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Abstract

Atomic clocks have revolutionized the world of metrology since their first demon-
stration in 1955. These frequency measurement devices have led to the possibility
of fast communications and computation technologies, navigation systems such as
the GPS, and a wealth of fundamental applications that continue to push forward
physics. The enormous potential allowed by using atomic clocks continues to moti-
vate their further development and improvement. Atomic clocks have moved from
room-temperature samples of atoms to laser-cooled atoms, and are now moving
from microwave to optical transitions in the state-of-the-art systems. The further
improvement of optical atomic clocks rests on incorporating new techniques, often
borrowed from the world of quantum optics. Here we investigate two approaches
to optical atomic clocks inspired by spectroscopy and cavity quantum electrody-
namics (CQED). These approaches both promise the possibility of continuous clock
operation, and seeks to resolve some of the current limitations of atomic clocks.

The first approach relies on cavity-enhanced spectroscopy of cold strontium
atoms using the Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular
spectroscopy (NICE-OHMS) method. This method is a passive interrogation of the
atoms as in current optical atomic clocks, but with a significantly altered measure-
ment method. We investigate the dynamics of the system and quantify the pertur-
bation by the optical cavity. The method uses atomic phase-shift-measurements,
and exploits this signal directly as an error-signal in order to stabilize the frequency
of the probing laser. The optical cavity is seen to distort the dispersion feature
when the atom number increases above a certain threshold, and the consequences
for a frequency lock are analyzed. Theoretical predictions of the obtainable laser
linewidth in the mHz range is shown and a preliminary frequency lock is realized.

The second approach relies on the same physical system, but is operated in a
fundamentally different way. Rather than using the atoms as a passive reference
here we seek to have the atoms emit lasing light directly on a narrow atomic
transition. This is done within the cavity mode analogously to a traditional laser, and
constitutes an active approach to the optical atomic clock. The system is operated
on the limit of the so-called bad-cavity regime. In this regime superradiant lasing
becomes possible, where atomic dipoles synchronize through the cavity mediated
coupling, and can emit coherently into the cavity mode. Characterization of the
resonant exchange of excitations in the atom-cavity system is performed, and the
experiments are shown to exhibit excellent agreement with our theoretical model
and simulations. The spectral behavior of the emitted light is analyzed, and an
evaluation of the frequency stability is performed. This shows the road for the
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ABSTRACT iii

future development of active optical clocks in the form of superradiant lasers – a
road that is already being pursued in order to realize a continuously lasing system.

We also present recent developments on two state-of-the-art optical lattice clocks
at the U.S. National Institute of Standards and Technology NIST, based on ytterbium
atoms. The Yb optical lattice clocks show excellent performance in the three main
figures of merit for atomic clocks: accuracy, stability and reproducibility. Record-
breaking performances in all aspects are reported, and the resulting consequences
for a future change of the SI definition of the second is briefly discussed. The
clocks show accuracy that permits determination of the gravitational potential to
an accuracy better than the current possibilities with GPS systems. This marks
the era where atomic clocks are becoming one of the most precise way to measure
absolute gravitational potential.



Resumé

Siden atomure blev opfundet i 1955 har de revolutioneret den moderne metrologi-
verden. De har muliggjort udviklingen af hurtig telekommunikation, navigation-
ssystemer såsom GPS, samt et væld af fundamentale undersøgelser der stadig driver
fysikken fremad. Det store potentiale som brugen af atomure medfører, betyder
også at interessen i deres fortsatte udvikling er stor. Atomure er gået fra at bruge
varme atomer til laser-kølede atomer, og fra at være baseret på mikrobølgesignaler
til at bruge optiske signaler i de bedste nutidige ure. Den videre udvikling af ato-
mure kræver nye teknikker, som ofte lånes fra kvanteoptik. I denne afhandling
undersøger vi to tilgange til optiske atomure som er baseret på spektroskopi og
kavitetskvanteelektrodynamik (CQED). Disse tilgange lover både muligheden for
kontinuære målinger af uret frekvens, og sigter samtidig mod at løse nogle af de
begrænsninger som moderne atomure møder.

Den første tilgang er baseret på kavitetsforstærket spektroskopi af kolde stron-
tiumatomer og bruger en metode kaldet støjimmun, kavitetsforstærket, optisk,
heterodyn molekylær spektroskopi (NICE-OHMS). Ligesom nuværende optiske
atomure er det en teknik der benytter atomerne som passive elementer, men måler
på en væsentligt anderledes måde. Vi undersøger dynamikken i systemet og re-
degør for den korrektion af dets opførsel som den optiske kavitet resulterer i.
Metoden bruger fasemålinger af atomerne og bruger dette signal direkte til at låse
frekvensen af en målelaser. Vi finder at kaviteten forvrænger det målte dispersion-
ssignal når atomtallet overstiger en vis terskel, og analyserer konsekvenserne for
en frekvenslås. Vi viser teoretiske forudsigelser om en potentiel laserliniebredde i
mHz-regimet, og realiserer en præliminær frekvenslås.

Den anden tilgang baserer sig på det samme eksperimentelle fysiske system,
men fungerer på en fundamentalt anderledes måde. Frem for at bruge atomerne
som en passiv reference, forsøger vi at få dem til at udsende laser lys direkte på en
smal atomar overgang. Laserlyset udsendes i kavitetsfeltet som i en klassisk laser,
og det resulterer altså i en version af atomuret, hvor atomerne aktivt genererer
det lys der bruges. Vi benytter systemet på grænsen af bad-cavity regimet, hvor
superradiant lasing bliver muligt. Denne form for lasing baserer sig på synkro-
niserede dipoler som interagerer gennem kavitetsfeltet, og sidenhen kan udsende
lys kohærent in i kaviteten. Vi karakteriserer den resonante ombytning af energi
mellem atom og kavitet og viser at eksperimentet og vores teoretiske simulation
stemmer overordentligt godt overens. Vi karakteriserer spektret af den udsendte
lys, og måler frekvensstabiliteten. Denne del vise vejen for den videre udvikling af
aktive atomure baseret på superradiente lasere – en retning vi allerede følger for at
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realisere et kontinuært lasende system.
Vi præsenterer også nylig udvikling af to af verdens bedste optisk-gitter atom-

ure med ytterbium atomer på U.S. National Institute of Standards and Technology
(NIST). Urene viser fremragende opførsel i de tre centrale karakteristika for ato-
mure: Nøjagtighed, stabilitet og reproducerbarhed. Rekordtal i alle parametre
vises, og konsekvenserne for en fremtidig omdefinition af SI-sekundet diskuteres
kort. Atomurene tillader måling af jordens tyngdepotentiale med nøjagtighed som
er bedre end det er muligt med GPS-systemer. Dette markerer tidspunktet hvor
atomure er blevet et af de mest præcise metoder til at måle gravitationsfeltet.



Contents

Preface and publications viii

1 Frequency references and atomic clocks 1
1.1 Stability and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Optical frequency references . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Superradiant optical clocks . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction to cold atoms in cavities 11
2.1 Transitions of strontium . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Atoms and cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Cold atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Experimental systems 23
3.1 Atom cloud machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Reference lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 NICE-OHMS 39
4.1 Saturated spectroscopy in a cavity . . . . . . . . . . . . . . . . . . . . 40
4.2 NICE-OHMS detection scheme . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Classical theory of cavity interaction . . . . . . . . . . . . . . . . . . . 45
4.4 Atom-field interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Beyond the linear regime . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Frequency stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 A pulsed laser in the crossover regime to superradiance 59
5.1 Gain in an unconfined cold ensemble . . . . . . . . . . . . . . . . . . . 60
5.2 Atom-cavity interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Lasing pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Lasing threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Time-evolution of the lasing pulses . . . . . . . . . . . . . . . . . . . . 73
5.6 Seeded lasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Frequency stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Ytterbium optical lattice clocks at NIST 87
6.1 Electronic sideband locking to a multi-color cavity . . . . . . . . . . . 90
6.2 Lattice laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



6.3 BBR shift from localized heating in a window . . . . . . . . . . . . . . 93
6.4 DC Stark shift measurement and cancellation . . . . . . . . . . . . . . 95
6.5 Frequency evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and outlook 103
7.1 Prospects for a NICE-OHMS clock . . . . . . . . . . . . . . . . . . . . 103
7.2 Prospects for a superradiant clock . . . . . . . . . . . . . . . . . . . . 104

A Design details for a continuous cold-atom machine at NBI 107
A.1 Oven design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2 MOT coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.3 Interference filter laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.4 Some cavity designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B Environmental noise 119
B.1 Vibration measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Acoustic measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C Included papers 123
Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser

stabilization [99] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Towards passive and active laser stabilization using cavity-enhanced atomic

interaction [98] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Lasing on a narrow transition in a cold thermal strontium ensemble [100] 141

Acknowledgments 151

List of Figures 153

List of Tables 155

Bibliography 157

vii



Preface and publications

This thesis presents some of the work performed while I was a PhD Fellow at
the Niels Bohr Institute, University of Copenhagen. Most of my work has been
focused on experiments with cold strontium atoms. The atoms are trapped in an
optical cavity, with the purpose of allowing novel approaches to highly stable fre-
quency references and atomic clocks. I have had the pleasure of supervising and
co-supervising four master students, as well as a number of bachelor students and
smaller student projects. The experimental work in the laboratory was compli-
mented with acting as a teaching assistant in the bachelor courses optics and atomic
physics during 2015 and 2016. I have had the pleasure of attending one or two
conferences every year both as a speaker and to present posters. Public outreach
has included general talks on the possibilities of atomic clocks, participation in a
podcast series1.

Initial work in my PhD centered on the NICE-OHMS approach to dispersive
measurements on a cold sample of strontium atoms. This work is a continuation of
the investigations made during my masters thesis [18], [19], [97]. We give a theoret-
ical description of the experimentally observed highly nonlinear dispersion signals,
and present prospects and limitations for a laser stabilization scheme based on this
approach in [99]. This work is presented in chapter 4. Later my focus changed
towards the possibility of using our thermal ensemble of atoms to generate super-
radiant lasing directly on a forbidden transition in strontium. This was realized
and presented in [100] along a numerical model and simulations of the system that
allows significant insights into the velocity-dynamics of the atoms. A subsequent
publication on the spectral properties of this system is currently under preparation.
Work on superradiance in the system is presented in chapter 5.

I have had the opportunity to take part in the application process for several EU
grants, of which we are currently participating in four. Like my own work these
research projects follow the idea of using our system as a passive reference, and
subsequently to produce superradiant lasing. In the EURAMET project USOQS2

and the QuantERA project Q-Clocks3 we collaborate with metrological institutes
in Europe, and aim to realize a continuous version of our passive cold-atom fre-
quency stabilization and investigate the possibilities of superradiance. The work
on superradiant lasing has resulted in a cross-European collaboration with the

1Henrik Prætorius, ”Tid er relativ: Din overlæbe er ældre end din under-
læbe.”, Den Nysgerrige Jordbo, January 18, 2019. URL: http://henrikpraetorius.dk/
check-min-podcast-den-nysgerrige-jordbo

2Ultra-Stable optical Oscillators from Quantum coherent and entangled Systems
3Cavity-Enhanced Quantum Optical Clocks
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iqClock4 consortium https://www.iqclock.eu/ as part of the EU quantum flag-
ship. Through this consortium we are now collaborating on both experiments and
theoretical investigations with several other European universities. Recently a sup-
porting International Training Network (ITN) proposal to the iqClock consortium
was accepted – the MoSaiQC5 collaboration. This will allow the initial steps taken in
this thesis to lead on to improved understanding and performance of such systems.

During my PhD I spent 5 months as a guest researcher at the U. S. National
Institute of Standards and Technology (NIST) in Boulder, CO in USA with the
group of Andrew D. Ludlow. I had the opportunity to work on the two Yb optical
lattice clocks there, and be part of the day-to-day research. I was quickly allowed
to be part of a number of investigations on the clocks. I have attempted to give
a cursory overview of this work in chapter 6, but have left the main focus of this
thesis to be on the work conducted in Copenhagen. During my time at NIST I was
involved in the publication of [4], [70], [71], [123], [124].

My PhD work has resulted in the following papers:

Publications
1. S. A. Schäffer, B. T. R. Christensen, M. R. Henriksen, and J. W. Thomsen:

Dynamics of bad-cavity enhanced interaction with cold Sr atoms for laser stabilization,
Physical Review A, 96, 013847, (2017).

[99] — We investigate the dispersive response of cold strontium atoms
coupled to an optical cavity mode. The full dispersive lineshape is seen to
be heavily modified by the cavity, in a highly nonlinear way that is then
explained theoretically. The potential of the system for laser frequency sta-
bilization is investigated and the locking bandwidth limitations imposed
by the distortion of the dispersion signal are discussed.
I performed the experiments, analyzed the data and was the main author
of the document.

2. S. A. Schäffer, B. T. R. Christensen, S. M. Rathmann, M. H. Appel, M. R.
Henriksen, and J. W. Thomsen: Towards passive and active laser stabilization
using cavity-enhanced atomic interaction, J. Phys.: Conf. Ser. 810, 012002, (2017).

[98] — We present the prospects of using a simple cold strontium atom
system for novel atomic clocks in either passive, dispersive measurements
or active lasing configurations.
The paper is based on an invited talk about my ongoing research at the
time. I was the main author of the manuscript.

3. J. Yao, J. Sherman, T. Fortier, J. Yao, T. Parker, J. Levine, J. Savory, S. Romisch,
W. McGrew, X. Zhang, D. Nicolodi, R. Fasano, S. Schäffer, K. Beloy, and
A. Ludlow: Progress on optical-clock-based time scale at NIST: Simulations and
preliminary real-data analysis, Navigation, 1-8, (2018).

[124] — Minor contributions — Simulations of the effect of incorporating
an intermittently running optical atomic lattice clock into a real time scale,

4integrated quantum Clock
5Modular Systems for Advanced Integrated Quantum Clocks
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as well as analysis of the NIST Yb optical lattice clock performance in such
a setting.
I worked on and operated the atomic clock for the time-scale.

4. K. Beloy, X. Zhang, W. F. McGrew, N. Hinkley, T. H. Yoon, D. Nicolodi, R.
J. Fasano, S. A. Schäffer, R. C. Brown, and A. D. Ludlow A Faraday-shielded,
DC Stark-free optical lattice clock, Physical Review Letters, 120, 183201 (2018).
Journal cover photo.

[4] — A presentation of methods to map out and compensate DC stark
shifts on the frequency of an atomic clock transition. We show the effec-
tiveness of a Faraday-shield in reducing the fractional frequency shift and
its uncertainty to below 10−19.
I worked on the experimental setup, recorded data, and was part of the
experimental discussions. I took part in the manuscript iteration process.

5. M. Tang and S. A. Schäffer: Det aktive atomur – en laser i sin reneste form,
KVANT, 4 (2018)

[109] — A presentation of the concept of an active atomic clock, its
working principle and our approach to realizing it.
I performed the experiments, discussed the data analysis and wrote
the paper alongside MT.

6. W. F. McGrew, X. Zhang, , R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R.
C. Brown, N. Hinkley, G. Milani, M. Shioppo, T. H. Yoon, and A. D. Ludlow
Atomic clock performance enabling geodesy below the centimetre level, Nature, 564,
87–90 (2018)

[70] — We show excellent performance of an Yb optical lattice clock in
terms of frequency stability, accuracy, and repeatability. The uncertainty
budgets for the optical Yb lattice clocks at NIST, Boulder are presented,
and we discuss their sensitivity to gravitational redshift. This sensitivity
renders the clocks more precise than canonical approaches to measuring
the height relative to the Geode.
I worked on the experimental setup, performed measurements, and con-
tributed to the evaluation of the frequency uncertainty. I took part in the
manuscript iteration process.

7. W. F. McGrew, X. Zhang, , R. J. Fasano, D. Nicolodi, K. Beloy, H. Leopardi,
J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, S. Römisch, C. W. Oates, T.
M. Fortier, T. E. Parker, and A. D. Ludlow Towards the optical second: verifying
optical clocks at the SI limit, Optica, 6, 4, 448-454 (2019)

[71] — An absolute frequency measurement of the optical Yb lattice clocks
at NIST, Boulder is presented. The most accurate measurement to date.
Through previous frequency ratio measurements this work allows consis-
tency checks on a number of frequency measurement ”loops”. We also
set limits on the drift and coupling to gravity of the electron-proton mass
ratio.
I worked on the experimental setup and performed measurements.
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Under review
In addition the following publications have been submitted, but are not published
at the time of writing:

1. S. A. Schäffer, M. Tang, M. R. Henriksen, A. A. Jørgensen, B. T. R. Christensen
and J. W. Thomsen: Lasing on a narrow transition in a cold thermal Sr ensemble,
Under review with Physical Review A (2019).

[100] — Experimental realization of a superradiant lasing pulse in the
crossover regime between the good and bad cavity limit. Numerical
simulations of the system are presented and seen to agree very well with
the experiment. The theoretical description also permits an investigation
of the velocity-dynamics of the thermal ensemble of atoms during lasing.
I designed the experimental approach, recorded and analyzed data. I was
the main author of the manuscript.

2. J. Yao, J. Sherman, T. Fortier, H. Leopardi, T. Parker, W. McGrew, X. Zhang,
D. Nicolodi, R. Fasano, S. Schäffer, K. Beloy, J. Savory, S. Romisch, C.
Oates, S. Diddams, A. Ludlow and J. Levine: Optical-Clock-Based Time Scale,
Arxiv:1902.06858, Submitted to Nature Photonics (2019).

[124] — An experimental and numerical investigation of using Yb optical
atomic clocks in a real time scale at NIST, Boulder. Current optical atomic
clocks cannot run continuously, and often run only for a fraction of a day.
Using an ensemble of masers we show the effect of reduced operating time
of a reference optical atomic clock.
I worked on and operated the atomic clock for the time-scale.
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1
Frequency references and

atomic clocks

Contents
1.1 Stability and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Optical frequency references . . . . . . . . . . . . . . . . . . . . . 6

1.3 Superradiant optical clocks . . . . . . . . . . . . . . . . . . . . . . 8

Much of modern technology relies upon the precise timing of processes and
signals. To do this, accurate and stable frequency references are necessary. There has
been a wealth of innovations and improvements in this area over the last 70 years,
leading to miniature crystal oscillators almost completely replacing mechanical
pendula in most compact time-keeping devices. Fundamental research has also
pushed intensively on this development, and atomic clocks based on well-defined
electronic transitions in atoms were first demonstrated 64 years ago [29]. They have
now replaced the use of mechanical objects and astronomical phenomena as the
international standard for time1. The SI unit of a second has thus been defined with
respect to a hyperfine transition in cesium-133, between the F = 3, m f = 0 and F = 4,
m f = 0 ground states which has been chosen as exactly 9.192631770 GHz [5]. See
figure 1.1.

As a consequence of this definition the second is today the unit that can be
determined with the absolute highest degree of accuracy. State-of-the-art atomic
clocks based on other atoms have been shown to perform at fractional accuracy
and stability levels below 10−18 [14], [70], [83]. For the best cesium atomic fountain
clocks that are the current basis for our timescale, the fractional frequency accuracy

1Curiously, Denmark has retained a law from 1893 defining the danish time with respect to the
position of the sun in the sky. This is, however, ignored in practice, and the international standard is
used.

1



2 CHAPTER 1. FREQUENCY REFERENCES AND ATOMIC CLOCKS

Figure 1.1: Cs atomic clock concept from [7]. Left: energy levels of the Cs atom. Center: conceptual
overview of the Cs fountain atomic clock currently used as the state-of-the-art cs atomic clock. This
system relies on laser cooling of the atoms and a ballistic atomic trajectory relying on the gravitational
pull of earth. Right: Ramsey spectroscopy signal used for stabilization of the microwave frequency.

is at the 2 · 10−16 level [121], and enables a wealth of applications beyond mere
timekeeping. While timekeeping itself can be characterized as the act of tracking
the time-dependency of events, having an accurate way of doing this allows high
precision measurements of such diverse things as chronological ordering of finan-
cial transactions, positioning by use of, e.g., the Global Navigation Satellite System
(GNSS) or mapping out of the gravitational field on earth [40], [70], [72]. It is also
interesting for fundamental physics such as tracking the time-dependency of fun-
damental constants [2], [27], [28], [32], [33], [71], [86], [93], measuring gravitational
waves [53] or looking for signatures of dark matter candidates [118].

There are however limits to the performance of atomic clocks. Some of these
limitations come from the fact that the best atomic clocks are not field deployable2.
This means that many of the possible applications cannot be taken advantage of,
as several people and entire laboratory environments are necessary for proper
operation. Other limitations are more fundamental, and have to do with the design
of current atomic clocks. These limitations of performance drive a development of
new approaches for atomic clocks, that could allow them to transgress the current
limitations as well as a will to develop more compact, transportable systems with
high performance. In this thesis we will investigate some of the approaches that
have been suggested as novel optical clocks based on cavity-enhanced performance.

1.1 Stability and accuracy

Any reference of measurement can be characterized by how well its value is known.
When reproducing such an instrument the ability to reproduce its exact intended
value, is what we denote as accuracy. The quality of the reference determines how
well-defined that value is. If it is not constant in time, this is due to instability. The
ideal reference must have a very high degree of both accuracy and stability.

2Though, there are several works towards this end. See, e.g., [54], [115]



1.1. STABILITY AND ACCURACY 3

Atomic and molecular frequency standards perform quite well in these regards,
as they are based on the fundamental interaction of Atomic nuclei and electrons or
of multiple atoms. On the other hand, when constructing a mechanical oscillator
such as a pendulum, or a crystal oscillator, the dimensions, density and rigidity of
the material are of very high importance. Two such oscillators can have identical
size and mass, but behave quite differently if their mass distribution or elasticity is
different. The simplest behaviors are the most predictable, and if the behavior is
predictable, reproducing it will be much easier. Sadly it is often the fate of physical
systems to be either simple to construct or simple to model - rarely do you get both.
This becomes evident if you want to perfectly replicate a mechanical system. While
you can approximate a system quite easily, the highest level of accuracy would
demand a system that is constructed from the exact same atomic configurations.
This is exceedingly hard with a solid consisting of more than 1023 atoms, closely
packed in one or multiple crystalline structures. If you restrict yourself to the
properties of single atom or molecules, however, reproducing the system under
investigation just requires that you can bring about another sample of that atom.

This feature of atomic clocks takes advantage of the universality of atoms. An
atom of a given isotope will always display the same properties when exposed to
identical conditions. It relies on the indistinguishability of fundamental particles
such as electrons, neutrons and protons. Creating an atomic clock, then, starts
by choosing the isotope and energy levels that one wants to use. In the case of
the current SI definition of the second mentioned above the F = 3, m f = 0 to
F = 4, m f = 0 cesium-133 (Cs) isotope was chosen, and it is further specified that
this definition refers to an environment of 0 K [5]. This refers back to the fact
that identical systems behave identically only when exposed to the exact same
environment. So even controlling the exact atomic configuration of two mechanical
oscillators is only useful if you can ensure identical environments for them as well.
While this is hard for any system, reducing the interaction with the environment
is the most straightforward approach to realizing it. In atomic references this is
typically approached by using a gas of atoms in a vacuum system. This removes
any direct mechanical coupling with a vibrating or thermal environment. Figure
1.2 illustrate some of the remaining perturbations to be considered.

Because the environment influences the behavior of a frequency reference, this
is typically one of the limiting factors in the ultimate stability of a system. A high
accuracy frequency reference is then contingent on knowing all perturbations on
your system, to ensure you can correct any offset from the ideal value. A high
frequency stability is dependent on your ability to control the environment as a
function of time. In an atomic clock, an atomic transition is used as a reference,
and the well-defined frequency of an electromagnetic field with the correct photon
energy to excite the transition is used to measure it. In effect, what is used as
the time-keeper is thus not the atoms themselves, but a field whose frequency is
constantly compared to the transition of interest and corrected in order to remain
on resonance.

The primary interaction with the Cs atoms is done via a microwave field. This
is convenient because RF frequencies around 9 GHz can be used in and measured
by appropriate electronics. To interrogate the atoms, a highly coherent source of
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Figure 1.2: The frequencyω of an atomic transition is perturbed by a number of electric and magnetic
fields in the environment. Here we show the black body radiation field (BBR) due to final temperature
of the environment, the background magnetic field (B-field), any charges causing static electric fields
(DC E-field) as well as radiation causing oscillating electromagnetic fields (AC E-fields). Additional
shifts from, e.g., interacting particles are possible and the full environment needs to be considered.

microwaves is used, e.g, synthesized using a hydrogen maser. A maser is the
predecessor of the laser, and uses hydrogen as a gain medium. This is an excellent
frequency reference in itself [22] whose accuracy, however, is in general much lower.
By combining the high stability of a hydrogen maser with the accuracy of a cold Cs
ensemble, an excellent result can be achieved [121].

The accuracy and stability of a clock is typically measured relative to its oscillat-
ing frequency. While two different types of clocks might both have an uncertainty
of ±1 oscillation per second (±1 Hz), it makes a huge difference if the absolute
frequency at which the clock operates is at 2 Hz – an uncertainty of ±50% – or at
1000 Hz – an uncertainty of only±0.1%. As a result the fractional frequency stability
or accuracy is typically the figure of merit for such systems. The best commercially
available hydrogen masers have fractional frequency stabilities of 8 · 10−14 at 1 s
[22]. With an absolute frequency of about 1.4 GHz this corresponds to an absolute
frequency stability of about 0.1 mHz.

Because noise can occur at many different characteristic frequencies, the preci-
sion of a frequency reference is only meaningful when the relevant averaging time
is provided. High-frequency noise will limit the stability at short times while tech-
nical noise and drift of experimental parameters can limit the system performance
for long averaging times. An excellent introduction to noise analysis of time-series
and frequency standards is given in [91].

An essential tool to characterize these behaviors is the Allan deviation which we
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Figure 1.3: Modified Allan deviation from [83] showcasing the fractional frequency stability of
left: three distinct ultra stable reference lasers at JILA, CO, USA recorded by the three-cornered hat
method. Two cavities are based on monocrystalline Si spacers while the last is based on the more
traditionally used ULE glass the length of the spacer is indicated and influences the stability greatly.
right: The typical instability increases only on the timescale of hours.

will use repeatedly in this thesis. The Allan deviation provides a time-dependent
number for the noise in the system analogous to many values for standard devia-
tions from a single dataset treated by multiple binning ranges. In its simplest form,
the Allan deviation can be given as [91]:

σ2
y(τ) =

1
2(M − 1)

M−1∑
i=1

[
ȳi+1 − ȳi

]2 , (1.1)

where τ is the averaging or sampling period used. ȳi is the i-th of M averages over
data values during τ. From this expression we see one of the great merits of the
Allan deviation. For a number of data points following a normal distribution about
some mean value, σy will decrease as τ increases. As the samples (τ) become larger,
the mean values yi will approach one another. This showcases the fact that the
mean value of the distribution is known to a higher degree, when the averaging
time is longer. If the mean value drifts, the standard deviation is no longer well
defined, but highly dependent on sample length. An Allan deviation, however,
can in a simple manner convey the typical behaviors at different time-scales. More
advanced variations on the Allan deviation exist, with the most noteworthy being
the overlapping, total and modified Allan deviations, here we will use all three,
depending on the context.

Figure 1.3 shows an example of a modified Allan deviation from some of the
most stable reference lasers in the world. Notice that the trend of all three systems
is initially decreasing, but then flattens out around 1 s. This is a typical behavior
for mechanical references whose frequency starts to drift around this timescale.
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Figure 1.4: Total Allan deviation from [70]. Green and Blue datasets correspond to different modes
of operating the atomic clock, while read points showcase the drift caused by not correcting for drift
in temperature variations of the vacuum chamber. See chapter 6.

1.2 Optical frequency references

Since the primary figure of merit for frequency references is the fractional frequency
stability and accuracy, moving to higher absolute frequencies is an excellent way to
improve your standard. While the Cs standard operates in the microwave regime
of order 109 Hz, atomic transitions in the optical regime readily provides absolute
frequencies in the 1014 Hz range. If you are able to retain the low absolute uncer-
tainty, the performance thus increases by around five orders of magnitude. This
is a huge progress that is being taken advantage of in the current development of
optical atomic clocks. The Allan deviation shown in figure 1.3 is an example of
the improvements possible by using optical frequencies. It shows systems reaching
fractional instabilities below 10−16 in 1 s. The drift and technical noise that limits
these systems can be avoided by using atomic references as discussed above. Opti-
cal atomic clocks based on ions or optical lattices are currently at the forefront of the
development, showcasing fractional frequency uncertainties in the low 10−18 [70] to
high 10−19 [14], and fractional frequency instability of down to mid 10−19 [70]. The
typical operating principle of such clocks relies on both an ultra stable laser such
as the ones shown in 1.3, and subsequent interrogation of and stabilization to the
atomic reference. Figure 1.4 shows the performance of the ytterbium clock I worked
on while at NIST, see chapter 6. At the time of writing this is one of the best per-
forming optical atomic clocks, with a fractional frequency uncertainty of 1.4 · 10−18.
Notice that this Allan deviation is only shown for times higher than 10 s. For shorter
times, the performance of the system is characterized by the prestabilized laser, and
not the stabilization to the atomic reference.

An atomic clock is stabilized by interrogating the atomic transition, and the
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stability is dictated by the quality of this interrogation. As such, an expression for
the ultimate stability of an optical clock can be given as [90]

σy(τ) =
1
K

1
Q

1
SNR

√
Tc

τ
. (1.2)

Here K is a factor of order 1 given by the signal lineshape and Q = ν/∆ν is the
associated quality factor given by the absolute frequency ν and the linewidth ∆ν.
The signal-to-noise ratio is given by SNR, and the interrogation time by τ for
operation with a cycle time Tc. Ignoring the lineshape factor K we see that three
fundamental limitations are given. The signal-to-noise ratio, signal Q-value, and
fractional interrogation time.

The Q-value of the signal is set in part by choosing an energy range for the
resonance. In the case of optical atomic clocks, the transitions are well-defined,
and often only a single relevant clock transition – if any – can be found for a
given isotope3. Choosing the atomic species, thus determines the Q-value of the
atomic transition. The signal will be a convolution of the atomic and interrogation
laser lineshapes, and the Q-value of the interrogation laser thus becomes equally
important. This has resulted in the development of highly stable reference lasers
[68], [92], [127] such as the ones shown in figure 1.3. The sensitivity of the reference
cavities used for these lasers, is so high that they are now limited by the length
variations caused by thermal fluctuations in the mirror coating and cavity spacer
itself [21], [82]. The linewidth of these lasers is moving ever closer to the linewidth
of the atomic transition, but remain a limiting factor in many systems.

In section 3.2 we will look at the comparison of two classical reference cavities
in our laboratory. In chapter 5 we will investigate bad-cavity systems that rely on
cavities, but are able to suppress the noise originating from them.

A low signal-to-noise ratio (SNR) of the measurement limits the performance
of the system by writing noise on the correction signal. This is often a technical
challenge where optimization engineering of the detector and electronics become
important. Alternatively one must ensure that the size of the signal is as large
as possible, and this is often dependent on the detection method. Optical atomic
clocks almost exclusively rely on the method of electron shelving. The atoms
are excited on the narrow clock transition and a secondary, bright transition is
used to detect the excitation efficiency, by scattering photons off the ground state
atoms. This approach amplifies the signal significantly compared to the case of
direct absorption spectroscopy. In Chapter 4 we will investigate an interrogation
technique that relies on cavity-enhanced dispersive measurements of the transition
rather than electron shelving or absorption spectroscopy. This method was first
proposed in the context of molecular spectroscopy [126], but we show its use in
interrogating narrow transitions of cold strontium atoms. It provides an approach
to significantly improving the SNR of an atomic clock system. A hybrid of the
electron shelving and dispersive approach has recently been proposed for use in Sr
optical lattice clocks [114].

3A notable example of an atom with more than one clock transition is ytterbium-171 (or 173),
where the use of two separate clock transitions has been suggested as a highly sensitive method for
testing fundamental physics [94]
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The final factor of relevance is the fractional interrogation time. Atomic clocks
typically rely on a preparation period, where atoms are cooled and trapped, and a
subsequent interrogation period, where the measurement itself takes place. If the
preparation of the atoms is demanding in time, the spacing between consecutive
measurements becomes long. This makes the clock vulnerable to the noise of the
interrogation laser. The long cycle times can be reduced by attempting a simplified
cooling scheme at the expense of control over the atoms. This is an approach taken
in Chapter 4. Other groups are investigating the possibility of non-destructive
detection of the atomic state [114]. Long interrogation times are needed to resolve
the atomic transition without its spectrum being Fourier limited. The cold-atom-
based laser presented in Chapter 5 is a step along this path, as it lays the foundation
for the development of a fully continuous laser based on narrow clock transitions.

There is also a need to increase the accessibility of high-accuracy atomic clock
systems for use in real-world applications. This puts a high stress on reducing the
footprint and complexity. The current record-holding optical atomic clocks take up
tens of square meters of laboratory workspace, and requires the constant attention of
multiple PhD students or researchers during operation. An optical atomic clock that
can be employed for industry or even be sent into space, has to run independently
and have a footprint on the order of one square meter or less. There are already
some initiatives towards the realization of a compact and automated optical atomic
clock based on the canonical design4 [54], [103]. Our proof-of-concept approaches
in chapters 4 and 5 are technically simple compared to a full blown optical lattice
clock, as they rely on fewer cooling stages and control lasers. This reduces the
engineering complexity of the systems, as well as the total footprint.

1.3 Superradiant optical clocks

In recent years the concept of a superradiant optical atomic clock has been proposed
[17] and pursued by several groups [10], [57], [80], [84], [122]. This is a system that
is fundamentally different from classical atomic clocks, in that the clock frequency
is directly generated by the atomic ensemble. In this sense the clock frequency is
actively generated by the atoms, rather than being synthesized by interrogation of
a passive ensemble. Such an atomic clock promises the conceptual simplification
of a laser whose frequency is spectrally narrow and stable as well as accurate by
design.

A traditional laser relies on a broadband amplification medium within a very
frequency-selective resonance cavity. Photons emitted by the atoms cause stimu-
lated emission from other atoms, leading to phase-coherent behavior. Since only a
narrow range of frequencies can be emitted into the cavity mode, this determines
the final laser frequency. In a superradiant laser, however, the medium is spectrally
narrow and rests within a comparatively broadband enhancement cavity. The con-
cept of a superradiant laser relies on the idea first formulated by Dicke [25] that
atoms may emit by virtue of collective spontaneous emission. The cavity thus

4See, e.g., https://www.iqclock.eu/ for a European project aiming to implement a state-of-the-
art optical atomic lattice clock in a telecommunications center.

https://www.iqclock.eu/


1.3. SUPERRADIANT OPTICAL CLOCKS 9

acts to modify the atomic coupling to the surrounding field, but largely does not
influence the emitted spectrum. This is also known as the bad-cavity regime.

In fact the first proposals for superradiant lasing did not necessitate an enhance-
ment cavity at all. Instead the atomic density was assumed to be high enough that
the phase of emitted photons from individual atoms was indistinguishable. This is
relatively easily realized with microwave fields but becomes extremely demanding
at optical frequencies. the standing-wave field of an optical cavity ensures that the
phase of the emitted photon is not completely random. In the superradiant laser
the atomic ensemble is considered as a single system rather than individual com-
ponent atoms, and this system can be said to emit spontaneously with a rate much
faster than the spontaneous decay rate of a single atom – thus giving it the name
superradiance. Dicke later refers to this type of laser as a coherence-brightened
laser [26] since it is the atomic coherence build-up rather than the broadband power
amplification that permits the lasing process.

With a continuous source of excited atoms it is possible to sustain superradiant
emission and obtain a continuous signal. By using spectrally narrow atomic tran-
sitions for such a laser it has been proposed that mHz laser linewidths are feasible
[73]. This goes beyond the current capabilities of ultra-stable lasers and would be a
great asset as either a replacement of or an improvement to state-of-the-art clocks.

Superradiance experiments have been investigated extensively since the 1970s
[1], [39], [56], [69], [102], but after the fast evolution of cold atom systems in the
last decade, interest for its use in frequency references has emerged. Since the
coherence of the system is stored in the atoms rather than the photon field, noise in
the enhancement cavity will be suppressed when compared to a traditional laser.
In [84] a suppression of the superradiant laser cavity noise by a factor of 70 was
shown for heated Cs atoms, while [80] realized a suppression of a factor of 5 · 105

with ultra-cold strontium atoms in an optical lattice.
In this thesis (chapter 5 we investigate a half-way–regime with cold atoms that

are not confined in any optical lattice. We use an easily accessible transition in
strontium which is spectrally wider than the narrow clock transition typically used
in optical lattice clocks and in [80]. This results in faster dynamics of the system, but
also a severely reduced experimental complexity. The experiments presented here
are all based on pulsed lasing, but light the way towards a continuous system. At the
time of writing our group has entered a collaboration with several other universities
on the construction of the first truly continuous superradiant laser based on cold
atoms.5

5The iqClock project between University of Copenhagen in Denmark, University of Amsterdam
in the Netherlands, University Nicolaus Copernicus in Poland, Technische Universität Wien and Inns-
bruck Universität in Austria as well as University of Birmingham in the U.K. https://www.iqclock.eu/
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In this chapter we will present some background for the physical system that
is used in chapters 4 and 5. It is based on strontium atoms cooled, trapped, and
coupled to the mode of an optical cavity. The details of trapping and cooling the
atoms will not be elaborated here, but can be found in a basic text on the subject
[74]. The detailed parameters and design of the laser cooling in the cold strontium
atom experiment used here can be found in [20], [44], [97].

First we will look at the atomic level structure of strontium. This will allow us
to give an overview of the experimental approach. We will consider the interaction
between atoms and optical fields, and set up a framework for this interaction.
Atomic coupling to modes of an optical cavity is then presented as a basis for
subsequent discussions.

11
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Figure 2.1: Energy levels and transitions in 88Sr. The transition used for laser cooling here is shown
in blue. Red lines show the repumping and probing transitions of relevance here. Additional decay
channels are indicated by dashed lines.

2.1 Transitions of strontium

Strontium is an alkaline earth metal, convenient for cold atoms experiments because
of its electronic energy level structure that is well suited for laser cooling. Strontium
has four stable isotopes; one fermionic, 87Sr, and three bosonic, 84Sr, 86Sr and 88Sr.
All of our experiments are performed on the bosonic 88Sr, since it has far the highest
natural abundance at 82.58%. Figure 2.1 shows the relevant energy levels of 88Sr.
Since the isotope has zero nuclear spin (F = 0) there is no hyperfine structure. For
now we assume zero magnetic field, and can thus ignore the Zeeman splitting. In
the ground state Sr is in the 1S0 singlet state. From this state a broad transition to 1P1
state exists. The natural decay rate of γ/2π = 32 MHz allows efficient cooling and
trapping of atoms on this line. The decay rate also limits the attainable temperature
to a few mK. For optical lattice clocks further cooling is necessary, but in our case
we are satisfied with a typical value of T = 5 mK.

When cooling the atoms, a large number of absorption-emission cycles takes
place, where atoms absorb photons in a preferential way that can control their
momentum. Ideally then, the cooling transition should be completely closed in
order to avoid populating dark states during the cooling cycle. In the case of
1P1 there exists a secondary, and much weaker, decay channel with a rate of γ =
2π · 621 Hz to the 1D2 state, and on to the 3P manifold. This causes a reduced
cooling efficiency, as atoms decaying to this level will no longer be cooled. Adding
repumping lasers that cycles the atoms from 3P2 and 3P0 to the 3S1 state allows
decay back to the ground state, where atoms will reenter the cooling cycle.

From the ground state, the triplet state 3P1 is forbidden by the dipole selection
rules, but becomes allowed due to an admixture of the 1P1 state. This results
in a transition linewidth of γ/2π = 7.5 kHz. The other states of the triplet are
additionally forbidden by the total momentum J selection rule. Due to the nuclear
spin of 87Sr the 1S0 →

3P0 transition has a linewidth on the order of 1 mHz, but in
88Sr it can only be opened by applying an external magnetic field. This transition is
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used as the clock transition in state-of-the-art lattice clocks based on both isotopes
[38], [41], [62], [63], [83], [106]. Because the transition is far simpler to interrogate,
we use the kHz-width 1S0 →

3P1 transition in all of our experiments presented in
chapters 4 and 5.

Since our research concerns primarily atoms coupled to an optical cavity, we
will look at some fundamental theoretical descriptions of such a system in the
subsequent section. The interaction between an optical field and an atomic system
will first be investigated. The behavior of a cavity, and its modification of the
electromagnetic field will then be presented before we look at the experimental
system itself in chapter 3.

2.2 Atoms and cavities

Optical cavities are a common tool in Atomic, Molecular and Optical (AMO)
physics, as they are self-overlapping interferometers. This means that they can
enhance specific behaviors of an optical system. Because the field is overlapped
with itself in a cavity, interference between field components traveling in opposing
directions place stringent demands on mode size and wavelength of the field. Since
field interference takes place within the cavity mode, however, this also complicates
the description of interaction by introducing position-dependency.

When we consider the wavefront of the electromagnetic field, or interpret the
field as photons rather than waves, an additional feature of a cavity system turns
up. As the photons bounce back and forth between the mirrors of a cavity, they
pass through the same region multiple times. This results in a power buildup,
when the electromagnetic field is on resonance with the cavity, and allows a local
amplification the field. For the case of an atomic or molecular sample placed inside
the cavity, there is an effective increase of the sample size. Here we introduce
some basic concepts of interaction between atoms and an electromagnetic field and
then consider the influence of the cavity on such systems. Excellent textbooks are
written on these subjects [23], [75], [76] and this is not the right place to introduce the
concepts methodologically. Instead we will attempt to give necessary definitions
for the forthcoming chapters.

2.2.1 Atom-field interaction

In the interaction between atoms and electromagnetic field, we are interested in
describing both the macroscopic properties of the atomic ensemble, and the micro-
scopic properties of a single atom interacting with the field. Both provide valuable
information in the description of the phenomena we are trying to understand. Ini-
tially we will look at the interaction with a macroscopic system. A dilute gas of N
atoms per volume.

The gas will have some polarization induced by the electric field ~E.

~P = ε0χ(ω)~E (2.1)

Here χ(ω) is the frequency-dependent susceptibility of the gas and ε0 is the vacuum
permittivity. Initially we assume that the system behaves linearly and ignore higher-
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order susceptibilities that will scale with the square, cube, etc. of the electric field.
We make the electric dipole approximation which amounts to postulating that the
field is constant over the size of the atom. In atomic physics this leads to a number
of selection rules for the possible transitions between electronic energy levels. This
causes the large variation in transition linewidths we saw in section 2.1 where
higher order couplings will enable a weak coupling between some levels. In later
chapters nonlinear behavior of the atom-field interaction becomes relevant, but this
will be dealt with through a full quantum mechanical or semi-classical treatment of
the systems from first principles.

Following [23], [77] we can deduce the expression for the classical susceptibil-
ity by considering an alternate expression for the polarization as the total dipole
moment induced in the atoms per unit volume.

~P =
∑

N

qd(ω) = Nqd(ω), (2.2)

where q is the electron charge. The dipole moment of a single atom can be approx-
imated by considering the electron as a harmonic oscillator driven by an external
field ~E:

d(ω) =
q~E

me
(
ω2

0 − ω
2 + iγω

) (2.3)

where the electron mass is given by me. The resonance FWHM linewidth is given
by γ and its angular frequency as ω0. We can combine equations (2.1), (2.2) and
(2.3) to give an expression for the complex susceptibility

χ = χ′ + iχ′′

=
Nq2

meε0

1
ω2

0 − ω
2 + iγω

. (2.4)

The two components of the susceptibility gives the dispersion and attenuation of
the gas respectively. We can see how this affects a propagating wave by introducing
a complex refractive index n = n′ + in′′ = kc/ω. Using this to describe a wave
propagating along the z-axis, we obtain the expression:

~E(~r, t) = ~E0(x, y)Re{ei(kz−ωt)
}

= ~E0(x, y)e−n′′ωz/cRe{ei(n′ωz/c−ωt)
} (2.5)

which shows attenuation of the electric field proportionally to n′′, and a phase-shift
proportional to n′. In the weak-field limit we can obtain the classical Lambert-Beer
law for absorption (A) of intensity I ∝ I0e−A. The complex refractive index obeys the
relation n =

√
1 + χ(ω), and for dilute media where |χ(ω)| � 1, we can approximate

it as n ∼ 1 + χ(ω)/2. When the refractive index is much larger than one, the system
is no longer as well-behaved. This can happen for a high atomic density or, as we
will see in chapter 4, for a dilute gas embedded in an optical cavity.
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Figure 2.2: Plots of the real (a) and imaginary (b) part of χ. The real part corresponds to the
dispersion of an E-field around resonance whereas the imaginary part corresponds to the attenuation
due to scattering or absorption.

Close to resonance where ω0 ∼ ω we can assume (ω2
0 − ω

2)2 u 2ω0(ω0 − ω)2

which allows us to further reduce the susceptibility as

χ =
Nq2

meε02ω0

(ω0 − ω) − iγ2

(ω0 − ω)2 +
(
γ
2

)2 . (2.6)

Jumping ahead to a quantum mechanical picture we replace the classical electron de-
scription by a more general one related to the dipole moment of the given transition
q2/2meω0 → ℘/~. Due to the discrete energy levels of atoms a power broadening
factor appears in the denominator [75].

χ′ =
N℘
ε0~

(ω0 − ω)

(ω0 − ω)2 +
(
γ
2

)2
(1 + I/Is)

(2.7)

χ′′ =
N℘
ε0~

−
γ
2

(ω0 − ω)2 +
(
γ
2

)2
(1 + I/Is)

, (2.8)

where Is = πhcγ/3λ3 is the saturation intensity of the transition at resonance. We
plot the real and imaginary parts of the susceptibility in figure 2.2, where we can see
that the absorptive features, (b), are represented by χ′′ and the dispersive features,
(a), by χ′ as expected from equation (2.5).

The two components χ′ and χ′′ fulfill the Kramers-Kronig relations

χ′(ω) =
2
π
P

∞∫
0

ω′χ′′ (ω′)
ω′2 − ω2 dω′ and χ′′(ω) = −

2ω
π
P

∞∫
0

χ′ (ω′)
ω′2 − ω2 dω′. (2.9)

HereP refers to the principal part of the integral due to the existence of singularities
- as a minimum the one at ω′ = ω. This relation tells us that it is always possible to
derive one part of the susceptibility from the other by Hilbert transformation. As
such, it is in principle possible to fully characterize the interaction with the system
by looking only at the phase- or absorptive response. In practice however, this
would require full knowledge of the system response for all frequencies, and it is
typically useful to directly measure both responses.
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Spectral characteristics
The above considerations explain how the induced dipole moment in an atom
results in absorption of energy and dispersion of a classical continuous field. An
ensemble of atoms will decay with a decay rate given by the Einstein A coefficient,
which can itself be derived from the dipole interactions considered above. This
decay rate corresponds to the spectral width of the unperturbed transition, and can
also be derived from a Wigner-Weisskopf treatment of an atom interacting with free
space [75].

γ =
ω3℘2

3πε0~c3 . (2.10)

From this expression we see that a higher energy of the transition typically results in
an increased decay rate, and that the fractional transition linewidth 1

Q =
γ
ω scales as

the square of the transition frequency. In general then, this would indicate that a low
energy transition is desirable for clocks where we want a large Q. However, due to
the existence of dipole and higher-order forbidden transitions with small but finite
effective dipole moments ℘, some optical transitions have abnormally small decay
rates. Taking the γ = 2π · 32 MHz dipole allowed 1S0 →

1P1 cooling transition
in strontium as an example, one could expect a mHz spectral linewidth only by
moving to a transition frequency of about 200 GHz. Instead the clock transition in
87Sr is around 430 THz, permitting the high Q-factor we are after in equation (1.2).

Coherent evolution
Atomic absorption and driven emission can result in a coherent evolution of the
atomic state. By illuminating a ground-state atom with CW (constant wave)
monochromatic light it can thus undergo Rabi flopping. In this process a finite
amount of energy causes the atom to be placed in a well-defined superposition of
the ground and excited state. The probability of being in the excited state |e〉 can
then be given as

|ce(t)|2 =
|R0|

2

R2 sin2
(
Rt
2

)
, (2.11)

where |R0| =
∣∣∣℘E0
~

∣∣∣ is the Rabi flopping frequency and R =

√
δ2 − |R0|

2 is the gen-
eralized Rabi frequency. Dependent on the detuning between field and atomic
transition, δ, the electric field amplitude, E0, and the interaction time, t, a well-
defined excitation is then obtained. In chapter 5 we take advantage of this in order
to excite the atoms with a so-called pi-pulse, where the condition Rt = π is met,
ensuring maximal excitation.

2.2.2 Atom-cavity interaction

When atoms are placed in a cavity the field is modified, just like its interaction
with the atoms. Compared to the case of free space, the density of field modes is
significantly decreased for the solid angle of emission into the cavity, which changes
the lifetimes of the atomic states. The interference within the cavity of the traveling
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wave with itself results in a standing wave, causing a position dependent coupling.
The potentially high number of reflections and long lifetime of a photon within the
cavity means that a single photon can interact multiple times with an atom resulting
in an accumulated dispersion and attenuation according to the derivation in section
2.2.1. The bidirectionality of the field can be used for saturation spectroscopy as
described in chapter 4. To quantify the modified interaction we will define the
coupling factor between a single atom and the cavity mode, as well as the strong-
coupling condition for normal-mode splitting – sometimes referred to as (vacuum)
Rabi splitting. We move to a picture where the atom and cavity are considered as
one system. The interaction of the environment or external fields with this system,
will then produce an array of new behaviors.

Atom-cavity coupling rate
The coupling between the cavity field and the atom is determined by the effec-
tive dipole interaction. We model the coupling factor g = g0ζLMζTM as a maximal
coupling g0 with spatial dependency given by the axial (longitudinal mode) depen-
dencies in the cavity, ζLM, and the transverse mode dependency ζTM. The maximal
coupling is given by

g0 =
℘

~

√
~ωc

2ε0Veff
(2.12)

where Veff =
!
∞,L

0 exp
(
−2r2/w2

)
sin2(kz) ·2π · r ·drdz ≈ πw2

0L/4 is the effective mode
volume of the Gaussian standing-wave cavity mode, given by the length of the
cavity, L, and the cavity waist radius, w ≈ w0, which is assumed constant. This will
in general be a good approximation for our interaction cavities. We can write the
coupling rate components as

g0 =

√
6c3γωc

w2
0Lω3

0

, ζ
j
LM = sin

(ωcz j

c
− δ jt

)
, ζ

j
TM = exp

− r2
j

w2
0

 . (2.13)

Here ωc is the cavity resonance frequency. The longitudinal mode scaling ζ j
LM(z j)

depends on the axial position of the j-th atom relative to the standing wave of the
cavity mode and the transverse mode scaling ζ j

TM(r j) on its radial position. δ j =
ωl
c v j

is the Doppler shift in terms of the atomic velocity v j.
We consider the atom and cavity as the system of interest, and any coupling to

the environment is a loss of energy. This happens as a function of the spontaneous
decay rate of the atom and the cavity field decay rate into the environment: γ and κ.
The atom-cavity coupling rate g0 on the other hand describes a conserved energy,
and a build-up of coherence in the system. These rates make out the cooperativity
factor of the system

C0 =
(2g0)2

γκ
. (2.14)

The cooperativity is a measure of the coupling strength of the system, where the
strong-coupling regime C0 � 1 entails that the coherence in the system is more often
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retained than not. This inhibits the natural decay of the system coherence. One of
the consequences is that the system is no longer well-described by the individual
energy levels of the atom and the cavity. Instead the dressed state picture is a better
representation, resulting in what is known from classical physics as the normal
mode splitting.

In the dressed state picture the degeneracy of the bare atomic states and the
cavity energy levels is lifted, and a splitting between the energy levels arises, pro-
portional to the generalized Rabi frequencyR. This is known as the Rabi, or normal
mode splitting (NMS). At atom-cavity resonance, ωc = ωe, the splitting becomes
2g0
√

n + 1 where n is the number of photons in the cavity field.

Collective coupling
In the case of an N-atom system coupled to a cavity, the effective atom-field inter-
action is enhanced by the square root of the atom number and the effective Rabi
frequency becomes

RN = R0
√

N

= 2g0
√

N(n + 1) (2.15)

The enhanced coupling rate increases the NMS equivalently. The condition for
resolving the NMS with vacuum in the cavity is then

2g0
√

N > κ or CNγ > κ (2.16)

where CN = NC0 is the collective cooperativity. For a collective cooperativity larger
than unity the system is said to be in the collective strong-coupling regime. For N
identical atoms, this indicates that the collective coherence build-up exceeds that
of the decay rates. CN turns out to be a figure of merit for the emission strength
of a lasing pulse, or the signal size of a spectroscopic system. The linewidth of
both spectroscopic and lasing systems (Chapter 4 and 5) are proportional to the
cooperative decay rate C0γ [67], [73]. The cooperativity can also be derived either
from consideration of the system absorption properties [13]

CN =
2
π
αlF , (2.17)

where α is the small-signal absorption for a resonant atom-cavity system, F is
the finesse of the optical cavity, and l is the cavity length. This expression allows
us to understand the how the collective cooperativity is directly related to the
optical density of the hybrid atom-cavity system. Or equivalently the single-atom
cooperativity can be given directly from almost purely geometrical considerations
as [110]

C0 =
6
π3F

λ2

w2
0

(2.18)

where λ is the transition wavelength. We can recognize the ratio between the
diffraction limited length resolution, d = λ2/2w0, and the cavity waist, w0, indicating
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whether the position of two atoms within the cavity waist can be resolved. The
larger this ratio is, the better mode-matching we have between the optical mode and
the light emitted from the atom. This formulation originates from the consideration
that the cooperativity of an atom in a cavity is the free-space cooperativity of a
Gaussian mode of waist w0 modified by the cavity conditions. The free-space
cooperativity can be expressed in terms of the ratio of the resonant scattering cross
section, σ0 = 6π/k2

0, to the effective area of the Gaussian beam, A = πw2
0/2, as [110]

C f s =
3
2

(
λ
πw0

)2
=

3
π2

d
w0
≈
σ0

2A
(2.19)

The cavity conditions introduce a factor of F /π accounting for the average number
of photon round trips and a factor of 22 from the standing wave enhancement of
optical intensity compared to a running wave.

For our systems the assumption of identical atoms is not generally applicable,
however, and we will have to introduce an effective linewidth or coupling rate ge f f
in order to appreciate the cooperativity of our systems according to equations (2.14),
(2.18) and (2.19). In the next section we will take a closer look at how the atoms
behave when they are cooled and trapped, and also why they cannot be assumed
to be identical.

2.3 Cold atoms

The atomic gas of strontium atoms we will be considering is cooled and trapped
using laser cooling. This is done in order to localize the atoms, to increase the
density ρ, and in order to reduce their average velocity. As most laser cooling
relies on absorption and scattering of photons by atoms, it is inherently a random
process where the specific cooling method and transition parameters of relevance
can limit the achievable temperature and confinement. An excellent introduction
to the trapping and confinement of atoms can be found in [74].

In a ballistic interpretation of the atomic ensemble, kinetic energy of an indi-
vidual atom is translated into an effective temperature. For the ensemble as a
whole then, the temperature describes the expected velocity distribution. In three
dimensions the probability density function of the velocities v of atoms in a thermal
equilibrium at temperature T follows a Maxwell-Boltzmann distribution

f (~v)d3v =
( m
2πkBT

)3/2
e−

m|~v|2
2kBT d3v, (2.20)

where m is the atomic weight and kB is the Boltzmann constant. Integrating over
two of the dimensions yield the one-dimensional Gaussian distribution

f (~vx)dvx =
( m
2πkBT

)1/2
e−

m ~vx2

2kBT dvx. (2.21)

When probing the atoms with a laser their velocity along a single dimension is
probed, leading to a Doppler shift δD = ~k · ~vx of their resonance frequency. The
standard deviation of the atomic velocity within an ensemble of temperature T can
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then be found along one dimension. From it we derive the expected inhomogeneous
Doppler broadening of the ensemble:

vσ =

√
kBT
m

so ΓD =
∣∣∣∣~k∣∣∣∣ √kBT

m
. (2.22)

Here ΓD is the Full Width at Half Maximum (FWHM) of the Gaussian Doppler

profile, and k =
∣∣∣∣~k∣∣∣∣ is the wave number. The coupling of the motional state of an

atom to the external field must obey conservation of momentum. In the most simple
case then, the full momentum of a photon p = ~k is transferred to the atom upon
absorption. A unidirectional beam of light thus causes a force along its direction of
propagation

~F =
d~p
dt

= ~~kΓsc (2.23)

where Γsc is the atomic scattering rate. This results in a well-defined control, where
a velocity component can in principle be exactly canceled by the appropriate mo-
mentum transfer from photons. For an 88Sr atom at room temperature, the most
probable momentum is pmp = 3.5 · 10−23 which means that the number of absorbed
photons necessary to slow it to a halt is of order n = 2.5 · 104. Since a large number
of absorbed photons is typically necessary to considerably reduce the velocity of an
atom, an efficient cooling scheme must have the atoms return to the ground state
efficiently in order to allow further absorption. If the decay to the atomic ground
state happens through spontaneous emission, it is equally likely to happen in any
spatial direction. The momentum given to the atom due to spontaneous emission
will thus approximately average to zero over a large number of cycles.

The cooling efficiency is maximal when the light is on resonance with the tran-
sition. Since the change in velocity during cooling can be quite large, an atom can
shift out of resonance with the cooling beam, as its velocity is reduced. A given en-
semble of atoms can additionally have a Doppler distributed spectrum much wider
than the bare cooling transition. A typical configuration for cooling atoms along
a given axis is thus to have bidirectional laser beams detuned by some frequency
from the bare atomic transition frequency. This results in a scheme where atoms at
rest experience the same force in both directions, whereas moving atoms experience
a net force opposite to their direction of propagation. A large detuning facilitates a
large capture range of atomic velocities. A detuning approaching ∆ = −γ/2 results
in the most efficient cooling, due to a steep slope of the cooling force with respect
to position [74].

These kinds of cooling methods are known as Doppler cooling schemes, where
broad atomic transitions with a large decay rates result in efficient cooling. How-
ever, there is a well-defined limit to the cooling efficiency, which strikes at the heart
of the random spontaneous emission process. The finite decay rate γ also implies a
spread in the distribution of momentum lost as the atom relaxes to its ground state.
With the assumption of a monochromatic excitation beam, the spread in energy of
the emitted photons result in a random momentum walk of the atom. This limits
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the achievable temperature to

TD =
~γ

2kB
, (2.24)

known as the Doppler temperature or Doppler cooling limit. Since large cooling
efficiency requires a large atomic spontaneous decay rate, then, a compromise
between cooling efficiency and achievable temperature is made when choosing the
cooling transition. It is possible to artificially broaden the chosen cooling transition
by, e.g., spectrally broadening the cooling laser.

For the case of cooling on the λMOT = 461 nm line in 88Sr the transition linewidth
results in a Doppler limit of TD = 0.8 mK. With our current system we use a 3D
MOT which induces spatial as well as velocity-dependent frequency dependence.
the 6-beam configuration uses PMOT = 2 mW in each cooling arm and beams with
Gaussian waists of w0 = 0.9 mm. With a detuning of ∆ = −1.3γ = −41 MHz
we routinely achieve temperatures of T ≈ 5 mK. The total number of trapped
atoms reaches about N = 108 with a distribution radius of σ = 0.8 mm. If we
assume a Gaussian distribution of atoms this corresponds to a peak density of
ρmax ≈ 1.2 · 1010 atoms/cm3.

2.3.1 Decoherence from cooling beams

Our experimental system generates the cold atomic sample inside the interrogation
cavity. This means that the atoms will be driven on the broad cooling transition,
which causes significant decoherence on more narrow transitions, like the λ =
689 nm probing transition, coupled to their common ground state. In order to
avoid this decoherence the experiment is always run in a cyclic fashion, where
atoms are first loaded into the trap, and the trap is subsequently released leading
to the atomic ensemble expanding and disappearing. A time-window on the order
of 1 ms is then available for measurements before the atoms are lost.

To justify the need for a cyclic experimental procedure, we can set up the optical
Bloch equations for the atoms as a 3-level system. We use a V-type configuration
in order to simulate the 1P1, 1S0, and 3P1 states of figure 2.1, as |1〉, |2〉, and |3〉
respectively. The ground state population evolution ρ̇22 will be coupled to both the
ρ12 and the ρ23 coherences with a rate proportional to the transition Rabi frequencies
of the respective laser fields. These dynamics reach a steady state within a few tens
of µs, allowing an effective decoherence rate of the of the ground state (1S0) to be
determined. This turns out to be given by the scattering rate of 461 nm light:

γsc =
γ12

2
s0

1 + s0 +
(

2(ω−ω0)
γ12

)2 , (2.25)

where s0 = 0.221 is the resonant saturation parameter for the transition, and
γ12/2π = 32 MHz is the natural decay rate of 1P1 to 1S0. The laser detuning is
ω − ω0 = −2π · 41 MHz. For our 3D MOT parameters we find a scattering rate of
γsc = 2.9 · 106 photons/s. This is sufficient to destroy most of the coherent response
of the atom field interaction we investigate in the following.
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3.1 Atom cloud machine

In this chapter we present some of the experimental details of the Sr I machine,
where the results from the following chapters 4 and 5 are obtained. This machine
consists of a vacuum enclosure and an array of lasers and optical components. The
strontium atoms are heated in an oven inside the vacuum chamber, slowed using
a Zeeman slower, and finally cooled and trapped in a 3D MOT. The atoms are
trapped in the science chamber, where they overlap with the mode of an optical
cavity. Here we will not go through the detailed workings of the cooling scheme, as
this information can be found in a number of references elsewhere. The interested
reader is referred to the general introduction in [74] and the experiment-specific
overview in [97].

23



24 CHAPTER 3. EXPERIMENTAL SYSTEMS

In this section we will go through some of the components of the machinery in
detail, in order to present both possibilities and limitations of the current subsystem
configurations. In any cold-atoms experiment where lasers are used to control and
manipulate the atoms, there is a great deal of beam-shaping and polarization control
which we will largely ignore here. Instead we focus on the conceptual construction
of the systems with particular emphasis on active optoelectronic components.

3.1.1 Laser systems

The Sr I machine uses a range of lasers in order to access the different levels of
interest, and all lasers in the system rely on laser diodes that are incorporated in
home-build External-Cavity Diode Laser-ensembles (ECDLs). The lasers are all
built in one of three configurations shown in figure 3.1: Littman-Metcalf, Littrow,
or Cateye.

Compared to a bare laser diode, an ECDL adds additional spectral filtering,
which both improves the frequency control, and the spectral linewidth of the light.
Frequency tuning of a laser diode happens through the supplied current and the
temperature of the diode. The diode current primarily affects the charge carrier
density of the material, whereas the temperature changes mechanical properties of
the diode, which can both shift the gain curve, and change the length of the diode
itself. Ideally these two parameters would be independent, but in reality they are
slightly correlated, since an increase in temperature can affect the charge carrier
density, which in turn can result in an increased temperature through the emitted
power.

The effect of temperature on the length of the laser diode is important since the
facets of the diode will create a small cavity, which sets conditions on the possible
standing-wave frequencies. The diode can be AR coated in order to heavily suppress
this effect, but due to availability of diodes this has not been the case for most of
our lasers. In an ECDL the diode-cavity is always coupled to an ”external” cavity,
which in all cases discussed here uses the backside of the diode as one cavity mirror,
and can use either a grating or a mirror as the other. The mode-overlap between
the internal and external cavities create a repeating pattern of resonances, within
which the emission spectrum of the laser diode is amplified rather than suppressed.
Finally the spectral filtering capabilities of the grating or interference filter acts to
narrow the range of possible lasing modes. Ideally the filtering is sufficiently narrow
that a single lasing mode can be significantly stronger than any other. This is the
case if the condition

FSREC+DLC > BWfilter (3.1)

where FSREC+DLC is the free spectral range between resonances of the combined
external-cavity and diode-laser-cavity and the grating or interference filter optical
bandwidth is given by BWfilter.

There can be advantages and disadvantages to the different ECDL configura-
tions, which has shaped the design choice. The Littrow configuration is by far the
simplest. The configuration uses the -1st order of a grating as the cavity feedback
and the zeroth order as the output. These systems typically have high efficiencies
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Figure 3.1: Three types of ECDL configurations which are all used at various places in the exper-
imental system. Laser diodes (LD) are shown in yellow, and gratings and interference filters are
shown in silver. All configurations rely on collimation of the LD field. The Littman-Metcalf and
Littrow configurations both rely on gratings to form the external cavity, whereas the cateye configu-
ration uses a transmission interference filter. The Littman-Metcalf and the cateye configurations rely
on a translating mirror to adjust the external cavity resonance, whereas the Littrow configurations
uses tilt of the grating angle. Figure adapted from [97]

which allows for high output power. A drawback is that the output beam will
change angle when the frequency is tuned, due to the changing grating angle.

In the Littman-Metcalf configuration the grating is used at grazing incidence,
and the -1st order is reflected off a mirror rather than being sent directly back to
the laser diode. This configuration is typically more flexible to align because of the
mirror, and allows for a stationary output beam upon tuning the mirror position. A
disadvantage is the lower grating efficiency at grazing incidence, which can reduce
the output power. The cateye configuration does not use a reflective grating, but
rather a transmission interference filter. This results in a linear cavity which can
significantly lower astigmatism. The cateye configuration reduces the sensitivity to
mirror imperfections and shaking, because of the small spot-size. The interference
filter must be angled to select the correct frequency, which can translate the axis of
the intracavity laser beam. Fine-tuning the frequency can be done by adjusting the
end mirror just as in the Littman-Metcalf configuration.

In table 3.1 we note all lasers used in the experiment. With the exception of
the 689 nm reference laser (see section 3.2.2) all systems have been constructed in
the lab. Below we will go through the individual laser paths in the experimental
system.



26 CHAPTER 3. EXPERIMENTAL SYSTEMS

Table 3.1: Laser systems in Sr I with typical power levels, wavelengths and construction schemes.
LD indicates injection locking of a simple laser diode, and TA is a tapered amplifier.

λ (nm) Use Scheme Pout (mW)
461 Cooling Cateye 30 Under preparation
679 Repumping Littman-Metcalf 3
689 Probing Littrow 12 Clock laser
689 Reference Cateye 30 Reference laser
707 Repumping Littman-Metcalf 14
922 Doubling Littrow 17 seed for TA
461 Cooling Doubling cavity 70
689 Pumping Injection, LD 30 seed for TA
689 Pumping Injection, TA 300
689 Probing Injection, LD 10
922 Doubling Injection, TA 950 seed for doubling cavity

Cooling light
The cooling scheme relies on laser cooling at around 461 nm. The light is generated
by using a frequency doubling cavity with a PPKTP crystal. This crystal allows
frequency doubling of infrared light at 922 nm to 461 nm with an efficiency that
scales as P2

922. In figure 3.2 this part of the laser path is shown in a red box. The
infrared light is initially generated in a Littrow configuration and sent through a
tapered amplifier to boost the power from the 17 mW level to around 950 mW. After
each laser an optical isolater ensures that back-reflections which could cause noise
in the laser power, is significantly suppressed. The doubling cavity is a bow-tie
type cavity, with a PPKTP (Periodically poled KTiOPO4) crystal inside. The length
of the cavity is controlled with a ring-piezo on one of the cavity mirrors. The cavity
resonance is locked to the incident 922 nm laser via the reflected signal. Because the
doubling crystal in the cavity is highly polarization sensitive, a Hänsch-Couillaud
type lock can be used. The error signal for the HC lock is generated by mixing
polarizations on a balanced photodetector (BPD), and it is fed back to the piezo
voltage via a servo system.

The doubling cavity generates about 70 mW of blue light. A small fraction of
this (∼ 650 µW) is used for the reference oven. The light is sent through AOM-Ref,
see figure 3.2, where it is shifted by ∆AOM−Re f = +368 MHz in order to keep the
main laser away from resonance with the atoms. The resonant light is used for
fluorescence spectroscopy on the atoms in our reference oven. We obtain an error
signal for the laser frequency control by adding a δ = 9.5 kHz dither to the AOM
frequency, and using a lock-in amplifier. The error signal is fed back to the current
of the 922 nm ECDL.

The reference oven has a jet of uniform atoms with a transverse Doppler broad-
ening of about σD ≈ 10 MHz. It consists of a simple enclosure with solid strontium,
that is heated to about 520 ◦C with a 1 mm center-hole. Atoms ejected from the
hole have a large transverse spread which is reduced by three skimmers placed at
distances of 60, 180 and 300 mm from the oven. The skimmers have 2 mm center
holes as well as large open side-panels in order to facilitate vacuum pumping. It is
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Figure 3.2: An overview of the cooling laser path. The laser light is generated on the marked, red
section. Here 922 nm light is initially generated in a Littrow ECDL configuration. After the light is
amplified it is coupled into a butterfly cavity, were frequency doubling takes place through nonlinear
interaction with a PPKTP crystal. The cavity length is locked to resonance with the 922 nm laser,
using a HC-type lock. The error signal is generated by rotating the polarization of the cavity reflected
light using a λ/4-plate, and detecting it on a balanced photodetector (BPD). The doubling cavity
generated blue light at 461 nm is distributed between a reference oven, the Zeeman slower, and the
three axes of a MOT. Distribution of the optical power is controlled via the RF amplitude supplied
to the AOMs and a number of λ/2-plates. The 922 nm laser is locked to ensure resonance with the
atoms via a fluorescence detection photodiode (PD) at the reference oven, and a subsequent lock-in
amplifier.

possible to use multiple ports along the vacuum chamber for atom spectroscopy.
Once this frequency locking loop is closed, two subsequent AOMs act to bring

the light to the correct detunings for the 3D MOT light and Zeeman slower respec-
tively. The MOT is operated at a detuning of ∆ = −41 MHz from the bare atomic
transition, which is achieved by setting AOM-MOT to ∆AOM−MOT = +327 MHz,
before dividing the beams into the vertical z-branch, and then the horizontal
x- and y-branches. The Zeeman arm uses the zeroth order from AOM-MOT
to generate a beam at a total detuning of ∆ = −439 MHz with AOM-Zeeman,
∆AOM−Zeeman = −112 MHz.

All AOMs in the 461 nm laser path are single-pass free-space AOMs. This means
that the system is very inflexible to frequency detuning, as this will inevitably result
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Figure 3.3: Measurement of the Doppler dispersion width of the blue MOT transition in our 88Sr
88 system. The reference oven AOM was used to change the detuning of the MOT beams. We plot
the dispersion widths as a function of the detuning of the MOT beams with respect to the bare atomic
transition. A minimal signal width is found for ∆MOT ≈ −41 MHz.

in misalignment of the beams. Since there are no fibers in the path, the wavefronts
also have a tendency to become somewhat distorted. The robustness of the MOT
would gain significantly from adding fiber couplings to the three MOT arms. An
alternative AOM scheme with the implementation of one or more double-pass
AOMs would additionally allow for a more robust optimization of the MOT and
Zeeman frequencies.

The minimal distortion from AOM detuning is achieved by detuning the fre-
quency of AOM-Ref. We use this in order to optimize the frequency detuning of
the MOT light with respect to atomic density and temperature. By adjusting the
AOM frequency and measuring the width of the dispersion signal from the cold
atoms, we achieve the frequency dependency shown in figure 3.3. Here we use
the NICE-OHMS method detailed in chapter 4 in order to measure the atom-cavity
dispersive response. The peak-peak width of the Doppler dispersion curve is then
found for each AOM detuning. In the fully linear regime, the peak-peak width of
the dispersion signal corresponds closely to the FWHM of the Doppler broadened
absorption linewidth. While this is no longer the case in the non-linear regime that
our system is in, there is still a proportionality between the dispersion width and
the ensemble temperature.

Without giving a value for the ensemble temperature we thus find that the
dispersion feature is most narrow for AOM-Ref values of ∆AOM−re f = 368 MHz.
This corresponds to a MOT laser detuning of ∆MOT ≈ −41 MHz with respect to
bare atomic resonance. Since we are detuning AOM-Ref we will also effectively be
detuning the Zeeman beam frequency, potentially reducing the number of atoms.
However, we neglect the effect of detuned Zeeman light, since we expect the MOT
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Figure 3.4: An overview of the repumping laser path. Two Littman-Metcalf configuration ECDLs
generate light at 679 nm and 707 nm respectively. The light is combined on a simple beamsplitter
(BS), and sent through a fiber, whose output is expanded and sent to the atomic sample.

beams to be more sensitive to this detuning.

Repumping light
We use two lasers in a repumping configuration during the cooling scheme. The
fast cooling transition at 461 nm is not perfectly closed, and as such there is a
finite leaking rate from the excited 1P1 state to the meta-stable 3P2 state. In figure
2.1 the energy levels are shown with the repumping lasers at 679 nm and 707 nm
respectively.

Figure 3.4 shows the laser path of the repumping lasers. Both are based on the
Littman-Metcalf ECDL configuration. Their beams are overlapped, and coupled to
an optical fiber. This ensures optimal mode overlap of the beams as they impinge on
the atoms. Due to the diodes used the output power of the 679 nm laser is limited to
about P679 = 3 mW, whereas the 707 nm laser typically operates somewhat higher
in power at about P707 = 14 mW. For both lasers this is sufficient to drive the atomic
repumping with approximate scattering rates of

γ707
sc = 1.9(7) · 107s−1 and γ679

sc = 3.4(11) · 106s−1. (3.2)

Here we use equation (2.25) and assume that the atoms are at rest.

Probe light
We refer to the light resonant with the physics cavity, λ = 689 nm, as the probe light.
This light can be resonant with the narrow 1S0 ↔

3P1 transition, and is used for
probing the atoms in order to estimate the ensemble overlap with the cavity mode.
In addition this is the probing light responsible for the saturation spectroscopy that
we will discuss in chapter 4. The clock laser setup, see section 3.2.1, is used as
a master laser for the probing light. It’s spectral properties are important to the
detection techniques we use in our different schemes. Here we go through the
laser path at the Sr I table as shown schematically in figure 3.5. About 2 mW of
power is emitted through a 10 m optical fiber from the clock laser table. The light is
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Figure 3.5: An overview of the probe laser path on the experiment table. Light generated at the clock
laser table is sent through an optical fiber and used to injection lock a laser diode. This results in a
10 mW output power which is frequency shifted through two AOMs. The first AOM (1) is double
pass, allowing for easy frequency control. The first unused zero order is picked off to feed a secondary
laser path for optical pumping. The second AOM can be either a double or single pass, depending
on whether we want the carrier frequency to be at atom resonance (AOM 2) or detuned by 1 FSR of
the interrogation cavity (AOM 3). The light is then sent through a fiber-coupled EOM where PDH
and NICE-OHMS sidebands can be generated.

directly used to seed an injection-locked laser through the exhaust port of an optical
isolater. The injection locked laser acts as an amplifier producing about 10 mW of
light whose frequency is controlled through a number of AOMs. Because we need to
be able to tune the laser frequency, we use double-pass AOM configurations. These
rely on using the first order diffraction of the AOM, and retro-reflecting it through
the AOM. This results in a second first order diffraction that will overlap with the
incoming light. A polarization beamsplitter (PBS) is then used in conjunction with
a λ/4 waveplate in order to separate the out-coming beam from the incoming beam.
Notice in figure 3.5 that the zeroth order of the first pass is sent to the pumping
laser.

AOM 1 is stationary in frequency and set to ∆AOM−1 = −345 MHz. The beam
can be sent to the AOM 2 or AOM 3 setup depending on whether we are interested
in a resonant probe (AOM 2) or a detuned probe field (AOM 3). Sending the beam
to AOM 2 gives a shift of about ∆AOM−2 = +325 MHz for each pass, resulting in a
total detuning of ∆ = −40 MHz from the bare clock laser. This brings the laser to
resonance with the atoms, except for the steady drift in frequency with the drift and
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Figure 3.6: An overview of the pumping laser path. A branch of light from the probing laser is
picked off to seed an injection locked laser diode. The light is further amplified from 30 mW to about
300 mW in a tampered amplifier (TA), and the frequency is shifted by about 38 MHz in an AOM.
The AOM is used to rapidly turn on and off the pumping light sent to the atoms. A pi-pulse is about
190 ns with an incident power of Ppump ≈ 100 mW.

aging of the clock laser setup. By using a flip mirror and changing some waveplate
orientations, the light can be directed towards AOM 3 allowing for a smaller shift
of ∆AOM−3 = −130 MHz. This produces a beam detuned one FSR of the physics
cavity FSR = 781.14 MHz away from the atomic resonance. In contrast to AOM 1
and AOM 2, AOM 3 is a single-pass AOM.

After passing through the AOMs the light is coupled to a fiber-coupled electro-
optic modulator (EOM). This EOM allows for a large modulation depth for modest
RF powers compared to the free-space version, and is used both for sidebands at the
physics cavity FSR (if needed), and to generate the PDH sidebands at Ω = 10 MHz.

Pumping light
Light from AOM 1 in the probe path is sent to a second injection-locked laser diode,
see figure 3.6, which generates light for the pumping beam used in chapter 5. The
injected power is about 2 mW and the diode acts to amplify this to about 30 mW.
Since this is still insufficient for inversion-pumping on the 1S0 ↔

3P0 transition
the light is further amplified in a tapered amplifier (TA). The tapered amplifier
efficiency has a square-dependency, so the primary amplification is necessary in
order to obtain the required power levels. Out of the TA the power is about
300 mW, which is sent through a single-pass AOM at ∆AOM−pump = −40 MHz.
Beam-shaping is necessary to make the intensity distribution across the atomic
sample approximately homogeneous, and the final power level sent through the
physics chamber is Ppump ≈ 100 mW. The beam is incident at an angle of 45◦ with
respect to the cavity axis, and shaped to have waist sizes of wg

0 = 2.7 mm and
wm

0 = 1.5 mm along the greater and minor axis of an elliptic Gaussian. The greater
axis is rotated 35◦ with respect to the plane spanned by the pumping beam itself
and the cavity axis.

3.1.2 Physics cavity
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Figure 3.7: Picture of the physics cavity with red light scattered from the matte Zerodur spacer, and
a cloud of cold strontium atoms fluorescing in bright blue at the center. Cutouts in the cavity spacer
allow for cooling and trapping of the atoms directly inside the physics cavity.

Inside the vacuum chamber the atoms are placed within a physics cavity. In the
context of the NICE-OHMS technique of chapter 4 it is referred to as the interro-
gation cavity, and in the context of laser generation in chapter 5 it is referred to
as the lasing cavity. The cavity is a cylindrical Zerodur rod with mirrors glued to
the ends, and cutouts to allow the laser cooling beams to pass through. Figure 3.7
shows a photo of the cavity, with red light scattering off the glass, and a blue cloud
of atoms fluorescing in the center. The cavity mirrors are 1 inch in diameter, with a
radius of curvature (ROC) of 9 m. The cavity length is approximately L = 19.2 cm
resulting in a waist radius of w0 = 450 µm. One mirror is mounted on a ring-piezo
in order to allow for tuning of the cavity resonance. The mirror power reflectances
are approximately R = 99.8%. The measured linewidth is 620 kHz, and the free
spectral range (FSR) is 781.14 MHz, resulting in a finesse of F = 1260.

3.2 Reference lasers

In this section we will look at the two reference lasers used for interrogation and as
frequency references for the experiments done in chapters 4 and 5. Both lasers are
689 nm lasers based on ECDL systems and referenced to stable reference cavities.
The clock laser is used for locking the length of the physics cavity as well as for
interrogation and stabilization in the NICE-OHMS system of chapter 4. In chapter
5 we will also see it used for some of the beating measurements with lasing pulses.
The reference laser is used only in chapter 5 to measure spectra and frequency
stability of the lasing pulses.

3.2.1 The clock laser system

The clock laser is based on a home built ECDL in the Littrow configuration, stabi-
lized to an optical cavity with a finesse of about F = 8000 and a free spectral range of
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FSR = 1.5 GHz. The current laser diode is an AR coated Eagleyard1 diode installed
in September 2018. The laser frequency is locked by using the PDH-technique on
the cavity, and feeding back fast on the laser diode current and slowly on the voltage
over a piezo-electric element mounted on the ECDL grating.

Figure 3.8 shows an image of the setup with the laser output branched out to a
cavity-arm and an experiment-arm respectively. The cavity arm has a double-pass
AOM at 358 MHz, which brings the laser onto resonance with the cavity mode,
and an EOM for generating Pound-Drever-Hall (PDH) sidebands at 10 MHz. The
light is led onto the cavity breadboard via free space optics, and the cavity rests
inside a vacuum chamber which is rigidly mounted on the optical table. In the
experiment-arm the light is coupled directly into a polarization maintaining (PM)
optical fiber, and directed to the slave diode on the Sr-I table.

The clock laser table is a 10 cm thick honeycomb breadboard floating on air-
filled pillows ensuring rigidity and high suppression of vibrations through the
floor. The vibration isolation of the laboratory floor is already of very high quality
(see appendix B.1), but regular road works, large vehicles and helicopters in the
surrounding areas pose a challenge. In order to minimize air-currents a simple
PMMA enclosure was designed. Additional foam panels inside of this enclosure
partially dampens air-borne acoustic vibrations.

The temperature of the cavity spacer is stabilized by two independent peltier-
elements mounted externally on the vacuum chamber front and back. The reference
temperature is set to 24 ◦C without knowledge of the thermal-expansion coefficient
zero-crossing temperature of the ultra-low expansion (ULE) glass used for the
spacer. The clock system is thus relatively simple in its servo-electronics, with
only two characteristics locked. The fiber noise added between the clock laser table
and the experiment (10 m PM fiber in a lab environment) is uncompensated.

Figure 3.9 shows the spectrum of the PDH error signal recorded with a resolution
bandwidth of 1 kHz. Noise is at the −40 dBm to −60 dBm level, with relatively
wide and flat servo bumps peaked around 617 kHz.

3.2.2 The reference laser system

The reference laser system was built, used, and disassembled again within only a
few months. This reference laser is based on stabilization of a commercial laser2 to
an ultra-stable cavity that was kindly on loan from Observatoire de Paris, SYRTE
[104]. Since the infrastructure that we have built at the Niels Bohr Institute will
serve as the basis for the construction of our own reference cavity, it was possible
to incorporate the cavity into a well-equipped environment. We thus installed the
setup in a low-noise environment (see appendix B.2) with an acoustic insulating
enclosure3, and a vibration isolating platform4. The inside of the acoustic enclosure
can be seen in figure 3.10. Since the enclosure is bases on MDF wood panels, a 2 inch
thick 600 mm × 900 mm honeycomb breadboard is used as a common platform

1Part number: EYP-RWE-0690-00703-1000-SOT02-0000
2MOGlabs CEL
3Accurion AE-1200 custom
4Accurion i4
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Figure 3.8: The setup of the clock laser. The whole system is mounted on a 10 cm honeycomb
breadboard which floats on air-pressurized pillows. In the back a vacuum chamber with the ULE
cavity spacer mounted vertically is seen. A home-built Littrow-configuration ECDL laser is used
as the source (located in a gray aluminum box in the bottom left of the picture). The laser system
is encased in a PMMA structure to minimize air currents. In combination with foam panels this
enclosure also provides some level of acoustic isolation. The cavity ensemble is rigidly mounted on
the breadboard, and the laser light is free-space coupled into the cavity. Light is distributed to the
experiment via an optical fiber. Also shown is a schematic of the system. The active elements are a
double-pass AOM and an EOM. A reference cavity and a photodiode (PD) is used to discriminate
and detect the error signal that is fed back to the laser current and piezo via servo electronics. The
polarization is manipulated to ensure correct propagation through three polarizing beamsplitters
(PBS).

to provide rigidity and mass. The reference cavity rests on an active vibration
isolation platform, and the laser on an additional honeycomb breadboard mounted
on sorbothane spacers. This provides mechanical isolation between the two parts
when working on the system while locking the laser frequency.

In figure 3.11 a simplified schematic of the reference laser system is shown.
It consists of a laser breadboard (red) with a cavity arm and an experiment arm.
Both arms are sent through optical fibers. In order to reduce phase-noise from
these fibers, an interferometer is set up before the fiber in each arm. Sidebands
for the PDH signal on the cavity are generated by an EOM in the cavity arm on
the laser breadboard. At the end of each fiber a reference surface is set up for
fiber noise cancellation (FNC), visible on the cavity part (yellow) of figure 3.11. In
addition to the ultra-stable cavity two photodetectors (PD) are also place on the
cavity breadboard. The PD in reflection is used for the PDH stabilization and the
PD in transmission is used for power stabilization of the cavity input light.

The laser is an interference-filter based ECDL (cateye configuration), whose
frequency can be controlled by adjusting the laser diode current, or its cavity length
by means of a piezo voltage. The light is sent through an optical isolator before being
split between the two arms on a polarizing beamsplitter (PBS). The interferometers
for FNC consist of 30:70 and 90:10 beamsplitters (BS) respectively for the cavity
arm and experiment arm. The AOM frequencies are set at νcav

AOM = 240 MHz and
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Figure 3.9: The PDH error signal spectrum of the clock laser, with slow feedback to the ECDL
piezo and fast feedback to the laser diode current. Full measurement in purple, with the green curve
showing only points above −60 dBm. The measurement was made with a resolution bandwidth of
100 Hz. We have manually added 20 dB to the signal amplitude to account for the signal reduction
when measuring through a coupler. The servo bandwidth (BW = 617 kHz) is found as the frequency
range below servo resonances.

ν
exp
AOM = 310 MHz. The interferometer is a Michelson-Morley type, with a BS and

two end-mirrors. One arm is local, whereas the other is through the optical fiber.
Photodetectors in these interferometers then allow stabilization of the phase of the
light, by feeding back to the RF frequency on the respective AOMs. Because the
AOM is within one of the interferometer arms, the error signal will be at a frequency
of 2 · νAOM. By beating this against a stable frequency5 and actuating on the VCO
frequency the phase noise is thus suppressed. An EOM in the cavity-arm allows
20 MHz phase modulation of the light in order to generate the PDH sidebands.

The cavity breadboard (yellow) contains the stable reference cavity. Light is
coupled onto the breadboard from an optical fiber. A beamsplitter (BS) with a
reference mirror acts as the fiber noise cancellation (FNC) reference surface. Light
is coupled into the cavity and both the reflected and transmitted signals are detected
in order to allow frequency stabilization on the laser, and power stabilization on
Cav-AOM respectively. Typical power levels before power locking is P = 350 µW
at the fiber output, and P = 30 µW in cavity transmission. After power locking the
transmission signal is servoed to P = 10 µW.

The spectrum of the PDH error signal when all parts of the system feedback
loops are locked is shown in figure 3.12 with a carrier frequency at 20 MHz and
servo resonances appearing at ±440 kHz. The noise level is significantly lower
than in the clock laser shown in figure 3.9, but the locking BW reduced. We use a
MOGlabs FSC as the servo.

3.2.3 Frequency characterization

We beat the clock and reference lasers against each other in order to estimate the
frequency noise. This is done at the Sr I experiment table following the 45 m phase-

5We typically use HP/Agilent/Keysight 8648A/B/C/D 1E5 for such references. These have a frac-
tional frequency instability of < 10−9 per day, and a phase noise of < −90dBc/Hz for ν > 5Hz.
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Figure 3.10: Inside the acoustic enclosure of the reference laser. The reference cavity with its golden
vacuum chamber and protection pillars was kindly lend to us by Rodolphe Le Target at Observatoire
de Paris, SYRTE. It rests on a vibration isolation platform from Accurion. Next to it is the breadboard
for the laser with its two branches connected to the cavity setup and the experiment respectively via
optical fiber. All of this rests on a 600 mm × 900 mm honeycomb breadboard to ensure rigidity.

stabilized fiber from the reference laser, and a 10 m uncompensated optical fiber
from the clock laser. The clock laser does not employ power stabilization or ensure
minimal thermal sensitivity of the length of the ULE cavity, so we expect this setup
to be the limiting factor in terms of drift of the beat frequency.

We performed a number of beats at 118 MHz and measured the frequency using
a commercial counter6. The counter has a deadtime of about 1 µs per measurement,
which we ignore here and limit ourselves to measurements times of τ > 1 ms. In
figure 3.13 we show the overlapping Allan deviation of the comparison for four
different cases.

We steadily improved the locking of the reference laser to the stable cavity from
SYRTE, while our own clock laser was left unchanged. The blue curve is a low-
bandwidth lock of 200 kHz with an uncompensated 45 m fiber from the reference
cavity to the interference point. The yellow and orange plots are measured with
an improved bandwidth of 440 kHz on the reference laser lock. When adding fiber
noise cancellation (yellow), the long-term drift is reduced significantly. By adding
power stabilization to the reference cavity error signal, and further improving
the locking bandwidth to about 550 kHz, the purple points are obtained with a
minimum deviation of below 40 Hz or 9 · 10−14 at 1 s. At shorter times the noise

6Pendulum CNT-90 Counter/Timer/Analyzer OPT. 30/90
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Figure 3.11: Schematic of the reference laser setup. The system consists of two optical breadboard,
with the cavity and laser source respectively. Photodiodes (PD), Polarizing and non-polarizing
beamsplitters (PBS and BS) are shown while lambda-plates and most mirrors are not. Electric wires
are shown in Black, whereas lasers are shown in red. AOMs in red are controlled by VCO whose
frequency can be locked in order to provide fiber noise cancellation (FNC). The laser frequency is
controlled by feeding back on both piezo voltage and laser diode current. A power stabilization on
Cav-AOM ensures a stable size of the PDH error signal.

is not white frequency noise, and can be seen to scale approximately as 20 Hz/τ1/3.
Because the steady improvements of the reference laser lock are so clearly visible,
we have reason to believe that the two systems are performing at close to the same
levels. If both lasers behave similarly the single laser frequency deviation can be
estimated by division with

√
2 and we obtain a fractional instability of about 28 Hz

or 6 · 10−14 at 1 s for both systems.
The short-term stability was also measured but is limited by the dead-time of

the frequency counter. The relevant experimental timescales of 100 µs (chapter 4)
and 1 µs (chapter 5) yield measured frequency instabilities of 3 kHz and 30 kHz
respectively. When measuring over such short intervals (τ = 1 µs) the instability
averages down as 1/

√
τ to 900 Hz at τ = 1 ms rather than the 160 Hz we see for

longer averaging times in figure 3.13. We thus expect the actual instability at short
times to be better than indicated by these measurements. By adding fiber noise
cancellation and power stabilization to out clock laser, we expect that the technical
noise at short times might improve further. Given more time, an estimate of long-
term drift and optimization of the clock cavity temperature to reduce it would have
been performed.



38 CHAPTER 3. EXPERIMENTAL SYSTEMS

Figure 3.12: The PDH error signal spectrum of the reference laser, with slow feedback to the ECDL
piezo, fast feedback to the laser diode current, and power stabilization of the cavity transmission.
The measurement was made with a resolution bandwidth of 1 kHz. Full measurement in purple,
with the green curve showing all points that are not at the lower detection limit of the spectrum
analyzer (−100 dBm). We have manually added 20 dB to the signal amplitude to account for the
signal reduction when measuring through a coupler. The servo bandwidth (BW = 440 kHz) is found
as the frequency range below servo resonances.

Figure 3.13: Comparison between the Clock laser and the reference laser. The beat between our own
clock laser and the reference laser based on a stable cavity from Observatoire de Paris, SYRTE. We
steadily improved the locking of the reference laser to the stable cavity from SYRTE, while our own
clock laser was left unchanged. Here we show four different curves, exemplifying the improvements
that were made. The blue curve is a low-bandwidth lock of 200 kHz with an uncompensated 45 m fiber
from the reference cavity to the interference point. The yellow and orange plots are measured with
an improved bandwidth of 440 kHz on the reference laser lock. When adding fiber noise cancellation
(yellow), the long-term drift is reduced significantly. By adding power stabilization to the cavity
error signal, and further improving the locking bandwidth to ≈ 550 kHz, the purple points are
obtained with a minimum deviation of below 40 Hz or 9 · 10−14 at 1 s. If both lasers behave similarly
the single laser frequency deviation is about 28 Hz or 6 · 10−14 at 1 s.
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In this chapter we present investigations of a phase-response approach to atomic
or molecular spectroscopy inside of an optical cavity. Noise-Immune Cavity-
Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) uses non-
resonant side bands to act as reference fields in a heterodyne beat measurement.
This can be used to measure the dispersion feature of an atomic or molecular reso-
nance. The method was devised [126] by one of the namesakes of the PDH method,
Jan Hall, as well as Long Sheng Ma and Jun Ye, who currently has the best strontium
optical lattice clock in the world [83]. As the name of the technique suggests it aims
to bring the advantage of cavity-enhanced systems and heterodyne measurements
together.

Optical atomic lattice clocks operate in the Lamb-Dicke regime, where the con-
finement within an optical lattice means that allowed motional energies are sepa-
rated in energy by a value greater that the transition linewidth. This suppresses
Doppler broadening of the resonance to first order, severely reducing inhomoge-
neous broadening effects. The NICE-OHMS technique relies on resonant spec-

39
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troscopy inside of an optical cavity, which makes it a saturation spectroscopy tech-
nique. This means that the inhomogeneous Doppler broadening of the atomic
ensemble can be neglected to first order. This comes at the cost of ignoring all
finite-velocity atoms, effectively reducing the atom number of your sample. The
finite velocity of the atoms turns out to affect the system in other subtle ways, e.g.,
through doppleron resonances.

After a short introduction to saturated spectroscopy and a theoretical model for
our system, we will look at typical spectroscopic signals from our system. In order
to correctly interpret the full dispersion lineshape we find that we need to modify
the quantum mechanical model derived in [112]. We present some theoretical
predictions for the attainable spectral linewidth of a laser locked to such a feature,
as well preliminary steps towards a frequency reference based on this technique.
This chapter is based partially on the results presented in [99] and [98]. The work is
a continuation of previous research performed by the author as presented in [18],
[19], [45], [97].

4.1 Saturated spectroscopy in a cavity

Our ensemble of cold atoms can be treated as simple two-level systems consisting
of an excited state, |e〉, and a ground state, |g〉. In strontium the transition that we
are probing is a closed transition, and if we neglect collisions the only decay of the
system is thus from |e〉 to |g〉 at a rate of γeg. The transition lineshape is Lorentzian,
but homogeneous broadening effects can increase the linewidth beyond γeg and
inhomogeneous broadening effects can misshape the effective linewidth of the full
ensemble.

We start out by looking at the inhomogeneous broadening. In our case the most
important inhomogeneous broadening is caused by the Doppler broadening due to
the spread in atomic velocities. Their thermal distribution is given by a Maxwell-
Boltzmann distribution. Since we only probe the atoms along a single axis, we are
interested solely in the distribution along that axis. This distribution is Gaussian

with a width of σv =

√
kBT
M , which for a finite temperature of T = 5 mK on the

1S0 ↔
3P1 transition in 88Sr corresponds to a Doppler spectrum with a FWHM of

ΓD = 2π · 2.3 MHz.
The spectral profile of the atomic ensemble will then be a convolution of both

the homogeneous and inhomogeneous broadening effects. For our purposes we
can initially restrict ourselves to Lorentzian and Gaussian profiles, indicating that
the final spectrum will be a Voigt profile. Figure 4.1 illustrates the shapes of Voigt
profiles for different ratios between the widths of the Gaussian and Lorentzian
lineshape. The Lorentzian width has a lower bound given by the natural transition
decay rate γeg/2π = 7.5 kHz, but is limited by a homogeneous power-broadening
of up to Γpower/2π ≈ 200 kHz. This places us somewhere between the case of figure
4.1 (b) and (c), where the Voigt profiles closely resemble a Gaussian distribution.

The power broadening of the spectrum originates from the nonlinear response
of a two-level system to a driving intensity, when the excitation rate Λ approaches
that of the decay rate γeg. This can be viewed in terms of the fundamental processes



4.1. SATURATED SPECTROSCOPY IN A CAVITY 41

Figure 4.1: Spectral profile of a Voigt originating from Gaussian, ΓD, and Lorentzian, Γpower,
distributions of different relative widths. (a) ΓD/Γpower = 1. (b) ΓD/Γpower = 10. (c) ΓD/Γpower =
100.

such as absorption and stimulated emission and is quantified through, e.g., the
rate equations. An expression for the absorption lineshape, as derived in [34], can

be given by the atomic density n, and maximal absorption cross section σ0 = 3
λ2

0
2π ,

where λ0 is the resonant wavelength.

α(ω, I) = nσ0

(
γeg/2

)2

(ω − ω0)2 +
(γeg

2

)2
(1 + I/Isat)

, (4.1)

where the resonance frequency is given byω0. The saturation intensity at resonance
is related to the transition linewidth and energy Isat = π

3
hcγeg

λ3
0

. The power broadened

absorption lineshape is itself a Lorentzian with a increased width of

Γpower = Γ
(
1 +

I
Isat

)1/2
, (4.2)

and a reduced amplitude of 1
1+I/Isat

.
Since the Doppler broadening of an ensemble is an incoherent effect, it is possible

to address atoms within certain velocity ranges by tuning your light to resonance
with them. If a light field resonant with atoms in a certain velocity range is suf-
ficiently strong, these atoms will be saturated, and the absorption of the atomic
ensemble will be reduced at the corresponding frequency when measuring with a
second probing laser. This is illustrated in figure 4.2 for the case of a saturation
beam on resonance with the bare atomic transition ω0.

The saturation permits a measurement of a sharp spectroscopic feature, even
from an initially Doppler broadened ensemble. If the saturation beam and the beam
used to probe the ensemble have equal an opposite detunings with respect to ω0, it
is the unperturbed atoms (at rest with respect to the laboratory frame of reference)
that are saturated. One technically elegant way to realize this is by ensuring that
the beams have identical frequencies, but opposing directions of propagation. By
scanning the laser frequency in such a scheme, saturation will only be detected for
ω = ω0.
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Figure 4.2: Absorption profile of a Doppler-broadened ensemble of atoms with a homogeneous power
broadening of order ΓD/Γpower = 10. Atoms at rest are saturated resulting in a Voigt profile with a
Lamb dip appearing as a Lorentzian dip at the center. Constituent Voigt and Lorentzian profiles are
shown.
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Figure 4.3: Sum (blue) of ideal Gaussian (green) and Lorentzian (orange) dispersion features
exhibiting line-narrowing, and slope reduction of the resulting Lorentzian-like dispersion. While
the inhomogeneous broadening of an atomic ensemble will in general lead to a Voigt profile and not
a Gaussian profile. Here we assume a regime where ΓD/Γpower � 1, making a Gaussian an excellent
approximation. (a) shows the full signal and (b) shows the line-narrowing, and slope-reduction of
the sum with respect to the bare Lorentzian derivative.

Here it is only appropriate to return to optical cavities. Optical cavities ensure
two things. They amplify the power levels of the input field, and they provide
a perfectly balanced bi-directional field. This makes cavities a trusty companion
of saturated absorption spectroscopy in many different applications. Since we are
interested in the narrow spectral feature of a Doppler-free spectroscopic method
for laser stabilization, we will focus on the dispersion signal in the following. The
absorption profile will be largely ignored.
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A wrong, but nevertheless informative, approach to the dispersion signal is to
consider the derivative of the absorption signal. In figure 4.3 we look at the sum
of a Lorentzian and a Gaussian derivative of opposite signs. The large Gaussian
feature from the Doppler-profile incurs a sign-reversal of the slope right at resonance
because of the Lorentzian saturation. As is shown in 4.3 (b) the magnitude of the
slope of the final signal will be smaller than the pure Lorentzian, just as the width
will be reduced because of the Doppler-background. This is unfortunate from
the point of view of obtaining a good frequency-discrimination. The slope can,
however, be much steeper than that of the Doppler feature, depending on the
saturation parameter. While the true dispersion features (figure 2.2) are slightly
different from the derivatives shown here, the considerations are the same.

By locking the cavity resonance to the laser frequency, we can map out the actual
dispersion signal of the cavity-coupled atoms. Thus far we have not considered
how the cavity modifies the signal, but this will be shown in both sections 4.4 and
4.5. In the following section we will look into the detection scheme for the NICE-
OHMS signal itself, and how that allows us to measure the phase-response of the
system.

4.2 NICE-OHMS detection scheme

In figure 4.4 we show a schematic of the setup. Atoms are probed inside of an optical
cavity, and we set up our system to be able to detect both the transmitted power
of the cavity and the phase-response. The cavity mode ensures that we always
have perfectly balanced powers in the two counter-propagating beams inside the
cavity. For sufficiently high powers we will then saturate the atoms with velocity
~v = 0 parallel to the cavity axis. The transmitted power shows us a wide Doppler-
absorption profile, with saturation in the center. The width of the Doppler-profile is
given by the temperature of the ensemble and yields temperatures of approximately
T = 5 mK. Notice that the signal-to-noise ratio (SNR) of the absorption signal is
quite poor, but that of the phase-response is significantly better.

The frequency of the probing laser is controlled through an AOM as detailed
in 3.1.1. We phase-modulate the laser in an EOM to add spectral sidebands to the
carrier frequency at νPDH = 10 MHz and νFSR = 781 MHz respectively. On figure
4.5 an overview of the frequency components involved can be seen. The cavity
length is then locked to resonance with the probing beam by using the reflected
signal in a PDH lock, and feeding back to a ring-piezo on one of the cavity mirrors.
The modulation at νFSR allows sidebands resonant with the cavity to be transmitted
without interacting with the atomic ensemble itself.

For the light interacting with the cavity, we can neglect the PDH sidebands, and
describe the input laser field as

Ein = E0

∞∑
j=−∞

J j(y)ei(ωl+ j2πνFSR)t. (4.3)

Here E0 is the amplitude of the electric field, and the phase-modulation of the laser
leads to sideband amplitudes that follows the j-th order Bessel function of the first
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Figure 4.4: Schematic of the NICE-OHMS measurements system and detection electronics. Atoms
are trapped in a MOT overlapping with the cavity mode. The interrogation laser is sent through
an AOM to control frequency detuning. An EOM adds sidebands to the interrogation laser at the
FSR of the cavity. Additional sidebands at 10 MHz are used for a PDH lock which ensures that the
cavity is always kept on resonance with the laser. After detection a slow photodiode (PD) and a fast
avalanche photodetector (APD) is used to detect the signal and provide a direct absorption signal
and a beat signal with the probe laser sidebands respectively. By demodulating the beat signal the
phase response and atomic absorption can be retrieved at νFSR and 2νFSR respectively. Adapted from
[97].

kind, J j(y). In the transmitted signal we will then have a total power which is
detected on a slow (50 MHz) photodiode (PD) as well as beat signals which are
detected on a fast (1.5 GHz) Avalanche photodetector (APD). The APD signal is
filtered and demodulated at the beat frequency νFSR or 2νFSR. This allows us to
observe the signal in a frame rotating at the oscillation frequency of the light itself,
and the detected signal is thus proportional to the field amplitudes and the relative
phases.
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Figure 4.5: The NICE-OHMS scheme in terms of laser frequency components and their relation to
cavity and atomic resonances. The carrier frequency is on resonance with the atomic transition, while
sidebands at νFSR are transmitted through the cavity without interaction with the atoms. Additional
sidebands at ΩPDH are used to generate the PDH signal. Notice that the cavity lock will be based on
the sum of three simultaneous error-signals. When the carrier is mostly absorbed by the atoms, this
enables the lock to remain on.

4.3 Classical theory of cavity interaction

With the input field to the cavity described as simply a sum of fields at different
frequencies, all resonant with the cavity, we can give a classical description of the
interaction between the field and a cavity with some complex-phase medium. We
ignore for the moment the exact behavior of this medium, and describe it in a
generic way. This will allow us to later reintroduce the atomic phase-shift derived
in a semi-classical framework.

We relate the output field to the input via a complex transfer function ζ(θ)
where θ(ω) is the field-dependent complex phase resulting from propagation in
the cavity and interaction with the atoms. We assume a linear behavior such that
the transfer function fulfills Eout = ζ(θ)Ein. The real part of the transfer function
will then correspond to the relative amplitude of the transmitted field, whereas
the imaginary part will correspond to the dispersion. Light passing through a
symmetrical Fabry-Perot cavity can be described by a light ray bouncing back
and forth between the mirrors of the cavity, with power reflection (transmission)
coefficients R (T). Looking at the j-th frequency component of the field only, we get
a transfer function [90]

ζ j =
Teiφ j

1 − Re2iφ j
, (4.4)

where we have assumed that our cavity mirrors are identical and lossless. Since φ j
is a complex phase, absorption within the cavity medium is still allowed. For the
sidebands there is no interaction with the atomic ensemble, and the phase-shift is
simply given by the single-passage bare cavity phase shift φ j = φ

j
cav for j , 0. The

carrier component interacts with the atomic ensemble, however, and sees a phase
shift:

φ0 = φ0
cav + φD + iφA, (4.5)

whereφD is the atomic dispersion andφA the atomic absorption for a single passage.
Since we operate in a steady state with no external pumping, there will be no gain
in the system and we always have φA ≤ 1. The bare cavity induced phase-shift is
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given by φ j
cav = φ∆ + π j which is dependent on the number of half-wavelengths in

the cavity standing wave of the j-th sideband, and an offset-phase φ∆ = 0 for the
case of an ideal cavity lock.

Combining the transfer functions for different j, we can write the output field
as a superposition of the input field components

Eout = E0

∞∑
j=−∞

J j(y)ζ jei(ωl+ j2πνFSR)t. (4.6)

This field is directly incident on the photodetectors and we obtain the DC signal

SDC ∝ 2 |E0|
2 J0(y)2

|ζ0|
2 , (4.7)

on the slow detector. The fast detector picks up the beat signal between adjacent
sidebands, which we can demodulate with an appropriate choice of phase in order
to obtain the first or second overtone signal:

SFSR ∝ −2i|E0|
2J0(y)J1(y)

(
ζ0ζ
∗

1 − ζ
∗

0ζ1

)
S2·FSR ∝ −2|E0|

2J0(y)J2(y)
(
ζ0ζ
∗

1 + ζ∗0ζ1

)
− 2|E0|

2J1(y)2
|ζ1|

2 . (4.8)

Here we have included up to second order in sidebands, as higher order terms only
become relevant for a high modulation index y > 1.5. We have additionally taken
advantage of the simplification ζ j = (−1)| j|−1ζ1 for j , 0. By looking closer at our
phase conditions we can further simplify these expressions.

In steady state, the cavity lock will ensure that the cavity is on resonance with
the carrier component, which results in the condition

φ0
cav + φD = nπ, for n ∈ Z (4.9)

Using this condition together with equation (4.5) we can rewrite equation (4.4) to
obtain a purely real number1

ζ0 =
Te−φA

1 − Re−2φA
, (4.10)

which depends only on the atomic absorption. The atomic phase dispersion infor-
mation is then transferred to the sidebands through the cavity locking condition

φ j = φ
j
cav for j , 0

= φcav + jπ
= (n + j)π − φD. (4.11)

Ignoring again the overall sign from einπ, we get the sideband transfer function

ζ j =
Tei( jπ−φD)

1 − Re2i( jπ−φD)
for j , 0. (4.12)

1We ignore an overall sign from einπ.
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We can then recast the expressions for the signals in equations (4.8) as:

SFSR ∝ −4|E0|
2J0(y)J1(y)ζ0Im(ζ1)

S2·FSR ∝ −4|E0|
2
(
J0(y)J2(y)ζ0Re(ζ1) +

1
2

J1(y)2
|ζ1|

2
)
. (4.13)

The first overtone is proportional to the atom-cavity dispersion Im(ζ1) and
provides the error-signal we are after for laser stabilization. The DC component of
the signal will give the absorption profile, but it turns out that the second overtone
signal S2·FSR is also proportional to the absorption of the system, and allows us to
detect the signal at high frequencies with a potentially improved signal-to-noise
ratio as a consequence.

4.3.1 Cavity transfer function

Before we look at the atom-field interaction inside the cavity, we will take a closer
look at the consequences of the cavity phase relations and how this can eventually
distort the phase dispersion at large atomic phase-shifts. Because of energy con-
servation, the absolute-square of the complex transfer function we defined above
cannot exceed unity in a system without gain, |ζ|2 ≤ 1. This implies that there is
some maximal allowed value for the phase-response of the system Im(ζ1). To sim-
plify things we initially assume that there is no absorption in the cavity Re(ζ1) = 0.
This, of course, is unphysical in a situation where we are probing atoms resonantly,
but leads us to the trivial case where the magnitude of the phase-shift must fulfill
|Im(ζ1)| ≤ 1.

For dilute media the phase-shift caused by the atoms is small, and we are thus
in a regime where the transfer function is linear and Im(ζ1) ∝ φ. For larger phase-
shifts, however, this is no longer the case. Larger total phase shift is caused either
by a material inside the cavity with higher dispersion, or simply by increasing the
cavity finesse, and thus the effective interaction length. In figure 4.6 we plot the
imaginary part of a transfer function similar to equation (4.4) as a function of mirror
transmission, T, and the single-passage phase shift φ of some intracavity material.
We assume lossless cavity mirrors, T + R = 1, and zero absorption, φA = 0.

At high mirror transmission, the cavity has no effect, and the transfer function
becomes ζ ∝ e−φA sin(φD). A sinusoidal behavior with a phase-period of 2π. In
the figure we see only the behavior for mirror transmissions between T = 1% and
T = 0.01%. Here the periodicity of 2π remains, but only for small φ ≤ 5 mrad do we
see the dispersive behavior. As the transmission decreases (finesse increases) the
cavity dispersion feature grows more and more sharp. The thick black line indicates
a mirror reflectivity of T = 0.2% which corresponds to the mirrors we use in the
experiment.

Since the cavity transfer function maps out a dispersive behavior for increased
phase-shift inside the cavity, there will be a limit imposed on measurements of
the atomic phase-shift. If the atomic phase-shift for a given cavity finesse remains
small, we stay within the linear regime close to resonance. When the laser and cavity
are detuned together, the single-passage phase shift of the atoms increases. This
means that the dispersive behaviors of the atoms and the cavity will be convoluted.
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Figure 4.6: Cavity dispersion plotted against cavity mirror transmission and single-pass intracavity
phase shift. For small intracavity phase shifts the dispersion as a function of phase shift is linear, but
it flattens out and eventually inverts the slope for higher phase shifts. Adapted from [99].

Including this convolution in the theoretical description turns out to be necessary
in order to appropriately fit it to the experimental measurements.

The atomic absorption will decrease the maximal value of the total dispersion
Im(ζ1). The dispersion feature of the atom-cavity system might approach its max-
imal value at a given detuning, but the value of that maximum will itself be a
function of detuning. This is a result of the fact that both the atomic dispersion φD
and absorption φA varies as the frequency is changed. The maximal value of the
dispersion then, increases as we detune our system away from atomic resonance.
We will see examples of this behavior in section 4.5. Before we show the spectro-
scopic data we will look at the semi-classical theory of interaction between atoms
with quantized energies and a classical probing field.

4.4 Atom-field interaction

Here we give a brief overview of the theoretical model used by following [112],
[120]. Here a Born-Markov master equation approach is taken, assuming a reser-
voir unperturbed by the system, and with no memory on the time scale of the
cavity coupling rate as well as cavity and atomic decay rates 1/(g0, κ, γ). The time-
evolution of the density operator ρ̂ is given as:

d
dt
ρ̂ =

1
i~

[
Ĥ, ρ̂

]
+ L̂

[
ρ̂
]
. (4.14)

The Liuvillian, L̂, describes the incoherent processes of the system, whereas the
coherent evolution is given by the interaction-picture Hamiltonian:

Ĥ = Ĥatom + Ĥdrive + Ĥinteraction (4.15)
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The ensemble of cold atoms is modeled as two-level emitters who can couple to the
TEM00 mode of an optical cavity. The cavity field is modeled as a strong classical
field because of the resonant probing laser.

Ĥdrive = ~η
(
â† + â

)
, η =

√
κPin

~ωl
. (4.16)

Here κ is the cavity decay rate, Pin is the optical power coupled into the cavity, η
is the classical drive amplitude and ωl the probe-laser frequency. In the interaction
picture, we take the rotating-wave approximation and obtain the Hamiltonian:

Ĥ =
~∆ac

2

N∑
j=1

σ̂z
j + ~η(â† + â) + ~

N∑
j=1

g j(t)(â†σ̂−j + σ̂+
j â). (4.17)

Here we have placed ourselves in a coordinate system that rotates at the cavity
frequency, ωc and assume ωc = ωl. The atomic operators for the j-th atom are given
by σz,−,+

j , N denotes the total number of atoms, and ∆ac = ωa −ωc is the atom-cavity

detuning. The cavity field operators are â† and â, and their coupling to an atom is
given by equation (2.13).

The Liuvillian describes the contributions from loss of photons through the cav-
ity field, κ, spontaneous decay of the excited atomic state, γ, and the inhomogeneous
dephasing rate, Γdec:

L̂
[
ρ̂
]

= −
κ
2

(
â†âρ̂ + ρ̂â†â − 2âρ̂â†

)
−
γ

2

N∑
j=1

(
σ̂+

j σ̂
−

j ρ̂ + ρ̂σ̂+
j σ̂
−

j − 2σ̂−j ρ̂σ̂
+
j

)
+

Γdec

2

N∑
j=1

(
σ̂z

j ρ̂σ̂
z
j − ρ̂

)
, (4.18)

Armed with this mapping we can derive a mean-field description of the time-
evolution in the system represented by three coupled equations.

〈 ˙̂a〉 = −κ〈â〉 + iη + i
N∑

j=1

g j(t)〈σ̂−〉 j,

〈 ˙̂σ−〉 j− = − (Γdec + i∆) 〈σ̂−〉 j − ig j(t)〈â〉〈σ̂z
〉 j,

〈 ˙̂σz
〉 j = −γ

(
〈σ̂z
〉 j + 1

)
− 2ig j(t)

(
〈â∗〉〈σ̂−〉 j − 〈â〉〈σ̂+

〉 j

)
. (4.19)

Because we ignore all cross-correlations between different j as well as between
atoms and cavity field, 〈âσ̂+

j 〉 this leaves us with a total of 2N + 1 equations. In [112],
[120] these are used to derive expressions for the steady-state frequency-dependent
transmitted power and phase shift relative to the input field.

Pout

Pin
=

∣∣∣∣∣−i〈â〉
η/κ

∣∣∣∣∣2
φ = arg

(
−i〈â〉

κ
η

)
, (4.20)
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Figure 4.7: Dispersion signals crossing over to the non-linear cavity response region. Gray dots
are experimental measurements, whereas full blue lines are theoretical curves. We vary the atom
number by reducing the atomic cooling time. (a) For an atom number of N = 3.8 · 106 and an
estimated temperature of T = 16 mK, the dispersion signal behaves almost linearly with respect to
atomic phase shift. The amplitude of the Doppler dispersion is squashed slightly. (b) For a slightly
lower temperature of T = 13 mK, and an atom number of N = 1.4 · 107, the Doppler phase shift
reaches the dispersion limit of the cavity. This results in a dispersion shape which is very different
from the sum of derivatives shown in figure 4.3. (c) At even higher atom number N = 4 · 107,
and T = 13 mK, the dispersion limit has been crossed. This results in an apparent inversion of the
Doppler phase peaks. While the peaks of the saturation feature are also starting to flatten out, the
effect is less visible here. Adapted from [99].

inserting (4.16) we obtain for the output power:

Pout(ωl) = κ~ωl |〈â〉|2 . (4.21)

The resulting behavior is found using both a numerical approach, and a semi-
classical Floquet analysis. Both approaches are seen to agree well with each other.
These results pertain only to the part of the field that interact directly with the
atoms. The frequency sidebands that are essential to the NICE-OHMS detection
method are assumed to have negligible interaction.

4.5 Beyond the linear regime

We can now look at the recorded dispersion signals from the experiments and com-
pare them with our theoretical considerations. In figure 4.7 we show the dispersion
feature of the atom-cavity system as the atom number within the cavity mode – and
thus the total phase shift – is varied. While the signal is obtained as we describe in
section 4.3, the theoretical curves are plotted by fitting the temperature and atom
number within the experimental uncertainties.

In these measurements the ensemble temperature is slightly higher than usual,
with a fitted value of T = 13 mK. We vary the atom number experimentally by
decreasing the cooling time, and thus the number of loaded atoms. However, it
seems that this results in an increased temperature for very short loading times,
and for figure 4.7 (a), the temperature is thus at T = 16 mK. The fitted atom
numbers are N = 3.8 · 106, N = 1.4 · 107 and N = 4 · 107 respectively, and the
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Figure 4.8: (a) Phase slope at resonance, with theoretical bounding curves corresponding to N =
2.7·107

±5·105 and T = 4±1 mK. Blue dots indicate phase slope values of experimental measurements
with appropriate probing powers Pin. (b) Projected shot-noise-limited (SNL) linewidth of a laser
locked to the NICE-OHMS signal. This plot shows the values in (a) transferred using equation
(4.22). The minimal spectral width obtainable from a laser locked to this system is suggested by
experiment to be a shot noise limited linewidth of ∆ν = 40 mHz. Adapted from [99].

probing power is Pin = 180 nW. The temperatures results in FWHM linewidths of
ΓD = (4.2, 3.8, 3.8) MHz, and the power causes significant saturation broadening.

At low atom numbers the dispersion feature looks much like we would expect
from the naive approach of figure 4.3, with a signal that is the sum of Doppler
and saturated dispersions. At medium atom number the folding of the atomic and
cavity dispersions causes a flattening of the Doppler feature around a detuning of
∆ce = ±1 MHz. This limits the maximal dispersion signal to around 0.8 mV. Finally
in figure 4.7 (c), the atom number is sufficiently high that the phase response of
the atoms is much larger than the linear range of the cavity dispersion, and the
Doppler dispersion peaks seem to be flipped around some maximal signal ampli-
tude. While the non-linearity at high phase-shifts is clear, the slope at resonance
remains unchanged. As we shall see below, the effect can limit the peak-peak width
of the central linear regime as the phase shift of the saturation feature also crosses
the limits set by the cavity. This will in turn limit the dynamical range of a locking
servo, as the frequency detuning range where one can expect a linear response
decreases.

4.5.1 Projected frequency stability

Focusing first on the dispersion slope at resonance, we can find the phase slope from
our theoretical curves as a function of the input power Pin. Such a dependency is
shown in figure 4.8 (a). The plot includes seven data points that have been taken
under similar experimental conditions. The variance in temperature T = 4 ± 1 mK
and atom number N = 2.7 · 107

± 5 · 105 has been used to find the extremum cases
bounding the shaded region.

The phase slope is negative for most values, but becomes positive for Pin →

0 as the atomic ensemble is no longer saturated and the Lorentzian dispersion
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disappears. For very high input powers the saturation broadening causes the
feature to flatten out and go to zero. Optimum power is on the order of Pin = 5 nW
and lies just below the stable regime of our cavity lock. This seems like an issue at
first glance, but would have put us in a regime where the SNR of the signal would
be limited by the photonic shot-noise on the detector. From [67], [120] we can write
an expression for the shot-noise-limited (SNL) linewidth of a laser stabilized to our
dispersion signal.

∆ν =
πhν

2ηqePsig

( dφ
dν

)2

(
1 +

Psig

2Pref

)
. (4.22)

In our case the signal is the carrier power Psig = P0 and the reference is the first

order sideband Pref = P1. The phase slope at resonance is given by dφ
dν and the

quantum efficiency of the detector ηqe will be assumed to be unity for the moment.
Applying this expression to the phase-slope results in figure 4.8 (b). Here we see
that the functional form has changed significantly, as low input powers causes low
output powers. This means that the shot noise will limit the attainable linewidth for
an input power below Pin ∼ 10 nW. At this level the linewidth stays approximately
constant over a whole decade leading to power levels that are much easier to
deal with experimentally. The lowest-lying point we have corresponds to a SNL
linewidth of ∆ν = 40 mHz. This is at a very interesting level, where only few lasers
have ever been realized [6], [48], [50]. Since our paper on this approach [99] was
published in 2017, the world record has been pushed down by another order of
magnitude [68], [92], [127].

4.5.2 Dynamical locking range limitations

For any real lock, noise in the system leads to probing of the error function away
from atomic resonance as well. This means that the locking range, within which the
slope of the error signal is constant, becomes an important factor for the robustness
of the lock. We denote this as the dynamical locking range of the error signal, and
define it mathematically as the range for which the sign of the slope is unchanged.
For the parameters we saw in figures 4.7 this range is defined by the power broad-
ened linewidth of the of the transition, as well as the Doppler with. The Doppler
dispersion causes a pulling of the saturation dispersion feature as illustrated in
figure 4.3. So for lower temperatures, the slope at resonance increases while the
dynamical range is reduced [120]. As the phase-shift increases, we enter a regime
where the power broadening no longer sets the limitation on the dynamical range.

In figure 4.9 (a) we plot the dynamical range as a function of atom numbers
for an ensemble temperature of T = 2.5 mK and an input power of Pin = 100 nW.
Three representative shapes of the dispersion signal are shown in figure 4.9 (a),
with corresponding dots marked on 4.9 (a). Notice that we plot only the saturation
dispersion feature here, and cannot see the full Doppler-broadened dispersion.

For an atom number of N = 2.4 · 107 the saturation dispersion shape is only
slightly distorted, and almost sinusoidal in behavior. The position of the extrema
are essentially unchanged, resulting in a dynamical range of ∆dyn ' 180 kHz. As
the atomic phase shift increases beyond the cavity limitation, an inversion of the
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Figure 4.9: Limitations on the dynamical locking range of the dispersion signal. At high atom
numbers the amplitude of the saturation dispersion feature increases beyond the cavity dispersion
limitations. This results in a reduced linear range for frequency locking. (a) The full width of the
dynamical locking range as a function of atom number. Above a threshold of N = 3 · 107 atoms
the dynamical range decreases. Even for a large initial power broadening of 180 kHz, the range
eventually decreases below the natural linewidth of the transition. (b) Example curves showcasing
the three levels marked by dots in (a). Only the central saturated dispersion feature is shown, for
N = 2.4 · 107 (blue), N = 4.1 · 107 (green) and N = 5.9 · 107 (orange) respectively. Adapted from
[99].

dispersion signal occurs, resulting in a sudden drop in the dynamical range and a
subsequent decrease towards zero. At an atom number of N = 4.1·107 this inversion
is just visible, resulting in two maxima rather than a single one for negative detuning.
As the number of atoms reaches N = 5.9 · 107 the inversion is very clear, and the
dynamical range has dropped to around ∆dyn = 40 kHz. As we expect, the slope at
resonance continues to increase. While the cavity dynamics does cause the sign of
the phase-slope to flip, the sign of the phase itself will never change.

4.5.3 Cavity lock effects

In section 4.3 we assumed an ideal cavity lock, which resulted in the perfect transfer
of phase information from the carrier frequency to the sideband field components.
In any physical system we expect the cavity to have a finite response time which
might result in deviations from the simple case of a purely real-valued ζ0.

Particularly, our experimental system relies on a cyclic operation in which a long
loading time of up to τload = 800 ms is followed by a much shorter interrogation
time of τprobe = 100 µs. As such, the cavity is not necessarily in a steady state when
the atoms are probed, and we do not necessarily fulfill equation (4.9). If we write a
general expression for the cavity phase

φcav(ω) = nπ − φinit(ω)
φ0(ω) = nπ + φD(ω) + iφA(ω) − φinit(ω)
φ j(ω) = (n + j)π − φinit(ω) for j , 0, (4.23)
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Figure 4.10: Sensitivity of the dispersion signal to the locking conditions of the cavity. We
show an example scan of the dispersion feature (gray dots), with three separate theoretical curves,
corresponding to varying conditions on the initial phase of the cavity φcav(ω). In the case where the
cavity-lock is independent on the presence of the atoms, φcav(ω) = 0, we obtain the green curve. Here
the features are accentuated, as the atomic phase information will remain on the carrier frequency.
If the cavity length follows the effective length with atoms included, φcav(ω) = φD(ω), we obtain
the blue curve. Here all atomic phase-information is transferred to the probe laser sidebands. The
case where the cavity lock is not in a steady state, but has corrected for the phase response of atoms
subjected to cooling lasers is shown in orange. Here a phase φcav(ω) = φMOT(ω) is written on all
frequency component of the probing laser. This condition causes an asymmetric dispersion signal
due to the AC Stark shifted ground level under influence by the cooling beams. The side panel shows
a zoom of the central saturation dispersion feature. Adapted from [99].

We can denote different cases by the value of the initial phase. In the ideal case
described above, the cavity is fast, and follows the atom dynamics. This results in
an initial phase of φinit = φD as per equation (4.9). If the cavity response is infinitely
slow, we have an initial phase φinit = 0, and the cavity length follows that of the
vacuum wavelength of the laser field. The most experimentally realistic case is
an initial phase that can be close to the atomic dispersion but is modified by the
fluctuations of the system.

In the present case, these phase fluctuations are highly predictable as the cavity
is locked to the atom-trap system most of the time. When the trapping and cooling
light is on, atoms are present inside the cavity, but the ground state of the atom will
be shifted significantly due to the AC Stark shift caused by cooling beams. We can
then write φinit = φMOT. Whether we are dealing with an atom-independent lock,
or a lock to some other phase φinit , φD, the atomic dispersion will remain on the
carrier component rather than being written onto the sidebands. On the other hand
all frequency components j will have the initial cavity phase written onto them, as
shown in equations (4.23).

This non-equilibrium case should be taken into account when calculating the
semi-classical atom-field interaction. If the modification of the system is small,
however, we can approximate the response to first order by simply adding in
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the additional phase-shift manually. We show this for the three different initial
conditions in figure 4.10. Here we show a dataset, and theoretical curves for
T = 2.8 mK, N = 2.5 · 107 and an input power of Pin = 115 nW. The blue, dashed
curve corresponds to the ideal case of an infinitely fast cavity lock, the green curve
is the atom-phase-independent cavity lock, and the orange corresponds to an initial
phase set by the AC Stark shifted atomic ensemble φMOT.

Figure 4.11: Dispersion features with (blue dots, orange line) and without (purple dots, yellow
line) the cooling light on. We see that the scattering of cooling light causes the saturation feature
to almost disappear and reduces the total amplitude of the Doppler dispersion. It also adds an AC
Stark shift of about 0.5(1) MHz when measured against the fit, and with uncertainties derived from
experimental variations over a number of different measurements. The purple dots are averages
over four measurements. The red curve is a Gaussian derivative fitted to the dispersion with MOT
light on. Some asymmetry is visible for large detunings, which could be caused by nonlinear AOM
behavior.

The phase-shift φMOT from a cavity locked to atoms subjected to the cooling
beams can be evaluated quite well. In order to measure this, we can make a similar
phase-measurement, but leave the cooling beams on. See figure 4.11. In this case
the steady-state assumption is fulfilled. This results in an approximately Gaussian
dispersion feature with only a faint trace of saturation. Most importantly an AC
Stark shift of about ∆ac = 0.5 MHz shifts the distribution, and breaks the symmetry
of the response. The experimental AC Stark shift uncertainty is estimated from the
measurement noise. We can find the expected shift using the dipole potential of the
laser field as: [76]

∆ac =
∆Ei

h
=

3πc2

2ω3
0

γ
−∆

∆2 +
(
γ
2

)2 I = 0.6 MHz. (4.24)

Here we have assumed that the laser detuning, ∆, is much larger than the transition
linewidth, γ. We consider only the perturbation to the ground state due to the
1S0 →

1P1 transition at ω0, and thus use the associated values.
There is qualitatively very little difference between the three cases close to res-

onance. Notably the atom-phase-independent lock has sharper features, with a
”deeper” inverted Doppler dispersion. The implementation of an initial cavity
phase of φMOT results in an asymmetric behavior that agrees quite well with the
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experiment - this is especially visible for large detunings ∆ν > 2 MHz. Figure
4.10 (b) shows a zoom on the saturation feature showcasing the asymmetry at low
detunings.

4.6 Frequency stability

By using the dispersion signal as an error signal in a feedback loop, we can lock
the frequency of the probe laser to the atomic transition. The current realization
of the system is not optimized for this use. It has a long cycle time compared
to the interrogation, which means that there will be a significant dead time when
stabilizing the laser frequency. Dead time causes noise through the Dick effect
[119], where undetected laser noise limits the effectiveness of the lock. The cooling
laser causes fluctuations of atom number and temperature, which results in a noisy
error signal. We have nevertheless made a first attempt at locking the probing laser
frequency to show the feasibility of the approach.

We set up the system to run with a reduced cycle time of τ0 = 200 ms, and
an increased probing time of τprobe = 1 ms. By removing some of the wait-time in
the cycle we retain a sufficiently large atom number to be deep in the non-linear
dispersion regime. The probing power is set to Pin = 275 nW resulting in a highly
power-broadened saturation dispersion feature. In figure 4.12 (a) the dispersion
signal for those parameters is shown. At the time these measurements were taken,
we did not have the reference laser of chapter 3.2, so an out-of loop measurement of
the system was not possible. This means that the only way of evaluating the system
performance is the in-loop measurement of the error signal value.

Since this is the reference signal used in the lock, any common-mode noise there
might be between probe-laser and atomic ensemble will not be measured. Any drift
of the atomic reference or noise within the locking bandwidth, will not be detected
either. The measurements thus serve primarily as a proof-of-principle, and as a
first approach to identifying technical limitations of the system. Since the reference
signal is measured as a voltage we use the scan over the dispersion signal in figure
4.12 (a) in order to estimate a conversion factor from voltage to frequency. We find
this conversion in figure 4.12 (b) by numerically differentiating the dispersion signal
in figure 4.12 (a). In order to reduce the noise on the differential signal, we calculate
a running mean over five-point sets of the dispersion signal. In figures 4.12 (a) and
(b) the measured values are shown as blue dots, whereas the running mean and
its differential signal are shown in orange. At zero detuning, the maximal slope is
found to be 518 mV/Hz. Using this value we obtain the time-series of frequency
deviations shown in figure 4.12 (c).

We lock the probe laser for over two hours, and plot the Allan deviation of
the measured frequency deviations in figure 4.13. The laser frequency is locked
by an exclusively integrating servo, with a gain of 0.8. As one might expect from
the width of figure 4.12 (c) the stability for an averaging time of τ = τ0 is about
σ = 2 kHz. As the averaging time increases we expect the frequency deviations
to decrease, since drift and random walk of the reference is not detected with our
measurement. Interestingly we see that the Allan deviation decreases as 1/τ for
times 1 s ≤ τ ≤ 100 s. This indicates that we are limited by phase-noise in this
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Figure 4.12: Data analysis of NICE-OHMS locking signal. The dispersion signal is used to find
the voltage-to-frequency conversion factor necessary to interpret the measured error signal during
locking as an effective frequency deviation of the probing laser. (a) The dispersion signal as a function
of laser-atom detuning. A highly asymmetric dispersion signal in the deeply nonlinear phase regime.
The saturation dispersion feature exhibits a linear frequency response between ∆ν = ±100 kHz,
which is suitable for frequency locking. The signal is offset from zero by about 30 mV. Blue
dots show the measured points, whereas the orange curve is a five-point running mean. (b) A
numerical differentiation of the dispersion signal yields the conversion factor. We show the numerical
differentiation of both the raw dispersion data (blue), and the numerical differentiation of the five-
point running mean of the dispersion signal (orange). Using the maximal slope of the averaged
dispersion, we find a conversion factor of 518 mV/Hz. (c) Using the conversion factor we can
calculate a relative frequency deviation for each experimental cycle.

regime rather than white frequency noise as we see for longer times where the
Allan deviation decreases as 1/

√
τ.

The phase noise is a sign that we are limited, not by the efficiency of the locking
servo, but rather by noise in reference signal. Indeed this might be expected from
the poor SNR we have observed when mapping out the dispersion signals. The
white frequency noise level that we reach after τ = 100 s is at σwhite FM = 201 Hz/

√
τ

which is somewhat higher than what we see from the prestabilized laser itself,
see chapter 3.2. This is another sign that the limiting factor here is the reference
signal. After 25 minutes of averaging the fractional frequency stability is at 10−14,
corresponding to 5 Hz in absolute stability.
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Figure 4.13: Allan deviation of the in-loop frequency measurements found in figure 4.12. The noise
initially scales as phase noise, but reaches a white frequency noise floor around τ = 100 s. The full
measurements lasted for over two hours, and we see that we reach a fractional frequency stability level
of 10−14 after 25 minutes. Because this is an in-loop measurement, drift of the reference frequency,
as well as common-mode noise between probing laser and reference signal is not detected, and the
true frequency instability of the system is likely larger.

Though we have shown that we can lock the probe laser frequency with the cur-
rent signal, we expect significant improvements to the performance can be made by
improving the SNR of the dispersion signal, reducing the probing power, increasing
the fractional probing time in order to reduce the Dick effect, as well as optimization
of the servo parameters.



C
h
a
p
t
e
r

5
A pulsed laser in the crossover

regime to superradiance

Contents
5.1 Gain in an unconfined cold ensemble . . . . . . . . . . . . . . . . 60

5.1.1 Considerations for the excitation pulse . . . . . . . . . . . 62
Coherence scrambling . . . . . . . . . . . . . . . . . . . . 64
Optimal excitation . . . . . . . . . . . . . . . . . . . . . . 64
Technical noise and instabilities . . . . . . . . . . . . . . . 65

5.2 Atom-cavity interaction . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.1 Expected lasing regimes . . . . . . . . . . . . . . . . . . . 68

5.3 Lasing pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Lasing threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Time-evolution of the lasing pulses . . . . . . . . . . . . . . . . . 73

Randomly varying phase . . . . . . . . . . . . . . . . . . 75
Killing the coherence . . . . . . . . . . . . . . . . . . . . . 75

5.6 Seeded lasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Phase seeding . . . . . . . . . . . . . . . . . . . . . . . . . 77
Delay times under stimulated emission . . . . . . . . . . 77
Amplifier properties . . . . . . . . . . . . . . . . . . . . . 78

5.7 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Frequency stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Generating laser light has become technically simple with the advent of diode
lasers. Lasers for frequency stabilization are designed to be flexible in terms of
frequency tuning and emission power. This is important if you want to be able to
correct the frequency efficiently, and in that way reduce the inherent noise or drift
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of the laser spectrum. However, highly adjustable lasers are only necessary because
their spectral performance is insufficient by default.

In the perspective of atomic clocks, the insufficiency of classical lasers is primar-
ily caused by two things: their frequency accuracy is very low, and they are prone
to frequency drifts. One way to circumvent these issues is to build a laser that op-
erates in a very different regime from classical lasers [17]. Characterizing lasers by
their primary physical constituents: a gain medium and an enhancement cavity, the
relation between the respective linewidths of these constituents greatly influences
the lasing behavior. In the classical laser, the spectral width of the gain medium
∆νG is typically broad compared to the linewidth of the enhancement cavity κ. This
places these types of lasers in what is sometimes referred to as the ”good-cavity”
limit ∆νG

κ � 1 where the characteristic lifetime of a photon in the cavity is much
greater than the lifetime of an excitation in the gain medium. At the other end of
this scale we find the ”bad-cavity” limit where the spontaneous emission rate of the
gain medium is much smaller than the cavity decay rate. In this limit, the photons
emitted into the lasing mode will be lost to the environment much faster than we
would see the appearance of another spontaneously emitted photon from the gain
medium into the cavity mode. This has also been called an ”almost light-less laser”
[116].

For a suitably chosen gain medium we can obtain a laser that is inherently
accurate, and stable. This is achieved, e.g., by choosing one of the atomic transitions
that might be traditionally used as the reference transition in an atomic clock. Direct
laser generation on such a transition constitutes the essential part of an active optical
clock [17], [73], [80], [98], where a well controlled environment will remove the
need for externally controlling the frequency of the system. The high level of drift
typically present in laser gain is thus suppressed in the gain medium. Another
important source of frequency noise comes from the the cavity length fluctuations.
Even highly engineered and stabilized reference cavities are limited by such length
noise [21], [82], [92]. By placing the system in the bad cavity regime, such cavity
noise is suppressed.

After an introduction to the experimental gain medium we will use here, we
discuss the theoretical background for atom-cavity interaction in the context of
superradiance. The experimentally realized measurement of lasing threshold in our
system is characterized, and an investigation of the time evolution of a lasing pulse
is performed. Subsequently we look at the spectral properties of these laser pulses,
and attempt to characterize their initial frequency stability using the reference laser
presented in chapter 3.2. We show that the system is on the limit between the good-
and bad-cavity regimes, and find that the characteristics of the system change from
one scaling to the other as we vary the number of atoms. Our experiments here thus
place us in the crossover regime between classical lasing and superradiant lasing.
This chapter is partially based on work presented in [100].

5.1 Gain in an unconfined cold ensemble

We use the experimental system described above with atoms trapped and cooled in
a 3D MOT. By overlapping the trap center with the fundamental mode of an optical
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Figure 5.1: Schematic overview of the atomic ensemble coupled to a mode of an optical cavity. The
atoms decay spontaneously with a rate γ and couple to the cavity field with the rate g. κ gives the
decay rate of the cavity field to the environment.

cavity, we enable atom-to-atom coupling mediated by the cavity field. In figure
5.1 this system is shown schematically. The atoms can be excited from a pumping
beam that is not coupled to the cavity mode, but incident from an angle of 45◦. The
atoms are then left in the excited state, where they decay spontaneously with a rate
of γ, or couple to the cavity mode with a coupling factor g. The cavity field leaks
out through the end mirrors with a rate κ.

For a very dense sample, interactions between atoms mediated by, e.g., dipole-
dipole forces has to be taken into account. Here, we can trap up to N = 108 atoms,
giving a peak density of ρmax ≈ 1.2 · 1010 atoms/cm−3. The ensemble is sufficiently
dilute that these forces are not relevant.

The gain medium for a conventional laser is typically spectrally wide, which
ensures some level of tunability, as well as strong interaction between the lasing
medium and the filter cavity. The spectral features of the laser are then narrowed by
ensuring damping of most of the spectrum, which allows the lasing band to become
highly amplified. This damping can happen intrinsically in a cavity which ensures
that only resonant modes are allowed, or using an additional spectral filtering,
e.g., in the form of a grating or an interference filter as in section 3.1.1. The gain
medium acts only to amplify the radiation, whereas the spectral characteristics
are determined by the interference components of the setup. Figure 5.2 shows a
conceptual understanding of the good cavity regime contrasted to the bad cavity
regime.

The bad cavity regime also supports lasing, but in some sense flips the role of
gain medium and cavity. Here the gain medium is spectrally more narrow than the
enhancement cavity. This means that emission of radiation simply cannot happen
outside of the narrow range set by the gain medium, and the spectral properties
of the cavity will be suppressed by approximately the ratio between the resonance
linewidths ξ = Γ

Γ+κ . The system then becomes highly sensitive to the control of
frequency noise in the gain medium, but insensitive to, e.g., noise in the length of
the cavity.

For typical physically realizable systems the cavity linewidth can range from
few kHz to tens of GHz, whereas the gain medium has a much wider range from
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Figure 5.2: The good cavity and bad cavity regimes are named after the relative Q-values of the
cavity and gain medium resonances. Here we illustrate the regimes with identical spectral linewidth
for the cavity resonance to underline this fact. A bad cavity system could thus equally well be referred
to as a narrow gain system.

solid state systems with widths of several tens of THz to narrow atomic transitions
on the order of mHz [73]. This means we can choose a gain medium such as a
narrow atomic transition, and take advantage of the well-defined spectrum this
gives us.

Assuming perfect inversion in the system, the laser gain factor becomes propor-
tional to the number of emitters N and their coupling rate to the lasing cavity g. For
samples of cold atoms, the achievable atom number is often inversely proportional
to the temperature of the atoms, and whereas we obtain samples of order 108 at mK
temperatures, moving to hundreds of nK often results in a limitation of order 104

[70]. This is a very low atom number compared to solid state diode lasers which
might have on the order of 1022 emitters. The narrow spectral features of the atomic
transition, is a direct consequence of long lifetimes, and as a result the coupling
rate to the cavity mode will be small as well. Typically, then, we can expect a much
lower photon number both in the cavity and in the emission of bad cavity lasers
based on cold atom systems.

5.1.1 Considerations for the excitation pulse

Since our experimental scheme relies on atoms initially in the excited state, we want
to ensure a maximal number of atoms are pumped to that level. The phenomeno-
logically most simple way to do this is a pi-pulse. A pi-pulse is a coherent excitation
where resonant light interacts with an atom for a time t sufficient to place the atom
in the excited state, according to equation (2.11). The decay rate of the atom will
cause the Rabi oscillations to reduce in amplitude, and for an inversion close to
1, t needs to be much faster than the characteristic decay time of the energy level
1/γ. By increasing the pumping power the Rabi frequency can be increased in an
attempt to fulfill this requirement. A short excitation pulse causes a Fourier limited
frequency linewidth of the excitation pulse, which in our case is approximately
∆νFourier ≈ 0.9 MHz, much broader than the natural linewidth of the atoms. Longer
pulses reduce the excitation efficiency because of the decoherence rate of the collec-
tive atomic dipole. This decoherence rate is given by the inhomogeneous Doppler
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Figure 5.3: Incoherent excitation and repumping scheme that can be used to generate continuous
lasing on the 3P1 →

1S0 transition without the need for accurately timed pulses. Due to decay from
the 3S1 levels to the remainder of the 3P manifold, the MOT repumping lasers at 679 nm and 707 nm
are required to avoid substantial atom loss. Dashed lines indicate spontaneous emission, while full
lines indicates pumping/repumping. Natural linewidths are indicated. The figure is not to scale.

broadening, ΓD = 2 MHz, rather than the natural decay rate of the excited state.
Because some dephasing of the collective dipole will always be present during

pumping, no coherent excitation can bring the entire ensemble to the fully excited
state. If we consider a Bloch sphere of ensemble excitation some finite component
along the equatorial plane will always be present as a phase written from the
excitation laser to the atomic state. In addition to the average excitation being
less than unity, the superposition state of a given atom will be both velocity- and
position-dependent. In order to investigate a system whose subsequent evolution
is completely independently of the pumping laser phase, we would prefer to avoid
such phase-coherence. This can be done by ensuring that the excitation happens
incoherently, e.g., via spontaneous decay from a higher-lying energy level. Such
a scheme is in principle possible in our system, but inaccessible in our current
experimental setup. A scheme was suggested in [81], and requires the use of the
additional 688 nm laser as shown in figure 5.3. By applying a static magnetic field,
the Zeeman levels of the 3P1 state are no longer degenerate, and can be addressed
individually. Choosing either of the m j = ±1 states and using the 688 nm laser
to further excite the atoms to the 3S1 state allows spontaneous decay into the 3P1
m j = 0. This causes an inversion relative to the ground state, and a random phase
of the atomic dipoles.

While we do use simple coherent pumping here, three effects wash out the
possible coherence our atoms are prepared with: the inhomogeneous Doppler
broadening, the incidence angle of our pumping pulse, and a cleaning pulse we
apply after the pumping.

Coherence scrambling
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In the case of an ensemble of atoms at finite temperatures, the Doppler shift of atomic
resonance frequencies causes variable Rabi frequencies throughout the ensemble,
and a reduction in the average excitation ratio follows. Along the pumping axis,
this effect thus reduces the efficiency of our excitation – in particular for fast atoms.
Since we do not pump along the cavity axis, but at a 45◦ angle (see figure 5.1) the
effect parallel to the cavity-axis is different. Atoms with high velocities along the
pumping axis do not necessarily have high velocities along the cavity axis. Velocity
selective pumping is thus not very efficient. The variable speeds along the cavity
axis means that the individual coupling efficiencies of the excited atoms to the cavity
field is quickly scrambled. This can be seen from the term ζ

j
LM in equation (2.13).

For the case of stationary atoms, the 45◦ angle of the pumping beam with
respect to the cavity axis further distorts the phase relation between the two. Since
the pumping field and cavity mode has the same frequency, projecting the pumping
field phase on the cavity axis scales the spatial evolution by a factor

√
2. In figure

5.4 (a) it can be seen that the phase-overlap between two such sine functions is quite
poor. Plotting the two functions against each other in a parametric plot allows us
to test the volume of phase-space that is mapped out. In figure 5.4 (b) this relation
is seen to quickly maps out the entire phase space after only 20.5 wavelengths, and
subsequently never overlaps with itself. Over the pumping beam size of about
2 ·103

·λ the phase space will thus essentially be completely filled. This effect means
that the initial coherences along the cavity axis will not in general coincide with the
cavity mode.

In addition we apply a short pulse of 461 nm light after the pumping pulse.
Atoms in a superposition between ground and excited (3P1) state will thus be
projected onto either state, as ground-state atoms are cycled on the broad cooling
transition 1S0 ↔

1P1. This ”decoherence” pulse is delivered by the six MOT beams,
and is thus detuned by ∆ν = −41 MHz and has an intensity of about 12 mW/cm2.
This is insufficient to saturate the transition, but for a pulse time of τdec = 500 ns an
average of about 1.4 photons per atom is scattered. This estimate assumes stationary
atoms, whereas the finite ensemble temperature and omnidirectional beams, will
effectively increase the scattering rate. Our pumping sequence is shown in figure
5.5.

Optimal excitation
The pumping sequence starts out with a cooling sequence lasting as little as τMOT =
50 µs. The cooling beams are turned off to allow atoms to decay into the ground 1S0
state with a characteristic time of τ = 5 ns. A strong pumping pulse with a power of
Ppump = 100 mW drives the atomic ensemble for τp = 170 ns to a maximal excitation
of about ηMOT = 55 % limited primarily by the large dimensions of the total atomic
ensemble with respect to the pumping pulse. If we consider only the atoms within
2w0 of the cavity mode, this number increases by 150% to about ηcav = 85 %. The
decoherence pulse is then applied, and the ensemble is subsequently left to evolve
freely for 10 − 20 µs, before the cooling light is applied once more and the cycle
starts over.

Figure 5.6 (a) shows the excited state population as a function of pumping
time, t. The measurement is done by detecting the fluorescence level of the atomic
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Figure 5.4: The phase relation between a standing wave in the cavity mode and a wave incident at
an angle of 45◦ projected onto the cavity axis. (a) shows a plot of the two wave-evolutions along
the cavity axis over 20.5 wavelengths. In (b) and (c) we see parametric plots of the two functions
mapping most of the phase-space, and never overlapping with itself. The parametric plots are shown
for 20.5 and 218 wavelengths respectively.

Figure 5.5: Operation cycle for atomic excitation and decoherence pulses. Cooling and trapping
takes place during the MOT time. The cooling beams are turned off before applying a pumping beam
during an interval τp, followed by a decoherence pulse during τdec. Finally the system is left to evolve
freely before the cycle is repeated.

ensemble during the cooling time τMOT and decoherence pulse τdec respectively.
The fluorescence ratio gives the ratio of atoms transferred to the excited 3P1 state.

Technical noise and instabilities
Technical noise in the system causes fluctuations in the excitation ratio of the atoms
for a given configuration. By keeping the full ensemble atom number constant,
and plotting the integral of the cavity emitted lasing light against the ensemble
excitation ratio, we obtain figure 5.6 (b). This configuration nominally gives about
N = 7 · 107 with a full ensemble excitation of ηMOT = 45%, corresponding to a
cavity excitation of ηcav = 68%. We plot 5000 datasets in blue, and bin the points in
excitation-intervals of 1%. The mean values of these bins are shown in orange, with
statistical error-bars given by σ/

√
n where σ is the standard deviation within the
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Figure 5.6: (a) Rabi flopping of the atomic excitation as a function of pumping pulse illumination
time. The black dots are data, and the red line shows a 3-point moving average. (b) The excitation
ratio of the full atomic ensemble is measured by switching off and on the MOT light. While the MOT
light is off, a pumping pulse is applied for a time t, and the ratio of fluorescence before and after is
measured. Here we used a pumping power of PP = 113 mW and a waist size of wP = 3 mm. Blue
points are individual datasets, while orange points are mean values from 1%-intervals with error
bars showing their statistical uncertainty. A linear fit ans its associated expression in purple shows
the slope of all ηMOT > 0.33. The lower plot shows the number of datasets, n, within a given bin.

interval, and n is the number of datasets. The lower plot shows a histogram of the
number of datasets n for a given bin. The spread is relatively large, which means
that proper characterization of the system behavior often requires post-processing
of the individual datasets in order to filter for excitation ratio. Note that this spread
in excitation ratio is independent of the absolute number of atoms in the ensemble.
The number of emitted photons deviate significantly from zero for ηMOT > 33%.
This corresponds to the point of inversion within the cavity region ηcav = 50% as
one might expect. We fit a linear behavior to datasets above this threshold as shown
in purple.

5.2 Atom-cavity interaction

We model the ensemble of thermal atoms coupled to an optical mode of a cavity
by a Tavis-Cummings model, following [100], modified from [108]. The atoms are
considered as two-level units with ground state |g〉 and excited state |e〉. The model
introduces some disorder in the system, by allowing position- and time-dependent
atom-cavity couplings g j

c for a given atom j. We also allow for a pumping field at
frequency ωp which couples to an atom at a rate of R j

p. The Hamiltonian for the
system can initially be written as a generalized Dicke model:
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We describe the cavity field with frequencyωc by the raising (lowering) operator
a† (a), and the atomic transition with frequency ωe by the transition and population
operators σ j

nm for n,m ∈ {e, g}. The pumping field is modeled as a classical field
with wave vector ~kp, and the atomic position is ~r j. The intensity distribution of the
pumping field is found by directly measuring the experimental pumping field and
using this profile in deriving the behavior of the Rabi frequency R j

p.
Since we are interested in modeling upwards of N = 108 atoms, we need to

reduce the complexity of our Hamiltonian. We use an interaction picture in a
frame rotating at the frequency of the pumping field ωp and use the rotating wave
approximation in order to cancel terms scaling with σ j

ega and σ j
gea†. This corresponds

to moving from the Dicke description to a generalized Tavis-Cummings model.
This gives a set of equations that scales exponentially with the atom number N.
We make the semi-classical approximation of factorizing all expectation values
〈σgea〉 ≡ 〈σge〉〈a〉. This results in a first order mean-field model which reduces the
scaling from exponential to linear in N. This corresponds to neglecting all quantum
fluctuations, and is justified by the large number of atoms present in the system.
Since quantum noise scales as

√
N but the atomic signal scales as N.

We can then find the full time-evolution of the system by using three equations
for the expectation values of our operators:
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The detuning of field l with respect to the pumping field p is given by ∆lp =
ωl − ωp. The spontaneous decay rate from atoms in the excited state is given by
γ and we notice that there is no direct coupling of atomic spontaneous decay and
the expectation value of the cavity field operators. Because of the semi-classical
approximation, we can find the hermitian conjugates by taking the complex con-
jugate of the mean values, 〈a†〉 = 〈a〉∗. And by using 〈σ j

ee〉 + 〈σ
j
gg〉 = 1 we have all

the necessary information. This leaves us with a total of 1 + 2N coupled differential
equations.

If all atoms start out in the excited state we have 〈σ j
ee(t = 0)〉 = 1 and 〈σeg(t =

0)〉 = 〈σge(t = 0)〉 = 0. With an initially empty cavity mode, then, there can be no
change to the cavity operator expectation values 〈a†a〉. This could be avoided by
introducing some quantum noise, but here the system is initialized by the random

coherence from the pumping field. Once this field is turned on ˙〈
σ

j
ge

〉
becomes

nonzero, and a cavity field can build up.
The atom-cavity couplings g j

c are given by equation (2.13). The pumping field
drives the atomic transition with a Rabi frequency R j

p = R0
p · ζBP · ζB. Here ζBP(r j)

and ζB(r j) are scaling parameters given by the pumping beam profile and position
in the magnetic field, whose values depend on the position of atom j. For uniform
pumping and magnetic fields ζBP(r j), ζB(r j) → 1. The position independent Rabi
frequency is given by:

R
0
p =

√
12c2γPp(t)

~ω3
e w2

p
. (5.3)

The pumping power is Pp(t) and is distributed over the beam profile whose area is
proportional to w2

p for the case of a symmetric beam.
By numerically simulating this model, we can investigate a number of behav-

iors that are experimentally accessible to us. This is primarily related to the time
evolution of the cavity field, measured by the transmission through the mirrors. We
look at the time-evolution for varying atom number N and atom-cavity detuning
∆ce. We take a Monte-Carlo approach to the simulations, and randomly distribute
the position and velocities of the atoms. The atomic distribution is modeled as a 3D
Gaussian with standard deviation σ = 0.8 mm, and allowed to evolve in time with
Maxwell-Boltzmann distributed velocities. The ensemble temperature is estimated
to be around T = 5 mK, and this value is used in all simulations of this section.

5.2.1 Expected lasing regimes

Our simulations indicate that there are two different regimes of lasing depending
on how strongly the atoms are driven, as characterized by the Rabi frequency of
the atom-cavity system Rc. This frequency is proportional to the coupling factor
Rc = 2gc

√
〈a†a〉, where 〈a†a〉 is the mean photon number in the cavity. This makes

the Rabi frequency atom- and time-dependent, and to ease interpretation we thus

define an effective collective coupling rate ΩN =
∑Ncav

j
g j

c
√

Ncav
of atoms within the
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Figure 5.7: Power scaling dependency on the effective collective atom-cavity coupling ΩN. For low
atom numbers in the single-atom bad-cavity region, the output power scales quadratically with the
number of atoms N. At higher atom numbers the effective collective coupling, causes the atoms to
become coherently driven by the cavity field, and the output power scales linearly. γ denotes the
natural decay rate of the atomic transition, and its relation to the cavity decay rate κ allows us to
divide the behaviors into single-atom good- and bad-cavity regions. Figure adapted from [100].

waist of the cavity mode. This factor corresponds to the N-atom scaling appearing
in the collective cooperativity CN =

(2ΩN)2

κγ . At low collective coupling ΩN < κ the
photon loss in the cavity mode is sufficiently large that the field inside the cavity does
not appreciably alter the behavior of the atomic decay. As the collective coupling
strength increases with increasing atom number we enter a regime where the strong
emission of radiation during a single pulse can lead to multiple Rabi oscillations
of the atomic excitation. This coherent oscillation is not directly observable in the
experiment, but can be continually monitored in the simulations.

A consequence of this behavior seems to be that the scaling of the output power
changes. As illustrated in figure 5.7, the peak power of the emitted lasing pulse
scales either quadratically or linearly with the cavity atom number Ncav. At low
atom numbers, then, we expect to observe a quadratic scaling of the output power.
This is the scaling expected from ideal superradiant emission, as the lasing field Elas
scales linearly with the atom number [39]. We associate the two bad-cavity regimes
with a restrictive Born-Markov regime when the atom number fulfills the relation:

Ncav < NBM =

√
c
λΓµ

= 1.1 · 107 for Γ = ΓD = 2π · 2 MHz (5.4)

where µ = 3λ2

8πw2
0

is a value related to the solid angle of the lasing mode. And the

Arrechi-Courtens regime for atom numbers above this number [39].
We also add the relation to the natural linewidth of the atomic transition γ

to figure 5.7. This allows us to split the linear scaling into a good-cavity and a
bad-cavity region that holds for the unbroadened case. It is possible to enter the
single-atom bad-cavity region, while Doppler broadening still limits the ensemble
to the good-cavity region. We do not consider the cases where single atom decay γ
is larger than the collective coupling rate ΩN. For a large atom number Ncav, such a
system would couple primarily to the reservoir, and we expect no superradiant-like
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Figure 5.8: Time evolution of the cavity output field. After the pumping pulse ends at t = 0 s
there is a characteristic delay of τD ∼ 1.5 µs before a lasing pulse appears. The dark (light) blue
curve corresponds to a cavity-atom detuning of ∆ce = 0 kHz (∆ce = 900 kHz). (a) The power
time-dynamics of the emitted lasing pulse is shown superimposed on a background originating from
the off-resonant field that locks the cavity length. (b) Using the background signal as a reference, a
demodulated beat-signal shows the evolution of the lasing E-field. Here the raw data from a single
pulse is shown as dots, whereas the full lines are smoothed over 100 points to guide the eye. Figure
adapted from [100].

behavior to occur. The collective cooperativity CN would only be larger than unity
deep in the single-atom good-cavity region, κ� γ.

5.3 Lasing pulses

When the experiment is set up correctly we are able to observe emission of lasing
pulses during the free evolution time after pumping the atoms to the excited state.
When there is initially no resonant light in the cavity, there will be a characteristic
delay between the pumping pulse, and the lasing emission. For a total number of
N = 7.5 · 107 atoms in the MOT, we have an effective atom number Ncav = NηN ≈

1.6 · 107 atoms within the waist of the cavity mode, where ηN u 0.22. In figures 5.8
we show typical time-evolution of such laser pulses, when the cavity is resonant
with the bare atomic frequency (dark blue) and when it is detuned by ∆ce = 900 kHz
(light blue).

The lasing occurs as a pulse, as it is caused by the inversion of the atomic sample.
Once the atoms decay, this inversion is depleted. Some of the light emitted into the
cavity mode can nevertheless drive the atoms back to the excited state, restoring the
inversion partially. This is particularly obvious for the case of a finite cavity-atom
detuning, where multiple oscillations of the output power in figure 5.8 (a) after the
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primary pulse are visible. Both signals in this figure are shown superimposed on a
background of about Pre f = 76 nW. The background is a field detuned by one FSR
of the cavity with respect to atomic resonance. This field does not interact with
the atoms save for a constant AC Stark shift of the transition. It is used in order to
obtain a PDH signal for locking the cavity length, and can additionally serve as a
local reference for obtaining the E-field envelope and phase evolution of the lasing
pulse.

Taking advantage of this, figure 5.8 (b) shows the E-field of the lasing pulse in a
rotating frame. The signal is obtained by first considering the beat signal between
the reference field and lasing pulse:

Sbeat(t) = |Ere f |
2 + |Elas|

2 + |Ere f ||Elas|sin(∆re f−last + φ). (5.5)

By mixing down the signal with an RF field at ∆re f−las ≈ νFSR = 781 MHz and
filtering it, the field magnitude and phase behavior can be extracted.

SDem. beat(t) = |Ere f ||Elas|sin(φ). (5.6)

Assuming a constant magnitude of the reference field, the signal can give us in-
formation about the phase- and frequency evolution of the lasing pulse. Here it
becomes obvious that the oscillations in the ensemble population and cavity field
occur for both the resonant and detuned case, as distinct oscillations are visible past
t = 9 µs. The phase evolves during the primary pulse envelope for the detuned
case, indicating that the frequency of the emitted light might be shifted with respect
to the cavity mode here. An effect caused by atomic pulling of the frequency.

5.4 Lasing threshold

The delay and amplitude of the primary lasing pulse changes when varying the
atom number N in the MOT. This allows us to find a threshold behavior as shown in
figure 5.9 (a). Here, no lasing pulses are visible for low atom numbers N < 3.5 · 107.
We have taken individual time series corresponding to those of figure 5.8 (a) and
used the peak intensity of the pulse. The raw data has been divided into bins of 40
measurements, whose mean value and standard deviation are shown in black. At
low atom number background noise peaks in the measurements causes non-zero
values for the peak amplitude.

We expect the amplitude of the emitted lasing pulse to scale with the atom
number in the cavity mode Ncav. As the system transitions from the restrictive
Born-Markov regime to the less restrictive Arrechi-Courtens regime, we expect the
pulse amplitude to transition from a quadratic to a linear atom number scaling.
This behavior is seen to agree well with the derived number as the scaling changes
around N = 5.0 · 107

≈ NBM/ηN.
The delay between excitation and lasing emission is plotted in figure 5.9 (b).

This delay is a direct consequence of the time it takes to build up coherence in the
system. We expect it to scale as the inverse of the number of atoms τD ∝ 1/N right
above threshold [39], and as the inverse square root τD ∝ 1/

√
N for high atom



72
CHAPTER 5. A PULSED LASER IN THE CROSSOVER REGIME TO

SUPERRADIANCE

Figure 5.9: Lasing pulse dependency on atom number. (a) Shows the peak lasing pulse power
detected in the cavity output as a function of MOT atom number. Approximate atom numbers
within the cavity waist are given by Ncav = 0.22 · NMOT. The background field results in a noise
level of about P = 20 nW, visible below N = 3.5 · 107. We fit a quadratic scaling (red) to the raw
data in the N = 3.5 · 107 to N = 5.0 · 107 range, and a linear (a · (N − No f f set)) scaling (blue)
for the following points up to N = 7.0 · 107. The quadratic fit (b · (N − Nth)2) gives us a lasing
threshold at Nth = 2.8 · 107. For high atom numbers a saturation in output power seems to occur.
We interpret this as a breakdown of the linear scaling between atom number in the cavity and in
the full ensemble. (b) The delay τD between atomic pumping and emission of the lasing pulse. This
delay scales inversely with the atom number, and we fit a c

√
N−Nth

curve in blue. Figure adapted from
[100].

numbers [56]. We use the time of the peak pulse power, and see a behavior that
agrees well with our expectations.

We have fitted quadratic and linear functions to the peak output power in two
separate regimes as expected from section 5.2.1. The fits are made to the raw data,
which is not displayed in the figure, and cover regions of 240 and 320 data points
respectively. By fitting the quadratic fit to 3.5 · 107 < N < 5.0 · 107 we find a zero-
point at Nth = 2.8 · 107, which is marked as the lasing threshold in figures 5.9. While
the experimental data is explained well by the quadratic fit even for higher atom
numbers, we chose to fit a linear curve to the region 5.0 · 107 < N < 7.0 · 107. This
linear fit does not explain the data well close to threshold, and we see the transition
between a quadratic scaling and linear scaling according to the limit set by equation
(5.4). For high atom numbers N > 7.5 · 107 the output power seems to saturate. We
believe this to be caused by an increase in total ensemble atom number N that is not
mimicked by the cavity atom number Ncav. This linear relation can break down due
to an inhomogeneous atomic distribution, as often observed experimentally. In this
case the shape of the atomic cloud changes rather than the density increasing. The
error bars increase in size with increasing power as they are, in part, an expression
of experimental instabilities.

In addition to the experimental results, simulation results are plotted in green.
These data agree well with the experimental data, and follow a clear linear trend
at N > 5.0 · 107 without saturation-like behavior. The model assumes a Gaussian
density profile of the atoms which ensures that the linear relation Ncav = NηN
holds at all times. The error bars are caused by randomly varying initial conditions
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Figure 5.10: Pulse evolution with varying atom number N. All sequences are aligned with their
maximum emission power at t = 0 in order to ease interpretation. The color scale is logarithmic
with all values below P = 3 nW retaining the same color (black). The end of the pumping pulse can
be found by the green points, which are binned, and shown with 1σ error bars. An inverse square
root-dependency is fitted to them, and illustrates the pulse delay dependency on atom number. (a)
Simulations. (b) Experimental measurements. These data have a finite background signal caused
by the reference field in the cavity which has been subtracted for this figure, but adds significant
zero-point-noise. Figure adapted from [100].

from the Monte-Carlo approach. The delay shown in figure 5.9 (b) is persistently
longer in the simulation than in experiment. This could be caused by the lack of
spontaneous emission into the cavity mode of the model.

5.5 Time-evolution of the lasing pulses

We map out the time evolution of the lasing pulses as a function of atom-cavity
detuning and atom number. This behavior is compared with the numerically sim-
ulated time evolution in figures 5.10 and 5.11. Figure 5.10 shows the full time
evolution of the lasing power as a function of atom number in the MOT. The pri-
mary pulse was used in figure 5.9 above to determine the lasing threshold. To ease
interpretation of the plot, all time series are realigned, so that t = 0 µs corresponds
to the pulse maximum rather than the end of the excitation pulse. This allows us
to clearly identify the evolution of the coherent oscillations that follow the primary
pulse. The time of the excitation pulse can still be seen as the binned green points.
The color scale was chosen to reduce excessive noise from the experimental figure,
and all values below P = 3 nW are black. In the experimental figure 5.10 (b) the
mean background signal has been subtracted from the full signal, but its noise is
visible at all times.

Just above lasing threshold, only the primary pulse is visible, but oscillations
appear as the atom number is increased. We notice three separate effects. Firstly
the primary pulse is broad at low N, and narrows as N increases. Both the FWHM,
and the width at some absolute power value decreases. This is expected behavior
as the increased gain also speeds up the evolution of the atomic decay into the
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Figure 5.11: Pulse evolution with atom-cavity detuning ∆ce. All sequences are aligned with their
maximum emission power at t = 0 in order to ease interpretation. The color scale is logarithmic
with all values below P = 3 nW retaining the same color (black). The end of the pumping pulse can
be found by the green points, which are binned, and shown with 1σ error bars. A quadratic function
is fitted to them, and illustrates the pulse delay dependency on cavity detuning. (a) Simulations.
(b) Experimental measurements. These data have a finite background signal caused by the reference
field in the cavity which has been subtracted for this figure, but adds significant zero-point-noise.
Figure adapted from [100].

cavity mode. The collective evolution time is decreased as the collective coupling
ΩN increases, τcoll = CNγ [39].

Secondly the oscillations in power that follow the primary pulse increase in
frequency with increasing N. We expect the existence of the oscillations to be
caused by Rabi nutation of the excitons between cavity and atomic modes [9], [13].
At cavity resonance this Rabi frequency is intimately tied to the collective coupling
factor ΩN. At high atom number the first oscillation seems to be engulfed by the
primary pulse as the oscillation period is matched to about t = 0.75 µs. At this
particular delay time we observe zero emitted light independently of the atom
number N.

Thirdly the symmetry of the primary pulse shifts as N is increased, becoming
increasingly symmetric. For low atom numbers, the asymmetry could be explained
by the accelerating decay rate during the emitted pulse, as predicted in pure super-
radiant systems [25], [39]. As the atom number increases, the high Rabi frequency
of the atom–cavity-field system causes multiple Rabi oscillations during the emit-
ted pulse, as was indicated by simulations [108]. This causes a disruption of the
accelerating behavior, and thus a less abrupt downward slope of the pulse.

We vary the atom-cavity detuning symmetrically around resonance in figure
5.11. At ∆ce = 0 we expect a behavior like that in figure 5.10 for N = 7.5 · 107. For
nonzero detuning the picture changes dramatically. The generalized Rabi frequency

R =
√
R2

0 + ∆2
ce is proportional to the detuning of the cavity, and indeed we see

oscillations with increasing frequencies. The full behavior is quite complicated as
the bare Rabi frequency changes when the photon number changes in the system.
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This happens both as a function of cavity detuning and time. The oscillations are
much more pronounced for the case of a detuned cavity, and in both experimental
and simulated data we here see 4 to 5 oscillations after the primary pulse. Unlike
what we would expect from a generalized Rabi frequency picture, the oscillations
do not seem to converge towards the value exhibited at ∆ce = 0. Instead there is
an abrupt attenuation of the oscillations as the atom-cavity detuning is reduced
towards zero, and for values ∆ce < 200 kHz the behavior of the oscillations seems to
have changed. At large detunings the frequency of the oscillations decrease which
could be explained by the low power in the system.

It is interesting that lasing is supported for quite a wide range of atom-cavity
detunings. There are a number of effects that need to be taken into account to justify
this behavior. Remembering the relation between broadening effects in the system,
the Doppler width of the atomic ensemble at T = 5 mK is the largest feature with
a width of ΓD ≈ 2 MHz. This inhomogeneous broadening of the ensemble means
that significant gain, is available for the full width of the cavity line ∆νG = ΓD ≈ κ,
and the range seen in figure 5.11. It places the atomic ensemble just on the border
of the good- and bad-cavity regimes. Some mode-pulling by the cavity is expected,
but suppressed as the system is not far into the good-cavity regime. Only a few
photons are needed to start the lasing, and the cavity power build-up causes power
broadening of the individual atoms. This effect thus acts to increase the resonance
overlap between atoms and the cavity mode once lasing is initiated. This in turn
increases the available gain. The emitted lasing power thus becomes more robust to
atom-cavity detuning, and a nearly flat peak output power is seen for |∆ce| < 1 MHz.

Randomly varying phase
Since each lasing pulse is initiated by random spontaneous emission we expect
no phase-coherence between successive pulses. We can look at the beat signals in
the dynamical regimes of varying atom number N and cavity detuning ∆ce. On
figures 5.12 (a) and (b) this behavior is plotted. The field emitted from the cavity
is beaten against the cavity reference field, and mixed down to DC by the FSR
frequency in order to show the phase-evolution within the pulses. The data was
taken simultaneously with the data shown in figures 5.10 (b) and 5.11 (b). Here we
show only the relevant section around the emitted pulse at t = 0 µs. As can be seen
from figure 5.12 (a) the overall sign of the phase-signal is random between pulses
even within narrow ranges of N. In figure 5.12 (b) we notice that large detunings
∆ce cause some pulling of the frequency, so that the signal is no longer at DC, but
changes sign during a pulse. See, e.g., around ∆ce = ±1.4 MHz.

Killing the coherence
We can add significant decoherence of the atomic ground state by leaving the
MOT-beams on during pulse emission. This results in a decoherence given by
the scattering rate of equation (2.25) and destroys the oscillations that follow the
primary pulse emission. In figure 5.13 (a) and (b) we show some 40 sample datasets
of the pulse emission (top) and the phase-response. The average of all lasing pulses
is shown in black, and in the background we plot the average MOT fluorescence
and pumping pulse in gray full and dashed lines respectively. In figure 5.13 (a) there
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Figure 5.12: Superradiant emission dynamics with the associated NICE-OHMS beat signals. The
emitted lasing pulse is beaten against the cavity reference field and mixed down to DC by the FSR
frequency. The sign of the phase is seen to vary randomly between realizations. t = 0 is the maximum
of the emitted pulse power. (a) The atom number N is varied. (b) Cavity detuning ∆ce is varied. At
large detunings the frequency pulling by the atomic resonance causes the beat-signal to change sign
during a single pulse-envelope as it is no longer at DC.

Figure 5.13: Laser pulses without (a) and with (b) decoherence induced by MOT beams. Emission
intensities are plotted above the associated phase-behaviors. About 40 individual scans are plotted
to showcase their variable DC phase. The mean lasing intensity is plotted as a thick black line in the
upper figures and the mean MOT fluorescence and pumping pulse is also shown.

is no added decoherence, and the oscillations are clearly visible in the phase signal,
ending abruptly around t = 6.5 µs as the MOT light is turned on again. In figure
5.13 (b) the MOT light is on throughout the lasing pulse, and no oscillations are
visible after the primary pulse. The pulse amplitude itself is also reduced slightly.

We can use the configuration with the MOT light on during lasing to calibrate
the atom number. Assuming that all atoms that decay to the ground state during the
pulse emit only a single photon, the number of atoms participating in the emission
process can be found as the integral of the laser pulse. The MOT fluorescence
increases steadily as atoms within the full ensemble spontaneously decay to the
ground state. During the emitted lasing pulse, however, this rate is increased. By
noting the change in fluorescence caused by the emitted lasing pulse, then, the MOT
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fluorescence can be calibrated to an atom number N.

5.6 Seeded lasing

We can run the system in a slightly different configuration if we allow for an input
field to the cavity on resonance with the atomic transition ωe. This field will seed
the lasing by forcing stimulated emission of radiation from the excited atoms into
the cavity mode. The emitted lasing pulse will then inherit the phase-properties of
the seeding light, and act as an amplifier. Such an amplification scheme becomes
interesting as it relies on exceedingly low input powers down to Pseed = 8 pW, yet
can deliver several orders of magnitude of amplification. It is spectrally limited to
the narrow range defined by the atomic transition, and in the present realization
limited to the production of lasing pulses. With a continuous pumping scheme, the
latter limitation can be overcome.

Phase seeding
In figure 5.14 (a) we show a schematic of the seeding configuration. Our reference
laser is still detuned by one FSR and acts as both the reference of a beat signal on
a fast photodetector and as a carrier for PDH-locking of the cavity length. Adding
sidebands to this carrier frequency at ωL ± ωFSR allows us to lock the cavity length
and have a seeding field for the lasing process independently of each other. We
ensure ωL + ωFSR = ωe by scanning the carrier frequency ωL, and vary the seeding
power by adjusting the modulation index of our EOM.

An advantage of this method is that the phase-relation and overall phase of
the seed and reference fields is determined by the EOM modulation. When we
detect and mix the beat signal down to DC, our mixing phase φM will be locked
to the phase of the seed and reference fields. This should result in a well-defined
DC-level of the beat signal. In figure 5.14 (b) we show a typical behavior of the
laser pulse when seeded. The blue curve shows the emitted power, and the orange
curve shows the DC beat signal. This data was taken with constant atom number
and seeding power Pseed = 90 nW, but the excitation ratio varies due to technical
noise in the system. This allows us to showcase the robustness of both the output
power and phase over 84 datasets, whose mean values are plotted in color, with
the standard deviations shown as a shaded gray area. Because the lasing pulse
is seeded, the well-defined phase of the seeding signal is inherited, and we get a
consistent evolution between consecutive pulses.

Delay times under stimulated emission
Introducing a seed field in the cavity mode means that the physical process changes.
While the lasing process in the non-seeded version is based on coherence buildup
between the atoms in the cavity mode, a seeded laser is controlled by stimulation
from the seed field. This is analogous to passive hydrogen masers [117] used,
e.g., in the ESA Galileo navigation satellites [30]. The phase dictation reduces
the requirements on the atom number and lowers the threshold for laser emission
Nseeded

th < Nth. For a pulsed system this fact shows itself in the delay τD between
pumping and pulse emission. Since there is no longer a delay caused by coherence
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Figure 5.14: (a) Overview of a cold-atom based laser system with controllable seed power. The
spectrum of the input field is composed of a carrier signal at ωL which acts as a reference signal to
lock the length of the cavity and to beat the lasing output against. Detuned by one FSR, a sideband
at atomic resonance ωe acts as the seeding light for the lasing pulse emitted from the cavity. The
cavity is shown with its input, output rate κ and atoms. The atomic ground and excited state are
pumped to population inversion and can emit spontaneously into the surrounding reservoir, or be
stimulated into the cavity mode by the seeding light. (b) Experimental behavior of a seeded lasing
pulse. A constant delay τD of the peak output power, and well-defined phase-evolution of the E-field
as seen in the DC beat signal. Here we average over 84 datasets to showcase the repeatability of the
signals. Standard deviations are shown by the gray areas.

buildup, emission can happen much faster. As the seeding field is reduced, the
delay increases until we reach the self-lasing case. In figure 5.15 we see the pulse
evolution as a function of the seeding power. Notice here that the seed power
(ordinate) axis is logarithmic, and the delay thus decreases exponentially with
increasing seed power, τD = τ0 · e−A·Pseed , indicated by the dashed trend line. For the
lowest Pseed = 8 pW we obtain a pulse delay of τD = 2.4 µs, which is comparable to
the non-seeded case.

As the seed power decreases so does the peak output power. While the seed
power can go to zero, the laser pulse power never will as long as we are above
Nth, where it simply reduces towards the self-lasing case. Here we have used
N = 5 · 107 > Nth and converge towards a pulse power of Ppulse ≈ 250 nW as the
seed goes to zero.

Amplifier properties
If we consider this system as an amplifier, we are interested in the amplification
factor and the accumulated phase-noise. The amplification factor is shown in
figure 5.16 for individual pulse sequences as a function of the seed power. The
amplification factor G is seen to scale as a monomial with a trend line shown at
G = 350 · (Pseed)−0.92. This is close to G ∝ 1

Pseed
which would be expected for a pulse

power that is completely independent on the seed power. The total available gain
in the system will be limited by the atom number Ncav and inversion. It is thus
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Figure 5.15: Heat map of the output power evolution of a lasing pulse when varying the seeding
power Pseed. Notice that the ordinate axis is logarithmic. The linear appearance of the pulse peak
time-dependence tells us that the delay scales as τD = τ0 · e−A·Pseed as indicated by the dashed trend
line. Individual pulse sequences are shown, with the seed power kept constant for 10-20 consecutive
sequences.

Figure 5.16: The amplification of the input seed power relative to the peak pulse power. The
exponential behavior means that the amplification goes to infinity for Pseed → 0. This is caused by
the ability of the ensemble to emit lasing even without a seed. The trend line shows an amplification
G that scales as G = 350 · (Pseed)−0.92.

reasonable that the seed power can influence the total emitted power very little.
We expect G = 1 for a seed power of Pseed ≈ 580 nW. The amplification increases
beyond 40 dB for Pseed < 10 pW. Though this is a pulsed system, it is intriguing that
it allows such high amplification of pW signals.

The signal amplification is only interesting if we can preserve the spectral be-
havior of the signal as well as possible. We make a preliminary analysis of this by
looking at the phase-behavior through the E-field evolution. The current system
still has a great deal of technical noise and instabilities in the experimental parame-
ters. In figure 5.17 we show the time-dynamics of the pulse power and E-field when
all parameters are attempted to be kept constant. In particular the atom number
N, and the atomic temperature T are kept constant. The efficiency of the pumping
pulse is still seen to vary which causes a large variation in the inversion. As a result
the power of the emitted lasing pulse varies, and we order the pulse sequences by
their peak power. This allows for some visual averaging, without explicitly blurring
the behavior by averaging over different pumping efficiencies.
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Figure 5.17: The emitted lasing pulse for a situation where the atomic inversion is unstable between
sequences. We sort 256 datasets according to the lasing pulse peak power. The total atom number
and seeding power Pseed = 90 nW is kept constant. (a) Emitted power from the lasing pulse. A
non-zero background caused by the reference signal and the seeding is present, and not removed. (b)
The E-field of the emitted pulse can be detected by down-mixing a beat signal to DC. This shows that
the phase-evolution is quite consistent between pulses. We keep the ordering of (a) in order to not
blur the evolution by averaging over different pulse delays.

The DC beat signal shown in figure 5.17 (b) is proportional to the time-dependent
E-field in a frame rotating at the atomic transition frequencyωe, namely Epulse(t)

∣∣∣
ωe-frame =

A(t) sin(φ). Just as in figure 5.14 (b) we see a phase evolution that is highly repro-
ducible between separate pulses that are not necessarily ordered in time. This
well-defined phase means that we are able to preserve the phase-information from
the seeding laser very well. Further investigations into the robustness of the phase-
transfer will be presented in [101].

5.7 Spectral properties

We have used the DC beat signal to get information on the coherence of the signal.
If we look at the generated beat signals directly or mixed down to some non-zero
frequency ω � 1

τL
, where τL is the duration of the emitted lasing pulse, we can

measure the frequency spectrum of a pulse. In section 5.8 we use that signal to
investigate the frequency stability between consecutive pulses.

Figure 5.18 shows a beat signal at β ≈ 10 MHz. The envelope is given by the
time-dependent lasing amplitude A(t) , and we assume a the background field
to be constant. Within the envelope the signal evolves as S ∝

∑
β cβ sin βt + φ. By

Fourier transforming the signal we can then extract the distribution of the frequency
components cn.

In order to get information about the evolution of the spectrum, we analyze
the Fourier frequency as a function of integration time t. An example of such an
evolution for β ≈ 50 MHz is shown in figure 5.19. We use a finite atom-cavity
detuning of ∆ce = −1.4 MHz. This means that we have significant ringings after
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Figure 5.18: A single lasing pulse from an unseeded sample of atoms. (a) The ensemble is pumped
(gray) at t = 0 s and a pulse is emitted after a delay τD = 1.7 µs (blue). Here the cavity is kept on
resonance with the atomic transition by the large noisy background field around 200 nW. (b) The
beat signal mixed down to 10 MHz in order to visualize the oscillations used for determining the
average frequency and spectral properties. While the spectrum can be found by Fourier transforming,
a simple method such as counting zero-crossings can be used for determining the average frequency.

the primary pulse, and it turns out that these ringings are highly interesting for
the spectral evolution. They provide an extended period of significant signal,
compared to the resonant case where the ringings are negligible. This reduces the
Fourier limitation on the spectral resolution. It also appears that with each ringing,
new features appear in the spectrum. In figure 5.19 this is evident, e.g., around
t = 3 µs, t = 4 µs, and t = 4.4 µs. For 2 µs < t < 3 µs the primary pulse is emitted,
and a single symmetrical spectral feature is seen in figure 5.19 (a). At t = 3 µs the
primary pulse ends, and the spectrum is seen to bifurcate into two branches. At
the second ringing the bifurcation is repeated with a clear asymmetry between the
spectral density of the two primary branches of the spectrum. The asymmetry is
caused by the offset between cavity resonance – which appears to dictate the initial
pulse frequency – and the bare atomic frequency. The emitted spectrum is thus
pulled from cavity resonance towards the atomic resonance as the emission is left
to evolve.

In the case of a resonant cavity, ∆ce = 0, the symmetry between red- and blue-
detuned lasing is not broken, while the oscillations will still cause bifurcation, there
is no significant frequency-pulling.

By taking the Fourier spectrum for a range of different atom–cavity-detunings
we can look at the frequency pulling factor across various ∆ce. This results in a
slope of 1 when the is no frequency pulling, but which can in general be time-
and detuning-dependent. We look at this behavior for three different integration
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Figure 5.19: Lasing pulse at ∆ce = −1.4 MHz. (a) Spectral behavior of a single lasing pulse during
its time-evolution as a function of integration time t. The dashed lines indicate the cavity resonance
and bare atomic resonance frequencies. The beat-signal is down-sampled from 169 MHz to about
50 MHz by mixing with a constant RF signal. The spectrum is normalized to the maximal value
over the whole spectrum. (b) Time-evolution of the beat-signal.

times t in figure 5.20. During the first pulse at time t = 2.5 µs, figure 5.20 (a), the
spectrum follows approximately the dash-dotted line of unity slope. This indicates
the tendency of the first pulse to follow the cavity frequency. The cavity-pulling
factor of the frequency is given by the inverse slope of this line. Initially, then, it
looks a lot like a good-cavity case with a cavity-pulling factor of one.

At a later time, t = 3.6 µs – figure 5.20 (b), a single ringing has developed, and
the spectrum is now seen to split into two branches across most cavity-detunings.
We interpret the lack of spectral density along the cavity frequency (dash-dotted
line) as an expression of light resonant with the cavity being largely reabsorbed by
the atoms. Finally when most of the ringings are over, at t = 7 µs – figure 5.20 (c),
the steepest branch has reached a slope of about 3 corresponding to a cavity pulling
factor of ζCP = 1/3.

A cavity pulling factor ζCP below unity is a hallmark of the bad-cavity regime.
It is desirable for the realization of a noise-resistant laser because it is an indication
that noise in the cavity resonance frequency will be suppressed in the frequency of
the laser light. However, it seems that the slope in a narrow region around ∆ce = 0
remains unity. This region coincides with the region of suppressed ringings in
figure 5.11.
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Figure 5.20: Spectral line pulling by the atomic resonance. The normalized Fourier spectrum of the
pulse sequence is found for different integration periods, and is here shown for data from t = 0 µs to
(a) t = 2.5 µs, (b) t = 3.6 µs, and (c) t = 7 µs, corresponding approximately to the primary pulse,
up to and including the second pulse, or all visible pulses. The dash-dotted line shows a slope of
unity, corresponding to the lasing frequency directly following of the cavity resonance. The dashed
line shows the attained atomic line-pulling during the ringings of ζCP = 1/3.
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Figure 5.21: Data analysis of a single pulse beat signal. (a) The beat signal at around 50 MHz is
recorded with a 100 ps sample rate. A window of integration, shown with orange points, is chosen
in order to exclude noisy regions of small or no signal that will reduce the confidence of the frequency
count. (b) An algorithm is used to find the number of zero crossings by detecting peaks in the
negative absolute signal. During the integration time, the delay between subsequent zero-crossings
is found and an average frequency recorded.

5.8 Frequency stability

We estimate the laser’s performance as a frequency reference, and are interested
in the frequency stability of the lasing pulses. Here we measure the frequency by
counting zero-crossings of the beat oscillations which results in a single number
for the frequency of each emitted pulse. A traditional counter-device relies on
continuous signals and cannot be used here. Instead we record the full beat signal of
a large number of pulses, and subsequently count the frequency in post-processing.
This method is shown in figure 5.21 where a counting window is initially chosen
from the recorded pulse-sequence, 5.21 (a). The zero crossings are then found by
locating peaks in the negative square of the beat signal, 5.21 (b), and the inverse
time difference between these zero crossings is used to find the average frequency.

We have seen in the above analyses that we are on the border of the bad-cavity
regime, and that in particular for small ∆ce it appears that the spectrum is dictated by
the cavity resonance. In this case we expect the frequency stability to be limited by
the cavity noise of our system. We measure the frequency stability in two different
ways. The first method takes advantage of the reference light used to stabilize the
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Figure 5.22: Overlapping Allan deviation showing the mean frequency stability of lasing pulses
when the cavity is set to resonance ∆ce = 0. The beat is measured against the intracavity field used
for locking the cavity length (orange), and against an external reference laser (blue). In orange the
frequency stability is measured over 17609 pulses taken in four sections of 5 s with repetition rates
of trep = 1 ms during a 10 minute interval. In blue 10094 pulses were taken in eight sections of
0.5 s with repetition rates of trep = 0.5 ms during a 10 minute interval. Both measurements use a
gate time of τ0 = 0.4 µs. The beat signals used to derive mean pulse frequency was recorded with
reference to the cavity locking laser detuned at 781 MHz and mixed down to 50 MHz (orange) and
the external reference laser of section 3.2.2 beating at 129 MHz and mixed down to 50 MHz (blue).
Lines following a τ−

1
2 dependency are fitted to the first seven points of each dataset. The frequency

stability is better than the Fourier limited spectral linewidth within the green area.

cavity length. A beat between the laser pulse and this field could be expected to
have most of the cavity noise and drift as a common mode. The intrinsic noise
of the laser would, however, still show up in the beat signal. The second method
relies on a beat with an external field that is independent on both the cavity locking
reference and the generation of the pulse. For this method we use the reference
laser described in section 3.2.2.

The overlapping Allan deviations of the two measurement methods are shown
in figure 5.22. The cavity is stabilized as close as possible to atomic resonance
∆ce = 0. We use a gate time of τ0 = 0.4 µs for both of our measurements, which
ensures that we only count the pulse frequency when its signal-to-noise ratio is
high. When measuring against the intracavity field, the pulse-to-pulse frequency
deviation is about 100 kHz. At short times the overlapping Allan deviation is seen
to scale as τ−

1
2 which is an indication that the frequency distribution is Gaussian,

and we are dealing with white frequency noise. We find the indication of a possible
noise floor at an integrated pulse time of about τ = 2 ms to be Γlasing = 2 kHz. This
noise floor becomes visible as we exit the Fourier limited region marked in green
on figure 5.22.

The limiting linewidths of this system are the inhomogeneous Doppler broad-
ening ΓD = 2 MHz, the cavity linewidth κ = 620 kHz, and the natural linewidth of
the atomic transition itself, γ = 7.5 kHz. The stability is about a factor of two below
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the natural linewidth, demonstrating that the laser linewidth can be more narrow
than the transition it is derived from.

When using the external field we see that the entire noise-level increases approx-
imately by 50%. The resulting noise floor agrees with the natural linewidth of the
lasing transition to within 1σ. There is significant noise on the cavity caused by a
poor lock to the stabilizing laser. With an ideal cavity lock and no atomic frequency
pulling on the laser pulse frequency around resonance, we would expect an Allan
deviation that did not hit a noise floor, but simply continued to average down as
τ−

1
2 . In addition the instability goes to zero at all times for an infinite bandwidth.

For some finite locking bandwidth, the deviations become non-zero. The difference
between the Allan deviation derived from the intracavity field and that derived
from the external field can then be seen as the locking efficiency of the cavity. Since
the locking bandwidth of the cavity is exceedingly low (few Hz), and the resonance
frequency is noisy, barely any noise suppression is observed.

This Allan deviation does not correctly present the behavior of the current
machine if it were used directly as a frequency reference. We are ignoring the dead
time of order 1 ms between each pulse, and simply defining the timescale as the
”pulse-light-time” needed for a given stability to be reached. Because we ignore the
dead time, the time-scale at which we start to see frequency drift and random walk
of corresponds to a significantly different laboratory-timescale. The drift happens
thus on the scale of seconds to minutes, and is aliased down to ms. Extrapolating
the white frequency noise floor to τ = 1 s will give us a laser linewidth of about
100 Hz – comparable to our prestabilized laboratory lasers shown in section 3.2.

The main limitation to the attainable linewidth of the lasing pulses is the cavity
noise. The measurement against the intracavity field rejects all common-mode
fluctuations, but because the cavity lock is exceedingly poor, this barely improves
the frequency stability. To remove this limitation there are two approaches: reducing
the fluctuations, or reducing the sensitivity to the fluctuations. The first approach
is a technical problem, and will be pursued in the laboratory imminently. The
second approach is what motivated the idea of a superradiant laser, and consists in
pushing the physical system well into the bad cavity regime. This can be realized
by significantly reducing the cooperativity C0, or by significantly reducing the
ensemble linewidth. A reduction of the ensemble linewidth by cooling the ensemble
down to µK level is already under way in both a further development of the current
setup, and a newly designed continuous approach.
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In this chapter, we will look at a very different system from the previous chapters.
We will see some of the work I was part of on two ytterbium optical lattice clocks.
These clocks rely on a much more mature methods, and represent the state of the
art. While previous chapters have focused on investigating new paths, this will
be focused on recent progress in what is currently recognized as the canonical
approach. The ytterbium optical lattice clocks at the U.S. National Institute for
Standards and Technology (NIST), Boulder are some of the best performing atomic
clocks in the world [70], [71]. The two clocks are based on interrogation of the (6s)2

1S0 ↔ (6s6p) 3P0 transition at λclock = 578 nm in neutral 171Yb atoms trapped in
a vertical one-dimensional optical lattice. The energy level scheme of ytterbium
is very similar to strontium because of the two electrons in the outer shell, see

87
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Figure 6.1: Simplified level structure of Yb. Here we show level structure and approximate
wavelengths of the relevant transitions to the Yb optical lattice clock. The hyperfine structure is not
shown.

figure 6.1. The nuclear spin is I = 1
2 resulting in a simple hyperfine level structure

when compared to the commonly used 87Sr, I = 9
2 isotope. The clock transition is

spin-forbidden just like it is forbidden by the electronic angular momenta of the
transition resulting in a natural linewidth of 7 mHz. An excellent introduction to
optical lattice clocks can be found in [65].

The experimental system relies on atoms that are cooled using several stages of
3D MOT cooling. First they are slowed, and trapped using the 29 MHz wide (6s)2

1S0 ↔ (6s6p) 1P1 transition at λMOT1 = 399 nm. The atoms are then further cooled in
three consecutive traps on the spin forbidden 180 kHz wide (6s)2 1S0 ↔ (6s6p) 3P1
transition at λMOT2 = 556 nm before they can be loaded into the optical lattice. The
lattice is run at the operational magical wavelength [15] near λlattice = 759 nm, in
order to effectively cancel lattice induced Stark shifts. The lattice traps on the order
of 103 atoms in a trapping potential that is 50Er deep, where Er = h2/(2mλ2

lattice) is
the lattice photon recoil energy, for an atom of mass m. This trapping depth ensures
that the atoms are in the Lamb-Dicke regime, where the atomic motion becomes
quantized. Here it is possible to resolve, and thus suppress the interaction with,
atoms with different momentum quanta. See [3], [46], [47], [58], [59], [96] for an
overview of the development of the Yb clocks at NIST.

In the optical lattice, spin-polarization is performed to purify the spin state
of the atomic ensemble and quenched sideband cooling [89] allows us to reach
temperatures of T‖ = 500 nK along the lattice axis, or maximal total temperatures
of T = 4.8 µK. This results in a sample of very well controlled atoms, isolated from
most external perturbations, and allowing detailed measurements of the remaining
systematic shifts and uncertainties of the resonance frequency. The atoms can then
be used to synchronize a probing laser with the clock transition.

The probing laser is used to excite the atomic ensemble using either Rabi or
Ramsey spectroscopy. When using Rabi spectroscopy we have a typical probing
time of τprobe = 560 ms which corresponds to a full 65% of the total cycle time
τcycle = 860 ms. The long interrogation time results in a Fourier-limited linewidth
of the clock transition of 1.4 Hz as illustrated in figure 6.2. The high percentage of
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Figure 6.2: Conceptual sketch of the comparison of the two Yb clocks at NIST, and their Fourier-
limited clock transition spectrum. The probing laser is derived from the same source, but distributed
to the two systems, Yb-1 and Yb-2, through AOMs 0, 1, and 2. The laser frequency can then
be locked to the atomic transition either by locking AOMs 1 and 2 to the respective clocks, or by
locking the probing laser to one system via AOM-0, and recording the error signal on the other
system. Once atoms are cooled and trapped in the optical lattice, spin polarization is done by the
green λMOT2 = 556 nm light, and sideband cooling via the narrow λclock = 578 nm. Spectroscopy
on λclock shelves the electrons in the clock state and detection is done subsequently using blue light,
λMOT1 = 399 nm. An important difference between the two clocks is the lattice, formed by a retro-
reflecting mirror in Yb-1 and a build-up cavity in Yb-2. The central plot shows the typical spectrum
for Fourier-limited Rabi spectroscopy over τprobe = 560 ms with a FWHM of 1.4 Hz. The figure is
taken from [70].

cycle time used for interrogation aids in reducing the influence of the Dick effect
on the laser stability [119]. Measurements using Ramsey spectroscopy have been
performed using a probe free evolution time of τ = 510 ms. Because both clocks
use the same local oscillator, frequency corrections can be applied in two separate
ways. i: to each probing arm independently through AOM-1 and AOM-2, or ii:
only from Yb1 to AOM-0. In case i, the frequencies of the two systems are directly
recorded via the servo signal, whereas case ii uses Yb2 as an external frequency
discriminator.

While at NIST I had the pleasure of becoming a part of the clock team, and
take part in a number of clock characterizations and frequency measurements. In
addition I worked on a number of projects to improve the clock infrastructure. In
the following I will briefly present some of this work. We will first look at some of
the upgrades, and then the clock characterizations we made during my stay. Finally
the current status of the frequency stability and accuracy as published in [70], [71]
will be presented.
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6.1 Electronic sideband locking to a multi-color cavity

In an effort to improve the reliability of the laser systems the performance of a multi-
color reference cavity was investigated. The idea is to use a single reference cavity
to lock several of the relevant laser systems. In order to improve the flexibility of
such a setup we employ offset locking of the lasers by using electronic sideband
modulation. This exploits PDH signals generated on first order sidebands by means
of phase modulation or multiple frequency modulation in the EOM. It replaces the
use of an AOM to patch the frequency detuning between the cavity resonance and
the required laser frequency, and has the advantage of a very flexible tuning range
over several GHz.

The cavity is designed to have a medium high finesse of about F = 5 − 10 · 103

for a very large frequency range. This results in a cavity that can be used to lock
lasers with wavelengths starting in the green and ending somewhere in the NIR.
We tested the performance when locking three different colors at λrepump = 1388 nm,
λlattice = 759 nm and λMOT2 = 556 nm. Light at λMOT1 is frequency locked using
modulation transfer spectroscopy on a Yb hollow cathode cell, whereas the clock
light λclock is locked to an ultra stable cavity. Though the multi-color reference
cavity is functional for all three wavelength, locking three different systems to the
same cavity requires some planning. We choose to lock the lasers using the PDH
technique and a combination of optical and RF filtering. Using different modulation
frequencies for the lasers allows us to isolate a single laser error signal by filtering
of the detected RF signal. This method can be generalized to any number of
independent locks, limited only by the SNR reduction for each signal splitting, and
the required locking bandwidth per lock. Figure 6.3 illustrates the setup.

Offset locking relies on the ability to lock a sideband rather than the carrier
frequency of the signal. A sideband that is resonant with the cavity is generated by
phase-modulation of the laser light. The phase modulation is done in an EOM with
a pure RF frequency – typically in the hundreds of MHz. The locking signal for a
PDH scheme could be obtained by adding a secondary RF signal to the same, or a
subsequent EOM. This will result in PDH signals at both the primary carrier, and
each of the primary sidebands. An alternative method relies on phase-modulation
of the RF signal, that is, electronic sidebands. This results in a carrier-and-sidebands
RF spectrum in the EOM rather than two distinct RF frequencies, see figure 6.4. The
resulting electric field, EESB, of the modulated laser light becomes [111]

EESB =
√

P0 exp
{
i
[
ωlt + β1 sin

(
Ωt + β2 sin ∆φt

)]}
, (6.1)

where ωl is the laser carrier frequency and β j is the modulation index of the optical
and electronic sidebands respectively. The offset frequency is set by Ω which is the
RF carrier frequency, and the sideband detunings are set by the RF phase modulation
frequency ∆φ. The frequency of the original laser,ωl, can then be tuned by adjusting
Ω. The PDH signal is obtained by demodulating at ∆φ.

We were able to show that electronic sideband locking of multiple lasers at
different frequencies to a single optical reference cavity was feasible, and the ap-
proach has now been fully implemented. One challenge was dealing with a large
uncompensated residual amplitude modulation (RAM) in the fiber-coupled EOMs,
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Figure 6.3: Multiple lasers locked to a single Fabry-Perot Cavity. Because of the incompatibility
of detecting both 556 nm and 1388 nm on a single detector type, we split the reflected signal from
the cavity between two detectors (Si and InGaAs based). This allows us to use identical PDH
frequencies for two of the three lasers. The laser frequencies are locked to the cavity by means of
electronic sideband locking (ESB). Phase modulation (∆φ) of the RF-carrier signal (Ω) is thus used
to generate the PDH signal.

which is particularly severe at high offset frequencies. For the broadband 1388 nm
repumper, this was alleviated by doing the PDH modulation directly on the laser
diode current.

6.2 Lattice laser

The NIST laboratory has two running Yb clocks, which have several similarities and
several differences. Having two clocks is essential in order to be able to evaluate
their frequency stability - especially when that stability starts to exceed everything
else. It also allows asynchronously scheduled improvements of the setups, without
complete down-time. Finally, having two clocks allows the efficient mapping of
systematic effects in the two setups. In principle two clocks can be located within a
single vacuum chamber, and have everything but the atoms in common [16]. When
atomic clocks are compared, however, common mode noise in the two systems will
go undetected. A reliable clock comparison, is thus a comparison in which the
clocks are as independent of each other as possible.

Since the two Yb clocks were sharing a single lattice laser, an effort to make the
atomic clocks more independent of each other was made by preparing a second
lattice laser. The required power levels of the lattice laser is in the few W regime.
For this a Ti:Sapphire laser pumped by 10 W of 532 nm laser light is used. In
figure 6.5 a schematic of the lattice laser is shown, as well as the seeding light
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Figure 6.4: Overview of the electronic sideband (ESB) PDH scheme in contrast to a simple two-tone
generated offset PDH locking. The ESB scheme relies on phase-modulation of the RF signal. The
resulting error signal has PDH features of opposite signs at the first order sidebands (±Ω). In
contrast the two-tone scheme generates PDH features that all have the same sign. In addition the
laser carrier frequency will also have a PDH signal. The ESB scheme thus results in a simpler error
signal spectrum.

Figure 6.5: Injection locking of a Ti:Sapphire lattice laser. The laser cavity itself is a commercial
product, where a titanium-doped sapphire crystal (Ti:S) is pumped and used as a gain medium,
within a unidirectional traveling-wave cavity. The unusual PDH-configuration where transmission
and reflection from the cavity is superimposed on each other has enhanced signal because of the cavity
gain. the seed light is derived from a second, commercial ECDL laser, stabilized to the multi-color
cavity described in 6.1.

and cavity locking scheme used. The Ti:Sapphire laser consists of a bow-tie cavity
configuration. The pumping light is sent in through an input mirror, and creates
inversion in the Ti:Sapphire crystal. Some systems use mode cleaning by means of
polarization filtering, isolation of the direction of propagation, and an optical etalon
to control the spectrum, but our system relies solely on the seed field in order to
achieve single-mode operation at a well-controlled frequency. The seeding laser is
based on an ECDL construction frequency stabilized to an external reference cavity
as described in section 6.1.
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The cavity length is stabilized to ensure resonance with the seed laser by means
of a PDH signal. In contrast to traditional PDH stabilization, a traveling-wave cavity
spatially separates the input beam from the reflected beam. The PDH signal is thus
detected in the output arm of the cavity, where the carrier frequency has experienced
considerable gain. This acts to amplify the signal size, and thus improves the cavity
lock. While the lock of the seed light frequency to the multi-color reference cavity
attained a bandwidth of 900 kHz, the Ti:S cavity piezo lock reached a bandwidth
in the tens of kHz. The secondary lattice laser was successfully made ready for
operation with an output power of Pout ∼ 4 W.

The current lattice configurations are shown in figure 6.2. It is a one-dimensional
vertical red-detuned lattice, leading to high confinement along the probing axis,
with looser constraints on the radial dimension. In Yb-1 the retro-reflected stand-
ing wave can result in some traveling-wave component whenever an imbalance
between incident and reflected beams occur. This degrades the lattice contrast, and
leads to a finite shift of the clock transition. The reflecting mirror is also used as a
reference surface for phase/fiber noise cancellation (FNC) of the λclock probing beam,
in order to cancel any first-order Doppler shifts induced by shaking of the lattice
standing wave. The waist radius at the atoms is w0 = 70 µm. Yb-2 uses a build-up
cavity which allows a reduction of the incident power. It also ensures that there is
no traveling wave component in the lattice standing wave. In this setup the cavity
mode is large, leading to a Gaussian waist radius of w0 = 175 µm. In Yb-2 the top
cavity mirror is used as reference surface for the probing laser FNC.

6.3 BBR shift from localized heating in a window

Of the many perturbations to the atomic clock frequency, the largest uncancelled
absolute shift and limiting uncertainty is caused by the finite temperature of the
atoms surroundings. This results in black body radiation (BBR) which in turn
leads to an electromagnetic field that shifts the energy levels of the atom. An
electronic energy level experiences a shift in energy [88] ∆Eg ∝ (kBT)4α0, where
kB is the Boltzmann constant, T is the environment temperature and α0 is the
level polarizability. This means that an increase in temperature of the atomic
surroundings can have severe influences on the shift of the atomic level. In order
to reduce this effect, one approach is to place the atoms inside of a cryogenically
cooled enclosure when probing them [78]. This reduces the absolute temperature
of the field of view, and thus the total BBR shift of the atomic ensemble. At
NIST the approach has been to use an enclosure kept at room temperature, but
with a highly uniform temperature distribution, see figure 6.6 (a). The presence
of several temperature sensors at representative geometrical positions, allow real-
time monitoring of the temperature and highly precise corrections to the ensemble
frequency. An earlier generation of this enclosure was described in [3].

The enclosure is a single piece of copper, internally coated with a highly ab-
sorptive layer of carbon nanotubes. These ensure that the radiation inside the
enclosure can be described well as BBR and need not include stray reflections.
There are two direct-access holes to allow the atoms to enter and exit the enclosure,
and seven optically coated viewports for access of trapping, cooling and probing
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Figure 6.6: BBR enclosure and details of window heating measurements (a) The copper BBR
enclosure used in both Yb-1 and Yb-2 systems. The enclosure fully encapsulates the atoms except for
an entry (exit) hole at the bottom left (top right) corner of the picture. Temperature sensors are placed
in a number of representative places, and here the approximate position of the window (Twindow) and
enclosure body (Tbody) sensors are marked. The figure was taken from [4]. (b)-(d) A test setup is
used to estimate localized heating of the window due to the lattice laser beams, using both green
532 nm light and λlattice light. (b)-(c) The temperature distribution across the window is recorded
with a thermal camera, and (d) a dependency of the true window temperature discrepancy on the
measured difference of the probes in (a) is found.

light. The high-intensity lattice beam also travels through these windows, causing
a measurable heating on the associated temperature probes. Since we cannot have
temperature probes on the window surface, the window temperature is measured
by attaching a temperature probe to its edge. Because the BBR shift is so highly
temperature dependent, a localized heating of the window could go undetected,
and cause deviations from the modeled BBR environment.

In order to estimate the effect of local heating, test measurements of the thermal
distribution across identical window samples were made. In order to avoid thermal
conductance by air, a primitive ultra-low-vacuum chamber ( P = 1 mBar) was con-
structed to house the measurements. A thermal camera was then used to measure
the temperature distribution. An example picture of a laser-heated window can be
seen in figure 6.6 (b). Measurements were made using up to 650 mW of lattice light,
and up to 10 W of 532 nm light. Mapping out the temperature distribution over a
window with an intense laser beam reveals a sharp temperature peak at the laser
beam incidence, see figure 6.6 (c).
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We can make a simple model for the temperature distribution by considering
the window as a cylindrical disk of radius R and thickness t. Once the window
temperature reaches a steady state, it will satisfy Laplace’s equation ∇2T = 0. The
solution gives us the temperature distribution. In our geometry the temperature
will be purely dependent on the radial coordinate ρ, and the window edge will
have a temperature T0,

T(ρ) = −
Q̇

2πkt
ln

(ρ
R

)
+ T0. (6.2)

The heat rate into and out of the window is Q̇ and k is the thermal conductivity of
the material. The average temperature over the surface can then be found. Since the
window is flat and relatively close to the atoms, we should integrate over the solid
angle extended by the window rather than its area1. Experimentally we mapped
out the difference in measured window temperature and average window temper-
ature (∆Twindow) against the temperature difference between the window edge and
enclosure body (∆Tbody), see figure 6.6 (d). The measured window temperature and
enclosure body are found with RTD’s on the window edge and body respectively,
whereas the average window temperature is found from the thermal imager. This
gives a linear dependency, that is then used to deduce the resulting correction in
the BBR shift on the two lattice clocks, and the added uncertainty.

The lattice configuration of the two clocks is slightly different, as one (Yb-
1) relies on a simple retro-reflected lattice beam, whereas the other (Yb-2) has a
build-up cavity. The build-up cavity increases homogeneity of the wavefront, and
results in a broader lattice. The retro-reflection avoids a number of loss factors
and results in less optical power absorbed in the enclosure windows. Typical
temperature differences between enclosure body and window on the two setups
(1,2) were ∆Twindow = (85, 440) mK, resulting in added fractional frequency shifts of
(−1.2,−6.1) · 10−19 and relative uncertainties of (0.33, 2.8) · 10−19. This corresponds
to a factor of (0.04, 0.28) of the total BBR shift uncertainty on the two systems [70].
The effect is thus not entirely negligible in Yb-2 where an estimate with improved
uncertainties might be warranted.

6.4 DC Stark shift measurement and cancellation

The atom enclosure in figure 6.6 (a), not only acts as a homogeneous BBR enclosure,
but also serves as a Faraday cage. The structure itself is made from copper internally
coated with electrically conductive carbon nanotubes, and each window is coated
on the inner surface with a thin conductive indium-tin-oxide (ITO) layer. This
Faraday cage isolates the atoms from external electric fields which can cause DC
Stark shifts of the atomic energy levels. External charges will in general cause
shifts proportional to the square of the electric field. For a uniform electric field a
frequency shift of δν = kE2 will be introduced. Here E is the field magnitude, and
k is a transition-dependent value. For non-uniform fields, the spatial distribution

1This turns out to account for a correction factor of about 1.29.
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Figure 6.7: DC stark shift measurements. (a) Spectroscopy of the clock transition. When a large
electric field is applied to the windows of the BBR enclosure (figure 6.6 (a)), a DC Stark shift of the
clock transition occurs. Here we subtract that shift to show the broadening with respect to the case
of a fully grounded enclosure (blue). Red and green curves show the cases of ±2 kV and ∓2 kV
applied to the vertical-axis windows. The symmetry between the cases indicate the lack of any stray
field gradient. (b) Through Monte Carlo modeling of the stray field-induced shift the yellow and
blue probability distributions of homogeneous (∆ν) and total stray-field shift (δν0) respectively, are
found. Figures are taken from [4]

of atoms within the optical lattice will cause an inhomogeneous broadening of the
spectroscopic feature.

While one method to avoid DC Stark shifts is to measure and actively try and
compensate for the stray fields present [8], [31], [64], [79], [80] a perfect reversal
of the stray field distribution can be hard to achieve. Instead, the Faraday cage
approach aims to passively reduce any stray electric fields [3], [54], [78], [113]. We
show in [4] that this approach is sufficient to constrain the fractional DC Stark
frequency shift of our Yb clocks to the 10−20 level.

The conductive window surfaces are isolated from the enclosure body, and can
be individually electrically accessed outside the vacuum chamber. We can use
them in order to artificially add electric fields across the atomic ensemble, and
measure the resulting shift and broadening of the clock transition relative to an
unperturbed atomic ensemble. Opposing windows of the enclosure in figure 6.6 (a)
along the three spatial axes, form a basis that can be used to map out the full spatial
dependence. We add electrical potentials of up to Vi = ±2 kV across the window
surfaces, and measure the resulting shift and broadening of the transition line, see
figure 6.7 (a).

For a total electric field consisting of some stray field ~E0 to be characterized, and
a sum of applied fields ~Ei ∝ Vi, the total clock shift can be described by [4]

δν (V1,V2,V3) = δν0 +
∑

i

aiVi +
∑

i j

bi jViV j, (6.3)

where the stray field shift is given by δν0 = k〈E2
0〉, the applied fields are responsible

for the last term bi jViV j = k〈~Ei · ~E j〉, and a cross term given by aiVi = 2k〈 ~E0 · ~Ei〉.
Applying controllable fields to the window faces thus allows an increased sensitivity
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to the stray fields of the system through the cross term. The total stray field
frequency shift δν0 = ∆ν + δν∗ is given by a homogeneous component ∆ν and an
inhomogeneous component δν∗ caused by the finite extent of the atoms. By applying
voltages to the windows and subsequently reversing their polarity, we can map out

∆ν =
∑

i
a2

i
4bii

, and find that it is consistent with zero for all measurements. Using a
Monte Carlo approach we find a 95.5% confidence intervals of −6.7 ·10−20 < ∆ν < 0,
see yellow distribution of figure 6.7 (b).

The blue curve in figure 6.7 (a) shows the clock transition in the case where all
windows are grounded. Here, only left over stray fields are present, and we see a
Fourier-limited transition linewidth of ∼ 1 Hz. By applying Vi = ±2 kV – here done
over the vertical direction (red and green curves) – broadening of the transition
proportional to the stray and applied field gradients is expected. If the applied
field anti-aligns with a stray field, the broadening is expected to be reduced as the
effective potential seen by the atoms will be reduced. After adding uncertainties
due to geometrical considerations of the experiment, a total systematic uncertainty
(95.5% confidence) of −1.0 · 10−19 < δν0 < 0 is found – see the blue curve of figure
6.7 (b).

6.5 Frequency evaluations

Throughout my stay at NIST we ran comparison campaigns of the two Yb clocks.
In order to estimate systematic uncertainties on one clock, the other is often used
as a reference where the parameter under investigation is kept constant. In a
similar fashion we compare the two clock frequencies to each other while keeping
all parameters constant. This allows us to estimate the frequency stability of the
systems under operational conditions. When a reference clock is being used to
map out systematic effects on the other clock, it can also be used to compare its
frequency with an external reference. During several campaigns, the 171Yb clocks
were compared to an off-site 87Sr optical lattice clock, an on-site 27Al+ ion clock as
well as international 133Cs and 87Rb frequency standards through satellite time and
frequency transfer and a local ensemble of H-masers.

6.5.1 Systematic fractional frequency uncertainty of 1.4 · 10−18

In [70] we present the full uncertainty budget for the two Yb atomic clocks. Mapping
out the total uncertainty budget is a large task where methods and equipment is
incrementally improved over a long period of time. The final budget presented is
thus the culmination of several years of research, and the effort of a large number
of researchers. Above we discussed a few of the sources of uncertainty, namely the
BBR shift and the DC stark shift. A number of AC stark shifts, magnetic shifts and
collisional shifts also have to be taken into account, just like technically introduced
errors via the servos. A thorough investigation of these effects can be found in [4],
[15], [70]. The current low levels of uncertainty necessitate some level of real-time
correction to the atomic clock frequency. As such both the Zeeman shift and BBR
shifts are measured throughout the session, and while the Zeeman shift is canceled
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Figure 6.8: Clock performance. (a) Total Allan deviation of the comparison of the two Yb clocks,
showing a fractional frequency instability below 10−18. Blue and red points represent a single
measurement session using synchronized Rabi interrogation in the two Yb clocks. Green points are
from a separate measurement session using unsynchronized Ramsey spectroscopy. The BBR shift is
measured in real-time and each frequency measurement is corrected for the time-dependent shift in the
blue and green datasets. Red points are not corrected. (b) The reproducibility of the systems are shown
by the frequency differences for 10 blinded measurement sessions. Each measurement session is taken
in either configuration i (filled circles) or ii (empty circles), as described at the beginning of the chapter
and in figure 6.2. The mean value is given by the dashed line with green and yellow areas showing
the statistical and total 1σ uncertainty respectively: (νYb2 − νYb1)/νclock = (−7± 5stat ± 8sys) · 10−19.
Errorbars represent the 1σ uncertainty obtained from the total Allan deviation of the given session.
The figures are taken from [70].

by means of the measurement protocol, the BBR shift is currently corrected in post-
processing. Figure 6.8 (a) shows frequency stabilities of the system with (blue) and
without (red) measurement-by-measurement compensation for the BBR shift.

As a result of these investigations we were able to present two independent Yb
optical lattice clocks, each with a fractional frequency uncertainty of 1.4 · 10−18. At
the time of writing this constitutes the lowest frequency uncertainty yet on an any
clock. The low 10−18 range of fractional frequency uncertainty is interesting in that
it marks the limit of performance for accurate determination of the gravitational
frequency shift uncertainty as measured across long baselines. Because time moves
slower in high gravitational potentials relative to an external observer, the altitude
with respect to the earth geoid can have a rather large influence on the frequency
measured by a clock [40]. The fractional frequency change ∆ν/ν for a given height
difference h close to the geoid is given by

∆ν
ν
≈ −

gh
c2 , (6.4)

where g is the acceleration due to gravity, and c is the speed of light. Modern
geopotential measurement rely on the global navigation satellite system (GNSS)
and preexisting geoid models, and are reliable down to an accuracy of two centime-
ters in height [24], corresponding to a fractional frequency uncertainty of 2.2 · 10−18.
If a relative height measurement between closely located points is desired, classical
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spirit leveling methods can reach even higher accuracies at the millimeter level. The
absolute uncertainty of the NIST Yb clocks is thus better than the uncertainty on
the geopotential of the system, which is 6 · 10−18 and realized by geodetic measure-
ments from the Terrestrial Time reference surface. With an absolute uncertainty of
1.3 cm, these atomic clocks are thus better geopotential measurement tools than the
preexisting methods.

Over the course of over a month, the clock frequencies have been compared, in
order to verify the consistency of the measurements. Figure 6.8 (b) shows ten such
blinded measurements, where the frequency difference was kept from the operators
of the clocks during each measurement session in order to avoid any operator-bias.
The comparisons show an average frequency deviation between the two clocks of
7 · 10−19. This is consistent with zero within the systematic uncertainty between the
two systems of ±8 · 10−19, and shows a statistical uncertainty of ±5 · 10−19.

6.5.2 Fractional frequency stability at the 10−19 level

In figure 6.8 (a) we show the total Allan deviation from two comparison sessions
between the two Yb clocks. The blue and red dots are from a 72-hour synchronous
measurement on the two systems using τ = 560 ms Rabi spectroscopy, whereas
the green dots are from an unsynchronized τ = 510 ms Ramsey interrogation.
Both measurements show measurement instabilities below 10−18 with a single clock
instability of 4.5·10−19 reached after 36 hours, and an extrapolated 3.2·10−19 after the
full measurement time. This is the lowest instability recorded for an atomic clock.
It underscores the degree of control over drifts and indicates for this particular
measurement that the limiting frequency uncertainty is not caused by insufficient
control of the system parameters.

The total Allan deviation of figure 6.8 (a) shows no signs of flattening, but
decreases with τ−1/2 as expected from white frequency noise. The averaging time
is thus limited by the 1 s stability of the interrogation laser, and introducing an
interrogation laser with even higher stability [68], [83], [92] will immediately reduce
the required integration time to reach a given instability. The high precision shown
here would allow local gravity comparisons of the clocks equivalent to 3 mm of
change in the gravitational potential.

6.5.3 Remote inter-species atomic clock comparisons

While primary frequency standards are based on 133Cs in accordance with the SI
definition of the second, the International Committee for Weights and Measures
(CIPM) has also classified a number of secondary frequency standards. Yb is
currently a secondary frequency standard and is one of the possible candidates for
a new definition of the second [7]. NIST is currently working to incorporate the
clocks into their time scale [123], [124].

Besides in-lab comparisons between the two Yb atomic clocks, several external
comparisons were made. These span comparisons to the SI definition of time,
realized by the International Atomic Time (TAI) [71], a local comparison to the
NIST Al+ ion clock [14], [42], as well as a remote comparison to the Sr optical lattice
clock at JILA were performed [12], [60], [83]. 87Sr and 27Al+ are both recognized as
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secondary representations of the SI second. Frequency comparisons with the optical
atomic clocks have not yet been finalized, but manuscripts are in preparation. These
were performed, at least partially, as three-way comparisons, with all atomic clocks
operating simultaneously, and comparisons being made locally at NIST through
frequency combs [61].

Comparisons of the Yb clocks to international atomic clocks are made by means
of satellite time and frequency transfer. At NIST, Boulder, an ensemble of hydrogen
masers realize a timescale denoted AT1. Sensitivity to environmental perturbations
can be reduced by modifying the weighting of the masers in the ensemble. This
creates a post-processed timescale AT1E with increased stability. This timescale
is steered to the TAI timescale in order to improve long-term stability. Locally
this time scale can be continuously compared to the Yb clock frequency. The
International Bureau for Weights and Measures (BIPM) makes comparisons of the
AT1 timescale and TAI, and also publishes timescale measurements made with
international primary and secondary frequency standards (PSFS).

Absolute frequency measurement
During parts of the Yb clock operation, both Cs and Rb frequency references were
reported as part of the PSFS. This allowed us to make high-accuracy comparisons
with both atomic species. Cs and Rb atomic clocks are microwave clocks that both
have higher fractional frequency uncertainties than the Yb clocks. Nevertheless,
because of the SI definition of the second, an absolute frequency measurement of
Yb must be made with respect to Cs clocks. The fact that optical atomic clocks
are performing much better in terms of both accuracy and stability than their mi-
crowave counterparts, means that the second must eventually be redefined [7]. In
order to ensure reliability of that redefinition as well as a smooth transition it is
required that absolute frequency measurements of the contestants for a redefinition
are limited by the uncertainties of the Cs clocks. In addition frequency comparisons
between different optical references must also be realized to at least the uncertainty
of the current definition. Previous fiber [40], [78], [105] and satellite-based [35]
comparisons of 171Yb and 87Sr have shown uncertainties below the 10−16-level – a
feat that Cs clocks have not yet been able to do.

Figure 6.9 (a) shows the measured absolute frequency deviations of Yb for
different atomic clocks, with the NIST clock in blue. The most recent measurement
agrees well with the mean of previous reported values, and to within 2σ of the
previous measurement reported by NIST [59]. Contributions to this measurement
were made during an eight-month long campaign, whose monthly values are shown
in the blow-up. As reported in [71] the result was a measured absolute Yb frequency
of 518 295 836 590 863.71(11) Hz with a fractional frequency uncertainty of 2.1 ·10−16.
This absolute frequency measurement is limited by the uncertainty of the primary
frequency standards, and also constitutes the most accurate absolute frequency
measurement of any species.

Loop closures
The absolute frequency measurement of Yb allows an improved uncertainty on the
loop-closure of frequency comparisons. This is a consistency check of the pairwise
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Figure 6.9: Absolute frequency measurement and comparison-loop closures. (a) Seven absolute
frequency measurements of the clock transition in 171Yb spread over almost 10 years. Red points are
from measurements done by the National Metrological Institute of Japan (NMIJ) [52], [125], green
points are from the Korea Research Institute of Standards and Science (KRISS) [51], [85], purple is
from the Italian Instituto Nazionale di Riserca Metrologica (INRiM) [87], and the blue points are
from NIST [59], [71]. The final point represents the current measurements taken over eight months
as detailed in the inset. (b) Absolute frequency measurements together with optical frequency ratios
allows comparison-loop closures that can serve as consistency checks. The work presented in [71]
leads to two new loop closures with Yb. The numbers indicated are fractional frequency misclosures
of the loops given as parts in 1016. The figures are taken from [71]

frequency comparisons that is typically done between clocks. All combinations of
frequency comparisons in the Cs-Sr-Yb-Cs chain have previously been made, but
with the improved measurement of the Yb frequency we obtain an accumulated
fractional frequency difference of (0.8 ± 2.4) · 10−16. This misclosure is calculated
from the relative difference between an optically measured frequency ratio (νYb/Sr)
and the frequency ratio derived from absolute measurements (νYb and νSr,

misclosure =
νYb/νSr − νYb/Sr

(
±

√
∆ (νYb/νSr)

2
− ∆ν2

Yb/Sr

)
〈ν〉

(6.5)

where 〈ν〉 is the average frequency of the ratio, which is important only to the
precision of a few digits. An additional loop-closure of the Rb-Sr-Yb-Rb chain was
afforded by the contribution of frequency measurements by LNE-SYRTE with a Rb
fountain to TAI in the given period. This loop yields a difference of (4.3±5.3) ·10−16.
Both loop residuals are consistent with zero to within 1σ, and are illustrated in
figure 6.9 (b). The final loop residual shown in the figure is enabled by a Sr/Rb ratio
measurement [63] with the same Rb fountain clock at LNE-SYRTE.

Optical comparison stability
The three-way comparison of optical frequencies performed between NIST and
JILA, was done through 1.5 km of optical fiber on two separate frequency combs, as
well as through free-space frequency transfer. This redundancy in the comparison
allows characterization of the instability in the comparison modules themselves
in addition to the three optical ratios. In figure 6.10 we show the typical daily
fractional frequency instability for all components of the comparison. The free-
space link and fiber link (Boulder Research and Administration Network – BRAN)
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Figure 6.10: Preliminary plot of the fractional frequency instability of optical comparisons between
the 171Yb, 87Sr and 27Al+ optical clocks at NIST and JILA. The dashed lines are weighted fits to
all points above 100 s, indicating ratio uncertainties of 3.6 · 10−16/

√
τ for the Yb/Sr comparison

and 1.4 · 10−15/
√
τ for the Al+/Yb and Al+/Sr comparisons. Also shown are instabilities of the

measurement systems that are shown not to limit the comparisons. The figure taken from [60].

show instabilities well below the ratio measurements, just as the frequency combs
are not a limitation.

The three clock comparisons show exceedingly low instabilities after about 3-4
hours of averaging. The comparisons with Al+ are limited by the quantum projec-
tion noise of the single ion, to the 10−17-level. The 171Yb/87Sr comparison reaches an
instability of 2 · 10−18. This is the first time inter-species optical comparisons have
been made with such high stability, which showcases how the measurements are
now limited by and significantly outperform the current Cs fountain clock standard.
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7
Conclusions and outlook

This thesis presents a number of experiments on cavity-enhanced atomic systems
as the basis of new atomic clocks. These systems rely on cold strontium atoms
which are currently one of the best-performing atomic species used in optical lattice
clocks. We emphasize simplicity and use thermal atomic ensembles in order to
create proof-of-principle demonstrations of the capabilities of the systems. The
use of a broad clock transition (in the world of atomic clocks) reduces the ultimate
performance our experimental realizations, but promises more compact solutions
than would be possible otherwise.

The chapters on systems with cavity-enhanced interactions relied on strontium,
whereas a final chapter on the current performance of a state-of-the-art atomic
clock at NIST is based on a second favored atomic species for optical lattice clocks,
ytterbium. This chapter shows the great deal of effort necessary to realize a high-
accuracy clock. A characterization effort whose results can hopefully be transferred
by a high degree to new systems relying on these atomic species.

7.1 Prospects for a NICE-OHMS clock

The preliminary investigation of the NICE-OHMS technique with cold strontium
looks promising in terms of expected laser linewidths in the tens of mHz range.
It relies on the resonant dispersive measurement of a saturated absorption signal,
which can be used directly as an error signal for an interrogation laser.

The signal-to-noise ratio of the current experimental setup is too poor for effi-
cient locking, and an improvement of this system is necessary in order to realize
frequency stabilities that are relevant in the current efforts of atomic clocks. So far
we have used the system as a testbed for the physical models, in order to improve
our understanding of the physical behavior. Initial measurements indicated good
agreement of the experiments with the model and simulations [112], [120], but we
found that a modification of the cavity interaction was necessary [18]. As system
parameters were upgraded, the increased optical density resulted in severely dis-
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torted dispersion signals that agreed only with the modified theory, as presented in
chapter 4 and [99].

These proof-of principle measurements and characterizations of the system has
thus yielded a good understanding of the physics in the system, and a great foun-
dation for the further improvement towards a functioning frequency reference. In
order to realize the system as an atomic clock, some important points needs to be
addressed: the frequency accuracy, the signal-to-noise ratio, and the interrogation
deadtime.

Rigorous investigation of frequency shifts in the system is necessary in order to
consider the system as an atomic clock of any level. Here the simplicity of the setup
is a double-edged sword. Since there is no confining lattice like in an optical lattice
clock, light shifts form the trapping potential is not an issue. However, the high
temperature of the atoms results in a number of shifts and broadening effects that
will need to be taken into account. Though the technique relies on Doppler-free
spectroscopy, second-order Doppler shifts and collisional broadening or shifts will
become relevant.

The low signal-to-noise ratio of the atom spectroscopy is currently adding noise
to the laser frequency when locking. At τ = 1 s this noise is at least an order of
magnitude above the laser stability. The noise in the spectroscopic signal is caused
by both electronic noise and loss in detection scheme and by variations in the
atomic parameters. Noise in the enhancement cavity and atom number means that
the spectroscopic conditions vary from shot to shot, effectively reducing the signal
contrast. This necessitates high probing powers which will increase the signal size,
but also leads to significant power-broadening of the saturated dispersion signal.

Interrogation deadtime is problematic as it allows the clock laser to evolve freely
between corrections. This means that laser frequency noise can be uncompensated
for large ratios of the clock cycle. Our simple setup allows very short cycle times
(< 100 µs), but also severely restricts the probing time.

We are currently following two roads to improve the experimental parameters.
One approach is to reduce the atomic temperature by adding a second-stage red
MOT. This would reduce the atomic temperature to the 10−100µK range. This adds
more atoms to the ”zero-velocity” class and as a result the dispersion slope increases
significantly. This approach is currently being taken on the Sr-1 3D MOT machine. A
second machine (Sr-2) is being constructed in order to feed a continuous beam of mK
temperature atoms through a medium-to-high finesse cavity. The increased cavity
finesse results in an increased dispersion slope, but shot-noise limitations on the
detection might necessitate a significant amount of transition power-broadening. A
continuously fed cavity also yield a continuous error-signal. This in turn promises
the possibility of zero-deadtime clock operation, and severely suppresses the free
wander of the reference laser.

7.2 Prospects for a superradiant clock

The second road we have followed here is the investigation of an active optical
clock based on bad-cavity lasing. This approach utilized the same atomic ensemble
as the NICE-OHMS experiment. The goal has been a superradiant laser, but in
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the present investigations we are in the crossover regime between a good- and a
bad-cavity laser. Only deep in the bad-cavity regime can we truly call the system a
superradiant laser.

We have shown that the cooperative interaction of the atoms result in pulsed
lasing into the cavity mode, and have characterized the time evolution of the sys-
tem under a range of different circumstances. The lasing threshold was shown to
exhibit a quadratic scaling of output power with atom number, as expected from a
superradiant system. At increased atom numbers this scaling becomes linear, due
to increased power in the cavity mode. The coherence of the system thus switches
between being preserved primarily by the atomic ensemble, and the cavity mode.
A mean-field theory simulation of the system showed excellent agreement with the
experimental results. This is a precious tool, that has allowed considerable insight
into the dynamics of the atomic evolution. It remains a semi-classical approach
though, and as the system is pushed deeper into the low-photon-number regime,
more quantum behavior will have to be taken into account.

The cyclic experiment currently has no excited-state repumping, and the pulse
length is thus determined by the cooperative enhancement of the spontaneous
decay rate. This in turn Fourier limits the spectral linewidth that we can obtain.
Accordingly the frequency stability is considerably worse than what we would
expect from a continuous system. The investigation of the spectral properties of the
system is currently being prepared for publication [107].

Seeding the atomic ensemble with an external optical field, allowed more than
40 dB of amplification of Pseed < 10 pW light. We made preliminary investigations of
the phase-quality in the amplifier configuration, and will investigate this approach
further in the future [101].

In order to realize a superradiant frequency reference we need to reduce the
amount of noise in the system, reduce the spectral sensitivity to cavity fluctuations,
and attain continuous operation. The reduction of noise is a technical challenge
which must improve the overall reliability of the system and reduce both mechanical
vibrations and electronic noise in the cavity length. Spectral sensitivity to cavity
noise is given by the cavity pulling factor ξ = Γ

Γ+κ , and is reduced by moving further
into the bad-cavity regime. In order to retain superradiant lasing this must be done
by cooling the atomic ensemble below mK. While a first approach to continuous
operation could be done by repumping the atomic ensemble, atoms are lost after
∼ 1 ms because of their thermal velocity. A truly continuous laser must then be
realized using a continuously flowing beam of excited-state atoms.

Both technical improvements and reduction of temperature will be pursued in the
current setup. Laser systems are currently being improved, and the cavity electron-
ics will be thoroughly reworked. A second-stage red MOT on the lasing transition
will be constructed in order to reduce the atom temperature by one or two orders
of magnitude. The result should be reduced decoherence in addition to a reduced
cavity-noise sensitivity of the system. Repumping will also be implemented in order
to prolong the lasing duration. To realize a clock the accuracy of the final system
must also be carefully investigated.

Finally a truly continuous system for superradiant lasing (Sr-3) is being developed
in collaboration with the iqClock consortium. This system will deliver a continuous
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dipole-trap-confined beam of cold atoms to a lasing cavity. The atoms will be
continuously fed through the cavity with a temperature along the cavity axis of order
10 µK. The atoms will be cooled through several MOT and optical molasses steps
before entering the cavity mode in the excited state. Here they will emit collectively
into the cavity mode while repumping of ground-state atoms is performed to further
increase the effective atom number. The low temperatures in combination with an
increased cavity linewidth will ensure that the system is well within the bad-cavity
regime. Noise in the cavity mode will also be suppressed by careful design of
chamber and mounting mechanisms.

The investigations presented here thus provide an important stepping stone for
further development of superradiant lasers. While we do not expect a superradiant
laser based on the 7.5 kHz 1S0 →

3P1 transition to perform as well as a state-of-
the-art optical lattice clock, it could afford an excellent alternative for mid-range
performance in the low 10−15 fractional frequency stability. Such a system might
be realized much sooner than a truly continuous superradiant laser on the narrow
clock transitions offered by, e.g., Sr and Yb.

Traditional optical lattice clocks have been rapidly improving for years, and as
the systems start to move towards higher levels of control the quantum limitations
become increasingly important. As traditional atomic clocks continue to improve
they incorporate techniques previously seen in other areas of atomic physics. These
techniques include 3D lattices [16], cavity-enhanced readout [114] and entanglement
of atoms [49], [55]. The two new approaches we have taken here are manifesta-
tions of this tendency. Isolated, they could allow for more compact schemes. As
hybridizations with traditional atomic clocks, they might prove to be the next step
in the evolution of optical atomic clocks.
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Design details for a continuous

cold-atom machine at NBI
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All initiatives presented in this thesis rely on the cyclic operation of a cold-atoms
machine that traps and loads atoms within the interrogation or physics zone. This
results in significant deadtime in between probing sequences, though the techniques
themselves should work continuously. If cold atoms can be loaded continuously
without suffering the perturbations and decoherence caused by cooling beams this
would thus significantly improve the systems. We currently have two parallel
efforts towards continuous cold strontium machines. The first machine is being
built in Copenhagen with the purpose of delivering mK-temperature atoms from
a 2D blue MOT directly to the physics cavity. This system – Sr-2 – will not see an
improvement in the thermal properties of the atoms, but will simply mark the shift
from cyclic to continuous.

In addition a third system – Sr-3 – is under development in collaboration with
Florian Schreck at the University of Amsterdam and the iqClock consortium un-
der the EU Quantum Flagship initiative. This system will be developed with the
primary goal of creating a continuous superradiant laser. The main experimental
facilities are being constructed in Amsterdam, with Copenhagen driving the inves-
tigations on how to achieve superradiance, and constructing the physics chamber.
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APPENDIX A. DESIGN DETAILS FOR A CONTINUOUS COLD-ATOM

MACHINE AT NBI

Figure A.1: Picture of the capillary tube holder for the Sr-2 oven, with tubes mounted.

This system will use continuous atom cooling techniques that university of Ams-
terdam are experts in, and will subsequently be transported to Copenhagen.

Here we will show some of the designs and characteristics of the Copenhagen
Sr-2 machine. This includes photos of current assemblies and technical drawings
of the design. This appendix is primarily for future reference of people working on
said experiment.

A.1 Oven design

Our previous machines and reference oven have all relied on simple ovens with a
single central hole of 1 − 2 mm in diameter. In order to reduce coating of the oven
chamber windows which will be used for 2D molasses, we designed a simple oven
lid with micro-capillary tubes. These tubes serve to retain the atoms with large
transverse velocities inside the oven, and results in a more collimated output beam.
Here we show the design merely for future reference.

The oven lid clamps onto a separate tube holder as pictured in figure A.1. The
holder is circular with an inner circular aperture of 4 mm in diameter, and a slit to
provide some elasticity for holding the tubes in place. Mounted with the capillary
tubes it holds a total of 132 tubes. Because of the circular geometry a triangular
packing is not possible, and the tubes will be loose in some regions. To avoid large
gaps and tubes falling out, slivers of metal are wedged in between the tubes to
fasten them. The tubes themselves are 8 mm in length and have an inner diameter
of 150 µm with an outer diameter of 300 µm.

A.2 MOT coils

The Sr-2 system is designed around welded vacuum parts, and use a 2D MOT in
order to transversely cool the atomic beam and simultaneously deflect it out of the
longitudinal Zeeman cooling beam. The model in figure A.2 shows the end of the
coil-wound Zeeman slower at the lower left corner, followed by a 7-way cross in
the center where the 2D MOT will be. A thin tube for the atoms extend back to the
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Figure A.2: Model of 2D MOT section in Sr-2 machine. Vacuum chambers are shown in gray,
and made of stainless steel. External heaters and coolers are all made from copper, and shown in
brown. In the center the 2D MOT chamber is shown with its magnetic coils on top and bottom.
Lower left shows end of the Zeeman coil, and right in front shown the Zeeman window with heater
and cooler. The heater increases the temperature of a sapphire window in order to avoid strontium
coating deposits. In the upper right back, the atoms are led towards the physics chamber.

upper right corner of the drawing and an arm for the Zeeman viewport stretches
to the right. The Zeeman window is made of sapphire and mounted with a copper
heating element on the DN40CF window flange, and a block for water cooling
immediately before.

The MOT coils are mounted on two holders shown in the center of the model.
They are made out of copper and arranged in an anti-Helmholtz configuration. The
holders both feature cut-outs for water cooling on one side, with the lids removed
in figure A.2 for visualization. A temporary build with the MOT coils mounted
on a vacuum chamber was used to map out the axial magnetic field of the coils
as shown in figure A.3. We used about 135 windings on each coil, and the wire
has a cross-sectional diameter of 1.2 mm. The top and bottom coil have respective
resistances of (647, 665) mΩ at I = 17.37 A.

The magnetic field of the MOT controls the position-dependence of the force,
and we are thus interested in an anti-symmetric field around the center. We plot the
magnetic field for three different cases in figure A.3 (a). In orange and blue we show
the field of the coils without a vacuum-chamber between the coils. The orange plot
corresponds to a case where the current running through the two coils is identical,
whereas the blue plot are parameters optimized for blue MOT fluorescence in the
assembled system. The yellow curve was done when the coils are mounted on
a vacuum-chamber in order to more closely mimic the experimental conditions.
We see a slight pinching of the field close to the peak values when the vacuum
chamber is included. The peak positions correspond to the height of the MOT
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Figure A.3: Magnetic field along the vertical axis of the MOT. (a) shows the MOT fields with current
in the coils. The balanced current measurement (orange crosses) and run parameter measurement
(blue dots) are done with the coils in free space, whereas an additional measurement with balanced
current (yellow circles) is done with the coils mounted on a 6-way cross. (b) The measured background
which has been subtracted from all plots.

Table A.1: MOT current configurations for figure A.3.

MOT coil: Top Bottom
In free space Balanced current 17.37 A 17.37 A

Experimental parameters 17.37 A 15.90 A
With vacuum chamber installed Balanced current 17.37 A 17.37 A

coils, and we see that the optimized parameters (blue) appear slightly asymmetric.
The magnetic field slopes fall in the range of 65 G/cm to 70 G/cm with the lowest
slope corresponding to the optimized parameter. Inclusion of the vacuum chamber
slightly increases the slope at the center position. In figure A.3 (b) we show the
background field which has been subtracted from all measurements. Currents in
the coils can be seen from table A.1.

A.3 Interference filter laser

One of my first actions in the lab was to design an interference-filter based ECDL of
the Cateye type shown in figure 3.1. At the time we wanted to design a new cooling
laser system at 461 nm to be used in a future setup such as the Sr-2 machine. The
technical drawing of this design is shown in figure A.4. The design relies on a very
large thermal mass for the ECDL base, and a smaller, individually temperature-
controlled holder for the laser diode. The diode holder is temperature controlled
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with a peltier element, whose reservoir is the ECDL base. The base incorporates a
full-size 1-inch kinematic mirror mount for the end-mirror. An interference filter can
be installed in the central kinematic mount, which rests on a rotation plate. Finally
two simple lens-holders are placed before and after the end-mirror to facilitate a
cat-eye configuration.
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Figure A.4: Design for an interference-filter based ECDL.
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Figure A.5: The interrogation cavity shown inside a welded DN40CF 6-way cross. (a) and (b) show
the mirror sides with piezo mounted on one end. The Viton rods used for support are visible. (c)
shows the horizontal plane where atoms pass through the interrogation cavity. (d) show the vertical
axis with optical access to the cavity mode. The optical access is also possible from the bottom of the
cavity. Visible piezo wires are from the test setup.

A.4 Some cavity designs

We use a wide array of cavities in our experiments in order to stabilize laser fre-
quencies or enhance atom-field interactions. Here two designs for the Sr-2 system
are presented.

A.4.1 Sr-2 probing cavity

The probing or interrogation cavity in Sr-2 was designed as a short Zerodur rod
resting on viton spacers directly inside a DN40CF 6-way cross vacuum tube. The
spacer diameter is designed to be naturally center the cavity in the tube cross-section
while its length is decided by the necessary reach to have support points within the
tubes of the vacuum chamber. The transverse directions of the spacer has holes to
permit atoms to pass through the cavity mode in the horizontal plane, and allows
laser access for repumping, or optical access for fluorescence detection along the
vertical axis. Figure A.5 shows pictures of the cavity in a test-mount. The technical
drawing is shown in figure A.6. Here holes for piezo-wires as well as grooves for
viton O-rings are visible. We use two pieces of cut O-rings at each end as support.
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Figure A.6: Technical drawing of Zerodur cavity spacer used in Sr-II machine for atom interrogation.
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A.4.2 Transfer cavity

A transfer-cavity for locking the repumping lasers at 679 nm, 688 nm, and 707 nm
was constructed in order to allow offset frequency stabilization of all repumping
wavelengths to the clock laser at 689 nm. The cavity spacer and mirrors are identical
to the interrogation cavity of Sr-1. The technical drawing of the cavity spacer can
be seen in figure A.7. The spacer length is 19 mm and the mirrors have power
reflectivities of R = 99.8 and radius of curvature of ROC = 9 m. This results in a
cavity linewidth of about κ = 2π · 520 kHz.

The cavity spacer is mounted with a ring-piezo on one of the end mirrors in
order to enable frequency tuning. The spacer is mounted in the vacuum chamber
by means of two stainless steel rings mounted 3 cm from each end of the spacer, see
figure A.8. The rings have holes in order to facilitate vacuum pumping, and provide
mechanical isolation of the cavity spacer from the vacuum chamber through Viton
rods. The Viton is placed so that the cavity spacer and mounting rings rest on two
rods each. A technical drawing is shown in figure A.9.
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Figure A.7: The cavity spacer used in the transfer-cavity as well as the interrogation cavity for
Sr-1. The orthogonal cutouts in the center are designed for passage of MOT beams, fluorescence and
atoms.
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Figure A.8: Mounting of the transfer cavity within the vacuum chamber. The two ends of the cavity
spacer rests on two rods of viton inside the support rings. (a) shows the ring-piezo mounted behind
the cavity mirror, with wires in red and white going through the supports rings.
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Here we show two different characterizations of the laboratory environment
noise: the floor vibration and the room acoustic measurements. The floor vibrations
were measured by an independent consulting company: Colin Gordon Associates
Inc. in 2011. The measurements were made in connection with the planning of a
new building for the Niels Bohr Institute, and show excellent stability. The Acoustic
measurements have been made with in-house equipment with the aid of Claus B.
Sørensen in 2019. This was done in order to find the most appropriate place to
install our stable reference cavity.

B.1 Vibration measurements

119
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Figure B.1: Vibration level of laboratory floor. Outtake from a report done by Colin Gordon
Associates Inc. in 2011. (a) The vibrations of the laboratory floor at two separate positions, when
exposed to ambient sources such as vehicles on the road outside the building. The maximal rms
velocity spectrum peaks between 10 − 20 Hz at around 1 µm/s. (b) The vibration level agrees well
with the NIST-A standard with a peak around 16 Hz, and is always below the VC-E standard. These
are some of the highest standards, and vibration through the floor should not be a problem for us.
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B.2 Acoustic measurements

Figure B.2: Acoustic levels for our laboratories. (a)-(b) Acoustics in the main laboratory, where the
clock laser is kept for two different frequency ranges. This room has a range of technical equipment
that is always on. Here we show the acoustic environment in the case where only the electrical
apparatuses are on (green), and in the case where we also allow the chillers to be on (orange). Under
typical experimental conditions we expect the chillers to be on. The chillers add significant noise
spikes 35 Hz and 50 Hz. (c)-(d) Acoustics in the separate silent room where we installed the reference
laser. Here there is no other equipment than that used to drive the lasers with, which was not included
in this measurement. We see that the noise level is always lower than in the main laboratory for
frequencies above 8 Hz. The noise level is 30 − 40 dB reduced for frequencies above 100 Hz.
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Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

S. A. Schäffer,* B. T. R. Christensen, M. R. Henriksen,† and J. W. Thomsen
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

(Received 22 April 2017; published 24 July 2017)

Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser
oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics
in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase
response of an ensemble of cold 88Sr atoms inside an optical cavity for use as an error signal in laser frequency
stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking
range. The limitation is caused by the cavity transfer function relating input field to output field. The cavity
dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust
towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers.

DOI: 10.1103/PhysRevA.96.013847

I. INTRODUCTION

Optical atomic clocks have undergone an immense develop-
ment, and are continuously improving, with increased stability
and accuracy every year [1–4]. The ability to reach exceedingly
high accuracies within a reasonable time is made possible by
the correspondingly huge effort to bring down the frequency
noise in ultrastable laser sources [5–8].

The full potential of the high Q factor atomic transitions
used in many optical atomic clocks can be reached only
through improvements in the stability of the interrogation
laser. Traditionally such interrogation lasers are stabilized
to highly isolated optical reference cavities. This stabi-
lization method is mainly limited by thermal fluctuations
in the optical coating, mirror substrate, and cavity spacer
[8–11], demanding considerable experimental effort in order
to construct cryogenically cooled monocrystalline cavities
and crystalline mirror coatings [5,8]. Several new approaches
are being pursued in the so-called bad-cavity regime [12],
in order to significantly suppress thermally induced length
fluctuations. They use a combination of narrow linewidth
δν atoms and optical cavities. These atomic systems have
strongly forbidden transitions at optical frequencies ν, re-
sulting in high Q factors, Q = ν

δν
. By exploiting the high

Q factor of the atomic transitions and using cavities with
comparatively low Q factors the systems are far less sen-
sitive to thermal fluctuations of the cavity components,
and the experimental requirements are simplified. In these
approaches active as well as passive atomic systems have
been suggested [13–18]. The active atomic systems are optical
equivalents of the maser, relying on cooperative quantum
phenomena such as superradiance or superfluorescence of
atoms inside the cavity mode. Several pioneering experiments
have already demonstrated lasing under such conditions
[19–23]. In the passive approach the atom-cavity system is
used as a reference for laser stabilization where the narrow
linewidth atomic transitions are interrogated inside an optical
cavity. One proof-of-principle approach to this is based on

*schaffer@nbi.dk
†Also at SPOC, Technical University of Denmark, DTU Fotonik,

Ørsteds Plads, building 343, 2800 Kgs. Lyngby, Denmark.

using the noise-immune cavity-enhanced optical heterodyne
molecular spectroscopy (NICE-OHMS) technique [24,25] for
generating sub-Doppler dispersion signals [26]. This has
shown promising results for laser stabilization that could
be able to compete with traditional cavity-only stabilization
techniques [27–29].

By employing an optical cavity the coupling between
atoms and optical field is improved by a factor of the cavity
finesse, which significantly increases the total phase shift
experienced by the optical field. As the total phase shift is
increased, however, this limits the frequency range of linear
behavior and thus the dynamical range of a servo locking
the laser frequency. Additionally, the cavity servo response
time might limit the signal quality if the condition of constant
laser-to-cavity resonance must be strictly met.

In this paper we show experimentally that the large total
phase shift of the system not only improves the resonance slope
but also distorts the dispersion signal off atomic resonance.
This becomes relevant for the interest of servo optimization
in such a system [30] as it can limit the dynamical range
of a servo lock. We show that this distortion originates from
the transfer function of the cavity itself, and thus cannot be
circumvented. We have realized a system with a theoretically
attainable shot-noise limited (SNL) laser linewidth of �ν ≈
40 mHz, possibly allowing laser performance at the level of
the state-of-the-art reported values [5–8]. We use the system to
map out the dynamical range and investigate the consequences
of an imperfect cavity servo, which causes a mismatch of the
cavity resonance with respect to the laser frequency. Due to the
bad-cavity regime much looser bounds on the cavity resonance
are allowed, as expected. This opens the possibility of using
cavities with quasistationary lengths, and simultaneously
underlines the insensitivity to cavity fluctuations.

II. EXPERIMENTAL SYSTEM

The experimental system investigated here consists of an
ensemble of cold 88Sr atoms cooled to a temperature of
T ≈ 5 mK. The atoms are trapped in a magneto-optical trap
(MOT) at the center of a TEM00 Gaussian mode of an optical
cavity (see Fig. 1). The cavity has a finesse of F = 1240 and a
linewidth of κ = 2π × 630 kHz at λ = 689 nm. A laser beam
probing the narrow (5s2) 1S0 → (5s5p) 3P1 transition of 88Sr

2469-9926/2017/96(1)/013847(10) 013847-1 ©2017 American Physical Society
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FIG. 1. Experimental system. The probe laser has a single carrier
frequency as well as sidebands detuned an integer number of the
cavity free spectral range. The light is coupled into the cavity by
adjusting the cavity length to ensure resonance between the atom-
cavity system and the probing laser at all times. This resonance is
ensured by a Pound-Drever-Hall lock from the reflected light using
the beamsplitter (BS), photodetector (PD), and locking circuit acting
on the piezoelectric element (PZT) on one of the cavity mirrors.
The sidebands do not interact with the atoms inside the cavity and
act as references in the subsequent heterodyne measurement of the
transmission signal on the fast avalanche photodetector (APD). The
cooling transition for the MOT and the probe transitions are shown.
During measurements the cooling light (blue) is turned off.

is coupled into the cavity mode, and the cavity resonance is
locked to the probe laser frequency at all times.

Before entering the cavity the probe light is phase modu-
lated using a fiber-coupled electro-optical modulator (EOM)
in order to perform heterodyne detection of the transmitted
signal. The modulation frequency is equal to the free spectral
range (FSR) of the cavity, resulting in sidebands at ω0 ± j	

for integer j and 	 = 2π × 781.14 MHz. The sidebands
are far detuned with respect to the (5s2) 1S0 → (5s5p) 3P1

transition which has a linewidth of γnat = 2π × 7.5 kHz, and
the interaction between the sidebands and the atoms can thus
be neglected. This system is interrogated using a heterodyne
measurement between the carrier and sideband frequencies
in order to extract the dispersion signal of the atom-cavity
system, which can be used as an error signal to lock the probe
laser frequency to resonance with the atoms. We operate in the
bad-cavity regime where any cavity fluctuations are suppressed
in the atom-cavity signal by a factor of κ

γnat
, here about 100.

The field transmitted through the cavity is split and simul-
taneously recorded on a low bandwidth (50 MHz) photodiode
and a high bandwidth (1 GHz) avalanche photodetector (APD).
The low bandwidth signal records the total transmission
intensity of the cavity. The high bandwidth signal is filtered
around the modulation frequency 	 and demodulated in order
to record the atom induced phase shift of the sideband relative
to the carrier frequencies.

The measurements are performed in a cyclic operation
as the intense cooling light of the MOT results in an ac
Stark shift of the 3P1 level and washes out coherence of the
probing transition. The cooling light is thus shut off before
each measurement, and the probing light then recorded for an

interrogation period of 100 μs. At this time scale the probing
laser has a linewidth of �l = 2π × 800 Hz, which is much
narrower than the natural linewidth of the probing transition
γnat = 2π × 7.5 kHz. This transition linewidth places us deep
in the bad-cavity regime, where the cavity linewidth is
much broader than the atomic linewidth κ � γ . This means
that the system is much less sensitive to variations in the
cavity resonance frequency which can originate from, e.g.,
temperature fluctuations in the cavity components.

Only a single measurement is performed before reloading
the trap with new atoms, since atom loss due to the finite
temperature of the atoms becomes measurable after 500 μs.
This results in a cyclic operation where the dispersion
is measured only for a single frequency detuning of the
interrogation laser at a time. Varying the loading time of the
MOT allows control over the atom number and typically ranges
from 50 to 800 ms for intracavity numbers of N = 2 × 106 to
4 × 107.

III. THEORY OF MEASUREMENT

We investigate theoretically a system consisting of an
ensemble of N atoms coupled to a single mode of an optical
cavity in order to describe the experimental system presented
in this paper. The NICE-OHMS technique as it is used here
relies on the transmitted signal of the atom-cavity system,
and is a heterodyne measurement between the carrier laser
frequency and its sidebands. The input laser field before the
cavity can then be described by

Ein = E0

∞∑
j=−∞

Jj (y)ei(ωl+j	)t , (1)

where E0 is the amplitude of the electric field and Jj (y) is the
j th-order Bessel function of the first kind, with the modulation
index y. The laser carrier frequency is ωl , whereas 	 is the
modulation frequency applied in the EOM.

The interaction of the light with the atom-cavity system
may be described by using a Born-Markov master equation as
described in the Appendix following [27,29]. The approach is
based on a many-particle Hamiltonian Ĥ and a derived set of
complex Langevin equations that includes the Doppler effect
from the finite velocity of the atoms.

Classically we may relate the input and output fields with
a complex transfer function χ [θ (Ein)]. The field-dependent
complex atomic phase experienced by the light when interact-
ing with the atom-cavity system θ (Ein) is found by means of
the full quantum-mechanical theory of the Appendix. In order
to cast the behavior of our system in terms of measurable
quantities, we assume that the relation between the quantum-
mechanical phase θ (Ein) and the measured output power can
be described by a linear model such that Eout = χ (θ )Ein. We
then insert the theoretical value of θ (Ein) into the transfer
function.

Here we are mainly interested in the properties of such a
transfer function. By increasing the finesse of the cavity with
respect to the numbers reported in [28] we enable the system to
move between a low-phase-shift regime and a high-phase-shift
regime. Figure 2 shows typical dispersion scans where the
theoretical model incorporating a cavity transfer function
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FIG. 2. Phase response of the atom-cavity system using the
NICE-OHMS technique. We show the transition from low to high
phase response by changing the number of atoms interacting with the
cavity mode. Here the gray dots indicate recorded data, whereas the
full green curve is a theoretical calculation using the experimental
parameters. As the absolute phase increases, the transfer function
reaches its maximal value and first flattens, then inverts the signal
slope. (a) Cavity atom number of N = 3.8 × 106, and a temperature
of T = 16 mK. Due to the short loading time used the atoms are
slightly warmer here. (b) Cavity atom number of N = 1.4 × 107, and
a temperature of T = 13 mK. Distortion in the dispersion signal is
evident from ±1 to ±4 MHz. (c) Atom number of N = 4 × 107, and
a temperature of T = 13 mK. Here we clearly see a slope inversion
initiating at ±1 MHz. The maximal absolute value of the dispersion
is not constant over the whole scan, as it depends on the absorption
which is itself dependent on the detuning. This also causes the
dispersion to retain a large absolute value for relatively high detuning.

(see [28]) has been plotted using the known experimental
parameters. The dispersion signal serves as an error signal

for all values of the atom number N , but is distorted when
detuned from resonance at higher values of N . This distortion
is not caused by the atomic phase response itself, but rather
by the classical conditions of the transfer function imposed by
the cavity.

A. Dispersion signal

Only a single frequency component of the modulated light,
namely, the carrier component j = 0, interacts with the atoms.
This means that we can simplify the description of our system
by defining a transfer function for each frequency component
j of the light as it passes through the cavity [31]:

χj = T eiφj

1 − Re2iφj
, (2)

where T (R) is the power transmission (reflectivity) of a single
cavity mirror, and φj is the complex phase experienced by the
j th component of the interrogation laser. We assume identical
mirrors with no losses. The real part of the transfer function
corresponds to the transmitted amplitude of the E field in the
system, while the imaginary part corresponds to the dispersion.
Due to energy conservation the absolute-squared value of the
complex transfer function cannot exceed 1, |χ |2 � 1, for a
system with no gain or frequency conversions. This classical
condition thus imposes a maximal value on the dispersion
signal which is independent of the nature of the phase delay
inside the cavity. We can describe the complex phase for any
sideband component as simply the phase shift experienced
by a single-passage interaction with the cavity φj = φ

j
cav for

j �= 0, while the carrier component of the light experiences
the atomic phase as well:

φ0 = φ0
cav + φD + iφA, (3)

where φD and φA are the phase components caused by atomic
dispersion and absorption from a single passage of the cavity.
In the case of a medium with no gain, we have φA � 0. The
cavity phase shift is given by φ

j
cav = φcav + jπ , and the cavity

locking condition of the experiment defines φcav.
The output field can now be expressed by a superposition of

frequency components and corresponding transfer functions:

Eout = E0

∞∑
j=−∞

Jj (y)χje
i(ωl+j	)t , (4)

where E0 contains any overall phase. By recording the
intensity on a photodetector we can filter out the beat
signal between sideband and carrier by demodulating at the
modulation frequency 	. By optimizing the phase of the
demodulation signal to record the imaginary part of the transfer
function and subsequently pass the signal through a 2-MHz
low-pass filter we obtain a dc signal:

S	 ∝ 2i|E0|2J0(y)J1(y)(χ0χ
∗
1 − χ∗

0 χ1), (5)

which is a purely real number. We have only included up to
second-order sidebands, and used χj = (−1)|j |−1χ1 for j �= 0.
Higher-order sidebands are negligible for modulation indices
up to y 	 1.

If we assume that the system is in a steady state the cavity
locking condition dictates that the cavity is on resonance with
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the carrier frequency at all times, corresponding to that used
in [28]. This gives us

φcav + φD = nπ (6)

for integer n. The complex transfer function of the carrier then
becomes solely dependent on the absorption,

χ0 = T e−φA

1 − Re−2φA
, (7)

whereas the sideband transfer functions have the phase
information of the atomic interaction written onto them by
the cavity lock:

φj = φj
cav = φcav + jπ for j �= 0

= nπ − φD + jπ. (8)

Ignoring an overall sign from einπ we get

χj = T ei(jπ−φD )

1 − Re2i(jπ−φD )
for j �= 0. (9)

Since χ0 is purely real we can write the signal as

S	 ∝ J0(y)J1(y)χ0Im(χ1). (10)

We are thus particularly interested in the properties of the
imaginary part of the transfer function if we wish to understand
the behavior of our error signal.

B. Transfer function properties

Having understood the behavior of our system we can
now investigate why we see the folding behavior depicted
in Figs. 2(b) and 2(c). If we ignore the origin of the phases
it is clear that a cavity transfer function such as the one in
Eq. (2) must have a periodicity of 2π as a function of the
phase shift experienced by the light inside the cavity. In the
context of locking a laser to an atom-cavity system we are
mainly interested in the phase slope around atomic resonance
where the absolute phase is zero, but the phase slope can be
very steep.

Very close to atomic resonance, the transfer function is
proportional to sin(φ) ≈ φ for small phase shifts [28] and
we can treat the transfer function as linear in phase. For
a slightly larger frequency detuning, however, the existence
of a maximal value for the transfer function results in some
interesting behavior for a system with large total phase shift.
In Fig. 3 the imaginary part of a phase-dependent transfer
function χj is shown with varying single-passage phase shift
and mirror reflectivity R. We see that the imaginary part of
the transfer function itself behaves in a dispersionlike manner
for a linearly varying phase. In this figure we have assumed
that there are no losses in the cavity mirrors (T + R = 1)
and that there is no absorption in the cavity Im[φ] = 0 which
would not be the case close to an atomic resonance. If the
effect of absorption in the medium is taken into account,
this reduces the maximal value of transfer function |χ |max

further. For Im[φ] = φA > 0 we will thus have |χ |max < 1
asymptotically decreasing towards zero as a function of φA.
As an aside, including absorption also decreases the phase
slope at resonance. This slope will nevertheless still increase
linearly with atom number when the saturation condition is
fulfilled.

FIG. 3. The imaginary part of a transfer function as given in
Eq. (2) as a function of phase φ and single mirror power reflectivity
R. Here we have assumed that the phase φ is purely real, and
that the cavity is symmetrical. Close to zero phase the function is
approximately linear, and the values of the phase and the transfer
function are proportional. As the phase increases, however, a maximal
value for the transfer function is reached, and the transfer function
slope is inverted. The black line indicates the mirror reflectance of
our system (R = 0.998) and the transparent plane indicates χ = 0.

As the reflectivity of the mirrors (R) is increased the light
is stored in the cavity for longer and thus experiences a larger
total phase shift. This increases the phase slope on resonance
proportionally to the finesse F of the cavity and in turn leads
to a decrease in the phase range where the transfer function χ

is linear (see Fig. 3). This insight tells us that the dispersion
signal observed from the atom-cavity transfer function will be
distorted and even change the sign of the slope for detunings
at which the value of the total phase shift is large.

This sets a limit to the maximal dynamical range that we
can expect of a locking mechanism based on this dispersion
signal S	. It results in an inversion of the dispersion slope
for large absolute phase shifts. Here the boundaries on the
transfer function act to fold down the signal in a nonlinear
manner. While the sign of the slope is thus inverted the sign of
the signal itself never changes with respect to that of the phase.
The linear-phase regime decreases in size linearly towards zero
as a function of the mirror reflectivity R in the regime where
the cavity linewidth κ 
 FSR (F � 1). A maximal dynamical
range of φ = π is reached for R � 0.17. For systems with
much larger atom number (and thus larger phase shift) it could
thus be an advantage to go towards lower mirror reflectivity,
and thus deeper into the bad-cavity regime. This would further
reduce the sensitivity to cavity perturbations. For systems
using much broader atomic transitions where the cavity might
naturally have lower finesse [13], these effects would only be
visible for very large samples.

The absolute phase value at which such mirroring occurs
typically increases with larger detuning from the resonance.
This effect is caused by the decrease in atomic absorption for
increased detuning. This causes the phase value necessary for
the slope inversion of the transfer function to increase. Away
from resonance the dispersion is thus highly distorted, with
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respect to the atomic phase, due to the functional form of the
cavity transfer function.

IV. RESULTS AND DISCUSSION

We now look at the phase response of the system when
operating in a regime of high phase shift due to a combination
of large atom numbers N and high reflectance of the cavity
mirrors. At small frequency detuning we see a linear scaling
of the dispersion slope with respect to the phase slope, which
gives us a limit on the ultimate frequency linewidth of a laser
locked to such a system [17,28]. The dynamical range of a laser
frequency lock to the atom-cavity system becomes limited at
high absolute phase shifts. This is caused by the characteristics
of the transfer function the behavior of which will then
dominate over the power broadened transition linewidth γpower.
We quantify this limitation and its implications for laser
frequency locking. We have also investigated the effects of
having a cavity resonance lock with nonoptimal conditions.
The modification of such locking conditions is of interest to
any experimental realization of the frequency lock.

A. Phase slope and projected shot-noise limited linewidth

In the context of locking the frequency of a laser to the
atom-cavity system, we are interested in obtaining an error
signal that we can use as a feedback signal, which must have a
large relative slope and a large signal-to-noise ratio. The first
condition is limited by the physical system, and is given by
the phase slope present at resonance. The second condition is
limited by the noise present in the experimental system, and
is to a high degree limited by technical circumstances that
may be significantly reduced. The technical contributions to
the noise include residual amplitude modulation of the laser
sideband components, atom number fluctuations, and noise in
the detectors. Because of this fundamental difference in the
two conditions, we wish to focus on the limitations set by the
physical system initially, namely, the phase slope at resonance.

In Fig. 4(a) the slope of the atomic induced phase shift
at resonance is plotted as a function of the input power on
a logarithmic scale for N = 2.7 × 107. It was shown in [27]
that the slope at resonance scales linearly with the number of
atoms N in the cavity mode. This is still the case in our regime
of N ≈ 1–5 × 107 and Pin 	 100 nW [32], and we will thus
focus on the strongly nonlinear scaling with laser power here.
This scaling was shown for a cavity finesse of F = 75 in [28].
Here we show results for a system with finesse of F = 1240,
and confirm that the theory scales well with cavity finesse.

The very nonlinear behavior of the phase slope shows a clear
optimum in absolute phase slope for input powers of about
8 nW and a subsequent decrease in the absolute slope towards
zero. While the phase slope is small for low powers due to the
reduced saturation of the atoms, the saturation feature becomes
power broadened for higher powers, once more leading to a
reduction in the slope. The optimal phase slope is thus obtained
for very low input powers; however, as we shall see below, this
is not the optimal value for laser stabilization.

The shaded region in Fig. 4(a) is a theoretical plot including
experimental uncertainties and we indicate a number of
different input powers with green dots. At these powers

FIG. 4. (a) Semilogarithmic plot of the slope of the atomically
induced phase slope at resonance, dφ

dν
, as a function of input

power. The shaded area is the range between theoretical predictions
for experimental parameters at a temperature T = 3.6 ± 1 mK and
N = 2.7 × 107 ± 5 × 105 atoms overlapping with the cavity mode.
This represents the uncertainty in atom number due to shot-to-shot
variations, as well as the uncertainty in temperature mainly caused by
power fluctuations of the cooling laser. For a number of different
input powers we measured the dispersion and found the phase
slope of the theoretical fit. The uncertainty in input power Pin is
less than or equal to the dot size. (b) Projected SNL linewidth
achievable for the system under ideal circumstances. The dots are
calculated values corresponding to the slopes found in panel (a).
The single-sideband-to-carrier power ratio is 0.5. We see a minimal
SNL linewidth of �ν ≈ 40 mHz which is comparable to the current
state-of-the-art results.

we have performed scans of the atom-cavity spectrum and
compared them to the theoretical model, in order to obtain
a noise-free value for the phase slope at resonance. The fact
that we see fluctuations of power, atom number, and technical
noise or drift in the experiment is reflected by the misalignment
between the dots and the theoretical behavior.

Using the phase slope it is possible to calculate the
theoretically obtainable SNL linewidth of a laser locked to
the system. Here we find the minimal achievable linewidth
by assuming that the detector efficiency is unity, and the
lock is perfect. This can be found theoretically by using the
expression [17,32]

�ν = πhν

2ηqePsig
(

dφ

dν

)2

(
1 + Psig

2Pref

)
(11)
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where dφ

dν
is the phase slope at resonance, Psig is the carrier

power, and Pref is the reference power, which in our case is the
power in the first-order sidebands. ηqe is the quantum efficiency
of the detector which we assume here is 1.

In Fig. 4(b) we calculate this SNL linewidth �ν and
plot the curve corresponding to the slope of Fig. 4(a). We
see that the optimum value of input power changes when
we consider the SNL linewidth. For low powers the SNL
linewidth increases dramatically as the shot noise starts to
dominate the signal. This results in a relatively flat region
around the optimum power spanning about an order of
magnitude from Pin 	 10 to 100 nW. The minimal value of
�ν is highly dependent on the ratio between sideband and
carrier power. The optimal ratio of P carrier

2Psideband
= 1 was used

in these experiments. For these parameters we predict a
minimal value of �ν ≈ 40 mHz which is comparable to the
smallest laser linewidths ever reported [5–7]. By increasing
the atom number it is possible to simultaneously decrease
the projected linewidth of the locked laser, and increase the
optimal operation power Pin.

B. Dynamical range

In Fig. 2 the recorded signal S	 is shown for three different
regimes where the maximal atomic phase shift is below, at, or
above that corresponding to the maximal value of the transfer
function. This shows the transition from a regime where the
dispersion is largely unperturbed and represents the phase
response of the atoms well, to a regime where the response
is significantly modified by the cavity transfer function.

At small phase shifts we see a linear increase of the
size of the signal proportional to the phase. At larger phase
shifts, however, the functional form of the cavity transfer
function results in a mirroring effect of the dispersion signal
for detunings above γpower where the phase shift is maximal.
This has no influence on the slope around resonance, and will
thus not affect the performance of an ideal frequency lock.
It could, however, still limit the performance of a real servo
system where the response time is not infinitely fast.

We define the dynamical range of a lock to the dispersion
signal as the range around resonance within which the
dispersion slope has constant sign. This range is dictated
by the full width at half maximum of the power broadened
transition linewidth. This corresponds to the width of the Lamb
dip in the case of simple saturated absorption spectroscopy.
The width, however, is modified by the slope of the Doppler-
broadened Gaussian dispersion feature. This dispersion causes
line pulling and thus decreases the dynamical range further.
Lower temperatures will cause more pronounced line pulling
than higher temperature as the Doppler-broadened dispersion
slope increases. While this effect actually causes a decrease in
resonance slope it turns out that the fractional increase in the
number of saturated (cold) atoms Nsat outweighs this effect and
the resonance slope is thus effectively increased for decreasing
temperatures T .

Finally the signal is modified by the cavity transfer function.
Below the threshold in maximal phase deviation set by this
transfer function this is simply a phase-dependent scaling of
constant sign and will thus not modify the dynamical range.
Above this threshold, which becomes relevant in high N

FIG. 5. (a) Dynamical range of the dispersion signal as a function
of the intracavity atom number N × 10−7. The dynamical range is
the range around resonance where the sign of the dispersion slope
is constant. The black dash-dotted line indicates the width of the
dispersion if it was uniquely determined by the natural linewidth of the
transition γnat. Three examples of the saturation dispersion are shown
in panel (b) and indicated by the dots on dashed lines in panel (a).
The three examples correspond to atom numbers of N = 2.4 × 107

(light green), N = 4.1 × 107 (medium green), and N = 5.9 × 107

(dark green), respectively. The recorded scans in Fig. 2 do not exceed
N = 2 × 107 and are thus not limited by this effect. In panel (b) the
vertical axis, Im[χ0χ

∗
1 − χ∗

0 χ1], is the unitless signal transfer function
proportional to Eq. (5), and is thus linear proportional to the recorded
signal.

systems such as the one reported here, we see a decrease of the
dynamical range due to the slope-sign inversion dictated by the
transfer function. A higher atom number N increases the total
phase, and thus pushes the system further beyond the threshold
set by the transfer function boundaries. Figure 5 shows the
dependency on cavity atom number of the dynamical range
for an in-coupling power of Pin = 100 nW and a temperature
of T = 2.5 mK. This shows the initial dynamical range of
�dyn 	 180 kHz below threshold and a drop to a few tens of
kHz above the threshold. For typical atom numbers in our
system we rarely exceed this threshold. For very high atom
numbers, however, the range decreases asymptotically towards
zero.

The dynamical range of a frequency locking scheme will be
limited by the power broadened transition linewidth γpower in
all cases of Fig. 2. For higher atom numbers N , then, we will
see another inversion within the narrow saturation dispersion
[see Fig. 5(b)]. Such an inversion will bring us into a regime
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where the dynamical range is limited by the properties of the
transfer function χ rather than the power broadened transition
linewidth γpower. Notice that this is only true if we require the
sign on the slope to be constant. The sign of the signal itself
will never change, and thus some degree of locking can still
be possible for a flexible servo system.

The dynamical range is of interest in particular regarding
stability requirements for the interrogation laser. A standard
requirement for the interrogation laser is that the interrogation
laser linewidth should be smaller than the transition linewidth
of the sample in order to resolve the line. If our initial interro-
gation laser linewidth is of the order of the natural linewidth
(γnat = 2π × 7.5 kHz) this is well within the dynamical range
below threshold. For very high atom numbers N � 1.1 × 108,
however, the dynamical range decreases below the natural
transition linewidth of the atoms. It is thus important that
the interrogation laser is prestabilized to well within this
dynamical range, before the atom-cavity error signal can be
optimally utilized.

The aspect of the dynamical range considered here indicates
that there is some optimal atom number depending on how
efficient the servo can be made. While the slope around
resonance increases linearly with the number of atoms N , and
the dynamical range decreases severely above N ≈ 2.5 × 107,
an intermediate error signal could be preferable. Such a signal,
like the intermediate (medium green) signal of Fig. 5(b),
provides the largest area under the error curve of the three
shown. The preferred signal will depend on the particular
experimental servo parameters.

C. Locking condition effects

Since our experimental realization is based on a cyclic
operation, the cavity lock causes the length of the cavity to
change dynamically throughout the experimental cycle. If the
cavity dynamics is slower than required to obtain perfect
locking, we see a small correction compared to the ideal
locking signal of Eq. (10). This causes large deviations in
the dc transmission signal but has a relatively small effect on
the phase response. When the cavity lock responsiveness is too
slow the condition of constant resonance between the cavity
and the laser carrier frequency will no longer be fulfilled. The
atomic dispersion information will no longer be fully written
onto the sideband frequencies but remains, in part or fully, on
the carrier frequency. This means that χ0 is no longer purely
real, and the dispersion term of the atomic phase shift affects
the transmission. For high atomic phase shifts, then, the trans-
mission of the carrier component will be significantly reduced
as the resonance condition is no longer necessarily fulfilled.

The locking condition determines some initial phase φinit

written onto the cavity phase

φcav = nπ − φinit. (12)

Here we investigate three different cases. For the case of a
fast cavity lock that can follow the system dynamics we have
φinit = φD as shown in Eq. (6). A second idealized case is
where the cavity lock is independent of the atoms inside the
cavity φinit = 0. This means that the length of the cavity simply
follows the vacuum wavelength of the interrogation laser
L = nλvac

2 . The third, and the more realistic, case is where we

have some perturbed phase due to the experimental conditions.
In our case, the fact that the locking dynamics are relatively
slow results in an initial phase given by the atoms under the
influence of the cooling light φinit = φMOT. The phase shifts of
the field components then become

φ0 = nπ + φD + iφA − φinit, (13)

φj = (n + j )π − φinit for j �= 0, (14)

for some integer n.
Since the first case has already been described above, we

look at the second case of an atom-independent cavity lock.
Here the cavity length ensures resonance with the laser beam
assuming that there is only vacuum in the cavity. In this case
the sidebands (j �= 0) are always resonant, but the carrier
frequency (j = 0) will be affected only by the atomic phase.
In the limit of a very broad cavity linewidth κ this situation is
equivalent to having no active lock on the cavity length. The
behavior under this condition thus gives us some insight into
the case of a system operating in the deep bad-cavity limit with
stationary mirrors but resonant with the atomic transition.

In the third case, relevant to our current system, a slow lock
means that we lock to the atoms in the MOT while the cooling
light is still on. The carrier frequency thus experiences some
phase shift from the ac Stark shifted atoms (φMOT), and this
phase is written on the cavity length. Since the cavity cannot
respond sufficiently fast to the subsequent conditions where the
MOT light is turned off, this modifies the phase of all χj with
φMOT. The phase information from the nonperturbed atoms is
now only on the carrier component. This heavily modifies the
dc transmission, and also causes the antisymmetric behavior
of the signal to be lifted as φMOT is not symmetric with respect
to φD. The carrier phase becomes

φ0 = nπ − φMOT + φD + iφA (15)

for integer n, and the sideband phases retain the phase written
on the lock φj �=0 = (n + j )π − φMOT. In this case χ0 is no
longer a purely real quantity, and this modifies the signal.
We have implemented this to first order by manually adding
the measured phase shift φMOT of the system to the transfer
functions of the carrier and sideband frequencies. A full
description must include the modified atom-light interaction
in the cavity caused by this effective cavity detuning during
the probing time.

In Fig. 6 we show an example of a NICE-OHMS signal
giving the dispersive response of the system. The NICE-
OHMS signal has the expected features for a system with
a large number of atoms in the cavity N = 2.5 × 107 where
sharp features occur due to the limitations set by the transfer
function. Three theoretical curves are plotted, which shows the
theoretical behavior of the system assuming a fast cavity lock
(black), a cavity locked independently of atoms (dashed blue),
and a cavity locked to the ac Stark shifted atoms in the MOT
(light red). While these different approaches only cause slight
variations close to resonance, they are necessary to include in
order to explain the signal for larger detunings. As expected,
the features are slightly sharper in the case of a fast cavity lock.

The consequences of a nonoptimal cavity locking condition
on a laser lock is also considered here. Figure 7 shows
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FIG. 6. NICE-OHMS dispersion signal with asymmetry due to
an ac Stark shift asymmetric with respect to the probe transition.
Gray dots indicate data points, whereas the curves are theoretical
plots using experimental system parameters. The black curve is
plotted assuming a fast lock compared to the measurement dynamics,
φinit = φD, which is the optimal case of the atom-cavity system locked
to the carrier frequency of the laser. The dashed blue curve represents
the case where the cavity is locked to resonance with the laser
independently of the atoms, φinit = 0. This primarily changes the
absolute size of the phase. The light red curve includes a first-order
correction for the ac Stark shifted atomic phase present in the cavity
when the MOT beams are on φinit = φMOT. This has large effects far
away from resonance, but only little effect close to resonance. The
parameters used are cavity atom number N = 2.5 × 107, temperature
T = 2.8 mK, and an input power of Pin = 115 nW. The light blue area
marks the detuning range plotted in Fig. 5(b).

FIG. 7. Semilogarithmic plot of the transfer function slope at
resonance as a function of input power. The curves are theoretical
slopes of the transfer function of the system. The dashed blue curve
indicates the expected behavior if the cavity was locked to resonance
with the laser independently of the atoms. The black curve is the
expected behavior if the cavity lock is ideal, and the full cavity-atom
resonance is tuned to the laser frequency. We see a decrease in slope
for nonoptimal cavity locking at all values of the input power Pin, as
well as a distortion of the functional form which changes the position
of the optimal slope.

two theoretical curves corresponding to optimal, fast locking
conditions (black), and atom-independent locking (dashed
blue). In the case of optimal locking the system is close to
a steady state. This can be realized either when the cavity
lock is fast enough to follow the shift caused by turning
off the trapping light, or by using a system operating in a
continuous fashion. For the parameters used here (T = 2.5 mK
and N = 2.7 × 107) we see an optimal phase slope with
the fast lock, for powers of about P

opt
in = 8 nW. The phase

slope is reduced for all values of the input power in the case
of an atom-independent locking. The functional shape also
changes, and the optimal input power is increased to about
P

opt
in = 25 nW. Notice that while the slope is definitely reduced

it is at or below a factor of 2 for powers relevant to laser
locking. The optimal power also becomes more experimentally
accessible, and the two cases are seen to give approximately
identical slopes for powers larger than Pin = 400 nW. This
indicates that the performance of the cavity lock might not be
of detrimental importance to the ultimate performance of the
system within technically relevant parameter regimes.

V. CONCLUSION

We have experimentally investigated an atomic ensemble of
cold 88Sr atoms in an optical cavity in the regime of high atomic
phase shift. The phase response of the system is recorded using
the NICE-OHMS technique, and has promising features for
frequency stabilization.

The system operates in the bad-cavity regime which
suppresses the fluctuations caused by the finite temperature
of the cavity. For the case of a narrow atomic transition, the
bad-cavity regime can still permit a high cavity finesse which
yields a large number of photon round trips. This causes the
accumulated phase to grow beyond the approximately linear
regime of the cavity transfer function, and mirroring effects
of the phase response can occur. These mirroring effects
nonlinearly flip the slope of the dispersion signal around
some maximal value. We experimentally mapped out the
transition from the regime where the dispersion signal is an
approximately linear representation of the atomic phase shift,
to the regime where this representation is highly distorted by
the cavity transfer function properties. We investigated the
limitations this might have on an error signal for frequency
locking of a laser. The mirroring effect causes a limitation of
the dynamical range of a servo lock which must be included in
the optimization of future servo systems operating using this
technique.

We also investigated the ultimate performance of a laser
stabilized to such a system and saw predictions consistent with
earlier work [29]. These predictions rely on investigations of
the phase slope achievable at resonance and do not take into
account the limitations on a servo loop such as the dynamical
range limitations that occur. We saw that the degradation of
the signal slope caused by nonoptimal cavity locking was
not detrimental to the system and amounted to a factor of
2 for realistic experimental parameters. This means that even
a slow cavity lock could produce promising results for laser
stabilization, and opens the possibility of leaving out the cavity
lock entirely as long as the system is deep in the bad-cavity
regime.
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APPENDIX: THEORY

Here we give a very brief overview of the theory used
to model the interaction of the light with the atom-cavity
system. We follow [27,29] and model the system by using
a Born-Markov master equation to describe the evolution of
the system’s density matrix ρ̂. This evolution can be written as

d

dt
ρ̂ = 1

ih̄
[Ĥ ,ρ̂] + L̂[ρ̂]. (A1)

The many-particle Hamiltonian describing the coherent evo-
lution in a rotating interaction picture is given by

Ĥ = h̄�

2

N∑
l=1

σ̂ z
l + h̄η(â† + â)

+ h̄

N∑
l=1

gl(t)(â
†σ̂−

l + σ̂+
l â) (A2)

where � = ωa − ωc is the atom-cavity detuning, σ̂+,−,z are

the Pauli spin matrices, and η =
√

2πκPin
h̄ωc

is the classical drive

amplitude. â and â† denote the annihilation and creation
operators of the cavity mode, respectively. The coupling rate

between atoms and cavity is given by

gl(t) = g0 cos(kzl − δlt)e
−r2

j /w2
0 , (A3)

where g0 is the vacuum Rabi frequency, k is the wave number
of the cavity mode, zl and rl denote the longitudinal and
axial positions of the lth atom, δl = kvl is the Doppler shift
contingent on the atom velocity vl , and finally w0 is the radial
waist size of the cavity mode. Here the probing laser is assumed
on resonance with the cavity at all times, ωl = ωc.

The incoherent evolution is described by the Liouvillian
L̂[ρ̂] and is given by

L̂[ρ̂] = − κ

2
{â†âρ̂ + ρ̂â†â − 2âρ̂â†}

− γnat

2

N∑
l=1

{σ̂+
l σ̂−

l ρ̂ + ρ̂σ̂+
l σ̂−

l − 2σ̂−
l ρ̂σ̂+

l }

+ 1

2T2

N∑
l=1

{
σ̂ z

l ρ̂σ̂ z
l − ρ̂

}
, (A4)

where κ is the cavity decay rate, γnat is the atomic transition
linewidth, and 1

2T2
is the inhomogeneous dephasing of the

atomic dipole. The approach is thus based on a many-particle
Hamiltonian Ĥ and a derived set of complex Langevin
equations that includes the Doppler effect from the finite
velocity of the atoms. The evolution is found by means of
a Floquet analysis and solved for the steady-state case. This
will not be investigated further here; the interested reader is
referred to [27,29].
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Abstract. Ultra stable frequency references such as the ones used in optical atomic clocks and for
quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time.
State-of-the-art frequency references are constructed in this way, but their stabilities are currently limited
by thermally induced length fluctuations in the reference cavity. Several alternative approaches using the
potential for frequency discriminating of highly forbidden narrow atomic transitions have been proposed in,
e.g., [1] and [2]. In this proceeding we will present some of the ongoing experimental efforts derived from
these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for
laser stabilization. Such systems can be realized using both passive and active approaches where either the
atomic phase response is used as an error signal, or the narrow atomic transition itself is used as a source
for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current
state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2].

1. Introduction
Quantum metrology and ultra-stable optical atomic clocks rely on the frequency stability of reference
lasers [3, 4, 5]. These lasers have been demonstrated with linewidths down to tens of mHz [6], relying
heavily on stabilization to ultra-stable reference cavities [7] whose fractional frequency stability is
currently limited by the Brownian motion in the mirror substrates [8]. The possibility of using cavity-
enhanced non-linear spectroscopy on narrow transition lines has been studied extensively over the years.
In the context of laser stabilization recent experimental studies in [9, 10] have demonstrated the potential
for a stability comparable to the state of the art. It has also been proposed to use the direct emission of
radiation from atoms with narrow transition linewidths [2, 11]. Such radiation emitted directly from a
narrow transition requires unrealistically large atomic samples due to the small decay rate, which renders
it impractical for reference purposes. However, when operated as a laser in the bad cavity regime, not
only can the emission rate be significantly increased, the laser linewidth can also experience a further
spectral narrowing compared to the natural linewidth [2, 12, 13]. These effects arise if one considers the
case of superradiant or superfluorescent emission of light. In this case the photon emission flux can be
considerably increased by collective atomic decay, while simultaneously achieving a spectral narrowing
of the emitted light inversely proportional to the single atom cooperativity [12, 13]. Pioneering advances
have already been made in connection with proof-of-principle quasi-continuous superfluorescent systems
[12, 14] using atoms loaded into an optical lattice at very low temperatures, as well as high temperature
gas active laser systems [13, 15].

In this proceeding we will present recent experimental advances in both the passive and active
approaches using 88Sr. The passive approach follows [10] but uses an optimized system with an increased
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cavity finesse. For improved noise characteristics of the measured signals we employ the heterodyne
detection technique, NICE-OHMS [16]. Here the atom-cavity system acts as a passive frequency
reference in the bad cavity regime, and we show recent results concerning the maximally obtainable
phase-response.

Additionally, we report the observation of superfluorescent-like behaviour of an ensemble of thermal
strontium atoms freely moving at temperatures of about 5 mK. The atoms have a strong collective
coupling to a single cavity mode, significantly enhancing their collective cooperativity, and allowing
them to emit a burst of photons into the cavity mode. In this approach the atoms act as the active
part of the laser allowing enhanced emission intensity on a narrow atomic transition. This system may
also be important for entanglement studies of atomic ensembles [17, 18] as it can move easily between
interesting regimes.

Before delving into the specifics of the passive and active approach respectively we will characterize
the experimental system under investigation, which is common to the two cases.

2. Cavity enhancement
Since both the passive and the active systems we are investigating here can operate on essentially the
same cavity-enhanced system, this section is dedicated to the description of such a system and the
physical parameters of it. In figure 1 a sketch of the atom-cavity system can be seen. It consist of
an ensemble of 88Sr atoms that are laser-cooled and trapped in a Magneto-Optical Trap (MOT) inside an
optical cavity. The atomic transition of interest to us is the narrow (5s2)1S0 – (5s5p)3P1 dipole transition
at 689 nm. This transition is dipole-forbidden and has a natural linewidth of Γ/2π = 7.5 kHz making
the requirements on the probing laser relatively relaxed, while simultaneously providing very promising
results for the final laser stability. The cavity decay rate is given by κ/2π = 539 kHz and the free spectral
range is Ω/2π = 781 MHz resulting in a cavity finesse of F = 1450. The coupling between the atom and
the cavity field is characterized by the coupling parameter g/2π = 815 Hz. Here g = d/�

√
�ω/2ε0Veff,

where d is the transition dipole moment, ω is the transition frequency, ε0 is the vacuum permittivity, and
Veff is the effective mode-volume of the cavity field.

Probe laser
88Sr

Cavity mirror

g

Figure 1. 88Sr atoms are cooled and trapped inside a large-waist optical cavity. The atoms couple to the
intra-cavity field with the coupling strength g. Cavity losses are given by the rate κ and the natural decay
rate of the (5s2)1S0 – (5s5p)3P1 atomic transition is given by Γ. During experiments the cooling light is
switched off while cavity is kept in resonance with the probe light.

We wish to operate the system in the bad cavity regime, where the cavity linewidth κ is much larger
than the natural linewidth of the atoms Γ. This ensures that the transition linewidth becomes decisive
in terms of frequency discriminating properties and suppresses any line-pulling effects that may arise
due to fluctuations in the cavity mirror positions. This bad-cavity limit is thus instrumental in obtaining
the narrow laser linewidths we are targeting. The dynamics of the atom-cavity coupling in the system
can be quantified by the single atom cooperativity C0 = 4g2/κΓ representing the cavity-field mediated
interaction of an atom with itself, or the coherence buildup in the system relative to the coherence
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decay. This quantity can also be expressed by geometrical considerations as C0 =
6
π3F λ2/w2

0 where
λ is the cavity field wavelength on resonance with the atomic transition, and w0 is the waist radius of
the cavity mode intensity. Since we are considering large atomic samples the system dynamics may
be represented by the collective cooperativity CN = C0N where the total number of atoms in the cavity
mode is typically N = 2 ·107. In the following experiments we investigate a regime where we have strong
collective coupling CNΓ � Γdecoherence, but weak single-atom coupling C0Γ � Γdecoherence. By fulfilling these
requirements we can simultaneously achieve large collective effects, and good suppression of cavity
noise effects. Ideally then, we would want a high number of atoms N and a low cavity finesse F .

Here the system behaviour is recorded by observing the field leaking out of the mirrors, with either a
seeding field incident on the cavity, or by using a probe laser to record the absorption and phase response.
The cavity length is controlled in order to ensure resonance conditions with the seed or probing laser at
all times.

3. Passive approach
In a first approach to laser stabilization we will discuss passive stabilization which centers on the idea of
having an external laser stabilized to a narrow frequency discriminator. This frequency discriminator
should be able to provide a signal with high signal-to-noise ratio while simultaneously being very
sensitive to any frequency-deviations. Here we follow [10] in using direct spectroscopy on the (5s2)1S0
– (5s5p)3P1 transition in 88Sr. The cavity enhances the effective interaction length with the atomic
sample, by order of the finesse F , while simultaneously increasing the saturation parameter by about
a factor of 500. This places us deep in the saturated regime whose behaviour close to resonance was
described in [10]. By sending in a probing laser and using the NICE-OHMS technique [16] we can
record the phase-response of the system with good signal-to-noise ratio, see figure 2. We modulate
the probing light in order to induce sidebands on the carrier frequency. These sidebands are used as
reference in the heterodyne beating as they are far detuned from atomic resonance and do not interact
with the atoms. They are separated by one free spectral range (FSR) of the cavity ensuring that they
are transmitted through the cavity together with the carrier signal. A photodiode (PD) records the
beat-signal, which is then demodulated using a mixer, thus producing the phase measurement. The
antisymmetric phase-response acts as an error signal close to resonance where it has a linear dependence
on the frequency detuning of the probing laser. In our case the probing laser is prestabilized to a linewidth
of Γprobe/2π = 800 Hz on the 100 μs timescale of a single measurements. By feeding the error signal
obtained back to the laser it can thus be stabilized to the atom-cavity system. By ensuring that we are
deep in the bad-cavity regime, the system resonance is primarily dictated by the atomic resonance, and
all fluctuations on the cavity resonances are strongly suppressed.

Probe laser
88Sr

Cavity mirror
Phase response

Frequency

Error signal

FSR

0

PD
Mixer

FSR

Figure 2. Sketch of a passive system where atoms inside the optical cavity are probed with an external
laser having sidebands at ±FSR. The frequency sidebands are used for the NICE-OHMS technique, and
the beat-signal recorded on a photodiode (PD) is then demodulated. The phase-response is recorded,
producing an error signal that can be used to act back on the probing laser, correcting the probe laser
frequency.
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The atoms are trapped using a MOT with an anti-Helmholtz coil configuration and six beams of
I = 1.5 mW/cm2 blue light, red-detuned by about 40 MHz from the strong (5s2)1S0 – (5s5p)3P1 transition
in strontium-88. We then map out the phase response of the system by first turning on the trap for up to
800 ms in order to accumulate atoms, which will then have a temperature of typically T = 5 mK. The
atoms are then released by shutting off the trapping light, and a single measurement at a given probe
detuning is recorded over 100 μs. Reiterating this procedure while varying the probe laser detuning then
produces traces such as the ones shown in figure 3. A theoretical model from [10] using our experimental
parameters is also plotted. The signal-to-noise ratio is currently limited by the shot-to-shot variations in
the atom number N, as well as the stability of the cavity field intensity.

For low atom numbers we observe structures similar to what was shown in [10] where a higher atom
number and a cavity with much lower finesse Flow = 85 was used. As the number of atoms is increased
to a similar level as used in [10], the phase shift induced by the atom-cavity system is effectively much
larger due to the higher finesse, F = 1450, of the cavity in the current system. This causes the total
phase to increase beyond π/2 which is seen in the measurements as a mirroring around some maximal
value. In figure 3 this can be seen for N = 1 · 107 (shown in pink) at about ±500 kHz, where two new
peaks seem to have appeared. These features do not affect the slope at the center of the resonance feature
which is decisive in order to provide a good error signal for laser feedback. This inversion for an absolute
phase shift of π does, however, put a maximum bond on the amplitude of the error signal. As we require
a significant output signal in order for a lock to not be limited by the photon shot noise on the detectors,
simply increasing the finesse of these systems will thus not be an adequate solution.
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Figure 3. NICE-OHMS response of the passive system representing the phase for N = 2 · 106 (blue) and
N = 1 · 107 (pink). Data is represented by dots whereas the full lines represents the theoretical model.
For N = 1 · 107 the phase shift becomes greater than ±π/2 (corresponding to the black dot-dashed lines)
at about ±500 kHz resulting in a mirroring of the signal at about ±70 mV. Both signals were recorded
for T = 7 mK.

The shot noise limited linewidth of a laser perfectly locked to such a signal can be found following
[1] and has been projected to be below 10 mHz [19] which is comparable with the state of the art in
passive laser stabilization on empty optical cavities [6].

4. Active approach
Alternatively to a passively stabilized laser based on, e.g., a solid-state laser diode, the active approach
seeks to use the narrow atomic transition directly as a lasing transition [2, 12, 14]. As an alternative to

XXIII International Conference on Spectral Line Shapes                                                                    IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 810 (2017) 012002          doi:10.1088/1742-6596/810/1/012002

4



having effectively stationary atoms in an optical lattice at μK temperatures, we consider here a simpler
system with freely moving atoms at three orders of magnitude higher temperatures. The ultimate goal is
to realize a so-called optical maser where collective effects can cause an ensemble of optical dipoles to
synchronize and emit light of high spectral purity [20, 11] into the cavity mode. In a first generation of
experiments pursuing these phenomena in our setup the atoms are pumped by an external source, say by
applying a pi-pulse, and can coherently emit light into the cavity mode. This can happen spontaneously
in a process known as superfluorescence, or by stimulation from a weak seed field inside the cavity
mode. Although the introduction of a weak driving field is of less importance for the optical maser it has
interesting applications for quantum optics schemes targeting entanglement of atomic ensembles. It turns
out superradience or superfluorescence is not sufficient to guarantee entanglement, but the introduction
of a weak seed field may generate entanglement of the atomic ensemble [17, 18].

The condition for collective effects to be important is that the collectively enhanced emission rate is
much larger than any decoherences of the system CNΓ � Γdecoherence. In the system investigated here the
atoms are at a temperature of T = 5 mK resulting in the Doppler broadening of ΓDoppler/2π = 1 MHz as
the most important decoherence in the system. With the parameters given above we obtain a collective
cooperativity of CN = 1 · 104 thus fulfilling the condition for strong collective coupling in the system,
CNΓ/2π = 75 MHz. As a preliminary approach we have resonant seed-light in the cavity mode ensuring
that the cavity and atomic resonances overlap. We inject a resonant pi-pulse of light at an angle of 45◦
with respect to the cavity axis, see figure 4. The pulse causes ground-state atoms to be excited, and
collectively emit a burst of light into the cavity mode stimulated by the seed light with a delay τD.

Time0

D

45°

Pu
mp

Seed laser
Transmission burst

88Sr

Cavity mirror

Figure 4. Sketch of an active system where ground state atoms are initially pumped into an excited state,
and can subsequently be collectively stimulated to emit a burst of photons into the cavity mode after a
time τD. The burst is observed on a photodetector through the field leaking out of the cavity.

The superfluorescent-like behaviour of the system with a seed-field in the cavity mode can be seen in
figure 5 for a pump pulse of τπ = 280 ns. The data was averaged over 128 data series, and retains its
characteristic shape. The time τπ corresponds to a 3π-pulse, and was chosen due to technical limitations.
The delay of about τD = 1.5 μs is not limited by cavity leakage rate but attests the collective process that
causes this emission of light. The decay rate of the burst can be seen to initially be far greater than the
natural decay rate of the atomic transition, 1/Γ = 22 μs, and after the initial burst small oscillations in the
field intensity, partially washed out by the averaging, can be observed. Both features are characteristic for
collective effects taking place, and reveals some level of coherence. Notice that the oscillations following
the primary burst sit on top of two slopes. The first one is clearly visible from 2 to 4 μs and is expected
to be caused by the averaging process where shot-to-shot variations in the atom number and seed power
wash out some of the oscillatory behaviour. The second one is that caused by some atoms spontaneously
decaying with the natural decay rate, a characteristic time of τ = 1/Γ = 22 μs, and thus not participating
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in the cooperative emission of light. This is attested by the fact that the final power in figure 5 is a few
nW higher at 10 μs than the initial seed at −1 μs.

We have developed a theoretical description of the system allowing us to simulate the expected
behaviour of the cavity transmission. This model relies on a Jaynes-Cummings approach with a classical
pump-field and incorporates a constant thermal velocity distribution of the atoms. A simulation of the
cavity transmitted field for typical parameters can be seen in figure 6, where a non-zero seed field is
present in the cavity initially. The initial burst is seen to have similar behaviour and delay τD to the
measured burst. It is followed by a series of oscillations that are much more pronounced than what we see
experimentally. We expect that the great difference in these oscillations is caused by the spatial profile
of our pump field which is narrower compared the spatial extend of the atomic cloud. This results in
different Rabi frequencies for atoms at different positions and the effective population inversion obtained
by the pump pulse is thus smaller in the experiment than what the simulation assumes.
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Figure 5. Recorded data of a light leaking out
of the cavity (red) after a burst of light has been
emitted by the atoms into the cavity mode. The
initial pump-pulse (blue) is also shown. The
initial decay rate of the flash is much faster than
the natural decay rate Γ of the atomic transition.
Though the signal is averaged over 128 data
series, ringing effects are still visible. The non-
zero start value is due to the seed field (dashed
line) present in the cavity.
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Figure 6. Simulation of a superfluorescent-like
burst (red) following a 3π-pulse (blue). The
initial decay of the pulse is much faster than
the natural decay rate of the transition and is
followed by coherent ringing characteristic for
superfluorescence. Here no spatial effects of the
system are included, resulting in a significant
overestimation of the burst intensity. Notice that
the initial value of the transmission curve is non-
zero due to the seed field (dashed line).

The larger power predicted by the simulation is primarily caused by spatial dependences of the
atoms and pump pulse in the system. When spatial distributions are included much better agreement
between the predicted and experimentally observed power is expected. The detailed modelling of this
will be the subject of future publications. The dynamical behaviour is quite similar and bodes well for a
superfluorescent system with thermal atoms. By optimizing the spatial configurations of the setup, thus
increased the number of participating atoms, and by better controlling some of the decoherence effects,
we expect an improvement of the burst intensity by at least an order of magnitude may be obtained.

5. Conclusion
We have described our approach to and preliminary results from two of the novel methods that are
currently receiving broad interest in the laser stabilization and quantum metrology communities. While
these approaches rely on technically and experimentally very different approaches they have a great deal
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in common when one considers the physical systems. Here we have presented the physical systems in a
way that underline these similarities.

The passive approach boasts impressive predictions that should be comparable to and beyond the
state of the art in laser stabilization technology. In the active approach, the emission line-narrowing
effect expected by the single atom cooperativity can provide a laser with a linewidth much narrower
than the natural linewidth of the lasing transition making superfluorescence in the bad cavity regime an
interesting alternative approach towards an ultra narrow continuous laser source. The narrowing of the
linewidth in the superfluorescent light means that such a device could significantly increase the stability
and accuracy of reference lasers used in, say, optical atomic clocks.

Both techniques require a continuous system such as a beamline of ultra cold atoms in order to take
full advantage of the potential for narrow laser linewidths. We are currently constructing such a beamline
system in order to demonstrate both a continuous active laser as well as a passive continuously locked
laser.
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Lasing on a narrow transition in a cold thermal strontium ensemble
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Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

Highly stable laser sources based on narrow atomic transitions provide a promising platform for
direct generation of stable and accurate optical frequencies. Here we investigate a simple system op-
erating in the high-temperature regime of cold atoms. The interaction between a thermal ensemble
of 88Sr at mK temperatures and a medium-finesse cavity produces strong collective coupling and
facilitates high atomic coherence which causes lasing on the dipole forbidden 1S0 ↔3P1 transition.
We experimentally and theoretically characterize the lasing threshold and evolution of such a sys-
tem, and investigate decoherence effects in an unconfined ensemble. We model the system using a
Tavis-Cummings model, and characterize velocity-dependent dynamics of the atoms as well as the
dependency on the cavity-detuning.

I. INTRODUCTION

Active optical clocks have been suggested as an ex-
cellent way to improve the short-time performance of
optical clocks by removing the requirement for an ultra
stable interrogation laser [1–3]. Current state-of-the-art
neutral-atom optical lattice clocks with exceedingly high
accuracy are typically limited in precision by the interro-
gation lasers and not by the atomic quantum projection
noise limit. The high Q-value of the atomic transitions
(Q > 1017) exceeds that of the corresponding reference
laser stability for the duration of the interrogation cy-
cle [4–8]. State-of-the-art reference lasers now perform
below the level of 10−16 fractional frequency stability at
1 s [9–11]. This recent advance in performance is en-
abled by using crystalline mirror coatings and spacers
as well as employing cryogenic techniques. Nevertheless
these lasers continue to be limited by the thermal noise
induced in the reference cavity mirrors [12, 13]. By using
an active optical clock, the narrow spectral features of the
atoms themselves produce the reference light needed, via
direct generation of lasing in an optical cavity. Opera-
tion in the bad-cavity limit, where the cavity field decays
much faster than the bare atomic transition, allows high
suppression of the cavity noise in these lasers. It has been
predicted that such systems could reach Q-factors in ex-
cess of the transition Q-factor due to narrowing caused
by collective effects [3, 14]. It was recently shown experi-
mentally that an active optical atomic clock can perform
at the 10−16 fractional frequency stability level between
1 − 100 s, and with a fractional frequency accuracy of
4 × 10−15 by using a cyclically operated optical lattice
with 87Sr atoms [15]. Other systems with atoms at room
temperature have shown continuous lasing with perfor-
mance at the 10−12 level of fractional frequency stability
[16].

These results demonstrate the potential of active
atomic clocks, and motivates the present attempt to im-
prove the understanding of atom dynamics in such a sys-
tem. We concentrate on a cold atomic gas consisting of
bosonic 88Sr cooled to a temperature of T ≈ 5 mK, and
permitted to expand freely as a thermal gas while lasing.

Superradiant lasing in such a system would substantially
reduce the technological challenges of maintaining truly
continuous operation compared to the case of atoms con-
fined in an optical lattice trap [17, 18].

We experimentally demonstrate pulsed lasing on a nar-
row transition in 88Sr and describe the characteristic dy-
namics of our system. Using a Tavis-Cummings model
we simulate the full system consisting of up to 8 × 107

individual atoms and give a qualitative explanation of
the dynamics. Rich velocity- and position-dependent dy-
namics of the atoms are included in the description and
become an important factor for understanding the lasing
behavior. The model allows us to quantify these behav-
iors and set requirements on ensemble size and tempera-
ture to realize strongly driven or weakly driven superra-
diance respectively. Such requirements are useful for the
future development of truly continuous lasing on ultra-
narrow clock transitions in strontium, or other atomic
species.

In section II we describe the physical characteristics
of our system and the experimental routine. Section III
describes our theoretical model for the cold-atom based
laser, and the proposed lasing dynamics. In Section IV
the lasing characteristics are presented and comparisons
between experiment and simulations are made.

II. EXPERIMENTAL SYSTEM

The system consists of an ensemble of cold 88Sr
atoms cooled and trapped in a 3D Magneto-Optical Trap
(MOT) from a Zeeman-slowed atomic beam, using the
1S0 ↔1P1 transition. The atomic cloud partially over-
laps with the mode of an optical cavity, and can be
state manipulated by an off-axis pumping laser, see Fig.
1. The cavity can be tuned on resonance with the
1S0 ↔3P1 intercombination line, and has a linewidth of
κ = 2π · 620 kHz. Our mirror configuration ensures a
large cavity waist radius of w0 = 450 µm, which ensures
a reasonably high intra-cavity atom number, Ncav of or-
der 2×107. Ncav is estimated from fluorescence measure-
ments and lasing pulses, giving Ncav = ηcavN of the full
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FIG. 1. (a) Schematic of the experimental system showing
a thermal ensemble of strontium atoms partially overlapping
with the cavity mode. Pumping prepares the atoms in the
excited state, and allows subsequent emission of a coherent
pulse into the cavity mode. Light couples out of both ends
of the cavity with the cavity decay rate κ, and is detected at
one end only. (b) Level scheme for 88Sr showing the cooling
and lasing transitions. Wavelength (λ) and natural transition
decay rates (γ) are indicated.

MOT atom number N , where ηcav = 0.2. Throughout
this paper the atom number within the cavity Ncav is an
effective number since all atoms have different velocities
and positions, resulting in a coupling gj for the j’th atom
to the cavity mode. While this is included in the theoreti-
cal simulations, we permit ourselves to assume a constant
effective coupling, geff, and effective atom number when
discussing regimes and general scaling behavior.

The large cavity waist ensures a negligible decoher-
ence induced from transit time broadening of Γtt =
2π · 2.2 kHz. While the 1S0 ↔3P1 transition used for
operation has a linewidth of γ = 2π · 7.5 kHz, the en-
semble temperature T causes a Doppler broadening of
the order of ΓD = 2 MHz. The bare atoms are thus
deep in the bad-cavity regime, γ � κ, whereas the to-
tal inhomogeneously broadened ensemble is just below
the bad-cavity threshold. Here, the cavity field decay
rate and total atomic decoherence rate is of similar size
κ ∼ Γdec, and ensemble preparation can heavily affect
the lasing process and the attainable suppression of cav-
ity noise. We characterize the system by its collective
cooperativity CN = C0Ncav, and the single-atom coop-

erativity is given by C0 =
(2geff)2

κγ . This leads us to the

definition of a collective coupling rate ΩN = 2
√
Ncavgeff.

While the spectral linewidth of the emitted light is con-
trolled by C0 [3, 19], the coherence build-up, and thus
lasing power, is determined by CN . Increasing the cou-
pling rate geff, and thus the single-atom cooperativity,
will then improve interaction at the expense of the ulti-
mately attainable lasing linewidth.

After preparing the MOT, the cooling light is switched
off, and an off-axis pumping beam is used to excite the
atoms to the 3P1 state. By pumping the atoms on reso-
nance for 170 ns a peak excitation of approximately 85 %
is obtained for the atoms within the cavity mode. In-
homogeneous Doppler detuning caused by the thermal
distribution of the atoms, and the large spatial distri-
bution of the full atomic ensemble with respect to the

FIG. 2. Experimental data showing the time evolution of the
lasing pulse after pumping for cavity-atom detuning ∆ce =
0 kHz (blue) and ∆ce = 900 kHz (orange) respectively. The
pumping pulse ends at time t = 0 µs. (a) A background
power level of 75 nW in shaded gray indicates the constant
non-interacting reference laser field. (b) Beat signal between
reference field and laser pulses. The dots are data whose
running mean is shown with full lines.

pumping field result in varying Rabi frequencies for dif-
ferent atoms. The collective atomic Bloch vector will
thus contain some level of atomic coherence from the im-
perfect pump pulse. Due to the excitation angle of 45◦

the pump phase periodicity along the cavity axis sup-
presses any forced coherence between the atoms and cav-
ity field. Additionally, the spatial coherence of the fast
atoms will wash out as they propagate inhomogeneously
along the cavity axis. In order to remove any remain-
ing phase-coherence we apply light at 461 nm detuned
about ∆ν = −41 MHz from the 1S0 ↔1P1 for 500 ns
after pumping. This results in an average of 1.3 scatter-
ing events per atom, and ensures atoms are either in the
excited or ground state. We see no quantifiable change
in the lasing behavior by doing this.

Once excited, the atoms will build up coherence medi-
ated through the cavity field and emit a coherent pulse of
light into the cavity mode. Light leaking through one of
the cavity mirrors is then detected on a photodiode. We
couple a reference field, s, into a cavity mode tuned far
off resonance, ∆sc = 780 MHz, with the 1S0 ↔3P1 tran-
sition, allowing us to lock the cavity length on resonance
with the atoms.

Fig. 2 shows an example of a lasing pulse and the
associated beat signal when the cavity is on resonance
(blue) and detuned ∆ce = 900 kHz (orange) from the
atomic resonance respectively. The pumping pulse ends
at t = 0 s and after some delay, τ (on the order of few
µs), a lasing pulse is emitted into the cavity mode. The
lasing pulses are followed by a number of ringings. This
is a fingerprint of the coherent evolution of the cavity-
atom system, where light emitted into the cavity mode
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is reabsorbed by the atoms, and is then re-emitted into
the cavity mode. The lasing pulse shown in Fig. 2
(a) is detected superimposed on a 75 nW background.
This background is a reference field used for locking the
length of the cavity, and provides the opportunity for a
heterodyne beat with the lasing pulse. At zero cavity-
atom detuning (∆ce = 0) the ringings are barely visible
due to reference field intensity noise. When detecting
the beat signal, however, the signal scales linearly rather
than quadratically with the lasing E-field Elas, and here
multiple ringings are visible in both the resonant and off-
resonant cases.

The beat signal is down-sampled and given by Sbeat ∝
|Elas| sinφ. The envelope thus gives us a less noisy in-
formation on the amplitude of the lasing pulse. sinφ
allows us to retrieve the phase information. In Fig. 2
(b) we see the phase during the initial lasing pulse differ
between the two datasets. This is a result of the random-
ized phase of the atomic coherence for each experimental
realization. A rapid-fire pulse laser is thus limited by the
lack of memory between subsequent lasing pulses.

III. SEMI-CLASSICAL MODEL

In order to gain an improved understanding of the dy-
namics involved in our system, we simulate the behav-
ior with a Monte-Carlo approach. We model the system
using a Tavis-Cummings hamiltonian for an N-atom sys-
tem. The description includes a classical pumping field
at frequency ωp. In the Schrödinger picture the full ex-
pression becomes:

H = ~ωca†a+

N∑

j=1

~ωeσjee (1)

+

N∑

j=1

gjc
(
σjge + σjeg

) (
a+ a†

)

+

N∑

j=1

~
χjp
2

(
σjge + σjeg

) (
ei
~kp·~rj−iωpt + e−i

~kp·~rj+iωpt
)
.

Here ωc is the angular frequency of the cavity mode,
a is the corresponding lowering operator. The involved
electronic energy states |g〉 and |e〉 correspond to the
ground and excited atomic states, with a transition fre-
quency of ωe, as seen in Fig. 1 (b). The interaction
between cavity field and the j’th atom is governed by
the coupling factor gjc and the pump beam has a semi-
classical interaction term with Rabi frequency χjp. The

position of the atom is given by ~rj , and ~kp is the pump
beam wavevector.

By entering an interaction picture, and using the ro-
tating wave approximation, the time evolution of the
system operators can be obtained. Here we make the
semi-classical approximation of factorizing the expecta-
tion values for operator products, which results in lin-
ear scaling of the number of differential equations with

the number of atoms. This approximation results in the
neglect of all quantum noise in the system, and by con-
sequence any emerging entanglement [20–22]. We moti-
vate this assumption by the very large number of atoms
in the system, whose individual behaviors are taken into
account with separate coupling factors gjc . The quantum
noise is then expected to be negligible compared to the
single-operator mean values. The operator mean values
are described by three distinct forms of evolution:

˙〈
σjge
〉

= −
(
i∆ep +

Γ

2

)〈
σjge
〉

(2)

+i

(
gjc〈a〉+

χjp
2
e−i

~kp·~rj

)
(〈
σjee
〉
−
〈
σjgg
〉)

˙〈
σjee
〉

= −Γ
〈
σjee
〉

+ i

(
gjc
〈
a†
〉

+
χjp
2
ei
~kp·~rj

)
〈
σjge
〉

−i
(
gjc〈a〉+

χjp
2
e−i

~kp·~rj

)
〈
σjeg
〉
.

˙〈a〉 = −
(
i∆cp +

κ

2

)
〈a〉 −

N∑

j=1

igjc
〈
σjge
〉
.

Here ∆nm = ωn−ωm is the detuning of the n’th field with
respect to the m’th field. Because of the semi-classical
approximation the hermitian conjugate of these opera-
tors are simply described by the complex conjugate of
their mean values, while 〈σjee〉 + 〈σjgg〉 = 1. This leaves
us with a total of 1 + 2N coupled differential equations
where N is on the order of 107.

The Monte-Carlo simulation assumes the atoms are
initially in the ground state, and subsequently pumped
into the excited state and left to evolve with time.
Atomic positions and velocities are sampled randomly
from a 3D Gaussian and a thermal Maxwell-Boltzmann
distribution respectively. The positions are distributed
with standard deviations of 0.8 mm, and the velocities ac-
cording to a temperature of T = 5 mK, both found from
experimental assessment of our system. Atomic motion
is treated classically and without collisions. The atoms
interact only via the cavity field, and any spontaneous
emission into the cavity mode is neglected. The lasing
process is initiated by an initial nonzero total coherence∑N
j=1 σ

j
ge, resulting from the pumping pulse. This re-

places the role of quantum noise in the system, and with-
out it the system would couple only to the reservoir.

Our simulations indicate that the lasing occurs in three
characteristic regimes determined by the ratios of the
atomic decay rate γ, the cavity decay rate κ and the
collective atomic coupling factor ΩN , see Fig. 3. We
consider only ΩN > γ since for ΩN < γ the spontaneous
atomic decay to the reservoir will dominate. In the bad
cavity regime where γ < κ a low coupling strength will
allow the output power to scale quadratically with atom
number, whereas high coupling strength will result in a
linear power scaling and multiple Rabi oscillations in the
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FIG. 3. Three distinct lasing regimes. In our system we
operate on the intersection of all three and seem to realize
both N and N2 atom number scaling behaviors.

atomic population during a single lasing pulse. Broaden-
ing effects can lead to higher effective decoherence rates
Γdec which must be considered.

IV. SYSTEM CHARACTERIZATION

We characterize the lasing properties and pulse dy-
namics of the system by varying cavity-atom detuning
and atom number. We compare the measurements with
simulated experiments to verify the understanding in the
numerical model. This will then allow us to draw out
some behaviors from the model that are inaccessible ex-
perimentally.

A. Lasing Threshold

By varying the total number of atoms in the trap, we
find the lasing threshold of the system. This gives an
atom number dependency of the pulse power and the as-
sociated delay, see Fig. 4 (a). We plot the peak power of
the emitted lasing pulse as a function of the atom num-
ber N in the full atomic cloud for 795 experimental runs.
Each point is about 40 binned experimental runs, with
the standard deviation indicated. For low atom numbers
(white region), N ≤ 3 × 107, excited atoms decay with
their natural lifetime, τ = 22 µs. In an intermediate
regime of 3 × 107 < N < 5 × 107 (red region) the peak
power appears to scale quadratically with the atom num-
ber, as the onset of lasing occurs. This is what we would
expect according to the parameter regimes illustrated in
Fig. 3. Finally, for higher atom numbers (blue region),
N > 5 × 107, the peak power becomes linearly depen-
dent on the atom number, as the collective coupling ΩN
becomes much larger than κ. We show a red and blue
curve fitted to their corresponding regions with an N2-
and N -scaling respectively. The green points show the
results from simulation, and appear to agree well with
experiment. The curves are fitted to the raw data, within
the respective regions before any binning, and the lasing
threshold is determined from the quadratic fit. While
the lasing process does not initiate for low atom num-
bers due to the requirement that CNγ � Γdec, for high

FIG. 4. Primary pulse behavior. (a) Atom number depen-
dency of peak cavity output power at a single mirror. Black
points indicate data, whereas green points indicate simula-
tion results. Threshold (Nth) is determined by fitting the
quadratic curve (red), and the linear curve (blue) is fitted
only to N = 5 to 7 × 107. (b) Delays between pumping and
lasing pulses. The delay is defined as the time interval be-
tween the end of the pumping pulse, and the peak intensity
of the subsequently emitted laser pulse. The blue curve is fit
using a/

√
N −Nth.

N the cavity field builds up sufficiently that the slowest
atoms become strongly driven. At high atom numbers
(N > 7 × 107) the cavity output seems to saturate as
the assumption of linear scaling of the cavity atom num-
ber (Ncav) with respect to the MOT atom number (N)
breaks down, and these points are not included in the
linear fit. The nonzero value of the data below threshold
is caused by random noise.

In Fig. 4 (b) we plot the delay between the end of
the pumping pulse and the associated peak in laser pulse
emission. The delay has high uncertainties in the red re-
gion where we expect an 1/N scaling [23]. For high N

we expect a 1/
√
N trend [25] (blue), and we choose to

fit this to the entire dataset. When going to low atom
numbers background noise becomes increasingly impor-
tant until no emission peak is visible, and the effective
delay goes to infinity. Once again we show the simulation
with green dots. Notice that there is a clear tendency to-
wards longer delays in the simulation. We believe this
to be caused by the fact that the model does not include
spontaneous emission into the cavity mode.

As the number of atoms decreases, so does the col-
lective cooperativity, and thus the ensemble coherence
build-up. The time it takes for the ensemble to phase-
synchronize increases, leading to the increased delay time
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FIG. 5. Atom number (N) dependency. (a) Simulation re-
sults. When the cavity mode is at atom resonance, the char-
acteristic ringing frequency of the lasing pulses, varies weakly
with the atom number. The pulse delays τ are shown with a
a/
√
N −Nth-fit (blue). (b) Experimental results. The sim-

ulations are nicely replicated by experiment, with the first
ringing disappearing in noise at around N = 7× 107.

and associated decrease in peak intensity. The total num-
ber of photons emitted during a pulse is not constant,
but scales with the collective cooperativity CN , just as
the peak output power in Fig. 4.

B. Pulse evolution

We map out the time evolution as a function of atom
number and cavity-atom detuning respectively. To ease
interpretation we align all datasets to the peak intensity
at t = 0 s in figures 5 and 6. The delay in the system
can be seen as the distance between this maximal value
at time zero and the green dots indicating the end of the
pumping pulse.

1. Atom number variation

In Fig. 5 (a) we simulate the behavior of the lasing
pulse when the atom number is changed. We set the
cavity-atom detuning to zero (∆ce = 0) and vary the

atom number in the MOT while keeping the density pro-
file constant. The green points indicate the end of the
pumping pulse, and are binned in order to ease inter-
pretation. The ringing frequency decreases as the atom
number is reduced, and at low atom numbers only a sin-
gle lasing pulse is visible.

On Fig. 5 (b) experimental results are shown. We vary
again the atom number, allowing comparison to the simu-
lations. A clear primary peak can be seen for atom num-
bers N > 3 × 107, and a subsequent ringing in the light
emission is observed. The reference light used for cavity
locking shows up as a noisy background in the experi-
mental data, and a constant offset corresponding to the
mean value of the background signal has been subtracted
in both figures 5 (b) and 6 (b). The data was recorded
in sets of 50 with a randomly varying Nset−point. This
means that slowly varying experimental conditions show
up as slices of skewed data, but avoids unintended biasing
of the results.

The ringing behavior is well explained by following the
evolution of the atomic inversion. For high atom num-
bers the collective coupling in the system becomes strong
enough that the photons emitted into the cavity mode are
not lost before significant reabsorption takes place. This
leads to an ensemble that is more than 50% excited by
the end of the primary lasing pulse, and subsequent laser
emission (ringing) will thus follow. In this regime where
the collective coupling rate is much larger than the cav-
ity decay rate ΩN > κ the system output is expected
to behave as the central plot of Fig. 3. At low atom
numbers we get ΩN < κ and light emitted by the atoms
is lost from the cavity mode too fast to be reabsorbed
by the atoms. As a result the primary lasing pulse cre-
ates a significant reduction in the ensemble excitation so
that no further collective decay occurs, and the atoms
subsequently decay only through spontaneous emission.
In this regime the output power is expected to scale as
N2, illustrated by the rightmost graph of Fig. 3. This is
the behavior expected from an ideal superradiant system
[23–25].

2. Cavity detuning

With a constant atom number of N = 7.5 × 107, we
now vary the cavity-atom detuning ∆ce in Fig. 6. Here
a broad range of cavity-atom detunings, up to about
∆ce = ±2 MHz is seen to facilitate lasing. At zero detun-
ing the primary lasing feature is maximal and subsequent
ringings are suppressed. The lasing pulse delay is seen to
scale as ∆2

ce, and is thus linearly insensitive to fluctua-
tions close to ∆ce = 0.

For non-zero detuning the oscillatory behavior of the
lasing intensity is seen to increase in frequency, scaling
with the generalized Rabi frequency of the coupled atom-
cavity system Ω′N =

√
4Ncavg2 + ∆2

ce [26, 27]. A notice-
able effect is the apparent suppression of ringings for any
detunings ∆ce ≤ 200 kHz.
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FIG. 6. Cavity-atom detuning dependency of the lasing pulse.
The oscillatory behavior is strongly suppressed at resonance,
but appears clearly once the cavity is detuned. Here at least
four subsequent ringings are visible. The ringing frequency
scales with the detuning frequency and appears symmetric
around zero detuning. The white line is a ∆2

ce-fit to the pulse
delays τ . The atom number is N = 7.5× 107. (a) Simulation
results. The temperature was set to T = 5 mK. (b) Experi-
mental results. The dashed blue and orange lines indicate the
cuts shown in Fig. 2 (a).

The cavity-atom detuning range for which a signifi-
cant lasing pulse is produced can be quite broad com-
pared to the natural transition linewidth γ. The effec-
tive coupling between the atomic ensemble and the cav-
ity field scales with the overlap of the cavity resonance
and the atomic ensemble linewidth. The inhomogeneous
broadening of this atomic linewidth caused by build-up
of optical power in the cavity thus increases this range
significantly. The pulse can be initiated by only a few
photons in the cavity field. As the intensity in the cavity
mode builds up, power broadening acts to increase the
effective mode overlap between the field and individual
atoms. This increases the effective gain in the system,
both at finite and zero detuning, allowing more atoms to
participate and more energy to be extracted than would
have otherwise been the case. For the case of a much
colder atomic ensemble (∼ µK) the Doppler broaden-
ing of the atomic transition is no longer significant, but

further simulations indicate that the width of the cavity-
atom detuning region that supports lasing remains wide.

3. Velocity-dependent dynamics

During the lasing process, the Rabi frequency of each
atom will vary in time due to the changing cavity field
intensity, while the atomic motion along the cavity mode
leads to velocity-dependent dynamics. A typical thermal
atom may move a distance of a few wavelengths dur-
ing the lasing process in this temperature regime. Our
simulation shows how atoms affect the lasing process dif-
ferently, depending on their velocities along the cavity
axis, see Fig. 7. With an angle of 45◦ between the cav-
ity axis and the pump pulse beam, the slow atoms along
the cavity axis are preferentially excited during pump-
ing. These atoms initiate the lasing process, while faster
atoms may suppress it by absorbing light. Different ve-
locity classes dominate emission or absorption of the cav-
ity photons at different times during the initial pulse and
subsequent ringings. The theoretical description of the
velocity-dependent behavior shown in Fig. 7 provides
a qualitative understanding of the effect of having ther-
mal atoms in the system. As atoms are cooled further,
their behavior becomes increasingly homogeneous, and
the asynchronous behavior of hot atoms no longer de-
stroys the ensemble coherence.

Fig. 7 (a) illustrates the velocity dynamics for the
case of a resonant cavity, ∆ce = 0. For a range of differ-
ent velocity groups, this shows the rate of change of the
atomic ground state population due to interactions with
the cavity field. Significantly more ringings after the pri-
mary pulse are visible here than in the emitted power
on Fig. 5. Most of these ringings see an approximately
equal amount of emission and absorption, causing the
energy to remain in the atomic excitations rather than
being lost from decay of the cavity mode. They can,
however, be seen in the phase response of the system as
illustrated in Fig. 2 (b). Eventually loss from sponta-
neous emission into the reservoir becomes an important
decay channel. Concentrating on the slowest atoms, we
see emission during the full length of the primary lasing
pulse. For the subsequent pulses these atoms alternate
between absorbing or emitting light. If we could isolate
the light from the slowest atoms, we would thus only see
every second oscillation in the output power. For atoms
with larger velocities, there will sometimes be both emis-
sion and absorption during any single pulse, and we even
see the tendency of some velocity groups to consistently
emit (v = 0.5 m/s) or absorb (v = 0.65 m/s) throughout
the full process (red dashed lines on Fig. 7). This indi-
cates that even for the case of a resonant cavity the veloc-
ity groups contributing most to the emitted light during
the pulse ringings are not the resonant ones. In the case
of a detuned cavity mode, Fig. 7 (b), the initial behav-
ior is very similar. The atoms whose Doppler detuning
brings them on resonance with the detuned cavity, emit
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FIG. 7. Velocity-dependent atomic absorption and emission
during the lasing process for the case of a resonant and de-
tuned cavity respectively. The atoms are pumped by an
excitation pulse ending at time zero. Yellow colors repre-
sent emission into the cavity mode while blue represents ab-
sorption. Red dashed lines indicate velocity groups that be-
have consistently throughout the ringings. (a) Resonant cav-
ity. Ringings after the primary pulse can be seen as vertical
lines where d < σv

gg > /dt = 0. The atom number used
here is N = 7.5 × 107. (b) The cavity field is detuned by
∆ce = 1 MHz, and the peak emission contribution during the
primary pulse comes from atoms with a speed of v = 0.6 m/s
along the cavity axis.

throughout the primary lasing pulse, whereas others will
begin to absorb. Once again some atoms (v = 0.25 m/s)
appear to emit light throughout the pulse ringings. The
periods of zero emission or absorption between ringings
(gray) are no longer visible, as some light is always emit-
ted and absorbed by the atoms. The minima in the
emitted power is thus no longer caused by zero emission,
but rather by the cancellation between different veloc-
ity classes. This behavior corresponds well to the results
of Fig. 6 where ringings are much more pronounced in
the case of large cavity-atom detuning. Future studies of
the spectral properties of superradiant light in cold-atom
systems, could elucidate the dependency of emitted light
frequency on the finite temperature of the atoms.

V. CONCLUSION

In this paper we have investigated the behavior of an
ensemble of cold atoms excited on a narrow transition
and coupled to the mode of an optical resonator. The
enhanced interaction provided by the cavity facilitates

synchronization of the atomic dipoles, and results in the
emission of a lasing pulse into the cavity mode. This re-
alizes the fundamental operating principle for an active
optical clock, where superradiant emission of laser light
can be used as a narrow-linewidth and highly stable os-
cillator.

We mapped out the emitted laser power as a func-
tion of atom number in order to identify the threshold of
about N threshold

cav = 6×106 atoms inside the cavity mode.
Two different scalings of laser output power in the bad
cavity regime are identified, and though our system is
at the limit of the bad cavity regime, both regimes are
realized by varying the atom number.

In an attempt to quantify the decoherence effects
resulting from finite atomic temperature, a Tavis-
Cummings model was developed. By using detailed pa-
rameters of the pumping sequence, atomic spatial distri-
bution and orientation, the model is seen to reproduce
the experimental results to a high degree. The emitted
energy from the atoms is seen to exhibit temporal Rabi
oscillations as it undulates between atomic and cavity
excitation. This behavior is elucidated via the numerical
simulation by investigating the change in atomic excita-
tion as a function of atomic speed throughout the lasing
pulse sequence. We see that different velocity groups
behave anti-symmetrically, with respect to each other.
Surprisingly the velocity group mainly contributing to
emission rapidly changes from resonant atoms to atoms
that are more detuned with respect to the cavity. This
is caused by a faster initial loss of excitation for resonant
atoms. A similar effect is seen in the case of a detuned
cavity. Here the atomic behavior is much more uniform
across different atomic speeds, as the relation between
atom number and cavity coupling becomes more homo-
geneous.

This system relies on rapid-fire pulses of lasing from
independent ensembles of atoms, which limits the pulse-
to-pulse phase coherence. The phase coherence remains
intact between pulses if we could ensure atoms are al-
ways present in the cavity as a memory, e.g., in a con-
tinuous system. The prospect of a continuously lasing
atom-cavity system based on unconfined cold atoms is
intriguing because of the severe reduction in engineer-
ing requirements compared to a system based on, e.g.,
sequential loading of atoms into an optical lattice [18].
The velocity-dependent dynamics are important in order
to understand what kind of equilibrium one can expect
in such a system. An investigation of the spectral char-
acteristics of stationary atomic systems have been shown
in [14, 15], and are promising for the transition we have
used here. Investigation of the spectral properties in an
unconfined ensemble will be presented in future work.
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Appendix A: Simulation parameters

Simulations of the system are based on numerical in-
tegration of Eqs. 2 [28]. The system is initiated with
all atoms in the ground state and no coherence. The
atoms are randomly distributed, assuming a Gaussian
density profile in each dimension, and randomly gener-
ated thermal velocities for a temperature of T = 5 mK.
These velocities are assumed constant due to negligible
collision rates. The pumping is simulated by turning on
the Rabi frequency χjp, which is calculated for each atom
based on their coupling to the running-wave pump pulse
and its intensity. The spatial intensity distribution is es-
timated based on measurements of the pump beam with
a CCD camera and an optical power meter. After spatial
smoothing to even out noise, the data from the CCD cam-
era is used directly in the simulations, and correspond
approximately to a slightly non-Gaussian elliptic profile
with waists of wg0 = 2.7 mm and wm0 = 1.5 mm. The
minor axis of the ellipse is rotated by 35◦ with respect
to the magnetic symmetry axis, and the intensity used is
Ppump = 98.4 mW. The simulated time evolution of the
pumping pulse ignores the ramp-up and ramp-down of
the AOM, and assumes a square pulse for 160 ns. Fur-
thermore, the MOT coils impose a quantization axis for
the ∆m = 0 transition. The pump pulse is polarized
along the MOT coil axis, and as a result, atoms near
the center of the MOT field are driven less strongly by
the pump pulse. In the model, this is accounted for by
introducing an effective intensity driving the transition,
given by I · 4y2/(x2 + 4y2 + z2), where y is the MOT
coil axis. In the simulations the MOT cloud center is
offset by 2 mm with respect to y = 0 based on measure-
ments of the energy splittings of the magnetic states. The
pumping leaves the ensemble inhomogeneously excited,
with the excitation being highest for atoms slightly away
from the beam axis and for the slowest atoms along the
beam axis. On average 85 % of atoms are excited within
the cavity waist at the end of the pump pulse. Atomic
spontaneous decay at a rate γ and leak of cavity pho-
tons through the mirrors at a rate κ are accounted for
by Liouvillian terms. Throughout the simulation each
atom interacts with the cavity mode with different cou-
pling rates gjc depending on their positions relative to
the Gaussian cavity mode waist (w = 0.45 mm) and the
standing wave structure. We calculate the cavity output
power from one mirror (comparable to our experimental

observations) by P = ~ωcnκ/2.
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