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Abstract

This thesis consists of five results sections, in which biological systems are examined through math-

ematical modelling.

The first section examines how the transcription factor NF-κB is affected by oscillations in the lig-

and TNF. Since the presence of a constant level of TNF induces oscillations in NF-κB, they create a

system of two coupled oscillators that can lead to entrainment depending on the coupling strength

between them and the ratio between their original frequencies. For a range of parameters, this led

to two stable limit cycles, and in the presence of noise transitions between the two cycles occurred

and we termed this modehopping. We measured the distribution of transition times, and found

this to be the sum of two exponentials we described by a simple 1D model. Next we considered

how this affects downstream genes, and constructed a model that separates genes depending on

the affinity and cooperativity of the NF-κB binding to the promoter region of the gene. We found

that the transitions in NF-κB oscillations creates multiplexing between different families of genes.

Then we increased the amplitude of TNF further and observed chaotic dynamics in NF-κB, with

statistical properties similar to the trends found in modehopping. The chaotic dynamics created a

variety of different amplitudes, and we realized that this was a mechanism to enhance low affinity

genes. We found that this led to a significant raise in protein complex formation and that chaos

enhanced both the efficiency and economy of this process. Finally we found that chaotic dynamics

creates a population of heterogeneous cells that individually changes state in time. This was found

to increase the survival rate in various toxic environments.

The second project investigates the dynamics of another transcription factor, p53, following deple-

tion of the protein Mdmx. The dynamics of p53 is believed to be important for the cellular control

of processes as division and DNA repair. and previous reports have shown that p53 starts to

oscillate following γ-radiation. Here we analyzed experimental data of p53 before and after Mdmx

depletion, which revealed a typical response characterized by a large transient pulse followed by

sustained oscillations. We used these experimental markers as guidelines to construct a simple

mathematical model, and considered the different hypotheses by introducing impact parameters

to represent each individual hypothesis. In this way we found that the main results was explained

by an enhanced degradation of p53 caused by Mdmx. We then used the model to predict how cells

depleted of Mdmx would respond to UV exposure in terms of p53 dynamics. By comparing the

predictions to experimental results, we found a strong agreement between the two.

The third project investigates how the dynamics of the membrane potential in neurons are affected

by changes in extracellular ion concentrations. Inspired by previous experimental findings, showing

different ion compositions in sleep than in awake, we extended an existing model to include extra-

cellular ion concentrations. We then examined how the dynamics changed, if previously reported

ion concentrations from sleep and awake were inserted into the model. By solely changing the ion

concentrations a state transitions did not occur, but by changing ion concentrations accompanied

by a perturbation in one of the gating channels, a transition occurred. We examined this further,

by introducing an active ion composition, and found that this was enough to drive the neurons

to a third state that we termed active awake. We argue that while the transition between sleep

and awake is robust and needs perturbations in both ions and the gating channel, the transition

between quiet awake and active awake does only need ion changes and can thus be done more
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quickly. Finally, we investigated the nature of the dynamics in the observed states and found that

the quiet awake state was governed by chaotic dynamics whereas the sleep state was a closed limit

cycle which allows the possibility of neuronal synchronization.

The fourth project investigates how the dynamics of extracellular dopamine in the human brain is

affected when the dopaminergic neurons are dying. It is well known that the correct stimulation of

dopamine is fundamental for processes as memory, learning and movement, and it has been shown

that at the onset of Parkinsons disease, a large fraction of all dopaminergic neurons are gone. We

started by considering a previously published model for extracellular dopamine in a small subspace

of striatum, and examined the dynamical properties as the density of neurons decreased. We then

constructed a stochastic model for neuronal firing which were included in the dynamical model.

Inspired by experimental findings, we introduced three different compensation mechanisms, and

found many measures to differ, but for all models the signal to noise ratio was significantly lowered.

From this examined the landscape of remaining neurons in the entire striatum, after severe levels

of denervation. Again we used previously suggested hypotheses from the literature as inspiration

and based on this we constructed three different models for dopamine neuron denervation in a

network. We found that these models can give rise to completely different signal transmission

properties, but at severe levels it was a common feature that the network was divided into small

communication classes and regions completely deprived of dopamine started to exist.

The fifth project investigates how the protein production of GFP in bacteria is affected by incor-

poration of a strong promoter, a strong RBS and non canonical amino acids. Since transcription

and translation in bacteria occurs simultaneously, we hypothesized that there could be limits to

the transcriptional-translational density. In experiments we found that a system with a strong

promoter and a strong RBS had almost no protein expression, but this expression was rescued if

a codon for a non canonical amino acid was inserted early in the sequence of the gene. From this

we constructed a model that allowed interaction of ribosomes from neighbouring mRNA strands

during the time of transcription, in a process we termed Density Induced Translation Arrest. From

the model we could reproduce the trends in the data, and predict how the rescue effect would dis-

appear if the mutation was placed in the late part of the genome. This prediction was confirmed

from the experiments. We then predicted an increased production if either the promoter or the

RBS was decreased, which was also confirmed in experiments. Finally we used the model to predict

the production from other genes depending on their length and sequence, which was again found

to match what was found in the experiments.
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Resume

Denne afhandling best̊ar af fem kapitler, hvori biologiske systemer studeres gennem matematisk

modellering.

Det første kapitel undersøger hvordan transkriptions faktoren NF-κB p̊avirkes as oscillations i lig-

anden TNF. Idet et konstant niveau af TNF inducerer oscillationer i NF-κB, skaber de sammen

et system af to koblede oscillationer, der kan medføre synkronisering afhængigt af koblingsstyrken

mellem dem og forholdet mellem deres indbyrdes frekvenser. For et interval af parametre, dette

medførte to stabile grænse cykler, og gennem tilstedeværelsen af støj, kunne overgange mellem de

to cykler forekomme, og vi navngav dette tilstandshop. Vi m̊alte fordelingen af overgangs-tider

og fandt at denne kunne beskrives af summen af to eksponential functioner og vi beskrev dette

ved hjælp af en simpel 1D model. Derefter overvejede vi hvordan dette ville p̊avirke gener der

p̊avirkes af NF-κB, og vi lavede en model der opdeler gener efter deres affinitet og cooperativitet

for NF-κB bindingen til deres promoter region. Vi opdagede at overgangene i NF-κB skabte en

tidsopdeling mellem stimulation af forskellige gener. Derefter hævede vi TNF amplituden og fandt

kaotisk dynamik i NF-κB, der havde de statistiske egenskaber lignende dem vi s̊aved tilstand-

shop. Kaotisk dynamik skabte en bred fordeling af forskellige amplituder, og vi inds̊aat dette var

en mekanisme til at øge produktionen fra lav-affinitets gener. Vi opdagede at dette medførte en

signifikant forøgelse af formationen af protein komplekser og at kaos dermed forbedrede b̊ade effek-

tiviteten of økonomien af denne proces. Sidst opdagede vi at kaotisk dynamik skaber heterogene

populationer af celler der individuelt kan skifte tilstand som tiden g̊ar. Dette viste sig at forøge

overlevelses raten i forskellige giftige miljøer.

Det andet projekt undersøger dynamikken af en anden trankriptions faktor, p53, efter fjernelse af

proteined Mdmx. Dynamikken i p53 anses for at være vigtig for cellens kontrol med processer som

deling og DNA reparation, og tidligere studier har p̊avist at p53 har en svingende koncentration

n̊ar efter gamma bestr̊aling. Vi startede med at analysere eksperimentel data for p53 før og efter

fjernelsen af Mdmx, og dette viste et typisk respons karakteriseret af en høj, transient puls, efter-

fulgt af vedvarende svingninger. Vi benyttede disse eksperimentelle markører som retningslinjer,

til at skabe en simpel matematisk model og vi undersøgte forskellige hypoteser ved at introducere

We used these experimental markers as guidelines to construct a simple p̊avirknings-parametre

til at repræsentere hver individuel hypotese. P̊adenne m̊ade opdagede vi at hoved resultaterne

kunne forklares gennem at Mdmx forøger nedbrydningen af p53. Derefter brugte vi modellen til

at forudsige hvordan celler uden Mdmx, ville reagere p̊aUV bestr̊aling gennem deres p53 dynamik.

Ved at sammenligne forudsigelserne med de eksperimentelle resultater kunne vi finde en stærk

overensstemmelse mellem de to.

Det trejde projekt undersøger hvordan dynamikken membran potentialet i neuroner p̊avirkes af

ændringer i de de extracellulære ion koncentrationer. Vi var inspirerede af tidligere studier der

p̊aviste forskelle i ion kompositionerne mellem søvn og v̊agen tilstand, og vi udvidede en eksis-

terende model til at inkludere ion koncentrationer. Vi undersøgte hvordan dynamikken ændrede

sig, hvis de tidligere rapporterede ion koncentrationer fra søvn og v̊agen tilstand indsattes direkte

i modellen. Hvis man kun indsatte ionerne skete der ikke en overgang, men hvis ion koncentra-

tionerne ændrede sig kombineret med ændring i en af ion kanalerne kunne en overgang forekomme.

Vi undersøgte dette yderligere ved at indføre en aktiv v̊agen ion komposition, og opdagede at dette
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var nok til at drive neuronerne ind i en tredje tilstand som vi kaldte aktiv v̊agen. Vi argumenterede

for at mens overgangen mellem søvn og v̊agen tilstand var robust og behøver flere ændringer for at

forekomme, kan overgangen mellem de v̊agne tilstande klares udelukkende med ioner og kan derfor

klares hurtigere. Slutteligt undersøgte vi den underliggende årsag til dynamikken i de forskellige

tilstande, og vi opdagede at den normale v̊agne tilstand var domineret af kaotisk dynamik mens

søvn tilstanden var præget af en lukket grænse cykel der kan give mulighed for synkronisering

mellem neuroner.

Det fjerde projekt undersøger hvordan dynamikken af extracellulær dopamin i den menneskelige

hjerne p̊avirkes n̊ar dopamin neuronerne dør. Det er accepteret at den korrekte stimulering af

dopamin er fundamentalt for processer som hukommelse, indlæring og bevægelse og det er p̊avist

at omkring begyndelsen af Parkinsons sygdom, er størstedelen af neuronerne forsvundet. Vi start-

ede med at betragte en tidligere publiceret model for ekstracellulær dopamin i et lille omr̊ade

af striatum, og undersøgte de dynamiske egenskaber mens tætheden af neuroner formindskedes.

Derefter lavede vi nu en stokastisk model for neuroners fyring, og vi inkluderede denne i den

dynamiske model. Inspireret af eksperimentelle resultater, introducerede vi nu tre forskellige kom-

pensations mekanismer og opdagede at mange m̊al var forskellige mellem disse modeller, men at

signal til støj forholdet blev mindre for alle modeller. Fra dette undersøgte vi nu landskabet for

de tilbageværende neuroner i hele striatum, efter svær denervering. Ogs̊aher brugte vi tidligere

foresl̊aede hypoteser fra litteraturen som inspiration, og p̊abaggrund af dette lavede vi tre forskel-

lige modeller for dopamin neuron denervering i et netværk. Vi opdagede at disse modeller kan give

anledning til fuldstændig forskellige forhold for signallering, men ved svær denervering er det et

fællestræk at netværket bliver opdelt til sm̊aklynger og at der opst̊ar regioner der er helt udtømt

for dopamin.

Det femte projekt undersøger hvordan protein produktionen af GFP i bakterier p̊avirkes af indførslen

af en stærk promoter, en stærkt ribosom binding og ikke-kanoniske aminosyrer. Idet transkription

og translation i bakterier forg̊ar simultant, forestillede vi os at der kunne være en øvre grænse

for transkriptions-translations tætheden. Gennem eksperimenter opdagede vi at et system med

en stærkt promoter og en stærk ribosom binding nærmest ingen protein ekspression havde, men

at denne ekspression blev genskabt hvis man indførte et codon der kodede for en ikke-kanonisk

aminosyre tidligt i gen-sekvensen. Herfra skabte vi en model, der tillod interaktioner mellem ribo-

somer fra nabo mRNA strenge, under transkriptionen i en process vi navngav tætheds induceret

translations anholdelse. Fra denne model kunne vi genskabe de tendenser vi havde set i de eksperi-

mentelle resultater, og forudsige hvordan denne rednings mekanisme ville forsvinde hvis mutationen

var placeret sent i gen sekvensen. Denne forudsigelse var bekræftet gennem eksperimenter. Slut-

teligt brugte vi modellen til at forudsige produktionen fra andre gener afhængigt af deres længde

of sekvens og dette var endnu en gang i overenstemmelse med hvad blev fundet i eksperimenterne.
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1 Introduction

Life is complex, dynamic, and includes a great variety of components that are interacting in many

different ways. Thus a mathematical attempt to describe living systems, will involve many different

variables, a high degree of nonlinearity and an enormous number of parameters. Therefore we must

accept that it is not possible to describe a living system with mathematical tools, and obtain the

same precision as we can describe interacting physical objects as for instance planetary motion

or single particles interacting. However, life is not just a complete mess of chaos, and it seems

structured and organized, is characterized by having well defined responses to a variety of external

stresses. An example of this is the immune system, where different cells are specialized use the

input signals as information to generate an output and possible another signal to other types of

cells. To obtain this level of control, cells need to have a fine tuned registration of the surrounding

environment and a variety of responses according to the situation. From a scientific point of

view, it is therefore of great interest to understand these processes and discover the key factors

that ensures that living organisms can generate their desired output and maintain their function.

Furthermore, a thorough understanding of these biological systems, opens the gates for creation of

better medicine and to harvest the cellular machinery in advantageous ways. An interesting aspect

of the response and signalling mechanisms in cells, is the dynamical properties of specific systems.

This could be the sudden emergence of oscillatory dynamics in transcription factor dynamics, or

the change in the firing pattern of neurons. First of all this gives an important fingerprint about the

underlying network, of which the studied entity is part. Furthermore it is a tempting hypothesis

that cells can use dynamical features to carry information and generate a correct output. This

is the main question that is investigated in this thesis. The main approach to the problems in

this thesis, is to use the interplay between creating a mathematical model that captures essential

features of a biological system, and then create an external perturbation and study the response of

the system, and dissect the reasons for or the effects of the response. This is schematically shown

in Fig. 1. Since the majority of the results is centered around the effects of complex dynamics, we

start by introducing the theory of dynamical systems, that is the result of the pioneering work of

Henri Poincare in the last part of the 19th century. Here we aim at capturing some essential and

qualitative effects of the system under examinations and see what can be learned from the general

properties of this [1].

1.1 Dynamical Systems (M)

One of the great steps in modern science, is the many experimental tools that allow studies of the

dynamical evolution of different proteins, molecules and signals. Thus we can study not only if

a cell increases or decreases in the value of a specific protein after some time, but we can map

the exact trajectory and take dynamical features as responses and fluctuations into account. This

opens the door to much new insight into biological systems, and to work alongside the experiments

from a mathematical point of view, we usually work in the framework of dynamical systems. Here

we consider a vector field in n dimensions, defined by a set of n differential equations:

ẋi = fi(x1, ..., xn, t) (1)
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Figure 1: Schematic figure showing the way we study systems biology and a method that is the basis

of the projects in this thesis. We study a biological system (bacteria, eucaryotic cell or neurons),

by considering some properties of the system, and examine how this changes when it is perturbed

by external factors. Then we either use the network to predict the response, or use the response to

try and predict the structure of the underlying system.

From a theoretical point of view, we wish to describe the evolution in time of the system in con-

sideration where the resulting dynamics is a trajectory in an n dimensional phase space. However,

finding an exact solution for a set of coupled differential equations is almost always impossible to

find, unless the system is very simple. However today we have an arsenal of techniques at which

we can obtain information about the evolution of dynamical systems, and most of all we can use

fast computers to perform numerical integration, which gives us a solution for the system from a

specific initial condition. An important point to consider is the uniqueness of the solution to the

differential equations: ẋ = f(x) with x(0) = x0. There the uniqueness theorem states that if f

is continuous and all partial derivatives are continuous in a subset P, then x(t) has a solution on

this subset and this is unique. From this it follows that trajectories in the phase space can never

intersect. This is easy to accept, because if they did, how to decide when it should follow one way

or another, being at the intersection of two trajectories?
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Mathematical definition of dynamical system

The study of dynamical systems, aims at describing the vector field defined in a

specific domain U of the complete space V, so in one dimension

ẋ = f(x) x ∈ U ⊂ V (2)

We define U as the phase space of the autonomous dynamical system. In some

cases the system depends on time explicitly, for instance when perturbed by an

external oscillation, so ẋ = f(x, t), and this is defined as non-autonoumous and

we can define the extended phase space R× U , where R is the axis of time.

We define a solution to the system of ẋ, to be a differentiable map

y : I 7→ U, where I = t ∈ R, a < t < b (3)

so:

dy(t)

dt

∣∣∣
t=τ

= f(y(τ), τ) (4)

for all τ ∈ I. [2]

However, even if we are armed with analytical techniques and fast computers, we quickly face a

problem when trying to model biological systems. The number of possible interactions of molecules

is terrifyingly large, and even if we could consider all the relevant interactions this would lead to

an enormous parameterspace. Since we are hoping to use experimental signatures of the system,

as our foundation to model the underlying system and obtain fundamental information about this,

we want to restrict the number of degrees of freedom as much as possible. In this process, we

are truly missing a uniqueness theorem relating dynamics to the underlying network. This means

that given we observe some feature from experiments, a large peak, oscillations etc., we we could

construct an infinite number of models to mimic this characteristic feature, which does not lead to

any progress in our understanding of the system. However, just naively introducing the simplest

model in terms of for instance nonlinearity of dimensionality, to fit the experimental signature can

as well be dangerous if we do not take the nature of the biological system into account. There-

fore systems biology is a vivid and difficult field, filled with temptations of introducing too many

free parameters and fear of constructing models that fails in predicting anything further from the

trajectory of the experimental signature, to which it was built in the first place. Therefore we

aim at capturing some essential features of the system, without adding too many unnecessary as-

sumptions, following the physical tradition of reductionism, inspired by the principle of ”Occams

razor”.

1.1.1 Fixed Points and Limit cycles (M)

In the theory of dynamical systems, a fixed point f(x∗), is a steady state value, from which the

system does not evolve. This can be found by solving the differential equations:

f(x∗) = 0 (5)
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Fixed points can be attracting, repellant or a combination of these. The stability of these can

(except in a few situations) be determined by linearization around the fixed point, by introducing

the jacobian. If we now consider a two dimensional nonlinear system written as:

ẋ = f(x, y)

ẏ = g(x, y)
with




f(x∗, y∗) = 0

g(x∗, y∗) = 0
(6)

At the fixed point we now have: We now make the substitution u = x − x∗ and v = y − y∗ and

write

u̇ = f(u+ x∗, v + y∗)

= f(x∗, y∗) + u df
dx

∣∣∣
x∗,y∗

+ v df
dy

∣∣∣
x∗,y∗

+O2

= u df
dx

∣∣∣
x∗,y∗

+ v df
dy

∣∣∣
x∗,y∗

(7)

Here we have neglected terms of second order and higher, because v and u are very small close to

the fixed point. If we do the same for v̇ we can write it in matrix notation:

(
u̇

v̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

x∗,y∗

(
u

v

)
(8)

From this we can characterize the dynamics around the fixed points based on the trace and deter-

minant of the matrix. With this we only define the dynamics around a point, but if we move up

to dimensions two or higher, the dynamics can also generate oscillations. For a nonlinear system,

the steady state dynamics be a one-dimensional line with a non-zero flow, known as a limit cycle

[1]. Limit cycles are isolated trajectories, meaning that points in the vicinity of the limit cycle

get either attracted or repelled by this trajectory - which is contrary to a linear center, that also

has oscillations but is not attracting or rappelling. A perturbation to a center (as the harmonic

oscillator) would lead to oscillations with a new amplitude, whereas a perturbation to a stable

limit cycle would would decay back to the fixed trajectory. Limit cycles can arise through various

bifurcations, but the canonical way, is when the stability of fixed point with complex eigenvalues

changes from stable to unstable (Fig. 2A). This new unstable point could of course lead to a

diverging trajectory, but due to the nonlinearities in many systems, the trajectory will still be

bounded around the same region and at this point we say that a Hopf bifurcation has occurred.

There is no general way to determine if a system has a limit cycle, and the most important theorem

that can be used in some situations is the Poincare-Bendixon theorem which can pragmatically be

used in the following way (Fig. 2B):

• Define the region R, where at the boundary all flow is towards R

• Find a region inside R (white) where the flux goes outwards.

• Then a limit cycle must exist inside R (green)

Here the second point would very often be to find an unstable fixed point, from where all flow goes

away from that point. In this case, one can determine the range for which the limit cycle exist by

determining the stability if the fixed point. It is often extremely difficult to calculate the flow of

a closed boundary over R, and furthermore we note that the theorem is only valid in the plane.

This is easy to imagine, since one could in 3D construct a subset R, where trajectories would never

leave, but they could be for instance chaotic like the Lorenz attractor. Thus a trajectory would stay
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Figure 2: A) Schematic figure showing how a limit cycle can arise following a change in parame-

ters. At the point when the limit cycle starts to exist, it is very small and circular, but as it grows

the shape in phase space can be highly irregular. B) Schematic figure showing the concept of the

Poincare-Bendixon theorem C) Schematic figure showing the concept of a Poincare section.

inside R, but it would not be closed. A useful way to study limit cycles in a dynamical system is

through the introduction of a Poincare section. In an system of n dimensions, we define a Poincare

section to be a subspace, S of dimensions n− 1 that is traverse to the flow of the system, meaning

that the trajectory passes through S after each rotation (Fig. 2A). In this way the Poincare section

is a map of S onto itself, and we can this way transform the problem of studying a continuous,

n-dimensional problem into a discrete, n − 1-dimensional problem. Therefore we can write the

map:

xn+1 = P (xn) (9)

And in this, a fixedpoint given by x∗ = P (x∗) represents a closed cycle and thus a limi cycle for

the dynamical system.

1.1.2 Oscillatory Networks in Biology (M)

Proteins can oscillate in concentration, and in the last decades some of the most important proteins

has been found to oscillate in living cells under specific conditions. [3, 4, 5] The general observation

that some proteins oscillate is not that surprising, since systems with circadian clocks have been

known for centuries. However, it has been found that many proteins oscillate in concentration

with a natural frequency of hours [6], but why these proteins oscillate on these timescales and

what effect on the biological system this might induce, is not clearly understood. Since genetic

expression is regulated by proteins called transcription factors, that are themselves products of the

protein synthesis, one could easily that a genetic network can form a nonlinear dynamical system

that can give rise to oscillatory behaviour. There are some essential features, that are required

for a biochemical network can oscillate. First of all there must be a negative feedbackloop, that

ensures that the trajectory in phase space remains bounded, and can be carried back to some

point creating a cycle. Secondly the system must be nonlinear for limit cycles to arise, and thirdly

there must a time delay, for otherwise a negative feedback mechanism would merely bring the

system towards a steady state. Therefore we can imagine the simplest mechanism giving rise to
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oscillations in a genetic network is a negative feecbackloop with a ”proper” time delay, τ (Fig.

3A). An classical example of such a model was used to model the protein synthesis [7] through the

Figure 3: A) Schematic figure showing negative feedbackloop with a time delay. B) Schematic

figure showing a typical genetic network that can lead to oscillatory dynamics if the created protein

either degrades the

dynamical system:

˙Y (t) = k1S
Kp
d

Kp
d + Y (t− τ)p

− k2ET
Y (t)

Km + Y (t)
(10)

This inserted time delay is of rather abstract character, but if we consider a biological system,

there would be subsequent processes that would generate a time delay large enough for oscillations

to occur [8], for instance the transcription and translation of a protein that degrades or inhibits

its own transcription factor (Fig. 3B). Transcription factors are therefore an essential element of

genetic network models, and they can often lead to nonlinear reactions. In the simplest picture,

transcription of a protein is started when the RNA polymerase binds to the promoter region of

a gene. In reality this process includes numerous steps, but for this thesis, we will focus on the

regions that can control transcription by binding transcription factors. These are the cis-acting

elements and can be positioned quite far from the genes they are controlling. For this thesis we will

refer to these regions as part of the promoter, that thereby is a regulating region. Transcription

factors that can be either activators of repressors, for a specific gene, and normally the bound

fraction of transcription factors can be described through the a Hill function:

ṁ ∝





ThF
ThF+Kh for an activator

Kh

ThF+Kh for a repressor
(11)

The control of transcription is a ubiquitous means of regulating gene expression, but it has only

recently been appreciated that transcription factor dynamics might be important for gene regu-

lation. Given the nonlinearities in the negative feedbackloops, and the built in time delay, one

could argue that it is no surprise that many networks oscillate, since they can originate from basic

network structures. For instance, oscillations have been observed in key transcriptional factors,

such as the p53 tumour suppressor or NF-κB, which regulates numerous genes involved in immune

response [9, 10, 5, 11]. Debate continues about the functional role, if any, of these oscillations

[12], but it is clear that altering the dynamics of these transcription factors differentially affects

downstream genes [4, 3, 13, 14].
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1.1.3 Coupled Oscillators (M)

That oscillators can couple couple to each other is well known, even for people with no knowledge

in dynamical systems and non-linear mathematics. For instance the daily rhythm couples to the

position of the sun, not only for humans but almost any higher level organism. The history of

synchronization, begins in 1665, when the dutch physicist Christian Huygens, by chance observed

that pendulum clocks hanging on the same wall tended to oscillate with exactly the same frequency.

Being a great experimentalist he conducted several experiments using clocks suspended from a

beam as seen in Fig. 4A, and realised that the synchronization of the clocks depended on the

distance between them.

Figure 4: A) Original drawing from Huygens in a letter to his father. B) Trajectories of internal

and external oscillators. Dotted lines are to point out the same position for the peak in the external

oscillator C) Phase space of two variables in the external oscillator and sin(ω1t). D) Schematic

figure showing that changing the internal frequency can in specific regions lead E) Arnold tongues

in the system: ẋ = a− x(1− 4y
1+x2 ) +Asin(ωt) and ẏ = bx(1− y

1+x2 )

In this we will consider two oscillators with different self sustained frequencies ω1 and ω2. We

now assume they are coupled so the oscillator with ω1 is controlled and this affect the frequency of

the oscillator with natural frequency ω1 and measured frequency Ω2 If two oscillators synchronize,

this means that they are locked to each other, and there will be no phase drift, i.e. when one

oscillator is at its peak, the other will always be in a specific position (Fig. 4B). This means that

if we consider this in the phase space they will form a closed loop. If we consider two variables of

the external oscillator (x and y), and plot these as a function of sin(ω1t) this will form a closed

trajectory in the phase space (Fig. 4C). Depending on the strength of the coupling we can now

have regions of synchronization, where we can change ω1 and then Ω2 will automatically follow.
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Mathematically speaking:

d(Ω2/ω1)

dω1
= 0 (12)

These regions we define as synchronisation regions, and depending on the strength of the coupling,

these plateau regions can be of significant length (Fig. 4D). Since the plateaus depend on the

strength of the coupling we can make a synchronization map, by calculating the ratio Ω2/ω1 for all

values of all values of the coupling strength (amplitude of external oscillator) and the frequency of

the external oscillator. By doing this, plateaus of growing width become visible as we increase the

coupling strength, and these regions are known as Arnold tongues (Fig. 4E). These have interesting

features, for instance it turns out that all rational numbers form a synchronization region, and this is

discussed in greater detail in Appendix C. Finally we mention that it is important that the internal

oscillation is a stable limit cycle. We furthermore restrict the definition of coupled oscillators, to

weak couplings between oscillators, since for very strong couplings, the phenomena are not that

interesting. One can imagine that if the clocks in Huygens experiments were connected by a rod,

(very strongly coupled) they would off course oscillate with same frequency and phase, and not

exhibit interesting effects of synchronization.

1.1.4 Chaos

From coupled oscillators, chaotic dynamics can arise. Chaos is a fascinating phenomena that has

been widely studied since the sixties, but it is difficult to define it unambiguously. When we refer to

chaos, we refer to a dynamical system that has the property to have a positive Lyapunov exponent

in the deterministic limit. Deterministic is a system without any stochastic randomness, which

means that if one knows the initial state of the system exactly, then the trajectory in the phase

space will be the same every time it is initiated in that state. For dynamical systems that is not

chaotic, an uncertainty in the initial conditions does not influence the trajectory much and two

trajectories starting in almost the same points, will remain close to each other. Take for instance a

system with a stable limit cycle as the only attractor, then a small difference in the initial conditions

might lead to a minor phase difference in the oscillations, but this phase difference will be constant

in time. For a system that is chaotic however, any two initial conditions infinitesimally apart will

have exponentially diverging trajectories as time proceeds. This is mathematically defined by the

Lyapunov exponent λ:

|y1(t)− y2(t)| ≈ eλt|y1(0)− y2(0)| (13)

which gives an approximation of the separation rate between trajectories. This divergence makes

it practically impossible to predict the future dynamics, and therefore the phenomena has been

named chaos [15, 16, 17, 1]. In order to generate the unpredictable trajectories, without any

crossing of trajectories, the phase space need to be at least three dimensions and furthermore

the attractor needs to have a complex stucture, which is found to have fractal nature. As a last

remark, we note that in contrast to deterministic systems, we have stochastic systems that will be

treated below. We note that a system with noise, will have uncertainty in every step, and thus

by integrating all this uncertainty over a trajectory, will lead to a divergence between trajectories

related to the spread in the noise. Thus, both deterministic chaotic and noisy systems exhibit

unpredictability in their future trajectories, but for very different underlying reasons.
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1.2 Noise in Biology (M)

All biological systems is the result of an interplay between deterministic forces, driven mainly by

electromagnetic forces, and the random fluctuations, that mainly exists due to the random nature

of molecular motion. In the process of modelling protein dynamics, stochasticity can therefore

often be vital to include in the considerations. It is highly dependent on the system how noise

should be treated. For some systems in the thermodynamical regime, noise can be neglected due

to the very large number of molecules if the system is in equilibrium, where the fluctuations can be

regarded to scale as 1√
N

[18]. However in living cells, the system is out of equilibrium and usually

the number of specific proteins and mRNAs is low, and therefore fluctuations play a great role [19].

A standard way to describe dynamics in the presence of noise is through the Langevin equation

that takes the form:

m
d2x

dt2
= −λdx

dt
+ η(t) (14)

Here the dynamics of the particle is governed by Stokes and the noise term η(t) which has the

correlation function 〈ηi(t)ηj(t′)〉 = 2λkBTδij(t− t′). However for biological systems, we are often

interested in the noise arising from fluctuations in the interacting molecules.

1.2.1 Intrinsic Noise in Molecular Systems (M)

In 1977 Thomas D. Gillespie presented the so called Gillespie algorithm [20], that in many cases

represents the most exact way to implement molecular noise into the system. In this we consider

a volume V , with a spatially uniform mixture of N chemical species, that is represented by the

number of moleculesX1...XN , and these can react through M different reactions, R1...RM . Starting

from t = 0 we make a small time step dt and assume that the probability of a reaction, i, occurring

is in this interval Pi = Ridt. Thereby we draw random numbers at each time step and update

the system every time a reaction occurs. This speed of this can be significantly enhanced if we

directly calculate the time until the next reaction. Now returning to the problem of N molecules

and M reactions, we consider the probability that the next reaction is of type ε, and it occurs in

the time-interval [t+ τ, t+ τ + dt]. We therefore consider:

P (τ, ε)dτ =
No reaction in [t, t+ τ ]

Pnot(τ) ·
Reaction ε occurs

Rεdτ (15)

Therefore we want to describe Pnot(τ) in terms of the rates. Since at each timestep ε, the probability

for no reaction to appear is:

Pnot(dt) = 1−
N∑

i=1

Ridt (16)

We can thus define τ ≡ n · dt and then:

Pnot(τ) =Pnot(dt)
n =

(
1−

N∑

i=1

Ri
τ

n

)n
= e−στ (17)

where σ ≡
N∑

i=1

Ri (18)

Now we use the transformation method, that is a way to generate random numbers following a

specific PDF, f(x), from random numbers uniformly distributed in the interval [0; 1].
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Mathematically we wish to find a random number in the interval [r; r + dr], that equals to the

probability of obtaining a number in the interval [x(r);x(r+ dr)] of the original PDF. This means

we can set up the integral equation:

∫ x(r)

−∞
f(x′(r))dx′(r) =

∫ r

0

g(r′)dr′ = r (19)

We need to solve
∫ x(r)

−∞ f(x′(r))dx′(r), and invert the obtained function which we can rarely do.

In the above example where all rates are constant and we have an exponential PDF we can do

exactly this:

∫ t

0

f(t′)dt′ = 1− e−t/τ = r ⇒ t(r) = − ln(1− r)
τ

(20)

We can then the update process, where at each iteration step we update the time by

tn+1 = tn −
ln(1− r)

σ
(21)

where σ is the sum of all the rates. Schematically the Gillespie algorithm can be described as:

• Pick two random numbers, ν1 and ν2.

• Calculate time until next reaction:

τ = − ln(ν1)

r
(22)

• Pick the next reaction:

ε =

∑k−1
i=1 ri∑n
j=1 rj

< ν2 ≤
∑k
i=1 ri∑n
j=1 rj

(23)

• Update the system according to the chosen reaction.

In this way the system can be updated, and the reactions adjusted at each time step which makes it

is a very precise way of updating the system. Note that the larger the volume, the more molecules

will be present, and the closer we are to the deterministic limit. If we compare simulations with

different noise levels, to a deterministic simulation in an oscillatory system, we find that the smaller

the volume, the faster it goes out of phase with the deterministic oscillation (Fig. 5A). When the

number of molecules gets very high, it takes a lot of steps to make any significant changes to

the system, and since there are many molecules, reactions happen all the time and the step sizes

gets microscopic. A way to avoid this, is through the τ -leap method, that starts from the direct

Gillespie method, but compromises a little on the accuracy, by making a poisson approximation

to increase the step size [21]. Finally it should be mentioned that the Gillespie algorithm can be

used in other situations than simulating molecular dynamics. For every system that is updated

by the next step and where all rates are constant we con use the method. An example is the

TASEP system, that is a ladder of length L, divided by N steps, where a particle of size S, can

enter at region 1 with rate ri and move along the ladder with rate Nr0, given that there is not

another particle in front of it (Fig. 5B). Applying the Gillespie algorithm to this, we can count

the number of particles leaving the ladder, and find that this also depends on N (Fig. 5B), which

in an abstract way represents a noise level, even though this is not as trivially defined that for the

molecular systems.
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Figure 5: A) Gillespie algorithm for different volumes. B) Schematic figure of the TASEP model

C) Number of finished particles, for different number of steps N

1.2.2 Specific Mechanisms Arising From Noise

As we claimed above, life is the result of an interplay deterministic laws and stochasticity, so in

this way life itself is an indirect result of the fluctuations in the biochemical particles. However

stochasticity can give rise to some specific features in dynamical systems. One of these is bistability,

in which a dynamical system has two stable fixed points. If we consider the dynamical system:

ẋ = x(1− x2) + εN (24)

It is obvious that this has two stable fixed points for x = 1 and x = −1. For a deterministic system,

the trajectory would move towards one of the fixed points and then stay there forever. However in

the presence of noise, this is governed by transitions between the two stable states (Fig. 6A) and

the rate between the changes is governed by the noise level, which in this example is determined

by ε. Another interesting phenomena that that is induced by noise, is the arise of oscillations in

systems with a stable fixed point but with complex eigenvalues. If we consider the Brusselator

system:

ẋ = a− (b+ d)x+ cx2y (25)

ẏ = bx− cx2y (26)

Then this will not have oscillations for b < 2. This means that for the deterministic system,

the trajectory would settle in the fixed point, but in the presence of noise the trajectory will be

”pushed” out of this point, and in this region, it will have oscillatory motion with clear signal in

the power spectrum (Fig. 6B). Furthermore the larger the noise level, the larger the oscillations

will be, which can be estimated by calculating the maximum value in the power spectrum (Fig.

6C). Thus we have seen that noise in dynamical systems can lead to complex behaviour of the

system, and the proper control of noise in the cell is therefore very important.

1.3 Overview of Projects

Finally, we present an overview of the chapters as presented in the thesis which is presented as a

timeline in Fig. 7. Since the projects are of different character and since the work was carried out
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Figure 6: A) Value of x as a function of time. Above: small noise level. Below: large noise

level. B) trajectory showing x as a function of time. Blue: small noise level. Red: small noise

level. Inset: Power spectrum for the red data series. C) The peak value in the power spectrum as

a function of the noise level. Here b represents the parameter that leads to a Hopf bifurcation for

b ≈ 2.0.

at different stages of the PhD, it is the hope that the reader in the projects should also find some

development in the ideas and ways to find solutions to the problems. In chapter 2, we present the

Figure 7: Schematic figure showing the time of creation of the different projects. Note that the

results of paper IV and IX is not part of this thesis.

work on oscillations, modehopping and chaotic dynamics in NF-κB and the effects on downstream

genes. This work was initiated in April 2015 during my visit to Bangalore where we realized that

modehopping could occur. We worked a lot on the transition to chaotic dynamics, but in the end

the most interesting aspect was the downstream gene model. We developed this further, which led

to the results presented in paper VI. In chapter 3, we move on to describe the results on another

transcription factor: p53. Here we start by presenting the experimental results and from this we

construct a mathematical model that investigates which mechanisms can and cannot lead to the

observed experimental behaviour. We extend this, by including the response stimulation of UV
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radiation and test the limits of the model. In chapter 4, we move on to the description of neurons,

and introduce the extended averaged neuron model. Here we test the dependency on external

ion levels in a mathematical model of the neuron, and find that this can help the state transitions

between sleep and awake, and we hypothesize that the awake state is governed by chaotic dynamics.

In chapter 5, we investigate the dependencies on dopamine in parts of the human brain, and how

the systems breaks down when the neurons are removed as is found in Parkinsons disease. We

test this for different models of compensation mechanisms, and from this we move on to model

the global landscape of dopaminergic neurons, depending on the ways they are removed from a

network. In chapter 6, we study the protein production of GFP inside E. coli, for a specific line

of bacteria that has an unnatural amino acid encoded. We find that if the system is tuned by too

strong promoters this does not lead to an large expression, but if a codon for an unnatural amino

acid is inserted a large expression is seen. We create a mathematical model for this and test the

model predictions with experiments.
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2 The Effects of Complex Dynamics in NF-κB on Gene Reg-

ulation

In this chapter the results of paper I, II and VI is presented and discussed, along with a few other

ideas that could be part of future projects. This work has been ongoing since the start of my PhD

and can therefore be regarded as the main results of my work. The project was originally founded

on experimental work carried out by Savas Tay and Ryan Kellogg, where they found oscillations

with different frequencies in NF-κB. We then used the model, proposed in 2012 by Mogens H.

Jensen and Sandeep Krishna to describe observed the phenomenon. In these projects, I have done

the mathematical modelling and created numerical simulations and analytical arguments, with

great help and inspiration from Sandeep Krishna and Mogens H. Jensen.

In this project we observe experimentally that NF-κB oscillates with different frequencies when

perturbed by oscillating TNF. We use an exiting model to examine this and find that that transi-

tions between limit cycles can occur in the presence of noise, and we term this modehopping. We

then investigate the time correlations in modehopping and characterize the distribution of times in

each state through a 1D model. From this we examine the downstream effects of the dynamics in

NF-κB, and create a model that defines a gene based on the affinity and cooperativity in its binding

with NF-κB. We find that modehopping can stimulate genes and different times, in a process we

term multiplexing. We extend this to consider chaotic dynamics which we find by increasing the

TNF amplitude even further, and we find that chaotic dynamics has some statistical properties

that we also found in modehopping and that chaotic dynamics can enhance low affinity genes.

Finally we use this to investigate the effects of chaos further and we find that it enhances the effi-

ciency and economy of protein complex formation and increses the average lifetime for populations

of cells in specific stressed environments.

2.1 Introduction to the Network of NF-κB and its Role as Transcription

Factor

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a family of protein com-

plexes that function as transcription factors. There are 5 different subunits (p65/RelA, RelB, c-Rel,

p52/NF-κB2, p50/NF-κB1) that can form dimers and work as different versions of NF-κB [22, 23].

These subunits can combine both in homo- and heterodimers, and they use the structure of the

two subunits to form a complex with DNA [24]. In this thesis we will consider all complexes of

NF-κB as one, since there is no evidence that the different versions of NF-κB should have different

functionality for the problems we consider.

When not stimulated, NF-κB is located in the cytoplasm forming a complex with proteins from a

family of inhibitors named IκB (inhibitor of κB). Like for NF-κB, we will in this treat all versions

of IκB as one. The role of this inhibitor is to keep the NF-κB proteins in the cytoplasm, as they

mask the Nuclear localisation sequence, and thus stopping the transport into the nucleus where

it can function as transcription factor [25]. Thus to activate NF-κB IκB should be degraded and

main pathway for this activation is stimulated by Tumor Necrosis Factor (TNF). TNF is a ligand,

that has shown to be essential in different processes as cell death and inflammation, and main-

taining the correct regulation of TNF is crucial[26], since dysregulation of TNF has been related
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to outbreaks of Alzheimer’s disease [27] and cancer [28]. In the activation of NF-κB, it binds to

a receptor, and this causes the adaptor protein TRADD to recruit the proteins TRAF2 and RIP.

This will in turn activate the protein kinase IKK, that can then phosphorylate IκB, which leads

to degradation thereby activation NF-κB [24]. Since NF-κB activates IκB, this creates a negative

feedbackloop, and it has previously been shown that NF-κB can oscillate after stimulation with

TNF [3].

NF-κB is present in (almost) all mammalian cells, and is believed to be very important in the pro-

cess of cellular responses to external stimuli. It is a ”rapid-acting” primary transcription factor,

since it it is always present in the cell, but usually in the inactive state that can quickly be made

active [29]. This is in contrast to other transcription factors that should undergo protein synthesis

before they can work which significantly limits the time before the cell can react to external stimuli.

The mammalian immune system can be divided into the innate and the adaptive response [30],

and NF-κB is believed to be important for both. In the innate system, a key component of elimi-

nating foreign pathogens, is macrophages and these cells can activate NF-κB to induce expression

of proinflammatory cytokines, chemokines and anti-apoptotic proteins, to remove the antigen [31].

When the macrophages cannot remove the pathogens themselves, T-cells are stimulated as part of

the adaptive immune system and in this activation, NF-κB is also an essential transcription factor

[32]. This highlights NF-κB has a variety of very important features that control basic response

mechanisms in living organisms, and due to the many interactions its full significance is still far

from understood.

2.2 Experimental Results (M)

The original idea of modehopping in NF-κB came following the very interesting results from Savas

Tay and Ryan Kellogg, with whom we have collaborated. In their paper from 2015 [13] they showed

that entrainment of NF − κB appeared when cells were stimulated with periodically modulated

TNF.

2.2.1 Connections Between NF-κB Oscillations and Protein Production (M)

Periodic inputs may lead to entrainment of oscillators, a phenomenon where the oscillatory process

locks, in frequency and phase, to the external signal. The classical examples of entrainment

comes from physics where for instance pendulum clocks or lasers can cause modelocking; in these

systems there exists well-developed theory describing how two oscillators can couple so one external,

periodic oscillator affects an internal oscillator. The output of the internal oscillator depends on

the coupling between them, and to the difference in frequency between the two. The extracellular

ligand TNF can cause the fraction of NF-κB localized within the nucleus, to oscillate with a

natural period of 90-100 min [13]. Accordingly, it was previously shown that NF-κB oscillations

can synchronize in time to the TNF input, but only at specific frequencies of TNF stimuli. For

TNF stimulation with periods of 120 minutes the cells synchronized in time and showed large

oscillation amplitudes (Fig. 8A, [13]), whereas for TNF stimulation with periods of 60 minutes,

the cells did not synchronize and showed smaller oscillation amplitudes (Fig. 8B, [13]). Here it was

also shown that individual genes had different expression depending on the oscillations of NF-κB

and for all the cells studied it was highest on the synchronized case where the amplitudes were
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Figure 8: A) NF-κB oscillations at TNF period 120 min. B) NF-κB oscillations at TNF period 60

min. C-F) Protein production for each TNF stimuli from four independent genes. (All subfigures

are originally from [13])

highest (Fig. 8C-F, [13]). From this expermental motivatiom, we conclude that synchonization in

protein oscillations can depend on the external frequency and the downstream gene production are

affected by the modes of oscillation in NF-κB.

2.2.2 Observation of Cells With Dynamically Changing Frequency (M)

This project began with repeating the observations described in Kellogg and Tay 2015. Using

microfluidic cell culture, we delivered periodic TNF stimulation to fibroblasts and recorded dy-

namics of NF-κB nuclear localization by live cell fluorescence microscopy. We hereby confirmed

that NF-κB oscillations occur, but we also observed that they show spontaneous frequency jumps

and transitions between locking modes during the time course of periodic stimulation for some

external forcing periods (Fig. 9A). We investigated this more thoroughly by considering these

apparent transitions in a frequency space. Here we observed that the oscillations involve appar-

ently spontaneous changes in frequency, but that the frequency seem to be close to either the 1/1

or 1/2 ratio between internal and external periods. We wished to investigate this further and

see if we could find a signal when examining all the cells. For these traces, we now found the

individual peaks by smoothening the data using the Matlab function smooth, followed by peak

detection, using the Matlab function mspeaks. The peaks were then filtered based on reaching a

threshold 10% of maximum intensity. Gathering all the data from these oscillations, we calculated

the frequencies and compared them to the applied TNF frequency. Compared to 90 min TNF

input where cells entrain almost exclusively at the 1:1 locking mode, at 150 min the average cell
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Figure 9: A) Schematic figure showing the setup of experiments. B) 3 representative single

cell traces showing oscillatory NF-κB level. C) Corresponding traces showing the frequency of

oscillations in time.

spends equal time in 1:1 and 1:2 modes. For 180 min input, the average cell spends most time in

the 2:1 mode but also about 30% of time in the 1:1 mode (Fig. 10A). Therefore this suggests that

multiple entrainment modes occurs during the time course. This suggests that the system for this

external amplitude, can be in one of two states depending on the frequency of TNF (Fig. 10B) or

in the overlapping Arnold tongue regions where both solutions co-exist (Fig. 10C). In deterministic

systems, spontaneous transitions between locking modes cannot occur before the multiple overlaps

within the Arnold tongue regions will cause a transition into chaos [33]. We therefore wanted to

investigate whether and how transitions between entrainment modes can spontaneously occur in a

noisy system like the NF-κB network and what drives them.
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Figure 10: A) Comparison of time an average cell spends in each entrainment mode, for differing

TNF input frequencies. B) Periodic forcing in an oscillator leads to entrainment visualised by

regions called Arnold tongues. In the 1:1 NF-κB entrainment mode (orange region), the NF-κB

period matches the 90 min period of the fluctuating TNF input. In the 1:2 entrainment mode

(blue region), there is one TNF input cycle for every two cycles of the NF-κB oscillation. C)In

overlapping Arnold tongue regions, multiple entrainment modes are possible. Here noise may enable

spontaneous transitions between entrainment modes, as observed in experiments.

2.3 Overlapping Arnold Tongues Leads to Modehopping Phenomena

(M)

When an external driving signal oscillates, it can couple and thereby entrain or synchronize another

nonlinear oscillator. In our system this means TNF is varied in frequency, and within certain ranges

it will force the NF-κB oscillations to occur with the externally imposed frequency [34, 13]. As the

amplitude of TNF oscillations is increased, the range of frequencies for which it can entrain NF-κB

becomes larger - and we thus have regions of parameter space that will lead to entrainment. These

expanding synchronization regions, defined by the external amplitude-frequency parameter space

are called Arnold tongues [35, 36, 33, 37]. A full investigation of these in the classical sine circle

map, along with some analytical theorems is found in Appendix C. Entrainment has been observed

in many different physical systems, from fluids [38] to quantum mechanical devices [39, 40], and

in biological processes such as cell cycles [41, 42, 43], and gene regulatory dynamics in synthetic

populations [6]. We are now interested in studying the effects as the external amplitude is increased

and regions of synchronization should start to overlap.

2.3.1 Mathematical Model for NF-κB With External Forcing (M)

We started out by considering the model of NF-κB dynamics inside the nucleus, previously pub-

lished by Jensen and Krishna 2012. In this deliberately simplified model, the oscillations arise from

a single negative feedback loop between NF-κB and its inhibitor IkBα, and can be triggered by

TNF via the activation of the IkB kinase (IKK). This is described through five coupled differential
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Figure 11: A) Schematic picture of a simplified NF-κ B network with a single negative feedback

loop which can generate oscillations. B) Schematic picture of oscillations in the external TNF

concentration, represented by the changing shade of blue.

equations as can be seen below, and a full discussion of the model is found in Appendix B.

Ṅn = kNin(Ntot −Nn)
KI

KI + I
− kIinI

Nn
KN +Nn

(27)

˙IRNA = ktN
2
n − γmIRNA (28)

İ = ktlIRNA − αIKKa(Ntot −Nn)
I

KI + I
(29)

˙IKKa = ka · TNF · IKKn − kiIKKa (30)

˙IKKi = kiIKKa − kpIKKi
kA20

kA20 + [A20] · TNF (31)

IKKn = [IKK]tot − IKKa − IKKi (32)

TNF = 0.5 +Asin(
2π

T
t) (33)

This is shown schematically in Fig. 11A, where the position of the components can be seen as

well. We now let the concentration of surrounding TNF oscillate, so it affects the cells on single

cell level. This is shown schematically in Fig. 11B.

2.3.2 Overview of Dynamics Resulting From Arnold Tongues

We now studied the system of two coupled oscillators, where TNF affected NF-κB, and we now

examine the resulting dynamics when we change the amplitude of TNF. In this description we will

use Fig. 12 as a guide. At first we consider the situation where the TNF amplitude is infinitely

small, which is shown at point 0 in Fig. 12. Here the TNF and NF-κB oscillations do not couple,

which means that in their combined phase space the trajectory will be quasiperiodic. A thorough
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Figure 12: Dynamics that emerges when the NF-kB system is driven by a periodic TNF signal.

The left panel shows schematically that there are Arnold tongues, triangular regions of the TNF

amplitude-period parameter space where NF-kB oscillations can be synchronized to the TNF sig-

nal. Outside the Arnold tongues, e.g. point 0, there is no synchronization. As TNF amplitude

increase the Arnold tongues start overlapping and the behaviour becomes more complex. Keeping

the TNF period fixed (here we used T=50 min), as we increase the the TNF amplitude we enter

three distinct states: Point 1: A single Arnold tongue, only allowing one oscillation state. Point 2:

Overlap of Arnold tongues, allowing two stable oscillation states. The presence of noise can cause

transitions (mode-hopping). Point 3: Chaotic dynamics, with apparently unpredictable trajecto-

ries. The trajectories corresponding to these points are shown in in the middle panels. Red and

blue trajectories correspond to two different initial conditions in a deterministic simulation. The

rightmost panels show the dynamics of NF-κB vs time in stochastic simulations where intrinsic

noise is implemented using the Gillespie algorithm.

discussion of this is found in Appendix C. Here it is important to remember, that their combined

phase space has quasiperiodic trajectory, but this does not mean that NF-κB show quasiperiodic

behavior - NF-κB oscillates through the dynamics of a limit cycle that is unchanged by the small

oscillations in TNF. If we increase the TNF amplitude, we find that entrainment occurs, where the

internal oscillator locks to the external signal in frequency and phase. For the NF-κB dynamics,

this means that there exists one stable limit cycle (Fig. 12, point 1). Therefore the dynamics will

be attracted to the stable cycle, characterized by a fixed frequency and amplitude, independent of

initial conditions (Fig. 12 right panel below, blue and red trajectory). Thus, when we simulate

the dynamics in a stochastic simulation, by adding noise to our simulations using the Gillespie

algorithm [20], we find that the oscillations will deviate in amplitude and frequency according to

the noise level but that they always will be around the entrained oscillation state (Fig. 12 below to

the right, black trajectory). Thus the frequency and thereby amplitude of NF-κB, can within some
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range be dictated by the TNF oscillation parameters. As the TNF amplitude increases further,

we the expanding Arnold tongues now can start to overlap, which means that we have crossed

a bifurcation point(Fig. 12, point 2). As expected, we observed that when NF-κB oscillations

are simulated deterministically within the overlapping Arnold Tongue regions of parameter space,

oscillations settle in different entrained states depending on the initial conditions (Fig. 12 right

panel center, blue and red trajectory). Mathematically speaking this means that more than one

limit cycle exists, and depending the basins of attraction, a trajectory can be attracted to one of

the limit cycles. Modehopping was however not observed, since transitions between stable states

do not occur for the deterministic system. Now we turned to the stochastic simulations, and here

we find that transitions between entrained states do indeed occur. This can be understood as a

transition in amplitude and frequency space. We conclude that noise mediates hopping between

entrainment modes and could serve as a mechanism in the cell to produce quick switching of

NF-κB oscillation frequency. Finally, for large amplitudes of TNF, we reach the transition into

deterministic chaos, which refers to complex, apparently unpredictable, dynamics that even simple

deterministic dynamical systems can produce. Chaotic dynamics can arise in nonlinear systems of

dimension higher or equal to three, but a universal way to achieve chaos is by driving a nonlinear

oscillator by an external periodic signal (Fig. 12, point 3) [36, 33]. In the chaotic system, two

trajectories starting from almost identical initial positions, will evolve completely different in time

and since a trajectory will never repeat itself, they will both expand visited part of the phase space

compared to other dynamics (Fig. 12 right panel above, blue and red trajectory). From the point

of view of NF-κB this means that there will be a large spread in the height of the amplitudes

which is happening for the deterministic system but also in the presence of noise (Fig. 12 above

to the right, black trajectory). Therefore we conclude that NF-κB dynamics can become chaotic,

and leads to a variety of different amplitudes and frequencies.

2.4 Investigation of The Time Correlations of Mode Hopping (M)

From the stochastic simulations on the NF-κB system, we found that transitions between limit

cycles did occur and we termed this phenomenon Modehopping. Now we turned to describe the

quantitative features of this, in order to figure out how the frequency of transitions depended on

parameters in the system.

2.4.1 Introducing a Poincare Section to Study the Transitions (M)

The phase space in the NF-κB model is spanned by the five variables plus time, and that makes it

tricky to visualize the trajectories in a meaningful way. In order to study the system, we introduced

a Poincare section at NF-κB = 1500 (Fig. 13A), that would allow us to perform a discrete analysis

[1]. Within this section we could study the state of the system after each oscillation. Inside this

section there were however still several variables to take into account, but to simplify this further

we assumed that the period of each oscillation would be a sound measure that would be defined by

a combination of all these variables, and we will often use this as a measure in the following section.

Therefore we measured the period of each oscillation and had thus transformed the problem into

a discrete, one-dimensional study (Fig. 13B).

22



Figure 13: A: The two stable limit cycles for the deterministic system with external oscillator

parameters T = 50 min and A = 0.1. Shown here is the phase space of variables NF − κB,

IKBRNA, and IKB, and the Poincare section we use in our analysis. B: 1000 trajectories,

making exactly one oscillation, started from the same initial condition. TNF Period = 50 min,

TNF Amplitude 0.1.

2.4.2 Defining Three Key Characteristics of the System

From a mathematical point of view, we now want to find the distribution

P (xni | xn−1
i = µi) (34)

where xni is the position of the ith variable on the Poincare section after n periods of the oscillation,

given that the position in the Poincare section after n − 1 oscillations was µi (the period is also

regarded as a variable). To use this model we needed to estimate the nature of three key measures:

• The noise inside the Pojncare section after one oscillation

• The deterministic decay into the limit cycle

• The geometry of the basins of attraction

We found the distribution of time periods after one oscillation to be gaussianly distributed and

that its standard deviation, σ, to a good approximation, could be treated as independent of the

initial position (Fig. 14A).

Thus, in the Poincare section, the system could be described as a deterministic trajectory with

gaussian noise. We now studied how a deterministic trajectory with initial position perturbed

from the limit cycle, was attracted to the cycle. We calculated the absolute value of the difference

between the present period and the period of the previous oscillation in a deterministic simulation

and found that this quantity exhibits complex behaviour, but overall went to zero as an exponential

decay (Fig. 14B). The non-smooth structure in the decay comes from the coupling between several

variables, but we will in the rest of this part, treat these deviations as a negligible effect on top of

the basic exponential decay. The decay constant was dependent on the parameters of both TNF

and the NF-κB system but for fixed parameters, this was a characteristic measure for each basin

of attraction. To finish the investigation, we tried to define the boundary between each basin of

attraction. To do this we ran a stochastic simulation of 104 oscillations, where we recorded all

variables inside the Poincare section. We then used these as initial conditions for deterministic
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Figure 14: A) Four distributions of the period after one oscillation; all with gaussian fits. B)

Absolute value difference between period and previous period, as the trajectories decay into the

limit cycle. The parameter b is the exponential decay constant. C) Stochastic simulation found 104

points inside the Poincare section. These were used as initial values for deterministic simulation.

After 10 oscillations blue has period greater than 145 min (3/1 tongue) and red has period smaller

than 105 min (2/1 tongue). Green refers to points between these values.

simulations and map the period after 100 oscillations. After 10 oscillations, we found that the

majority had settled into one of the two limit cycles (Fig. 14C blue and red), but some were

still unsettled (Fig. 14C green). This seemed to be a result of a semi-stable 5/2 Arnold tongue.

We note that the to good approximation can be regarded as divided in groups depending on a

linear distance. This breaks as we move closer to the transition into chaos, where fractal structures

start to emerge as there are two stable limit cycles. However, in the modehopping regime, we

can approximate the one dimensional system to follow an exponential decay with gaussian noise,

once inside the defined basin of attraction. If the noise kicks the trajectory out of the basin of

attraction it jumps to the other limit cycle. We now wished to transfer these conclusions into a

simple mathematical model

2.4.3 Introducing a 1D Model to Explain the Distribution of Transition Times (M)

To understand how the transitions are related to the observations inside the Poincare section, we

imagine a point inside the basin of attraction of a specific limit cycle. We consider the map:

dn = dn−1∆ +N (0, σ) = N (dn−1∆, σ), (35)

where N defines the normal distribution with parameters given in the argument. A schematic

version of this simple model, is shown in (Fig. 15A ). We are now interested in knowing the

probability density function, P (dn). This can thus be described as:

P (dn) = P (dn|dn−1)P (dn−1) (36)

We start by considering the position after one jump, given the initial position is d0, described by:

P (d1) =
1√
2πσ

e
− 1

2

(
d1−∆d0

σ

)2

(37)
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Figure 15: A) Schematic cartoon of the 1D model. B) Ratio between the probability to leave the

state after the first jump and after 20 jumps (in steady state), plotted for the different parameters

and initial positions in the model. C) The probability to leave the state, plotted on the error

function. Orange starting from d0 = 0 and blue starting from d0 = Ψ. Ψ/σ = 1. The cross

indicates the steady state.

Now we want to calculate the distribution for the position after the second step. To calculate

this we are (to avoid too many ds we define d = d0, y = d1 and x = d2) solving the integral:

P (x) =
1√

2πσ1σ2

∫ ∞

−∞
e
− 1

2

(
x−∆y
σ1

)2

e
− 1

2

(
y−∆d
σ2

)2

dy = N
(

∆2d,
√
σ2

1 + σ2
2∆2

)
. (38)

As this holds for every step, we can iterate from the first jump d1. That is, the PDF of the nth

jump becomes:

P (dn) =
1√

2πσn
e
− 1

2

(
dn−∆nd0

σn

)2

where σn = σ

√√√√
n−1∑

i=0

∆2i = σ

√
1−∆2n

1−∆2
. (39)

Now in order to consider transitions between basins of attraction, we must consider the probability

that the distance d is larger than the boundary of the basin, defined as Ψ. Thus:

P (dn > Ψ) =

∫ ∞

Ψ

1√
2πσn

e
− 1

2

(
x−∆nd0
σn

)2

dx =
1

2
erfc

(Ψ−∆nd0

σn

)
(40)

From this we can also see that this will always reach a steady state, where the probability of leaving

(i.e., a transition out of the basin of attraction) will be:

lim
n→∞

P (dn > Ψ) = lim
n→∞

(1

2

[
erfc

(Ψ−∆nd0

σn

)])
=

1

2

[
erfc

(Ψ

σ

√
1−∆2

)]
(41)

This means that the probability of leaving will, in steady state, be highly dependent on the relation

between Ψ and σ, but independent of the initial position d0. The probability to leave the state in

the first jump will always be dependent on the initial position. If we assume d0 = Ψ we obtain:

P (d1 > Ψ|d0 = Ψ) =
1

2

[
erfc

(Ψ

σ
(1−∆)

)]
(42)

showing that the probability to leave in the first jump is higher than in the steady state. If we

consider d0 = 0 we obtain:

P (d1 > Ψ|d0 = 0) =
1

2

[
erfc

(Ψ

σ

)]
(43)
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showing the probability to leave in the first jump is lower than in the steady state.

With these results, we have an interesting measure, the ratio between the probability of leaving in

the first iteration, divided by the probability of leaving in the steady state. This ratio is plotted

in Fig. 15B for different values of ∆ and different initial positions. Another visualization of this is

the probability to leave for each step, depending on the initial condition, for Ψ/σ = 1 (Fig. 15C).

We now proceed to calculate the probability distribution for the first time to leave the entrained

state, J1, meaning the first time the distance will be greater than Ψ:

P (J1 = n) =
1

2n

[
1− erf

(Ψ−∆nd0

σn

)] n−1∏

j=1

erf
(Ψ−∆jd0

σj

)
(44)

Assuming that d0 = Ψ we can reduce the above expression:

P
(
J1 = n|d0 = Ψ

)
=

1

2n
erfc

(Ψ

σ

√
1−∆2

√
1−∆n

1 + ∆n

) n−1∏

j=1

erf
(Ψ

σ

√
1−∆2

√
1−∆j

1 + ∆j

)
(45)

From this expression, it should be deduced, that the argument depending on n will converge to

one, meaning that the probability to jump out will quickly reach a steady state. In the steady

state there is always the same probability to jump out, and the distribution describing a discrete

event with the same probability will be the exponential distribution.

From Fig. 15C, we observe that it takes several iterations to reach the steady state, and

we assume that these initial probabilities can be described by a single exponential distribution.

Therefore, we expect that the distribution of oscillations in one limit cycle before transition, can

be described by a sum of two exponential distributions:

f(n) =
Initialposition

Ae−bn +
SteadyState

Ce−dn where n ≡ dn > Ψ ∧ dn−1..d1 ≤ Ψ. (46)

2.4.4 Comparing the 1D Model to the Statistical Properties of Transitions (M)

Now we want to test if the dynamics of modehopping can be described by the model predictions.

We let the system start inside the basin of attraction for one of the limit cycles and measure the

number of oscillations before it leaves this state. In these simulations, we define that the trajectory

leaves the entrained state when the period becomes closer to the period in the other limit cycle.

We start by testing for a situation like d0 = Ψ, i.e., when the initial position is on the border of

the basin of attraction and at d0 = 0, i.e., at the center of the limit cycle (Fig. 16A-B). In both

cases we find that the distribution follow the sum of two exponentials, and if the trajectory start

around the boundary there will be an increased probability to escape in the first oscillations(Fig.

16A), which is opposite to the results if the trajectory starts right at the limit cycle (Fig. 16B).

The effect of the initial conditions is thus captured in the first part of the fit, where we find that

these effects can be estimated by adding another exponential function. From our predictions, the

two situations should have the steady state distribution. We therefore compare the values of λ2 in

the two fits (Fig. 16A-B). Here we obtain:

λ2(d0 = Ψ) = 0.0181± 0.0019 (47)

λ2(d0 = 0) = 0.0178± 0.0006 (48)
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We want to compare these numbers by dividing their difference with the square root of the sum

of their errors:

λ0
2 − λΨ

2√
σ2
λ0

2
− σ2

λΨ
2

= 0.15σ (49)

This means that they are 0.15 standard deviations from eachother and thus in very good agreement

with the hypothesis.

Now we want to study the long term dynamics, and estimate the distribution of number of oscil-

lations in one limit cycle, before leaving for the other limit cycle (As can be seen in Fig. 13B).

We use Fisher’s discriminant, implemented in MATLAB, to separate the points, and classify them

between different states [44]. From the model we expect the distribution to reach a steady state

after some oscillations inside one basin of attraction, but having much higher probability to leave

the state in the early rounds. This is because the trajectory usually enter a new basin of attraction

close to the boundary of this. We confirmed this for the 3/1 limit cycle (Fig. 16C), and show that

the distribution is different than the 2/1limit cycle (Fig. 16C), that had a smaller decay constant.

Thus we conclude that we can describe the time distributions of modehopping depending on the

decay constant of the basin of attraction (dependent on the basin), the noise level (dependent on

the volume V ) and the geometry of the basin of attraction (dependent on the TNF amplitude).

2.5 Creation of Downstream Model for Protein Production (M)

Given the NF-κB-dynamics and the now to some extent understood time correlations in the mod-

ehopping, we consider the significance for the downstream genetic networks. Since NF-κB, is a

very important transcription factor, regulating more than 100 genes, we now considered how these

dynamics could be of importance.

2.5.1 Affinity and Cooperativity Based Downstream Model (M)

We assume that NF-κB can bind to an enhancer or operator region, and can form complexes to

bind the RNA polymerase, with different affinity, depending on the gene As a simple model we

now consider two genes, both regulated by NF-κB. Gene 1 has a high affinity, and needs a few

number (two) of NF-κB molecules to bind to the promoter (Fig. 17A left) whereas Gene 2 has low

affinity and needs a higher number (four) of NF-κB molecules to bind to the promoter (Fig. 17A

right). For these two arbitrary genes we consider the following model for their protein production:

ṁi = γi
Nhi

Nhi +Khi
i

− δimi (50)

Ṗi = Γimi −∆iPi (51)

To keep the model as general as possible, we are using the same parameters for both genes, but

let them differ only in the parameters for affinity, Ki and the coorperativity given by the Hill

coefficient hi. We define genes with small values of K as high affinity genes (HAGs) and those with

large values of K (≥ 4) as low affinity genes (LAGs). The use of Hill functions to describe the pro-

tein production for genes governed by transcription factors has often been used in systems biology

[45, 46, 47, 48]. A derivation of the Hill function is found in Appendix A. All the parameters can
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Figure 16: A) Distribution of number of jumps before leaving the state for the simulated system.

Initial position around the boundary. B) Distribution of number of jumps before leaving the state

for the simulated system. Initial position in the center of the limit cycle. C) Distribution of

oscillations in 3/1 state for totally 6 · 105 oscillations. Parameters of external oscillator is T = 50

min and A = 0.1. V = 2 · 10−14L. D) Distribution of periods for the 2/1 limit cycle. From the

model perspective this distribution is different from A) in the value of ∆. Same parameters used.

be found in the table below

Gene 1 Gene 2

γi 4.0 4.0

hi 2 4

Ki 1.0
√

20.0

δi 2.0 2.0

Γi 2.0 2.0

∆i 0.3 0.3

We now consider the situation where NF-κB can oscillate in two different states defined by fre-

quency and amplitude. We observe the average NF-κB level is greatest for the high frequency

state (2/1) since this state always has a substantial NF-κB level, which is not the case for the low

frequency state (3/1), where the concentration drops to almost zero at some points (Fig. 17B).

From this we learn that the gene with high affinity and low cooperativity, will benefit from a high

average level of NF-κB and thus small amplitudes. This is because there is not a great difference

in the output level reached by the small or large amplitude oscillation (Fig. 17C) and therefore

it is advantageous to have more peaks and thus a higher average level. If we instead consider the
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gene with low affinity and high cooperativity, then a pulse of very high concentration is required

to generate a production. If we study Fig. 17C, we see that the magenta curve is in generally

yielding a lower output than the cyan, but that the height of the peak in the 3/1 state yields many

times more than the 2/1 state. Therefore it is advantageous for this gene to have very high peaks

which is possible in the 3/1 state.

Figure 17: A) Schematic figure of the two types of genes B) Visualization of the two oscillating

states C) Visualization of the Hill functions governing the mRNA production. Vertically is seen

the NF-κB oscillations, showing the relevant levels.

2.5.2 Differential Gene Control From Suggested Model (M)

Since these two genes react oppositely to a change in state for the NF-κB oscillation we have

a polar gene expression. We now consider how modehopping will affect this. We find that the

protein level being produced from Gene 1, is highest in the 2/1 state (Fig. 18A red) compared to

the 3/1 state (Fig. 18A blue) and we see that in the stochastic simulation, modehopping (Fig. 18A

yellow), causes these to change in time. Similar results are found for Gene 2, where the highest

production is in the 3/1 state. (Fig. 18B) Combining these two arbitrary genes, modehopping now

serves as a mechanism of gene regulation, where it can facilitate management of amino acids or

other metabolic factors. Since only one of the genes is in a high production state at a time, the cell

can be dedicating extra resources to synthesis of a defined subset of proteins at a time. As shown

Fig. 18C, the oscillations of NF-κB causes one family of genes to be upregulated, on times where

other families of genes are down regulated. In this way modehopping can be an efficient way to

change the production of different genes according to their affinity and cooperativity.
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Figure 18: A) The protein level of Gene 1, shown for 1/2 state, 1/3 state and the stochastic

simulation. B) The protein level of Gene 1, shown for 1/2 state, 1/3 state and the stochastic

simulation. C) Simulation of the levels of both proteins for a timeseries. In the bottom the corre-

sponding NF-κB oscillations are shown.

2.6 Chaotic Dynamics in NFκB Regulates Downstream Genes

Having thoroughly investigated the dynamics in the overlapping Arnold tongue regime, we in-

creased the external TNF amplitude even further to move into the chaotic regime. We hypothe-

sized that chaos could have some interesting effects for a transcription factor as TNF, and sought

to investigate this phenomenum in detail.

2.6.1 Statistical Properties of the Chaotic Dynamics in NF-κB (M)

As a test, to make sure that the dynamics observed in the upper panel of Fig. 12 was really

chaotic, we started three simulations, that in initial conditions, differed in only one molecule. We

observed all three trajectories oscillate, but diverged after only a few oscillations (Fig. 19A). This

is typical for chaotic systems and defined by the positive Lyapunov constant. This constant is

usually calculated as the average over a large sample of diverging trajectories, but for this work

we do not know the exact value of the lyapunov exponent and are satisfied with the observation of

diverging trajectories. In the study of this chaotic attractor, we were particularly interested in the

statistical properties, when intrinsic noise was present. We therefore calculated the distribution of

periods deep inside the chaotic regime, where the periods were determined from the flow through

a Poincare section. Here we surprisingly found a structure in the distributions, with peaks around

several of the integer values of the external period (Fig. 19A). Thus inside the chaotic regime of

this attractor, there were structures in the dynamics, that was reminiscent of modehopping, but

for many states instead of two states. However where modehopping would usually spend several
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oscillations in each state before transitions, we found that inside the chaotic regime, transitions

are recurring very frequently, and once inside the chaotic region, the frequency of transition grows

(Fig. 19C). Interestingly, the deeper we move into the chaotic regime, the more independent

the results are from the noise level, and thus chaotic dynamics can look like a high frequency

version of modehopping that is independent of noise. We note that the underlying mechanisms in

modehopping and chaotic frequency transitioning are of completely different character though.

Figure 19: A) Trajectories starting from initial conditions that differ in only one molecules diverge

quickly in time. The different colours show trajectories for initial conditions differing only in one

molecule; they remain close for a while but eventually diverge exponentially. B) G) Distribution

of time periods for a simulation of 1000 oscillations. The red indicates the distribution of periods

for the deterministic simulation, and the blue indicates the distribution for stochastic simulation.

Same parameters were used in the simulations. C) The number of transitions (over an interval

of thousand oscillations) between entrained states for different noise levels, as a function of the

external amplitude. Blue: V = 1 ∗ 10−15L, Red: V = 2 ∗ 10−15L, Green: V = 5 ∗ 10−15L, Cyan:

V = 15∗10−15L. Transitions are defined whenever a trajectory period are closer to another integer

value

2.6.2 Chaotic Dynamics Enhances Low Affinity Genes

Next we wanted to test the protein production from genes with different affinities and cooperativ-

ities. Running a long simulaiton, we then measured the average protein concentration associated

with each gene over timescales much longer than the half-lives of the mRNA and proteins. This

average is the simplest measure of the effect of NF-κB oscillations on gene expression, and could

quite plausibly be important for living cells. We find that as TNF amplitude increases, we obtain

very different behaviour for HAGs, LAGs and genes with intermediate affinity (MAGs) (See Fig.

19A-C). As described above and in Fig. 12, as TNF amplitude is increased, while keeping the

frequency constant, the NF-κB dynamics is first a single-mode oscillation (point 1 in Fig. 12),

then exhibits mode-hopping (point 2 in Fig. 12) and finally chaos (point 3 in Fig. 12) for high

amplitude TNF. The ranges of TNF amplitude which exhibit these three qualitatively different

dynamics are indicated in Fig. 19A-C.

We find that the chaotic regime shows the differential behaviour of the different genes most clearly.

The HAG has a linearly decreasing average protein level as TNF amplitude is increased, while the
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LAG shows exactly the opposite. The MAG exhibits much less variation with TNF amplitude and

we believe that this can be regarded as a constant production over changing NF-κB dynamics. We

stress that it is interesting that genes under control of NF-κB can be designed to have increasing,

decreasing, as well as relatively flat response to variation of a single parameter. Overall, we see

that both HAGs and LAGs could exhibit fold-changes on the order of two-fold, which we believe

should be observable in experiments, while MAGs could lie within experimental error and thus

appear effectively unresponsive to TNF amplitude.

Figure 20: A) The average protein level from an HAG (K = 4.5, h = 4), for different values of

the TNF amplitude. We performed 4 separate simulations of duration 5 ∗ 105 min. and show their

individual means and the mean of these four combined. We used V = 2 ∗ 10−14L and T = 50 min.

Results for other periods are found in SI. B) Same as A) but for MAG (K = 2, h = 3). C) Same

as A) but for LAG (K = 1, h = 2).

2.6.3 Robustness to Variations in Parameters and Noise

Finding that genes could be upregulated by chaotic dynamics was surprising and interesting, but

we needed to test the robustness of this result - both in terms of noise levels as well as parameters

for the external oscillator. Since biological systems are often characterized by large fluctuations

and much noise, we therefore started by varying the level of intrinsic noise in the NF-κB system.

This is done in the Gillespie simulation, by varying the effective volume of the system. We find that

the average protein levels are quite robust to such increases of intrinsic noise (Fig. 21A-B). The

mode-hopping region is the most affected by the changes in noise level, since these affect the rate

at which the system jumps from one entrained state to another. The chaotic regime, in contrast,

already exhibits many hallmarks of randomness even in the absence of noise, so adding noise does

not affect the behaviour much.

Next, we also wanted to include extrinsic noise into the variation of TNF, since in experimental

procedures, as well as in vivo, there will always be considerable stochasticity in the TNF signal.

Could these fluctuations mask the differential control of genes, especially in the chaotic regime?

We added Langevin noise to the periodic TNF waveform at a sufficiently high level to smear out

the predominant frequency in a Fourier spectrum of the noisy waveform. Furthermore we also

32



Figure 21: A) The average production from the HAG for different intrinsic noise levels. We

performed simulations of duration 1∗105 min each datapoint and used the Total mean as calculated

in Fig. 20. Here T = 50 min. B) Same as A) but for the LAG. C) The average production from

the HAG for different extrinsic noise levels. We performed simulations of duration 1 ∗ 105 min

each datapoint and used the Total mean as calculated in Fig. 20. We added Langevin noise to the

oscillator and used ṙ = r(1− r) and θ̇ = ν, and in the last dataseries (yellow *) we used the Van

der Pol oscillator with noise as a perturbation to TNF. Here T = 50 min. D) Same as C) but

for the LAG. E) The average production from the HAG, for different values of the TNF amplitude

and period. The bright colours indicate the maximal average protein levels, while the dark colours

correspond to low average protein levels. F) Same as E) but for the LAG.

oscillated TNF as a Van der Pol oscillator with Langevin noise. This is described by the dynamical

system:

ẋ =y + η(t) (52)

ẏ =− x+ µ(1− x2)y + η(t) (53)

With η(t) being uncorrelated white noise. We found that this did not affect the results results

significantly and NF-κB still showed the same transition from single-mode oscillation to mode-

hopping to chaos as TNF amplitude was increasing (Fig. 21C-D). As with intrinsic noise, the

extrinsic noise had most effect in the mode-hopping regime and minimal effect in the chaotic

regime.

We now tested our central result for TNF frequencies, with a time period in the range 30 - 120 min.

Here we also found the overall same trends, with the characteristic increase/decrease in average

protein levels, as a function of TNF amplitude. Thus we conclude from this investigation that

even in the presence of intrinsic and extrinsic noise, and in the range of different TNF frequencies

chaotic dynamics will up regulate low affinity genes.
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2.6.4 Analytical Arguments for Explains the Downstram Effects of Chaos

From the above section we were convinced that the results were quite robust. We therefore just

focused on the ratio between the produced level in the chaotic region and the non-perturbed region.

We therefore tested the results for completely different TNF waveforms in order to see if this could

stop the effects inside the chaotic regime. Here we found that for all the tested wave forms, chaotic

up regulates the protein production with at least a factor of 2 for LAGs and note that the highest

effect is found when TNF is oscillated as a square pulse (Fig. 22A).

So far in this work, we have mainly focused on two genes defined by a specific value of h and K.

Now we wanted to draw the full picture, and calculated the ratio produced in chaos vs produced

in unperturbed for different values of h and K. Here we find that for for increasing hill coefficients

and decreasing affinity the this ratio is growing. Thus for a large interval of parameters, especially

as K 7→ ∞, chaotic dynamics results in increased protein levels and the results are even more

significant. For instance the production for a gene with h = 6 and K = 7µM has a 6 fold increase

in chaos versus for flat TNF (Fig. 22B).

Figure 22: A) The ratio of Proteins at TNF = 0.5 + 0.4sin(2πωt) / TNF = 0.5 for different

wave forms. B) Protein level for TNF = 0.5 + 0.4sin(2πωt) for genes defined by different levels

of K and h. C) Distribution af NF-κB at different time levels inside the different regimes.

We wanted to investigate some of the the underlying mechanisms of how the distribution of

NF-κB acutally changes in the different affinity regimes. We see that as we move into the chaotic

regime, the distribution of NF-κB gets broader in both ends and therefore NF-κB in the chaotic

regime spends more time around zero, but does also have the very large peaks that affects the low

affinity genes (Fig. 22C).

A mathematical analysis of this behaviour provides some intuition to understand why HAGs and

LAGs respond so differently: The long-term average protein level is essentially proportional to

the average of the Hill function over the same long timescale: 〈P 〉 ∼
〈

Nh

Kh+Nh

〉
. For HAGs, K is

small, and to lowest order in K/N , 〈P 〉 ∼ 1 −Kh
〈

1
Nh

〉
. In contrast, for LAGs, K is large, and

〈P 〉 ∼ 〈N
h〉

Kh . To carry out the analytical calculations we start out with the equation for the mRNA:

dm

dt
= f(t)− δm where f(t) =

N(t)h

N(t)h +Kh
(54)

Because the NF-κB concentration N(t) is periodic in time with period T, therefore f(t) is also

periodic with period T. To begin, let us examine the case where f(t) is composed of only a single
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mode with a non-zero average σ:

f(t) = σ +Aeiωt with ω = 2π/T (55)

In that case, the solution of the equation for mRNA is:

m(t) ≈ σ

δ
+

A

δ + iω
eiωt (56)

In general of course f(t) is a Fourier sum of many modes, but since the equation for mRNA is linear

in m, the resultant solution is:

m(t) =
∞∑

−∞

σ

δ
+

Ak
δ + iωk

eiωkt (57)

Here, the k = 0 term takes care of the σ term in the previous single-mode case. The argument

can be easily extended to the protein, because the dP/dt equation is also linear in P and so each

mode in m(t) will contribute additively to P(t) (just like each mode in f(t) contributes additively to

m(t)). In order to understand how average expression of the gene depends on various parameters,

we simply need to look at the k = 0 term, because averaged over time:

〈m〉 =
A0

δ
(58)

with (59)

A0 =
γ

T

∫ T

0

N(t)h

N(t)h +Kh
dt =

γ

T

∫ T

0

1

1 + (KN )h
dt (60)

Now we consider the two cases where K is very small and very large respectively. For small K we

expand the fraction:

A0 ≈
γ

T

∫ T

0

(
1−

[ K

N(t)

]h
+O

)
dt (61)

= γ(1− 〈(K/N)h〉) (62)

Therefore this will be dominated by the smallest values of N(t). As we see in Fig. 22C these occurs

in the chaotic state, and therefore the average production in total will be smaller for chaotic than

for the limit cycle case. If we instead consider the case with very large K, we make the expansion

A0 =
γ

T

∫ T

0

(NK )h)

1 + (NK )h)
dt (63)

≈ γ

T

∫ T

0

([N(t)

K

]h
+O

)
dt (64)

= γ〈(N/K)h〉 (65)

This will clearly be dominated by the largest values of N(t) and as can be seen in Supplementary

Figure 2K these also occurs for the chaotic state. In this case the chaotic dynamics thus increases

the average production of genes with large K. These arguments forms an analytical argument

behind the results we find in Fig. 20 derived from the extreme cases for the affinities of genes.

2.7 Chaos Increases Efficiency in Protein Complex Formation

In eukaryotic cells, many functions are carried out by complexes of proteins that are constructed

from multiple subunits, for instance haemoglobin, that consists of 4 subunits from 2 genes that
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are located on different chromosomes. A study of the NF-κB interactome found that amongst 384

genes that are regulated by NF-κB there were 572 protein-protein interactions [49]. Therefore we

wanted to test how the variety of amplitudes found in chaotic dynamics, affected the formation of

protein complexes whose subunits all was regulated by NF-κB.

2.7.1 Small Homogenous Complexes Show Similar Trend as Single Proteins

The full importance of protein complexes formed by smaller subunits is still far from understood,

and in mathematical modelling one usually consider the production of the individual subunits.

The introduction of NF-κB affected complexes have likewise not been deeply investigated, but

we expect that they will have a functional role. For instance, there seems to be evidence that

NF-κB controls autophagy via multiple pathways, including the up-regulation of both Beclin 1

and A20, which interact with each other inhibiting Beclin 1 ubiquitination, and thereby repressing

autophagy [50]. We therefore tested how the concentration of protein complexes, whose subunits

were encoded by NF-κB controlled genes, was altered as the NF-κB dynamics became chaotic.

We first considered the simplest complex that consists of two subunits (Fig. 23A). In this case,

the model has the following additional equations, where P1 and P2 represent the concentrations of

the two proteins and C2,1 the concentration of the complex:

Ṗ1 =Γ1m1 − λCP1P2 −∆1P1, (66)

Ṗ2 =Γ2m2 − λCP1P2 −∆2P2, (67)

Ċ2,1 =λCP1P2 −∆C2,1. (68)

Here C2,1 refers to a complex consisting of two subunits, with one HAG. At this points we will test

both homogeneous and heterogeneous complexes, and we consider that subunits can be either HAG

or LAG.Furthermore we will, in order to keep things as simple and transparent as possible, keep

the values of the parameters λ and ∆ fixed even though these could easily differ between complexes.

An exploitation of the effects of the entire parameter space will be interesting to pursue in future

work, but is beyond our scope. Even though chaotic dynamics creates large fluctuations in the

production, then if we consider a complex consisting of two subunits are both HAG proteins, the

complex has the highest average level in the oscillatory regime since both subunits will be in their

highest production regime (Fig. 23B). The same argument can be used for complexes consisting

of two LAG proteins, though they have the highest production level in the chaotic regime (Fig.

23C).

2.7.2 Chaos Enhances Small Heterogeneous Complexes

Now if we consider the production of a two subunit complex that is heterogeneous and therefore

consists of one HAG and one LAG subunit. Here both proteins fluctuate up and down (Fig.

24A), and therefore the result is not as obvious as above. Simulating the above equations for a

heterogenous complex, we find a significantly higher level of the complex in the chaotic regime Fig.

24B. We now move on to test larger complexes of different combinations of subunits. We describe

the concentration of the protein complex Cn,nH consisting of n subunits, of which nH are from an
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Figure 23: A) Schematic picture of how LAG and HAG encoded proteins may form protein com-

plexes. B) Protein concentration for HAG (K = 1, h = 2) with oscillatory and chaotic dynamics

respectively. TTNF = 50 min. C) Protein concentration for LAG with (K = 4.5, h = 4) oscillatory

and chaotic dynamics respectively. TTNF = 50 min.

HAG and the rest from an LAG, is modelled by:

Ċn,nH = λ
n∏

i=1

Pi −∆nCn,nH . (69)

For n = 3 and nH = 2, we found that the production was also highest in the chaotic regime and,

before moving further, we tested whether the outcome was different if all complexes combined

randomly (yellow curve in Fig. 24C), or if there was a hierarchical structure in the assembly (blue

and red curves in Fig. 24C). We found no difference in the outcome, and we could therefore move

on and focus on the non-hierarchical assembly of complexes, calculated as shown above.

2.7.3 Chaos Increases Efficiency in Protein Complex Formation

Now we were ready to test all compexes for n ∈ [2− 10] and in each case we tried with all different

different combinations of HAG and LAG subunits. We calculate the ratio between the production

in the chaotic state and in the oscillating state. Thus if this has a value of one, means that there

is no difference between the two states. Unexpectedly, we find that all heterogeneous complexes

exhibit a higher average level in the chaotic regime (Fig. 25A). This means that only homogenous

HAG complexes would be present at a high level in the single-mode oscillatory regime. One might

ask, whether this is simply the result of higher mean levels of NF-κB. Therefore, we normalized the

concentration of the complexes by the mean NF-κB concentration - when this ratio is large we will

say the complexes are produced more efficiently. As seen in Fig. 25B, all complexes are produced

more efficiently in the chaotic regime – even the homogenous HAG complexes. Therefore chaos

seem to be a generally cheap way to produce protein complexes, in terms of NF-κB molecules. If

the cell wish to build a specific type of complex, and do not care about the individual subunits,

then from an economical argument, it is necessary to minimize the number of unused subunits. In
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Figure 24: A) Time series of NF-κB (yellow) and the corresponding protein level. Red: Level of

HAG protein. Blue: Level of LAG protein (multiplied by 20). TTNF = 50 min. B) Concentration

of a heterogenous two-protein complex (shown upper left) with oscillatory and chaotic dynamics

respectively. C) Concentration of a heterogenous three-protein complex in chaotic dynamics de-

pending on the hierarchical assembly (shown above).

Fig. 25C we show the ratio between the average concentration of complexes to the concentration

of unused subunits, calculated as
〈CN,nH 〉∑N
i=1〈Pi〉

. This ratio too is largest in the chaotic regime for all

complexes, except those made only from HAG proteins. Thus, a chaotically varying transcription

factor not only up regulates low affinity genes, but also results in higher and more economical

production of protein complexes composed of subunits from different genes.

2.8 Chaos Generates Advantageous Population Heterogeneity

We now consider how the dynamics of NF-κB can affect a population of cells. In the following, we

consider only the deterministic NF-κB system, started from a broad distribution of initial points,

so the cells are not initially synchronised. We will then study a population of N independent cells

that are affected by the same oscillating TNF stimulus. Within each cell, we will track one LAG

and one HAG. Here we have chosen the parameters so that the two corresponding proteins have

the same average protein level.
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Figure 25: A) Relative concentration for complexes of different compositions. The y-axis show

the concentration in chaos divided by the concentration in the oscillatory regime, and the black

line show where these are equal. B) Relative concentration per NF-κB for complexes of different

compositions measured by the fraction
〈CN,nH 〉
〈NF−κB〉 . Same axis as in A). C) Relative concentration per

unused subunits for complexes of different compositions measured by the fraction
〈CN,nH 〉∑N
i=1〈Pi〉

. Same

axis as in A).

2.8.1 Dynamically Heterogeneous Populations Arise From Chaos

We have described how chaotic dynamics exhibit never repeating trajectories since trajectories,

from just slightly perturbed initial conditions, will diverge in time. Therefore it is evident that

one might find a population, where the individual cells states follow chaotic dynamics, to be

heterogeneous. This, combined with the mechanisms of entrainment between the external and

internal oscillator, gives the oppertunity for a population to switch between homogeneous and

heterogeneous states by changing the external amplitude. We simulated a population of cells

and observed that when NF-κB is in a single-mode oscillatory state, the average level of both

Protein 1 and Protein 2 is homogenous across the population. We also found that if NF-κB is in

the mode-hopping regime, then the distribution of protein levels across the populaiton is bimodal.

Finally we found that in the chaotic regime, the distribution is heterogenous for both proteins (Fig.

26A-D). Following the structure of Fig. 26, we indeed find that population can generate different

states by tuning the external amplitude and we note that this process is noise independent. For

the heterogeneous state inside the chaotic region, we also note that not only is the population

heterogeneous, but it is also dynamic in the sense that if one cell is in a high production state

of Protein 1 at time t1 it might just as well be in a high production state for Protein 2 at some

later time t2. We imagined that such heterogeneity in a cell population, could provide a selective

advantage when the population is exposed to some potentially lethal stresses and we therefore went

on to study this.

2.8.2 Chaos Increases the Number of Surviving Cells in Toxic Environment

We now imagine that each cell in the population can be exposed to two toxic drugs at concentrations

D1 and D2. The effects of each of these drugs can be opposed by the presence of proteins P1 or

P2. Thus we assume that if the toxic is present in the population, then at each time step, each cell
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Figure 26: A) Protein concentration from an HAG with K = 1, h = 2 and external TNF period

50 min. Bottom: The concentration corresponding to a single-mode oscillation; TNF amplitude:

0.04. Middle: The concentration corresponding to mode-hopping; TNF amplitude: 0.12. Top:

The concentration corresponding to chaos; TNF amplitude: 0.36. B) Protein concentration from

an LAG with K = 4.5, h = 4. TNF period 50 min. TNF amplitudes are identical to those used

in A. C) Protein concentration from the HAG. TNF period 95 min. Bottom: The concentra-

tion corresponding to a single-mode oscillation; TNF amplitude: 0.1. Middle: The concentration

corresponding to mode-hopping; TNF amplitude: 0.2. Top: The concentration corresponding to

chaos; TNF amplitude: 0.4. D) Protein concentration from the LAG. TNF period 95 min. TNF

amplitudes are identical to those used in C.

is killed with probability

PDie = P0

( Dh
1

Dh
1 + Ph1

+
Dh

2

Dh
2 + Ph2

)
. (70)

Thereby we imagine that P1 and P2 are stress-responders that can help the cell survive stressed

conditions. We define a constant P0 to represent the probability that the drugs kill in the absence

of the protective proteins. Following the model in the sections above, we consider the case where

P1 is encoded by a HAG and P2 by a LAG, both regulated by NF-κB.

First we consider the situation where only one of these drugs is present. When only Drug 1 is added

in a high amount, cells where NF-κB is in a single-mode oscillating state will have a higher survival

rate than cells where NF-κB is mode-hopping or chaotic. This is exactly what one would expect

from Fig. 20, since HAG proteins are on average at higher levels in the single-mode oscillatory

state. When only Drug 2 is added in a high amount, cells in chaotic states will have a slightly higher

survival rate, but due to large fluctuations, these cells will also eventually die due to temporary low
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levels of Protein 2. Now we consider what will happen to the system if both drugs are added in a

comparable amounts. We therefore tested four different patterns of adding the drugs (Fig. 20C-F),

so that they have dynamical fluctuations but have the same mean (cyan and black traces in Fig.

20C-F). Here we find that the cells in the chaotic state will have significantly higher survival rate

compared to the others for all the different dynamics applied. From this we conclude that in the

presence of multiple toxic drugs, a population of cells is better off having a large heterogeneity

in gene expression and up regulating the low affinity genes and thus up regulating the product of

genes. This is obtained in the chaotic regime for NF-κB dynamics and this enhances the survival

rate. We found these results rather surprising and went on to investigate the mechanisms behind

this result.

Figure 27: All figures show the number of surviving cells vs time (Drug is added at T=4000 min).

A) D1 = 6000, D2 = 0. B) D1 = 0, D2 = 6000. C) D1 = D2 = 3000. D) Ḋ1+2 = N (0, 100.0) and

D1+2(0) = 3000. The panel below shows a specific trajectory on this pattern. In general D1 is above

D2 50% of the times and vice versa. E) D1+2(t) = 3000 + 1500 · sin( t
5000 + Ω) F) D1+2(t) = 7000

if sin( t
5000 + Ω) > 0.95 and otherwise D1+2(t) = 3000

2.8.3 Analytical Arguments Explains Increased Survival Rate

In order to explore the results shown in Fig. 20, we analyzed the distribution of proteins for the

single limit cycle dynamics and for chaotic dynamics. We find that the distribution of proteins

inside the chaotic regime is much broader than for the oscillatory dynamics. As described in the

above section, we fixed the production ratios so the average sum of the two proteins are be equal,

but we find that in the chaotic region the mixture is broader and therefore the product of the two

proteins is significantly higher in this region (Fig. 28A-B). This is one of the explanations of why

chaos increases the survival rate when several external stresses are present, which can be seen if
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we consider the removal rates once again.

r = P0

( Dh
1

Dh
1 + Ph1

+
Dh

2

Dh
2 + Ph2

)
(71)

As we defined in the text we normalized the proteins, and by adjusting their production profiles

we fixed the number of total proteins. This can be seen in Fig. 28C, where we see that the

sum of proteins has the same mean, even though the spread in the chaotic distribution is larger.

Expanding the death rate (and just setting h=1), we find that:

r = P0

( 2D1D2 + P1D2 + P2D1

D1D2 + P1D2 + P2D1 + P1P2

)
(72)

Here we note that the terms in the nominator and denominator are almost identical, but there is

a product of the proteins only occurring in the denominator. Looking at the distribution of this

(Fig. 28D) we see that this is significantly larger for the chaotic dynamics, since there is a mixture

of represented proteins. Therefore the denominator will be larger in the chaotic regime and thus

the death rate will in general be lower for the cells if they have chaotic NF-kB dynamics. Therefore

the intuitive explanation comes from the fact that since there is a spread of proteins then there are

some outliers that will have a small rate of dying. And since these change dynamically in time, a

larger fraction of the cells will have decreased death rate compared to the case for a stable limit

cycle. We also believe that part of the explanation from the increased survival rate comes from

fact that there, in the chaotic population, always will be some cells that are in the low removal

rate range. And since these vary in time, the cells could have very robust subpopulations if there

suddenly comes a burst in one of the drugs. Therefore we wanted to investigate if the survival rate

for a population could depend on the diversity in the population.

2.8.4 Diversity Increase the Average Lifetime of a General Population

Inspired by these results, we wanted to study whether there were some advantage by having a

heterogeneous population, in a more general setting. We therefore consider a situation where the

a single toxic is added in a high dose so cells die with a rate r. This dose is delivered in a time

interval, τ We define that at time t = 0 we have N0 living cells. Now the number of surviving cells

after a dose must be:

N = N0

∫ ∞

−∞
e−rτP(r)dr (73)

Here P(r) denotes the probability distribution to have a specific r. In the case of all cells being in

a single state we have:

N = N0

∫ ∞

−∞
e−rτδ(r − rµ)dr = N0e

−rµτ (74)

If we now consider the chaotic state, we assume that the distribution could be given by a normal

distribution so: P(r) = N (rµ, σ) (Fig. 29A). It should be noted that the rates from this distribution

are far from zero so the integral of the negative axis can be assumed to be zero. Thus we calculate:

N =
N0√
2πσ

∫ ∞

−∞
e

1
2

(
r−rµ
σ

)2

dr (75)

=
N0√
2πσ

e
− 1

2

(
rµ
σ

)2√
2πσ2e

[(
ru

sigma2

)2

+τ2−2τ ru
σ2

]
σ2

2
(76)

=N0e
1
2 τ

2σ2−rµτ (77)
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Figure 28: A) Heat map showing Protein levels during stochastic simulation when dynamics is

a limit cycle. B) Heat map showing Protein levels during stochastic simulation when dynamics is

chaotic. C) Sum of proteins in stochastic simulations when dynamics is in chaotic and limit cycle

regime. D) Product of proteins in stochastic simulations when dynamics is in chaotic and limit

cycle regime.

This means that the benefit from having a spread of your rates can be calculated by:

e−rµt0

e−rµt0
e1/2(t0σ)2

= e1/2(t0σ)2

(78)

Let us term the mean value of the gaussian distribution rµ1
and the mean of the delta function

rµ2 and assume that rµ1 6= rµ2 . The size rµ2 in order for N2 > N1 to hold should then be:

rµ2
< rµ1

− 1

2
t0σ

2 (79)

We simulate this and find as predicted, that the number of surviving cells is higher for the popula-

tion with large diversity (Fig. 29B). Normally it is argued that populations of bacteria have large

diversity so some of them can be immune to different toxicities they might be faced by. While

this is of course still true, then the above argument shows that even if no cells in the population

are close to being immune, a diverse population will generally have a higher survival rate than a

completely homogeneous one.

2.9 Discussion and perspectives

Transcription factors are known to have different dynamics, depending on external conditions and

it has previously been argued that oscillations in gene regulatory networks can control transcrip-

tional specificity and efficiency [9, 13, 51]. However the mechanisms behind how this may be

exploited to differentially control of downstream genes is not well understood. In this chapter,
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Figure 29: A) Distribution of removal-rates for both populations. The numbers refers to the min

and max level from the gaussian distribution. B) Number of surviving cells as a function of the

time at which the dose is given.

we have shown how an oscillatory network can lead to multi stability of limit cycles and how the

presence of multiple entrainment modes may diversify biological functions and to control gene ex-

pression output and specificity [52, 53] NF-κB activates hundreds of genes, requiring mechanisms

for controlling relative expression level and specificity under fluctuating environmental signals. As

we show, noise-induced jumps in NF-κB oscillation frequency can cause temporal switching be-

tween genes with diverse promoter characteristics over time.

Our model uses periodic variation of TNF to produce complex dynamics of NF-κB. Uncovering

conditions where TNF naturally varies periodically and thereby entrains the NF-κB oscillations

would add substantial weight to our results. Oscillatory dynamics is believed to be of importance

to several processes in the immune system [54] and there exists evidence that TNF does indeed

very in a pulsatile or periodic manner in some situations [55, 56, 57, 58], as well as mathematical

models that attempt to explain the underlying mechanisms [55, 59], but it is unclear whether these

natural oscillations entrain NF-κB. The positive feedback between NF-κB and TNF that has been

hypothesised to produce travelling waves of TNF is perhaps the most promising scenario we are

aware of where periodic TNF modulation may occur naturally [59].

In this project we show how bi-stability in frequency space can arise from an externally oscillating

ligand that couples to a protein network that is has limit cycle. This means that in the determin-

istic system we found to two distinct oscillatory states and in the presence of noise, this allowed

dynamical switching between the states. We investigated how the statistics for the transitions

between limit cycles can be controlled by changing the parameters of the external oscillator. Here

we developed a simple 1D system, derived from the behaviour inside a Poincare section, and found

that the distribution fo transition times, can be approximated as a sum two exponential functions.

From the properties of modehopping, we should consider the benefits of this mechanism in gene

regulation. Without going in to great detail about other mechanisms, the following will instead

focus on the complex outcome of regulation, by simply perturbing the external amplitude, and

thus climbing up the Arnold tongue diagram.

We start by considering the very low coupling. This is the limit where only one limit cycle ex-
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ist and thus no matter the noise level, no transitions will occur and the NF − κB will oscillate

with the same amplitude and frequency. In this limit one of the families is always in the high

production state. If we now increase the amplitude a little more, keeping the period of oscillation

constant, we reach the early limit of overlapping tongues, but where the basins of attraction can

still be assumed to be approximately linear. In this limit modehopping will occur, but the system

will spend relatively long time in each state, and to a good approximation following the statistics

previously described. Therefore this work uncovers a new function for noise in gene regulation. If

the cell is in the modehopping regime, then if it can control the level of intrinsic noise, the rates

of transitions can change rapidly and thus it can fine tune the output. Furthermore, this method

of gene regulation could facilitate management of amino acid or other metabolic factors by dedi-

cating resources to synthesis of a defined subset of proteins at one time. Cellular mode hopping

therefore expands the toolbox of single cells to control the dynamics, specificity, and efficiency of

gene expression and protein production.

If we want to increase the frequency of modehopping we can increase the TNF amplitude to the

limit, where the linearity of the basins break down and each limit cycle can be attracted from

many positions in phase space. Here the magnitude of the decay constant is also larger, meaning

that even in the presence of noise, the trajectories will be attracted to the limit cycles quickly, but

they can also leave the limit cycle quickly due to complex geometry of the basins.

If we now increase the amplitude even further we move into the chaotic regime. We showed that

from a frequency point of view, chaos shows some of the traits from modehopping, and the deeper

into the chaotic regime we get, the more states can be visited. Chaotic dynamics has in general

been underestimated as a means for controlling genes, maybe due to its unpredictability. This

work shows that deterministic chaos potentially further expands the toolbox available for single

cells to control gene expression dynamically and specifically. Since chaotic behaviour within over-

lapping Arnold tongues is a fundamental feature of driven nonlinear oscillators [33, 36, 60], we are

confident that NF-κB driven by sufficiently large TNF amplitudes will exhibit deterministic chaos.

However, an experimental realisation of this model, through microfluidics experiments [61, 62],

would necessarily be subject to various sources of noise, and it is not obvious that deterministic

chaotic can be determined from these traces. Many sophisticated methods exist, that allow chaos

to be found without requiring unreasonably long time series; see for example [63, 64]. However

as the noise gets large the normal traces from chaos as lyapunov exponents, fractal dimension of

attractor etc. gets smeared out, and one need to use statisctical properties. The next step is to test

whether HAGs respond differently from LAGs, and this can be investigated using genes that have

previously investigated in the regime where NF-κB shows single-mode oscillations [4, 13]. Since

the expression level of some of these genes track NF-κB oscillations closely, while others track the

mean NF-κB levels, it is likely that these genes already span a range of affinity values [14]. If this is

the case, we can start to consider ”polar” gene regulation, where some genes are up regulated and

others down regulated from the same trace of dynamics. From the test of the robustness of these

results, where we investigated many parameter values, we are comfortable in arguing, that these

genes may be directly used to study the chaotic regime, without worrying too much about details

such as their maximal transcription/translation rates or the stabilities of the mRNA and proteins

they encode. Therefore we suggest that chaotic dynamics can produce differential control of high

vs. low affinity genes, down regulating the former while simultaneously up regulating the latter
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and that this can be used not only to control single non-interacting genes, but also for upregulating

specific complexes of proteins and generating useful heterogeneities in cell populations.

To sum up, one can achieve a great complexity in the regulation of genes, by coupling two oscilla-

tory dynamics, and in from there regulate only the external amplitude. Whether this is actually

something the cells are using is up for tests in a number of experiments, but this has great poten-

tial in future research, not only for the NF-κB system but for transcription factors that has the

ability to show oscillatory behaviour in general. It is the hope, that this will inspire theoretical and

experimental exploration of the presence and utility of modehopping and chaos in transcription

factors of living cells.
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3 Mdmx as a Modulator on the p53-Mdm2 Network

In this chapter the results of paper VI is presented and discussed, along with some other results

that will be part of future projects in this field. This work was mainly carried out during my stay

in the Lahav lab at Harvard Medichal School in the final part of 2018. The project was guided

by Galit Lahav and was based on results from experiments carried out by Sheng-hong Chen. The

ideas for the background theory, was done in a great collaboration with Galit Lahav and Mogens

H. Jensen. The data analysis and the mathematical modelling I carried out myself. Parts of the

figures were created in coorperation with Alba Jimenez.

In this section, we will present a simple mathematical model of the p53/Mdm2/Mdmx system

and use this to investigate which of their known interactions quantitatively affects p53 dynamics.

We show that the Mdm2-dependent degradation of p53, facilitated by Mdmx, is the most critical

interaction regulating p53 dynamics. Next, we used this model to predict p53 behavior following

DNA damage in Mdmx depleted cells. and use the experimental results to constrain the model

and identify the mechanisms responsible for the UV dose dependent and independent features of

p53 dynamics.

3.1 Introduction to the Network of Tumor Protein p53

The tumor suppressor protein p53, is a transcription factor, that can bind to specific sequences on

the DNA [65]. The protein is found in slightly various forms across species, but the human p53

protein has 393 amino acids. It has been divided into four domains according to structure and

functionally. Here the first 42 amino acids at the N-terminus constitute a transcriptional activa-

tion domain that interacts with the basal transcriptional machinery in positively regulating gene

expression [66, 67]. The protein has a central role in the coordination of the cellular responses to a

broad range of external stress factors [68] and therefore it has been called a ”cellular gatekeeper”

[67] and ”the guardian of the genome” [69]. Specifically the p53-mediated transcription is of great

importance in tumor suppression, the vast majority of tumor derived mutations have taken place

in the region encoding p53’s DNA binding domain [66]. Therefore, the dynamics of p53 play an

important role in cell fate decision and therefore a quantitative understanding of the signaling

network underlying p53 dynamics is important to decode cellular decision process. In normal con-

ditions, p53 protein is maintained at low levels by a series of regulators, most famously Mdm2.

This protein is produced from p53 transcriptional activity and functions as a p53 ubiquitin ligase

to facilitate the degradation of p53 [70, 71, 72]. This forms a typical negative feedback loop that

is often found in genetic networks. In response to various cellular stresses including DNA damage

and replication stress, p53 can be stabilized which leads to a sudden up regulation of the nuclear

concentration. Mechanisms leading to p53 activation can be initiated by DNA damage, where

ATR or ATM can promote p53 phosphorylation and thus block the Mdm2-mediated degradation

[73, 74]. Here there is an important distinction between the responses of p53 following recruitment

of ATM or ATR. The first is typically enhanced in relation to double strand breaks (DSB) following

for instance γ-radiation and can lead to oscillations in p53 [5]. The second is enhanced in relation

to single strand breaks (SSB) following for instance UV-radiation and can lead to a large transient

pulse [75]. Since Mdm2 has such an important regulatory effect on regulation of p53 levels, it is

of great interest that another protein Mdmx, a homolog of Mdm2, has also been found to have an
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important impact on the p53 regulation [76, 77, 78]. However Mdmx itself cannot cause degrada-

tion or nuclear export of p53 [79], and therefore it is an open question what the most important

role is of Mdmx [80]. Some studies indicate that Mdmx represses the p53-mediated transcriptional

activation [81, 76], where others claim that the major role of Mdmx lies in its ability to enhance

degradation of p53 [82, 83, 84].

3.2 Analysis of Experimental p53 Dynamics Reveals Three Key Char-

acteristics

My work on this project started out with the experimentally generated time series of p53 con-

centrations inside the nucleus of single cells. The first objective was to characterize the specific

quantitative features of the p53 dynamics which should later be used for the mathematical model

construction. At this point it was known that the depletion of Mdmx leads to a characteristic

response, that can qualitatively be separated into two distinct phases of p53 dynamics - a tran-

sient pulse and sustained oscillations [85]. Mdmx suppression is initiated right after mitosis, and

since this occur at different times (Fig. 30A red region), we needed to create a common time

frame for all the cells. Therefore we started out by generating an algorithm to align the traces of

single-cell p53 dynamics to the time of cell division, so this could serve as our initial time point

(Fig. 30B). Following immediately after Mdmx is suppressed in the cells, p53 undergoes a transient

high-amplitude pulse (Fig. 30B, orange region). After this, the system enters the second phase,

where p53 shows a series of low amplitude oscillations (Fig. 30B, red region), which seem to be a

steady state, since these oscillations continue for longer time than the experiments can last. Our

first goal was therefore to quantify the two phases, by using all the traces and calculate some

statistical properties.

Figure 30: A) Heatmap showing p53 traces for all cells when not aligned. B) Four representative

p53 traces, aligned by time of mitosis
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3.2.1 Transient Pulse Follows Right After Mdmx Depletion

We first characterized the p53 pulse, which represents an important fingerprint of the role of Mdmx

on p53, since it captures the initial response of the system before other potential secondary complex

responses emerge. We calculated the population average trace (Fig. 31A, green trace), from which

one can clearly see the post-mitotic phase-one pulse (Fig. 31A yellow region), while the sustained

oscillations are masked by the mean value and stochastic fluctuations. It should be noted, that

there is a drop in the average value of p53 with a minimum around 25 hours. After discussing

this, we realized that this was most probably due to external effects in setup of the experiment,

and we will in the following part neglect this. Using the alignment to characterize the average

initial pulse (Fig. 31B), we found this to be symmetric, i.e. showing the slopes during increase

and decrease (Fig. 31C), and to have a maximal value of the amplitude around three times larger

than the mean level of p53 before Mdmx depletion (Fig. 31D). We wanted to know whether the

obtained data for the height of the amplitude had some statistical properties or just was randomly

distributed. We found that this distribution were quite smooth, and could be well described by

fitting it to a gamma distribution (Fig. 31D). The small peak preceding mitosis is due to an

increase in auto-fluorescence seen in all channels.

Figure 31: A) All traces and the calculated mean value (green) at all time points. B) Zoom on the

transient pulse. Yellow lines correspond to fitted lines of increase and decrease. C) Barplot showing

the increase and decrease. D) Distribution of heights of the peak and a fitted gamma distribution

(red)

3.2.2 Sustained Oscillations Follow Transient Pulse

From the transient pulse, we moved on to characterize the p53 dynamics after the initial response

(Fig. 30B yellow region), where the dynamics seem to be oscillatory (Fig. 30B magenta region).

First of all we needed to define the properties of the oscillations, and to check whether the observa-

tions seemed to follow similar kinds of oscillations. We therefore calculated the Fourier spectrum,

using the FFT algorithm in MATLAB, for each cell trace individually. The resulting power spec-

trum show a surprisingly strong signal for a frequency of approximately 0.3/hour (Fig. 32A).

This is an important fingerprint convincing us that the p53 oscillations are well defined and is
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a characteristic of the system. While this power spectrum (Fig. 32A, y-axis) in some cases can

provide an estimate of the amplitude of the oscillations, we wished to define this better and used

an independent algorithm to calculate the distance from each peak to the two neighboring valleys.

From this method, we plotted the distribution of amplitudes for all oscillations, and found that this

was very smooth. We once again fitted this to a gamma distribution (Fig. 32B) to obtain the best

fitted values, which should be used for later comparisons. With the most probable amplitude and

frequency defined from the methods described above, we could show that a sinusoidal with these

parameters follow the experimentally observed oscillations quite well (Fig. 32C). From this one

can observe, that the amplitude showed substantial variations due to noise, while the frequency of

the oscillations was surprisingly stable, which is in agreement with previous observations for p53

oscillations following DNA damage [86, 87].

Figure 32: A) Fourier spectrum of the sustained oscillations calculated using a Matlab FFT al-

gorithm. The red dots mark the highest Fourier signal for each individual cell. The height of the

peak correspond to the amplitude of the most dominant frequency of oscillation. B) Histogram

showing the distribution of amplitudes of the oscillatory phase. C) Comparison of a single cell os-

cillatory expression (green) to a modelled sinusoidal oscillation (red) with amplitude and frequency

corresponding to the most probable values of the Fourier spectrum in A).

3.2.3 Examination of the Nature of p53 Oscillations

In the process of understanding the underlying dynamical system as well as possible, an important

question was to consider whether the oscillations that we observed, came from a deterministic limit

cycle or a deterministic spiral that would look like sustained oscillations due to the noise in the

system. The latter we term stochastically induced oscillations, and they are known to produce

clear signals in the Fourier power spectrum, which for some systems can be calculated analytically

[88]. We wanted to investigate if it was possible to determine whether the observed experimental

data represented an underlying limit cycle. To do this, we gathered all the datapoints from the

oscillatory phase (i.e. after the transient pulse). We divided each individual trace by its own mean,

and placed the individual traces following each other (Fig. 33A). Next we needed to merge all the

individual traces together, in a way that could minimize the differences between the end of one

trace and the beginning of the next. We decided to combine them by letting each trace end at its

last peak and let the next trace begin with its first peak (Fig. 33B). We defined the height of the
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two merged peaks to be the mean of these two points. Furthermore the dataseries were influenced

by a large background noise as discussed in Fig. 31A. In order to align the oscillations we therefore

took this background noise into account, by subtracting a running mean from each datapoint (Fig.

33C red trace). The running mean was calculated at each point by taking the average of an array

containing the point itself, the n previous points and the n future points. We tried different values

of n, which did not show any conclusive difference, and in the following is shown for n = 6. Having

aligned all the datapoints, we transformed the data into a two-dimensional phase space, by adding

an embedding dimension (Fig. 33D). This is done by dividing the data into two dataseries, where

the second dataseries is translated in time. For a vector of datapoints, p, containing N datapoints,

this can be written as:

p(t) 7→ [p(1;N − τ), p(τ ;N)] (80)

The value of τ was decided to be the first value for which the correlation coefficient between of the

data was below 0.5. It is clear that this is densely packed, and to see the most visited regions of

the phase space, we constructed the corresponding heat map (Fig. 33E). If this was a limit cycle

we would assume that the most visited regions would be in a circle around the center. If this was

a stochastically driven oscillation, we would expect that the most visited regions would be at the

center and decay as the distance to the center increased. From (Fig. 33E) it seems that there is

a line around the center that represents the most visited regions, suggesting a shape for the limit

cycle as drawn in blue in Fig. 33E. However this data is so noisy that it is not sufficient to make

a definite conclusion on whether this is a limit cycle. We therefore use the above arguments, to

conclude that this system is extremely close to the Hopf bifurcation, and for the rest of this chapter

we will assume that the oscillations in p53, induced by Mdmx suppression, is a limit cycle, but

very close to the Hopf bifurcation.

3.2.4 The Ratio of Mdm2/p53 Reveals a Slight Shift

The experimental data we obtained from the experiment is measured from the fluorescence and

thus the concentrations of p53 are in arbitrary units. In order to create further constraints to

the mathematical modelling we wanted to quantitatively determine the effect Mdmx has on p53’s

transcriptional activity. Therefore we calculated the ratio of Mdm2 to p53, with and without

Mdmx present in the system. The measurements were taken at different time points in order to

make correlations between datapoints disappear. First we calculated the correlation between the

value of p53 and Mdm2 in the all the cells (Fig. 34A) and we find that the values of p53 and

Mdm2 have a higher correlation coefficient ρ, in the control compared to the Mdmx suppressed

cells. We then plotted the distribution of the ratio Mdm2/p53 in both the control and the sup-

pressed traces, and we found that depletion of Mdmx creates a broader distribution (Fig. 34B),

which is what we would assume from Fig. 34A. The broadening of the distribution is explained

by the occurrence of oscillatory dynamics in the Mdmx suppressed cells, where the correlation can

be shifted at extremum points. Furthermore we observed that Mdmx depletion moves the mean

of the distribution to a slightly larger value, which indicates that the Mdm2 production per p53

protein is higher, when Mdmx is depleted. This is in agreement with previous studies suggesting

that Mdmx suppresses p53 transcriptional activity [89, 90], even though this effect is quite small.

From all these observations and measurements, we conclude this section by identifying three char-
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Figure 33: A) 6 different oscillatory traces represented by separate colors, following each other.

B) Example of how two traces are merged together at the end, by combining their last and first

peak respectively. C) Representative data series showing the merged dataset (blue) and the running

mean (red). D) Phase space of the time embedded data. The blue ellipse shows a suggested position

for an underlying limit cycle. E) Heat map generated from the phase space in D). The blue ellipse

shows a suggested position for an underlying limit cycle.

acteristic features of p53 dynamics and activity following Mdmx depletion: (I) an initial large

amplitude pulse; (II) sustained oscillations; (III) a perturbation in the Mdm2/p53 distribution

(Fig. 34C). With this, we wanted to investigate if these quantitative features could be explained

by a mathematical model of p53 and Mdm2 regulation by Mdmx.

3.3 Mathematical Model Captures the Effects of Mdmx on p53 Network

Our aim was to investigate what role of Mdmx could lead to the dynamics observed in the exper-

iments. In order to do this we wanted to create a minimal model that would have a steady state

when Mdmx was present and was oscillating when Mdmx was depleted. Since we do not measure

the values of Mdmx in time, we decided to treat Mdmx as a perturbation to the parameters of the
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Figure 34: A) Correlation plot showing p53 in the x-axis and Mdm2 on the y-axis. B) Distribution

of the Mdm2/p53 ratio before (black) and after (red) Mdmx suppresion based. C) The Characteristic

features of p53 dynamics following Mdmx depletion: I) initial pulse, II) sustained oscillations and

III) a perturbation in the Mdm2/p53 ratio.

system. Thus we assume that Mdmx is constant in time, but changes upon suppression:

Mdmx =





1 in contol

0 in suppressed cells

It should be noted that even though the Mdmx level is non-zero in the suppressed cells, since

this just represents a perturbations in the parameters, the following results are valid for any

perturbation in Mdmx. Therefore we created a model with so few parameters, that we could easily

study the effects from a single parameter, following Mdmx depletion.

3.3.1 Construction of Minimal Model and Introduction of Impact Factors

We consider the well-known p53-Mdm2 feedback-loop using the two ordinary differential equations:

d

dt
(p53) = α− β ·Mdm2

p53

γ + p53

d

dt
(Mdm2) = ψ · p53(τDel)− δ ·Mdm2

In this model, p53 is produced at a constant rate α and degraded upon binding to Mdm2 through a

saturated degradation process with parameters β and γ. The production of Mdm2 is proportionally

to the p53 level with parameter ψ and it is degraded through a standard decay process with decay
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Figure 35: A) Schematic figure showing the p53-Mdm2 network and the associated parameters B)

Suggested mechanism of enhanced degradation and the affected parameters C) Suggested mechanism

of inhibited transcription and the affected parameters

constant δ. This is shown schematically in Fig. 35A. We stress that this simple model is restricted

only to include a minimal number of parameters, as no cooperativity is assumed (e.g. use of Hill

coefficients) since this will include more free parameters, and we do not have any experimental data

suggesting that this is a necessary assumption. Thus, these two equations serve as a minimal model

for p53 oscillatory behavior. Next we investigated how each of the potential regulatory interactions

between Mdmx and the p53-Mdm2 feedback (increase in Mdm2-mediated p53 degradation, and

decrease in p53 transcriptional activity) would affect p53 dynamics. We introduced a set of impact

parameters λi that account for the various effects Mdmx has on the p53-Mdm2 system:

β 7→ β(1 + λ1 ·Mdmx)

γ 7→ γ(1 + λ2 ·Mdmx)

ψ 7→ ψ(1− λ3 ·Mdmx)

τDel 7→ τDel(1 + λ4 ·Mdmx)

The impact parameters λ1 and λ2 account for Mdmx’s impacts on the maximum activity (β) and

p53-Mdm2 association (γ) for p53 degradation respectively (Fig. 35B). λ3 and λ4 account for

differential Mdmx’s impacts on p53 transcriptional activity (ψ) and time delay (τDel) respectively.

3.3.2 Mathematical Analysis of the Phase Space

Before introducing Mdmx into the system, we needed to understand the properties of the dynamical

system. First we considered the boundaries of the phase space, to find out where the trajectory of

p53 and Mdm2 would go. It is easy to show that this is always found in the 1st quadrant meaning

that p53 and Mdm2 are always positive as they should be. In the same way the variables does not
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run off to infinity since:

d

dt
Mdm2

∣∣∣
(Mdm2=∞)

< 0

d

dt
p53
∣∣∣
(p53=∞,Mdm2=∞)

< 0 and

d

dt
p53
∣∣∣
(p53=∞,Mdm2=0)

> 0 but

| d
dt
p53
∣∣∣
(P=∞,M=0)

| << | d
dt
Mdm2

∣∣∣
(P=∞,M=0)

|

We now consider the fixed points of the system, which are defined by:

d

dt
(p53) =

d

dt
(Mdm2) = 0

In a fixed point there is no dynamics and we can thus in the following derivations neglect the time

delay τDel leading to:

Mdm2∗ =
ψ

δ
p53∗

This is the fixed point of the system. It already represents an essential feature of the system

studied in the experiments; the relation between the concentrations of Mdm2 and p53. From this

we can see that only the parameter controlling the transcriptional activity of p53, ψ, and the one

controlling the degradation of Mdm2, δ, affects the ratio between these two. By comparing this

to the results found in the experiments (Fig. 34B) we use this to already put a bound on these

parameters. Since we expect that Mdmx could effect the transcriptional activity ψ, we keep δ

fixed, and obtain:

ψ = 〈Mdm2

p53
〉suppobs · 0.1 ≈ 0.15 and δ = 0.1

With this we can also directly determine the impact of Mdmx, since we know the mean value of

the distribution in the WT (Fig. 34B (black))

ψ

δ
(1− λ1) = 〈Mdm2

p53
〉WT
obs

⇒ λ1 = 1− δ

ψ
〈Mdm2

p53
〉WT
obs ≈ 0.15

From this we can derive an equation for the steady state level of p53 in this system:

0 =α− ψβ

δ

(p53∗)2

γ + p53∗

=p53∗
2 − αδ

ψβ
p53∗ − γ αδ

ψβ

=p53∗
2 −KP ∗ − γK

⇒p53∗ =
K
2

(
1 +

√
1 + 4γK−1

)

With K =
αδ

ψβ

This result is the analytical result of the p53 steady state concentration as a function of the five

parameters in the system, where we for simplicity fix α = 0.1. From this we learn that the p53
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steady state increases by decreasing the Mdm2 mediated degradation through the parameter β

and that it decreases by increasing transcriptional activity of p53 through the parameter ψ Using

this we can consider a linear stability analysis of the system in order to investigate the onset of

oscillations in the system. In order to do the analytical calculations we still neglect the time delay

and set up the Jacobian that has the form:

J =

(
−γβMdm2∗

(γ+p53∗)2 −β p53∗

γ+p53∗

ψ −δ

)

From this we calculate the trace and the determinant:

τ = −γβ · Mdm2∗

(γ + p53∗)2
− δ

∆ = γβδ · Mdm2∗

(γ + p53∗)2
+ βψ

p53∗

γ + p53∗

Since the oscillations are an essential part of the experimental observations, we want to study if

oscillations can occur, by calculating the eigenfrequency of the system. This describes the frequency

of the oscillatory dynamics around the fixed point, where the linearization should hold. This is

given by:

ω =
1

2

√
4∆− τ2

It exists only when the value of τ squared (not to confuse with the parameter τDel) is smaller than

4∆ which is of course also the criteria for the eigenvalues to be complex. Thus there can be a spiral

in the system, but in order to have a real oscillations, we need not only complex eigenvalues, but

also a non-decaying system. We are thus searching for a Hopf bifurcation, which occurs when τ

calculated from the Jacobian, changes from negative to positive and the fixedpoint thereby becomes

unstable. We can reorganize τ , and show that this system can never have a stable limit cycle since:

τ = −
( γβM∗

(γ + P ∗)2
+ δ
)

is strictly negative. Therefore, for this system without a time delay, the existence of a limit cycle

is impossible. It should be noted however, that since there is a well defined eigenfrequency in the

system, oscillatory dynamics generated solely by the presence of noise can still occur as discussed

in Fig. 33.

3.3.3 The Existence of a Limitcycle Through Inclusion of a Time Delay

At this stage we had learned that no limit cycle can exist in the proposed dynamical system

without a time delay. In this section we study the effect of the time delay, and how this can

initiate oscillations. When a dynamical system moves closer to the Hopf bifurcation, the absolute

level value of the effective decay constant τ decreases until it reaches zero which is when the

bifurcation occurs. If the time delay should be able to create oscillations in the system, it must

effectively add something to the decay constant. Thus we expect that the decay in a system with

a time delay (τEff ) to take the form:

τEff = τ + f(τDel) (81)
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We study this perturbation to the effective decay by introducing a Poincare section as a line in the

p53-Mdm2 phase plane from [(0,Mdm2∗); (p53∗,Mdm2∗)] (Fig. 36A). In this way we can estimate

the distance the trajectory moves closer to the fixed point inside this section. We start out by

considering the system with no time delay. Theoretically this decay distance can be approximated

by:

Figure 36: A) Schematic picture of the Poincare section where we study the decay in the stable

spiral B) Above: Phase space of p53 and Mdm2 and the trajectory decays to a stable fixed point.

Below: The difference between two points at the Poincare section. C) Above: Phase space of p53

and Mdm2 and the trajectory decays to a limit cycle. Below: The difference between two points

at the Poincare section. D) How the effectively measured τ increases linearly as we increase the

time delay Tdel, and at some point it becomes positive at which point the limit cycle comes into

existence.

P (n) ≈P
(
t =

2π

ω

)
(82)

= Pn−1e
− τ2π

2ω (83)

= P0e
−n τωπ (84)

(85)
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This means that we can estimate the decay at each Poincare section as:

Pn−1 − P (n) ≈P0

(
e−(n−1) τωπ − e−n τωπ

)
(86)

=P0e
−n τωπ

(
− e τωπ − 1

)
(87)

=Ce−n
τ
ωπ (88)

Thus the value of τ will be the slope at which the decay is observed in a logarithmic plot, since

the value of ω turned out to be approximately constant. In Fig. 36B we observe the decay as a

line, with decay constant τ / ω * π. In Fig. 36C the decay is observed when the limit cycle has

occurred. By fitting a linear fit to the points in a logarithmic plot we get a relation shown in Fig.

36D, where the decay rate is shown on the y-axis as a function of the increasing time delay. Thus

we can use this to predict when the limit cycle sets in due to the time delay, depending on the

parameters in the system.

3.3.4 The Effects of Mdmx Impact Parameters

We now turned back to the original problem: Investigating the effects of the impact from Mdmx.

We started by testing the impact parameter λ1. Here we found that by only incorporating this,

the dynamics of p53 showed almost all the observed characteristics from the dynamics pre- and

post Mdmx depletion in the experiments.

For non-zero values of λ1 we observed a steady state level of p53 (Fig. 37A, before Mdmx

depletion) and thus no oscillations. However once Mdmx is depleted, a single, transient pulse was

observed, and this was followed by sustained oscillations (Fig. 37A, after Mdmx depletion). It is

noted that, as λ1 increases, so does the height of the initial pulse. However there was no effect on

the amplitude of the sustained oscillations (Fig. 37A). In addition, λ1 controls basal levels of p53,

with higher λ1 leading to lower basal levels of p53 before Mdmx depletion. From this we moved

on to test impact parameter λ2. This also affects the basal levels of p53 but in an opposite way,

i.e. higher λ2 leads to higher basal levels of p53 (Fig. 37B, before Mdmx depletion). Interestingly

λ2 only leads to p53 oscillations post Mdmx depletion without the initial high-amplitude pulse

of p53 (Fig. 37B). Finally we tested the effects of the impact parameters that was connected

to the inhibited transcription λ3 and λ4. Introduction of either of these result in oscillatory p53

behavior before Mdmx depletion, which does not fit with our experimental observations (Fig. 37C

and37D). Therefore, based on these simulations, we concluded that Mdmx role in enhancing p53

degradation by Mdm2 (impact parameter λ1) is critical for generating p53 biphasic dynamics after

Mdmx depletion.

To understand these effects further, and to consider combinations of impact parameters, we

tried to investigate the trajectories in the phase space spanned by Mdm2 and p53. This represents

alternative way to characterize the effects of Mdmx on p53 is to visualize the dynamics of the p53

before and after Mdmx perturbation. Before Mdmx depletion (Fig. 38A), increasing values of the

impact parameter λ1 causes dampening of the p53 oscillations in equillibrium, though progressive

narrowing of the limit cycle (As can be seen by the decreasing amplitude in Fig. 37A). To visualize

the transient pulse, we observe that after Mdmx depletion (Fig. 38B), the trajectory takes a longer

path from the fixed point (green zone) to reach the oscillatory regime (red zone) for increasing

values of λ1. The stretching of the trajectory corresponds to the height of the initial pulse, and
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Figure 37: A) Effects of Mdmx through impact parameter λ1 on parameter β. Before Mdmx

depletion, λ1 values for blue, red and yellow curves respectively: (1; 2; 3). After Mdmx depletion,

λ1 is set to zero. B) Effects of Mdmx through impact parameter λ2 on parameter γ. Before Mdmx

depletion, λ2 values for blue, red and yellow curves respectively: (0.25; 0.5; 0.75). After Mdmx

depletion, λ2 is set to zero. C) Effects of Mdmx through impact parameter λ3 on parameter ψ.

Before Mdmx depletion, λ3 values for blue, red and yellow curves respectively: (2; 4; 6). After

Mdmx depletion, λ3 is set to zero. D) Effects of Mdmx through impact parameter λ4 on parameter

τDel. Before Mdmx depletion, λ4 values for blue, red and yellow curves respectively: (0.5; 1; 1.5).

After Mdmx depletion, λ4 is set to zero.

this shows why increasing values of λ1 lead to higher amplitudes of the initial pulse. Therefore we

can conclude that the role of Mdmx, modelled with only impact parameter λ1 can explain the first

two features of p53 biphasic dynamics; an initial high amplitude pulse followed by sustained low-

amplitude oscillations. Thus λ1 was an essential part of the explanatory model, however it could

be in combination with some of the other impact parameters. As we learned in the mathematical

analysis, the ratio of Mdm2/p53 in the steady state was determined by the ratio ψ/δ, and since ψ

was affected by inhibited transcription through impact parameter λ3, we were tempted to study

the effects of this in greater detail and see if this could inhibit the oscillations as well. We studied

the steady state dynamics in the phase space as λ3 was increasing and we found that this could in

fact also inhibit oscillations for at large values (Fig. 38C). However this would indicate that p53

would be much larger than Mdm2 (2-3 times) and this would be contradictory to the ratio between

these two found in the experiments. Thus λ3 cannot explain neither the transient pulse nor the

sustained oscillations alone. We therefore tested combinations of λ1 and λ3 to see how they this
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Figure 38: A) Equillibrium dynamics in the p53-Mdm2 phase space as λ1 increases. B) Trajectory

from equillibrium dynamics pre- and post Mdmx depletion C) Equillibrium dynamics in the p53-

Mdm2 phase space as λ3 increases. D) Height of the transient pulse as λ1 increases for different

values of λ3 E) Heatmap showing the height of the transient pulse for combinations of values for

λ1 and λ2 F) Heatmap showing the mean p53 level pre Mdmx depletion divided with the mean p53

level post Mdmx depletion for combinations of values for λ1 and λ2

affected the the amplitude of the initial p53 pulse. We found that the amplitude of the pulse is

almost solely defined by the value of λ1 (Fig. 38D), and the presence of λ3 does not significantly

change this. Finally we wanted to test the effects of λ2 in combination with λ1. The motivation for

this comes from the fact that while λ1 decreases the steady state level of p53, λ2 increases it. From

the experimental observations (Fig. 31A), it can be argued that the mean value of p53 does not

change significantly after Mdmx depletion. Therefore the antagonistic role of λ1 and λ2 could be

an important aspect in the full description of the effects of Mdmx. We tested the amplitude of the

transient pulse for combinations of values for λ1 and λ2 and found that λ2 significantly decreases

the amplitude of the pulse (Fig. 38E). Likewise we calculated the ratio between the steady state

level after and before Mdmx depletion (Fig. 38F) and once again observed that the steady state

before Mdmx depletion can only be around the same level as the as after Mdmx depletion for high

values of λ2. Therefore we conclude that by combining λ1 and λ2 one can obtain both a large

transient pulse and a steady state level around the same level, but since the steady state level was

not one of the characteristic features of the experiment, we will in the following neglect any effect

of λ2 and consider only combinations of λ1 and λ3.

3.3.5 The Slope Following Mdmx Depletion

From the experimental observations, the occurrence of a large transient pulse following the Mdmx

suppression should be an essential part of the dynamical system. In this section we calculate what

parameters can lead to a sudden pulse following a perturbation. We start by consider the fixed
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point of p53. When Mdmx is suppressed, we should have oscillations around the fixedpoint:

p53∗ =
1

2
K
(

1 +
√

1 + 4γK−1
)

For the Mdmx suppressed cells we have:

K =
αδ

βψ
≈ 1

15

⇒ p53∗ =
1

30

(
1 +
√

1 + 4 · 0.15
)
≈ 0.075.

⇒ Mdm2∗ ≈ 0.075 · 1.5 = 0.11

For the control cells, where Mdmx is present, we have:

K =
αδ

βMdmxψ
≈ 1

50

⇒ p53∗ =
1

100

(
1 +
√

1 + 4 · 0.5
)
≈ 0.027

⇒ Mdm2∗ ≈ 0.027 · 1.25 = 0.035

Now as we remove Mdmx, we make a transition so K = 1
50 7→ 1

15 . Therefore the slope will be:

dp53

dt
|t=0 = α− 1

15
0.034 · 0.0268

0.0268 + 0.01
≈ 0.075

With this we can understand that the generated pulse after Mdmx removal arises due to the

parameter change causing a sudden out-of-equilibrium state, which leads to a positive value for
d
dt (p53).

3.3.6 Stochastic Simulations Captures the Mdm2/p53 Ratio

We next tested whether parameter λ1 can also capture the third characteristic feature of p53

dynamics; the increase in the ratio between Mdm2/p53 after Mdmx depletion (Fig. 34B). We

learned from the analytical considerations, that this ratio was determined inside the fixed point

by the ratio of ψ/δ, but since the limit cycle has a trajectory slightly away from this, we needed

to test this through numerical simulations. We found that incorporating parameter λ1 alone is

insufficient for accounting this shift as was observed experimentally (compare Fig. 39A to Fig.

34B). We then tested the impact of parameter λ3, which accounts for the direct effect of Mdmx

on Mdm2 transcription by p53 (parameter ψ) and therefore is predicated to affect the ratio of

Mdm2/p53. Based on the experimental immunofluorescence data, we could then calculate the

average ratio of Mdm2/p53 both in the control and Mdmx depleted cells and use these values

to set the bounds for the value of λ3 based on the analytical calculations. We predicted that

values of λ1 equal to 3 (From (Fig. 37A) and λ3 equal to 0.15. This could capture the shift in the

Mdmx/p53 distribution. Indeed, the resulting distribution was shifted after Mdmx depletion as was

experimentally observed, when including parameters λ1 and λ3 (compare Fig. 39B to Fig. 34B).

Finally, by combining both impact parameters (λ1 and λ3), we simulated the system with internal

noise (applying Chemical Langevin equation) and external noise (by applying gaussian uncertainty

to the parameters at each simulation). This was done to examine the robustness of the system. We

confirmed a robust biphasic dynamics of p53 after Mdmx depletion in the presence of noise that

quite accurately captured the experimental behavior in single cells (Fig. 39C). Taken together,
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Figure 39: A) Distribution of Mdm2/p53 pre Mdmx depletion (blue) and post Mdmx depletion

(red) when only λ1 is used. B Distribution of Mdm2/p53 pre Mdmx depletion (black) and post

Mdmx depletion (red) when both λ1 and λ3 is used. C) Stochastic simulation showing dynamics of

100 independent cells.

the mathematical analysis shows that the Mdmx-mediated p53 degradation through parameters λ1

and Mdmx-mediated regulation of p53 activity through paramater λ3 is sufficient for capturing the

three quantitative features of p53 biphasic dynamics following Mdmx depletion including the initial

high amplitude pulse, the low amplitude oscillations and the shifted distribution of Mdm2/p53 with

increased variance. Furthermore we can conclude that the most important effect of this system is

the enhanced degradation of p53 through Mdmx, and the inhibited transcriptional activity can be

observed, but that this signal is significantly smaller.

3.4 Mdmx Suppressed Cells Following Exposure to UV Radiation

To further validate and constrain the model, we now wanted to test whether we could expand it

to predict the effect of DNA damage on p53 dynamics. Again we wanted to have cells with and

without Mdmx and compare the simulations to new experimental results.

3.4.1 Introduction of ATR to the Model and its Impact on p53

We introduced the DNA damage sensor ATR to our p53-Mdm2-Mdmx model and investigated

the resulting p53 dynamics. ATR is a PI3 kinase-related kinase that senses DNA damage after

UV-radiation. Activated ATR stabilizes p53 through inhibitory phosphorylation of Mdm2; which

in turns activates the Mdm2-p53 negative-feedback loop (Fig. 40A). ATR activation in wild-type

cells was shown to lead to a dose-dependent single pulse of p53, and ATR is introduced following

a similar description as shown in [75], where we introduce a single dose dependent parameter, θ:

d

dt
ATR = θ −ATR

θ =





0 if t < TUV

2
√
DUV if t ≥ TUV and t < TUV + Ω

0.1 else

Here TUV is the time of UV exposure, and Ω a parameter in units of time. Therefore the model

can be understood the following way: ATR concentration reaches a dose dependent level after UV-
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radiation and then decays exponentially (Fig. 40B). For simplicity we fixed the decay parameter

to unity.

Figure 40: A) Schematic figure showing the suggested effects of ATR on the p53 network. B)

Example of ATR dynamics following UV radiation.

Like we studied the effects of Mdmx on p53, we wanted to follow the same strategy and let

ATR affect p53 through a set of impact parameters. We therefore modelled ATR inhibition of

Mdm2-mediated p53 degradation through two parameters (κ1 and/or κ1) (Fig. 40A):

βMdmx 7→ βMdmx
κ1

κ1 +ATR

γMdmx 7→ γMdmx
κ2

κ2 +ATR

We used the values from previous simulations (Fig. 39C), where βMdmx refers to the dependency

on Mdmx of this parameter. We compared the effects of UV-radiation alone (Fig. 41A, C) to that

of Mdmx depletion followed by UV-radiation (Fig. 41B, D). We introduced three doses of UV-

radiation through three different values of κ1 and κ2. In Fig. 41A to 41D, we observed that only

parameter κ1 did have a strong effect on the amplitude of the UV-triggered p53 pulse. Specifically,

ATR activation (through its effect on κ1) led to a single p53 pulse with an amplitude that scaled

with κ1 value (Fig. 41A). In contrast to this, activation of ATR through the other parameter κ2

led to oscillations with no initial p53 pulse across all tested parameter values (Fig. 41B, D). This

suggests that ATR inhibition of Mdm2-mediated p53 degradation occurs through parameter κ1

that affects β (i.e. the degradation of p53 by Mdm2). Interestingly, when we consider the effect of

ATR through parameter κ1 in cells with Mdmx suppression, we found the amplitude and duration

of the UV-induced pulse to be higher (Fig. 41B) compare to those with UV-radiation alone (Fig.

41A). Furthermore, the model predicted that in Mdmx depleted cells the initial pulse caused by

UV-radiation is followed by a series of p53 oscillations, and that these have a larger amplitude

than the ones induced by Mdmx alone (Fig. 41B).
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Figure 41: A) Before UV, κ1 = 0, after UV κ1 values for blue, red and yellow curves respectively:

(0.1; 0.25; 1). λ1 = 3 and λ3 = 0.15 B) Before UV, κ1 = 0, after UV κ1 values for blue, red and

yellow curves respectively: (0.1; 0.25; 1). λ1 = λ3 = 0 C) Before UV, κ2 = 0, after UV κ2 values

for blue, red and yellow curves respectively: (0.01; 0.025; 0.1). λ1 = 3 and λ3 = 0.15 D) Before

UV, κ2 = 0, after UV κ2 values for blue, red and yellow curves respectively: (0.01; 0.025; 0.1).

λ1 = λ3 = 0

3.4.2 Depency of UV Induced Response on Applied Dose and Parameters

We next analyzed how different UV doses might affect the slope (Fig. 42A) and amplitude (Fig.

42B) of the UV-triggered initial p53 pulse. Simulation of the model using a range of values for

κ1 suggests that both the slope and height of the initial p53 pulse increase with the dose of UV-

radiation (Fig. 42A, B). A similar trend was predicted for Mdm2 depleted cells, and the model

predicts that the slope and amplitude of the p53 initial pulse will be higher in these cells (Fig. 42A,

B; blue curves). This can be logically explained since ATR has an antagonistic role compared to

Mdmx and therefore if no Mdmx is there, the effects of ATR will be even greater. Finally, we tested

how different UV doses did affect the amplitude of p53 oscillations following the initial p53 pulse

in response to UV in Mdmx depleted cells. Based on simulations from the model, we measured

the relative increase in the oscillatory amplitude after UV as we vary κ1 and κ2 independently

(Fig. 42C). Here we observed, that parameter κ2 holds a stronger effect in changing the oscillatory

65



amplitude. Furthermore, for all values of parameters κ1 and κ2, the amplitude of p53 oscillations

following UV is independent of the UV dose. Taken together our model suggests that a combined

treatment of Mdmx depletion followed by UV radiation will lead to a large p53 pulse (Fig. 41B,

Fig. 42B) followed by oscillations (Fig. 41B, Fig. 42C). In addition, our model predicts that

the UV-triggered p53 oscillations will have higher amplitude compared to the oscillations prior to

UV (Fig. 41B, Fig. 42B). At this stage we therefore predicted that κ1 would be important for

describing the system, but did not know whether the effects of κ2 was also necessary. Furthermore

we concluded that our model had three predictions for the Mdmx depleted cells:

• The transient pulse would have a larger amplitude and steeper slope.

• UV radiation would lead to increased, but dose-independent oscillations after the transient

pulse.

Figure 42: A) Slope of the p53 initial pulse following the increasing UV dose for both control (red)

and Mdmx depleted cells (blue). B) Amplitude of the p53 initial pulse following the increasing UV

dose for both control (red) and Mdmx depleted cells (blue). C) Amplitude of the p53 sustained

oscillations after the initial pulse for different levels of κ1, blue, red and yellow curves respectively:

(0.1; 0.25; 1) and κ2 blue, red and yellow curves respectively: (0.01; 0.025; 0.1)

3.5 Comparing Experimental Data to Model Predictions in Response

to UV Radiation

To test the predictions from the model, we now moved to experiments. The single cells were

exposed to UV in two different doses 8 J/m2 or 16 J/m2 for both control (upper single-cell p53

traces in Fig. 43A and Fig. 43B) and Mdmx depleted cells (lower single-cell p53 traces in Fig.

43A and Fig. 43B). Based on these figures we could clearly divide the dynamics into three phases

and colored them according to their dynamic behavior: before treatment (blue), initial response

(red) and long-term response (yellow).

3.5.1 Analysis of the UV Induced Pulse Reveals Dose Dependency

First of all we observed that for the cells subjected to UV-radiation alone, p53 shows a single

pulse with an amplitude that increases with dose (upper single-cell traces Fig. 43A and Fig. 43B).

Second, when UV-radiation is combined with Mdmx depletion, this initial pulse shows a larger
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Figure 43: A) Four representative single-cell time series of p53 dynamics following UV-radiation of

8 J/m2 The bottom two panels show prior Mdmx depletion. Blue corresponds to pre-UV dynamics,

red is transient response and yellow is steady state dynamics. B) Four representative single-cell

time series of p53 dynamics following UV-radiation of 16 J/m2 . The bottom two panels show

prior Mdmx depletion. Blue corresponds to pre-UV dynamics, red is transient response and yellow

is steady state dynamics.

amplitude (Fig. 43A). To test this further, we calculated the average p53 level for each group of

cells (Fig. 44A, B). Here we observe that for the low dose of UV radiation, the height of the peaks

are of similar size (Fig. 44A), whereas for the large UV dose, the Mdmx suppressed cells show a

much larger amplitude (Fig. 44B). To quantify these observations more thoroughly, we calculated

the values of both the height and the slopes for the peaks following both doses. From these we

can conclude that the Mdmx depleted cells show a larger slope in both conditions (Fig. 44C, Fig.

44D), and a significantly larger amplitude following the large UV dose (16 J/m2 ) (Fig. 44F).

These results are in agreement with the predictions from the model. For the small UV dose (8

J/m2), the amplitudes are of similar height and this is not predicted from the model (Fig. 44E).

We expect that this discrepancy might be due to some other mechanisms in the complicated ATR

feedback system, that is beyond the scope of this model. We note that, as predicted by the model,

an increase in the UV dose leads to a larger slope (Fig. 44C, Fig. 44D) and higher amplitude of

the pulse (Fig. 44E, Fig. 44F), and thus these features are dose-dependent.

3.5.2 Analysis of the UV Affected Oscillations Reveals Enhanced Amplitudes

From the single cell traces we observe that for both UV doses, that in the combined treatment (UV

and Mdmx depletion), the initial single pulse was followed by oscillations with higher amplitude

compared to before UV treatment (lower single-cell traces (Fig. 43A, B). We therefore wanted to

quantify the series of oscillations observed in Mdmx depleted cells following the initial UV-triggered

pulse. As we did for the Mdmx induced oscillations, we calculated the Fourier spectrum (Fig. 45A,
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Figure 44: A-B) Mean p53 dynamics obtained by averaging individual cell traces over time before

and after UV-radiation (8 and 16 J/m2 respectively). The red trace corresponds to p53 dynamics

before and after UV. The blue trace is p53 dynamics with prior Mdmx depletion followed by UV. C)

Slope of the p53 initial pulse after UV-radiation (8J/m2) without (red) and with Mdmx depletion

(blue). D) Slope of the p53 initial pulse after UV-radiation (16J/m2) without (red) and with Mdmx

depletion (blue). E) amplitude of the p53 initial pulse after UV-radiation (8J/m2) without (red)

and with Mdmx depletion (blue). F) amplitude of the p53 initial pulse after UV-radiation (16J/m2)

without (red) and with Mdmx depletion (blue).

B). This could not be determined as clearly as for the oscillations following Mdmx depletion (Fig.

32A) which is because the traces are shorter and the number of cells are fewer. Despite this

uncertainty in the data, we observe that the frequencies are around the same value as the Mdmx

depleted cells. From this we needed to characterize the amplitudes, and therefore we calculated

the distribution of all amplitudes (Fig. 45C, D) for both UV doses. While the frequencies of the
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oscillations were similar to the oscillations resulting from Mdmx depletion alone, the amplitude of

oscillations was approximately two times larger compared to the amplitude resulting from Mdmx

depletion alone (in Fig. 45C, D compare gamma fits in red from of Fig. 32B with current gamma

fits in green). We also note that for both observations, the oscillatory frequency and the increase

in oscillatory amplitude, were independent of the UV-dose. This is in agreement with the model

predictions, and from this we can also conclude that only κ1 is needed in order to describe the

effects of ATR on the p53 dynamics. Had the amplitudes of oscillation been much larger, we would

have needed κ2 but since this is not the case, only a single impact parameter will be sufficient to

describe the effects on p53.

Figure 45: A) Fourier spectrum of the sustained oscillatory phase after UV-radiation (8J/m2).

B) Fourier spectrum of the sustained oscillatory phase after UV-radiation (16J/m2). C) Distri-

bution of amplitudes of the p53 oscillations following UV-radiation (8J/m2). D) Distribution of

amplitudes of the p53 oscillations following UV-radiation (16J/m2).

3.5.3 Conclusions From Experimental Findings

Based on these experimental findings, we conclude that the main features of p53 dynamics in

response to Mdmx depletion combined with UV-radiation (an enhanced UV-triggered initial pulse

followed by large-amplitude oscillations) were all captured in our model. Even though there was a

small discrepancy for the small UV dose, we did not find this strong enough to change the model

in order to describe the experimental data. Thus following the agreement between our model and

experimental results, we concluded that the effect ATR has on Mdm2-mediated degradation of p53

through impact parameter κ1 is the function that dominates the p53 dynamical response following

DNA damage. Indeed, we found that the Mdm2-dependent degradation of p53 (facilitated by
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Mdmx and hindered by ATR) is the most critical interaction regulating p53 dynamics both in

non-stressed conditions and following DNA damage.

3.6 Discussion and Perspectives

In this project we have investigated the regulation of p53 dynamics through a combination of

single-cell imaging, data analysis and mathematical modeling. The focus was to determine the role

of Mdmx in regulating p53 dynamics in both non-stressed conditions and after DNA damage. The

approach was to make the data analysis as detailed and clear as possible, so we could extract the

most important features, and use these to make constraints for a mathematical model. In order

for this interplay to function optimally, we made it a top priority that the model should be as

simple as possible, and include as few parameters as possible. Furthermore, wanted this study not

only to be able to reproduce experimental data and claim that one hypothesis can achieve that,

but to test several hypotheses and reject many of these based on the interplay between the model

and the experimental data. Therefore we also believe that the results have more weight, in the

sense that the thorough investigation can explain why so many of the hypotheses fail to explain

the experiments. This approach has been widely used in physics throughout the years, but has

vaguely been applied to biology since the experimental data have rarely been good enough to put

up restrictions for the models. However as the quality of biological data has improved immensely,

this approach will hopefully be vividly applied in the future.

The overall conclusions from this project was that we could extract three prototypic features of

the p53 dynamics in vivo. Based on existing literature we constructed a minimal model, and we

used the experimental conclusions as guidelines to simulate the impact of each Mdmx-mediated

molecular mechanism in regulating p53 dynamics. By comparing experimental results with sim-

ulations, we proposed that Mdmx-mediated p53 degradation plays the major role in regulating

p53 biphasic dynamics. Therefore it is tempting to speculate that the main function of Mdmx

could be to perturb the dynamical system, by suppressing p53 oscillations through the enhanced

Mdm2-mediated p53 ubiquitination. After Mdmx suppression, we observed in the experimental

data, how a transient p53 pulse showed higher slope and amplitude following UV-irradiation. By

applying the same modelling strategy as before, we tested different impact parameters. Our results

suggested once again an inhibitory role of Mdmx via modulation of the slope and height of p53

pulse. Our simple model could reproduce the experimental results, but surpriisingly, this effect

was not obvious when a low UV dose was applied to the cells. Therefore it is possible that there is

a technical challenge in quantifying a mild increase in amplitude due to the low basal level of p53.

Alternatively, the amplitude could be dampened by unknown signaling proteins and this damp-

ening effect is relieved at high UV dose. It has previously been claimed that p53 oscillations are

flexible in amplitude but robust in period [85]. Our results substantiate this claim, which therefore

can be a very important fingerprint towards a still improved understanding of the underlying p53

network. A very important question, which still remains unclear, is if different amplitudes of p53

oscillations (or other transcription factor proteins), can activate distinct transcriptional programs

and therefore encode various biological information for cell state determination [91]. The fact that

ATR activation leads to a higher amplitude of p53 oscillations provides a plausible approach to

further dissect functions of p53 amplitude in future experiments. From the systems biology point

of view, Mdmx acts as a key suppressor of p53 oscillations in both non-stressed conditions and after
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gamma-irradiation [85]. Therefore it is tempting to believe that Mdmx is serving as a major regu-

latory target for other cellular signals to modulate p53 dynamics and cellular behavior. Clinically,

Mdmx overexpression is observed in multiple cancers [92, 93, 94]. Thus, it would be interesting to

further investigate the role of Mdmx in regulating p53 dynamics in Mdmx overexpressed cancers

as well as cancers with wild type TP53.

How dynamics of signaling molecules emerge through interacting components in space and time

remains an unresolved question. It is an important problem in the field of systems biology to

understand how signal-specific dynamics emerge and specify downstream transcriptional programs

for cellular decision. Oscillatory dynamics are widely observed in a variety of different biological

processes including circadian rhythm [95, 96], immune response [4, 3], stress response [97, 5] and

development [98, 99]. To understand how these oscillations emerge and what biological functions

are encoded in these oscillations, it is critical to take multifaceted approaches. This work took

an integrative approach combining single-cell quantitative imaging through detailed and quantita-

tive analysis with mathematical modelling to identify key regulatory mechanisms underlying p53

dynamics. This project therefore provides an example of how to examine fine tuned mechanisms

responsible for signaling dynamics. This was done by developing a minimal mathematical platform

based on quantitative perturbations of signaling dynamics in single cells. This platform can be the

basis to study p53 dynamics in various biological contexts in the future.
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4 Chaotic Dynamics Mediate Brain State Transitions

In this chapter the results of paper V is presented and discussed, along with some other results

that has not yet been published. The main part of this work was carried out in the spring of 2017

in a vivid collaboration with Rune Rasmussen. It started when we discussed how concentrations of

extracellular ions could affect the dynamics of the membrane potential. This was inspired by the

experimental findings published in Ding et al. 2016. The parts on chaotic dynamics was greatly

improved through discussions with Mogens H. Jensen.

In the this section, we will extend a previously published model (Averaged-Neuron model) to

explicitly treat the changes in extracellular ion concentrations that occur during the sleep-wake

cycle. We demonstrate that by inducing changes in [K+]o, [Ca2+]o and [Mg2+]o in combination

with decreasing the conductance of the Ca2+-dependent K+ channel, we can generate state transi-

tions in neuronal firing patterns. We show that sleep is dominated by a stable limit cycle, resulting

in self-sustained, stable firing patterns, whereas wakefulness is governed by irregular oscillations

and chaotic dynamics and we discuss how the properties of chaotic dynamics define transitions

between brain states.

4.1 Background to Neurons and Membrane Potential

Action potentials are in general believed to be formed as a result of electrical currents that pass

through ion channels. The neuronal cell has a membrane that consists of a bilayer of lipids that

forms an almost perfect electrical insulator. This leads to the possibility of having different ion

concentrations between the inside of the cell and the surrounding extracellular space. In the mem-

brane, there is a number of different proteins embedded and these act as ion gates, which is the

foundation for creating a dynamically changing ion difference. The ion gates are divided into two

subcategories, ion channels that, when open, passively let the ions run towards the lower concen-

tration, and ion pumps that actively transport ions from one side to the other of the membrane

[100].

4.1.1 Description of the Hodgkin-Huxley Model

In their seminal work, Hodgkin and Huxley investigated the membrane potential on the giant axon

the squid [101]. In this they measured three different types of currents, sodium (Na+), potassium

(K+) and a leak current. They now used the theory of electrical circuits to construct a model

where the current could run through a passive resistor (for leak), or two variable resistors (for K+

and Na+). From Fig 46, it is clear that using Kirchoffs law, the applied current must be split on

the different channels so:

I(t) = IC(t) +
∑

k

Ik where we sum over the three different channels (89)

Now since we are interested in modelling the membrane potential, and assume that this acts as a

capacitor, we can write the current on the capacitor as IC = C dV
dt so we end up with the differential

equation:

C
dV

dt
= −

∑

k

Ik + I(t) (90)
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Where C is the membrane capacitance per unit area. Now we need to model the specific gating

channels. They all take the general form:

Ik = gk(V − EK) (91)

Here gk is the specific conductance for the k’th channel. In the original formulation the full

differential equation took the form:

C
dV

dt
= −(gL(V − EL) + gKn

4(V − EK) + gNam
3h(V − ENa)) + I(t) (92)

where n, m and h, are called gating variables and they control the voltage dependency of the gate

and they are again modelled by differential equations.

Figure 46: Schematic figure showing electrical circuit in the Hodgkin-Huxley setup.

4.1.2 Definition of Neuronal States

During transition from sleep to awake, the brain transitions from a state that attenuates sensory

inputs to one that often amplifies them [102, 103, 104]. How this transition between states occurs

is incompletely understood, both a the level of the brain and at the level of the neurons that must

implement the transition in a smooth and robust way. Cortical Neurons exhibit three distinct

physiological and behavioral states that characterize the transition from sleep to active wake-

fulness. Specifically, slow-wave sleep is characterized by oscillating periods of synaptic barrages

(called ”upstates”) and silence (called ”downstates”) [105]. It is understood that this behavior

reflects oscillations in membrane potential (V m) and therefore the neurons susceptibility to input.

In wakefulness, these downstates are suppressed and Vm is maintained closer to threshold. Al-

though the classic view holds that oscillations are restricted to slow-wave sleep, recent studies have

demonstrated that a quiet-awake state is also characterized by low-frequency Vm oscillations. Once

actively awake, however, movement and arousal suppresses these oscillations and Vm is depolarized

tonically, making neurons sensitive to inputs and prone to firing. Despite our understanding of

the neuronal behaviors that are indicative of transitions from slow-wave sleep to quiet-awake to

active-awake, the underlying mechanisms that initiate these transitions remain unclear.
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4.1.3 Extracellular Ion Concentrations Changes Between Neuronal States

Recently it was proposed that changes in extracellular ion concentrations ([K+]o, [Ca2+]o and

[Mg2+]o) control activity patterns during sleep and wakefulness, and that ionic changes are suffi-

cient to shift the state from sleep to awake [106]. However, given that changes in neural activity

also strongly affect extracellular ion concentrations [107, 108, 109, 110, 111], it is not possible to

unequivocally distinguish cause and consequence in vivo. For example, both spiking and excitatory

barrages, which originates within the neuron itself, increase [K+]o [108, 112], making it difficult

to experimentally assess causality. A remedy for solving this issue is modeling and simulations

[113, 114, 115, 116]. The ability to maintain parameters constant, thereby reducing variable space

dimensionality, is a powerful tool for interrogating the impact of changes in both intracellular and

extracellular ion concentrations on Vm dynamics and state transitions, as well as for formulating

hypotheses and predictions for future experimental investigations.

4.2 Creation of the Extended Averaged Neuron Model

An important step towards successfully modeling the neuronal dynamics in a simple manner, is

the ”Averaged-Neuron” model, which recently has been proposed [116]. This model is inspired by

previously constructed neural-network models [117, 118, 119, 120, 121, 122]. The framework of

these models is based on currents running through different ion channels which are mathematically

described in a Hodgkin-Huxley manner. These all affect and contribute to the total change in the

menbrane potential V m, which typically measured in experiments. The new model simplifies the

enormous complexity of these models, by performing a mean-field approximation of a population of

neurons to construct an ”Averaged-Neuron” model. Our purpose with this project was to investi-

gate how varying extracellular concentrations could affect the dynamics in the membrane potential,

and therefore we decided to use the Averaged neuron model and by implementing dependencies

on the extracellular concentration we could investigate this.

4.2.1 Introduction of Extracellular ions Dependencies

We therefore first implemented and extended the Averaged-Neuron model so the extracellular con-

centrations were taken into account. In this model, it is assumed that the neuron can interact

with itself (directly or indirectly) through excitatory or inhibitory synaptic currents, depending on

the conductances of the channels and the reversed potential that depends on the concentrations.

The intrinsic currents are governed by the following intrinsic conductances, either depolarizing or

hyperpolarizing Vm: Voltage-gated (NaV ) and persistent (NaP ) Na+ channels, voltage-gated

(CaV) Ca2+ channels, voltage-gated (KV ), leak (KLeak), fast A-type (KA-type), inwardly rec-

tifying (KIR), slowly inactivating (KSI) and Ca2+-dependent (KCa) K+ channels, and finally a

Ca2+-pump/exchanger expelling Ca2+ ions from the intracellular compartment (Fig. 47). Extrin-

sic currents exist through the AMPA, NMDA and GABA receptors [116]. To summarize, in this

model, the currents affects the membrane potential V m through nine different intrinsic channels

and three extrinsic channels (Fig. 47).

For all of these conductances we adapted the full parameter set from the original Averaged-

Neuron model. The original Averaged-Neuron model did not consider changes in extracellular

ion concentrations as variables, but as fixed constants. We extended the Averaged-Neuron model

75



Figure 47: Schematic diagram of the extended Averaged-Neuron model containing intrinsic ion

channel conductances and Ca2+-pumps, extrinsic synaptic ion channel conductances and extracel-

lular ion concentrations.

by introducing extracellular and intracellular ion concentration dependencies, by implementing

Nernst and Goldman-Hodgkin-Katz equations for calculating reversal potentials for all receptors

and channels. The reverse potential thus takes the form:

Vi =
RT

zF
ln
( ion outside cell

ion inside cell

)
(93)

We also added a Mg2+ dependency for the NMDA receptor, that satisfies the criteria that higher

Mg2+ leads to lower current [123, 124] (Fig. 47). A detailed mathematical description of the

extended Averaged-Neuron model is provided in Appendix D.

4.2.2 Analysis of Firing Patterns in Sleep Reveals Two Different Frequencies

Based on experimental measurements we sought to use the initial extracellular ion concentration

parameter set found in sleep:

• [K+]o = 3.5mM

• [Ca2+]o = 1.5mM

• [Mg2+]o = 0.8mM

The remaining intra- and extracellular ion concentrations were maintained constant and values were

based on previous in vivo and in vitro experimental measurements [125, 126, 127, 128, 129, 130].

With this we found that the membrane potential showed a spiky, oscillatory pattern, in a way
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that remarkably closely recapitulated previous recordings obtained from neurons during slow-wave

sleep [105] (Fig. 48A). This model generated wave forms of slow oscillatory patterns, consisting of

alternating periods of Vm depolarization and spiking (termed upstates) and Vm hyperpolarization

and silence (termed downstates). This oscillatory pattern is coupled to the dynamics of intracellular

Ca2+ concentration, and therefore we also found oscillations in this trajectory, with upstates

generating a ≈ 8µM rise in [Ca2+]i (Fig. 48B). The preferential slow Vm oscillations were evident

when analyzing frequency components for 10 simulations, showing a high prevalence of 1-4 Hz delta

power (Fig. 48C). To investigate this further we also calculated the moving standard deviation

(SD) of the mean Vm (window size 20 ms). In this way the spikes are effectively smeared out, and

we found this measure varied between 0.1 and 3 mV (Fig. 48D), similar to the seminal recordings

obtained [105]. Finally, we calculated the distribution of the running mean, and found that this

showed a clear bi-modal distribution, with peaks around -70 and -50 mV, reflecting the equal

presence of up- and downstates separated by 20 mV (Fig. 48E).

Figure 48: A) Representative slow-wave-sleep membrane potential (V m)firing pattern. B) In-

tracellular Ca2+ concentration ([Ca2+]i) with initial extracellular ion concentration parameter set

([K+]o = 3.5mM , [Ca2+]o = 1.5mM and [Mg2+]o = 1.1mM). C) Vm frequency spectra. D)

Standard deviation (SD) of mean Vm. E) Mean Vm distribution. F) Representative Vm firing

pattern with 3.5, 8 or 14 mM [K+]o.

To assess the validity of our implemented ion concentration dependencies in the model, we
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sought to test the effect of variations in external increasing [K+]o from 3.5 to 8 to 14 mM. The

resting Vm of neurons is mainly determined by K+-permeable conductances, and Vm is known

to be highly sensitive to changes in [K+]o from experiments [113]. Thus, we would expect drastic

Vm changes when pushing [K+]o to extremes if the model should be valid. When increasing

[K+]o from 3.5 to 8 mM we observed a qualitative change in Vm dynamics and the alternating

up- and downstates disappeared and instead Vm was maintained depolarized and the neuron fired

continuously at rates of 100Hz, giving rise to a tonic elevation in [Ca2+]i at 9µM (Fig. 48F).

This finding is in congruence with in vitro slice experiments, inducing epileptic seizure activity

by increasing [K+]o to 7.5 or 8.5 mM in the external media [131, 132]. We now further elevated

[K+]o to 14 mM and observed completely abolished action potential firing, releasing the tonic

[Ca2+]i elevation (Fig. 48F). This effect is likely explained by depolarization-induced conductance

blockage, where NaV channels are kept hostage in the inactivated configuration, resulting in the

inability of the neuron to fire [133, 134]. This observed effect appears similar to what is seen during

in vivo cortical spreading depression, where [K+]o reaches levels above 12 mM [135], leading

to annihilation of neural activity in the affected brain area [136, 137]. Therefore these results

demonstrate that the model very closely recapitulates cardinal properties of Vm dynamics during

sleep and is expectedly sensitive to changes in extracellular ion concentrations. We now went on

to test how the experimentally measured values would affect the firing patterns in the neurons.

4.2.3 Changes in Ion Concentrations Does Not Lead to State Transition

It was recently suggested that changes in extracellular ion concentrations ([K+]o, [Ca2+]o and

[Mg2+]o) could control state-dependent activity patterns during sleep and wakefulness, and that

the measured shifts in ion concentrations, are sufficient to mediate the transition from sleep to

awake [106]. However, due to the intimate relation between neural activity and ionic changes,

establishing causality in vivo is non-trivial. Therefore it is interesting to investigate this through

mathematical modelling, and to investigate the effect of ion concentration changes on the sleep to

awake transitions in the model, we used the previously measured extracellular ion concentrations

during sleep [106] (Fig. 49A).

[K+]o =





3.9mM for sleep

4.5mM for awake

[Ca2+]o =





1.35mM for sleep

1.2mM for awake

[Mg2+]o =





0.8mM for sleep

0.7mM for awake

With sleep ions, Vm dynamics closely recapitulated sleep with alternating up- and downstates as

we just have observed. When we switched to awake ions no apparent change in Vm dynamics was

obvious, except a subtle tendency to have more spikes per upstate (Fig. 49B), which results in

longer upstate [Ca2+]i (Fig. 49C). To quantify this, we analyzed Vm frequency components, we

found no significant difference in 1-4 Hz delta power between sleep and awake ions (Fig. 49D). Also

mean Vm SD, a frequently used indicator for neuronal state [103, 105, 138], was similar for sleep
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Figure 49: A) Representative slow-wave-sleep membrane potential (V m)firing pattern. B) In-

tracellular Ca2+ concentration ([Ca2+]i) with initial extracellular ion concentration parameter set

([K+]o = 3.5mM , [Ca2+]o = 1.5mM and [Mg2+]o = 1.1mM). C) Vm frequency spectra. D)

Standard deviation (SD) of mean Vm. E) Mean Vm distribution. F) Representative Vm firing

pattern with 3.5, 8 or 14 mM [K+]o.

and awake ions (Fig. 49E). Finally, mean Vm showed a clear bi-modal distribution with both sleep

and awake ion concentrations (Fig. 49F). Taken together, shifting the extracellular concentrations

of K+, Ca2+ and Mg2+ with the same magnitude as measured in vivo failed to induce a significant

state transition. This suggests that ion changes of this magnitude alone is not sufficient to produce

a transition from sleep to awake. We evaluated the effect of switching from sleep to awake ion

concentrations, for several values of initial parameters, but these analyses showed the same overall

result.

4.3 Inhibition of Gating Channels Combined with Ion Changes Lead to

State Changes

Early seminal, and more recent work, has implicated the KCa channel in V m activity patterns

observed during sleep and wakefulness [105, 116]. After a rise in [Ca2+]i this channel generates an

outward K+ current that hyperpolarizes V m. In this way, the KCa channel has been proposed to

be a key component for generating downstates during sleep [105]. Opposite, with elevated levels of

neuromodulators such as norepinephrine and histamine, which is found during wakefulness [102],

theKCa channel is partially inhibited [139, 140] and this could potentially induce the sleep to awake

transition by preventing the occurrence of downstates [105] (Fig. 50A-B). From our simulations

of membrane potential during sleep, we observed a close relation between mean V m and [Ca2+]i

oscillations with a 0.12 s lag for [Ca2+]i (Fig. 50C). This led us to analyze the relation between

[Ca2+]i and the KCa current. Not surprisingly, we found a -0.013 s lag between [Ca2+]i and

KCa currents (Fig. 50D). The largest KCa currents occurred when mean Vm was at the peak

of depolarization, and Vm rapidly hyperpolarized following a peak KCa currents. This suggested
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that KCa mediated outward currents could be key for generating downstates.

Figure 50: A-B) Schematic diagram of speculated sleep and awake state and neuromodulator-

mediated decrease of Ca2+-activated K+ channel conductance (gKCa). C) Left: Relation between

membrane potential (V m) and [Ca2+]i. Right: Cross-correlation between V m and [Ca2+]i. D)

Left: Relation between Ca2+ -activated K+ channel current (IKCa) and [Ca2+]i Right: Cross-

correlation between IKCa and [Ca2+]i.

4.3.1 Inhibition of the KCa Channel Can Induce a State Transition

We now investigated the role of the KCa channel and to mimic the elevation in neuromodula-

tor levels seen during wakefulness [102, 139], we reduced the conductance parameter of the KCa

channel (gKCa) over time (100% = 2.3 mS/cm2, 75% = 1.73 mS/cm2 and 50% = 1.15 mS/cm2).

In this the sleep ion concentrations are being kept constant throughout. When gKCa was re-

duced to 75% we observed only a tendency toward a state change, with longer upstates and fewer

downstates, whereas reducing gKCa to 50% produced a definite state change, almost completely

preventing Vm from entering downstates, thereby producing tonic firing (Fig. 51A). This was also

observed for [Ca2+]i that was kept at a high level in the tonic firing state (Fig. 51B). This was

investigated further, and we found a non-significantly reduced 1-4 Hz delta power for the 75%

inhibition, whereas 50% induced a significantly reduced delta power (Fig. 51C). Mean V m SD did

not give a clear signal, with less than one standard deviation between the states (0.74± 0.55 mV

for 100% and 0.590.32 mV for 50%) (Fig. 51D). Finally, mean Vm distributions for 100% and 75%

gKCa appeared bi-modal whereas the 50% gKCa distribution was clearly uni-modal (Fig. 51E).

We performed a bifurcation analysis, making gradual changes in the other conductance parameters.

This revealed that the parameter ofgKCa was the most important parameter for creating state

change in firing dynamics. Changing the conductance of almost all other channels had very little

effect, except for the parameter gCaV that also had the potential to create a transition, but this

was still less potent than gKCa (Fig. 51F). Overall, this demonstrates that the KCa channel most

likely plays a dominant role in sleep Vm activity patterns and inhibiting this channel, assumedly
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via increased levels of neuromodulators, can be sufficient to induce a transition to a state governed

by high frequency firing patterns. However, decreasing the conductance of this channel by 25%

was not sufficient to invoke a full state transition, which suggests a threshold level for when the

state is shifted from sleep to wakefulness.

Figure 51: A) Representative Vm firing pattern and with 100, 75 or 50% gKCa. B) Representative

[Ca2+]i with 100, 75 or 50% gKCa. C) Vm frequency spectra for 100, 75 and 50% gKCa. D)

Standard deviation (SD) of mean Vm (spikes removed) with 100, 75 and 50% gKCa. E) Mean

Vm distribution for 100, 75 and 50% gKCa F) The standard deviation in the time between down

states. Each gating parameter at 70%

4.3.2 Ion Concentrations Controls the Threshold For State Transition

As we observed in the section above, changing extracellular ions from sleep to awake concentrations

was not in itself sufficient to induce a state transition. However, we speculate if awake ions could

affect the threshold for invoking the KCa channel-dependent state change, and in this way be

permissive and modulatory on state changes (Fig. 52A-B). To investigate this, we changed the

extracellular ions from sleep to awake concentrations, while reducing gKCa to 75 and 50% as in

the previous section. In contrast to what we found in Fig. 51, when we reduced gKCa to 75%

and included the awake ions, we observed a state transition with Vm kept in the upstate for long

periods and with few downstates (Fig. 52C). This was also seen for [Ca2+]i that never reached

low levels (Fig. 52D). We note that this state has the promising feature that it is not tonically

firing with high frequency even though it clearly represents a state different from sleep since the

neurons fire with higher frequency in longer periods. Thus we believe this could represent an

important state of wakefullness. As before, when reducing gKCa to 50% the state change was

pronounced, with Vm tonically depolarized and the neuron continuously firing (Fig. 52C). We

found a significant reduction in 1-4 Hz delta power with the combination of 75% gKCa and awake

ions, as well as with 50% gKCa and awake ions (Fig. 52E-F). The prevalence of delta power was
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significantly smaller with 50% gKCa compared to 75% gKCa. We believe that this represents two

different states of wakefullness, quiet awake and active awake, which has previously been reported

experimentally [141, 142]. Finally, mean Vm distribution was shifted towards uni-modality with

75% gKCa and awake ions and this was even more apparent with 50% gKCa and awake ions (Fig.

52G). Taken together, these data suggest that the awake ion concentrations reduces the threshold

for invoking a sleep to awake state transition. We found that [K+]o is the most potent mediator

of this ion concentration mediated effect, but the combined concurrent shift in all three ion species

triggers the greatest sleep to awake state change (Fig. 52H). What is more, the results points

to and supports current in vivo evidence that the awake state comprise multiple sub-states, with

differences in delta oscillations and mean Vm dynamics.

Figure 52: A-B) Schematic diagram of speculated interaction between extracellular ion concen-

trations, neuromodulators and Ca2+-activated K+ channel conductance (gKCa) during sleep and

wakefulness. C) Representative membrane potential (V m) firing pattern with 100% gKCa + sleep

ions ([K+]o = 3.9 mM, [Ca2+]o = 1.35 mM and [Mg2+]o = 0.8 mM), 75% gKCa + awake ions

([K+]o = 4.4 mM, [Ca2+]o = 1.2 mM and [Mg2+]o = 0.7 mM) or 50% gKCa + awake ions D)

Representative ([Ca2+]i). Parameters as in C. E) Vm frequency spectra for 100% gKCa + sleep

ions, 75% gKCa + awake ions or 50% gKCa + awake ions. F) 1-4 Hz delta power. Colors cor-

respond to intervals in C. G) Mean Vm distribution. Colors correspond to intervals in C. H) Bar

graphs showing quantifications for the effect of changing gKCa from 100 to 75% in combination

with shifting only one or more ion species concentration on neuronal state changes, assessed by

membrane potential 1-4 Hz delta power.

4.3.3 Transition from Quiet Awake to Active Awake Mediated by Ion Concentrations

Having demonstrated that the awake ion concentrations are permissive for shifting Vm dynamics

from sleep to awake, we next moved on to investigated the two apparent awake states in greater

detail. In particular we were interested in the the role of extracellular ion concentrations on

this transition. For this, we speculate that an arousal-related ”hyper-awake” ion composition (in

addition to the sleep and awake ion compositions) might exist and could be involved in shifting Vm

82



into the active awake state [143, 144, 104, 145, 146]. As an estimate, we changed extracellular ions

with the same magnitude as observed between sleep and awake for formulating the hypothesized

hyper-awake ion concentrations (Fig. 53A)

• [K+]o = 4.9 mM

• [Ca2+]o = 1.05 mM

• [Mg2+]o = 0.6 mM

We initially simulated the quiet awake state (75% gKCa and awake ions) and then shifted the

extracellular ion concentrations to hyper-awake ions while maintaining gKCa at 75% (Fig. 53B-

C). We observed that with the awake ions V m alternated between long periods of firing (upstate)

and occasional silent downstates (Fig. 53B), similar to described in quiet awake rodents [141, 142].

When we shifted to hyper-awake ion concentrations we observed an almost complete annihilation

of downstates and V m was maintained in the depolarized upstate with continuous firing as a result

(Fig. 53B), which resulted in a constantly elevated level of [Ca2+]i. Analyzing these further, we

found that with hyper-awake ions, the 1-4 Hz delta power significantly decreased and 25-45 Hz

gamma power significantly increased (Fig. 53D-F). This result is alike what has been observed

when rodents transition from the quiet to the active awake state [147, 145, 148]. Finally, the mean

V m distribution was shifted towards the depolarized upstate with hyper-awake ions, representing

the lack of downstates (Fig. 53G). All of these results are in congruence with in vivo recordings

obtained in awake rodents, where the active awake state is characterized by a depolarized Vm and

a lack of downstates[141, 142, 138]. Taken together, these results demonstrate that subtle changes

in extracellular ion concentrations are sufficient for shifting V m dynamics from the quiet awake

state to the active awake state, which recapitulates key properties of the active awake state V m

dynamics. Testing the changing ion concentrations indivudially revealed that shifting [K+]o alone

was sufficient for invoking this state transition, but the combined effect of shifting all three ion

species was more effect full (Fig. 53H), suggesting a biological importance of combined extracellular

ion changes. Therefore we advocate that the existence of such hyper-awake ion concentrations

should be investigated in future in vivo experiments, and even more important the ability to

causally invoke the proposed awake state changes.

4.4 Chaotic dynamics and synchrony in neurons

At this point we had found that awake ion concentrations are permissive for shifting the state

from sleep awake (Fig. 52), and that hyper-awake ion concentrations can invoke the transition

from quiet to active awake (Fig. 53). However we wanted to investigate the nature of the state-

dependent V m dynamics in more physical terms, as we altered extracellular ion concentrations, to

characterize if a qualitative transition did occur.

4.4.1 Transitions Between Brain States are Governed by Chaotic Dynamics

First, we performed a deterministic simulation of the sleep stat. Here we found the dynamics of

V m to be stable and periodic in the sense that the pattern was self-repeating (Fig. 54A). This

therefore had to be a closed trajectory with several small loops that occurs when the neuron fires.

This is best is visualized and analyzed in a 3-dimensional phase space spanned by 3 variables (we

chose Vm, [Ca2+]i and nK) (Fig. 54B). Thus the V m dynamics in the sleep state is well defined
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Figure 53: A) Schematic diagram of hypothesized shift in extracellular ion concentration from

awake to hyper-awake. Awake: [K+]o = 4.4 mM, [Ca2+]o = 1.2 mM and [Mg2+]o = 0.7 mM.

Hyper-awake: [K+]o = 4.9 mM, [Ca2+]o = 1.05 mM and [Mg2+]o = 0.6 mM. B) Representa-

tive membrane potential (Vm) firing pattern with 75% gKCa + awake ions and 75% gKCa +

hyper-awake ions. Below is an expansion of Vm dynamics. C) Representative ([Ca2+]i). Same

parameters as in B. D) Vm frequency spectra for 75% gKCa + awake ions and 75% gKCa + hyper-

awake ions. E) 1-4 Hz delta power for 75% gKCa + awake ions and 75% gKCa + hyper-awake

ions. F) 25-45 Hz gamma power for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions.

G) Mean Vm distribution for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions H) Bar

graphs showing quantifications for the effect of changing only one or more ion species concentration

on neuronal state changes, assessed by membrane potential 1-4 Hz delta power, while maintaining

gKCa at 75%

by regular and stable oscillations. Moving on to the awake state, we considered which ion currents

are most important for changing the state from sleep to awake. From what was observed in the

awake state (Fig. 51 and Fig. 52), we characterize the transition in terms of 1) the rate of which a

silent downstate period is initiated, 2) the mean time duration of a spiking upstate period and 3)

the SD of this measure. These numbers combined describe much of the change in V m dynamics

that happens between the sleep and awake state. By affecting only one of the currents at a time

by the change in extracellular ion concentrations from sleep to awake, we found the largest ion

concentrations-mediated effect was produced on the CaV -mediated current (Fig. 54C). This was

even better observed if we combined the sleep to awake ion-mediated changes in CaV current with

a small perturbation in gKCa (Fig. 54C). Thus, here we found that affecting only the CaV channel

by sleep to awake ion concentration changes can account for much of the irregularities of the awake

state, and that a similar ion-mediated effect can occur for the extrinsic AMPA receptor and this

induces a big step towards the awake state (Fig. 54C).

As observed in the sections above, with the combination of 75% gKCa and awake ions, V m

dynamics are more irregular and significantly long periods of upstates and spiking can occur before a

silent downstate is recovered. We hypothesized that this could be due to the fact that V m dynamics
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Figure 54: A) Representative membrane potential (Vm) firing pattern in the sleep state with 100%

gKCa and sleep ion composition ([K+]o = 3.9 mM, [Ca2+]o = 1.35 mM and [Mg2+]o = 0.8 mM).

B) Phase space plot showing the trajectory in the sleep state. C) Measures for the affect of different

ion channel-mediated currents on Vm dynamics. Light blue is the average rate of initiating a silent

downstate periods. Blue is the average duration of the spiky upstate periods. Dark blue is the

standard deviation in the duration of upstate periods. All measures are normalized to the sleep

state..

in the awake state was chaotic, and tested this by applying deterministic simulation with high

precision. We know that deterministic chaos is defined so by the fact that two initial conditions,

being infinitesimally perturbed, will have diverging trajectories as time evolves. Therefore one

cycle will never repeat itself and no closed cycles can exist on a strange attractor [16]. We tested

this by perturbing the initial concentration of [Ca2+]i by only 1 pM (10−12) and found that even

though V m trajectories are very similar in the beginning, after some seconds they have completely

different values (Fig. 55A). Another way of visualizing the chaotic nature of the awake state Vm

dynamics can be seen in Fig. 55B, where the trajectory is shown in 3 dimensions. Here it seems

that the trajectory never repeats, and that the dynamics are irregular compared to the oscillations

in the sleep state. Furthermore it is evident that the trajectory ”fills” up large parts of the phase

space, which is a fingerprint of the fractal dimension of the strange attractor. To test if this had

the signature of chaos, we calculated the difference in all dimensions between two trajectories and

found that they diverge in a complex manner, but that the general trend seems to be exponential.

This is what we would expect from a chaotic system with a positive lyapunov exponent [16] (Fig.

55C).

As shown in previous sections, the sleep to awake state transition that we have now characterized

is likely not the end of the story and an additional active awake state exist [141, 142], that is

controlled by parameter set of hyper-awake ion concentrations. We analyzed the deterministic

hyper-awake V m dynamics and found that it is a continuously spiking process with no occurrence

of silent downstates (Fig. 56A), making it likely to correspond to an aroused and alert active

awake state [141, 104]. Here we find that this state is not chaotic, but rather a well-defined, high

frequency 3-cycle (Fig. 56B). This means, that the initial transition from the sleep state, can

be regarded as a mediator between two robust states (sleep and active awake), defined by closed

cycles. We consider it of great importance, that the dynamics of V m changes from sleep to the

awake state and even further into an active awake state, using effects of chaotic dynamics. To study

how this chaotic state could work as a mediator between the sleep and active awake we performed
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Figure 55: A) Representative Vm firing patterns with 75% gKCa, awake ion composition ([K+]o

= 4.4 mM, [Ca2+]o = 1.2 mM and [Mg2+]o = 0.7 mM) and 1 mV perturbations showing the

development of different trajectories. B) Phase space plot showing the trajectory in the awake state

with 75% gKCa and awake ion composition. C) Difference between two Vm trajectories in the

awake state with 75% gKCa and awake ion composition

the Vm simulation while applying white noise. Since the most striking difference between the

sleep and awake states is the occurrence/lack of silent downstates, we used the number of silent

periods as a measure to characterize the gradual transition from sleep to the active awake state.

We investigated this for four different noise levels while we linearly perturbed the values of [K+]o,

[Ca2+]o and [Mg2+]o from the sleep to the hyper-awake concentrations. By using this measure,

we find that the complete state transition is a continuous process for the noise levels tested, and

shifting extracellular ion concentrations is sufficient to fully transition from the quiet awake to the

active awake state in a smooth way.

In summary, we found that the transition from sleep to full wakefulness is modulated by changes

in extracellular ion concentrations and that the sleep state is governed by a stable limit cycle

whereas the quite awake state is chaotic, which ensure a smooth and robust transition between the

sleep state and the active awake state.

4.5 Discussion and perspectives

It is generally believed that states of neurons can influence sensory processing and perceptions

[149, 102, 102, 103, 148]. In this project, we have shown that the concentrations of extracellular

ions influences the neuronal states, and that if can guide the KCa channel-mediated transition

between sleep and awake. Furhtermore we found that they can themselves drive the switch from

quiet awake to active awake. Thereby is the switch between sleep and awake a more robust AND

gate, whereas the transition between the two awake states is more fluent and can be controlled by

ions alone.

Through the simulations of the model, we showed how the state change from sleep to awake is

characterized by a transition from stable cycles to chaotic dynamics. Here we argue that chaotic

dynamics, mediates a smooth transition between the quiet awake and active awake state, remark-

ably robust to intrinsic noise.
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Figure 56: A) Representative Vm firing pattern in the awake state with 75% gKCa and hyper-awake

ion composition ([K+]o = 4.9 mM, [Ca2+]o = 1.05 mM and [Mg2+]o = 0.6 mM). B) Phase space

plot showing the trajectory in the awake state with 75% gKCa and hyper-awake ion composition.

C) Number of silent periods for a period of 100 s as the values of the ions are perturbed linearly

from values for the sleep state to values of the active awake state. On the x-axis 1 corresponds to

sleep state, and 9 corresponds to the awake state

In experiments it has been shown that ion concentrations do change between different states, and

studies have implicated that the ion concentrations causally drive the sleep to awake transitions

[106]. However due to the intimate relation between neural activity and ionic changes, causality is

extremely difficult to establish in vivo. Therefore, investigations through mathematical modelling

can be helpfull, and in our model, exclusively shifting ion concentrations by the same magnitude as

measured in vivo was insufficient to cause a complete sleep to awake state transition (Fig 49). This

suggests that other parameters needs to change in time, in order to transition the neuron into to

the awake state. This might seem as an advantageous built-in gate mechanism, since extracellular

ion concentrations are affected by changes in neuronal firing [108, 109, 110, 111], and global brain

states should be robust to such small ion fluctuations.

We then found that decreasing the conductance of the KCa channel is a powerful way for inducing

the sleep to awake state change (Fig 51), in congruence with previous work implicating this channel

as a prime mechanism for V m downstates [139, 140, 105, 116]. Shifting to the awake ion concentra-

tions was permissive to decreasing the conductance of the KCa channel (Fig 52); advocating that

changes in the extracellular ion concentrations does affect the state transition. Changing the global

environment through ion concentrations, in addition to modulating selective intrinsic ion channels,

might be a simple, yet powerful, way for shifting the state of entire brain-wide neuronal networks

and ultimately for changing the behavioral state. Transitions between states in living organisms

are fundamental for the functions and complexity of that organism and failure to regulate these

transitions properly, might be harmful for cells. In this regard, the state transition described here

for neuronal V m dynamics has the beneficial property, that it represents a gradual change between

the two stereotypical behavioral states.

It is increasingly appreciated that the awake state is comprised of at least two sub-states, namely

quiet awake and active awake [143, 141, 144, 103, 104, 145, 146]. Rodent studies have suggested
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that the ongoing . It has been suggested that the nature of the awake state, shapes how the brain

processes sensory inputs, for instance, the gain of visual-evoked responses in visual cortex is in-

creased when neurons are in the active awake state, whereas auditory responses in auditory cortex

are suppressed [143, 103, 104, 150]. This indicates that the brain state powerfully and differentially

scales what sensory modalities are up- and down regulated at a given moment in time for optimiz-

ing sensory processing and neural computations. Based on this, we hypothesized, that in addition

to sleep and awake extracellular ion concentrations [106], a hyper-awake ion composition might

exist (Fig 53). When KCa was kept partially inhibited (75% gKCa), shifting from the awake to the

hyper-awake ion concentrations produced a state change alike to what is observed when rodents

transition from quiet to active [141, 138]. This means that this state transition is ion-mediated, and

it was characterized by a significant increase in the high frequency spikes leading to a uni-modal

V m distribution (Fig 53). These reasults were similar to what has been observed in vivo with

intracellular recordings from cortical neurons in behaving rodents. Therefore it is tempting, that

the subtle concerted changes in extracellular ion concentrations, could be a key mechanism for the

rapid and often-occurring state shifts in the awake brain, that allow sensory processing and neural

computations to be rapidly modified based on the different situational demands.

One of the key findings in this study, is the chaotic dynamics in the quiet-awake state. We believe

there are several intriguing elements in a chaotic transition to the awake stat. Firstly, since not only

one, but several, parameters are changed in the sleep to awake state transition, chaotic dynamics

is a clever way for the system to make a path-independent transition between the two states. Due

to the never repeating trajectories, the system does not change significantly if, for example, the

changes in [Ca2+]o occur before [K+]o or vice versa. By this we mean that the neuron can in

chaos gradually change the statistics of the neuronal dynamics, but in a short period of time, the

dynamics can be regarded as path independent. Secondly, we believe that chaotic dynamics is an

important property of neurons in the awake state since one would expect that neurons in this state

needs the capacity to create a variety of different combinatorial outputs on a population level.

If the neuronal dynamics in the awake state were purely stable limit cycles differing in period,

small differences in incoming inputs would lead to very small differences in output firing, and thus

information encoding. However since they are governed by chaotic dynamics, the sensitivity to

the always existing small perturbations that accompanies external stimulation, can lead to a much

more complex variety of outcomes that likely is highly important and necessary for higher-order

neuronal computations. Thirdly, it is intriguing to imagine that since all neurons are governed

by the dynamics of a stable limit cycle in the sleep state, they have the potential to synchronize

their firing outputs through their common oscillations. Now, perturbing the system could change

the period of oscillations but would not necessarily destroy this activity synchrony between neu-

rons. However, as the awake state is chaotic, this population synchrony would naturally disappear.

In this way, the awake state would make each neuron more independent, since it is no longer

”bounded” by the dynamics of the state, and the specific feature-selective inputs to each neuron

can have a great effect on the firing output for that particular neuron in the end.

To sum up, this project uncovers an important function of extracellular ion concentrations and

chaotic dynamics in neuronal state transitions. It is vital for complex organisms, that the sleep

to wake transition is strictly controlled and well regulated to avoid diseases such narcolepsy or

insomnia. Here, the concentration of extracellular ions can be a key parameter for neuronal state
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changes and these state transitions are governed by chaotic dynamics. Concerted regulation and

shifts in ion concentrations therefore expands the toolbox for controlling state-dependent activ-

ity, and thus needs to be considered as an integrated mechanism in future investigations of what

determines ongoing activity and state transitions in the brain.
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5 Investigation of the Spatiotemporal Landscape of Dopamin-

ergic Denervation in the Striatum

In this section the results of that forms the basis of paper VIII is presented and discussed. This

work was in some way initiated in early 2013, as a work on my bachelor thesis in collaboration

with Hussein Nasser Awada and Jakob Kisbye Dreyer as supervisor. Here we played with the

model for extracellular dopamine concentration and made some crude estimations of the landscape

of dopamine neurons after denervation. This idea was revisited in the spring of 2018, where we

constructed all the models used in this section. The ideas and conclusions from this project was

heavily improved through discussions with Rune Rasmussen and Mogens H. Jensen.

In this project we will use a mean field model for the extracellular dopamine concentration, and

examine how the dynamics gets affected as the number of neurons is decreased, in the case of

different compensatory mechanisms. We introduce an abstract, stochastic firing model and by

using this in the mean field model, we show how the dynamics can show oscillatory behaviour,

and how the signal to noise ratio is decreased for all compensation mechanisms as denervation

of neurons progresses. Next we investigate the global distribution of the remaining neurons, and

inspired by existing literature, we introduce three different models to represent denervation through

various diseases and stresses. We find that depending on these, this can show completely different

distributions of neurons and we argue that these variations might be some of the explanation for

the variety of different symptoms that is found in patients with Parkinsons Disease.

5.1 Background to Neuronal Firing and Parkinsons Disease

Parkinson’s disease (PD), first described by James Parkinson in 1817, is the second most common

neurodegenerative disorder [151]. The disease is diagnosed clinically based on the presence of

typical motor symptoms that include bradykinesia, limb rigidity, abnormal posture, and resting

tremor [152]. These symptoms primarily result from the progressive loss of dopamine (DA) neurons

in the substantia nigra pars compacta (SNc) [153], and the onset of symptoms emerge when

a substantial fraction of dopamine neurons (¿ 70%) are lost [154, 155]. The main projection

target of the SNc DA neurons is the striatum, a nucleus within the basal ganglia that is critically

involved in motor behavior and motor learning [156, 157]. Within the striatum, DA exerts its main

effects on medium spiny neurons (MSNs) through metabotropic receptors, grossly grouped onto

Gs-coupled D1 and Gi-coupled D2 receptors [158, 159]: D1 receptor activation increases cAMP,

whereas D2 receptor activation decreases cAMP in neurons. In turn, the level of intraneuronal

cAMP affects how MSNs respond to glutamatergic inputs, with increased cAMP levels associated

with increased excitability and vice versa [157]. Thus, the DA signaling in the extracellular space

within the striatum powerfully regulates excitability and spiking of striatal MSNs [159]. The

MSNs activity is a critical component in the direct and indirect pathway, which act in opposing

ways to control movements [157]. In the parkinsonian brain, striatum-projecting DA neurons and

their axon terminals are progressively lost, leading to striatal DA depletion and abnormal striatal

activity with time. In spite of the cardinal role of failing DA levels for the development of PD, the

precise nature of the striatal DA signaling at the time when symptoms occur and during disease

progression is still debated and largely unresolved. In many biological systems physiology largely

follows anatomy and connectivity. For example, the analysis of the uniquely organized primary
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visual part of the cerebral cortex suggested unique aspects of visual processing and sensory relay,

which were subsequently confirmed experimentally. Within the field of PD research, a major

emphasis has been placed on understanding the molecular mechanisms causing neurodegeneration

[160], but surprisingly little attention have been given to elucidating the spatial and temporal

pattern of DA neuron loss, and how this relates to DA signaling and disease development. One

reason for this might be the lack of resolution for non-invasive methodologies used in patients.

Current clinical data measuring dopamine transporter densities, a correlate of DA neuron density,

employs imaging modalities such as SPECT [161, 162], suffering from insufficient spatial resolution

to resolve the organization of DA neurons within brain regions. On the other hand, DA signals

and dopaminergic neuron spiking can be recorded by invasive techniques in experimental animals

[163, 164] and by determining the DA neuron density at the recording site post-mortem one can

correlate DA neuron density to DA signaling. However, this lacks the temporal resolution needed

to follow DA neuron density and d DA signaling during the disease onset and development in the

same animals, and it only allows measuring DA signaling from one site. Thus, a detailed description

of the spatial organization of DA neuron loss over time, and how this relates to DA signaling and

symptoms onset, is currently lacking. Obtaining such insight might provide an explanation for why

the age of disease onset, disease progression and symptoms are remarkably heterogeneous among

PD patients [165, 166].

5.2 Construction of a Mathematical Model

We aim to construct a mathematical model that captures some important features of dynamics of

dopamine in human striatum. Dopamine is a very important neurotransmitter, and it has been

shown to have play a role in for instance movement, memory and learning [167, 168, 169, 170]. It is

believed that a fundamental structure in the correct movement and initiation of actions in general,

is the basal ganglia, that consists of two different pathways that originates from two Medium Spiny

Neuron (MSN) populations in the striatum [171]. The direct pathway is postulated to promote

movement, whereas activation of the indirect pathway is believed to inhibit it. Since dopamine

affects both populations, its role as a modulatory element in the network is believed to be of fun-

damental importance.

In this we will focus on the concentration of extracellular dopamine in striatum and model that

as a function of the release and uptake of the specific neurons. We focus on a region of space in

striatum where the synapses project into and they can release vesicles of dopamine upon stimu-

lation. However at these synapses there is also dopamine transporters, that can carry dopamine

molecules from the extracellular space and back into the synapse. In this way the synapses create

a dynamics of extracellular dopamine, that can change in time depending of the firing properties

for the neurons and on the parameters of the synapses. Finally we introduce diffusion between

synapses in a small subvolume. Even the region we consider, consists of many different cells there

is an extracellular volume between these where dopamine can diffuse between the synapses. We

now use the experimentally defined diffusion constant: D∗ ≈ 322µm2/s [172] and using time steps

of 0.1s, we obtain a length scale of L ≈ 10µm. Therefore if we consider a small volume of space

of dimensions 1000µm3, and since the density of synapses is ρ ≈ 0.1µm−3 [173] we consider this

a standard region to be covered with 100 synapses. A schematic picture of the imagined setup is

found in Fig. 57
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Figure 57: Schematic figure showing the region on the human brain that this model aims to

describe. We consider the region in the very center, striatum, that is covered with millions of

release terminals from hundreds of thousands of neurons, having their soma in another region,

substantia nigra pars compacta (SNc). We focus of a small subregion of striatum, covered with

dopamine terminals that can release dopamine, but that can also absorb it back into the neuron.

5.2.1 Approximation of Dopamine Dynamics in Mean Field Model

From the above introduction we are ready to model the dopamine concentration in the extracellular

space. Here we adopt the model previously proposed by Dreyer et. al [174], where we can describe

the dopamine dynamics as

ḊA = NνPΓ−NVmax
DA

DA +Km
+ (D∗∇2DA − δDA) (94)

Here the first term describes the addition of dopamine into the extracellular space with ν being the

firing rate of a neuron, P being the release probability from a terminal on a firing neuron, N being

the number of terminals in a given subspace, and Γ being the released amount. The second term

is a typical Michaelis Menten uptake term, with Vmax being the maximal uptake rate. Finally the

last part represents the diffusion from other regions and the spontaneous degradation of dopamine.

In healthy striatum, where N is large, both these effects are negligibly small and we will thus, if not

otherwise stated, neglect these terms. It turns out that the above differential equation is solvable,

so we wish to describe DA(t): Now denoting DA ≡ D, PΓνN − V N ≡ γ and PΓνNK ≡ δ we can

write:

dD

dt
=
Dγ + δ

D +K
⇒
∫

D +K

Dγ + δ
dD = t+ C (95)

Thus we focus on the integral an obtains:
∫

D +K

Dγ + δ
dD =

∫
D

Dγ + δ
dD +

∫
K

Dγ + δ
dD (96)

=
K

γ

∫
1

u
du+

1

γ2

∫
u− δ
u

du (97)

=
K

γ
ln(u) +

1

γ2
u− δ

γ2
ln(u) + C (98)

=
D

γ
+ ln(Dγ + δ) ·

(K
γ
− δ

γ2

)
(99)

With this we can now rewrite the equation:

(γD + δ) + ln(Dγ + δ) ·
(
−KV

)
= γ2t+ δ − C (100)
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Now setting T = γD + δ, −KV = ∆ and γ2t+ δ = f(t) we obtain:

T + ∆ln(T ) = f(t)− C (101)

T + ∆ln
(T

∆

)
= f(t) + ∆ln

( 1

∆

)
− C (102)

T

∆
+ ln

(T
∆

)
=
f(t)

∆
+ ln

( 1

∆

)
− C (103)

eT/∆
T

∆
=
e

1
∆ (f(t)−C)

∆
(104)

T = ∆W
(e 1

∆ (f(t)−C)

∆

)
(105)

Now if we insert initial conditions and rewrite everything in terms of D(t) we end up with:

D(t) =
1

δ
W
[
e
f(t)
∆ e

D0γ
∆

(γD00δ)

∆

]
∆− δ (106)

5.2.2 Deterministic Results for Denervated Regions

Having found an expression for the concentration of D as a function of time, depending on the

initial conditions, we can calculate the dopamine concentration in the steady state and during

bursts and pauses. We start by calculating this for three different denervation levels, and find that

while the steady state remains constant, the peak value during bursts significantly decreases and

the minimum value during bursts does not reach zero for the high denervation level (Fig. 58A).

We calculate the height of the pulse during the bursting period and find that this is decreasing

as the number of neurons is reduced already from the early denervation and that this process is

acceleration as we reach the 20% remaining neurons (Fig. 58B). Here we also find that the minimum

level of dopamine during a pause, reaches zero until the region is severely denervated (Fig. 58B).

We see in (Fig. 58A) that it is a trend that the rate of change gets smaller as the denervation gets

more and more severe. Therefore the concentration does not reach its large peaks but it also takes

longer time to decay back to the steady state. Therefore we investigated whether the integral value

of dopamine following bursts and pauses remained constant, but these also decayed, in a process

speeding up around the final stages of denervation (Fig. 58C).

Many compensatory mechanisms of the dopaminergic system has been reported and we investigated

the effects of these. It has been suggested that when the dopaminergic neurons are removed, the

dopamine transporters reduces their efficiency at which they take up dopamine [175, 176, 177]. We

included this in the model as:

V− 7→ V0(1− δ) (107)

Where δ ∈ [0; 1] is the denervation level. Here we find that this can increase the height of the

peak, but that it also increases the steady state level significantly (Fig. 58D, red trace). Another

hypothesis is, that in order to keep the dopamine levels and the transient pulses, the remaining

neurons increase the released dopamine levels [178, 179]. We include this in the model as:

Γ+ 7→
Γ0

1− δ (108)

Here we find that this does increase the height of the peak, even more than the inhibited uptake,

but that this also leads to an increased steady state value (Fig. 58D, orange trace). Finally we
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note that from this model, an full compensatory mechanism is to enhance both the uptake and

the release so

V+ 7→
V0

1− δ and Γ+ 7→
Γ0

1− δ (109)

Doing this, the dynamics in the deterministic model is not affected by the loss of dopaminergic

neurons (Fig. 58D, brown trace).

Figure 58: A) Analytical plot for D(t) as well as simulated trace (white dots) for different dener-

vation levels. B) Maximum value during burst (blue) and minimum value during pause (red) as a

function of the remaining number of neurons C) Integral value during burst (blue) and pause (red)

as a function of the remaining number of neurons. D) Analytical plot for D(t) for the combined

up regulation, the inhibition of uptake and the enhanced release as described in the section.

5.2.3 Introdcution of Stochastic Model of the Neuron Firing Pattern

In this section we will create a three parameter model that mimics the dynamics of a neuronal

firing pattern. We believe that this is the simplest way to describe the process of firing patterns.

We consider a population of neurons, where the i’th neuron fires with a time dependent rate given

by (Fig. 59A):

f(ti) =
α

1 + e
−β(ti−τ+(ti−

∑
j Sijtj∑
j Sij

))
(110)

Here τ is a time parameter that governs the time between firings, and ti is the time since the i’th

neuron had the latest firing. Sij represents the coupling between the i’th and the j’th neuron, so

they have the potential to synchronize. We are interested to find the distribution of this firing and

will for now keep Sij = 0. Thus the probability that the neuron will fire in time interval t+ dt is

F (t) =

t/dt∏

n=1

[
1− f(t)dt

]
f(t)dt (111)

Now we can use Volterras integral formula so:

F (t) = f(t)e−
∫ t
0
f(t′)dt′ (112)

Now solving the integral yields:

α

∫ t

0

1

1 + e−β(t′−τ)
dt′ =

α

β

∫ β(t−τ)

−βτ
(1 + eu)−1du (113)

=
α

β
ln
[1 + eβ(t−τ)

1 + e−βτ

]
(114)
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Therefore the total probability distribution is

F (t) =
1

1 + e−β(ti−τ)
e
−αβ ln

[
1+eβ(t−τ)

1+e−βτ

]
(115)

= C(1 + eψ(t))−
α
β−1eψ(t) (116)

with C =
α

(1 + e−βτ )−α/β
and ψ(t) = β(t− τ) (117)

The sigmoidal shape of the firing rate is shown in (Fig. 59B), and by simulating this process,

we can find the distribution of times between each firing and see that it mathces perfectly with

the distribution found in the above derivation (Fig. 59C). To simulate this in a fast way we

want to generate randomly distributed numbers according to this distribution [180]. This is the

classical way to simulate a Gillespie algorithm, where one uses the transformation method as a

way to generate random numbers following a specific PDF, f(x), from random numbers uniformly

distributed in the interval [0; 1] [181]. For this we cannot solve it exactly, but we can use a

combination of the hit and miss method and the transformation method. We can in the majority

of cases use the Laplace distribution and calculate random numbers from this:

L(t) =
1

2b
e−
|t−µ|
b = r ⇒ t(r) = µ− b · Sgn(r)ln(1− 2|r|) Where r ∈]− 1/2; 1/2] (118)

We then chose a random number according to this distribution, rt, and for that given number, we

calculate a new random number, rn, between 0 and L(rt). If r(n) < F (rt) we choose this value

as the next time step. This is seen schematically in Fig. 59D. To do this we need the maximum

value of F(t) which can be found:

dt

(g(t)α/β

g(−t)
)

= 0⇒
(α
β

)
=

1 + eψ(t)

1 + e−ψ(t)
⇒ tmax = τ − ln

(α
β

)1/β

(119)

Thus we can very fast simulate the a population of non-interacting neurons, and choose the three

parameters so it captures the properties of firing rates found in vivo. Now we consider the in-

teractions between neurons from the termSij , then the neuron can receive inputs from all the

non-negative elements of the matrix S. Clearly if S = 0 then the neurons are all uncorrelated,

and there is no rhythm to find in a large simulated population (Fig. 59E). However if we now set

Sij = 1 and let them all couple, we can get a synchronous state where they all correlate in their

firings (Fig. 59F). For this setup we cannot use the next step reaction scheme described above,

and we must use the classical Gillespie algorithm to generate the firing patterns [20].

(Fig. ??A).

5.2.4 Stochastic Model Reveals How Denervation Leads to Reduced Signal to Noise

Ratio

We included the firing patterns from the constructed firing model. We considered the weighted

average term in the exponent to have equal weights for all neurons and defined:

f(ti) =
α

1 + e−β(ti−τ+(S 1
N

∑N
1 (ti−tj))

(120)
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Figure 59: A) Schematic figure showing the neuron and that fires independently of any other

event as a time dependent stochastic process B) The firing rate as a function of the time since last

firing. C) Distribution of times between firings, fitted with F(t) as calculated in the section. D)

Figure showing how to generate random numbers following the F(t) distribution. E) Firing times

for thousand neurons in the absence of couplings. F) Firing times for thousand neurons when

coupling is present.

We simulated during tonic and phasic firing signals and used the parameters

αTonic = 1 αPhasic = 2

βTonic = 3 βPhasic = 10

τTonic = 5 τPhasic = 1

S ∈ [0; 1.5]

In this we still considered the three different compensation mechanisms as introduced above. First

we calculated the average value for DA, as well as the standard deviation on this measure. Here we

note that the standard deviation does not actually serve the purpose of reporting an uncertainty

on the datapoint, since the distribution of dopamine over time is not gaussian. However it still

gives a measure on the spread of the data and is worth considering since a perturbation to the

spread, might interrupt signal transmission in striatum.

Calculating the average value of dopamine, we find that this is enhanced for the two independent

compensation mechanisms, as well as the standard deviation is increased for denervated regions.

However for both the model including no compensation as well as the combined compensation

model, we find the average level to be approximately constant (Fig. 60A). If we now consider
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Figure 60: A) Average value of dopamine in tonic time series as a function of number of remaining

neurons. Vertically is standard deviation shown. B) Amplitude height of oscillations and the

standard deviation on this number as a function of number of remaining neurons.

the amplitude of the oscillations in the tonic firing, we find that these are enhancing for the

denervated regions for both the individual compensation mechanisms as well as the one with no

compensation, the oscillations are enhanced for the synchronized tonic state (Fig. 60B). Especially

the compensation with an enhanced release, has a great rise in the amplitude which is due to the

fact that the remaining neurons release a very high amount that gives an extreme transient peak

following release.

Since we learned in the section concerning the deterministic model, that the height of the peaks

could depend on the remaining number of neurons, we hypothesize that an important measure

that is affected during the dopaminergic denervation is the signal to noise ratio. Here we define

the short bursting periods as signal, and the noise as the standard deviation in the tonic period.

We argue that there is interesting phenomena in the oscillatory behaviour in tonic firing, and

therefore we do not expect that the measure of the standard deviation is intended to be zero, but

the system might need to clearly separate these two, which is obtained by a clear signal. We start

by considering the non-synchronized case, where the oscillatory behaviour is not found. Here we

see that the signal to noise ratio is decreasing, and this is a remarkable trend for all the systems

independent of the compensation (Fig. 61A). To validate this we tested this for the synchronized

system, and here we found the same trend and the change in signal strength was around the same

level. Thus reducing the number of neurons will make it difficult to separate a signal input from

the random fluctuations arising from the variations in the firings.

5.3 Characterization of the dopaminergic Landscape Following Dener-

vation

From results of the mean field model, we realized that the dynamics was affected by the number

of remaining neurons. Experimental results has estimated the number of remaining dopaminergic

neurons around the onset of PD, but almost nothing has been hypothsized on how the global
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Figure 61: A) Signal to noise ratio calculated as the mean peak height during bursts divided by the

standard deviation of the data during tonic period. S = 0. B) Same as A, but for the synchronized

case where S = 1.5.

landscape is characterized when only a fraction of neurons are remaining. We wish to investigate

this following different hypotheses on why neurons are degenerated. To do this, we start by

”constructing” a healthy striatum, that will then later be denervated. In this we assume that

striatum can be described by an ellipsoid with principal axes a = 2.1 cm, b = 1.5 cm, and c = 0.3

c, giving VT ≈ 4cm2. The reason for this choice in geometry is simply that the shape looks

very ellipsoid like from clinical pictures. Inside this volume, we now insert NT = 105 neurons as

randomly positioned dots. We assume that the axonal arbor of a dopaminergic neuron can be

described as a sphere, with radius rd = 0.5 mm and constant terminal density ρd. With these

assumptions, we now have a model of human striatum, but to study the effects of denervated

striatum, we need some fundamental measures.

5.3.1 Identification of Three Important Measures in Denervated Striatum

Based on the initial results of the model, we now want to characterize striatum as the neurons

are denervated. Firstly, the number of remaining neurons inside the subvolume of the mean field

model is important for the resulting dynamics, and we want to describe the distribution of neurons

covering an arbitrary point in striatum. For the healthy model, we can estimate this analytically.

We consider a region ε with radius rε << rd, centered at position cε. If we now placed an axonal

arbor, with volume Vn randomly, the probability that ε would be covered by this neuron would be:

P (ε ∈ V1) =
Vd
VT
≈ 1.25 · 10−4 (121)

Now assuming that all axonal arbors are placed independently, we can calculate that the probability

of a region in space ε is covered by n neurons, given that there is NT in total:

P ({∆i→ε ≤ rn}|NT ) =
( Vd
VT

)n(
1− Vd

VT

)NT−n NT !

n!(NT − n)!
(122)
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Here {∆i→ε} is the set of neurons with center closer to ε than rd. We now rewrite Vc
VT
⇒

Vc
VT

NT

NT
,

and since NT >> n we can make the following approximations:

(
1−

Vc
V NT

NT

)NT−n
≈
(

1−
Vc
VT
NT

NT

)NT
= e
− Vd
VT

NT and
NT !

(NT − n)!
≈ Nn

T (123)

Inserting these we end up at:

P ({∆i→ε ≤ rn} = n|NT ) = e−µ
µn

n!
whereµ ≡ Vd

VT
NT (124)

We have thus shown that the number of neurons covering a random position in space can be

estimated from a Poisson distribution, with mean proportional to the number of remaining neurons.

This does not take the boundaries into account and as we move closer to the boundary, the volume

where neurons can cover the small test volume ε get smaller. The probability of ε to be covered,

dependent on the distance d to the boundary:

P (ε ∈ Vi) =
1

VP
·





4π
3 r

3
d if d ≥ rd

(π3 (2r3
d + 3dr2

d − d3) if d < rd
(125)

Figure 62: A) Coverage of neurons, fitted by a poisson distribution B) Visualization of the neurons

positioned in striatum and all coloured in the same color to represent the irreducibility of the healthy

state. C) Distribution of the 30 largest ER, where the large blue bar represents that the numerous

other empty regions, will all be smaller than these.

This means that the mean of covering neurons is smaller at the boundary, but from this we

will mainly use that we expect that the distribution of covering neurons can be described by a

poissonian, which we confirm from simulations (Fig. 62A).

Next we consider the communication classes of the network of neurons. We say that two neurons

i, j communicates if there is a possible path from i to j. This means that they do not need to be

directly connected, but they should, indirectly could transmit information between each other. If

they all communicate, we define that the network is irreducible, and we expect that this can be

very important for correct signal transmission and global synchronization in striatum. To find the

communication classes we computed the following algorithm:
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• Pick the neuron n1 and put it in the set S1

• Find all its neighbours, and put these in a transient set C = {nj ....nk}
• Pick the first element of C, put it in S1, remove it from C, and find all its neighbours and

put these into C.

• Pick the next element of C and repeat the algorithm. When C is empty the set S1 is a

collection of all neurons in communication class 1.

• After this take n2. If n2 ∈ S1 go to n3. Otherwise create the set S2, put all the connections

of n2 in C, and repeat the algorithm as above.

To visualize this we paint each communication class in a distinct color. If we use this algorithm

for the healthy striatum, we find that it is irreducible, and thus all neurons can communicate with

each other. Therefore we hypothesize that it is an essential feature of functioning striatum that all

neurons can communicate, transmit signals and synchronize and this might be feature that breaks

down following denervation. Finally we consider the possibility that some regions in striatum gets

completely denervated and we term these empty regions (ER). Here we review the original model,

and since N = 0 we are left with

ḊA = D∗∇2DA(r)− δDA (126)

Even in our model where we consider spheres of constant density, small ER volume might exist for

all levels of denervation, but due to diffusion from the neighbouring regions, the steady state level

remains approximately at the normal level. An analytical derivation for the situation of diffusion

with decay, into an empty sphere, is found in Appendix E, and from this we define an ER to be

with rER > 1mm, because for this value, the steady state will definitely be zero. To find the empty

regions for a given number of remaining neurons, we use Voronoi tesselation, installed in MATLAB,

to find all the voronoi edges, and then we scan through these edges to find the most empty region.

A small review of Voronoi tesselation is found in Appendix F. By applying this method, we find

that the largest empty regions in healthy striatum is significantly smaller than 1 mm, and thus we

expect the concentration of DA non-zero at all points in striatum. We hypothesize that this could

also be an essential feature that the steady state level of DA is does not go to zero anywhere, since

this could lead to completely wrong signals for the MSNs in this region.

To sum up, we consider the following three measures to be the most important to describe the

state of striatum after denervation:

• The distribution of neurons covering an arbitrary point in space

• The distribution of communication classes and specifically the largest class

• The size of empty regions where DA is degraded completely

We are going to investigate these three measures, when striatum gets denervated in three different

ways.

5.3.2 Denervation I. Random Removal of Neurons Result in Low Coverage and Phase

Transition in Clusters

We start by considering that each neuron is removed completely stochastically. This represents

the situation where all neurons have the same probability to die, 1/r where r is the rate. This is
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Figure 63: A) Schematic figure showing connected neurons that all die at the same rate B) PDF

of number of connections. Green: Healthy and Blue: Denervated. C) The number of remaining

neurons as a function of time.

represented schematically (Fig. 63A), where the thickness of the arrows correspond to the given

rate at which neurons die, and the black lines correspond to neurons in contact with each other.

In this picture, the cause of death can originate from all kinds of different events, and this is what

we would term as standard ageing. In the following we treat the rate as a fixed constant, which

of course is a simplification, since this rate is probably close to zero in the young stages of life.

However at this critical stage, which might come during adult age, we believe this serves as a good

approximation. After removing the neurons at random, leaving only 10% surviving, we investigate

this denervated Striatum. We find that as expected the distribution of overlapping neurons still

follow a Poisson distribution (Fig. 63B) as was the case for the healthy Striatum. We find that the

majority of regions has a very low coverage, and thus the dynamics makes it difficult to transmit

any large signal since the peak of the burst is decreased. An important measure is the rate at which

the disease evolves, and from our point of view how the number of remaining neurons decreases

as a function of time. For the age dependent model, all rates are constant and the number of

remaining neurons follow an exponential model as shown in Fig. 63C. From this we move on to

study the existing networks of overlapping neurons. We find that the large connected cluster (Fig.

62B) has been split into multiple small clusters with no ability to communicate and synchronise

(Fig. 64A), when 10% neurons are remaining. This is quite surprising, since the coverage is rather

smoothened, and by eye, one might believe that the neurons all created one communication class,

however even though the vast majority overlap, they are separated into many smaller classes. Tho

understand this further, we calculate the number of neurons in each communication class, and find

that this scales well as a power law, with no serious out-layers (Fig. 64B). Since we at this point

find many small clusters, and we know that for the healthy striatum, all neurons were indirectly

connected in one cluster, we ask the question when this break-up occurs. We calculate the number

of neurons in the largest cluster, and divide this by the total number of remaining neurons to find

the time at which the break up occurs, and find that this happens quite dramatically when 20%

of the neurons are left (Fig. 64C).

Finally, we aim to describe the possibility of completely empty regions, as studied in Section II.

Considering only regions larger than 0.1 mm, we use the techniques described above, to find the
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Figure 64: A) Visualization of 10% remaining neurons. Different Colors Indicate Different

Communication Classes. B) Distribution of cluster sizes. c) Number of neurons in the largest

cluster divided by the total number of remaining neurons, as a function of the remaining number

of neurons.

largest uncovered regions, which are shown as black spheres in Fig. 65A. A full derivation of the

probability of an empty region to occur as a function of the remaining number of neurons can be

found in Appendix X. Looking at the size of these, we see that they are only just larger than the

definition of empty regions, and no big outlayers exist (Fig. 65B). Therefore it is quite possible,

that inside these empty regions the decresed steady state level of DA, does not harm the affected

MSNs. An interesting measure in this regard is how the development on the largest empty region

evolves as the neurons are removed. Taking the average of 25 independent simulations, we find

that the radius of the largest empty region grows slowly, but starts to grow dramatically when less

than 10% of the neurons are remaining (Fig. 65C).

5.3.3 Denervation II. Spread of Disease Result in both Functioning and Denervated

Regions

Another way that the neurons can die, is by a disease spreading from a fixed number of initial

cells. This is inspired by the spreading of Lewy bodies or other diseases that might spread between

neurons. For simplicity we assume that all neurons that cover the same space in striatum, is also

within range of disease spreading in SNc, where the soma of the neurons are placed. Therefore at

each timestep, one at randomly chosen infected neuron, infects two of its randomly chosen neigh-

bours. These neurons are now considered as infected and all infected neurons have a probability

1/b to die at each timestep. This is schematically shown in Fig. 66A where the infected red cell

infects two neighbours that can are then prone to die. Studying this macroscopic landscape, we

quickly see that each surviving neuron a higher number of neighbours compared to the random

denervation (Fig. 66B) . Thus there exists patches, where the dynamics is still lively and signals

can be transmitted through the dynamics as good as in the healthy striatum. We consider how

the denervation evolves, and find that initially the number of neurons decreases very slowly, only

to accelerate and thus decrease faster than a exponential function (Fig. 66C). This is explained

by the fact that the population of infected neurons grow and therefore the time until the next
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Figure 65: A) Visualization of the remaining neurons, and black spheres represent the largest

empty spaces. Note some of these might overlap. B) Distribution of the largest empty regions. The

large bar represents that numerous smaller empty regions will exist. C) Size of the largest empty

region, as a function of the remaining number of neurons.

Figure 66: A) Schematic figure showing connected neurons, where the red neuron is dying and

passing the disease on to two random neighbours. B) PDF of number of connections. Green:

Healthy and Blue: Denervated. C) The number of remaining neurons as a function of time.

neuron is removed is much shorter, when the population of infected cells is large. To better un-

derstand the nature of the densely populated regions, we move on to investigate the networks of

the remaining neurons. We find that the disease induced denervation has removed entire sections

of the human striatum (Fig. 67A), but has left other areas unharmed. Considering the colors it

is clear that there exists two large, connected regions, and that does have the ability to function

as healthy tissue individually. However since they have no communication, this might results in

correlated and maybe even conflicting signals further to the basal ganglia. Looking at the size dis-

tributions of these remaining networks, we see that as in the randomly denervated case, numerous

tiny collections exist, but contrary to the former, this is dominated by two very large networks,

that probably is responsible for the majority of outputs (Fig. 67B). Since the clusters are still

large when 10% of the neurons are remaining, it is not certain if they will always be dominated by

one large cluster, or split up like the age dependent denervation model. Calculating the number of
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Figure 67: A) Visualization of 10% remaining neurons. Different Colors Indicate Different

Communication Classes. B) Distribution of cluster sizes. c) Number of neurons in the largest

cluster divided by the total number of remaining neurons, as a function of the remaining number

of neurons.

neurons in the largest cluster, divided by the number of remaining neurons and taking the average

of 25 independent simulations, we find that even though one large cluster dominates until 10%

neurons are remaining, and at this point many small independent clusters emerges (Fig. 67C).

Since the remaining neurons, form spatially divided clusters, it is evident that empty regions should

occur. Here we find that several large empty regions exist (Fig. 68A), but due to some remain-

ing neurons, these are still kept at a moderate level. However since these last remaining neurons

are with all possibility still infected, the evolution in the size of the largest empty spaces will be

rapid at this stage of the disease. With 10% surviving neurons, we see that the largest empty

spaces is almost a factor of four larger than in the case for the random denervation (Fig. 68B),

and inside these regions, the steady state level of DA will be zero, which of course affects down

stream signalling in basal ganglia, but probably also will lead to the death of the MSNs inside these

regions. We estimate the point at which these large empty regions occur, by taking the average

of the largest empty region in 25 independent simulations. We find that the growth of the largest

empty region is fairly slow when 40% of the neurons are left, but the absolute level is already very

large. Thus the large empty regions emerges very early, but due to a few remaining neurons in the

denervated space, the growth of these does not explode (Fig. 68C).

5.3.4 Denervation II. Stress Induced Removal Result in Small Unconnected Islands

of High Coverage

Finally we consider a situation where the neurons die due to stress caused by upregulation. It has

long been hypothesized, that one of the mechanisms that could delay the outbreak of PD, was

the upregulation of DA release and uptake by the remaining neurons. In this picture, whenever

one neuron dies, the total number of released molecules are decreased, but by releasing higher

amounts and more often, the remaining neurons can decrease the effects of denervation for a long

time. However, as it has been argued, dopaminergic neurons are already close to their maximum
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Figure 68: A) Visualization of the remaining neurons, and black spheres represent the largest

empty spaces. Note some of these might overlap. B) Distribution of the largest empty regions. The

large bar represents that numerous smaller empty regions will exist. C) Size of the largest empty

region, as a function of the remaining number of neurons.

capacity, due to the high number of terminals and vast complexity of their axonal arbors [182].

Therefore we imagine the rate by which a neuron dies to be a function its number of neighbours,

and thus few neurons overlapping the same area are more probable to die due to stress than many

neurons overlapping the same area. This is schematically shown in Fig. 69A, where the large arrows

correspond to a high rate of dying, which occurs for the neuron with fewest connections. In this

”poor-gets-poorer” model, we observe that the distribution of neighbours of each existing neuron

is very high (Fig. 69B). Therefore all neurons experience a situation with vivid DA dynamics

and they can all transmit signals downstream to the Basal Ganglia. We calculate the rate of

denervation by measuring the number of remaining neurons at different time points, and find that

the neurons are removed very quickly initially, but at the late stages the rate of neuron removal are

decelerating (Fig. 69C). To understand this we need to characterize this configuration of neurons

from their spatial networks, and we observe that they have all split into small clusters (Fig. 70A).

These clusters are demarcated from each other, and have no ability to correlate their signals and

synchronize their dynamics. This also explains the deceleration found in Fig. 5C, since at the

final stages some very robust islands have been created, and inside these the dynamics of others

creates non-stressed conditions for the individual neurons. We argue, that even though these

clusters should all be able to transmit signals through the DA dynamics, the total output that is

transmitted from striatum might be non-coherent due to the isolation of all the clusters. Looking

at size distributions of these, we see that no clusters with less than 10 neurons exist, and the largest

cluster has around 10% of the remaining neurons (Fig. 70B). The evolution of the break-up of

clusters, has a similar pattern to what was found in the age dependent denervation model, but is

not as dramatic and the largest cluster keeps a population around 10% of the total population even

when the striatum is almost completely denervated (Fig. 70C). Due to the separation of clusters,

we expect that empty spaces are also present at this stage of denervation, and from Fig. 71A we

see that large regions depleted from DA exists. Calculating the volume of these we find that the

largest are around 0.35 cm in radius and thus they are so large that many MSNs are affected. We
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Figure 69: A) Schematic figure showing connected neurons with removal rates depending on their

number of neighbours. Here the bottom one has the highest rate to die, because it only has one

connection. B) PDF of number of connections. Green: Healthy and Blue: Denervated. C) The

number of remaining neurons as a function of time.

Figure 70: A) Visualization of 10% remaining neurons. Different Colors Indicate Different

Communication Classes. B) Distribution of cluster sizes. c) Number of neurons in the largest

cluster divided by the total number of remaining neurons, as a function of the remaining number

of neurons.

note that these empty approximately as large as for the disease induced case and much larger than

the ones arising from the age driven denervation. Compared to the disease induced denervation, we

don?t expect these empty spaces to grow as quickly, since the clusters all consist of many neurons,

and the removal of a single neuron does not have the same impact as when many clusters small

and the removal on one neuron might cause the emergence of an empty region (Fig. 71B). From

this we investigate the evolution of empty regions, and we find that they are quite low when 40%

are remaining, but from this point they grow fast (Fig. 71C) and even faster than what we found

for the other denervation strategies (Fig. 65C and Fig. 68C).
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Figure 71: A) Visualization of the remaining neurons, and black spheres represent the largest

empty spaces. Note some of these might overlap. B) Distribution of the largest empty regions. The

large bar represents that numerous smaller empty regions will exist. C) Size of the largest empty

region, as a function of the remaining number of neurons.

5.4 Discussion and Perspectives

DA is a key neurotransmitter involved in a variety of critical functions, and it is therefore not

surprising that multiple disorders have been related to dopaminergic dysfunctions [183]. The most

well known DA-related disorder is PD, which since the sixties, has been known to originate from

a loss of striatal dopaminergic denervention [184]. From a scientific point of view it is fascinating

that the neuronal network can resist a large denervation and that the cardinal symptoms of PD

does not show up before 60% - 70% of the dopaminergic neurons are lost [154, 155, 185]. There-

fore, it is likely that one or more compensation mechanisms ?exist, keep?ing the system from a

breakdown, but it is highly debated whether these mechanisms occur by regulation of release or

uptake of the remaining neurons, [178, 179, 175, 176, 177], mediated by changes in the receptor

properties [186, 187, 188, 189], or by changed activity in other regions of the brain [190, 191].

We examined how the DA-signalling changed as the neuronal denervation progressed. Starting out

by introducing the simple mean field model as previously described by Dreyer et. al 2010 [174]

we examined the effects during neuronal degradation, and in this we introduced three different

mechanisms of compensation. By solving the differential equation and simulating the system we

found that the individual compensation mechanisms led to enhancement of the tonic DA concen-

tration which was not the case for the the models with combined or no compensation in which the

steady state level remained constant. Furthermore, we found that the height of the peak during

phasic periods decreased with the level of denervation, whereas the compensation models showed

enhancement and finally the combined compensation remained unaffected. We believe it is inter-

esting that the different compensation mechanisms, all reflecting suggested mechanisms from the

available literature, can result in highly different patterns of the extracellular DA-concentration,

and we believe that these results could be a valuable prediction in future experiments investigating

the response mechanisms to neuronal denervation.

From the deterministic description we moved on to introducing a simple model of a firing pattern
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of the neuron depending on three parameters. A variety of different models of neurons already

exist, where some try to model the true biophysical situation which includes a lot of parameters,

where others are abstract and try to capture the dynamics in a simple way. [192]. This model is

definitely on the abstract side since it does not contain any information about the neuron itself

or the nature of the firing rates. However, we believe it is the simplest model which captures the

dynamics of periodic spiking and therefore it can be highly applicable for future work where it

is not the actual mechanisms controlling the firings in neurons that is examined, but rather the

effects caused by firings in neurons, as it has been in this project. The fact that we could generate

random numbers according to the distribution opens up for even faster simulations, but at the

present stage this has only been done for the non-synchronized case.

Including this model in the dynamical system results in a stochastic system, and by simulating

this we find that oscillations can arise in the tonic state if the neurons are coupled to each other.

Analysis of this system reveals an increase in the standard deviation of the data as the denervation

progresses. Furthermore, we find that the oscillations from the coupling in tonic firing has increas-

ing amplitudes the enhanced DA-release compensation as the neuronal density decreases. However,

for the system with combined compensation the amplitude decreases and thus we conclude that

depending on the compensation mechanisms, the amplitudes can either be enhanced or decreased

as the denervation progresses. We believe that this spectrum of responses in the amplitude is

interesting and can give be fingerprint of how the dopaminergic system can deal with large levels

of denervation. Furthermore, we speculate that this might differ between individuals and some

might have one type of response while others might have another. However, we searched for a

measure that did show the same trend for all the compensation mechanisms. Here, we found that

the signal to noise ratio was always decreasing as the number of neurons decreased. This was true

for all compensation models and both for the systems with synchronization and the ones without.

Therefore, we hypothesize that the signal to noise ratio is a very important measure and might

be related to the loss in abilities to initiate actions as observed in PD. We note that we have only

considered presynaptic compensation mechanisms in this project, and it is suggestive that there

should also be post synaptic compensation mechanisms in the D1 and D2 receptors. However, a

low signal to noise ratio will always affect the post synaptic receptors because even if these are

upregulated, the noise will just be enhanced and give rise to misinterpreted signals.

From this temporal description we moved on to study the spatial effects of denervation. Clinical

measurements, investigating patients with PD, usually reports an average on the denervation level

around 60-80%. However, this does not give any information about whether the remaining neurons

are all gathered in one small region or whether they are completely distributed over the entire stria-

tum. Therefore, we introduced three mechanisms of neuronal denervation, all inspired by existing

literature. We decided that the most important measures would be the number of neurons for

the remaining neurons, their cluster size in the remaining network, and the completely denervated

areas. We found that the progression of denervation through removal of random neurons lead to a

low coverage landscape, where the DA dynamics is vague and the signal to noise ratio is decreased

at all points. However, the low coverage is connected to a large distribution meaning that the

number areas of complete denervation were quite small. An interesting measure for this model was

the sudden transition in cluster sizes occuring for around 20% remaining neurons. Until this point,

the neurons are almost in one large cluster but after this they form very small and unconnected
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clusters. We believe this could be a crucial change around the onset of PD since the dopaminergic

network moves from a state where all neurons ?has the ability to synchronize to a state where the

neurons can only communicate with a small number of other neurons. For the disease spread model,

we found that the remaining neurons had been separated into subregions, but these regions were

characterized by a normal distribution of neighbors. We note that this denervation model leads

the the most rapid progression in the denervation since the number of infected neurons accelerates

in time. On the other hand, this type of denervation will keep one dominating cluster longer than

the two other denervations, and thus it can be argued that the dynamics inside the dominating

cluster, can show the same effects as the healthy striatum. Finally, we examined the results for

the stress induced denervation and found an interesting shift into numerous, completely divided

subpopulations all with a large number of neurons covering and thus high level of dynamics and a

high signal to noise ratio. All these subgroups cannot communicate with each other, and thereby

this results in strong non-coordinated signals which could be linked to the motor symptoms of PD.

Also, the complete division into small subgroups creates large empty regions deprived of DA, and

it is this type of denervation that gives rise to the largest empty regions for the final parts of the

denervation.

What happens around the onset of PD and why the symptoms only arise after a critical level

of denervation has been highly debated for several decades. We have examined this problem by

constructing a series of mathematical models based on assumptions from the literature. By using

these, we have described how the dopaminergic landscape changes in time and space as more and

more neurons are removed from the striatum. We find that depending on the mechanism of com-

pensation and denervation some different results can arise and we believe this can explain some of

the variety in symptoms and disease progression observed for PD patients. However, we also find

some common features independent of the applied compensation or denervation: As the number of

neurons is decreased, the signal to noise ratio will decrease, the irreducibility of the network breaks

into separate clusters and empty regions start to appear. Therefore, we argue that these are the

most important elements characterizing dopaminergic denervation and we believe ?they might be

related to many outbreaks of PD.
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6 Incorporation of Non Canonical Amino Acids in Bacteria

Suggest Density Induced Translation Arrest Phenomena

In this chapter the results of paper IV is presented and discussed. This work was initiated during

my stay at q-bio summer school in San Diego in 2015 through great scientific discussions with

Yonatan Chemla. The background was the experimental results carried out by Orr Schlesinger

and Yonatan Chemla, and by applying our knowledge of the system, we created a simple model,

based on experimentally measured parameters from E. Coli. I formulated and constructed the

model and performed the simulations of the system. The project was guided by Lital Alfonta and

Mogens H. Jensen, who played an important role in the development of the model.

In this project we will start by introducing a very strong promoter and ribosome binding site to the

GFP gene. Here we observe that the protein expression is very low, but we find that by introducing

a codon for a non canonical amino acid early in the sequence rescues the protein production.

By investigating this result, we introduce a stochastic model that describes transcription and

translation simultaneously and allow for interactions of ribosomes on neighbouring mRNA strands.

This model reproduces the experimental trends and we use this to make predictions about the

position of the codon for the non canonical amino acid and the protein expression, that we confirm

in the experiments. Finally we test these predictions on other genes, and find strong agreement

between the predictions of the model and the expermental observations.

6.1 Background to Protein Synthesis in Bacteria

The synthesis of proteins, is one of the most important functions of living cells. Even in bacteria this

can be quite complex, and is controlled by several mechanisms at different stages. Every stage in

the process, from DNA transcription to protein folding dynamics, is tightly regulated to ensure that

proteins are produced in required amounts, at the correct times and with minimal waste of energy

and resources [193]. In bacteria, the transcription of DNA to mRNA and the subsequent translation

into a polypeptide chain are coupled in time and space [194, 195]. Since the two processes occur

simultaneously, it creates a high molecular density area, that is populated with all the components

required for protein synthesis. For the dynamics of transcription and translation, the molecular

crowding in the cytoplasm is important fir the ability to stabilize protein-protein interactions and

to control the diffusion rates of the components involved in protein synthesis[196, 197].

A key feature of the synthesis, is the binding of a RNA polymerase to a promoter on the DNA

and the ribosome to a ribosome binding site (RBS) at the mRNA. The strengths to bind at

these sight, is vital for the transcription and translation initiation rates, and this in turn leads

to resulting molecular densities of RNA polymerases on DNA and of ribosomes on mRNA. It has

been shown that the use of a strong RBS with a high initiation rate to overexpress proteins can

lead to ribosome collisions and queuing along individual mRNA strands. [198, 199]. The kinetics

of translation also depend on the codon usage of the encoded gene, which is manifested by its

effects on the elongation rate of the growing polypeptide chain [200, 201]. Exploited across species

to control translation rates and the ribosome queues along mRNA strands, the ribosome moves

at along the sequence of codons with different rates depending on the codon, in order to optimize

protein synthesis. Depending on the elongation rates they dictate, the codons can be divided into

different rate classes. Slower codons are more frequencly found in the first 30-50 codons of the
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mRNA whereas downstream codons, however, are found to be optimized for fast elongation rates

[202, 203, 204].

6.2 Experimental Results Suggests That Incorporation of Non-Canonical

Amino Acids Rescues Protein Production

An interesting way to study this is by genetic code expansion through stop codon suppression

[205]. This method has normally been used for applicative purposes, but can also be used as a

basic research tool. We used genetic code expansion, by incorporating noncanonical amino acids

(ncAAs) into the GFP protein. Here we used the UAG nonsense (stop) codon, and transformed

it into a sense codon that encodes for the incorporation of an ncAA. This recoding is facilitated

by introducing into a host organism an orthogonal translation system (OTS) that comprises of an

orthogonal Archaeal otRNA with an anticodon corresponding to the UAG stop codon [206] (Fig.

72). The affinity of the otRNA to the tertiary complex of the ribosome A-site during translation,

is significantly smaller than that of the native bacterial tRNA [207, 208]. This smaller affinity

can be exploited to alter ribosomal traffic on the mRNA by decreasing the speed of translation

along the mRNA. This approach could be efficiently obtained when the OTS and the native re-

lease factor (i.e., RF1) are not in direct competition for the UAG codon. That competition can be

eliminated by recoding all TAG stop codons in the bacterial genome to TAA and by knocking out

the RF1 gene [209] (Fig. 72). Furthermore, we use the OR2-OR1-pr-UTR1 (P70a-UTR1) expres-

sion system, based on a modified promoter (from λ PR) and RBS (fromT7 bacteriophage)[210].

This system has the highest transcription and translation initiation rates reported for an E. coli

element, and so far, it has been used exclusively in vitro. We expect that its high initiation rates

will generate large and unusual ribosome crowding along the transcribing mRNA. We therefore

hypothesized that in the crowded environment of a polysome, a growing polypeptide chain may

interact with neighboring translational components inside the polysome in a manner that can sig-

nificantly retard the process. Indeed, it was previously shown that the nascent polypeptide can

regulate the translation process in the ribosome by interacting with the polypeptide exit tunnel in

the ribosome[211]. Such interaction may cause ribosome stalling [212] translation arrest [213] and

even accelerated mRNA degradation [214]. We exploited both the incorporation of ncAAs using

UAG stop codon suppression, synonymous mutations in the gene and the modular tuning of the

P70a-UTR1 expression system to model and control ribosomal traffic, thus optimizing recombinant

protein expression.

6.2.1 Non Canonical Amino Acid Incorporated at Position 35 Increases Production

With this experimental setup, we wanted to test the effects of expression and incorporation ncAA.

In the following, all cells will have the P70a-UTR1 system unless otherwise stated (strong promoter

and RBS) and WT will refer to a cell with no ncAA. We now started by measuring the production

of GFP from the WT, where the nave hypothesis was that it should produce an extreme amount.

In order to measure the production we measured the fluorescence for a group of population of cells,

and here we found a very small production of GFP from these (Fig. 73A). In the time course we

observed that the fluorescence level would initially be low and then start increasing fast and then

finally settle into a steady state, meaning that the entire trajectory takes a sigmoidal shape. We
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Figure 72: A) Schematic figure showing the experimental setup of the system

assume that the steady state level represents a lack of production in the cell culture due to lack of

resources. To explore this further, we now inserted a single TAG mutation at position 35 in the

GFP sequence(35TAG from hereon. TAG refers to the codon and the number defines its position

in the gene). Surprisingly, we found that this produced much more GFP than the wildtype (Fig.

73A). This was highly surprising, since our only hypothesis for the effect of TAG, was a severely

decreased translation rate at the given position. To investigate this further, we now tested the

effects on the mRNA level and here we found a much larger mRNA level for the 35TAG(Fig. 73B),

which was also surprising since the rate at which translation occurs should not be coupled to the

production of mRNA. This outcome was observed not only when using a genomically recoded E.

coli strain (C321∆prf1) (GRO) but also with two other E. coli strains (i.e., BL21(DE3) and DH5α).

We tested the ncAA incorporation by mass spectrometry and verified that this was correct. We

also ruled out the possibility that inclusion bodies or secondary mRNA structures were the source

of the divergence between the WT GFP and 35TAG GFP quantities. Cryo-electron microscopy

imaging of GFP revealed neither inclusion bodies nor any marked difference in bacterial shape

compared to bacteria without the GFP expression plasmid Moreover, there was no difference in

the mRNA structure encoding for the WT GFP and the mutant GFP. Finally we tested whether

the insertion of the mutant affected the basic groth rate of the bacteria, but here we did not

find any difference either. Taken together, these observations motivated our search for a more

fundamental explanation related to the coupling of bacterial transcription and translation kinetics.

We conclude from this that a system with extremely high levels of RBS and promoter strengths

has an apparent breakdown, which can be rescued by inserting a single mutated codon with a very

low rate. To explore this further we therefore moved to a mathematical model.
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Figure 73: A) The protein level measured through flourescence for control, WT and 1 mutation

at position 35 B) The measured mRNA level for WT and 1 mutation at position 35

6.3 Construction Of a Simple Model Relating Transcription and Trans-

lation

Herein, we propose a model to predict protein and mRNA levels that is based on a set of bio-

chemical parameters combined with several assumptions. Model parameters: an increase in the

RNA polymerase (RNAP) initiation rate (i.e., promoter ”strength”) leads to a decrease in the av-

erage distance between transcribing RNAP and vice versa [215] The deterministic average distance

between RNAPs is given by:

〈D〉 = DPol +
R0

Rα
(127)

Where DPol is half the length of the polymerase, R0 is the movement rate along the DNA, and

Rα is the polymerase initiation rate.

6.3.1 Movement of Polymerase and Ribosome in the Model

We consider the DNA strand of the GFP gene of length 238 codons. First the RNA-polymerase

can attach to the DNA with a rate Ra given there is no other RNA-Polymerase already attached

to the DNA at any of the 12 first positions, since this is the width of a RNA-Polymerase. Now

this is moving on down the 238 codons that all has a rate R0. It should be noted that because

all positions on the DNA has the same rate, does not mean that the RNA-Polymerase moves at

uniform velocity. First of all, in a stochastic picture, a constant rate means that the distribution

of time the polymerase spends at a position before moving, is given by an exponential distribution

with mean R0, and spread. Furthermore the basic assumption that no object can share the same

position, means that quickly a queuing structure will evolve, and this will leads to regions where

some polymerases will move very slowly due to leading polymerases, there by chance has moved a

bit slower down the strand. When the polymerase reaches the final step in the strand, it can leave

the strand and release the RNA with a rate Rb (Fig. 74A). Whenever the RNA-polymerase moves
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one position, it produces RNA, meaning that the length of the RNA strand will to be equal to the

position of polymerase.

Whenever the length of the RNA is 12 codons, which is the width of the ribosome, a ribosome

can attach to the RNA strand with rate ra. Once attached the ribosome can move at at the RNA

strand. with rates a = 35/s, b = 8/s, c = 4.5/s or TAG = 0.04/s. The ribosome can only move

if there is no ribosome occupying any of the 12 codons in front of it, and if the position of the

polymerase on the DNA is higher than the position of the ribosome plus 12, since otherwise the

RNA strand has not been created, for the ribosome to move on (Fig. 74B). Whenever the ribosome

moves down one position, a new aminoacid is added to the polypeptidechain there is growing in

space.

Whenever the ribosome reaches the final position, it can leave the RNA strand with a rate ra,

hereby releasing the polypeptidechain to produce a protein. From the above description, this can

only happen after the polymerase polymerase has detached from the DNA strand. Therefore the

final RNA stands can produce proteins, until they are degraded with a rate kRNA

Figure 74: A) Schematic figure showing the movement of a polymerase B) Schematic figure

showing the movement of a ribosome

6.3.2 Growth of Polypeptide Chain and Interaction Between Chains

We need to consider the resultant length of the polypeptidechain, in the situation sketched above.

We consider the amino acids to be solid spheres with radius raa (Fig. 75A). Now as we add a new

aminoacid, it is attached at the ribosome, and we assume that it has one point of contact with the

aminoacid in front. Thus we assume that the two angles in 3 dimensions, is uniformly distributed,

so

P (θ) ∈ [−α;α] and P (φ) ∈ [−α;α] (128)

The resultant length of the chain can now be described by:

L(θi, φi) = 2r +
n∑

i=1

2rcos(θi)cos(φi) (129)

The avarage length of a chain of two aminoacids is thus:

〈L〉 = 2r
(

1 +

∫ α

−α

∫ α

−α
cos(θ)cos(φ)P (θ)P (φ)dθdφ

)
= 2r

[
1 +

(sin(α)

α

)2]
(130)

For σθ = σφ = π
2 , and a length of the amoni acid of 0.3 nm, we get an avarage constant of propor-

tionality λ = 0.12 nm/codon. This means that the length of the polypeptidechain perpendicular
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to the direction of movement of the ribosome, can be described by the linear relation, depending

on the position of the ribosome, denoted n:

L(n) = Wr + daa + λ(n− 1) (131)

where Wr is the estimated height of the tRNA and daa is the diameter of the first aminoacid and

we assume Wr + daa ≈ 8nm [216]. We note that this is a highly simplified calculation, but we

believe that it can prove valid during the short time, where transcription in the bacteria occurs.

Figure 75: A) Schematic figure showing the growth of a polypeptide B) Schematic figure showing

the interaction between two ribosomes on neighbouring mRNA strands

In bacteria, transcription and translation are coupled, i.e., as soon as the RBS on the tran-

scribed mRNA emerges from the polymerase, the ribosome can bind to the RBS and translation

begins [194] The close proximity of the two processes in time and space means that there may be

interactions between them. From our model description, it can be deduced, that the distance be-

tween two ribosomes on neighouring mRNA strands, is given by the distance between polymerases.

In this picture, the size of the polypeptidechain from one ribosome, can be longer than this dis-

tance between them and therefore we hypothesized that highly crowded conditions will promote

high spatial ribosome density. Through interactions between these ribsosomes on separate mRNA

strands, this can induce translation arrest in a process that we termed ”Density Induced Transla-

tion Arrest” (DITA). This means that if a ribosome moves into a position, where the distance to

the polymerase generating its own mRNA is the same as the ribosome on one of the neighbouring

RNA strands interactions can occur. Now if the length of the polypeptidechain is longer than

the distance between the two polymerases, the two ribosomes will be ”arrested” (Fig. 75B). This

arrest, causes the two ribosomes to stop moving and after transcription ends, an mRNA that has

arrested ribosomes are immediately degraded. To sum up, we therefore proposed that in situations

where the promoter and RBS initiation rates are large enough to create regions with high molecu-

lar density and in which the nascent polypeptide is long enough, the probability for DITA events

increases. In the case of a DITA event, all the ribosomes upstream of the arrested ribosome stall,

promoting translation termination and thus reducing the number of full-length proteins produced

from crowded mRNA strands.
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6.3.3 Description of Simulation Steps and Parameters in the Model

With this we are ready to set up the entire model as can be schematically seen in Fig. 76. We

start with an empty DNA sequence of 238 codons, where a polymerase can attach with rate Rα,

and then move on the DNA with uniform elongation rateR0 [194, 215]. When the polymerase has

moved a distance Lp/2which defines the minimal distance between polymerases, a new polymerase

can attach with rate Rα. When the polymerase has produced Lr/2 codons, a ribosome can now

attach with rate rα. An important element is now the different elongation rates of each codon in the

mRNA sequence[217, 218, 219] at which the ribosome can move along. On the basis of a previous

model developed by Mitarai et al., the entire set of bacterial codons was divided into three groups

based on translation rate: fast (A), medium (B) and slow (C), which correspond to elongation

rates of 35, 8, and 4.5 codons per second, respectively[218]. The mutated UAG codon was assigned

a new translation rate category, group (D), which had a significantly lower elongation rate of 0.04

codons per second. The rate was estimated from in vitro experiments [207] has some uncertainty,

however the majority of the results of the following sections are robust for rD ∈ 0.01−0.2codons/s.

Every time a ribosome moves, the polypeptide chain grows with λ and after each move its distance

to nearest neighbours on neighbouring mRNAs is calculated and compared to the lengths of the

polypeptide chain. Whenever a ribosome reaches the final codon, it can be released with rate rβ

and at this point we count a new protein. From this it is clear that the ribosome can not produce

any proteins during transcription. A list of all parameters is found below:

Parameters used in this study Notation value

Initiation rate of P70a promoter (strong) RSα 3.0/s

Initiation rate of P70b promoter (weak) RWα 0.2/s

Elongation rate of polymerase R0 51nt/s

Termination rate of polymerase Rβ 3.0/s

Initiation rate of UTR1 (strong) rSα 1.5/s

Initiation rate of UTR3 (weak) rWα 0.15/s

Elongation rate of ribosome A (fast) rA 35.0codons/s

Elongation rate of ribosome B (medium) rB 8.0codons/s

Elongation rate of ribosome C (slow) rC 4.5codons/s

Elongation rate of ribosome D (UAG - very slow) rD 0.04codons/s

Termination rate of ribosome rβ 1/s

mRNA half-life time t1/2 60s

Proportionality constant lambda λ 0.11nm/codon

Size of ribosome Lr 24codons

Size of polymerase Lp 24codons

To simulate this, we use the setup of Totally Asymmetric Simple Exclusion Processes, which

has previously been used to study translation [220]. This means that at each step we calculate the

time until next event by transforming a uniformly distributed random number to an exponentially

distributed random number:

tnext = − ln(R)∑
i ai

(132)
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Here R is a standard uniformly distributed random number and the a’s are defined as the rates on

the mRNA. Now we determine the element that moves, by choosing a new random number and

calculate the normalized cumulative sum of the rates. We pick reaction, i, if:

if R ∈ ]
ai−1∑
j=1 aj

,
ai∑
j=1 aj

]→ reaction i takes place (133)

Here we use this setup to couple transcription and translation using the real gene sequence and

and take the biological measures into account. Before comparing the results from the experiments

to the results from the model we started out by investigating the basic properties of the model.

Figure 76: Schematic figure showing the full model along with the parameters of importance.

6.4 Stochastic Model Recapitulates Key Results From Experiments

With the setup of the model we were now ready to predict the production from different versions

of the system. We will in this section change the position of the TAG mutation and change the

strengths of the promoters and RBS. We will mainly take four systems into account:
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• WT - strong polymerase and ribosome binding

• Y35TAG - same as WT but with mutation at position 35

• Y35TAG + D193TAG - same as WT but with mutation at positions 35 and 193

• Weak promoter - no mutations but a weak promoter

• Weak RBS - no mutations but a weak RBS

6.4.1 Early TAG Mutation Rescues Protein Expression

The first test for the model was whether it could predict the initial experimental result: The low

production for the WT and the enhanced production by incorporating a TAG codon at position 35.

Here we found that the results of the Gillespie algorithm simulation agreed with the experimental

results for both WT and Y35TAG mutant GFP (Fig. 77A-B, red and blue curves). Thus the

model suggests that WT GFP expression levels are negligible because of the high probability for

DITA occurrences when a strong promoter and RBS are used. In the case of the Y35TAG mutant,

the model suggests that the small translation-rate at the mutated codon serves as a ”traffic light”

to reduce ribosomal density downstream. Taken together, the reduction in translational density

downstream of the mutated site and the low probability of a DITA event result in high yields of

expressed protein. Since we suggest that the role of a traffic light is important for optimal expression

efficiency the position of the mutation should be quite important. Due to its substantially slow

translation rate compared to those of codons encoding for canonical amino acids, a queue of

ribosomes will grow behind the reassigned stop codon. This transient stalling generated by an

early mutatuin significantly reduces ribosome occupancy downstream, and thereby the chance of

a DITA event. As the translation process continues, the chance that the elongating polypeptide

chain will have a DITA grows. Indeed, both our experimental results and our simulations indicated

that the earlier the stop codon is introduced, the lower the chance of a DITA event. Our hypothesis

predicts that the closer a UAG codon is positioned to the C-terminal, the smaller will be the protein

yields in a manner similar to what is observed for the WT GFP. Therefore we ran a simulation

with a mutation inserted only at position 193 instead of 35. Here we found that only a fraction of

what was produced for the Y35TAG system was produced, and even less than for the WT (Fig.

77B, green curve). This result is explained by the fact that whenever a ribosome is stopped at

a late position, the polypeptide chain will be long enough at this point so moving ribosomes at

neighbouring mRNAs can cause interactions. The reason it produces less than the WT, is that the

few mRNAs that escape without any arrested ribosomes, will give a higher production than the ones

with a TAG codon. To test our prediction from the model, we mutated position D193TAG in the

GFP gene, and here we found that the experimental results coincided with those of the simulation,

i.e., low protein levels (Fig. 77A, green curve). This result is rather surprising since it clearly

shows that it it not an effect of the mutation itself but a result of the specific position in the gene.

This result is in agreement with earlier reports by Tuller et al. of an early slow translating ”ramp”

region close to the translation initiation region [201, 202]. We note that there is a discrepancy

between the experimental results and the model, since the model predicts the D193TAG to give

lower expression than the WT. We believe that this might be explained by other minor effects

that is beyond the scope of our simple model, and that this small discrepancy does not destroy

the predictive succes of the model. Finally, we tested a combination of Y35TAG and D193TAG.

The model predicted that the early mutation would decrease the translational density around the
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later, thus reducing the probability of DITA in total (Fig. 77B, purple curve). Thus the double

mutation would produce more than D193TAG because of an early rescue of ribosome densities

and less than Y35TAG, since the produced mRNAs would have a lower production rate due to the

two stalling sites. Again we tested this prediction experimentally, and found a strong correlation

between experiments and the model predictions. We therefore conclude from this that our model

could explain not only the initial results, but also predict the outcomes of new experiments. These

results reconfirm that translation rates are crucial for high yields of protein expression. To test

the model further we now also included dependencies on promoter strengths and RBS.

Figure 77: A) Protein level measured experimentally through fluorescence as a function of time.

Blue: WT, red: Y35TAG, green: D193TAG and purple: Y35TAG+D193TAG. B) Protein level

calculated from the model. Colours as in A.

6.4.2 Decreased Initiation Rates Rescue Protein Expression

Since the main rescue mechanism studied in the section above, was the inclusion of a low rate

codon, it is tempting that a low RBS might cause an even higher production. Furthermore, if the

arrest is caused by the coupled density between mRNA strands, we would believe that lowering

the promoter strength as well could give an efficient way of producing proteins without reaching

a density threshold. We therefore started out by investigating the effect of a weak promoter in

relation to the single and double mutants. Here we tested the production rate from a finished

strand with no arrested ribosomes on it. Following the decay of an mRNA, we recorded its lifetime

and the number of proteins coming from this template. Here we find that the weak promoter has

just as high an efficiency to as the WT, but it occurs much more frequently that an mRNA with

no arrested ribosomes is produced from the weak promoter than for the WT (Fig. 78A, cyan and

purple curve). Here we also find that the production rate for the single and double mutated cells

to be significantly lower, due to the slow rate at the TAG site. Surprisingly, the production rate

for cells with two mutations, is only slightly lower compared to the single mutation (Fig. 78A,

red and blue curve). We then moved on to test how the protein production depended on the

constant that governs the elongation rate of the polypeptide chain λ. We find that for very small

values of λ the WT has the highest production, since no arrest events occurs in this regime. Here

the weak promoters also produce more than the mutations, since the protein outcome of their
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produced mRNAs is much higher than for the ones with mutations. As λ increases to the level

we expect from our calculations in the sections above, the ones with a weak promoter has the

highest production, and the mutated cells produce more than the WT. Finally, for the very large

values of λ, arrested ribosomes occurs so frequently that the optimal production is found for the

cells with TAG mutated codons (Fig. 78B). We now simulated the system with the parameters

shown above, and compared the Y35TAG to the weak promoter and a weak RBS. Here we found

that the weak RBS had the highest production and that the weak promoter also had a higher

production than the Y35TAG. They were all significantly higher than the WT (Fig. 78C). To

test this, we engineered weaker variant of the P70a promoter and the UTR1 RBS by introducing

point mutations into the control regions. The use of either a weaker promoter or RBS enabled

us to test whether the lowered production of the WT, was affected only by transcriptional or

translational density or, as our model suggests, that both factors influence the expression density.

Intuitively, the use of weaker promoter and RBS regions is expected to result in smaller amounts

of synthesized protein, however, as predicted by our hypothesis and model, the counterintuitive

trend was observed, according to which the weaker the control region, the higher the protein

yields (Fig. 78D). Thus, by using a simple set of mutated reporter genes and incorporation of

non canonical amino acids, we showed how protein synthesis yields depend, in a counterintuitive

manner, on the strengths of the regulatory elements, i.e., promoter and RBS strengths, as well as on

codon usage. Under the DITA assumption, we propose that the stalling of translation somewhere

along an mRNA causes all upstream ribosomes to stall while all downstream ribosomes complete

translation. This hypothesis also suggests that the stretch of mRNA between the DITA site and

the 3’ end will be more exposed to endonuclease cleavage. For that reason, we predicted that the

larger the chances of DITA, the lower the mRNA levels will be, because mRNA is more exposed

to endonucleases. Using the model, we determined the amount of mRNA produced by each of the

mutants and compared it to the relative quantity of GFP mRNA found in mid log phase cultures

of the same mutants using qPCR (Fig. 78E). A comparison of the experimental and the modeled

results revealed a strong correlation, suggesting that DITA affects both protein and mRNA levels

by rapidly degrading not only the mRNA, but also nascent peptides.

6.4.3 Predictions of Optimal mRNA and Protein Production Regions

From the results in the section above, it is evident that there is a correlation between the protein

production and strengths of the promoter and of the RBS. This correlation has to be dependent

on the inserted rates, and we are therefore inspired to investigate what combination of parameters

that gives an optimal production under the DITA assumption. We therefore tested all a wide

combination of promoter and RBS strengths in simulations, and reported the calculated protein

production. In Fig. 79A we see the resulting heat map generated by the model, that exemplifies the

intricate relationship between promoter initiation rate and ribosomal initiation rate and resulting

protein levels. In this map we find that there is a certain set of conditions that will afford high

protein yields, even for a combination of a very low promoter initiation rate and a high ribosomal

initiation rate. From an evolutionary point of view there is therefore many different combinations

that can give the desired production level. Since high mRNA levels usually correspond to high

protein expression levels, it is essential to optimize protein expression for high levels of mRNA. We

therefore investigate the combined mRNA levels for the same parameter set, which generates the
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Figure 78: A) Production from an mRNA template vs. the lifetime of the template B) The number

of produced proteins in the model as a function of the elongation factor λ. C) Protein production as

a function of time from the model simulation. Red: WT, Blue: Y35TAG, Green: Weak Promoter,

Purple: Weak RBS. D) Protein production as a function of time from the Experiments. Red: WT,

Blue: Y35TAG, Green: Weak Promoter, Purple: Weak RBS. E) mRNA levels for WT, Weak

Promoter, Weak RBS, Y35TAG and Y35TAG+D193TAG.

heat map shown in Fig. 79B. It can be seen from the map that as expected ribosomal initiation

rates have a very low influence on mRNA levels, that is optimized for very low values of RBS and

high values for the promoter strength. We note that the band from the heat map in Fig. 79A

is still visible, and this is of importance, since this represents the highest production rate for the

lowest cost in terms of produced mRNAs. Thus we hypothesize that this ratio is what would be

found in many natural genes. To sum up, our experimental results as well as the model have

identified a set of conditions in which mRNA levels are influenced by ribosomal initiation rates.

From our hypothesis this is explained by a high spatial density of ribosomes. We do not exclude

other explanations for the reduction in mRNA levels such as effect on transcription initiation by

the density, or a codon bias effect [221] possibly mediated by a protein [222] However, if this is the

case, then it is mutually inclusive to our hypothesis.

6.4.4 Testing of Additional Proteins Strengthens the Models Prediction Strength

To investigate the generality of our results, and to make sure that it is not specific only to GFP, we

tested our model on three different genes: red fluorescent protein (mRFP1), Zymomonas mobilis

alcohol dehydrogenase II (zmADH) and the B1 domain of Protein L (PL). The genes were tested

under similar conditions to those used for GFP, and their exact sequence were included in the

model. The mRFP1 gene was chosen because it is a reporter protein as is GFP, however, mRFP1
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Figure 79: A) Number of produced proteins from the model, calculated for different values of

Rα and rα. B) Number of produced mRNA strands without arrest from the model, calculated for

different values of Rα and rα. Region marked in white is the most economical region.

shares only 26% similarity with the GFP amino acid sequence and it represents an optimized gene

in terms of codon usage (it consists almost entirely of rapidly translating, i.e. A-type codons).

The experimental results for mRFP1 were in a good agreement with the model simulations (Fig.

80A) and showed in general the same trends as the GFP. We note here that the combination of

the very weak promoter and the slow TAG codon at position 15 has an even lower production than

the WT system. From the model perspective this is because the low production of mRNA due

to the promoter and low production of protein from the finished strands gives a very low output.

In contrast to mRFP1, zmADH is a larger, more complex gene with lower translation rates owing

to its abundance of codons from groups B and C, which attenuate the translation process and

result in more complex folding dynamics. The results were once more in a good agreement with

the simulations (Fig. 80B), but we observed, contrary to model predictions, a partial rescue effect

when testing expression levels with a late mutation (V86TAG) compared to the WT. This finding

suggests that cotranslational folding and chaperons may introduce specific points at which nascent

polypeptide length is significantly reduced - an assumption that is not incorporated in the model.

Thus, the special case of a late mutation can partially rescue a protein from DITA. However, once

again we observe that a weak promoter increases expression for this enzyme as well, which was

observed both in the model prediction and experimentally. Lastly, we measured the production

from PL which is a small, 73-amino-acid polypeptide. This was chosen to test the model prediction

that a protein with a relatively short polypeptide chain should have a much lower propensity for a

DITA event. This is because the time where the mRNAs are aligned during transcription is much

shorter, and almost all mRNA can thus escape without any arrested ribosomes. Furthermore the

length of the polypeptide chains remains quite small at all times and thus interactions almost never

occurs. We found that WT PL is efficiently produced at significantly greater levels than the TAG

mutated variant (Fig. 80C). The results with PL is an additional experimental fingerprint, that

if the polypeptide is short enough, and the time spent with mRNAs in close proximity of each

other, then spatial collisions are less likely to occur. To sum up, there is good agreement between

124



our model predictions and the experimental results also for other proteins of different complexity,

and thus it could have predictive power for several proteins and potentially in other procaryotes

as well.

Figure 80: A) Protein expression for mRFP1 for WT, Weak promoter, K15TAG and Weak

promoter + K15TAG B) Protein expression for zmADH for WT, Weak promoter, V86TAG and

H297TAG C) Protein expression for PL for WT and K16TAG

6.5 Discussion and Perspectives

Due to the fact that we have no direct evidence to the occurrence of DITA, we wanted to test our

hypothesis by exploring alternative explanations for this phenomenon. Alternative explanations

that were excluded by us are: differences in protein stability between a protein with an ncAA and

WT protein, differences in plasmid copy numbers, mRNA secondary structure differences, as well

as ncAAs interference with fluorescence of the reporting protein, GFP. In order to demonstrate

no apparent change in protein stability between WT GFP and Y35TAG GFP, two experiments

were conducted: We monitored the stability of the WT and the mutant protein in a crude cell

lysate over the course of 24 h, showing that both proteins were stable with no significant change

in fluorescence. In the second experiment we used synonymous, slow translating codons that

were consecutively mutated around position 35, demonstrating that after the addition of four and

above slowly translating codons, protein yields improve significantly to yields that are even higher

than that of the protein with incorporated ncAA , these important results indicate that the same

protein with no structural change, but a change in the coding sequence, can be expressed with

higher yields when the rate of translation slows down significantly, these results are in agreement
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with a recent report of Zhong and co-workers.32 These results also show that even with a strong

promoter as is being used in this study, no hindrance from plasmid replication is observed. Evidence

that attests to the fact that there is no hindrance for plasmid replication due to the existence of

a strong promoter are the results with PL, since this protein is very short (ca. 70 AA) it is

not affected by DITA, and high yields of expression are observed for this protein even with the

strong promoter . mRNA secondary structure could have accounted for the apparent differences in

expression profiles between WT GFP and Y35GFP; however, an analysis of the mRNA secondary

structure according to an algorithm written by Mathews and co-workers33 has shown no difference

in mRNA secondary structure. The algorithm calculates mRNA secondary structure by taking

into account base pairing, free energy minimization and other thermodynamic considerations. The

analysis has shown that the single nucleotide change of C 7→ G has no implications on mRNAs

secondary structure, hence could not explain the discrepancy in expression levels. Moreover, once

ribosomes bind mRNA during translation, the secondary structure is rendered almost linear, hence

the predicted secondary structure is not relevant any longer and could not account for the observed

difference. In order to exclude the possibility that ncAAs may interfere in any way with GFP

fluorescence, we have quantified WT and mutant GFP and thus report their quantities rather

than their fluorescence. Additional possibilities were tested as well: ribosome abortion due to

ribosome collisions was not excluded it could be an additional hindrance in the system but not

an exclusive explanation since we could see elevated expressions of WT GFP also with a weak

promoter and a strong RBS. Another possibility is that due to the strong promoter and RBS there

will be an extreme consumption of translation factors (i.e., ribosomes, tRNAs, elongation factors,

release factors), this possibility was excluded since it should have been seen for the much slower

mutant as well (Y35PrK GFP), with the same strong promoter, multiple mRNAs will require

multiple ribosomes too. Lastly, we have considered the plasmid copy number as a possible cause of

low protein expression levels as is common with very strong promoters, however, our observations

point to very low effect of plasmid copy numbers if any: the fact that the relatively small protein

WT PL have shown high yields compared to the mutant protein using the same expression vector

as for WT GFP expression, while the WT GFP have shown very small expression levels under

the same conditions, contradicts the effect of plasmid copy number as the cause for low protein

yields. In addition, for the same plasmid Y35PrK GFP have exhibited very high yields as well,

again contradicting the effect of high plasmid copy number. Moreover, the synonymous mutations

experiment, demonstrates very well that after the insertion of four synonymous ”slow” translating

codons in the beginning of the gene, protein expression levels are recovered, for the same plasmid,

yet again demonstrating that plasmid copy number could not be the cause for low protein yields.

The ability of the model to accurately predict the expression trends of various proteins under

different conditions led us to suggest that spatial expression density and DITA have significant

effects on protein expression in cells. We note that our model does not take into account co-

translational folding and therefore should not be applied to these cases. We would like to stress

out that a natural system could not have been evolved to have such strong elements to drive

higher protein expression, maybe due to DITA, hence, natural systems have evolved to prevent

inefficiency and energy loss. We have used artificial transcription and translation elements as well

as a recombinant GFP with a synthetic sequence to demonstrate DITA. These elements were then

modified to control DITA levels. In our model the expression density of any gene relies on a
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combination of four key determinants: translation initiation and termination rates, transcription

initiation and termination rates, gene length and codon bias. Herein, we propose an additional

hypothesis for the important roles of codon bias and genetic code redundancy. Although this effect

was only observed in this study due to the use of highly efficient transcription and translation

control regions, we infer that its effects could have significant, yet not always easy to observe

implications, on the expression of all recombinant heterologous proteins. We propose that what is

widely known as exogenous expression toxicity due to resource and energy depletion in some cases

could be explained by DITA. In addition, we were able to show that by reducing the strength of the

regulatory elements, we could lower expression density, resulting in a counterintuitive outcome that

significantly improved protein yields. These protein expression dependencies were also observed at

the mRNA levels of the various mutants, showing that it affects both cellular protein and mRNA

levels, thus affecting the final quantities of protein produced. We showed that DITA occurs for

several, highly dissimilar proteins, suggesting that it could be a general mechanism found in all

bacteria. Moreover, our findings may also point out the importance of separating transcription and

translation processes to increase the production rate of proteins, especially with longer and more

complex genes. Obtaining a deep understanding of the transcription and translation processes is

of an utmost importance; our findings are a novel step towards the ability to control and modify

these processes, which may have a significant impact on protein expression both for fundamental

research as well as for biotechnological applications.
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Appendix A - Biochemical Processes

Simple Protein Dynamics

We consider a protein, TF , and with one operator P, where the RNA polymerase can bind if there

is a transcription factor present (Fig 81A). In terms of reactions it looks as the following:

TF + P
kon−−⇀↽−−−
koff

PTF

with kon being the rate at which binding occurs and koff being the rate at which they dissociate.

If we consider the equilibrium situation we have:

kon · TF · P = koffPTF

From where we can get the dissociation constant defined by:

K =
koff
kon

=
TF · P
PTF

Typically we then consider a finite number of operators, meaning that

Ptotal = P + PTF

Then we can use this to calculate the fraction of the occupied operator to be:

PTF
Ptotal

=
P

P +K

The dynamics would be governed by the differential equation:

dPTF
dt

= konP · TF − koffPTF

This is one of the simplest cases to describe mathematically, and usually this will be too simplified

for a genetic network. But for some systems, the above description can be used in simplified

models, for instance the ion channel [223].

Michaelis-Menten Kinetics

We consider the following situation (Fig 81C):

E + S
k1−−⇀↽−−
k2

ES
k3−−→ E + P

Under the assumptions that the total amount of E is constant E = E0 − ES
We have 4 components in this network so we consider the differential equations. We just consider

the differential equation for Ṡ:

Ṡ = k2ES − k1 · E · S = k2ES − k1 · (E0 − ES) · S
In steady state we have

ES =
E0S
k2

k1
+ S
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Figure 81: A) Schematic figure of the simplest promoter-Transcription factor binding. B) Time

development to steady state. C) Schematic picture of Michaelis Menten situation. D) Curves

showing different output values depending on K and V. E) Schematic figure of cooperativity giving

rise to Hill function F) Curves showing different output values depending on K and h.

Using this expression, we can get an expression for Ṗ which is the component we want to describe:

Ṗ = kcatES =Vmax
S

kD + S

where Vmax = kcatE0 and KD =
k2

k1

Here Vmax is the maximum production of the system, in the case of S →∞, and Km corresponds

to the concentration to reach half maximum. Also here the system provides possibility to describe

some of the kinetics of proteins, but for many systems this is oversimplified, which is partly because

many systems tend to have cooperativity between the proteins (Fig 81D).

Coorperativity in Gene Regulations

The way that transcription factors regulate the transcription is still far from well understood.

However it is well established that not always are only one transcription factor needed, and quite

often a complex of several transcription factors can be needed in order to efficiently bind the

polymerase and start transcription. In Fig 81E we see a situation where three transcription factors

are needed in order to bind the polymerase to the promoter region. To establish an equation for

this, we consider the binding of n Transcription factors Tf to a position in on the genome E. We

can write this process as:

n·Tf + E
k1−−⇀↽−−
k2

TfnE
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From this we can define the dissociation constant as :

Kn
D =

[Tf ]n · [E]

[TfnE]

Now we want to consider the probability to be bound:

pbound =
[TfnE]

[E] + [TfnE]

Then we can insert the definition of the dissociation constant to obtain:

pbound =
([Tfn]/Kd)

n

1 + ([Tfn]/Kd)n
=

[Tfn]n

Kn
D + [Tfn]n

In Fig 81F we see the different output of the Hill function for different values of the parameters

K and n. This equation is typically used to describe the production of mRNA for a system. First

of all it is important to note, that as the Hill coefficient (above n, often it is defined as h) increases,

a switch like behaviour emerges for the output function. Many times in experiments, switch-like

behaviours are found, and here the Hill equation is usually used to model this; also even though

the theoretical value of n, is unknown [223]. One point to mention is here that even though a

complex might need for instance 3 molecules theoretically, from experiments this value can often

be lower. An example of this is the bind of haemoglobin that should bind 4 molecules, but where

experiments give a Hill coefficient of around 3.0. The constant K, should be understood as a

measure for the concentration of Transcription factors to occupy half of the binding sites. Note

that the higher the value of K, the longer before the curve starts to rise.

Derivation of the saturated degradation

An important element in the model is the description of the negative feedback mechanism modelled

as a so called saturated degradation term. The proces we are actually considering is the following:

p53 +Mdm2
k1−−⇀↽−−
k2

Cp−M
k3−−→ ∅+Mdm2

If we now assume there is a quasi-steady state so the rate of change in the complexes can be

neglected we can write:

k1 · (p53− ∅) · (Mdm2− Cp−M )− k2Cp−M − k3Cp−M = 0

Now isolating Cp53−M we obtain:

Cp−M = Mdm2
(p53− ∅)

(p53− ∅) + k2+k3

k1

Since

∅̇ = k3Cp−M

we can express the degradation of P53 through the expression:

˙p53 ≈ −k3Mdm2
p53

p53 + k2+k3

k1

= −βMdm2
p53

p53 + γ
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Appendix B - NF-κB Model (M)

The transcription factor NF-κB is very important for the mammalian protein production, since it

regulates 384 genes involved in at least 572 protein-protein interactions [49]. Therefore it is very

important to understand the underlying network leading to NF-κB dynamics and several models

have therefore been constructed to capturethis.

In the following we describe the assumptions behind the NF-κB model [34], which is again based

on previous findings [52, 11]. A schematic version of this is found in Fig 11A. In the model, we

consider the NF-κB inside the nucleus (Nn), where it acts as a transcription factor for proteins,

including I-κB. We describe Nn as the nuclear NF-κB concentration, Im is the IkB mRNA level,

and I is the concentration of cytoplasmic I-κB protein. In the equation for Ṅn, the first term takes

the import of NF-κB to the nucleus into account. This is however in many circumstances inhibited

by NF-κB-IκB complexes formed in the cytoplasm. The second term considers the formation of

these complexes in the nucleus followed by their export into the cytoplasm. The equation for IRNA

describes the NF-κB activated transcription of IκB mRNA and the degradation of the mRNA with

a half-life of ln(2)/γm. The first term in the equation for IκB models translation of IκB mRNA into

IκB protein in the cytoplasm, and the second term models the TNF-triggered degradation of IκB in

the cytoplasm when it is bound to NF-κB. The triggering stimulus TNF, acts by changing the level

of active IκB kinase, [IKKa], which phosphorylates IκB, resulting eventually in its degradation.

This degradation rate is set by the parameter α in the model. It is thus only this protein complex

with IKK that can phosphorylate the NF-κB - I-κB complex and make NF-κB active again. This

model assumes that there is a constant amount of IKK (IKKtot), which can be in three states:

active (IKKa), inactive(IKKi) and neutral (IKKtot−IKKa−IKKi). TNF increases the rate at

which neutral IKK is made active, and decreases the rate at which inactive IKK is made neutral.

All the parameters used in the NF-κB model are found in the Table.

With these assumptions at hand, we formulate a system with the following five coupled differ-

ential equations:

Ṅn = kNin(Ntot −Nn)
KI

KI + I
− kIinI

Nn
KN +Nn

(134)

˙IRNA = ktN
2
n − γmIRNA (135)

İ = ktlIRNA − αIKKa(Ntot −Nn)
I

KI + I
(136)

˙IKKa = ka · TNF · IKKn − kiIKKa (137)

˙IKKi = kiIKKa − kpIKKi
kA20

kA20 + [A20] · TNF (138)

IKKn = [IKK]tot − IKKa − IKKi (139)

TNF = 0.5 +Asin(
2π

T
t) (140)
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Parameter in paper Default value

kNin 5.4 min−1

kIin 0.018 min−1

kt 1.03 (µM)−1.min−1

ktl 0.24 min−1

KI 0.035 µM

KN 0.029 µM

γm 0.017 min−1

α 1.05 (µM)−1.min−1

Ntot 1. µM

ka 0.24 min−1

ki 0.18 min−1

kp 0.036 min−1

kA20 0.0018 µM

[IKK]tot 2.0 µM

[A20] 0.0026 µM

Table 1: Default values of parameters in the model. The first 9 are from Ref. [11] and the next 4 from

Ref. [52]. [IKK]tot and [A20] were chosen in order to obtain sustained spiky oscillations with frequency

in the range 0.3–1 hr−1 when [TNF ] is kept fixed at 0.5 (the actual frequency obtained with these values

is ν0 = 1/1.8 hr−1.)
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Appendix C - Results for the sine circle map

In this section we will recreate and review the most important results for the sine circle map that

serves as inspiration for our study of coupled oscillators.

Poincare section

In general we can write any equation on the torus as:

ż =v(z) z ∈ R2

with v(z + 2πe1) = v(z + 2πe2) = v(z)

The curves of this system, coincide with the integral curves of the non-autonumous system:

dx

dt
= f(x, t) with f(x+ 2π, t) = f(x, t+ 2π) = f(x, t)

Now we evaluate this function every time t = 2π. This means we want to map the x-axis onto

itself and associate the point (x, 0) with t = 2π given that the initial condition was (x0, 0). This

we define as the successor function (called monodromy mapping). If we now adopt this formalism

we make some definitions of the monodromy mapping, that is now a 1D map:

A(x) = x+ a(x) a(x+ 2π) = a(x) a′(x) > −1

We have the definitions:

• The trajectory of a point under the action of a diffeomorphism of a space onto itself all the

points visited in all iterations.

• A periodic point has a finite trajectory and we define the number of elements in the trajectory

as the period p.

• The multiplicity of a cycle with period p, is the degeneracy of any point in this cycle.

The cycles are our main focus, and we define their rotation number:

µ =
1

2π
lim
k→∞

Ak(x)

k

Important insight was reached by Henri Poincare in his study of limicycles, when he proved, that

for a homoeomorphism, A, there is a limit to this rotation number and that it is independent of

the initial point x0. The rotation number for the differential equation introduced above, is the

same as for the monodromy mapping [2].

We consider in the results of this thesis, a similar form of the monodromy map in higher

dimensions to be a Poincare section, defined as a surname section of n-1 dimensions for a system

in n dimensions. To study the properties of the 1D map, we introduce and study the behaviour of

the sine circle map:

θn+1 = θn + Ω− εsin(θn)

Here we consider one oscillator with phase θ that has modulus 2π. This means that θn in the

phase after n rotations. This oscillator is now coupled to an external oscillator with frequency Ω,
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through a coupling with constant ε. In the following we will usually use the equivalent description

of the map:

x 7→ x+ a+ εsin(x)

Note that the value of the external frequency is not dependent on the internal oscillator.

No Coupling

We start by considering the case of uncoupled oscillators where ε = 0.

A dynamical with two noninteracting oscillations with frequencies q and p will form a closed cycle,

if the rotation number p/q is rational. In this case the period of the cycle is 2π and thus is 2π/a

is rational, the map will show a repeating pattern.

As an example of a closed trajectory we consider a = 4/3π and let x0 = 0. For ε = 0, we obtain

the first phases

x0 = 0 7→ x1 = 4.1888 7→ x2 = 2.0944 7→ x3 = 2π

This means that after three rotations of the external oscillator, the internal oscillator are back at

the same point, but it has gone through 2 rotations. This can be seen if we sum the phases. In

this way we define, that the coupling is 2/3.

Since couplings exist for all rational rotation numbers, and there are infinitely many rational num-

bers, one should believe that a randomly chosen parameter would have a rational rotation number.

However it turns out that the Lebesgue measure of the rational numbers are zero, compared the

irrational numbers that has a Lebesgue measure of 1. This is due to the fact that all the rationals

are countable, whereas the reals are uncountable, leading to the fact that if one chooses a random

diffeomorphism it will have an irrational rotation number with probability 1 [224] The Lebesgue

measure of an open set S, that contains N intervals [ai, bi] is defined by:

L =
N∑

i

(bi − ai) (141)

A good way to realize that the rationals have Lebesgue measure 0, is that a point has lebesgue

measure 0. Then summing all the points of measure 0, still give a measure of 0. Following the proof

sketched in [1], we will now show that the real numbers are uncountable, whereas the rationals are

countable: Proof that all the real numbers are uncountable:

We use proof by contradiction. If we now assume that they are countable, then every number

should be in the list, that could be wrtitten of the form:

xi = 0.x11x12x13...

We will now construct a number r that is not in the list.

r = 0.x̄11x̄12x̄13...

This means that it’s first digit is anything other than the first digit of x1, it’s second anything

other than the second of x2 and so on. Then we have constructed a number that is not on the

list and thus the real numbers are between 0 and 1 are uncountable. Thus all real numbers are
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uncountable. And thus the irrational numbers are uncountable. Proof that all the rational numbers

are countable:

We setup an infinite matrix, structured in a way, so the ij’th element has the value i/j. Now since

there is a structure in this, we can create a sets so:

l1 = 1

l2 = {2

1
,

1

2
}

l3 = {3

1
,

2

2
,

1

3
}

...

ln = {n
1
,
n− 1

2
, ...,

2

n− 1
, ,

1

n
}

Following the sets, starting from 1, we can always reach any rational number within a finite number

of steps. Thus the rationals are countable. So at this point we have argued that for two oscillators

with no coupling, there rotational number is irrational. Now all integral curves of the equation

dx

dt
= ω ω is irrational

are dense on the torus, which means that they are not closed. I Denjoys theorem from 1932,

states that a diffeomorphism with irrational rotation number µ, is equivalent to a rotation of the

circle by an irrational number, which proved that irrational rotation numbers have quasi periodic

trajectories. A quasi periodic trajectory means that the trajectory never repeats itself, and the

trajectory is thus infinite.

Weak Coupling

The sine circle map is continuously differentiable and when ε < 1 it is easy to see that the derivative

f ′(x) = 1 + εcos(x) > 0. for all x.

Now the inverse function theorem states that the map is also invertible and the inverse is also

continuously differentiable [225]. This means that the map is a diffeomorphism, for which Poincares

theorem is valid and thus is the rotation number independent on the initial point x0.

We observed that for the case of ε = 0 the probability of choosing a diffeomorphism with irrational

rotation number was equal 1, given the Lebesgue measure of the irrationals. However as the

coupling strength grows, the width of the Arnold tongues grow. But even for ε > 0, the irrationals

are not rapidly approximated by the rationals, especially those of large denominator. Vladimir

Arnold proved that for an irrational rotation number µ, there is always a C > 0 such that:

|µ− p

q
| ≥ Cq−2−ε (142)

This means that the area of resonance tongues in the Arnold tongue diagram in a small neighbour-

hood is quite small compared to the entire neighbourhood [224]. This was the background for the

definition of the later denoted Arnold tongues. However the resonance curves do grow in width as

the coupling strength increases 0 < ε < 1, and they bend in structure. As was stated in the defi-

nition for the rotation number, the limit does exist and is not dependent on the initial condition.
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As the coupling strength ε increases, the wider the range of coupling to a specific tongue will be.

If we consider the 1/1 resonance tongue, we can relatively easy find the width of the resonance

family by considering a fixed point since:

x+ 2π = x+ a+ εsin(x) → a− 2π + εsin(x) = 0

This has a solution if:

εsin(3π/2) ≤ a ≤ εsin(π/2)

defining the max and min values of the sine function. To obtain a proper description of the width

of the tongues for cycles of higher period is very difficult, but in his work as a student in 1959,

Vladimir Arnold showed that for the resonance family µ = 1/2, the width of the tongue could be

expressed as:

a = π ± ε2

4
+O(ε4) (143)

Here he also argued that the width of the tongues of the resonance family would scale as

W ≈ εq forε→ 0 (144)

But not before 1983 in his article for Kolmogorovs 80th birthday was he able to produce a proper

proof of this statement [226]. In this famous proof about the width of the Arnold tongues scales

as ≈ εq, Vladimir Arnold end with an interesting remark:

A diffeomorphism of the circle can have many cycles. Is the number of isolated cycles of a dif-

feomorphism given by a trigonometric polynomial bounded by a constant depending only on the

degree of the polynomial? This question can be regarded as an analogue of the question in Hilberts

16th problem on the number of limit cycles of a polynomial differential equation. It has not even

been solved for the diffeomorphisms x 7→ x+ a+ bcos(x). Conversely, the asymptotic expressions

obtained above for the boundaries of domains of existence of cycles does have analogues in the

theory of differential equations with a polynomial right-hand side. An important development was

Jakobsens’ theorem, stating that:

Every diffeomorphism in the two-parameter family

fε,a : y 7→ t+ a+ εsin(y) (145)

has no more than two cycles

Here we can check the stability of the cycles and easy find that one has dxn+1

dxn
< 1 → stable and

one has dxn+1

dxn
> 1 → unstable. Combining this with Jakobsens theorem we can state that for

ε < 1 no overlapping resonance families will emerge.

We now test a small section to see whether other members of the resonance family will grow as

expected. We therefore considered a small intervals of values for a, so a ∈ [0.617; 0.717], and

simulated values of ε in the interval ε ∈]0; 1]. Often one is interested in studying the resonance

families for a fixed coupling strength, and this type of plot is denoted a Devil’s staircase. In Fig 82A

these are considered. Combining values of a and ε, we obtain an Arnold tongue plot is visualised

in Fig 82B, where we the regions grow, that it is the rationals with the smallest denominator that

are by far the largest. The largest is therefore the 2/3 region, and we estimate the width of as a
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function of a coupling strength and find (Fig 82C):

g(w) = αwβ ⇒ b = 2.8± 0.01 (146)

These simulations therefore give a crude estimate of the width which almost follows the growth

for small ε.

Figure 82: A) Devils staircase showing rotation number as a function of the external frequency a.

B) Arnold tongue plot showing rotation number as a function of the external frequency a and ε C)

The width of the 2/3 region as a function of ε and fitted by a powerlaw

Overlapping Regime

As the Arnold Tongues grow continuously, eventually regions will emerge where different Arnold

Tongues start to overlap. If we consider the overlap of two resonance families, for instance the

2/3 and the 5/7, then in principle all families of the rationals in between would be expected also

to overlap. In principle they could all coexist, which means that the limit in the definition of the

rotation number would depend on the initial conditions. Otherwise one or more resonances could

take up the entire space, meaning that some of the families has lost their stability. The third

possibility is that no stable cycles are present when the tongues start to overlap.

For ε > 1, Jakobsons theorem does no longer apply, since here the map is not invertible, meaning

that it is no longer a diffeomorphism.

Theoretically we can argue that there can maximally be 2 stable cycles. We use the Schwarzian

derivative given by:

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(f ′′(x)

f ′(x)

)
(147)

Inserting this in the expression for the sine circle map we get:

Sf(x) =
−2ε(cos(x) + ε)− (εsin(x))2

2(1 + cos(x))2
(148)

we see that it is only strictly negative if ε > 1. Now if the Schwarzian derivative is negative,

then one can show that the function f, cannot have a positive local minima or a negative local

maxima[227]. If we now suppose that the Schwarzian derivative is negative, then there is a theorem

stating that if x0 is a stable periodic point of f, then either the immediate basin of attraction of

x0 extends from ∞ to −∞, or else there is a critical point of f whose orbit is attracted to the orbit

of x0 [228].

Now we can easlily see that the sine circle map becomes bimodal for ε > 1 since the derivative
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1 + εcos(x) here is equal to zero at two critical points. And since at least one of the critical

points will be attracted to a stable periodic point, then no more than two periodic cycles can exist.

Simulations show that if we increase the coupling strength to 2.3 then we see in Fig 83A that two

stable cycles exist, which would never happen for the homeomorphism.

To check this dependency on the initial conditions, we simulate 10000 initial conditions for x0 and

in Fig 83B we see the rotation numbers dependency on the initial condition is rather complex.

But since these two stable cycles do occur, it should then be possible to jump from one cycles to

another. This is investigated by adding gaussian noise to the system, so the update now is like:

x 7→ x+ a+ εsin(x) +N (0, 0.002)

The result is seen inFig 83C, where it is seen clearly that the transitions between the states occur.

Figure 83: A) Values of x, starting from two different initial conditions B) The calculated rotation

number as a function of the initial point x0. C) Stochastic simulation showing x as a function of

the iteration number

Period Doublings and Chaos

For ε = 1 the map is still invertible, however the differentiated is no longer non-zero everywhere

since 1−cos(π) = 0, and thus it is still a homeomorphism, for which the rotation number should be

independent of the initial point. At this point the full devils staircase has previously been studied

[33], and it is found that the resonances form a cantor set of fractal dimension ≈ 0.87, which is the

universal measure for which transitions into chaos can occur.

When the value of ε increases above 1, the theorems used in the sections above are no longer

valid, since the map is no longer invertible. Here period doublings occurs, meaning that a cycle

changes in integers multiplied with the nominator and denominator but the rotation number stays

the same.

Chaos is defined by a positive lyapunov constant. For a 1D map, we define the lyapunov constant

as:

λ(f, x) = lim
n→∞

1

n
log|(fn)′(x)| (149)

→ lim
n→∞

1

n

n−1∑

k=1

|f ′(xk)| (150)

This means we can calculate the lyapunov function for a series of points starting from x0, but

in principle when calculating the lyapunov exponent, one should consider all initial conditions.

156



However in many practical uses, one can remember that the qualitative meaning of the lyapunov

constant is that trajectories starting from almost the same initial conditions are departing from

eachother. it is given that two trajectories part from each other

|δZn| ≈ eλn|δZ0| (151)

In a previously study of an annulus map [17], this has been found to grow like:

λ ≈ (K −Kc)
β → β ≈ 0.95 (152)

There are several routes to chaos, and here we have seen that one of them is through couplings that

through period doublings goes into chaos. This should thus be a basic property in all systems of one

oscillator coupled to an externally driven oscillator. Both chaotic and quasiperiodic trajectories

never repeat themselves, meaning that they are dense on the torus. However a small perturbation

for a quasiperiodic trajectory does not cause the distance between trajectories will grow, as is the

case for the chaotic trajectory.
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Appendix D - Extended Averaged-Neuron model

We consider the membrane potential (Vm) given by:

dV

dt
= − 1

C
(
∑

IExt)−
1

AC
((
∑

IInt))

intrinsic ∈ [Leak,NaV ,KV ,KA−type,KSI , CaV ,KCa, NaP,KIR]

extrinsic ∈ [NMDA,AMPA,GABAA]

The units on the left side is mV/ms, but the extrinsic currents are in units of uA whereas the

intrinsic currents are in nA, and therefore the first should be multiplied by 1000. This reduces to

10, since we multiply with A, that should be in cm2 and should thus be divided by 100.

Intrinsic Channel Conductances

For the leak channel we have:

ILeak =gLeak(V − VLeak) (153)

gLeak = 0.03573 mS/cm2 VLeak =
RT

zF
ln
(pK [K]o + pNa[Na]o + pCl[Cl]i
pK [K]i + pNa[Na]i + pCl[Cl]o

)

R = 8.314472 J/K/mol T = 310 kelvins z = valenceion F = 9.64853399x104 C/mol

For the voltage-gated sodium channel we have:

INaV =gNaVm
3
NaV hNaV (V − VNa) (154)

mNaV =
αm

αm + βm




αm = 0.1 V+33

1−e−(V+33)/10

βm = 4e−(V+53.7)/12

ḣNaV = 4(αh(1− hNaV )− βhhNaV )




αh = 0.07e−(V+50)/10

βh = 1
1+e−(V+20)/10

gNaV = 12.2438 mS/cm2 VNa =
RT

zF
ln
( [Na]o

[Na]i

)

For the voltage-gated potassium channel we have:

IKV =gKV n
4
K(V − VK) (155)

ṅKV = 4(αh(1− hKV )− βhhKV )




αn = 0.01 V+34

1−e−(V+34)/10

βn = 0.125e−(V+44)/25

gKV = 2.61868 mS/cm2 VK =
RT

zF
ln
( [K]o

[K]i

)
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For the fast A-type potassium channel we have:

IA−type =gA−typem
3
A−typehA−type(V − VK) (156)

mA−type =
1

1 + e−(V+50)/20

ḣA−type =
hA−type∞ − hA − type

τhA−type

hA−type∞ =
1

1 + e(V+80)/6

gA−type = 1.79259 mS/cm2 τhA−type = 15ms VK =
RT

zF
ln
( [K]o

[K]i

)

For the slowly inactivating potassium channel we have:

IKSI =gKSImKSI (V − VK) (157)

mKSI =
hmKSI∞ −mKSI

τmKSI

mKSI∞ =
1

1 + e−(V+34)/6.6

τmKSI =
8

e−(V+55)/30 + e(V+55)/30

gKSI = 0.0350135 mS/cm2 VK =
RT

zF
ln
( [K]o

[K]i

)

For the voltage-gated calcium channel we have:

ICaV =gCaVm
2
CaV∞(V − VCa) (158)

mCaV∞ =
1

1 + e(V+20)/9)

gCaV = 0.0256867 mS/cm2 VCa =
RT

zF
ln
( [Ca]o

[Ca]i

)

For the calcium-dependent potassium channel we have:

IKCa =gKCamKCa∞(V − VK) (159)

mKCa∞ =
1

1 + KD
[Ca]i

3.5

˙[Ca]i = −αCa(10 ·AICa + INMDA)− [Ca]i
τCa

gKCa = 2.34906 mS/cm2 KD = 30µM τCa = 121.403ms VK =
RT

zF
ln
( [K]o

[K]i

)

For the persistent sodium channel we have:

INaP =gNaPmNaP∞(V − VNa) (160)

mNaP∞ =
1

1 + e−(V+55.7)/7.7

gNaP = 0.0717984 mS/cm2 VNa =
RT

zF
ln
( [Na]o

[Na]i

)
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For the inwardly rectifying potassium channel we have:

IKIR =gKIRhKIR∞(V − VK) (161)

hKIR∞ =
1

1 + e(V+75)/4

gKIR = 0.0166454 mS/cm2 VK =
RT

zF
ln
( [K]o

[K]i

)

Extrinsic Channel Conductances

We start by defining the saturating function

f(V ) =
1

1 + e−(V−20)/2)

We now consider the AMPA receptor:

IAMPA =gAMPAsAMPA(V − VAMPA) (162)

˙sAMPA = 3.48f(V )− sAMPA

τAMPA

gAMPA = 0.513425 µS/cm2 VAMPA =
RT

zF
ln
(pK [K]o + pNa[Na]o
pK [K]i + pNa[Na]i

)

For the NMDA receptor we have:

INMDA =
1.1

1.0 + [Mg]o/8.0mM
gNMDAsNMDA(V − VNMDA) (163)

˙sNMDA = 0.5xNMDA(1− sNMDA)− sNMDA

τsNMDA

˙xNMDA = 3.48f(V )− xNMDA

τxNMDA

gNMDA = 0.00434132 µS/cm2 VNMDA =
RT

zF
ln
(pK [K]o + pNa[Na]o + pCa[Ca]o
pK [K]i + pNa[Na]i + pCa[Cl]i

)

For the GABAA receptor we have:

IGABAA =gGABAAsGABAA(V − VGABA) (164)

˙sGABAA = f(V )− sGABAA
τsGABAA

gGABAA = 0.00252916 µS/cm2 VGABA =
RT

zF
ln
( [Cl]i

[Cl]o

)

Ion Concentrations

We used the following intra- and extracellular ion concentrations:

[Na]o = 140 mM [Na]i = 7 mM

[K]o = [3.5; 3.9; 4.4; 4.9; 8; 14] mM [K]i = 7 mM

[Ca]o = [1.05; 1.2; 1.35] mM [Ca]i = −αCa(10 ·AICa + INMDA)− [Ca]i

τCa
µM

[Cl]o = 140 mM [Cl]i = 10 mM

[Mg]o = [0.6; 0.7; 0.8] mM
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Appendix E - Diffusion in a sphere

We then consider the effects of diffusion in a region where no dopaminergic terminals are left, but

where the MSN neurons still are workin. Mathematically this corresponds to a situation where a

sphere of radius r is surrounded by a large region with steady state DA level C0 (Fig. A2A). This

means we wish to solve the diffusion equation in spherical coordinates:

∂C(r, t)

∂t
= D

(∂2C(r, t)

∂r2
+

1

r

∂C(r, t)

∂r

)
(165)

With boundary conditions: (166)

C(a, t) = C0, C(0, t) = 0, C(r, 0) = 0 (r < a) (167)

Using a proper substitiution, and laplace transformation, one can show that the concentration is

described by:

C(r, t) = Cs ·
(

1 +
2a

πr

∞∑

n=1

(−1)n

n
sin(

2πr

a
)e−D

n2π2t
a

)
(168)

However we have so far not encountered the decay of dopamine, that in healthy striatum is a

negligible quantity. However in this situation it becomes of great importance, so we actually want

to solve:

∂C(r, t)

∂t
= D

(∂2C(r, t)

∂r2
+
r

r

∂C(r, t)

∂r

)
− kC(r, t) (169)

This solution is easily obtained from the above result, through the relation:

C(r, t) = k

∫ t

0

C1(r, t′)e−kt
′
dt′ + C1(r, t)e−kt (170)

so we find that the concentration in an empty region can be described by:

C(r, t) =Cs +
2kCsa

πr

∞∑

n=1

(−1)n

n
· (171)

sin(
nπr

a
)
( k
X

(1− e−Xt) + e−Xt
)

X ≡ Dn2π2

a2
(172)

Based on this result we can see in Fig. A2B, how this in time reaches a steady state, and how this

steady state value drops to a very low value for empty regions with radius larger than 0.03 cm.
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Figure 84: A) Model showing high dopamine level at the boundary of an empty region. B) Profiles

showing the dopamine concentration at different distances to the boundary after certain time steps
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Appendix F - Voronoi tesselation

Consider a space, X, with distance function, d(x, Pi) and some points, Pi (Fig 85A). We define

the most empty space as the largest sphere one can draw, without meeting one of the N points.

Therefore we search for the centre of this sphere, that is the mark, whose distance to the point

nearest point, is larger than any other marks distance to its nearest point. Mathematically we

formulate the mark x∗ as:

x∗ = max
{

min{d(x, Pj)}
}

x∗ = min
(
x ∈ X|∂x(min{d(x, Pj)}) = 0

)

Finding this mark is a surprisingly tedious task, and using brute force Monte Carlo techniques

takes very long computational time and give low precision, since we search for a minimum in 3D,

but filled with local minima created by all points. To enhance both precision and calculation time,

we use the concept of Voronoi Diagrams. A Voronoi cell, Rk is defined as the set of all points,

whose distance to Pk is not greater than their distance to any of the other sites Pj (Fig 85B). Thus

the formal definition for a Voronoi diagram is:

RK =
{
x ∈ X|d(x, Pk) ≤ d(x, Pj) for all k 6= j

}

Therefore, using this definition, the most empty point must be one of edges where different Voronoi

cells intersect, and we search for the most empty point in the set of all Voronoi cell edges (Fig

A3B). Since the points represent areas in our calculations, the actual empty space is significantly

smaller and is calculated by subtracting the diameter of the covered area by one neuron, from the

calculated empty space (Fig 85C). Using this technique we find all the empty regions inside the

area. However, since some of the edges meet outside the circle, the most empty regions on the

boundary are not found. Therefore by searching for points on the boundary as well, we find the

most empty regions in that set (Fig 85B) and comparing this with the empty spaces found using

Voronoi diagrams, we find the most empty space unambiguously.
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Figure 85: A) 20 points randomly positioned inside a circle B) Voronoi diagram for the generated

points. Points, x, denote the edges. Shaded area show the largest empty space. C) Neurons cover

some area. Shaded area show the largest empty space within the covered areas. D) Largest empty

space from the boundary.
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Appendix G - The evolution of empty regions

The question is now, if such empty spaces can arise while there is still many neurons remaining.

The calculation of these dead spaces, does not follow a simple distribution, and the question we

ask is therefore the following: After N neurons what is the most desolate point i.e. from what

point in space can we draw the largest sphere without meeting terminals from another neuron?

To calculate this we use the theory of Voronoi tessellation, where each neuron is given a volume in

form of a polyhedron, which is created to define that inside this polyhedron all points are closest

to the given neuron. This means that either one of these edges, or (which will typically be the

case) a point on the boundary, must be the most desolate spot in the putamen and satisfies our

criteria.

The calculation of this distribution will be very complex, especially since the probability to be

covered is not the same everywhere. We note that we look for one specific spot out of many,

and thus we expect this to be an example of an extreme value type distribution, or a Gumbel

distribution. The Gumbel distribution is given by:

P (rmax|β, µ) =
1

β
e−(z+e−z) where z =

rmax − µ
β

(173)

To test this, we simulate 1000 samples, and calculate the largest empty space. As seen in fig ??,

the fit is very good, and we conclude that the distribution of largest empty spaces is described

by a Gumbel Distribution. What we would really like though is to know the probability that the

largest empty space is less than a certain threshold. This is done by calculating:

P (rmax < k) =

∫ R

−∞

1

β
e−(z+e−z)dr where z ≡ r − µ

β
(174)

This integral is easily evaluated using substitution, and we find that the probability of the largest

empty space having being larger than R is given by:

S(x) ≡ P (rmax > R) = 1− e−e−w where w =
R− µ
β

(175)

Furthermore, for the Gumbel distribution, the mean is given by:

E(rmax|N) = µ+ λβ where λ ≈ 0.5772 (Eulers constant) (176)

This means that for the given two parameters, β and µ, the probability that the largest empty

space will be smaller than a given quantity is found by the above formula. Therefore in order

to describe this system, we must be able to find the relation between these parameters, and the

remaining number of neurons.

Fitting the values obtained from the fit to the Gumbel distribution, we find that both parameters

can be calculated, depending on the number of remaining neurons, and we can describe:

β(N) = aβN
−bβ with aβ = 0.014, bβ = 0.43,

µ(N) = aµ · b−N
cµ

µ with aµ = 0.94, bµ = 1.55, cµ = 0.21

This means that the largest empty region follows a well defined statistical evolution as a function

of the remaining neurons.
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Figure 86: A) Distribution of the largest empty region with a Gumbel distribution fitted. B) The

parameter value of β as a function of the remaining number of neurons C) The parameter value

of µ as a function of the remaining number of neurons
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SUMMARY

Oscillations and noise drive many processes in
biology, but how both affect the activity of the tran-
scription factor nuclear factor kB (NF-kB) is not un-
derstood. Here, we observe that when NF-kB oscil-
lations are entrained by periodic tumor necrosis
factor (TNF) inputs in experiments, NF-kB exhibits
jumps between frequency modes, a phenomenon
we call ‘‘cellular mode-hopping.’’ By comparing sto-
chastic simulations of NF-kB oscillations to deter-
ministic simulations conducted inside and outside
the chaotic regime of parameter space, we show
that noise facilitates mode-hopping in all regimes.
However, when the deterministic system is driven
by chaotic dynamics, hops between modes are
erratic and short-lived, whereas in experiments,
the system spends several periods in one entrain-
ment mode before hopping and rarely visits more
than two modes. The experimental behavior
matches our simulations of noise-induced mode-
hopping outside the chaotic regime. We suggest
that mode-hopping is a mechanism by which
different NF-kB-dependent genes under frequency
control can be expressed at different times.

INTRODUCTION

Oscillation is a conserved dynamic feature of many biological

systems. Increasingly oscillation is appreciated to play a

role in transcriptional processes in the living cell, given the

large number of transcriptional regulators now observed to

exhibit oscillation or pulsing (Levine et al., 2013; Gonze et al.,

2002). Noise is a core feature of biological systems, and it im-

pacts variability and timing of oscillatory transcriptional regula-

tors (Eldar and Elowitz, 2010; Elowitz et al., 2002). However, the

roles of oscillation and noise in gene regulation are still incom-

pletely understood.

Periodic inputs may lead to entrainment of oscillators, a phe-

nomenon where the oscillatory process locks, in frequency and

phase, to the external signal. Canonical examples of entrainment

in physics include pendulum clocks and lasers; in these systems

there exists well-developed theory describing how two oscilla-

tors can couple in the way that one external (that is, an indepen-

dent periodic input) couples to an internal oscillator. The output

of the internal oscillator depends on the coupling to the external

and to the difference in frequency between the two. When they

couple, we call it entrainment, and these regions of entrainment

grow with increasing amplitude of the external oscillator. This is

depicted schematically in Figure 1. On the horizontal axis is the

frequency of the external oscillator (here tumor necrosis factor

[TNF]) while on the vertical axis is it is amplitude. These entrain-

ment regions are called Arnold tongues (Jensen et al., 1984);

they are indicated as regions of green, red, and yellow. In the

case of entrainment between the internal (here nuclear factor

kB [NF-kB]) and external oscillator, we observe the widening of

the tongues.

However, it is unclear whether biological oscillators can

exhibit behaviors that are similarly complex. Recently, it was

shown in single mammalian cells that periodic cytokine inputs

entrain the nuclear localization oscillations of NF-kB (Kellogg

and Tay, 2015) (schematized in Figure 2A), a transcription fac-

tor that plays a central role in environmental sensing and the

immune response. In this earlier work, noise (i.e., the dynamic

variability in molecular interactions), was demonstrated to syn-

ergistically enhance the ability of NF-kB oscillations to entrain

to periodic cytokine input from the environment. Specifically, it

was observed that noise increased NF-kB oscillation ampli-

tude and gene expression under periodic stimulation. None-

theless, how noise interacts with both the periodic input and

the oscillator itself to mediate entrainment in signaling net-

works like NF-kB is not yet clear. Here, we demonstrate that

noise facilitates a phenomenon we call ‘‘mode-hopping’’:

NF-kB oscillations remain entrained but switch spontaneously

between two frequencies. This phenomenon qualitatively re-

sembles mode-hopping behavior observed in lasers, another

form of oscillator (Mork et al., 1990). We suggest that mode-

hopping may diversify the expression patterns of frequency-

modulated genes.
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RESULTS

Mode-Hopping in Entrained NF-kB Oscillations under
Fluctuating TNF Input
In cells, the extracellular ligand TNF initiates a series of intra-

cellular processes that can produce oscillations in the con-

centration of nuclear NF-kB under specific conditions. Specif-

ically, TNF activates IkB kinase (IKK), which causes the NF-kB

transcription factor to enter the cell nucleus and regulate gene

expression including upregulation of IkB negative feedback

(schematized in Figure 2A) (Krishna et al., 2006). When TNF

is delivered periodically, the fraction of NF-kB localized within

the nucleus oscillates with a natural oscillation period of

90–100 min (Kellogg and Tay, 2015). Accordingly, we previously

showed that NF-kB oscillations can synchronize across the pop-

ulation and entrain cells to the TNF input, and noise was found to

facilitate entrainment and efficient gene expression (Kellogg and

Tay, 2015). For example, TNF with a 180-min period can entrain

NF-kB at a 90-min period for a 1:2 (input:oscillator) locking or

entrainment mode (schematized in Figure 2B) (original observa-

tion described in Kellogg and Tay [2015]). These regions are

defined as Arnold tongues, and the entrainment is schematized

in Figure 2B.

Our current investigation began with repeating the observa-

tions described in Kellogg and Tay (2015). Using microfluidic

cell culture, we delivered periodic TNF stimulation to fibroblasts

and recorded dynamics of NF-kB nuclear localization by live cell

fluorescence microscopy. Not only did we confirm that NF-kB

oscillations occur, we also observed that they show sponta-

neous frequency jumps and transitions between locking modes

during the time course of periodic stimulation for some external

forcing periods (Figure 2C). Specifically, these transitions involve

apparent spontaneous changes in amplitude (Figure 2D) and

doubling and halving of the oscillation frequency over time (Fig-

ure 2E); borrowing from the literature on Martin et al. (1997), we

refer to this phenomenon as mode-hopping. Compared to

90 min TNF input where cells entrain almost exclusively at the

1:1 locking mode, at 150 min, the average cell spends equal

time in 1:1 and 1:2 modes. For 180 min input, the average cell

spends the most time in the 2:1 mode but also �30% of time

in the 1:1 mode (Figure 2F). The appearance of multiple entrain-

ment modes during the time course suggests that the system is

in the overlapping Arnold tongue regions (schematized in Figures

2B and 2D). It is understood in physics that in noise-free (i.e.,

deterministic) systems, spontaneous transitions between lock-

ing modes cannot occur before the multiple overlaps within the

Arnold tongue regions cause a transition into chaos (Jensen

et al., 1984). However, whether and how transitions between

entrainment modes can spontaneously occur in a noisy system

like the NF-kB network is not clear; if these transitions occur, it

is not clear what drives them. To answer these questions, we

turned to simulation.

Noise Induces NF-kB Frequency Jumps between
Entrainment Modes
First, we considered the differential equations model (Jensen

and Krishna, 2012), described in the STAR Methods, that cap-

tures the essential features of NF-kB behavior. We started by

deterministically simulating this model’s behavior in response

to oscillatory inputs of different periods and amplitudes; in

aggregate, these simulations define the Arnold tongue regions

of this model within parameter space. For the NF-kB system,

the structure of the tongues is not symmetric, and overlapping

regimes of tongues start at quite low amplitudes (Jensen and

Krishna, 2012; Kellogg and Tay, 2015) (Figure 3A). As expected,

we observed that when NF-kB oscillations are simulated deter-

ministically within the overlapping Arnold tongue regions of

parameter space (as defined by the amplitude and frequency

of external oscillator), oscillations settle in different entrained

states depending on the initial conditions (Figures 3B and 3C;

see the STARMethods for details of the simulations). Mathemat-

ically speaking, this means that more than one limit cycle exists,

and depending on the basins of attraction, a trajectory decay be

attracted to one of the limit cycles.Mode-hoppingwas, however,

not observed, because transitions between stable states do not

occur for the deterministic system. This is at the very heart of

deterministic systems; once an initial position is defined, that tra-

jectory will be followed, and if the system is inside a basin of

attraction, it cannot leave this state.

Next, we considered whether noise could mediate mode-hop-

ping and frequency jumps in NF-kB oscillations by adding noise

to our simulations using the Gillespie algorithm (Gillespie, 1977)

while keeping the average concentrations of NF-kB and other

molecules the same. In these stochastic simulations, we find

that transitions between entrained states do indeed occur and

show mode-hopping events similar to experimental observa-

tions (Figures 3D). These transitions are more easily observed

if we look at the periods, where it is clear that they make transi-

tions between states (Figure 3E). Another way to study this phe-

nomena is to look at the trajectory in the three-dimensional

phase space spanned by NF-kB, I-kB mRNA, and I-kB (the

Figure 1. Schematic Diagram of Arnold Tongues

On the horizontal axis is the frequency (U) of the external (TNF) oscillator and

the vertical axis is its amplitude (K). The blue regions are ones in which the

internal and external oscillators are entrained, the numbers attached to each

region describes the frequency ratio for the entrainment. The white regions

show intermixed quasi-periodic and periodic behavior, too finely intermingled

to be separated by our plot. The dashed line indicate where the tiniest tongues

start to overlap. The green, red, and yellow regions show overlapping

behavior, but now also including a chaotic element (Jensen et al., 1984).
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variables in the first three differential equations presented in the

STAR Methods). This presents a quite intuitive way of thinking of

the mode-hopping; the trajectory oscillates with two different

radii, and this gives rise to the two different periods of oscillation

(Figure 3F). Based on these analyses, we conclude that noise

mediates hopping between entrainment modes and could serve

as a mechanism in the cell to produce quick switching of NF-kB

oscillation frequency.

To understand this observation in a more detailed way, we

simulated different noise levels by controlling the volume and

number of molecules in the simulation. We find that as noise is

increased (smaller simulation volume and hence smaller number

ofmolecules), mode-hopping transitions happenmore oftenwith

more entrainment modes visited. In this sense, increasing the

noise tends to broaden the Arnold tongues of the system (Fig-

ures 3G–3I). Systems with little noise, in contrast, usually spend

very long times in one entrained state, and we find that the

Figure 2. Experimentally Measured Fre-

quency Jumps (Mode-Hopping) in NF-kB

Oscillations

(A) TNF activates IKK and NF-kB, causing IkB

negative feedback leading to oscillations in NF-kB

nuclear translocation.We apply periodic TNF input

using microfluidics and monitor nuclear NF-kB

oscillation dynamics using live cell fluorescence

imaging.

(B) Periodic forcing of an oscillator leads to

entrainment visualized by regions called Arnold

tongues. In the 1:1 NF-kB entrainment mode (or-

ange region), the NF-kB period matches the

90-min period of the fluctuating TNF input. In the

1:2 entrainment mode (blue region), there is one

TNF input cycle for every two cycles of the NF-kB

oscillation.

(C) In overlapping Arnold tongue regions, multiple

entrainment modes are possible. Here, noise may

enable spontaneous transitions between entrain-

ment modes as observed in experiments.

(D) Three examples of mode-hopping in single-cell

NF-kB traces. Timing of TNF input is indicated by

vertical gray dashed lines.

(E) Plots of NF-kB oscillation period versus time.

Colors indicate intervals in entrainment 1:1 (or-

ange) and 1:2 (blue) modes.

(F) Comparison of time an average cell spends in

each entrainment mode, for differing TNF input

frequencies.

system tends to be more in a high period

state for small noise compared to large

noise. We also find that systems with

high noise jump quickly and spend

approximately the same time in each en-

trained state (Figure 3J). Together, these

simulations demonstrate that noise is

able to reproduce the mode-hopping fre-

quency transitions that we observe in ex-

periments. The mode-hopping seen in

the overlapping tongue region is reminis-

cent of the noise-induced hopping one

would observe in a classical bistable sys-

tem but with the states defined by frequencies and amplitudes of

oscillations. Next, we investigated whether mode-hopping is

restricted to stochastic systems in the early overlapping regime,

or systems operating close to the chaotic regime may also

exhibit mode-hopping within the Arnold tongue regions and

how this was related to the (deterministic)transition into chaos.

Mode-Hopping Is a Characteristic Feature for Noisy and
Chaotic Systems
When the amplitude of the driving TNF oscillation is increased,

we move up in the Arnold tongue diagram (Figure 4A), which

leads the deterministic system into a chaotic regime (Jensen

et al., 1984). Deterministic chaos is characterized by a trajectory

in phase space that never repeats itself and has the property that

two trajectories starting from slightly different initial conditions

diverge exponentially in time (Lorenz, 1963). Chaotic states are

reached for larger TNF amplitudes where many tongues overlap
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(Figure 4A). We characterized the behavior of the NF-kB oscil-

lator near this region of parameter space.

As we increase the amplitude of the TNF oscillations, but

before chaos sets in, a variety of interesting phenomena occur.

For example, one of these known as period doubling, where it

takes two oscillations peak NF-kB amplitude (Figure 4B). Even

in the early onset of chaos, transient and unstable limit-cycle be-

haviors can be found (Figure 4C), but these are quite rare and

disappear as we increase the amplitude of the TNF oscillations

even further. Using the same tools we used to characterize

noise-induced mode-hopping, if we study NF-kB oscillations in

the chaotic system, that we observe oscillations starting in

almost the same initial conditions will diverge after a few oscilla-

tions (Figure 4D). This is typical for chaotic systems and defined

by the positive Lyapunov constant of the system. Reproducible

tendencies, however, remain. When we study the periods of

the NF-kB oscillator in period space under these conditions,

we observe that even though they do not produce a clean

pattern, they are always close to the integer values of the

external periods, which are indicated by the lines (Figure 4E).

This can be seen more clearly in the three-dimensional space

spanned by NF-kB, I-kB mRNA, and I-kB, where we can see

Figure 3. Noise Induces Mode-Hopping in Overlapping Arnold Tongue Regions

(A) Arnold tongue diagram for a deterministic model of NF-kB oscillations driven by a periodic square pulse of TNF. Note that the amplitude is dimensionless. The

colors show the ratio of the observed NF-kB frequency to the driving TNF frequency as defined in the color bar (right) (Jensen and Krishna 2012).

(B and C) Deterministic simulations of NF-kB behavior conducted within regions of parameter space that exist within the overlapping region between Arnold

tongues. The simulations shown in (B) were conducted using the parameters in the region of space labeled ‘‘B’’ in Figure 2A, the simulations shown in (C) were

conducted using the parameters in the region of space labeled ‘‘C’’ in Figure 2A. Red traces indicate TNF input frequency (50 min in B, 97 min in C; all amplitudes

are 0.1 AU); blue traces describe the behavior of NF-kB.

(D) Stochastic (Gillespie) simulation of NF-kB behavior conducted within region of parameter space labeled ‘‘B’’ in Figure 2A. Red traces indicate TNF input

frequency (period of 50 min; amplitude of 0.1 AU); blue traces describe the be the behavior of NF-kB.

(E) Additional visualization of the data shown in (D) where the period between successive NF-kB peaks is plotted as a function of time. The horizontal lines

correspond to integer multiples of the time period of the driving TNF oscillation.

(F) The trajectories of individual simulations conducted as in (D), plotted in a phase space that describes IKB, IKBRNA, and NK-kB values. Colors indicate the

different entrained states the trajectory visits.

(G) The number of transitions between frequency modes per thousand oscillations as a function of simulation volume; simulated noise decreases with increasing

volume; data are taken from simulations analogous to the one shown in (D) but conducted at different cell volumes. The rate of transitions that corresponds to

what is found in the experiments are shown in the red circle.

(H and I) Additional visualizations of the data shown in (G) where the period between successive NF-kB peaks is plotted as a function of time. The horizontal lines

correspond to integer multiples of the time period of the driving TNF oscillation.

(J) The distribution of periods is shown, and we see that they peak around integer multiples of the TNF period, and when noise decreases, the system spends

longer times in the high period sta.
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the trajectories are ordered in small bands (Figure 4F). Moreover,

looking at 1,000 oscillations, we find that the distribution of pe-

riods is sharply peaked around integer multiples of the TNF

period (Figure 4G). However, these behaviors are not reminis-

cent of mode-hopping as described above.

Next, we asked whether adding noise to the chaotic system

could induce mode-hopping. We find that when the driving

TNF oscillation is such that the deterministic system would

exhibit chaos, then adding noise to our simulations does not

reduce the entrainment of the NF-kB oscillations (Figure 4G).

Moreover, for the high amplitude driving shown in Figures 4D–

4F, we find that noise does produce trajectory hops between

many entrained modes. When we plot the period-to-period cor-

relation of these oscillators (Figure 4H), we find that all periods

belong to well-defined tongues, as indicated by the layered

structure of the plot. One might expect that the mode-hopping

will occur between neighboring tongues, however, in Figure 4I,

we show that jumps between distant tongues also occur

frequently. In this sense, chaotic dynamics might be regarded

as random transitions between various tongues, rather between

specific oscillations with particular amplitudes and frequencies.

Chaos and noise, therefore, both manifest as increasingly

frequent mode-hopping as noise is increased or one moves

deeper into the chaotic regime by increasing the amplitude of

external TNF oscillations (Figure 4J). In fact, in the presence of

noise, it is difficult to distinguish between the systembeing inside

or outside the chaotic regime from the probability of exhibiting

entrainment or the probability distribution of being in the various

possible entrained states (Figure 4G). Notably, however, in the

presence of noise, mode-hopping is already observed for small

Figure 4. Deterministic Chaos in NF-kB Oscillation Manifests as Mode-Hopping

(A) Arnold tongue diagram for a deterministic model of NF-kB, same as Figure 2A, but with TNF amplitude spanning a larger range, including the onset of chaos

(black section, indicated by the white arrow).

(B andC) Before the onset of chaos, interesting phenomena arise for the deterministic system, including period doublings (B) and transient oscillations in unstable

limit cycles (C), which are however quite rare.

(D) For very large amplitudes in the chaotic regime, trajectories starting from very similar initial conditions diverge quickly in time. The different colors show

trajectories for initial conditions differing only in one molecule; they remain close for a while but eventually diverge exponentially.

(E) Additional visualization of the data shown in (D) where the period between successive NF-kB peaks is plotted as a function of time. The horizontal lines

correspond to integer multiples of the time period of the driving TNF oscillation.

(F) Trajectory of oscillations in (D) in phase space for IKB, IKBRNA, and NK-kB.

(G) Distribution of time periods for a simulation of 1,000 oscillations. The red indicates the distribution of periods for the deterministic simulation, and the blue

indicates the distribution for stochastic simulation. Same parameters were used in the simulations.

(H and I) Additional visualization of the structure in chaotic mode-hopping. The period to period correlation plot is shown in (H) and a transition heatmap (I) showing

the probability of going from each entrained state to other entrained states, exhibiting no clear correlation between the jumps of states.

(J) The number of transitions (over an interval of thousand oscillations) between entrained states for different noise levels, as a function of the external amplitude.

Blue, V = 1 3 10�15 L; red, V = 2 3 10�15 L; green, V = 5 3 10�15 L; cyan, V = 15 3 10�15 L.
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TNF amplitudes (Figure 3E) and is found for all higher TNF ampli-

tudes, which is a much larger region of parameter space than the

deterministic system, where chaos only sets in for larger ampli-

tudes (Figure 4A).

There are important differences, however, between the dy-

namics of noise-induced mode-hopping below the transition

into chaos and deterministic chaos above the transition.

Comparing Figure 3E (noise-induced mode-hopping) and Fig-

ure 4E (mode-hopping within the chaotic regime), it is seen

that the noise-induced mode-hopping only makes jumps be-

tween two states and usually remains in the same state for a

few periods (Figure 3E), whereas the chaotic dynamics jumps

between many different states and usually does not spend

more than one period in each state (Figures 4E and 4J). These

observations raise the question of whether the NF-kB mode-

hopping seen in living cells is induced by noise or a function of

a deterministic system operating above the transition to chaos.

In experimentally observed NF-kB trajectories in living cells,

we see that the system spends several periods in each entrained

state and rarely visits more than two entrainment modes (Fig-

ure 2F and simulations from Figures 3E, 3H, and 3I). This sug-

gests that, in experiments, the system sits in a region of param-

eter space where the Arnold tongues overlap but below the

transition to chaos. More sophisticated ways exist to distinguish

between chaos and randomness in dynamical trajectories (Amon

and Lefranc, 2004), but we believe our arguments above are suf-

ficient to suggest that the experimental NF-kB system has a rela-

tively high level of noise and operates in the overlapping tongue

region but below the transition to chaos.

Mode-Hopping Enables Cells to Switch between High
and Low Gene Production States
One potential advantage of oscillatory transcription factor dy-

namics is differential regulation of frequency-sensitive pro-

moters. Frequency modulation and frequency-sensitive gene

regulation occurs in the Crz1 system, ERK signaling, hormone

regulation, and is speculated to exist in NF-kB immune signaling

(Albeck et al., 2013; Ashall et al., 2009; Cai et al., 2008; Krishna

et al., 2006; Mengel et al., 2010; Waite et al., 2009; Wee et al.,

2012). Previously, Cai et al. (2008) showed that frequency mod-

ulation can ensure a proportional expression of multiple genes

having different promoter characteristics. Our observations

prompt the question: how could mode-hopping facilitate regula-

tion of diverse frequency-sensitive genes?

When oscillations of NF-kB switch between two tongues, fre-

quency and amplitude of the oscillations change (Figure 5B), and

this can alter the expression of different downstream genes that

have NF-kB as a transcriptional regulator. Frequency-depen-

dent NF-kB transcriptional regulation, in turn, may be achieved

through altered binding affinity and cooperativity (Wee et al.,

2012). As an example of this mechanism, we consider two

genes, gene 1 and gene 2, regulated differentially by NF-kB (Fig-

ure 5A). NF-kB binds with high affinity and low cooperativity to

the cis-regulatory region controlling expression of gene 1 and

with low affinity and high cooperativity to the region controlling

gene 2. The expression level of the two genes for different

constant levels of NF-kB are shown in Figure 5C, along with

the NF-kB oscillations in the 1/2 and 1/3 tongues (shown

vertically) that demonstrates the differing range of NF-kB

concentration produced during these oscillations (higher fre-

quency results in a smaller maximum NF-kB level). Gene 1, hav-

ing a higher affinity for NF-kB, has high expression for oscilla-

tions of both the frequencies shown in Figure 5C. In contrast,

for the low affinity gene 2, Figure 5C shows that the expression

level is low for the 1/2 tongue, because of its lower amplitude os-

cillations, and substantially higher for the 1/3 tongue that has a

higher amplitude. In Figures 5D and 5E, the protein production

from gene 1 and gene 2 is plotted as a function of time for

each individual tongue and in the case of mode-hopping. Fig-

ure 5F shows that, in contrast to constant regulation across

multiple genes, mode-hopping allows different regulation across

different frequency-sensitive promoters at different times. A list

of the applied parameter values can be found in the second table

of the STAR Methods

The cell’s ability to switch between high and low production

states for different, defined subsets genes, as shown in Fig-

ure 5F, is what we define here as ‘‘multiplexing.’’ Themechanism

could, in principle, act together with, or in addition to, other

mechanisms of multiplexing. Such mechanisms may allow the

cell to dedicate its resources to producing one specific gene/

protein at a given time, rather than a broad repertoire of genes/

proteins at a time. Even though of random nature, this mode-

hopping can be controlled in a statistical way by the cell.

Changing the frequency or amplitude of TNF will change the po-

sition in the Arnold tongues and thus the probability of being in

one state as opposed to the other. For instance, a TNF with

amplitude below overlap of Arnold tongues would stay in one

state, while going to an overlap with competition between

different states, would allow for frequent mode-hopping. In this

way, the cell can use the Arnold tongues to upregulate the time

in different states without completely losing the possibility of

jumping between states. We note that this mechanism is not

necessarily the only, or even the main, functional effect of

noise in protein dynamics inside the cell but rather points out

how this stochastic nature can be used in an advantageous

and regulatory way.

DISCUSSION

Oscillations in gene regulatory networks are known to control

transcriptional specificity and efficiency (Kellogg and Tay, 2015;

Levine et al., 2013;Wee et al., 2012).We have shown here exper-

imentally that entrained NF-kB oscillations in single cells exhibit

jumps in frequency under high amplitude fluctuating TNF stimu-

lation, a phenomenon we called ‘‘mode-hopping.’’ During these

frequency jumps, cells maintain entrainment with the TNF input;

this suggests that the system functions in the region of overlap-

ping Arnold tongues. Previous studies have demonstrated that

well entrained oscillations result in certain genes having higher

expression (Kellogg and Tay, 2015). Within the overlapping

Arnold tongue region of parameter space, a gene may exhibit

two types of entrained oscillations, which we call entrainment

modes. The presence of multiple entrainment modes may diver-

sify biological functions. For example, oscillatory transcriptional

control is using frequencymodulation to control gene expression

output and specificity (Ashall et al., 2009; Cai et al., 2008). Genes

differ in affinity and cooperativity characteristics, which conse-

quently determines sensitivity to frequency and amplitude of
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NF-kB regulation (Figure 5A). Therefore, changingNF-kBentrain-

ment states causes switching between high and low gene pro-

duction over time. For genes that are differentially sensitive to

NF-kB frequencyandamplitude,mode-hopping switchesactiva-

tion on and off for multiple genes over time (Figure 5E). This

temporally multiplexed gene regulation contrasts to regulation

under unchanging NF-kB oscillation, which drives expression

across multiple genes equally over time.

This work uncovers a function for noise in gene regulation that,

to the best of our knowledge, has not been previously reported.

NF-kB activates hundreds of genes, requiring mechanisms for

controlling relative expression level and specificity under fluctu-

ating environmental signals. As we show, noise-induced jumps

in NF-kB oscillation frequency can cause temporal switching be-

tween genes with diverse promoter characteristics over time.

This method of gene regulation could facilitate management of

amino acid or other metabolic factors by dedicating resources

to synthesis of a defined subset of proteins at one time. Cellular

mode-hopping therefore expands the toolbox of single cells to

control the dynamics, specificity, and efficiency of gene expres-

sion and protein production.
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Figure 5. Mode-Hopping Switches between

High and Low Gene Production States

(A) Schematic figure of the downstream network

for the two genes with distinct properties. The

green oval represents RNA polymerase, which is

recruited by NF-kB binding to a cis-regulatory re-

gion upstream of each gene. For gene 1, NF-kB

binds to this region with high affinity and low co-

operativity, while for gene 2 it binds with low

affinity and high cooperativity.

(B) NF-kB oscillation at two frequencies reflecting

two different locking modes, tongue 1/2 and

tongue 1/3.

(C) Output of the Hill function for the mRNA pro-

duction for each gene for a fixed level of NF-kB

plotted as a function of NF-kB level. Oscillations

from (B) are plotted vertically to indicate the range

of NF-kB concentration oscillations in each tongue

produce.

(D and E) Plots of gene expression output for gene

1 (D) and gene 2 (E).

(F) The expressed protein levels for the two

different gene families. The cyan curve shows

protein production for gene 1 and the magenta

curve shows protein production for gene 2

(although multiplied by a factor 10). The blue

shows the corresponding NF-kB oscillations used

in to produce the protein production.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Mogens Høgh

Jensen (mhjensen@nbi.ku.dk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse (3T3) fibroblasts expressing near-endogenous p65 levels were described previously (Tay et al., 2010; Kellogg and Tay, 2015).

Briefly, p65�/�mouse 3T3 fibroblasts were engineered to express p65-DsRed under control of 1.5kb p65 promoter sequence (Tay

et al., 2010). The cell line was clonally derived to express at p65-DsRed at lowest detectable level to preserve near endogenous

expression (Tay et al., 2010). Addition of ubiquitin-promoter driven H2B-GFP expression provided a nuclear label to facilitate auto-

mated tracking and image processing.

METHOD DETAILS

Cell Culture and Live Cell Imaging
Automated microfluidic cell culture and periodic TNF stimulation was performed as previously described (Kellogg et al., 2014; Tay

et al., 2010; Kellogg and Tay, 2015). In vitro cultures were maintained in DMEM (Life Technologies, cat. no. 32430-027) and FBS

(Sigma-Aldrich, cat. no. F2442-500ML). Prior to seeding in the microfluidic device, NIH 3T3 fibroblasts were cultured in (DMEM +

10% (vol/vol) FBS). Cells were passaged 1:10 every 3 days to not exceed 80% confluency. Standard culture conditions of 5%

CO2 and 37�C were maintained using an incubation chamber during culturing and throughout imaging experiments.

Briefly the live cell microscopy experiments proceeded as follows: microfluidic chambers were fibronectin treated and seededwith

cells at approximately 200 cells/chamber. Cells were allowed to grow for one day with periodic media replenishment until 80%

confluence. To stimulate cells, media equilibrated to 5% CO2 and containing the desired TNF amount was delivered to chambers,

leading to a step increase in TNF concentration. To produce periodic TNF signals, chamberswerewashedwithmedia containing TNF

at the desired intervals. Chambers were imaged at 5-6 min intervals. DsRed and GFP channels were acquired using a Leica

DMI6000B widefield microscope at 20x magnification with a Retiga-SRV CCD camera (QImaging) using Leica L5 and Y3 filters to

acquire GFP and DsRED signals, respectively and a Leica EL6000 mercury metal halide light source.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

TNF Life Technologies PMC3014

Experimental Models: Cell Lines

p65-DsRed/H2B-GFP 3T3 mouse fibroblasts Tay et al., 2010 N/A

Software and Algorithms

ROOT Brun and RAdemakers, 1997 https://root.cern.ch/documentation

Simulations made in c++ This Paper

MATLAB 6.1 The MathWorks Inc. 2010 https://se.mathworks.com/products/matlab/

Gillespie Algorithm Gillespie, 1977

Cellprofiler http://cellprofiler.org/

Other

Automated microfluidic cell culture system Kellogg et al., 2014 N/A

DMEM Life Technologies cat. no. 32430-027

FBS Sigma-Aldrich cat. no. F2442-500ML

e1 Cell Systems 3, 532–539.e1–e3, December 21, 2016



Mathematical Modeling
We consider the model, previously published by Jensen and Krishna (2012), of the NF-kB, defined by the 5 coupled differential equa-

tions given as:

dNn

dt
= kNinðNtot � NnÞ KI

KI + I
� kIinI

Nn

KN +Nn

dIm
dt

= ktN
2
n � gmIm

dI

dt
= ktl Im � a½IKK�aðNtot � NnÞ I

KI + I

d½IKK�a
dt

= ka½TNF�
�½IKK�tot � ½IKK�a � ½IKK�i

�� ki½IKK�a
d½IKK�i

dt
= ki½IKK�a � kp½IKK�i

kA20
kA20 + ½A20�½TNF�

:

The background and the underlying assumptions for this model, is previously published and the relevant discussions in this regard

are presented in that paper (Jensen and Krishna, 2012). All the parameters in the model is seen in the table below. The first nine are

from Krishna et al. (2006) and the following four from Ashall et al. (2009).

Multiplexing Model
Protein and mRNA production by these genes is described by the following equations:

_mi =gi

Nhi

Kh
i +Nhi

� dimi

_Pi =Gimi � DiPi

:

Here the mi represents the mRNA of species i, and Pi represents the protein level of species i. As can be seen from Figure 5A,

the two genes differ only in two parameters, the affinity of the binding represented by Ki and the cooperativity represented by hill

Parameter Default value

kNin 5.4 min-1

kIin 0.018 min-1

kt 1.03 (mM) $ min-1

ktl 0.24 min-1

KI 0.035 mM

KN 0.029 mM

gm 0.018 min-1

a 1.05 (mM) $ min-1

Ntot 1.0 mM

ka 0.24 min-1

ki 0.18 min-1

kp 0.036 min-1

kA20 0.0018 mM

[IKK]tot 2.0 mM

[A20] 0.0026 mM
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coefficient hi. gi describes the mRNA production per time, di is the decay of mRNA per time, Gi is the protein production per time and

Di is the decay of the protein per time. All parameters in this model is found in the table below:

QUANTIFICATION AND STATISTICAL ANALYSIS

CellProfiler software (http://cellprofiler.org) and customMATLAB software was used to automatically track cells and quantify NF-kB

translocation, and automated results were manually compared with images to ensure accuracy prior to further analysis. NF-kB acti-

vation was quantified as mean nuclear fluorescence intensity normalized by mean cytoplasm intensity. For peak analysis data

were smoothed (MATLAB function smooth) followed by peak detection (MATLAB function mspeaks). Peaks were filtered based

on reaching a threshold 10% of maximum intensity.

DATA AND SOFTWARE AVAILABILITY

Software
All simulations were performed using scripts written in c++ and MATLAB. All data-analysis were performed from scripts written in

python and using the ROOT software.

All scripts used for simulation and data analysis from the model, will be available upon request to Mathias Luidor Heltberg

(heltberg@nbi.ku.dk)

Algorithms
All deterministic simulations were performed using Runge-Kutta 4th order simulations. All stochastic simulations were performed

using the Gillespie algorithm (Gillespie, 1977). We considered 10 possible reactions given from the 10 different terms in the 5 differ-

ential equations.

Parameter

Default Value Default Value

Gene 1 Gene 2

K 1.0 #molecules 1.0 #molecules

h 2.0 4.0

g 4.0 #molecules $ min-1 4.0 #molecules $ min-1

G 2.0 min-1 2.0 min-1

d 2.0 min-1 2.0 min-1

D 0.3 min-1 0.3 min-1
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Time Correlations in Mode Hopping of Coupled Oscillators
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We study the dynamics in a system of coupled oscillators when Arnold Tongues overlap. By
varying the initial conditions, the deterministic system can be attracted to different limit cycles.
Adding external noise, the mode hopping between different states become a dominating part of the
dynamics. We simplify the system through a Poincare section, and derive a 1D model to describe the
dynamics. We explain that for some parameter values of the external oscillator, the time distribution
of occupancy in a state is exponential and thus memoryless. In the general case, on the other hand,
it is a sum of exponential distributions characteristic of a system with time correlations.

Keywords: Coupled oscillators, mode hopping, Arnold
tongues, Poincare sections, time correlations.

Introduction

Leo Kadanoff was a giant pioneer in the field of dynamical
systems and chaos theory and was a fantastic inspiration
for many of us collaborating with him over the years. With
this paper we wish to honor the legacy of Leo by presenting
a study of mode locking phenomena in a system with two
characteristic frequencies, a topic that interested Leo for
many years [1–3]. We analyse the hopping between limit
cycles using Poincare sections, another topic that was of
close interest to Leo.

Already in 1676, the dutch physicist Christian Huygens
[4] observed that the dynamics of two coupled clocks re-
sulted in synchronization [5]. This is one of the oldest
non-linear phenomena ever to be described, and despite
many attempts [6], the dynamics of a system of coupled
oscillators is still far from completely understood. A clas-
sical example of this consists of two self-sustained oscilla-
tors where an external oscillator is weakly coupled to an
internal oscillator. Systems of this character can show sur-
prisingly complex bevaviour [3], only parts of which are un-
derstood due to the pioneering work of Vladimir Arnold [7]:
in regions called Arnold Tongues, these oscillators become
synchronized, or entrained, to each other. In recent years,
synchronization of coupled oscillators has been found in a
variety of physical systems from fluids [2] to quantum me-
chanical devices [8, 9], and during the last 10 years this has
also been observed in many biological processes such as cell
cycles [10, 11, 13], gene regulatory dynamics in synthetic
populations [12], and protein oscillations in single cells [14],
in particular oscillations in the transcription factor NF-κ B
[15–18]. An important, but less well-understood, aspect is
the dynamics in regions where two or more Arnold tongues
overlap [19]. Here different synchronization are possible;
mathematically, the trajectory in phase space can be at-
tracted to different stable limit cycles depending on initial
conditions.

Model of protein oscillations: limit cycles
and Poincare section

In this study we consider a network of 5 coupled differential
equations, describing the dynamics of the important tran-
scription factor NF-κB, previously published in[20]. Here
we consider the concentration of a molecule, that has a

fixed concentration Nx, whose active form is described by
x. This indirectly starts production of the molecule z, me-
diated through the variable y. As z increase the activation
level of x decrease, leading to a negative feedback mecha-
nism resulting in oscillations. A molecule, that has fixed
concentration w, can assume three states, u, v and w−u−v
and the active form, u. It can lead to degradation of z,
which again make x active. The activation of u is medi-
ated by a periodically varying component, described by τ .
A schematic version of the network can be found in Figure
1A. The equations now take the following form:

ẋ = Vx(Nx − x)
Kz

Kz + z
− Vz · z

x

Kx + x

ẏ = Γyx
2 −∆yy

ż = Γz · y −∆z · u · (Nx − x)
z

Kz + z

u̇ = Γu · τ · w −∆u · u

v̇ = Γv · u− Vv · v
KA

KA +A20τ

τ = 0.5 +Asin
(2π

T
t
)

w = Nuv − u− v

Here all the capital letters refer to fixed parameters of the
model, whereas lowercase letters refer to variables.

In order to study the system, we define a Poincare sec-
tion at x = 1500 allowing us to perform discrete analysis
on the 4 other variables and the time of each period [21].
For a set of external parameters corresponding to a region
where two Arnold Tongues overlap, we find that the deter-
ministic system can settle into different limit cycles (Figure
1B), where typically the period of the internal oscillator is
an integer times the period of the external oscillator (in
principle other limit cycles exist, but it is harder to find
the initial conditions and paramater values that produce
them). Dynamical systems of multi-stability have been
studied in many aspects [22, 23], usually through the cou-
pling of separate attractors, but the arise of multi-stability
through the overlapping of Arnold tongues, has not been
thoroughly investigated and serve as an interesting sys-
tem to study the appearance and disappearance of differ-
ent stable limit-cycles. Interestingly, we find that when we
add noise to the system (by using the Gillespie algorithm
to simulate the system [24]), transitions between these co-



2

Figure 1: A) Schematic figure showing the network, that give rise to
the equations in the model B) The two stable limit cycles for the
deterministic system with external oscillator parameters T = 50
min and A = 0.1. Shown here is the phase space of variables x, y,
and z, and the Poincare section we use in our analysis. C)
Fluctuations in the time period for this system in the presence of
noise; external oscillator parameters are T = 50 min and A = 0.1.

existing limit cycles is observed (Figure 1C). This phenom-
ena we describe as mode hopping, reflecting that the tra-
jectory inside the Poincare section hops between different
entrainment modes. Our goal is to describe the time cor-
relations between transitions in this system with a discrete
time model, using information extracted from the Poincare
section. Transitions are of course only possible when noise
is added to the system. The noise makes it difficult to de-
termine every transition with complete precision, but com-
bining studies of the deterministic system with sufficiently
long stochastic time-series to generate enough statistics,
we will be able to make conclusions about the nature of
these transitions.

Distribution of noise in the Poincare
section

We begin by studying the distribution of positions on the
Poincare section after precisely one period of oscillation,
where all trajectories started at the same initial point in
the Poincare section. Mathematically speaking we want to
find the distribution P (xni | xn−1

i = µi), where xni is the
position of the ith variable on the Poincare section after
n periods of the oscillation, given that the position in the
Poincare section after n − 1 oscillations was µi (the pe-
riod is also regarded as a variable). From our simulations,
we find that, independent of the starting position µi, the
distribution of time period of the oscillation is Gaussian
(Figure 2A), and that its standard deviation, σ, to a good
approximation, can be treated as constant (Figure 2B).
Furthermore, we observed the same for every other vari-
able and thus, to a good approximation, we can describe
P as a multivariate Gaussian:

P (x | x0 = µ) =
1

√
2π

5√|V |
e
− 1

2

[
(x̃−µ̃)V 1(x−µ)

]

Figure 2: A) Gaussian fits for the distribution of periods after one
trajectory started at 4 different initial positions in the Poincare
section. B) Value of the standard deviation of the Gaussian fit at
different positions in the Poincare section. The normalized distance
is here defined as the norm of a vector from the position in phase
space of one limit cycle to the other limit cycle, when they intersect
with the Poincare section. C-D) Absolute value difference between
period and previous period, as the trajectories decay into the limit
cycle. The parameter b is the exponential decay constant. E) 104

points from stochastic simulation used as initial values for
deterministic simulation. After 10 oscillations blue has period
greater than 145 min and red has period smaller than 105 min.
Green refers to points between these values. F) Width of the basin
of attraction for different values of the amplitude of the external
oscillator after 40 oscillations.

Thus, within the Poincare section, the system can be de-
scribed as a deterministic trajectory with Gaussian noise.
This observation is of great importance, and to use this
further, we study how a trajectory with initial position
perturbed from the limit cycle, is attracted to the given
limit cycle within the Poincare section, which in general
depends on the possibly complex geometry of the basin of
attraction of the limit cycle. We first consider the absolute
value of the difference between the period and the period
of the previous oscillation in deterministic simulations. We
find that this quantity exhibits a complicated structure,
but overall goes to zero with an exponential decay as the
limit cycle is approached (Figure 2C-D). We find that in-
dependent of the initial condition, but for fixed parame-
ters of the external oscillator, the exponential decay has
the same decay constant, that changes slightly, as the ex-
ternal parameters change (Figure 2C-D). The non-smooth
structure arises from the coupling between variables and
is reminiscent of a damped harmonic oscillator, but in our
subsequent analysis we will treat this as a negligible effect
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on top of the basic exponential decay characteristic to each
basin of attraction.
To finish the description, we must locate the boundary
between each basin of attraction. Starting from various
initial conditions, we need to map which limit cycle each
initial conditions settles into. In order to choose sensi-
ble initial positions, we take 104 recorded points from a
stochastic simulation, and use these as initial conditions.
After 10 oscillations, we find that the majority have set-
tled into one of the two limit cycles, but some are still
unsettled (Figure 2E). This seems to an result of an un-
stable 5/2 Arnold tongue. We note importantly that the
basins are not riddled, but to good approximation can be
regarded as divided in groups. To simplify this we consider
the shortest distance between the two stable limit cycles in
the Poincare section, and consider the points in between
as initial conditions. Figure 2F shows that after 40 oscilla-
tions, all trajectories have settled into one of the two stable
limit cycles, and that as we increase the amplitude of the
external oscillator, the basin of attraction for one basin
grows, whereas the other decreases. Thus, for a given set
of external parameters, we can approximate the width of
the basin of attraction compared to the standard devia-
tion of the Gaussian noise. Changing the amplitude of the
external oscillator would change the probability to be in
one of the limit cycles for the stochastic system and thus
change the average number of oscillations before leaving
the given entrained state.

A model for the dynamics in the Poincare
section

At this point we have argued that for a fixed set of pa-
rameters of the external oscillator, the decay into a limit
cycle for the internal oscillator follows exponential decay
with a constant depending on the basin of attraction. Sec-
ondly, the boundaries, and therefore width, of this basin
are determined by the external parameters. Thirdly, the
next position in phase space inside the Poincare section is
Gaussian distributed with a characteristic standard devia-
tion determined by the noise in the system.
From these results, we thus create a simple, discrete 1D
model, that should be able to qualitatively explain the re-
sults we find for the dynamics for the stochastic system.
We imagine a measure, dn, that defines the distance to the
center of the limitcycle inside a given basin of attraction.
We consider the 1D map:

dn = dn−1∆ = d0∆n = d0e
ln(∆)n (0.1)

Now we add Gaussian noise to the system, so the update
is:

dn = dn−1∆ +N (0, σ) = N (dn−1∆, σ), (0.2)

where N defines the normal distribution with parameters
given in the argument. A schematic version of this simple
model, is shown in figure 3A. We are now interested in
knowing the probability density function, P (dn). This can
thus be described as:

P (dn) = P (dn|dn−1)P (dn−1) (0.3)

Figure 3: A) Schematic cartoon of the 1D model. B) Ratio between
the probability to leave the state after the first jump and after 20
jumps (in steady state), plotted for the different parameters and
initial positions in the model. C) The probability to leave the state,
plotted on the error function. Orange starting from d0 = 0 and blue
starting from d0 = Ψ. Ψ/σ = 1. The cross indicates the steady
state. D) The probability to leave the state, plotted on the error
function. Orange starting from d0 = 0 and blue starting from
d0 = Ψ. Ψ/σ = 4. The cross indicates the steady state.

We start by considering the position after one jump, given
the initial position is d0, described by:

P (d1) =
1√
2πσ

e
− 1

2

(
d1−∆d0

σ

)2

Now we want to calculate the distribution for the position
after the second step. To calculate this we are thus (to
avoid too many ds we define d = d0, y = d1 and x = d2)
solving the integral:

P (x) =
1√

2πσ1σ2

∫ ∞

−∞
e
− 1

2

(
x−∆y
σ1

)2

e
− 1

2

(
y−∆d
σ2

)2

dy

= N
(

∆2d,
√
σ2

1 + σ2
2∆2

)
.

As this holds for every step, we can iterate from the first
jump d1. That is, the PDF of the nth jump becomes:

P (dn) =
1√

2πσn
e
− 1

2

(
dn−∆nd0

σn

)2

where σn = σ

√√√√
n−1∑

i=0

∆2i = σ

√
1−∆2n

1−∆2
.

Now in order to consider transitions between basins of at-
traction, we must consider the probability that the distance
d is larger than the boundary of the basin, defined as Ψ.
Thus:

P (dn > Ψ) =

∫ ∞

Ψ

1√
2πσn

e
− 1

2

(
x−∆nd0
σn

)2

dx

=
1

2
erfc

(Ψ−∆nd0

σn

)

From this we can also see that this will always reach a
steady state, where the probability of leaving (i.e., a tran-
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sition out of the basin of attraction) will be:

lim
n→∞

P (dn > Ψ) = lim
n→∞

(1

2

[
erfc

(Ψ−∆nd0

σn

)])

=
1

2

[
erfc

(Ψ

σ

√
1−∆2

)]

This means that the probability of leaving will, in steady
state, be highly dependent on the relation between Ψ and
σ, but independent of the initial position d0. The prob-
ability to leave the state in the first jump, however, will
always be dependent on the initial position. If we assume
d0 = Ψ we obtain:

P (d1 > Ψ|d0 = Ψ) =
1

2

[
erfc

(Ψ

σ
(1−∆)

)]
,

which shows that the probability to leave in the first jump
is higher than in the steady state. If we consider d0 = 0
we obtain:

P (d1 > Ψ|d0 = 0) =
1

2

[
erfc

(Ψ

σ

)]
,

which shows that the probability to leave in the first jump
is lower than in the steady state.
With these results, we have an interesting measure, the ra-
tio between the probability of leaving in the first iteration,
divided by the probability of leaving in the steady state.
This ratio is plotted in figure 3B for different values of ∆
and different initial positions. Another visualization of this
is the probability to leave for each step, depending on the
initial condition, for Ψ/σ = 1 (Figure 3C) and for Ψ/σ = 4
(Figure 3D).

We now proceed to calculate the probability distribution
for the first time to leave the entrained state, J1, meaning
the first time the distance will be greater than Ψ:

P (J1 = n) =
1

2n

[
1− erf

(Ψ−∆nd0

σn

)] n−1∏

j=1

erf
(Ψ−∆jd0

σj

)
.

(0.4)

Assuming that d0 = Ψ we can reduce the above expression:

P (J1 = n|d0 = Ψ) = (0.5)

1

2n
erfc

(Ψ

σ

√
1−∆2

√
1−∆n

1 + ∆n

) n−1∏

j=1

erf
(Ψ

σ

√
1−∆2

√
1−∆j

1 + ∆j

)
.

(0.6)

From this expression, it should be deduced, that the argu-
ment depending on n will converge to one, meaning that
the probability to jump out will quickly reach a steady
state. In the steady state there is always the same probabil-
ity to jump out, and the distribution describing a discrete
event with the same probability will be the exponential
distribution.

Approximation to the distribution

As we observed in the above expressions and in figure 3C-
D, it takes several iterations to reach the steady state, and
we expect that these initial probabilities can be described
by a single exponential distribution. Therefore, we expect
that the distribution of oscillations in one limit cycle before

transition, can be described by a sum of two exponential
distributions:

f(n) =
Initialposition

Ae−bn +
SteadyState

Ce−dn

where n ≡ dn > Ψ ∧ dn−1..d1 ≤ Ψ.

Testing this assumption, we now try to compare simula-
tions on the 1D model with the real system. For both
systems we start at d0 = Ψ, i.e., on the border of the
basin of attraction, defined from the normalized distance
between the limit cycles (Figure 4A-B), and at d0 = 0, i.e.,
at the center of the limit cycle (Figure 4C-D). In these sim-
ulations, we define that the trajectory leaves the entrained
state when the period becomes closer to the period in the
other limit cycle. Even though these simulations cannot
be compared quantitatively, since the 1D model does not
take the cycles of the decay into account, they do have the
same qualitative description of the dependence on initial
positions, and are well described by the suggested func-
tion. The interpretation of the above result is as follows:
The first several oscillations follows a distribution of either
decreasing (if d0 = Ψ) or increasing (if d0 = 0) probability
of transition out of the entrained state, before reaching the
steady state probability. In the steady state, this should
follow an exponential distribution since there is at each it-
eration the same probability to leave, which can be seen
from the fact that the exponential decay, if the first frac-
tion of the plot is neglected, has exactly the same slope
independent of the initial position. However, the effect of
the initial effect conditions is captured in the first part of
the fit, where we find that these effects can be estimated
by adding another exponential function.

Long time dynamics

Now we want to study the long term dynamics, and esti-
mate the distribution of number of oscillations in one limit
cycle, before leaving the limit cycle. As seen in figure 1B,
there clearly are transitions between states, but to define
exactly when the trajectory is out of the basin of attrac-
tion of a specific limit cycle can be difficult. We here use
Fisher’s discriminant, implemented in MATLAB, to sepa-
rate the points, and classify them between different states
[25]. From the model we expect the distribution to reach
a steady state after some trajectories in the same limit cy-
cle, but having much higher probability to leave the state
in the early rounds, as we usually enter a new state close
to the boundary. We again expect the distribution to fit
the sum of two exponentials, where the first position in
the basin of attraction follows a distribution but is always
close to the boundary of the basin. This is confirmed in
figure 5A, where we have also plotted the best exponential
and stretched exponential fit. From figure 4B the other
limit cycle in this experiment also follows the sum of two
exponentials, and that this state is a little different from
the one shown in 5A, due to the ∆ of this state is higher.
Now if the value of Ψ/σ can be estimated to be small, the
effective dynamics is however imagined to be closer to an
exponential distribution as the ratio shown in Figure 3B
gets smaller. Now from the model we estimate that we
would have more exponential like fits, if we:
a) Decreased external period (causing smaller Ψ)
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Figure 4: A) Distribution of number of jumps before leaving the
state for the model. Initial position d0 = Ψ. B) Distribution of
number of jumps before leaving the state for the simulated system.
Initial position around the boundary. C) Distribution of number of
jumps before leaving the state for the model. Initial position d0 = 0.
D) Distribution of number of jumps before leaving the state for the
simulated system. Initial position in the center of the limit cycle.

Figure 5: A) Distribution of oscillations in 3/1 state for totally
600000 oscillations. Parameters of external oscillator is T = 50 min
and A = 0.1. V = 2 · 10−14L. B) Distribution of periods for the 2/1
limit cycle. From the model perspective this distribution is different
from A) in the value of ∆. Same parameters used. C) Distribution
of oscillations in 3/1 limit cycle. for external parameters T = 33
min and A = 0.1. D) Distribution of periods for the 3/1 limit cycle.
Parameters of external oscillator is T = 50 min and A = 0.1. V =
1 · 10−14L

b) Decreased external amplitude (causing smaller Ψ)
c) Decreased Volume = Larger noise (causing larger σ)
Lowering the amplitude of the external oscillator, effec-
tively decreases the distance between the two limit cycles
and transitions between limit cycles should be more fre-
quent, as the noise level remains constant. This prediction
is confirmed in figure 5C where the probability of leaving
the limit cycle in the steady state is higher than in figure
5A-B. Also we note that this distribution is much closer to
being exponential than the figures above, which was pre-
dicted by the results in figure 3. In the same manner we
expect that if we keep the width of the basin constant,
meaning we fix the parameters of the external oscillator,
but we add more noise to the system, similar effects should

be observed. In figure 5D we see that if we increase the
noise of the system, the probability to leave the state in-
creases in the steady state, and the distribution is again
closer to an exponential distribution than before. This
means that we have obtained an understanding, not only
of why the distribution of time in one state follows two ex-
ponentials, but also how the parameters in this distribution
change, as we change the external parameters.

Conclusion

We have shown how the dynamics of a system of coupled
oscillators, in the overlapping Arnold Tongue regime,
can show bistable behaviour, and how the statistics for
the transitions between limit cycles can be controlled by
changing the parameters of the external oscillator. We
have observed how the distribution of the number of
oscillations in each state tends to look exponential in some
parameter ranges, while in others looks very stretched.
We showed that this behaviour is reproduced in a simple
1D system, derived from the behaviour within Poincare
section of the system, leading us to a useful description
of the dynamics as a sum of two exponential functions.
We believe that these results can be used to describe the
dynamics of many synchronized oscillating systems in the
presence of noise, even when the basins of attraction are
divided by several regions.

SK thanks the Simons Foundation for funding. MLH
and MHJ acknowledge support from the Danish Council
for Independent Research and Danish National Research
Foundation through StemPhys Center of Excellence, grant
number DNRF116.
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Appendix A

Description of the biological model
The network of the transcription factor NF-κB is very im-
portant for the mammalian protein production, and several
models have therefore been constructed to capture the es-
sential dynamics
Here we use the NF-κB model, published in 2012 by Jensen
and Krishna. In this model, we consider the NF-κB inside
the nucleus, acting as a transcription factor for a great vari-
ety of different proteins, including I-κB. This forms a com-
plex with NF-κB, making it unable to enter the nucleus,

which means it is inactive. In order to create a time de-
lay, the equation for the I-κB RNA is added, which gives a
three node network. Now we consider the protein complex
IKK, that can phosphorylate the NF-κB - I-κB complex
and thus make NF-κB active again. We assume that there
IKK can be in three states: active, neutral and inactive.
Furthermore we assume that is a finite amount of both
NF-κB and I-κB, but nothing is spontaneously degraded.
With these assumptions at hand, we describe the system
by the five coupled differential equations:

Ṅn = kNin(Ntot −Nn)
KI

KI + I
− kIinI

Nn
KN +Nn

˙IRNA = ktN
2
n − γmIRNA

İ = ktlIRNA − αIKKa(Ntot −Nn)
I

KI + I
˙IKKa = kaf(t)([IKK]tot − IKKa − IKKi)− kiIKKa

˙IKKi = kiIKKa − kpIKKi
kA20

kA20 + [A20]f(t)

f(t) = 0.5 +Asin(
2π

T
t)

The parameters in the mode can be seen in the table below.

Original Parameter Parameter in paper Default value
kNin Vx 5.4 min−1

kIin Vz 0.018 min−1

kt Γy 1.03 (µM)−1.min−1

ktl Γz 0.24 min−1

KI Kz 0.035 µM
KN Kx 0.029 µM
γm ∆y 0.017 min−1

α ∆z 1.05 (µM)−1.min−1

Ntot Nx 1. µM
ka Γu 0.24 min−1

ki ∆u 0.18 min−1

kp Vv 0.036 min−1

kA20 KA 0.0018 µM
[IKK]tot w 2.0 µM
[A20] A20 0.0026 µM

Table I: Default values of parameters in the model. [IKK]tot and
[A20] were chosen in order to obtain sustained spiky oscillations

with frequency in the range 0.3–1 hr−1 when [TNF ] is kept fixed at
0.5 (the actual frequency obtained with these values is

ν0 = 1/1.8 hr−1.)

Appendix B

Implementation of Gillespie algorithm
In the Gillespie algorithm we consider a volume V, with a
spatially uniform mixture of N chemical species that can
react through M different reactions, R1...RM . The number
of each of the species is denotedX1...XN . At t = 0, we thus
consider the initial number of molecules and calculates all
reactions. The first goal is now to calculate the PDF, for
the time until the next reaction occur
We consider the probability that the next reaction is of
type ε, and it occurs in the time-interval [t+ τ, t+ τ + dt].
We therefore consider:

P (τ, ε)dτ =
No reaction in [t, t+ τ ]

Pnot(τ) ·
Reaction ε occurs

Rεdτ
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Therefore we want to describe Pnot(τ) in terms of the rates.
Since at each timestep ε, the probability for no reaction to
appear is:

Pnot(dt) = 1−
N∑

i=1

Ridt

We can thus define τ ≡ n · dt and then:

Pnot(τ) =Pnot(dt)
n =

(
1−

N∑

i=1

Ri
τ

n

)n
= e−rτ

where r ≡
N∑

i=1

Ri

This means that we should generate a random number

according to the exponential distribution, and a random
number according to a uniform distribution. Here we
can use the transformation method, and we can then
create the update process, where at each step we jump
a step in time τ to next reaction, and picks the reaction
according to r. Schematically the Gillespie algorithm can
be described as:

• Pick two random numbers, ν1 and ν2. Calculate time

until next reaction:

τ = − ln(ν1)

r

Pick the next reaction:

ε =

∑k−1
i=1 ri∑n
j=1 rj

< ν2 ≤
∑k
i=1 ri∑n
j=1 rj

• Update the system according to the chosen reaction.

Figure 6: Trajectories starting from the same initial conditions for
different noise levels. Here oscillations in the variable x

In this way the system can be updated, and adjusting the
reactions to each time step. As can be seen in the figure,
changing the volume, changes the noise level, since we have
two fixed concentrations in the model and therefore the
considered number of molecules change. In the limit of
a high number of molecules, this should be very close to
deterministic.
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ABSTRACT: The photoautotrophic freshwater cyano-
bacterium Synechococcus elongatus is widely used as a
chassis for biotechnological applications as well as a
photosynthetic bacterial model. In this study, a method for
expanding the genetic code of this cyanobacterium has
been established, thereby allowing the incorporation of
unnatural amino acids into proteins. This was achieved
through UAG stop codon suppression, using an archaeal
pyrrolysyl orthogonal translation system. We demonstrate
incorporation of unnatural amino acids into green
fluorescent protein with 20 ± 3.5% suppression efficiency.
The introduced components were shown to be orthogonal
to the host translational machinery. In addition, we
observed that no significant growth impairment resulted
from the integration of the system. To interpret the
observations, we modeled and investigated the competi-
tion over the UAG codon between release factor 1 and pyl-
tRNACUA. On the basis of the model results, and the fact
that 39.6% of the stop codons in the S. elongatus genome
are UAG stop codons, the suppression efficiency in S.
elongatus is unexpectedly high. The reason for this
unexpected suppression efficiency has yet to be
determined.

Cyanobacteria play a significant role on earth as aquatic
primary producers and oxygen generators and are crucial

in CO2 fixation. Cyanobacteria are also prolific producers of
natural products and unique enzymes1 that are being
systematically improved for biotechnological purposes.2

Synechococcus elongatus sp. PCC7942 (S. elongatus) is a free-
living, freshwater cyanobacterium strain. This strain is relatively
simple to culture, is characterized by high biomass production,
and can be easily genetically manipulated. By these virtues, S.
elongatus has been utilized for a myriad of applications. Among
these are biofuel production,3 renewable energy,4 and CO2

reduction.5 S. elongatus is also used as a model organism for
studies of circadian rhythm,6 biofilm formation,7 carbon
fixation,8 and photosynthesis.9 In recent years, multiple genetic
tools and methods have been developed to facilitate S. elongatus
genetic manipulation. However, while in the past 15 years,
genetic code expansion tools were introduced and improved in
Escherichia coli,10 Actinobacteria,11 Caenorhabditis elegans,12

Drosophila,13 and mammalian cells,14 they were not adapted
for cyanobacteria.
The most notable advantage of genetic code expansion is the

ability to incorporate, site-specifically, a synthetic amino acid of
choice aimed to introduce new chemical or physical properties
into a desired protein. The common strategy utilized for this is
stop codon suppression, using an archaeal orthogonal trans-
lation system (OTS) that does not cross-react with the host
native tRNAs and tRNA synthetases. The archaea Methano-
sarcina mazei (Mm) were found to genetically encode
pyrrolysine with the utilization of the UAG stop codon as a
sense codon. This process is enabled by a unique Mm-
pyrrolysyl tRNA synthetase (PylRS) and Mm-tRNACUA

pyl (pyl-
tRNA)15 pair. Once cloned, this pair was used to incorporate
more than 100 synthetic unnatural amino acids (UAAs) into
proteins in the three different kingdoms of life16 and was
demonstrated to be incorporated in vivo and in vitro.17 For
these reasons, the pyl-orthogonal pair was chosen as a
candidate for attempting to expand the genetic code of S.
elongatus.
Herein, we aim to introduce and develop a general method

for incorporation of UAAs into proteins in the cyanobacterium
S. elongatus. To achieve this, the pyrrolysyl orthogonal
translation system (pyl-OTS) was cloned to a pCB4 shuttle
vector (Table S1), and the resulting construct was named
pCOTS-pyl. In addition, a model protein for genetic code
expansion, GFP Y35TAG, was cloned, resulting in pCOTS-pyl-
35TAG-GFP, whereas the UAA was incorporated using the
UAG stop codon as a sense codon, replacing tyrosine.
Furthermore, a second genetic construct was designed for
genomic recombination of the pyl-OTS into the S. elongatus
chromosome (Figure S1). In this strain, the target gene, GFP,
was expressed from the pES94-35TAG-GFP plasmid (Table
S1). This genomically modified strain was named 7942-PO. In
both cases, GFP was expressed under the PcpcB1 promoter

18 and
TcpcA terminator (Figure 1a) and PylRS was expressed under
the PrbcL promoter and terminator. The pyl-tRNA was
expressed under the S. elongatus Leu-tRNACAG promoter and
terminator, which were extracted from the S. elongatus genome
(Figure 1b) (sequences are available in the Supporting
Information). The two S. elongatus variants, pCOTS-pyl-
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35TAG-GFP and 7942-PO, were selected by antibiotic markers
and validated by sequencing.
PylRS is a promiscuous enzyme as it was shown to recognize

several UAAs in addition to its original substrate shown in
Figure 1c, 1-pyrrolysine (1). Two of these UAAs are shown in
Figure 1c: Nε-propargyl-L-lysine (2) that allows a “click”
reaction19 and Nε-boc-L-lysine (3) that is being used as a
protected amino acid in bioorthogonal chemical conjugation
reactions.20 UAAs 2 and 3 were chosen to be incorporated as a
general proof of concept for the genetically expanded S.
elongatus. Either 2 or 3 was added to the growing bacterial
cultures, containing either one of the genetic constructs, for
incorporation into GFP(Y35TAG). To test the OTS in S.
elongatus, we have grown the transformed cells in the absence
of a UAA as a negative control. As a positive control, we have
transformed the pCOTS-pyl-GFP-WT vector encoding the
wild-type GFP gene. The incorporation of both 2 and 3 into
GFP was successful, while no synthesis of protein was observed

in the absence of a UAA (Figure 2a). To ensure the
orthogonality of the pyl-tRNA in the S. elongatus cell, a genetic
construct with only pyl-tRNA and the reporter Y35TAG GFP
gene in the absence of the PylRS gene (pCOTS-ΔPylRS-GFP)
was transformed and cultured in the presence of 2. No
expression of the reporter protein was observed (Figure S2),
which led us to conclude that no endogenous tRNA synthetase
can aminoacylate pyl-tRNA.
Aiming to optimize the growth conditions of S. elongatus, we

examined variable UAA concentrations (Figure S3) and UAA
addition at different OD750 values (Figure S4). The optimum
was found to be 1 mM UAA, and the optimal OD750 for UAA
addition was 0.01. Next, the optimal OD750 for bacterial
harvesting was found to be at an OD750 of 1.1 (Figure S5).
After optimization, the efficiency of the systems was evaluated.
We have measured the UAA-incorporated GFP concentrations
compared to the concentration of WT GFP (Figure 2b). This
comparison is termed suppression efficiency. It is an indirect
measurement of the ability of the OTS to reassign, at a specific
site, the original “meaning” of the UAG codon. The pCOTS-
pyl system exhibited up to 20 ± 3.5% suppression efficiency
with yields of up to 15 μg/L (of original culture), while the
7942-PO system exhibited only 2% suppression efficiency with
yields of up to 1.5 μg/L. Both systems resulted in relatively low
yields; nonetheless, the vector-based pCOTS-pyl system
showed results significantly better than those of the genome
recombination system, and thus, further experiments were
performed primarily with this system. Yields were further
increased by changing the GFP expression promoter, pcpcB1, to
the S. elongatus PpsbII promoter. This change improved the
yields by a factor of 5 and resulted in yields of 375 and 75 μg/L
[for WT and Y35(2)-GFP, respectively], with 22 ± 7.5%
suppression efficiency (Figure 2c and Figure S6). In the future,
protein yields can be increased by improving the combination
of promoter strength, ribosome binding site strength, and
adaptation of coding sequence to that of S. elongatus as was
recently shown by us in E. coli.21

To validate the selectivity of UAA incorporation, the
molecular masses of produced proteins were measured using
electrospray ionization mass spectrometry (ESI-MS) (Figure
2d). The experimentally observed masses of the Y35(2) mutant
and WT GFP were within 1 Da of the calculated masses.

Figure 1. Genetic code expansion constructs that allow incorporation
of UAAs into proteins in S. elongatus. (a) Genetic map of the OTS. (b)
Genetic map for protein expression. (c) UAAs mentioned in this
study.

Figure 2. Incorporation of UAAs into GFP. (a) Representative Western blot analysis of GFP expression in S. elongatus variants, using different
vectors, in the presence or absence of either 2 or 3. (b) Suppression efficiencies of the different GFP variants relative to WT GFP expression. (c)
Densitometry analysis comparing WT and Y35(2)-GFP expression levels between two promoters. (d) Mass spectrometry (electrospray ionization
mass spectrometry with liquid chromatography) results for WT-GFP (gray) and Y35(2)-GFP (black).
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Observing these masses, we concluded that the UAA is
selectively incorporated into GFP (Figure S7).
As pyl-tRNA suppresses the UAG stop codon, it should

compete with release factor 1 (RF1) for the translation or
termination of transcribed genes of S. elongatus. In fact, it was
found that S. elongatus utilizes TAG termination in 39.6% of its
open reading frames (ORFs), compared to only 7.4% in E.
coli.22 Hence, the important question of whether translation
termination is being suppressed in TAG terminating genes
arises, and if so, what are its adverse effects on the host
organism if any? It is reasonable to assume that if the signal for
the correct termination of almost 40% of the genes in S.
elongatus is compromised, even to the smallest extent, S.
elongatus growth should be impaired. This argument is
emphasized when taking into account the fact that many of
the photosystem genes terminate with TAG. To test this, the
log-phase doubling times of the different strains in the presence
or absence of different UAAs were followed (Figure 3a). It was
found that pCOTS-pyl and 7942-PO variants, supplied with 1
mM 3, did not show any significant reduction in growth rates
(measured as the number of doublings of the population
density per day) compared to that of native S. elongatus (1.9 ±
0.3 and 1.9 ± 0.4 day−1 for pCOTS-pyl and 7942-PO variants,
respectively, compared to 2.0 ± 0.1 day−1 for the native form).
However, the same variants, supplied with 2, suffered a
significant reduction in the number of doublings of the
population density of 40−50% per day (1.0 ± 0.2 and 1.2 ±
0.1 day−1, respectively).
The same reduction is observed when supplying native S.

elongatus with 2, 1.0 ± 0.2 day−1 compared to the value of 2.0 ±
0.1 day−1 of native S. elongatus in the absence of 2. These results
lead us to conclude that very low, if any, toxicity stems from the
introduction of the OTS into this strain of cyanobacteria, while
significant levels of toxicity stem from the introduction of 2 into
S. elongatus. To further investigate the source of the toxicity of
2, native and pCOTS-pyl strains were supplied with both 2 and
L-lysine in equimolar quantities; in these cases, no toxicity was
observed (data not shown). Therefore, we suspected that the
cause of the toxicity is interference with the lysine synthesis
metabolic pathway.
To better characterize the orthogonal translation system, the

mRNA expression level of PylRS was measured using RT-PCR
and was compared to that of the native leucine tRNA
synthetase, which is a highly abundant synthetase (Figure
3b). The expression level of pyl-tRNA was also measured and
compared to that of the most used leu-tRNACAG and the least
used arg-tRNACCT (Figure 3c). The results suggest that the

level of expression of the pyl-tRNA is relatively low and should
be increased to improve the efficiency of the system.
Counterintuitively, while the genomically recombined system
shows an increased level of expression of the OTS, its efficiency
is lower, and at present, we have no explanation for this
intriguing observation. Finally, we tested the incorporation of 2
into different sites in GFP (Figure 4a) and simultaneously into
multiple sites; however, multiple incorporation was undetect-
able (Figure S9).
The suppression efficiency achieved in this study was ∼20%,

despite the low cellular concentration of pyl-tRNA and high

Figure 3. (a) Doublings per day of the different S. elongatus variants in the presence or absence of 2 or 3. (b) Quantitative polymerase chain reaction
(qPCR)-determined quantities of PylRS and LeuRS mRNA in S. elongatus. (c) qPCR quantities of pyl-tRNA, leu-tRNACAG, and arg-tRNACCT.

Figure 4. (a) Representative Western blot of S. elongatus lysates
containing GFP variants with TAG mutations at different sites. (b)
Representative fluorescent (excitation at 532 nm and emission at 575
nm) sodium dodecyl sulfate−polyacrylamide gel electrophoresis gel
loaded with S. elongatus lysates that underwent click reaction to
TAMRA-azide. (c) Scheme of the RF1 and pyl-tRNA competition
model in which Et and Et* stand for the complex of the elongation
factor (EF-Tu) bound to endogenous aminoacylated tRNAs and pyl-
tRNA, respectively.
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levels of RF1 needed for termination of ∼40% of ORFs in the
S. elongatus genome. As a comparison, in E. coli, where the
extent of genomic TAG termination is ∼7%, the initial
suppression efficiency was <8%23 and has gradually improved
to 60%.24 Given the suppression efficiencies, in E. coli and in S.
elongatus, we expected that the off-target native chromosomal
genes terminating with TAG would be suppressed with similar
efficiencies. The system developed in this study allowed the
exploration of this prediction in a bacterial strain with
significant UAG termination usage. As described above, S.
elongatus does not exhibit any significant difference in growth
rates with and without an aminoacylated pyl-tRNA; this implies
that there is no significant UAG suppression in chromosomal
genes.
To test if this lack in toxicity is unique to S. elongatus, we

examined two E. coli strains (DH5α and BL21) transformed
with pEVOL-pyl-OTS and supplied with 2 or 3 (Figure S10);
no reduction in growth rates was observed in either form of E.
coli. The toxicity could possibly be alleviated by the use of
multiple stop signals downstream from the suppressed UAG
stop codon, but if this is the case, it should be expected that the
UAA will be incorporated into those suppressed UAG sites. To
test this claim directly and to evaluate one possible downstream
application of the presented system, both E. coli and S. elongatus
were cultured with vectors harboring pyl-OTS and 2. The
cultures were lysed and underwent a “click” reaction between
proteins incorporated with 2 and a TAMRA-azide fluorescent
dye. The fluorescent gels of the reaction products were
analyzed (Figure 4b and Figures S11 and S12). The
incorporation of 2 could be detected only in Y35TAG GFP,
while no significant incorporation was observed in off-target
proteins that terminate with TAG. Granted, it could be that the
efficiency of the click reaction as well as the low suppression
efficiency of the Pyl-tRNA will not afford a signal that is strong
enough to be detected; however, in S. elongatus, strongly
expressed photosystem components terminate with UAG.
Taken together, these results may imply the existence of a
mechanism by which the organism avoids unwarranted read-
through events; this observation is in agreement with previous
studies in E. coli.25,26 The intriguing bias in suppression has also
been recently observed in E. coli and HEK293T cells and was
attributed to context effects, an increased level of degradation
due to incorrect termination, and low expression levels of the
off-target genes.27,28 One of the causes of context dependence
was shown to be that the identity of the fourth nucleotide in the
3′ end of the UAG codon affects the affinity of the suppressor
or the terminator for the UAG codon.29 Another hypothesis
suggested that the position of the UAG codon in the gene may
also affect local ribosomal density that, in turn, will influence
protein expression.21 Furthermore, and in agreement with these
findings, Ozer et al. showed that RF1 has no observable
influence on near-cognate pyl-tRNA mis-suppression of the
UAG codon.30 However, while these factors may play a part in
this bias, we find it unlikely that they account for the apparently
complete absence of pyl-tRNA suppression in the chromosomal
genes of S. elongatus.
To further characterize this phenomenon, we modeled the

cellular competition between RF1 and pyl-tRNA over the UAG
codon in E. coli (Figure 4c). The competition between native
tRNAs and pyl-tRNA over the elongation factor (EF-Tu) was
calculated. It was done by using the reported affinity between
EF-Tu and both pyl-tRNA31 and native tRNAs,32 it also took
into account the approximate cellular concentrations of these

molecules. This revealed the steady-state concentration of EF-
Tu molecules bound to aminoacylated pyl-tRNA (Et*). Next,
the competition over the UAG codon between Et* and RF1
could be assessed using their measured affinities (detailed in the
Supporting Information). Our results show that RF1 should
outcompete the pyl-tRNACUA by more than 3 orders of
magnitude (RF1 is ∼1365 times more likely to react with a
UAG codon, according to the model). This explains the fact
that no reduction in generation time was observed in E. coli or
S. elongatus.
However, the model predicts that the suppression efficiencies

should be negligible (<0.1%). This calculation for E. coli is in
direct contradiction with the observed data by 2.5 orders of
magnitude. Considering the significant abundance of UAG
termination in S. elongatus compared to E. coli, and the
correlation between stop codon usage and RF1 abundance,22

the model results are further contradictory to our finding that
the suppression efficiency is 20% in S. elongatus. These results
stipulate the existence of a mechanism that reduces the level of
premature stop codon termination. The existence of such a
mechanism suggests an evolutionarily selective advantage by
reducing the level of premature termination by nonsense
mutations or translation errors, which requires further
investigation.
In conclusion, this study reports a facile method of genetic

code expansion in the cyanobacterium S. elongatus. The
incorporation of UAAs was demonstrated by incorporating 2
or 3 into three different sites of GFP as a proof of concept. This
protein augmentation ability combined with the unique
attributes of cyanobacteria should give rise to many new
applications, such as single-molecule studies in cyanobacteria
with site-specifically labeled proteins, coupling of the photo-
synthetic system to modified proteins of interest, and large-
scale production of proteins with unique new properties
utilizing the solar energy harvested by these bacteria.
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ABSTRACT: Protein synthesis in cells has been thoroughly investigated and characterized over the
past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic
code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli
transcription and translation processes by mutating the promoter and ribosome binding domains and
by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an
increase in the initiation rates of transcription and translation lead to a decrease in protein expression.
This effect can be rescued by introducing slow translating codons into the beginning of the gene, by
shortening gene length or by reducing initiation rates. On the basis of the results, we developed a
biophysical model, which suggests that the density of co-transcriptional-translation plays a role in
bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed
and protein synthesis.

KEYWORDS: protein translation initiation, transcription initiation, genetic code expansion, rates of translation, codon bias

Protein synthesis, one of the most important and complex
functions of living cells, is controlled by several

mechanisms. Every stage in the process, from DNA tran-
scription to protein folding dynamics, is tightly regulated to
ensure that proteins are produced in required amounts, at the
correct times and with minimal waste of energy and resources.1

In bacteria, the transcription of DNA to mRNA and the
subsequent translation into a polypeptide chain are coupled in
time and space.2,3 The two processes occur simultaneously,
which creates a high molecular density area populated with all
the components required for protein synthesis. For the
dynamics of transcription and translation, such molecular
crowding in the cytoplasm plays an important role by stabilizing
protein−protein interactions and by controlling the diffusion
rates of the components involved in protein synthesis.4,5 The
molecular densities of RNA polymerases on DNA and of
ribosomes on mRNA are known to depend on the transcription
and translation initiation rates, which, in turn, are determined
by the strengths of the promoter and of the ribosome binding
site (RBS). For example, it was shown that the use of a strong
RBS with a high initiation rate to overexpress proteins can lead
to ribosome collisions and queuing along individual mRNA
strands. These queues can generate interference between
adjacent translating ribosomes, significantly lowering the yields
and efficiency of protein expression.6,7 The nature of possible

interactions that may occur between ribosomes on adjacent
mRNA strands, however, is not clear.
The kinetics of translation also depend on the codon usage

of the encoded gene, which is manifested by its effects on the
elongation rate of the growing polypeptide chain.8,9 Exploited
across species to control translation rates and the ribosome
queues along mRNA strands, codon bias is used to optimize
protein synthesis and folding. Depending on the elongation
rates they dictate, codons can be divided into different rate
classes. Slower codons are found to be more favorably encoded
for in the first 30−50 codons of the mRNA, thus resulting in
ribosome crowding near the translation initiation site. Down-
stream codons, however, are found to be optimized for fast
elongation rates.10−12 These findings give rise to several
questions: Why is translation that occurs close to the
translation initiation site slow? Is this slow translation rate
related to the density of the molecular environment in the
vicinity of the cotranscriptional−translation event?
Although normally used for applicative purposes,13 genetic

code expansion through stop codon suppression constitutes an
effective, basic research tool to shed light on these questions.
One approach of genetic code expansion, the incorporation of
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noncanonical amino acids (ncAAs) into proteins, typically
exploits the UAG nonsense (stop) codon, essentially trans-
forming it into a sense codon that encodes for the
incorporation of an ncAA. This recoding is facilitated by
introducing into a host organism an orthogonal translation
system (OTS) that comprises of an orthogonal Archaeal o-
tRNA with an anticodon corresponding to the UAG stop
codon and an orthogonal amino-acyl-tRNA synthetase (o-
aaRS) that selectively recognizes the ncAA of choice and
aminoacylates its cognate tRNACUA.

14 The affinity of the o-
tRNA to the tertiary complex of the ribosome A-site during
translation, is significantly smaller than that of the native
bacterial tRNA.15,16 This smaller affinity can be exploited to
alter ribosomal traffic on the mRNA by decreasing the speed of
translation along the mRNA. This approach could be efficiently
realized when the OTS and the native release factor (i.e., RF1)
are not in direct competition for the UAG codon. That
competition can be eliminated by recoding all TAG stop
codons in the bacterial genome to TAA and by knocking out
the RF1 gene.17

Here we use the OR2-OR1-pr-UTR1 (P70a-UTR1)
expression system, based on a modified lambda PR promoter
and the T7 bacteriophage RBS,18 to perform genetic code
expansion. This system has the highest transcription and
translation initiation rates reported for an E. coli element, and
so far, it has been used exclusively in vitro. Its high initiation
rates promote large and unusual ribosome crowding along the
transcribing mRNA. We therefore hypothesized that in the
crowded environment of a polysome, a growing polypeptide
chain may interact with neighboring translational components
inside the polysome in a manner that can significantly retard
the process. Indeed, it was previously shown that the nascent
polypeptide can regulate the translation process in the
ribosome by interacting with the polypeptide exit tunnel in
the ribosome.19 Such interaction may cause ribosome stalling,20

translation arrest21 and even accelerated mRNA degradation.22

We exploited both the incorporation of ncAAs using UAG stop

codon suppression, synonymous mutations in the gene and the
modular tuning of the P70a-UTR1 expression system to model
and control ribosomal traffic, thus optimizing recombinant
protein expression.

■ RESULTS
WT GFP Exhibits Smaller Expression Levels Compared

to GFP with an ncAA Incorporated at Position 35.
Compared to its in vitro expression, the in vivo expression of the
WT GFP (WT GFP stands for a protein without incorporated
ncAAs) using the strongest E. coli promoter so far reported
(P70a-UTR1)18 was unexpectedly weak (Figures 1A, 1B lane
b). This outcome was observed not only when using a
genomically recoded E. coli strain (C321Δprf1) (GRO),17 but
also with two other E. coli strains (i.e., BL21(DE3) and DH5α).
However, expression in the GRO strain of the same protein, in
which a tyrosine residue at position 35 has been replaced with a
nonsense stop codon (UAG), led to large and unexpected
quantities of mutant GFP with the ncAA Propargyl-L-Lysine
(PrK) incorporated into position 35 (Figures 1A, 1B lane d).
Correct ncAA incorporation was verified by mass spectrometry
(LC-ESI-MS) as well as by MS/MS analysis of peptide
fragments (Figure S1).
To understand these initial observations, we first ruled out

the possibility that inclusion bodies or secondary mRNA
structures were the source of the divergence between the WT
GFP and 35TAG GFP quantities. Cryo-electron microscopy
(Cryo-EM) imaging of GFP revealed neither inclusion bodies
nor any marked difference in bacterial shape compared to Cryo-
EM images of bacteria without the GFP expression plasmid
(Figures S2A, S2B). Moreover, there was no difference in the
mRNA structure encoding for the WT GFP and the mutant
GFP (Figures S2C, S2D). We used two different plasmid
vectors to express the mutant Y35TAG GFP: one encoding for
the mutated protein and one encoding the Pyrrolysine
orthogonal translation system (Pyl-OTS), which is the
machinery for the ncAA incorporation. To exclude the

Figure 1. GFP expression using the P70a-UTR1 system. (A) Comparison of the experimental results (blue bars) with the modeled protein quantities
(purple bars). (B) Western blot analysis using anti-GFP antibody of GFP expression in C321.ΔA.exp: w/o plasmids (a) pBEST-p70a-UTR1-GFP
WT (b) and Y35PrK mutant in the absence and presence of PrK in the growth medium (lanes c and d, respectively). (C) Schematic presentation of
the hypothesized DITA phenomenon.
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possibility that the pEVOL Pyl-OTS plasmid contributed to the
unusual overexpression of the mutated reporter protein, we
demonstrated that pEVOL Pyl-OTS has no particular effect on
the expression of WT GFP (Figure S2E). Taken together, these
observations motivated our search for a more fundamental
explanation related to the coupling of bacterial transcription
and translation kinetics.
Density Induced Translation Arrest Model Predictions

Corresponds to Counterintuitive Protein Expression
Patterns. Herein, we propose a model to predict protein
and mRNA levels that is based on a set of biochemical
parameters combined with several assumptions. Model
parameters: an increase in the RNA polymerase (RNAP)
initiation rate (i.e., promoter “strength”) leads to a decrease in
the average distance between transcribing RNAP and vice
versa.23 The deterministic average distance between RNAPs,
⟨D⟩, is governed by eq 1 (the equation and its solutions are
presented in Figures S3A, S3B):

⟨ ⟩ = +
α

D D
R
Rpol

0

(1)

where Rα is the RNAP initiation rate and R0 is the RNAP
elongation rate anywhere on the gene, while DPol is the size of
the RNAP, which defines the minimal distance between
polymerases. The use of the Gillespie stochastic algorithm
imposed a distribution of RNAP velocities around the
simplified elongation rate: R0. This creates a stochastic
distribution of the distances between RNAPs and even creates
queues of adjacent RNAPs. As the average distance between
RNAPs decreases, the density of mRNAs being synthesized
along the DNA strand increases and the average distance
between adjacent mRNAs decreases. We named this promoter
dependent mRNA density along DNA “transcriptional density”
(Figure S3E).
The initiation rate of translation depends on the properties of

the ribosome binding site (RBS). As the ribosomal translation
initiation rate increases, the average distance between the
ribosomes translating the same mRNA template becomes
shorter. The average distance, ⟨d⟩, is governed by ribosome size
drib, the initiation rate rα and the elongation rate for each codon
i given by ri′. Considering that the time for each step is given by
⟨ ⟩ = ′t

r
1

i
the average distance (in number of codons) can be

simplified and expressed by eq 2 (the equation and its solutions
are presented in Figures S3C, S3D):

= + +d d N tnrib (2)

where

=
− ∑ = ′

+
∝t

rn
r i

N
r

N

1
12

1

1

i

and N fulfills

∑ ∑′ < < ′= ∝ =

+

r r r
1 1 1

i

N

i i

N

i12 12

1

Note that r′i and r∝ units are [s−1], whereas ri units are [codons
× s−1].
Another factor to include in the model is the different

elongation rates of each codon in the mRNA sequence.24−26

On the basis of a previous model developed by Mitarai et al.,
the entire set of bacterial codons was divided into three groups

based on translation ratefast (A), medium (B) and slow
(C)which correspond to elongation rates of 35, 8, and 4.5
codons per second, respectively25 (Figure S3F). To these
canonical codons we added the new noncanonical UAG codon
(in the GRO strain its only translated by the o-tRNA). The
UAG codon was assigned a new translation rate category, group
(D), which had a significantly lower elongation rate of 0.04
codons per second. The rate was estimated from in vitro
experiments15 and even though this value has some uncertainty
to it, it is at present our best estimate. Moreover, the model
based simulated results are quite robust to large perturbations
around this estimate. For example, the main observation being
that by using an early TAG mutation, significantly more protein
is being produced compared to WT GFP. These yields are still
achieved for values of a UAG rate ranging between 0.01−0.2
codons/s. Like the case of the RNAP stochastic velocity, the
ribosome also moves in a stochastic-probabilistic manner. This
means that in addition to the 4 rate groups the actual ribosome
velocity is governed by rate distributions for each codon around
the group mean. Finally, we included “translational density”,
defined as the density of ribosomes along an mRNA. The
length of the growing nascent polypeptide is directly propor-
tional to the position of the ribosome along the mRNA relative
to the translation initiation site.
In bacteria, transcription and translation are coupled, i.e., as

soon as the RBS on the transcribed mRNA emerges from the
RNAP, the ribosome binds the RBS and translation begins.2

The close proximity of the two processes in time and space
means that there may be interactions between them.
Accordingly, we hypothesized that highly crowded conditions
will promote spatial ribosome density, thus inducing translation
arrest in a process that we termed “Density Induced
Translation Arrest” (DITA). We propose that in cases in
which the promoter and RBS initiation rates are large enough
to create regions with high molecular density and in which the
nascent polypeptide is long enough, the probability for DITA
events increases. In the case of a DITA event, all the ribosomes
upstream of the arrested ribosome stall, promoting translation
termination and thus reducing the number of full-length
proteins produced from crowded mRNA strands (Figure 1C).
Next, we characterized our system’s model parameters

(described in detail in the methods section and listed in
Table S2). The GFP gene was mapped and the codons were
assigned to one of the four codon rate groups (A−D). The
ribosome elongation rate is governed by each codon during
translation. The average RNAP transcription rate was assumed
to be constant.2,27 Lastly, the length of the growing nascent
polypeptide could not be determined a priori since its folding
dynamics and interactions with the ribosome are unknown to
us. For this reason, we chose the simplest possible approach
and we added an empirical constant of proportionality, λ, which
governs the length of the polypeptide protruding from its
parent ribosome (Figure S3H). This approach allowed us to
predict, for a given gene, which transcription-translation
instances will generate a full-length protein and, as a result,
the protein production rate.
The results of the Gillespie algorithm simulation agreed with

the experimental results for both WT and Y35TAG mutant
GFP (Figure 1A). The model suggests that WT GFP
expression levels are negligible because of the high probability
for DITA occurrences when a strong promoter and RBS, such
as P70a and UTR1, respectively, are used. In the case of the
Y35TAG GFP mutant, the model suggests that the small-
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translation-rate UAG codon (group D) inserted in this position
serves as a “traffic light” that reduces ribosomal density
downstream. Taken together, the reduction in translational
density downstream of the UAG codon and the low probability
of a DITA event result in high yields of expressed protein.
Early Reassigned Amber Stop Codon Rescues Protein

Expression As Predicted by the Model. In the proposed
model, we suggest that a suppressed UAG stop codon functions
as a traffic light, thus its position along the mRNA is of
importance. Due to its substantially slower ncAA incorporation
kinetics compared to those of codons encoding for canonical
amino acids, a queue of ribosomes will grow behind the
reassigned stop codon. The transient stalling generated by an
early UAG codon significantly reduces ribosome occupancy
downstream, thereby reducing the chance of a DITA event
(Figure 2A). As the translation process continues, the chance
that the elongating polypeptide chain will have a DITA grows.
Indeed, both our experimental results and our simulations
indicated that the earlier the stop codon is introduced, the
lower the chance of a DITA event. For cases in which both
promoter and RBS are strong, our hypothesis predicts that the
closer a UAG codon is positioned to the C-terminal, the smaller
will be the protein yields in a manner similar to what is
observed for the WT GFP. Indeed, the choice of a late
D193TAG site in the simulation resulted in high DITA levels
and small protein yields compared to those in the Y35TAG
GFP mutant and protein yields equal to that of the WT protein.
To test our prediction, we mutated position D193TAG in GFP.
The experimental results coincided with those of the
simulation, i.e., low protein levels (Figure 2B). Note that
D193TAG GFP is a permissive mutation site, as compared in
vitro28,29 to the WT and Y35PrK mutant expression (Figure
S4A). The relationship between the position of the UAG codon
and the protein expression levels was simulated (Figure S4B)
revealing that only the first 37 codons enable rescue of protein

levels. This result is in agreement with our experimental results
and with earlier reports by Tuller et al. of an early slow
translating “ramp” region close to the translation initiation
region.9,10

Next, we tested the influence of adding an early UAG codon
to a mutant that already contains a late mutation (Y35TAG
+D193TAG). The model predicted that the early mutation
would decrease the translational density around the later UAG
stop codon, thus reducing the probability of DITA and
conferring a rescue mechanism on protein levels. The
expression levels of the double mutant Y35TAG+D193TAG
GFP, its protein expression kinetics and the final yields with the
different mutants predicted in silico and tested in vivo showed
high correlation and a clear rescue effect on protein expression
(Figure 2B).
Observing these results, we wanted to test whether the

rescue effect could be achieved with synonymous (silent) sense
codon mutations. Hence, we have tried to mutate the codons
around the early Y35 site in the WT GFP gene to slower
synonymous codons. As an example; tyrosine 35 was mutated
from TAC (group A) to TAT (group B). When tested in silico,
we predicted that at least four slow translating codon mutations
(two A → B mutations and two A → C mutations) should be
introduced in order to increase protein yields (Figure 2C,
purple bars). We tested our predictions experimentally and
only when four slow translating codon mutations were
introduced, the WT GFP expression was rescued and showed
significant increase in expression levels (Figure 2C, blue bars).
When two or three slow codon mutations were introduced, the
expression levels of WT GFP were only basal levels in both the
simulation and the experiments. These results reconfirm that
translation rates are crucial for high yields of recombinant
protein expression.

Slower Transcription and Translation Initiation Rates
Rescue Protein Expression. The use of weaker variants of

Figure 2. The “rescue effect” caused by ncAA incorporation and the associated attenuation in transcription rate is position dependent as well as
“slow translating” codon dependent. (A) Schematic presentation of the ribosome queue caused by UAG codons at various positions along the
mRNA. In early introduced UAG codons, the nascent polypeptide is relatively short and the ribosome traffic downstream of the codon is low,
reducing the chance of spatial ribosome density. However, with later UAG codons, the nascent peptide is longer and has more chances to interact
with other molecules in the polysome due to the ribosomal queue caused by the slow rate of the UAG codon. (B) Comparison of the experimental
results (blue bars) with the modeled protein amounts (purple bars). (C) WT GFP expression upon introduction of synonymous mutations around
position 35. Experimental results (blue bars) and modeled protein quantities (purple bars) show a significant increase in expression after the
introduction of the 4th synonymous mutation.
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both promoter and RBS to increase the average distances
between adjacent mRNAs and between translating ribosomes,
respectively, should reduce the probability of DITA and
increase protein expression. We engineered weaker variant of
the P70a promoter and the UTR1 RBS by introducing point
mutations into the control regions. In vitro transcription and
translation experiments showed that the transcription initiation
rate of the weaker promoter variant, P70b, was about 20 times
smaller than that of the P70a promoter (Figure S5A). In vitro
tests of the weak RBS variant UTR3 found that its translation
initiation rate was 10 times smaller than that of the original
UTR1 (Figure S5B). Our use of either a weaker promoter or
RBS enabled us to test whether DITA is affected only by
transcriptional or translational density or, as our model
suggests, that both factors influence the expression density,
the chances for DITA and thus, the amount of expressed
protein. Intuitively, the use of weaker promoter and RBS
regions is expected to result in smaller amounts of synthesized
protein. However, as predicted by our hypothesis and model,
the counterintuitive trend was observed, according to which the
weaker the control region, the higher the protein yields. This
finding is true both for the weaker promoter and RBS variant,
P70b-UTR1 and P70a-UTR3, respectively (Figure 3A, purple
bars). Experimental tests of this prediction showed that the
weakened variants yielded up to 20 times more protein than the
strong promoter-RBS construct (Figure 3A, blue bars),
suggesting that DITA can be mitigated by increasing either
the spacing of RNAP on DNA or ribosomal spacing on mRNA.
Notably, when the same experiment was performed with the
Y35TAG GFP mutant it showed the opposite trend, both
experimentally as well as by simulation, where a weaker control
region yielded less protein (Figure 3B). Thus, by using a simple
set of mutated reporter genes and incorporation of non
canonical amino acids, we showed how protein synthesis yields
depend, in a counterintuitive manner, on the strengths of the
regulatory elements, i.e., promoter and RBS strengths, as well as

on codon usage. Figure 3C is a heat map generated by the
model that exemplifies the intricate relationship between
promoter initiation rate and ribosomal initiation rate and
resulting protein levels, it could be seen from this heat map that
there is a certain set of conditions that will afford high protein
yields, even for a combination of a very low promoter initiation
rate and a high ribosomal initiation rate.

An Analysis of Mutants and Initiation Rate Variants
Suggests That DITA Influences mRNA Levels. Under the
DITA assumption, we propose that the stalling of translation
somewhere along an mRNA causes all upstream ribosomes to
stall while all downstream ribosomes complete translation. This
hypothesis also suggests that the stretch of mRNA between the
DITA site and the 3′ end will be more exposed to endonuclease
cleavage. For that reason, we predicted that the larger the
chances of DITA, the lower the mRNA levels will be, because
mRNA is more exposed to endonucleases. Using the model, we
determined the amount of mRNA produced by each of the
mutants and compared it to the relative quantity (RQ) of GFP
mRNA found in mid log phase cultures of the same mutants
using qPCR (Figure 4A). A comparison of the qPCR and the
modeled results revealed a strong correlation, suggesting that
DITA affects both protein and mRNA levels by rapidly
degrading not only the mRNA, but also nascent peptides. Since
high mRNA levels usually correspond to high protein
expression levels, it is essential to optimize protein expression
for high levels of mRNA while maintaining the half-life of
mRNA by avoiding DITA. This can be accomplished by
exploiting the optimal regions, in terms of transcription and
translation initiation rates, for maintaining a high level of GFP
mRNA and by using regulatory elements that are strong
enough but calibrated to prevent DITA under high expression
density conditions. The heat map shown in Figure 4B is a result
of a simulation of different initiation rates of the promoter and
ribosomes and their influence on mRNA levels. It can be seen
from the map that as expected ribosomal initiation rates have a

Figure 3. Smaller initial transcription and translation rates decrease the probability of DITA. (A) Comparison of the experimental results (blue bars)
with the modeled protein amounts (purple bars) of WT GFP expression under the control of promoter and RBS with variable initiation rates. (B)
Comparison of the expression of GFP Y35PrK mutant under the control of different control regions. Experimental and the modeled results, shown
in blue and purple bars, respectively. (C) Heat map of the expected amounts of WT GFP protein using different combinations of transcription and
translation initiation rates.
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very low influence on mRNA levels, however, our experimental
results as well as the model have identified a set of conditions in
which mRNA levels are influenced by ribosomal initiation rates.
We do not exclude other explanations for the reduction in
mRNA levels such as effect on transcription initiation by the
density, or a codon bias effect30 possibly mediated by a
protein.31 However, if this is the case, then it is mutually
inclusive to our hypothesis.
Testing Additional Proteins Supports the Generality

of the DITA Phenomenon. To investigate whether the
proposed phenomenon is a general mechanism and that it is
not specific to GFP, we tested our model on three different
genes: red fluorescent protein (mRFP1), Zymomonas mobilis

alcohol dehydrogenase II (zmADH) and the B1 domain of
Protein L (PL), which is a small, 73-amino-acid polypeptide.
The mRFP1 gene was chosen because it is a reporter protein as
is GFP, however, mRFP1 shares only 26% similarity with the
GFP amino acid sequence (sequences are available in the SI
section), and it represents an optimized gene in terms of codon
usage (it consists almost entirely of rapidly translating codons
(A-type codons). The genes were tested under similar
conditions to those used for GFP. The experimental results
for mRFP1 were in a good agreement with the model
simulations (Figure 5A). This protein has shown the same
trends as GFP both in the model and in the experiments. In
contrast to mRFP1, zmADH is a larger, more complex gene

Figure 4. mRNA levels are also affected by DITA. (A) Comparison of the relative quantities of GFP mRNA transcripts found in mid log phase
cultures and (blue bars) with the modeled mRNA quantities (purple bars). (B) Heat map of the expected amounts of GFP mRNA transcripts using
different combinations of transcription and translation initiation rates.

Figure 5. DITA is not limited to GFP and can be seen in other genes expressed using the P70a-UTR1 system and its variants. (A) Experimental
(blue bars) and modeled (purple bars) protein levels of a codon optimized WT and K15PrK mRFP1. (B) Experimental (blue bars) and modeled
(purple bars) normalized expression levels of zmADH. (C) Experimental (blue bars) and modeled (purple bars) normalized expression levels of WT
and K16PrK protein L (PL).
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with lower translation rates owing to its abundance of codons
from groups B and C, which attenuate the translation process
and result in more complex folding dynamics. The results were
once more in a good agreement with the simulations (Figure
5B), but we observed, contrary to model predictions, a partial
rescue effect when testing expression levels with a late mutation
(V86TAG). Still, a weaker promoter has given higher
expression for this enzyme as well, which was observed both
in the model prediction and experimentally. This observation is
evidence that our model does not account for all factors that
influence transcription/translation. Moreover, this finding
suggests that cotranslational folding and chaperons may
introduce bifurcation points at which nascent polypeptide
length is significantly reduced. Thus, the special case of a late
mutation can rescue a protein from DITA. Lastly, PL was
chosen to test the model prediction that a protein with a
relatively short polypeptide chain should have a much lower
propensity for a DITA event (Figure S3A−D). Indeed, because
it is a small protein, WT PL is efficiently produced at
significantly greater levels than the TAG mutated variant
(Figure 5C). The results with PL are additional experimental
evidence that if the polypeptide is short enough, spatial
collisions are less likely to occur although density is very high.
The good agreement found between our model simulation and
the experimental results for other proteins suggest that our
proposed model is applicable not only to GFP.

■ DISCUSSION
Due to the fact that we have no direct evidence to the
occurrence of DITA, we wanted to test our hypothesis by
exploring alternative explanations for this phenomenon.
Alternative explanations that were excluded by us are:
differences in protein stability between a protein with an
ncAA and WT protein, differences in plasmid copy numbers,
mRNA secondary structure differences, as well as ncAAs
interference with fluorescence of the reporting protein, GFP. In
order to demonstrate no apparent change in protein stability
between WT GFP and Y35TAG GFP, two experiments were
conducted: We monitored the stability of the WT and the
mutant protein in a crude cell lysate over the course of 24 h,
showing that both proteins were stable with no significant
change in fluorescence (Figure S6). In the second experiment
we used synonymous, slow translating codons that were
consecutively mutated around position 35, demonstrating that
after the addition of four and above slowly translating codons,
protein yields improve significantly to yields that are even
higher than that of the protein with incorporated ncAA (Figure
2C), these important results indicate that the same protein with
no structural change, but a change in the coding sequence, can
be expressed with higher yields when the rate of translation
slows down significantly, these results are in agreement with a
recent report of Zhong and co-workers.32 These results also
show that even with a strong promoter as is being used in this
study, no hindrance from plasmid replication is observed.
Evidence that attests to the fact that there is no hindrance for
plasmid replication due to the existence of a strong promoter
are the results with PL, since this protein is very short (ca. 70
AA) it is not affected by DITA, and high yields of expression
are observed for this protein even with the strong promoter
(Figure 5C). mRNA secondary structure could have accounted
for the apparent differences in expression profiles between WT
GFP and Y35GFP; however, an analysis of the mRNA
secondary structure according to an algorithm written by

Mathews and co-workers33 has shown no difference in mRNA
secondary structure. The algorithm calculates mRNA secondary
structure by taking into account base pairing, free energy
minimization and other thermodynamic considerations. The
analysis has shown that the single nucleotide change of C → G
(Figure S2C,D) has no implications on mRNA’s secondary
structure, hence could not explain the discrepancy in expression
levels. Moreover, once ribosomes bind mRNA during trans-
lation, the secondary structure is rendered almost linear, hence
the predicted secondary structure is not relevant any longer and
could not account for the observed difference. In order to
exclude the possibility that ncAAs may interfere in any way with
GFP fluorescence, we have quantified WT and mutant GFP
and thus report their quantities rather than their fluorescence.
Additional possibilities were tested as well: ribosome

abortion due to ribosome collisions was not excluded it could
be an additional hindrance in the system but not an exclusive
explanation since we could see elevated expressions of WT
GFP also with a weak promoter and a strong RBS (Figure 3A).
Another possibility is that due to the strong promoter and RBS
there will be an extreme consumption of translation factors (i.e.,
ribosomes, tRNAs, elongation factors, release factors), this
possibility was excluded since it should have been seen for the
much slower mutant as well (Y35PrK GFP), with the same
strong promoter, multiple mRNAs will require multiple
ribosomes too. Lastly, we have considered the plasmid copy
number as a possible cause of low protein expression levels as is
common with very strong promoters, however, our observa-
tions point to very low effect of plasmid copy numbers if any:
the fact that the relatively small protein WT PL have shown
high yields compared to the mutant protein using the same
expression vector as for WT GFP expression, while the WT
GFP have shown very small expression levels under the same
conditions, contradicts the effect of plasmid copy number as the
cause for low protein yields. In addition, for the same plasmid
Y35PrK GFP have exhibited very high yields as well, again
contradicting the effect of high plasmid copy number.
Moreover, the synonymous mutations experiment (shown in
Figure 2C), demonstrates very well that after the insertion of
four synonymous “slow” translating codons in the beginning of
the gene, protein expression levels are recovered, for the same
plasmid, yet again demonstrating that plasmid copy number
could not be the cause for low protein yields.

■ CONCLUSIONS
The ability of the model to accurately predict the expression
trends of various proteins under different conditions led us to
suggest that spatial expression density and DITA have
significant effects on protein expression in cells. We note that
our model does not take into account co-translational folding
and therefore should not be applied to these cases. We would
like to stress out that a natural system could not have been
evolved to have such strong elements to drive higher protein
expression, maybe due to DITA, hence, natural systems have
evolved to prevent inefficiency and energy loss. We have used
artificial transcription and translation elements as well as a
recombinant GFP with a synthetic sequence to demonstrate
DITA. These elements were then modified to control DITA
levels. In our model the expression density of any gene relies on
a combination of four key determinants: translation initiation
and termination rates, transcription initiation and termination
rates, gene length and codon bias. Herein, we propose an
additional hypothesis for the important roles of codon bias and
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genetic code redundancy. Although this effect was only
observed in this study due to the use of highly efficient
transcription and translation control regions, we infer that its
effects could have significant, yet not always easy to observe
implications, on the expression of all recombinant heterologous
proteins. We propose that what is widely known as exogenous
expression toxicity due to resource and energy depletion in
some cases could be explained by DITA. In addition, we were
able to show that by reducing the strength of the regulatory
elements, we could lower expression density, resulting in a
counterintuitive outcome that significantly improved protein
yields. These protein expression dependencies were also
observed at the mRNA levels of the various mutants, showing
that it affects both cellular protein and mRNA levels, thus
affecting the final quantities of protein produced. We showed
that DITA occurs for several, highly dissimilar proteins,
suggesting that it could be a general mechanism found in all
bacteria. Moreover, our findings may also point out the
importance of separating transcription and translation processes
to increase the production rate of proteins, especially with
longer and more complex genes. Obtaining a deep under-
standing of the transcription and translation processes is of an
utmost importance; our findings are a novel step towards the
ability to control and modify these processes, which may have a
significant impact on protein expression both for fundamental
research as well as for biotechnological applications.

■ EXPERIMENTAL PROCEDURES
GFP and mRFP1 Quantification and Purity Assess-

ment. GFP and mRFP1 fluorescence were measured during
overnight incubation at 37 °C. ncAA mutants were
supplemented with PrK in a final concentration of 2 mM of
ncAA. The various mutants were grown in 96 well plates while
OD600 and fluorescence were measured every 20 min for up to
20 h. GFP and mRFP1 fluorescence were measured with the
respective excitation/emission wavelengths of 488/510 nm and
584/607 nm. GFP mutants were purified using nickel affinity
chromatography, and the resulting samples were measured
using a commercial Bradford assay (Thermo Scientific,
Waltham, MA). Western blot analysis was used to verify the
integrity of fluorescence as a measure of protein quantity when
comparing the various mutants and to eliminate the possibility
of fluorescence reduction due to ncAA incorporation. For
Western blot analysis, goat anti-GFP and donkey antigoat
(HRP-conjugated) antibodies were used as primary and
secondary antibodies (Santa Cruz, CA, USA), respectively.
GFP Purification and Mass Spectrometry. For the LC−

MS validation of PrK incorporation, nickel affinity chromatog-
raphy purification (IMAC) of 6xhis-tagged GFP was
performed. Overnight cultures of 100 mL were lysed using
BugBuster protein extraction reagent (Novagen, WI, USA) and
6xHis tagged GFP was purified from the crude lysate using His-
Bind nickel affinity chromatography resin (Novagen). The
protein-containing eluted fraction was concentrated using a 10
kDa cutoff Vivaspin concentrator (Sartorius, Göttingen,
Germany) to a final concentration of 2 mg/mL. The resulting
concentrated fraction was analyzed by LC−MS (Finnigan
Surveyor Autosampler Plus/LCQ Fleet (Thermo Scientific,
Waltham, MA), using Chromolith monolithic column (EMD
Millipore). The results were analyzed using Xcallibur (Thermo)
and Promass (Novatia) software. MS/MS analysis was
performed using standard protocols for in-gel trypsin digestion
and desalting using ZipTip μC18 (EMD Millipore). The

desalted peptides were analyzed on an LTQ/Orbitrap mass
spectrometer (Thermo). Collision induced dissociation (CID)
was used to analyze ions of interest for tandem mass
spectrometry.

Zymomonas mobilis Alcohol Dehydrogenase
(zmADH) Expression and Quantification. Cultures of
C321.ΔA.exp harboring the pBEST-zmADH plasmid with the
various mutants were incubated at 37 °C. Cultures intended for
ncAA incorporation were also supplemented with PrK at a final
concentration of 2 mM. zmADH expression was analyzed by
quantifying ADH activity in the samples.34 The results were
also semiquantitatively verified by densitometry analysis of a
Western blot of the different mutants. Blotting was done using
anti His-tag antibodies made in mice (Santa Cruz, CA, USA).
The Western blot results were analyzed using ImageJ
software.35

B1 Domain of Protein L (PL) Expression and
Quantification. The PL gene was subcloned to the pBEST
P70a-UTR1 vector. The K16TAG mutant was created using
site-directed mutagenesis (primer sequences can be found in
the SI section). The two variants were transformed separately
into C321ΔPrf1.EXP already harboring the pEVOL-Pyl OTS
plasmid. The cultures were incubated overnight at 37 °C in LB
media supplemented with 2 mM of propargyl-L-lysine. The OD
of the cultures was calibrated and lysis was performed using the
protocol supplied with the BugBuster Reagent (Novagen, WI,
USA). A sample of each lysate was loaded onto SDS-PAGE
(WT sample was diluted by a factor of 10) and then blotted
using anti His-Tag antibodies produced in mice (Santa Cruz,
CA, USA). The Western blot results were analyzed using
imageJ software35 and the conversion to molar concentration
was done using a calibration curve.

mRNA Quantification. A GeneJET RNA purification kit
(Thermo Scientific, Waltham, MA, USA) was used to extract
total RNA from bacterial cultures during midexponential phase.
cDNA samples were synthesized from RNA samples using
iScript cDNA synthesis kit (Biorad, Hercules, CA, USA). qPCR
was performed using KAPA SYBR FAST qPCR Kit
(KapaBiosystems, Wilmington, MA, USA) with the recom-
mended relative calibration curve protocol, in the StepOnePlus
Real-Time PCR System (Thermo Scientific, Waltham, MA,
USA).

Modeling the Expression Density under the DITA
Assumption. The system was modeled in a 2D temporal-
spatial model and was simulated using a Gillespie algorithm. All
the parameters used in the model are detailed in Supporting
Information Table S2. The parameters were assessed and
determined from literature and from experimentation as
described in detail in the supporting experimental procedures
section. The computational simulation enabled the assessment
of mRNA and protein production kinetics and statistical
assessment of the propensity for density induced translation
arrest under different parameter regimes. Detailed explanation
about the construction of the model including literature
sources, and experiments along with the computational
simulation code are available in the SI section.
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SUMMARY

Previous studies have suggested that changes in
extracellular ion concentrations initiate the transition
from an activity state that characterizes sleep in
cortical neurons to states that characterize wakeful-
ness. However, because neuronal activity and extra-
cellular ion concentrations are interdependent,
isolating their unique roles during sleep-wake transi-
tions is not possible in vivo. Here, we extend the
Averaged-Neuron model and demonstrate that,
although changes in extracellular ion concentrations
occur concurrently, decreasing the conductance of
calcium-dependent potassium channels initiates
the transition from sleep to wakefulness. We find
that sleep is governed by stable, self-sustained oscil-
lations in neuronal firing patterns, whereas the quiet
awake state and active awake state are both gov-
erned by irregular oscillations and chaotic dynamics;
transitions between these separable awake states
are prompted by ionic changes. Although waking is
indicative of a shift from stable to chaotic neuronal
firing patterns, we illustrate that the properties of
chaotic dynamics ensure that the transition between
states is smooth and robust to noise.

INTRODUCTION

During transition from sleep to awake, the brain passes from a

state that attenuates sensory inputs to one that often amplifies

them (Lee and Dan, 2012; McGinley et al., 2015b; Polack et al.,

2013). How this transition between states occurs is still incom-

pletely understood, both at the level of the brain and at the level

of the neurons that must implement the transition in a smooth

and robust way.

Cortical neurons are known to exhibit three distinct physiolog-

ical and behavioral states that characterize the transition

from sleep to active wakefulness. Specifically, slow-wave sleep

is characterized by oscillating periods of synaptic barrages

(also called ‘‘upstates’’) and silence (‘‘downstates’’) (Steriade

et al., 2001). It is understood that this behavior reflects oscillations

in membrane potential (Vm) and therefore the neuron’s suscepti-

bility to input. In wakefulness, these downstates are suppressed

and Vm is maintained closer to threshold. Although the classic

view holds that oscillations are restricted to slow-wave sleep,

recent studies have demonstrated that a quiet awake state is

also characterized by low-frequency Vm oscillations. Once

actively awake, however, movement and arousal suppress these

oscillations, and Vm is depolarized tonically, making neurons

sensitive to inputs and prone to firing. Despite our understanding

of the neuronal behaviors that are indicative of transitions from

slow-wave sleep to quiet awake to active awake, the underlying

mechanisms that initiate these transitions remain unclear.

Recently it was proposed that changes in extracellular ion

concentrations ([K+]o, [Ca2+]o, and [Mg2+]o) control activity

patterns during sleep and wakefulness, and that ionic changes

are sufficient to shift the state from sleep to awake (Ding et al.,

2016). However, given that changes in neural activity also

strongly affect extracellular ion concentrations (Amzica et al.,

2002; Hounsgaard and Nicholson, 1983; Lux, 1974; Lux and

Neher, 1973; Nicholson et al., 1977), it is not possible to unequiv-

ocally distinguish cause and consequence in vivo. For example,

both spiking and excitatory barrages, which originate within the

neuron itself, increase [K+]o (Hounsgaard and Nicholson, 1983;

Shih et al., 2013), making it difficult to experimentally assess cau-

sality. A remedy for solving this issue ismodeling and simulations

(Fröhlich et al., 2006; Krishnan et al., 2015; Tagluk and Tekin,

2014; Tatsuki et al., 2016). The ability to maintain parameters

constant, thereby reducing variable space dimensionality, is a

powerful tool for interrogating the impact of changes in both

intracellular and extracellular ion concentrations on Vm dynamics

and state transitions, as well as for formulating hypotheses and

predictions for future experimental investigations.

An important step toward successfully modeling the neuronal

dynamics in a simple manner, is the Averaged-Neuron model,

which recently has been proposed (Tatsuki et al., 2016). This

model is inspired by previously constructed neural-network

models (Bazhenov et al., 2002; Chen et al., 2012; Compte

et al., 2003; Hill and Tononi, 2005; Sanchez-Vives et al., 2010;

Timofeev et al., 2000), but simplifies the enormous complexity

of these by performing a mean-field approximation of a
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population of neurons to construct an Averaged-Neuron model.

The framework of the model is based on the existence of

different ion channels and is mathematically described in a

Hodgkin-Huxley manner; all contribute to the total change in

Vm. As a first-order approximation, it is assumed that the

averaged-neuron can interact with itself (directly or indirectly)

through excitatory or inhibitory synaptic currents. Furthermore,

intrinsic currents exist as depolarizing Na+ and Ca2+ currents

and hyperpolarizing K+ currents. This polarization affects the

Vm through nine different intrinsic channels (Figure 1A).

Here, we extend the Averaged-Neuronmodel to explicitly treat

the changes in extracellular ion concentrations that occur during

the sleep-wake cycle. We demonstrate how decreasing the

conductance of the Ca2+-dependent K+ channel, in combination

with physiological changes in [K+]o, [Ca
2+]o, and [Mg2+]o, initiates

state transitions in neuronal firing patterns. We find that sleep is

dominated by a stable limit cycle, resulting in self-sustained,

stable firing patterns, whereas wakefulness is governed by irreg-

ular oscillations and chaotic dynamics. As the ion concentrations

are changed, the firing patterns become more dominated by

long high-frequency upstate periods, and we predict that a state

change from quiet to active awake can be induced by subtle

changes in extracellular ion concentrations. Finally, we discuss

how the fundamental properties of chaotic dynamics can ensure

smooth transitions between brain states in the presence of

intrinsic noise.
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Figure 1. Implementing Ion Concentrations in the Averaged-Neuron Model

(A) Schematic diagram of the extended Averaged-Neuron model containing intrinsic ion channel conductances and Ca2+ pumps, extrinsic synaptic ion channel

conductances, and extracellular ion concentrations.

(B) Representative slow-wave sleep membrane potential (Vm) firing pattern and intracellular Ca2+ concentration ([Ca2+]i) with the initial extracellular ion

concentration parameter set ([K+]o = 3.5 mM, [Ca2+]o = 1.5 mM, and [Mg2+]o = 1.1 mM). Below is an expansion of Vm dynamics.

(C) Vm frequency spectra.

(D) SD of mean Vm (spikes removed).

(E) Mean Vm distribution.

(F) Representative Vm firing pattern and [Ca2+]i with 3.5, 8, or 14 mM [K+]o. Below is an expansion of Vm dynamics.

(G) Upper: Spike rate versus time for 3.5, 8, or 14 mM [K+]o. Lower: SD of mean Vm for 3.5, 8, and 14 mM [K+]o.

See also Figure S1.
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RESULTS

Implementing Dynamic Ion Concentration
Dependencies in the Averaged-Neuron Model
As a starting point for investigating the influence of extracellular

ion concentrations on neuronal states, we first implemented and

extended the Averaged-Neuron model (Tatsuki et al., 2016). In

this model, a single neuron feeds back onto itself directly and

indirectly, through synaptic excitatory and inhibitory conduc-

tances (AMPA, NMDA, and GABAA receptors) (Figure 1A). In

addition to synaptic conductances, the Averaged-Neuron

model includes the following intrinsic conductances, either

depolarizing or hyperpolarizing Vm: voltage-gated (NaV) and

persistent (NaP) Na+ channels, voltage-gated (CaV) Ca2+

channels, voltage-gated (KV), leak (KLeak), fast A-type (KA-type),

inwardly rectifying (KIR), slowly inactivating (KSI), and Ca2+-

dependent (KCa) K+ channels, and finally a Ca2+-pump/

exchanger expelling Ca2+ ions from the intracellular compart-

ment (Tatsuki et al., 2016) (Figure 1A). For all of these conduc-

tances, we adapted the full parameter set from the original

Averaged-Neuron model published by Tatsuki et al. (2016).

The original Averaged-Neuron model did not consider changes

in extracellular ion concentrations as variables but as fixed

constants. We extended the Averaged-Neuron model by intro-

ducing extracellular and intracellular ion concentration depen-

dencies by implementing Nernst and Goldman-Hodgkin-Katz

equations for calculating reversal potentials for all receptors

and channels. We also added a [Mg2+]o dependency for the

NMDA receptor that satisfies the criteria that higher [Mg2+]o
leads to lower current (Mayer et al., 1984; Nowak et al., 1984)

(Figure 1A). A detailed formal description of the extended

Averaged-Neuron model is provided in the STAR Methods

and the code is available on GitHub (https://github.com/

Neurune/IonsAndChaos).

First, we simulatedVm in timewith an initial extracellular ion con-

centration parameter set of [K+]o = 3.5 mM, [Ca2+]o = 1.5 mM, and

[Mg2+]o = 0.8 mM. The remaining intra- and extracellular ion

concentrationsweremaintained constant, and valueswere based

onprevious in vivo and in vitro experimentalmeasurements (Diarra

et al., 2001; Dietzel et al., 1982; Markova et al., 2008; Raimondo

et al., 2013; Rose and Konnerth, 2001; Rose and Ransom,

1996). We found that the model remarkably closely recapitulated

previous recordings obtained from neurons during slow-wave

sleep (simply referred to as sleep from here on) (Steriade et al.,

2001) (Figure 1B). The extended Averaged-Neuron model gener-

ated wave forms of slow oscillatory patterns, consisting of alter-

nating periods of Vm depolarization and spiking (upstates) and

Vm hyperpolarization and silence (downstates). This oscillatory

pattern was also present in the modeled intracellular Ca2+

concentration ([Ca2+]i), with upstates generating a �8 mM rise in

[Ca2+]i (Figure 1B). The preferential slow Vm oscillations were

evident when analyzing frequency components for ten simula-

tions, showing a high prevalence of 1–4 Hz delta power (Fig-

ure 1C). The moving SD of the mean Vm (spikes removed) varied

between 0.1 and 3 mV (Figure 1D), similar to the seminal

recordings obtained by Steriade et al. (2001). Finally, mean Vm

showed a clear bimodal distribution, with peaks around �70

and�50mV, reflecting the equal presence of up- and downstates

separated by �20 mV (Figure 1E).

To assess the validity of our implemented ion concentration

dependencies in the extended Averaged-Neuron model, we

sought to test the effect of increasing [K+]o from 3.5 to 8

to 14 mM. The resting Vm of neurons is mainly determined by

K+-permeable conductances, and Vm is highly sensitive to

changes in [K+]o (Fröhlich et al., 2008). Thus, we expected drastic

Vm changes when pushing [K+]o to the biological extremes if our

model was valid. When increasing [K+]o from 3.5 to 8 mM, we

observed a qualitative change in Vm dynamics. The alternating

up- and downstates disappeared, and instead Vm was main-

tained depolarized and the neuron fired continuously at rates

of �100 Hz, giving rise to a tonic elevation in [Ca2+]i at �9 mM

(Figures 1F and 1G). This finding is in congruence with in vitro

slice experiments, inducing epileptic seizure activity by

increasing [K+]o to 7.5 or 8.5 mM in the external media (Jensen

and Yaari, 1997; Traynelis and Dingledine, 1988). Further

elevating [K+]o to 14 mM depolarized Vm even more but also

completely abolished action potential firing, releasing the tonic

[Ca2+]i elevation (Figures 1F and 1G). This effect is likely ex-

plained by depolarization-induced conductance blockage,

where NaV channels are kept hostage in the inactivated configu-

ration, resulting in the inability of the neuron to fire (De Col et al.,

2008; Orkand et al., 1966). This observed effect appears similar

to what is seen during in vivo cortical spreading depression,

where [K+]o reaches levels above 12 mM (Enger et al., 2015),

leading to annihilation of neural activity in the affected brain

area (Grafstein, 1956; Somjen, 2001, 2002, 2004). An example

of how Vm dynamics are also modulated by extreme shifts in

[Ca2+]o is provided in Supplemental Information (Figure S1).

Overall, these results demonstrate that the extended

Averaged-Neuron model very closely recapitulates cardinal

properties of Vm dynamics during sleep and is expectedly

sensitive to changes in extracellular ion concentrations.

Shifting from Sleep to Awake Ion Concentrations
Induces No Apparent State Transition
It was recently suggested that changes in extracellular ion con-

centrations ([K+]o, [Ca
2+]o, and [Mg2+]o) control state-dependent

activity patterns during sleep and wakefulness, and that ion

shifts are sufficient to mediate the transition from sleep to awake

(Ding et al., 2016). However, due to the intimate relation between

neural activity and ionic changes, establishing causality in vivo is

non-trivial.

To investigate the effect of ion concentration changes on

sleep to awake transitions in the extended Averaged-Neuron

model, we used the previously measured extracellular ion con-

centrations during sleep ([K+]o = 3.9mM, [Ca2+]o = 1.35mM, and

[Mg2+]o = 0.8 mM) and awake ([K+]o = 4.4 mM, [Ca2+]o = 1.2 mM,

and [Mg2+]o = 0.7 mM) (Ding et al., 2016) (Figure 2A). With sleep

ions, Vm dynamics closely recapitulated sleep with alternating

up- and downstates. When we switched to awake ions, no

apparent change in Vm dynamics was obvious, except a

subtle tendency for more spikes per upstate (Figure 2B).

When we analyzed Vm frequency components, we found no

significant difference in 1–4 Hz delta power between sleep

(21.2 ± 0.24 dB) and awake ions (20.4 ± 0.62 dB) (p = 0.08,

Student’s t test, n = 10 simulations) (Figures 2C and 2D). Also

mean Vm SD, a frequently used indicator for neuronal state

(McGinley et al., 2015a; Steriade et al., 2001; Yamashita et al.,
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2013), was similar for sleep (0.77 ± 0.62 mV) and awake ions

(0.78 ± 0.58 mV) (p = 0.089, Student’s t test, n = 10 simulations)

(Figures 2E and 2F). Finally, mean Vm showed a clear bimodal

distribution with both sleep and awake ion concentrations

(Figure 2G).

Taken together, shifting the extracellular concentrations of K+,

Ca2+, and Mg2+ with the same magnitude as measured in vivo

during sleep and awake failed to induce a cortical state transi-

tion, suggesting that ion changes of this magnitude alone are

not sufficient to produce a transition from sleep to awake. To

exclude that these findings were not merely a special case of

one parameter set, we evaluated the effect of switching from

sleep to awake ion concentrations, but with varying values of

model parameters. These analyses showed the same overall

result, as with the initial parameter set (Figure S2) thus substan-

tiating our initial conclusion.

Partially Inhibiting the KCa Channel Induces Sleep to
Awake State Transition
Early seminal and more recent work has implicated the

KCa channel in Vm activity patterns observed during sleep and

wakefulness (Steriade et al., 1993; Tatsuki et al., 2016). Following

a rise in [Ca2+]i this channel activates and generates an outward

K+ current, hyperpolarizing Vm. In this way, the KCa channel was

proposed as a key component for generating downstates during

sleep (Steriade et al., 1993). In contrast, with elevated levels of

neuromodulators (acetylcholine, norepinephrine, serotonin, and

histamine) as seen during wakefulness (Lee and Dan, 2012),

the KCa channel is partially inhibited (McCormick andWilliamson,

1989; McCormick et al., 1993), and this could potentially induce

the sleep to awake transition by preventing the occurrence of

downstates (Steriade et al., 1993).

During our sleep Vm simulations, we observed a close relation

between mean Vm and [Ca2+]i oscillations with a 0.12 s lag for

[Ca2+]i (Figure 3A). This led us to analyze the relation between

[Ca2+]i and the KCa current. Not surprisingly, we found a

�0.013 s lag between [Ca2+]i and KCa currents (Figure 3B). The

largest KCa currents occurred when mean Vm was most depolar-

ized, and Vm rapidly hyperpolarized following peak KCa currents

(Figure 3C), suggesting that KCa-mediated outward currents

could be key for generating downstates.

To assess the role of the KCa channel and to mimic the eleva-

tion in neuromodulator levels seen during wakefulness (Lee and

Dan, 2012; McCormick and Williamson, 1989), we reduced the
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Figure 2. Shifting from Sleep to Awake Extracellular Ion Concentrations Does Not Induce State Change

(A) Schematic diagram of extracellular ion concentrations used. Sleep: [K+]o = 3.9 mM, [Ca2+]o = 1.35 mM, and [Mg2+]o = 0.8 mM. Awake: [K+]o = 4.4 mM,

[Ca2+]o = 1.2 mM, and [Mg2+]o = 0.7 mM.

(B) Representative membrane potential (Vm) firing pattern and intracellular Ca2+ concentration ([Ca2+]i) with sleep and awake ion composition. Below is an

expansion of Vm dynamics.

(C) Vm frequency spectra for sleep and awake ion composition.

(D) 1–4 Hz delta power for sleep and awake ion composition (non-significant [ns] p = 0.08, Student’s t test, n = 10 simulations).

(E) SD of mean Vm (spikes removed) with sleep or awake ion composition.

(F) Boxplot for SD of mean Vmwith sleep or awake ion composition. Center line is the median, box limits are 25th and 75th percentiles, and whiskers are maximum

and minimum values (ns p = 0.089, Student’s t test, n = 10 simulations).

(G) Mean Vm distribution with sleep or awake ion composition.

See also Figure S2.

4 Cell Systems 5, 1–13, December 27, 2017

Please cite this article in press as: Rasmussen et al., Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Con-
centrations, Cell Systems (2017), https://doi.org/10.1016/j.cels.2017.11.011



conductance of the KCa channel (gKCa) over time (100% = 2.3

mS/cm2, 75% = 1.73 mS/cm2, and 50% = 1.15 mS/cm2). This

simulation was performed with the sleep ion concentrations

being maintained throughout. When reducing gKCa to 75%, we

observed only a tendency toward a state change, with longer up-

states and fewer downstates, whereas reducing gKCa to 50%

produced a clear state change, almost completely preventing

Vm from entering downstates, thereby producing tonic firing (Fig-

ure 3E). This qualitative interpretation was supported when

quantified. Decreasing gKCa to 75% non-significantly reduced

1–4 Hz delta power (p = 0.383, one-way ANOVA, n = 10 simula-

tions), whereas 50% significantly reduced delta power

(p = 0.0069, one-way ANOVA, n = 10 simulations). Mean Vm

SD was similar between 100% (0.74 ± 0.55 mV) and 75% gKCa

(0.67 ± 0.46mV) (p = 0.875, one-way ANOVA, n = 10 simulations),

but significantly reduced with 50% gKCa (0.59 ± 0.32 mV)

(p = 0.0262, one-way ANOVA, n = 10 simulations) (Figures 3H

and 3I). Finally, mean Vm distributions for 100% and 75% gKCa

appeared bimodal, whereas the 50% gKCa distribution was

uni-modal (Figure 3J).
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Figure 3. Partially Inhibiting Ca2+-Activated K+ Channel Can Induce Sleep to Awake State Change

(A) Left: Relation between membrane potential (Vm) and intracellular Ca2+ concentration ([Ca2+]i). Right: Cross-correlation between Vm and [Ca2+]i.

(B) Left: Relation between Ca2+-activated K+ channel current (IK_Ca) and [Ca2+]i. Right: Cross-correlation between IK_Ca and [Ca2+]i.

(C) Relation between Vm and IK_Ca.

(D) Schematic diagram of speculated sleep and awake state and neuromodulator-mediated decrease of Ca2+-activated K+ channel conductance (gKCa).

(E) Representative Vm firing pattern and [Ca2+]i with 100%, 75%, or 50% gKCa. Below is an expansion of Vm dynamics.

(F) Vm frequency spectra for 100%, 75%, and 50% gKCa.

(G) 1–4 Hz delta power for 100%, 75%, and 50% gKCa (non-significant [ns], p = 0.383, **p = 0.0069, ##p = 0.0083, one-way ANOVA, n = 10 simulations).

(H) SD of mean Vm (spikes removed) with 100%, 75%, and 50% gKCa.

(I) Boxplot for SD of mean Vm with 100%, 75%, and 50% gKCa. Center line is the median, box limits are 25th and 75th percentiles, and whiskers are maximum and

minimum values (ns1 p = 0.875, *p = 0.0262, ns2 p = 0.065, one-way ANOVA, n = 10 simulations).

(J) Mean Vm distribution for 100%, 75%, and 50% gKCa.

See also Figure S3.
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To illuminate if changing gKCa is the most efficient way to

induce the awake state, we performed a bifurcation analysis

(i.e., gradual change in parameter values). This revealed that

the parameter of gKCa was the most important parameter for

creating state change in firing dynamics (Figure S3). Changing

the conductance of almost all other channels had very little

effect, except for the parameter gCaV, which also had the

potential to create a transition, but this was still less potent

than gKCa (Figure S3).

Overall, these results demonstrate that the KCa channel most

likely plays a dominant role in sleep Vm activity patterns, and

inhibiting this channel, assumedly via increased levels of neuro-

modulators, is sufficient to induce a transition to the awake state.

However, decreasing the conductance of this channel by 25%

was not sufficient to invoke a full state transition, suggesting a

threshold level for when the state is shifted from sleep to

wakefulness.

Awake Ion Concentrations Lower the Threshold for
Sleep to Awake State Transition
Although changing extracellular ions from sleep to awake con-

centrations was not in itself sufficient to induce a state transition

(Figures 2 and S2), we speculate if awake ions could lower the

threshold for invoking the KCa channel-dependent state change

and in this way be permissive and modulatory on state changes

(Figure 4A).

To investigate this, we changed the extracellular ions from

sleep to awake concentrations while reducing gKCa to 75%

and 50% as in the previous section (Figure 3). In contrast to Fig-

ure 3, when we reduced gKCa to 75% in the presence of awake

ions, we observed a state transition with Vm kept in the upstate

for long periods and with few downstates (Figure 4B). As before,

when reducing gKCa to 50%, the state change was pronounced,

with Vm tonically depolarized and the neuron continuously firing

(Figure 4B). We now found a significant reduction in 1–4 Hz delta
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Figure 4. Awake Ion Concentrations Lowers the Threshold for Sleep to Awake State Change

(A) Schematic diagram of speculated interaction between extracellular ion concentrations, neuromodulators, and Ca2+-activated K+ channel conductance (gKCa)

during sleep and wakefulness.

(B) Representative membrane potential (Vm) firing pattern and intracellular Ca2+ concentration ([Ca2+]i) with 100% gKCa + sleep ions ([K+]o = 3.9 mM,

[Ca2+]o = 1.35 mM, and [Mg2+]o = 0.8 mM), 75% gKCa + awake ions ([K+]o = 4.4 mM, [Ca2+]o = 1.2 mM, and [Mg2+]o = 0.7 mM) or 50% gKCa + awake ions.

Below is an expansion of Vm dynamics.

(C) Vm frequency spectra for 100% gKCa + sleep ions, 75% gKCa + awake ions, or 50% gKCa + awake ions.

(D) 1–4 Hz delta power for 100% gKCa + sleep ions, 75% gKCa + awake ions, or 50% gKCa + awake ions (**p = 0.026, ###p < 0.0001, xxxp < 0.0001, one-way

ANOVA, n = 10 simulations).

(E) SD of mean Vm (spikes removed) for 100% gKCa + sleep ions, 75% gKCa + awake ions, or 50% gKCa + awake ions.

(F) Boxplot for SD of mean Vm for 100% gKCa + sleep ions, 75% gKCa + awake ions, or 50% gKCa + awake ions. Center line is the median, box limits are 25th and

75th percentiles, and whiskers are maximum and minimum values (*p = 0.011, ##p = 0.0062, xxp = 0.0018, one-way ANOVA, n = 10 simulations).

(G) Mean Vm distribution for 100% gKCa + sleep ions, 75% gKCa + awake ions, or 50% gKCa + awake ions.

See also Figure S4.
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power with the combination of 75% gKCa and awake ions

(p = 0.026, one-way ANOVA, n = 10 simulations), as well as

with 50% gKCa and awake ions (p < 0.0001, one-way ANOVA,

n = 10 stimulations) (Figures 4C and 4D). The prevalence of delta

power was significantly smaller with 50% gKCa compared with

75% gKCa (p < 0.0001, one-way ANOVA, n = 10 simulation) (Fig-

ure 4D), likely reflecting that wakefulness comprises two states

(i.e., quiet awake and active awake) (Crochet and Petersen,

2006; McGinley et al., 2015b). Further supporting a permissive

effect of awake ions on the sleep to awake transition was the

significant decrease in mean Vm SD from 100% gKCa and sleep

ions (0.81 ± 0.15 mV) to 75% KCa and awake ions (0.64 ±

0.13 mV) (p = 0.011, one-way ANOVA, n = 10 simulations).

Reducing gKCa to 50% with awake ions caused a significant

decrease in mean Vm SD to (0.51 ± 0.07 mV) (p = 0.0062, one-

way ANOVA, n = 10 simulations), significantly smaller than with

75% gKCa (p = 0.0018, one-way ANOVA, n = 10 simulations),

again pointing to multiple awake states (Figure 4F). Finally, the

mean Vm distribution was shifted toward uni-modality with

75% gKCa and awake ions, and this was even more apparent

with 50% gKCa and awake ions (Figure 4G).

Taken together, these data suggest that the awake ion

concentrations reduce the threshold for invoking a sleep to

awake state transition, and thereby are permissive on this state

change. We found that [K+]o is the most potent mediator of this

ion-concentration-mediated effect, but the combined concur-

rent shift in all three ion species triggers the greatest sleep to

awake state change (Figure S4). What is more, the results point

to and support current in vivo evidence that the awake state

comprises multiple sub-states, with differences in delta oscilla-

tions and mean Vm dynamics.

Subtle Change in Extracellular Ion Concentrations
Shifts the State from Quiet Awake to Active Awake
After demonstrating that the awake ion concentrations are

permissive for shifting Vm dynamics from sleep to awake (Figures

4 and S4), we next investigated the two apparent awake states in

greater detail, and in particular the role of extracellular ion

concentrations on the transition from the quiet awake to active

awake state. For this, we speculate that an arousal-related

‘‘hyper-awake’’ ion composition (in addition to the sleep and

awake ion compositions) might exist and could be involved in

shifting Vm into the active awake state (Bennett et al., 2013;

Crochet and Petersen, 2006; Gentet et al., 2010; McGinley

et al., 2015a; Polack et al., 2013; Reimer et al., 2014; Zagha

et al., 2013). As an estimate, we changed extracellular ions

with the same magnitude as observed between sleep and

awake for formulating the hypothesized hyper-awake ion

concentrations ([K+]o = 4.9 mM, [Ca2+]o = 1.05 mM, and

[Mg2+]o = 0.6 mM) (Figure 4A).

We initially simulated the quiet awake state (75% gKCa and

awake ions) and then selectively shifted the extracellular ion

concentrations to hyper-awake ions while maintaining gKCa at

75% (Figures 5A and 5B). We observed that with awake ions,

Vm alternated between long periods of firing (upstate) and occa-

sional silent downstates (Figure 5B), similar to what is described

in quiet awake rodents (Crochet and Petersen, 2006; McGinley

et al., 2015a; Yamashita et al., 2013). When we shifted to

hyper-awake ion concentrations, we observed an annihilation

of downstates, and Vm was maintained in the depolarized

upstate with continuous firing as a result (Figure 5B). We next

analyzed these two Vm states further. We found that with

hyper-awake ions, 1–4 Hz delta power significantly decreased

(p = 0.002, Student’s t test, n = 10 simulations) and 25–45 Hz

gamma power significantly increased (p = 0.0023, Student’s t

test, n = 10 simulations) (Figures 5C–5E). This result is similar

to what has been observed when rodents transition from the

quiet to the active awake state (Niell and Stryker, 2010; Reimer

et al., 2014; Vinck et al., 2015). With hyper-awake ions, mean

Vm was significantly more depolarized than with awake ions

(�49.38 ± 0.11 mV and �52.62 ± 0.23 mV; p = 0.002, Student’s

t test, n = 10 simulations) (Figure 5F), keeping Vm closer to the

firing threshold. Finally, mean Vm distribution was shifted toward

the depolarized upstate with hyper-awake ions, representing the

lack of downstates (Figure 5G). All of these results are in congru-

ence with in vivo recordings obtained in awake rodents, where

the active awake state is characterized by a depolarized Vm

and a lack of downstates (Crochet and Petersen, 2006;McGinley

et al., 2015a; Yamashita et al., 2013).

Taken together, these results demonstrate that subtle

changes in extracellular ion concentrations are sufficient for

shifting Vm dynamics from the quiet awake state to the active

awake state. Shifting to the hypothesized hyper-awake ion con-

centrations recapitulated key properties of the active awake

state Vm dynamics, including increased gamma oscillations

and depolarized Vm. Further analysis revealed that shifting

[K+]o alone was sufficient for invoking this state transition, but

the combined effect of shifting all three ion species was greater

(Figure S5), suggesting a biological importance of concerted

extracellular ion changes. We advocate that the existence of

such hyper-awake ion concentrations should be investigated in

future in vivo experiments, as well as its ability to causally invoke

the proposed awake state changes.

Transitions between Brain States Are Governed by
Chaotic Dynamics
After finding that awake ion concentrations are permissive for

shifting the state from sleep awake (Figure 4), and that hyper-

awake ion concentrations can invoke the transition from quiet

to active awake (Figure 5), we next investigated the state-depen-

dent properties of Vm dynamics in more analytical and physical

terms, as we altered extracellular ion concentrations.

First, we performed a detailed simulation of the sleep state,

where in the deterministic system we found spikes and Vm oscil-

lations to be stable and periodic in the sense that the pattern was

self-repeating, and small perturbations in the initial conditions

did not make the trajectories diverge (Figure 6A). This therefore

had to be a closed trajectory with several small loops that occur

when the neuron fires, which is best visualized in a three-dimen-

sional phase space spanned by three variables (Vm, Ca
2+, and

nK) (Figure 6B). This means that Vm dynamics in the sleep state

is well defined by regular and stable oscillations, exactly as

what one would expect from a synchronous system.

Next, we considered which ion currents are most important for

changing the state fromsleep to awake. Fromwhatwas observed

in the awake state (Figures 3 and 4), we characterize the transition

in terms of (1) the rate at which a silent downstate period is initi-

ated, (2) the mean time duration of a spiking upstate period, and
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(3) the SD of this measure. These numbers combined describe

much of the change in Vm dynamics that happens between the

sleep and awake state. By affecting only one of the currents at

a time by the change in extracellular ion concentrations from

sleep to awake, we found the largest ion-concentration-mediated

effect was produced on the CaV-mediated current (Figure 6C).

This was even better observed if we combined the sleep to awake

ion-mediated changes in CaV current with a small perturbation in

gKCa (Figure 6C). Thus, here we found that affecting only the CaV
channel by changes in sleep to awake ion concentration can

account for much of the irregularities of the awake state, and

that a similar ion-mediated effect can occur for the extrinsic

AMPA receptor, and this induces a big step toward the awake

state (Figure 6C). We also show that decreasing gKCa is the

most important factor in moving Vm dynamics toward the awake

state, but that changes in extracellular ion concentrations amplify

this effect markedly (Figure 6C).

As observed in the sections above, transition from the sleep to

the awake state could be invoked by a 25% reduction in gKCa

and a concomitant change to awake ion concentrations

(Figure 4). With the combination of 75% gKCa and awake ions,

Vm dynamics are more irregular and significantly long periods

of upstates and spiking can occur before a silent downstate is

recovered (Figure 4B). This suggests that Vm dynamics in the

awake state is chaotic, meaning that the phase space has a

strange attractor. Deterministic chaos is defined by the fact

that two initial conditions, being infinitesimally perturbed, will

have diverging trajectories as time evolves, and that one cycle

will never repeat itself and therefore no closed cycles exist on

a strange attractor (Lorenz, 1963) (Box 1). We tested this by

A
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Figure 5. Transition between Two Awake States Can Be Controlled by Extracellular Ion Concentrations

(A) Schematic diagram of hypothesized shift in extracellular ion concentration from awake to hyper-awake. Awake: [K+]o = 4.4 mM, [Ca2+]o = 1.2 mM, and

[Mg2+]o = 0.7 mM. Hyper-awake: [K+]o = 4.9 mM, [Ca2+]o = 1.05 mM, and [Mg2+]o = 0.6 mM.

(B) Representative membrane potential (Vm), firing pattern, and intracellular Ca2+ concentration ([Ca2+]i) with 75% gKCa + awake ions and 75% gKCa + hyper-

awake ions. Below is an expansion of Vm dynamics.

(C) Vm frequency spectra for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions.

(D) 1–4 Hz delta power for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions (**p = 0.002, Student’s t test, n = 10 simulations).

(E) 25–45 Hz gamma power for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions (**p = 0.0023, Student’s t test, n = 10 simulations).

(F) Boxplot for mean Vm for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions. Center line is the median, box limits are 25th and 75th percentiles, and

whiskers are maximum and minimum values (**p = 0.002, Student’s t test, n = 10 simulations).

(G) Mean Vm distribution for 75% gKCa + awake ions and 75% gKCa + hyper-awake ions.

See also Figure S5.
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perturbing the initial concentration of [Ca2+]i by only 1 pM (10�12),

and even though Vm trajectories are very similar in the beginning,

after some seconds they are completely different (Figure 6D).

Another way of visualizing the chaotic nature of the awake state

Vm dynamics can be seen in Figure 6E, where the trajectory is

shown in three dimensions. Here, it seems that the trajectory

never repeats and that the dynamics are irregular compared

with the regular oscillations in the sleep state. To test if this

had the signature of chaos, we calculated the difference in all

dimensions between two trajectories and found that they diverge

in a complex manner that seems however to be on top of a

general exponential diverging, which is what we would expect

from a chaotic system (Lorenz, 1963) (Figure 6F).

As shown in previous sections, the sleep to awake state tran-

sition that we have now characterized is likely not the end of the

story, and an additional active awake state exists (Crochet and

Petersen, 2006; McGinley et al., 2015b) (Figures 4 and 5).

Furthermore, we hypothesize that a parameter set of hyper-

awake ion concentrations exist (Figure 5A). As in Figure 5, we

observed that with hyper-awake ions, Vm dynamics is a
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Figure 6. Transition from Sleep to Wakefulness Is Governed by Chaotic Dynamics

(A) Representative membrane potential (Vm) firing pattern in the sleep state with 100% gKCa and sleep ion composition ([K+]o = 3.9 mM, [Ca2+]o = 1.35 mM, and

[Mg2+]o = 0.8 mM).

(B) Phase space plot showing the trajectory in the sleep state.

(C)Measures for the effect of different ion channel-mediated currents on Vm dynamics. Light blue is the average rate of initiating a silent downstate periods. Blue is

the average duration of the spiky upstate periods. Dark blue is the SD in the duration of upstate periods. All measures are normalized to the sleep state.

(D) Representative Vm firing patterns with 75% gKCa, awake ion composition ([K+]o = 4.4 mM, [Ca2+]o = 1.2 mM, and [Mg2+]o = 0.7 mM) and 1 mV perturbations

showing the development of different trajectories.

(E) Phase space plot showing the trajectory in the awake state with 75% gKCa and awake ion composition.

(F) Difference between two Vm trajectories in the awake state with 75% gKCa and awake ion composition.

(G) Representative Vm firing pattern in the awake state with 75% gKCa and hyper-awake ion composition ([K+]o = 4.9 mM, [Ca2+]o = 1.05 mM, and

[Mg2+]o = 0.6 mM).

(H) Phase space plot showing the trajectory in the awake state with 75% gKCa and hyper-awake ion composition.

(I) Number of silent periods for a period of 100 s as the values of [K+]o, [Ca
2+]o, and [Mg2+]o are perturbed linearly from values for the sleep state to values of the

active awake state. On the x axis, 1 corresponds to the sleep state and 9 corresponds to the awake state.
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continuously spiking process with no occurrence of silent down-

states (Figure 6G), which likely correspond to an aroused and

alert active awake state (Crochet and Petersen, 2006; Polack

et al., 2013). We find that this state is not chaotic, but rather a

well-defined, high-frequency three cycle (Figure 6H). This means

that the initial transition from the sleep state can be regarded as a

mediator between two robust states (sleep and active awake)

defined by closed cycles. We consider it of great importance

that the dynamics of Vm changes from sleep to the awake state

and even further into an active awake state, using effects of

chaotic dynamics, and how these changes are sensitive to subtle

changes in extracellular ion concentrations.

Next, we performed the Vm simulation while applying white

noise, which in the awake state, with awake ions, gives rise to

Vm dynamics as shown in Figure 6D. Since stochasticity is pre-

sent in every system and intrinsic biological noise is assumed

to appear around the ion channels, noise is a very import element

in this region where multi-stable solutions seem to arise. Since

the most striking difference between the sleep and awake states

is the occurrence/lack of silent downstates, we used the number

of silent periods as a measure to characterize the gradual transi-

tion from sleep to the active awake state. We investigated this for

four different noise levels while we linearly perturbed the values

of [K+]o, [Ca
2+]o, and [Mg2+]o from the sleep to the hyper-awake

concentrations. As can be observed from Figure 6I, the complete

state transition in this measure is a continuous process for the

noise levels tested, and shifting extracellular ion concentrations

is sufficient to fully transition from the quiet awake to the active

awake state.

In summary, we found that the transition from sleep to full

wakefulness is modulated by changes in extracellular ion con-

centrations. Moreover, we show that if extracellular ions change,

for instance if [K+]o is either below or above 3.9 and 4.5 mM,

respectively, the dynamics of the system is determined by a sta-

ble limit cycle with several smaller loops included, whereas for

[K+]o within the range of 3.9 and 4.5 mM, the system is chaotic,

which can ensure a smooth and robust transition between the

sleep state and the active awake state.

DISCUSSION

Neuronal states powerfully influence sensory processing and

perceptions (Harris and Thiele, 2011; Lee and Dan, 2012; Lee

et al., 2014; McGinley et al., 2015a; Vinck et al., 2015). Here,

we have shown that the concentrations of extracellular ions

influence KCa channel-mediated sleep to awake transitions and

can themselves drive the switch from quiet awake to active

awake. We demonstrate that the state change from sleep to

awake is characterized by the transition from stable to chaotic

dynamics, and argue that chaotic dynamics mediates a smooth

transition between the quiet awake and active awake state,

remarkably robust to intrinsic noise.

Previous studies have causally implicated ion concentrations

in sleep to awake transitions (Ding et al., 2016). However, due

to the intimate relation between neural activity and ionic

changes, causality is difficult to establish in vivo. In our model,

exclusively shifting ion concentrations by the same magnitude

as measured in vivo was insufficient to cause a complete sleep

to awake state transition (Figures 2, 6C, and S2), suggesting

that other parameters need to change in time in order to transi-

tion the neuron into to the awake state, and that ion concentra-

tion changes are not causal for this state transition. This might

seem as an advantageous built-in gate mechanism, since extra-

cellular ion concentrations are affected by even slight changes in

neuronal firing (Hounsgaard andNicholson, 1983; Lux, 1974; Lux

and Neher, 1973; Nicholson et al., 1977), and global brain states

should be robust to such small ion fluctuations, not causing the

system to constantly cycle between sleep and awake.

We determined that decreasing the conductance of the KCa

channel is a powerful way to induce the sleep to awake state

change (Figures 3, 6C, and S3), in congruence with previous

work implicating this channel as a prime mechanism for Vm

downstates (McCormick and Williamson, 1989; McCormick

et al., 1993; Steriade et al., 1993; Tatsuki et al., 2016). Shifting

to the awake ion concentrations was permissive to decreasing

the conductance of the KCa channel (Figures 4, 6C, and S4),

advocating that subtle changes in extracellular ion concentra-

tions can lower the threshold for how much ion channel modula-

tion is required to shift the state. Changing the global environ-

ment surrounding neurons, in addition to modulating selective

intrinsic ion channels, might be a simple, yet powerful, way to

shift the state of entire brain-wide neuronal networks and

ultimately for changing the behavioral state.

In more abstract terms, transitions between states in living

organisms are fundamental for the functions and complexity of

that organism. However, it is often speculated that very rapid

state changes might be harmful for cells, since they might not

be able to adapt properly and fast enough to the new dynamics.

In this regard, the state transition described here for neuronal Vm

dynamics has the beneficial property that it represents a gradual

Box 1. What Is Chaos?

Chaos is a well-defined mathematical concept that occurs in non-linear dynamical systems with three or more dimensions. It is

defined by the property that two initial conditions infinitesimally apart exhibit exponentially diverging trajectories as time evolves.

Such systems are deterministic in the sense that if one knows the initial state of the system exactly, then the trajectory will be the

same every time it is initiated in that state. Chaos is thus a mathematical definition that should not be confused with the use of chaos

in normal language. Furthermore, it is important to distinguish chaos from randomness or stochasticity in general. Randomness

normally refers to non-deterministic responses due to stochastic noise, which in principle appears in any system of nature. The

effects of stochasticity can sometimes be negligible but may, in some cases, give rise to a different dynamics than seen in a deter-

ministic system. Examples of this can be sustained oscillations ormulti-stability. Since systems always exhibit some uncertainty, the

initial conditions in a system are never completely known and therefore chaotic systems, from a practical point of view,might appear

random since it is impossible to predict the dynamical outcome.
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and smooth change between the two stereotypical behavioral

states, sleep and wakefulness. Furthermore, the chaotic nature

of the phase space even guarantees the smoothness for a range

of different intrinsic noise levels, which ensures that neurons

can transition between states in a controlled and noise-robust

manner when this is needed and appropriate.

It is increasingly appreciated that the awake state is

comprised of at least two sub-states, namely quiet awake and

active awake, related to the level of arousal and motor behavior

(Bennett et al., 2013; Crochet and Petersen, 2006; Gentet et al.,

2010; McGinley et al., 2015a; Polack et al., 2013; Reimer et al.,

2014; Zagha et al., 2013). Rodent studies have suggested

that the ongoing awake state shapes how the brain

processes incoming sensory inputs. For example, the gain of

visual-evoked responses in the visual cortex is increased

when neurons are in the active awake state, whereas auditory

responses in the auditory cortex are suppressed (Bennett

et al., 2013; McGinley et al., 2015a; Polack et al., 2013;

Schneider et al., 2014). This indicates that the brain state

powerfully and differentially scales what sensory modalities

are up- and downregulated at a given moment in time for opti-

mizing sensory processing and neural computations, making it

important to understand at the mechanistic level what deter-

mines brain states and the transition between them.

Here, we hypothesized that in addition to sleep and awake

extracellular ion concentrations (Ding et al., 2016), a hyper-

awake ion composition might exist (Figures 5, 6, and S5).

When KCa was kept partially inhibited (75% gKCa), shifting

from the awake to the hyper-awake ion concentrations

produced a state change similar to what is observed when

rodents transition from quiet to active (Crochet and Petersen,

2006; Yamashita et al., 2013) (Figures 5, 6, and S5). This ion-

mediated state change was characterized by a decrease in

delta power, an increase in gamma power, Vm depolarization,

and a uni-modal Vm distribution (Figure 5); similar to what has

been observed in vivo with intracellular recordings from

cortical neurons in behaving rodents. We predict that subtle

concerted changes in extracellular ion concentrations could

be a key mechanism for the rapid and often-occurring state

shifts in the awake brain, allowing sensory processing and

neural computations to be rapidly modified based on the

different situational demands. Whether our hypothesized shifts

in extracellular ion concentrations do occur in the awake brain

during active behavior and states of elevated arousal, as well

as whether this ionic shift is primary or secondary to neural

activity, will be interesting and important to resolve in future

experiments.

We consider the frequency and length of the silent downstate

periods a key signature defining the different dynamics in the

two awake states (Figure 6I). It can be argued that in the

active awake state, Vm is sustained depolarized and only high-

frequency spikes occur, and onemight entertain the speculative

hypothesis that this is required for rapid responses to incoming

barrages of sensory stimuli and for decision making. In this

case, one would ideally avoid the hyperpolarized silent down-

states and in general slow oscillations in the Vm. From a dynam-

ical systems point of view, this means that the trajectory should

not visit a large part of the phase space. Since this is the case for

a chaotic system, the fact that the chaotic dynamics disappears

in the active awake state can be regarded as a beneficial

mechanism that ensures the occurrence of only high-frequency

spikes and maintains Vm close to the firing threshold, keeping

the neuron in a state for optimal responsiveness to sensory

inputs from the periphery. We note that from a theoretical point

of view, it is possible to imagine a stable limit cycle that can

guarantee a smooth transition. In this picture, the temporal

period between downstates gets shorter and shorter as the

parameters change in the quiet awake state, for it to completely

disappear in the end in the hyper-awake state. However, we

believe there are several intriguing elements in a chaotic transi-

tion to the awake state in this neuronal state transition. Firstly,

since not only one, but several, parameters are changed in the

sleep to awake state transition, chaotic dynamics is a clever

way for the system to make a path-independent transition be-

tween the two states. Due to the never-repeating trajectories,

the system does not change significantly if, for example, the

changes in [Ca2+]o occur before [K+]o or vice versa. This would

normally not be the case for a stable limit cycle, and thus the

chaotic transition makes the transition to the awake state

change more robust. Secondly, we believe that chaotic

dynamics is an important property of neurons in the awake state

since one would expect that neurons in this state need the

capacity to create a variety of different combinatorial outputs

on a population level. If the neuronal dynamics in the awake

state were purely stable limit cycles differing in period, small dif-

ferences in incoming inputs would lead to very small differences

in output firing, and thus information encoding. However, since

they are governed by chaotic dynamics, the sensitivity to the

always existing small perturbations that accompany external

stimulation, can lead to a much more complex variety of

outcomes that are likely highly important and necessary for

higher-order neuronal computations. Thirdly, it is intriguing to

imagine that since all neurons are governed by the dynamics

of a stable limit cycle in the sleep state, they have the potential

to synchronize their firing outputs through their common oscilla-

tions. Now, perturbing the system could change the period of

oscillations but would not necessarily destroy this activity

synchrony between neurons. However, as the awake state is

chaotic, this population synchrony would naturally disappear.

In this way, the awake state would make each neuron more

independent, since it is no longer ‘‘bound’’ by the dynamics of

the state, and the specific feature-selective inputs to each

neuron can have a great effect on the firing output for that

particular neuron in the end.

This work uncovers an important function of extracellular ion

concentrations and chaos dynamics in neuronal state transi-

tions that, to the best of our knowledge, has not been previously

reported. The transition between global brain states needs to

be strictly controlled and well regulated to avoid risky diseases

such narcolepsy or insomnia. As we show, the concentration

of extracellular ions is a key parameter for neuronal state

changes, and these state transitions are governed by chaotic

dynamics. Concerted regulation and shifts in ion concentra-

tions therefore expand the toolbox available to the brain for

controlling state-dependent activity, and thus need to be

considered as an integrated mechanism in future investigations

of what determines ongoing activity and state transitions in

the brain.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Description of the Extended Averaged-Neuron Model
We consider the membrane potential (Vm) given by:
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thus be divided by 100.

Intrinsic Channel Conductances

For the leak channel we have:

ILeak =gLeakðV � VLeakÞ

gLeak = 0:03573 mS=cm2 VLeak =
RT

zF
ln

�
pK½K�o +pNa½Na�o +pCl½Cl�i
pK½K�i +pNa½Na�i +pCl½Cl�o

�

R= 8:314472 J=K=mol T = 310 kelvins z= valenceion F = 9:64853399x104 C=mol

(Equation 1)

For the voltage-gated sodium channel we have:

INaV =gNaVm
3
NaV

hNaV ðV � VNaÞ

mNaV =
am

am + bm

8
>><

>>:

am = 0:1
V + 33

1� e�ðV + 33Þ=10

bm = 4e�ðV +53:7Þ=12

_hNaV = 4
�
ah

�
1� hNaV

	� bhhNaV

	

8
>><

>>:

ah = 0:07e�ðV + 50Þ=10

bh =
1

1+ e�ðV + 20Þ=10

gNaV = 12:2438 mS=cm2 VNa =
RT

zF
ln

�½Na�o
½Na�i

�

(Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Simulations made in c++ This Paper

MATLAB 6.1 The MathWorks Inc. 2010 https://se.mathworks.com/products/matlab/

Chronux 2.0 Toolbox Chronux https://chronux.org/

fcn, d02cjx and d02cjw

library packages in Fortran

The NAG Library, The Numerical Algorithms

Group (NAG), Oxford, United Kingdom

www.nag.com
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For the voltage-gated potassium channel we have:

IKV
=gKV

n4
KðV � VKÞ

_nKV
= 4

�
ah

�
1� hKV

	� bhhKV

	

8
><

>:

an = 0:01
V + 34

1� e�ðV +34Þ=10

bn = 0:125e�ðV + 44Þ=25

gKV
= 2:61868 mS=cm2 VK =

RT

zF
ln

�½K�o
½K�i

�

(Equation 3)

For the fast A-type potassium channel we have:

IA�type =gA�typem
3
A�typehA�typeðV � VKÞ

mA�type =
1

1+ e�ðV + 50Þ=20

_hA�type =
hA�typeN � hA � type

thA�type

hA�typeN =
1

1+ eðV + 80Þ=6

gA�type = 1:79259 mS=cm2 thA�type = 15ms VK =
RT

zF
ln

�½K�o
½K�i

�

(Equation 4)

For the slowly inactivating potassium channel we have:

IKSI
=gKSI

mKSI
ðV � VKÞ

mKSI
=
hmKSIN

�mKSI

tmKSI

mKSIN
=

1

1+ e�ðV + 34Þ=6:6

tmKSI
=

8

e�ðV +55Þ=30 + eðV + 55Þ=30

gKSI
= 0:0350135 mS=cm2 VK =

RT

zF
ln

�½K�o
½K�i

�

(Equation 5)

For the voltage-gated calcium channel we have:

ICaV = gCaVm
2
CaVN

ðV � VCaÞ

mCaVN =
1

1+ eðV + 20Þ=9

gCaV = 0:0256867 mS=cm2 VCa =
RT

zF
ln

�½Ca�o
½Ca�i

�
(Equation 6)

For the calcium-dependent potassium channel we have:

IKCa
=gKCa

mKCaNðV � VKÞ

mKCaN =
1

1+
K3:5

D

½Ca�i
h
_Ca
i

i
= � aCað10$AICa + INMDAÞ � ½Ca�i

tCa

gKCa
= 2:34906 mS=cm2 KD = 30mM tCa = 121:403ms VK =

RT

zF
ln

�½K�o
½K�i

�

(Equation 7)
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For the persistent sodium channel we have:

INaP =gNaPmNaPNðV � VNaÞ

mNaPN =
1

1+ e�ðV + 55:7Þ=7:7

gNaP = 0:0717984 mS=cm2 VNa =
RT

zF
ln

�½Na�o
½Na�i

�
(Equation 8)

For the inwardly rectifying potassium channel we have:

IKIR
=gKIR

hKIRNðV � VKÞ

hKIRN =
1

1+ eðV +75Þ=4

gKIR
= 0:0166454 mS=cm2 VK =

RT

zF
ln

�½K�o
½K�i

�
(Equation 9)

Extrinsic Channel Conductances

We start by defining the saturating function

fðVÞ= 1

1+ e�ðV�20Þ=2Þ

We now consider the AMPA receptor:

IAMPA =gAMPAsAMPAðV � VAMPAÞ
sA _MPA = 3:48fðVÞ � sAMPA

tAMPA

gAMPA = 0:513425 mS=cm2 VAMPA =
RT

zF
ln

�
pK½K�o +pNa½Na�o
pK½K�i +pNa½Na�i

�
(Equation 10)

For the NMDA receptor we have:

INMDA =
1:1

1:0+ ½Mg�o


8:0mM

gNMDAsNMDAðV � VNMDAÞ

sN _MDA = 0:5xNMDAð1� sNMDAÞ � sNMDA

tsNMDA

xN _MDA = 3:48fðVÞ � xNMDA

txNMDA

gNMDA = 0:00434132 mS=cm2 VNMDA =
RT

zF
ln

�
pK½K�o +pNa½Na�o +pCa½Ca�o
pK½K�i +pNa½Na�i +pCa½Ca�i

�

(Equation 11)

For the GABAA receptor we have:

IGABAA
=gGABAA

sGABAA
ðV � VGABAÞ

sGA _BAA
= fðVÞ � sGABAA

tsGABAA

gGABAA
= 0:00252916 mS=cm2 VGABA =

RT

zF
ln

� ½Cl�i
½Cl�o

�
(Equation 12)

Ion Concentrations

We used the following intra- and extracellular ion concentrations:

½Na�o = 140 mM ½Na�i = 7 mM

½K�o = ½3:5; 3:9;4:4;4:9;8; 14� mM ½K�i = 7 mM

½Ca�o = ½1:05;1:2; 1:35� mM ½Ca�i = � aCað10$AICa + INMDAÞ � ½Ca�i
tCa

mM

½Cl�o = 140 mM ½Cl�i = 10 mM

½Mg�o = ½0:6; 0:7;0:8� mM
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METHOD DETAILS

Membrane Potential (Vm) Analysis
Vm frequency component analysis was performed using procedures in MATLAB similar to previously described (Rasmussen et al.,

2016). For exploring frequency-domain dynamics we used the mtspectrumc function, a multi-taper method implemented in the

Chronux 2.0 toolbox, an open-source, MATLAB-based toolbox available at http://chronux.org/ (Mitra and Bokel, 2008). For this

analysis we used a padding factor of 2, time-bandwidth product of 3 and 5 tapers. For determining power content we used the

bandpower function and afterwards the pow2db functions in MATLAB. All power measurements are reported in units of decibel

unless otherwise stated. For removing spikes from the simulated Vm, yielding the mean Vm, we median filtered the raw Vm

(window size: 80 ms). Vm standard deviation was determined over a 200 ms moving window.

DATA AND SOFTWARE AVAILABILITY

Software
All simulations were performed using scripts written in Fortran, C++ and MATLAB. All data-analysis were performed from scripts

written in MATLAB and python using the ROOT software. Figures were composed in Adobe Illustrator. All scripts used for simulation

and data analysis from the model, will be available upon reasonable request to Mathias L. Heltberg (heltberg@nbi.ku.dk).

Algorithms
All deterministic simulations were performed using the fcn, d02cjx and d02cjw library packages in Fortran and tested by a similar

script written in c++. All stochastic simulations were performed by scripts written in c++, and using the Mersenne Twister to draw

random numbers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical testing was carried out in MATLAB. All group comparisons were performed using two-sided parametric paired Student’s t

test. For comparisons of multiple groups the parametric repeated measures One-way ANOVAwith a Geisser-Greenhouse correction

and a Dunnett’s multiple comparisons correction was used. Lower-case ‘n’ refers to the number of simulations and is noted in the

manuscript text, figure legends and on figure panels whenever appropriate. Statistical significance was considered with P-values

less than 0.05. When a statistical test was used, the precise P-value is noted in the manuscript text, and depicted in figures with

asterisks: * P < 0.05, ** P < 0.01, *** P < 0.001.

ADDITIONAL RESOURCES

The custom code for the extended Averaged-Neuron model is publicly available online at https://github.com/Neurune/

IonsAndChaos.
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ARTICLE

On chaotic dynamics in transcription factors and
the associated effects in differential gene regulation
Mathias L. Heltberg1, Sandeep Krishna2 & Mogens H. Jensen1

The control of proteins by a transcription factor with periodically varying concentration

exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors

vary their dynamics in response to different situations, insight into how this affects down-

stream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the

transcription factor NF-κB can affect downstream protein production. We describe how it is

possible to control the effective dynamics of the transcription factor by stimulating it with an

oscillating ligand. We find that chaotic dynamics modulates gene expression and up-

regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic

noise. Furthermore, this leads to an increase in the production of protein complexes and the

efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous

population of cell states, and describe how this can be beneficial in multi-toxic environments.

https://doi.org/10.1038/s41467-018-07932-1 OPEN

1 Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. 2 Simons Centre for the Study of Living Machines, National
Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India. Correspondence and requests for materials should be addressed
to S.K. (email: sandeep@ncbs.res.in) or to M.H.J. (email: mhjensen@nbi.dk)

NATURE COMMUNICATIONS |           (2019) 10:71 | https://doi.org/10.1038/s41467-018-07932-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;



The regulation and control of protein production is a vital
element in all living organisms. This process can be highly
complicated, involving a large number of steps. However,

despite stochastic fluctuations, life is characterised by a high level
of organisation indicative of very precise regulation. A thorough
understanding of the mechanisms and interactions that
maintain the precision of regulation is absent, but the prospect of
discerning and ultimately controlling the production of
specific proteins is one of the great goals in the field of systems
biology.
Control of transcription is a ubiquitous means of regulating

gene expression, but it has only recently been appreciated that
transcription factor dynamics might be important for gene
regulation. For instance, oscillations have been observed in key
transcriptional factors, such as the p53 tumour suppressor or
NF-κB, which regulates numerous genes involved in immune
response1–7. Debate continues about the functional role, if any,
of these oscillations, but it is clear that altering the dynamics of
these transcription factors differentially affects downstream
genes1,2,4,8.

Oscillatory dynamics is the prerequisite for many complex
phenomena—and in the present study for the onset of chaotic
dynamics. Chaos refers to complex, apparently unpredictable,
dynamics that even simple deterministic dynamical systems can
produce (see section What is chaos?). A universal way to achieve
chaos is by driving a nonlinear oscillator (say the NF-κB system)
by an external periodic signal (e.g., by periodically varying a
cytokine-like tumor necrosis factor (TNF) that triggers NF-κB
oscillations). When the external driving signal has low ampli-
tude oscillations, it can entrain or synchronise the nonlinear
oscillator, i.e., if TNF is varied within certain frequency ranges it
will force the NF-κB oscillations to occur with the externally
imposed frequency8,9. As the amplitude of TNF oscillations is
increased, the range of frequencies for which it can entrain NF-
κB becomes larger—these expanding synchronisation regions of
the external amplitude–frequency parameter space are called
Arnold tongues10–12. Such entrainment/synchronisation13 has
been observed in many different physical systems, from fluids14

to quantum mechanical devices15,16, and now also in biological
processes, such as cell cycles17–19, and gene regulatory dynamics
in synthetic populations20. The dynamics gets even more com-
plex as the amplitude of the external driving signal increases
further. First, Arnold tongues start overlapping, which means
the nonlinear oscillator can exist in more than one entrained
state with different frequencies (termed modes), and even small
amounts of intrinsic or extrinsic noise can cause it to hop
between these modes. Such mode-hopping has been observed in
the NF-κB system when driven by a periodically varying TNF
signal of sufficiently high amplitude21. When the external
amplitude is increased even further, then chaotic dynamics is
predicted11,12.

In this paper, we study the possible implications of oscillatory
and chaotic dynamics of a transcription factor, such as NF-κB, on
the downstream genes it controls. We compare the expression of
genes with different affinities to the transcription factor, and show
that chaotic dynamics has differential effects on genes with dif-
ferent affinites. This can be exploited, for instance, to up-regulate
certain proteins, or specific protein complexes. We also show how
chaotic dynamics can generate heterogeneity in a cell population
that can provide a selective advantage in multi-toxic environ-
ments. Our work provides a theoretical framework to study the
effects of dynamically varying transcription factors, and we
believe it constitutes one of the first investigations into how
chaotic dynamics might influence genetic regulation in living
cells.

Results
The model. Our investigation starts with a model of the tran-
scription factor NF-κB that is known to exhibit oscillatory
dynamics3,9,22. A schematic version of this is found in Fig. 1a and
a full description is presented in the Supplementary Note 1. In
this deliberately simplified model, the oscillations arise from a
single negative feedback loop between NF-κB and its inhibitor
IkBα, and can be triggered by TNF via the activation of the IkB
kinase (IKK). We then allow TNF to oscillate. This system
exhibits Arnold tongues (shown schematically in Fig. 1c), which
are regions of parameter space where the NF-κB oscillation is
entrained to the external TNF oscillation9, i.e., it locks on to the
external signal’s frequency and phase. Outside the Arnold ton-
gues there is no synchronisation. It is straightforward to add
intrinsic noise to this system by explicitly modelling the ran-
domness in binding/unbinding of proteins, phosphorylation, as
well as transcriptional and translation processes using the Gille-
spie algorithm23 (see Supplementary Note 2 and Supplementary
Figure 1C for details). Figure 1c right panel shows that this system
exhibits single-mode oscillations (for low amplitude TNF oscil-
lations), mode-hopping (intermediate amplitude) and chaos (high
amplitude) in this system, as was first noted in ref. 21. Note that
changes in a single parameter are sufficient to obtain all these
different dynamics.
To the above model, we now add genes that are regulated by

NF-κB, following the approach of Mengel et al. 4. We assume that
NF-κB can bind to an enhancer or operator region, and can form
complexes to bind the RNA polymerase, with different affinity,
depending on the gene (schematically shown in Fig. 1d). We
describe the transcription and translation of each gene, labelled i
= 1, 2, 3,…, using the differential equations:

_mi ¼ γi
Nhi

Nhi þ Khi
i

� δimi; ð1Þ

_Pi ¼ Γimi � ΔiPi: ð2Þ

Here, the mi represent the mRNA level transcribed from gene i,
and Pi represents the concentration of proteins produced from
the correspnding mRNA. The first term in the equation for the
mRNA is known as a Hill function; the canonical way to describe
the protein production for genes governed by transcription
factors where each gene has a specific Hill coefficient and effective
affinity4,24–27.

The effective affinity Ki is a parameter that combines the
strength of binding of the transcription factor to the operator/
enhancer region, the strength of binding of RNA polymerase to
the promoter and transcription factor, as well as the effect of
DNA looping that may be needed to bring the enhancer/operator
close to the promoter region. Operationally, Ki sets the
concentration of NF-κB that results in 50% of maximal gene
expression enhancement. The Hill coefficient hi is a measure of
the cooperativity of the transcription factor at that gene. A
thorough description of this is presented in Supplementary
Note 3, and representations of the sigmoidally shaped curves are
shown in Supplementary Figure 1. γi and Γi are the maximal
transcription and translation rates for the gene, while δi and Δi

are inversely proportional to the half-lives of the mRNA and
protein, respectively. While all these parameters affect the
behaviour of genes described by these equations, the affinity Ki

is particularly important. In particular, as we will demonstrate in
subsequent sections, high-affinity genes (HAGs) with low Ki

behave quite differently from low-affinity genes (LAGs) with high
Ki. In Fig. 1e the values of the Hill function Nh/(Kh+ Nh) as NF-
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Fig. 1 Dynamics from coupled oscillators and emergence of chaos. a Schematic picture of a simplified NF-κ B network with a single negative feedback loop
which can generate oscillations. b Schematic picture of oscillations in the external TNF concentration, represented by the changing shade of blue. c
Dynamics that emerges when the NF-kB system is driven by a periodic TNF signal. The left panel shows schematically that there are Arnold tongues,
triangular regions of the TNF amplitude-period parameter space where NF-kB oscillations can be synchronised to the TNF signal. Outside the Arnold
tongues, e.g. point 0, there is no synchronisation. As TNF amplitude increase the Arnold tongues start overlapping and the behaviour becomes more
complex. Keeping the TNF period fixed (here we used T= 50min), as we increase the the TNF amplitude we enter three distinct states: Point 1: A single
Arnold tongue, only allowing one oscillation state. Point 2: Overlap of Arnold tongues, allowing two stable oscillation states. The presence of noise can
cause transitions (mode-hopping). Point 3: Chaotic dynamics, with apparently unpredictable trajectories. The trajectories corresponding to these points are
shown in in the middle panels. Red and blue trajectories correspond to two different initial conditions in a deterministic simulation. The rightmost panels
show the dynamics of NF-κ B vs. time in stochastic simulations where intrinsic noise is implemented using the Gillespie algorithm. d Schematic figure of the
polymerase binding for genes that have NF-κB (green spheres) as a transcription factor. e Profile of the Hill function in Eq. (2) for different values of affinity
and cooperativity. Red: h= 2 and K= 1.0 (HAG). Purple: h= 4 and K= 4.5 (LAG). Green: Example of intermediate values with h= 3 and K= 2.0 (MAG).
Vertically, light blue: a representative NF-κB oscillation
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κB level N varies are shown, along with a typical single-mode NF-
κB oscillation. It is clear from the figure that the same NF-κB
oscillation would be expected to excit HAGs and LAGs to
different levels.

What is chaos? When we speak of chaos, we refer to determi-
nistic chaos. Deterministic means that if one knows the initial
state of the system exactly, then the dynamical trajectory will be
the same every time it is initiated in that state. However, any two
initial conditions infinitesimally apart will have exponentially
diverging trajectories as time proceeds making it practically
impossible to predict the future dynamics—hence chaos28–31. It is
important to note that the unpredictability of chaos does not arise
from stochasticity—the latter refers to a non-deterministic system
with noise. Noise is observed in most real-world systems and can
often result in very different dynamics than the deterministic
version of the same system. For example, noise can cause tran-
sitions between different states which would never occur if the
system were deterministic. Thus, both deterministically chaotic
and noisy systems exhibit unpredictability of their future trajec-
tories, but for very different underlying reasons.

Chaos enhances LAGs. We simulate our model of the NF-κB
system, with periodically varying TNF and intrinsic noise, along
with downstream genes with different affinities and cooperativ-
ities. We then measure the average protein concentration asso-
ciated with each gene over timescales much longer than the half-
lives of the mRNA and proteins. This long-term average is the
simplest measure of the effect of NF-κB oscillations on gene
expression. As shown in Fig. 2, we find that as TNF amplitude
increases, we obtain very different behaviour for HAGs, LAGs
and genes with intermediate affinity (MAGs). As described above
and in Fig. 1, as TNF amplitude is increased, keeping its fre-
quency fixed, the NF-κB dynamics is first a single-mode oscilla-
tion (point 1 in Fig. 1c), then exhibits mode-hopping (point 2 in
Fig. 1c) and finally chaos (point 3 in Fig. 1c) for high amplitude
TNF. The ranges of TNF amplitude which exhibit these three
qualitatively different dynamics are indicated in Fig. 2a–c.
The chaotic regime shows the differential behaviour of the

different genes most clearly. The HAG has a linearly decreasing
average protein level as TNF amplitude is increased, while the
LAG shows exactly the opposite. The MAG exhibits much less
variation with TNF amplitude. It is interesting that genes under
control of NF-κB can thus be designed to have increasing,
decreasing, as well as relatively flat response to variation of a
single parameter. The increasing (decreasing) trend that is seen
for LAGs (HAGs) within the chaotic regime is also seen across
the entire range of TNF amplitudes, going from single-mode
oscillations through mode-hopping to chaos. However, within the
first two regimes the response is relatively flat with major change
happening only near the transition between regimes. Overall, we
see that both HAGs and LAGs could exhibit fold-changes on the
order of two-fold, which we believe should be observable in
experiments, while MAGs could lie within experimental error and
thus appear effectively unresponsive to TNF amplitude.
A mathematical analysis of this behaviour provides some

intuition to understand why HAGs and LAGs respond so
differently: The long-term average protein level is essentially
proportional to the average of the Hill function over the same

long timescale: hPi � Nh

KhþNh

D E
: For HAGs, K is small, and to

lowest order in K/N, hPi � 1� Kh 1
Nh

� �
. In contrast, for LAGs, K

is large, and hPi � Nhh i
Kh (see Supplementary Note 4 for further

details). The averages 〈Nh〉 and 〈1/Nh〉 depend on the probability
distribution of NF-κB values over a long time series. This

distribution is typically unimodal, but is asymmetric and has a
long right tail (see Supplementary Figure 2K–L). Now 〈Nh〉 is
largely dominated by this right tail, especially for large h. Thus, if
the right tail of this distribution became more prominent as TNF
amplitude was increased, we would expect 〈Nh〉 to increase and
this would explain why LAGs show an increasing average protein
level, while 〈1/Nh〉 in contrast is dominated by the other end of
the probability distribution, i.e., very low values of N. Thus, if the
probability of NF-κB spending time at low concentrations
increased with TNF amplitude, then 〈1/Nh〉 would increase,
and the average protein level of LAGs would decrease.
Supplementary Figure 2K–L shows that this is indeed what
happens to the probability distribution of NF-κB as TNF
amplitude is increased—both within the chaotic regime, as well
as across single-mode oscillations, mode-hopping and chaos.
Thus, we conclude that the differential control of HAGs vs. LAGs
is directly caused by the broadening of the range of NF-κB levels
as one goes deeper into the chaotic regime. The increase of peak
NF-κB levels and the decrease of minimum NF-κB levels are both
necessary for such differential control.

Robustness to variations in parameters and noise. We tested
our central result from the previous section at other TNF fre-
quencies (see the heatmaps in Fig. 2j–l and Supplementary
Figure 2A–F) and, for TNF time period in the range 30–120 min,
we found the same trends in average protein levels, as a function
of TNF amplitude.
Since biological systems are often characterised by large

fluctuations and much noise, we also varied the level of intrinsic
noise in the NF-κB system by varying the effective volume of the
system. Decreasing the volume leads to larger fluctuations, but as
shown in Fig. 2d–f, the average protein levels are quite robust to
such increases of intrinsic noise. The mode-hopping region is of
specific interest to changes in noise, since these affect the rate at
which the system jumps from one entrained state to another32.
The chaotic regime, in contrast, already exhibits many hallmarks
of randomness even in the absence of noise, so adding noise does
not affect the behaviour much.
Next, we also wanted to include extrinsic noise into the

variation of TNF. In experimental procedures, as well as in vivo, it
is of course very likely that there will be considerable stochasticity
in the TNF signal. Could such fluctuations mask the differential
control of genes, especially in the chaotic regime? We added
Langevin noise to the periodic TNF waveform at a sufficiently
high level to smear out the predominant frequency in a Fourier
spectrum of the noisy waveform (see Supplementary
Figure 2G-H). We found that this did not affect our results—
NF-κB still showed the same transition from single-mode
oscillation to mode-hopping to chaos as TNF amplitude was
increasing, and HAGs and LAGs showed the same opposite
trends in average protein level as in the absence of TNF noise
(Fig. 2g–i). As with intrinsic noise, the extrinsic noise had most
effect in the mode-hopping regime and minimal effect in the
chaotic regime.
Finally, we also found that our results were unchanged when

we used non-sinusoidal waveforms for TNF (Supplementary
Figure 2I), and when we varied the Hill coefficient (Supplemen-
tary Figure 2J). Thus, these results show that the enhancement of
LAGs in chaotic dynamics is robust to both internal and external
noise, and this effect is a striking feature of chaos in transcription
factors for a large set of parameters.

Chaos increases efficiency in protein complex formation. In
eukaryotic cells, many functions are carried out by complexes of
proteins that are constructed from multiple subunits, for
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instance haemoglobin, that consists of four subunits from two
genes that are located on different chromosomes. A study of the
NF-κB interactome found that amongst 384 genes that are
regulated by NF-κB there were 572 protein–protein interac-
tions33. While these complexes have not been deeply investi-
gated, we expect at least some will have a functional role. For
instance, there seems to be evidence that NF-κB controls

autophagy via multiple pathways, including the up-regulation
of both Beclin 1 and A20, which interact with each other
inhibiting Beclin 1 ubiquitination, and thereby repressing
autophagy34. Therefore, we tested how the concentration of
protein complexes, whose subunits were encoded by NF-κB
controlled genes, was altered as the NF-κB dynamics became
chaotic and the LAGs were up regulated.
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We first consider a complex that consists of two subunits. In
this case, the model has the following additional equations, where
P1 and P2 represent the concentrations of the two proteins and
C2,1 the concentration of the complex:

_P1 ¼ Γ1m1 � λCP1P2 � Δ1P1; ð3Þ

_P2 ¼ Γ2m2 � λCP1P2 � Δ2P2; ð4Þ

_C2;1 ¼ λCP1P2 � ΔC2;1: ð5Þ

In the following we will, in order to keep things as simple and
transparent as possible, keep the values of the parameters λ and
Δ fixed even though these could easily differ between
complexes. An exploitation of the effects of the entire
parameter space will be interesting to pursue in future work,
but is beyond the scope of this paper. Obviously if the two
subunits are both HAG proteins, the complex has the highest
average level in the oscillatory regime, while if it consists of two
LAG proteins, the highest average level will be found in the
chaotic regime (Fig. 3b, c). However, if the complex is
heterogeneous and consists of one HAG and one LAG subunit,
as shown schematically in Fig. 3a, the result is not as obvious.
Simulating the above equations for a heterogenous complex, we
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find a significantly higher level of the complex in the chaotic
regime, as seen in Fig. 3e.
We then test larger complexes. The concentration of the

protein complex Cn;nH
consisting of n subunits, of which nH are

from an HAG and the rest from an LAG, is modelled by

_Cn;nH
¼ λ

Yn

i¼1

Pi � ΔnCn;nH
: ð6Þ

For n= 3 and nH= 2, we found that the production was also
highest in the chaotic regime and, before moving further, we
tested whether the outcome was different if all complexes
combined randomly (yellow curve in Fig. 3f), or if there was a
hierarchical structure in the assembly (blue and red curves in
Fig. 3f). As we see in Fig. 3f the outcome is quite similar, and we
could therefore focus on the non-hierarchical assembly of
complexes, calculated as shown above. We subsequently tested
for n ∈ [2–10] and in each case we tried with all different
different combinations of HAG and LAG subunits. Unexpect-
edly, we find that all heterogeneous complexes exhibit a higher
average lvel in the chaotic regime (Fig. 3g). This means that
only homogenous HAG complexes would be present at a high
level in the single-mode oscillatory regime. One might ask,
whether this is simply the result of higher mean levels of NF-
κB. Therefore, we normalised the concentration of the
complexes by the mean NF-κB concentration—when this ratio
is large we will say the complexes are produced more efficiently.
As seen in Fig. 3h, all complexes are produced more efficiently
in the chaotic regime—even the homogenous HAG complexes.
Another economical argument for the cell is that if only the
complexes are of importance, then it is necessary to minimise
the number of unused subunits. In Fig. 3i, we see the ratio
between the average concentration of complexes to the
concentration of unused subunits. This ratio too is largest in
the chaotic regime for all complexes, except those made only
from HAG proteins. Thus, a chaotically varying transcription
factor not only up regulates LAGs, but also results in higher and
more economical production of protein complexes composed of
subunits from different genes.

Chaos generates advantageous population heterogeneity. We
now consider how the dynamics of NF-κB can affect a popu-
lation of cells. In the following, we consider the deterministic
NF-κB system, and study a population of N independent cells
that are affected by the same oscillating TNF stimulus. In all
simulations, cells have randomly distributed initial
conditions, i.e., the NF-κB oscillations in different cells are
not initially synchronised. Within each cell, we will track one
LAG and one HAG; parameters are chosen so that the two
corresponding proteins have the same average protein level.
In Fig. 4a–d we see that when NF-κB is in a single-mode
oscillatory state, the average level of both Protein 1 and Protein
2 is homogenous across the population, whereas if NF-κB is
mode-hopping then the distribution of protein levels across
the populaiton is bimodal. In the chaotic regime, the distribu-
tion is broad and heterogenous for both proteins (Fig. 4e, f),
but the LAG has on average a higher expression in this state
(for TNFPeriod= 95 min, we note a special tail, which is caused
by the occurrence of some high-frequency oscillations).
Such heterogeneity in a cell population can provide a

selective advantage when the population is exposed to
some potentially lethal stresses. Imagine each cell in the
population is exposed to two toxic drugs at concentrations D1

and D2. We assume that at each time step each cell is killed with

probability

PDie ¼ P0
Dh
1

Dh
1 þ Ph

1

þ Dh
2

Dh
2 þ Ph

2

� �
: ð7Þ

This describes a situation where the two proteins P1 and P2 are
stress-responders that can help the cell survive stressed condi-
tions. P0 represents the probability that the drugs kill in the
absence of the protective proteins. We consider the case where P1
is encoded by an HAG and P2 by an LAG, both under control of
NF-κB.
First we consider the situation where only one of these drugs

is present, shown in Fig. 4g, h. When only Drug 1 is added in a
high amount, cells where NF-κB is in a single-mode oscillating
state will have a higher survival rate than cells where NF-κB is
mode-hopping or chaotic. This is what one would expect from
Fig. 3, since HAG proteins are on average at higher levels in the
single-mode oscillatory state. When only Drug 2 is added in a
high amount, cells in chaotic states will have a slightly higher
survival rate, but due to large fluctuations, these cells will also
eventually die due to temporary low levels of Protein 2. Now we
consider what will happen to the system if both drugs are added
in a comparable amounts. We test four different patterns of
adding the drugs (Fig. 4i–l) and find that the cells in the chaotic
state will have significantly higher survival rate compared to the
others. In the Supplementary Note 6, we provide some
mathematical arguments for these results and here we also
show tests of the robustness of these results, and here we found
similar results as shown above (Supplementary Figure 3).
From this we conclude that in the presence of multiple toxic
drugs, a population of cells is better off having a large
heterogeneity in gene expression and up regulating the LAGs
and thus up regulating the product of genes. This is obtained in
the chaotic regime for NF-κB dynamics and this enhances the
survival rate.

Discussion
Transcription factors are known to have different dynamics,
depending on external conditions, but how this may be exploited
to differentially control downstream genes is not well understood.
We have shown how dynamically varying transcription
factors can differentially regulate genes based on an effective
affinity that characterises the interaction between the gene and
the transcription factor. In particular, we suggest that chaotic
dynamics can produce differential control of high vs. LAGs, down
regulating the former while simultaneously up regulating the
latter. We show that this can be used not only to control single
non-interacting genes, but also for upregulating specific com-
plexes of proteins and generating useful heterogeneities in cell
populations.
Our results are derived from a model of the NF-κB system.

Such models have been used to explain numerous experimentally
observed features of NF-κB oscillations3,35, and therefore form a
good basis for our exploration of the effects on downstream
genes. Our model has already successfully predicted the existence
of mode-hopping for a range of TNF amplitudes21. Since chaotic
behaviour within overlapping Arnold tongues is such a funda-
mental feature of driven nonlinear oscillators11,12,36, we are
confident that NF-κB driven by sufficiently large TNF amplitudes
will exhibit deterministic chaos. However, an experimental rea-
lisation of our model37,38 would necessarily be subject to various
sources of noise and stochasticity, and it is not obvious that
deterministically chaotic behaviour can be practically discerned in
the presence of such fluctuations. Fortunately, many sophisticated
methods exist that allow chaos to be distinguished from noise
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without requiring unreasonably long time series; see for example
refs. 39,40. Once chaos is found in the NF-κB system, the next step
of testing whether HAGs respond differently from LAGs can be
tackled using genes that have previously investigated in the
regime where NF-κB shows single-mode oscillations1,8. Since the
expression level of some of these genes track NF-κB oscillations
closely, while others track the mean NF-κB levels, it is likely that
these genes already span a range of affinity values4. The robust-
ness of our results to many parameter values suggests that these
genes may be directly used to study the chaotic regime, without
worrying too much about details, such as their maximal tran-
scription/translation rates or the stabilities of the mRNA and
proteins they encode.
Our model uses periodic variation of TNF to produce com-

plex dynamics of NF-κB. Uncovering conditions where TNF
naturally varies periodically and thereby entrains the NF-κB
oscillations would add substantial weight to our results.

Oscillatory dynamics is believed to be of importance to several
processes in the immune system41 and there exists evidence
that TNF does indeed vary in a pulsatile or periodic manner in
some situations42–45, as well as mathematical models that
attempt to explain the underlying mechanisms42,46, but it is
unclear whether these natural oscillations entrain NF-κB. The
positive feedback between NF-κB and TNF that has been
hypothesised to produce travelling waves of TNF is perhaps the
most promising scenario we are aware of where periodic TNF
modulation may occur naturally46.
Chaotic dynamics has thus far been underestimated as a means

for controlling genes, perhaps because of its unpredictability. Our
work shows that deterministic chaos potentially expands the
toolbox available for single cells to control gene expression
dynamically and specifically. We hope this will inspire theoretical
and experimental exploration of the presence and utility of chaos
in living cells.
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Fig. 4 Population heterogeneity emerges from chaos. a Protein concentration from an HAG with K= 1, h= 2 and external TNF period 50min. Bottom: The
concentration corresponding to a single-mode oscillation; TNF amplitude: 0.04. Middle: The concentration corresponding to mode-hopping; TNF
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Methods
Simulations. All deterministic simulations were performed by numerically
integrating the dynamical equations using the Runge–Kutta fourth-order
method, and for optimisation reasons, some of the equations were simulated
using Euler integration. Whenever Euler integration was used it was tested that it
generated similar results as the Runge–Kutta fourth-order method. For all sto-
chastic simulations of NF-kB dynamics, we used the Gillespie algorithm23. For
noise in the external TNF oscillations we used Langevin simulations of the
different oscillations.

Regions of chaos. To find the regions of parameter space that exhibit chaotic
dynamics, we first computed the standard deviation in the NF-kB amplitudes from
each time series, and found the parameter points at which this grew dis-
continuously, as we increased the TNF amplitude. Within these regions, we further
tested for chaos by calculating the divergence of trajectories that started at
almost identical initial points, using deterministic simulations. Parameter regions
where such trajectories diverged exponentially were labelled as regions exhibiting
chaos.

Code availability. All computer code is available upon request at heltberg@nbi.ku.dk
or mhjensen@nbi.dk. The majority of scripts can also be found at https://github.com/
Mathiasheltberg/ChaoticDynamicsInTranscriptionFactors.

Data availability
All the data in this paper, was generated using deterministic and stochastic
simulations. All scripts to generate the data are available upon request at helt-
berg@nbi.ku.dk or mhjensen@nbi.dk. The majority of scripts can also be found at
https://github.com/Mathiasheltberg/ChaoticDynamicsInTranscriptionFactors.
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Highlights 
• A model of autonomous p53-Mdm2 oscillator was built to examine regulatory functions of 

Mdmx in p53 dynamics. 

• Mathematical modeling reveals that enhanced p53 degradation instead of transcriptional inhibi-

tion is the most critical function of Mdmx.

• Mdm2-dependent degradation of p53 is facilitated by Mdmx and hindered by ATR after dama-

ge. 


Abstract 
The tumor suppressor protein p53 is a master regulator of stress responses. In non-stressed con-
ditions it is maintained at low levels due to its suppression by the oncogenes Mdm2 and Mdmx. 
Earlier work in single cells revealed that depletion of Mdmx leads to two phases of p53 dynamics; 
an initial post-mitotic pulse followed by oscillations. The mechanism leading to this complex dy-
namical behavior is unknown. In addition, while the structure of the p53/Mdm2/Mdmx network is 
well known, we still lack a detailed, quantitative understanding of their functional interactions un-
der various conditions. Here, we developed a simple mathematical model of the p53/Mdm2/
Mdmx system and investigated which of their known interactions quantitatively affects different 
features of p53 dynamics. We found that the Mdm2-dependent degradation of p53, facilitated by 
Mdmx, is the most critical interaction regulating p53 dynamics in non-stressed conditions. Fur-
ther, we used our model to predict p53 behavior following DNA damage in Mdmx depleted cells. 
We then acquired new live single-cell data to constrain the model and identified specific regulato-
ry mechanisms responsible for the DNA-damage dose-dependent and -independent features of 
p53 dynamics. Our integrated imaging with modeling approach provided a new model for p53 dy-
namics and suggested specific Mdmx-mediated suppressive mechanisms for regulating oscilla-
tions in the p53 system. Similar approaches can be applied to reveal the most impactful interac-
tions regulating the dynamics of key proteins in additional systems in human cells. 


Introduction 
Decades of research in molecular biology and biochemistry led to the identification of the key 
molecular players that sense and transfer cellular information, and to the assembly of complicated 
networks describing the interactions between them. Such biological maps often include interac-



tions collected from a large number of studies performed across different conditions. The specific 
interactions that are functional and dominate the response in each condition, as well as the role of 
these interactions in triggering the right outcome, often remain elusive. In addition, interactions 
between genes or proteins in biological networks are represented as a static drawing of binary 
(inhibitory or activating) arrows connecting different components of the network. To fully under-
stand how information is processed in cells, one needs to move beyond the static description of 
networks’ structure into developing a quantitative understanding of their contributions and behav-
ior in response to different intracellular and extracellular inputs. 


One approach for identifying and quantifying functional interactions in biological networks is to 
investigate the dynamics of key proteins within the network, and use this information for the de-
velopment of mathematical modeling capturing their behavior (Purvis and Lahav, 2013, Ronen et 
al., 2002, Jacquet et al,. 2003; Hao and O’Shea, 2012, Tay et al., 2012; Batchelor et al., 2011; 
Hunziker et al., 2010; Geva-Natorsky et al., 2006; Cirit et al., 2010, Lee et al., 2014; Mengel et al., 
2010; Tiana et al., 2002). Such dynamical data are complementary to the information originally 
used to describe biological networks, and have great potential to provide new insights into the 
relationship between network structure and its function. Furthermore, such insights are crucial for 
better understanding the underlying causes of disease, and for developing therapeutics that 
quantitatively target protein dynamics (Behar et al., 2013). Here we used the complex dynamics of 
the tumor suppressor protein p53 in single cells together with modeling to identify dominant inter-
actions in the network controlling p53 and the relative contribution of these interactions in trigger-
ing specific dynamical outcomes under basal and DNA damage conditions.  


p53 is a transcription factor and a master regulator of stress responses. In non-stressed condi-
tions, the p53 protein is maintained at low levels due to its suppression by the oncogenes Mdm2 
and Mdmx (Wade et al., 2013). The circuit describing the interactions between p53, Mdm2 and 
MdmX is complex (Figure 1A). First, the core of this circuit includes a negative feedback loop be-
tween p53 and Mdm2  (Genes Dev. 1993 Jul;7(7A):1126-32. The p53-mdm-2 autoregulatory feed-
back loop.)(Lahav et al., 2004; Bar-Or et al., 2000); p53 activates the transcription of Mdm2, while 
Mdm2 negatively regulates p53 stability by promoting its ubiquitination and degradation (Onco-
gene. 1998 Nov 12;17(19):2543-7. Mdm2 association with p53 targets its ubiquitination.). The 
oncogene Mdmx feeds into both of these interactions between p53 and Mdm2. (Figure 1A) (Bar-
boza et al., 2008; Karni-Schmidt et al., 2016; ElSawy et al., 2013). On the one hand, Mdmx cat-
alyzes Mdm2-mediated p53 ubiquitination and degradation through its heterodimerization with 
Mdm2 (Wang et al., 2011) (Figure 1A, blue arm). On the other hand, Mdmx suppresses p53 tran-
scriptional activity through its competitive binding with transcriptional cofactors to p53 trans-acti-
vation domain (Pei et al., 2012) (Figure 1A, orange arm). This high connectivity and multiplicity of 
interactions between p53, Mdm2 and Mdmx make it difficult to detangle the relative contribution 
of each arrow under different conditions (Mancini et al., 2010). 




The dynamics of p53 following manipulation of its key regulators can serve as a platform for iden-
tifying functional leading interactions, and how quantitatively they regulate p53. It was recently 
discovered that suppression of Mdmx triggers complicated two-phase dynamics of p53 in single 
cells (Chen et al., 2016); in the first phase, p53 undergoes a pulse following cell division. In the 
second phase, p53 shows a series of undamped oscillations. The mechanism leading to p53 bi-
phasic dynamics following Mdmx suppression is unknown. In addition, p53 oscillations during the 
second phase of the response to Mdmx suppression resembled (both in frequency and amplitude) 
the previously described p53 oscillations in response to DNA damage (Chen et al., 2016; Batche-
lor et al., 2008). However, the previous molecular mechanisms suggested for p53 oscillations did 
not incorporate Mdmx regulation on p53 and Mdm2 (Purvis et al., 2012; Batchelor et al., 2011; 
Geva-Natorsky et al., 2006; Lahav et al., 2004; Batchelor et al., 2008). Therefore, the relative 
quantitative contribution of the interactions between p53/Mdm2 and Mdmx (Figure 1A) in control-
ling p53 dynamics remain not known. 


Here we infer and quantify the leading interactions between p53, Mdm2 and Mdmx through a 
combination of time-lapse single-cell imaging and computational modeling. The complicated dy-

namics of p53 following Mdmx depletion (Chen et al., 2016) prompted us to develop a plausible 
mathematical model for the p53 signaling network. Using the model to simulate p53 dynamics we 
predicted its behavior under various conditions and validated these temporal dynamics experi-
mentally. We further used these experiments to constrain the model and its parameters allowing 
us to propose a quantitative mechanism for how p53 and Mdm2 are regulated by Mdmx and the 
upstream DNA damage signal, and to identify the most critical interactions controlling p53 dy-
namics in basal conditions and in response to DNA damage. 


Results 
I. Identifying quantitative features of p53 dynamics and activity following Mdmx depletion  
The dynamics of p53 in response to Mdmx depletion in single cells is complex. Our first goal was 
to identify specific quantitative features of these dynamics in order to guide the mathematical 
analysis. Depletion of Mdmx leads to two phases of p53 dynamics (Chen et al., 2016). In the first 
phase, p53 undergoes a high-amplitude pulse following mitosis (Figure 1B, grey region). In the 
second phase, p53 shows a series of low amplitude oscillations (Figure 1B, yellow region). 


We first characterized p53 dynamics during the initial response of the system (Figure 1B, grey re-
gion). Because this first phase is triggered after mitosis, we performed an in-silico alignment of all 
individual single-cell p53 dynamics to the time of cell division. The average population trace (Fig-
ure 1C, green trace) shows a strong post-mitotic pulse, while the low-amplitude oscillations are 
masked by the mean value. Note that the small peak preceding mitosis is due to an increase in 
auto-fluorescence seen in all channels. From this in-silico alignment we found the average initial 
pulse (Figure 1D) to be symmetric, i.e. showing identical increasing and decreasing slopes (Figure 
1E) and with a maximal amplitude approximately three times larger than the basal level prior to 



Mdmx depletion (Figure 1D). Further, we found that the distribution of amplitudes across individ-
ual cell traces can be well described by fitting it to a gamma distribution (Figure 1F). 


We next characterized p53 dynamics during the second-phase of the response, when it exhibits 
oscillations (Figure 1B, yellow region). We calculated the Fourier spectrum of individual cell traces 
as distinct time series. The power spectrum of individual cells confirms that p53 oscillations are 
well defined and regular, having a frequency of approximately 0.3/hour (Figure 1G). The power 
spectrum (Figure 1G, y-axis) also provides an estimate of the corresponding amplitude in the 
best-fitted sinusoidal frequency. As an alternative way to measure the amplitude of oscillations, 
we used an independent algorithm that estimated the oscillatory amplitude as the distance from 
each peak to the two neighboring valleys. From this single cell measurements we plotted the dis-
tribution of amplitudes during the oscillatory phase which was also well described by a gamma 
distribution (Figure 1H). Using the most probable amplitude and frequency defined from these al-
gorithms, we showed that a sinusoidal function with these parameters agrees well with the exper-
imentally observed oscillations in single-cells (Figure 1I), showing the regularity of p53 oscillations. 
Note that the amplitude shows a higher variation than the frequency, which was relatively stable 
as was previously reported for p53 oscillations post DNA damage (Geva-Natorsky et al., 2006; 
Reyes et al., 2018). 


In order to quantitatively determine the role Mdmx has on p53’s transcriptional activity (Figure 1A, 
orange arm), we compared the ratio of Mdm2 to p53 in individual cells, before and after Mdmx 
depletion using immunofluorescence (Figure 1J). We found that depletion of Mdmx shifts the 
mean of the distribution to a higher value, meaning that more Mdm2 proteins are produced per 
p53 protein when Mdmx is depleted. This finding agrees with previous studies suggesting that 
Mdmx suppresses p53 transcriptional activity (ElSawy et al., 2013; Pei et al., 2012). 


Following these sets of observations and measurements, we identified three key quantitative fea-
tures of p53 dynamics and activity following Mdmx depletion: (I) an initial high amplitude symmet-
ric pulse; (II) sustained low-amplitude oscillations; (III) a shift in the Mdm2/p53 distribution (Figure 
1K). Next, we used these quantitative features to guide us in developing a mathematical model of 
p53 and Mdm2 regulation by Mdmx.  

II. Mathematical model points to the specific functional interactions regulating p53 dyna-
mics by Mdmx in non-stressed conditions. 

In order to asses the effect of Mdmx onto the core p53-Mdm2 network, we first developed a 
minimal model of the p53-Mdm2 feedback-loop using the two ordinary differential equations be-
low:  




In this model, p53 is produced at a constant rate (α) and degraded upon binding to Mdm2 
through a saturated degradation process (β, γ), whereas Mdm2 is produced proportionally to the 

p53 level (ψ) and degraded through a first-order decay process (δ) (Figure 2A). We restricted the 

model to include a minimal number of parameters, as no cooperativity is assumed (e.g. use of Hill 
coefficients). We used numerical analysis to choose appropriate values for each biological para-
meter (SI, sections I and II). Particularly, in order to recapitulate p53 oscillatory behavior, we found 
that a time delay (TDel) mimicking the transcription and translation processes in the cell is re-
quired for oscillations to occur. Thus, these two equations serve as a minimal model for p53 oscil-
latory behavior.


We use this minimal model to investigate the potential interactions between Mdmx and the p53-
Mdm2 feedback. Mdmx can potentially affect p53 degradation, interfere with p53 transcriptional 
activity or modify the time-delay for Mdm2 production (Figure 1A). To model these potential ef-
fects, we introduced a series of parameters λi that we refer to as impact factors. Impact factors λ1 
and λ2 account for Mdmx’s effect on p53 degradation affecting biological parameters (β) and (γ)  
respectively (Figure 2B) while λ3 and λ4 account for Mdmx’s effect on p53 transcriptional activity 

(ψ) and time delay (ƬDel) respectively (Figure 2C).





Our goal is to investigate which potential interaction of Mdmx best recapitulates the quantitative 
features of p53 dynamics following Mdmx depletion. For that, we tested the effect of each impact 
factor separately. We simulated p53 dynamics using a range of values for each factor (Figure 2D-
G) and assesed whether the simulations reproduced the experimentally observed p53 dynamics. 


We found that incorporating impact factor λ1 led to the best fit to p53 dynamics following Mdmx 
depletion. Before Mdmx depletion, all tested values of λ1 led to a steady state level of p53, with 
higher λ1 leading to lower basal levels of p53 (Figure 2D). After Mdmx depletion, a large pulse is 
observed followed by oscillations (Figure 2D). It is noted that, as λ1 increases, so does the height 
of the initial pulse. However the amplitude of oscillations does not vary with λ1. Interestingly, in-
corporating impact factor λ2 leads to p53 oscillations after depletion but does not reproduce the 
initial high-amplitude pulse of p53 (Figure 2F). Last, introducing either impact factors λ3 or λ4 re-
sults in oscillatory p53 behavior before Mdmx depletion, which does not fit our experimental ob-



servations (Figure 2E and 2G). Based on these simulations, we concluded impact factor λ1, which 
accounts for the role of Mdmx in enhancing p53 degradation by Mdm2, is critical for generating 
p53 biphasic dynamics and can recapitulate the first two key features of p53 dynamics following 
Mdmx depletion (i.e. an initial pulse followed by sustained low-amplitude oscillations). 


In order to better understand the role of impact factor λ1 on p53 dynamics we used tools of dy-
namical systems theory. We visualized how the phase portrait of the p53-Mdm2 network is affect-
ed by λ1. As we explored a wide range of  λ1 values, we observed that small values can lead to 
oscillations before Mdmx depletion. As λ1 increases, oscillations dampen, see the progressive 
narrowing of the limit cycle in Figure 2H. This observation further strengthens our previous choice 
of  λ1 values for p53 simulations, with values high enough to reproduce the observed p53 steady-
state levels before Mdmx depletion (Figure 2D). A second phase portrait of the p53-Mdm2 system 
drawn after Mdmx depletion shows how the system transitions from a steady state (green zone) 
to an oscillatory regime (red zone) (Figure 2D and Figure 2I). The transition occurs through an ini-
tial pulse which is described by the colored trajectories in Figure 2I. For increasing values of λ1, 
the trajectory takes a longer path to reach the oscillatory regime. The length of the trajectory cor-
responds to the height of the initial pulse, thus explaining how increasing values of λ1 lead to 
higher amplitudes of the initial pulse (Figure 2D). 


We next investigated whether the effect of Mdmx on p53 degradation through impact factor λ1 
can also capture the third quantitative feature of p53 dynamics; the shift in the ratio between 
Mdm2/p53 (Figure 1J and 1K). We found that incorporating λ1 alone is insufficient for accounting 
for this shift as was observed experimentally (compare Figure 1J to Figure 2J).  In order to capture 
the shift, we chose to test the effect of impact factor λ3, which accounts for the direct effect of 
Mdmx on Mdm2 transcription by p53 (parameter ψ) and therefore is a good candidate to affect 
the ratio of Mdm2/p53 (see SI). From the immunofluorescence data, we extracted the average ra-
tio of Mdm2/p53 both in the control and Mdmx depleted cells. These values can be used to set 
the bounds for the value of λ3. We predicted that values of λ1 equal to 3 and λ3 equal to 0.15 
could capture the shift in the Mdmx/p53 distribution (see detailed analysis in SI). Indeed, the re-
sulting distribution when considering both factors shifted after Mdmx depletion as was experi-
mentally observed (compare Figure 1J to Figure 2K).  In order to test whether including λ3 affected 
any of the quantitative features λ1 could recapitulate, we further tested the amplitude of the initial 

p53 pulse as a function of λ1 for different values of λ3. We found that the amplitude of the pulse is 
almost solely defined by the value of λ1 (Figure 2L). Therefore, a high value of λ1 (λ1 = 3.0) is cho-
sen to maintain p53 at steady state before Mdmx depletion and a small value of λ3 (λ3 = 0.15) is 
chosen to capture the shift in the Mdmx/p53 distribution.


Combining both impact factors (λ1 and λ3) at the fixed values mentioned above, we simulated the 
system with internal and external noise (applying Chemical Langevin equation) to examine its ro-
bustness. We confirmed a robust biphasic dynamics of p53 after Mdmx depletion in the presence 



of noise that accurately captured the experimental behavior in single cells (Figure 2M). Taken to-
gether our mathematical analysis shows that the Mdmx-mediated p53 degradation through im-
pact factor λ1 and Mdmx-mediated regulation of p53 activity through impact factor λ3 are suffi-
cient for capturing the three quantitative features of p53 biphasic dynamics following Mdmx de-
pletion including the initial high amplitude pulse, the low amplitude oscillations and the shifted 
distribution of Mdm2/p53 with increased variance.


III. Simulation of the model predicts the effect of Mdmx on p53 dynamics after DNA damage 

Having optimized λ1 and λ3 to mimic the observed p53 dynamics before and after Mdmx deple-
tion, we propose a unified model of the core p53-Mdm2-Mdmx feedback. We now aim to apply 
this model to investigate the effect of DNA damage on p53, particularly the potential p53 dynam-

ics that result from combining Mdmx depletion and DNA damage. 


We aim at studying the biological response to DNA damage after UV-radiation. UV-radiation re-
sults in activated ATR, a PI3 kinase-related kinase that stabilizes p53 through inhibitory phospho-
rylation of Mdm2. We thus expanded our model to incorporate the effect of DNA damage through 
ATR activation. To more accurately reflect the biological response to DNA damage, we introduced 
a function that describes ATR dynamics following UV-radiation (Figure S2). ATR activity reaches a 
maximal UV dose-dependent level right after radiation then decays exponentially representing the 
repair of DNA damage (FigureS3). Further, we modeled ATR inhibition of Mdm2-mediated p53 
degradation through two impact factors (κ1 and κ2) (Figure 3A): 




Note that βMdmx refers to the initial value of β now being affected by Mdmx through impact factor 
λ1. We used our extended model to compare the effects of UV-radiation alone (Figure 3B, D) to 
that of Mdmx depletion followed by UV-radiation (Figure 3C, E). We introduced three doses of UV-

radiation through three different values of κ1 and κ2 (see Methods). 


It was previously shown experimentally that the p53 dynamics in response to UV radiation con-
sists of a large pulse with an amplitude that scales with UV dose (Batchelor et al., 2011). In Fig-
ures 3B to 3E, we observed that only impact factor κ1 had a strong effect on the amplitude of the 
UV-triggered p53 pulse. Specifically, ATR activation (through its effect on κ1) led to a single p53 
pulse with an amplitude that scaled with κ1 value (Figure 3B). In contrast, activation of ATR 
through κ2 led to oscillations with no initial p53 pulse across all tested values (Figure 3D, E). This 



suggests that ATR inhibition of Mdm2-mediated p53 degradation occurs through impact factor κ1 
that affects β (degradation of p53 by Mdm2).


Interestingly, when we consider the effect of ATR through impact factor κ1 in cells with Mdmx 
suppression, we found the amplitude and duration of the UV-induced pulse to be higher (Figure 
3C) compared to those with UV-radiation alone (Figure 3B). Furthermore, the model predicted that 
in Mdmx depleted cells the initial pulse caused by UV-radiation is followed by a series of p53 os-
cillations (Figure 3C).  

We next analyzed how different UV doses might affect the slope (Figure 3F) and amplitude (Figure 
3G) of the UV-triggered initial p53 pulse. Simulation of the model using a range of values for κ1 
suggests that both the slope and height of the initial p53 pulse increase with the dose of UV-radi-
ation (Figure 3F, G). A similar trend was predicted for Mdmx depleted cells, although the model 
also predicts that the slope and amplitude of the p53 initial pulse will be higher in these cells (Fig-
ures 3F and G; blue curves).  


Lastly, we tested how different UV doses might affect the amplitude of p53 oscillations following 
the initial p53 pulse in response to UV in Mdmx depleted cells. The model simulations measure 
the relative increase in the oscillatory amplitude after UV as we vary κ1 and κ2 independently (Fig-
ure 3H).  First, we observe that impact factor κ2 holds a stronger effect in changing the oscillatory 
amplitude. Second, for all values of impact factors κ1 and κ2, the amplitude of p53 oscillations fol-
lowing UV is independent of the UV dose. Taken together our model suggests that a combined 
treatment of Mdmx depletion followed by UV radiation will lead to a large p53 pulse (Figures 3C, 
3G) followed by oscillations (Figures 3C, 3H). In addition, our model predicts that the UV-triggered 
p53 oscillations will have higher amplitude compared to the oscillations prior to UV (Figures 3C, 
3G). 

ΙV. Experimental data confirming the effect of Mdmx on p53 dynamics in response to UV 

We next tested experimentally whether our mathematical model could predict the potential p53 
dynamics that result from combining Mdmx depletion and DNA damage. Cells were exposed to 
UV alone (8 J/m2 or 16 J/m2) (upper single-cell p53 traces in Figure 4A and Figure 4B) or to UV 
after Mdmx depletion (lower single-cell p53 traces in Figure 4A and Figure 4B). Single-cell p53 
traces are colored according to their dynamic behavior: before treatment (white region), initial re-
sponse (grey region) and long-term response (yellow region); and the average population behavior 
is shown in Figures 4C and 4D. 


We first characterized the first phase of p53 dynamics, a pulse triggered by UV. As was previously 
observed (Batchelor et al., 2011), when cells are subjected to UV-radiation alone, p53 shows a 
single pulse with an amplitude that increases with dose (upper single-cell traces Figure 4A, B and 



red traces Figure 4C, D). When UV-radiation is combined with Mdmx depletion, this initial pulse 
shows a larger amplitude and duration (Figure 4A, B, F, H). Note that, as predicted by our model, 
an increase in the UV dose leads to a larger slope (Figure 3H, Figure 4E, G) and higher amplitude 
of the pulse (Figure 3G, Figure 4F, H). 


We next characterized the long-term response of p53 dynamics. In agreement with our model 
predictions, in the combined treatment (UV and Mdmx depletion), the initial single pulse was fol-
lowed by oscillations with higher amplitude compared to before UV treatment (lower single-cell 
traces Figures 4A and 4B). In order to characterize the series of oscillations observed in Mdmx-
depleted cells following the initial UV-triggered pulse, we calculated the Fourier spectrum (Figures 
4I and 4J) and distribution of amplitudes (Figures 4K and 4L) for both UV doses. While the fre-
quencies of the oscillations were similar to the oscillations resulting from Mdmx depletion alone 
(compare Figure 1G with Figures 4I and 4J), the amplitude of oscillations was approximately two 
times larger compared to the amplitude resulting from Mdmx depletion alone (in Figure 4 K & 4L 
compare gamma fits in yellow from of Figure 1H with current gamma fits in blue). For both obser-
vations, the maintenance of the oscillatory frequency and the increase in oscillatory amplitude 
were independent of the UV-dose. Note that, the increase in the oscillatory amplitude is in agree-
ment with the predictions generated by our model (compare Figure 3B with Figure 3C). 


The main features of p53 dynamics in response to Mdmx depletion combined with UV-radiation 
(an enhanced UV-triggered initial pulse followed by large-amplitude oscillations) were all captured 
in our model.  Following the strong agreement between our model and experimental results, we 
concluded that the effect ATR has on Mdm2-mediated degradation of p53 through impact para-
meter β is the function that dominates the p53 dynamical response following DNA damage. 


Indeed, we found that the Mdm2-dependent degradation of p53 (facilitated by Mdmx and hin-
dered by ATR) is the most critical interaction regulating p53 dynamics both in non-stressed condi-
tions and following DNA damage. A final model that captures the dependencies of parameters (β) 
and (ψ) to Mdmx and ATR can be found in the Supplementary Information. 


V. Discussion  
How dynamics of signaling molecules emerge through interacting components in space and time 
remains an unresolved question. Here we investigated the regulation of p53 dynamics through a 
combination of single-cell imaging and mathematical modeling. Specifically, we focused on the 
role of Mdmx in regulating p53 dynamics in both non-stressed conditions and after DNA damage. 
Our previous observation of p53 oscillations in the absence of DNA damage inspired us to con-
struct a minimal mathematical model of the p53-Mdm2 signaling system with minimum free pa-
rameters and no nonlinearity. 




Using three prototypic features of the p53 dynamics as the guidelines, we simulated the effect  of 
each Mdmx-mediated molecular mechanism in regulating p53 dynamics using the minimal p53-
Mdm2 model. By comparing experimental results with simulations, we proposed that Mdmx-me-
diated p53 degradation plays a major role in regulating p53 biphasic dynamics. It is tempting to 
speculate that Mdmx’s main function could be to maintain p53 levels at low steady state by con-
stantly catalyzing Mdm2-mediated p53 ubiquitination. In non-stressed conditions, p53 undergoes 
a single pulsatile induction during G1/S cell cycle phase (Loewer et al., 2010). Thus, it is possible 
that ubiquitination activity of the Mdmx/Mdm2 complex toward p53 is rhythmic and is the lowest 
during the G1/S cell cycle phase. In support of this hypothesis, Mdm2 has been implicated in re-
gulating cell cycle progression by targeting cell-cycle machineries (Frum et al., 2009; Giono et al., 
2017). It remains to be tested if the same mechanism applies to Mdmx.  

UV radiation has been shown to induce a graded p53 response (Batchelor et al., 2011). However, 
it is unclear how signaling proteins shape the UV-induced p53 pulse. After Mdmx suppression, the 
p53 pulse showed higher slope and amplitude following UV-irradiation (Figures 4E, 4G, and 4H), 
suggesting an inhibitory role of Mdmx via modulation of the slope and height of the p53 pulse. 
Interestingly, ths inhibitory effect is not obvious when a low UV dose (8 J/m2) was applied to cells 
(Figure 4F). It is possible that there is a technical challenge in quantifying a mild increase in ampli-
tude due to the low basal level of p53. Alternatively, the amplitute could be dampened by un-
known signaling proteins and this dampening effect is relieved at high UV dose. 


How signal-specific p53 dynamics emerge and specify transcriptional programs for cellular deci-
sion remains elusive. It has been shown that p53 oscillations are flexible in amplitute but robust in 
period (Chen et al., 2016). It remains unclear if different amplitudes of p53 oscillations activate 
distinct transcriptional programs and therefore encode distinct biological information for cell state 
determination (Purvis and Lahav 2013). The fact that ATR activation leads to a higher amplitude of 
p53 oscillations provides a plausible approach to further dissect functions of p53 amplitude. From 
the dynamics point of view, Mdmx acts as a key suppressor of p53 oscillations in both non-
stressed conditions and after gamma-irradiation (Chen et al., 2016). It remains to be tested if oth-
er cellular signals modulate p53 dynamics through regulating Mdmx stability or its binding to p53. 
Clinically, Mdmx overexpression is observed in multiple cancers (Wade et al., 2013; Gembarska et 
al., 2012; Danovi et al., 2004). Thus, it would be interesting to further investigate the role of Mdmx 
in regulating p53 dynamics in MDMX overexpressed cancers as well as cancers with wild type 
TP53. 


Oscillatory dynamics are widely observed in various biological processes including circadian 
rhythm (Kitayama et al., 2008; Sancar et al., 2010), immune response (Hoffmann et al., 2002; Nel-
son et al., 2004), stress response (Jacquet et al., 2003; Lahav et al., 2004) and development (De-
quéant et al., 2006; Kobayashi et al., 2009). To understand how these oscillations emerge and 
what biological functions are encoded in these oscillations, it is critical to take multifaceted quan-
titative approaches. Here, we took an integrative approach combining single-cell quantitative 



imaging with mathematical modeling to identify key regulatory mechanisms underlying p53 dy-
namics. Our study provides an example to examine mechanisms responsible for signaling dynam-
ics by developing a minimal mathematical platform based on quantitative perturbations of signal-
ing dynamics in single cells. This platform can be the basis to study p53 dynamics in various bio-
logical contexts in the future.  


Material and methods: 

Cell Culture and UV radiation 

MCF7 cells were grown in RPMI + 10% fetal bovine serum (FBS) supplemented with selective an-
tibiotics (400 µg/ml G418, 5 µg/ml blasticidin, and 0.5 µg/ml puromycin) when needed. The MCF7 
p53 reporter cell line have been previously described (Giorgio Gaglia, Yinghu Guana, Jagesh V. 
Shaha, and Galit Lahav. Activation and control of p53 tetramerization in individual living cells 
PNAS, 2013). UV was delivered to cells using a UV lamp with a rate of 1.5 J/m2/s. All UV were 
performed in a single burst.  

Reagents 

Antibodies were used against Mdm2 (SMP14, Santa Cruz), p53 (DO1 and FL-393, Santa Cruz). 
Small interfering RNAs targeting MDMX (sequences: AGCCCTCTCTATGATATGCTA and GAC-
CACGAGACGGGAACATTA) from Qiagen were used for MDMX knockdown. Two siRNAs 
show qualitatively identical results. For all MDMX knockdowns, 5nM of siRNA was used unless 
stated otherwise.  
Live-Cell Microscopy 

Cells were grown in RPMI without phenol red and riboflavin + 10% FBS in poly-D-lysine coated 
glass-bottom plates (MatTek Coporation) for two days before imaging. We used Nikon Eclipse TE-
2000 inverted microscope with a 20× plan apo objective (NA 0.75) with a Hammamatsu Orca ER 
camera. The microscope was equipped with an environmental chamber controlling temperature, at-
mosphere (5% CO2), and humidity. Images were acquired every 30 min for 24-72 hr controlled by 
MetaMorph Software (Molecular Devices). Image analysis was done with ImageJ (NIH) and Mat-
lab (MathWorks). 

Immunofluorescence 

Cells were grown on glass-bottom plates (MatTek Coporation) coated with poly-D-lysine and fixed 
with 4% paraformaldehyde. Cells were permeabilized in PBS/1% Triton for 5 min, blocked with 
2% BSA, incubated with primary antibody overnight, washed, and incubated with secondary anti-
body coupled to either Alexa488 or Alexa647 for one hour. After washing, cells were stained with 
DAPI and embedded in imaging media (20mM Tris-HCl, ph8.0, 2.5% DABCO and 80% Glycerol). 
Images were acquired with a 20× plan apo objective (NA 0.75) with the appropriate filter sets. Im-
age analysis was done with CellProfiler. At least fifty thousand cells were measured per condition. 

Choice in the range of values for impact factors 

The range of values for impact factors in Figure s 2D-G and 3B-E were chosen taking into account 
how each factor affected p53 dynamics. The ranges explored allow for the correct visualization of 
p53 levels. The ranges explored correspond to three-fold changes as follows: λ1: (1; 2; 3), λ2: (2; 4; 6), 
λ3 (0.25; 0.5; 0.75), λ4 (0.5; 1; 1.5), κ1: (0.1; 0.25; 1) and κ2: (0.01; 0.025; 0.1). Fourier spectrums of Fig-
ures 1G, 4I and 4J were calculated using a Matlab FFT algorithm. 




Figure  1

A) Schematic diagram of Mdmx regulating p53. Mdmx acts to inhibit the p53-Mdm2 oscillator through two 

arms: degradation of p53 through catalyzing Mdm2-mediated ubiquitination (blue left arm) and inhibition of 

p53 transcriptional activity (orange right arm). 


B) Four representative single-cell time series of p53 dynamics following Mdmx depletion. The grey region 

indicates the initial pulse while the yellow region highlights the sustained oscillations.


C) p53 population dynamics obtained by averaging individual cell traces over time. Green bold line and 
green shaded areas correspond to mean and standard deviation respectively. Individual p53 traces were 
aligned based on the time of cell division.  


D) Mean value of the initial peak following Mdmx depletion. 


E) Increasing (Rise) and decreasing (Fall) slopes of the initial p53 pulse. 

F) Histogram showing the distribution of amplitudes of the initial p53 pulse. Fitted gamma distribution in 

red.  


G) Fourier spectrum of the sustained oscillations. The red dots mark the highest Fourier signal for each indi-

vidual cell. The height of the peak correspond to the amplitude of the most dominant frequency of oscilla-

tion. 


H) Histogram showing the distribution of amplitudes of the oscillatory phase.


I) Comparison of a single cell oscillatory expression (green) to a modelled sinusoidal oscillation (red) with 

amplitude and frequency corresponding to the most probable values of the Fourier spectrum in Figure 1G.

J) Distribution of the Mdm2/p53 ratio before (black) and after (red) Mdmx depletion based on the immuno-

fluorescent staining of Mdm2 and p53 in single cells. Before (mean=1.26; sd=0.14) and after MdmX deple-

tion (mean=1.38; sd=0.23). Vertical lines show the corresponding mean values.  


K) Characteristic features of p53 dynamics following Mdmx depletion. A large initial  pulse (I) is followed by 

sustained oscillations (II). A shift in the ratio between Mdm2 and p53 (III). 









Figure  2 
A) Schematics of the p53-Mdm2 negative feedback loop with the parameters (β, γ, ψ, ΤDel) in our mathema-
tical model. 


B) Possible mechanisms for Mdmx-mediated p53 degradation through enhancing Mdm2-mediated p53 

poly-ubiquitination. 


C) Possible mechanism of Mdmx-mediated inhibition of p53 transcriptional activity through competitive 

binding. 


D) Effects of Mdmx through impact factor λ1 on parameter β. Before Mdmx depletion, λ1 values for blue, red 

and yellow curves respectively: (1; 2; 3). After Mdmx depletion, λ1 is set to zero. 

E) Effects of Mdmx through impact factor λ3 on parameter γ. Before Mdmx depletion, λ3 values for blue, red 

and yellow curves respectively: (0.25; 0.5; 0.75). After Mdmx depletion, λ3 is set to zero.


F) Effects of Mdmx through impact factor λ2 on parameter ψ. Before Mdmx depletion, λ2 values for blue, red 

and yellow curves respectively: (2; 4; 6). After Mdmx depletion, λ2 is set to zero.


G) Effects of Mdmx through impact factor λ4 on parameter ΤDel. Before Mdmx depletion, λ4 values for blue, 

red and yellow curves respectively: (0.5; 1; 1.5). After Mdmx depletion, λ4 is set to zero.


H) Evolution of the p53-Mdm2 behavior in phase space when λ1 increases. Increase in λ1 drives the limit 

cycle towards a fixed point.

I) Evolution of the p53-Mdm2 behavior in phase space when λ1 increases. Increase in λ1 enhances the am-

plitude of the initial pulse. 


J) Simulations of the distribution of Mdm2/p53 before (black) and after (red) Mdmx depletion, taking into 

account λ1 alone (λ1 =3; λ3 =0). Mdmx depletion (λ1 =0; λ3 =0). Before (mean=1.30; sd=0.11) and after MdmX 

depletion (mean=1.32; sd=0.22).


K) Simulations of the distribution of Mdm2/p53 before (black) and after (red) Mdmx depletion, taking into 

account both λ1 and λ3 (λ1 =3; λ3 =0.15). Mdmx depletion (λ1 =0; λ3 =0). Before (mean=1.11; sd=0.09) and 
after MdmX depletion (mean=1.32; sd=0.22).


L) Amplitude of the initial pulse for distinct combinations of λ1 and λ3. λ3 values for balck, blue, red and yel-

low dots respectively: (0; 0.25; 0.5; 0.75).


M) 100 simulations of p53 dynamics with Langevin noise before and after Mdmx depletion. We used λ1 = 3, 

λ2 = 0, λ3 = 0.15, λ4 = 0. The yellow line represents the deterministic trajectory.









Figure  3 
A) Schematics of the p53-Mdm2 system with regulation by Mdmx and ATR. ATR inhibits Mdm2-mediated 
p53 degradation through two impact factors (κ1 or κ2)


B, D) p53 dynamics before and after UV-radiation with ATR effects through  B) κ1 or D) κ2.  

C, E) p53 dynamics with Mdmx depletion followed by UV-radiation when considering ATR effects through C) 
κ1 or E) κ2.  


B-E)  Before UV, κ1 and κ2 are set to zero. After UV, κ1 values for blue, red and yellow curves respectively: 

(0.1; 0.25; 1) and κ2 values for blue, red and yellow curves respectively: (0.01; 0.025; 0.1). 

F) Slope of the p53 initial pulse with increasing UV dose.


G) Amplitude of the p53 initial pulse with increasing UV dose.


H) Amplitude of the p53 sustained oscillations after the initial pulse for different levels of κ2, blue, red and 

yellow curves respectively: (0.01; 0.025; 0.1) and κ1 fixed (1). 









Figure  4 
A-B) Four representative single-cell time series of p53 dynamics (before treatment (white region), initial re-
sponse (grey region) and long-term response (yellow region) following UV-radiation (8 and 16 J/m2 respecti-

vely). The bottom two panels show prior Mdmx depletion. 


C-D) Mean p53 dynamics trajectories (bold lines) ± std deviation (shaded areas) before and after UV-radia-

tion  radiation (8 and 16 J/m2 respectively). Red traces corresponds to p53 under UV only. Blue traces show 

p53 dynamics with prior Mdmx depletion followed by UV. 


E-F) Slope (E) and amplitude (F) of the p53 initial pulse after UV-radiation (8 J/m2) without (red) and with 

Mdmx depletion (blue).


G-H) Slope (G) and amplitude (H) of the p53 initial pulse after UV-radiation (16 J/m2) without (red) and with 

Mdmx depletion (blue).


I-J) Fourier spectrum of the sustained oscillatory phase (I, J) after UV-radiation (8 and 16 J/m2 respectively). 

K-L) Distribution of amplitudes of the p53 oscillations (K, L) following UV-radiation (8 and 16 J/m2 respecti-

vely). 
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