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“There is a theory which states
that if ever anyone discovers
exactly what the Universe is for
and why it is here, it will
instantly disappear and be
replaced by something even
more bizarre and inexplicable.
There is another theory which
states that this has already
happened."

— Douglas Adams, The
Restaurant at the End of the

Universe





Abstract

Anisotropies found in the final state of heavy ion collisions carry a
plethora of information on the creation, expansion and decoupling of
the quark-gluon plasma. From the types of fluctuations present in initial
conditions, to how jets interact with the medium, to quantum correla-
tions between pairs of identical particles. At the same time, there is an
overabundance of studies in azimuthal anisotropies in comparison to
longitudinal ones.

This work proposes an analysis of correlations between particle pairs
projected on a sphere. In other words, the objective lies in estimating an
angular power spectrum of heavy ions. The data set at hand pertains to
Pb-Pb collisions at

√
sNN = 2.76 TeV measured by ALICE. Moreover, the

selected events belong to the following phase space: |η| < 0.9, 0 ≥ φ < 2π
and 0.15 < pT < 100 GeV.

The method for power spectrum estimation is developed under
three main considerations: limited pseudorapidity coverage, typical
event multiplicity and detector efficiency. The results are first tested on
toy Monte Carlo simulations and later applied to heavy ion data. These
are shown for five different centralities, ranging from 0-5% to 30-40%.
Then, flow harmonics are extracted and compared to other methods
of calculation. At last, spectra are computed for separate transverse
momentum intervals pT < 0.54 GeV and pT > 0.54 GeV, with each
exerting dominance at distinct scales.
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Dansk Resumé

Anisotropier fra den endelige tilstand af tunge ionkollisioner bærer
en overflod af information om dannelsen, udvidelsen og afkoblingen af
kvark-gluon-plasmaet. Fra de typer af udsving, der forekommer un-
der indledende forhold, til hvordan stråler interagerer med mediet, til
kvantekorrelationer mellem par af identiske partikler. Samtidig er der
en overvægt af undersøgelser i azimutale anisotropier i sammenligning
med langsgående.

Dette arbejde foreslår en analyse af korrelationer mellem partikelpar
projiceret på en kugle. Det vil sige, målet er estimere et vinkel effektspek-
trum af tunge ioner. Datasættet ved hånden vedrører Pb-Pb-kollisioner
ved
√
sNN = 2.76 TeV målt af ALICE. Ydermere de valgte hændelser føl-

gende faserum: |η| < 0.9, 0 ≥ φ < 2π og 0.15 < pT < 100 GeV.
Metoden til effektspektrum estimering er udviklet under tre hov-

edhensyn: begrænset pseudorapiditets dækning, typisk begivenheds-
multiplicitet og detektor effektivitet. Resultaterne testes først på legetøj
Monte Carlo simuleringer og anvendes senere på tung ion data. Disse
vises for fem forskellige centraliteter, lige fra 0-5% til 30-40%. Derefter
udvindes flow koefficienter og sammenlignes med andre beregningsme-
toder. Til sidst beregnes spektre for separate tværgående momentinter-
valler pT < 0.54 GeV og pT > 0.54 GeV, med hver udøvende dominans
på forskellige skalaer.
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1Introduction

“Our whole universe was in a
hot dense state..."

— Barenaked Ladies, Big
Bang Theory Theme

In the universe timeline, the soup of elementary particles is placed
right after inflation, a theory of rapid space-time expansion. Ordinary
matter was then trapped in gravitational wells, its outwards driven
pressure in a tug-of-war with the compressing dark matter. As the
universe cooled and expanded, fundamental particles clumped to each
other, forming ever increasing complex matter. The first atoms bound
the electrons, ceasing their interaction with photons and allowing
the latter to freely stream. These carried an imprint of the surface
of last scattering, whose features became anisotropies in the Cosmic
Microwave Background (CMB), first discovered by radio astronomers
in 1964 [1].

The very early stage of the particle soup was denoted quark epoch,
since the universe was hot and dense enough for quarks to roam free.
Otherwise, they would be confined into hadrons, quark-composites such
as protons and neutrons, which would later combine into nuclei. Quarks
are bound together by gluons, the mediator of the strong force. They are



1. INTRODUCTION

carriers of color charge and the theory describing their interactions is,
accordingly, the Quantum Chromodynamics (QCD).

The quark soup was produced in 2005 [2–5] through collisions of
gold nuclei Au-Au at center-of-mass energy

√
sNN = 200 GeV per nu-

cleon pair. This experiment was performed inside the Relativistic Heavy
Ion Collider (RHIC). When pairs of quarks and gluons collide directly,
sprays of hadronic and gluon matter may scatter back-to-back, the so
called jets. Nevertheless, it was observed in RHIC that one of these jets
was weaker or completely extinguished, a phenomenon denoted as jet
quenching. They were absorbed by the medium created in the collision,
the quark-gluon plasma (QGP).

Presently, the QGP is also produced and studied in the Large Hadron
Collider (LHC). Lead nuclei Pb-Pb are accelerated to energies of

√
sNN =

5.02 TeV and
√
sNN = 2.76 TeV (before year 2013). The QGP acquires

its name due to its reigning degrees of freedom. After its creation, the
plasma expands and cools, much akin to the early universe, until quarks
and gluons recombine into hadrons. These still interact and then freely
stream, finally reaching the detectors. When nuclei collide peripherally,
they form an initial almond-like shape. This peculiar structure can be
observed in the final particle distribution [6–8], suggesting that the QGP
behaves collectively, i.e., it is a liquid.

The CMB photons were part of a plasma containing nuclei and elec-
trons. Meanwhile, hadrons observed in the LHC arise from a plasma of
quarks and gluons. For the first, gravity had a role of pressuring mat-
ter into wells, their pressure interplay etching structures on the scattered
photons. For heavy ions, pressure gradients along and transverse to the
collision axis drive the collective QGP expansion, thus carrying imprints
of the initial configuration into the emitted hadrons. For the CMB, the
angular power spectrum is the tool that quantifies the primordial geome-
tries, thus providing constraints to cosmological parameters, e.g., dark
matter and dark energy densities, the universe curvature, and the Hub-
ble constant. For the QGP, anisotropies on the transverse direction have
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provided information on the equation of state and transport properties
of the plasma, like its viscosity.

Inspired by the production of primordial quark-gluon soup in labs,
this work proposes another perspective on the geometries of final state
heavy ion collisions: estimating its angular power spectrum. As the
name itself implies, the latter quantifies correlations between angular-
coordinate pairs, thus providing a new window into the final particle
distributions. The analysis is done for A Large Ion Collider Experiment
(ALICE) open data [9, 10] of Pb-Pb collisions at

√
sNN = 2.76 TeV. Fol-

lowing up, the structure of this thesis is laid out.
In Ch. 2 a brief overview on heavy ion collisions is presented: from

the initial conditions, to the QGP and its hydrodynamic expansion, until
its transition into hadrons and final scattering of particles (Sec. 2.1).
Afterwards, the focus lies on the calculation and measurements of
anisotropies on the plane transverse to the collision. These are discussed
as they change from central to peripheral collisions, in addition to
their dependence on transverse momentum. At last, anisotropies along
the longitudinal direction are tackled, with a briefing on two-particle
angular correlations (Sec. 2.2).

In Ch. 3 the concept of a power spectrum is introduced. First, it is
presented in the 1-D case from a Fourier expansion. A few simple exam-
ples illustrate how it quantifies frequencies in a given signal (Sec. 3.1).
Then, complexity increases as we move on to functions defined on a
sphere. These are expanded in spherical harmonics, from which the an-
gular power spectrum can be calculated (Sec. 3.2). The CMB is succinctly
described alongside its temperature map and angular power spectrum.
The latter’s main features are synthesized within the current cosmologi-
cal paradigm (Sec. 3.3).

In Ch. 4 the data set, software and analysis method are discussed.
It begins with a short introduction on the main ALICE detectors used
in the event selection, culminating on the data phase space (Sec. 4.1).
Afterwards, we present the software that maps particles distributions

3
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on a sphere and computes their power spectra (Sec. 4.2). Lastly, the
method used to estimate the data spectrum is fully delineated using
examples from toy Monte Carlo simulations. Effects of detector accep-
tance (Sec. 4.3.1) and efficiency (Sec. 4.3.3) are tackled as well as an issue
caused by the typical number of particles per event (Sec. 4.3.2). Finally,
the method is applied for distinct pixel resolutions and the choice made
on this work is justified (Sec. 4.3.4).

In Ch. 5 the data itself is at last put under the analysis developed
in the previous chapter. First, the beam position of the nuclei collision
is considered, since uncovered regions may give rise to artificial spec-
tral structures (Sec. 5.1). Secondly, the aforementioned method is used
to estimate the angular power spectrum of heavy ions; results are dis-
played from central to peripheral collisions (Sec. 5.2). Then, the spec-
trum is translated into known experimental observables for MC simu-
lations and ALICE data and compared to other calculations (Sec. 5.3).
Lastly, the power spectrum is evaluated for two transverse momentum
intervals (Sec. 5.4).

The highlights of this study are summed up in Ch. 6. Furthermore,
this thesis is the mid-point between the following works:

1. Machado, M., Damgaard, P. H., Gaardhøje, J. J. & Bourjau, C.
Angular power spectrum of heavy ion collisions.
Phys. Rev. C 99, 054910 (5 May 2019)

2. Machado, M.
Heavy ion anisotropies: a closer look at the angular power spec-
trum.
To be submitted in June 2019.
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2On Heavy Ions and Geometry

“The most exciting phrase to
hear in science, the one that
heralds new discoveries, is not
’Eureka!’ but ’That’s funny...’"

— Isaac Asimov

The lab-created quark-gluon plasma plays a fundamental role not only
in the study of QCD matter, but in understanding the state of the uni-
verse post-inflation. In this chapter, we begin with a qualitative descrip-
tion of the QGP formation from heavy ion collisions, how it evolves, and
what sort of signature its products leave in a detector. Subsequently,
we present the idea of studying the final azimuthal particle distribution
through Fourier decomposition and how that aids in probing properties
of the QGP itself.

2.1 Overview of the collision

Nuclei accelerated to relativistic energies appear as Lorentz con-
tracted discs in the center-of-mass (lab) frame. From their collision to
the resulting hadron distribution, the participating nucleons undergo
three main stages: the initial overlap and very first field interactions,
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the quark-gluon phase ruled by hydrodynamics, and the hadronization,
where last scatterings and free streaming take place.

2.1.1 Initial conditions
The number of nucleons participating in the formation of a QGP and

its subsequent evolution depends on the distance between the incoming
nuclei, as seen in Fig. 2.1. The impact parameter b is the vector denoting
the offset of the nuclei’s centers perpendicular to their movement. Small
|b| values indicate head-on or central collisions, while large values de-
scribe non-central or peripheral collisions. Assuming that the number of
particles, or multiplicity, changes monotonically with b, the former can
be used to determine the collision centrality [11].

Figure 2.1: Longitudinal view of a heavy ion collision. Image from [11].

The impact parameter also influences the overall geometry of the ini-
tial overlapping region of the incoming nuclei, as shown in Fig. 2.2. The
beam axis, represented by z, and b define the reaction plane ΨR. Cen-
tral collisions yield an approximately circular shape and, as the nuclei
collide more peripherally, said shape becomes more almond-like. Addi-
tionally, since nuclei are composited of individual nucleons, each colli-
sion exhibits a degree of lumpiness driven by nucleon interactions [12].
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2.1. Overview of the collision

The combination of these factors results in a primordial stage anisotropy
which will be imprinted in the final particle distribution, a subject ex-
plored throughout this thesis.

Figure 2.2: Heavy ion collision on the transverse plane. Image from [13].

The understanding of the early stage regime and its physics is still an
ongoing discussion, with distinct ideas and interpretations being con-
stantly tested and improved on, for a review see [14]. A currently ac-
cepted theoretical framework relies on the following statement: as a
hadron accelerates, its energy increases and so does the gluon density
and apparent pairs of quarks and anti-quarks (qq̄) inside it. Then, when
the number of gluons surpasses that of other particle species, a hadron
is said to saturate and it is called Color Glass Condensate (CGC) [15].
The term color stands for the charge associated with QCD interactions.
Glass represents a disordered system which acts like a solid on short time
scales while behaving like a liquid on long time scales, in analogy to ac-
tual glasses. Lastly, condensate indicates the high gluon density satura-
tion itself [15]. The transformation from a proton to CGC at relativistic
energies is represented on the left of Fig. 2.3.

As two CGC discs collide, their transverse field configurations
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Figure 2.3: Left: CGC formation, image from [16]. Right: Glasma in
early stages of hadronic collisions, image from [17].

change into longitudinal color electric and magnetic fields, which fill the
medium between the receding colored glass sheets, as depicted on the
right of Fig. 2.3. This resulting pre-QGP state is denoted Glasma [18–22]
and it gradually decays into qq̄ pairs and gluons. The name itself is a
contraction of "glass" from Color Glass Condensate and "plasma" from
quark-gluon plasma, a direct reference to its role as an intermediate
phase.

Driven by the collision’s kinetic energy and pressure, matter from
the immediate aftermath expands both in the longitudinal direction and
along the transverse plane. At this stage, interactions are mostly "soft",
i.e., with momentum transfers in the order of GeV: fields exchange color
charge and qq̄ pairs and gluons are created from the energy deposited in
the medium.

Due to the collective expansion of the medium, the initial quark-
gluon configuration and its dynamics are carried on through the whole
system’s evolution, resulting in correlations within the final particle dis-
tribution. The latter’s description on the transverse plane has been thor-
oughly studied, for a review see [12, 23, 24]. However, to form the
full picture of heavy ion collisions, one must understand its dynam-
ics in all four space-time coordinates. Hence the necessity to compute
longitudinal-dependent fluctuations and put initial condition models to

8



2.1. Overview of the collision

the test.

2.1.2 Hydrodynamization and QGP phase
As the name itself suggests, the quark-gluon plasma is a state of mat-

ter whose degrees of freedom are quarks and gluons. The energy density
of the system surpasses that of hadrons, thus leaving the aforementioned
particles deconfined, yet strongly coupled to their neighbors [12]. While
the colliding nuclei recede from each other, QGP is forming and expand-
ing in the space between them.

Figure 2.4: Red spheres indicate the QGP, while gray and blue ones are
hadrons. Image adapted from [12].

A stage of QGP production is depicted in Fig. 2.4, where the plasma
itself is represented in red. Hadrons resulting from the former’s cool-
ing are in blue and gray. Different phases of this expansion are asso-
ciated with momentum rapidity y coordinates. This quantity relates to
the Lorentz factor γ = 1/

√
1− v2z through cosh(y) ≡ γ , with vz the veloc-

ity along beam direction. Note how the hottest regions (red) in Fig. 2.4
are concentrated at high y. The receding nuclei are gradually losing en-

9



2. ON HEAVY IONS AND GEOMETRY

ergy as quarks and gluons separate from them. These particles move at
relativistic speeds, meaning that when they form QGP in their own ref-
erence frame, this process will be delayed in the lab frame due to time
dilation. Meanwhile, particles at mid-rapidity will be already combin-
ing into hadrons. Altogether, quarks and gluons at distinct rapidities
produce QGP at different times in the center of mass frame [12].

A generalized formulation of relativistic hydrodynamics takes it as
an effective theory for low-energy degrees of freedom (first terms of
gradient expansion) consistent with the basic symmetries of the sys-
tem [25]. In the simplest scenario, there should be energy-momentum
conservation, which in turn leads to hydrodynamic equations of motion
∂µT

µν = 0 with stress tensor T µν given by

T µν = εuµuν − (p+Π)∆µν +πµν , (2.1)

for energy density ε, flow velocity uµ and pressure p. The projection
tensor ∆µν = gµν − uµuν defines the covariant form of the gradient, ∇µ ≡
∆µν∂ν , while πµν and Π are shear and bulk viscous corrections to the
tensor, respectively. Their expressions are

πµν = ησµν +O(∇2), Π = −ζ∇µuµ +O(∇2), (2.2)

to first order approximation in the gradient expansion, with η and ζ
the shear and bulk viscosity coefficients. Lastly, σµν = ∇µuν + ∇νuµ −
2/3∆µν∇αuα.

The hydrodynamic variables of pressure and viscous coefficients de-
pend on energy density according to an equation of state obtained from
QCD calculations on the lattice [26]. Viscosity dissipates anisotropies, as
larger η facilitate momentum exchange between distant fluid elements,
while ζ determines the liquid’s resistance to expansion or compression.
Furthermore, the QGP has a low shear viscosity to entropy ratio η/s ∼
O(1/4π) [27], a value consistent with the theoretical expectation for a

10



2.1. Overview of the collision

strongly coupled plasma [28]. The effects of bulk viscosity may become
apparent when quark-gluon matter combines into hadrons [12, 29].

Hydrodynamization pertains to the stage where the medium can be
treated as a low-viscosity liquid. Spatial anisotropies generate pressure
gradients and the fluid expands faster along larger differences in pres-
sure. Therefore, hydrodynamics converts spatial anisotropies into mo-
mentum ones [12]. This is the standing paradigm of heavy ion collisions:
the initial spatial anisotropies are found to evolve collectively and leave
their imprint on the final charged particle distribution, thus making the
QGP a strongly coupled system [30, 31].

2.1.3 Freeze out
The fluid cools and expands, its energy density dropping below that

typical of a hadron (∼ 500 MeV/fm3) [12], finally resulting in quarks and
gluons recombining. This shift in degrees of freedom occurs smoothly,
i.e., the phase transition between a plasma of quarks and gluons and
a hadron gas is of crossover type [32], shown in Fig. 2.5. The gradual
formation of said hadron stage can be seen simplified in Fig. 2.4.

After the process of hadronization is complete, the system reaches
chemical freeze out: hadrons cease to scatter inelastically, thus establish-
ing the species of particles produced. At this point the latter exchange
solely kinetic energy between them [12]. Subsequently, elastic scatter-
ings also stop, determining the momentum spectrum of the resulting
particles; this is referred to as kinetic freeze out. Lastly, these particles
stream freely, finally reaching the detectors. Different species may have
distinct chemical and kinetic freeze out temperatures. Further, hadronic
scattering during this last phase may have significant contribution to the
final stage geometry, due to momentum conservation.

Finally, we make a brief remark on particle interactions involving mo-
mentum transfers of order greater than tens of GeV. Albeit rare, these
hard collisions can produce heavy quarks, high transverse momentum

11



2. ON HEAVY IONS AND GEOMETRY

Figure 2.5: Normalized pressure, energy density, and entropy density as
functions of temperature. Thin lines are predictions of the Hadron Res-
onance Gas (HRG) model. Crossover region represented by Tc. Image
adapted from [33].

hadrons, and two collimated hadron sprays with ∆φ ≈ π azimuthal sep-
aration, commonly denoted as jets. All of these products must cross a
region where QGP is still forming and evolving, thus making them re-
tain information on the medium.

The space-time diagram of relativistic heavy ion collisions is depicted
in Fig. 2.6. It illustrates the different stages discussed in this section: from
the nuclei colliding that shape the initial overall geometry (A,B), to the
deconfinement of quarks and gluons into Glasma (gray) and its subse-
quent QGP formation and collective expansion (red), to the crossover
(orange) into a hadron gas (dark blue), and finally the surface of last
scattering (light blue). Experimentally, the resulting particle distribution
is the only window to the study of the aforementioned phases and their

12
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Figure 2.6: Time evolution of a heavy ion collision with each of its stages
separated by hyperboles. A and B interact at z = 0. Image from [34].

underling dynamics. Hence the focus on quantifying the final state ge-
ometry from this point onward.

2.2 Azimuthal anisotropies

The coordinates of hadrons emitted from heavy ion collisions can
be represented in terms of pseudorapidity η, azimuthal angle φ and
transverse momentum pT . The first is a spatial quantity defined as η ≡
− ln[tan(θ/2)], where θ is the particle’s polar angle with respect to the
beam axis. Also, pT ≡ |p|sinθ, with p the particle’s three-momentum.

13



2. ON HEAVY IONS AND GEOMETRY

Alternatively, η can be written as a function of p and longitudinal mo-
mentum pL through the expression η = tanh−1(pL/ |p|) and, in the limit
of negligible particle mass m � |p|, it is approximately equal to rapid-
ity, η ≈ y. It should be remarked that η will represent pseudorapidity
throughout the rest of this thesis, while shear viscosity is denoted as η/s,
its specific value.

The final particle distribution is given in terms of the aforementioned
coordinates (η,φ,pT ). Its azimuthal part may be expanded in a Fourier
series [35, 36]:

dN
dφ
∝ 1+2

∞∑
n=1

vn cos[n(φ−Ψn)], (2.3)

where N is the number of produced particles, vn are denoted flow coeffi-
cients and Ψn are their corresponding symmetry planes, i.e., the overall
orientation of the nth moment. For n = 1,2,3,4 vn can be referred to as
directed, elliptic, triangular, and quadrangular flow, respectively. Their
values quantify the final state anisotropies, which in turn "flowed" from
their origins in the nuclei collision itself, hence the nomenclature. The
Fourier decomposition will be further discussed in Ch. 3 within a differ-
ent context.

Using the orthogonality of trigonometric functions, it is straightfor-
ward to see that vn = 〈cos[n(φ −Ψn)]〉, i.e., the expected value of cosine
averaged over all emitted particles in a single event. There are various
methods to compute integrated vn [13, 36–42], though the focus of this
section lies on their calculation through multi-particle correlations [40,
41] using the Q-cumulants method [13, 42].

Due to even symmetry with respect to Ψn, 〈sin[n(φ−Ψn)]〉 = 0 and the
flow coefficients can be rewritten as vn = 〈ein(φ−Ψn)〉. Though the symme-
try plane orientation Ψn cannot be directly accessed experimentally, it is
possible to measure the emitted particles’ relative azimuthal angles. As
a consequence, the flow analysis may rely, for instance, on the calcula-
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2.2. Azimuthal anisotropies

tion of two-particle azimuthal correlations 〈ein(φ1−φ2)〉. The latter is the
average over all relative azimuthal angles of a single event.

The relation between two-particle correlations and vn is quite
straightforward under the assumption of factorization:

〈ein(φ1−Ψn) · e−in(φ2−Ψn)〉 = 〈ein(φ1−Ψn)〉 · 〈e−in(φ2−Ψn)〉 = v2n , (2.4)

which states that azimuthal correlations between two particles come
solely from their correlation with the symmetry plane. However, jets,
resonance decays, and quantum fluctuations are all sources of correla-
tions unrelated to initial overlap geometry. These are also referred to
as non-flow and they modify Eq. (2.4): 〈ein(φ1−φ2)〉 = v2n + δn, with δn the
non-flow contribution.

Computing azimuthal anisotropies using multi-particle correlations
suppresses non-flow effects [13, 40–42]. Nevertheless, for the sake of this
thesis’ core analysis and simplicity, only the two-particle function will
be explicitly calculated. It should also be remarked that higher order
correlations depend on the latter.

For a single event with final multiplicity M and measured particle
azimuthal angles φ1, · · · ,φM , the search for anisotropies in the φ distri-
bution begins with introducing the Q-vector [13, 40],

Qn ≡
M∑
j=1

einφj , (2.5)

with φj the azimuthal angle of the jth particle. This global quantity is
rather useful on the calculation of both two- and multi-particle correla-
tions, due to the need of going over all possible multiplets. Accordingly,
the single-event average two-particle correlation 〈2〉 follows the expres-
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sion [13]:

〈2〉 ≡ 〈ein(φ1−φ2)〉 ≡ (M − 2)!
M!

M∑
i,j

ein(φi−φj ). (2.6)

Note that |Qn|2 involves diagonal terms equal to the total event multi-
plicity and off-diagonal ones proportional to the two-particle correlation
function. As a result 〈2〉 can be written in terms of the Q-vector’s abso-
lute value squared:

〈2〉 = |Qn|
2 −M

M(M − 1)
. (2.7)

After averaging over all particles of a single event, it is now possible to
compute the averaged two-point correlation function over the whole
event ensemble 〈〈2〉〉. Explicitly, it consists of the weighted average
of 〈2〉, where each event weight is chosen according to its multiplicity
W〈2〉 ≡M(M − 1).

The average two-particle correlation is the second order cumulant,
cn{2} = 〈〈2〉〉 [41]. It provides an estimation for the nth harmonic through
the expression

vn{2} =
√
cn{2}. (2.8)

Higher order cumulants and the above calculation for detectors with
non-uniform acceptance are detailed in [13, 42]. The concept of corre-
lations will be revisited and further explored in the next chapter.

In general, both flow coefficients vn and symmetry planes Ψn in
Eq. (2.3) can be functions of pseudorapidity and transverse momentum.
Following up, we firstly present the centrality dependence of Pb-Pb
collision measurements of vn integrated over η and pT . Then, vn as a
function of pT and η are discussed. These last two are also denoted
differential flow.
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2.2.1 Centrality dependence
The overlap region of colliding nuclei has a transverse geometry that

depends on the impact parameter vector, as seen in Fig. 2.2. If the initial
spatial distribution was smooth, the reaction plane would coincide with
the symmetry plane ΨR = Ψn and odd harmonics would vanish. How-
ever, the positions of participating nucleons generate a spatial asym-
metry which changes event-by-event, thus falsifying the previous state-
ment.

Figure 2.7: Representation of elliptic (left) and triangular (right) az-
imuthal anisotropies. Participant nucleons indicated in pink. Image
from [43, 44].

The initial ellipsoidal shape propagates hydrodynamically to the fi-
nal state and causes v2 to be the dominant flow coefficient. In Fig. 2.7
(left), an example of pure elliptic anisotropy is displayed with orienta-
tion Ψ2 relative to the reaction plane. Higher harmonics are associated
with the collective expansion of fluctuations on the initial energy den-
sity: from Fig. 2.7 (right), the ellipse is now distorted due the interactions
between nucleons, the interacting region has a triangular shape quanti-
fied by the sum of harmonics v2 and v3. The increase in deformation will
cause flow harmonics with higher n to be non-zero.

As previously mentioned methods of two- and multi-particle corre-
lations can be employed to calculate flow harmonics. For the latter, non-
flow contributions are negligible [46] whereas for the former, it is nec-
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2. ON HEAVY IONS AND GEOMETRY

Figure 2.8: Integrated flow coefficients as a function of centrality for
collision energies 2.76 TeV and 5.02 TeV. Image from [45], results by the
ALICE Collaboration.

essary to suppress their effects. Reason being the plethora two-particle
correlation sources. In order to extract solely the global elliptic geome-
try, a pseudorapidity gap between particle pairs is required [45]. Each
event is split into two sides with a minimum separation |∆η| between
them. Their respective Q-vectors, Qn,A and Qn,B, are then calculated and
the single-event two-particle correlation becomes [47]:

〈2〉 =
Qn,AQ

∗
n,B

MAMB
, (2.9)

withMA andMB the respective multiplicities of sub-events A and B. The
event weight is given by W〈2〉 = MAMB. The estimation of vn then pro-
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ceeds through Eq. (2.8).

The vn results in Fig. 2.8 were obtained through two-particle corre-
lations with a pseudorapidity gap of |∆η| > 1 and multi-particle correla-
tions. The first is denoted as vn{2, |∆η| > 1} and the latter as vn{4}, vn{6}
and vn{8}. Measurements of harmonic flow coefficients v2,v3,v4 as func-
tions of event centrality are depicted in Fig. 2.8 (a) for Pb-Pb collisions
at center-of-mass energies

√
sNN = 5.02 TeV and 2.76 TeV. Pseudorapid-

ity is limited within |η| < 0.8 and vn were integrated over the pT range
0.2 < pT < 5.0 GeV. The ratios of vn between higher and lower energies
are shown in Fig. 2.8 (b-c).

The dominance of v2 over the other coefficients is clearly visible in
Fig. 2.8 (a). Also, it increases from central to peripheral centralities,
reaching its maximum value for the 40-50% most central collisions. This
behavior of v2 reflects its relation to the initial almond shape seen in
Figs. 2.2 and 2.7. Higher harmonics, on the other hand, have relatively
less centrality dependence. Lastly, the difference in v2 calculated with
two- and multi-particle correlations should be due to elliptic flow fluc-
tuations [45].

Given an initial anisotropy configuration, hydrodynamics is respon-
sible for etching its shape into the final particle distribution. At the
same time, the equations of motion depend on transport coefficients,
i.e., viscosity. If η/s = 0 the primordial global geometry remains intact
and vn values are driven up. In the opposite scenario, the anisotropies
are dampened down and vn decreases. Therefore, flow measurements
provide constraints on the η/s parameter. For this reason, predictions
from a hydrodynamic model [48] are compared to the vn measurements
in Fig. 2.8 (a), thus quantifying the collective evolution of initial condi-
tion fluctuations. Another model [49] is displayed in Fig. 2.8 (b-c) and it
makes use of both constant and temperature dependent viscosities η/s.
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2.2.2 Transverse momentum
Differential flow, i.e., vn for a given type of particle as a function of

pT and η, requires a slightly more distinct formalism than the one pre-
sented in the beginning of this section. The reason being lower statistical
sample size due to the reduced phase space. A brief description of said
calculation follows.

Figure 2.9: Differential flow as a function of transverse momentum for
collision energies 2.76 TeV and 5.02 TeV as well as centrality classes 0-
5% and 30-40%. Image from [45], results by the ALICE Collaboration.

The analysis for vn(pT ) is done in two main steps. Firstly, reference
particles are chosen1 and their nth harmonic calculated using Eqs. (2.7,

1Those may comprise the whole event sample.
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2.8). Secondly, the particles of interest are defined, namely the ones
whose differential flow is to be computed. Analogously to the sub-
events with an η gap, the two-point correlation is calculated between
pairs comprising particles of interest and reference particles. The differ-
ential flow is thus given by the ratio between this their event ensemble
weighted average and vn of the reference particles [13, 41]. This can be
extended to multi-particle correlations.

The method of differential flow for the two-particle cumulant was
employed in Fig. 2.9 with a pseudorapidity gap of |∆η| > 1 for harmon-
ics with n = 2,3,4. Results are shown for the 0-5% and 30-40% centrali-
ties and center-of-mass energies per nucleon 5.02 TeV and 2.76 TeV. The
overall trend is the increase of vn with transverse momentum: it implies
that particles emitted with higher pT transferred hardly any of their mo-
mentum to the medium, thus retaining their initial geometry. So mea-
surements of vn(pT ) are sensitive to initial conditions.

In regards to shear viscosity, vn(pT ) would only increase with pT for
η/s = 0. Nevertheless, in Fig. 2.9 they seem to decrease or stay con-
stant after a certain pT value, indicating the presence of viscosity in the
medium. At last, they could also provide information on other evolution
stages, such as freeze-out, since the latter influences the final momentum
configuration.

2.2.3 Pseudorapidity
The calculation of η-differential flow depicted in Fig. 2.10 relies on

the scalar product method [50, 51]. It computes the particles correlation
with a global frame, i.e., the event plane Ψn which are represented by Q-
vectors. The region of interest (ROI) is defined by the chosen η-range
ηROI , while the reference region should have a pseudorapidity value
with a sufficiently large η gap relative to the particles of interest. Again
particle pairs from distinct intervals in the phase space are correlated to
each other.
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2. ON HEAVY IONS AND GEOMETRY

Figure 2.10: Flow coefficients v2 and v3 as a function of pseudorapidity
for different centralities, 55% to 67%. Images from [52], results by the
CMS Collaboration.

Results from the Compact Muon Solenoid (CMS) experiment shown
in Fig. 2.10 have two reference event planes denoted by HF+ and HF−,
which correspond to −5 < η < −3 and 3 < η < 5 intervals, respectively.
The pseudorapidity value ηC is a correction to the resolution of the ref-
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erence plane [52]. The ranges ofN offline
trk relate to centrality: higher values

mean more central collisions.
The values of vn for different choices of ηC diverge from each other for

both elliptic and triangular flow. Since the reference event plane should
approach the global one, this suggests a dependence of symmetry plane
Ψn on η, which might play a significant role in understanding vn(η) [52].
The Ψn(η) effect could be caused by fluctuations on the initial positions
of nucleons and their constituents, namely random positioning. Alter-
natively, it could arise from a torqued QGP in the longitudinal direc-
tion [53]. Although this matter is still under investigation [23], it sug-
gests that final state anisotropies could have non-trivial dependencies
on η.

Lastly, we present the two-particle angular correlation in relative
pseudorapidity ∆η and relative azimuthal angle ∆φ. Each of the
aforementioned sources of correlation leave an imprint on the (∆φ,∆η)
distribution.

Figure 2.11: Two-particle angular correlation, C(∆φ,∆η), for different
centralities at

√
sNN = 2.76 TeV collision energy; Lint is integrated lumi-

nosity. Image adapted from [54], results by the ATLAS Collaboration.

The two-particle correlation function C(∆φ,∆η) is a measurement of
particle pairs separated in azimuthal angle ∆φ = φa − φb and pseudo-
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rapidity ∆η = ηa − ηb. The labels a and b represent the particles which
constitute a pair. Explicitly, it is calculated through the average of pair
distributions over detector acceptance [54],

C(∆φ,∆η) =
S(∆φ,∆η)
B(∆φ,∆η)

, (2.10)

where

S(∆φ,∆η) =
∫
dφadηadφbdηbδab

d4N
dφadηadφbdηb

, (2.11)

B(∆φ,∆η) =
∫
dφadηadφbdηbδab

d2N
dφadηa

d2N
dφbdηb

, (2.12)

and δab stands for δ(φa −φb −∆φ)δ(ηa − ηb −∆η). Moreover, S(∆φ,∆η)
is composed of same-event pairs, while B(∆φ,∆η) has mixed-event
pairs. The A Toroidal LHC ApparatuS (ATLAS) experiment measures
C(∆φ,∆η) over its full azimuth and |η| < 2.5. Its result is depicted in
Fig. 2.11 for three centralities and particle pairs within 2 < pT < 3 GeV.

There are three remarkable features in the measurements on Fig. 2.11:
a peak in (∆φ,∆η) ≈ (0,0), a ridge-like structure around ∆φ ≈ 0 and, for
the more peripheral centralities, another ridge around ∆φ ≈ π, while a
nearly flat plateau for 0-5%. The first comes from short range correla-
tions, such as resonance decays, Hanbury Brown and Twiss (HBT) ef-
fects [55] and jet fragmentation [56]. As for the ridges, flow harmonics
are their main cause [57], though back-to-back jets also contribute to the
long range structure around ∆φ ≈ π [58].

In the field of heavy ions, azimuthal anisotropies have been care-
fully studied. Among others, they provide information on QGP vis-
cosity, freeze-out temperature, symmetry plane, and primordial fluctua-
tions. Additionally, distributions in (∆φ,∆η) have imprints from various
sources of correlations, including flow itself. However, the window to
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anisotropies in pseudorapidity is still much narrower than that to trans-
verse geometries. In light of this fact, the next chapter presents a way
of quantifying (θ,φ) pairs. Then, this alternate formalism is brought to
the analysis of particle distributions originating from nuclei collisions,
where pseudorapidity coordinates shall be changed to the polar angles
through θ = 2arctan(e−η).
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3On the Power Spectrum

“We are engaged in a poker
game with Nature where it calls
all the bluffs."

— Anonymous

Given a stochastic process, it is possible to probe its patterns and corre-
lation structures via a power spectral density, that is, the decomposing
of its defined signals into sinusoidal components [59, 60]. In this chap-
ter, we introduce the idea of a power spectrum for a 1-D function, de-
fined from the latter’s Fourier expansion. We then extend to functions
on a sphere, thus arriving at the definition of an angular power spec-
trum. Lastly, we present how the latter is used in cosmology to extract
information on the physics of the primordial universe.

3.1 The 1-D case

Consider an arbitrary continuous function f : x 7→ f (x) defined on
the interval [α,β], with 2L = β −α as its size. Given that sin(kπx/L) and
cos(kπx/L) are 2L periodic and form an orthogonal basis, f (x) may be
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expanded in a Fourier series:

f (x) =
1
2
a0 +

∞∑
k=1

ak cos
(
kπx
L

)
+
∞∑
k=1

bk sin
(
kπx
L

)
(3.1)

with coefficients

a0 =
1
L

∫ β

α
f (x)dx,

ak =
1
L

∫ β

α
f (x)cos

(
kπx
L

)
dx, (3.2)

bk =
1
L

∫ β

α
f (x)sin

(
kπx
L

)
.

Note that Eq. (3.1) is yet another way of writing Eq. (2.3).
A Fourier series also possess a complex form: using Euler’s relation

eix = cosx+ i sinx in Eq. (3.1) yields

f (x) =
∞∑

k=−∞
cke

ikπx/L, (3.3)

where ck ∈C is given by

ck =
1
2L

∫ β

α
f (x)e−ikπx/Ldx. (3.4)

The latter defines the Power Spectrum P (k) ≡ |ck |2, a quantity that de-
scribes the amplitude of a signal, represented here by f (x), as a func-
tion of its frequency k; signal refers to information about the behavior
of a system [61]. Alternatively, one may say that the power spectrum
indicates the presence of patterns in f (x).

A signal of constant frequency may be represented by the function
f (x) = sin(4x). Note how its power spectrum on the right of Fig. 3.1
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show a non-trivial value only at k = 4, indicating the only sinusoidal
function that contributes to describing sin(4x). Unsurprisingly, the sig-
nal represented by sin(x) + 3/2 · cos(9x) has an associated P (k) with non-
trivial k = 1 and k = 9 modes. The latter is higher valued due to the
amplitude associated with its frequency. Lastly, we give an example of a
function not composed by sines and cosines, f (x) = x3 · e−x2 : as its shape
closely resembles that of sinx, its power spectrum peaks at k = 1 while it
dampens on higher frequencies. All functions were taken in the interval
[−π,π] for simplicity.

Figure 3.1: Examples of signals with function f (x) and their respective
power spectra P (k).
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The simple examples given above were but an introduction to what
a power spectrum entails. In real life situations, signals can be buried in
noise, as an unwanted disturbance, hence P (k) being a useful tool in the
identification of patterns and extraction of information. It can be used,
for instance, to describe characteristics of musical instruments, of light
sources and even of earthquakes [62].

In the limit as L → ∞, the complex Fourier series presented above
generalizes to the Fourier transform. Let k/L → ν and substitute the
discrete ck coefficients by F(ω), then Eqs. (3.3) and (3.4) become:

f (x) =
∫ ∞
−∞
F(ν)ei2πνxdν, (3.5)

F(ν) =
∫ ∞
−∞
f (x)e−i2πνxdx, (3.6)

called inverse and forward Fourier transforms, respectively. The latter
can also be denoted F(ν) = F [f (x)](ν).

Analogously to P (k) = |ck |2, we define the power spectrum in this new
scenario as P (ν) ≡ |F(ν)|2. Explicitly,

|F(ν)|2 = F(ν)F(ν) =
∫ ∞
−∞

∫ ∞
−∞
f (x)f (x′)e−i2πν(x−x

′)dxdx′

x − x′→ u :

|F(ν)|2 =
∫ ∞
−∞

[∫ ∞
−∞
f (x)f (x −u)dx

]
e−i2πνudu = F [f ? f ](ν), (3.7)

where f ?f ≡
∫∞
−∞ f (x)f (x−u)dx is the autocorrelation function, a tool com-

monly used to study stochastic processes. In brief, its Fourier transform
is the power spectrum, or equivalently, the inverse Fourier transform of
the power spectrum is the autocorrelation. This statement is known as
the Wiener-Khinchin theorem [63].
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If we were to calculate the power spectra of the functions in Fig. 3.1
through Eq. (3.7), the result would have yielded continuous functions
like P (ν) ∝ (δ(ν − 4) + δ(ν +4)) in the case of f (x) = sin(4x), for example.
Overall, P (ν) is just the continuous case of P (k), as expected. It is worth
remarking that to calculate the autocorrelation function of sin(4x), the
latter is taken as zero outside of the interval [−π,π].

Fields of study such as astronomy, signal processing, statistics, have
different interpretations on the meaning of correlation. In broad terms,
it describes the relationship between variables of a system. When these
are represented by the same function evaluated in different points, the
measure of their connection is then called autocorrelation. For instance,
imagine that f (t) represents a sound changing with time t. Then f (t− t1)
is that same sound displaced by a time interval t1. After integrating their
product over all possible t, the result should indicate whether there is a
pattern in the signal or it is simply noise, i.e., random. Furthermore,
the Fourier transform of the resulting autocorrelation should reveal the
frequencies which compose said sound, if any.

3.2 The spherical case

Consider now an arbitrary function defined on the surface of a
sphere f : (θ,φ) 7→ f (θ,φ), with the polar coordinate θ ∈ [0,π] and
the azimuthal coordinate φ ∈ [0,2π]. Moreover, f (0,φ), f (π,φ) are
independent of φ and f (θ,0) = f (θ,2π). Analogously to the previous
case, f (θ,φ) can be expanded in a set of orthogonal functions denoted
spherical harmonics Y`m:

f (θ,φ) =
∞∑
`=0

∑̀
m=−`

a`mY`m(θ,φ), (3.8)
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where a`m are the complex coefficients of the expansion given by

a`m =
∫
Ω

f (θ,φ)Y ∗`m(θ,φ)dΩ. (3.9)

Additionally, m describes the angular orientation of a mode, while ` de-
termines its characteristic angular size [64]. One may refer to ` as the
multipole moment.

The spherical harmonics Y`m(θ,φ) are the angular part of the solution
to Laplace’s equation ∇2ψ = 0 in spherical coordinates. Their explicit
form is

Y`m(θ,φ) =

√
2` +1
4π

(` −m)!
(` +m)!

P`m(cosθ))e
imφ, (3.10)

with

P`m(cosθ) =
(−1)m

2``!
(sin2θ)m/2

d`+m

d(cosθ)`+m
(cos2θ − 1)` (3.11)

as the associated Legendre polynomials for m ≥ 0. The latter are defined
for m < 0 as P`−m(cosθ) = (−1)m[(` −m)!/(` +m)!] · P`m(cosθ).

It is worth noticing that the role occupied by wave functions in the
1-D case is taken by shapes like in Fig. 3.2, which depicts the real part of
spherical harmonics for ` = 0, · · · ,3 and m = 0, · · · ,3. The imaginary part
of harmonics with m = 0 is null, otherwise rotating the real Y`m coun-
terclockwise by π/(2m) will get their imaginary part. Similarly to the
Fourier case, a function f (θ,φ) defined on the sphere can be represented
by the superposition of the modes shown in Fig. 3.2 associated with their
respective coefficients a`m.

A straightforward way of picturing the geometry represented by `
and m is thinking of them as partitions through the sphere: while ` de-
termines the total number of sections,mwill indicate how many of those
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Figure 3.2: Real part of spherical harmonics.

should be across meridians (along θ coordinate); the remaining sections
cut the sphere through parallels (alongφ coordinate). For instance,m = 0
modes will have partitions only across parallels, with ` = 1 having one
division, ` = 2, two and so forth. Besides, each partition will alternate
between having a peak and a valley. Note in Fig. 3.2 how modes with
m = 0, as a consequence, have rotational symmetry around the poles.
Fig. 3.3 aids in visualizing the aforementioned partitions for some m in
the case where ` = 6.

In regards to functions decomposed in Fourier modes like Eq. (3.3),
it is possible to quantify their amplitude as it varies with frequency k
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Figure 3.3: Spherical harmonics as partitions through a sphere. Picture
from [65].

through P (k); previously seen in Fig. 3.1. Likewise, for f (θ,φ), one may
introduce the Angular Power Spectrum, C`, defined as

〈a`ma∗`′m′〉 = δ``′δmm′C`, (3.12)

or C` =
1

2` +1

∑̀
m=−`
|a`m|2, (3.13)

the variance of a`m coefficients for a given `. It is a function of multipole
moment, as opposed to the wave number k from the previous case.

The angular correlation function is the average product of f (θ,φ)
with itself sampled over all possible spatial points, or 〈f (θ,φ)f (θ′,φ′)〉.
Using Eqs. (3.8, 3.12) it can be explicitly written as
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〈f (θ,φ)f (θ′,φ′)〉 =
∑
`m

∑
`′m′

〈a`ma∗`′m′〉Y`m(θ,φ)Y
∗
`′m′ (θ

′,φ′)

=
∞∑
`=0

C`
∑̀
m=−`

Y`m(θ,φ)Y
∗
`m(θ

′,φ′)

=
1
4π

∞∑
`=0

(2` +1)C`P`(cosθ), (3.14)

where the relation
∑`
m=−` Y`m(θ,φ)Y

∗
`m(θ

′,φ′) = (2`+1)/(4π)P`(cosθ) was
employed, with P` as the Legendre polynomials. Furthermore, note how
the equation above is similar to the Fourier series in Eq. (3.1). Summing
up, the angular power spectrum describes the (θi ,φi) pair correlation in
Fourier space.

Throughout this work, the terms two-point or two-particle correla-
tion function will substitute autocorrelation, as they are more commonly
used in the field of heavy ion collisions.

3.3 A real life example

Signals originated from sources like sound waves and electric cir-
cuits may have their information extracted through Fourier decompo-
sition and the computation of P (k). However, in the study of higher di-
mensional structures like atomic orbitals or black holes, the expansion in
spherical harmonics has a bigger appeal. The quintessential example of
using such tools to analyze physical phenomena consists in the study of
the Cosmic Microwave Background radiation, or CMB for short. Being
the oldest picture of the universe at around 380,000 years old, it is com-
posed of photons that escaped recombination: as electrons were bound
to nuclei, forming the very first atoms, their interactions with photons
became rarer, allowing them to stream freely.
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Ever since its discovery in the early 1960s [1], the CMB has been
measured more and more accurately by missions such as the Cosmic
Background Explorer (COBE) satellite [66], the Wilkinson Microwave
Anisotropy Probe (WMAP) spacecraft [67] and the European Space
Agency’s Planck satellite [68]. The latter’s CMB map is depicted in
Fig. 3.4 (top) and it shows temperature fluctuations that carry infor-
mation on the primordial seeds which would later evolve into the
cosmic structure observed today. The CMB is usually mapped onto a
Mollweide projection: it distorts shape while preserving proportions
in area. As a temperature field on the surface of a sphere, it may be
decomposed in spherical harmonics like Eq. (3.8). Consequently, one
can compute its angular power spectrum, whose result is shown in
Fig. 3.4 (bottom) as measured by the Planck Collaboration (red dots). It
is important to remark that the quantity plotted on the y-axis of Fig. 3.4
(bottom) is `(` +1)C`/2π.

The angular power spectrum of the CMB depicts its temperature fluc-
tuations as a function of the angular scale, a quantity related to the multi-
pole moment through ∼ 180o/`. That means large scale structures corre-
spond to low `-modes, while smaller scales connect to high `. The green
curve shown in Fig. 3.4 represents the best fit of the current standard
model of cosmology to Planck data.

The monopole (` = 0) and dipole (` = 1) moments of the temperature
map in Fig. 3.4 (top) correspond, respectively, to the mean CMB tem-
perature at T = 2.73 K and a Doppler beaming caused by the relative
motion of the solar system to the CMB. The angular power spectrum’s
main features for ` ≥ 2 are its seemingly constant values at large scales
(` . 20), its acoustic peaks and their relative sizes and its damping tail at
quite large `. These are understood mainly as resulting from the dynam-
ics at play in the early universe, which involved three key ingredients:
gravity, thermodynamics and fluid dynamics.

Inflation stretched quantum fluctuations originated from the Big
Bang to cosmic scale. These generated gravitational potentials which
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Figure 3.4: CMB map (top) and its angular power spectrum (bottom)
as measured by the Planck Collaboration. Pictures from [69] and [70],
respectively.

were dominated by dark matter and steadily evolving. As temperatures
cooled below the binding energies of nuclei, the universe became
permeated by a hot ionized fluid, basically a baryon-electron plasma
strongly coupled to photons. The latter’s mean free path was quite
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small, as they constantly interacted electromagnetically and via Comp-
ton scattering. This primordial plasma would sit in gravitational wells,
with photons exerting radiation pressure outwards, while gravity
would compress the fluid; a tug-of-war that caused acoustic oscillations,
or sound waves [71]. As the temperature dropped below 3,000 K,
electrons bound to nuclei forming neutral atoms and allowing photons
to travel freely over long distances, carrying with them the intricate
patterns of the last scattering.

Sound horizon is characterized by how far the longitudinal waves re-
sultant from plasma oscillations could travel before recombination. Hav-
ing said that, imagine regions separated by distances larger than the
aforementioned: since the sound waves of one cannot reach the other
before last scattering, anisotropies observed at such scales should still be
remnants of even earlier times, presumably inflation. As it stands, they
reflect the initial conditions of the universe.

The hot and cold spots in the CMB represent regions of plasma com-
pression and rarefaction, respectively. In that same note, modes that
were caught at the extrema of their oscillations, either in a gravitational
well or hill, became the so called acoustic peaks of the CMB spectrum
(see bottom of Fig. 3.4) and they form a harmonic series based on the
sound horizon. The first peak on the spectrum corresponds to modes
that managed to just reach maximum compression before photon de-
coupling. Modes on the second peak compressed and rarefied, on the
third they compressed, rarefied and compressed, and so on. In brief,
odd peaks represent maximum compression, while even peaks, maxi-
mum rarefaction [71].

The position of the first peak is consistent with a flat universe. The
size of the sound horizon at recombination was found to be about 0.9o, or
` ≈ 200 [72]. Then if the universe has positive or negative curvatures, the
peaks would be respectively shifted left or right of said position: since
light would not propagate in straight lines, the CMB anisotropies would
appear bigger or smaller than they currently are. The ratio between
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matter density and radiation mainly influences the overall height of the
peaks. High baryon density loads the gravitational wells, thus increas-
ing the amplitude of oscillations and making compression stronger than
rarefaction. Consequently, odd peaks become enhanced relative to even
ones as clearly seen in the difference between the first and second peaks.
Dark matter also contributes to such characteristic, since it fixes the grav-
itational potentials. In a radiation-dominated scenario, however, the out-
wards pressure would cause the potentials to eventually decay, making
the amplitude of peaks hierarchical. Therefore, the relative height of the
third peak to the second one suggests that dark matter dominates the
universe at recombination [73].

The amplitude of acoustic oscillations rapidly decreases with higher
`, as seen in Fig. 3.4 (bottom). The reason being that the scale of these
fluctuations is comparable to the mean free path of photons during re-
combination. As the latter diffuse, regions of over and underdensity
mix, thereby equalizing temperatures and making the CMB more uni-
form; this effect was first described in [74]. Since increasing baryon den-
sity implies in shortening the photons mean free path, the damping tail
may also provide information on the matter composition of the early
universe.

The CMB takes part in the body of evidence supporting the expand-
ing hot Big Bang paradigm of cosmology. The former’s angular power
spectrum provides constraints to parameters of the cosmological stan-
dard model, also denoted ΛCDM. For instance, the densities of dark and
baryonic matter, the angular scale of the acoustic fluctuations and even
the age of the universe were further measured by the Planck Collabora-
tion [75].

This last section served as an illustration of the physics driving the
early universe and its impact on the CMB power spectrum. From this
point on, the focus will be again on heavy ion collisions, as this study
delves into spherical projections of emitted particles, the computational
and detector issues that may arise and, finally, the estimation of C` asso-
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ciated with the formation and evolution of the quark-gluon plasma.
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4Data and Tools: Towards a
Method

“Ph’nglui mglw’nafh Cthulhu
R’lyeh wgah’nagl fhtagn."

— H.P. Lovecraft, The Call of
Cthulhu

A plethora of phenomena are encoded in the distribution of particles
emitted from a collision of heavy nuclei. An angular power spectrum
quantifies (θ,φ) pair correlations, thus finding patterns in a spherically
projected function. In this chapter we briefly present the ALICE subde-
tectors involved in measuring the data, as well as the pixelation software
used in the analysis. Then we employ toy Monte Carlo simulations to
tackle the possible issues arising from both, finally building a method to
estimate the angular power spectrum of heavy ion collisions.

4.1 Event selection with ALICE

A Large Ion Collider Experiment, or ALICE, is one of the detectors at
CERN LHC. It focuses on the study of QCD matter at high energy densi-
ties and temperatures. Aside from colliding Pb ions, it also runs lighter
nuclei, proton-nucleus and proton-proton. The data set sample used in
this thesis is a result of Pb-Pb collisions at energy

√
sNN = 2.76 TeV per

nucleon pair. It belongs to Run1 of 2010 and it comes from the ALICE-
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CERN Open Data portal [9]. The main subdetectors utilized in this anal-
ysis are the Inner Tracking System (ITS), the Time Projection Chamber
(TPC) and the VZERO (V0) detectors. They are all depicted in Fig. 4.1, a
schematic layout of ALICE.

Figure 4.1: Schematic view of ALICE with analysis subdetectors high-
lighted. Image from [76] with labels from [77].

The ITS [78], as its name suggests, is the innermost detector of AL-
ICE. From the inside out, it has two cylindrical layers of Silicon Pixel
Detectors (SPD), two of Silicon Drift Detectors (SDD) and two of Silicon
Strip Detectors (SSD); they can be seen on the upper right of Fig. 4.1.
The main tasks of the ITS are to locate the primary and secondary ver-
tices, i.e., where the collision takes place and produced hadrons decay,
in addition to tracking and identifying particles with pT < 0.2 GeV, and
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improving momentum and angular resolution of particles reconstructed
by the TPC [79]. It covers the |η| < 0.9 range.

The main tracking device of ALICE, the TPC [80], is filled with a Ne-
CO2-N2 gas mix, which ionizes when particles cross it. The electrons
emitted from such reactions provide 3-D information on the particles
trajectories as well as their energy loss. It has total azimuth coverage,
|η| < 0.9 in pseudorapidity and 0.1 < pT < 100 GeV in transverse mo-
mentum. The TPC can also provide information on a particle’s identity
and collision centrality.

The V0 detector [81] consists of two arrays of scintillator counters, de-
noted V0A and V0C [79], which are depicted, respectively, on the left and
right sides of the ITS; see Fig. 4.1. They are asymmetrically placed with
respect to the nominal interaction point, making them differ in η cover-
age: for the V0A, 2.8 < η < 5.1, while for V0C, −3.7 < η < −1.7. Among
its several functions, the V0 detector can differentiate between beam-
beam interactions and background events, thus providing a minimum-
bias trigger. Due to particles registered on the V0 having a monotone
relation to primary ones, the detector also indicates centrality.

In this work, both the extraction of ALICE heavy-ion data and the
event selection with its default cuts were performed through the repos-
itory in [10]. Firstly, the algorithm checks if each event has a recon-
structed primary vertex and whether it lies within 10 cm of the detec-
tor’s center. Secondly, it requires that multiplicity is non-zero. Lastly, in
order to select high efficiency hadronic events, a minimum-bias trigger
is fired and two of the subsequent conditions must be met: two pixels
hit in the SPD’s outer layer, a signal in V0A, a signal in V0C [82].

The combination of all mentioned ALICE subdetectors creates a
snapshot of the collision right after kinetic freeze-out. The ITS and TPC
reconstruct tracks of charged particles, measuring their spatial coordi-
nates and momentum. The V0 and SPD provide a trigger to identify
usable events, i.e., those coming from the collision itself, in opposition
to particles generated through interactions in the vacuum chamber. At
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last, it should be mentioned that the phase space coverage of the data
set in this work is |η| < 0.9, 0.15 < pT < 100 GeV and 0 ≤ φ < 2π.

4.2 About HEALPix

The distribution of emitted particles, as already mentioned in
Ch. 2, can be represented by a function f (η,φ,pT ). This work pro-
poses a change of coordinates from pseudorapidity to polar angle
through the expression θ = 2arctan(e−η); from this point onward,
f (η,φ,pT ) → f (θ,φ,pT ). Furthermore, it was discussed in Ch. 3 that
functions defined on a sphere may be expanded in spherical harmonics.
This section thus presents the software package HEALPix [83], which
was used in the analysis of f (θ,φ,pT ): from projecting it onto a sphere,
to calculating a`m and C`.

The acronym HEALPix stands for Hierarchical Equal Area
isoLatitude Pixelation1 and, as its name suggests, it makes subdi-
visions on a spherical surface, where each of these covers the same area,
as shown in Fig. 4.2. As a result, data can be sampled without regional
dependence.

In Fig. 4.2, the sphere on top-left has the lowest resolution; it is di-
vided in 12 base pixels. Raising resolution to the next level (top-right)
means subdividing the existing pixels into four more; see shaded area.
This process continues from the bottom-right to bottom-left spheres and
higher order subdivisions; hence the term hierarchical. Moreover, the
pixels are located on lines of constant latitude, or θ. This ordering is
essential for spherical harmonic analysis, since the computation of inte-
grals scales with the total number of pixels, as ∼N 1/2

pix .
An analysis done in the HEALPix scheme should begin with choos-

ing the adequate resolution, as to avoid signal smoothing; a discussion
on that matter for heavy-ion data is a future subject. The parameter that

1https://healpix.sourceforge.io/
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Figure 4.2: Pixelation of a sphere in four resolutions. Image from [83].

determines resolution is denoted Nside and given in powers of 2, once it
represents the number of subdivisions on the side of the base pixel; note
the shaded areas in Fig. 4.2. The total number of pixels relates to Nside

through the expression Npix = 12N 2
side, basically the number of subdivi-

sions in each base pixel.

An array of unit vectors n̂ = (θ,φ), either coming from a data set
or the sampling of a function f (θ,φ), may be mapped onto the surface
of a sphere. Each of its entries (j) will correspond to the pixel whose
boundaries (θj ,φj) falls within. As a result, a 2-D angular distribution
becomes a 1-D array where pixels are indexed p ∈ [0,Npix] from north
(θ = 0) to south (θ = π) along each consecutive isolatitude ring.

This resulting "sky" map f (np) from the pixelation of a function f (n̂)
can be thus decomposed in spherical harmonics, with a`m coefficients
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estimated as a discretization of Eq. (3.9):

a`m =
Npix−1∑
p=0

Ωpf (np)Y
∗
`m(np), (4.1)

where Ωp = 4π/Npix is the standard pixel weight, i.e. their area, under
the HEALPix scheme and np = (θp,φp) are the pixel center coordinates.

The spherical harmonics conventions of HEALPix consist of
Eqs. (3.10, 3.11). Here the alignment of pixel centers in rings of same
θ speeds up computations, since associated Legendre polynomials are
evaluated once for each parallel. A Fast Fourier Transform is performed
on φ [83]. It should also be remarked that, when Y`m are discretized,
they form a linearly independent system up to a multipole value
`max = 3Nside − 1. Hence limiting the estimation of a`m and consequently
of C` to `max; the angular power spectrum is calculated with Eq. (3.13).

Through HEALPix it is possible to create maps, or projections, of
functions f (n̂) in addition to estimating their spherical harmonic coeffi-
cients a`m using Eq. (4.1). At this point we have the tools and knowledge
on data features to finally build a method of angular power spectrum
estimation for heavy ion collisions.

4.3 Software meets data

The angular distribution of particles f (θ,φ) reconstructed by the ITS
and TPC has a set of characteristics worth considering during power
spectrum calculation: firstly, the limit imposed on η (θ) by the afore-
mentioned subdetectors, secondly, the non-uniformity of azimuthal ac-
ceptance and lastly, the effect caused on C` by the typical event multi-
plicities. This section aims at tackling the issues arising from said data
features by using toy Monte Carlo simulations under the same condi-
tions. Moreover, the resulting power spectra are compared to their ex-
pected values, which are analytically calculated with Eqs. (3.9, 3.13). At
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the end, there is a discussion on the choice of resolution Nside associated
with the number of pixels per map.

4.3.1 Spectrum under a mask
The acceptance of a detector may be represented by a function of po-

lar and azimuthal angles W (n̂), also denoted mask. In a scenario with
perfect detector coverage, W (n̂) = 1, ∀n̂. Accordingly, the experimen-
tally observed final particle distribution fobs(n̂) relates to the true one
ftru(n̂) via the expression fobs(n̂) =W (n̂) · ftru(n̂).

For the measured data at hand, the full azimuth is covered while
the polar coordinates are limited to 44o . θ . 136o. Consider W (n̂)
within the mentioned boundaries unitary, though zero otherwise. Af-
ter expanding fobs(n̂) and ftru(n̂) in spherical harmonics, their respective
coefficients a`m and ã`m are linearly correlated through the expression

a`m =
∑
`′

`′∑
m′=−`′

∫
Ωη

Y`′m′ (n̂)Y
∗
`m(n̂)dΩ

︸                         ︷︷                         ︸
W ``′
mm′

ã`′m′ , (4.2)

with Ωη representing the region covered by the detector.
The matrixW ``′

mm′ is depicted in Fig. 4.3 for a truncated multipole sum
of Eq. (4.2) to `max = 47. The harmonic coefficients a`m consist of 1-D
arrays where each entry corresponds to an index pair `,m, shown in
Fig. 4.4: the value of m is fixed, while ` varies from ` = m to ` = `max.
For instance, from position 0 to 47 the arrays are occupied by a`0 with
0 ≤ ` ≤ 47. Accordingly, from entry 48 to 94 are the a`1 values with
1 ≤ ` ≤ 47 and so forth. A change in resolution affects `max, resulting in
the evaluation of a wider or smaller range of ` values.

As a consequence of how a`m arrays are arranged, each square of
matrix W ``′

mm′ in Fig. 4.3 represents a combination of m and m′ values
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Figure 4.3: Coupling matrix W ``′
mm′ for m,m′ = 0,1 associated with the

mask W (n̂) in question for `max = 47.

a`m =
( m=0︷           ︸︸           ︷
0 1 · · · `max

m=1︷       ︸︸       ︷
1 · · · `max · · ·

)
Figure 4.4: Array representation of a`m.

with their sides correspond to varying ` (vertical) and `′ (horizontal).
The gray areas are equal to zero and depict m′ , m. They were painted
so in order to highlight where the azimuthal modes are equal.

Due to full coverage inφ, the integral in Eq. (4.2) selects solelym′ =m.
Furthermore, it can be seen in Fig. 4.3 that W ``′

mm′ approaches zero with
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increasing ∆` = |`′ − `|. Lastly, its chessboard-like pattern indicates that
the matrix has non-trivial values only if ` and `′ have the same parity,
i.e. they are either both odd or both even.

Since the determinant of W ``′
mm′ is equal to zero, the linear system in

Eq. (4.2) has no unique solution, making it impossible to recover ã`m by
straightforwardly inverting the mixing matrix. This is not a surprising
result, as the data coverage corresponds to roughly 50% of the sphere
surface thus implying a significant loss of information.

The method of estimating C` under a finite detector coverage was
first proposed in [84] and is commonly referred to as pseudo power spec-
trum estimator or PCL. As it stands, the statistical properties of a`m and
C` differ from their true counterparts ã`m and C̃`. The PCL method is
discussed and applied to CMB analysis in [85, 86], where cosmological
parameters may be estimated by maximizing a likelihood function of
the pseudo C`. Alternatively, it is possible to bin the spectra at hand in
`, such that mixed modes would be within the same bin width.

This work aims at estimating the angular power spectrum of heavy
ion collisions, so physical parameter calculations based on models are
beyond its scope. Additionally, the final distribution of emitted particles
is dominated by large scale anisotropies (flow coefficients), making C`
for small ` prominent relative to higher modes [87]. Therefore, binning
the spectra is not a viable step, as information on specific low ` values
would be lost. Instead, a simpler approach is performed: we analyze the
effects of W (n̂) on MC simulated distributions of different complexities,
from fully isotropic to fMC(n̂) = g(θ) · h(φ).

Before moving on, we should first remark on an important charac-
teristic of data gathered from cosmic sources, like galaxy distributions
or CMB: that our universe is a single realization of all possible observ-
able ones. For this reason, nearly universe-sized fluctuations have few
samples and, consequently, inconclusive statistical significance, whereas
small scale structures yield a more considerable number of realizations.
Translated into power spectrum vocabulary, an angular scale pertaining
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to a certain ` will have 2`+1 independent measurements for each spher-
ical harmonic mode. The expected difference between the observed C`
and the underlying ensemble average is termed cosmic variance. Its sig-
nificance increases with lower `.

In contrast, heavy ion collisions form an ensemble of events, as par-
ticle distributions are produced under controlled lab conditions. Their
estimated angular power spectrum is, therefore, given by the ensemble
average, i.e. 〈C`〉. Furthermore, the error on the measurement may be
simply calculated from the array of heavy ion observations itself, instead
of estimating it from cosmic variance. Since this difference between CMB
and heavy ion power spectrum analysis has been dully noted, we now
tackle the effects of W (n̂) on f (n̂) when calculating C`.

In the case of isotropic particle distributions (fiso(n̂) = const.), it is
straightforward to see that, under full angular coverage, the only non-
trivial harmonic coefficient is ãiso00 . Substituting it in Eq. (4.2), yields only
aiso`0 = W `0

00 ã
iso
00 non-zero, since m′ = 0. Moreover, `′ and ` must share

parity if W ``′
mm′ , 0. Given that `′ = 0, the only surviving coefficients for

isotropic distributions under |η| < 0.9 coverage are aiso`0 with ` even.
The aforementioned result for the power spectrum of isotropic dis-

tributions under limited coverage is depicted in Fig. 4.5. Around 8000
events were generated, each with multiplicity 1400 .M . 1800 within
|η| < 0.9, roughly corresponding to the 10-15% most central events at
2.76 TeV collision energy. The estimated 〈Cl〉 is the ensemble average
over the spectra of each event map with resolution Nside = 16. The er-
ror bars pertain to the standard deviation. Also, the monopole value is
fixed at C0 = 4π, a consequence of Eq. (4.1) and the normalization fac-
tor Npix/M applied to each event map before spectral calculation. This
proceeding is repeated for all data sets in this work.

The zig-zag feature in Fig. 4.5 was expected due to only aiso`0 with `
even contributing to C`. The enhancement of certain ` modes relative to
the others is a direct result of the coverage percentage, as other |η| ranges
would change W ``′

mm′ , thus favoring different ` values [87]. Lastly, note
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Figure 4.5: Averaged angular power spectrum of ∼ 8000 isotropic dis-
tributions under |η| < 0.9 coverage.

how odd 〈C`〉 ∼ 7×10−3, instead of being zero. This issue will be tackled
soon, when we discuss the effects of typical heavy ion multiplicity on
the estimation of the average spectrum.

Given how particles with no preferred direction of emission yield
features on the resulting 〈C`〉 in the presence of W (n̂), the next step
consists on quantifying how the presence of anisotropies adds up to
the averaged spectrum. Hence distributions like fMC1

(n̂) = h(φ) and
fMC2

(n̂) = g(θ)h(φ) being the focus of the following subsections.
The overlapping geometry of colliding nuclei plus fluctuations in the

initial conditions are imprinted in the resulting particle distribution, as
previously discussed in Ch. 2. The azimuthal anisotropy is then quan-
tified through the flow coefficients vn of a Fourier expansion. Inspired
by this ansatz, the following simulated MC distributions are factoriz-
able functions fMC(n̂) = g(θ)h(φ) with h(φ) given by the right side of
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Eq. (2.3) divided by 2π. Considering full angular coverage and substi-
tuting fMC(n̂) in Eq. (3.9) yields the harmonic coefficients:

ã`m =

b̃`0 for m = 0

b̃`m · v|m|e−imΨ|m| for m , 0
(4.3)

with

b̃`m =N`m

∫ π

0
g(θ)P`m(cosθ)sinθdθ, (4.4)

where N`m is the square root coefficient of Y`m, depicted in Eq. (3.10).
Note how only flow coefficients vn with n = |m| contribute to ã`m.

The two types of simulated data, dubbed MC1 and MC2, differ in
their g(θ) expressions: while the first is constant in θ, the second follows
a function with its global minimum in θ = π/2, inspired on measured
charged-particle pseudorapidity densities [88]. Over the full η range, the
η-distribution is symmetric around η = 0, which is equivalent to θ = π/2.
A change of variable from η to θ on the pseudorapidity density plots
depicted in [88] yields a function of the polar angle analogous to the one
in Fig. 4.6; the limited 44o . θ . 136o (|η| < 0.9) detector coverage is
represented by ∆θη .

So fMC1
(n̂) is isotropic in θ and fMC2

(n̂) follows the polar function in
Fig. 4.6. As a result, a new feature has to be considered in their expres-
sions for ã`m: in both cases g(θ) is even around π/2 within the interval
[0,π]. As sinθ has the same property, b̃`m in Eq. (4.4) will be non-trivial
according to the parity of P`m. The associated Legendre polynomials are
even when `,m have same parity and odd when `,m have opposite parities.
Consequently, b̃`m , 0 if, and only if, `,m are either both even or both
odd.

The objective at this point consists in quantifying the effects on the
harmonic coefficients and power spectra of both fMC1

(n̂) and fMC2
(n̂)

under the maskW (n̂). For this reason, we reintroduce the index notation
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Figure 4.6: Polar function g(θ) ∝ cosh(0.5(θ −π/2)) · ((θ −π/2)2 +1).

where `,m correspond to the masked a`m, while `′,m′ represent the full
coverage ã`′m′ .

Let us begin by recalling the rules of the mixing matrix in Fig. 4.3:
W ``′
mm′ , 0 when (i) m′ =m and (ii) `′, ` share parity. Due to (i), the sum in

m′ selects only ã`′m - refer to Eq. (4.2). Furthermore, fMC(n̂) being even
around θ = π/2 makes ã`′m , 0 only if `′,m share parity themselves.
Combining that with (ii) results in `,m having the same parity for the
masked a`m be non-trivial. This paragraph can be visualized in Fig. 4.7,
where the aforementioned consequence is highlighted in bold.

All in all, the masked harmonic coefficients a`m ∝ v|m|e−imΨ|m| , follow-
ing Eq. (4.3), save for their b`m factors, which are a sum in `′ of b̃`′m given
by Eq. (4.4). It is due to W (n̂) being uniform in φ, that there is no mixing
of vn and Ψn parameters in a`m.

Once the features of a`m have been determined, it is time to generate
the fMC1

= h(φ) and fMC2
= g(θ)h(φ) themselves. Their azimuthal part
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Figure 4.7: Parity relations between indices.

h(φ) has the sum in Eq. (2.3) truncated at n = 6. The vn are constant with
its values depicted in Table 4.1. As for the complex phase angles Ψn, they
are randomly picked from an uniform distribution in the interval [0,2π).
However, they do not affect C`, since it depends solely on |a`m|2.

v1 v2 v3 v4 v5 v6

0.02119 0.05928 0.02636 0.01218 0.00520 0.00209

Table 4.1: Values of vn coefficients for h(φ).

The same number of events Nevts ∼ 8000, each with the same mul-
tiplicities as in the isotropic case, are produced following the distribu-
tions fMC1

(n̂) and fMC2
(n̂). As previously mentioned, vn have a fixed

value, while Ψn are randomized event-by-event. Each sampled event
is then projected onto a map with Nside = 16 and has its C` calculated.
Finally their average is taken, yielding 〈C`〉. Fixing Nevts and the indi-
vidual event multiplicities when generating both isotropic and MC dis-
tributions guarantees that their spectra are compared under the same
statistical conditions.

The monopole C0 = 4π has a fixed value for all event spectra, a re-
sult from the normalization Npix/M imposed on each map. Said proce-
dure will permeate throughout all power spectrum calculations in this
work, so C` from distributions with different multiplicities and map res-
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Figure 4.8: Averaged power spectra 〈C`〉 for isotropic (iso), fMC1
(n̂) =

h(φ) and fMC2
(n̂) = g(θ)h(φ) distributions. It begins in ` = 1.

olutions can be compared. An alternative normalization is to compute
C`/C0 instead, since the monopole is simply the integral of f (n̂) over the
whole sphere.

An striking feature of the 〈C`〉 comparison in Fig. 4.8 is how the av-
eraged spectrum of MC1 has seemingly the same values as the fully
isotropic case, despite being dependent on φ. It should be remarked
that, under full coverage, all m = 0 modes with ` > 0 should disappear
for MC1, so its masked a`0 coefficients are equal to the iso ones. There-
fore, Fig. 4.8 shows that, for even `, a`0 actually holds the majority of
power in the |a`m|2 sum that yields 〈C`〉.

In order to visualize this predominance of certain modes, we pro-
duced a single event with 107 particles for each MC distribution with
symmetry planes Ψn set to zero. Each event was then projected onto a
map with resolution Nnside = 64; see the left side of Fig 4.9. The choice of
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Figure 4.9: Left: maps of single events with 107 particles at Nside = 64
for both MC distributions. Right: some of the contributing spherical
harmonics.

high multiplicity andNside allows for clearly seeing the fMC(n̂) functions
that generated the maps. Also, the bars represent the number of particles
in each pixel. The limited coverage is depicted in gray.

Firstly, note in Fig. 4.9 how the mask’s geometry is akin to that of
Y20. The latter is characterized by two parallels, which mirror quite well
the central strip of both MC maps. Consequently, a20 will have a rela-
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tive high value in the harmonic expansions of both fMC(n̂) compared to
the other coefficients. This explains why 〈C2〉 (in all cases) stands above
all other modes in Fig. 4.8. Secondly, observe how<(Y22) bears resem-
blance to the azimuthal shapes of both maps, where particles concentrate
mostly around φ = 0. As a result, a22 will also have a significant contri-
bution in the harmonic expansions. However, 〈C2〉MC1

∼ 〈C2〉iso, making
a compelling case of a20 surpassing by far all the other a2m modes.

The presence of a symmetric θ function in fMC2
(n̂) is responsible for

its even 〈C`〉 having different values compared to the other distributions.
From Fig. 4.6, it can be seen that g(θ) causes particles to accumulate on
the edges of the mask and makes a valley around the equator. For this,
the map ends up with five subregions in θ, a characteristic shared with
Y40 and shown in Fig. 4.9. The latter explains 〈C4〉MC2

> 〈C4〉MC1
,〈C4〉iso.

In contrast to their even 〈C`〉, the odd modes for fMC1
(n̂) and fMC2

(n̂)
seem to have the same values. A clear distinction to the isotropic case
occurs only for ` = 1 and ` = 3, despite h(φ) carrying a v5 contribution.
This probably pertains to the low-multiplicity effects, an issue of the next
subsection.

There is a plethora of evidence that a`0 for even ` are the greatest
contributors to their 〈C`〉 value. The enhancement of even modes with
respect to odd ones, the proximity between isotropic and MC1 spectra
at even `, and how the global map geometries mirror the even Y`0 har-
monics. In light of these, a remarkably simple approach is proposed
to visualize the anisotropies of both fMC(n̂) [87]: the removal of all a`0
modes in the power spectrum calculation. There should be virtually no
difference for the odd modes, since a`0 = 0 for them. So, for each event
map,

Cm,0` =
1

2` +1

∑̀
m=−`
|a`m|2 −

|a`0|2

2` +1
. (4.5)

The averaged power spectra 〈Cm,0` 〉 for the isotropic, fMC1
(n̂) and
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fMC2
(n̂) distributions are depicted in Fig. 4.10. For ` ≤ 6, it is finally

possible to see a deviation from isotropy: both MC have a clear peak in
` = 2, a consequence of v2 being the highest valued flow coefficient; see
Table 4.1. The ` = 1 and ` = 3 modes remain above the isotropic spec-
trum, which is now predominantly flat. The typical ∼ 7×10−3 values are
associated with the event multiplicities of the distributions at hand.

2 4 6 8 10 12 14 16 18 20

`

3 × 10 3

10 2

5 × 10 2

〈C
m
6=0

`
〉

| | < 0.9
iso
MC1: h( )
MC2: g( )h( )

Figure 4.10: Averaged power spectra with m = 0 modes subtracted
〈Cm,0` 〉 for isotropic (iso), fMC1

(n̂) and fMC2
(n̂) distributions.

The error bars in Fig. 4.10 correspond to the standard error, which
measures the statistical accuracy of the 〈Cm,0` 〉 estimation. In Fig. 4.8, the
standard deviation of each 〈C`〉 shows how they can vary significantly
event-by-event. However, when the averaged spectra of different event
populations from the same distribution are compared, they are equal
(within the standard error) to each other. Since the interest of this work
lies in estimating 〈Cm,0` 〉, the standard error will be used as the error bar
in all its plots from this point on.
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Summing up, the a`m coefficients under limited detector coverage are
a linear combination of the true underlying ã`m. The mixing matrixW ``′

mm′

at hand causes Eq. 4.2 to be a system with no unique solution. For this
reason, there was a necessity of quantifying the mask effects on the av-
eraged power spectrum. Non-trivial even mode values were observed
in isotropic distributions (Fig. 4.5) and they were found to be strikingly
close to anisotropic ones (Fig. 4.8). Hence the introduction of 〈Cm,0` 〉,
which allowed the observation of a peak in ` = 2 (Fig. 4.10), caused by
the relatively high v2 value.

Nevertheless, there is a caveat: the 〈Cm,0` 〉 values calculated above for
MC1 and MC2 are on average O(10) higher than the expected ones for
` ≤ 6. The following discussion will treat the effects of low multiplicity
on the estimation of 〈Cm,0` 〉 and propose a viable solution to get the right
spectrum values.

4.3.2 A multiplicity issue
The Monte Carlo sampling of each event is a possible reason for the

discrepancy between the observed 〈Cm,0` 〉 and their expected values.
The error on the approximation of an event distribution to f (n̂) prop-
agates to its a`m estimation and, consequently, to its power spectrum.
One could also think that resolution may contribute to this difference.
After all, harmonic coefficient calculations involve the pixelation of their
corresponding distributions f (n̂)→ f (np), see Eq. (4.1). It has been ob-
served, however, that map binning does not change the resulting 〈Cm,0` 〉
significantly. This is the last item discussed in this chapter.

As a means of quantifying the typical multiplicity effect on the av-
eraged power spectrum, 8000 isotropic events were generated for each
multiplicity value ranging from M = 100 to M = 5000 and each of their
〈Cm,0` 〉 were then calculated. These simulations were under the same
W (n̂) mask as previous distributions and chosen resolution was Nside =

59



4. DATA AND TOOLS: TOWARDS A METHOD

102 103

M

10 2

10 1

〈C
m
6=0

3
〉

Isotropic
| | < 0.9

Cm 0

Fit to p0 M p1 + p2

Figure 4.11: Example of how the averaged spectrum 〈Cm,0` 〉 changes
with typical event multiplicity.

16. The resulting 〈Cm,0` 〉 as a function of M is depicted in Fig. 4.11 for
` = 3.

Unsurprisingly, 〈Cm,03 〉 is inversely proportional to the event multi-
plicities. From Fig. 4.11, one can see that for 〈Cm,03 〉 = 7×10−3, the corre-
sponding range inM covers the input multiplicity values of the isotropic
distributions which yielded Fig. 4.10. This same averaged spectrum be-
havior is seen for the remaining ` > 0 modes. Furthermore, the depen-
dence of 〈Cm,0` 〉 onM follows a power law of the type p0 ·M−p1+p2, with
p0,p1,p2 ≥ 0. Note that, as M →∞, 〈Cm,0` 〉 → p2, meaning that p2 is the
true averaged spectrum value at that `. For 〈Cm,03 〉iso in Fig. 4.11, p2 = 0.

For each `, imagine that p0 and p1 are independent of the under-
lying distribution, i.e., 〈Cm,0` 〉MC relates to M through p0 ·M−p1 + pMC2 ,
where pMC2 is the expected spectrum value of fMC(n̂). In this case, find-
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ing the latter would be quite simple: through a plot of isotropic spectra
like Fig. 4.11, one could extract the fitting parameters p0 and p1 for each
` mode. Then, the true anisotropic MC spectrum would be estimated
through 〈Cm,0` 〉MC −〈p0 ·M−p1〉, subtracting from the observed spectrum
the power law factor averaged over all event multiplicities.

Alternatively to finding the fit parameters p0,p1, one may instead es-
timate a background spectrum at m , 0, here denoted 〈Nm,0

` 〉, based on
the multiplicity distribution of the event ensemble. For instance, return
to the population of isotropic distributions responsible for the spectra in
Figs. 4.5, 4.10; it was composed of ∼ 8000 events with 1400 .M . 1800
each. The resulting flat 〈Cm,0` 〉iso corresponds to the mean fluctuation
size at all angular scales due to low MC sampling. Altogether, the sim-
plest background spectrum associated to a data set coincides with the
isotropic averaged spectrum for the ensemble multiplicities.

Once 〈Nm,0
` 〉 has been calculated, analogously to the procedure

described above, the expected average power spectrum is estimated
through 〈Cm,0` 〉 − 〈Nm,0

` 〉. The latter is motivated by how the signal-
to-background ratio deviates from unity, |〈Cm,0` 〉/〈Nm,0

` 〉 − 1|. Notice
that both expressions are related to each other by a factor of 1/〈Nm,0

` 〉.
Throughout this work, 〈Sm,0` 〉 = |〈Cm,0` 〉 − 〈Nm,0

` 〉| will be used as the
estimate of the true underlying spectrum.

The calculation of 〈Nm,0
` 〉 goes as follows: 106 isotropic events lim-

ited by |η| < 0.9 are generated with multiplicity values drawn according
to the distribution at hand. For instance, if the latter is uniform, each
M will have equal weight on the averaged power spectrum. The reason
for Nevts = 106 lies in sampling a significant quantity of maps which cor-
respond for a certain M value, since there are many variations on how
the filled pixels could be distributed. This should increase precision and
accuracy on the estimation of 〈Nm,0

` 〉 for each of the multiplicities.
The results of 〈Sm,0` 〉 for both fMC1

(n̂) = h(φ) and fMC2
(n̂) = g(θ)h(φ)

are shown in Fig. 4.12, subplots (a) and (b) respectively. They are com-
pared to the analytical power spectrum calculation C

m,0
` of their corre-
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Figure 4.12: Comparison between estimated 〈Sm,0` 〉 and analytically cal-
culated spectra for both MC distributions within |η| < 0.9.

sponding functions through Eqs. (3.9,4.5), also under the W (n̂) mask;
those are denoted as True in the aforementioned plot and they have
Ψn = 0, ∀n, since C

m,0
` only depends on |a`m|2.

The power spectrum values at ` = 1,2,3 still remain enhanced rela-
tive to the rest, a feature already observed in Fig. 4.10. Also, what was
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but a suggestion of a peak in ` = 6, can now be clearly seen in Fig. 4.12.
For the 〈Sm,0` 〉 values corresponding to ` = n, the difference to the true
C
m,0
` is less than 10% of it, save for MC1 at ` = 5, which is 38%. All in all,

this procedure of background subtraction has managed to reproduce the
expected spectrum remarkably well for ` ≤ 6.

As previously stated, the vn coefficients at hand strongly influence
the large scale structure of the final particle distributions. For instance,
` = 6 roughly corresponds to an angular separation of ∼ 30o. Return to
Fig. 4.9 and look at the MC maps: the meridians in their grids are 24o

apart, while for the parallels this number is 22.5o. So, the scale of v6
influence covers more than a full grid-square in a map. Beyond ` = 6,
the contribution of vn becomes smaller and smaller, since vn = 0 for n >
6. Adding that to the multiplicities of O(103) in each event and it gets
trickier to estimate the true C

m,0
` for ` > 6.

Overall, 〈Sm,0` 〉 for MC2 lies closer to its expected value than MC1 to
its own, specially at higher `. A possible explanation is that g(θ) allows
particles to cluster more towards the edges, thus increasing their density
in such regions and facilitating the calculation of a`m for smaller scales.

The geometry of fMC1
(n̂) and fMC2

(n̂) is purely dominated by flow.
Their expected spectra are characterized by a periodicity with peaks at
` = 2k, k = 1,3,7, · · · , a feature followed by the 〈Sm,0` 〉 estimations until
` = 10. The limitations of the presented method depend on the underly-
ing functions as well as the number of sampled particles per event. For
the cases at hand, one could say that it cannot be relied on beyond a
18o angular scale (` = 10). However, with more particles and higher vn
values or perhaps another distribution function, this boundary could be
pushed towards ` > 10. It could also decrease with lower multiplicities
and vn.

Summing up, it is possible to get around the multiplicity-caused
effect by subtracting from the observed spectrum an estimated back-
ground. The latter is dependent on the M-distribution of the actual
event population. For the discussed MC cases, 〈Nm,0

` 〉 coincided with
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the averaged spectrum of isotropic maps with same multiplicities. In
the next subsection, we see this is not always the case. Lastly, the
method yields values which lie quite closely to the expected ones until
a certain `. Said limitation is mostly related to the underlying function
and typical event multiplicity. Resolution could play a part in it, as well
as Nevts, though its influence is tightly connected to M themselves.

4.3.3 Detector efficiency
Although all the spectra calculated so far were taken under the accep-

tance mask W (n̂), nothing has been discussed about detector efficiency.
In other words, the simulations from the previous subsections mimic a
ratio of measured to incident particles equaling one. In other to check
the efficiency corresponding to the ALICE data set at hand [9], events
from a selected centrality were superposed. Due to the orientation of
each nuclei collision, the resulting angular distribution of all overlap-
ping events is azimuthally uniform, while its shape in the polar direction
resembles g(θ) from Fig. 4.6; the overall pseudorapidity density function
is not flat [88].

The aforementioned sum of event maps is depicted in Fig. 4.13 for
the 10-15% centrality. The angular differences between each parallel
and meridian are 22.5o and 24o, respectively; just like in Fig. 4.9. As
expected, particle density around the edges surpasses that of the equa-
torial regions. Conversely, the map is not smooth along the azimuthal
direction, e.g., the dark patch between meridians at 96o and 120o. Some
of the 18 TPC sectors can also be faintly seen.

The next step deals with uncovering these detector efficiency effects
on the estimated power spectrum and how to tackle them. Yet again MC
simulated distributions are in order. First, it is necessary to isolate the
efficiency-caused anisotropies in Fig. 4.13 from the overall θ distribution,
a task achieved by dividing them. The map of particles polar density is
calculated by randomizing theφ coordinates of each event and summing
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Figure 4.13: Map of overlapped events from the 10-15% centrality. Nor-
malized by the ratio of Npix to total event multiplicity.

over them. The resulting map of efficiencies is dubbed D(np); note the
use of np to indicate pixelation.

Due to its similarity to real data, MC2 was chosen as the distribu-
tion to be analyzed under those detector-caused anisotropies. Explicitly,
fMC2

(n̂)→ D(n̂)fMC2
(n̂), with the efficiency function D(n̂) considered to

equally affect events pertaining to the same Run. Since we only have ac-
cess to the pixelated mapD(np), the associated functionD(n̂) must be es-
timated from it: given a resolutionNside = 128 map, a spline is made in θ
for each fixed φ value. Event particles within the phase space φ ∈ [0,2π),
η ∈ (−0.9,0.9) are then sampled from the product fD2

(n̂) = D(n̂)fMC2
(n̂),

where D(n̂) is the aforementioned collection of splines.
Likewise the previous MC cases, each event sampled from fD2

(n̂) is
projected onto a map with Nside = 16 and has its power spectrum cal-
culated. The ensemble average is then taken and subtracted from the
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isotropic 〈Nm,0
` 〉, thus yielding 〈Sm,0` 〉D2

for particle distributions under
varying detector efficiency.
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Figure 4.14: Ratios 〈Sm,0` 〉/Cm,0` for fMC2
(n̂) and fD2

(n̂). Dashed lines are
1σ (yellow) and 2σ (green) deviations for fMC2

(n̂) within 1 ≤ ` ≤ 6.

As means of quantifying the effects of D(n̂) on the estimated power
spectrum 〈Sm,0` 〉D2

, the latter is divided by the true C
m,0
` . Furthermore,

its performance is compared to that of MC2 under perfect detector ef-
ficiency. The results are shown in Fig. 4.14 for 1 ≤ ` ≤ 6, which corre-
spond to the modes associated with the input vn coefficients. The dashed
bands are 1σ and 2σ deviations of 〈Sm,0` 〉MC2

/Cm,0` from unity. Note how
the same ratio for the spectrum with detector-caused anisotropies stands
above 2σ for ` ≥ 4, specially at ` = 8. The angular scale at such mode is
around 22.5o, which turns out to be the approximate width of the dark
patch in Fig. 4.13.
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The contribution of detector efficiency is additive to the power spec-
trum. As a consequence, there is a fight for dominance between the lat-
ter and vn-caused anisotropies. These mostly affect modes for ` ≤ 6 and
their contribution wanes at higher ` values. From Fig. 4.14, vn seems to
have the upper hand for ` ≤ 3, while their influence and the detector’s
look comparable within 4 ≤ ` ≤ 6, with the latter’s ` = 4 being ∼ 30%
above unity. Finally,D(n̂) surpasses vn for ` ≥ 7, where the angular scales
correspond to the sizes of fluctuations in the efficiency function.

The proposed solution [87] begins with the overlap of all simulated
event maps, Fall(np), at Nside = 16 to create a projection akin to Fig. 4.13.
As D(np) is constant for all events and their θ distribution does not
change orientation,

Fall(np) =
Nevts∑
i=0

f
(i)
D2

(np) =D(np)g(np), (4.6)

where g(np) stands for a map of g(θ) (Fig. 4.6) with φ uniform.
The second step consists in dividing each event map by Fall(np), thus

assigning weights to the pixels according to their positions. Explicitly,

f D2
(np) =

fD2
(np)

D(np)g(np)
. (4.7)

Note that these resulting maps are normalized by their total average
θ distribution. Consequently, their associated background spectrum
〈Nm,0

` 〉bar must account for said division, as pixel weights change but
not their densities, which in turn increase towards the edges. Therefore,
to estimate 〈Nm,0

` 〉bar , one must first randomize φ for each (θ,φ) event
set. These are then mapped onto a spherical projection and subsequently
divided by g(np). Finally their spectra for m , 0 is calculated, with
〈Nm,0

` 〉bar being the ensemble average over 106 events. Each of the
mentioned event maps have pixel weights distributed according to
g(np), though their densities remain the same, akin to f D2

(np).
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The maps f
(i)
D2
(np) are normalized by the factorNpix/Mpix, whereMpix

is the total pixel sum. Then, in the same way as before, we take the

power spectrum of each f
(i)
D2
(np) and average over them, finally sub-

tracting 〈Nm,0
` 〉bar from the result to yield 〈Sm,0` 〉bar . From Eq. (4.7),

f D2
(np) = h(np), with h(np) a map of h(φ) also smooth in θ. Furthermore

〈Nm,0
` 〉bar already accounts for the characteristic pixel densities. As a

result, 〈Sm,0` 〉bar must be an estimate of the spectrum for fMC1
(n̂) = h(φ).

Unsurprisingly, the estimated 〈Sm,0` 〉bar for f D2
(np) seems to fit the

calculated fMC1
(n̂) spectrum quite well, as seen in Fig. 4.15 (a). For ` =

8, the spectrum value was subdued relative to 〈Sm,08 〉D2
, thus suggest-

ing that the aforementioned procedure may have worked. In Fig. 4.15
(b), there is a comparison between the performances of the fMC1

(n̂) and
f D2

(np) spectra relative to the true one, calculated through 〈Sm,0` 〉/Cm,0`
for each of them. The dashed yellow and green lines correspond, respec-
tively, to 1σ and 2σ deviations of the mentioned ratio to unity.

Until ` = 6, 〈Sm,0` 〉bar behaves quite similarly to fMC1
(n̂), with its val-

ues sitting approximately within the 1σ deviation of MC1. As previ-
ously remarked, that is the region of vn dominance. For higher `, the
values mainly affected by detector anisotropies have lowered, despite
the large error bars. In any case, those are compatible with the ones for
fMC1

(n̂), which at least indicates that the proposed method worked for
the present distributions at a minimum scale of ` = 10.

Summing up, the estimated spectrum under varying detector effi-
ciency is characterized by values that stand above its perfect counterpart
(Fig. 4.14). Specially for ` = 8, the mode associated with the angular size
of the biggest patch in Fig. 4.13. The solution to this issue consists in
basically normalizing the fD2

(np) maps by their sum. As a consequence,
pixel weights were assigned according not only to the desiredD(np), but
also to g(np), leading to the background estimation 〈Nm,0

` 〉bar . The final
resulting spectrum 〈Sm,0` 〉bar matched that of MC1 and performed suc-
cessfully in the flow dominated region, aside from yielding lower values
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Figure 4.15: Comparison between 〈Sm,0` 〉bar and the expectedMC1 spec-
trum (a). Ratios 〈Sm,0` 〉/Cm,0` for fMC1

(n̂) and f D2
(np) (b). Dashed lines

are 1σ (yellow) and 2σ (green) deviations of the MC1 ratio from unity
within 1 ≤ ` ≤ 6.

where D(np) anisotropies are the main contributors, ` = 7,8,9.
In conclusion, the method introduced in this subsection to tackle de-

tector efficiency seems to have worked within the limits of the scales
associated with the MC distributions at hand, i.e., ` ≤ 10. Thus, it shall
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be used to estimate the angular power spectrum of heavy ions, a result
shown and discussed in the next chapter.

4.3.4 Choosing resolution
Both methods presented above for tackling the low multiplicity and

detector efficiency effects on the estimated power spectrum have relied
on a resolution of Nside = 16. However, no clear reason for such choice
has been given. Because of that, this last subsection deals with the re-
sulting 〈Sm,0` 〉 for the resolutions pertaining to Nside = 8,16,32.

As mentioned in Sec. 4.2, each value of Nside permits different `max,
with one directly proportional to the other. Due to their low multiplic-
ities, heavy ion collisions at 2.76 TeV cannot be probed at very high `,
like in the CMB. Additionally, they are mainly dominated by large scale
geometries, such as the fluctuations caused by flow. Then, if modes up to
` = 20 should be considered, Nside = 8,16,32 are all reasonable choices.
Their main characteristics, Npix within |η| < 0.9, mean pixel spacing and
area are shown in Table 4.2.

Nside Npix (|η| < 0.9) Mean Spacing (deg) Area (sterad)

8 600 7.3290 1.6362× 10−2
16 2344 3.6645 4.0906× 10−3
32 9040 1.8323 1.0227× 10−3

Table 4.2: HEALPix pixel information for Nside = 8,16,32. Adapted
from [89].

For the selected centralities in this work, typical event multiplicity
varies from ∼ 450 to ∼ 3100 within the present phase space |η| < 0.9,
φ ∈ [0,2π). In principle, Nside = 8 could cover the whole range, with
minimum amount of empty pixels. However, there is the risk of exces-
sively smoothing the signal for more central collisions. The alternative
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is Nside = 16, where events with multiplicities of O(103) should cover
∼ 50% of the pixels, while those with lower M will become more granu-
lar. Finally, Nside = 32 provides better estimations for the harmonic coef-
ficients a`m through Eq. (4.1), since Y`m(np) are evaluated at pixel center
and those have smaller mean spacing; see Table 4.2.

It is necessary to quantify the impact of resolution in this context
where multiplicities and flow harmonics change with centrality. As pre-
viously discussed, estimating 〈Sm,0` 〉 depends not only on the number of
samples per event, but also on the underlying function. Taking the range
of 0-40% most central collisions, it is well understood that vn increases
as they become more peripheral, see for instance [45, 90]. In light of
these facts, the next MC distributions are drawn from fMC2

(n̂) for three
centralities: 0-5%, 10-15% and 35-40%.

The multiplicity intervals at hand were inspired by the ALICE open
data set [9] itself. Their centrality division was done by first taking the
0-5% events with highest multiplicity, then proceeding in intervals of
5% until 35-40%. Above this value, the number of particles per event
could be quite low for the power spectrum analysis, hence the chosen
threshold. The multiplicity intervals of interest are as follows: M ∈
(2200,3100), M ∈ (1400,1800) and M ∈ (470,600), for 0-5%, 10-15% and
35-40%, respectively. Furthermore, each population of simulated events
has the same g(θ) distribution, though the vn values from h(φ) differ.
From v2 to v4, they were estimated through splines made from the re-
sults in [45]. As for v5 and v6, their values were directly taken from [90].
Lastly, v1 was simply chosen to stand between v3 and v4.

Akin to the preceding cases, 〈Nm,0
` 〉 was calculated according to the

events’ multiplicity distribution and subtracted from the observed spec-
trum to estimate 〈Sm,0` 〉. This process was repeated for all three cen-
tralities and Nside values presented above and the result can be seen in
Fig. 4.16, along with the ratio to expected C

m,0
` . The dashed lines on the

right plots represent 1σ (yellow) and 2σ deviations of theNside = 16 ratio
result to unity within the flow-dominated interval 1 ≤ ` ≤ 6. No matter
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Figure 4.16: Left: estimates of 〈Sm,0` 〉 for three centralities, with dif-
ferent vn values. Right: their ratios to the expected fMC2

(n̂) spectra are
compared to 1σ and 2σ deviations (dashed lines) of Nside = 16 within
1 ≤ ` ≤ 6.
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the resolution or centrality, it is at specifically these values that 〈Sm,0` 〉 is
the closest to the true spectrum. For ` ≥ 7, where vn contribution dwin-
dles, uncertainties are large for all Nside, with 32 usually overestimating
〈Sm,0` 〉 and 8 doing the opposite.

At least in the angular scales of interest (1 ≤ ` ≤ 6), Nside = 8 was
overall a slightly better choice for 35-40%, while Nside = 32 was for 0-5%.
As for the whole multipole region at hand (` ≤ 10), Nside = 16 had the
best performance for 0-5% and 10-15%. At higher M and vn, probing
small angular scales would become easier and easier. Instead, heavy ion
data behaves in a way that there is an inverse relation between multi-
plicity/centrality and flow. Note how ` = 10 for 0-5% differs from the
other centralities, despite being a mode with contributions from all even
vn. Central collisions are, after all, the closest to isotropy.

Given this multiplicity-flow interplay, the calculation of 〈Sm,0` 〉 faces
challenges at all centralities. Additionally, it is of interest in this work to
choose a single resolution for all event maps. Thus, settling at Nside = 16
is a reasonable middle-ground approach. It actually performs quite simi-
larly to Nside = 32 for more central collisions and, though Nside = 8 could
be a better option for 35-40%, Nside = 16 is not far off the mark. Also,
there was no significant difference between resolutions for ` ≤ 6, a sign
that the binning of fMC2

(np) maps and Y`m(np) somehow compensate
for each other. The former may have more empty pixels with higher
Nside, but the latter’s value should be more accurate. On the other hand,
fMC2

(np) may fill up most of the pixels, though Y`m(np) becomes less
accurate.

At last we are equipped with a method for estimating the angular
power spectrum of heavy ions. The chosen resolution of Nside = 16 per-
meates through this work and 〈Sm,0` 〉 will be analyzed up to ` = 20, as-
sociated with scales of ∼ 9o. After all, it has been stated that limits of
the computed spectrum are not only connected to the multiplicity, but
also the function at hand. Summing up, after setting on Nside, event
maps are created, their spectra calculated for m , 0 modes and finally
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the average is taken. Then, background spectrum estimation 〈Nm,0
` 〉

comes into play: how do fully isotropic distributions with same mul-
tiplicity fare under the same map manipulations? Finally, the primary
spectrum 〈Cm,0` 〉 is subtracted from background to estimate the signal
spectrum 〈Sm,0` 〉. All calculations are based on the average ensemble
behavior, with no mechanisms currently existing to make low-M correc-
tions event-by-event.

On the next chapter, the method presented above will be applied
to ALICE open data [9]. The whole analysis on MC simulations has
anisotropies coming solely from flow, with factorizable functions. Con-
sequently, we have an idea of how an angular power spectrum should
be in this scenario. Elliptic flow would cause a high peak in ` = 2 and
a smaller one in ` = 6, the presence of v3 would also make ` = 3 rise
above modes with higher `. Moreover, beyond a certain ` value, the
spectrum would be characterized by large uncertainties, as flow contri-
bution wanes and angular scales count with more empty spaces than
particles.
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5Angular Power Spectrum of
Heavy Ions

“New ideas pass through three
periods: 1) It can’t be done. 2) It
probably can be done, but it’s
not worth doing. 3) I knew it
was a good idea all along!"

— Arthur C. Clarke

Equipped with a method which works for Monte Carlo simulations un-
til a characteristic scale, it is time to apply power spectrum estimation to
data. We know from Ch. 2 that there are a plethora of phenomena result-
ing in two-particle correlations. Accordingly, the calculated spectrum
should have both the influence of anisotropic flow and other sources,
with each probably dominating different scales. This chapter begins
with vertex selection, since it interferes in the final geometry, then we
move to compute the very first power spectra of heavy ion collisions,
each for a centrality class. Following up, we translate the spectrum
into flow coefficients, comparing to Q-cumulants results with and with-
out a pseudorapidity gap. Finally, we check what happens when the
transverse momentum phase space is split into pT < 0.54 GeV and pT >
0.54 GeV, thus uncovering their typical geometries.



5. ANGULAR POWER SPECTRUM OF HEAVY IONS

5.1 Vertex selection

One of the main tasks of the ITS subdetector consists in reconstruct-
ing the collision’s interaction point, also called primary vertex, whose
position is defined here as zvtx. As mentioned in Ch. 4, the algorithm
used for data selection [10] fires solely for charged particles and when
zvtx ∈ (−10,10) cm relative to the detector’s center along the beam direc-
tion z.
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Figure 5.1: Scheme of a heavy ion collision with zvtx = −7.5 cm (a). Dis-
tribution of Nevts according to their zvtx (b).

In Fig. 5.1 (a), a cross section of the ITS inner barrel is roughly de-
picted, as particles are emitted from the collision’s primary vertex (η = 0)
located at zvtx = −7.5 cm. The solid line at z = 0 indicates the mid-point
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5.1. Vertex selection

along the beam axis, in the ITS center, while the dashed ones represent
the detector’s pseudorapidity coverage within |η| < 0.9. However, for
events occurring on the edges, the full length of said phase space is com-
promised. More specifically, for an uniform acceptance in |η| < 0.9, pri-
mary vertices must lie within a length of ±5.3 to z = 0 [79]. Luckily, the
majority of events correspond to the aforementioned condition, as seen
in Fig. 5.1 (b); dashed red lines mark the limit where |η| < 0.9 can be fully
covered.

Let f (i)z (np) be the map of an event (i) whose interaction point zvtx
lies within a certain interval (z − dz/2, z + dz/2), for a chosen dz length
and z position. Then define Fallz (np) as the sum over these maps, sim-
ilarly to Eq. (4.6). Said results are shown in Fig. 5.2 for dz = 2 cm and
events with primary vertices belonging to (8,10) cm, the right-most in-
terval, and (−2,0] cm, which is close to the center. Note the asymmetry
of Fall9 (np) (top), as particles whose polar coordinates approach the mask
edge, θ → 44o, are unaccounted for. In contrast, Fall−1 (np) (bottom) has
the expected characteristics of overlapping heavy ion distributions, with
higher densities towards the edges and smooth azimuth, save for detec-
tor efficiency.

Given that the detector acceptance of events whose primary vertices
lie beyond ±5.3 cm does not correspond to |η| < 0.9, the mixing matrix
W ``′
mm′ should take a different outlook than shown in Fig. 4.3. As a con-

sequence, a`m coefficients for maps with |zvtx| > 5.3 cm will have distinct
distributions compared to the rest. For instance, recall that fully isotropic
maps limited to |η| < 0.9 had only non-zero a`0 modes with ` even. In
the advent of an asymmetric mask, however, the mixing matrix would
change its properties, thus allowing coefficients with ` odd to survive.
This would completely change the average isotropic spectrum in Fig. 4.5.

The Fall−1 (np) map on the bottom of Fig. 5.2 possesses a large scale
geometry characterized by its symmetry around the equator. Based on
this fact and the opposing feature of the top map, it should be interesting
to check the a10 values of their underlying events, since harmonics with
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Figure 5.2: Superposed event maps Fallz (np) for zvtx ∈ (8,10) cm (top)
and zvtx ∈ (−2,0] cm. Maps belong to the 10-20% centrality.

` odd and m = 0 are themselves asymmetric relative to θ = π/2.
Density distributions of |a10|2 are depicted in Fig. 5.3 for events be-

longing to the 10-20% centrality and with primary vertices positions at
zvtx ∈ (8,10) cm (top of Fig. 5.2), zvtx ∈ (−2,0] cm (bottom of Fig. 5.2)
and zvtx ∈ (4,6] cm, a chosen intermediary interval. At first glance, it
is already quite clear that the events with zvtx ∈ (8,10) cm have a large
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Figure 5.3: Density distribution of harmonic coefficient |a10|2 for events
with primary vertices located in three distinct intervals.

scale anisotropy caused by asymmetric hemispheres. The spread out
|a10|2 values up to 0.8 contrast with their counterparts closer to the de-
tector’s center. For zvtx ∈ (−2,0] cm, the distribution has a mean value of
O(10−3), which corresponds to the typical scale of fluctuations pertain-
ing to multiplicity values from the 10-20% centrality, as noted in Ch. 4.
Lastly, zvtx ∈ (4,6] cm is ∼ 65% composed of events with |η| < 0.9, which
can explain the slight deviation is has from the previous case.

It should also be remarked that detector efficiency maps D(np) must
instead be denoted as Dz(np), since the position in θ of its dark patches
change with the events’ interaction point. This effect can be seen in
Fig. 5.2: for example, notice how the spot right below the equator on the
bottom map is touching the lower edge (θ ∼ 136o) of the top one. With
efficiency depending on primary vertex position, the power spectrum
estimation of heavy ion data, specially the normalization by Fallz (np),
must be done for each separate interval in z. Following up, we do cen-
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trality division and apply the method from Ch. 4 to data events with
zvtx ∈ (−4,4] cm, partitioned in widths of dz = 2 cm.

5.2 Power spectrum estimation applied

The ALICE data from [9] and extracted with [10] comprises of
charged particles with 44o . θ . 136o, 0 ≤ φ < 2π and 0.15 < pT <
100 GeV. The focus of this work is to map particle angular coordinates
n̂ = (θ,φ) onto the surface of a sphere, calculate their power spectra and
take the ensemble average. Due to the limited detector coverage, how-
ever, the true underlying spectrum gives place to a pseudo-C`, associated
to the former through a mixing matrix. It is of utmost interest that W ``′

mm′

remains the same for all events, so only primary vertices within ±5.3 cm
should be considered. Furthermore, detector efficiency Dz(np) changes
with the position of zvtx, hence the necessity of estimating 〈Sm,0` 〉 for
each chosen interval in the beam axis.

The choice of dz = 2 cm as the interval width should enable each
Dz(np) to be approximately unique for a given z, while maintaining a
reasonable number of events per bin. Since uniform acceptance within
|η| < 0.9 is desired, only the intervals (−4,2] cm, (−2,0] cm, (0,2] cm and
(2,4] cm will be considered in the following analysis.

Once a vertex interval has been selected, it is necessary to separate
its events into centrality bins using their multiplicities. Recall that im-
pact parameter and number of participant nucleons are directly related,
Additionally their values influence the final particle multiplicity. This
centrality division is shown in Fig. 5.4, where Nevts is plotted as a func-
tion of M for zvtx ∈ (−2,0] cm. The intervals are limited by dashed red
lines and numbered according to their centrality: (1) pertains to the 0-5%
events with highest multiplicity, (2) to the 5-10% with highest M, (3) to
10-20%, (4) to 20-30% and (5) to 30-40%. The last three haveNevts ∼ 8000,
while the first two have Nevts ∼ 4000.
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Figure 5.4: Centrality dependence on multiplicity: (1) 0-5%, (2) 5-10%,
(3) 10-20%, (4) 20-30%, (5) 30-40%.

After fixing zvtx, we focus on a single centrality class in order to pro-
ceed with the power spectrum estimation. Then, the usual first steps
are taken: (i) particles are mapped onto spherical projections with res-
olution Nside = 16, (ii) the resulting fz(np) are summed over, yielding
Fallz (np) = Dz(np)g(np). Following up is (iii) the normalization of event
maps by their sum, f z(np) = fz(np)/Fallz (np), which assigns weights to
pixels according to the vertex detector efficiency Dz(np) and the overall
θ distribution, g(np). The latter should be independent of the choice in
zvtx interval. Moreover, (iv) the spectrum of each f z(np) is calculated for
modes with m , 0 to diminish geometrical effects caused by the W (np)
mask and, lastly, (v) the ensemble average is computed, thus issuing
〈Cm,0` 〉.

The single map normalization by Fallz (np) is depicted in Fig. 5.5 for
an event with zvtx ∈ (−2,0] cm and it belonging to the 10-20% centrality.
Note the grid square which corresponds to the dark patch in the bottom
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Figure 5.5: Single event map fz(np) (top) and its normalized ver-
sion f z(np) = fz(np)/Fallz (np) (bottom); its interaction point lies within
(−2,0] cm.

map of Fig. 5.2: when comparing it between the maps in Fig. 5.5, one
may realize that f z(np) has a deep red spot in this region. It is a con-
sequence of assigning weights to the pixels according to Dz(np). What
is more, the brightness of pixels in f z(np) is more concentrated along
the equator, while for fz(np), it is spread out. Despite that, pixel density
has not changed, as what is zero remains so. This characteristic must
be accounted for when calculating 〈Nm,0

` 〉 for normalized maps whose
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5.2. Power spectrum estimation applied

originals were anisotropic in θ.

Once stages (i-v) have been completed, it is time to estimate the back-
ground spectrum 〈Nm,0

` 〉 connected with the current interaction point in-
terval and centrality. Likewise the case of MC2 (Ch. 4) with non-unitary
detector efficiency, the lack of uniformity in pixel density must be taken
into consideration, since maps are divided by g(np). This procedure goes
as follows: (vi) original event maps fz(np) have their φ coordinates ran-
domized according to a uniform distribution in [0,2π). Consequently,
detector anisotropies are smoothed out, leaving only the θ distribution.
Subsequently, (vii) these resulting events are summed over to extract
g(np). Next, the process in (vi) is repeated with a slight alteration: in-
stead of going through each event once, (viii) they are randomly drawn
by the algorithm and again have their φ values changed, though now
their maps are divided by g(np) to simulate the pixel weight distribution
and density of f z(np). This last step is repeated 106 times. Then (ix) their
spectra are calculated for m , 0 and averaged over, yielding 〈Nm,0

` 〉.

Summing up, (vi, vii) produce g(np), while (viii, ix) compute 〈Nm,0
` 〉.

Results for the latter and 〈Cm,0` 〉 can be seen in Fig. 5.6 for the vertex in-
terval zvtx ∈ (−2,0] cm and 10-20% centrality. Notice how the spectrum
calculated from data stands slightly above its estimated background,
which differs from the behavior of the MC simulations previously stud-
ied. In Fig. 4.10, the resulting MC average spectra seemed to coincide
with the isotropic one for ` ≥ 7, suggesting that deviations from isotropy
at such scales are of very low order in comparison to ` ≤ 6, the region
dominated by vn. Nonetheless, 〈Cm,0` 〉 from Fig. 5.6 has some similar-
ities to the distributions from Ch. 4: the peak at ` = 2, associated with
v2 itself, and prominent values at the other ` ≤ 6 modes, with a more
accentuated bump at ` = 6 than the MC cases.

At last, the background is subtracted from the data spectrum, result-
ing in 〈Sm,0` 〉 = 〈Cm,0` 〉−〈Nm,0

` 〉 for a given vertex interval and centrality
class. The latter respectively correspond to zvtx ∈ (−2,0] cm and 10-20%
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Figure 5.6: Comparison between 〈Cm,0` 〉 calculated from 10-20% data
and the estimated background 〈Nm,0

` 〉 for zvtx ∈ (−2,0] cm.

in Fig. 5.7 (a). Unsurprisingly, modes at ` ≤ 6 have remarkably similar
features to the MC power spectra in the same region. In contrast, MC
values for ` ≥ 7 drop to O(10−5), while for data they are one order of
magnitude larger (refer back to Fig. 4.12).

Steps (i-ix) are repeated for all aforementioned vertex intervals with
width of dz = 2 cm. Due to each final spectrum originating from batches
with distinct Nevts, their weighted average is thus taken, here denoted as
〈Sm,0` 〉z; note the subscript z to indicate the mean spectrum of zvtx inter-
vals. This result is depicted in Fig. 5.7 (b), with the points indicating each
〈Sm,0` 〉 from a fixed zvtx and the lines representing their average 〈Sm,0` 〉z
weighted by the number of events. The standard deviation of the ver-
tices spectra values at each ` are of order O(10−5). Error bars for the total
mean spectrum 〈Sm,0` 〉z are obtained through error propagation of the
individual zvtx spectra; they are also of O(10−5), hence their invisibility.

As a bonus, the whole procedure up until this point was repeated for
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Figure 5.7: (a) Estimated 〈Sm,0` 〉 for zvtx ∈ (−2,0] cm and 10-20% central-
ity. (b) Estimated 〈Sm,0` 〉 for all vertices within (−4,4] cm and dz = 2 cm
(points) in addition to the averages when dz = 2 cm and dz = 1 cm with
zvtx ∈ (−5,5] cm (lines).

events with interaction points within (−5,5] cm separated in intervals
of width dz = 1 cm. Observe in Fig. 5.7(b) how their mean spectrum

85



5. ANGULAR POWER SPECTRUM OF HEAVY IONS

(blue line) coincides with the dz = 2 cm case (dotted line). This result
strengthens the applicability of the method developed in this work.

The vertex averaged 〈S,0` 〉z from Fig. 5.7 (b) is an estimate of the an-
gular power spectrum of the 10-20% most central heavy ion events. The
stages of its calculation can be followed to compute the spectra pertain-
ing to the other centralities shown in Fig. 5.4. The latter’s division is
performed for all four intervals within (−4,4] cm. Then steps (i-ix) are
used to find 〈Sm,0` 〉 for all centralities within each vertex interval. At last,
these final spectra are averaged over zvtx, thus providing the results in
Fig. 5.8.
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Figure 5.8: Power spectra averaged over vertices 〈Sm,0` 〉z for centrality
classes within 0-40%.

At first glance, the spectra in Fig. 5.8 possess the same usual features:
a peak in ` = 2 followed by descending values until a bump in ` = 6.
Then, a damping tail mainly characterizes the higher modes. Addition-
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5.2. Power spectrum estimation applied

ally, a clear spectral hierarchy is observed from the most central events
to more peripheral ones, as 〈Sm,0` 〉z acquires higher values.

The almond-like shape of overlapping nuclei is largely associated
with the elliptic flow coefficient v2 of the Fourier expansion in Eq. (2.3).
Given that events belonging to the lower centrality percentages have a
more spherical form than their counterparts, it is no wonder that the
` = 2 peak becomes more enhanced with peripheral collisions; refer to
the relation in Eq. (4.3) between a`m and vn under a possible pure-flow
distribution. Also, ` = 2 has the highest variation with centrality among
the other modes, as its values spam over one order of magnitude.

All these large scale characteristics strongly indicate the presence of
flow. They resemble the aspects of the MC spectra from Ch. 4 and the
relations between ` modes share similarities with the plot in Fig. 2.8 of
integrated vn as a function of centrality. Specifically, v2 > v3 > v4 and
their values increase from 0-5% to 30-40% most central events, specially
v2.

The angular power spectrum describes correlations of (θi ,φi) pairs
in Fourier space; a sentence from Ch. 3. In other words, it measures
the size of fluctuations for two-particle correlations, since it is the sec-
ond moment 〈a`ma∗`′m′〉 of a distribution f (n̂). Jets, resonance decays
and other phenomena contribute to the two-point function of emitted
hadrons. Due to their small angular structure, the tail at ` ≥ 7 could be
an indicative of their existence. After all, the latter would not appear if
the spectrum was completely dominated by flow, as seen in Ch. 4.

The aforementioned features of 〈Sm,0` 〉z raise the question of whether
one could actually obtain the vn coefficients from the latter and what
is the impact of non-flow phenomena. Furthermore, the mode value at
` = 1 suggests a net dipole asymmetry in the data worth investigating.
These subjects are tackled in the next section, as we translate angular
power spectrum into Fourier flow harmonics.
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5.3 Flow contribution

Results from the previous section strongly indicate that geometries
of different scales are encoded in the angular power spectra of Fig. 5.8
(b). Besides, Monte Carlo simulations from Ch. 4 showed that, in a pure
flow scenario, modes would be the most enhanced for ` ≤ 6, while other
sources of fluctuations could take over for higher multipole values. The
well-studied vn harmonics [35, 36] describe azimuthal anisotropies of the
final hadron distribution, while C`, or 〈Sm,0` 〉, quantifies angular pair
correlations on a sphere. At first glance, these seem to treat the emit-
ted particles from quite distinct perspectives, specially considering their
dimensions. Then, this work’s next objective consists in finding a rela-
tion between these quantities associated with azimuthal and spherical
geometries.

5.3.1 Back to simulations
Take a step back and look again at the distributions from Ch. 4,

fMC1
(n̂) and fMC2

(n̂). Both are factorizable functions which, under the
W (n̂) mask, have associated harmonic coefficients a`m given by Eq. (4.3),
save for their b`m values. These still end up being analogous to Eq. (4.4),
though the integral in θ goes from ∼ 44o to ∼ 136o. In other words, one
should make the substitution g(θ)→W (n̂)g(θ) to get the b`m of interest.

Having established the relation between flow and spherical harmonic
coefficients for the functions at hand, |a`n|2 = |b`n|2v2n, combine it with
Eq. (4.5) and isolate vn to find:

|vn|2 =
2n+1

2
· C

m,0
n

|bnn|2
· |b00|

2

C0
or (5.1)

|vn|2 =
1
|bnn|2

[
2n+1

2
·Cm,0n − 2n− 3

2
· |bnn−2|

2

|bn−2n−2|2
·Cm,0n−2

]
|b00|2

C0
, (5.2)
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5.3. Flow contribution

valid for n = 1,2 and n = 3,4, respectively. The normalization factor
|b00|2/C0 equals one if the integral of f (n̂) over the sphere is set to 4π,
in accordance with the spectra calculated in this work. The expressions
in Eqs. (5.1, 5.2) become larger and larger for higher n, as all b`m modes
with `,m ≤ n may contribute as long as `,m have the same parity.

At this point, it would be a great opportunity to compare this ex-
traction of flow through Cm,0` to other known methods. Due to its re-
liance on computations of particle correlations, the Q-cumulants [13, 42]
method was chosen.

Sets of events were drawn from the following distributions:
fMC1

(n̂) = h(φ), fMC2
(n̂) = g(θ)h(φ) and fD2

(n̂) = D(n̂)g(θ)h(φ). The first
two, MC1 and MC2, were generated for eight centrality classes within
0-40% with intervals of 5%. The one with detector anisotropies D(n̂)
was created only for 0-5%, 10-15% and 35-40%, in addition to being
corrected like Eq. (4.7). They have same input vn values, each increasing
with centrality.

After generating events for each distribution function and centrality
mentioned above, 〈Sm,0` 〉 were calculated from the difference between
ensemble averaged spectra and backgrounds; these estimated for each
centrality class, befitting to the underlying f (n̂). Then, vn for n = 1, · · · ,4
were computed by substituting the corresponding 〈Sm,0n 〉 in Eqs. (5.1,
5.2). As for the Q-cumulants, two-particle correlation functions 〈2〉were
calculated for the simulated azimuthal distributions and their values
were used to extract vn{2}; see Eqs. (2.5) to (2.8).

The results of vn estimation using the power spectrum are indicated
by vn{C`}, while for Q-cumulants with two-particle correlations, the
same are denoted by vn{2,QC}. Both are shown in Fig. 5.9 as a function
of centrality, where the dashed lines correspond to the input values and
"Det." symbolizes the events under corrected MC with non-uniform
detector efficiency. Unsurprisingly, all v2 estimates in Fig. 5.9 (b) are
superposed and, although the results for MC1, MC2 and f D2

(np)
spectra and Q-cumulants fluctuate, they do not differ from each other

89



5. ANGULAR POWER SPECTRUM OF HEAVY IONS

0.015

0.020

0.025

0.030

0.035

0.040

v 1

(a)

Input
MC2: v1{C }
MC1: v1{C }

v1{2, QC}
Det.

0.02

0.04

0.06

0.08

0.10

0.12

v 2

(b)

Input
MC2: v2{C }
MC1: v2{C }

v2{2, QC}
Det.

5 10 15 20 25 30 35
centrality (%)

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

v 3

(c)

Input
MC2: v3{C }
MC1: v3{C }

v3{2, QC}
Det.

5 10 15 20 25 30 35
centrality (%)

0.005

0.010

0.015

0.020

0.025

0.030

v 4

(d)

Input
MC2: v4{C }
MC1: v4{C }

v4{2, QC}
Det.

Figure 5.9: Comparison of vn, n = 1, · · · ,4 for MC distributions calculated
through the power spectrum, vn{C`}, and the Q-cumulants method with
two-particle correlations, vn{2,QC}.

significantly. Given that the chosen distributions are purely dominated
by flow, these coincident values should be expected.

Originally, the centrality classes for data were divided like the MC
simulations above, as seen in [87]. However, the separation in vertex
intervals and the analyses of maps with particles selected according to
their pT values (to be discussed soon) made the enlargement of the cen-
trality percentages necessary.
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5.3.2 Coefficients from data
Let us begin by making the assumption that heavy ion data maps

can be written as fz(np) = Dz(np)g(θp)h(φp), with θp and φp simply
representing a pixelation of functions that are uniform in φ and θ,
respectively. In this scenario, aside from the overall θ distribution,
g(θp), events have no other dependence on the polar angle, making
their anisotropies entirely azimuthal. After normalizing the data maps
by Dz(np)g(θp), their corresponding f z(np) have a resulting average
spectrum 〈Sm,0` 〉 approximately free from Dz(np) and uniform in θ,
since 〈Nm,0

` 〉 compensates for the pixel densities. Additionally, their
vertex average should also share these characteristics. Then, if h(φp)
can be described as a Fourier expansion of flow harmonics, the relation
between 〈Sm,0` 〉z and vn can be given by Eqs. (5.1, 5.2), with b`m as an
integral of W (n̂) over the sphere; g(θ) = 1 in this case.

The previous paragraph relates the same situation as the MC case
with non-uniform detector efficiency tackled in Ch. 4. Its resulting spec-
trum is seen in Fig. 4.15 compared to the expected C

m,0
` with equal φ

dependence and isotropic in θ. Also, its estimated vn are depicted in
Fig. 5.9 as stars and their values do not differ significantly from the other
MC cases or the Q-cumulants calculation.

This translation from angular power spectrum 〈Sm,0` 〉z to az-
imuthal flow coefficients vn{C`} appears in Fig. 5.10 in comparison
to Q-cumulants calculations from two-particle correlations: vn{2} is
done directly through the implementation of Eqs. (2.5) to (2.8), while
vn{2, |∆η| > 1} requires a pseudorapidity gap of |∆η| > 1 to suppress
non-flow effects. The latter is the weighted event ensemble average of
Eq. (2.9). Sub-event A has particles with −0.9 < η < −0.5, while B lies
within 0.5 < η < 0.9.

The difference between vn estimations with and without η gap is ba-
sically due to non-flow effects. For instance, the supposedly observed
dipole in Fig. 5.10 (a) is null for vn{2, |∆η| > 1}, implying that azimuthal
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Figure 5.10: Comparison between vn calculated through the power spec-
trum vn{C`} and Q-cumulants with a pseudorapidity gap vn{2, |∆η| > 1}
and without it vn{2}.

two-particle correlations of the type 〈ei(φ1−φ2)〉 do not relate to a sym-
metry plane Ψ1 and are short-ranged in η. Aside from this expected
discrepancy, vn{C`} stands above them all.

As previously mentioned, computing a power spectrum is measuring
correlations between (θ,φ) (pixel) pairs over the whole sphere. Conse-
quently, small scale structures unrelated to flow contribute to 〈Sm,0` 〉z,
thus increasing vn{C`} at least in comparison to vn{2, |∆η| > 1}. At the
same time, for Q-cumulants without a pseudorapidity gap, the whole
particle distribution is simply flattened along the polar direction. As
a result, all possible azimuthal pairs are considered, analogously to a
spectrum calculation. For this reason,vn{2} and vn{C`} should coincide,
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even in a situation where flow is not the sole contributor to azimuthal
anisotropies. That is, if an event particle distribution can actually be fac-
torized, i.e., f (n̂) = g(θ)h(φ).

More specifically, imagine that for the phase space at hand, or |η| <
0.9, a heavy ion event could be transversely cut at a certain θ value. If
the distribution inφ does not depend on the chosen polar angle, then a`m
should be a product of integrals: in θ, the result is expressed by the b`m
modes mentioned before, while in φ it becomes 〈e−imφ〉. Summing up,
the power spectrum calculation of a function f (n̂) = g(θ)h(φ) comprises
the net expectation value of e−imφ over all possible slices in θ, followed
by taking its variance over m modes 〈a∗`ma`m〉. This is akin to computing
azimuthal two-particle correlations.

The difference between vn results in Fig. 5.10 for vn{2} and vn{C`} sug-
gests that f (n̂) , g(θ)h(φ). Alternatively, one could understand the final
particle distribution as a superposition of maps: one consisting of large
scale geometries, like the almond-shaped overlap region, and another
composed of particle clusters, possibly pertaining to resonance decays,
quantum correlations. In this case, |a`m|2 would receive contributions
not only from each of the aforementioned maps, i.e., |aA`m|

2 and |aB`m|
2,

but also their cross-correlation terms, (aA`m)
∗aB`m and its conjugate; A and

B here represent those distinct maps. This plethora of contributions im-
ply that Eqs. (5.1, 5.2) cannot be applied in the estimation of azimuthal
flow coefficients.

Another way of looking at this discrepancy in Fig. 5.10 is to realize
that the 3-D geometry of non-flow is seen differently through the angular
power spectrum and azimuthal two-particle correlations. On that note,
〈Sm,0` 〉z not only has the influence of primordial lumpiness, but also of
late-stage effects like momentum conservation. Furthermore, global az-
imuthal anisotropies probably dominate 2 ≤ ` ≤ 6, given the similarities
to the MC-spectra, while sources of particle clustering might be respon-
sible for the damping tail at ` ≥ 7. Regarding the relatively high dipole
(` = 1), Q-cumulants calculations with |∆η| > 1 have shown that it is not
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related to directed flow.
At this point, there should be a general understanding on how to

estimate an angular power spectrum of heavy ions as well as which ef-
fects could be responsible for its features. The next step in this investiga-
tion tackles the still-not-covered transverse momentum, where the maps
dealt with so far will be split accordingly.

5.4 Transverse momentum and the spectrum

The overall geometry of the emitted particles changes with their
transverse momentum. Clearly shown by measurements of azimuthal
flow as a function of pT , like in Fig. 2.9. Nevertheless, the analy-
sis so far has only considered the angular coordinates of particles,
while completely disregarding their momenta. It was mentioned
before that the limit imposed on pT for the data set at hand [9] is
0.15 < pT < 100 GeV [10]. Within such wide range, the measured spectra
above may comprise all sorts of effects, like clusters of low-pT particles
originated from hadron decays and high momentum jets.

The study of power spectrum dependence on transverse momentum
follows a rather simple approach: each event is split in two distributions
according to its particles pT coordinates, one side with pT > 0.54 GeV
and another with pT < 0.54 GeV. This choice of interval results in both
halves having approximately the same multiplicities, which is the only
way to maximize the number of particles for these newly created sub-
events. Besides that, making more partitions in pT could compromise the
spectrum estimation, since low event multiplicity increases the number
of unfilled pixels and, consequently, the uncertainties on a`m calculation.

As usual, a vertex interval is selected along with a centrality class per-
taining to it. At this point, the event is divided into the aforementioned
transverse momentum ranges. Then, each of the formed sub-events fol-
lows steps (i-ix) separately, yielding two averaged angular power spec-
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tra, 〈Sm,0` 〉Uz for pT > 0.54 GeV and 〈Sm,0` 〉Lz for pT < 0.54 GeV. It should
be remarked that U and L stand for upper and lower pT bounds, respec-
tively. Also, the spectra are averaged over all vertex intervals.

In this new scenario, the original event map is simply the superpo-
sition of two distinct angular distributions, i.e., f (np) = fU (np) + fL(np),
representing the maps for pT > 0.54 GeV and pT < 0.54 GeV, respec-
tively. As a consequence, a`m will also be a sum of the spherical coeffi-
cients of each pT -bound map. At any rate, what matters in the power
spectrum calculation is the absolute square value of the harmonics:

|a`m|2 = |aU`m|
2 + |aL`m|

2 + (aU`m)
∗ · aL`m + aU`m · (a

L
`m)
∗. (5.3)

The terms in Eq. (5.3) can be averaged over m and divided by 2` +
1. This final expression shows that the full spectrum presented in the
sections above receives contributions from 〈Sm,0` 〉Uz, 〈Sm,0` 〉Lz as well as
a cross term between both sub-event maps. For estimating the latter,
only stages (i-v) are necessary, i.e., there is no "cross-background". Since
the multiplicity corrections for each pT -bound map are independent of
each other, their associated cross terms are null.

Results for the pT > 0.54 GeV and pT < 0.54 GeV spectra, in addi-
tion to their cross term are depicted in Fig. 5.11 for the 10-20% centrality
class. Notably, there is a change in dominance from 〈Sm,0` 〉Uz to 〈Sm,0` 〉Lz
after ` = 4. This is a consequence of large scale geometries tending to
become more accentuated at higher pT , i.e., of anisotropies quantified
by vn generally increasing with transverse momentum. What it more,
the peaks in ` = 2,6,10 for 〈Sm,0` 〉Uz are sharper in comparison to the
spectrum at full pT range in Fig. 5.7 (b). On the other hand, 〈Sm,0` 〉Lz has
an ever decreasing flat tail from ` = 3. If particles with pT < 0.54 GeV
were fully isotropic, the spectrum would have much lower values and
large uncertainties, due to its closeness to the background. Therefore,
the composing distributions of 〈Sm,0` 〉Lz are probably made of tiny parti-
cle clusters with an overall degree of elliptic eccentricity, hence the high
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Figure 5.11: Comparison between spectra for the lower and upper pT
intervals and their cross term from Eq. (5.3).

` = 2.
Altogether, particles with pT < 0.54 GeV form small scale structures,

while the ones with pT > 0.54 GeV make up the bulk of large scale
anisotropies. As for the cross term, despite its features not being well
understood, its existence demonstrates that particles from the upper
and lower pT bounds are correlated to each other, i.e., not independent,
which is expected since both sides originate from the same heavy ion
collision and underwent collective expansion. Lastly, if the full pT -range
〈Sm,0` 〉z is to be recovered, the spectra in Fig. 5.11 should be added and
divided by four, reason being that in Eq. (5.3) the cross term contributes
with a weight of two.

Akin to the spectrum within full transverse momentum phase space,
we follow up by verifying how 〈Sm,0` 〉Uz and 〈Sm,0` 〉Lz change with cen-
trality. The results are displayed in Fig. 5.12 (a) and (b), respectively.
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Figure 5.12: Spectra of distributions within pT > 0.54 GeV (a) and pT <
0.54 GeV (b) as they change with centrality.

Overall, the spectral hierarchy remains, with values increasing as colli-
sions become more peripheral. As discussed before, the main cause are
the initial anisotropies arising when the nuclei first interact. Next, we
tackle each pT interval separately and comment on their differences to
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〈Sm,0` 〉z.
For particle distributions with pT > 0.54 GeV, the spectrum features

are much sharper at ` ≤ 6, while at higher ` they seem to become approx-
imately constant. This plateau means that the size of fluctuations is not
changing as angular distances decrease. The method could have reached
its limit for ` > 10 in this particular case. Further, the peaks at ` = 10
were barely discernible in 〈Sm,0` 〉z and now appear more prominently. A
quick calculation of vn{C`} turned out in the same way as Fig. 5.10 when
compared to Q-cumulants. Since phenomena unrelated to flow are still
present in the current phase space, this result is expected.

Moving to the other side where pT < 0.54 GeV, the damping tails
become more slanted than in 〈Sm,0` 〉z. The peak in ` = 6 has basically
merged with the other modes. Still, the peak at ` = 2 remains, except for
0-5%. Its presence suggests that low momentum particles are arranged
into the elliptic structure characteristic of the overlapping region. More-
over, ` = 1 standing above ` = 2 for 0-5% further supports low-pT parti-
cles having a geometry associated with local phenomena, as the almond-
shape became suppressed.

The tails of 〈Sm,0` 〉Lz seem to decay with a power law so, out of curios-
ity, a fit to the function Pow(`) =A · `−γ was performed for modes within
3 ≤ ` ≤ 20 on the spectra of all centralities. SinceA is just a scaling factor,
only the exponent γ is plotted as it changes with centrality; see Fig. 5.13.
Since γ increases with centrality percentile, the size of fluctuations de-
creases faster for peripheral centralities in comparison to central ones.
This could be explained through rarefaction of the medium: a domino
effect of interactions is more probable in a denser system, thus creating
a plethora of particle clusters with all sorts of sizes. Peripheral collisions
would return less clusters, so its tail would dampen faster.

Taking momentum conservation to be the emission of particles on
opposite sides of a sphere, one can see through spherical harmonics Y`m,
that only ` even possess such symmetry. Consequently, the resulting
spectrum would have enhanced even modes. This characteristic can
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Figure 5.13: Power law exponent γ as a function of centrality.

be seen slightly in 〈Sm,0` 〉Lz for the 30-40% and 20-30% centralities in
Fig. 5.12 (b). Their sparsity allows for the particles to travel without
much medium interaction.

All data spectra exhibit a relatively high dipole moment (` = 1), no
matter the centrality. When separating the transverse momentum phase
space, the ` = 1 sit quite close to each other, with pT > 0.54 GeV slightly
higher; see Fig. 5.11. This global geometry is connected to Y11 and Y1−1
which indicate net asymmetry in φ. Since not all particles can be ac-
counted for due to limited detector acceptance, that could be the cause
for such enhancement. A single emitted jet while its partner got swal-
lowed by the medium also contributes to the dipole.

These pT spectra are more extreme versions of the full one: with
〈Sm,0` 〉Uz having rather accentuated peaks and 〈Sm,0` 〉Uz a more oblique
tail. They show that the geometry of distributions change with trans-
verse momentum. For the higher pT interval, primordial anisotropies
associated with vn dominate, as it is composed by particles that man-
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aged to escape after expansion without much interaction. In contrast,
low pT distributions are mainly characterized by non-flow effects, with
their typical sizes decreasing with smaller angular scale.

Given the results in this chapter, the method developed for power
spectrum estimation seems to have been successful. We refer to the re-
sulting 〈Sm,0` 〉z in Fig. 5.7 (b) when different interval widths, dz = 2 cm
and dz = 1 cm, were chosen, and the use of Eq. (5.3) to recover the afore-
mentioned spectrum. In light of these outcomes, we saw that 〈Sm,0` 〉z
encodes a plethora of geometries which arise from the collisions of nu-
clei and their collective expansion. From effects of azimuthal flow to mo-
mentum conservation and hadron decays, among possible others. The
angular power spectrum also sees these structures differently than two-
particle azimuthal correlations and further suggests that an event de-
scribed by f (n̂) cannot easily be decomposed into a product g(θ)h(φ),
implying that what happens along rapidity might not be so trivial after
all.
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6Conclusion

“With magic, you can turn a
frog into a prince. With science,
you can turn a frog into a Ph.D
and you still have the frog you
started with."

— Terry Pratchett, The
Science of Discworld

This work tackled the anisotropies found in particles emitted from heavy
ion collisions as a sum of different spherical geometries Y`m. The lat-
ter’s mean contributions at each ` were readily quantified by the angular
power spectrum. The diversity of two-particle correlation sources imply
that 〈Sm,0` 〉z encodes a plethora of geometries. This final chapter starts
by highlighting the main features found in the full phase space spectra
and in the ones pertaining to different pT intervals. Secondly, 〈Sm,0` 〉z is
discussed in comparison to other measurements of event anisotropies,
most of them mentioned in Ch. 2. Finally, the limitations of the analysis
are discussed, as well as its future prospects.



6. CONCLUSION

6.1 Highlights

Even before spectra were corrected by 〈Nm,0
` 〉, their most striking

characteristic was already in full view: the peak at ` = 2; Fig. 5.6. This
enhanced quadrupole mode is followed by decreasing 〈Sm,0` 〉z until the
second peak at ` = 6. From this point on the power spectrum values
become smaller with higher `. In addition, a dipole ` = 1 comparable to
fluctuations at ` = 3 is observed; see Fig. 5.7.

There is a hierarchy of centralities when it comes to the resulting
spectrum: 〈Sm,0` 〉z values increase as collisions become peripheral. The
same aforementioned features are present in all spectra, with the ex-
ception of 0-5%. In this case, the peak at ` = 6 is non-existent. Fur-
thermore, the ratio of 〈Sm,02 〉z to other modes for the 0-5% spectrum is
approximately half of that same ratio for 10-20%, 20-30% and 30-40%.
The 〈Sm,0` 〉z spectra in Fig. 5.8 start decreasing at the same angular scale,
though the size of fluctuations varies.

When the transverse momentum phase space was divided, the typi-
cal anisotropies pertaining to each side of the interval came to light. In
Fig. 5.11 both spectra retain the peak at ` = 2 and have close dipole val-
ues. At the same time, the fluctuations of 〈Sm,0` 〉Uz for pT > 0.54 GeV
dominate at ` ≤ 4, with the opposite happening for ` ≥ 5. The spectrum
from the upper pT -bound has peaks also at ` = 6 and ` = 10, then it seems
to flat out for ` ≥ 11. On the other hand, 〈Sm,0` 〉Lz differs more from the
full-pT spectrum than its counterpart: from ` = 3 it has a damping tail
decaying with a power law.

Turning to the variation of 〈Sm,0` 〉Uz and 〈Sm,0` 〉Lz with centrality, the
hierarchy is present in both, as well as the ` interval that each dominate.
Looking at 〈Sm,0` 〉Uz in Fig. 5.12 (a), the 0-5% spectrum now has a peak
at ` = 6. Meanwhile, the 30-40% spectrum seems to have an additional
peak at ` = 14. In spite of that, all spectra seem to become approximately
flat for ` ≥ 11. In the case of 〈Sm,0` 〉Lz, the dipole surpasses ` = 2 for 0-
5%. The spectra for 20-30% and 30-40% display a relative enhancement
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of even modes from ` = 6 until ` = 12 and ` = 14, respectively. All
tails start at ` = 3 and fit Pow(`) ∝ `−γ , with γ linearly increasing with
centrality percentile.

In the subsequent section, the possible reasons for such features will
be discussed alongside previous observations of anisotropies in heavy
ions.

6.2 Discussion

The spectra obtained from Monte Carlo simulations in Ch. 4 possess
striking similarity to 〈Sm,0` 〉z for ` ≤ 6. In light of the input vn values from
Table. 4.1 and the expressions for their harmonic coefficients |a`n|2 ∝ v2n,
one may conclude that ` = 2 becomes enhanced due to v2. Applying this
statement to data, 〈Sm,0` 〉z has an imprint from the almond-shaped nuclei
overlap region. Additionally, with 3 ≤ ` ≤ 6 relatively higher than other
modes, the spectrum could encompass other azimuthal anisotropies re-
lated to flow.

The Fourier harmonics vn are calculated from 〈Sm,0` 〉z under the as-
sumption that the underlying distribution function is of the type f (n̂) =
g(θ)h(φ), with vn and Ψn approximately constant within |η| < 0.9. Given
that the power spectrum quantifies the (θ,φ)-pair correlation as a func-
tion of angular scale, one would expect that vn{C`} ≈ vn{2}. However,
Fig. 5.10 contradicts the previous sentence, suggesting that 〈Sm,0` 〉z tack-
les anisotropies differently than solely azimuthal two-particle correla-
tions. Likewise, the discrepancy between vn breaks the initial assump-
tion on f (n̂).

What the comparisons of flow estimation did not subdue was the
centrality hierarchy of vn. Similarly to the ALICE results in Fig. 2.8 (a),
〈Sm,0` 〉z as well as its associated flow values increase from 0-5% to 30-
40%. Furthermore, 〈Sm,02 〉z > 〈Sm,03 〉z > 〈Sm,04 〉z, akin to what happens
with vn{2} and vn{2, |∆η| > 1}.
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In comparison to how flow coefficients change with pseudorapidity,
it should be reminded that 〈Sm,0` 〉z does not apply θ-gaps. As a result, it
tackles longitudinal anisotropies differently than the vn(η) calculations
in Fig. 2.10. At the same time, if Ψn(η) it could explain why the vn
extraction through power spectrum was distinct from the two-particle
correlation Q-cumulants. However, CMS measurements were done for
centralities from 55% to 67%, much beyond our scope.

Differential flow vn(pT ) has an overall tendency to increase with
transverse momentum until a certain value, see Fig. 2.9, its damping
occurring due to shear viscosity. Accordingly, for pT < 0.54 GeV the
influence of azimuthal flow harmonics dwindles significantly. This
establishes the dominance of other two-particle correlation sources in
〈Sm,0` 〉Lz, making the spectra in Fig. 5.12 (b) measurements of non-flow
fluctuations. The relative enhancement of even modes in 20-30% and
30-40% suggests that Y`m with even ` have larger contribution than the
others. The typical shape of these Y`m is characterized by symmetries
between diametrically opposite points. Altogether, the bumps in
6 ≤ ` ≤ 12 (or 14, if 30-40%) could indicate momentum conservation.

In opposition to the spectrum discussed above, 〈Sm,0` 〉Uz is probably
more influenced by fluctuations from initial conditions. At large scales
(` ≤ 6), its values are overall higher in comparison to the full-pT spec-
trum. Looking back at the angular two-particle correlation functions
C(∆φ,∆η) in Fig. 2.11, small range (∆φ,∆η) ≈ 0 correlations are also at
play for pT > 0.54 GeV. Notice how the peak at small angular separation
increases with centrality percentile. This provides a reasonable explana-
tion for the 〈Sm,0` 〉Uz values when it becomes flat (` ≥ 11). Curiously, the
Fourier transform of a Dirac delta is a constant. Given that the power
spectrum itself is the Fourier transform of the correlation function, then
it makes sense that the spectra would flatten out with smaller scales.

All the observed spectra have a relatively high dipole, comparable to
the modes dominated by primordial fluctuations. This net asymmetry in
the azimuthal direction is also observed by vn{2}. Still v1{2, |∆η| > 1} = 0,
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so this anisotropy is not related to Ψ1, and it is short-ranged in η (θ).
Considering the configuration of C(∆φ,∆η), this asymmetry could be
caused by the peak in (∆φ,∆η) ≈ 0 in opposition to the far side ridge
when ∆η ≈ 0. There is an abundance of short-range (θ,φ) correlations
relative to flow. Also, back-to-back jets are not necessarily diametrically
opposed, which could add to 〈Sm,0` 〉z.

This last paragraph traces a parallel between the CMB damping tail
and the heavy ion one for pT < 0.54 GeV. The CMB spectrum decreases
with ` & 800, because the scale of these fluctuations is comparable to
the mean free path of photons; from Sec. 3.3. Diffusion, in turn, equal-
izes temperatures and dampens anisotropies. The lack of structure as-
sociated with flow in 〈Sm,0` 〉Lz does indicate smoothed out primordial
anisotropies. Stretching the analogy, the spectrum would be damped
on scales smaller than the mean free path of low momentum hadrons.
Such scales seem to be at ` = 3, associated with an angular separation
of ∼ 60o. In the end, these statements are mere speculation and further
investigations are necessary.

6.3 Shortcomings and future prospects

One of the main limitations of angular power spectrum estima-
tion lies in the event multiplicities. As the latter decreases, maps
have less filled pixels, thus making necessary to lower the resolution.
Consequently, a`m calculations become less accurate and precise. The
limitation imposed by multiplicity constrains the following analyses
of 〈Sm,0` 〉z: high transverse momentum pT > 2 GeV, different particle
species (with the possible exception of pions) and p-Pb and p-p collision
systems. Precisely due to multiplicity limitations on the aforementioned
analyses, separating the causes of anisotropies could prove to be
challenging.

As means of enriching this study, the complete analysis should be ap-
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plied to a 3+1-D heavy ion model. A Multi-Phase Transport (AMPT) [91]
model would be a viable first option, since it runs faster than hydro-
dynamics 3+1-D. An evaluation of the ensemble averaged |a`m|2 could
also shed light on the contribution of different spherical harmonics to the
anisotropies. They could be corrected by multiplicity through the sub-
traction of a mean |n`m|2, these being the coefficients of 〈Nm,0

` 〉. Another
possible line of investigation could be the pT cross term from Eq. (5.3),
since its implications are not fully understood beyond the recovery of
the full-pT spectrum.

The quark-gluon plasma production at colliders is often linked to the
early universe after inflation. Curiously, the typical scales of anisotropies
in heavy ions are much larger (` < 20) than the CMB ones (` > 100), in
spite of the QGP size in comparison to the universe at recombination.
The peaks of the heavy ion spectrum indicate the initial almond-like ge-
ometry, while the CMB peaks provide information on the curvature of
the universe and matter densities.
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