figure 7.5: Spin trajectories for different choices of parameters.
In all cases, the spins start in the arbitrarily chosen configuration
(θ1, φ1, θ2, φ2) = (0.3π, 0, 0.4π, 0.8π), which is represented by dots.
The final configuration is shown by vectors. In (b) the spins end up in
the canted spin configuration with (nz1, n

z
2) = (−0.8, 0) and ∆φ = π,

which agrees with Eq. (7.10). In all simulations, the parameters in
Eq. (7.22) are used.
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Figure 7.6: Numerical simulation results for pJ = −1, B̃ = 1, η0 =
10−2, and η1 = η0/2. Each point represents a numerical simulation and
the shape and color indicates the final configuration or the simulation.
’Not specified’ means that the simulation did not reach a stable point
or that the stable point could not be identified with any of the fixed

point configurations. The black lines are the same as in Fig. 7.3.
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Appendix A

Appendix to Chapters 2 and 3

A.1 Nonequilibrium density matrix in the single particle
picture

In the single particle picture, we can write the density matrix as

ρ = 2
∑

α,k

nαF (Ek) |ψαk〉〈ψαk|

= 2

∫
dE
∑

α,k

nαF (E)δ(E − Ek) |ψαk〉〈ψαk| ,
(A.1)

where |ψαk〉 is the scattering state for an electron incoming from lead α with the
energy Ek. For an observable A, we can sum up the contributions from all electrons
by using 〈A〉 = Tr[ρA]. We are interested in the local currents on the molecule, and
we therefore consider the density matrix in the molecular subspace

ρM = MρM

= 2

∫
dE
∑

α,k

nαF (E)δ(E − Ek)GMHMα |φαk〉〈φαk|HαMG
†
M

= 2
∑

α

∫
dE nαF (E)GMHMα

(∑

k

δ(E − Ek) |φαk〉〈φαk|
)
HαMG

†
M

=
1

π

∑

α

∫
dE nαF (E)GMΓαG

†
M .

(A.2)

Here we have used that the molecular part of the scattering state is
∣∣ψMαk

〉
= GMHMα |φαk〉,

where |φαk〉 is the incoming wave in lead α (see e.g. Ref. [59]). We have also used
that

Γα = i
(

Σα − Σ†α
)

= i
(
HMαG

0
αHαM −HMαG

0†
α HαM

)

= iHMα

(
1

E −Hα + iη
− 1

E −Hα − iη

)
HαM

= iHMα
−2iη

(E −Hα)2 + η2
HαM

= 2πHMαδ(E −Hα)HαM

= 2πHMα

[∑

k

|φαk〉〈φαk| δ(E − Ek)
]
HαM .

(A.3)
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A.2 Derivation of Tr
[
GMΓG†MA

]
= 0

In this section, we will show that

Tr
[
GMΓLG

†
MA

]
= −Tr

[
GMΓRG

†
MA

]
(A.4)

for a Hermitian operator A in the molecular subspace that reverses under time-
reversal, TAT−1 = −A. Here T = iσyK is the time-reversal operator, where K
is the complex conjugation operator. To show this, we first write Γ = ΓL + ΓR as

Γ = i
(

Σ− Σ†
)

= i
(

(G†M )−1 −G−1
M

)
,

(A.5)

where we used that G−1
M = (G0

M )−1 − ΣL + ΣR = (G0
M )−1 − Σ. We can use this

property to write Tr
[
(ΓL + ΓR)G†MAGM

]
as

Tr
[
ΓG†MAGM

]
= i
(

Tr[AG]− Tr
[
G†MA

])
. (A.6)

For an arbitrary matrix B, one can show that Tr
[
TBT−1

]
= Tr[B]∗.1 If A reverses

under time-reversal, TAT−1 = −A, we get

Tr[AGM ] = Tr
[
TAT−1TGMT

−1
]∗

= −Tr[A∗GM ]

= −Tr
[
ATGTM

]
(A.11)

where we have used that TGMT−1 = G∗M , GM = GTM , and A = A†. Consequently,
Tr[AGM ] = 0 and the same goes for Tr

[
G†MA

]
= 0, and Eq. (A.4) follows.

A.3 Derivation of single channel expression

When the self-energies can be written as in Eq. (2.12), the bond transmission in
Eq. (2.10) can be put on the simpler form in Eq. (2.13). In this section, we will go

1An arbitrary matrix can be written on the form

B = M0 ⊗ I2×2 +
∑
i

Mi ⊗ σi, (A.7)

where the σ’s are Pauli spin matrices and the M ’s can be any matrices. If we now use the time
reversal operator

T = iσyK, (A.8)

where K is the complex conjugate operator, we can write

TBT−1 = M∗0 ⊗ I2×2 −
∑
i

M∗i ⊗ σi. (A.9)

Taking the trace gives

Tr
[
TBT−1] = Tr[M∗0 ] Tr[I2×2]−

∑
i

Tr[M∗i ] Tr[σi]

= Tr[M0]∗

= Tr[B]∗.

(A.10)
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through the derivation hereof.
For the self-energies in Eq. (2.12), the transmission function in Eq. (2.4) can be

written as
T = kLkR|GN1|2, (A.12)

where kα = −2 Im aα so that ΓL = kL |1〉〈1|. Consider now the bond transmission by
inserting the local current operator, Îij = ie

~ tij(|i〉〈j| − |j〉〈i|), into the Eq. (2.10)

Tij =
~
e

Tr
[
GMΓLG

†
M Îij

]

= itijkL
(
Gj1G

∗
i1 −Gi1G∗j1

)

= 2tijkL Im(Gi1G
∗
j1),

(A.13)

where the elements are Gij = 〈i|GM |j〉. In the following, we will rewrite Im(Gi1G
∗
j1)

step by step: The full Greens function can be written as G = G0 + G0(ΣL + ΣR)G
and an element is

Gij = G0
ij + aLG

0
i1G1j + aRG

0
iNGNj . (A.14)

Remember that HM is symmetric so that G0
ij = G0

ji. We will consider energies away
from resonances so that G0 is real. Since we integrate up all energies, we of course have
to remember the resonances. However, they do not make a significant contribution to
the integral in Iij . The product between two Greens function elements is

Gi1G
∗
j1 =

(
G0
i1 + aLG

0
i1G11 + aRG

0
iNGN1

) (
G0
j1 + a∗LG

0∗
j1G

∗
11 + a∗RG

0
jNG

∗
N1

)

= G0
i1G

0
j1 + a∗LG

0
i1G

0
j1G

∗
11 + a∗RG

0
i1G

0
jNG

∗
N1

+ aLG
0
i1G

0
j1G11 + |aL|2G0

i1G
0
j1G11G

∗
11 + aLa

∗
RG

0
i1G

0
jNG11G

∗
N1

+ aRG
0
iNG

0
j1GN1 + aRa

∗
LG

0
iNG

0
j1GN1G

∗
11 + |aR|2G0

iNG
0
jNGN1G

∗
N1,

(A.15)

where the red terms are real, while the two blue terms are each others complex con-
jugate. Taking the imaginary part,

Im(Gi1G
∗
j1) = Im

[
a∗RG

0
i1G

0
jN (1 + aLG11)G∗N1 + aRG

0
iNG

0
j1 (1 + a∗LG

∗
11)GN1

]

=
(
G0
i1G

0
jN −G0

j1G
0
iN

)
Im

[
a∗R (1 + aLG11)G∗N1

]

=
(
G0

1iG
0
jN −G0

1jG
0
iN

)
Im

[
a∗R
GN1

(1 + aLG11)

]
|GN1|2

=
(
G0

1iG
0
jN −G0

1jG
0
iN

)
Im

[
a∗R
GN1

(
1 +

1

G0
N1

(GN1 −G0
N1 − aRG0

NNGN1)

)]
|GN1|2

=
(
G0

1iG
0
jN −G0

1jG
0
iN

) kR
2G0

N1

|GN1|2,

(A.16)

where we have rewritten the expression for the element GN1 as aL = 1
G0
N1G11

(GN1 −
G0
N1−aRG0

NNGN1). Inserting the above expression into Eq. (A.13) and using Eq. (A.12),
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we get

Tij = tij
G0

1iG
0
jN −G0

1jG
0
iN

G0
N1

kLkR|GN1|2

= tij
G0

1iG
0
jN −G0

1jG
0
iN

G0
1N

T ,
(A.17)

which is the expression stated in Eqs. (2.13) and (2.14).

A.4 Symmetry of γ for Alternant Molecules

In this section, we show that for an arbitrary alternant molecule, γij(−E) = γij(E).
To do this, we use the Coulson-Rushbrooke pairing theorem, which states that for
alternant molecules, the molecular orbitals are symmetrically distributed about a zero
energy level [74]. Additionally, for a symmetry pair (e.g. HOMO and LUMO), we can
go from one orbital to the other by changing the sign at every other site. We divide
the sites into two sub-latices, the ones at which there is a sign change and the ones at
which there is not.

Consider an arbitrary element of the Greens function for the isolated molecule

G0
ij = 〈i| 1

E −HM
|j〉

=
∑

n

ψni ψ
n
j

E − εn
,

(A.18)

where i and j are site indices, n refers to the molecular orbital, and ψni = 〈i|n〉. We
will use ñ to denote the symmetry partner of n. We have two different scenarios for
the Greens function element. The sites i and j can either be on the same sub-lattice
or on different sub-lattices

ψni ψ
n
j = ±ψñi ψñj
εn = −εñ

(A.19)

where the upper (lower) sign is when i and j are on the same (different) sub-lattice.
We then have

G0
ij(−|E|) =

∑

n

ψni ψ
n
j

−|E| − εn

= ±
∑

n

ψñi ψ
ñ
j

−|E|+ εñ

= ∓G0
ij(|E|)

(A.20)

since the sums over n and ñ both include all orbitals. We can choose the sites 1 and i
to be on the same sub-lattice, so that G0

1i(−E) = −G0
1i(E), G0

1j(−E) = G0
1j(E), and

G0
jN (−E) = ±G0

jN (E) where the upper (lower) sign refers to 1 and N on the same
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(different) sub-lattice. Using these in the expression for γ in Eq. (2.14), we get

G0
1i(−E)G0

jN (−E)−G0
1j(−E)G0

iN (−E)

G0
1N (−E)

=
∓G0

1i(E)G0
jN (E)±G0

1j(E)G0
iN (E)

∓G0
1N (E)

=
G0

1i(E)G0
jN (E)−G0

1j(E)G0
iN (E)

G0
1N (E)

.

(A.21)

We have therefore proved that for alternant molecules

γij(−E) = γij(E). (A.22)

A.5 Self-energy for semi-infinite leads

In this section, we will see how to calculate self-energies for two different types of
semi-infinite leads.

A.5.1 1D chain

In the single molecule junctions, we model the leads as semi-infinite linear chains of
atoms as illustrated in Fig. 3.1. In this case, the self-energy for the left lead can be
written as

ΣL = HMLgLHLM

= t2cgL,11 |inL〉〈inL| ,
(A.23)

where gL = (E−HL+iη)−1,2 and where the index 1 is the outermost site of the chain.
We use that the left lead couples to the orbital |inL〉 on the molecule. gL,11 is known
as the surface Greens function and in this case it is just a number. To calculate gL,11,
we will follow the procedure described in Sec. (3.2.1) in Ref. [66]: We can write the
inverse Greens function of the left lead as

g−1
L = E −HL + iη

= E −H0
L − V + iη

= (g0
L)−1 − V,

(A.24)

where V is the matrix including the coupling between the two outermost sites, H0
L is

the Hamiltonian without V , and g0
L = (E − H0

L + iη)−1. Multiplying from the left
with g0

L and from the right with gL, we get

gL = g0
L + g0

LV gL. (A.25)

The Greens function element for the outermost site is (dropping the subscript L)

g11 = 〈1|g|1〉
= g0

11 + g0
11V12g21

(A.26)

2In Chapter 2, we used G0
L to describe this Greens function. To make the derivation more readable,

we have dropped the superscript and used lowercase g in this section.
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where site 2 is the next-outermost site. Similarly, we can write

g21 = g0
22V21g11. (A.27)

But g0
22 = g11, V12 = V21 = −tL, and g0

11 = 1
E−εL+iη . We therefore end up with

g11 = 1
E−εL+iη

(
1 + t2Lg

2
11

)
, which can be rewritten as

0 = t2Lg
2
11 − (E − εL + iη)g11 + 1. (A.28)

This second order equation has the solutions

gL,11 =
E − εL

2t2L
± 1

2t2L

√
(E − εL)2 − 4t2L. (A.29)

We will only consider energies (E − εL)2 < 4t2L for which propagating modes are al-
lowed in the chain [1]. From the representation in Eq. (A.3), we see that the imaginary
part of the self-energy is negative.3 We will therefore use the lower sign in Eq. (A.29).
With Eqs. (A.23) and (A.29), we have derived the self-energy for the semi-infinite
chain. The ΓL = −2 Im ΣL that appears in the expressions for the transmission and
bond transmission is then

ΓL =
t2c
t2L

√
4t2L − (E − εL)2 |inL〉〈inL| . (A.30)

The derivation for the right lead is of course the same as described above, but with
R instead of L.

A.5.2 Graphene nanoribbons

For graphene nanoribbons, we cannot simply write down an analytic expression for
the self-energy as we did for the chain in Appendix A.5.1. Instead, we can follow an
iterative procedure [77], and we will follow the description in Appendix B in Ref. [78]
closely.

We consider a semi-infinite zigzag-edge graphene ribbon as shown in Fig. A.1. The
ribbon is described by the Hamiltonian HL and we are interested in the self-energy
ΣL = HMLgLHLM , where the Greens function is gL = (E + iη −HL)−1. The ribbon
can be separated into unit cells with N atoms as shown in the figure, and the only part
of gL that appears in the self-energy is the surface Greens functions, gsurfaceL = gL,11,
i.e. the part of the Greens function that belongs to the outermost unit cell 1. To
obtain this, we can start by writing [78]

(E + iη −HL) =




d −A 0 0
−B D −A 0 · · ·
0 −B D −A

...
. . .


 (A.31)

3In Eq. (A.3), we see that ΓL = −2 Im ΣL = 2πHMLδ(E −HL)HLM .
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Figure A.1: Illustration of the semi-infinite graphene ribbon. The
grey region represents the device/molecule described by HM , while the
ribbon continues infinitely to the left. The unit cells are numbered as

shown below the ribbon.

where

B = −t




0 1 0 0
0 0 0 0 · · ·
0 0 0 0
0 0 1 0

...
. . .




(A.32)

with the displayed block repeated down the diagonal and

D =




E + iη −t 0
−t E + iη −t · · ·
0 −t E + iη

...
. . .


 . (A.33)

Additionally, d = D and A = BT . The introduced matrices have dimensions (N×N).
For the right lead, AR = ATL and BR = BT

L . By considering the first column of

(E + iη −HL)gL = 1, (A.34)

we get

d g11 = 1 +Ag21 (A.35)
Dgn1 = B gn−1,1 +Agn+1,1. (A.36)

These equations describe the connection between the Greens function from unit cell 1
to n and the Greens functions from 1 to neighbors of n. We can now eliminate all the
Greens functions involving even n. By inserting g21 from Eq. (A.36) into Eq. (A.35),
we get

d g11 = 1 +AD−1 (B g11 +Ag31) , (A.37)

which can be rearranged to
(
d−AD−1B

)
g11 = 1 +AD−1Ag31. (A.38)



Appendix A. Appendix to Chapters 2 and 3 87

We now have the connection between g11 and g31. We can do the same to eliminate
all the even n’s in Eq. (A.36)

Dg2m+1,1 = B g2m,1 +Ag(2m+2),1

= BD−1 (B g2m−1,1 +Ag2m+1,1) +AD−1 (B g2m+1,1 +Ag2m+3,1)
(A.39)

and after rearranging
(
D −BD−1A−AD−1B

)
g2m+1,1 = BD−1B g2m−1,1 +AD−1Ag2m+3,1. (A.40)

We therefore have
d1g11 = 1 +A1 g31

D1g2m+1,1 = B1 g2m−1,1 +A1 g2m+3,1
(A.41)

with
d1 = d−AD−1B

A1 = AD−1A

B1 = BD−1B

D1 = D −BD−1A−AD−1B

(A.42)

where the subscript 1 indicates that we have eliminated once. We can do it again to
get d2g11 = 1+A2 g51. If we continue iterating, we find that An ≈ 0 for large n. After
the iteration has converged, we have obtained the surface Greens function

g11 ≈ d−1
n (A.43)

for large n. To check whether the solution is correct, we can verify that

g11 =
1

E −HL,1 −Ag11B
(A.44)

where HL,1 is the unit cell Hamiltonian.
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Appendix B

Appendix to Chapter 4

B.1 BDT experiment: Heat conduction through air

We consider the model shown in Fig. B.1, where all the boxes are components char-
acterized by Seebeck coefficients, thermal conductivities, and electric conductivities.
The letter ’s’ refers to the sample, ’a’ is the series connected parts, while ’b’ and ’c’
are air-components. The model includes the fact that the temperature and potential
differences are not measured at the same points: The temperature is measured in
the air which is marked by point 4 in Fig. B.1. We can write the measured Seebeck

a

s

b

T1,V1

c
T3,V3

T4

Figure B.1: A components model which takes into account the heat
conduction by air. All the components have an associated Rq, S, and
R. ’s’ refers to the sample, ’a’ to the tip and cantilever, while ’b’ and

’c’ are air components.
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coefficient as

Smeasured = −V3 − V1

T4 − T1

=
Ss∆Ts + Sa∆Ta

T4 − T1
,

(B.1)

where ∆Ti is the temperature difference across component i. We used that the electric
current is I = Gi∆Vi +GiSi∆Ti = 0 for i = {a, s} so that ∆Vi = −Si∆Ti. Assuming
that the heat current is mainly driven by the temperature gradient, the denominator
of the above expression is

T4 − T1 = Iq
(
Rqparallel +Rqc

)

= Iq


 1

1
Rqs+Rqa

+ 1
Rqb

+Rqc




= Iq
(

(Rqs +Rqa)R
q
b

Rqs +Rqa +Rqb
+Rqc

)
,

(B.2)

where the Rq’s are thermal resistances and Iq is the heat current. In the numerator
in Eq. (B.1), we will use ∆Ts = RqsI

q
a and ∆Ta = RqaI

q
a

Smeasured =
(SsR

q
s + SaR

q
a)I

q
a

Iq
(

(Rqs+Rqa)Rqb
Rqs+Rqa+Rqb

+Rqc
)

=
SsR

q
s + SaR

q
a

(Rqs+Rqa)Rqb
Rqs+Rqa+Rqb

+Rqc

Rqb
Rqs +Rqa +Rqb

=
SsR

q
s + SaR

q
a

(Rqs +Rqa)R
q
b + (Rqs +Rqa +Rqb)R

q
c
Rqb

= wsSs + waSa,

(B.3)

where we used that Iqa = 1
Rqs+Rqa

∆Tb and Iqb = 1
Rqb

∆Tb so that Iqa/Iq = Iqa
Iqa+Iqb

=

Rqb
Rqs+Rqa+Rqb

. We have written the measured Seebeck coefficient as a weighed sum of the
Seebeck components. Since metals have small Seebeck coefficients, the last term in
Eq. (B.3) is small, and we are therefore mainly interested in the weight of the sample

ws =
Rqb

(Rqs +Rqa)(R
q
b +Rqc) +RqbR

q
c
Rqs. (B.4)

Using the simplification Rqs = d
Asκs

, where d it the sample thickness, As is the sample
area, and κs is the thermal conductivity of the sample, we can rewrite the weight as

ws =
Rqb

Rqb +Rqc
· Rqs

Rqs +Rqa +Rqc
Rqb

Rqb+Rqc

= k · Rqs
Rqs +Rqa +Rqck

≈ k · d

d+Asκs(R
q
a +Rqck)

.

(B.5)
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We therefore have

ws ≈ k
d

d+ b̃
(B.6)

with

k =
Rqb

Rqb +Rqc
=

1

1 + Rqc
Rqb

b̃ = Asκs(R
q
a +Rqck).

(B.7)

For Rqb →∞, we arrive at our series result in Eq. (4.12), since k → 1 and b̃→ b.
By putting together Eqs. (B.3) and (B.6), we get (neglecting the small Seebeck

coefficient of the metallic connecting parts, Sa ≈ 0)

Smeasured = Ss
k · d
d+ b̃

. (B.8)

From the definition in Eq. (B.7), we see that 0 < k < 1 so that the fraction in Eq. (B.8)
is smaller than 1. Consequently, the actual Seebeck coefficient of the sample Ss can be
larger than the measured one. k only depends on thermal transport through the air,
which is independent of the thickness of the sample. In the specific BDT experiment,
it has been measured by our collaborators at the UCAS in Beijing to be k ≈ 0.5. We
do not have enough knowledge about the specific experiment to describe it here, but
the factor is used in the paper draft in Appendix C.
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Appendix C

BDT paper draft

This appendix presents a paper draft, which includes the results from Chapter 4. The
draft is written by Kasper Nørgaard and the author of this thesis. A lot of people
contributed to the work described herein, most of whom work/studied at the Chinese
Academy of Sciences in Beijing.

In this draft, the measured Seebeck coefficients are a factor of ≈ 2 larger than the
ones presented in Chapter 4. The factor was experimentally obtained and it is due to
the heat conduction through air as described in Sec. B.1. The paper is not published
due to the challenges described in Sec. 4.3.
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Abstract

What has been done...

Ever since Thomas Seebeck’s discovery of the thermoelectric effect almost 200 years

ago, the electric response of a material to an applied temperature difference has captured

the attention of scientist. The thermopower (or Seebeck coefficient) is the ratio of a mea-

sured induced voltage difference to an applied temperature difference, S = −∆V/∆T =

−(kB/e)(e∆V )/(kB∆T ), and it has a scale given by kB/e = 86µV/K. The Seebeck coef-

ficient varies strongly for different materials: for metals S is typically a few µV/K, while

for semiconductors the Seebeck coefficient is several hundred µV/K. These facts have been

understood for a long time.

In recent time, experiments have been performed on nanoscale systems. Organic single

molecule junctions typically show Seebeck coefficients of few tens of µV/K,1–3 a value which

is closer to that of metals, even though a molecule with its discrete electron spectrum is

reminiscent of a semiconductor. This behavior is understood theoretically because electrons

1
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have the possibility to tunnel across the molecule and the Seebeck coefficient is given by

the variation of the tunnelling probability with energy: S/(kB/e) = π2/3(kBT )d ln(T )/dE.

I.e. the same expression as that of a metal with the conductivity replaced by the tunnel-

ing probability T .4 When these molecules are put together into organic crystals, a valence

band will be formed from the HOMOs (highest occupied molecular orbitals), a conduction

band originates from the LUMOs, and so on. Similar to conventional semiconductors, these

organic semiconductors show Seebeck coefficients of hundreds of µV/K.5,6 For a p-type semi-

conductor the Seebeck coefficient is given by7

Ssc =
kB
e

(
µ− Ev
kBT

+ Av

)
(1)

where µ is the chemical potential, Ev is the energy maximum of the valence band while Av

is a constant that depends on the density of states and the energy dependent mobility. For

a n-type semiconductor where the chemical potential is closer to the conduction band, we

would have Ec and Ac instead of Ev and Av.

The crossover between small Seebeck coefficients in single molecules and large Seebeck

coefficients in organic crystals is yet to be understood. The change in dimensionality is one

effect that can influence the thermopower.8 In the transition from a 2D monolayer (or a few

layers) to multi layered structures, band bending can affect the Seebeck coefficient which has

been studied in different inorganic semiconductors.9–11 In this work we study the thickness

dependent Seebeck coefficient in organic semiconductors in the crossover from a few layers

of SAMs (self assembled monolayers) to organic crystals.

We investigated the thermoelectric properties of a p-type single-crystal organic semicon-

ductor, α,α-bis(dithieno[3,2-b:2,3-d]thiophene) (BDT),12,13 with thicknesses varying between

8 nm and 220 nm. This molecule, belonging to the large family of π-conjugated molecules,

forms high-quality molecular crystals, which can be described as ”stacks” of self-assembled

monolayers (SAMs). This basic structure, combined with our ability to grow thin crystal

2
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plates with different thicknesses d (see methods), makes BDT an ideal model system for

studying the thickness dependence of the Seebeck coefficient S(d) down to a thickness of

4-5 monolayers. The crystal structure of BDT (Figure 1a) reveals a completely coplanar

conformation of the molecules with a unique π-π stacking along the b-axis. Single crystals

of BDT were grown on a SiO2/Si substrate via physical vapor deposition (PVD) and then

mechanically transferred to a 70 nm thick Au substrate, which was deposited on a SiO2/Si

wafer. Transmission electron microscopy (TEM) was used to verify that the samples were

indeed single crystals (See SI). The thin crystals could be visualized in an optical microscope

and their thicknesses were established by atomic-force microscopy (AFM). The crystals were

oriented with the c-axis perpendicular to the substrate.

Figure 1: Lattice structure of BDT single crystals and experimental setup. a) Lattice struc-
ture of the BDT single crystal. The thermoelectric measurements are performed along the
crystal c-axis. b) Schematic illustration of the experimental setup. The AFM was modified
by connecting a current amplifier and a voltage amplifier between the Pt probe and the Au
substrate using Cu wires. The sample located on the ∼ 70 nm thick Au substrate was heated
by the hot stage to a set temperature above ambient temperature during the thermoelectric
measurements. I-V characteristics were also measured at the same sample location in contact
mode.

We used a Scanning Thermoelectric Microscope (SThEM)14,15 to study the thermopower

(S) and resistance (R) of the individual submicron thick BDT crystals. The experimen-

tal setup is illustrated in Figure 1b. This approach enabled a direct measurement of the

nanoscale thermoelectric properties by measuring the thermoelectric voltage induced by

contact between a room-temperature tip and a heated sample. We connected a current am-

plifier and a voltage amplifier to an atomic force microscope between the AFM tip (Pt) and

3

Appendix C. BDT paper draft 94



the Au substrate. The AFM worked in contact mode under ambient conditions. At each

point of the measurement, the tip was brought into contact with the sample and reached

thermal equilibrium. The current amplifier loop was connected to measure the I-V curve,

and then disconnected while the thermoelectric voltage measurement loop was connected.

The sample was heated by a thermostatic hot stage to 5K (10K, 15K, 20K) above room tem-

perature, and a micro thermocouple (Omegar type-K) was mounted on the Au substrate by

silver paste to monitor its temperature. As the room-temperature tip made contact with the

heated sample, a temperature difference was created in the sample near the contact point.

The thermoelectric voltage generated by the temperature difference was measured by the

voltage amplifier.

The measured Seebeck coefficients are shown in Figure 2b. The positive values confirm

that the BDT crystal is a p-type semiconductor12 and we see a strong thickness dependence

with values ranging from about 250µV/K for thin samples to about 800µV/K for thick ones.

The Seebeck coefficient saturates for thick samples and the half-maximum is reached at

around 40 nm. To understand this thickness dependence we consider two possible explana-

tions: Thickness dependence of the temperature drop and band bending.

When the Seebeck coefficient of a setup is measured, the result is a weighted average of

the components in the setup. How the components are weighted depends on the geometry

of the setup. Consider for simplicity two components with different Seebeck coefficients S1

and S2 and thermal resistances Rq,1 and Rq,2. If these components are coupled in series the

resulting Seebeck coefficient is

Sseries =
Rq,1S1 +Rq,2S2

Rq,1 +Rq,2

(2)

We see that the Seebeck coefficient is a weighted average of the involved S’s with weight

factors given by the materials’ thermal resistances. If the components were instead parallel-

coupled the weight factors would be given by the electrical conductances. In our experimental

4

Appendix C. BDT paper draft 95



b

d

0 50 100 150 200

0

200

400

600

800

Thickness d [nm]

S
ee

be
ck

co
ef

fic
ie

nt
[μ

V
/K

]

0 50 100 150 200 250
4.3

4.4

4.5

4.6

4.7

4.8

4.9

Thickness [nm]

S
ur

fa
ce

w
or

k
fu

nc
tio

n
[e

V
]

Figure 2: I-V characterizations and thermoelectric measurements. a) Electrical conductivity
for each BDT single crystal with different thickness. Inset: I-V curve of the 28nm thick BDT
crystal obtained by scanning the voltage between the Au substrate and the Pt probe. b) The
measured Seebeck coefficients as a function of the BDT crystal thickness. The solid curve
represents the best fit to a model including the band bending in the metal-semiconductor
interface. c) Surface potential of a BDT single crystal on Au, measured by KPFM. d) The
measured surface work function of BDT crystals as a function of sample thickness obtained
from KPFM measurements. The dashed line uses the fitted Debye length from Figure 2b
and represents the position dependent band bending in a thick sample.

5
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setup (see Figure 1b) the measured Seebeck coefficient includes both the sample, the tip and

the probe, and we can approximate it as a series connection between the sample and the Pt

components. When the sample thickness goes to zero, the thermal resistance of the sample

vanishes and according to eq. (2) the thermoelectric response will be from platinum only. For

thick samples, the thermal resistance of the sample will dominate and the measured Seebeck

coefficient will be that of the sample. Consequently this effect will give a thickness dependent

Seebeck coefficient that starts out at a few µV/K (the value for Pt) and then increases until

it saturates at the Seebeck coefficient of the organic semiconductor in a similar fashion

as observed in the experimental results in Figure 2b. However, due to the high thermal

conductivity of Pt compared to that of an organic crystal, the characteristic length of this

saturation curve is only expected to be around a few nanometers (see supporting information)

and the effect can therefore not explain the experimental results. The effect is included when

the data is fitted.

When the organic semiconductor is put into contact with the Au substrate there will be

a transfer of charges between the materials. The accumulated charges will bend the bands

of the semiconductor and consequently change its transport properties. The change in the

Seebeck coefficient is readily seen from equation (1) where the edge of the valence band Ev(r)

now depends on the distance to the substrate. The surface work function in the vicinity of

the Au-sample interface was measured using Kelvin Probe Force Microscopy (KPFM) and

the results are shown in Figure 2c and 2d. This indicates that the bands bend with an energy

shift around 0.3 eV and with the Debye length λD ≈ 50 nm.

Consider for a moment the problem to be one-dimensional. If we take eq. (2) to the

continuum limit and use that the thermal conductivity is not affected significantly by the

band bending (the thermal transport in organic crystals is dominated by phonons), the

Seebeck coefficient of the sample is Ssample = 1
d

∫ d
0
S(x)dx. When the sample thickness d is

comparable to the thickness of the space charge layer λD the measured Seebeck coefficient

is affected by the band bending. For thick samples d � λD the bulk value will dominate.

6
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Consequently, this simple consideration illustrates that the measured Seebeck coefficient will

vary for small thickness but saturate at some value larger than λD. However, in the actual

experimental setup the variation is not 1-dimensional as stipulated in the above simple

physical model. The STM tip defines a small nanosized contact around which the bands

bend and we expect the electric potential and therefore the transport coefficients to vary in

all 3 dimensions. Instead of using equation (2) we therefore have to use the finite element

method (FEM) to calculate the electric potential and Seebeck coefficient.

Figure 3: a) The calculated local Seebeck coefficient in a cross section of a 30 nm thick
BDT sample. (b) and (c) show the calculated temperature and electric potential maps,
respectively, when the setup is subject to a temperature difference ∆T = 30 K and the
condition that no net current passes through the setup. It is obtained by solving the coupled
continuity equations as described in the text. Notice the grey lines that seperates the Au
substrate and the sample.

To model the band bending we use Poisson’s equation. We assume that dopants such as

oxygen are distributed uniformly as in other organic semiconductors16,17 and we end up with

the differential equation ∇2f(r) = e2nd
εkBT

[
ef(r) − 1

]
where f(r) = (eφbulk − eφ(r))/(kBT ).

This equation is difficult to solve for the particular geometry and we therefore use the

7
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f(r)� 1 limit to model our system:

∇2φ(r) =
1

λ2D
[φ(r)− φbulk] (3)

where we have introduced the Debye length λD =
√
εkBT/(e2nd). The system at hand is not

in this limit, but the model will capture the correct behavior of the potential. We assume

the work functions of Au and Pt to be equal so that the electric potential at the sample-tip

and sample-substrate interfaces are the same φ0 = φ(rboundary). The parameter φ0 defines

the boundary condition to eq. (3) and we solve the boundary value problem using the FEM.

To simplify the calculation we have taken the setup to be cylindrically symmetric around

the center of the tip. The spatial dependence of the valence band edge is

Ev(r) = εv − eφ(r) (4)

The local Seebeck coefficient is obtained from eq. (1) and it is shown for a 30 nm thick sample

in Figure 3. Similarly the electric conductivity is σ(r) = σ0 exp[(µ− Ev(r))/(kBT )]. Using

the FEM method again, we can obtain the total Seebeck coefficient by solving the coupled

continuity equations ∇ · je(r) = 0 and ∇ · jq(r) = 0 with the boundary conditions of a

temperature difference and with the condition of zero electric through current (See supporting

material). For the local Seebeck coefficients in Figure 3a we obtain the temperature and

electric potential maps shown in Figures 3b and 3c. Similarly we can obtain the resistance

by applying only a potential difference and calculating the responsive current.

The described procedure was done for all sample thicknesses and we ran an optimization

to find the parameters µ − εv, φbulk − φ0, λD, and Rq,Pt that fit the measured Seebeck

coefficients in Figure 2b best. We obtained a Debye length of λD ≈ 33 nm, φbulk − φ0 = 0.3

V, while Rq,Pt hit the minimum of our prior. In Figure 2b we see that the model fits the

Seebeck measurements well. Additionally we have used the best-fit-parameters to plot the

band bending profile of thick BDT sample. The result is shown as a dashed line in Figure

8
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Figure 4: Current loops. Calculated electric current densities inside a 30 nm thick BDT
crystal, in contact with a metallic substrate (bottom) and AFM tip (top left corner).

2d together with the KPFM data and we see an agreement in the length dependence and

the energy shift. This strongly indicates that the characteristic length dependence of the

Seebeck coefficient is due to the band bending.

The 3D geometry of the setup and the inhomogeneity caused by the band bending give rise

to an interesting effect of internal electric current loops. The existence of circulating currents

can be understood from the parallel coupled device shown in Figure 4a where temperature

and potential differences are present so that no electric current flows through the setup. A

resulting circulating current then exists18

Ic =
S1 − S2

R1 +R2

∆T. (5)

This may seem surprising, but it was actually such currents Thomas Seebeck observed (using

a compass needle) in 1821 when he first discovered the effect. Circulating currents have

also been studied more recently.18,19 For an inhomogeneous material with varying transport

parameters it can be shown that local circulating currents exist if ∇S×∇T 6= 0. Here, ∇S is

the direction in which S varies locally and ∇T is the direction along which the temperature

varies. A requirement for local currents is thus that these directions must not be parallel

and this is, schematically, what happens for the parallel coupled materials in Figure 4a. For

9
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the potential and temperature maps shown in Figures 3b and 3c we have calculated the local

current densities using je = −σ∇V − σS∇T . The result in Figure 4b shows the circulating

electric currents in a 30 nm thick sample. Notice that current enters and leaves the sample

but just as in the experiment there is no total current flowing trough the setup.

In conclusion, we measured significant variations in the thermopower of thin single crys-

tals of a p-type organic semiconductor using an AFM-based method. The observed Seebeck

coefficients ranged between 250µV/K for very thin crystals and 800µV/K for thicker crystals.

The variations were observed at the same length scale as that of the band bending, and we

demonstrated that the thickness dependent Seebeck coefficient is in fact caused by the band

bending. Additionally we noticed theoretically that electric circulating currents exist in the

setup when measuring the Seebeck coefficient. This is contrary to the usual assumption of

zero currents and it is due to the 3D geometry and inhomogeneity of the setup.

Methods

Organic single crystals of α,α-bis(dithieno[3,2-b:2,3-d]thiophene) (BDT) were fabricated by

physical vapour deposition on a SiO2/Si substrate. The BDT single crystal was grown at

180◦C for 5-7 hours, under an argon flow (0.04 L/min), yielding thin BDT crystal plates with

a thicknesses ranging from about 8nm to 220nm. The molecular crystals were chemically

stable at room temperature. For electric and thermopower measurements, the thin BDT

plates were mechanically transferred from the silicon wafer to the target Au/Si substrate.

Au thin films (about 320 nm) were prepared by electron vapour deposition on Si substrates,

using the template stripping approach.20 The Au films were cut freshly as needed.

The experimental setup is shown schematically in Figure 1b. To acquire the current-

voltage (I-V) characteristics and thermoelectric voltage, we modified a commercially avail-

able atomic force microscope (AFM, Bruker Deminson Icon) by connecting a current ampli-

fier (Keithley 6430 Sourcemeter) and a voltage amplifier (a home-made 1000 times voltage

pre-amplifier and Keithley 2182A Nanovoltmeter) between the pure Pt tip (Bruker RMN-
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12PT400B) and Au substrate. In an ambient environment, the AFM worked in contact

mode. At each point of the measurement, the tip was brought into contact with the sample

and reached thermal equilibrium. The current amplifier loop was connected to measure the

I-V curve, and then disconnected while the thermoelectric voltage measurement loop was

connected. The sample was heated by a thermostatic hot stage to 5K (10K, 15K, 20K) above

room temperature, and a micro thermocouple (Omega type-K) was mounted on the Au sub-

strate by silver paste to monitor its temperature. The thermoelectric voltage generated by

the temperature difference was measured by the voltage amplifier.
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Appendix D

Appendix to Chapter 6

D.1 Equations of motion

The spin action was found in Eq. (6.24) to be

S[a]− S[b] + ∆S = S
∑

n=1,2

∫ tf

0
dt
{
Beff,n · ζn + φ̇+

n cos θ+
n − φ̇−n cos θ−n

}
(D.1)

where ζn = n+
n −n−n and where we introduced the effective magnetic field, which can

include contributions from the electrons as shown in Eq. (6.45). The subscript n is
the spin index, while the superscripts + and − indicate the forward and backward
path, a and b, respectively. Let us introduce the average and difference angles

θn =
1

2

[
θ+
n + θ−n

]

ξnθ = θ+
n − θ−n ,

(D.2)

so that θ±n = θn± 1
2ξnθ and the same for φ. We will now assume that the most dominant

contributions to ei(S[a]−S[b]+∆S[a,b])/~ come from the histories where the paths a and b
are close. As explained in Sec. 6.2.3, this is ensured by the influence functional, which
couples the forward and backward paths and suppresses large differences between the
two. The difference angles are therefore small, and we can expand the actions to first
order in ξnθ and ξnφ. We get

ζn ≈
∂(n+

n − n−n )

∂ξnθ

∣∣∣∣
ξ=0

ξnθ +
∂(n+

n − n−n )

∂ξnφ

∣∣∣∣
ξ=0

ξnφ

=
∂nn
∂θn

ξnθ +
∂nn
∂φn

ξnφ

= θ̂nξnθ + φ̂n sin(θn)ξnφ,

(D.3)

where it was used that in spherical polar coordinates dρ = dρ ρ̂+ ρdθ θ̂+ ρ sin θ dφ φ̂.
The introduced nn is described by the average angles θn and φn. The effective mag-
netic field in Eq. (6.45) depends on Qn = (n+

n + n−n )/2, which, to first order in the
difference angles, is

Qn ≈ nn. (D.4)
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Finally, the last two terms in Eq. (D.1) are
[
φ̇n ±

1

2
ξ̇nφ

]
cos

(
θn ±

1

2
ξnθ

)

≈
[
φ̇n ±

1

2
ξ̇nφ

] [
cos θn ∓

1

2
sin(θn)ξnθ

]

= φ̇n cos θn ±
1

2

[
cos(θn)ξ̇nφ − φ̇n sin(θn)ξnθ

]
− 1

4
ξ̇nφ sin(θn)ξnθ.

(D.5)

Putting this together, we can write Eq. (D.1) as

S[a]− S[b]

= S

∫ tf

0
dt

{∑

n

[Beff,nθξnθ +Beff,nφ sin(θn)ξnφ] +
∑

n

[
cos θnξ̇nφ − φ̇n sin(θn)ξnθ

]}

= S

∫ tf

0
dt
∑

n

{[
Beff,nθ − φ̇n sin θn

]
ξnθ + sin θn

[
Beff,nφ + θ̇n

]
ξnφ

}
+ S

∑

n

[cos(θn)ξnφ]
tf
0 ,

(D.6)

where integration by parts was used from the first to second line. The boundary
terms, [cos(θn)ξnφ]

tf
0 , are not important and mathematically they can be taken out

in front of Eq. (6.17) and included in the normalization factor [143]. A more physical
argument is that we are looking for an equation of motion for the spins. There can
be some time-non-local torques in this equation, i.e. the spins are affected by the spin
trajectories in the near past, but the spin orientations in the far past or future should
not affect the motion. The boundary terms in the above equations can therefore not
play an important role.

When integrating ei(S[a]−S[b])/~ over the phase space, we can choose to integrate
over the average and difference angles. Integration over the difference angles only give
contributions when the square brackets in front of ξnθ and ξnφ in Eq. (D.6) are zero.
Consequently,

θ̇n = −Beff,nφ

φ̇n sin(θn) = Beff,nθ
(D.7)

for both n = 1 and n = 2. This is just the angle components of the Bloch equation

ṅn = −Beff,n × nn, (D.8)

which can be seen from the fact that n = ρ̂ and that the time derivative of an arbitrary
vector A in spherical polar coordinates is

Ȧ = ρ̂
(
Ȧρ −Aθθ̇ −Aφφ̇ sin θ

)
+ θ̂

(
Ȧθ +Aρθ̇ −Aφφ̇ cos θ

)

+ φ̂
(
Ȧφ +Aρφ̇ sin θ +Aθφ̇ cos θ

)
.

(D.9)

With this, we have shown that the average vectors, nn, follow the classical path.

D.2 Constructing the functional integral

We can write Eq. (6.18) as a coherent state functional integral by splitting the time
evolution operators into small time steps and inserting unit operators as defined in
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Eq. (6.10). To illustrate the procedure, we split it into 6 steps (with inspiration from
Refs. [140, 145])

Tre

[
U †(b)U(a) ρ̂e(0)

]

=

∫
d(η̄, η) e−

∑6
i=1

∑
kσ η̄

i
kση

i
kσ
〈
η6
∣∣eiHe(b(t6))∆t

∣∣η5
〉 〈
η5
∣∣eiHe(b(t5))∆t

∣∣η4
〉

×
〈
η4
∣∣1
∣∣η3
〉 〈
η3
∣∣e−iHe(a(t3))∆t

∣∣η2
〉 〈
η2
∣∣e−iHe(a(t2))∆t

∣∣η1
〉 〈
η1
∣∣ρe(0)

∣∣−η6
〉
,

(D.10)

where we used that the trace can be written as in Eq. (6.11). Just as for the spin
coherent states, the superscripts are time indices. All the Grassmann numbers are
integrated over, i.e. d(η̄, η) =

∏
i

∏
kσ dη̄ikσ dηikσ. The different elements in Eq. (D.10)

can be rewritten by using the properties of the coherent states. We will start with an
element of the time evolution operator
〈
ηi
∣∣e−iHe (ti−ti−1)

∣∣ηi−1
〉

≈
〈
ηi
∣∣ηi−1

〉
− i(ti − ti−1)

〈
ηi
∣∣He(c

†, c)
∣∣ηi−1

〉

= e
∑

kσ η̄
i
kση

i−1
kσ
(
1− i(ti − ti−1)He(η̄

i, ηi−1)
)

≈ exp

(∑

kσ

η̄ikση
i−1
kσ − i(ti − ti−1)He(η̄

i, ηi−1)

)

= exp

(∑

kσ

η̄ikση
i−1
kσ − i(ti − ti−1)

∑

kσ

∑

k′σ′

η̄ikσ

[
εkδk,k′δσ,σ′ − V λi

kσ,k′σ′

]
ηi−1
k′σ′

)

(D.11)

where Eq. (6.9) was used in the first step and where λi = +1 (λi = −1) when ti is on
the forward (backward) time path. We have used the notation

〈a(t)|Hint|a(t)〉 = −sJ0

∑

n

n+
n (t) · s(Rn)

= −sJ0

2V
∑

kσ

∑

k′σ′

∑

n=1,2

e−i(k−k
′)·Rn n+

n (t) · σσσ′ c†kσck′σ′

= −
∑

kσ

∑

k′σ′

c†kσV
+
kσ,k′σ′(t)ck′σ′

(D.12)

and the same for b and “−” (minus superscript). The introduced V is therefore

V ±
kσ,k′σ′(t) =

SJ0

2V
∑

n=1,2

e−i(k−k
′)·Rn n±n (t) · σσσ′ . (D.13)
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The density matrix of the electronic system is defined in Eq. (6.26). The element
of ρe(0) is

〈
η1
∣∣ρe(0)

∣∣−ηN
〉

=
1

Z

〈
η1
∣∣e−β

∑
kσ

(
εk−∆k−µ

)
c†kσckσ

∣∣−ηN
〉

=
1

Z

∏

kσ

∏

k′σ′

∏

k′′σ′′

〈0|
(
1− ckση̄1

kσ

)
e
−β
(
ε
k′−∆k

−µ
)
c†
k′σ′ck′σ′

(
1 + ηNk′′σ′′c

†
k′′σ′′

)
|0〉

=
1

Z

∏

kσ

〈0|
(
1− ckση̄1

kσ

)
e
−β
(
εk−∆k−µ

)
c†kσckσ

(
1 + ηNkσc

†
kσ

)
|0〉

=
1

Z

∏

kσ

[
〈0|e−β

(
εk−∆k−µ

)
c†kσckσ |0〉 − η̄1

kση
N
kσ 〈0|ckσe

−β
(
εk−∆k−µ

)
c†kσckσc†kσ|0〉

]

=
1

Z

∏

kσ

[
1− η̄1

kση
N
kσe
−β
(
εk−∆k−µ

)]

=
1

Z
exp

{
−
∑

kσ

η̄1
kση

N
kσe
−β
(
εk−∆k−µ

)}
,

(D.14)

where we used the definitions of the coherent states, |η〉 =
∏
kσ(1 − ηkσc

†
kσ) |0〉 and

〈η| = ∏kσ 〈0| (1− ckση̄kσ). Inserting Eqs. (D.11) and (D.14) into Eq. (D.10), we can
write the influence functional as

F [a, b] =
1

Z

∫
D(η̄, η) exp


i
∑

ij

∑

kσ

∑

k′σ′

η̄ikσ

(
(G−1

0,k)ijδk,k′δσ,σ′ + Ṽ ij
kσ,k′σ′

)
ηj
k′σ′


 .

(D.15)

Here the interaction part is

Ṽ ij
kσ,k′σ′ = λi∆t V

λi
kσ,k′σ′(ti)δi,j+1 (D.16)

where λi is defined below Eq. (D.11), while V λi
kσ,k′σ′ is defined in Eq. (D.13). The

reason for the λi in front of the above expression is that (ti− ti−1) in Eq. (D.11) takes
different signs on the forward and backward paths. The introduced inverse Greens
function is diagonal in k and independent of σ

iG−1
0,k =




−1 −e−β(εk−∆k−µ)

1− iεk∆t −1
1− iεk∆t −1

. . . . . .

1
. . .
. . . −1

1 + iεk∆t −1
1 + iεk∆t −1




.

(D.17)
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Taking the inverse of the above matrix and taking it to the continuum limit, one gets
(see Ref. [145])

G0,k(t, t′) = ie−iεk(t−t′)
(
nF (εk−∆k − µ)− θ(t− t′) nF (εk−∆k − µ)

nF (εk−∆k − µ)− 1 nF (εk−∆k − µ)− θ(t′ − t),

)

(D.18)
where nF (ε) is the Fermi function and θ(t) is the Heaviside step function. The upper
left element in Eq. (D.18) is the Greens function on the forward time path, the upper
right is the Greens function when t′ (t) is on the backward (forward) time path and
so on.

D.3 Rewriting Tr
[
G0Ṽ G0Ṽ

]

We will start by performing the trace in Eq. (6.32). The Greens function is defined
in Eq. (6.29) and Ṽ is defined above Eq. (6.28). We get

−1

2
Tr
[
G0Ṽ G0Ṽ

]
= −∆t2

2

∑

kσ

∑

k′σ′

∑

ij

λiλjG
i−1,j
0,k Ṽ

λj
kσ,k′σ′(tj)G

j−1,i
0,k′ Ṽ

λi
k′σ′,kσ(ti)

≈ −1

2

∑

kσ

∑

k′σ′

∑

λλ′
(−1)λ−λ

′
∫ tf

0
dt

∫ tf

0
dt′Gλλ

′
0,k (t, t′)V λ′

kσ,k′σ′(t
′)Gλ

′λ
0,k′(t

′, t)V λ
k′σ′,kσ(t)

= −S
2J2

0

8V2

∑

kσ

∑

k′σ′

∑

nm

e−i(k−k
′)·(Rn−Rm)

∑

λλ′
(−1)λ−λ

′

×
∫ tf

0
dt

∫ tf

0
dt′Gλλ

′
0,k (t, t′)nλ

′
n (t′) · σσσ′Gλ

′λ
0,k′(t

′, t)nλm(t) · σσ′σ

= −S
2J2

0

4V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

∑

λλ′
(−1)λ−λ

′

×
∫ tf

0
dt

∫ tf

0
dt′Gλλ

′
0,k (t, t′)Gλ

′λ
0,k′(t

′, t)nλ
′
n (t′) · nλm(t)

= −S
2J2

0

4V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

∫ tf

0
dt

∫ tf

0
dt′
{
G++

0,k (t, t′)G++
0,k′(t

′, t)n+
n (t′) · n+

m(t)

+G−−0,k (t, t′)G−−
0,k′(t

′, t)n−n (t′) · n−m(t)−G+−
0,k (t, t′)G−+

0,k′(t
′, t)n−n (t′) · n+

m(t)

}

−G−+
0,k (t, t′)G+−

0,k′(t
′, t)n+

n (t′) · n−m(t)

}

=
S2J2

0

4V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

∫ tf

0
dt

∫ tf

0
dt′ e−i(εk−εk′ )(t−t

′)

×
{[

nF (εk−∆k − µ)− θ(t− t′)
] [
nF (εk′−∆k − µ)− θ(t′ − t)

]
n+
n (t′) · n+

m(t)

+
[
nF (εk−∆k − µ)− θ(t′ − t)

] [
nF (εk′−∆k − µ)− θ(t− t′)

]
n−n (t′) · n−m(t)

+ nF (εk−∆k − µ)
[
1− nF (εk′−∆k − µ)

]
n−n (t′) · n+

m(t)

+ [1− nF (εk−∆k − µ)]nF (εk′−∆k − µ)n+
n (t′) · n−m(t)

}
,

(D.19)
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where we used the notation Gij0,k = Gλλ
′

0,k (t, t′) in which the λ’s indicate the four
elements in Eq. (D.18). The factor (−1)λ−λ

′ is negative when the t’s are on different
contours. It was used that for Pauli matrices, Tr[σiσj ] = 2δij , so that we obtain the
dot products. The two last terms in the curly brackets are actually the same, but we
keep them as two terms since it will make it easier to arrive at the desired result.

We can write the spins as n+ = Q+ ζ/2 and n− = Q− ζ/2 where Q = n++n−
2

and ζ = n+ − n−. With this, the four different dot products in Eq. (D.19) can be
written as

n±n (t′) · n±m(t) = Qn(t′) ·Qm(t)± 1

2
Qn(t′) · ζm(t)± 1

2
Qm(t) · ζn(t′) +

1

4
ζn(t′) · ζm(t)

n∓n (t′) · n±m(t) = Qn(t′) ·Qm(t)± 1

2
Qn(t′) · ζm(t)∓ 1

2
Qm(t) · ζn(t′)− 1

4
ζn(t′) · ζm(t).

(D.20)

Inserting these into Eq. (D.19), we get 16 different terms. The functions in front of
the four new dot products can be collected. To make the rewriting easier, we will use
notation θ = θ(t− t′), θ̃ = θ(t′− t) and fk = nF (εk−∆k−µ). Let us first consider the
functions in front of the QQ and ξξ terms (upper and lower sign, respectively)

(fk − θ)(fk′ − θ̃) + (fk − θ̃)(fk′ − θ)± [fk(1− fk′) + fk′(1− fk)]

= 2fkfk′ − fk − fk′ ∓ [2fkfk′ − fk − fk′ ]

=

{
0

4fkfk′ − 2fk − 2fk′

=

{
0

2 coth
(
εk−∆k−εk′−∆k

2kBT

) [
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

] ,

(D.21)

where coth(x) is the hyperbolic cotangent. We see that the QQ terms have dropped
out. For the functions in front of the Qm(t) · ζn(t′) and Qn(t′) · ζm(t) terms (upper
and lower sign, respectively)

(fk − θ)(fk′ − θ̃)− (fk − θ̃)(fk′ − θ)∓ fk(1− fk′)± fk′(1− fk)

= −θfk′ − θ̃fk + θfk + θ̃fk′ ∓ (fk − fk′)
= (fk − fk′)(θ − θ̃)∓ (fk − fk′)(θ + θ̃)

= (fk − fk′ ∓ (fk − fk′)) θ − (fk − fk′ ± (fk − fk′)) θ̃

=

{
−2(fk − fk′)θ̃
2(fk − fk′)θ

.

(D.22)
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Inserting these back into Eq. (D.3) and remembering the factors in Eq. (D.20), we
arrive at

−1

2
Tr[G0V G0V ]

=
S2J2

0

4V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]

×
∫ tf

0
dt

∫ tf

0
dt′ e−i(εk−εk′ )(t−t

′)
{
θ(t− t′)ζm(t) ·Qn(t′)− θ(t′ − t)ζn(t′) ·Qm(t)

+
1

2
coth

(
εk−∆k − εk′−∆k

2kBT

)
ζn(t′) · ζm(t)

}

= iSQζ + iSζζ .
(D.23)

The first introduced contribution to the action is1

iSQζ =
S2J2

0

2V2

∑

kk′

∑

nm

e−i(k−k
′)·(Rn−Rm)

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]

×
∫ tf

0
dt

∫ tf

0
dt′ e−i(εk−εk′ )(t−t

′)θ(t− t′)ζm(t) ·Qn(t′)

=
S2J2

0

2V2

∑

nm

∫ tf

0
dt

∫ tf

0
dt′
∫

dωΛnm(ω,∆k)e−iω(t−t′)ζm(t) ·Qn(t′)θ(t− t′),

(D.24)

where the effective electron-hole pair density of states is

Λnm(ω,∆k) =
∑

kk′

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]
e−i(k−k

′)·(Rn−Rm)δ(ω − εk + εk′)

(D.25)

which has units of Joule−1.
The term Sζζ can be read off directly from Eq. (D.23) and it is shown in Eq. (6.36).

We cannot rewrite it in terms of Λnm(ω,∆k) due to the k-dependence in the hyperbolic
cotangent.

D.3.1 Fourier transforming

Inspired by Ref. [116], we will rewrite parts of Eq. (6.35) by Fourier tranforming. To
make the following easier to read, we have omitted subscripts and ∆k dependences.

1Alternatively, we can reformulate parts of the integrand in Eq. (D.24) as

(fk − fk′)θ(t− t′)ζm(t) ·Qn(t′)→ fk(1− fk′)
[
θ(t− t′)ζm(t) ·Qn(t′)− θ(t′ − t)ζn(t′) ·Qm(t)

]
,

where fk = nF (εk−∆k−µ). This can be seen by doing the rewriting fk−fk′ = fk(1−fk′)−fk′(1−fk)
and interchanging k↔ k′, n↔ m, and t↔ t′ in the second term.
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Consider the integral

I =

∫
dt′
∫

dωΛ(ω)θ(t− t′)Q(t′)e−iω(t−t′)

= 2π

∫
dt′
∫

dω

2π

∫
dω′

2π

∫
dω′′

2π
Λ(ω)θ(ω′)Q(ω′′)e−i(ω+ω′)(t−t′)e−iω

′′t′

= 2π

∫
dω

2π

∫
dω′

2π
Λ(ω)θ(ω′)Q(ω + ω′)e−i(ω+ω′)t

(D.26)

where it was used that
∫

dt′ ei(ω+ω′−ω′′)t′ = 2πδ(ω+ω′−ω′′) in the last step. We can
now insert the Fourier transform of the step function θ(ω′) = πδ(ω′) + P i

ω′ , where P
denotes the Cauchy principal value

I = π

∫
dω

2π
Λ(ω)Q(ω)e−iωt + 2πi

∫
dω

2π
P
∫

dω′

2π

Λ(ω)

ω′
Q(ω + ω′)e−i(ω+ω′)t

= π

∫
dω

2π
Λ(ω)Q(ω)e−iωt + 2πiP

∫
dω

2π

∫
dω′

2π

Λ(ω)

ω′ − ωQ(ω′)e−iω
′t

= π

∫
dω

2π
Λ(ω)Q(ω)e−iωt + iπ

∫
dω′

2π

[
1

π
P
∫

dω
Λ(ω)

ω′ − ω

]
Q(ω′)e−iω

′t

= iπ

∫
dω

2π

[
−iΛ(ω) +H{Λ(ω′)}(ω)

]
Q(ω)e−iωt

= iπ

∫
dω

2π

[
− iRe Λ(ω) + Im Λ(ω) +H{Re Λ} (ω) + iH{Im Λ} (ω)

]
Q(ω)e−iωt

(D.27)

where the Hilbert transform is defined as in Eq. (6.42).

D.4 Integrals

In this section, we will perform the integrals in Eq. (6.47). These are rather long, and
they can probably be done in a shorter way, but the procedure works. We will start
with some useful rewriting and integrals before we turn to the individual coefficient
calculations in Secs. D.4.1–D.4.4.

First of all, we will emphasize that the real part of Λ gives the equilibrium contri-
butions, while the imaginary part leads to the non-equilibrium contributions. To first
order in ∆k, the Fermi function is nF (εk−∆k−µ) ≈ nF (εk−µ)−n′F (εk−µ)~

2

mk ·∆k.
With this, we can write Λ in Eq. (6.37) as

Λnm(ω,∆k) ≈ Λnm(ω, 0)−
∑

kk′

~2

m

[
n′F (εk − µ)k − n′F (εk′ − µ)k′

]
·∆k

× e−i(k−k
′)·(Rn−Rm)δ(ω − εk + εk′).

(D.28)

From the property in Eq. (6.40), it is clear that the first term is real while the second
term is imaginary.
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Rewriting Λnm(ω,∆k)

We will start by rewriting Λ, which will be useful in Secs. D.4.2 and D.4.3. First, we
turn the sums into integrals,

∑
k → V

(2π)3

∫
dk, and rewrite as follows

Λnm(ω,∆k) =
∑

kk′

[
nF (εk−∆k − µ)− nF (εk′−∆k − µ)

]
e−i(k−k

′)·(Rn−Rm)δ(ω − εk + εk′)

=
V2

(2π)6

∫
dk nF (εk−∆k − µ)

∫
dk′

[
e−i(k−k

′)·(Rn−Rm)δ(ω − εk + εk′)

− ei(k−k
′)·(Rn−Rm)δ(ω − εk′ + εk)

]
.

(D.29)

We can rewrite the delta function as δ(ε− εk) =
√

m
2~2ε

δ
(
k −

√
2mε
~2

)
, where k = |k|.

For n 6= m, the k′ integrals are
∫

dk′e±ik
′·(Rn−Rm)δ(~ω ∓ εk ± εk′)

=
m

~2

1√
k2 ∓ q2

2π

∫
dk′ k′2δ

(
k′ −

√
k2 ∓ q2

)∫ 1

−1
dx e±ixk

′R

=
2πm

~2

√
k2 ∓ q2

∫ 1

−1
dx e±ixR

√
k2∓q2

=
2πm

~2

√
k2 ∓ q2

2 sin
(
R
√
k2 ∓ q2

)

R
√
k2 ∓ q2

=
4πm

~2

1

R
sin
(
R
√
k2 ∓ q2

)

(D.30)

where we have introduced ~ω = ~2q2/(2m) and used the notation x = cos θ. Putting
this back into Eq. (D.29), we get

Λnm(ω,∆k) =
V2

(2π)5

2m

~2

1

R

∫
dk nF (εk−∆k − µ)

[
e−ik·(Rn−Rm) sin

(
R
√
k2 − q2

)

− ek·(Rn−Rm) sin
(
R
√
k2 + q2

)]
.

(D.31)

The Hilbert transform, H{Im Λnm(ω′,∆k)} (ω)

The Hilbert transform of Λ is (insert Eq. (6.37) into Eq. (6.42))

H{Λnm(ω′,∆k)}(ω) =
1

π
P
∑

kk′

nF (εk−∆k − µ)− nF (εk′−∆k − µ)

~ω + εk − εk′
e−i(k−k

′)·(Rn−Rm),

(D.32)

which will be the starting point in Secs. D.4.1 and D.4.4.
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Useful integrals

We will now state two integrals, which will be useful in the following sections. Both
of them are derived in Sec. D.4.5. One is

P
∑

k′

eik
′·R

εk − εk′
= − mV

2~2π

cos(kR)

R
(D.33)

and the other is (at low temperatures)
∫

dk n′F (εk − µ)k ·∆k sin(k ·R)g(k)

≈ 4πm

~2

1

R3
∆k ·R [kFR cos(kFR)− sin(kFR)] g(kF ),

(D.34)

where g(k) is any function of k.

D.4.1 J, H{Re Λ} (0)

We will start with the equilibrium coefficients. Starting from Eq. (D.32), the integral
in J in Eq. (6.47) is

H{Λ12(ω′, 0)}(0) =
1

π
Re
∑

kk′
P nF (εk − µ)− nF (εk′ − µ)

εk − εk′
e−i(k−k

′)·(R1−R2)

=
2

π
Re
∑

kk′
P nF (εk − µ)

εk − εk′
ei(k−k

′)·R

=
2

π
Re
∑

k

nF (εk − µ)eik·RP
∑

k′

e−ik
′·R

εk − εk′

= − 2

π

mV
2~2πR

Re
∑

k

nF (εk − µ)eik·R cos(kR)

≈ − mV
π2~2

1

R

V
(2π)2

∫ kF

0
dk k2 cos(kR)

∫ 1

−1
dx cos(xkR)

= − mV
π2~2

1

R

V
(2π)2

∫ kF

0
dk k2 cos(kR)

2 sin(kR)

kR

= −2mV
π2~2

1

R2

V
(2π)2

∫ kF

0
dk k cos(kR) sin(kR)

=
2mV
π2~2

1

R2

V
(2π)2

1

8R2
[2kFR cos(2kFR)− sin(2kFR)]

=
2mV
π2~2

V
(2π)2

1

8
24k4

FF (2kFR)

= V2mkF
π2~2

k3
F

2π2εF
2εFF (2kFR)

= 2V2εFρ(εF )2F (2kFR),

(D.35)

where the sum in Eq. (D.33) was used in the third step and
∫ kF

0 dk k cos(k∆R) sin(k∆R) =
sin(2kF∆R)−2kF∆R cos(2kF∆R)

8∆R2 was used further down. The density of states was intro-
duced in the last step,

ρ(εF ) =
k3
F

2π2εF
=
mkF
π2~2

. (D.36)
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D.4.2 η, ∂
∂ω

Λnm(ω, 0)|ω=0

To get the non-local relaxation coefficient, we consider the real part of Eq. (D.31) at
T = 0

Λ12(ω, 0) ≈ V2

(2π)5

2m

~2

1

R

∫
dk nF (εk − εF ) cos(k ·R)

[
sin
(
R
√
k2 − q2

)
− sin

(
R
√
k2 + q2

)]

≈ V2

(2π)4

2m

~2

1

R

∫ kF

0
dk k2

[
sin
(
R
√
k2 − q2

)
− sin

(
R
√
k2 + q2

)] ∫ 1

−1
dx cos(xkR)

=
V2

(2π)4

4m

~2

1

R2

∫ kF

0
dk k sin(kR)

[
sin
(
R
√
k2 − q2

)
− sin

(
R
√
k2 + q2

)]
.

(D.37)

We are interested in the derivative with respect to ω

∂

∂ω
Λ12(ω, 0)

∣∣
ω=0

=

(
∂ω

∂q

)−1 ∂

∂q
Λ12(ω, 0)

∣∣
q=0

= −m
~
V2

(2π)4

4m

~2

1

R2

∫ kF

0
dk k sin(kR) cos(kR)

2R

k

= −V2 m2

2~3π4

1

R

∫ kF

0
dk sin(kR) cos(kR)

= −V2 ~
2k2

F

(
kFm

π2~2

)2 1

R

sin2(kFR)

2R

= −~V2 ρ(εF )2

4

(
sin(kFR)

kFR

)2

.

(D.38)

The local relaxation is obtained by setting R = 0 in the above expression,

∂

∂ω
Λnn(ω, 0)

∣∣
ω=0

= −~V2 ρ(εF )2

4
, (D.39)

for both n = 1 and n = 2.

D.4.3 σ, Im Λ(0,∆k)

We will now look at the non-equilibrium terms. By taking the imaginary part of
Eq. (D.31) and setting q = 0, we have

Im Λ21(0,∆k) = − V
2

(2π)5

4m

~2

1

R

∫
dk nF (εk−∆k − µ) sin(kR) sin(k ·R)

≈ V2

(2π)5

4m

~2

1

R

~2

m

∫
dk n′F (εk − µ)k ·∆k sin(kR) sin(k ·R)

≈ 4V2

(2π)5

1

R

4πm

~2

1

R3
∆k ·R [kFR cos(kFR)− sin(kFR)] sin(kFR)

= V2 k3
F

2π2εF

mkF
π2~2

εF sin(kFR)
kFR cos(kFR)− sin(kFR)

(kFR)3

∆k ·R
kFR

= V2ρ(εF )2εFL(kFR)
∆k ·R
kFR

,

(D.40)
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where the k integral is found in Eq. (D.34) and where the introduced function is
defined as

L(x) = sin(x)
x cos(x)− sin(x)

x3
. (D.41)

D.4.4 χ, ∂
∂ω
H{Im Λ21} (ω)

∣∣
ω=0

We start by taking the ω derivative of Eq. (D.32)

∂

∂ω
H{Im Λ21} (ω)

∣∣
ω=0

= − 1

π
Im P

∑

kk′

nF (εk−∆k − µ)− nF (εk′−∆k − µ)

(εk − εk′)2
e−i(k−k

′)·R

≈ − ~2

πm
P
∑

kk′

n′F (εk − µ)k ·∆k − n′F (εk′ − µ)k′ ·∆k
(εk − εk′)2

sin
(
(k − k′) ·R

)

= −2~2

πm
P
∑

kk′

n′F (εk − µ)k ·∆k
(εk − εk′)2

sin
(
(k − k′) ·R

)

= −2~2

πm

V
(2π)2

∑

k

n′F (εk − µ)k ·∆kP
∫ ∞

0
dk′

k′2

(εk − εk′)2

∫ 1

−1
dy′ sin

(
k ·R− y′k′R

)

= −2~2

πm

V
(2π)2

∑

k

n′F (εk − µ)k ·∆kP
∫ ∞

0
dk′

k′2

(εk − εk′)2

2 sin(k ·R) sin(k′R)

k′R

= −4~2

πm

V2

(2π)5

1

R

∫
dk n′F (εk − µ) sin(k ·R)k ·∆k I(εk, R)

≈ −4~2

πm

V2

(2π)5

4πm

~2

1

R4
∆k ·R [kFR cos(kFR)− sin(kFR)] I(εF , R)

= − V
2

2π5

1

R4
∆k ·R [kFR cos(kFR)− sin(kFR)] I(εF , R),

(D.42)

where y′ = cos θ′ and where the second last step is done using Eq. (D.34). We are
now left with solving the integral

I(εF , R) = P
∫ ∞

0
dk

k sin(kR)

(εF − εk)2

= R2

(
2m

~2

)2

P
∫ ∞

0
dx

x sin(x)

(x2
F − x2)2

= R2

(
2m

~2

)2

lim
δx→0

[∫ xF−δx

0
dx

x sin(x)

(x2
F − x2)2

+

∫ ∞

xF+δx
dx

x sin(x)

(x2
F − x2)2

]
,

(D.43)

where xF = kFR and x = kR. This integral diverges for δx → 0. Small δx means
that the excitation energy of the electron hole pair is small. Such a pair is slow,
but as described in Sec. 6.2.4, we assume that the electrons are fast compared to the
spins. Using this assumption, we can therefore introduce a cutoff so that the slow
electrons are ignored, and the integral consequently converges. A reasonable cutoff is
the Larmor frequency, which is small compared to the Fermi energy so that δx� δxF .
By linearizing the dispersion around the Fermi energy, εk ≈ εF + ~2

mkF (k − kF ), we
see that the cutoff can be rewritten as δx = δkR ≈ 1

2kFR
δε
εF

, where δε is the cutoff
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energy. With this, we can simplify the integral as

Icutoff = R2

(
2m

~2

)2 [∫ xF−δx

0
dx

x sin(x)

(x2
F − x2)2

+

∫ ∞

xF+δx
dx

x sin(x)

(x2
F − x2)2

]

= R2

(
2m

~2

)2 1

4x2
F δx− δx3

{
xF δx cosxF [Ci(2xF + δx)− Ci(2xF − δx)]

+ xF δx sinxF [Si(2xF + δx)− Si(2xF − δx) + 2Si(δx)− π]

+ 2xF cos δx sinxF − δx cosxF sin δx+O
(
δx3x−1

F

)}

≈ R2

(
2m

~2

)2 sinxF cos δx

2xF δx

≈ 2m2

~4

sin(kFR)

kF δk

≈ 2m

~2

sin(kFR)

δε
,

(D.44)

where the first step was done in Mathematica, while δk ≈ kF
2
δε
εF

was used in the last
step. In the second line in Eq. (D.44), Si(x) and Ci(x) are the sine and cosine integral
functions, respectively. Inserting the result in Eq. (D.44) back into Eq. (D.42), we
arrive at our final result,

∂

∂ω
H{Im Λ21} (ω)

∣∣
ω=0
≈ − V

2

2π5

2m

~2
k4
F

[kFR cos(kFR)− sin(kFR)] sin(kFR)

(kFR)3

1

δε

∆k ·R
kFR

= −2V2

π
ρ(εF )2L(kFR)

εF
δε

∆k ·R
kFR

,

(D.45)

where L(x) is defined in Eq. (D.41) and ρ(εF ) is found in Eq. (D.36).

D.4.5 Additional integrals

The sum in Eq. (D.33) can be solved as follows

P
∑

k′

e−ik
′·R

εk − εk′
=
V

(2π)2
P
∫ ∞

0
dk′ k′2

1

εk − εk′

∫ 1

−1
dx e−ixk

′R

=
V

(2π)2
P
∫ ∞

0
dk′ k′2

1

εk − εk′
2 sin(k′R)

k′R

=
V

(2π)2

2

R

2m

~2
P
∫ ∞

0
dk′

k′ sin(k′R)

k2 − k′2

=
mV
π2~2

1

R
lim
δk→0

[∫ k−δk

0
dk′

k′ sin(k′R)

k2 − k′2 +

∫ ∞

k+δk
dk′

k′ sin(k′R)

k2 − k′2
]

=
mV
π2~2

1

R

[
−π cos(kR)

2

]

= − mV
2π~2

cos(kR)

R
.

(D.46)
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The integral in Eq. (D.34) is
∫

dk n′F (εk − µ)k ·∆k sin(k ·R)g(k)

=

∫ ∞

0
dk k2n′F (εk − µ)g(k)

∫ 2π

0
dφ

∫ π

0
dθ sin θ k ·∆k sin(k ·R)

=
4πm

~2

1

R3
∆k ·R [kFR cos(kFR)− sin(kFR)] g(kF ),

(D.47)

where we chose R = Rẑ so that
∫ 2π

0
dφ

∫ π

0
dθ sin θ k ·∆k sin(k ·R)

= k

∫ 2π

0
dφ

∫ π

0
dθ sin θ (∆kx sin θ cosφ+ ∆ky sin θ sinφ+ ∆kz cos θ) sin(kR cos θ)

= 2πk∆kz

∫ π

0
dθ sin θ cos θ sin(kR cos θ)

= 2πk∆kz

∫ 1

−1
dxx sin(xkR)

= −2πk∆kz
2kR cos(kR)− 2 sin(kR)

(kR)2

= −4π
∆k ·R
R

kR cos(kR)− sin(kR)

kR2

(D.48)

and used
∫ ∞

0
dk n′F (εk − µ)f(k) =

∫ ∞

0
dε

(
dεk
dk

)−1

n′F (ε− µ)f(k(ε))

=
m

~2

∫ ∞

0
n′F (ε− µ)

f(k(ε))

k(ε)

≈ −m
~2

f(kF )

kF
.

(D.49)
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Appendix E

Appendix to Chapter 7

E.1 Analytic considerations

In this part, we will derive an expression for ṅz1 in the case where terms including
η0η1, η0χ, σχ can be neglected. To do so, we will iterate the EOMs by inserting the
ṅ’s on the right hand sides of the equations. This will generate a lot of terms, so to
keep it as simple as possible, we use the notation

ṅi = −B × ni +Aīinī × ni +
∑

j

Cji ṅj × ni, (E.1)

where ī is the opposite of i (i.e. if i = 1, ī = 2 and vice versa). The matrices A and
C are

A =

(
0 J − σ

J + σ 0

)

C =

(
η0 η1 − χ

η1 + χ η0

)
.

(E.2)

Let’s consider the last term in the expression above

∑

j

Cji ṅj × ni =
∑

j

Cji

[
−B × nj +Aj̄j nj̄ × nj +

∑

l

Clj ṅl × nj
]
× ni

=
∑

j

Cji

{
− [(ni ·B)nj −B(ni · nj)] +Aj̄j

[
(nj̄ · ni)nj − (ni · nj)nj̄

]

+
∑

l

Clj [(ṅl · ni)nj − (ni · nj)ṅl]
}

=
∑

j

Cji

{
− [(ni ·B)nj −B(ni · nj)] +Aj̄j

[
(nj̄ · ni)nj − (ni · nj)nj̄

]

+ Cij
[
������
(ṅi · ni)nj − (ni · nj)ṅi

]
+ Cīj [(ṅī · ni)nj − (ni · nj)ṅī]

}
.

(E.3)
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Putting this back into Eq. (E.1), we get

ṅi =
1

1 +
∑

j CjiCij(ni · nj)

{
−B × ni +Aīinī × ni

+
∑

j

Cji

[
− [(ni ·B)nj −B(ni · nj)] +Aj̄j

[
(nj̄ · ni)nj − (ni · nj)nj̄

]

+ Cīj [(ṅī · ni)nj − (ni · nj)ṅī]
]}
.

(E.4)

If we now do the sum and insert the elements of the matrices in Eq. (E.2), we get

ṅ1 =
1

1 + η2
0 + (η2

1 − χ2)(n1 · n2)

{
−B × n1 + (J + σ)n2 × n1 + η0 [B − (n1 ·B)n1]

+ η0(J + σ) [(n2 · n1)n1 − n2] + η0(η1 + χ) [(ṅ2 · n1)n1 − ṅ2]

− (η1 + χ) [(n1 ·B)n2 −B(n1 · n2)] + (η1 + χ)(J − σ) [n2 − (n1 · n2)n1]

+ η0(η1 + χ) [(ṅ2 · n1)n2 − (n1 · n2)ṅ2]

}

≈ 1

1 + η2
0 + (η2

1 − χ2)(n1 · n2)

{
−B × n1 + (J + σ)n2 × n1 + η0 [B − (n1 ·B)n1]

+ [η0(J + σ)− (η1 + χ)(J − σ)] [(n2 · n1)n1 − n2]

+ (η1 + χ) [B(n1 · n2)− (n1 ·B)n2]

}

≈ 1

1 + η2
0 + (η2

1 − χ2)(n1 · n2)

{
−B × n1 + (J + σ)n2 × n1 + η0 [B − (n1 ·B)n1]

+ [(η0 − η1)J + (η0 + η1)σ − Jχ] [(n2 · n1)n1 − n2]

+ (η1 + χ) [B(n1 · n2)− (n1 ·B)n2]

}
,

(E.5)

where we neglected terms of order η0η1 and η0χ in the first step and neglected σχ in
the second. The rewriting η0(J+σ)−(η1+χ)(J−σ) = (η0−η1−χ)J+(η0+η1+χ)σ ≈
(η0 − η1)J + (η0 + η1)σ − Jχ was used in the last step. We now want to see how the
component parallel to the magnetic field evolves. Setting B = Bẑ, we get

ṅz1 =
1

1 + η2
0 + (η2

1 − χ2)(n1 · n2)

{
(J + σ) (n2 × n1) · ẑ + η0B

[
1− (nz1)2

]

+ [(η0 − η1)J + (η0 + η1)σ − Jχ] [(n1 · n2)nz1 − nz2]

+ (η1 + χ)B [n1 · n2 − nz1nz2]

}

(E.6)

E.2 Canted spin configuration

The canted spin configuration is derived in Sec. 3.2.1 in Ref. [149]. It has the angles
∆φ = π and

θcan1 = cos−1

(
B̃2 − 4pJ σ̃

2B̃(1− σ̃)

)
, (E.7)
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which are also given in Eq. (7.10). The canted configuration is a physical solution
when

− 1 <
B̃2 − 4pJ σ̃

2B̃(1− σ̃)
< 1. (E.8)

The inequality for spin 2 is obtained by σ̃ → −σ̃, and this one should also be fulfilled.
In the antiferromagnetic case, pJ = +1, the right inequality1 in Eq. (E.8) is

B̃2 − 4σ̃

2B̃(1− σ̃)
< 1

B̃2 − 4σ̃ < 2B̃ − 2B̃σ̃

−B̃(2− B̃) < 2σ̃(2− B̃),

(E.9)

where we used that |σ̃| < 1 in the first step. If B̃ > 2, we will end up with B̃ < ∓2σ̃
(the upper and lower sign refers to spin 1 and 2, respectively), which cannot be fulfilled
since B̃ is positive. This therefore sets the upper limit for B̃. For B̃ < 2

B̃ > ∓2σ̃, (E.10)

which sets the lower limit for B̃. Putting these findings together, we have shown that
the canted spin configuration is a physical solution when

|σ̃| < B̃/2 < 1. (E.11)

If we work out the inequalities in the case of ferromagnetic coupling, pJ = −1, we end
up with the same limits.

E.3 General linearization of the EOMs

As described in Sec. 7.2.3, the EOMs in Eq. (7.6) can be rewritten as
(
∂τn1

∂τn2

)
= A−1F (E.12)

with

A =

(
1 + η0 [n1]× (η1 + χ) [n1]×

(η1 − χ) [n2]× 1 + η0 [n2]×

)

F =

(
−B̃ × n1 + (pJ + σ̃)n2 × n1

−B̃ × n1 + (pJ − σ̃)n1 × n2

)
,

(E.13)

where A is a (6 × 6) matrix while F is a (6 × 1) vector. It is convenient to describe
the EOM for the individual spin in Eq. (7.6) in their local spherical polar coordinate
system since the ρ̂ components drop out. However, when treating the coupled EOMs
simultaneously, we need to choose a common coordinate system, and we choose to use
Cartesian coordinates. The cross product matrix [ni]× is therefore

[ni]× =




0 −nzi nyi
nzi 0 −nxi
−nyi nxi 0


 (E.14)

1The left inequality in Eq. (E.8) gives the same limits on B̃ as we find in this section.
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so that [ni]×nj = ni × nj . To get the angles on the left hand side of Eq. (E.12), we
can rotate the individual vector into its spherical polar coordinate system. Remember
that the time derivative in spherical polar coordinates is ṅ1 = θ̂θ̇1 + φ̂ sin θ1φ̇1 so that




0
∂τθ1

sin θ1 ∂τφ1

0
∂τθ2

sin θ2 ∂τφ2




=

(
R1 0
0 R2

)(
∂τn1

∂τn2

)
, (E.15)

where Ri is the rotation matrix that rotates from Cartesian coordinates to the spher-
ical polar coordinates of spin i

Ri =




sin θi cosφi sin θi sinφi cos θi
cos θi cosφi cos θi sinφi − sin θi
− sinφi cosφi 0


 . (E.16)

By filtering out ρ̂ components (which are zero) in Eq. (E.12), we can get the time
derivatives of the angles on the left hand side

∂τ




θ1

φ1

θ2

φ2


 = DF , (E.17)

where D is the (4× 6) matrix

D = diag
(

1,
1

sin θ1
, 1,

1

sin θ2

)



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(
R1 0
0 R2

)
A−1. (E.18)

We have to be a bit careful here, since we divide by sin θ. We will return to this point
shortly. The matrix ’diag’ is a diagonal matrix with its inputs on the diagonal.

We will now expand the right hand side to first order in the angles around the
fixed points. At first sight, this seems quite messy, but F vanishes at the fixed point,
F (v0) = 0. We can therefore write the linear stability equation as




∂τδθ1

∂τδφ1

∂τδθ2

∂τδφ2


 = M




δθ1

δφ1

δθ2

δφ2


 , (E.19)

where
M ij =

∑

k

Dik(v0)
∂F k(v)

∂vj

∣∣∣∣
v=v0

. (E.20)

This stability matrix is used to calculate the phase diagrams in Sec. 7.2.4. D is
evaluated at the fixed point and since it includes the fractions 1/ sin θ0

1 and 1/ sin θ0
2,

we have to ensure that the fixed point vectors do not point along the poles. However,
as explained in the main text, we can just rotate both B̃ and the n’s away from
the poles. In this way, Eq. (E.20) can also be used to check the stability of the
ferromagnetic and antiferromagnetic configurations.
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We could work out the Jacobian matrix in Eq. (E.20) to get an explicit analytic
form of the stability matrix, but this is basically what is done in Ref. [149] for the
canted spin configuration. If the reader is interested, see e.g. Sec. 4.2 in Ref. [149].
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I. INTRODUCTION

The dynamics of a physical system with few degrees of freedom in contact with a large

quantum system out of equilibrium is quite general and often complicated. It certainly

depends on the degree to which the large system is out of equilibrium. A much studied

situation is where the large quantum system is the electrons of a metal brought out of

equilibrium such that it carries an electronic current. The physical system in focus could be

an atom or a molecule, whose dynamics will change as the environment carries current. It

is well known, that a quantum system in contact with some environment will turn classical.

This is due to the “collapse” of the system wavefunction that results from the measurements

constantly carried out by the environment. The resulting classical dynamics was first studied

extensively by Caldeira and Leggett.1 Their focus was to study to what extend quantum

behavior of the system (like e.g. the Josephson current in a Josephson junction) the coupling

to the electronic excitations of the superconducting metal.

A byproduct of such studies was the realization, that the resulting effective classical dy-

namics is of the Langevin equation type. This is Newton’s equation supplemented by extra

“forces” due to the coupling to the environment. If the environment is in thermal equi-

librium, the forces are friction and random fluctuating forces. The fluctuation-dissipation

theorem ensures that those forces are related, such that the resulting dynamics will take the

system into a thermal state at the same temperature as that of the environment.

More importantly, if the environment is out of equilibrium, new hitherto less studied

forces will emerge. In particular if the system has two or more degrees of freedom, those

new forces will couple the system degrees of freedom. Some aspects of this is in fact old

news. A vibrating molecule in contact with a large electronic system will have the restoring

forces changed due to the presence of the electrons. Vibrational modes will couple, and

new normal modes will emerge. If the small system in focus are the magnetic moments of

a couple of impurity atoms, the coupling to the electrons will result in an effective RKKY-

coupling between the moments. More recently, it was discovered that when brought out of

equilibrium, e.g. when a current is present, vibrational modes couple in an entirely new way.

The well-known coupling is symmetrical in the mode coordinates, i.e. if the force on one

mode x, due to the presence of another y, is fx = −ky, then the force on y is fy = −kx.

The new coupling resulting from the non-equilibrium nature of the environment, on the

2
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other hand, is anti-symmetric: fncx = ay and fncy = −ax. Here a is a function of the

current which satisfy a(I = 0) = 0. This is a non-conservative force field, much like the

wind force of a tornado. If the particle is moving with the wind, energy is pumped into the

system, while energy is lost if the system moves against the wind. Typically, friction forces

are proportional to the velocity. Out of equilibrium environments also produce asymmetric

velocity dependent forces: fBx = bẏ and fBy = −bẋ. This new force is not of the friction

type, since it cannot do any work. It is more like a Lorentz force. The origin of such a force

is related to the Berry phase of the electrons.2 Since the electrons are experiencing a time

dependent environment (the physical system we focus on), they will have the phases of their

wave function changed a.la. Berry. Since such a phase change does not change the energy

of the electron, no energy is being transferred, and hence the resulting force on the system

is not changing, i.e. the force cannot do any work.

In the original study of those new forces, the system was described as a set of vibrational

modes in the harmonic approximation. I.e. there was no limit to how large the amplitude

of the vibrations were. This quickly becomes unphysical. As energy is being pumped into

the system, the vibrational amplitudes grow and anharmonic effects will take over and some

uncontrollable breakdown of the system will take place. In the case where the system is a

molecule, it will either break apart or maybe jump to some other position.

The purpose of this paper is to study a physical system, where the configuration space

is limited. A natural candidate is the angular momentum of e.g. an impurity atom. This is

much more robust. To change L2, a large energy of the order of 1 eV is required. Hence,

a model with a fixed L2 is warranted. Further, we want to study the dynamics of two

such angular momenta. They will be coupled through the Ruderman-Kittel-Kasuya-Yosida

(RKKY) coupling, but here the focus is on couplings generated through the non-equilibrium

nature of the electronic environment. Such a system was studied by von Oppen et al.

using the philosophy outlined above.3 These authors, however, only considered one angular

moment. As such, the new forces (non-conservative, Berry) which emerge, when we have

more than one degree of freedom will be missed. We shall generalized the description of

vibrational modes2 to a system of angular momenta coupled via an electronic environment

in which there is a current. In the original work the current is implemented through an

applied bias. Here we will do a much simpler calculation, since we will build a net flow of

particles into the density matrix.

3
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A model of coupled angular momenta is interesting to study in its own right, but it can

also work as a model for a system with a limited Hilbert space, which is coupled to a current

carrying environment of electrons. An example is a system of coupled quantum dots, which

has a limited number of bound states in each dot. Such a system can be monitored by a

current carrying channel of electrons, which will generate a dynamics of the state of the

quantum dot, which can be classified using the concepts developed for the angular momenta

system.

In Sec. II, we will derive the equations of motion (EOMs) for two spins coupled to a current

carrying simple metal. The explicit expression for the non-equilibrium torques are presented

for the first time and we see that they decay slower than the RKKY interaction as a function

of distance. In Sec. III, we will do a more general study of the derived EOMs and show that

the non-equilibrium torques can drive the spin system into unexpected configurations.

II. THEORY

We will consider two spins in an electronic environment as illustrated in Fig. 1a. The whole

system is described by the Hamiltonian

H = H0 +Hint, (1)

where the non-interacting part is

H0 =
∑

kσ

εkc
†
kσckσ −B · (S1 + S2). (2)

Here Sn is a vector of spin operators for the localized spin n, and we consider the electrons

to be free, εk = ~2k2/(2m). The localized spins interact with the itinerant electrons via

local exchange,

Hint = −J0 [S1 · s(R1) + S2 · s(R2)] , (3)

where s(r) = 1
2V
∑

kk′ ei(k
′−k)·r∑

σσ′ c
†
kσσσσ′ck′σ′ is the spin density of the ininerant elec-

trons. We want to study the dynamics of the localized spins alone. To do so, we use the

Feynman-Vernon influence functional method4 in which the itinerant electrons are traced

out. The propagator for the reduced density matrix can be written as1,5

J (a1, b1, t; a0, b0, 0) =

∫
Da

∫
Db eiS[a]−iS[b]F [a, b], (4)

4
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S2
S1

R2-R1
kx

ky

Δk

ja) b)

FIG. 1. a) Illustration of two localized spins in an electronic environment. b) The electronic

environment is brought out of equilibrium by displacing the Fermi sphere. The figure shows a

cross section of the sphere displaced by ∆k, which is taken to be along kx in this figure. The

displacement, ∆k, is small compared to the Fermi wave number, kF , but it is exaggerated here for

visualization purposes.

where S[a] is the action for the spin. The path integral was constructed using the spin

coherent states, |a〉 ≡ e−iφS
z
e−iθS

y |↑〉, where |↑〉 = |S,m = S〉.? The influence functional is

F [a, b] = Tre

[
ρ̂e(0)U †[b]U [a]

]
, (5)

where U [a] (U †[b]) is the forward (backward) time evolution operator of the electronic system,

when the spins follow path a (b). The metal carries a current, which is included in the density

operator for the electrons, ρe(0) = Z−1 exp
[
−β∑kσ

(
εk−∆k − µ

)
c†kσckσ

]
, as illustrated in

Fig. 1b.

To obtain the influence of the electrons on the localized spins, we want to get the influence

functional on the form F [a, b] = ei∆S[a,b]. To do so, a functional integral is constructed

from Eq. (5) by using fermionic coherent states. The integral is performed, which yields

F [a, b] = eTr ln(1+G0Ṽ ). To second order in the local exchange coupling, J0, we get

F [a, b] ≈ eTr[G0Ṽ ]− 1
2

Tr[G0Ṽ G0Ṽ ], (6)

where

G0,k(t, t′) = ie−iεk(t−t′)


nF (εk−∆k − µ)− θ(t− t′) nF (εk−∆k − µ)

nF (εk−∆k − µ)− 1 nF (εk−∆k − µ)− θ(t′ − t)


 (7)

5
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and

Ṽkσ,k′σ′(t) =


V

+
kσ,k′σ′(t) 0

0 V −
kσ,k′σ′(t)


 (8)

where V ±
kσ,k′σ′(t) = SJ0

2V
∑

n=1,2 e−i(k−k
′)·Rn n±n (t) · σσσ′ . For more details, see Supporting

information. The first order term in Eq. (6) vanishes due to the trace over the spin indices

and the fact that Tr[σi] = 0 for the Pauli spin matrices σi. The second order term in Eq. (6)

can be written as i∆S = −1
2

Tr
[
G0Ṽ G0Ṽ

]
= iSQζ + iSζζ , where

iSQζ =
S2J2

0

2~2V2

∑

nm

∫ tf

0

dt

∫ tf

0

dt′
∫

dωΛnm(ω,∆k)e−iω(t−t′)ζm(t) ·Qn(t′)θ(t− t′) (9)

where we introduced the average and difference vectors, Q = (na + nb)/2 and ζ = na − nb,
respectively. The introduced effective electron-hole pair density of states is

Λnm(ω,∆k) =
∑

kk′

[nF (εk−∆k − µ)− nF (εk′−∆k − µ)] e−i(k−k
′)·(Rn−Rm)δ(ω − εk + εk′).

(10)

From Eq. (9), we see that the coupling to the electrons give rise to time non-local torques.

In Sec. II A, we will assume the electrons to be fast compared to the spins, which will make

the EOMs local in time. The effective electron-hole pair density of states has the important

properties

Λ∗nm(ω,∆k) = Λmn(ω,∆k), (11)

Λ∗nm(ω,∆k) = −Λnm(−ω,∆k), (12)

Λ∗nm(ω,∆k) = Λnm(ω,−∆k). (13)

To first order in ∆k, it is clear from Eq. (13) that the real part of Λ gives the equilibrium

contributions, while the imaginary part of Λ gives nonequilibrium contributions. Addition-

ally, we see from Eq. (11) that the equilibrium contributions are even under exchange of spin

indices, while the nonequilibrium contributions are odd. Sζζ is imaginary and suppresses

the histories for which the difference vectors, ζ, are large. It is responsible for stochastic

torques,3,6 which we do not study any further here. The expression for Sζζ is found in

supporting information.

6
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By Fourier transforming, the contribution to the action in Eq. (9) can be written as

iSQζ = i
πS2J2

0

2V2

∑

nm

∫ tf

0

dt

∫
dω

2π

{
H{Re Λnm} (ω) + Im Λnm(ω,∆k)

+ i [−Re Λnm(ω) +H{Im Λnm(ω′,∆k)} (ω)]

}
ζm(t) ·Qn(ω)e−iωt,

(14)

where the Hilbert transform is H{f(ω′)}(ω) = 1
π
P
∫

dω′ f(ω′)
ω−ω′ .

A. Slow spin approximation

We will now assume that the spins are slow compared to the electrons. This assumption is

widely used for magnetic molecules in tunnel junctions.3,6–8 In our formalism, the information

about the electrons is kept in the four functions in the curly bracket in Eq. (14). If the spins

are slow compared to the electrons, the function Qn(ω) is narrow in frequency compared to

the functions in the curly brackets, and we can expand these four functions to first order in

frequency. By using the property in Eq. (12), the influence of the electrons appear in the

action as the effective magnetic field,

Beff,n = B +
πSJ2

0

2V2

∑

m

[
H{Re Λmn} (0)Qm + Im Λmn(0)Qm

+
∂

∂ω
Re Λmn(ω)

∣∣
ω=0
Q̇m −

∂

∂ω
H{Im Λmn} (ω)

∣∣
ω=0
Q̇m

]
,

(15)

and in the semi-classical approximation, spin n will precess about this field. By performing

the integrals, we arrive at the EOMs

ṅ1 = −~−1B × n1 + (J + σ)n2 × n1 + η0ṅ1 × n1 + (η + χ)ṅ2 × n1

ṅ2 = −~−1B × n2 + (J − σ)n1 × n2 + η0ṅ2 × n2 + (η − χ)ṅ1 × n2

(16)

where n1 is the vector described by the average angles, θ = (θa + θb) and φ = (φa +φb), and

where the distance dependent coefficients are

J(R) = −8η0
εF
~
F (2kFR)

η1(R) = η0

(
sin(kFR)

kFR

)2

σ(R) = −4η0L(kFR)
εF
~

∆k ·R
kFR

χ(R) = −8η0

π
L(kFR)

εF
δε

∆k ·R
kFR

.

(17)

7
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Here η0 =
πSJ2

0

8
ρ(εF )2, where the density of states at the Fermi energy is ρ(εF ) = k3

F/(2π
2εF )

and the distance dependent functions are F (x) = x cos(x)−sin(x)
x4

and L(x) = sin(x)x cos(x)−sin(x)
x3

.

In the derivation of χ(R), slow electron-hole pairs with energies lower than the cutoff δε

were neglected. The non-equilibrium terms are proportional to ∆k ·R and they therefore

vanish when the position vector between the spins is perpendicular to the current direction.

The EOMs in Eq. (16) have been derived by Onoda et al.9 However, this is the first time that

the explicit expressions for the non-equilibrium coefficients, σ and χ, have been presented.

For the specific model, one can estimate the magnitudes of these new coefficients. For a

current density of 106 A cm−2 in a copper nanowire and the distance R = 7 Å between the

spins, the coefficients are |σ/J | ≈ 10−4 and |χ/η0| ≈ 10−2. Here, a cutoff equivalent to an

electron in a 0.01 T magnetic field was used.

III. ANALYSIS OF EQUATIONS OF MOTION

Having established the EOMs for a specific model, we will now do a more general study

of the EOMs. We will assume that the non-equilibrium coefficients, σ and χ, can take larger

values than estimated for the specific model above. The coupled differential equations have

fixed points, ṅ1 = ṅ2 = 0, when B × n1 = (J + σ)n2 × n1 and B × n2 = (J − σ)n1 × n2

are fulfilled. It is easy to see that the ferromagnetic (FM) configurations (↑, ↑) and (↓, ↓) as

well as the antiferromagnetic (AFM) configurations (↑, ↓) and (↓, ↑) are fixed points. Here

the first (second) arrow refers to spin 1 (2) and up refers to the direction of the magnetic

field. Additionally, it can be derived that a canted spin configuration with φ2 − φ1 = π and

θcanted
1/2 = cos−1

(
B2 ∓ 4Jσ

2B(J ∓ σ)

)
, (18)

is a fixed point when 2|σ| < B < 2|J |. From Eq. (18), we see that the θ-angles in the

canted spin are equal in equilibrium, but the introduction of σ skews the configuration.

The nonequilibrium terms in the EOMs can drive the spin system into unexpected con-

figurations. When the coupling is AFM, J > 0, the equilibrium system would reach either

the canted or antiferromagnetic configuration depending on the size of B/J . However, the

presence of the nonequilibrium terms can drive the system into the ferromagnetic config-

uration. This is shown in Fig. 2a, where the trajectories of two spins are plotted for the

indicated choice of parameters. The dots in the figure indicate the initial spin orientations,

8
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while the arrows show where the spins end up. Similarly, in Fig. 2b and Fig. 2c the coupling

is ferromagnetic and we would expect the spins to reach a point where they both point up

along the B-field. However, in Fig. 2b the spins end up in the canted configuration with

the angles shown in Eq. (18), while both spins reach a point where they point antiparallel

to the magnetic field in Fig. 2c.

To get a more complete picture of the parameter space, we do a linear stability analysis

around the fixed points. For the FM and AFM configurations this is most easily done by

linearizing the vectors (nxi , n
y
i , n

z
i ) ≈ (xi, yi,±1), where the upper (lower) sign refers to the

spin pointing (anti-)parallel to the magnetic field. Inserting these into the EOMs and keeping

only first order terms, we can write (δẋ1, δẏ1, δẋ2, δẏ2)T = M z1,z2 (δx1, δy1, δx2, δy2)T , where

δx1 = x1−x0
1 is the deviation from the fixed point coordinate x0

1 and where the subfixes of the

matrix indicate the fixed point, zi = ±1. For the canted spin configuration, we can rewrite

the EOMs as (ṅT1 , ṅ
T
2 )T = [F (n1,n2)]T , where F (n1,n2) is a vector. Linearization and

rotation lead to (δθ̇1, δφ̇1, δθ̇2, δφ̇2)T = M canted (δθ1, δφ1, δθ2, δφ2)T , where M canted contains

the Jacobian matrix. A fixed point is stable, when all the real parts of the eigenvalues of

the corresponding matrix are negative, and we therefore have the tool to scan the parameter

space for stabilities.

The stability diagram in the case of AFM coupling is shown in Fig. 3a. As expected, the

canted configuration is stable in the equilibrium case, (σ, χ) = (0, 0), where the exchange

coupling and magnetic field compete. As σ and χ become sufficiently large and of opposite

sign, we see that the ferromagnetic configuration (↑, ↑) becomes stable. This means that

the non-equilibrium terms have driven the system into a configuration where the exchange

energy is maximized. Remember that the spin configurations in the canted spin region in

Fig. 3 are different for the different σ values as stated in Eq. (18).

The same analysis is done in the case of FM coupling, and the result is shown in Fig.

3b. As expected, the equilibrium configuration is FM pointing along the magnetic field,

but as the σ and χ become sufficiently large and of opposite sign, both spins will end up

pointing antiparallel to the magnetic field. This is surprising since it maximizes the energy

contribution from the magnetic field. If σ and χ are large and of same sign, the canted

configuration becomes stable, while none of the fixed points are stable in the white region in

Fig. 3b. The diagrams agree with the end points of the trajectories in Fig. 2, and a raster

scan of numerical simulations has been done to confirm the stability diagrams in Fig. 3.
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J>0, σ/|J| = −0.3, χ = 0.3

J<0, σ/|J| = 0.25, χ = 0.25

J<0, σ/|J| = −0.3, χ = 0.3

a)

b)

c)

FIG. 2. Spin trajectories obtained from Euler method simulations of the equations of motion. In

all cases, the spins start in the arbitrarily chosen configuration (θ1, φ1, θ2, φ2) = (0.3π, 0, 0.4π, 0.8π),

which is represented by a dots. The simulations ran until the spins stopped moving, and the final

directions are shown by arrows. In (b) the spins end up in the canted spin configuration with

(nz1, n
z
2) = (−0.8, 0) and ∆φ = π, which agrees with Eq. (18). In all simulations, the parameters

B/|J | = 1, η0 = 0.01, and η0 = 0.5η0 are used.
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FIG. 3. Phase diagrams obtained from a linear stability analysis with parameters B/|J | = 1,

η0 = 0.01, and η1 = 0.5η0. In (a), the coupling is FM, J > 0, while it is AFM in (b), J < 0. In the

white region, none of the fixed points are stable.

The stability diagrams in Fig. 3 are symmetric under the inversion (σ, χ)→ (−σ,−χ). The

reason is that the EOMs in Eq. (16) are left unchanged by the exchanges (σ, χ)→ (−σ,−χ)

and (1, 2)→ (2, 1).

Since σ and χ originate from an electric current, the findings in Fig. 3 suggest that

an electric current can drive two magnetic moments into a variety of configurations. A

possible application is that an electric current can be used to prepare a system with magnetic

moments in a desired configuration.

IV. CONCLUSION

We have used the Feynman-Vernon influence functional approach to derive the EOMs for

two spins that couple to a current carrying metal. The non-equilibrium torques were calcu-

lated for a specific model and the explicit expressions were presented. A general study of the

EOMs showed that the non-equilibrium torques can drive the spin system into unexpected

configurations. With this discovered property, a current can maybe be used to prepare a
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spin system in different desired configurations.
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