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Preface

This PhD study has two main branches due to unforeseen circumstances of which the
reader should be aware. This project started in June 2016 as an industrial PhD study.
Here, the candidate was employed at Vaavud ApS, a small start-up company which
manufactured anemometers for smartphones and made related software, for example,
to provide tailored weather forecasts.

Halfway into the PhD project, Vaavud ApS went bankrupt and had to terminate all
contracts with employees, including the PhD candidate of this study. Uncertain months
followed, with different solutions being worked on.

The Danish Meteorological Institute (DMI) took over the project in September
2017. The primary objective of the study and the overall subject changed from utilising
crowdsourced wind measurements in meteorology to examining pressure observations
from smartphones in Numerical Weather Prediction (NWP). Therefore the work of this
study has been carried out in two phases. The shift of both focus and working environ-
ment has given the candidate good skills to adapt and utilise research in a new project
quickly.

The first half of the study was done at Vaavud ApS in a consortium of partners which
consisted of Vaavud ApS, University of Copenhagen, ConWX ApS and DMI. Here, the
company supervisor was Dr Juan Muñoz-Gomez. The second part of the study was
carried out at DMI in a consortium consisting of DMI and University of Copenhagen.
Here, the company supervisor was Dr Henrik Vedel. Throughout the project, Professor
Eigil Kaas has been the University supervisor.
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Preface ii

At Vaavud, I was given the opportunity to work with people from a wide vari-
ety of fields, such as software programmers, data scientists and a large environment
of innovative entrepreneurs. At DMI the work was done as part of the HIRLAM-C
(High-Resolution Limited Area Model) programme, in which the primary purpose is to
carry out research and development for short-range weather forecasting activities. For
this purpose, an examination of smartphone pressure observations was an excellent op-
portunity for both the HIRLAM community and myself. As a part of this community,
I have been blessed with the possibility to work closely with experts within NWP from
all over Europe.

Four articles have been produced and are included in the appendices. Two of the
four articles are published, one is currently in revision, and one is in preparation.
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Abstract

Observations are a vital part of Numerical Weather Prediction (NWP) to give accurate
forecasts of future weather. As the spatial resolution of NWP models increases, so does
the need for more observations for use in data assimilation. Installing new professional
meteorological observing equipment is costly and expensive to maintain. Crowdsourced
data is a new potential data source for NWP that have emerged in recent years. Crowd-
sourced data is an overall term covering reports from users and data from equipment
owned and operated by the public. Such data are often less accurate than traditional
meteorological observations, but there are much more available. This PhD project
studies the potential use of crowdsourced data in NWP. The main focus is on handheld
wind measurements from smartphones, pressure observations from smartphones and
on Personal Weather Stations (PWS). It is shown that handheld wind measurements
can, in some cases, be more representative than traditional wind observations and a
method of estimating the surface roughness length from a handheld measurement is
presented. Software for collecting Smartphone Pressure Observations (SPOs) has been
developed and have in one year successfully collected more than 60 million observations
from Denmark. Also, a scheme for quality control of the SPOs has been developed.
SPOs and pressure observations from PWS have been assimilated into the DMI HAR-
MONIE NWP model using 3-Dimensional Variational (3D-Var) data assimilation. It
is shown that SPOs can contribute positively to NWP, but it is also concluded that
the full potential has not yet been reached. Other assimilation techniques than 3D-Var
are likely to be more suitable for assimilating crowdsourced data. Observations from
PWS are likely to be useful for NWP and observation based nowcasting, but a quality
monitoring system needs to be developed before this can be applied. The developments
and findings in this PhD project constitute fundamental contributions to advance the
work on utilising crowdsourced data as it is shown that such data is of a quality that
can contribute to improving weather forecasts from NWP models.
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Abstract in Danish

Observationer er en vigtig del af numeriske vejrmodeller for at kunne give gode prog-
noser af det kommende vejr for dets brugere. Efterhånden som den rumlige opløsning
af vejrmodellerne øges, kræves der også flere observationer til brug i dataassimilering.
Installation og vedligehold af professionelle meteorologiske observationsstationer har
en høj økonomisk omkostning. I de senere år er en ny potentiel datakilde til brug i
numeriske vejrmodeller opstået, kaldet crowdsourced data. Crowdsourced data er en
overordnet term der dækker over data ejet af privatpersoner. Disse data er typisk min-
dre nøjagtige end traditionelle meteorologiske observationer, til gengæld er der ofte mere
data til rådighed. Dette PhD projekt undersøger potentialet af crowdsourced data til
brug numeriske vejrmodeller. Det primære fokus er på håndholdte vindmålinger fra
smartphones, trykobservationer fra smartphones samt observationer fra personlige ve-
jrstationer. Det bliver vist at håndholdte vindmålinger kan i nogen tilfælde være mere
repræsentative end traditionelle vindobservationer. Ydermere, præsenteres en metode
til at udlede en overflade ruhedsparameter fra håndholdte vindmålinger. Der er udviklet
software til at indsamle trykobservationer fra smartphones and der er i løbet af et år, ind-
samlet mere end 60 millioner observationer. En algoritme til kvalitetskontrol af trykob-
servationer fra smartphones er også udviklet. Trykobservationer fra smartphones og
personlige vejrstationer er blevet assimileret i DMI’s HARMONIE vejrmodel ved hjælp
af 3-Dimensionel Variationel (3D-Var) dataassimilering. Det bliver vist at trykmålinger
fra smartphones kan bidrage positivt til nøjagtigheden af numeriske vejrmodeller, men
det konkluderes også at det fulde potentiale af denne type data endnu ikke er opnået.
Andre dataassimileringsmetoder end 3D-Var forventes at være bedre egnet til at as-
similere crowdsourced data. Observationer fra personlige vejrstationer må formodes at
være til gavn for numeriske vejrmodeller samt observationsbaseret straksvarsling, men
der kræves et system der kan monitorere sådanne stationer før disse kan implementeres.
Dette PhD projekt viser at crowdsourced data er af en kvalitet der kan udnyttes i
sammenhæng med numeriske vejrmodeller og giver derved et fundamentalt bidrag til
udviklingen af brugen af crowdsourced data.
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Acronyms

Abbreviation Description

3D-Var 3-Dimensional Variational data assimilation
4D-Var 4-Dimensional Variational data assimilation

ABL Atmospheric Boundary Layer
AI Artificial Intelligence
AMV Atmospheric Motion Vector
API Application Programming Interface
App Application (Typical for Smartphones)
ARW Advanced Research WRF
ASCII American Standard Code for Information Interchange
AWS Automated Weather Stations

BUFR Binary Universal Form for the Representation of
meteorological data

CART Classification And Regression Trees
CCTV Closed-Circuit Television

DA Data Assimilation
DMI Danish Meteorological Institute
DMPAR Distributed-Memory Parallelism
DTM Danish Terrain Model
DTU Danish Technical University
DWD Deutscher Wetterdienst

ECMWF European Centre for Medium-Range Weather Forecast
EnKF Ensemble Kalman Filter
EUMETNET European Meteorological Services Network
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Acronyms vii

Abbreviation Description

FDE Finite Difference Equations
FGAT First Guess at Appropriate Time
FMI Finnish Meteorological Institute
FSS Fractional Skill Score
FTP File Transfer Protocol

GDPR General Data Protection Regulation
GFS Global Forecasting System
GNSS Global Navigation Satellite System
GTS Global Telecommunication System

HARMONIE Hirlam Aladin Regional Meso-scale Operational
NWP in Europe

HIRLAM HIgh Resolution Limited Area Model
HPC High-Performance Computing
HWM Handheld Wind Measurement

IBL Internal Boundary Layer
IFS Integrated Forecasting System
IoT Internet of Things

KF Kalman Filter
KNMI Koninklijk Nederlands Meteorologisch Instituut

LAM Limited Area Model
LETKF Local Ensemble Transform Kalman Filter

ML Machine Learning

NBI Niels Bohr Institute
NWP Numerical Weather Prediction

ODB Observation Database
OI Optimal Interpolation
OS Operating System

PBL Planetary Boundary Layer
PDE Partial Differential Equations
PDF Probability Density Function
PWS Personal Weather Stations

RMI Royal Meteorological Institute of Belgium
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Acronyms viii

Abbreviation Description

SDK Software Development Kit
SLP Sea Level Pressure
SMAPS SMArtphone Pressure System
SPO Smartphone Pressure Observation
SWO Smartphone Wind Observation
SYNOP surface synoptic observations

TCP Transmission Control Protocol
TKE Turbulent Kinetic Energy

UI User Interface
UX User Experience

WMO World Meteorological Organization
WRF Weather Research and Forecasting

ZAMG Zentralanstalt für Meteorologie und Geodynamik
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Nomenclature

Sign Description Unit
()′ Perturbed state of a variable −
C Constant −
H Forward model operator −
J Diabatic heating J/s

K Diffusion coefficient m2/s

L Monin-Obukhov length m

P Precipitation intensity kg/m2s

Rd Gas constant for dry air J/kgK

T Temperature K

Z Radar reflectivity factor mm6/m3

H Linearised forward model operator −
Pb Background error covariance −
R Observation error covariance −
x Model state of prognostic variables −
y Observation vector −
ω Vertical velocity Pa/s

() Mean state of a variable −
ρ Density kg/m3

σ Standard deviation −
τ0 Shear stress N/m2

θ Potential temperature K

cp Specific heat capacity at constant pressure J/K/kg

k von Kármán constant −
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Nomenclature x

Sign Description Unit
l Mixing length m

p Pressure hPa

r Radial distance m

t Time s

u∗ Friction velocity m/s

u Longitudinal wind speed m/s

v Latitudinal wind speed m/s

w Vertical velocity m/s

z0 Roughness length m

z Vertical coordinate m
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Glossary

API (Application Programming Interface) is an interface that allows software programs
to interact. One example of an API could be an interface which returns a weather
forecast given a position as latitude and longitude.

Client-Side Client-side refers to processes that occur locally on a users device such as
a smartphone.

Crowdsourcing Crowdsourcing represents the act of a company or institution taking
a function once performed by employees and outsourcing it to an undefined (and
generally large) network of people in the form of an open call.

IoT (Internet of Things) refers to devices communicating together via the internet
and/or ethernet. A classic example is an alarm clock setting off in the morning
and at the same time sending a message to the coffee machine to start brewing
coffee.

NWP (Numerical Weather Prediction) is the process of creating weather forecasts
using discretised models of physics and mathematics to be solved using computers.

SDK (Software Development Kit) is a set of tools, components and examples which
can be used to develop software applications targeting specific platforms. An SDK
can hold several APIs.

Server-Side Server-side is opposite to client-side processes that occur on remote servers
that can be shared by many clients.
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Chapter 1

Introduction

1.1 Motivation

A primary motivation of this study is to improve nowcasting forecasts of hazardous
weather, such as heavy fog, excessive rainfall and thunderstorms. Nowcasting methods
can be based on Numerical Weather Prediction (NWP) models, or they can be purely
based on observations. As the resolution of NWP models increase, whereas the tra-
ditional observing networks are not densifying at the same rate, so does the need for
more observations to determine the initial conditions satisfactorily and validate results.
The skill of a weather forecast depends heavily on the estimate of the initial state of
the atmosphere. Therefore, to improve nowcasting forecasts, additional observations
are needed.

A potential new source of observations is crowdsourced data. Crowdsourcing was
originally defined by Howe (2006) as "the act of taking a job traditionally performed
by a designated agent (usually an employee) and outsourcing it to an undefined, gen-
erally large group of people in the form of an open call". An example that complies
with Howe’s definition is data from Personal Weather Stations (PWS). Today, many
private homes have PWS installed (Muller et al., 2015), which can report observations
for use in NWP (Netatmo SAS, 2018). However, in the atmospheric sciences, the term
crowdsourced data is often used more broadly (Krennert et al., 2018). Here, data from
vehicles and smartphones are also classified as crowdsourced data, even though such
data are not used in operational NWP models yet. Definitions of terms within this re-
search topic are still somewhat unclear but have been improved with the work of Muller
et al. (2015) and Krennert et al. (2018).

It is not clarified how to deal with crowdsourced observations in order to include

1



1. Introduction 2

them in an NWP model. If appropriately utilised, crowdsourced data can also poten-
tially aid operational meteorologists in decision making. This PhD thesis provides a
detailed study of crowdsourced data in NWP. Three different types of crowdsourced
data types have been studied in detail, namely handheld wind observation from smart-
phones, pressure observations from smartphones and pressure observations from PWS.

1.2 Primary objectives

Prior to the initiation of the project, three primary objectives were defined. Because
the use of crowdsourced data is a new broad topic within NWP, the objectives were
deliberately formulated without too many specific details to be able to take on a broad
perspective.

• Make fundamental research on the use of crowdsourced data in NWP.

• Develop a validation method which makes it possible to include crowdsourced
data in short-term weather forecasting.

• Investigate the options for using crowdsourced data dynamically in the modelling
processes of the atmosphere.

Additionally, three success criteria were defined:

• Crowdsourced data are included in the process of NWP

• The skill of weather forecasting is thereby improved

• The methods must be applied in commercial projects

1.3 Overview

The reader will quickly realise that there appear to be two branches of this PhD the-
sis. The project started at the company Vaavud ApS, which manufactured low-cost
anemometers for smartphones and developed mobile software tailored for different use
cases. Halfway into the project, Vaavud ApS went bankrupt, and all contracts with
employees had to be terminated. The Danish Meteorological Institute (DMI) took over
the project and employed the PhD candidate as a part of the HIRLAM-C project. The
PhD project then shifted focus from utilising crowdsourced wind measurements to in-
vestigate the potential use of smartphone pressure observations in NWP. Due to the

2



1. Introduction 3

aforementioned reasons, this thesis consists of two branches, one branch for research
done at Vaavud ApS in which the focus is mainly on handheld wind measurements
from smartphones and one branch for research done at DMI where the main focus is on
Smartphone Pressure Observation (SPO)s and PWS.

The thesis is structured as follows: Chapter 1 is a general introduction to the PhD
project. Chapter 2 presents the work done on data collection in this study for wind and
pressure observations from smartphones and data from PWS. Hereafter follows chapter
3 with a general introduction to NWP. Then, the focus is solely upon wind observations
from smartphones performed during the first half of the project, starting with chapter
4 which gives an overview of the Vaavud NWP system which was set up in the very
beginning of this PhD project.

Chapter 5 and 6 introduces the theory for turbulence and the atmospheric boundary
layer. Atmospheric observations and measurements with a focus on traditional methods
and the experimental setups made in this study are described in chapter 7. Here, the
experimental setup for the validation of handheld wind measurements from smartphones
is presented. The guidelines from World Meteorological Organization (WMO) for both
wind and pressure are also given. Chapter 8 introduces the first article: "Estimation of
wind speed and roughness length using smartphones: Method and quality assessment",
with a summary and key findings.

Then, the main focus shift towards pressure observations from smartphones and the
work carried out mainly at DMI, starting with an introduction to data assimilation in
chapter 9, with a focus on 3-Dimensional Variational data assimilation (3D-Var) which
is used in the Hirlam Aladin Regional Meso-scale Operational
NWP in Europe (HARMONIE) model. Chapter 10 presents the practical implemen-
tation of the HARMONIE data assimilation environment and documents the changes
made to the system in order to assimilate pressure observations from smartphones.
Chapter 11 gives a general overview of potential data sources, other than the ones that
are in focus in this study. Also, a discussion on the differences between the terms "big
data" and "crowdsourced data" is given to avoid confusion between the two. Chapter
12 and chapter 13 gives an introduction to machine learning algorithms which has been
used to predict the error of smartphone pressure observations and the initial results of
these experiments, respectively.

Chapter 14 introduces the second article "Collecting and processing of Baromet-
ric Data from Smartphones for Potential use in NWP Data Assimilation". Chapter
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15 introduces the third article, "Collecting and utilising crowdsourced data for NWP:
Propositions from the meeting held in Copenhagen, 4-5 December 2018". Addition-
ally, the fourth article is introduced in chapter 16. Finally, chapter 17 and 18 gives a
summary, presents conclusions and discusses future challenges.

1.4 Included papers

Paper A:
Hintz, K. S., Vedel, H., Kaas, E., Nielsen, N. W., (2019a)
Estimation of wind speed and roughness length using smartphones: Method
and quality assessment, (in-Revision) Journal of Atmospheric and Oceanic Technol-
ogy.

Collection and utilising smartphone wind observations to estimate the roughness
length of the surface and comparison to traditional wind observations.

Paper B:
Hintz, K. S., Vedel, H., Kaas, E., (2019b)
Collecting and processing of Barometric Data from Smartphones for Po-
tential use in NWP Data Assimilation (published), Meteorological Applications,
doi:10.1002/met.1805.

Collecting barometric data from smartphones and examining the quality of these.
A screening method was developed, and preliminary data assimilation experiments are
presented.

Paper C:
K. S. Hintz, K. O’Boyle, S. L. Dance, S. Al Ali, I. Ansper, D. Blaauboer, M. Clark,
A.Cress, M. Dahoui, R. Darcy, J. Hyrkkanen, L. Isaksen, E. Kaas, U. S. Korsholm,
M.Lavanant, G. Le Bloa, E. Mallet, C. McNicholas, J. Onvlee-Hooimeijer, B. Sass, V.
Siirand, H. Vedel, J. A. Waller, X. Yang., (2019c)
Collecting and utilising crowdsourced data for NWP: Propositions from the
meeting held in Copenhagen, 4-5 December 2018 (published) Atmospheric Sci-
ence Letters, doi:10.1002/asl.921.

Summary of a workshop planned and hosted by the PhD candidate, bringing to-
gether experts in crowdsourced data in NWP from Europe and the United States of
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America.

Paper D:
Hintz, K. S., Vedel, H., Kaas, E., (2019d)
Evaluating pressure observations from private weather stations and smart-
phones (In-Prep. for Meteorological Applications)

Collecting and examining pressure observations from personal weather stations for
use in numerical weather prediction. Also, both pressure observations from smartphones
and personal weather stations were assimilated into the HARMONIE model, for a pe-
riod of nearly two months.

5



Chapter 2

Data collection

Data from smartphones can be separated into sensor data and user data. The former
is data coming from sensors either built into or attached to the smartphone, and the
latter is cases where the user interacts with the software to send some sort of data. One
example of user data is to collect user reports of the current weather such as is done by
for example Météo France, Finnish Meteorological Institute (FMI), Royal Meteorolog-
ical Institute of Belgium (RMI) and Zentralanstalt für Meteorologie und Geodynamik
(ZAMG) in Austria (FMI, 2018; Hintz et al., 2019c; Krennert et al., 2018).

In the atmospheric sciences, sensor data from smartphones is mostly focused on
pressure observations as many modern smartphones can measure the pressure directly
(see section 2.2). Temperature observations have also been extracted from the battery
in smartphones by using a heat transfer model (Droste et al., 2017; Overeem et al.,
2013), to quantify the urban heat island effect.

Even with the vast amount of potential sources of data coming available in recent
years and the future (Evans, 2011), work based on robust data collection methods is
still the foundation for the research going on within the topics of crowdsourced data,
also within NWP. Hence, data collection has been a fundamental and essential part of
this PhD project. Throughout the project, this single PhD study has collected data
from more than 2 % of the entire Danish population. If the software which has been
developed during this PhD project is upscaled, that number will only increase.

This chapter is dedicated to describe the data collection processes of the data used
in this project, namely wind observations from smartphones (section 2.1), pressure ob-
servations from smartphones (section 2.2) and observations from PWS (section 2.3).
Finally, a brief overview of data management is given in section 2.4, which also holds

6



2. Data collection 7

general remarks on the General Data Protection Regulation (GDPR) act from the Eu-
ropean Union (European Union, 2018).

2.1 Wind observations from smartphones

The motivation for collecting wind observations from smartphones is to provide better-
tailored weather forecasts for the users of the anemometer, by using the observation
in a post-processing routine of a NWP forecast. Also, as the number of observations
increases a micro-climatological wind atlas for a variety of locations could be made.

All wind observations from smartphones used in this study come from the Danish
private company Vaavud (Vaavud, 2018). Vaavud manufactured mobile anemometers
for smartphones and developed tailored software for web and mobile platforms such
as iOS and Android. Vaavud had users globally, but the primary markets were Den-
mark, United Kingdom and the Netherlands, from which most observations naturally
come. The primary Vaavud products are shown in figure 2.1. In this project, wind
measurements were obtained from the Vaavud Sleipnir anemometer (see figure 2.1).

Figure 2.1: The Vaavud anemometers, Mjolnir (left) and Sleipnir (middle
and right). The Sleipnir anemometer also measures the wind direction due
to its asymmetric rotor design.

7
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The Sleipnir anemometer is attached to the smartphone through the jack stick. An
infrared beam is sent from the outer surface of the anemometer to the centre, where
a receiver is located. On the anemometer a uniformly spaced teeth block is attached,
which interrupts the infrared beam as it rotates. When rotating, this creates a pattern
of signal, no-signal, which is transferred back to the phone via the jack stick. The time
between the signals translates to the rotation speed and from that the wind speed is
calculated. The asymmetric rotor allows one to calculate the wind direction also. Due
to the asymmetry the rotor accelerates and decelerates as the wind blows into the cup,
from which the wind direction is computed.1

When the anemometer is plugged into the smartphone, the user can via an app start
a wind measurement. Each measurement consists of a 30 second period with a sampling
rate of approximately 4 Hz. The observation, which is the average of the measurements
are then uploaded to a database at Vaavud via the Vaavud Software Development Kit
(SDK), together with the wind direction, the variance of the observation, position and
a unique smartphone identifier. The Vaavud SDK was connected to the Vaavud app
suite, which consisted of three separate apps:

• Vaavud: Official general purpose app

• Vaavud Kitesurfing: Dedicated app for kitesurfing purposes

• Vaavud Sailing: Dedicated app for sailing purposes

In all three apps, weather forecasts were also provided by Vaavuds own NWP system
which was set up as a part of this PhD study at the beginning of the project (see chapter
4).

Wind measurements from smartphones are challenging to utilise. This is partly due
to representativeness errors (see figure A1) but also due to a lower quantity compared to
other crowdsourced data sources because users have to make an action with the existing
methods. It is generally believed that the amount of data is less for applications where
the user needs to perform an action (Hintz et al., 2019c). In this case, users have to
attach an anemometer to the smartphone and manually start a measurement.

1The technical description of Sleipnir originates from personal communication with the inventor of
the device and former CTO of Vaavud, Andreas Okholm.

8
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2.2 Pressure observations from smartphones

The focus on SPOs in this PhD project has been on collection methods, processing and
usage of pressure observations in NWP and meteorology in general. The reasons for this
focus is 1) barometers are often built into smartphones making data easily accessible
and 2) pressure is a variable that is being assimilated in modern NWP assimilation
systems already. Hence, the motivation for collecting pressure observations is to exam-
ine how a very dense dataset of a traditional parameter can be utilised in modern NWP.

Barometers started to be built into smartphones around 2011 to increase the speed
of location fixes (Morril, 2011). Barometers are used to provide a first estimate of the
altitude of the smartphone to retrieve a location fix faster, from the built-in Global
Navigation Satellite System (GNSS). Also, it requires less power and is a more reli-
able way of tracking altitude changes of the device compared to using the GNSS. The
standard deviation of the altitude assignment of a smartphone can be as high as 30
meters (Bauer, 2013). However, with the introduction of dual-frequency GNSS chipsets
in smartphones the precision can get down to decameters (Robustelli et al., 2019).

The main Operating System (OS) (in Europe) for smartphones are ‘Android’ (Google)
and ‘iOS’ (Apple Inc.) (StatCounter Global Stats, 2018). The native programming
language for Android and iOS are Java and Swift/Objective-C, respectively. Apps
developed from native code are referred to as native apps. Both Android and iOS pro-
vide SDKs to access sensor data through an Application Programming Interface (API),
including barometric pressure. To collect pressure observations, it was necessary to
develop software to the OS of interest.

Frameworks exist that makes it possible to build native apps from one codebase
by cross-compiling. One such example is the React Native framework (Facebook Inc.,
2017), an open-source framework for building native apps using javascript. The frame-
work is promising, but are still in beta, and so it was decided to build the software
using a native language. To begin with, a DMI-internal test-app was built for both
Android and iOS, to examine sensor behaviour, sampling rates and the quality of the
sensor readings. This also provided the PhD candidate with a subjective evaluation of
uncertainties of measurements related to movements, such as driving in vehicles and
biking (e.g. see figure A3) and external noise such as nearby doors opening and closing.

Earlier studies have taken the approach of developing an entire app (Kim et al.,

9
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2015, 2016; Madaus and Mass, 2017; McNicholas and Mass, 2018), focusing both on
User Experience (UX) and User Interface (UI). While such an approach represents a
full solution, problems do exist due to the nature of crowdsourced data. Users do need
a reason to download an app and keep using it for the researchers to obtain data. It is
argued that, in general, research institutions are not in shape to advertise and maintain-
ing an app to keep the retention and conversion rate high. Also, it makes applications
dependent on SPOs from a single source, vulnerable if the source breaks down or users
change to a new platform. Therefore, a different approach was used in this PhD project.

A software package2 was developed to be installed on top of third-party apps to
collect sensor data as a background process, when the app is in use. The software pack-
age is named SMArtphone Pressure System (SMAPS) and includes two sub-packages,
‘PMOB’, which works client-side, and ‘QCMOB’ which works server-side. SMAPS is
described in detail in Hintz et al. (2019b). For testing purposes, a simple UI was
built on top of PMOB; making it possible to see sensor data in real-time (see figure
2.2). PMOB was installed by the company SFS Development in their app ‘DMI Vejret’
(‘DMI Weather’) for both iOS (iOS App Store, 2019) and Android (Google Play, 2019)
from where most of the SPOs used in this project originated.

Through the ‘DMI Vejret’ app, a large number of observations, in the range of
140,000 to 170,000, were obtained every day. In total, over one year, from 4th of
April 2018 to 4th of April 2019, 61,728,672 observations were collected from 149,782
unique smartphones. That is approximately 2300 % more observations than what the
traditional Danish SYNOP network delivers. August 2018 was the month with most
observations with 9,928,301 reports, and June 2018 was the month with fewest obser-
vations with 3,131,730 reports. It is clear from these numbers that one has to take
into account the natural variability which lies in crowdsourced data. One advantage of
building the data collection software as a SDK is that the variability will decrease if
the SDK is installed in multiple apps. Table 2.1 lists the total observations and unique
devices. Note that the total of unique devices is not a sum as multiple devices can
report in multiple months.

Block 2.1 shows a minimal example of initialising the iOS SDK for retrieving pressure
observations using Swift 3.0.

2A better term for the software package would be SDK, but because the software is not yet opera-
tional and improvements might be needed in future it is chosen not to use that term.
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Table 2.1: Overview of collected smartphone observations from 4th of April
2018 to 4th of April 2019. The decline in April 2019 is because only four
days are included from this month.

Total
Observations

Unique
Devices

April (2018) 4,256,983 35,974
May 3,155,072 37,672
June 3,131,730 34,142
July 6,857,070 56,450
August 9,928,301 66,143
September 6,179,692 57,692
October 4,534,645 54,607
November 3,146,321 47,072
December 3,748,830 46,219
January (2019) 5,343,834 54,570
February 4,027,405 52,628
March 6,814,125 54,336
April 604,664 22,904
Total 61,728,672 149,782

class PressureRx {

private var pressureController: CMAltimeter? = { return

CMAltimeter.isRelativeAltitudeAvailable () ? CMAltimeter ()

: nil }()

static let shared = PressureRx ()

public var pressureCallback = PublishSubject <Double >()

func initPressure () {

pressureController ?. startRelativeAltitudeUpdates(to: .

main) { altitudeData , error in

if let kpa = altitudeData ?. pressure.doubleValue {

self.pressureCallback.onNext(kpa *10)

} }}}

Block 2.1: Example of initialising the iOS SDK using Swift 3.0 for retrieving
pressure observations. CMAltimeter is the class which is called from the
iOS SDK. See text for details.

Figure 2.2 shows the sensor screens of the test-app, which is a UI on top of PMOB.

11
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The left screen shows the numerical value from different sensors, such as the accelerom-
eter. The right screen shows the time evolution of pressure. As seen in figure 2.2, not
only pressure is collected. All variables that are retrieved and calculated are given in
table 2.2.

Table 2.2: Overview of observed variables collected from the smartphones.
The calculated variables are calculated either on the smartphone directly
or server-side when the observation has been received. σ represents the
standard deviation.

Observed Variable Calculated Variable Unit
Pressure σp hPa
Timestamp ms since 1 Jan 1970
Latitude Degrees (WGS94)
Longitude Degrees (WGS94)
Altitude σAlt m
Horisontal Accuracy m
Vertical Accuracy m
Speed σSpd m/s
Acceleration x̂ σax m/s2

Acceleration ŷ σay m/s2

Acceleration ẑ σaz m/s2

Terrain Model Height m
User ID

The standard deviation of pressure, altitude, speed and acceleration are calculated
during the measurement and stored. The first five seconds of a measurement series is
discarded due to a spin-up effect of the sensor (see McNicholas and Mass (2018) and
Hintz et al. (2019b)).

Due to the uncertainties in altitude assignment, the metadata just described was
collected to examine whether such could be used as a proxy for an altitude error. When
an observation enters the database, the terrain altitude is calculated from the Danish
terrain model (see section 2.2.1) and appended to the observation.

As have been stressed, one of the main motivations of this study is to improve the
prediction of short-term severe weather events. However, data from smartphones can
also have an application in climatology. Figure 2.3 shows a time-series of surface pres-
sure during one month in December 2018 from a DMI operated SYNOP station close to
Copenhagen (Kastrup) compared to observations from different smartphones that have

12
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Figure 2.2: A UI on top of PMOB to access raw data in real time. Left:
sensor values from barometer, accelerometer and location services. Right:
Timeseries of pressure while the app is open.

been nearby (10 km) the location of the station. It is seen that the general tendency
follows the SYNOP observation good. It is also seen clearly that there is a negative
bias of the smartphone observations. The reason for this is that smartphones tend to be
located more above the surface (e.g. tall buildings) than below the surface and hence a
bias is introduced (Hintz et al., 2019b).

Figure 2.4 shows observations from two individual smartphones during one month.
A pattern of movement is seen in both cases. Using more detailed maps, it would be
possible to make it probable who owns the phone and hereafter track the movement of
this person. This possibility makes the data personal data and handling of the data
must then comply with the GDPR act from the European Union (European Union,
2018) (see section 2.4.1).

2.2.1 The Danish terrain model

To obtain an altitude of the terrain at the position of the smartphone, the Danish Ter-
rain Model (DTM) (Danish Environmental Protection Agency, 2015) was used. The
DTM version used here has a horizontal resolution of 10 m, but a data set with a
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Figure 2.3: Timeseries of the pressure measured by the DMI operated
SYNOP station in Kastrup, Denmark (Black solid line) compared to obser-
vations from different smartphones within 10 km from the station (coloured
circles).

horizontal resolution of 0.4 m is also available. The Danish Environmental Protection
Agency (2015) does not provide an API to fetch an altitude given a position. Therefore
a module was made which return an altitude given a latitude and longitude as input.
The module was written in Python and was used not only by this study but was also
used by other research projects at DMI, e.g. for calculating altitude changes for ve-
hicles in road weather forecasting. The module can read both a single input or a file
containing a list of coordinates.

The dataset is separated into files each covering a tile of 10×10 km. When the
module is initialised the first time, a list of corner-points of each file is generated. These
are used to determine which file to open for a given coordinate. If a list of coordinates
is given, the list is sorted to ensure files are only opened once to reduce Input/Output
(I/O) overhead. The difference of terrain elevation for the DTM and an operational
NWP model at DMI (see chapter 3) is shown in figure A2.

14
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Figure 2.4: Pressure observations from two individual smartphones for one
month. The ability to track individual phones are what makes the data
personal. The details of the map are deliberately coarse to prevent identi-
fication possibilities. The colour bar shows the pressure in hPa.

2.3 Personal weather stations

PWS are a potentially useful source of observations both for direct and indirect mea-
surements. Also, PWS are a potential source for both data assimilation and aiding of
operational meteorologists. Clark et al. (2018) used observations from PWS to make
an observational analysis of a hailstorm, in which a clear signal was seen which could
not be seen in conventional observations due to a limited resolution. PWS has the
advantage compared to mobile platforms (such as smartphones) that they are station-
ary. This makes bias-correction easier as a bias correction scheme does not have to be
location-aware (Hintz et al., 2019c).

In Denmark, there are three main providers of PWS which connect easily to a
network so that a user can see observations in near real-time, namely:

• Netatmo (netatmo.com)

• Lonobox (lonosoft.com)

• FieldSense (fieldsense.com)

Netatmo is the largest provider of these and is also available globally. Lonobox and
FieldSense are currently mainly in the Danish market, and the latter is specialised for
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agricultural purposes. In 2018 Netatmo partnered with YR, a collaboration between
the Norwegian Meteorological Institute and NRK (a Norwegian TV-station), to provide
more accurate forecasts (Netatmo SAS, 2018). Today, 2 m temperatures from Netatmo
stations are used operationally in post-processing of the YR forecasts.

Netatmo provides a public available API to retrieve public observations (Netatmo
SAS, 2019a). This study started collecting Netatmo data in February 2018 from Den-
mark. In March 2019, Dr T. Bøvith (DMI) extended the domain over which data were
collected to cover most of north-western Europe (see figure A4).

2.4 Data management

Examining the efficiency of data storage systems is out of scope of this thesis, but a few
notes based on the experiences gained during this work are given here.

The advantage of crowdsourced data is the potentially available quantity of obser-
vations. This, however, also creates challenges related to managing the data. Both in
terms of legal issues (see section 2.4.1) and handling large data sets which in most cases
is not possible on personal computers due to limited computing and storage resources.

Collection of data from smartphones was set up using the Google Firebase (Google
Firebase, 2017) real-time database. Firebase was chosen because it is easy to connect
with mobile applications. While Firebase is efficient and easy to use for applications
providing user profiles, chats and other small separated datasets, Firebase is not well
suited for handling big datasets. The Firebase real-time database can be considered as
a single JSON object which can be modified in real-time. While the JSON format can
be read fast enough for small datasets, it becomes time-consuming for large datasets.
Reading in a binary format like NetCDF or GRIB is much faster.

To keep the Firebase database small, data are automatically downloaded daily and
injected into a SQL database, where queries are much faster. In the same SQL database,
observations from both smartphones and PWS are stored. Before applications of this
study are made operational, it should be examined if other systems than Firebase are
better suited.
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2.4.1 European GDPR act

As noted in section 2.2, data collected from smartphones are in this particular case
characterised as personal data, which is solely due to a unique identifier given to a
device on the first install. The identifier is needed to be able to bias correct observations
from a device. Could the bias-correction be done client-side there would be no need
for an identifier and the legal issues would be much less. Unfortunately, this creates
limits such as sharing data with other researchers. Before sharing, the data needs to
be stripped from the unique id’s. One example where this caused trouble was in Price
et al. (2018). Here, observations were obtained from a third-party provider who could
not provide device identifiers, and so Price et al. (2018) was not able to bias correct the
observations.

Due to the unique identifier, data management must comply with the GDPR act
from the European Union (European Union, 2018). Legal advice was requested from the
law firm of ‘Nørregaard Mieritz’. The PhD candidate was responsible for communication
in this process. Seven documents3 were created, which in total covers the policy of
collecting and using crowdsourced data at DMI in the HIRLAM-C project:

• Internal data policy

• Risk analysis

• List of contact details and data collected

• Declaration of consent

• Form of a request of the right of access

• External data policy

• Documentation sheet in case of a security breach

With these documents, the data collection from smartphones could be done without
violating the GDPR act. The external data policy is what the user has to agree or
disagree with, at the first use of the software. If the user disagrees, no data collection
occurs. It is recommended here that legal advice is requested when starting a new work
which involves crowdsourced data. Before this PhD project received legal advice from
experts, there was a long, frustrating period with many weeks of work on legal issues
that DMI and the PhD candidate of this study is not an expert.

3These documents are not included as a part of this thesis.
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Chapter 3

Introduction to numerical weather prediction

Here a brief introduction to NWP is given before introducing the Vaavud NWP system
in chapter 4 and the model which was used when assimilating SPOs, namely the HAR-
MONIE model (Driesenaar, 2009) in chapter 10. Data Assimilation (DA) is treated
separately in chapter 9 and chapter 10 with a general introduction and the DA system
at DMI respectively.

In NWP a set of equations that describe the flow of the atmosphere is employed.
The equations are solved numerically and include approximations and compromises of
different complexity from one model to another. The equations form a system of non-
linear coupled Partial Differential Equations (PDE), which can be solved to predict the
future state of the atmosphere. The governing variables are the velocity v = (u, v, w),
the pressure p, the temperature T , density ρ and the specific humidity q. Using New-
ton’s laws of motion and conservation principles one can write a system of seven coupled
equations with seven unknown variables (Holton, 2004a). First, the momentum equa-
tion for a rotating sphere can be written as

dv

dt
=
∂v

∂t
+ v · ∇v = −2Ω× v − 1

ρ
∇p+ g + F, (3.1)

where g is the gravity including the centrifugal force, Ω = (0,Ω sinφ,Ω cosφ) is the
Earth’s angular velocity where φ is the latitude and F is the frictional force.

Conservation of mass is accounted for through the equation of continuity

dρd
dt

+ ρd∇ · v = 0, (3.2)

where ρd is the density of dry air only. Continuity equations for various tracers, such as
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water vapor and liquid water, are included explicitly on the same form (Kalnay, 2003),
namely

dρt
dt

+ ρt∇ · v = St,

with St representing the sources and sinks for a given tracer. Equation (3.1) and equa-
tion (3.2) is often referred to as the Navier-Stokes equations.

Energy conservation is accounted for through the first law of thermodynamics

cp
dT

dt
− αdp

dt
= J, (3.3)

where cp is the specific heat at constant pressure, α = ρ−1 and J is diabatic heating
effects, such as latent heat release. The pressure, temperature and density are linked
via the equation of state

p = ρRdT, (3.4)

where Rd = 287 J/K ·kg is the universal gas constant for dry air. Finally the prognostic
equation for specific humidity is

dq

dt
= Sq, (3.5)

with Sq representing all the sources and sinks for the specific humidity, q. Equation
(3.1)-(3.5) are the governing exact equations, which can be said to be fundamental for
all models. Often models have in practice more prognostic equations such as the French
model, AROME, which have 12 prognostic variables (Seity et al., 2011).

In some models vertical accelerations are assumed to be small compared to the
buoyancy such that the buoyancy force is balanced by the gravitational force1. Then
the vertical component of (3.1) reduces to the hydrostatic equation,

∂p

∂z
= −ρg. (3.6)

The hydrostatic balance is valid for planetary and synoptic scales. When considering

1Historically, this has been the case for most global models, but a non-hydrostatic dynamical core
is expected to be implemented for the Global Forecasting System (GFS) model in December 2019
(NCEP/EMC Model Evaluation Group, 2019). Then, both the Integrated Forecasting System (IFS)
model at ECMWF and GFS will have non-hydrostatic dynamical cores.
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mesoscale phenomena, the hydrostatic approximation starts to be troublesome as there
can be large vertical accelerations within convective systems and hence there is a grey-
zone at which grid-size one must use a hydrostatic or a non-hydrostatic model (Petch
et al., 2002). In general, though hydrostatic models are believed to be insufficient below
a grid-size of 5 km (Field et al., 2017). However, large vertical velocities in hydrostatic
models have been observed and are comparable to those generated by non-hydrostatic
models given that the time step is not chosen too high (Hintz, 2015). The governing
equations with the hydrostatic approximation (equation (3.6)) are often referred to as
the primitive equations (Holton, 2004a) as these describe the fundamental variables one
needs to predict the evolution of the atmosphere.

The derivation of the governing equations are given by Arya (2001); Kalnay (2003)
and Holton (2004a).

3.1 Vertical coordinates

When solving (3.1)-(3.5) it is necessary to choose which coordinate system to use. One
can have different criteria for selecting vertical coordinates. One common criterion is
that the vertical coordinates should work well over both flat and steep terrain. Also,
the pressure gradient force is a key parameter to represent well; therefore, p would be a
better choice than using z as a vertical coordinate. Another advantage of using p over
z is that the density, ρ, does not appear in isobaric coordinates. We have no way of
measuring density directly, so this is a great advantage in the creation of an analysis. p
does not, however, follow the terrain.

Phillips (1957) developed a vertical coordinate which follows the terrain based on
the pressure. Phillips (1957) defined the σ-coordinate as σ = p/ps, where ps is the
pressure at surface level. While the σ-coordinates do follow the terrain by definition,
it also comes with a cost. Over steep terrain, the steepness of individual surfaces will
extend throughout the atmosphere. Away from the surface, there are practical and
numerical advantages of choosing a coordinate that follows isobaric surfaces (Mesinger
et al., 1988; Simmons and Strüfing, 1981), as it improves the accuracy of the calculation
of the pressure gradient force.

Eckermann (2009) noted that a vertical coordinate can take the functional form

η = h(p, ps), (3.7)
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where h is a monotonic function of p. η is then defined to satisfy a lower and upper
boundary condition, namely that h(ps, ps) = 1 and h(pt, ps) = 0 where pt is the pressure
at the highest model layer. The simplest choice of η would then be, following common
normalisation,

η =
p− pt
ps − pt

= σ, (3.8)

which is a modified form of the σ-coordinates defined by Phillips (1957). Simmons and
Strüfing (1981) presented the hybrid σ − p coordinates through the relation

p(η, ps) = A(η) +B(η)(ps − pt), (3.9)

where A(η) and B(η) are two coefficients which controls the isobaric and terrain fol-
lowing properties (Eckermann, 2009). For A(η) = 0 and B(η) = 1 the coordinate is
completely terrain following and for A(η) = 1 and B(η) = 0 the coordinate are com-
pletely isobaric (Laprise, 1992; Mesinger et al., 1988; Simmons and Strüfing, 1981). For
a more general overview of vertical coordinates the reader is referred to Laprise (1992).
The HARMONIE model, which is used in this PhD project, uses the hybrid σ − p

coordinates (Driesenaar, 2009; Seity et al., 2011), whereas the Weather Research and
Forecasting (WRF) model uses the σ-coordinate (Skamarock et al., 2008).

3.2 Numerical methods

Numerical methods as a subject are out of the scope of this study; thus this section is
a simple description of the problems arising when solving the governing equations in
practice, to make a brief introduction to the unaware reader. For a detailed overview,
the reader is referred to the literature cited in the following.

Equations such as the momentum equation (equation (3.1)) need to be solved by
discrete approximations to the continuous equations. Computers do not perform calcu-
lus, so derivatives have to be approximated to be solved with arithmetic. Also, with no
analytic solutions, approximations have to be found using numerical methods. Consider
a simple PDE that describes the change of a variable ψ with respect to time, t. Nu-
merically this can be approximated as a Finite Difference Equations (FDE) as (Durran,
2010)

dψ(t)

dt
≈ lim

∆t→0

ψ(tn + ∆t)− ψ(tn)

∆t
(3.10)
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dt is approximated by ∆t while assuring ∆t is sufficiently small. For tn = 0, ψ(tn) would
be the model’s initial conditions determined with DA (see chapter 9) and ψ(tn+1) is
the predicted state for the next timestep. Equation (3.10) can be solved by using the
forward Euler method as

φtn+1 = F (φn, tn)∆t+ φtn , (3.11)

where φ is the numerical approximation of ψ. Equation (3.11) is not used in NWP in
practice because solutions of this method quickly becomes numerical unstable. More
advanced schemes exist which are more stable and allow larger timestepping (Ascher
et al., 1997; Durran, 2010; Kalnay, 2003; Kar, 2006; Tumolo and Bonaventura, 2015)
schemes. It is desirable to be able to increase the timestep without loss of quality as
this will decrease the computational costs of simulations. The introduction of semi-
Lagrangian schemes allowed this (Robert, 1981) because such schemes are much more
stable than traditional Euler based schemes such as used by the WRF model.

3.3 Verification

Verification is crucial to know if changes to a given NWP model is improving or worsen-
ing the forecast. Also, it is important to have standardised verification methods when
comparing models to each other. The choice of verification scores naturally depends
on what should be measured. However, in the case of using crowdsourced data where
the quantity of surface observations is much higher than conventional observations (see
chapter 2) a few general remarks can be given. Naturally, to gain most of the high
quantity of crowdsourced data in NWP it is necessary to use high-resolution models,
such as HARMONIE. One issue, though, that can occur when verifying high-resolution
models is the double-penalty problem, i.e. objective verification scores may be bet-
ter for low-resolution models than for high-resolution models (Mittermaier et al., 2013;
Nurmi, 2003; Skok and Roberts, 2016). Figure 3.1 shows an illustration of the double
penalty problem. The blue circles represent two rain gauge precipitation observations,
and the red squares represent a model forecast at a horizontal resolution of 3 km (left)
and 6 km (middle). If using standard point-verification, such as RMSE grid-point by
grid-point, the high-resolution model (left) would receive a double penalty because the
model misses the observed precipitation and falsely predicts precipitation where there
are none observed.

The low-resolution model (middle) in figure 3.1 will get a higher score than the
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Figure 3.1: Illustration of the double penalty problem. Blue circles represent
observations of precipitation. Red squares represent the model forecast of
precipitation in grid-point space. Black squares represent the grid-boxes.
The horizontal resolution is 3 km and 6 km for the left and middle figure,
respectively. The right figure is an illustration of the Fractional Skill Score
(FSS).

high-resolution model for this case because it correctly predicts the location of the
precipitation in grid-point space. However, it is easy to imagine that the precipitation
pattern, in this case, is better predicted by the high-resolution model, which offers more
details on the structure of the event than the low-resolution model.

3.3.1 Fractional skill score for precipitation verification

One measure that can be used to avoid the double-penalty problem is Fractional Skill
Score (FSS) (Roberts and Lean, 2008), which is a scale-aware score aimed for precipita-
tion. A DMI FSS Python routine based on Roberts and Lean (2008) was developed as a
part of Hintz (2015) prior to this project. During this study, a FSS Fortran routine was
developed to speed up calculations when going towards large scales, which was used in
Hintz et al. (2019b).

The method of FSS is shown in the right illustration of figure 3.1, where the neigh-
bourhood is taken into account. First, a score is calculated based on grid-scale N = 1,
such that a score between 0 and 1 is calculated. Then the size of the neighbourhood
is increased to contain 9 grid-boxes (N = 3) illustrated by the middle green square in
figure 3.1 so the forecast is smoothened. This continues up to the full scale of the domain.

Before doing so, the model field and the observational (precipitation) field needs
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to be converted onto the same grid. In this PhD project, precipitation estimates are
calculated from radar reflectivity assuming a Marshall-Palmer distribution (Marshall
and Palmer, 1948) as

P =

(
Z

a

)1/b

, (3.12)

where P is the precipitation intensity, Z is the reflectivity factor and a and b are
empirical constants. a and b are not well defined Fujiwara (1965), but typical values
are a = 200 and b = 1.6 (Marshall and Palmer, 1948). Z is found by using the
‘radar equation’ which gives the returned energy to the radar, P r, as a function of the
reflectivity factor as (Battan, 1973)

P r =
CK2

w

r
Z. (3.13)

Here K2
w is the dielectric constant for water, r is the distance from the radar, C is a

radar constant describing radar characteristics and P r is the returned energy measured
by the radar. Radar reflectivity is often given on a logarithmic scale as a ratio between
Z and a reference value. At DMI the reference value is defined as the reflectivity for
1 m3 with one droplet of a diameter of 1 mm (Z = 1 mm6/m3). With this, radar
reflectivity is given in dBZ as

dBZ = 10 · log10

(
Z

1

)
. (3.14)

At DMI, dBZ spans from -30 dB to 70 dB, where dBZ = 0 implies that Z = 1 mm6/m3.
Then equation (3.12) can be integrated over time to obtain the precipitation amount.
Finally, the precipitation amount is interpolated from the radar grid, which has a hori-
zontal resolution of 500 m, to the model grid to be compared with the NWP precipitation
forecast using FSS.

The details of the FSS equations are given by Roberts and Lean (2008) and a
summary is found in Hintz et al. (2019b) (see chapter 14). However, it is highlighted
that FSS is a score that lies in the range 0 to 1 for each size of the neighbourhood, where
0 is the worst possible score, and 1 is a perfect forecast. Both the model field and the
observational field is converted to binary fields before computing the FSS. This can be
done either by using a percentile or a threshold. The advantage of choosing a percentile
is that the score will then be a measure of the placement of the highest precipitation
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rates, whereas using a threshold will hold information about the precipitation amounts
also (Olsen et al., 2015). Using a percentile also ensures that the score converges towards
1 as the size of the neighbourhood increases.
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Chapter 4

The Vaavud system for numerical weather prediction

A system for NWP was set up at Vaavud for two purposes. First, to provide high-
resolution weather forecasts for the users of Vaavud products (mainly kite-surfers,
sailors, hunters and farmers) and secondly to obtain a numerical reference and a tool for
research activities. The purpose of this chapter is to describe the practical implemen-
tation, and the long-term plans of the system had Vaavud continued business. Most
importantly the model was used for the research to be described in chapter 8.

The model which was implemented at Vaavud was the open-source WRF (Skamarock
et al., 2008, Version 3.8.1) model using the Advanced Research WRF (ARW) dynamic
core. Due to computational limitations DA (see chapter 9) was not a part of the NWP
system, but was instead initiated from an analysis from the GFS model (NCEP, 2018).
However, the NWP system involves both pre-processing, computation, post-processing
and data delivery to an API.

In practice, computations were done on computing facility services to avoid main-
taining hardware. Two separate instances were created, named ‘Odin’ and ‘Frigg’, re-
spectively. The Frigg instance is the compute instance which performs the WRF model
computations, and Odin is a small server which serves as a helper for Frigg, such as
handling data and initiation of new cycles via a scripting environment developed for
the purpose. Odin was set up on the Amazon elastic compute service (Amazon, 2019)
and Frigg was set up on the High-Performance Computing (HPC) system of Abacus at
University of Southern Denmark (DeiC Abacus, 2018). A few of the technical details
of Odin and Frigg are given in table 4.1.
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Table 4.1: An overview of the two Amazon instances used at Vaavud. Frigg
is the primary compute instance used to run WRF.

Name Instance Type Nodes CPUs/Node Cores/Node Memory [gb]/Node Provider
Odin General Purpose 1 2 2 4 Amazon EC2
Frigg Computing 16 2 12 64 Abacus HPC

4.1 Script environment on Odin

Odin is the primary data handler of the Vaavud NWP system and data handled by
Odin has been used in the article introduced in chapter 8; thus it is relevant to mention
the workflow of Odin briefly. The primary scripting language used on Odin is Python.
Odin is written inside a Docker container (Docker, 2019), which can be thought of as
an independent software package with its own libraries and configurations. Using the
‘container-approach’ makes it easy to develop client-side and deploy to a server when the
software package is ready to go into operation. When the container is initialised using
Docker, the model environment is operational, meaning that Odin starts to listen for
new initial conditions to start Frigg. When all initial conditions are ready and prepared,
Odin starts up Frigg which then runs WRF. Afterwards, Odin receives the model output
data and delivers it to the Vaavud Weather API and stores relevant data for later use,
such as is the case for the research purposes of this thesis. A monitor system was also
created to monitor the operational model setup. If Frigg aborts unexpectedly, messages
are sent to relevant people either via e-mail or via Slack (a communication platform).
The latter has the advantage that it is possible to send push notifications to only those
people who need to take action.

4.2 WRF implementation on Frigg

The WRF model implementation described here is the same as was used in the article
described in chapter 8, here with details that were not possible to include in the article.
The WRF model is primarily written in a combination of both Fortran77 and Fortran90,
a HPC language suitable for NWP applications.

The Frigg-WRF model was set up with a domain focused on centring Denmark and
the Netherlands. The initial conditions and boundary conditions were provided by the
GFS model (NCEP, 2018). The Frigg-WRF model consists of two domains, an outer
and inner domain (see figure 4.1). The outer domain has a horizontal resolution of 9
km, and the inner domain (inner red square in figure 4.1) has a horizontal resolution
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of 3 km. The inner nest is set up as a two-way nest. For further details on the WRF
model see Skamarock et al. (2008). Many settings for running WRF can be changed,
such as which physics parameterisation schemes to use, timestep, vertical levels. The
namelist for the Frigg-WRF setup is given in appendix D.

Figure 4.1: Model domain of the Vaavud Frigg-WRF model. The inner red
square shows the inner domain.

Different compiler options were tested with a focus on speed and accuracy. Ulti-
mately the Frigg-WRF model was compiled to Distributed-Memory Parallelism (DM-
PAR) using Intel compilers. The GNU GCC compilers were also tested, but an increase
of factor 1.6 was seen when changing to Intel compilers. When the Frigg-WRF com-
putation is completed, post-processing is performed on the model output. The post-
processing module computes standard diagnostics such as the Sea Level Pressure (SLP)
and cloud cover.
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Chapter 5

Fundamentals of atmospheric turbulence

The theory of the Atmospheric Boundary Layer (ABL) is essential for the work of Hintz
et al. (2019a). However, before introducing the ABL in chapter 6, an introductory dis-
cussion on the fundamental theory of turbulence is given, which is used to build upon
in chapter 6.

First, the Navier-Stokes equations are considered, which leads to the Boussinesq
approximation under certain assumptions (section 5.1), which describes the flow in a
shallow boundary layer. From these it will be shown how turbulence can be described
in the ABL using Reynolds decomposition (section 5.2) and finally a brief note is given
on the closure problem in section 5.3.

A fluid in a boundary layer has to be threatened as a viscous fluid. Even though
no fluids are completely inviscid, it is a useful approximation outside a boundary layer
(Buresti, 2009). An inviscid fluid is non-turbulent and can pass objects without fric-
tion or drag. Friction and transfer of heat and momentum are essential processes in
the ABL and therefore the fluid in the ABL has to be threatened as a viscous fluid.
Friction between adjacent fluid layers per unit area is called shearing stress, τ0, and is
a function of the velocity gradient, and the dynamic viscosity, µ, so that τ0 = µ∂u/∂z

(Arya, 2001). The shearing stress should be interpreted as a resistance force to shearing
flows. Viscous flows can furthermore be divided into laminar and turbulent flows. As
the name implies, the laminar flow has only little mixing, whereas turbulent flows are
almost random and unpredictable and have a high degree of mixing (Wyngaard, 2010).
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5.1 The Boussinesq approximation

Assume there exists a reference state of the atmosphere at rest, which is characterised
by ρ0 and p0 which satisfies the hydrostatic equation (dp0/dz = −ρ0g). Further, in the
real atmosphere, small deviations from the reference exist such that

ρ = ρ0(z) + ρ1(x, y, z, t) and (5.1)

p = p0(z) + p1(x, y, z, t), (5.2)

where ρ1 and p1 are assumed to be small compared to the reference state. Assuming
that the density, ρ, is constant (ρ = ρ0) everywhere in the ABL, except for the buoyancy
force in the vertical momentum equation, one obtains the Boussinesq approximation in
which the governing equations (equation (3.1) to (3.4)) reduces to

du

dt
= − 1

ρ0

∂p1

∂x
+ fv + Fx, (5.3)

dv

dt
= − 1

ρ0

∂p1

∂y
− fu+ Fy, and (5.4)

dw

dt
= − 1

ρ0

∂p1

∂z
− ρ1

ρ0
g + Fz. (5.5)

in cartesian coordinates. Further, expanding the equation of state (equation (3.4))
and assuming that the pressure variations within the ABL is negligible one can write
equation (5.5) in terms of the potential temperature, θ, as (Bluestein, 1993)

dw

dt
= − 1

ρ0

∂p1

∂z
+
θ1

θ0
g + Fz. (5.6)

The frictional forces can be expressed in terms of the kinematic viscosity, ν, as (Holton,
2004b),

Fx = ν

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
= ∇2u,

Fy = ν

[
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

]
= ∇2v and

Fz = ν

[
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

]
= ∇2w.
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In a shallow atmosphere it is further assumed that the air is incompressible so the
continuity equation (equation (3.2)) reduces to

∇z · v = 0. (5.7)

Expanding the potential temperature as θ = θ0(z) + θ1(x, y, z, t), in the first law of
thermodynamics, the thermodynamic equation can be written as (Holton, 2004a)

cp
d ln(θ0 + θ1)

dt
= J/T, (5.8)

where cp is the specific heat capacity at constant pressure and J is the heating rate due
to diabatic processes such as latent heat release and radiation processes. For adiabatic
processes, J = 0.

Equation (5.3), (5.4), (5.6) and (5.7) are the Boussinesq approximation, valid for a
shallow atmosphere, i.e. where no deep convection is present. It must be noted that
the assumption of incompressibility would be a poor choice in a NWP model and are
in practice never used (Kalnay, 2003).

5.2 Reynolds decomposition

Turbulence occurs on many scales in both time and space (Stull, 1988). Because turbu-
lent flows behave as a stochastic process, statistical measures are used to express effects
of turbulence in terms of the mean flow. To describe turbulence, Reynolds decomposi-
tion is used. Instantaneous variables are decomposed into a slowly varying mean part
and a highly varying turbulent part as

u = u+ u′,

v = v + v′,

w = w + w′ and

θ = θ + θ′,

(5.9)

where () is the slowly varying large-scale part and ()′ is the turbulent part. Usually, the
average is calculated as a time mean where one makes a continuous record over time and
taking the mean of all the samples. The average time should be chosen so that it does
not blur real events such as diurnal heating but long enough to contain information of
the largest eddies (Arya, 2001). Before substituting equation (5.9) into the Boussinesq
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equations a note on the Reynolds conditions (Monin and Yaglom, 1971) is made. By
definition, it is required that the average of the fast fluctuating part vanishes and that
the average of an average is the average itself. Practically the Reynolds conditions are
(Cotton et al., 2011)

a = a,

a′ = 0,

ca = ca,

ab = ab

a+ b = a+ b,

a′b = 0,

∂a

∂t
=
∂a

∂t

(5.10)

where c is a constant and a and b is dependent variables. Substituting equation (5.9)
into equations (5.3) to (5.8) and using the rules of (5.10) yields the Reynolds averaged
equations as (Arya, 2001)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=fv − 1

ρ0

∂p1

∂x
+ ν∇2u

−
(
∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
, (5.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=− fu− 1

ρ0

∂p1

∂y
+ ν∇2v

−
(
∂u′v′

∂x
+
∂v′2

∂y
+
∂v′w′

∂z

)
, (5.12)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=g

θ1

θ0
− 1

ρ0

∂p1

∂z
+ ν∇2w

−
(
∂w′u′

∂x
+
∂w′v′

∂y
+
∂w′2

∂z

)
, (5.13)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=αh∇2θ

−
(
∂u′θ′

∂x
+
∂v′θ′

∂y
+
∂w′θ′

∂z

)
, (5.14)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
=0, (5.15)

For the derivation the reader is referred to either of the following: Arya (2001); Cotton
et al. (2011); Holton (2004a); Wyngaard (2010) and Bluestein (1993). The parentheses
on the right-hand side are the turbulent flux divergence terms which appear due to the
Reynolds averaging and contains unknown variances and covariances. An important
note from equation (5.11) to (5.15) is that they contain more unknown variables than
there are equations. Ultimately, the equations are therefore not closed and in principle
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unsolvable. This problem is in the literature referred to as the closure problem and
different assumptions made to solve them are called closure assumptions (see section
5.3).

The covariances are representing the turbulent fluxes and are very important for ef-
ficient mixing and diffusion in the ABL. For example, u′v′ is a horizontal turbulent flux
of momentum (if multiplied by the density). u′w′ is the vertical flux of momentum and
w′θ′ is the vertical turbulent heat flux. Kaimal and Wyngaard (1990) measured and es-
timated the turbulent fluxes and calculated the standard deviations in the 1968 Kansas
experiment (Izumi, 1971). Kaimal and Wyngaard (1990) found a correlation coefficient
for w′θ′ of 0.59, while the correlation coefficient for u′θ′ was found to be -0.16, indicat-
ing that w′ and θ′ are highly correlated, while u′ and θ′ are negatively weakly correlated.

Another measure of turbulence are the standard deviations, σu = u′2
1/2

, σv = v′2
1/2

and σw = w′2
1/2

used to define turbulent intensities as σ/|v| (Counihan, 1975), where
v is the mean wind speed. Turbulent intensities are a key part of Hintz et al. (2019a)
(see chapter 8) to estimate the surface roughness length (see section 6.4).

5.3 The closure problem

Detailed analysis and evaluation of solutions to the closure problem introduced in sec-
tion 5.2 are out of scope of this work; thus, only some brief general notes are given. The
closure problem can be solved using both first-order and higher-order models (Wyn-
gaard, 2010). An example of a first-order model is a parameterisation of the vertical
turbulent heat flux in the thermodynamic heat equation (equation (5.14)), expressed in
terms of the mean flow as

−w′θ′ = Kh
∂θ

∂z
, (5.16)

where Kh is a coefficient of eddy diffusivity, hence by parameterising turbulent fluxes
in terms of known variables the unknowns are reduced and equation (5.11) to (5.15)
can then be solved under these assumptions. Another parameterisation is the mixing
length hypothesis in which the vertical turbulent momentum flux is described in terms
of the mean flow and a characteristic length scale (see section 6.2.1.2).
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Chapter 6

The atmospheric boundary layer

The ABL is the part of our atmosphere closest to the surface, and since everyday-life
takes place here, it is of great interest to have a good understanding of the energy
budget, such as the exchange of heat between the surface and the atmosphere. The
ABL is the layer of the atmosphere where most of the exchange of momentum and
heat takes place (Arya, 2001). Therefore, sharp variations in properties of the flow are
also found here, such as wind speed and temperature. The ABL is in some literature
defined as the lowest 1000 m to 1500 m of the atmosphere (Counihan, 1975). This is
an acceptable rule of thumb, but it is incorrect to define the height of the ABL with a
constant. The height depends among others on the rate of cooling and heating of the
surface, wind shear, large-scale vertical motion and roughness of the surface (Garratt,
1994). Therefore, the height of the ABL is not constant but changes both with time
and space. However, the ABL can be defined as the layer where turbulent mixing is
dominant. The ‘free atmosphere’ is above the ABL. Here the turbulence is weak so that
the wind is approximately geostrophic.

The ABL itself is also divided into parts. In the lowest part, the surface layer (ap-
proximately the lowest 10 %) is found. The surface layer is also sometimes called the
constant flux layer (Wyngaard, 2010) and the constant shear stress layer (Counihan,
1975). The surface layer is of particular interest to this project as the mean wind flow is
often assumed to follow a logarithmic law in this layer (see section 6.2.1.1 and chapter
8). Between the surface and the surface layer, canopy sublayers (roughness sublayers)
are found where the flow is disturbed by individual roughness elements. The canopy
layer varies in height dependent on the surface characteristics. Over smooth surfaces,
such as sea ice, the height can be a few millimetres, and over urban areas, the height
can extend up to several decameters (Langleben, 1974; Tennekes, 1973).
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Above the surface layer, the mixed layer is found1. In the top of the ABL, an in-
terfacial layer is found. It can be thought of as a boundary zone where information
from the free atmosphere and the ABL is exchanged. This is a somewhat simplified
description of the ABL, in practice, effects such as changes in surface characteristics
creates an Internal Boundary Layer (IBL) which also needs to be taken into account.

The objective of the following sections in this chapter is to describe fundamental
methods and variables of particular interest for the work presented in Hintz et al. (2019a)
(see chapter 8).

6.1 Similarity theory

Similarity theory is used to a great extent in micrometeorology. By defining a fundamen-
tal set of dimensions (such as mass, length and time), one can express the dimensions
of all quantities under consideration.

6.1.1 The fundamentals of similarity theory

Similarity theory is based on the Buckingham Pi theorem which can be interpreted as
the optimal approach to determine a variable in a given problem. The theorem states
that if one can identify the m−1 parameters governing the dependent variable and n is
the number of dimensions (such as length, time and mass) represented by the parameter,
then the following are true (Wyngaard, 2010):

• If m quantities (Q1, Q2, ..., Qm), involving n fundamental dimensions form a
dimensionally homogeneous equation, the the relationship can always be expressed
as m − n dimensionless groups (Π1, Π2, ..., Πm−n) made from the original m
quantities. That is, m − n independent dimensionless quantities can be formed.
An independent quantity is one that cannot be made from the others.

• The m − n independent dimensionless quantities are functionally related so that
the dependent variable can be taken as a function of the governing parameters.
That is, the dimensional relationship f(Q1, Q2, ...,Qm) = 0 is equivalent to the
dimensionless relationship F (Π1,Π2, ...,Πm−n) = 0.

The Buckingham Pi theorem also indirectly states the benefits of considering dimen-
sionless groups instead of dimensional variables. It follows from the theorem that the

1Wyngaard (2010) emphasised that this should not be taken as a mixing layer, but a mixed layer.
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non-dimensionalization always reduces the number of involved parameters. For exam-
ple, if only one dimensionless group (m−n = 1) can be formed out of all the quantities,
then that group must be a constant. It should be stressed that the Buckingham Pi
theorem is only a mathematical theorem. The theorem does not come out with any
physics of the problem. Therefore the theorem is only used as a part of the similarity
theories. One must use physical intuition to develop a useful similarity theory.

6.1.2 The Monin-Obukhov similarity

The Monin-Obukhov similarity theory has provided much of the present understanding
of the atmospheric surface layer. It was developed through the similarity theory de-
scribed in section 6.1.1.

Monin and Obukhov (1954) argued that in a horizontally homogeneous surface layer
the mean flow and turbulence characteristics depend only on four independent variables,
namely, the height above the surface, z, the surface drag, τ0/ρ, the kinematic surface
heat flux, H0/ρcp and the buoyancy, g/θ0. Here, τ0 is the wall shear stress and H0 is
the heat flux. For simplicity the definitions Q0 = H0/ρcp and u∗ =

√
τ0/ρ are used.

Under these assumptions the Monin-Obukhov length is given as (see Appendix B for
the derivation),

L = − u3
∗θ0

kgQ0
, (6.1)

where k = 0.4 is the von Kármán constant. L was introduced as the characteristic
height of the sublayer of dynamic turbulence. L may vary between −∞ to ∞. When
L is negative, it corresponds to a positive surface heat flux (Q0 > 0) which typically
occurs in the daytime where the atmosphere receives heat from the surface. In night-
time L is usually positive since typically Q0 < 0 here (the surface receives heat from
the atmosphere). Over arctic surfaces, it can be seen that the cold surface receives heat
from the atmosphere even during the day.

6.2 The wind profile in the atmospheric boundary layer

Many factors influence the wind profile in the ABL. Large-scale horizontal pressure
gradients, such as highs and lows, are the main driving force for the flow in the ABL,
together with horizontal temperature gradients. Other factors are advection of heat
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and momentum, thermal stratification, entrainment from the free atmosphere, the earth
rotation and the surface roughness (Garratt, 1994) (see section 6.4). In the remainder
of this section the neutral surface layer (section 6.2.1) and the non-neutral surface layer
(section 6.2.2) are treated separately.

6.2.1 The neutral surface layer

The wind profile in the neutral ABL can be derived with different approaches more or
less sophisticated. Here we shall go through the two most common approaches.

6.2.1.1 The classical approach

The classical derivations involve dimensional analysis and similarity-theory. Any viscous
sublayer is neglected, and the Coriolis force is neglected, and the momentum flux is
assumed constant, independent of height. It is then assumed that for a horizontally
homogeneous neutral boundary layer the mean wind shear is only dependent on the
height above the surface, z, the surface drag, τ0, and the density of the fluid, ρ. The
kinematic momentum flux is obtained by combining the surface drag and the fluid
density into their ratio, τ0/ρ ≡ u2

∗. With these assumptions we look for a function
f(∂U∂z , z, u∗) = 0 (see section 6.1.1). This function has 3 quantities and 2 fundamental
dimensions so that only 1 dimensionless group given as kz/u∗∂U/∂z = 1 can be formed.
Integrating from z0 to z and using that U(z0) = 0 yields the logarithmic wind profile
law for a neutral surface layer,

U(z) =
u∗
k

ln
z

z0
, (6.2)

where z0 is the roughness length (see section 6.4). This derivation gives only little
information on the validity of the logarithmic wind profile; however, it has been verified
by laboratory work, on which an overview is given by (Counihan, 1975) and (Arya,
2001).

6.2.1.2 Mixing length

The logarithmic wind profile can also be derived by using the mixing length hypothe-
sis, proposed initially by L. Prandtl, which parameterises turbulent mixing by using a
characteristic length scale, l, defined as the mixing length, the length at which a fluid
parcel travels before being mixed with its surroundings. The mixing length hypothesis
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states that the vertical momentum flux can be expressed as (Arya, 2001)

u′w′ ≈ −l2(
∂U

∂z
)2. (6.3)

By assuming that the mixing length can be written as l = kz and assuming a horizontally
homogeneous surface layer, such that u′w′ = −τ0/ρ = −u2

∗, equation (6.3) reduces to
the logarithmic wind law.

6.2.2 The wind profile in non-neutral surface layers

For non-neutral surface layers equation (6.2) is invalid as stability effects are not taken
into account. This is accounted for by the Monin-Obukhov similarity theory (see section
6.1.2), from which the similarity prediction of the mean wind shear is (Wyngaard, 2010)

kz

u∗

∂U

∂z
= φm(z/L), (6.4)

where φm(z/L) is an universal similarity function which have been determined empir-
ically by numerous authors (Businger et al., 1971; Panofsky, 1963; Paulson, 1970a) on
the form

φ(z/L) =





1− β z
L

if z/L ≥ 0 (6.5a)

(1− γz/L)−1/4 if z/L < 0 , (6.5b)

where β and γ are constants found empirically. It is seen that for z/L = 0 equation
(6.4) reduces to the logarithmic wind profile law (equation (6.2)).

Adding and subtracting 1 from equation (6.4) (to follow the notation of Panofsky
(1963)) and integrating from z0 to z one obtains

u(z) =
u∗
k

[
ln

z

z0
− ψ(z/L)

]
, (6.6)

where

ψ =

∫ z

z0

(1− φ(z/L))dz. (6.7)

Panofsky (1963) and Paulson (1970a) gives the solution for ψ for the stable and unstable
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case respectively as

ψ(z/L) =





−β z
L

for z/L≥0 (6.8a)

ln

[(
1 + x

2

)2

·
(

1 + x2

2

)]
− 2 tan−1(x) + π/2 for z/L<0, (6.8b)

where x = (1 − γz/L)1/4. Equation (6.6) through equation (6.8a) and (6.8b) are also
used in the work of Hintz et al. (2019a) (see chapter 8 for a resume).

6.3 Extrapolating wind measurements

Suppose one have an actual wind measurement and wants to use that to get informa-
tion about the wind speed at higher elevations. Let u(z2) be the extrapolated wind
measurement and let u(z1) be the actual wind measurement (z2 > z1), then one can
solve for u(z2) by subtracting u(z1) from u(z2) using equation (6.6) to get

u(z2) =
u∗
k

(ln
z2

z1
+ ∆ψ) + u(z1), (6.9)

where

∆ψ =





β1
z2 − z1

L
for z/L≥0 (6.10a)

ln

[
1 + x2

1

1 + x2
2

· (1 + x1)2

(1 + x2)2

]
− 2(tan−1(x1)− tan−1(x2)) for z/L<0,(6.10b)

where ∆ψ = ψ2−ψ1. It is seen that z0 is not explicitly a part of the system of equations.
The surface roughness will, however, implicitly be a part of the wind measurement. L
and u∗ is the only unknowns of the system.

An alternative derivation can be made so that u∗ is removed explicitly in which z0

is used instead. This is done by using equation (6.6) to obtain an expression for both
u(z1) and u(z2) and dividing them to get

u(z2) =
ln z2/z0 − ψ2(z2/L)

ln z1/z0 − ψ1(z1/L)
u(z1), (6.11)

using equation (6.8a) and (6.8b) for the stable and unstable cases respectively. Equation
(6.9) and (6.11) represents two different approaches to extrapolate a wind measurement
in the surface layer, using u∗ and z0 respectively. Equation (6.11) are used to extrapo-
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late wind measurements in Hintz et al. (2019a).

6.4 The roughness length

The surface roughness of the earth serves as a momentum sink for the atmospheric flow
(Wieringa, 1993), and it is, therefore, important to determine this good if one wants to
extract information about the wind speed at different heights or nearby an observation
site. The surface roughness can be expressed in terms of a theoretical measure called
the roughness length, z0. z0 is traditionally determined via linear regression assuming
neutral conditions (equation 6.6 with ψ(z/L) = 0) and hence z0 is the height where the
mean wind speed becomes zero, u(z = z0) = 0. Bergeron and Abrahams (1992) notes
that the regression should be done by linear regression of u on ln z because u is observed
with much greater error than is ln z. Using linear regression is a good way to determine
z0; however, in practical applications, it is nearly impossible to implement, especially
for crowdsourced applications. Measurements in various heights are needed over a long
period. What is done in most practical applications is that the surface roughness has
been determined over different surfaces. The surface characteristics have then been
classified, and similar surface characteristics in other areas are then associated with the
same roughness length (Silva et al., 2007). In NWP, z0 is often determined from a table
of land use category with a given resolution and then upscaled to be an average of a
given grid box. In WRF (see chapter 4) this is also the case, though, a summer and
winter value are used to take into account the growth of crops and leaves on trees.

The roughness length can also be determined using the turbulence intensity following
Counihan (1975) as

zti0 = z · exp (−u(z)/σu), (6.12)

where u(z) is the mean wind speed at height z and σu, is the standard deviation of
u(z). σu/u(z) represents the horizontal turbulent intensity (Counihan, 1975). Equa-
tion (6.12) is derived from the logarithmic wind profile based on the assumption that
σu/u∗ = 2.5 (Arya, 1995).

Equation (6.12) is fundamental for the work presented in Hintz et al. (2019a) (see
chapter 8), as it provides an apparent solution to determining the roughness length
without expensive setups, which is ideal for crowdsourced data. The traditional method
of determining z0 would require tall masts and private people to maintain the equipment
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themselves. To expect that to work is, of course, utopian. It should be noted for clarity
that since equation (6.12) is derived from the logarithmic wind profile law (equation
(6.2)), equation (6.12) too is only valid within the surface layer. This limits the validity
of Handheld Wind Measurement (HWM)s to smooth surfaces, because these must be
taken in the surface layer for equation (6.12) to be valid, and the altitude of these
measurements are typically low.
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Chapter 7

Traditional atmospheric observations and measurements

For an improved understanding of how crowdsourced data are different from traditional
data sources, this chapter focus on traditional wind and surface pressure observations,
allowing the reader to distinguish between traditional observations and crowdsourced
observations. Here a measurement is defined as a unique single value coming from
a sensor whereas an observation is defined as an average of measurements, following
McNicholas and Mass (2018) and Hintz et al. (2019b). At the time of writing this
thesis, the WMO guide to meteorological instruments and methods of observations
(WMO, 2014) does not contain any information about crowdsourced data. However,
that cannot be expected at the current stage of development of crowdsourced data in
NWP.

7.1 WMO guidelines for wind observations

Traditional wind observations are those taken by Automated Weather Stations (AWS)
certified by the WMO. The WMO guidelines (WMO, 2014) has published general rec-
ommendations for the design of a wind measuring system. First, wind measuring equip-
ment should be placed at 10 m above ground surface level and on open ground. WMO
(2014) defines open ground as a surface where obstacles are situated at a minimum
distance equal to at least ten times their height. Furthermore, it is recommended that
the wind is measured with a frequency of 4 Hz. Wind observations should be given as
an average over 10 minutes and wind gust as an average over 3 s. For further details
see WMO (2014).
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7.2 Experimental setup of wind observations

To obtain reference observations of wind which satisfies the WMO recommendations,
assets were needed to position the reference anemometer correctly. Therefore, an exper-
imental setup was constructed in order to obtain reliable observations, to be compared
with the crowdsourced data. This setup was used as a reference in Hintz et al. (2019a).
It lies in the nature of crowdsourced data that it can be spontaneous in both space and
time and so the setup was designed to be transportable. A mobile setup guarantees that
it is always possible to quickly move to an area where observations are being generated
by the crowd at a given time.

7.2.1 Extendable transportable mast

To position the anemometer in a height of 10 m as recommended by WMO (2014) a
mast was needed. The mast is a telescopic mast from ClarkMasts (Clarkmasts, 2017).
It consists of a tripod and can be extended to 8.8 m. An adaptor to the anemometer
is attached on top of the main mast extending the mast to 9.4 m. The anemometer is
attached on the adaptor and with the height of the anemometer mount base the altitude
of the instrument reaches 10.0 m.

Figure 7.1 shows a picture of the mast when set up as it was used in Hintz et al.
(2019a), however at a different location. On 1st of January 2019 the mast was set
up at the location shown in figure 7.1. Here it will measure one year continuously
with a frequency of 10 Hz. After one year the effect of growing crops on wind will be
investigated by using the same methods described by Hintz et al. (2019a). The results
of this study will be examined after this PhD project is finalised.

7.2.2 Ultrasonic anemometer

An ultrasonic anemometer (WindObserver 65) from Gill Instruments (Gill Instruments,
2017) was used due to its high precision and high sensitivity. The anemometer can out-
put a sampling rate between 1 Hz and 10 Hz with a resolution of 0.01 m/s and an
accuracy of 2 % at 12 m/s.

From the manufacturer, the anemometer is delivered with serial wiring. It is profes-
sional equipment and relatively expensive. Therefore, different methods of connecting
and collecting data from the anemometer were investigated with a focus on a low cost.

43



7. Traditional atmospheric observations and measurements 44

Figure 7.1: Picture of the extendable transportable mast. On top the Gill
Ultrasonic Anemometer is placed.

The anemometer outputs an RS422 serial signal with a baud rate of 4800 Bd, mean-
ing that up to 4800 symbols can be sent per second. The anemometer requires a power
source of 12 V DC and uses 40 mA. Two power sources were prepared. First, a 12 V DC
battery with 48 Ampere-hours was retrieved, making it easy to power the anemometer
if no other power sources are available nearby. Secondly, an inexpensive mobile-phone
charger that converts 230 V AC to 12 V DC was modified to connect it to the anemome-
ter so that the device can be powered from nearby power supplies if available.

Further to collect data, a datalogger able to read an RS422 signal was needed. A
Sparkfun CAN-BUS electronic board (Sparkfun, 2017) was installed in a waterproof
casing, together with a battery-pack, allowing the datalogger to operate for more than
a week at a time. For periods of more than a week, another solution was required; one
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solution investigated was to set up an old computer with an RS232 serial port at the
mast and use an RS422-RS232 converter for data logging. RS232 was a standard port
on old computers. Such a solution creates a new obstacle since the computer would
then need power at the location of the mast. Instead, an RS422-USB converter was
used together with a USB-Ethernet booster. The computer and the anemometer could
then be connected via a 100 m long CAT6 ethernet cable, allowing the computer to be
located in a dry environment with a power supply in many cases.

The ability to log data continuously via a computer opened up other uses of the
data than was initially thought of. A web application presenting real-time wind mea-
surements in 10 Hz was developed and made available for researchers at DMI (see figure
7.2). Not only was it then possible to store data continuously, but a visual presentation
of the behaviour of the wind in high temporal resolution provided a possibility for all re-
searchers to gain experience with the variations of the wind in different weather regimes.

Figure 7.2: Real-time wind measurements from the web-application during
one minute 7th February 2018 at 20:32:33 UTC to 20:33:33 UTC. The white
curve shows the measured wind speed with a frequency of 10 Hz, given on
the left axis. The orange and blue line shows the mean over 3 s and 60 s
respectively. The red dots show the wind direction given on the right axis.
On the internal webpage the plot updates with a frequency of 10 Hz.

In practice, data was read with the computer using the PySerial (PySerial, 2018)
framework for Python and uploaded to a Firebase database using the associated Python
SDK (Google Firebase, 2017). Serverside, a web application fetching and visualising the
data was made with Javascript and the Firebase Javascript SDK. Block 7.1 shows an
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example of retrieving data from Firebase in real-time used to visualise wind measure-
ments. The snapshot is triggered every time a new data point is detected.

1 var getObs = function () {
2 var dbtime = moment ()
3 firebase.database ().ref(’/windobserver/’+dbtime.format(’YYYY/MM/DD/HH

/mm’)).once(’value ’).then(function(snapshot) {
4 firobj = snapshot.val()
5 return firobj
6 })
7 }
8 firobj = getObs ()

Block 7.1: Example of a function to retrieve data from Firebase using the
JavaScript SDK. The ‘snapshot’ listen for changes and return new values
to ‘firobj’.

7.3 WMO guidelines for atmospheric pressure observations

WMO (2014) suggests that a barometer should be able to measure the pressure in the
range of 500 hPa to 1080 hPa with a resolution of 0.1 hPa and the uncertainty should
be at most 0.1 hPa. Also, external effects such as wind, temperature and vibrations
should be minimised. Further, barometers must be regularly calibrated against a refer-
ence with known errors.

At DMI, calibration is done against a Vaisala PTB330 Barometer (Vaisala, 2018).
The Vaisala PTB330 uses three internal barometers independent from each other to
improve reliability, which also improves long-term stability by preventing a bias drift.
The reader is referred to WMO (2014, chapter 3) for an extensive discussion of observing
atmospheric pressure.

7.4 Validation of observations

Validation of observations in the atmospheric sciences is a complex subject. In general,
multiple quality checks are performed in DA systems (see chapter 9). One quality check
can be a background check, meaning that observations are compared to a short-term
forecast acting as a background. However, this approach can be somewhat contradictory
as the observations are supposed to correct an erroneous forecast analysis, which is, on
the other hand, used to check the quality of the observations. This is the reasoning for
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using the least square approach in modern DA methods. Fast responding devices with
no bias do, in theory, always measure ‘the truth’. A thermometer placed on a sunny
side of a wall a sunny summer day will measure ‘the truth’ for that exact location if no
bias is present.

Regarding representativeness, however, such a measurement is to a high degree use-
less. Observations need to be representative of the scales resolved by the model grid.
That is one of the most significant issues to overcome for crowdsourced data. However,
even traditional observations have similar problems. Observations that are not repre-
sentative needs to be rejected by a DA system. An observational error can be divided
into an instrument error and a representativeness error (Lahoz et al., 2010). Instrument
error is an engineering matter associated with the functioning of the physical measure-
ment itself, including deterioration of the instrument over time and manufacturing and
materials details resulting in variations of readings under the same actual conditions.
Representativeness error is introduced because an accurate observation does not repre-
sent the average value over the entire model grid box (for example, a surface observation
showing the high pressure, strong winds, and cold air associated with a thunderstorm
outflow).
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Chapter 8

Estimation of wind speed and roughness length using smartphones:
Method and quality assessment - Publication A

Fundamentally, the motivation of Hintz et al. (2019a) is to extract information from a
series of wind measurements to provide an improved weather forecast to a user rather
than only showing the observed wind speed. One original objective of this PhD project
was to provide post-processed forecasts based upon the measured wind speeds, which
was one of the reasons that the Vaavud NWP system (see chapter 4) was implemented.

An introductory examination of downscaling post-processed NWP winds to a much
finer grid was started at the beginning of this PhD project. During this process, a col-
laboration between the department of wind energy at the Danish Technical University
(DTU) and Vaavud started. DTU was able to provide a dataset of roughness lengths
for different parts of Denmark, with a horizontal resolution of 200 m. This was used to
downscale the NWP winds to the grid of that of the roughness lengths by extrapolating
from the lowest model layer to 10 m using the logarithmic wind profile (see equation
(6.6)). Figure 8.1 shows one example of this, where the effect of surface characteristics
can be seen in the wind field (middle plot). For example, the forest on south-western
Amager can be seen directly in the downscaled wind field.

Vaavud users consist mostly of kite- and windsurfers and other athletes within wa-
ter sports, which is an advantage for future applications of such data, because these
users tend to use the same locations and that the locations are close to water. Hence,
observations will be taken at locations with a low roughness length in general, which
is important as observations must be taken in the constant stress layer (see chapter 6)
to be able to derive the roughness length from the observations. One stressed point in
Hintz et al. (2019a) is that the method should not be used when z0 > 0.1 m. Also,
observations will tend to be focused on some specific locations which are often used for
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Figure 8.1: Left: Satellite imagery of most of the island of Amager. Centre:
Adjusted wind speed forecast using roughness lengths from a wind atlas.
Right: Direct diagnosed 10 m wind speed forecast from the Vaavud NWP
system. The wind speed is given in m/s and is shown in the colorbar.

water sports. Therefore, there is a potential for creating spatial maps of the wind flow
in ultra-high resolution (less than 100 m) at locations from where many observations are
received. Hintz et al. (2019a) is the foundation of this objective. Another potential use
case is for the agricultural sector. In situations with low wind speeds, it can be small
differences in the wind speed, which determines if a field can be sprayed with pesticides
or not. Making a HWM can help both the farmer and neighbouring farms in decision
making, which ultimately can reduce the farmers costs and help the environment by
using fewer pesticides.

Counihan (1975) provides a review and a comprehensive analysis of fully adiabatic
boundary layers up to the year of 1975. Most fundamental micrometeorology research
was established earlier. Also, Counihan (1975) describes a relationship between the
longitudinal length scale of turbulence and surface roughness (z0) (Counihan, 1975, Eq.
4) (see equation (6.12)) and gave one key remark that led to the studies presented in
Hintz et al. (2019a), namely that: "The scatter of these data (red. turbulent intensity)
is considerably less than that of the mean velocity measurements: therefore this may be
the best quantity to measure at a site and to use a reference quantity in determining
other flow characteristics". In Hintz et al. (2019a) it is investigated if the roughness
length can be derived from measurements of the turbulent intensity from a handheld
anemometer attached to a smartphone (see figure 2.1).

First, it is naturally of considerable interest to examine the quality of a HWM com-
pared to traditional observations. There can be no doubt that in general HWMs does
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have worse quality than traditional wind observations. However, there have been no
studies examining the quality of HWMs from smartphones earlier, so it is vital to do
so, before utilising HWMs. The quality of HWMs was examined by comparing to the
reference wind measuring setup described in section 7.2 and nearby DMI SYNOP sta-
tions. It was found that in some cases even the raw HWM can be more representative
than a nearby SYNOP station. However, it should be noted that the placement of the
SYNOP stations is not ideal, which is also discussed in Hintz et al. (2019a).

Secondly, the roughness length is derived for three different locations using the
HWMs, all with a relatively low roughness length (z0 < 0.1 m). Extracting the rough-
ness length from crowdsourced data could help to increase the quality of NWP forecasts
as z0 is more constant than the wind speed itself and are important when predicting
surface winds and momentum fluxes (Nielsen, 2010).
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Chapter 9

Data assimilation

DA is the process of determining the most likely state of a system given a set of data
describing the system. In NWP the data is a set of observations from, e.g. satellites and
meteorological ground-based stations and a background (first guess) of the system (the
atmosphere). To start a forecast, a set of initial conditions at time t = 0 is needed which
describes the initial state of the atmosphere. DA combines the available information to
determine the most likely state of the atmosphere which acts as initial conditions for
the NWP model. Given an analysis of the present state of the atmosphere, the model
forecasts its progress.

DMI operates multiple operational models for both Denmark and Greenland. The
main model is the HARMONIE based NEA-model. NEA has a spatial resolution of 2.5

km with 65 vertical layers with a grid mesh of 1200 longitudinal points and 1080 latitu-
dinal points. HARMONIE uses 12 prognostic variables (Bénard et al., 2010; Bengtsson
et al., 2017; Seity et al., 2011): momentum (u, v, w), temperature (T ), water vapor
(qv), rain (qr), snow (qs), graupel (qg), cloud droplets (qc), ice crystal (qi), Turbulent
Kinetic Energy (TKE) and pressure (p). In total 1200× 1080× 65× 12 ≈ 109 variables
are thus needed to be given an initial value.

There are not enough observations to overcome this demand and observations are
not taken precisely at the location of the model grid points. Furthermore, observations
are not evenly spread around the globe in either time or space. Most synoptic data
come from land areas, especially from the mid-latitudes on the northern hemisphere
(Zhang et al., 2018). During the last decades, however, satellite data and aircraft data
have become increasingly available, so more data covering ocean areas and the southern
hemisphere are available. On the other hand, as the resolution of NWP models contin-
uously increases, more observations are needed. Vedel and Yang (1999) have described
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the model’s ability to advect information from data-rich areas to sparse data areas.
It would be inadequate to represent the temperature field over the Atlantic Ocean by
fitting a curve from temperature observations between North America and the UK.
Therefore, a background field, xb, is used to estimate the initial conditions for the
forecast. The background field is compared to observations, y, and the DA algorithm
changes the background field, given the observations, to improve the representation of
the atmosphere to minimise the error of the analysis. This is the fundamental concept
of DA.

9.1 Least squares method

Linear regression is used to find a relation between a predictor variable and a predictand.
Using the regression parameters will give the linear relation between the two variables
with the smallest error. This derivation is included to present the fundamental idea of
DA, namely reducing the errors to find the most likely state of the atmosphere.

Traditionally the predictand is denoted as y and the predictor is denoted as x. One
can think of y as the true state of a variable and x as observations of y with associated
errors. Defining ŷ as the predicted state of the true state, y, one wants to find the
regression parameters, a and b, in the linear relationship

ŷ = a+ bx, (9.1)

with the residuals, ei, as

ei = yi − ŷ(xi). (9.2)

The regression equation is obtained by combining equation (9.1) and (9.2), such that,

yi = a+ bxi + ei, (9.3)

which shows that the value of y is the sum of the predicted value and the residual. To
find the regression parameters, the sum of the squared residuals is minimised by taking
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the derivative and setting them equal to zero. This yield

∂
N∑
i=1

e2
i

∂a
= 0 =⇒

N∑

i=1

yi = na+ b

N∑

i=1

xi (9.4)

∂
N∑
i=1

e2
i

∂b
= 0 =⇒

N∑

i=1

xiyi = a

N∑

i=1

xi + b

N∑

i=1

x2
i . (9.5)

Solving for a and b gives

a = y − bx and (9.6)

b =

N∑
i=1

((xi − x)(yi − y))

N∑
i=1

(xi − x)2

, (9.7)

where () denotes the mean, f = 1/N
N∑
i=1

fi. In practice there exist more than one pre-

dictor so this example proves too simple for an NWP system. When multiple predictors
exist one can use multiple linear regression instead, which is based on the same concepts.

9.2 The framework of data assimilation

As described in the introduction of this chapter the objective of DA is to combine a
background state, xb, with observations, y, to obtain the most likely analysis, xa. Here
the fundamental framework of DA are described before introducing the Optimal Inter-
polation (OI) method and the 3D-Var method which is used at DMI and in Hintz et al.
(2019b) (see chapter 14).

The framework for combining information from multiple sources luckily already exist
in the form of Bayes theorem which states that (Taylor, 1997)

pdf(x|y)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
pdf(y|x)

Prior︷ ︸︸ ︷
pdf(x)

pdf(y)
, (9.8)

where pdf is the Probability Density Function (PDF). The prior PDF is describing the
prior information coming from the model, and the likelihood is describing the likeli-
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hood of the observations, given the background. The x that maximises the posterior,
pdf(x|y), is the analysis. pdf(y) acts in practice as a normalisation constant, so that is
often not calculated explicit (Nichols, 2010).

To solve for the posterior, it is first assumed that the errors are Gaussian which is
the fundamental assumption of most DA methods1. The prior and the likelihood can
then be described in terms of the mean and the covariance as

pdf(x) =
1

2πN/2|Pb|1/2
exp

(
− 1

2
(x− xb)

TP−1
b (x− xb)

)
and (9.9)

pdf(y|x) =
1

2πN/2|R|1/2 exp

(
− 1

2
(y −H(x))R−1(y −H(x))

)
. (9.10)

respectively. Here Pb is the background error covariance matrix and R is the observation
error covariance matrix. H(x) is a forward model operator which interpolates and
converts model variables to observation space, so y − H(x) is the difference between
the observations and the models guess on the observations. The posterior can then be
written as

pdf(x|y) ∝ exp

(
− 1

2
[(x− xb)

TP−1
b (x− xb) + (y −H(x))TR−1(y −H(x))

︸ ︷︷ ︸
Cost-function, J(x)

]

)
(9.11)

The term above the bracket is defined as the cost-function, J(x). By minimising the
cost-function, the posterior is maximised. The state, x, that minimises the cost-function
is defined as the analysis, xa. This minimisation problem can be solved in two different
ways that lead to different approaches:

1) The mean and the covariance can be solved directly, by using the best linear
unbiased estimate (BLUE) on the posterior (equation (9.11)) (Nichols, 2010). This ap-
proach is referred to as sequential DA and both the OI (section 9.3) and Kalman Filter
(KF) methods are based on this.

2) Alternatively, one can solve for the mode of the posterior instead to find the x

that minimises the cost-function (maximises the posterior)

xa = argmin(J(x)). (9.12)

1Methods that do not assume that errors follow a Gaussian distribution includes Particle Filters,
see, e.g. van Leeuwen (2009).
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Methods based on this approach is referred to as variational methods and includes 3D-
Var (see section 9.4) and 4-Dimensional Variational data assimilation (4D-Var). It is
noted that if the posterior is truly Gaussian, the mean and the mode yield the same
result (Wilks, 2011).

9.3 Optimal interpolation

OI is based on the sequential DA method. OI consist of vectors containing all the model
variables, observations and errors and takes into account the errors of the observations
and the errors of the background state.

Imagine that we want to know the true state, xt, of the atmosphere. We can
estimate the true state by writing a linear combination of a background field, xb, and
some observations, y0, as (Nichols, 2010)

xa = Lxb + Wyo, (9.13)

where xa is the analysis, xb is the background field, typically a previous forecast, and
yo is the observation vector. Equation (9.13) states that the best estimate (xa) of the
true state is a linear combination of our background field (xb) and some observations
(yo). The weight given to each term is determined by the weights L and W.
Equation (9.13) can be simplified by making a few assumptions. First of all it is noted
that the errors of the background and the analysis can be written as

eb = xb − xt and

ea = xa − xt,
(9.14)

respectively, where xt is the (unknown) true state. Also, an observation process is
defined as

yo = H (xt) + bo, (9.15)

where H is the forward model operator as in section 9.2, and bo is the observational
errors. Furthermore, it is assumed that the observation errors have zero mean and
covariance R,

E(bo) = 0, (9.16)

E(bo(b
T
o ) = Rkδkk′ , (9.17)
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where δkk′ is the dirac-delta function, such that the observational errors are assumed
to be uncorrelated. It is also assumed that the observation errors and model errors are
uncorrelated,

E(bt(bo)
T ) = 0. (9.18)

Subtracting xt from equation (9.13) and substituting with equation (9.14) and rear-
ranging gives the error of the analysis

ea = Leb︸︷︷︸
Background error

+ Wbo︸ ︷︷ ︸
Observational Error

+ (L + WH − I)xt︸ ︷︷ ︸
Bias

. (9.19)

Assuming that the forecast error is unbiased (E(eb) = E(xb − xt) = 0), the condition
(L + WH − I)E(xt) = 0, must be met. In general however, E(xt) 6= 0, so to obtain an
unbiased analysis one can write the first weight in terms of the second weight as

L = I−WH . (9.20)

Substituting equation (9.20) into equation (9.13) and reducing gives the analysis equa-
tion used in OI,

xa = xb + W (y −H (xb))︸ ︷︷ ︸
Innovation

= xb + Wd, (9.21)

where d = y − H (xb) is an innovation term. The weight L has disapperead from our
expression and so it is only necessary to determine one weight. The last term is called
the innovation term and is determined by the difference between the observations, yo

and the background xb and the weight W.

H can both be linear and highly non-linear. In the simplest case, one can do a
simple interpolation of temperatures, but it typically requires both an interpolation
and conversion to the observed variable. The operator H can be linearized as

H (x− δx) = H (x) + Hδx, (9.22)

where H is a linear forward model operator that transforms between model space and
observation space. Then the innovation vector, d, can be written as

d = y −H (xb) = y −H (xt + (xb − xt)) ≈ y −H (xt)−H(xb − xt). (9.23)
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Then the error of the analysis, ea, can be expanded by substituting with equation (9.23)
and (9.15) to get

ea = xa − xt = (I−WH)(xb − xt) + Wb0, (9.24)

which is useful when determining the weight, W, later (see section 9.3.1).

xa and xb are vectors of length n, the number of grid points times the number of
variables. y is a vector of length p, the number of observations and so the weight, W

is a matrix of dimension n × p and the forward operator, H is a matrix of dimension
p× n.

9.3.1 The OI weight

The weight, W, is chosen such that the variances of the analysis are minimised. To
derive the weight consider first the error covariance of the analysis,

Pa = cov[ea] =




σ2
1,1 σ2

1,2 · · · σ2
1,n

σ2
2,1 σ2

2,2 · · · σ2
2,n

...
...

. . .
...

σ2
m,1 σ2

m,2 · · · σ2
m,n



. (9.25)

Note that the variances are the trace of the covariance matrix, σ2
1,1, σ

2
2,2, · · · , σ2

n,n. Sub-
stituting with equation (9.24) and using that in general terms the covariance is defined
as C = (x− x)(x− x)T , Pa can be written as

Pa = eaeTa = [(I−WH)(xb − xt) + Wb0][(I−WH)(xb − xt) + Wb0]T . (9.26)

Expanding and assuming that the background and observations are uncorrelated, so
that b0eTb = ebb

T
0 = 0, the analysis error covariance yields

Pa = (I−WH)Pb(I−WH)T + WRWT , (9.27)

where R = cov(bo) and Pb = cov(xb − xt). To yield a simpler form, one can expand
equation (9.27), using that I = IT and define S = HPbH

T + R to get

Pa = Pb −PbH
TWT −WHPb + WSWT . (9.28)
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To obtain the weight that minimises the variances equation (9.27) one must take the
derivative of the trace of Pa and setting it equal to 0. Using that Tr(A + B) = Tr(A)+

Tr(B) and using that covariance matrices are symmetric (e.g. Pa = PT
a ) the trace can

be written as

Tr(Pa) =Tr(Pb)− Tr(WHPb)− Tr(PbH
TWT ) + Tr(WSWT )

=Tr(Pb) + 2Tr(WHPb) + Tr(WSWT )
(9.29)

Then, taking the derivative of Pa with respect to W yields

∂Tr(Pa)

∂W
= −2PbH

T + 2WS ≡ 0. (9.30)

Solving for W yields the (optimal) weight,

W = PbH
TS−1 =

PbH
T

HPbHT + R
. (9.31)

Recall that R is the observational error covariance matrix and Pb is the background
error covariance matrix. In these terms, it is easy to get an intuitive understanding of
the weight. If the observational error is much larger than the model error the weight
will go towards 0, making the innovation term small such that the observations are
given a low weight. On the other hand, if the model error is much larger than the
observational error, the weight will go towards 1, giving the innovation term a high
weight when creating the analysis. In the Kalman Filter (section 9.7) the weight is
called the Kalman Gain and is typically denoted K, but in practice, it is the same
weight.

9.3.2 The analysis covariance

An advantage of the OI method, is that one also can get an estimate of the uncertainty
of the analysis through equation (9.28). It is however, easy to simplify the equation
significantly. Equation (9.31) is multiplied with SWT to get

WSWT = PbH
TWT . (9.32)

Substituting this expression for WSWT into equation (9.28) and reducing one obtains
a simpler equation for the error covariance matrix of the analysis,

Pa = (I−WH)Pb. (9.33)
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9.4 3 dimensional variational data assimilation

Recall the cost-function derived in section 9.2,

J(x) =
1

2

[
(x− xb)

TP−1
b (x− xb)

︸ ︷︷ ︸
Jb

+ (y −H(x))TR−1(y −H(x))

︸ ︷︷ ︸
Jo

]
(9.34)

The first term on the right-hand side (Jb) measures the deviation between the state
vector, x, and the background xb, weighted by Pb. The last term on the right-hand side
(Jo) measures the deviation between the observations y, and the prediction of the ob-
servations from the modelH(x), weighted by the observation error covariance matrix R.

It is often assumed that observation errors made at different locations are uncorre-
lated so R will be a diagonal matrix and thereby easier to handle. In some cases, this
assumption can be valid, but not always. For example, a systematic error of a tempera-
ture measurement will not affect the measurements made by a station nearby. However,
if a satellite measures a wrong radiance, it might be likely to do so in every measurement.

The model background error covariance matrix, Pb, has a size of order 107 × 107,
which is too huge to store on a modern computer. Per definition Pb is defined as
Pb = cov[xb − xt], where xt is the true state which is unknown. Therefore, to calcu-
late Pb a proxy is needed for xt. One proxy that is often used is observation-minus-
background statistics. Here the NWP model is run for a long period and the average
statistics compared to observations are calculated. With this approach Pb is static in
time.

The minimum of the cost-function is, as mentioned in section 9.2, obtained for
x = xa which is the solution of

∇xJ(xa) = 0, (9.35)

thus, the gradient of the cost-function must be solved. To solve for the gradient, some
assumptions are made. First, assume that the analysis is close to the truth so only
small increments are performed:

x = xb + (x− xb) = xb + δx. (9.36)
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Futhermore, it requires many calculations to find H(x) each time x is changed, since
in theory, the full NWP model must be run each time. Therefore second-order terms of
H is neglected such that

H(x + δx) = H(x) + Hδx, (9.37)

Using equation (9.36) and (9.37) the cost-function (equation (9.34)) can be written as

J(x) =
1

2

[
(δx)TP−1

b δx + [(y −H(xb))−H(x− xb)]
TR−1

(y −H(xb))−H(x− xb))]

]
.

(9.38)

H(xb) is known a priori, so the computational costs have been reduced with equation
(9.38). To solve the gradient of the cost-function, it is beneficial if a quadratic equation
can be obtained because the solution to these is known. Given a quadratic function
F (x) = 1

2xTAx + dTx + c the gradient are given by (Kalnay, 2003)

∇F (x) = Ax + d. (9.39)

To obtain a quadratic function it is assumed that R is symmetric so that (HR−1)T =

R−1H. Using this and expanding equation (9.38) gives

J(x) =
1

2

[
(δx)TP−1

b δx + (x− xb)
THTR−1H(x− xb)

− (y −H(xb))
TR−1H(x− xb)− (x− xb)

THTR−1(y −H(xb))

+ (y −H(xb))
TR−1(y −H(xb))

]
.

(9.40)

Then, the two first terms on the right hand side in equation (9.40) is combined and
then reduced to obtain
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J(x) =
1

2

[
(x− xb)

T [P−1
b + HTR−1H](x− xb)

− (y −H(xb))
TR−1H(x− xb)

− (x− xb)
THTR−1(y −H(xb))

+ (y −H(xb))
TR−1(y −H(xb))

]

=
1

2

[
(x− xb)

T [P−1
b + HTR−1H](x− xb)

− 2(y −H(xb))
TR−1H(x− xb)

+ (y −H(xb))
TR−1(y −H(xb))

]
.

(9.41)

It is noted that the last term in equation (9.41) is independent of x, and so can be
discarded in the computation of the gradient of the cost-function.

Using equation (9.39) to compute the gradient and setting the expression equal to
zero such that x = xa the analytic solution to cost-function is obtained as

xa = xb + [P−1
b + HTR−1H]−1HTR−1(y −H(xb))

= xb + Q(y −H(xb)),
(9.42)

where Q = [P−1
b +HTR−1H]−1HTR−1. Unfortunately inverting such large matrices is

practically impossible. In practice, a minimum is found by minimising the cost-function
in an iterative process. In the iteration process x is first chosen to be equal to xb, so the
first term on the right-hand side in equation (9.34), Jb, does not contribute to J(x), and
the last term on the right-hand side, Jo, gives the deviation between the observations
and the model expectation.

It can be shown that the weight, Q, is mathematically equivalent to the weight
obtained for OI (equation (9.31)), W. This is shown in appendix E. The results from
the two methods, however, are different because the methods of solutions differ. 3D-Var
has several advantages compared to OI because the cost-function is minimised by using
global minimisation algorithms. Therefore 3D-Var uses all available data simultaneously
whereas in OI the solution is obtained "grid-point by grid-point". In practice, not all
observations are allowed influence on a grid in OI. Observations too far away are ignored.
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9.4.1 The two temperature problem

As an intuitive simple example of the cost-function, imagine a system described by two
independent temperature observations T1 and T2, each with an observational error, σ1

and σ2. Assuming that the probability of obtaining a measurement T1, given the true
temperature T , is a Gaussian distribution with an observational standard deviation σ1,
one can write the probability to observe T1 as

p(T1|T ) =
1√

2πσ1

exp
− (T1−T )2

2σ21 , (9.43)

and likewise for T2. For independent measurements the probability for measuring T1

and T2 given T is their product so L(T |T1T2) = L(T |T1)L(T |T2), where L(x|y) denotes
the likelihood of x given y (Wilks, 2011). The temperature, T , that maximises the
likelihood is the most likely temperature, Ta, given an observation, T1, with error σ1.

As the logarithm is a monotonic function, one can take the logarithm and still obtain
the same most likely temperature. Taking the logarithm and rearranging terms gives,

ln[L(T |T1T2)] = const− 1

2

[
(T − T1)2

σ2
1

+
(T − T2)2

σ2
2

]
. (9.44)

The last term on the right-hand side is the cost function for this example. It is seen
that by minimising the cost function, the most likely T is obtained.

9.4.2 Data assimilation time window and FGAT

An assimilation time window is defined around the analysis time, so if the analysis de-
scribes the atmosphere at time t0a, the assimilation window could start at t−3

a and end
at t+3

a , which is ±3 hours giving an assimilation window of 6 hours. Observations taken
in this time window are allowed to enter the assimilation system. However, assimilation
time windows do not necessarily have to be symmetric around the assimilation time. In
3D-Var systems without First Guess at Appropriate Time (FGAT), it is assumed that
all the observations are made at the analysis time, t0a, which is valid only for synoptic
observations. However, observations might be taken at t−2

a and not t0a, which leads
to inaccuracies. Also, in 3D-Var systems only observations closest to t0a is taken into
account, such that only one observation per site is allowed throughout the assimilation
time window.

3D-Var systems can be combined with FGAT to take in to account that observations
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are taken at different times by splitting the assimilation window into N parts. By
defining xt0b as the background field at the analysis time t0a, and x

t−1

b as the background
field at t−1

a etc. Then observations are compared to the background field at the time
which they are closest to. In practice this splits up H(xb) into H(x

t−1

b ), H(xt0
b ),

H(x
t+1

b ) etc., to be compared to observations at yt−1, yt0 , yt+1, which is equivalent
to write a sum over the distance between observations, y at time i and the model
expectation H(xb) at time i,

N∑

i=0

H(xbi)− yi.

This is an advantage as it is not assumed that all observations are valid at the analysis
time t0a. With this method, the departure of the background field from the observations
are smaller, so the last term in equation (9.34) gets smaller, leading to a smaller value
of the cost function, J(x).

FGAT was used in the previous operational HIgh Resolution Limited Area Model
(HIRLAM) model at DMI, but it is not used in the current operational HARMONIE
model.

9.5 4 dimensional variational data assimilation

While examining results from numerical experiments with 3D-Var in this study, multiple
disadvantages of using 3D-Var to assimilate crowdsourced data was identified. First,
as the temporal resolution of crowdsourced data is very high, one does not take full
advantage of this by using 3D-Var as the time evolution is not taken into account. Also,
the structure functions (Pb) smoothens the information from the observations much.
While these algorithms are necessary for keeping the model stable, it does, unfortu-
nately, make the current 3D-Var system in HARMONIE less attractive for assimilating
crowdsourced data (Hintz et al., 2019b).

3D-Var can be extended to take into account the development of the model field with
time. This results in the 4D-Var assimilation technique. As in 3D-Var, the concept is
to minimise a cost function. In 4D-Var observations are allowed to be taken at any time
in the assimilation window, allowing asynoptic observations. Practically this is done by
redefine the part of the cost-function which is containing the observations, the last term
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in (9.34). So in 4D-Var the cost-function becomes (Talagrand, 2010)

J(x) =
1

2
[(x0 − xb0)TP−1

b (x0 − xb0)]

+
1

2

N∑

i=0

[yi −H(xi)]
TR−1[yi −H(xi)].

(9.45)

Note that the first term on the right-hand side (Jb) is the same as in 3D-Var. The
model expectation is found by running the model back and forth in time so in 4D-Var
the forward operator, H, does not only spatially interpolates to observations and con-
verts model variables to the observed quantities but it also propagates the model fields
defined at t0 to the time of the observations. This makes the 4D-Var method computa-
tionally very expensive.

4D-Var is not yet operational in HARMONIE, but it is an active development
branch2. As a continued work of Hintz et al. (2019b) (see chapter 14) it will be exciting
to examine the data collected in this PhD project with 4D-Var in HARMONIE when
ready.

One key finding of Hintz et al. (2019b) is that the accuracy of the vertical position of
a SPO needs substantial improvement. However, this issue can be eliminated by assimi-
lating pressure tendencies using 4D-Var rather than assimilating absolute pressure using
3D-Var, if one can assure that the smartphone has not moved between multiple obser-
vations. Furthermore, one can take better advantage of the high temporal resolution of
crowdsourced data using 4D-Var, because multiple observations from the same source
can be utilised. As an example, Netatmo PWS report observations every ten minutes
through the Netatmo API (Netatmo SAS, 2019a). Here, dependent on the length of
the assimilation windows, 4D-Var would be able to use many more observations than
3D-Var would.

Moreover, because the computation of 4D-Var is expensive, in practice the minimi-
sation if often run with a more coarse spatial resolution than the linked NWP model
meaning that the structure functions, Pb, would also be based on a coarser resolution.
One can imagine that information from individual observations would then be spread
over larger distances; hence the high-spatial resolution of crowdsourced data would not
be utilised to its full potential.

2Personal communication with Dr Xiaohua Yang, DMI.
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To minimise the cost-function in 4D-Var, one has to consider the propagation of the
model in time. The gradient is found by considering a perturbation to the initial state
to linearize the model about the non-linear model trajectory. This ultimately introduces
two new concepts which prove efficient when solving the gradient of the 4D-Var cost-
function, namely the tangent linear model and the adjoint model (Talagrand, 2010).
The derivation of the tangent linear model and the adjoint model are out of scope of
the discussion of 4D-Var here, but the interested reader is referred to Kalnay (2003);
Nichols (2010) and Talagrand (2010) for further details. It should be noted, though,
that the linearization of the model around the initial state, x0, is called the tangent
linear model. The tangent linear model propagates an initial perturbation at time ti
to ti+1. The transpose of the tangent linear model is called the adjoint model, which
advances a perturbation backwards in time from tN to t0. The introduction of these
makes the back-and-forth computation less expensive, but it does require some effort
to derive the tangent linear model and the adjoint model in practice.

9.6 Nudging

Another possible method to maximise the potential of crowdsourced data in NWP is
nudging. No studies have yet looked at this subject in detail. Nudging is a continu-
ous, four-dimensional, empirical DA technique used within the first period of a NWP
forecast. At each timestep, observations are used to determine a nudging factor based
on the differences between the model and the observations. When the differences are
found, increments or decrements are added to a model field of interest, nudging it grad-
ually closer to the observed weather (Olsen et al., 2015). This is done by adding forcing
terms to prognostic equations in the NWP model with the hope that the model can
then better describe the observed conditions. The forcing terms depend on whether the
conditions are measured or derived. The forcing term is included at the time of the
observation, and to assure that the forcing on the model dynamics is not too sudden a
relaxation time is included, which is a weighting factor for the time dimension.

An example of how nudging can be applied in a prognostic equation can be shown
with the zonal velocity forecast equation in isobaric coordinates (Kalnay, 2003)

∂u

∂t
= −v · ∇u+ fv − ∂φ

∂x
+

uobs − u
τu︸ ︷︷ ︸

Nudging term

, (9.46)
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where the last term is the additional forcing term performing the nudging. In this ex-
ample the nudging is weighted by the relaxation time, τu. The value of the relaxation
time determines the impact of the forcing term which is found empirically.

Only prognostic variables can be nudged directly, though other parameters can be
nudged through a series of model variables giving the desired result, such as is done
with radar data in the DMI nowcasting system (Olsen et al., 2015) and the latent heat
nudging method (Jones and Macpherson, 1997). One issue with the nudging technique
is that there is no built-in quality check on the observations, which can allow observa-
tions with significant errors to be nudged into the model. Another possible issue would
be that the process gives the wanted effect for one parameter but makes another one
worse, e.g., improving the representation of precipitation, but worsening the wind field.

Nudging is an attractive method for use with crowdsourced data because observa-
tions can be included quickly, and the impacts are easy to measure. In the case of
SPOs, the surface pressure can be nudged directly, or one can use nudging to include
pressure tendencies before using, for example, 4D-Var. However, nudging might only
be a suitable choice for nowcasting models which runs in rapid update cycles, because
the effect of the nudging tends to decline with forecasting time (Olsen et al., 2015).

9.7 Kalman filtering

The KF (Kalman, 1960) is another compelling technique from the perspective of util-
ising crowdsourced data. A KF has the advantage over variational methods that it
is, in general, easier to implement. Also, the analysis can be updated sequentially as
observations come in. McNicholas and Mass (2018) used a Local Ensemble Transform
Kalman Filter (LETKF) to obtain an analysis based on SPOs and was the first to as-
similate SPOs using Kalman based methods, and showed promising results. Naturally,
Kalman based methods should be considered for crowdsourced data based on the study
of McNicholas and Mass (2018).

The KF has proven to be suitable for various areas, such as auto-piloting (Fossen and
Perez, 2009), computer graphics (Kautz and Eskofier, 2015) and DA in NWP (Lorenc,
2003). The filter can run in near real-time as it is computationally efficient for many
applications. This makes the filter suitable as a tool to include crowdsourced data in
NWP. The filter works in methodologies very much as the OI method (section 9.3), but
as it is a recursive filter, the notation is slightly different than that from OI. In KF the
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analysis equation from OI (equation (9.21)) is called the update equation and is written
as

xak = xfk + Kk(yk −Hkx
f
k), (9.47)

where k refers to an iteration in time and the weight, the Kalman Gain (Kk) is up-
dated for each iteration. Kk has the same form as the OI weight (equation 9.31) and
the derivation is identical. Here xf is used instead of xb in OI to refer to forecast and
distinguish between the two.

The analysis covariance matrix is also similar to the one in OI (equation 9.33), but in
the KF, Pa is updated in each iteration by updating the Kalman gain in each iteration
as,

Kk =
Pf
kH

T
k

HkP
f
kH

T
k + R

, (9.48)

where it should also be noted that only the notation is different from the OI weight.
Then the analysis covariance matrix is updated as

Pa = (I−KkHk)P
f
k , (9.49)

to get the uncertainty of the current analysis state vector, xa.

9.7.1 The Kalman algorithm

Because of the recursive nature of the KF, it would be natural to apply the filter to
update a forecast as new observations enter the forecasting system. To evaluate the KF
a simple theoretical implementation will be considered briefly.

The final algorithm for the KF consists of an update step and a prediction step.
First, the analysis, xak, is updated in each iteration with the observations available
at that time, yk, and after updating the analysis, the state in the next iteration is
predicted, xfk , based on the new analysis and covariance, Pa. The algorithm can be
summarised as follows:
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The prediction step

xfk = Mxfk−1 + w

Pf
k = MPf

k−1M
T + q

The update step

xak = xfk + Kk(yk −Hkx
f
k)

Kk = Pf
kH

T
k S−1 =

Pf
kH

T
k

HkP
f
kH

T
k + R

Pa = (I−KkHk)P
f
k

The prediction step
In the first iteration, the previous forecast, xfk−1, is set equal to the background state
from the previous forecast, xb. The prediction step assumes that the system can be
modelled by a linear stochastic state transition equation as

xfk = Mxfk−1 + w, (9.50)

where w is a vector of random noise and M is a transition matrix that progresses the
state from the previous time to the current time step, so that M is the tangent linear
model and MT is the adjoint model (see section 9.5). For a remarkably simple model
or if the system is entirely random, M can be set equal to one, i.e. the predicted state
is the same as the current state. That would, of course, be unreasonable for NWP (and
most other) applications. In the prediction of the forecast error covariance, Pf

k , q is the
forecast error covariance.

The update step
The analysis, xak, is updated with the predicted forecast from the prediction step, xfk ,
and the new observations, yk weighted by the Kalman Gain, Kk. The Kalman Gain
itself is also updated to update the analysis error covariance, Pa.

One important difference between OI and the KF is that the error covariance matrix
is static in the case of OI, but dynamic in the case of the KF where it is evolved in
time. Furthermore, variations of the KF exists. In NWP much focus are on Ensemble
Kalman Filter (EnKF) (Houtekamer et al., 2005; Lorenc, 2003) and LETKF (Hunt
et al., 2007), in which the filter holds multiple ensemble members. With these methods,
covariance inflation is needed to ensure the spread of ensemble members (Houtekamer
and Mitchell, 1998). Also, localisation is often used, which adjusts the error covariance
to suppress the influence of observations far away to remove spurious long-distance
correlations (Greybush et al., 2011). Also, this makes parallel implementation easier,
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resulting in faster computations. KFs does have some interesting properties related to
crowdsourced data. At the beginning of this PhD study, the process of implementing
and testing a KF for crowdsourced data was started at Vaavud. Initial and preliminary
results for updating a wind forecast from the Vaavud NWP system (see chapter 4)
using observations from users of wind was obtained. Unfortunately, it was not possible
to complete those studies due to the unexpected bankruptcy of Vaavud (see chapter 1).
For further details on the KF, the reader is referred to the references mentioned above
in the current section.
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Chapter 10

Data assimilation in the DMI HARMONIE NWP system

Chapter 9 considered the theory of DA in general. This chapter is devoted to the DA
system of the HARMONIE NWP system in a practical sense, especially with a focus
on the parts that were restructured during this PhD project to create an analysis using
crowdsourced data. First, a fundamental introduction to the DMI HARMONIE model
is given.

10.1 The HARMONIE NWP model

The HARMONIE model is a non-hydrostatic model that is suited for predicting phe-
nomena on mesoscale so that the assumption of hydrostatic balance is not required.
HARMONIE is a result of a cooperation between two research groups, the ALADIN
(Aire Limitée Adaptation dynamique Développement InterNational) consortium led by
Météo-France and the HIRLAM-B consortium, where DMI is a member of the latter.

HARMONIE is at DMI runned every 3 hours (see figure 10.1) with a grid-spacing
of 2.5 km and 65 vertical layers. Data assimilation is done every cycle using 3D-Var
(see chapter 9). The configuration of HARMONIE can be done via a set of namelists
and a scripting system.

At DMI different model domain configurations exists. One model domain covers
only Denmark but has a horizontal resolution of 750 m1. Other domains cover parts
of Greenland. The main operational NWP model at DMI, named NEA, covers most of
Northern Europe and parts of the Atlantic and has a horizontal resolution of 2.5 km.

1This model, and a 500 m resolution model is currently not operational but parts of research
projects. The sub-km models have been set up by Dr Xiaohua Yang (DMI).
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The model domain used here is the DKA domain (see figure 10.2), also with a resolution
of 2.5 km.

Figure 10.1: Forecast cycle of the DMI HARMONIE model. A new forecast
is initiated every 3 hours from a new analysis xa which is produced by the
previous forecast, xb and an innovation term d (see chapter 9).

The dynamics and physics parameterisations have not been modified in this project.
Particularly the DA system of HARMONIE has been changed (see chapter 10). The
reader is referred to Seity et al. (2011) and Driesenaar (2009) for an extensive model
description, but it should be noted that HARMONIE is a semi-Lagrangian model which
allows larger time-stepping than Euler based models such as the WRF model.

SPOs was mainly collected from Denmark, and the focus has been on short time-
scales, mainly the first six forecast hours. Therefore the model domain, DKA, shown in
figure 10.2, was chosen to reduce the computational costs compared to a larger domain
with more grid points. It is believed that the DKA model area has a large enough area
outside Denmark to give boundary conditions a minimum impact on short time-scales.
The DMI default settings for the model was used (Yang et al., 2017), with modifications
to the DA system.
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Figure 10.2: Model domain of the DKA model shown by the grey shaded
area. This figure is also included as supplemental material to Hintz et al.
(2019b).

10.2 Observation pre-processing in HARMONIE

Before any DA methods are performed, observations must be pre-processed, to remove
observations of poor quality and to align the observation formatting. Pre-processing
observations refers to a chain of methods from data collection to detection of outliers,
to generate the observational state, y, used by the 3D-Var algorithm in HARMONIE.

10.2.1 Local pre-processing

Observations come from multiple systems from global to local systems; thus, no pre-
processing observation system is identical, but observations do enter the same kind of
methods. In general, observations come from shared networks such as

• Global Telecommunication System (GTS)
Received in American Standard Code for Information Interchange (ASCII) or
Binary Universal Form for the Representation of
meteorological data (BUFR) format.

• Satellite Receiving stations
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Figure 10.3: Outline of the observation pre-processing chain in HAR-
MONIE. SPOs enters the system after the Oulan routine.

• File Transfer Protocol (FTP) Servers

• Transmission Control Protocol (TCP) lines (such as local ethernet, phone wires
etc.)

The GTS is a generalized meteorological platform for sharing observations globally
controlled by the WMO. The local pre-processing in HARMONIE receives data from
all the individual sources and convert the data into an intermediate ASCII file which
Oulan takes as an input.

10.2.2 Oulan

Oulan reads the data from the local pre-processing system and outputs an intermediate
ASCII file named OBSOUL, which is input to the next module, Bator. In Oulan, data
types are identified and read separately and controlled via namelists. In such manner
it is easy to exclude different observation types in numerical experiments, such as ex-
cluding only aircraft data or surface synoptic observations (SYNOP) data.

OBSOUL is written in a specific format. The structure of OBSOUL is only covered
briefly here and documents how SPOs was incorporated into the HARMONIE system.
OBSOUL is divided into three sections. The article, containing date and hour, the
header, which holds the length of the observation article, observation type, observation
characteristics, latitude, longitude, station ID, date and hour of the observation, the al-
titude of the station, the number of bodies included, a quality flag and a site-dependent
integer. Finally, the body (or bodies if more than one parameter is included) is defined,
which holds the observation itself, such as the type of parameter and the observed value.
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Block 10.1 shows a minimal working example of an OBSOUL file with a single obser-
vation of surface pressure.

1 20180510 09 # Article

2 17 1 10014011 54.97655 12.27767 ’416789 ’ 20180510 083005

3 34.5000000 1 1111 100000 # Header

4 1 -100721.6626 0.1699999976E+39 0.0000000000E+00 2064 # Body

Block 10.1: Minimal example of a working OBSOUL file with a single ob-
servation. Comments are written in red. See text for details.

The first number in the header of block 10.1 specifies the number of entries in the header
and the body, including itself. The latitude, longitude and altitude of the station are
set in the header together with the station ID in a string of length nine characters. The
first number in the body is the parameter number for surface pressure, and the second
value is the observed pressure. Surface pressure is always given as a negative value in
OBSOUL. If block 10.1 was the output of Oulan only one observation would enter the
DA system.

In this way SPOs could be included in the HARMONIE system. After local pro-
cessing in SMAPS (see section 2.2 and Hintz et al. (2019b)) each SPO was converted
to OBSOUL format and sent to HARMONIE via Oulan (see figure 10.3).

10.2.3 Bator

The input to Bator is the OBSOUL observation file generated by Oulan. The output
of Bator is an Observation Database (ODB) which is input to the variational analy-
sis scheme. While creating the ODB, Bator takes into account a namelist, LISTE_-
NOIRE_DIAP2, which contains information about blacklisted observations.

The blacklist was used in this project to force some observations to be removed when
performing numerical experiments. Block 10.2 shows an example of three observations
that are blacklisted. The first (SHIP) is blacklisted in the operational setup, while the
two last (SYNOP) observations are only blacklisted for the sake of this example.

2‘A black list’ in French
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1 # OBSTYPE CODETYPE VARNO STATIONID DATE

2 1 SHIP 24 58 LAJS6 01022007

3 1 SYNOP 14 1 06079 01032018 # Anholt

4 1 SYNOP 14 1 06093 01032018 # Vester Vedsted

Block 10.2: Minimal working example of a blacklisting file. Comments are
written in red. See text for details.

The first two columns in block 10.2 is the observation type, the third column is the
code type, and the fourth column is the variable number. For example ‘1 Synop 14 1 ’
is an automatic land SYNOP station reporting surface pressure. The last two columns
are the station ID and the date at which the blacklisting starts. For further information
about the ODB see ECMWF ODB (2018). Finally, Bator specifies the observation
errors for the conventional observations before writing to the ODB.

10.2.4 Lamflag

Lamflag is an additional namelist for controlling the usage of observations. It can be
used to only use specific types of observations or only observations from a specific region.
Lamflag is not used in the setup at DMI.

10.2.5 Screening

The observation screening is the last frontier before observations enter the DA schemes.
The observation screening is divided into six parts with different sub-programs as listed
below.

1. Preliminary Check

1.1 Missing elements of observation reports.

1.2 Check coordinate system of the reports.

1.3 Scanning for blacklisting.

2. Background quality control

2.1 Background variance are estimated.

2.2 If an observation deviates too much it is flagged.

3. Vertical consistency

3.1 Duplicate levels from multi-level reports are removed.
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4. Removal of duplicate reports

5. Redundancy check

5.1 For land SYNOP the report from one station closest to the screening time
window is kept.

5.2 For ship SYNOP, reports are rejected if moving platforms are within a circle
of one-degree radius.

6. Data thinning

6.1 Horizontal thinning is performed for aircraft and satellite reports.

6.2 Vertical thinning is performed for aircraft and Atmospheric Motion Vector
(AMV) observations.

6.3 A pre-described minimum horizontal distance between reports from the afore-
mentioned observation types are enforced.

It is important to note that the data assimilation schemes assume that there is no cor-
relation horizontally between observation errors, so the observational error covariance
matrix, R, is diagonal. Therefore, data thinning is necessary for most operational sys-
tems. In the current DA scheme in HARMONIE there is no thinning of surface data.
Hence, it is necessary to do a manual thinning before allowing surface observations into
the system. Potentially that can be a significant issue when assimilating crowdsourced
data. Another possibility is to do ’superobbing’, in which observations close in time
and space are combined to create a single super-observation with a smaller error than
the individual observations.

When screening is complete, the system continues to start the minimisation of the
3D-Var cost-function (see section 9.4) to obtain the analysis.

10.3 Structure functions in practice

Recall the background error covariance, Pb, introduced in chapter 9. Pb defines how
errors spread throughout the model space, e.g. how do errors in pressure affects the
wind? Ideally, Pb should be dynamic, to take into account different weather regimes
that distribute errors differently. For example, in very stable boundary layers, errors
are more likely not to be advected upwards. However, as mentioned in chapter 9, Pb

is too large to handle directly in practice, so approximations are needed. Figure 10.4
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visualise the effect of Pb, shown by the difference in two analyses of surface pressure
valid at the same time, in which the only difference is a single surface pressure observa-
tion included from Copenhagen, Denmark. It is seen how information from the single
observation spread relatively far from the observation site to northern Germany and
opposite changes over the UK. The spread is determined by Pb.

Figure 10.4: Single Observation experiment: The difference between to
analyses valid at 2018-01-04 12 UTC is shown. In one analysis, a single
additional pressure observation was included. Colorbar is in units of hPa.

To determine Pb, one option is to run the NWP model for an extended period to
obtain samples of forecasts to estimate the error correlations in space and between vari-
ables. As described, any change in one variable may change another if the variables are
correlated. Such cross-covariances can be estimated by linear regression (Descombes
et al., 2015). Since Pb spread errors, it acts as a smoother on the model field (Mont-
merle et al., 2010). The smoothening helps to ensure that the model field is in balance.
However, for crowdsourced data, where the observation density is usually very high, too
much smoothening may result in loss of high-resolution information. This should be
investigated in more detail in future studies. Another possibility for crowdsourced data
is to do ‘superobbing’ which combines multiple observations close in space and time to
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a single super-observation with a smaller error than the individual observations.

Another method to determine, Pb, is to generate a set of ensemble members and
perform the statistics based on these. This approach is used in the HARMONIE com-
munity. Four ensembles are run twice daily (00 UTC and 12 UTC) for a longer period,
usually one winter month and one summer month to obtain information both about sea-
sonal variations and diurnal variations3. Structure functions have not been generated
as part of this study, so practical details are omitted.

3Information from the internal Harmonie System Documentation at Hirlam.org
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Chapter 11

Use of big data and crowdsourced data in NWP

‘Big Data’ and ‘Crowdsourced Data’ are in some manner closely linked; however, there
are some important differences between the two terms that will be elaborated in this
chapter. Roughly, it can be said that crowdsourced data can be a part of big data, but
not always. Crowdsourced data for use in NWP is not restricted to SPOs and PWS.
Other data sources also exist. An overview of other data sources is also given in this
chapter.

Crowdsourced data can indeed be a source of big datasets. However, crowdsourced
data also includes data from applications which do not produce much data. Muller
et al. (2015) categorised crowdsourced data into two sub-categories, namely ‘inanimate’
and ‘animate’ crowdsourced data. Inanimate crowdsourcing includes those applications
that do not require human interaction, one example being data from PWS (Fieldsense
A/S, 2019; Lonobox, 2019; Netatmo SAS, 2018). Animate crowdsourcing, on the other
hand, does require some human interaction. For example, the mPing app (NSSL, 2014)
collects user reports of the weather and is one of the first of its kind. Later, FMI (FMI,
2018) developed a mobile application in which users can report current weather condi-
tions for use by operational meteorologists. A downside of animate crowdsourced data
is that the data quantity is often much less than what can be obtained via inanimate
methods. One may argue that animate methods lead to better quality, but this question
is still open for discussion.

‘Big Data’ is a term with no clear definition. However, it is clear that the term is
not static but changes over time. For example, large datasets ten years ago might be
considered relatively small today. What does the term cover, how it is used, and how
it is not used? Big data should not necessarily only be defined based on the size of the
dataset. Schonberger and Cukier (2013) argues that there are three main characteristics
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of big data. First, the ability to handle and analyse the entire dataset is crucial instead
of only using sub-samples of the dataset. Secondly, the messy structure of big data
makes it easier to look for correlation instead of causality; hence statistically models
are often preferred over physical models when it comes to big data as it is easier to
handle big data with such. Finally, Schonberger and Cukier (2013) argues the necessity
to accept the inexact and messy structure of the data. One has to accept an often large
variability in the data. This comes as a somewhat natural consequence of the nature of
Internet of Things (IoT).

IoT are an umbrella term covering sensors connected to the internet which commu-
nicates in real-time or near real-time. A few examples could be a smartwatch making
an emergency call if it detects a sudden fall in heartbeat rates, or a households heating
system gearing down when it detects that the main door gets locked. There are nu-
merous of such examples; however, it is out of scope of this work to give a brainstorm
on such things. Instead, focus is on current techniques and developing ideas within the
atmospheric sciences. The IoT era started around 2008, where the number of devices
connected to the internet exceeded the number of humans alive (Evans, 2011). Evans
(2011) also predicts that in 2050 there will be 50 billion IoT devices. According to a
blog post from the tech company Hewlett Packard (Patric, 2014), 44 zettabytes1 will
be shared between devices by 2020.

Common used examples of IoT devices are smartphones and vehicles from which
one can retrieve information about, for example, the temperature and pressure. Less
obvious examples are drying launders, animals in agriculture and streetlights. Such
data have many potentials, but one must consider the quality that can be obtained
from an analysis of the data. One may ask, based on the data, if X.AND.Y what is the
probability for Z? Considering the entire dataset, there might be billions of hypothe-
ses to consider. Many of those will fail, but there can also be good results purely by
chance, which have no meaning in real life applications. Therefore, it is good practice
to consider which variables that should be used (see chapter 12) and test the results
before upscaling any application. Having said this, methods for dealing with big data
are still evolving.

Other crowdsourced data types that have not been considered in detail in this thesis
includes data from vehicles. Anderson et al. (2012) collected over 239.000 temperature
and pressure observations from nine vehicles in a test facility and examined these by

11 zettabyte=1012 gigabytes
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comparing to a weather station. They found good skill of the temperature measurements
but concluded that more work is needed to improve the quality of pressure observations
from vehicles. Also, Météo France and Deutscher Wetterdienst (DWD) have ongoing
projects with the private industry to utilise observations from vehicles (Hintz et al.,
2019c). Another potential useful new source of data can come from mobile telecom-
municating networks. Zinevich et al. (2009) used the signal strength between mobile
masts to quantify rainfall amounts. Suryana (2017) investigated the effect of rainfall
intensity on the 5G mobile signal to develop a filter that could reduce the signal loss.
Suryana (2017) found rainfall to be the most important factor in the reduction of the
mobile signal. Therefore, it is possible that the 5G-network can also be used to quantify
rainfall intensity in future. Closed-Circuit Television (CCTV) is another potential data
source, which can be used to improve road weather forecasting or to detect fog (Choi
et al., 2018).

Dense datasets are mainly useful for nowcasting and short-term NWP forecasting
because the observation networks have a much higher spatial resolution than the model
resolution. Within one square kilometre there can in some cases be more than ten PWS
(Hintz et al., 2019d). The high-resolution information from such dense observation
networks is first being smoothed when assimilated on to a coarser grid. Pre-processing
needs to be done to ensure that the high spatial resolution of the observations is also
representative of the model grid. Further, when the NWP forecast is being integrated
forward in time, the information about the small-scale structures that might be in the
observations slowly vanishes, which is especially true for regions that are upstream
data-sparse regions. To solve this, a rapid-update cycle of the NWP model can be a
solution. Also, observation-based nowcasting by interpolation to a grid can help to aid
operational meteorologists in decision making (Clark et al., 2018).
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Chapter 12

Machine learning

Big data (chapter 11) and Machine Learning (ML) are often used in the same context,
but there are big fundamental differences. Big data is about how to handle massive
data volumes, whereas ML is about how to use statistical algorithms for predictions,
often with large datasets. ML does not necessarily relate to big data or vice versa. With
that said, ML proves very useful for finding ‘hidden’ structures in big datasets which is
otherwise difficult to find and describe.

In this PhD project, ML has been used to predict the associated error of an SPO,
by training a model based on O-B (observation minus background) statistics. Before
describing the method and presenting results in chapter 13, the theory is described in
this chapter.

12.1 Fundamentals of machine learning

Before going into details with error prediction of SPOs using ML, the fundamentals
of ML is briefly discussed to establish a baseline. In popular science especially, terms
such as neural networks, big data, and ML are often used commonly and are sometimes
misinterpreted. Therefore, the purpose of this section is to ‘unbox’ the fundamentals of
ML. ML covers numerous topics, such as classification and decision algorithms. Given
some input, x, we want to predict some output y. Traditionally this is done by mapping
a function on to x to predict y, such that f(x) = y. This can, for example, be done
with linear regression if we expect a linear relationship between x and y. However, some
problems cannot be solved with traditional methods. Image classification is a good ex-
ample. If someone was given a task of writing a program that could predict the type of
a bird given an image of a bird. For simplicity, assume only two birds are considered,
a parrot and a crow. One could write a function that counts the ratio of blue pixels in
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the picture. A high ratio could indicate that it is an image of a parrot. However, an
image of a crow could be one where there is also blue sky leading to a wrong prediction.
One would have to write extensive amounts of if-statements and if one were given the
task of predicting a new type of bird, one would need to start completely over again.
Instead, one could make use of an algorithm which creates the rules itself, making the
solution much faster and more general. That is where ML proves useful.

ML deals with supervised learning, unsupervised learning, and semi-supervised
learning. In supervised learning there is a set of training data, meaning that one knows
both the input and the output; thus, the algorithm knows the target values and can be
optimised by minimising the error of the predictions. This approach is used for both
classification and regression problems. In unsupervised learning, there is as the name
implies no training data. It is mainly used to find patterns in large datasets, such as
if a customer buys A, they also tend to buy B. In unsupervised learning, it is possible
to tell an algorithm that it was wrong after an event has occurred. In this way, it can
be trained in long-term. This is partly how self-driving cars are trained (Kendall et al.,
2018). Semi-supervised learning is a combination of the two where one has some a priori
knowledge of the output for only some of the input.

It is possible to write a general pipeline for all supervised ML problems. First, one
must collect training data and split it up into test data and target data. The test data
is used after the algorithm has been trained to test its accuracy, which is essential as
it is often difficult to know if the best algorithm was chosen. After data collection has
been accomplished, one must choose good features. Features are the actual input. If
one wants to predict the weight of a person, a good feature would probably be that
person’s height in meters. A bad feature, on the other hand, would probably be the
eye colour or the person’s height in centimetres as it is perfectly correlated with the
first feature of height in meters. Experience is important when selecting good features.
Without good features, it is not realistic to train a model to give good results.

12.1.1 Classifiers

It is outside the scope of this thesis to cover classifiers in general, and so only the
general terms will be described. Classifiers all work the same on a high-level. Given
some features x they predict an output y. A classifier predicts a discrete class label.
For example, the smartphone app PlantSnap (Plantsnap, 2019) uses a photo as input
to predict a classification label with the name of the photographed plant. Examples
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classification algorithms include k-Nearest-Neighbour search, decision trees, and neural
networks; thus, using the terms ‘big data’, ‘ML’ and ‘neural networks’ interchangeable
are not only dangerous but also wrong. Even though neural networks are one of the
most sophisticated classifiers, it works on a much lower level than the terms ‘big data’
and ‘ML’.

12.1.2 Regressors

Regressors predicts a continuous quantity given some input features, x. Ukkonen et al.
(2017) used artificial neural networks for identifying occurrences of thunderstorms in
Finland and to evaluate thunderstorm predictors. In this PhD project, different re-
gressors have been tested to predict the error of an SPO to be able to correct the
observations (see chapter 13).

12.2 Preprocessing of data

In order to predict y as good as possible, pre-processing of data is needed. If one of
the input variables explains by far most of the variance of the dataset, it is likely to be
the most significant input variable to the model. It might be that one wants to predict
the age of a person, based on that person’s annual income, the person’s height and the
number of places the person has lived. The dataset might contain heights ranging from
1.5 m to 2.2 m, places lived from 1 to 10, but the annual income might vary from 0 $
to 100.000 $. Clearly, almost all of the variance in the dataset is explained by annual
income. To solve this issue, the data needs to be scaled appropriately before entering
any model. This is can for example be done with either normalization (12.1) as

xscaled =
x− xmin

xmax − xmin
, (12.1)

which scales all numeric data in the range 0-1, or standardization (12.2)

xscaled =
x− x
σ

, (12.2)

which transform the data to have zero mean (xscaled = 0) and unit variance.

12.2.1 Choosing input variables

It is tempting to gather as much data as possible and to let some pre-made ML software
do its ‘magic’. However, by having too many variables one risk overfitting the model,
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creating a model unable to predict future events. Secondly, this approach introduces a
black box approach. Given a model, y = m1x1 +m2x2, where y is the predictand and
x are predictors (input data) and m1 and m2 are the model parameters. As scientists,
we are generally not interested in y but more in the model (m1 and m2) explaining
the phenomena. Surely, y is interesting and is used for validation, but the physics lies
in the model. When working with data models it is therefore important to consider
multicollinearity as this can alter the explanations of the system widely.

12.2.1.1 Multicollinearity

Multicollinearity is a term used when dealing with highly correlated predictors. One
does not need to consider this effect if the only interest is in the value of the predictand
and not the model parameters. However, it is essential to check for multicollinearity if
one wants to gain insight into a model. Imagine a purely imaginary dataset consisting
of x1 and x2, where the correlation (r(x1, x2)) is high. One example could be the height
and weight of a person, claiming higher persons tends to weigh more. If one wants to
predict y (which in this example could be shoe size) using x1 via linear regression one
would obtain a value of the slope m1. With m1 it can be argued that for every unit
increase in x1, y will increase with the value of m1. If x1 and x2 is highly correlated,
the prediction, y, will not necessarily change by introducing x2 to our model, but our
conclusions might change. By introducing x2, the value of m1 can change, so our
conclusion is now different for a unit increase of x1. This happens when x1 and x2 are
correlated and shows that x2 is indirectly included in the model via x1 even when x2

has not been directly specified and hence one risks making wrong conclusions.

12.2.1.2 Curse of dimensionality

The curse of dimensionality describes the effect of increasing the dimensions of the in-
put data first described by Bellman (1961). In ML terms, this is when one increase the
number of features. Assume that a dataset xT = {x1, x2, .., xN}, exist with N = 100

observations. If one were to create a classifier to predict y and one dimension (D = 1)
exist, one could separate the domain into a number of evenly sized regions. For example,
with a uniform distribution, one could choose to create ten regions such that we expect
to find N/10 = 10 observations within each region on average. Now, if there exist two
dimensions (D = 2) our dataset would have the form xT = {(x11, x12), .., (xN1, xN2)}
and instead of ten evenly spaced regions we would have 10D = 100 regions, but with
N = 100 we see that the observation density has decreased from 10 observations per
region in average to 1 observation per region in average. Adding a third dimension
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results in 1000 regions and an average observation density of only 0.1 observation per
region.

From the nearest neighbour (see section 12.3.1) point of view, we increase the Eu-
clidian distance between observations for each dimension we add, making the model
less accurate. If reducing the number of dimensions is not an option, the only option to
make the model accurate enough is to add more training data. To have the same obser-
vation density in three dimensions as in one dimension, one would need N = 1003 = 106

observations instead of N = 100 for one dimension. Therefore, simply adding extra fea-
tures is not necessarily the best answer to complicated problems. It quickly becomes
difficult to meet the requirement of enough training data for high dimensions. Con-
versely, having a dataset with many features, one can increase the observation density
by reducing the number of dimensions by examining if there exist features that are not
strictly needed to predict the target.

12.3 Machine learning models for predicting errors

As was mentioned in section 12.1.2, this PhD project has tested different regressors for
predicting errors of SPOs. The results and discussion of these tests are given in chapter
13. First, the models used are presented and described in this section.

12.3.1 k-Nearest-Neighbour

The k-Nearest-Neighbour algorithm is a simple, intuitive model. It has been widely
used for classification within satellite imagery and handwritten text recognition (Hastie
et al., 2009a). For each data point in feature space, the k nearest neighbours are found
from which the target is predicted by linear interpolation (Buitinck et al., 2013). In
this study, all neighbours are weighted uniformly, not taking the distance to each into
account. Due to the complication with dimensionality (see section 12.2.1.2) it has to be
prioritised not to choose too many features.

12.3.2 CART

A gradient boosting regression was also used to predict the error of an SPO. Gradient
boosting is a sub-category of Classification And Regression Trees (CART); thus, a brief
introduction to CART is given before describing the gradient boosting method. Tree-
based methods or decision trees are relatively simple and intuitive to understand. Also,

86



12. Machine learning 87

decision trees have the advantage that it is possible to trace back decisions made based
on the input data and thereby examine the feature importance (Hastie et al., 2009b).
Figure 12.1 illustrates the workflow of a small, grown tree. Suppose a set of features
exists, x1, x2. The feature space is partitioned into sub-regions, in this case, until a
leaf node is created, represented by the circles in figure 12.1. At each branch, a split is
applied as a boolean condition. For example, on the top level in figure 12.1 it is asked
if x1 < c1, where c1 is a constant. If true, the left branch is followed and if false the
right branch is followed. This process continues until one of the leaf nodes of the tree
is reached.

Figure 12.1: Conceptual sketch of a decision tree. T and F stands for true
and false respectively. The black circles represents the leaf nodes of the
tree.

When a leaf node is reached, the target, yi=1..6, is returned. In reality, yi repre-
sents a region in feature space, and the returned value from the model can be defined
as whatever is found suitable for each case. For example, the response value can be
defined as the average of all data points within yi. The reader is referred to Hastie
et al. (2009b) and Bishop (2009) for theory on how to grow a tree. This work used the
software provided through the scikit-learn API for Python (Buitinck et al., 2013).

Some disadvantages of decision trees are that they can overfit the data if the tree
becomes too large and they are not robust to new data, so if new unseen data enters the
system, the predictive skill is usually poor. A ‘random forest’ is the development of a
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decision tree to decrease the tendency of overfitting. A random forest consists of many
decision trees and is a method in which many uncorrelated decision trees are trained.
The response will be the average or median of all individual decision trees. The features
used to grow each tree is selected randomly from the full feature set.

12.3.2.1 Gradient boosting

The Gradient Boosting method is a method which combines multiple so-called ‘weak
learners’ to obtain a single strong learner. A weak learner is only vaguely defined;
however, in general, it is a model that scores only slightly better than random guesses
(Bishop, 2009). In this sense, the gradient boosting works much like the random forest
just explained in section 12.3.2, by creating an ensemble of weak learners. The collection
of weak learners can be single decision trees, but it can be any type of model. In the
software from Buitinck et al. (2013), used here, decision trees are used as the weak
learners; thus, in this case, the random forest method and the gradient boosting method
is very similar. However, where a random forest selects the subset of data used to grow
the tree randomly, the gradient boosting selects data in an iterative manner (Hastie
et al., 2009c). A loss function, which measures the error of the model, is minimised so
more weight is given to data points that are difficult to predict in terms of a large error.
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Chapter 13

Correcting smartphone pressure observations

Chapter 12 introduced the fundamentals of ML and the algorithms which have been
used in this PhD project. ML is used to predict the error of an SPO, which is then
corrected by subtracting the predicted error. This chapter describes the methods and
presents complementary results from these experiments.

Smartphone observations from the period April 2018 to December 2018 was col-
lected (see table 2.2 for a list of all the collected variables). In total this dataset consist
of 44.992.644 observations (see table 2.1). Then two datasets were created for each
smartphone individually, a training and test dataset, denoted DT, and a verification
dataset, denoted DV.

DT holds all observations from the period April 2018 to November 2018 and DV

holds all observations from December 2018. Furthermore, DT is randomly divided into
a training set, Dtr

T , and a test set, Dte
T , using a fraction of 0.7 for Dtr

T and 0.3 for
Dte

T . It is then possible to train a model based on Dtr
T and calculate skill scores for the

trained models based on Dte
T . DV works as an independent dataset, to verify how the

trained models perform when presented for data from a period different from that in
the training data. The target is the error of an SPO given a set of features. The error
is defined as the observation minus background, where the background is a short-term
HARMONIE forecast. Each SPO is then corrected by subtracting the predicted error
(target).

First, a baseline denoted BL_NC (‘Baseline No Correction’), is defined in which the
SPOs has not been corrected in any way, before calculating the difference of each SPO
and a short-term forecast. Also, a reference is defined as the difference of each SPO
subtracted by the average error for each smartphone and the short-term forecast and
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is denoted BL_MC (‘Baseline Mean Correction’). Then two different ML models were
trained for each smartphone present in Dtr

T , to predict the error. The two models is
a k-Nearest-Neighbour model and a Gradient-Boosting-Regression model (see chapter
12), in the following abbreviated as ML_KN and ML_GB respectively.

The features for both ML_KN and ML_GB is latitude, longitude, observed pressure,
the standard deviation of the pressure and the hour of the day. Better choices may exist
and are something that should be tested going forward. The reasoning of choosing these
features is that the error is dependent on location (latitude, longitude) since observa-
tions are taken at different altitudes at, e.g. home and work. If the altitude is precisely
the same for different locations, there can still be a varying difference between the ter-
rain of the NWP model and the physical world (see figure A2). The observed pressure
is used to include potential systematic errors which can depend on the pressure itself.
The standard deviation holds information about the change in altitude while a device is
measuring. Standard deviations of the same order of magnitude could, therefore, hold
information about the magnitude of the error. The hour of the day is included partly
due to the same reasoning of the position, namely that the error can be different at,
e.g. 9 UTC and 18 UTC. However, the hour of the day is more natural to normalise
than latitude and longitude and the hope is therefore that including the hour of the
day as a feature the model will be more robust to new unseen locations. All features
was normalised (see equation (12.1)) using the data contained in Dtr

T . Thus, DV is also
normalised using the minimum and maximum of Dtr

T .

13.1 Complementary results and discussion

In addition to the method described in the previous section, KN was also run without
normalising the features and not including the hour of the day as a feature. Figure 13.1
shows a spatial comparison of SPO background deviations using a short-term HAR-
MONIE forecast as background (see chapter 10). All circles represent a single SPO
during December 2018, and the colours represent the background deviation. The left
figure shows the unprocessed SPOs (BL_NC). In the right figure, the SPOs has been
corrected with the predicted error using KN with N = 3. The features have not been
normalised nor standardised; thus, not surprisingly, there is room for improvements.
The RMSE decreased from 2.3 hPa to 1.3 hPa after the correction. For the remaining
results in this section, all features have been normalised as described in the previous
section.
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Figure 13.1: SPOs from December 2018. Colours show the background
deviation. Left: Untreated SPOs (RMSE=2.3 hPa). Right: SPOs corrected
by a prediction from the nearest neighbour model (N=3), using latitude,
longitude, pressure and the standard deviation of the pressure as features
(RMSE=1.3 hPa).

Figure 13.2 shows the root mean square error of the predicted errors of the SPOs
in the test batch, Dte

T . BL_NC scores worst, however, that is not surprising. BL_MC
reduces the average error with 0.77 hPa, and the median has decreased with 0.80 hPa.
Even larger improvements are seen for both ML_KN and ML_GB, where both the
average and median of the errors have decreased by more than 1 hPa.

Figure 13.3 shows the distribution of the bias for the test batch, Dte
T . First, it is

noted that BL_NC has a large spread, and it is difficult, if not impossible, to interpret
any shape of the distribution in figure 13.3. Again, using the average error as the pre-
dicted error, BL_MC improves the bias significantly. In terms of the average, median
and standard deviation of the distribution, BL_MC, ML_KN and ML_GB are sim-
ilar, but with a lower standard deviation of about 0.3 hPa for ML_KN and ML_GB
compared to BL_MC.

Figure 13.4 shows the distribution of the standard deviation for the test batch, Dte
T .

The distribution of BL_NC and BL_MC is nearly identical. The only difference is
rounding errors that make the RMSE, bias and standard deviation of the distributions
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Figure 13.2: Root Mean Square Error of SPO error predictions for the test
batch of BL_NC (red), BL_MC (blue), ML_KN (green) and ML_GB
(black). µ is the average, x̃ is the median and σ is the standard deviation
of the distribution. See text for details.

slightly different. That is because of the way the standard deviation is defined (see
equation (C.8)), so instead of subtracting the mean error (bias) before calculating the
RMSE, bias and standard deviation, the bias is subtracted when calculating the stan-
dard deviation and therefore BL_NC and BL_MC are the same in this case. Also, the
distribution of ML_KN and ML_GB for the standard deviation are very similar to the
distribution of RMSE, because the bias of both distributions is close to zero.

Figure 13.5 and figure 13.6 shows an example of corrected SPOs contained in DV for
a period of 45 minutes for ML_KN and ML_GB respectively, plotted as the deviation
from the background value. Each row is 15 minutes, and the left column shows the
uncorrected SPOs, and the right column shows the SPOs corrected by the predicted
error. For both ML_KN and ML_GB, a substantial improvement is seen, indicating
that the methods are indeed promising. There are still a few large differences, but it is
expected that these can either be removed with improved methods or a suitable screen-
ing procedure. It is hard to see a difference between ML_KN and ML_GB by eye.
This is expected with figure 13.2, 13.3 and 13.4 in mind. However, small differences are
seen on the island of Sealand, where the colours are in general slightly less green (lower
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Figure 13.3: Bias of SPO error predictions for the test batch of BL_NC
(red), BL_MC (blue), ML_KN (green) and ML_GB (black). µ is the
average, x̃ is the median and σ is the standard deviation of the distribution.
See text for details.

errors) for ML_GB compared to ML_KN.

The methods that have been presented in chapter 12 and this chapter have shown
promising results. It has been shown how two different ML models give better results
than correcting observations with simple bias correction. This is mostly because the ML
models can take into account that the devices are non-stationary. Therefore, one must
expect different bias from the same device. Training a ML model for each smartphone
is a rather heavy computational process. However, in operational systems, the training
can be done in near-real time as new observations enter a system. Alternatively, it is
possible to take advantage of recent advances within the operating systems of mobile
devices. Both Android and iOS have implemented ML-kits into each of their developer
SDKs (Apple Inc., 2019; Google Developers, 2019a). With these frameworks, it is
possible to take advantage of the computational power of each smartphone by training
the model directly on the device itself. Then, instead of sending an observation with
relevant metadata to a database, the corrected pressure observation can be sent directly
to the observing system.
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Figure 13.4: Standard deviation of SPO error predictions for the test batch
of BL_NC (red), BL_MC (blue), ML_KN (green) and ML_GB (black).
µ is the average, x̃ is the median and σ is the standard deviation of the
distribution. See text for details.
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Figure 13.5: Difference between SPOs and NWP surface pressure. Left col-
umn: Raw SPOs. Right Column: SPOs corrected by the predicted error
using K-Nearest-Neighbour method. Each row is 15 minutes. The time
interval is seen in left-column plots. The date is 12 Dec 2018. Only smart-
phones with over 50 observations in total has been used.
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Figure 13.6: Difference between SPOs and NWP surface pressure. Left
column: Raw SPOs. Right Column: SPOs corrected by the predicted error
using a Gradient Boost model. Each row is 15 minutes. The time interval
is seen in left-column plots. The date is 12 Dec 2018. Only smartphones
with over 50 observations in total has been used.
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Chapter 14

Collecting and processing of Barometric Data from Smartphones for
Potential use in NWP Data Assimilation - Publication B

Utilising SPOs and correctly assimilate these into modern NWP models are a new field
of research and relatively unexplored, but with vast potential. Few studies exist which
have collected SPOs (Kim et al., 2015, 2016; Madaus and Mass, 2017; McNicholas and
Mass, 2018; Price et al., 2018). Kim et al. (2016) was the first to apply machine learning
algorithms for correcting errors of SPOs. Madaus and Mass (2017) assimilated SPOs
into the WRF model (Skamarock et al., 2008) (see also chapter 4) using an Ensemble
Adjustment Kalman Filter (EAKF). However, SPOs was not included as an integral
part of the DA-system. In a continuing study McNicholas and Mass (2018) improved
the assimilation and used a LETKF scheme to assimilate SPOs into the WRF model.
Also, McNicholas and Mass (2018) presented a promising approach of predicting errors
of SPOs using a random forest machine learning algorithm. With this, McNicholas and
Mass (2018) was able to get useful information from moving sensors and sensors away
from the surface. While Kim et al. (2015), Kim et al. (2016) and McNicholas and Mass
(2018) collected SPOs via a self-developed app, Price et al. (2018) obtained data from a
third-party provider. Due to privacy constraints, it was not possible to obtain a unique
identifier for each device, and hence, Price et al. (2018) was not able to bias correct the
observations. Also, as already described (see chapter 2), making a full single app makes
the data source potentially unstable.

Hintz et al. (2019b) presents an improved method to collect SPOs from several
sources by integrating a SDK (see section 2.2), which can be used in an unlimited
number of third-party apps; thus, there is no need to spend time on designing UI and
UX. Hintz et al. (2019b) is the first study to assimilate SPOs using variational DA.
The article is divided into three parts. First laboratory examinations of smartphone
barometric sensors are performed to clarify which orders of magnitude of bias that can
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be expected and to investigate if the bias drifts over time. Secondly, the method of
data collection, processing of data client-side and a method of screening SPOs for poor
quality are presented. Thirdly, the NWP system and how the SPOs was assimilated is
presented.

Processing of data client-side needs to be done carefully. Figure 14.1 shows 50 indi-
vidual measurement series of pressure from a smartphone barometer over 180 s with a
sampling rate of 1 Hz subtracted by the mean of each measurement. The solid black line
shows the average between all 50 measurements. It is seen that there is a spin-up period
at the beginning of a measurement. This is due to the internal IIR (Infinite Impulse
Response) filter as described by McNicholas and Mass (2018). Therefore, the first few
samples should always be skipped when the barometer is accessed. Here the first 5 s is
always ignored independent of OS. iOS returns a sampling rate of 1 Hz, while Android
returns a sampling rate dependent on the specifications of the barometric sensor. For
a Samsung Galaxy S7, the sampling rate is approximately 4 Hz. Due to the difference
of sampling rate, it was decided to skip the first 5 s, instead of the first five samples,
to be consistent over different OS. Hereafter an average is computed iteratively before
sending data to the server.

The iOS SDK does not allow apps to run continuously in the background by de-
fault1, which causes observations to enter the database irregular in time. Figure 14.2
shows the total distribution of observations entering the database as a function of time
of day in the period 4th of April 2018 to 24th of May 2018. A sharp rise in incoming
observations is seen in the morning (the black vertical dashed line shows the approxi-
mate time of sunrise in Denmark), whereafter it declines and levels out. In the evening
a rapid decline is seen with relatively low numbers throughout the night.

The uneven distribution in time makes it problematic to obtain a reliable bias for
unique devices fast, as a minimum number of reports are required to compute the bias.
Price et al. (2018) found that the systematic bias does not change significantly over
time; thus, if the bias of individual smartphones can be found, and if the observations
are either corrected to the surface or known to be taken at the surface, the SPOs can
be assimilated directly.

Running operations in background mode is done differently on different OS such as

1Activities in the background can be enabled by setting certain background modes. For example,
an app can be activated by sending push notifications. See Apple Inc. (2017) for details.
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Figure 14.1: Spin-up by the barometric sensor in an iPhone 7 (Bosch
BMP280). Each coloured curve is a single measurement series over 180
s, subtracted by its average value. The full black line shows the average of
50 measurements series.

iOS and Android. In general, the Android OS is more open for background executions
than the iOS OS. However, with the introduction of the Android OS version 8 in August
2017, background executions have also been more restricted here (Google Developers,
2019b). It is still possible to obtain more frequent observations than shown in figure
14.2, on both iOS and Android; however, if that is also the case in future is unknown.
Screening methods for crowdsourced data should therefore not be based on assumptions
of observations coming regularly in time.

A key finding of Hintz et al. (2019b) is that the vertical position of individual smart-
phones is still too inaccurate to utilise SPOs directly. Some preprocessing must be done
before the observations can be assimilated. However, this issue is likely to reduce in
future as the accuracy of vertical positioning increases (Robustelli et al., 2019). Until
then, screening of SPOs is essential. The second part of Hintz et al. (2019b) presents a
method for screening SPOs. The screening method is divided into separate blocks that
can be turned on and off. First, a ‘flagging’ vector containing penalties for all obser-
vations are allocated. Each block can then add a penalty to the relevant observation.
With such setup, it can easily be tested how each block affects the screening procedure
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Figure 14.2: Distribution of SPOs entering the database as a function of
time of day during the period 4th of April 2018 to 24th of May 2018. The
black vertical dashed line shows the approximate time of sunrise in Den-
mark.

and no observations are discarded but rather stored with an associated penalty value.
In the end, the SPOs which have a penalty less than a chosen threshold can be writ-
ten to a HARMONIE compliant observation file (see the OBSOUL format described in
chapter 10).

The third and final part of Hintz et al. (2019b) examines assimilation of SPOs in
HARMONIE. The DA system was modified to allow SPOs to enter the assimilation
system (see chapter 10). Four different runs over a period of 5 days with 3-hour as-
similation cycles were done to examine the impact of different settings of the screening
procedure: a reference with no SPOs, a run with all SPOs (no screening), a run with
relaxed screening and finally a run with strict settings of the screening. Hintz et al.
(2019b) finds that the HARMONIE DA system is not prepared for receiving SPOs with-
out any prior screening. It is also shown that the bias decreases relative to the reference
in both cases when screening is used, without a change in the root mean square er-
ror. The article contributes positively towards assimilating crowdsourced data in NWP
operationally.
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Chapter 15

Collecting and utilising crowdsourced data for NWP: Propositions from
the meeting held in Copenhagen, 4-5 December 2018 - Publication C

Crowdsourced data in NWP is still a rather new field of research; thus, communities
have not yet been established in which sharing of knowledge and ideas can take place
efficiently. Further, there has been a lack of awareness about ongoing activities at other
institutions and meteorological services. DMI has come a long way already with data
collection of crowdsourced meteorological observations, assimilation of SPOs in NWP
and legal issues regarding user privacy. Still, challenges exist on which it is believed
that the meteorological community should collaborate closer to solve. This includes
methods of data collection, data processing, data storage and usage. To improve on the
previously mentioned points, a workshop at DMI was planned with two main aims: 1)
to gather experts on crowdsourced data focused on NWP, to start a network of people
working on the subject and 2) producing a white paper directing the research commu-
nity towards best practices and guidelines on the subject. Hintz et al. (2019c) is the
resulting paper and the main product of the workshop.

The workshop was planned and lead by the PhD candidate and was funded by DMI.
Planning started in August 2018 and invitation letters were sent out during September,
and October 2018 to institutions and individuals who were thought could benefit from
attending the workshop. Great interest was seen from many national meteorological
institutes and universities. Ultimately the following institutions were represented at
the workshop:

• European Centre for Medium-range Weather Forecasts (ECMWF)

• Estonian Environment Agency (ESTEA)

• European Meteorological Services Network (EUMETNET)
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• Danish Meteorological Institute (DMI)

• Deutsche Wetterdienst (DWD)

• Finnish Meteorological Institute (FMI)

• Met Èireann

• Météo France

• Met Office, UK

• Koninklijk Nederlands Meteorologisch Instituut (KNMI) (Royal Netherlands Me-
teorological Institute)

• University of Copenhagen, Denmark

• University of Reading, UK

• University of Washington, USA

The workshop spanned two days with the first day allocated for presentations and the
second day allocated for discussions.

Prior to the workshop, European Meteorological Services Network (EUMETNET)
had arranged a meeting on crowdsourced data with a more generic focus, hosted by
the FMI. The EUMETNET made an excellent starting point; however, there was a
prominent focus on image processing, legal issues and data formats. Crowdsourcing is
a complex subject which is hard to reach general conclusions for. Therefore, the DMI
workshop narrowed the subject to crowdsourcing in NWP. Still, many topics were rep-
resented at the workshop, such as data from vehicles, user reports of current weather,
PWS, data management, legal issues and data from smartphones.

The first day was allocated primarily for presentations by the participants on current
activities and challenges followed by a short discussion and questions for each presen-
ter. Day one ended with an open discussion facilitated by the PhD candidate, and a
networking dinner funded by the DMI.

The second day of the workshop started with a single presentation by the PhD
candidate on the subject of legal issues on which DMI has gathered experience (see
section 2.4.1). Afterwards, two discussions groups were formed, each with a different
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set of questions based on the discussions from day one. Finally, the workshop ended with
a conclusive discussion where recommendations and conclusions for a wider community
were agreed on. Hintz et al. (2019c) gives a summary of the presentations to provide the
community with an overview of ongoing activities and to share the key findings from
the workshop with the public.
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Chapter 16

Evaluating pressure observations from private weather stations and
smartphones - Publication D

During the work of the three first articles (Hintz et al., 2019a,b,c) it has become clear
that one of the most challenging parts of observations from smartphones, is the fact
that these are non-stationary, which makes bias-correction and screening more difficult.
Therefore, it was decided to investigate data from PWS further as another potential
source of data for NWP. Because weather stations from Netatmo (Netatmo SAS, 2019b)
are popular in Denmark and the rest of Europe, these became the main data source
for this study. However, other manufacturers do exist (Fieldsense A/S, 2019; Lonobox,
2019; Rainwise Inc., 2019). A Netatmo weather station has by default one indoor and
one outdoor module, which both measures the temperature and relative humidity. The
indoor module also measures air pressure. The indoor module is connected to WiFi
and is powered by cable, while batteries power the outdoor module. The indoor and
outdoor modules communicate wirelessly via Bluetooth. The weather station can be
expanded with a rain gauge and an ultrasonic anemometer, but data from these are not
considered here; however, rainfall observations from rain gauges are being considered
by the DMI radar group as a source of data, useful for verification of precipitation (see
figure A4).

Observations from the Netatmo API (Netatmo SAS, 2019a) was continuously re-
trieved since 1st of February 2018 with a sampling rate of 30 minutes. Not all retrievals
were successful, either because the API was under maintenance or stations not report-
ing. Furthermore, Netatmo SAS (2019a) defines a fair-use policy so that responses are
being limited if one makes too many queries. To query observation data, a rectangle is
defined, and at most 1.000 stations within the area defined by the rectangle are being
returned. One can, of course, make many small rectangles and query observations from
each of these. However, that would conflict with the fair-use policy. The Netatmo API
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(Netatmo SAS, 2019a) returns the observed outdoor temperature and relative humidity
and the (indoor) air pressure. Other indoor observations are not available through the
public API.

For three individual Netatmo stations, the authors got access to all observation data
from 1 April 2018 to 31 March 2019, with a temporal resolution of one hour. The bias
of the three stations is examined in detail in Hintz et al. (2019d), in which a varying
bias throughout the year is found. A conclusion on the reasons for this is yet to be
determined; however, a high correlation with the observed indoor temperature is found,
which can indicate that there is a temperature dependency which is not adequately
accounted for. To investigate this further, the authors acquired two Netatmo stations
to perform controlled experiments. These experiments are currently being designed and
are planned to start in July 2019. Therefore, these are not yet a part of Hintz et al.
(2019d), but are essential experiments needed to finalise the article. However, conclu-
sions based on public data can already be made.

Furthermore, it has been a strong wish of the authors of Hintz et al. (2019b) to ex-
tend the simulation period of five days of the NWP run in which SPOs was assimilated.
Therefore, both SPOs and Netatmo pressure observations has been assimilated into
the DMI HARMONIE NWP model using 3D-Var in two separate runs spanning nearly
two months. The methods used to handle SPOs follows Hintz et al. (2019b). Pressure
observations from Netatmo were bias-corrected using two months of short-term HAR-
MONIE NWP forecasts prior to the model run. It was believed that data-thinning
of surface observations was implemented in the HARMONIE model. However, when
examining the observation usage, it became clear that it was not the case, meaning that
all observations that passed the observation screening were used in the minimisation
routine. Therefore, an extra run will be performed, which does include data thinning
of the Netatmo pressure observations.

Another aspect of using observations from PWS is data tampering. The size of such
an issue is yet to be determined. However, different examples were revealed during this
study. In one case, a Netatmo user placed a station at open sea. While that is a case
that is easy to detect, it raises the question about how many stations are positioned
wrong, either because the user has chosen a wrong location deliberately or by accident.
Also, station owners have the possibility to ‘calibrate’ their pressure observations by
adding an offset to their observations, and there is no information of calibration offsets
in the response of the Netatmo API. Bell et al. (2015) presented a year-long field study

105



16. Evaluating pressure observations from private weather stations and
smartphones - Publication D 106

in which seven PWS was compared to professional equipment and concluded that the
bias can be corrected for if the bias is considered for individual stations. However,
to fully utilise observations from PWS, monitoring systems will need to be developed,
which takes into account rapid changes in observed variables and movement of the
station both horizontally and vertically. Bell et al. (2015) considered only the quality of
the observations, not the behaviour of data coming from real applications. To do so, a
unique device identifier is necessary. The Netatmo API (Netatmo SAS, 2019a) returns
the device MAC address, but that may be different for each service provider. Hintz
et al. (2019d) is the foundation for developing such a monitoring system.
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Chapter 17

Summary and conclusions

17.1 Summary

This PhD project has been investigating the potential use of crowdsourced data in
Numerical Weather Prediction (NWP) with a focus on data from smartphones and Per-
sonal Weather Stations (PWS). The project spans a variety of subjects necessary for
working with crowdsourced data. First of all, the main subject has been on the use
of crowdsourced meteorological variables for use in NWP and weather forecasting. To
study such data, it is, of course, necessary to acquire the data. Therefore, a significant
part of this PhD project has been on methods of collecting data and developing software
for this purpose. A consequence of being one of the first to collect observations owned
by the public, in the same period that the European General Data Protection Regula-
tion (GDPR) act was implemented, meant that much effort also had to be put into legal
issues regarding collection, storage and handling of the data. Chapter 2 described how
data was collected from both smartphones and PWS and how the project was made
GDPR compliant.

Chapter 3 and chapter 4 gave a general introduction to NWP and the forecasting
system implemented at Vaavud, respectively. The Vaavud NWP system was used in the
work of the first article (introduced in chapter 8), in which a new method of estimating
the surface roughness using handheld wind measurements from smartphones was pre-
sented. Chapter 5 and chapter 6 introduced the background theory for this method.
Chapter 7 gave a short introduction to traditional observations of wind and pressure.

After introducing the first article in chapter 8, the focus changed to pressure observa-
tions from smartphones and PWS. Chapter 9 and chapter 10 introduced the background
theory for relevant data assimilation schemes and the assimilation system of the HAR-
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MONIE NWP model respectively. Other relevant schemes were also described briefly.
Then a clarification of the terms ‘big data’ and ‘crowdsourced data’ were provided in
chapter 11 together with a brief discussion on other potential crowdsourced data sources
which has not been examined in this PhD project. Then, promising preliminary studies
in which SPOs were corrected by predicting the errors using machine learning models
were presented, first by introducing fundamental concepts of machine learning in chap-
ter 12 and then presenting complementary results to the study as a whole in chapter
13.

Hereafter, an introduction to the last three articles was given in chapter 14, 15 and
16, followed by this summary and conclusions.

17.2 Conclusions

It is deemed that this PhD project has given a positive contribution to the focus on
crowdsourced data in NWP as the first and only study which have investigated Handheld
Wind Measurements (HWMs) from smartphones, and the first study that has actively
collected Smartphone Pressure Observations (SPOs) in Europe. It has been shown that
crowdsourced data is valuable for NWP when dealt with appropriately, which can be
seen as the primary conclusion of this PhD project.

It was shown that HWMs from smartphones could in some cases be more repre-
sentative for an area than nearby official weather stations and one conclusion is that
HWMs can potentially contribute to give operational meteorologists a better overview
of current weather conditions.

An efficient, yet simple method to collect pressure observations from smartphones
has been presented. A screening scheme for SPOs has been developed, which improves a
short-term forecast when used in HARMONIE. Thus, a full pre-operational production
line for SPOs has been developed as a part of this project, which therefore can be made
operational with little effort. However, it is also recommended to examine the impact
of SPOs when assimilated with 4D-Var in future, as this is expected to perform better
than 3D-Var. Potential improvements to the screening scheme have been suggested. It
is also concluded that the quality of SPOs increases in future, as the built-in navigation
systems in smartphones improves, thereby reducing the error on the retrieved altitude of
the smartphone. Also, it is concluded that screening methods and monitoring software
for PWS needs to be improved with a focus on the inexact nature of crowdsourced data.

Predicting the errors of SPOs using two different machine learning models and using
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these to correct the observations proved to decrease the errors of the SPOs compared
to standard mean bias correction.

It is concluded that all of the objectives of this PhD study have been met (see
section 1.2). For all the pre-defined success criteria to be met, the methods still need
to be applied in one or more commercial projects. However, this criterion was higher
prioritised when the project acted as a part of Vaavud ApS. Furthermore, the commer-
cial criterion is met if the findings of this study are operationalised. Also, the part of
the study which has investigated data collection from smartphones is a part of multiple
commercial smartphone applications already.
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Chapter 18

Future work and challenges

There are still challenges to solve before all types of crowdsourced data can be used
in NWP. The use of other types of data assimilation schemes needs to be investigated
in future studies. A few examples of potential schemes have already been given in
chapter 9. Assimilating SPOs with different methods such as 4D-Var, nudging and KF
to study observation impact would be one intriguing study. It is expected that these
methods are better suited to take into account the high temporal and spatial resolution
that crowdsourced data has. Also, it is crucial that data assimilation methods, which
include crowdsourced data, are scale-aware, as the observation density varies dramati-
cally. For example, in urban regions, there is usually many orders of magnitude more
observations than there is from outside these regions.

This study has collected a large amount of data in total. However, only a fraction
of the potential data has been collected. The methods used in this study to handle the
massive amounts of data is likely not sufficient in the future. This calls for an interdis-
ciplinary research study between data scientists and meteorological scientists on how
to handle and process such data. Also, a collaboration between national meteorological
services has to be worked further on. It will benefit all countries if crowdsourced data
collection is a united process.

For future work, tests of crowdsourced observation-based nowcasting should be
made. For example, if SPOs can be used to derive reliable pressure tendencies, the
vertically integrated divergence can be calculated. Plots of either deviation of pressure
tendencies or divergence from model expectations can be used by operational meteorol-
ogist to detect fast developing convective systems in near real-time.

Other, less difficult challenges, which can be solved more quickly and with fewer
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resources and are listed below:

• The SDK for collecting SPOs, should be improved by adding a possibility of
collecting observations in background mode if a user grants access. Running these
tasks in background mode complicates the software significantly and are mostly
a programming challenge.

• Experiments with machine learning methods to predict SPO errors should be con-
tinued. The results from preliminary studies are promising, and the fundamental
programming environment for carrying out these experiments are ready for use.
These methods can potentially improve the screening scheme developed in this
PhD project.

• A new bias correction scheme for PWS is a high priority for future studies. A key
part of a future scheme is a monitoring system which detects if stations are moved
or experience a sudden shift in bias. A long-term investigation of bias under a
controlled environment is the initial state of developing a new scheme which was
started at DMI in July 2019.
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ABSTRACT

Crowdsourced data is now seen as a potential source of high-resolution ob-

servations in the atmospheric sciences and operational meteorology. In this

paper, the potential applications of wind observations obtained with handheld

anemometers connected to smartphones are investigated. The quality of hand-

held wind measurements relative to traditional wind measurements is exam-

ined. Comparisons to professional grade SYNOP stations are performed. It

is shown that even raw handheld wind measurements, before extrapolating to

10 m height, can in some cases be more representative than SYNOP stations

only about a kilometer away. Secondly, a method of determining roughness

lengths based on the turbulent intensity derived from the high-frequency raw

signal of handheld smartphone wind measurements is examined. Roughness

length is an essential parameter in numerical weather prediction for the de-

termination of surface winds and surface fluxes, but they are often poorly

determined. Further, roughness lengths are necessary when correcting near-

surface wind observations for height offsets. A series of field experiments

were carried out, after which the handheld wind measurements were extrap-

olated with height to 10 m, using roughness lengths of different origin as a

parameter. This enabled a comparison of the quality of the derived rough-

ness length to traditional sources. Under certain circumstances, the roughness

lengths obtained with the approach presented here give better results than us-

ing traditional sources. This study opens up new possibilities for the use of

crowdsourced data in meteorology.
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1. Introduction36

The spatial resolution of Numerical Weather Prediction (NWP) models increases steadily,37

whereas the conventional meteorological observing network is not densifying at the same rate,38

if at all. This results in a lack of observations to validate, fine-tune, and initialize NWP models.39

A potential new source of observational data is crowdsourced data from devices owned by the40

public. To cite Howe (2006), crowdsourced data can be defined broadly as ‘the act of taking a41

job traditionally performed by a designated agent (usually an employee) and outsourcing it to an42

undefined, generally large group of people in the form of an open call.’. In addition to the usage43

in NWP, crowdsourced data can provide an increase of the information available about the state44

of the atmosphere to operational meteorologists (Clark et al. 2018).45

46

In recent years the number of low-cost personal devices connected to the internet and mobile47

network has increased substantially (Evans 2011), potentially providing new observations for use48

in the atmospheric sciences. These sensors can either run fully automated, such as barometric49

sensors in smartphones (Kim et al. 2015), or they need to be operated by humans, such as in50

the Meteorological Phenomena Identification Near the Ground (mPING) (NSSL 2016) project.51

Barometric pressure obtained via smartphones has been suggested by Mass and Madaus (2014)52

as a data source to improve forecasts of mesoscale phenomena. The Weather Observation53

Website (WOW) project is looking into collecting data from Personal Weather Stations (PWS)54

as additional data (UK Met Office 2017). The privately owned company Netatmo SAS (2017)55

manufactures personal weather stations and collects data from all over the world and have56

partnered with the Norwegian meteorological service, YR (Netatmo SAS 2018).57

58
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Obtaining Handheld Wind Measurements (HWMs) has recently become possible with low-cost59

anemometers that can be attached to smartphones. In this study, we investigate the usefulness60

of such observations, made with a particular cup anemometer for smartphones manufactured by61

Vaavud ApS. Other manufacturers exist, such as WeatherFlow Inc. The Vaavud anemometer62

measures both wind speed and wind direction, due to its asymmetric rotor design. It is a low-cost63

anemometer, easily affordable for ‘the crowd’. There are apparent pitfalls of these data which64

must be addressed, related both to the quality of the measurement devices themselves, and related65

to the non-ideal behavior of the user, who might stand next to an obstacle, not hold it at the right66

angle, or even have fun blowing on the anemometer. Such problems are common to all types67

of crowdsourced data, but if these problems can be solved, there will be access to an enormous68

amount of additional meteorological observations at a low cost.69

70

The objective of this study is two-fold. First, and most importantly, to quantify the quality of71

HWMs coming directly from the handheld anemometer compared to traditional wind observations72

following the requirements of WMO (2008, ch. 5). As more and more observations from smart-73

phones can be sent in real or near real time, it must be considered if such observations can be used74

to increase the information about specific weather phenomena for operational meteorologists. To75

do so, it is critical first to investigate how HWMs compares to traditional wind observations. It76

is also examined if extrapolating the HWMs with height to 10 m gives better results compared77

to the WMO (2008, ch. 5) standards. This requires knowledge of z0, the roughness length of78

the surface, thus, the second objective of the present study is therefore to investigate whether79

HWMs can be used to estimate local roughness lengths by utilizing the turbulent intensity as80

suggested by Counihan (1975). Counihan (1975) gives a relation between the roughness length81

and the horizontal turbulent intensity by which high-frequency smartphone wind measurements82

4

138



potentially might be used to improve the roughness lengths used in NWP. Such an approach is83

tested by using the derived roughness length as a parameter in an extrapolation of the HWM with84

height to compare to a professional high-precision reference measurement at 10 m. Further, by85

using this approach we focus on methods that can be easily implemented in practice so there will86

no need for professional equipment, which is usually too expensive for ‘the crowd’. In this way, it87

is the hope that the method presented in this study is scalable and easy to implement in practice;88

thus, opening for possibilities for new observation types for operational weather forecasting and89

NWP models.90

91

For this study the majority of the measurements were performed by ourselves. In a future study92

more measurements made by the public will be considered. Some of the measurement campaigns93

were carried out not far from two SYNOP stations operated by the Danish Meteorological Institute94

(DMI) in order to compare with the official DMI wind measurements. An additional reason for the95

focus on roughness length is that it is of vital importance to NWP since roughness length is closely96

related to the estimation of near-surface winds and surface fluxes of sensible heat, moisture, and97

momentum (Arya 2001).98

2. Method99

The basis of this study is a set of measurement sessions made at different locations (see section100

2.B). In each session, two wind measuring devices, a handheld anemometer and a reference high101

precision anemometer, were used to measure wind speed and wind direction during the same102

period and in the near vicinity of one another. The reference measurement measured in 10 m103

and served two purposes. First of all, and most importantly, as a traditional, continuous wind104

measurement allowing a direct comparison to both the HWM and nearby DMI SYNOP stations.105

5
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Secondly, to investigate whether the use of roughness lengths derived from the HWMs leads to106

more accurate HWM based estimates of 10 m wind speeds than using roughness lengths obtained107

via other sources. Extrapolating the HWM to the height of the reference observation thus gives108

an estimate of the quality of the derived roughness length from the HWM. The extrapolation109

is performed from about 2 m to 10 m both With Stability Correction (WSC) and No Stability110

Correction (NSC) using stability parameters from a short-term NWP model forecast. This is111

elaborated further on in section 3. The methods are below divided into four sub-sections, the112

wind measurement equipment (section 2.A), the location of measurement sites (section 2.B), the113

NWP reference (section 2.C) and the surface characteristics (section 2.D) represented by different114

sources of roughness lengths.115

116

A. Wind measurement equipment117

The HWMs was obtained with a Vaavud Sleipnir anemometer (Vaavud 2015) mounted on118

a smartphone together with the Vaavud app. The anemometer measures with a frequency of119

approximately 4 Hz, and is designed to minimize the influence of flow distortion from the120

smartphone1. The 4 Hz output from the Vaavud app is considered the measurement signal in this121

study. According to Vaavud, the anemometer is specified to work in the wind speed range of 2122

to 40 m/s. Therefore it should be used with caution in low wind speeds. Latitude and longitude123

are stored, based on the built-in smartphone Global Navigation Satellite System (GNSS) receiver124

position estimate. The GNSS receiver also returns altitude, but a comparison of 237 altitude125

estimates obtained in one session with the smartphone at a fixed height, showed that GNSS126

altitude is currently not accurate enough for our purpose (the estimates have a standard deviation127

1Personal communication with the inventor of the device, Andreas Okholm, former CTO of Vaavud ApS.
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of 20 m). Instead, the height of the device above the ground was determined with a tape measure.128

It is noted though, that the accuracy of GNSS altitudes is believed to improve significantly in129

future (Robustelli et al. 2019). The standard duration of the HWM used here is 30 s, and the130

time of the measurement is defined at the time at the beginning of the measurement. An HWM131

was obtained approximately every 2 min. Afterwards, the individual HWMs were binned into132

intervals of 10 minutes for which the mean was computed.133

134

The reference measurements were obtained with a high precision ultrasonic anemometer (Gill135

Instruments 2017) placed 10 m above ground, on a thin mast stabilized against bending and136

undulation by three wires running from the top of the mast to spears in the ground. 10 m is the137

height that WMO (2008, ch. 5) suggest for traditional wind observations. The sampling frequency138

of the ultrasonic device was 1 Hz. The accuracy is given by Gill Instruments (2017) as ±2% at 12139

m/s. In one experiment, the ultrasonic anemometer was placed at the same height as the HWM140

instrument to compare the two anemometers directly.141

142

The minimum amount of available metadata from the smartphone for an HWM to be considered143

valid was in this study defined as144

1. The duration and measurement time of the HWM145

2. The latitude, longitude and the measurement height above ground146

3. A device identification number147

Furthermore, additionally metadata was collected to be used for comparison to the roughness148

length derived from the HWMs and examination of the effects of stability correction:149
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1. The characteristics of the surface, represented by the roughness lengths from two different150

sources, used for comparison to the roughness length determined via the HWMs. In addition151

the surface was characterised subjectively by the authors.152

2. The lower tropospheric atmospheric stability (obtained here via an NWP model, see section153

2.C), used to examine the effects of stability corrections when extrapolating the HWM with154

height.155

B. Location of measurement sites156

In total, eight measurement sessions were carried out at three different locations, namely at157

Hvide Sande (HVDS), Gniben (GNB) and Eskebjerg (ESKB), all in Denmark. Figure 1 shows158

satellite imagery of each location, plotted with the location of the reference measurement (red159

star) and the DMI SYNOP station (blue star). The locations with coordinates are listed in table160

1. Also, a summary of the prevailing weather conditions for each measurement session is given161

in table 2. HVDS is a beach location in western Denmark at the North Sea. The north sea is to162

the west of HVDS and to the east there is a fjord. The DMI station (HVDS DMI) is categorized163

as a coastal station (Cappelen 2012). However, HVDS DMI is located approximately 1.7 km164

inland, downstream of the prevailing wind direction (westerly onshore winds) in a small city.165

The reference measurement was performed on the beach and upstream of the city, in westerly,166

south-westerly winds. GNB is a coastal location in central Denmark, also categorized as a coastal167

station (Cappelen 2012). The associated DMI SYNOP station (GNB DMI) is located about168

1 km North-west of GNB, 200 m from the coastline on a narrow, long peninsula, in a fenced169

military facility. The HWMs were done within a few meters of the coastline in conditions with170

north-easterly onshore winds. GNB DMI is not placed optimally. Only 16 m south of the station is171

a lattice tower installed with a height of 54 m. To the east is a row of 2-floor buildings, the closest172
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one 44 m away, and to the North, is a row of small buildings. There are no obstacles to the west.173

However, there is a steep hillside with a height of≈30 m leading up to the GNB DMI station about174

80 m away. There is a slope all around the station with the most prominent to the west. ESKB is175

an inland location in eastern Denmark, about 4 km from the nearest coastline. ESKB can be con-176

sidered open, agricultural terrain. The measurements were performed in wintertime when there177

were no crops in the fields. The nearest SYNOP station to ESKB is Holbaek, 20 km to the east178

and therefore the Holbaek DMI SYNOP cannot be seen in figure 1. The Holbaek DMI SYNOP is179

set up at a good location in open terrain with no disturbing objects close to the wind measurement.180

We are considering the area of ESKB semi-smooth for most wind directions, with a few isolated181

obstacles. ESKB is a generally open area with mainly agricultural fields and a few farms. 1.2182

km to the west there are a few houses, and there is 3.6 km to the closest coastline to the north-west.183

184

In all sessions but one, all smartphone measurements were performed by the first author of185

the present paper to control the measurement setup better. In the HVDS session, measurements186

from kitesurfers standing on the beach nearby the reference anemometer are included. The height187

above ground of the surfer measurements is assumed to be 2 m. The DMI SYNOP data are used188

for comparison and as an indicative, subjective measure of representativeness, an essential aspect189

when validating NWP models.190

191

C. NWP reference192

To examine if extrapolation of the HWMs was improved by using stability correction or not (see193

section 3) stability parameters were obtained from a short-term NWP model forecast using the194
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WRF model (Skamarock et al. 2008, WRF V.3.9.1). From the WRF model stability parameters195

such as the kinematic heat flux H and the Monin-Obukhov length L (see section 3) was obtained.196

The model was run with a horizontal resolution of 3 km, and 30 vertical levels run over the197

period of the measurements. The model was initiated from analysis data from NCEP (NCEP/FNL198

2000) every 6 hours. The surface layer scheme used was the MM5 similarity scheme based on the199

Monin-Obukhov similarity theory (Jiménez et al. 2012). The model was initially stabilized with200

a digital filter (Lynch and Huang 1993) to prevent excitation of fast inertia-gravity waves and to201

reduce spin-up time.202

D. Surface characteristics203

The characteristics of the surface were determined both quantitatively and subjectively by the204

authors. Most importantly, the roughness length is determined from the HWM using the measured205

horizontal turbulence intensity. The roughness lengths derived from the HWMs are denoted zhwm
0 .206

The theory and uncertainties behind zhwm
0 are elaborated in section 3.207

The NWP model is also used as a source of roughness lengths and is denoted znwp
0 . In the208

NWP model znwp
0 is derived from a table of land use category, with a resolution of 30 arcseconds209

(approximately 1 km) with a summer and winter value, upscaled to the grid-box resolution.210

The third and last source of roughness lengths is obtained from the work of Silva et al. (2007),211

who converted the Corine Land Cover (CLC) 2000, Version 18.5 (Buttner and Kosztra 2001)212

dataset, with a resolution of 100 m, to a dataset of roughness lengths, here denoted zclc
0 .213

214

The extrapolated HWMs are denoted based on the source of roughness length which have been215

used as u10m
nwp, u10m

clc and u10m
hwm. The HWMs that have not been extrapolated are denoted us

hwm using216

s for surface. The reference is denoted u10m
re f and the wind observations from the DMI SYNOP217
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stations are denoted u10m
dmi . The raw HWMs that have not been averaged over time are denoted218

uraw.219

3. Theory220

The roughness length can be estimated from wind measurements by considering the horizontal221

turbulent intensity (Counihan 1975). The idea is that for a given wind speed, a rough surface222

will generate more turbulence near the surface than will a smooth surface. The roughness length223

derived by this approach is defined as224

zhwm
0 = A · z · exp(−u(z)/σu), (1)

following Counihan (1975). Here σu is the standard deviation of the wind measurement, u(z) is225

the mean wind speed over an appropriate averaging time at height z and A = σu/u∗ ·k, where u∗ is226

the friction velocity and k is the von-Kàrmàn constant (k = 0.4). σu/u(z) represents the horizontal227

turbulent intensity. Equation (1) is derived from the logarithmic wind profile (see equation (4))228

based on the assumption that σu/u∗ = 2.5 (Arya 1995) such that A = 1. The measurement height229

of a handheld anemometer of about 2 meters will often be influenced by upstream local effects,230

so this approach can only be assumed valid for smooth terrain (z0 < 0.1 m). Also, equation (1)231

implies that for a constant roughness length, the ratio u(z)/σu must also be constant since A and232

the measurement height z are constants. The ratio u(z)/σu has been smoothed by convolving the233

time series with a Gaussian kernel using a standard deviation of 5 so that weights are decreased234

further away from the target value.235

236

As previously described, to compare the HWMs to the reference and to validate the derived237

roughness lengths, the HWMs were extrapolated to a height of 10 m for comparison with the refer-238
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ence 10 m measurements. The wind speed increases considerably with height near the surface due239

to surface friction and hence z0 is an essential parameter for extrapolation of wind measurements.240

Therefore, by extrapolating the HWMs, one can test the quality of the roughness lengths. To ex-241

trapolate the HWMs two approaches were used based on the logarithmic wind profile law with and242

without stability correction (named WSC and NSC respectively). Based on the Monin-Obukhov243

similarity theory (Monin and Obukhov 1954), it follows that the non-dimensional vertical mean244

wind speed gradient (φ(z/L)) is given by245

φ
(

z
L

)
=

kz
u∗

∂u
∂ z
, (2)

where z is the height above the surface and L is the Monin-Obukhov length given by L =246

−u3
∗cpρT/kgH, where H/ρcp is the kinematic heat flux, g is the gravitational acceleration, and T247

is the absolute temperature. L and H was determined from the NWP model described in section 2.248

φ(z/L) has been determined empirically for unstable (z/L< 0) and stable (z/L> 0) conditions as249

(Businger et al. 1971)250

φ(z/L) =





1+β1
z
L if z/L≥ 0

(1− γ1z/L)−1/4 if z/L < 0,

(3)

where β1 and γ1 are empirical constants. Discrepancies do exist in the chosen values for these251

constants. Here β1 = 5 is used based on the argumentation of supercritical flux Richardson252

numbers by Kouznetsov and Zilitinkevich (2010), and γ1 = 15 following Arya (2001).253

254

Integrating equation (2) from z0 to z, using u(z0) = 0, yields (Panofsky 1963)255

u(z) =
u∗
k

[
ln

z
z0
−ψ(z/L)

]
, (4)

where256

ψ(z/L) =
∫ z

z0

(1−φ(z/L))dz.
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For z/L = 0, which is neutral conditions, equation (4) reduces to the logarithmic wind profile law257

(φ(z/L) = 1, e.g. the case of NSC), which can typically be obtained in cases with strong winds and258

overcast skies. Panofsky (1963) and Paulson (1970) gives the solution for ψ(z/L) for the stable259

(z/L≥ 0) and unstable (z/L < 0) case respectively as260

ψ(z/L) =





−β1
z
L for z/L≥ 0

ln
[(

1+x
2

)2(
1+x2

2

)]
−2tan−1(x)+π/2 for z/L < 0,

(5)

where x = (1− γ1z/L)1/4. Now let u(z2) be the extrapolated wind measurement and let u(z1) be261

the HWM, where z2 > z1. Assuming that z2 and z1 are located in the same Internal Boundary262

Layer (IBL) then one can solve for u(z2) by using equation (4) to obtain an expression for u(z1)263

and u(z2) and dividing them with each other to obtain264

u(z2) =
lnz2/z0−ψ2(z2/L)
lnz1/z0−ψ1(z1/L)

u(z1), (6)

using equation (5) for the stable and unstable cases respectively. Equation (6) then represents an265

approach to extrapolate a wind measurement in the surface layer, correcting for stability (WSC),266

using z0 as a parameter. Setting ψ = 0 corresponds to the case of NSC.267

268

4. Results269

First, as mentioned in section 2, the handheld anemometer and the ultrasonic anemometer was270

in one experiment placed at the same height to compare the two anemometers directly. They were271

placed in 2.2 m, 1 m apart in the horizontal at the ESKB location. Both devices were measuring272

continuous for 8 hours. The mean wind speed in the period from the ultrasonic anemometer273

was 4.00 m/s. A net positive bias of 0.05 m/s was found in that case relative to the ultrasonic274

anemometer used as a reference measurement. Also, zhwm
0 was in this case calculated based275
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on both the handheld anemometer and the ultrasonic reference measurement. For the handheld276

device, zhwm
0 =1.5 ·10−2 m ± 0.3 ·10−2 m, and for the reference measurement, zhwm

0 =1.0 ·10−2 m277

± 0.2 ·10−2 m where the uncertainty is given as one standard deviation of the mean.278

279

Figure 2 shows the time series of wind measurements for ESKB4 starting on March 3rd, 05:30280

UTC. As described, the mean HWMs was extrapolated to 10 m using roughness lengths of281

different origin, znwp
0 , zclc

0 and zhwm
0 , all with NSC. For this case znwp

0 = 0.06 m, zclc
0 = 0.10 m and282

zhwm
0 = 3.3 · 10−3 m (see Table 3). Note that zclc

0 is constant for each location. The bias of the283

extrapolated wind speed relative to the reference anemometer is lowest for u10m
hwm NSC with 0.27284

m/s. The difference in bias between using stability correction (WSC) or not (NSC) for u10m
hwm is285

only 0.05 m/s for this case. For u10m
nwp NSC the net bias is 1.57 m/s and for u10m

clc NSC the net bias is286

2.08 m/s. In this case, u10m
hwm performs best both regarding bias and RMSE for both NSC and WSC.287

288

One example where a large difference of using stability correction (WSC) or not (NSC) is289

shown in figure 3 for u10m
nwp in the case of ESKB5. The extrapolations both used znwp

0 = 0.05 m.290

The RMSE for u10m
nwp WSC and NSC was 1.03 m/s and 1.43 m/s respectively. However, no clear291

trend in the data of RMSE with regard of using NSC or WSC can be seen in general, other than292

that the difference of using stability correction or not is relatively small (see table 3). In the cases293

of ESKB1, ESKB3 and ESKB4 the RMSE is higher WSC than NSC for u10m
nwp. The same is true294

for the bias.295

296

Figure 4 shows the measurement session for GNB. It is seen that u10m
clc is performing worse than297

both u10m
hwm and u10m

nwp. RMSE and bias for u10m
hwm improves WSC compared to NSC, decreasing from298

0.87 m/s and 0.43 m/s respectively to 0.74 m/s and 0.13 m/s (see table 3). In general, all errors299
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decreases when correcting for stability in the case of GNB.300

301

Figure 5 shows observations from HVDS in connection with a kitesurfing competition from302

September 2016. Here also measurements from ordinary users of the handheld anemometer have303

been included, such that measurements from many different smartphones and different Vaavud304

anemometers are mixed. One notice is that the HWMs appears more irregular compared to305

figure 2 and figure 3. All measurements are taken on-shore spreading 200 m north and south306

of the reference 10 m measurement, within 50 meters from the sea, and with onshore wind. In307

this case, u10m
hwm has the highest RMSE in total with 1.49 m/s with NSC. The DMI observations308

are also shown in figure 5. The RMSE of u10m
dmi is 3.00 m/s almost 2 m/s higher than for the HWMs.309

310

It was shown in section 3 that for zhwm
0 to be constant the ratio u(z)/σu must also be constant.311

u(z)/σu is plotted with wind speed and wind direction in figure 6 for ESKB5. This plot was312

chosen because during this session the biggest changes in wind conditions was seen. The wind313

speed increased from about 3 m/s to 7 m/s; also a small change in wind direction is seen. The314

ratio u(z)/σu is relatively constant during the increase and decrease in wind speed. However,315

there is a large spread in especially the handheld measurements. Convolving the time series with316

a Gaussian kernel (black lines in figure 6) helps to define a general trend in both the case of the317

reference and the handheld measurements. The standard deviation for all u(z)/σu-ratios is shown318

in the right-most column in table 3.319

320

The RMSE and bias relative to the 10 m reference measurement, u10m
re f , are calculated for each321

method on each location. The results are shown in figure 7 and in table 3. The biases of us
hwm322

are all negative. This is because us
hwm is measured closer to the surface than the reference, hence323
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the wind speed is in general lower. The difference in RMSE and bias between HWMs and324

the extrapolations using roughness lengths of different origin as a parameter are all due to the325

extrapolation to the reference height of 10 m. u10m
dmi in figure 7 (red bars) shows the RMSE and326

bias from the nearest DMI SYNOP station relative to u10m
re f . Recall that for the ESKB location the327

nearest DMI station is about 20 km away, whereas for GNB and HVDS they are of the order 1328

km away. For both GNB and HVDS, the RMSE and bias for both the extrapolated handheld 10329

m wind estimates and us
hwm, are all lower than for u10m

dmi . Also, it is seen that u10m
clc WSC and NSC330

gives worse results than us
hwm and u10m

dmi . Overall, u10m
hwm has both the lowest RMSE and bias.331

332

5. Discussion333

It is found that the stability correction does not play a vital role in any of the cases studied here,334

and it has no clear trends when considering the RMSE of NSC and WSC in table 3. For the cases335

considered here, it thus shows that the error one makes in assuming neutral conditions is minor.336

It must be emphasized that the stability correction is prone to errors of the numerical forecast337

model, which can alter the interpretation of the results. Because of the small net bias between the338

HWMs and the reference measurement presented in the results, the bias between the HWMs and339

the reference measurement is not considered a significant source of error.340

341

For the cases of HVDS and GNB, it was found that HWMs are likely to contribute positively342

to the information of the state of the surface wind field. For HVDS, the difference between u10m
dmi343

and u10m
re f are seen in figure 5. Here the HWMs are found to be more representative for the coast344

than the DMI measurement, even for us
hwm. This is seen directly in table 3, where us

hwm have both345

a lower RMSE and bias than the DMI measurement. It is very likely that these differences come346
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from the fact that the measurements done at the beach are taken in the maritime IBL, while the347

DMI observation is measuring in a growing IBL of the land and the city.348

349

It is seen from figure 4 that there are also differences for the GNB session between the HWMs350

and DMI. u10m
dmi is overall measuring wind speeds lower than the reference measurement, u10m

re f .351

The DMI station and the reference measurement are approximately 1 km apart (see figure 1). The352

DMI SYNOP station is 100 m away from the coastline, whereas the reference measurement was353

only 5 m away from the coastline, although we note here, that these measurements were likely354

impacted by beach ridges. For easterly wind as in this case, it is seen that u10m
dmi is measuring lower355

wind speeds in general. We claim, based on the RMSE and bias given in table 3, that the HWMs356

(both at 2 m and extrapolated to 10 m) are more representative of the general wind conditions in357

the area than u10m
dmi in this situation.358

359

Due to the non-complex terrain of HVDS and GNB, it is safe to assume the surface roughness360

of water is the correct value in these cases. zhwm
0 is a little too high for HVDS, but in this case, real361

user data was included which will introduce a source of unknown errors. However, it is noted that362

HVDS is one of the best locations for including real user data when westerly winds are present,363

as measurements are likely to be done in the maritime boundary layer. For HVDS the effect of the364

upstream city is clearly seen in the u10m
dmi measurement. It ought to bring up some considerations365

at DMI if the HVDS station should be considered as a coastal station in the future.366

367

It is seen that the RMSE of u10m
clc is performing worst for the sites investigated. This is most368

noticeable in figure 4, where u10m
clc is overshooting the reference measurement by 2-4 m/s in369

general. The values of z0 for GNB (table 3) explain this though. znwp
0 is using a roughness370
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for water which is almost correct in this case, while zclc
0 is using a typical value of farmland371

(zclc
0 = 0.2 m) (Arya 2001, fig. 10.5). The resolution of the dataset of zclc

0 is much higher than372

znwp
0 . This also makes it more vulnerable in areas with discontinuities in surface roughness373

if the upstream surface roughness is not accounted for. At GNB, the measurements were374

performed at the beach, so close to the coastline that the measurements will not be far from375

representing the IBL of the sea. This can be accounted for by taking the wind direction into376

account and hence using the upwind surface roughness. This must also take the upwind wind fetch377

into account (Wieringa 1993). An upwind value from zclc
0 gives 10−4 m comparable to that of znwp

0 .378

379

znwp
0 cannot necessarily be expected to be representative of the location where a measurement380

takes place as it is upscaled to the resolution of the model (see section 2), neither is wind direction381

taken into account when determining znwp
0 . This might explain why u10m

nwp, in general, performs382

worse than u10m
hwm for the ESKB location. This is both the case with NSC and WSC.383

384

It is emphasized that the logarithmic wind profile is not valid down to z = 0 m, but only in an385

inertial sublayer where z/z0→ ∞ and z f/u∗→ 0 (where f is the Coriolis parameter) (Tennekes386

1973). Wieringa (1993) argues that the lower limit of validity is z ≈ 20 · z0 to 50 · z0 and the387

upper bound is z ≈ 0.1h to 0.2h, where h is the boundary layer height. For ESKB using a value388

of zclc
0 =0.1 m, the lower limit is z ≈ 2 m to 5 m. Using the lowest value of znwp

0 for ESKB,389

znwp
0 = 5.0 · 10−2 m, one gets the lower limit as z ≈ 1.0 m to 2.5 m. It is evident from this that390

estimating the roughness length from HWMs faces two main challenges. First, the measurement391

height will most often be in the interval 2.0 m to 2.2 m, making it clear that using HWMs for392

quantifying the current wind conditions and for estimating roughness length should only be done393

with utmost caution for areas for which z0 > 0.1 m. Therefore, a background field is needed to394
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determine if an HWM can be trusted or not. Such a background field could potentially come from395

a land surface model. This limits the validity of HWMs in general to smooth, open areas. The396

general user of the handheld anemometer used in this study is sailors, kite surfers, and farmers, so397

most measurements will meet this requirement. Secondly, the duration of an HWM will rarely be398

10 min as suggested by WMO (2008). Standing with an arm raised for 10 min with a handheld399

anemometer is not realistic. However, users can be encouraged to take several measurements400

within 10 min as was done in this study.401

402

Considering the required wind fetch given by Wieringa (1993, eq.6) for ESKB, the fetch for403

z = 10 m is 1.2 km to 1.9 km using the lowest and highest value of z0 for ESKB respectively. For404

z = 2 m the corresponding values are 0.2 km and 0.3 km. It is, however, only to the west we find405

an area that can be considered a significant change in effective roughness length within this range406

(based on the CLC dataset (Silva et al. 2007)).407

z0 can also be determined by linear regression of u on lnz. The order matters as the errors of408

lnz are usually much lower than those of u (Bergeron and Abrahams 1992). This approach was409

not used in this work though. We expect such roughness lengths to be unreliable in this study for410

several reasons. First, only two levels are considered here. While assuming a neutral stratification411

is enough to perform a linear regression, even small errors in wind measurements can result in412

substantial errors in u∗ of about ±15% when only using two levels (Langleben 1974), and the413

errors in z0 is a factor of ku/u∗ larger (Wieringa 1993). Furthermore, it has no clear, practical414

implications, and so has little value for the objective of this study.415

416

The ratio u(z)/σu must be constant for the roughness length to be constant, as shown with417

equation (1). The ratio in the case of ESKB5 was plotted in figure 6, together with the wind418
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speed and wind direction. The spread of the ratio from the individual HWMs are quite large, as419

one would suspect. However, when convoluted with a Gaussian kernel the spread of both the420

reference measurements and the HWMs becomes much smaller. It can not be argued that the421

ratios are constant, but based on figure 6 one can easily imagine how more HWMs can contribute422

to finding the true roughness length. A change in wind direction is also seen in figure 6 which423

unavoidably will add some noise to the measured ratio except if the new upstream surface area424

is uniform within the wind directions experienced. Table 3 gives the average of the ratio and the425

standard deviation of the ratio u(z)/σu for each case. Not surprisingly, the standard deviation for426

us
hwm are higher than u10m

re f . The absolute values of u(z)/σu for both us
hwm and u10m

re f in the ESKB427

cases are comparable too.428

429

The RMSE and bias for each case and location are shown in figure 7. Is it expected that for430

ESKB, the bias for the DMI SYNOP station is in some cases high in absolute terms because the431

DMI station is about 20 km away. The bias of HWMs is generally lower, indicating that for this432

area HWMs can be considered to be more representative than the better equipt, but more distant433

DMI station. This is also seen from the RMSE. It is worth noticing that an HWM can be more434

representative than a traditional SYNOP observation, given that it is taken in an open area. Based435

on the results shown in section 4 it is not recommended to use the Silva et al. (2007) dataset for436

roughness lengths as both u10m
clc WSC and NSC gives higher RMSE and bias than us

hwm.437

438

The use of smartphones can contribute to a dataset of surface roughness. As previously seen439

with zclc
0 , the roughness length does in reality depends on conditions in an area, in particular the440

upstream area, making z0 vary with wind direction. Therefore, handheld devices that cannot mea-441

sure the wind direction should not be used for this purpose; or only used for homogeneous terrain,442
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where the wind direction can be estimated from numerical models or traditional measurements.443

444

More importantly, HWMs can be of a good enough quality to be incorporated into an overview445

of the state of the atmosphere. This does not necessarily mean assimilating such observations into446

NWP models, but they can provide complementary aid for the operational meteorologists. This is447

especially true if the HWMs are extrapolated using a source of z0 of good quality, as both RMSE448

and bias decreases. This can only be considered valid for smooth (z0 < 0.1 m) surfaces. Correction449

for stability was not found to be the highest concern for the cases considered here; thus, there will450

in practical applications be little or no need for NWP model output making the application much451

simpler to implement. Filtering of poor observations from real user data will probably be the most452

challenging task onwards.453

6. Conclusion454

It has been shown that Handheld Wind Measurements (HWMs) obtained with smartphones are455

in some cases more representative than wind measurements from even relatively nearby official456

weather stations. Hence, utilizing HWMs has the potential to aid operational meteorologists in457

obtaining a near real-time overview of the state of the atmosphere and bias-correcting of NWP458

surface winds. We find smaller errors in wind speeds obtained from HWMs, even before applying459

an adjustment for the height offsets, than those from official weather stations about a kilometer460

away. One advantage of HWMs is that they are not limited by the need for continuous electricity461

supply and on-going maintenance. Extrapolating the HWMs using roughness lengths of different462

origin to the standard height of 10 m generally yields smaller errors than the raw HWM, both463

regarding RMSE and bias. It is shown that using the roughness length estimated from the signal464

from a handheld anemometer can be used to extrapolate an HWM from about 2 m to a height of465
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10 m, and these generally give better results than using roughness lengths from an NWP model466

and a look-up table, respectively. Furthermore, it is concluded that HWMs should not be used to467

extract information from areas with roughness lengths above 0.1 m, and thus a background field468

is required. Utilizing HWMs does indeed have a future potential to be applied at meteorological469

centers, though it will most likely not happen in the near future, as work with validation of real470

user data is required before such can be applied. Future work will include real, distributed user471

data to get a mapping of surface roughness and wind atlas, to be compared with an accepted source472

of data.473
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TABLE 1. Location of DMI SYNOP stations and sessions.

Location Latitude Longitude Number of sessions

Hvide Sande (HVDS) 55.9951 8.1205 1

Gniben (GNB) 56.0004 11.2884 1

Eskebjerg (ESKB) 55.7037 11.2945 6

HVDS DMI station 56.0078 8.1413 -

GNB DMI station 56.0072 11.2800 -

Holbaek DMI station 55.7358 11.6035 -
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TABLE 2. Summarised weather conditions for each of the eight measurement sessions. T2m is the 2 meter

temperature from the nearest DMI SYNOP station. The wind conditions are summarised from the reference

measurement. Cloud cover is given in okta when relevant.

564

565

566

Wind speed Wind direction T2m Conditions

ESKB1 2-5 m/s S-SW 7-9 ◦C Haze, then clear

ESKB2 6-11 m/s NW 5-6 ◦C Scattered low clouds, 4/8

ESKB3 4-6 m/s SW 3-4 ◦C Few low clouds, 1/8

ESKB4 4-8 m/s SW 4-6 ◦C Scattered clouds, 3/8

ESKB5 4-7 m/s NE-NEE 6-9 ◦C Clear

ESKB6 4-8 m/s SW-W 5-12 ◦C Fog, then clear

GNB 8-11 m/s E-SE 10-11 ◦C Overcast, 8/8, Drizzle

HVDS 6-11 m/s SW 16-17 ◦C Few clouds, 2/8
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TABLE 3. Table of Root Mean Square (RMS) errors and bias relative to the reference observation at 10

m. HVDS: Hvide Sande, GNB: Gniben, ESKB: Eskebjerg. WSC: With Stability correction. NSC: No Stability

correction. All numbers are in units of m/s unless otherwise is stated. z0 of u10m
re f is the roughness length obtained

from the reference observation using the same method as with zhwm
0 .

567

568

569

570

ESKB1 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 0.78 1.18 0.29 0.84 0.086 u10m

dmi 0.73 -0.47 - -

u10m
clc 0.82 1.25 0.35 0.90 0.100 us

hwm 0.89 -0.73 7.57 1.28

u10m
hwm 0.61 0.68 -0.15 0.19 0.008 u10m

re f - - 6.48 0.26

u10m
re f - - - - 0.031

ESKB2 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 2.06 1.97 1.66 1.57 0.050 u10m

dmi 1.96 1.68 - -

u10m
clc 2.92 2.80 2.58 2.48 0.100 us

hwm 2.05 -1.78 4.97 0.52

u10m
hwm 1.48 1.42 0.97 0.90 0.022 u10m

re f - - 5.97 0.35

u10m
re f - - - - 0.038

ESKB3 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 1.05 1.3 0.76 1.03 0.050 u10m

dmi 4.42 4.26 - -

u10m
clc 1.51 1.84 1.26 1.59 0.100 us

hwm 1.24 -1.14 6.51 0.52

u10m
hwm 0.67 0.82 0.26 0.47 0.017 u10m

re f - - 6.20 0.47

u10m
re f - - - - 0.026

ESKB4 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 1.86 1.92 1.57 1.66 0.060 u10m

dmi 0.79 0.01 - -

u10m
clc 2.36 2.43 2.08 2.18 0.100 us

hwm 1.27 -1.12 7.37 0.40

u10m
hwm 0.81 0.82 0.27 0.32 0.033 u10m

re f - - 5.79 0.20

u10m
re f - - - - 0.035

ESKB5 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 1.43 1.03 1.21 0.88 0.050 u10m

dmi 1.96 -1.7 - -

u10m
clc 1.78 1.34 1.56 1.19 0.100 us

hwm 0.68 -0.61 9.81 1.02

u10m
hwm 0.59 0.38 0.34 0.14 0.020 u10m

re f - - 8.09 0.91

u10m
re f - - - - 0.015
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ESKB6 RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 2.01 1.79 1.80 1.59 0.080 u10m

dmi 4.57 4.38 - -

u10m
clc 2.20 1.97 1.99 1.76 0.100 us

hwm 0.83 -0.69 8.02 0.49

u10m
hwm 0.88 0.78 0.57 0.45 0.003 u10m

re f - - 5.95 0.35

u10m
re f - - - - 0.034

GNB RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 0.73 0.71 0.12 -0.13 0.0003 u10m

dmi 2.58 -2.03 - -

u10m
clc 4.48 3.68 4.23 3.44 0.200 us

hwm 1.51 -1.36 9.28 1.26

u10m
hwm 0.87 0.74 0.43 0.13 0.001 u10m

re f - - 10.75 0.40

u10m
re f - - - - 0.0001

HVDS RMS NSC RMS WSC BIAS NSC BIAS WSC z0 [m] RMS BIAS (u/σu) σ(u/σu)

u10m
nwp 0.67 0.60 0.38 0.25 0.0001 u10m

dmi 3.00 -2.42 - -

u10m
clc 0.71 0.64 0.45 0.32 0.0003 us

hwm 1.06 -0.91 9.97 0.80

u10m
hwm 1.49 1.31 1.34 1.13 0.010 u10m

re f - - 11.76 0.63

u10m
re f - - - - 0.0009
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hwm. The grey shaded area shows the standard devia-578

tion of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Holbaek. Purple broken curve: u10m
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hwm NSC. Black broken curve: u10m
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Fig. 3. Time series of wind measurements at Eskebjerg starting at 2017 March 23rd, 08:20 UTC581

[ESKB5]. Abscissa: Hours since the beginning of measurements. Ordinate: Wind speed582

[m/s]. Black crosses shows individual handheld measurements, uraw and solid black circles583

shows the average within 10 minutes, us
hwm. The grey shaded area shows the standard devi-584

ation of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Holbaek. Black curve: u10m
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Fig. 4. Time series of wind measurements at Gniben starting 2016 October 13th, 08:00 UTC587

[GNB]. Abscissa: Hours since the beginning of measurements. Ordinate: Wind speed [m/s].588

Black crosses shows individual handheld measurements, uraw and solid black circles shows589

the average within 10 minutes, us
hwm. The grey shaded area shows the standard deviation of590

u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Gniben. Purple broken curve: u10m

clc NSC.591

Green broken curve: u10m
hwm NSC. Black broken curve: u10m

nwp NSC. . . . . . . . . . 35592

Fig. 5. Time series of wind measurements at Hvide Sande starting at 2016 September 3rd, 07:10593

UTC [HVDS]. Abscissa: Hours since the beginning of measurements. Ordinate: Wind594

speed [m/s]. Black crosses shows individual handheld measurements, uraw and solid black595

circles shows the average within 10 minutes, us
hwm. The grey shaded area shows the standard596

deviation of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Hvide Sande. Purple broken597

curve: u10m
clc NSC. Green broken curve: u10m

hwm NSC. Black broken curve: u10m
nwp NSC. . . . . 36598

Fig. 6. Time series of wind measurements at Eskebjerg starting at 2017 March 23rd, 08:20 UTC599

[ESKB5]. Abscissa: Hours since the beginning of measurements. Ordinate left: Ratio of600

u(z)/σu. Ordinate right: Wind speed (blue) and wind direction (red) from 10 m reference601

observations. Black dots and crosses shows the ratio u(z)/σu from the reference measure-602

ments and the handheld measurements respectively. The full black line and dashed black603

line shows the convolved measurements using a Gaussian filter, from the reference and the604
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FIG. 1. Satellite imagery of the locations of the measurements sessions. Left: Hvide Sande (HVDS), Center:

Gniben (GNB), Right: Eskebjerg (ESKB). The red star shows the location of the reference measurement and the

blue star shows the location of the DMI SYNOP stations.
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FIG. 2. Time series of wind measurements at Eskebjerg starting 2017 March 3rd, 05:30 UTC [ESKB4].

Abscissa: Hours since the beginning of measurements. Ordinate: Wind speed [m/s]. Black crosses shows

individual handheld measurements, uraw and solid black circles shows the average within 10 minutes, us
hwm. The

grey shaded area shows the standard deviation of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Holbaek.

Purple broken curve: u10m
clc NSC. Green broken curve: u10m

hwm NSC. Black broken curve: u10m
nwp NSC.
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FIG. 3. Time series of wind measurements at Eskebjerg starting at 2017 March 23rd, 08:20 UTC [ESKB5].

Abscissa: Hours since the beginning of measurements. Ordinate: Wind speed [m/s]. Black crosses shows

individual handheld measurements, uraw and solid black circles shows the average within 10 minutes, us
hwm. The

grey shaded area shows the standard deviation of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Holbaek.

Black curve: u10m
re f . Black dashed curves: u10m

nwp NSC and WSC (see legend).
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FIG. 4. Time series of wind measurements at Gniben starting 2016 October 13th, 08:00 UTC [GNB]. Ab-

scissa: Hours since the beginning of measurements. Ordinate: Wind speed [m/s]. Black crosses shows individ-

ual handheld measurements, uraw and solid black circles shows the average within 10 minutes, us
hwm. The grey

shaded area shows the standard deviation of u10m
re f . Black curve: u10m

re f . Blue curve: u10m
dmi from Gniben. Purple

broken curve: u10m
clc NSC. Green broken curve: u10m

hwm NSC. Black broken curve: u10m
nwp NSC.
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FIG. 5. Time series of wind measurements at Hvide Sande starting at 2016 September 3rd, 07:10 UTC

[HVDS]. Abscissa: Hours since the beginning of measurements. Ordinate: Wind speed [m/s]. Black crosses

shows individual handheld measurements, uraw and solid black circles shows the average within 10 minutes,

us
hwm. The grey shaded area shows the standard deviation of u10m

re f . Black curve: u10m
re f . Blue curve: u10m

dmi from

Hvide Sande. Purple broken curve: u10m
clc NSC. Green broken curve: u10m

hwm NSC. Black broken curve: u10m
nwp NSC.
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FIG. 6. Time series of wind measurements at Eskebjerg starting at 2017 March 23rd, 08:20 UTC [ESKB5].

Abscissa: Hours since the beginning of measurements. Ordinate left: Ratio of u(z)/σu. Ordinate right: Wind

speed (blue) and wind direction (red) from 10 m reference observations. Black dots and crosses shows the

ratio u(z)/σu from the reference measurements and the handheld measurements respectively. The full black line

and dashed black line shows the convolved measurements using a Gaussian filter, from the reference and the

handheld measurements respectively.
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FIG. 7. Abscissa: Name of location. Lower ordinate: RMSE, upper ordinate: Bias. The ‘truth’ is the

reference observation at 10 m, u10m
re f . u10m

dmi (blue) and us
hwm (orange) are the nearest SYNOP station and the

handheld observations, respectively. The rest, named in the legend on top, is the extrapolated winds using

roughness lengths of different origin.
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Abstract
The potential for use of crowd-sourced data in the atmospheric sciences is vastly

expanding, including observations from smartphones with barometric sensors.

Smartphone pressure observations can potentially help improve numerical weather

prediction and aid forecasters. In this contribution a method of collecting data from

smartphones is presented, other methods are discussed and guidelines are derived

from the experience. Quality control is vital when using crowd-sourced data.

Screening methods aimed at smartphone pressure observations are presented.

Results from previous studies, showing a substantial but long-term stable bias in

combination with high relative accuracy, are confirmed. The collection of Danish

smartphone pressure observations has been very successful, with over 6 million

observations during a 7 week period. Case studies show that distinct weather pat-

terns can be seen in unprocessed data. The screening method developed reduces

the observational noise but filters out the majority of observations. Assimilating

smartphone pressure observations in a single case study, using the 3D variational

data assimilation system of the HARMONIE numerical weather prediction system,

proved to decrease the bias of surface pressure in the model without increasing the

root mean square error and the skill of accumulated precipitation increased. It is

found that the altitude assignment of smartphones needs improvement.

KEYWORD S

crowdsourcing, observations, smartphones, surface pressure

1 | INTRODUCTION

The number of observations available for use in the
geosciences, including numerical weather prediction (NWP),
has vastly expanded due to advances in technology. Increas-
ingly, private weather stations and mobile devices are con-
nected to the internet, creating a dense observational
network (e.g. Lonobox, 2018; Netatmo SAS, 2018;

Wunderground, 2018) which can be used to obtain informa-
tion about the state of the atmosphere. Data originating from
individuals are often referred to as “crowd-sourced data”
(Howe, 2006). Muller et al. (2015) give an extensive over-
view of the potential of crowd-sourced data in the atmo-
spheric sciences. Currently only a few preliminary studies
on the use of crowd-sourced data in meteorology exist.
Chapman et al. (2017) used Netatmo data to quantify the
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urban heat island effect of London, Overeem et al. (2013)
quantified urban air temperatures using battery temperatures
from smartphones and Clark et al. (2018) used private
weather stations to do a fine-scale analysis of a severe
hailstorm.

Regarding pressure, today’s smartphones are often
equipped with a built-in barometer (to track the user’s
change in altitude), which has created much interest from
meteorological communities. Potentially, smartphone pres-
sure observations (SPOs) can have a positive impact in
NWP in regions devoid of SYNOPs (surface synoptic obser-
vations), which is the case in many places of the world. As
the number of smartphones increases, as in sub-Saharan
Africa (Aker and Mbiti, 2010), SPOs can potentially
increase forecast quality. With a tendency towards increas-
ing resolution in NWP without an increase in the national
SYNOPs network, crowd-sourced data could be a valuable
data source for NWP in the future.

Price et al. (2018) used smartphones for monitoring
atmospheric tides and found that the bias of the observations
is nearly constant over time. Madaus and Mass (2017) used
the high resolution rapid refresh model forecasts from the
(American) National Center for Atmospheric Research as
the first guess and boundary condition. On top, they assimi-
lated SPOs using an ensemble adjustment Kalman filter for
creating initial conditions for the Weather Research and
Forecasting model (Skamarock et al., 2008). Even though
Madaus and Mass (2017) did not include SPOs as an inte-
grated part of the data assimilation system they obtained
promising results with regard to forecasting a mesoscale
convective system. In further work McNicholas and Mass
(2018) improved the bias correction of SPOs using a random
forest regressor, which proved to reduce the errors of the
observations significantly. The random forest builds on top
of classification and regression trees (see, for example,
Hsieh, 2009, sec. 9.2).

Kim et al. (2015) focused on data collection and did the
first experiments where SPOs were corrected using machine
learning methods. In a continuing work, Kim et al. (2016)
improved the methods for bias correction and data
collection.

In earlier studies new mobile apps were developed and
people were encouraged to download and use the apps (Kim
et al., 2015, 2016; McNicholas and Mass, 2018). One down-
side of this approach is the large effort going into advertising
and maintenance of the app’s codebase to keep the retention
rate high; the risk in this approach is that it will only give a
fraction of the potential number of available observations
compared to the retrieval of pressure observations from
inclusion of separate software in existing apps. Furthermore,
individual apps may have a short lifetime which would
cause the lifetime of individual data sources to be short.

Other studies have collected data via third-party applica-
tions (McNicholas and Mass, 2018; Price et al., 2018), in
which there are two challenging factors: first, the introduc-
tion of a blackbox approach of data collection, as one often
does not know how the data have been processed; second,
user privacy is an important aspect, especially with the new
General Data Protection Regulation (GDPR) act from the
European Union (European Union, 2018), which makes it
difficult to combine the requirements for owner anonymity
with the need to be able to identify each device in order to
do bias correction based on data acquired over an extended
timespan (Price et al., 2018).

Based on initial idealized laboratory studies, the present
study developed software for obtaining SPOs. Methods for
collecting data and for quality assurance of the observations
are presented, with the long-term aim of using them in an
NWP data assimilation system. The remainder of this paper
contains four main parts. Section 2 presents methods and
results for idealized studies of SPOs. Section 3 covers
methods for data collection and observation quality assur-
ance and presents results. Section 4 presents a test of assimi-
lation of SPOs using the 3D variational (3DVar) data
assimilation system in the HARMONIE NWP system. Last,
the interpretation of the results presented in Sections 1, 2
and 3 is discussed in Section 5.

2 | IDEALIZED STUDIES

2.1 | Methodology

First, in this study, a measurement is defined as a single
value coming from the barometric sensor. An observation is
defined as an average of measurements over a given time
interval, following McNicholas and Mass (2018).

When starting a pressure measurement, it was observed
that the short-term variance of pressure measurements on a
phone at rest is larger at the beginning of an observation
compared to the rest of the observation. Thus, when a mea-
surement is started there is a short spin-up time, during
which the pressure should not be logged. The spin-up time
is due to a sensor internal infinite impulse response filter
described by McNicholas and Mass (2018). The spin-up
period was investigated by analysing 50 time series of 180 s
of the pressure using an Apple iPhone 6 which contains a
Bosch BMP280 pressure sensor (Bosch Sensortech, 2018).
The BMP280 sensor is the same as that used in, for example,
Apple iPhone 7, Huawei Nexus 6P and Samsung Galaxy S7
Edge. The absolute and relative accuracy of the BMP280
sensor is 1 and 0.12 hPa respectively (Bosch Sensortech,
2018). The average measurement interval of BMP280 is
5.5 ms. The sampling frequency returned by the iOS operat-
ing system is 1 Hz, which is used here. However, it is noted
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that the Android operating system can return higher sam-
pling rates. The time between each time series obtained was
in all cases more than 2 hr.

The magnitude of the bias and the change of bias over
time were examined by comparing measurements from an
Apple iPhone 6 and a Samsung Galaxy A5 with a profes-
sional reference, a Vaisala PTB330 barometer (Vaisala,
2018). The absolute accuracy of the PTB330 barometer is
0.2 hPa (Vaisala, 2018). All devices were located at the
same height, within a few metres horizontally, in a locked
testing facility at the Danish Meteorological Institute (DMI).
Seven individual measurement sessions were performed dur-
ing 1 month.

2.2 | Results

An approximate spin-up time of 5 s was found on average
for the 50 time series. The standard deviation over all experi-
ments was 0.02 hPa. Figure 1 shows a comparison of the
smartphones and the DMI reference barometer. The red
shaded region shows the absolute accuracy of the barometer
(±0.2 hPa) (Vaisala, 2018). During the measurement period
of Figure 1, the iPhone 6 had a bias of 1.0 hPa and the Gal-
axy A5 had a bias of −2.0 hPa. Even though the
smartphones have a bias, it is seen that the variabilities of
the curves are highly correlated.

In total, seven sessions, similar to Figure 1, were per-
formed over a period of 1 month. The Apple iPhone 6 had a
bias of 0.96 ± 0.06 hPa and the Samsung Galaxy A5 had a
bias of −2.06 ± 0.09 hPa. Downsampling the smartphone

pressure time series to the same frequency as the DMI pres-
sure time series, which has a frequency of 1/600 Hz, yielded
a Pearson correlation co-efficient of 0.977 and 0.965 for the
Apple iPhone 6 and Samsung Galaxy A5 measurements
respectively relative to the DMI measurement, for all
sessions.

In Figure 1 consistent short-term variability of the phone
pressures can be seen, not resolved by the reference. The
correlation co-efficient of the two smartphone pressure series
based on 1 Hz data is 0.994.

3 | COLLECTION OF
SMARTPHONE DATA

3.1 | Methodology

Data from smartphones operated by ordinary users in Den-
mark were collected over a period of nearly 2 months, from
April 5, 2018, to May 24, 2018, to investigate methods of
data collection and quality control. The data collection con-
tinues today aiming for future studies.

To work with the SPOs a testbed for data collection and
observation control was made. The testbed system is referred
to as SMAPS (Smartphone Pressure System). The SMAPS
consists of several packages and functions for logging data
from smartphones and quality assurance of the collected
data. The SMAPS contains two main sub-packages: PMOB,
which is installed client-side for data collection; and
QCMOB, which is installed server-side for quality assur-
ance. PMOB is a software package written for iOS and
Android which can be implemented in apps as a separate
sub-program. PMOB logs and uploads data from the
smartphone to a database. QCMOB does further processing
and quality assurance.

To collect observations from “the crowd,” PMOB was
integrated into the app “DMI Vejret” (DMI Weather) devel-
oped and maintained by the private company SFS Develop-
ment. It is a popular weather app in Denmark, based on
meteorological products from both DMI (dmi.dk) and YR
(yr.no).

3.1.1 | Data handling on the
smartphones (PMOB)

PMOB uses the iOS and Android software development kit
to access data from the barometer. Auxiliary data are col-
lected from additional sensors if they are available. All vari-
ables uploaded are observations, averages calculated
iteratively as:

�xi =
i−1
i

�xi – 1+
1
i
xi ð1Þ

FIGURE 1 Comparison of two smartphone pressure
measurements over time to a Vaisala PTB330 barometer (red/middle);
blue (top), Apple iPhone 6; green (bottom), Samsung Galaxy A5
(2017). The shaded area shows the accuracy of the Vaisala PTB330
barometer of 0.2 hPa as stated by the manufacturer
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and

σi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i−1
i

σ2i−1 +
1

i−1
xi−�xið Þ2

r
ð2Þ

where x̄i is the average over i = N measurements and xi is
the ith measurement. σi in Equation 2 is the variance com-
puted over N measurements. In this way, one does not need
to store time series in the memory of the phone or, most
importantly, send all data to an online database, which could
drain the battery and use more bandwidth. Due to the spin-
up time mentioned in Section 2 PMOB skips the measure-
ments for the first 5 s. The following observations are
derived from measurements obtained in 7 s periods. This
means N ≥ 7 per SPO are sent by the app, depending on the
sampling frequency (where the iOS 1 Hz is the lowest
encountered), and that a minimum of 12 s is needed to
obtain any SPO when the app is opened. The effect of using
other periods than 7 s has not been tested, but it is noted that
on average the app is open for 26 s based on 1.6 × 106 ses-
sions recorded in April 2018.

The auxiliary data collected, if available, from each
smartphone are acceleration in 3D, geo-location and the
speed of the device. In addition, a smartphone id (uid) is
always collected. In all cases data were collected only with
the user’s acceptance and knowledge and with clear commu-
nication. The smartphone identifier is created by PMOB on
the first installation. It uniquely identifies the phone, neces-
sary for bias correction. The ability from long sequences of
data to identify the owner makes the collected data
“personal,” according to the GDPR act (European Union,
2018). Hence, legal advice regarding handling and security
of data was required before data collection could start.

3.1.2 | Quality control of data received from
the smartphones (QCMOB)

When the SPOs have been retrieved the observations enter
the quality assurance component QCMOB. The workflow of
QCMOB is illustrated in Figure 2.

First, the background departure of the pressure observa-
tion is calculated. In this study a short-term NWP forecast
(0–2 h) from the DMI’s operational model HARMONIE
cycle 40 h1 (Driesenaar, 2009) is used as background. The
background pressure is found by bilinear inverse distance
weighting interpolation to the location of the observation.
The model data are stored in 1 hr intervals and the model
hour nearest the observation time is used. The background
departure is then stored with the observation. A lookup table
of biases with all reporting smartphones is then updated. If
no bias exists, meaning a device reports for the first time,
the background departure is stored with the unique identifier
as a key. If the device exists, then the bias is recalculated
with the new observation included.

Second, an altitude of the terrain at the latitude–longitude
position of the observation is retrieved from the Danish Ter-
rain Model (DTM), which has a horizontal resolution of
10 m and a vertical resolution of 0.05 m. The reference used
in the DTM is the DVR90 geoid model (Danish Environ-
mental Protection Agency, 2015), which has a mean devia-
tion of 0.05 m and a standard deviation of 0.34 m compared
to the World Meteorological Organization recommended
Earth Gravitational Model 1996 (EGM96) geoid model
(WMO, 2014). The reason for using the terrain model is that
the Global Navigation Satellite System (GNSS) derived alti-
tudes from the smartphones are not of sufficient quality at
present for use in NWP. However, the GNSS altitudes and
DTM altitudes are compared in a screening check, which

FIGURE 2 Workflow of QCMOB. Smartphone pressure observations (SPOs) are prepared for Observation Assurance (OBSA) by updating
the bias for each observation and finding the terrain height in the Danish Terrain Model (DTM). See text for details
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will be described later. GNSS derived altitudes are likely to
improve significantly in the future (Robustelli et al., 2019),
when more smartphones support dual-frequency GNSS.
Today, vertical inaccuracy can be of the order of tens of
metres (Bauer, 2013) but is expected to reach sub-metre
level. Third, the observations enter the initial Observation
Assurance (OBSA, see Figure 2). Each observation is allo-
cated with a flag, initially set to zero. In each check, an
observation can have a unitless penalty added to the flag
value. The size of the penalties can be changed for each
check via a namelist.

In OBSA the mean sea level pressure (MSLP) is com-
puted following Madaus and Mass (2017):

pmsl = p – 0:3ð Þ 1+ k1
h

p−0:3ð Þk2

 !1=k2

ð3Þ

Here k1 = 8.4228807 × 10−5 and k2 = 0.190284. h is the
altitude above mean sea level, obtained by adding 1 m to the
altitude from the DTM, assuming that the smartphone is in
the hand of a person, p is the SPO in hectopascals and pmsl

is the MSLP in hectopascals. Then a climatological check is
performed, whether pmsl is within the range 850–1,050 hPa.
For observations outside this range a penalty of 10 is added.
Then it is checked whether observations close in time from
the same device exist, to reduce the number of observations
entering the further processing by making time averages.
The time interval adopted here is 5 min. The averaged SPOs
are named ASPOs. The ASPOs are then returned to OBSA.
It is the ASPOs which are entering the remaining checks. An
ASPO can be considered a time average of the SPOs
obtained during one app session as the typical session time
is 26 s. Penalties from the previous check are averaged.
Hereafter, a background check is performed using the back-
ground departure found in the first step before entering the
OBSA. Departures greater than ±1 hPa are given a penalty
of 10. It is noted that the standard deviation of surface pres-
sure in the NWP model is of the order of 0.3–0.4 hPa, and
that 1 hPa corresponds to approximately 8 m altitude
difference.

ASPOs within a predefined distance from each other and
obtained within 10 min in time are then used to compute a
median value on a grid in the median check. To do this
ASPOs are first converted to MSLP and then corrected by
the horizontal pressure gradient obtained from the NWP
background. If an ASPO deviates more than a predefined
threshold from the median, it is given a penalty and
excluded from the next iteration median computation. The
search for ASPOs that deviate too much continues until no
more outliers are found. Typically, four to six loops are
needed for this to happen. The median values are only used
to derive penalties; the medians themselves are not stored.

Two settings were used for the distance and threshold in the
median check. In experiment EXP_MEDV1 a distance
radius of 0.2� and a threshold of 1.0 hPa were used. In
EXP_MEDV2 a distance radius of 0.5� and a threshold of
0.2 hPa were used. The former is referred to as a “loose”
median check and the latter a “strict” median check.

Hereafter, a check against SYNOP stations managed by
the DMI is performed. The resolution in time for the
SYNOP data is 10 min. Inverse distance weighting interpo-
lation from the four nearest SYNOP stations is performed to
the observation point. Altitude differences are corrected for
by comparing the MSLP. The ASPO is given a penalty with
a magnitude of the absolute value of the residual in units of
hectopascals. Finally, the deviations between the terrain
model, DTM, and the GNSS altitudes of each ASPO are
computed. A substantial deviation from the GNSS altitude
could suggest that a user is not located near the surface but
in a tall building, making the height of an observation inac-
curate. Deviations greater than 3 m are given a penalty
of 10.

Based on all penalty calculations OBSA writes an output
in which each ASPO is associated with a penalty which is
the sum of all penalties given to each ASPO in the OBSA
filtering.

3.2 | Results

During the period considered, April 5 to May 24, 2018,
6,336,475 observations were obtained, from 45,506 individ-
ual smartphones. The observations are not uniformly distrib-
uted in time throughout the day. A sharp rise in the number
of observations was seen in the morning followed by a more
gradual decrease in the early evening. The ratio of the mini-
mum and maximum number of observations per 10 min is
about 7.

Table 1 summarizes the checks and filtering performed in
OBSA. A flagged ASPO is defined as an observation which
has a penalty of more than 1. Two setups have been focused
on: the loose and the strict median check. Bold numbers in
parentheses refer to the loose median check and bold num-
bers refer to the strict median check. NWP experiments
EXP_MEDV1 and EXP_MEDV2 are presented in
Section 4.1.

The background check flags 80% of the SPOs. In total
88.6% and 90.6% of all ASPOs are flagged in EXP_MEDV1
and EXP_MEDV2, respectively. One may argue that these
numbers indicate that the background check is too strict,
with the danger of removing important observations with a
significant background departure. Whether that is the case
depends on the intended use. The 3DVar data assimilation
system used here incorporates a data thinning procedure,
requiring a certain minimum distance between observations
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actively included, which means that the ASPOs would be
heavily filtered anyway. The threshold is a balance of reduc-
ing noise and keeping important observations. This is further
discussed in Section 5.

Figure 3 shows all ASPOs within 1 hr on May 10, 2018
(left) and the observations that were given a penalty less than

1 (right) using settings of EXP_MEDV1. The overall pres-
sure tendency is seen to be clearer after the OBSA routine
has been done. However, it appears that many good observa-
tions have also been removed, indicating that the screening
method might be more strict than necessary.

Figure 4 shows ASPOs during a meteorological event on
April 30, 2018. A small low-pressure system moved north-
east towards Denmark over western Europe. The occluded
point moved over northern Jutland giving rise to local, high
precipitation rates. The coloured circles show the pressure
tendency, deduced from individual smartphones that have
provided observations about an hour apart. All such ASPO
pairs available were used to produce Figure 4. The contours
in Figure 4 show 1 hr accumulated radar-derived precipita-
tion following the methods described by Olsen et al. (2015).

Figure 5 shows ASPOs during a meteorological event on
May 10, 2018. During the day a surface cold front with
embedded convection moved across Denmark from south-
west to northeast. A general positive pressure tendency was
observed with a magnitude of about 0.2 to 0.4 hPa/hr. Wind
observations (not shown) show in general that the frontal
zone at the surface was advancing 30–50 km in front of the
rainband.

4 | SMARTPHONE PRESSURE IN
NWP DATA ASSIMILATION

4.1 | Methodology

In total, five numerical simulations were performed, all initi-
ated at May 5, 2018, 0000 UTC and running to May
10, 2018, 0900 UTC in cycles of 3 hr (see Table 2). The
HARMONIE cycle 40 h1 was used for all NWP model runs,

TABLE 1 Number of flagged observations by each check in
OBSA using two different setups of the OBSA, compared to the total
number of observations

Type of check
Total
(6,336,475) Per cent

MSLP and climatology of MSLP 552,383 8.7

ASPOs (reduced observations) 1,421,642 22.4

Background check (comparison to
NWP)

1,137,128 80.0

Median check (comparison to median
within area)

(272,046) /
796,541

(19.1) / 56.0

SYNOP check (comparison to DMI
stations)

750,677 52.8

Orography (deviation from terrain
model)

929,219 65.4

Total flagged ASPOs (1,264,544) /
1,287,982

(88.6) /90.6

Total number of ASPOs 1,421,642

ASPOs, averaged smartphone pressure observations; DMI, Danish Meteorologi-
cal Institute; MSLP, mean sea level pressure; NWP, numerical weather predic-
tion; OBSA, Observation Assurance; SYNOP, surface synoptic observation.
Bold numbers in parentheses refer to experiment EXP_MEDV1 and bold
numbers refer to EXP_MEDV2. Numbers in normal formatting are identical for
the two. In total (88.6%)/90.6% of all ASPOs were flagged (penalty above 1).
The total number of observations (6,336,475) is reduced by averaging to ASPOs
(1,421,642) to which values hereafter are compared.

FIGURE 3 Averaged smartphone pressure observations (ASPOs) between May 10, 0830 UTC and 0930 UTC. Left: All observations. Right:
Observations with a penalty below 1. Colour presents the ASPOs reduced to mean sea level pressure (MSLP) in hPa given by the colour bar
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using the DMI default settings for the model (Yang et al.,
2017). This includes assimilation of all observations used in
the main operational NWP model with the exceptions men-
tioned below. The model area includes Denmark, UK, Bel-
gium, Netherlands, northern France, Germany, Poland, the

southern half of Sweden and Norway, western parts of the
Baltic States and Finland. See Yang et al. (2017) and
Figure S1 for details. The observation handling was modi-
fied to control which pressure observations enter the
preprocessing system of HARMONIE. Only ASPOs passing

FIGURE 4 Sea level pressure (SLP) tendency (hPa/hr) over 1 hr and radar estimated accumulated precipitation over 1 hr over Denmark.
Coloured circles show the pressure tendency measured by individual smartphones and contours show radar-derived hourly accumulated
precipitation. All observations from individual devices are shown

FIGURE 5 Sea level pressure (SLP) tendency (hPa/hr) over 1 hr and radar estimated accumulated precipitation over 1 hr over Denmark.
Coloured circles show the pressure tendency measured by individual smartphones and contours show radar-derived hourly accumulated
precipitation. All observations from individual devices are shown

TABLE 2 An overview of the numerical simulations performed in this study

Experiment name OPR REF EXP EXP_MEDV1 EXP_MEDV2

SYNOP DK Yes No No No No

SPO No No Yes Yes Yes

QCMOB - - Simple Yes Yes

QCMOB type - - No background, median,
SYNOP, orography check

OBSA loose median check OBSA strict median check

See text for details about QCMOB and QCMOB type.
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QCMOB are allowed to enter the preprocessing system;
hence, ASPOs have to pass both SPO specific quality con-
trol (QCMOB) and the general quality control in HAR-
MONIE to be allowed into the 3DVar data assimilation
system.

Three experimental runs with ASPOs and no Danish
SYNOPs were done. In addition, two runs with no ASPOs
were done, one without the Danish SYNOPs (REF) and one
with the Danish SYNOPs (OPR). In all runs SYNOP pres-
sure from outside Denmark was included. The OPR run cor-
responds to a normal operational DMI HARMONIE
forecast. An overview of the simulations is listed in Table 2.

In the three runs with ASPOs the filtering of SPOs is
increasingly stringent. The goal is to assess whether ASPOs
can have a positive impact in a region devoid of SYNOPs.

The root mean square error (RMSE) and the bias of sur-
face pressure were computed using the DMI SYNOP sta-
tions as a reference. The NWP value of surface pressure was
computed by bilinear inverse distance weighting interpola-
tion to the location of the observation. For verification of
precipitation the fractional skill score (FSS) (Roberts and
Lean, 2008) was used. The FSS is a field-based verification
score given by:

FSS= 1 –
MSE

MSEREF
ð4Þ

Here MSE is the mean squared error of a model field
given as:

MSE=
1

NxNy

XNx

i=1

XNy

j=1

Oi, j−Mi, j
� �2 ð5Þ

where Oi,j and Mi,j are a binary observation field and the
model field respectively and N represents the spatial scale.
MSEREF is defined as the largest possible MSE that can be
obtained from the model and observation fields:

MSEREF =
1

NxNy

XNx

i=1

XNy

j=1

O2
i, j +

XNx

i=1

XNy

j=1

M2
i, j

 !
ð6Þ

FSS = 1 is a perfect score and FSS = 0 is the worst possi-
ble score.

In this study the observation field is 6 hr accumulated
precipitation estimated by radar data following the methods
described by Olsen et al. (2015). Only the area covered by
the DMI radar network was used for verification of precipi-
tation. Both the observation and model fields of 6 hr accu-
mulated precipitation were converted into binary fields using
a percentile of 95%, such that values greater than the 95th
percentile are given a value of 1 and 0 otherwise. By using a

percentile, the FSS score is assured to converge towards 1 as
N increases. It makes the FSS sensitive to location of precip-
itation but not sensitive to precipitation amounts. FSS is
used to avoid the double penalty problem one can risk when
validating precipitation from high resolution models against
rain gauge point measurements (Nurmi, 2003).

4.2 | Results

The numbers of surface pressure observations used in the
data assimilation system of HARMONIE are listed in
Table 3, as a sum of all observations over all data assimila-
tion cycles in the NWP simulation period. Only observations
of surface pressure are shown. The ASPO inputs to the data
assimilation system are those observations that have passed
QCMOB in each experiment. In all experiments 28,757 tra-
ditional pressure observations from outside Denmark were
used. In addition, traditional observations (TEMP, aircraft,
AMSU etc.) from within the model area were used. The
assimilation system of HARMONIE rejects observations
based on a first guess check and a required minimum dis-
tance between sites. As expected, the rejection rate is
reduced when the filtering of ASPOs becomes tighter, seen
by the decreasing rejection fractions of EXP_MEDV1 and
EXP_MEDV2 compared to EXP with 3.1, 2.3 and 12.4%
respectively. Note that these numbers are from the data
assimilation system of HARMONIE and hence the fractions
are relative to the total number of ASPOs that passed
QCMOB, thus indicating that observations of higher quality
entered the system and less filtering occurred.

Figure 6 shows the RMSE (left ordinate, lines) and bias
(right ordinate, bars) as a function of lead-time for surface
pressure in the NWP experiment period 6 May 0000 UTC to
10 May 0900 UTC. The first day (5 May) has been excluded
to allow for spin-up for the model. It is seen that EXP has
the highest RMSE for all lead-times and is the only run with

TABLE 3 Use of surface pressure in the HARMONIE data
assimilation (DA) system in the period May 5, 0000 UTC, to May 10,
0900 UTC, for each experiment

Experiment REF EXP
EXP
MEDV1

EXP
MEDV2

ASPO input
to DA

0 8,385 1,566 872

ASPO rejected
by DA

0 1,040 (12.4%) 49 (3.1%) 20 (2.3%)

Total ASPO 28,757 27,717 28,708 28,737

Total ASPO
+ rejected

28,757 28,757 28,757 28,757

ASPO, averaged smartphone pressure observation.
ASPO input to DA counts only observations that passed QCMOB. Numbers
given in parentheses are the rejected ASPOs in per cent relative to the total.
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only negative bias. For EXP_MEDV1 and EXP_MEDV2
the RMSE is close to that of REF but the bias has decreased.
OPR is not included in Figure 6 as the SYNOP stations used
for verification are included in that run. The ASPOs improve
the forecast with respect to REF in EXP_MEDV1 and
EXP_MEDV2.

Figure 7 shows the RMSE and bias as in Figure 6 but for
10 m wind speed. EXP performs poorly, concerning both
RMSE and bias. The RMSE values for EXP_MEDV1 and
EXP_MEDV2 are a little higher than REF. During the first
few hours, the bias is lower compared to REF but at 4 hr
and onwards the bias increases; it is noted that the bias is
still low compared to RMSE.

Figure 8 shows the FSS for the 95th percentile (left) and
a threshold of 24 kg/m2 (right) of 6 hr accumulated precipi-
tation between 10 May 0900 UTC and 1500 UTC when a
frontal zone passed over Denmark (see Figure 5). The

threshold 24 kg/m2 is a warning criterion at the DMI. Again,
for the percentile EXP has the lowest score and is below the
random score (FSS Random) until a scale of 25 km, mean-
ing that a random forecast would perform better.
EXP_MEDV1 shows substantial improvement but is still
performing more poorly than REF.

Figure 9 shows the 6 hr accumulated precipitation for the
same period as Figure 8 binned into different intervals. From
Figure 9 it is seen that REF declines most rapidly and does
not have the same observed high precipitation intensities as
the other runs. EXP is in general too high. EXP_MEDV1
and EXP_MEDV2 are closer to the observed values with no
clear positive or negative bias.

5 | DISCUSSION

Considering Figure 1 it is evident that a pressure bias must
be determined for each phone individually. Examining the
behaviour of the biases over a period of 1 month showed
that the biases do not fluctuate much over time, with a stan-
dard deviation of only 0.06 hPa and 0.09 hPa for the Apple
iPhone 6 and the Samsung Galaxy A5 phone respectively.
These results are consistent with the findings of Price et al.
(2018) who monitored the biases for 3–12 months. Consid-
ering the apparent long-term stability of the bias, corrected
values will be of a quality that is promising for future appli-
cation. It cannot be ruled out that bias may drift over the
course of years. In applications where the pressure tendency
can be used, rather than the absolute values, many problems
related to SPOs will be removed if the tendency is based on
SPOs from individual devices that are not moving. Consid-
ering Figure 1, one can see similarities in small scale varia-
tions in the phone pressures, e.g. a small decrease at 2.1 hr
and a small increase at 0.3 and 3.4 hr. Accordingly the corre-
lation of the two phone pressure series was found to be
higher (0.994) than against the reference (0.977 and 0.965).
It appears to resolve small scale fluctuations not resolved by
the reference barometer.

Due to the lack of proper calibration of the smartphone
barometers, it is necessary to apply an individual bias correc-
tion to SPO data from each phone. In this work a single bias
correction is applied to each smartphone. This is suboptimal
if many observations from a given smartphone come from a
few different locations (e.g. home and work). McNicholas
and Mass (2018) allow different bias corrections at different
locations, which is more optimal but requires access to back-
ground processes to retrieve more observations. In our study
the bias correction is done using NWP data. Potentially that
is dangerous; bias correction of observations against an
NWP model that has its own errors and later assimilates the
corrected data has in some cases in the past led to NWP
model drift (Vasiljevic et al., 2006). See also Eyre (2016).

FIGURE 6 Root mean square error (RMSE) and bias for surface
pressure as a function of lead-time in the range from May 6 to May
10, 2018. Lines show RMSE on the left ordinate and bars show the
bias on the right ordinate. Note that the first day has been excluded to
allow for spin-up time for the model

FIGURE 7 Root mean square error (RMSE) and bias for 10 m
wind speed as a function of lead-time in the range from May 6 to May
10, 2018. Lines show RMSE on the left ordinate and bars show the
bias on the right ordinate. Note that the first day has been excluded to
allow for spin-up time for the model
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However, in the case of future SPO use in operational NWP
one will still assimilate surface pressures from professional
platforms (SYNOPs from land, ships and buoys). At the
DMI these are never bias corrected, which will anchor the
model pressure, preventing drift. In addition, a comparison
to SYNOP data is part of the quality control of the ASPOs,
which will stabilize the selection of ASPOs and prevent
model drift. In the study presented in this paper, the SPO
bias corrections were derived using the operational DMI
NWP model, which does not assimilate any SPO data but is
otherwise similar to the model used in this study. Further,
the simulations include assimilation of available SYNOP

surface pressures from SYNOPs in the whole model area
except Denmark.

One reviewer noted that: “Rejecting 80% of the SPOs
based on the background check seems much too high to
me. This reduces the independence of the SPOs, and in cases
with large background error the accepted SPOs will tend to
reinforce the error and less weight will be given to indepen-
dent SYNOP reports.” For the reasons stated in the previous
paragraph, this is not thought to be an issue. As was men-
tioned in Section 3.2, the 3DVar system used here includes a
data thinning procedure, which causes the ASPOs to be
heavily filtered in any case. Due to the check against SYN-
OPs, these are implicitly given a higher weight than ASPOs.
Here, it has been necessary to filter out observations with a
poor altitude assignment through a strict background check,
but this is something that should be improved in future to
allow larger, potentially significant, background departures.
As mentioned, a background departure of 1 hPa was used as
a threshold for flagging observations (see Figures S2 and
S3). The standard deviation of surface pressure from the
operational DMI HARMONIE model is of the order of 0.3–-
0.4 hPa. 1 hPa corresponds to about three standard devia-
tions. It is agreed that rejecting 80% of the SPOs is much too
high for other uses, such as observational based nowcasting,
and that the screening methods presented here can be
improved. Experiments to relax the background check and to
implement gradual penalty functions rather than threshold-
based penalties are planned to be carried out in the future.

As stated in Section 3.2, more than 6 million observa-
tions were collected and the frequency during the day is not
uniform. This is not surprising as SPOs are only collected
when the app is in use. One disadvantage of this is that
observation statistics cannot be based on regular time-spaced

FIGURE 8 Fractional skill score (FSS) for 6 hr accumulated precipitation valid at 1500 UTC, May 10, 2018. Left: Using the 95th percentile.
Right: Using a threshold of 24 kg/m2. FSS Random denotes the FSS from a random forecast with the same fractional coverage as the observations

FIGURE 9 Six hour accumulated precipitation bins valid at 1500
UTC, May 10, 2018. Observations (OBS, magenta) are estimated from
radar products
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observations. The non-uniform frequency reflects the diurnal
pattern of people’s lives. Further, one can imagine a device
sending observations primarily from locations high above
the ground (i.e. tall buildings; see also Figure S4). Bias cor-
recting such a device will overshoot the true bias signifi-
cantly, which is an issue future work will consider.

The DMI is operating 66 SYNOP stations measuring sur-
face pressure (Scharling and Rajakumar, 2003), while on
average SPOs were obtained from 7,342 unique smartphones
per day during this study, more than a factor of 100 more. It
must be stressed, though, that the qualitative value of a sin-
gle SPO is lower than that of a SYNOP station and the SPOs
are not evenly distributed in space and time. This is evident
in Figure 3 where noise is widespread and only a few obser-
vations remain after QCMOB.

An improvement to the orography check in QCMOB
(see Section 3.1) would be to allow greater residuals
between the GNSS derived altitudes and the DTM, as the
GNSS has a high uncertainty. This is also indicated in
Table 1, from which it is seen that 65.4% of all ASPOs are
flagged by this check.

The studies of Kim et al. (2015) and McNicholas and
Mass (2018) both obtained SPOs through a dedicated app
for the purpose. The great advantage of their approach is the
comfort of being able to tune parameters. However, one dis-
advantage is that it is time-consuming and, with a few
exceptions, the scientific community is in general not pre-
pared for advertising its own apps and keeping the conver-
sion rate and retention rate high. This is most evident when
comparing Kim et al. (2015) where only 11,000 observa-
tions per day on average were collected over 240 days.
Here, the SMAPS as described was included in an existing
widely used app, resulting in a high number of pressure
observations. A high number is necessary as the lower qual-
ity of the SPOs with respect to SYNOPs requires heavy fil-
tering. It is important to recall that the standard error of the
mean decreases with the square root of the number of indi-
vidual observations.

To obtain the observations before the users turn off the
app, the measurement period must be short. It is possible to
run the software in the background on Android, and thereby
obtain long sampling periods and many observations, but it
is strongly advised against for two reasons. First, an app
consumes more power when it is continuously active, espe-
cially when using the GNSS of the smartphone. Second,
keeping user privacy in mind, it is best practice only to col-
lect data when a user uses the app actively. On iOS, running
software in background mode for an extended time is in gen-
eral not allowed (Apple Inc., 2017).

In this study, measurements from a period of 7 s were
used to calculate the mean, which was then sent to the data-
base. It is not clear whether Kim et al. (2015) did any

averaging. Madaus and Mass (2017) used 15–40 s. How-
ever, in their case data were collected in the background
every hour by default, while in our case the barometer was
only accessed when the app was in use.

The few studies that consider data collection from
smartphones indicate that the best approach is a collabora-
tion with the industry, using an external app as a platform
for data collection, such as “The Weather Channel”
(McNicholas and Mass, 2018). It is advised that the data col-
lection is kept in-house so that no blackbox of data
processing is introduced. This will help ensure that the mete-
orological community can develop common standard
methods for processing smartphone data as work progresses.
One way to achieve this is to build a software development
kit in a collaborative framework. If the bias correction can
be done client-side the need for a unique ID can be removed,
although other problems may then arise, e.g. lack of end-
user version control as software updates are controlled by
the phone owner.

Figure 5 shows that pressure tendencies obtained from
smartphones without prior filtering can depict current
weather. A general and coherent negative pressure tendency
in front of the frontal zone is seen at both 1300 UTC and
1600 UTC at Funen and Zealand and eastern Zealand
respectively. During the frontal passage a sharp rise in sur-
face pressure is observed, as one would expect. Obviously,
there is some noise, but a forecaster would get the overall
picture. As the tendencies are derived from individual
smartphones there is in this case no need for a bias correc-
tion. A more sophisticated approach is needed to derive the
pressure tendency using observations from different
smartphones, which would result in many more data.

Figure 6 shows that, as expected, it is not valuable to
assimilate unfiltered SPOs into a 3DVar system, seen by the
high increase of RMSE in the EXP run. Even though a
minor increase of RMSE for EXP_MEDV1 and
EXP_MEDV2 relative to REF at t = 0 is seen, it is notewor-
thy that the bias of EXP_MEDV1 and EXP_MEDV2 is
lower than that of REF with no cost in RMSE. Also, the bias
for EXP_MEDV1 is lower than that of EXP_MEDV2 except
for t = 0. This can be an indication that the filtering of
EXP_MEDV2 is too strict, flagging too many observations.
One improvement to QCMOB would be to replace the step-
wise functions for flagging observations with more sophisti-
cated smooth functions to avoid discontinuities. It is also
noted that the bias changes sign in the case of EXP_MEDV1
and EXP_MEDV2. It has not been possible to identify a
conclusive reason for this.

Minor increases in RMSE were seen for 10 m wind speed
in Figure 7 and small changes in bias, not considering EXP
which has both a high RMSE and bias throughout the fore-
cast. For the first forecast hours, the bias decreased slightly
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comparing EXP_MEDV1 and EXP_MEDV2 to REF. How-
ever, from the fourth forecast hour, the biases increase with
opposite sign relative to REF. It is seen in both Figures 7 and
8 that the bias starts with an opposite sign at the beginning of
a forecast compared to the end of the forecast. The causes of
this are at present unknown, but it is noted that the biases are
very small relative to RMSE. It is seen from Figure 8 that
OPR was the best for the particular case of May 10, 2018,
between 0900 and 1500 UTC. Considering the 95th percen-
tile REF overall had a better score than the experiments. One
advantage of using percentiles to compute the FSS is that the
scores converge towards 1 as the scale increases. However,
this is at the cost of losing information about the precipitation
amounts. One cannot be sure if a model creates enough pre-
cipitation which is evident when considering the threshold in
Figure 8. A threshold of 24 kg/m2 over 6 hr was used as this
is a criterion of issuing a warning of heavy rainfall in Den-
mark. It is then seen that REF performs poorly. This is also
seen from Figure 9, where REF has no observations in the
highest bin of 30 kg/m2 or more. Here, EXP scores better
than REF but, considering the previous results, EXP cannot
be argued to perform well overall.

EXP_MEDV1 and EXP_MEDV2 have a distribution that
is closer to the observed distribution. However, imbalance in
the initial conditions could be imagined causing moisture
spin-up effects, which could be part of the reason for higher
precipitation amounts in the experiments. Overall
EXP_MEDV2 is argued to perform better than EXP
_MEDV1 with respect to precipitation due to a better FSS
score, when using both the 95th percentile and the threshold
in the FSS. FSS Uniform represents the FSS obtained at the
grid-scale from a forecast fraction equal to FSS Random at
every point (Roberts and Lean, 2008).

It is clear by comparing EXP to REF in general that the
assimilation system of HARMONIE is not well suited for
receiving SPOs directly without any prior screening, also
considering Table 3 where the rejection fraction of SPOs in
EXP is about 9% higher compared to EXP_MEDV1 and
EXP_MEDV2. It is also clear from the figures that the final
word has not been said with respect to the optimal filtering
of SPOs before assimilation.

6 | CONCLUSION

This study discusses the collection of Smartphone Pressure
Observations (SPOs) via software installed in a weather app
operated by ordinary citizens in Denmark and considers the
usefulness of SPOs in professional meteorology.

A comparison between two smartphones and a refer-
ence barometer determined that the relative smartphone
pressure is reliable, while biases of the order of 1 hPa
exist. The biases were found to be stable over periods of

at least a month. This compares well with previous studies.
The smartphone barometers studied in detail had a spin-up
time of about 5 s, during which measurements should not
be recorded. The short-term variability of the pressure
measurements calls for averaging over a period. Typical
measurement frequencies are high enough, 1 Hz or higher,
to provide SPOs based on several in-phone measurements.
During a 2 month period, more than 6.3 million SPOs
were obtained from 45,506 unique smartphones in Den-
mark, more than 5,200 per hour but down to about
200 per hour overnight. It is demonstrated that the SPOs
contain information about current, active weather and that
with various filters one can obtain high quality pressure
observations, at the expense of reducing the number of
observations.

Finally, it is demonstrated that, when SPOs were incorpo-
rated into a numerical weather prediction (NWP) model with
variational data assimilation, the forecasts were improved in
a region (Denmark) artificially devoid of SYNOP pressure
observations in the reference run, demonstrating that the fil-
tered SPOs have quality on a level useful in NWP. Also, it
was found that the HARMONIE data assimilation system is
not well suited for receiving SPOs directly without any prior
screening.

The results and methodologies presented in this study
advance the use of crowd-sourced data both regarding the
collection of such data and how to process the data. How-
ever, it is clear that future studies are required, regarding
both the settings on each smartphone to obtain an SPO and
the optimal filtering of SPOs at meteorological institutes to
remove poor observations. The prime difficulty is to assign
altitudes to the SPOs properly. Altitude corrections can be
done via bias correcting; however, it is then of utmost
importance that the bias correction can take into account that
the device is mobile. This problem will disappear as in-
phone derived altitudes improve, but it will take several
years before that happens.
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Abstract
In December 2018, the Danish Meteorological Institute organised an international

meeting on the subject of crowdsourced data in numerical weather prediction

(NWP) and weather forecasting. The meeting, spanning 2 days, gathered experts

on crowdsourced data from both meteorological institutes and universities from

Europe and the United States. Scientific presentations highlighted a vast array of

possibilities and progress being made globally. Subjects include data from vehicles,

smartphones, and private weather stations. Two groups were created to discuss

open questions regarding the collection and use of crowdsourced data from differ-

ent observing platforms. Common challenges were identified and potential solu-

tions were discussed. While most of the work presented was preliminary, the

results shared suggested that crowdsourced observations have the potential to

enhance NWP. A common platform for sharing expertise, data, and results would

help crowdsourced data realise this potential.
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1 | INTRODUCTION

Within the atmospheric sciences, “crowdsourced” data is a
relatively new term. While the term crowdsourcing was ini-
tially defined by Howe (2006) as outsourcing an act to the
general public, this definition is no longer restricted to tradi-
tional tasks being outsourced. Today, crowdsourcing is more
than outsourcing data collection to the general public.
Instead, crowdsourcing embraces new data sources, data
storage, quality control and utilisation, which requires stan-
dard methods and a common terminology.

Direct and indirect observations from non-conventional
sources are being investigated for use in the atmospheric sci-
ences. Examples of data sources include Personal Weather
Stations (PWSs) (Bell et al., 2013, 2015; Clark et al., 2018),
smartphones (Kim et al., 2015; McNicholas and Mass,
2018; Price et al., 2018; Hintz et al., 2019), vehicles
(Anderson et al., 2012; Mahoney and O'Sullivan, 2013) and
communication networks (Zinevich et al., 2009).

Muller et al. (2015) provided a comprehensive review of
“crowdsourcing” efforts in the atmospheric sciences. Since
this review was published, new advancements have been
made with crowdsourced datasets. Some of the most recent
advancements include the collection and quality-control of
atmospheric pressure observations from smartphones (Kim
et al., 2015, 2016; Madaus and Mass, 2017; McNicholas
and Mass, 2018; Price et al., 2018; Hintz et al., 2019). Kim
et al. (2016) was the first to apply machine-learning methods
to bias correct smartphone pressure observations (SPOs).
McNicholas and Mass (2018) demonstrated an efficient
machine-learning approach to SPO bias correction that
benefited from non-meteorological smartphone sensor data.
Clark et al. (2018) examined the use of PWSs and made
considerable progress in the quality control and use of such
data. Examples of successful assimilation of such observa-
tions into operational Numerical Weather Prediction (NWP)
models are currently few and far between. The integration of
observations from PWSs into the NOAA Meteorological
Assimilation Data Ingest System (NCEP, 2019) dataset is an
early example. Also, in the U.S., the utility of PWSs has
been of increasing interest for forecasts of severe convection
(Madaus et al., 2014; Carlaw et al., 2015; Sobash and
Stensrud, 2015; Gasperoni et al., 2018).

A meeting on the use of crowdsourced data in NWP and
weather forecasting was held in Copenhagen 4-5th
December 2018 at the Danish Meteorological Institute
(DMI), with two main purposes. First, to gather experts
within the topics of crowdsourcing and create a network of
people working on the subject, and second to discuss com-
mon issues encountered with crowdsourced data and how
these can be addressed. Researchers from both universities
and meteorological institutes attended the meeting, whose

experience spanned a variety of subjects, including SPOs,
PWSs, vehicular data, and citizen weather reports. The first
day was allocated for presentations from the participants,
followed by plenary discussion. The second day was allo-
cated for discussions, starting with a sketch of ongoing
activities at Institutions and Universities. Two working
groups were created who reviewed current research topics
for various data sources and data formats. The purpose of
this article is to document the propositions and recommenda-
tions from the meeting and to inform peers of ongoing
activities.

2 | SCIENTIFIC PRESENTATIONS

C. McNicholas (University of Washington) discussed how
measurements of atmospheric pressure could be efficiently
retrieved from smartphones and subsequently bias-corrected.
Results from a testbed Android app, uWx, revealed that
inaccuracies in smartphone location and sensor internal fil-
tering contributed to poor data quality. Correcting these
issues facilitated the retrieval of pressure change without the
need for post-processing/quality control. Using a machine
learning approach, smartphone pressures were bias-corrected
to account for large uncertainties in smartphone elevation
(McNicholas and Mass, 2018). For each smartphone, a ran-
dom forest was trained on auxiliary sensor/GPS data to pre-
dict and correct pressure errors. On average, bias correction
reduced pressure errors by ~ 80%. During post-processing,
fewer than 20% of smartphone pressure were discarded. In a
real-world case-study bias-corrected smartphone pressures
improved analyses and 1-hour forecasts of altimeter setting,
2-minute temperature, and 2-minute dewpoint.

K. S. Hintz (DMI) first presented a study on wind mea-
surements from smartphones, in which the surface roughness
length was estimated from the measured horizontal turbu-
lence. In another work, more than 6 million SPOs were col-
lected over 7 weeks through a software development kit
installed in a third-party mobile app. These observations
were quality controlled and assimilated with 3D-Var in the
DMI HARMONIE NWP system (Hintz et al., 2019; Yang
et al., 2017). A decrease of bias and no change in root mean
squared error was found for a simulation period of nearly
2 months. Examples showing that raw observations can
depict current weather was given.

X. Yang (DMI) presented the construction idea behind
the operational COntinuous Mesoscale Ensemble Prediction
System (COMEPS) (Yang et al., 2017a, 2017b) at DMI used
for a routine weather forecasts, which generates a 2.5 km
grid resolution, 25 member, Rapid Update Cycle (RUC) like
EPS forecast with an hourly update using time lagging. Cur-
rently, a proto-type ensemble nowcasting system applying
the COMEPS approach is in development, targeting sub-
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hourly cycling of the high-resolution nowcasting system
assimilating high frequency observation data such as radar
and crowdsourced data. One of the novel system compo-
nents in COMEPS is the time-lagged 3D-Var analysis on
overlapped observation windows, which appears especially
beneficial in nowcasting applications with variational data
assimilation, as the setup appears to have better potential to
address observation error correlation in time and space, as
well as the issue of model spin-up in connection with fre-
quent assimilation cycling.

A. Cress (Deutscher Wetterdienst, DWD), presented the
activities of DWD concerning crowdsourced data applica-
tions and their use in the local DWD data assimilation sys-
tem. Within the Fleet Weather Maps Project FloWKar, a
collaboration between DWD and the German car manufac-
turer AUDI AG has been established, to investigate to what
extent future environmental observations from vehicle sen-
sors can be combined with existing data sources to improve
nowcasting and warnings and therefore make a contribution
to the security of future autonomous driving. A complete
real-time weather conceptual framework has been
established, focusing on the flow and processing of high res-
olution measurements and weather products and the devel-
opment of corresponding forecasts. A fast data exchange is
followed by quality control according to weather service
standards and smart aggregation strategies, integrating all
available data into a real-time weather map. Aiming for fast
weather forecasting, a data assimilation cycle with a
5-minute update rate is necessary; therefore, an ultra-rapid
data assimilation method is proposed. A real-world applica-
tion employs the high resolution project observations in a
5-minute assimilation cycle for the regional operational
weather model COSMO-D2, focusing on the model perfor-
mance optimisation near the surface and its predictions along
road sections in Germany, where the current observation net-
work is not dense enough. First results, comparing car mea-
surements, nearby weather stations and model analysis and
forecasts were presented.

E. Mallet and S. Al Ali (Météo France) first gave a brief
overlook of crowdsourcing activities at Météo-France. Those
activities focus on the use of human observations from
“expert” non-professional observers and “citizen” observers,
and automated observations collected from PWSs, agricul-
tural networks and connected vehicles. Then, the presenta-
tion focused on two ongoing projects: (1) The first action
concerns the crowdsourcing module in Météo-France's
mobile application that allows mobile users to report the
observed weather and to post pictures of the sky. The mod-
ule provides, without access restriction, a simple entry of
almost twenty phenomena to the users, who in their turn will
select the observed phenomena and report the observed
weather condition on a regular basis. Based on this module,

more than 10,000 observations are collected daily, and more
than 40,000 in high-risk situations. Visualisation of
crowdsourced data is already available to forecasters, and
the next step is to feed it to operational databases in order to
expand its possible uses. (2) The second action concerns the
potential use of vehicle observations for meteorological
applications which is the subject of a partnership between
Météo-France and Continental. The aim is to infer weather
(precipitation and low visibility) and road conditions (dry,
wet, slick) at a particular location in time, through the analy-
sis of vehicle data elements (temperature, wiper and head-
light statuses, velocity, and the activation of ABS and ESP
systems). The experimental campaign started in November
2016 and is still ongoing. The fleet consists of hundreds of
vehicles, transmitting data through a connected dongle. Data
filtering and quality checking routines were developed, and
vehicle observations were evaluated against meteorological
data. Machine learning classification algorithms were devel-
oped, using data from meteorological observation merging
products as references for hydro-meteor discrimination and
visibility. The preliminary results were promising and also
showed the need to combine multiple parameters in order to
successfully derive weather observations.

K. O'Boyle (Met Office) presented how The Met Office
view crowdsourcing as distinct from citizen science (see
section 4). There is a long history of citizen science at the
Met Office. The Weather Observations Website (WOW)
(wow.metoffice.gov.uk) is the Met Office citizen science
portal. WOW has global reach, and is a platform for any-
body to submit, share and display their weather observa-
tions, either manually or by connecting a PWS using APIs.
WOW data is being trialled in nowcasting applications, but
is not yet assimilated into NWP. Investigations into other
opportunistic observations are ongoing at the Met Office,
including collecting data from vehicles.

M. Clark (Met Office) presented on an automated quality
control and gridding process for citizen science data. There
has been a focus on Met Office WOW data from PWSs to
create high resolution surface analyses. Parameter values
from each WOW site are constrained to have the same long-
term mean as neighbouring official sites, but are otherwise
allowed to vary freely, as it is assumed that shorter-term,
temporary deviations are the signature of genuine small scale
features which are worth retaining in the analysis. A series
of case studies have shown that there is value in this
approach.

S.L. Dance (University of Reading) gave an overview of
the DARE: Data Assimilation for the REsilient City project.
This is a UK Engineering and Physical Sciences Research
Council (EPSRC) Senior Fellowship in Digital Technology
for Living with Environmental Change. The vision for the
project is to use “datasets of opportunity”, such as CCTV
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and vehicle observations, alongside scientific observing net-
works, such as satellite data (Mason et al., 2018) to improve
predictions of urban natural hazards such as flooding and
high impact weather. There are many potential benefits of
such data, including the availability of large numbers of
inexpensive observations, in areas where there are people
but there may be few sources of scientific observation data.
For example, (1) air traffic management reports have poten-
tial to provide observations of temperature inversions in the
boundary layer (Mirza et al., 2016, 2019). (2) In many loca-
tions around the world, the population has access to
smartphones, but ground-based scientific observations are
sparse. Furthermore, there are a number of issues in collect-
ing ‘datasets of opportunity’ for use in assimilation. These
include the need for metadata such as time and location in
order to carry out the assimilation, versus data protection for
the data provider, who may be a private individual. Other
issues include data ownership, intermittency, heterogeneity,
data provenance and large data volumes. In order to use such
observations in data assimilation, there needs to be an under-
standing of natural variability in urban areas (where many of
these data originate) and the variability that can be resolved
by a prediction model (e.g., Waller et al., 2014; Janji�c et al.,
2017). This was discussed further in the next talk by
J.A. Waller.

J. A. Waller (University of Reading) presented on the
potential to measure temperatures in urban areas using vehi-
cles. Issues related to the assimilation of crowdsourced data
were discussed; in particular, the need to understand the data
inhomogeneity and natural variability of observation urban
areas in order to understand the observation uncertainties.
Collaborative work with the UK Met Office, is assessing the
potential of temperature observations recorded by vehicles.
The preliminary findings showed that the data collection
method was not reliable for collecting large temperature data
sets. Furthermore, for the initial data sets collected, it was
shown that temperature measurements had a negative corre-
lation with the speed of the vehicle. It was concluded that a
new data collection technique was required, and a more
detailed study was vital before the benefits of assimilating
vehicle temperatures could be assessed.

D. Blaauboer (KNMI and EUMETNET) presented
shortly the KNMI-activities in the domain of crowdsourcing.
These include participation in the WOW project of UK Met
Office, application of car data (temperature sensor, wiper
data), smartphone data, damage reporting app (to report
weather impacts by the public), wind data from hot air bal-
loons. EUMETNET, the grouping of 31 European National
MetServices, recognised the emerging availability and appli-
cation opportunities of crowdsourced data and the Internet
of Things among many of its members. Therefore
EUMETNET has organised a few dedicated workshops on

this subject with the aim to bring experts in this field
together, to foster networking and possibly create a platform
or programme in near future to develop common applica-
tions to the benefit of all.

M. Dahoui (ECMWF) presented an overview of the
importance on in-situ data in global NWP. It was shown that
there are data gaps in the surface observations received at
ECMWF and the potential and challenges for using
crowdsourced data to fill these gaps were described. Also, it
was stressed that crowdsourced data can be important for
verification purposes. A denser network is useful to detect
small scale features and rapid changes of the atmosphere, so
observations have also the potential to improve the forecast
verification aspects leading to a better understanding of
model performance. The usage of crowdsourced observa-
tions is however very challenging. It was suggested that data
collection and pre-processing needs a collaborative effort
between NWP centres through coordination of the WMO,
the industry and the private sector to improve and unify stan-
dards and to agree on best practices. A common and shared
use of operationally managed data hubs (such as the
MetOffice Weather Observation Website) is a cost-effective
solution to manage the diversity of data sources and formats.
A good understanding of the error characteristics of the
observations is necessary to allow proper data selection and
error specification. This requires a comprehensive and
standardised description of metadata. Quality control, bias
correction and blacklist management require unique identifi-
cation of a reporting station which makes anonymous reports
of less interest to NWP data assimilation unless technologi-
cal solutions are available to anonymously identify the data
or perform most of the quality control and bias correction
near the data origin. Legal aspects related to privacy and
data usage are also essential to clarify before the operational
use of such observations.

3 | OVERVIEW OF ACTIVITIES

During the meeting, it became clear that there are many
activities on-going, with opportunities for collaboration.
Table 1 list activities, status and considerations for partici-
pating institutions together with ZAMG and Met Norway
who agreed to share their current activities. It is seen that
especially work with data from private weather stations is an
active field of research at many institutions.

4 | CHALLENGES AND SOLUTIONS

The presentations and discussions identified several com-
mon challenges, and some solutions were proposed during
the discussion sessions. These follow below:
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I. Terminology is not agreed upon in the community. A
common vocabulary needs to be established to facilitate
future collaboration. The term “crowdsourced data” is
used differently within the community, and there is no
agreement what this term covers and what not. Often
crowdsourced data is used as a collective term, for exam-
ple, citizen-science and third-party data, which is how
the term will be treated in this report, though with a rec-
ognition that a more precise definition is desirable.
i. The Met Office suggested a terminology that clearly

separates citizen-science data and crowdsourced
data, and also attempts to define associated terms:
a. Citizen-science data: Information obtained from

a group of people who are invited to participate
in a data collection process.

b. Crowdsourced data: Information derived from a
group of people without their explicit involve-
ment in the data collection process.

c. Opportunistic data: Information derived from non-
meteorological sensors or weather sensitivities.

d. Third-party data: Data collected by a third-party
organisation using meteorological sensors.

However, some similarities are expected between
third-party data and the other groups. For example
PWS observations might be classified as both third-
party data and crowdsourced data.

ii. ECMWF proposed four main categories of
‘crowdsourced’ data; private and third party, auto-
mated amateur weather stations, smart connected
devices (mobile phones and vehicles), and human
reporting of the current weather, relating each of
these to the ease of utility in NWP.

In the terminology proposed by the Met Office (i), there
is a clear separation between citizen-science data and
‘crowdsourced’ data, wherein the ECMWF proposal
(ii) the term ‘crowdsourced’ data is a collective term. It is

TABLE 1 Overview of ongoing and
considered activities at each participating
institute and institutes that was not present
but approved to be included

Institution
Current
activities Activity status Considerations Contact persons

KNMI WOW-NL Research,
operational

Pollution
measurements

Marijn De Haij

Met Office WOW-UK, social
media, cars,
voluntary
observations

Resarch,
operational

User reports, 5G
network

Katharine O'Boyle

DMI SPO, PWS Research User reports,
webcam

Kasper Hintz

FMI User reports Operational SPO Juhana Hyrkkanen

Mètèo France Cars, PWS, user
reports

Research Èmilie mallet

University of
Reading

Cars, CCTV,
WOW

Research Buses Sarah Dance

ECMWF Monitoring
Progress

Research Mohamed Dahoui

DWD Cars, PWS Research SPO, user reports Alexander cress

Met Èireann Voluntary
observations

Resarch,
operational

PWS Ronan Darcy

ESTEA App in
development

Ivar Ansper

University of
Washington

SPO Research Conor McNicholas

ZAMG Trusted spotter
network,
Austrian
weather
observer

Operational Thomas Krennert

Met Norway PWS (Netatmo) Research,
operational

Roger
Randriamampianina

The activities at University of Reading are only including activities within the DARE (data assimilation for the
REsilient city) project.
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recommended that authors define their usage of these
terms.
II. Obtaining useful crowdsourced data may involve collab-

oration with commercial entities, such as manufacturers
of PWSs or vehicles. In some cases, collaborations of
this kind mark a step change in the way universities and
meteorological institutes have previously operated. For
professional use, crowdsourced data needs to be as
unprocessed as possible when received. Working in col-
laboration with manufacturers may enable this. Some of
the workshop participants have built successful collabo-
rations with commercial entities, taking a “virtuous cir-
cle” approach, whereby data is provided by a
manufacturer, and in return the meteorological institu-
tion provides forecast data or quality controlled observa-
tional data. It is crucial that intellectual property rights
and data ownership are clear and agreed upon before
starting collaborations.

III. Law based restrictions on storage of personal data lead
to a need to de-personalise crowdsourced data, which
can lead to “black boxes”. Metadata can be used to help
characterise the error of crowdsourced observations,
and for bias correction, but the legal constraints regard-
ing privacy and personal data can limit the collection of
such metadata. Hence, metadata vs privacy is one issue
that must be considered when collecting observations.
DMI have invested in legal expertise and are open to
sharing the information obtained with the community.
This is mainly related to the European GDPR regula-
tion (European Union, 2018).

IV. New data sources can potentially produce more obser-
vations than current NWP models can realistically han-
dle. New methods, such as those suggested by
Dr. X. Yang (DMI), will need to be considered. Ten-
dencies of parameters are not commonly assimilated
into NWP; a change in approach may be required to
extract maximum value from crowdsourced
observations.

i. It was discussed that data streaming could be a
way of handle the amount of observations in
future, such that, in operational systems, observa-
tions that come in are utilised and then thrown
away. This may seem somewhat provocative to
some as the NWP community are often used to
store data for an extended time. However, it was
agreed that data streaming could perhaps be only
realistic solution currently to overcome issues with
data volume. Also near-real communication could
perhaps be easier to implement with a streaming
approach.

ii. The scale of crowdsourced observations, any refer-
ence network, and NWP models will all be differ-
ent. To make them comparable, methods to deal
with multiscale comparisons are required for
example, filtering or superobbing.

Further, other themes seemed to be well established.
There was a general agreement that crowdsourced data can
provide useful observations in areas otherwise devoid of
observations. It was discussed whether stationary platforms
(e.g., PWS) are easier to implement in existing systems than
moving platforms (e.g., vehicles, SPOs). In general, station-
ary platforms are believed to be easier to bias-correct than
moving platforms. Also, new data sources should be seen to
supplement conventional observation networks rather than a
replacement, as trusted observations are required as a refer-
ence for new data sources. A nested platform of reference
may be a good way of organising networks in the future, for
example, SYNOPs used as a reference for the quality control
of PWS data, and PWS then used as a more dense reference
dataset for observations from mobile platforms.

5 | CONCLUSIONS AND
RECOMMENDATIONS

Much of the work presented at the workshop was at an early,
exploratory stage, and many questions remain unanswered.
However, a general set of conclusions were drawn from the
discussion. Crowdsourced observations are potentially use-
ful for NWP, and are undoubtedly useful for verification and
forecasting. Use of crowdsourced observations in
nowcasting, or post-processing, is perceived to be easier and
less demanding than in NWP data assimilation. There is still
much work to do before crowdsourced observations can
widely be ingested into NWP models.

It was agreed upon that there is a sliding scale between
‘crowdsourced’ or “passive” data collection, where an indi-
vidual's involvement is limited, and “citizen science” or
“active” data collection where the individual is explicitly
involved. It is generally thought that the lesser degree of
interaction required by the participant the higher the volume
of data that can be collected. It is not clear if either of the
two are of superior quality.

Further, the following recommendations are made. An
organised community of those involved in crowdsourcing
activities would be beneficial. EUMETNET would provide a
good forum for this, however, such a forum should not be
restricted to European countries. This forum could be a sim-
ple, independent, platform accessible via a website. Regard-
ing vocabulary, it would be beneficial for the community to
agree on common terminology related to crowdsourcing. To
realise the full potential of crowdsourced data for NWP,
issues of data quality, privacy, and availability will need to

6 of 8 HINTZ ET AL.

194



be addressed. Data quality could be enhanced by prioritising
the collection of accurate metadata. Privacy issues should be
addressed to determine if, how, and when unique identifiers
can be retrieved for quality control purposes. Lastly, efforts
to expand crowdsourced datasets by disseminating data
operationally and working with private industry should be
encouraged.
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Abstract

The amount of publicly available data from personal weather stations has increased significantly

in recent years. One popular weather station in Europe is sold by the private company Netatmo.

Pressure observations from Netatmo stations have been collected, and the quality of these has been

examined. For three individual stations, a detailed examination of data spanning a year was carried

out. A non-constant bias was found for all three stations, following the same pattern. Further, the

observations were assimilated with 3D-Var using the HARMONIE numerical weather prediction

model. A numerical weather prediction model has been run for a period of two months, in which

both pressure observations from Netatmo and smartphones were assimilated using 3D-Var. It is

recommended that high-density spatial surface observations are averaged to ’super-observations’ or

that a data thinning method is applied to surface observations when necessary.

Keywords: Crowdsourcing, Citizen Science, Quality Control, Data Collection, Assimilation
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1. Introduction1

Within recent years, it has become increasingly easy for people to connect devices to the inter-2

net (Patric, 2014). Such devices include smartphones and Personal Weather Stations (PWS). Many3

smartphones can measure the atmospheric pressure, which is of interest for data assimilation in Nu-4

merical Weather Prediction (NWP) (Madaus and Mass, 2017; McNicholas and Mass, 2018; Hintz5

et al., 2019a). Also, PWS offers a new source of high spatial resolution of traditional meteorological6

surface variables (Clark et al., 2018), such as pressure and temperature. Many other activities are7

currently ongoing with other types of data (Muller et al., 2015; Hintz et al., 2019b). One popular8

internet-connected PWS is Netatmo weather stations (Netatmo SAS, 2018). Other PWS includes9

stations from e.g. Lonobox (2019) and Fieldsense A/S (2019). But many more exists (Clark et al.,10

2018; Bell et al., 2015).11

12

This study examines the quality of pressure observation from PWSs using stations by Netatmo13

SAS (2018) as a source. Figure 1 shows an example of the high spatial resolution that these stations14

can offer. In this case, temperature observations are shown. Such high-resolution data can be to15

interest for nowcasting purposes and urban meteorology (Meier et al., 2017). Pressure observations16

from PWS are assimilated into the HARMONIE NWP model for a period of two months, using17

3D-Var, to study the impact of these observations. Also, pressure observations from smartphones18

are assimilated in another experiment covering the same period, extending the simulation period19

of an earlier study, Hintz et al. (2019a), which was five days. Hintz et al. (2019a) collected about20

150.000 SPOs per day via a developed Software Development Kit (SDK) integrated into third-party21

apps, which was assimilated into the HARMONIE NWP model (Yang et al., 2017). A vital issue of22

SPOs is that the accuracy of the vertical position from the GNSS-system is poor; however, it is an23

issue that is likely to reduce in future (Robustelli et al., 2019). An advantage of PWS over SPOs is24

that they are stationary and thereby easier to bias correct (Hintz et al., 2019b).25

26

In section 2, the methods for collecting and processing the Netatmo pressure observations are27

presented. The collection and processing of SPOs are identical to those methods presented in Hintz28

et al. (2019a) and are thus not described in detail here. Results are presented in section 3 and29

2
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discussed in section 4. Finally, conclusions and final remarks are given in section 5.30

2. Method31

First, the quality of Netatmo pressure observations was examined by comparing three individual32

stations, from which the authors had got access, to SYNOP observations. A default Netatmo33

weather station consists of two modules, one indoor module and one outdoor module. Both modules34

measure the temperature and relative humidity. The outdoor module is powered by batteries and35

is connected to the indoor module via Bluetooth. The indoor module is connected to WiFi and is36

responsible for sending data to a Netatmo server where the user can access the data via an user37

interface. The atmospheric pressure is measured indoors by the indoor module because the module38

is powered via a power cable. The user does not see the observed pressure, but sees the Sea Level39

Pressure (SLP) converted from the observed pressure. A rough conversion to sea level is made using40

ps = p0 ·
(

1 − Γh

T0

)g M
RL

, (1)41

42

where ps is the surface pressure and p0 is the SLP. Γ is the lapse rate for dry air (≈ 0.0065 K/m).43

T0 is a constant standard temperature of 288.15 K. g is the gravitational constant, M is the molar44

mass of dry air (≈ 0.02897 kg/mol) and R0 is the universal gas constant. h is the height above sea45

level of the station. The altitude is defined by Netatmo via the horizontal position using a unknown46

terrain model. Equation (1) was referenced by Netatmo customer support (Netatmo SAS, 2019)47

via email.48

49

An examination of individual stations was also performed. Pressure observations from three50

individual Netatmo indoor modules was obtained over a period of one year, 1 April 2018 to 3151

March 2019, with a temporal resolution of one hour. Each station was compared to observations52

from the nearest DMI SYNOP station respectively to examine the bias of the Netatmo pressure53

observations. To compare the Netatmo pressure observations to the SYNOP stations the SLP from54

Netatmo was first converted to surface pressure using equation (1) using the elevation from the55

Netatmo SAS (2018) Application Programming Interface (API). Then the pressure from both the56

3
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Netatmo and SYNOP station was converted to SLP using (WMO, 2010)57

p0 = ps · exp

( g
RHp

Ts +
γHp

2 + es · Ch

)
, (2)58

59

where Hp is the station elevation in gpm, Ts is the station temperature in K, es is the vapour60

pressure at the station in hPa and Ch is a coefficient of 0.12 K/hPa. For stations with an elevation61

of less than 50 m, a different correction is used following WMO (2010). A reduction coefficient is62

added to the surface pressure as63

p0 = ps +
psHp

29.27Tv
, (3)64

65

where Tv is the virtual temperature at the station. However, one can not use the observed indoor66

temperature and humidity from the Netatmo station to find the SLP. Instead the temperature and67

humidity was obtained from a HARMONIE short term forecast using the nearest grid point to68

the station. This ’back-and-forth’ correction of Netatmo observations is done to ensure the same69

methods has been applied and that any bias is not due to differences in layer thickness throughout70

the year between the stations due to different station elevation.71

72

Secondly, Netatmo data was obtained from Denmark, northern Germany and southern Sweden73

via the Netatmo SAS (2018) API from 1st of April 2018 and onwards with a sampling frequency of74

about 30 minutes, with the purpose of assimilation into the HARMONIE NWP model. Also, SPOs75

was collected for the same period using the methods described by Hintz et al. (2019a), in which76

an external screening method was applied before assimilating SPOs. Hintz et al. (2019a) obtained77

about 120.000 pressure observations from smartphones per day, thus a strict filtering was necessary.78

79

Four numerical simulations were performed with the DMI HARMONIE NWP model (Yang80

et al., 2017), listed below81

• OPR,82

• REF,83

• SMAPS,84

4
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• NETATMO,85

where OPR is equivalent to the operational model at DMI. REF is a reference run in which pressure86

observations from Danish SYNOP stations were excluded from the assimilation model to have an87

independent reference of observations. In SMAPS, SPOs has been assimilated into HARMONIE88

(similar to EXP MEDV2 described in Hintz et al. (2019a) but for an extended period). In the89

NETATMO run, NPOs has been assimilated into HARMONIE. In both SMAPS and NETATMO,90

there are no pressure observations from Danish SYNOP stations as in REF. The four simulations91

was run from 4 April 2018 to 25 May 2018, as six-hour forecasts with three hour data assimilation92

cycles using 3 Dimensional Variational (3D-Var) assimilation. In all cases the surface pressure was93

assimilated.94

95

NPOs was bias-corrected using two months of NWP short-term forecasts prior to the simulation96

period. If new stations entered the system which was not found in the bias-corrected stations it97

was not used. Otherwise, no prior screening to the data assimilation system was done. However,98

screening of observations are a part of the data assimilation system of HARMONIE (Driesenaar,99

2009). Only observations within 30 minutes of the analysis time was used in the model and only100

one observation per station.101

102

3. Results103

Figure 2 shows one year of bias of the SLP from an individual Netatmo station (black line). The104

Netatmo station was compared to the nearest DMI SYNOP station (Holbaek) 15 km away. The105

solid black line shows the data resampled over one month. An apparent yearly cycle is seen in the106

bias. Also, the temperature (red line) and relative humidity (blue line) from the PWS is plotted.107

Note that all observed variables are measured indoor. It is relevant to examine the temperature108

and relative humidity indoor as it is also the indoor module that measures the pressure. A Pearson109

correlation coefficient of 0.96 and 0.67 between the resampled surface pressure and temperature and110

surface pressure and relative humidity were found respectively (see table 1).111

112
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The SYNOP stations was discarded as a source to the yearly cycle by examining the bias of113

each SYNOP station to other SYNOP stations and NWP model data, in which no varying bias114

was found (not shown). Also, the Netatmo station was compared to NWP data, in which the same115

trend was seen. Two other Netatmo stations was also examined in which a yearly cycle in bias was116

also seen, however, less visible. Station name, location and correlation coefficients for all stations117

are given in table 1.118

119

From table 1, it is seen that there is a generally strong correlation between the bias of resampled120

surface pressure and the resampled temperature, σRES
T . Especially for the station of Snuderup, with121

a positive correlation coefficient of 0.91. For the two other stations the correlations are negative.122

Correlations are less for relative humidity, σRES
H . For the raw observations, σRAW

H , the correlations123

are smaller and in no cases larger than 0.3 in absolute value.124

125

Figure 3 shows the distribution of the differences between the observed pressure between one126

Netatmo station (Snuderup) and the SYNOP station. Netatmo uses a simple algorithm to convert127

the observed pressure to SLP (see equation (1)) while the observations from the SYNOP station is128

corrected to SLP by taking both temperature and humidity into account (see equation (2)). Both129

the bias in ps and SLP follows a normal distribution which have been fitted to each distribution.130

The difference of the shape between the two distributions are due to differences in the conversion to131

SLP as described in section 2. The observations of ps is coming from the elevation above sea level132

from both the Netatmo station (62 m) and the SYNOP station (13 m), which makes the bias of sur-133

face pressure larger than that of SLP, as no correction is done for the elevation difference in this case.134

135

Figure 4 shows the number of surface pressure observations used in the minimisation of the136

3D-Var system for each run for OPR, SMAPS and NETATMO from Denmark. REF is not shown137

as all Danish surface pressure observations were excluded here. It is seen that OPR lies nearly138

constant around about 50 SYNOP stations. A strict filtering of SPOs was applied in the SMAPS139

run prior to the data assimilation, which is why a relatively low number of observations is used140

in the minimisation. The high variability of crowdsourced data compared to SYNOP data is also141

seen as a relatively large fluctuation in the numbers of observations that enters the minimisation in142
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the case of the SMAPS and the NETATMO runs. Data thinning is only applied to satellite data143

in the 3D-Var system of HARMONIE and not surface data. Therefore a large number of Netatmo144

pressure observations compared to OPR and REF are seen.145

146

Figure 5 shows the RMSE, bias, and standard deviation averaged over all runs for each forecast147

hour for surface pressure using SYNOP observations as reference. OPR and REF are nearly identi-148

cal as expected, but it is noted that the REF does have a slightly lower bias than OPR throughout149

the forecast, which is notable since Danish SYNOP pressure observations are used in the OPR run;150

however, the difference is minor. Both the SMAPS and NETATMO run starts with a negative bias.151

SMAPS changes sign and converges towards OPR and REF when the model runs freely. NETATMO152

has the same tendency but starts with a large bias about four magnitudes larger than OPR with153

opposite sign. Also, the RMSE of NETATMO is the largest throughout the forecast length. The154

RMSE of SMAPS is in slightly lower than those of OPR and REF, but the standard deviation is155

also slightly higher.156

157

Figure 6 shows the RMSE, bias and standard deviation as figure 5 but for 10 m wind speed using158

SYNOPs as reference. Again OPR and REF are nearly identical. Both SMAPS and NETATMO has159

lower bias than OPR and REF but higher RMSE and standard deviation. The most extreme bias160

difference is seen at the first forecast hour between NETATMO and REF, where NETATMO has a161

lower bias of about 0.1 m/s. However, NETATMO has a RMSE about 0.2 m/s higher than OPR and162

REF throughout the forecast, while the difference in bias is less than 0.1 m/s in general. SMAPS163

also has a lower bias than both OPR and REF, but also has a higher RMSE and standard deviation.164

165

Figure 7 shows RMSE, bias and standard deviation as figure 5 and figure 6 but for 2 m tempera-166

ture. SMAPS scores best overall comparing the improvement in bias with a minor difference in both167

RMSE and standard deviation. The RMSE of SMAPS is has decreased a little, while the standard168

deviation has increased less than 0.05 K. The standard deviation of OPR, REF and NETATMO169

are nearly identical and difficult to distinguish on the figure.170
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4. Discussion171

A yearly cycle in the bias of p0 was identified (see figure 2) for three individual PWS from172

Netatmo. The variation in bias is likely related to internal processes of the hardware itself since173

there is a clear correlation with the indoor temperature measured by the same device. It was seen174

from table 1 that the correlation with temperature for the three stations was both positive and175

negative. A possible explanation for this is the difference in elevation for the PWS compared to176

the SYNOPs. For the Snuderup Netatmo station, the station lies higher (49 m) than the Holbaek177

SYNOP station. Both Kgs. Lyngby and Skelkaeret (Netatmo stations) lie lower than the SYNOP178

stations with a difference of 39 m and 12 m respectively. It is well known that most barometers179

do have a temperature dependence (Meulen, 1992), however much can be done to minimise such180

effects, for example, by using materials that are less affected by temperature changes. It has not181

been possible to find documentation on what has been done by Netatmo to minimise such effects.182

183

If a provider of observations, such as Netatmo, delivers SLP and not surface pressure, it is essen-184

tial to know which method that has been used to convert the observation to sea level. It was shown185

in figure 3 that the spread of the bias of SLP is larger than that of ps, for one specific station. The186

bias of SLP used the Holbaek SYNOP as a reference which was converted to SLP using equation187

(2) where the Netatmo SLP has been using the more primitive equation (1). A smaller spread is188

obtained when comparing ps observed by the SYNOP station to the Netatmo observation, which is189

converted back to the surface, using equation (1).190

191

Comparing figure 4 to figure 5 one could suspect that the model has been oversaturated with192

surface observations. Before the numerical runs, it was believed that automatic data thinning of193

surface observations were already implemented; however, data thinning is only applied to satellite194

data in the HARMONIE system. Data thinning is applied to ensure that the assumption of no195

observation error correlations is true in the 3D-Var system. Because the Netatmo observations have196

been bias-corrected with two months of NWP data prior to the simulation period, there can be197

observational error covariances introduced via the NWP model. This can be one reason for the198

large RMSE of ps for the NETATMO run seen in figure 5. A decrease in the bias of 10 m wind was199
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shown in figure 6, which could suggest, un-intuitively, that an increase in the magnitude of pressure200

bias can decrease the bias of 10 m wind. However, this is not the case as the SMAPS run shows a201

decrease in the bias of both surface pressure and 10 m wind.202

203

The NETATMO run have in general much larger errors than OPR, REF and SMAPS. Hintz204

et al. (2019b) describes how mobile devices is more difficult to utilise than stationary devices. There-205

fore, it was expected to see better results when assimilating Netatmo pressure observations. Further206

investigations with a difference in the the degree of data thinning should be carried out in future.207

Such a study will reveal the importance of data thinning in the 3D-Var system and better reflect208

the impact of data from PWS. However, with the high temporal resolution of crowdsourced data209

in general, 3D-Var may not be the best suited method. Other methods such as ensemble Kalman210

filters (Houtekamer et al., 2005) or 4D ensemble variational (4D-EnVar) methods (Lorenc, 2003)211

may be better suited (Madaus and Mass, 2017; McNicholas and Mass, 2018). A 4D-Var assimilation212

scheme is under development for HARMONIE (Driesenaar, 2009), which can potentially improve213

the value of data considered in this study significantly. One temporary solution could be to bias214

correct the Netatmo stations continuously using the latest one to two months of observations as215

the bias does not change much in this time interval (see figure 2). Another approach is to gener-216

ate a set of fewer observations by averaging the observations to generate a set of ’super-observations’.217

218

As described in section 2, Netatmo pressure observations was bias corrected using NWP data.219

This can potentially lead to model bias drift (Vasiljevic et al., 2006). However, at DMI, SYNOP220

pressure observations are never bias corrected, which anchors the model. Even though Danish221

SYNOP pressure observations were excluded in the REF, SMAPS and NETATMO run, there are222

still SYNOPS included from outside Denmark, which delivers about 95 % of the total surface pres-223

sure observations.224

225

SMAPS look much like the results obtained in Hintz et al. (2019a), in which the period only226

covered five days. With the increased simulation length and similar results, SPOs must be said to227

have a positive impact on NWP. This is only likely to increase in future as methods for correcting228

and screening crowdsourced data improves.229

9

206



5. Conclusions230

A non-constant bias of pressure of three individual Personal Weather Stations (PWS) from231

Netatmo was found over one year. To conclude on the reasons for the varying bias, further studies232

are required. References used to determine the bias (SYNOP stations and NWP data) was discarded233

as a possible source of the observed variation. Also, differences in height between isobaric surface234

layers due to yearly cycles in temperature were discarded as the source of the variation. Furthermore,235

the importance of correcting surface pressure to sea level pressure correctly are illustrated. One issue236

with pressure observation from PWS was a crude algorithm to convert between surface pressure237

and sea level pressure. This was, however, easily corrected.238

Pressure observations from PWS were successfully assimilated into the DMI HARMONIE NWP239

model using 3D-Var in which potential issues of the current assimilation system was identified,240

such as missing data thinning for high-resolution surface observations. Four numerical experiments241

using HARMONIE with 3 hourly data assimilation cycles was computed over a period of nearly242

two months. These computations showed worse results when PWS pressure observations were243

assimilated compared to the operational model. It is expected that improvements in the observation244

preprocessing can increase the skill of the run with PWS observations significantly.245

A Previous study is confirmed in that smartphone pressure observations do contribute positively246

to the DMI HARMONIE forecasts when assimilated with 3D-Var. However, it is expected that more247

impact will be seen, if methods that take the high temporal resolution of these data into account248

are used.249
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Figures310

Figure 1: Map showing an example of the high spatial resolution of PWS temperature observations from Netatmo
from a region north of Copenhagen, Denmark. The scale is shown in the lower left corner.
Credits: Netatmo, weathermap.netatmo.com
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Figure 2: Station name: Snuderup. Bias of sea level pressure from an individual Netatmo station compared to
the nearest DMI SYNOP station during one year. Grey: Raw data, as the difference between the PWS and the
SYNOP station, which is resampled to 1 month to find the bias for each month (black line). Red: Observed indoor
temperature by the PWS. Blue: Observed relative humidity. σT is the Pearson correlation coefficient between the
resampled pressure bias and temperature. σH is the correlation between the resampled pressure bias and relative
humidity.
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Figure 3: Station Name: Snuderup. Distribution of difference in pressure between a single Netatmo station and a
DMI SYNOP station during a period of one year. Blue (left) shows the distribution of the surface pressure and the
orange (right) shows the distribution of the sea level pressure. Both distributions have been fitted with a Gaussian
distribution using the mean and standard deviation from each distribution shown in the top.
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Figure 4: Observation usage of surface pressure observation in HARMONIE from 4 April 2018 to 25 May 2018 for
Denmark only. REF is not shown as there are no surface pressure observations used from Denmark.

Figure 5: Root Mean Square Error (solid lines), Bias (bars) and Standard Deviation (broken lines) of surface pressure
in average over two months using an assimilation cycle of three hours.
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Figure 6: Root Mean Square Error (solid lines), Bias (bars) and Standard Deviation (broken lines) of 10 m wind in
average over two months using an assimilation cycle of three hours.

Figure 7: Root Mean Square Error (solid lines), Bias (bars) and Standard Deviation (broken lines) of 2 m temperature
in average over two months using an assimilation cycle of three hours.
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Tables311

Table 1: Correlations coefficients between surface pressure and temperature (σT ) and between surface pressure and
relative humidity (σH). σRAW is the correlation coefficient for the raw data and σRES is the correlation coefficient for
the resampled data. Alt specifies the altitude im meters relative to mean sea level from the Danish Terrain Model
and the numbers in parentheses are the terrain elevation from the NWP model. Station names in parentheses refers
to which stations that have been compared.

Name Lat Lon Alt σRES
T σRES

H σRAW
T σRAW

H

Snuderup 55.690 11.370 62 (37) 0.91 0.53 0.44 0.20
Kgs. Lyngby 55.768 12.512 30 (32) -0.50 0.17 -0.13 -0.02
Skelkaeret 56.006 12.045 4 (13) -0.30 -0.70 0.07 -0.27

Holbaek 55.736 11.604 13 (9) (Snuderup)
Jaegersborg 55.766 12.527 42 (28) (Kgs. Lyngby)
Gilleleje 56.120 12.343 43 (8) (Skelkaeret)
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Chapter A

Additional figures

Figure A1: Smartphone wind observations taken near Brøndby stadium in
Copenhagen, Denmark. While the difference in wind speeds (red circles)
at the stadium can be interesting for athletes, the observations represent a
very high representativeness error, which makes utilizing the observations
in numerical weather prediction difficult.
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A. Additional figures 218

Figure A2: Absolute terrain height difference between the Danish Terrain
Model and the Terrain of the DMI HARMONIE model. The resolution of
the terrain model is upscaled to that of the DMI HARMONIE model. Units
are in meters. The DMI HARMONIE model has an overall bias of 1.11 m
compared to the terrain model.
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A. Additional figures 219

Figure A3: Example of a data stream of pressure measured by a smartphone
on board on a train. The green arrow shows the position of a tunnel where it
is seen that the position of the smartphone is not well defined. In general,
changes in altitude is clearly seen. The colours are given in hPa in the
colorbar.

Figure A4: Precipitation 15th of March 2019 at 19 UTC. Left: Radar
Reflectivity over Europe from the OPERA project. Right: Netatmo stations
with a pluviometer installed. Colours represent rain over one hour. White
stations (white circles) have not measured rain.
Credits: Dr Thomas Bøvith, DMI.
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Chapter B

Derivation of the Monin-Obukhov length

Assuming that in a horizontally homogeneous surface layer the mean flow and tur-
bulence characteristics depend only on four independent variables, namely, the height
above the surface, z, the friction velocity, u∗, the kinematic surface heat flux, Q0 and
the buoyancy, g/θ0, as done by Monin and Obukhov (1954), one can derive the Monin-
Obukhov length.

From the Buckingham Pi theorem (see section 6.1.1) it follows that there exist
m − n = 3 dimensionless groups, because there exist m = 4 quantities (z,u∗,Q0,g/θ0)
with n = 3 fundamental dimesions (m,s,K). Recall the units of [z] = m, [u∗] = m/s,
[Q0] = Km/s and [g/θ0] = m/Ks2. One can form a dimensionless group by using the m
quantities as

[
z

u3∗θ0
Q0g

]
=

m3s−1

m3s−1
= 1. (B.1)

The dimensionless group can be written as z/L where L is the Monin-Obukhov length
defined as

L = − u3
∗θ0

kgQ0
, (B.2)

where k is the von Kármán constant (dimensionless) introduced for the sake of conve-
nience, and the negative sign is introduced to have the same sign as the Richardson
number.
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Chapter C

Bias, standard deviation and mean squared error

To avoid any misunderstanding this appendix gives a brief definition and derivation of
the widely used statistical terms, bias, standard deviation and mean squared error as
used in this thesis.
Consider a Gaussian distribution G(x, σ), where from a value xi has been drawn ran-
domly N times. The mean is defined as

x =

∑
xi
N

. (C.1)

The standard deviation is denoted by σ and is given by

σ =

(∑
(xi − x)2

N − 1

)1/2

=

(∑
x2
i −Nx2

N − 1

)1/2

, (C.2)

where the following entity has been used

∑
(xi − x)2 =

∑
x2
i − 2

∑
xix+

∑
x2

=
∑

x2
i − 2x

∑
xi +Nx2

=
∑

x2
i − 2Nx2 +Nx2

=
∑

x2
i −Nx2. (C.3)

The Root Mean Square (RMS) is simply defined as

RMS =

(∑
x2
i

N

)1/2

. (C.4)
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C. Bias, standard deviation and mean squared error 222

Often (this work is no excuse) one compares an observation to some reference or back-
ground field treated as the truth. Consider a residual as an observation minus a back-
ground given as (O−B) = OmB. Then the bias, root mean square error and standard
deviation is given by

BIAS =

∑
OmBi
N

, (C.5)

RMSE =

(∑
OmB2

i

N

)1/2

(C.6)

and

STD =

(∑
OmB2

i −NOmB2

N − 1

)1/2

(C.7)

respectively. Considering equation (C.5), (C.6) and (C.7) it is seen that bias, RMSE
and standard deviation are connected as

STD =

(
N · RMSE2 −N · BIAS2

N − 1

)1/2

. (C.8)
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Chapter D

Namelist of the Frigg-WRF setup

Block D.1 shows the namelist file used for the Frigg-WRF setup described in chapter
4. Using this namelist makes it possible to reproduce the results. The settings are
specified via the numbers on the right. Earth System Research Laboratory (2019) gives
a description of the options.

Block D.1: The Fortran namelist file (namelist.input) for the Frigg-WRF
setup.

1 &time_control

2 run_days = 0,

3 run_hours = 72,

4 run_minutes = 0,

5 run_seconds = 0,

6 start_year = 2016, 2016,

7 start_month = 09, 09,

8 start_day = 30, 30,

9 start_hour = 06, 06,

10 start_minute = 00, 00,

11 start_second = 00, 00,

12 end_year = 2016, 2016,

13 end_month = 10, 10,

14 end_day = 03, 03,

15 end_hour = 06, 06,

16 end_minute = 00, 00,

17 end_second = 00, 00,

18 interval_seconds = 10800,

19 input_from_file = .true.,.true.,
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D. Namelist of the Frigg-WRF setup 224

20 history_interval = 60, 60,

21 frames_per_outfile = 1000, 1000,

22 restart = .false.,

23 restart_interval = 5000,

24 io_form_history = 2

25 io_form_restart = 2

26 io_form_input = 2

27 io_form_boundary = 2

28 debug_level = 0

29 /

30

31 &domains

32 time_step = 54,

33 time_step_fract_num = 0,

34 time_step_fract_den = 1,

35 max_dom = 2,

36 e_we = 253, 385,

37 e_sn = 208, 385,

38 e_vert = 30, 30,

39 p_top_requested = 5000,

40 num_metgrid_levels = 32,

41 num_metgrid_soil_levels = 4,

42 dx = 9000, 3000,

43 dy = 9000, 3000,

44 grid_id = 1, 2,

45 parent_id = 0, 1,

46 i_parent_start = 1, 65,

47 j_parent_start = 1, 45,

48 parent_grid_ratio = 1, 3,

49 parent_time_step_ratio = 1, 3,

50 feedback = 1,

51 smooth_option = 0,

52 sfcp_to_sfcp = .true.

53 /

54

55 &physics

56 mp_physics = 3, 3,
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D. Namelist of the Frigg-WRF setup 225

57 ra_lw_physics = 1, 1,

58 ra_sw_physics = 1, 1,

59 radt = 30, 30,

60 sf_sfclay_physics = 1, 1,

61 sf_surface_physics = 2, 2,

62 bl_pbl_physics = 5, 5,

63 bldt = 0, 0,

64 cu_physics = 1, 1,

65 cudt = 5, 5,

66 isfflx = 1,

67 ifsnow = 1,

68 icloud = 1,

69 surface_input_source = 3,

70 num_soil_layers = 4,

71 num_land_cat = 21,

72 sf_urban_physics = 0, 0,

73 /

74

75 &dynamics

76 w_damping = 0,

77 diff_opt = 1, 1,

78 km_opt = 4, 4,

79 diff_6th_opt = 0, 0,

80 diff_6th_factor = 0.12, 0.12,

81 base_temp = 290.

82 damp_opt = 0,

83 zdamp = 5000., 5000.,

84 dampcoef = 0.2, 0.2,

85 khdif = 0, 0,

86 kvdif = 0, 0,

87 non_hydrostatic = .true., .true.,

88 moist_adv_opt = 1, 1,

89 scalar_adv_opt = 1, 1,

90 /

91

92 &bdy_control

93 spec_bdy_width = 5,
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D. Namelist of the Frigg-WRF setup 226

94 spec_zone = 1,

95 relax_zone = 4,

96 specified = .true., .false.,

97 nested = .false., .true.,

98 /

99

100 &namelist_quilt

101 nio_tasks_per_group = 0,

102 nio_groups = 1,

103 /
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Chapter E

Mathematical equivalence of OI and 3D-Var

It can be shown that the weight obtained in 3D-Var,

Q = [P−1
b + HTR−1H]−1HTR−1,

is mathematically equivalent to the weight obtained for OI,

W =
PbH

T

HPbHT + R
.

For an explanation of mathematical symbols and their behaviour, the reader is referred
to chapter 9. To proof the mathematical equivalence take the inverse of the 3D-Var
weight and use that (AB)−1 = B−1A−1

Q−1 = [(P−1
b + HTR−1H)−1HTR−1]−1 = (HTR−1)−1(P−1

b + HT )R−1H)

= RH−T (P−1
b + HTR−1H)

= RH−TP−1
b + RH−THTR−1H

= RH−TP−1
b + H

= (RH−TP−1
b + H)PbH

TH−TP−1
b

= (R + HPbH
T )H−TP−1

b .

(E.1)

Taking the inverse of equation (E.1) yields the OI weight

1

Q−1
= Q =

PbH
T

HPbHT + R
= W (E.2)

Thus 3D-Var and OI are mathematical equivalent.
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