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Abstract

We present a method of nondestructive characterization of cold and trapped caesium
atomic samples which relies on optical phase-shift measurement in a shot-noise-limited
Mach-Zehnder white-light interferometer. The phase shift imposed on an off-resonant light
due to dispersive interaction with atoms is monitored via a pulsed homodyne detection
scheme, allowing for fast and nondestructive characterization of atomic samples. The
estimated rate of real transition for a single probe pulse is found to be as low as 0.038.
The population fluctuation of the upper hyperfine level in the caesium electronic ground
state is measured to scale linearly with the number of atoms, which is an evidence that
the experimental apparatus has the sensitivity to track the projection noise of a coherent
superposition state.
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6.3.1 Århus trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.2 NBI trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.3 Compensation of magnetic field transients . . . . . . . . . . . . . . . 65

6.4 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.1 Aarhus imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 NBI imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Computer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6.1 Loading and loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6.2 Density and size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Dipole Trap 76

7.1 Loading scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Imaging of the dipole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Loading dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Mach-Zehnder Interferometer 83

8.1 Optical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.1.1 Probe laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.1.2 Locking Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.3 Fibre-optic interferometer . . . . . . . . . . . . . . . . . . . . . . . . 86
8.1.4 Free-space interferometer . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.5 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.1.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 White-light alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



8.3 Noise properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.1 Amplitude noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.2 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Interferometric measurements with cold atoms 97

9.1 Experimental variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 Interferometry with cold atoms in a MOT . . . . . . . . . . . . . . . . . . . 99

9.2.1 Loading dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.2.2 Density in the MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2.3 Stark shift measurement . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2.4 Atomic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.3 Nondestructive characterization of dipole trap . . . . . . . . . . . . . . . . . 106
9.3.1 Loading dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3.2 Oscillation frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3.4 Density and number of atoms . . . . . . . . . . . . . . . . . . . . . . 112
9.3.5 Rate of real transitions . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.6 Noise of dipole trapped atoms . . . . . . . . . . . . . . . . . . . . . . 115

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Summary and Outlook 120

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.2.1 QND measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.2.2 Spin-squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.2.3 Spin-squeezing on the Cs clock transition . . . . . . . . . . . . . . . 124

A The Electro-Magnetic Field 127

A.1 Classical field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Dipole Transition Strengths 130

C Eigenvalues of the dressed states Hamiltonian 132

D Numerical model for R&R temperature measurement 134

E Model of dipole trap phase-shift temperature measurement 135

F Estimation of the rate of real transitions 137

Bibliography 144

iii



Preface

The results presented in this thesis are obtained in about four years of experimental work
under the supervision of Prof. Eugene Polzik. I joined the Quantum Optics Laboratory in
January 2002, which at that time was situated at the Institute of Physics and Astronomy,
Aarhus University. During that time I was fortunate to work with Jens Mikkelsen and
Anton Vershovski in setting up together the first magneto-optical trap in my life. I am
also grateful to Jens Lykke Sorensen and Wolfgang Tittel who were helping me a lot as a
beginner in the field of optics when my patience was at the limit.

In February 2003 the whole lab moved to the Niels Bohr Institute, and together with
Daniel Oblak and Carlos Alzar we started rebuilding the setup. I want to give my gratitude
to these two guys, who have been patient with my Balkan temper, and to thank them for
the help during the long hours in the laboratory. I also want to thank to Carlos for his
fast and fruitful comments on the thesis and to Niels Kjaergaard contributing to part of
the results. Here I should not forget mentioning Joerg Muller and his yes and no-s in lots
of discussion we had, and moreover for giving me good advises for finding a way out of
the vacuum problems.

During these years I also had the pleasure to discuss different matters with Christian
Schori, Brian Julsgaard, Andrew Hilliard, Jacob Sherson, Jonas Neergard-Nielsen, Chris-
tian Hettich, Christina Olausson, Rasmus Olson and Bo Nielsen, and Sebastian R. de
Echaniz and Marcin Kubasik from the Institute of Photonics -ICFO in Barcelona. I would
also like to thank the Niels K. Lindegaard, Erik G. Jacobsen, Jens E. Sorensen and Ejner
Petersen from the mechanical workshop at the Blegdamsvej 17 for the fast and excellent
work they have done, to Ole B. Rasmusen from the electronic workshop, to Bjorn Nilson
and Jimmy Hansen for the software assistance.

Finally, I would like to thank to my scientific advisor Prof. Eugene Polzik who has
given me the opportunity to enter in the amazing field of cold atoms and quantum optics,
as well as for his patience, support and guidance.

At the end I want to tank to my lovely wife Valentina for her huge patience and moral
help in difficult moments, and to my little daughter Lora who has not forgotten his father
during the hours of absence from home.

The project was supported by the European Research Training Network CAUAC (Cold
atoms and ultra-precise atomic clocks) funded via the contract N:HPRN-CT-2000-00165
and the Danmarks Grundforsknings fond.

Plamen Petrov, February 2006

iv



List of Publications

Journal Papers

1. D. Oblak, P.G. Petrov, C.L. Garrido Alzar, W. Tittel, A.K. Vershovski, J.K. Mikkelsen,
J.L. Sørensen, and E.S. Polzik, ”Quantum noise limited interferometric measurement of
atomic noise: towards spin squeezing on the Cs clock transition”, Phys. Rev. A, 71,
043807, (2005).

2. J.H. Mueller, P. Petrov, D. Oblak, C.L. Garrido Alzar, S.R. de Echaniz, E.S. Polzik,
”Diffraction effects on light-atomic ensemble quantum interface”, Phys. Rev. A, 71,
033803, (2005).

3. P.G. Petrov, D. Oblak, C.L. Garrido Alzar, Niels Kjærgaard, and E.S. Polzik, ”Non-
destructive interferometric characterization of an optical dipole trap”, to be submitted to
Phys. Rev. A.

Contribution to Conferences

1. P.G. Petrov, D. Oblak, C.L. Garrido Alzar, N. Kjaergaard, E.S. Polzik, ”Nondestruc-
tive characterization of an optical dipole trap” ICOLS’05, 19-24th June 2005, Aviemore,
Scotland, (poster).

2. P.G. Petrov, J.H. Mueller, D. Oblak, C.L. Garrido Alzar, S.R. de Echaniz, E.S. Polzik,
”Diffraction effects on light-atomic ensemble quantum interface,” CAUAC European Net-
work Meeting, 24-27th April 2004, Porquerolles, France, (talk).

3. P.G. Petrov, C.L. G. Alzar, D. Oblak, J. K. Mikkelsen, J. L. Sørensen, W. Tittel,
A.K. Vershovski, and E.S. Polzik, ”Quantum noise limited interferometric measurement
of atomic noise,” CAUAC European Network Meeting, 9-12th October 2003, Braunschweig,
Germany, (talk).

v



4. P. Petrov, C.L.G. Alzar, D. Oblak, J. K. Mikkelsen, J. L. Sørensen, W. Tittel, A.K.
Vershovski, and E.S. Polzik, ”Probing the atomic population in Mach-Zender type inter-
ferometric setup” Young Atomic Optician Conference (YAO 2003), 3rd-8th June 2003,
Amsterdam, The Netherlands, (poster)

5. P.G. Petrov, J.K. Mikkelsen, J.L.Sørensen, W. Tittel, A.K. Vershovski, and E.S.Polzik
”Squeezing the population number difference of cold Cs atomic ensemble by using non-
demolition measurement”, 34th Conference of European Group of Atomic Spectroscopy
(EGAS 34), 9-12th July 2002, Sofia, Bulgaria (poster).

vi



Chapter 1

Introduction

The quantum nature of atom light interaction has been studied for many decades, but only
in the recent 30 years it has entered the unique field of the cold atoms and ultra-precise
spectroscopy. The use of cold atoms in atomic clocks has improved the frequency mea-
surement accuracy and nowadays this measurement is limited by the quantum projection
noise of an ensemble of uncorrelated particles [1].

It has been shown that for correlated atomic ensembles employed in the Ramsey inter-
rogation cycle the uncertainty of frequency determination can be reduced below the funda-
mental quantum projection noise level [2]. A correlated atomic state has been recognized
as a state for which the ensemble wavefunction cannot be factorized over the wavefunction
of different parties [3]. The preparation of a correlated atomic state involves generation
of spin-squeezed state [4]. There are different schemes to generate squeezed states. The
Quantum Non-Demolition (QND) measurement has been identified as an efficient method
for production of spin-squeezed states [5]. Squeezed state generated through Faraday po-
larization rotation has been produced for ensemble of room temperature atoms [6]. Trans-
fer of the quantum state of non-classical light beam to an ensemble of cold atoms has been
found to produce correlated atomic ensembles [7]. The generation of spin-squeezing via
continuous quantum feedback has been proposed in [8] and experimentally implemented
by Geremia et al. [9] for a sample of cold caesium atoms.

The advantages of using cold atoms to generate squeezed states has been pointed out
in [6], as a way to increase the interaction time by a factor of at least thousand. The high
optical densities of cold atomic samples allow for increasing of the interaction strength
and in the same time to reduce the decoherence due to absorption by increasing the
detuning of the probe light. Inserting the atomic sample into optical cavity has also been
recognized [10] as a tool to increase the interaction strength.

All of the above experiments are implemented with atoms in a coherent state, and the
detection is done in a polarization interferometer, where the circularly polarized compo-
nents of a linearly polarized probe experience different index of refraction due to coupling
to atomic levels with different projections of the total angular momentum. The power of
the probe light ranges from 1 mW [6] to 250 nW [10].

The current thesis includes experimental and theoretical results on light-matter inter-
action, which are a step toward generation of a spin-squeezing on the caesium clock tran-
sition [11] via a QND measurement of atomic population number difference by monitoring
the phase shift of an off-resonant light, imposed by interaction with cold atomic sample,
in a Mach-Zehnder interferometer. Compared to the above experiments our proposal for
spin-squeezing on the clock transition involves QND measurement on a superposition i.e.
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clock state. The pulsed probe light and the low power in the probe beam in a combination
with high detuning, allows for pulse integrated rate of spontaneous emission lower than
one. The evidence for the nondestructive character of our interferometric measurement is
the experimental data presented in this thesis on the characterization of a magneto-optical
and dipole traps.

The thesis is organized as follows. The chapters 2 to 5 are the theoretical part of the
thesis. In Chapter 2 we introduce the atomic and light variables and describe the inter-
action of an ensemble of two level atoms with a coherent light field. The corresponding
phase shift and absorption are derived from the complex index of refraction. Chapter 3
includes basic theory of cold atomic sample preparation in a magneto-optical-trap (MOT)
and loading it in a single focused beam dipole trap. Chapter 4 is dedicated to descrip-
tion of the main experimental tool - the Mach-Zehnder interferometer, including the noise
sources influencing the experimental signal. Chapter 5 presents a simple model to include
diffraction effects in the problem of light-matter quantum interface, i.e. to derive simple
scaling laws for the signal to noise ratio of the interaction in different sample geometries.
In Chapter 6 we start with the experimental part of the thesis and describe the experi-
mental setup for laser cooling and trapping of caesium atoms in a MOT, along with the
characterization of trap atom number, density and temperature using the fluorescence
detection method. Chapter 7 describes the dipole trap setup and presents results on a
fluorescence imaging of the atomic cloud with a triggerable camera. The experimental
setup of the Mach-Zehnder interferometer is presented in Chapter 8 together with experi-
mental results on the interferometer noise. Finally in Chapter 9 we present results on the
non-destructive quantum-noise limited characterization of cold atoms prepared in a MOT
and trapped in a dipole trap. In Chapter 10 we make a summary of the thesis and discuss
future research plans towards spin-squeezing on the caesium clock transition.



Chapter 2

Atom-light interaction

In the basis of the current work underlies the interaction of an atomic sample with coherent
light. The chapter presents the basic quantum mechanical properties of that interaction.

We start with introduction of the operators used to describe the atomic system and
light in quantum mechanics. The state of a two level atom is represented by operators and
the collective behavior of the atoms is described by its density operator. An alternative
view of the collective problem is presented by the use of the atomic collective angular
momentum formalism allowing a pictorial illustration of the state evolution using the
Bloch sphere representation. The electromagnetic field is quantized using the harmonic
oscillator annihilation and creation operators. The phase of the real light beam is described
by inclusion of a coherent state formalism.

In the second part of this chapter we construct the atom-field dipole interaction hamil-
tonian and solve the equations of motion for the system. We derive expressions for the
phase shift and absorption of light and introduce the off-resonant interaction hamiltonian.

2.1 Atomic States

2.1.1 Atomic operator

In the atom light combined quantum mechanical system the atomic energy is described
by the use of the atomic operator. The definition of the atomic operator can be found
elsewhere in the textbooks [12, 13]. Let’s us assume that an atom can occupy a set of
energy levels and let us choose two of them i.e. state |i〉 and state |j〉. Then the atomic
operator is defined as:

σ̂ij = |i〉〈j| (2.1)

We can distinguish between to type of atomic operators. For i = j the operator is called
population operator, and when i 6= j we refer the corresponding operator as coherence
or projection operator. In the atomic operator representation the states |i〉 and |j〉 are
eigenstates of the population operator with eigenvalues of ~ωi and we have the usual
orthogonal relation of 〈i|j〉 = δij and unity operator defined in the space of the eigenstates
as
∑

i |i〉〈i| = 1. Every atomic state vector Ψ can be expressed as a superposition of the
eigenstates of the atomic operator i.e. Ψ =

∑

i ci|i〉. The mean values of the diagonal
elements of the atomic matrix representation σ = ||i〉〈j|| are the probabilities of the atom
to occupy a state with index i i.e. 〈σ̂ii〉 = |ci|2.

When acting with the operator in Eq.(2.1) on a given atomic state |j〉 we get that
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σ̂ij|j〉 = |i〉. Hence the operator σ̂ij acting on a state |j〉 changes the internal atomic state
to |i〉. For an ensemble of many atoms the collective operator will be defined as a sum
over the number of atoms Nat.

σ̂ij =

Nat
∑

k

σ̂
(k)
i,j =

Nat
∑

k

|i〉〈j|(k) (2.2)

The Hamiltonian of the atomic system in quantized form is expressed as a sum over all
possible atomic states which can be excited by interaction with light. Then the atomic
hamiltonian ĤA is obtained by summation over the number of atoms in the ensemble

ĤA =

Nat
∑

k

∑

i

~ωi|i〉〈i|(k) (2.3)

2.1.2 Dipole operator

In practice, atoms interact with light and change their internal state. In the dipole ap-
proximation the internal atomic state is described by the position of the valence electron
w.r.t. the nuclei. In classical terms one can think of an atomic dipole with the negatively
charged electron and positively charged nuclei. In quantum mechanics to describe the po-
sition of the electron we use the position operator r̂. The dipole operator is then expressed
as the product of the electron charge e and the electron position operator r̂. Using the
definition for the atomic operator in Eq.2.1 we get to:

d̂(k) = er̂(k) = e
∑

i,j

|i〉〈i|r̂(k)|j〉〈j| =
∑

i6=j

d̂
(k)
ij σ̂

(k)
ij (2.4)

Note that all terms with i = j vanish since they involve diagonal matrix elements of the
odd-parity operator d̂. The index k in the above equation refers to a k-th atom from an
ensemble of N atoms. The above expressions consider a collection of atoms in the discrete
case.

In most of the experimental cases a continuous variable treatment of the problem is
necessary. For that reason we must define an atomic number operator as N̂ =

∑

i σ̂ii

which has a mean value of 〈N̂〉 = N/(N (x, y, z)dxdydz) with an atomic number density
being N . Then the mean value of an operator Ô is defined as

〈Ô〉 =

∫

V
N (x, y, z)Ô(x, y, z)dxdydz (2.5)

The three dimensional integration can be simplified by assuming different atomic sample
geometries.

2.1.3 Density operator. Mixed and pure states.

In the following, we consider the state of a collection of uncorrelated atoms which is
described by a statistical density operator ρ̂ [13]. The density operator first introduced by
J. von Neumann in 1927, quantitatively describes the state of an ensemble of identically
prepared particles. That is to say that all particles are in a state with a state vector |Ψ〉
referred as pure state. If an ensemble contains particles prepared in different uncorrelated
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states, we say that the state is mixed. The density operator of a mixed state is defined as
follows:

ρ̂ =
∑

i

αi|Ψi〉〈Ψi| (2.6)

where the sum runs over the all sub-ensembles with state vectors |Ψi〉 and αi is the
probability of the ensemble to be in the state with |Ψi〉. From the above expression it
follows that for a pure state only one α probability will be different from zero, which means
that all particles are in the same state and the density operator becomes:

ρ̂ = |Ψ〉〈Ψ| (2.7)

The last two equations depict that every mixed state can be expanded in a superposition
of pure states. If a measurement of observable A is performed on a mixed ensemble the
value obtained is the ensemble average and is defined as:

[

Â
]

= Tr(ρ̂Â) (2.8)

[σ̂ij ] = Tr(ρ̂σ̂ij) = ρij (2.9)

where Â is the operator associated with the observable A. The result is invariant to any
basis of states since the trace operation is independent of representation [13]. Using this
relation we can calculate the ensemble average of the atomic operator σ̂ij as shown above.

2.1.4 Atomic collective angular momentum

Another useful representation of the state of an ensemble of two-level atoms is the pseudo-
spin formalism. According to that every atom is represented by an angular momentum
or spin [14,15]. The state of an atom which can occupy either ground state |3〉 or excited
state |4〉 is described by the following system of pseudo-spin operators expressed as the
components of the atomic operator. The choice of the levels is in accordance with the
ground state hyperfine structure of caesium Sec.3.1.

̂k
x =

1

2
(σ̂k

43 + σ̂k
34),

̂k
y =

−i

2
(σ̂k

43 − σ̂k
34), (2.10)

̂k
z =

1

2
(σ̂k

44 − σ̂k
33),

where ̂k
x , ̂k

y and ̂k
z are the projections of the angular momentum operator ̂k on the x,

y, and z axes, respectively. These operators fulfil the angular momentum commutation
relation [̂i, ̂j ] = iεijl̂l, where εijl is the Levi-Civita tensor. For an ensemble of Nat atoms,

we define the collective angular momentum operators by Ĵx =
∑

k ̂k
x , for the x component,

and similarly for the other.
The atomic ensemble state can be pictorially illustrated by the use of the Bloch sphere

representation [16]. According to that the mean value of the operators in Eq.(2.10) are
coordinates of a vector along x, y and z, which length is 〈Ĵ 〉2 = 〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2 and
it should stay constant under rotation of the pseudo-spin vector if the number of atoms
in the ensemble does not change. The values of the projections can change but the length
of the vector Ĵ is constant. Then the evolution of the ensemble state is represented by
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Figure 2.1: Bloch sphere representation of the collective atomic pseudo-spin (a). An ex-
ample of trajectory over the sphere surface with initial state having all atoms in |3〉 and
after a π/2 pulse of radiation is applied the new state becomes a superposition state (see
text for details)(b).

a trajectory over the surface of the Bloch sphere [see Fig.2.1]. The population difference
between the two atomic levels is then given by the projection of Ĵ on the polar axis (Ĵz),
whereas the projections (Ĵx) and (Ĵy) in the sphere’s equatorial plane give information
about the atomic coherences. Let us consider a coherent superposition state where the
probability to find the atoms in the ground state is equal to that of finding them in the
excited one. Then the state vector can be written in the form:

|Ψ〉 =
1√
2

(|3〉 + |4〉) (2.11)

This state is a very important one for atomic clocks [2, 17]. For that state the density
operator has the form given by Eq.(2.7).

Then the ensemble average of the components of the collective spin are calculated from
the single atom state Eq.(2.11) and the spin projections in Eq.(2.10) using Eq.(2.8) and
multiplication by Nat.

〈Ĵx〉 = Nat, 〈Ĵy〉 = 〈Ĵz〉 = 0, (2.12)

δĴx = 0, δĴy = δĴz =
1

2

√

Nat, (2.13)

δĴyδĴz ≥ Nat

4
(2.14)

When performing a measurement on Ĵz the outcome of the measurement will be distributed
around the mean value with uncertainty δĴz , which obeys the Heisenberg uncertainty
relation [Eq.(2.12)]. In the Bloch sphere representation the uncertainties are illustrated
as a sphere with a radius equivalent to the uncertainty of the minimum uncertainty state
satisfying the equality in the uncertainty relation. The square of the uncertainty, i.e. the
noise of that state is the so called quantum projection noise [17], which is discussed in
detail in Ch.4.

We must note that if the Nat is reduced during the measurement, the state is no
longer pure since the atoms which have been removed from the sample will form another
sub-ensemble leading to transformation of the overall ensemble state into a mixed state.

Let us now look at a mixed state with half of the atoms in the ground and half in
the excited state. The density matrix of such state will be a sum of two terms |3〉〈3| and
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|4〉〈4| as depicted in Eq.(2.6). Using the density matrix and Eq.(2.8) we find the following
relations between the operators in Eq.(2.10).

〈Ĵx〉 = 〈Ĵy〉 = 〈Ĵz〉 = 0, (2.15)

δĴx = δĴy = δĴz =
1

2

√

Nat, (2.16)

Note that this state has the same uncertainty as that of a coherent superposition state
but the length of the macroscopic pseudo-spin vector is zero which indicates that the
ensemble is not oriented or polarized, whereas in the case of pure or coherent atomic state
is polarized giving rise to a macroscopic atomic orientation. The mixed collective spin
state can be represented as a sphere with radius of δĴz = 1

2

√
Nat in the center of the

coordinate system.
As we have mentioned above the evolution of the spin state can be represented by

rotations around different axes having the tip of the spin vector fictionally drawing a
trajectory on the Bloch sphere as in Fig.2.1(b). The rotation can be caused by a pulse of
electromagnetic radiation and according to the detuning and the phase of that radiation
the atom performs different rotations [2]. The plotted trajectory is a rotation of the
atomic spin by an angle of θy = π/2 under coherent excitation with a pulse of a microwave

radiation with duration of τπ/2 =
θy

Ωµ
with Ωµ being the Rabi frequency of the field [2].

Here we have assumed that the states in concern are the two hyperfine levels of the ground
state in Cs as shown in Fig.3.1(a). After application of the π/2 pulse a superposition state
is created where the spin vector lies in the equatorial plane of the Bloch sphere.

2.2 Light States

In this section we introduce the quantum states of light which are to be used throughout
the discussion of light matter interaction. A detailed derivation of the quantum mechan-
ical representation of the electromagnetic field is made in Appendix A. In the classical
description [18] the electromagnetic field is described by its electric field vector given by
the following expression:

E(r, t) =
1√
2
(ǫE(t)ei(k·r−ωt) + ǫ∗E(t)∗e−i(k·r−ωt)) (2.17)

where ω = |k|c is the frequency of the wave with k being the wave vector. The quantity E ,
which caries the dimension, is the field amplitude and generally has slow time dependance
compared with the field oscillation at ω. The intensity of the field is calculated as I =
cε0

2 |E(t)|2.
In quantum mechanics the light variables are described by operators. To describe

the electromagnetic field quantum-mechanically we use the annihilation â and creation â†

operator of the harmonic oscillator formalism. For a field with k modes of p polarizations
we have:

Ê(r, t) = i
∑

k,p

√

~ωk

2ε0V
(ǫâkpe

i(k·r−ωkt) − ǫ∗â†kpe
−i(k·r−ωkt)) (2.18)

where the sum is done over all modes and polarizations in a quantization volume V . The
Hamilton operator of the electromagnetic field describes the total field energy and is a
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Figure 2.2: Scheme of a coherent state with the uncertainties in the phase and photon
number. The horizontal axis is the mean value of the electric field with and its deviation.

sum of the electric and magnetic field contribution integrated over the volume:

Ĥ =
∑

k,p

~ωk

(

â†kpâkp +
1

2

)

(2.19)

The hamiltonian contains the inherent feature of the quantum description of the radiation
field i.e. the zero point energy ~ωk/2 when there are no photons in the field. The energy is

similar to the energy of the quantum mechanical harmonic oscillator. The product â†kpâkp

is called photon number operator n̂kp. Its eigenstates are the so called Fock or number
states [19]. The eigenvalues of n̂kp give the number of photons in the k-th mode with
polarization p as well as the mean value of 〈n̂kp〉 = nkp. For simplicity, we now consider a
single mode case having only one member of the sum in Eq.(2.18) and omit the index kp.
When acting on a number state |n〉 with the annihilation operator â a photon is destroyed
|n−1〉, and when acting with the creation operator a photon is created in the mode |n+1〉.
Using these relations we can obtain the state |n〉 by successive applications of the creation
operator on the vacuum state |0〉. According to discussion above we have:

n̂|n〉 = n|n〉,
â|n〉 =

√
n|n − 1〉 (2.20)

â†|n〉 =
√

n + 1|n + 1〉

|n〉 =

(

â†
)n

√
n!

|0〉.

The number states are useful for description of a low photon number light sources,
but they fail in representing the real optical fields, where the total number of photons is
large. The phase of a well defined photon number state |n〉 is completely random [12].
However, the phase of the light in real beams is a very important physical quantity and a
good description of it is required. The most commonly used for that purpose state is the
coherent light state introduced by Roy Glauber in [20] which is a linear superposition of
number states.

|α〉 = exp

(

−1

2
|α|2

) ∞
∑

n=0

αn

√
n!
|n〉 (2.21)
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where α is the eigenvalue of the photon annihilation operator â|α〉 = α|α〉. The mean
value of the photon number operator for the coherent state is 〈n̂〉 = |α|2. The probability
of finding n photons in the field is given by Poisson distribution

P (n) = |〈n|α〉|2 = e−〈n〉 〈n〉n
n!

(2.22)

To illustrate the importance of the coherent state for the phase of a real light field
containing large number of photons, we introduce the hermitian operators:

X̂ =
1

2

(

â† + â
)

, Ŷ =
i

2

(

â† − â
)

. (2.23)

The operators are also known as amplitude X̂ and phase Ŷ quadrature operators of the
electromagnetic field and can be found in any quantum optics textbooks [12]. Then the
electromagnetic field Eq.(2.18) for a single mode can be expressed in terms of these oper-
ators as:

Ê(χ) =

√

~ωk

2ε0V

(

X̂ cos χ + Ŷ sin χ
)

(2.24)

with χ = ωt − k · r− π/2. The coherent state expectation value of the field operator and
its varince can be calculated from Eq.(2.23) and Eq.(2.24) and using the properties of the
coherent states:

S = 〈α|Ê(χ)|α〉 = |α| cos(χ − θ), N = (δÊ(χ))2 =
1

4
. (2.25)

In the last equations the field is expressed in the units of the pre-factor below the square-
root and the complex value of α is α = |α|eiθ.

A schematic representation of coherent state is shown in Fig.2.2. The mean amplitude
associated with the coherent state is shown as an arrow with length |α| =

√

〈n̂〉 inclined
by an angle of χ − θ as also described in [12]. The projection on to the real field axis
gives the expectation value S of the real field with its standard deviation N1/2 = 1/2. The
uncertainty in the photon number δn =

√

〈n〉 and phase δφ = 1/(2
√

〈n〉), represented
by mutually orthogonal directions in the uncertainty disk, are found to obey the product
δnδφ ≥ 1/2.

The last conclusion is only a qualitative example, since it is not a consequence of a
commutation relation between number and phase operators. Nevertheless, it correctly
describes the trade off between amplitude and phase uncertainties of the electric field
operator associated with the coherent state. The fractional uncertainty in the photon
number δn

〈n〉 = 1√
〈n〉

and in the phase δφ both improve with increasing the photon number.

The higher the photon number the better the amplitude and phase of the real field are
defined.
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2.3 Atom-light interaction

In this section we briefly discuss the interaction of a two level atom with an electromagnetic
field and derive general expression for the phase shift and absorption expressions in the
case of caesium D2 line.

2.3.1 Interaction Hamiltonian

The section describes the interaction Hamiltonian, which is to be used further in the
context of the interaction of an off-resonant beam with a sample of cold atoms. In our
experiment we use an optical transition to probe the atomic population of a sample of
cold atoms. The coupling of atomic dipole moment with the electric vector of the light
field rules the evolution of the atomic state. In this interaction the light field and atomic
system are described quantum-mechanically. In the rotating wave approximation (RWA)
the interaction Hamiltonian is given by:

Ĥi = ~

(

gσ̂eg â + g∗σ̂geâ
†
)

(2.26)

g =
iωǫ · d̂ge√
2~V ωǫ0

(2.27)

where g is a coupling constant with ω being the frequency of the driving field, d̂eg = d̂∗ge

is the introduced in previous chapter dipole matrix element of the transition between two
levels |g〉 ground and |e〉 excited, and σ̂ge and σ̂eg are the atomic operators also described
in Ch.2. An alternative representation is the use of the so called rising and lowering
operators with the property σ̂+|g〉 = |e〉 and σ̂−|e〉 = |g〉 in analogy with annihilation and
creation operator of the EM field. Then the interaction Hamiltonian is expressed as:

Ĥi = ~

(

gσ̂+â + g∗σ̂−â†
)

(2.28)

The first term in the above equation describes the absorption of photon from the field
i.e. the atom is excited and a photon is annihilated. The second term corresponds to
stimulated emission of a photon meaning that an atom relaxes to the ground state and a
photon is created.

2.3.2 Equations of motion.

The total Hamiltonian of the system is a sum of the different contributions - atoms, light
and interaction Hamiltonians. Using equations Eq.(2.3), Eq.(2.19), and Eq.(2.28) we get:

Ĥtot =
1

2
~ω0σ̂z + ~ωâ†â + ~

(

gσ̂+â + g∗σ̂−â†
)

. (2.29)

In the last equation the reference level for the atomic state energies is taken right between
the two states ground and excited. The operator σ̂z = σ̂ee − σ̂gg and the vacuum energy is
neglected for a light field with large photon numbers. In the Heisenberg picture the time
evolution of the operators is governed by the equation of motion

dÔ

dt
= − i

~
[Ô, Ĥtot] (2.30)
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In our case the operators of interest are the lowering and the field annihilation opera-
tor. Using the Eq.(2.30) and substituting g = i|g| we can derive the following system of
differential equations.

˙̂a = −iωâ − |g|σ̂− (2.31)

˙̂σ− = −iω0σ̂− − |g|σ̂z â (2.32)

˙̂σ+ = iω0σ̂+ + |g|σ̂z â (2.33)

The above set of equations describe the evolution of a system which does not have any
spontaneous decay. Lets assume that via spontaneous emission the atom decays to the
ground state with a rate of γ. A master equation analysis of the spontaneous decay
of atomic coherence operator σ̂z is presented for example in [21]. To correct for the
spontaneous decay we rewrite Eq.(2.31), Eq.(2.32), Eq.(2.33) in the form:

˙̂a = −iωâ − |g|σ̂− (2.34)

˙̂σ− = −
(γ

2
+ iω0

)

σ̂− − |g|σ̂z â (2.35)

˙̂σ+ = −
(γ

2
− iω0

)

σ̂+ + |g|σ̂z â (2.36)

The derivation of the equations is extensively done in [22]. Here we only give the results for
the light annihilation operator and the lowering operator, in order to solve the Heisenberg
equation of motion for â. The equations for the slowly varying operators â′ = â exp iωt
and σ̂′

− = σ̂− exp iωt are obtained by substituting the â− , and σ̂− operators in Eq.(2.34).

˙̂a
′
= −â′|g|2 −i∆ + γ

2

∆2 +
(γ

2

)2 σ̂z (2.37)

˙̂σ
′
− =

(

−γ

2
+ i∆

)

σ̂′
− − |g|â′σ̂z (2.38)

˙̂σ
′
+ =

(

−γ

2
− i∆

)

σ̂′
+ + |g|â′σ̂z (2.39)

In the last equation we have inserted the detuning of the light field from the atomic
transition ∆ = ω − ω0.

2.3.3 Phase shift and absorption.

In this section we will discuss the imprint of the atomic variable onto the light variable
and derive the main characteristics of the light-atom interaction.

The Eq.(2.37) concerns a single atom, since in the Eq.(2.29) enters the single atom
Hamiltonian. For an ensemble of atoms one must replace the expression in the exponent
with a sum over all atoms or integrate over the density profile of the sample. Assuming
that the atomic population does not change much for the time the light passes through
the entire atomic sample of length l, we can solve Eq.(2.37)

â′(t) = â′(0) exp

(

−|g|2 −i∆ + γ
2

∆2 +
(γ

2

)2 σ̂z
l

c

)

(2.40)

Then the σ̂z will represent the inversion of the atomic sample. The imaginary part of
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the exponent in Eq.(2.40) depends on 1/∆ and the real part is decreasing as 1/∆2. The
imaginary part is proportional to the phase shift of the light, resulting from coherent elastic
scattering of probe light photons, whereas the real part is responsible for the absorption
of photons. Hence, the last equation suggests that the interaction can be both dispersive
and absorptive.

The discussion so far was concentrated on a two-level atomic system. However, in
practice the atoms have many levels and some of them can contribute to the phase shift
and absorption, depending on the detuning of the light with respect to the corresponding
atomic transitions involving these levels. The net effect of the interaction is modification
of the light’s phase and intensity.

The macroscopic variable, which characterizes the ability of the atomic medium to
change the light phase and intensity is the complex index of refraction n∆. In the case
of alkali metal D line J → J ′ transition, between states having total electronic angular
momentum of J and J ′, the n∆ is given by [23]

n∆ − 1 =
λ3

8π2
(2J + 1) ×

∑

F,F ′

NF SFF ′

γ

2

∆FF ′ + i
(γ

2

)

∆2
FF ′ +

(γ
2

)2 , (2.41)

where SFF ′ are the hyperfine transition F → F ′ strength factors, explained in Appendix B,
∆FF ′ = ω−ωFF ′ is the detuning of the probe laser with respect to the hyperfine transition,
NF is the number density of the atoms in the ground hyperfine state with total angular
momentum of F , λ is the common wavelength for the transitions in the current D line.
The above equation is valid for a polarized probe light interacting with unpolarized atomic
sample. The population of all magnetic sublevels |F,mF 〉 is assumed to be the same i.e
NF,mF

= NF /(2F + 1). In the case of Cs D2 line J = 1/2 → J ′ = 3/2, the values for F
and F ′ run in the limits F = 3, 4 and F ′ = 2, 3, 4, 5 [see Sec.3.1].

The real part of the refractive index φ = k0lℜ (n∆ − 1) is the phase shift imposed on
the light field by the dispersive interaction with atomic sample. It can be written in the
following form

φ∆ =
λ2

2πA

∑

F,F ′

NF SFF ′

∆FF ′

γ
2

∆2
FF ′ +

(γ
2

)2 (2.42)

At the same time there is an absorptive interaction which reduces the real part of the
exponent in Eq.(2.40). Expressing this quantity with the imaginary part of the refraction
index α = k0lℑ (n∆ − 1) gives the absorption which is connected with loss of photons from
the field.

α∆ =
λ2

2πA

∑

F,F ′

NF SFF ′

(γ
2

)2

∆2
FF ′ +

(γ
2

)2 (2.43)

The absorption α∆ is inversely proportional to the square of the light detuning and this
property can be used to reduce the rate of absorption using large detuning of the probe
light. In the last two equations we have substituted the density NF = NF /Al, with A
being the sample cross section, NF the number of atoms on state with angular momentum
F and J = 1/2 for the case of the Cs electronic ground state.

A pictorial representation of the detuning dependance of both absorption and phase
shift is shown in Fig.2.3 for the case of atoms on the two ground states of caesium. The
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Figure 2.3: Theoretical phase shift φ∆ for equal populations of the two ground states. The
phase shift is zero at a detuning of ∆0 = 4312 MHz (a); and absorption α∆ (b) for the
case of caesium atom interacting with light field detuned as shown in the levels scheme.

probe field is detuned by ∆ from the D2 line cycling transition and the two ground states
are equally populated. The light field intensity is assumed to be low enough, so that the
populations are not perturbed.

To this end we have considered that the population does not change during the inter-
action time τ i.e. the time the light passes through the atomic sample. For an atomic
sample of 3 mm the time it takes the light to pass is 10−2 ns. However, for a time equal to
the probe pulse duration τp, typically several microseconds, the population could change.
Then the σ̂z operator will depend on the time and has to be averaged over the pulse
duration ¯̂σz = 1

τp

∫ τp

0 σ̂z(t
′)dt′ over the pulse duration.

An additional complication arises from spatial dependance of the light field intensity
and the spatial density distribution of the atomic sample. For example, we can take the
Gaussian beam, where we have both radial and axial dependance. Then the phase shift
have to be sampled over the spatial profile of the light beam. Effectively, this can be
done by replacing the gaussian profile with an equivalent top hat profile with an area
of A = πw2

0/2 like it is often done in the characterization of spatially non-uniform light
beams [24].

In the case of a non-uniform atom number distribution in the atomic sample an addi-
tional sampling has to be done over the important spatial coordinates. The coupling of
an inhomogeneous light beams to a non-uniform atomic samples is extensively discussed
in [25] and a general overview of that is done in Ch.5. The atomic samples investigated
in this work exhibit rotational symmetry in the direction of light field propagation z. For
experiments on the MOT we can assume that the density is almost constant along the
transverse direction, whereas in the case of dipole trapped sample it is not.

Taking into account the above considerations we can express the phase shift and absorp-

tion of an ensemble of multilevel atoms with an inversion operator of σ̂
(FF ′)
z = σ̂FF − σ̂F ′F ′

using Eq.(2.40), Eq.(2.42), and Eq.(2.43) as:

φ∆ =
φ0

l

∑

F,F ′

SFF ′

γ
2∆FF ′

∆2
FF ′ +

(γ
2

)2

∫ l

0
σ̂(FF ′)

z (τp)dz (2.44)
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α∆ =
φ0

l

∑

F,F ′

SFF ′

(γ
2

)2

∆2
FF ′ +

(γ
2

)2

∫ l

0
σ̂(FF ′)

z (τp)dz (2.45)

To obtain the last equations we have also substituted the value of the coupling constant
|g|2 for the case of the alkali D line transitions as it is shown in Appendix B [Eq.(B.8)].

|gFF ′ |2 = (2J + 1)
c

l

λ2

4πA

γ

2
SFF ′ (2.46)

When calculating the mean values of 〈φ∆〉 and 〈α∆〉 in Eq.(2.44,2.45) the integral gives
l and we factor out a dimensionless factor φ0 expressed through atomic sample and light
parameters:

φ0 =
λ2lN
2π

=
|gFF ′ |2l

γ
2 c

Nat (2.47)

The phase shift grows as the atomic density grows. In practise, it is often preferable to
have large detuning of the probe light in order to keep the rate of absorption low. Hence,
at a fixed detuning, the higher the density of the atomic sample the bigger the phase shift.

2.3.4 Off-resonant interaction

In the following lines we will describe a case of an interaction that weakly couples the
ground and excited state via an optical field that is detuned by an amount bigger then
the hyperfine splitting of the excited state. The analysis is based on the alkali metal level
structure and in particular the atomic Cs.

The interaction hamiltonian in Eq.(2.28) can be rewritten in the case of slowly varying
amplitude approximation with the help of the Eq.(2.38) and Eq.(2.39).

Ĥi = −~

[

4
∑

F ′=2

|g3F ′ |2∆3F ′ â†â

∆2
3F ′ +

(γ
2

)2 (σ̂33 − σ̂F ′F ′) +

5
∑

F ′=3

|g4F ′ |2∆4F ′ â†â

∆2
4F ′ +

(γ
2

)2 (σ̂44 − σ̂F ′F ′)

]

(2.48)

Now it is convenient to express the inversion operators with the operator of number of
atoms and the Ĵz projection of the collective atomic angular momentum from Sec.2.1.4

as σ̂33 = N̂tot

2 − Ĵz and σ̂44 = N̂tot

2 + Ĵz . This in a sense mean that the population of the
ground hyperfine states is expressed as the sum of half of the total population and the
population number difference.

In the off-resonant case the excited state is little populated, thus we can replace the
σ̂F ′F ′ with zero. Then the population operators σ̂33 and σ̂44 can be pulled out of the sum.
Further, it is possible to chose a detuning ∆0 at which the two sums in Eq.(2.48) are equal
and have opposite sign [see also Fig.2.3(a)]. Hence, at that particular detuning the mean
phase shift in Eq.(2.42) will vanish for equal populations of the two ground state hyperfine
levels. Then the interaction Hamiltonian becomes:

Ĥi = ~κ̃

(

n̂

2
+ Ŝz

)

Ĵz (2.49)

In the last equation we have made a step forward to describe the light field interacting with
atoms as propagating in an interferometer with two arms, probe arm which contains the
atoms and a reference arm. Then the photon number operator â†â in Eq.(2.48) is the one
which describes the photon flux in the probe arm. We express it as half of the input photon
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number n̂ plus an operator Ŝz describing the difference between the photon numbers in
the two arms i.e. Ŝz = 1

2(â†prâpr − â†ref âref ). The last operator is equivalent to the Stock’s
operators for the light polarization in polarization rotation experiments [5,7,26,27] or the
operator of the difference in the number of photons between the two arms of the separated
arm interferometer as described in [28]. Additional information of Ŝ is provided in Ch.4
in the context of light interferometers.

The interaction strength depends on the value of the coupling constant at a detuning
∆0. The last is is given by:

κ̃ =
5
∑

F ′=2

|g3F ′ |2∆0

∆2
0 +

(γ
2

)2 . (2.50)

The physical meaning of the coupling constant will be also discussed in the scope of the
collective light atom coupling in Ch.5 and in the Outlook. For now we will only restrict
to noting that the hamiltonian in Eq.(2.49) in the off-resonant limit describes a quantum
non-demolition measurement (QND) [5] that generates non-classical spin states [2, 4].

The imprint of the atomic variable on the light phase via the interaction Hamiltonian
in Eq.(2.49) can be also interpreted in terms of light phase change, by rewriting the phase
shift from Eq.(2.42) in the form presented in [11]:

φ∆ =
φ0

2

[

(1 + β)

5
∑

F ′=3

S4F ′

γ
2 ∆4F ′

∆2
4F ′ +

(γ
2

)2 + (1 − β)

4
∑

F ′=2

S3F ′

γ
2∆3F ′

∆2
3F ′ +

(γ
2

)2

]

(2.51)

β =
NF=4 −NF=3

Nat
=

〈Ĵz〉
〈Ĵ〉

(2.52)

where β is the population number difference connected with the Ĵz component of the
collective pseudo-spin operator.

Let us now suppose that β = 0 and the probe light is detuned by ∆0 from the cycling
transition as shown in Fig.2.3. Then the coherent probe field will acquire a phase shifts
from the two equally populated ground hyperfine levels separately, which would have the
same absolute value and opposite signs, thus giving a zero overall phase shift. Then any
excursion of the population number difference Ĵz will reflect in a non-zero phase shift.



Chapter 3

Atomic sample preparation

This chapter describes spectroscopy properties of atomic caesium, basic theory on laser
cooling in a Magneto-Optical Trap (MOT) and optical trapping using an Far-Off Resonant
optical Dipole Trap (FORT). The discussion follows the experimental procedure of atomic
sample preparation. The use of the cold atoms is justified due to the longer interaction
times and negligible Doppler broadening of the atomic transition at lower temperatures.
The loading of the cold sample into an optical trap enables higher atom number density
and allows for efficient coupling of an inhomogeneous light beams to a cigar-shaped atomic
samples.

3.1 Caesium level diagram

Cesium is an alkali metal with a mass of M = 133a.u. and a periodic table number
Z = 55. As an alkali metal it has only one valence electron which can have either S = 1/2
or S = −1/2 spin angular momentum. Then via the L-S coupling the total electronic
angular momentum becomes J = 1/2 and J = 3/2 thus giving rise to two fine struc-
ture components 6P1/2 and 6P3/2 of the first excited state with L = 1. The separation
of these two states from the ground state 6S1/2 in wavelength units is 894.592 nm and
852.347 nm, respectively (see Fig.3.1(a)). In the atomic spectroscopy literature they are
known as doublet lines, and often called as D1 and D2 lines. The coupling of the total
electronic angular momentum J with the nuclear spin I = 7/2 results in a total atomic
angular momentum of F = J + I. This so called hyperfine interaction splits the electronic
states to two F = 3, 4 hyperfine levels in the ground state with a separation in frequency
units of 9.19263 GHz. The microwave transition between these levels is used as an in-
ternational atomic frequency standard worldwide. Going back to the first excited state
we get values for the total atomic angular momentum of F ′ = 3, 4 and F ′ = 2, 3, 4, 5 for
the 6P1/2 and 6P3/2, respectively. The energy separations between the hyperfine states of
the two excited electronic states are 1.16768 GHz and 151 MHz, 201 MHz, and 251 MHz
for 6P1/2 and 6P3/2 manifolds, respectively. The hyperfine transitions of the D2 line are
worldwide used for laser cooling of the alkalis. The natural linewidth of the D2 line is
γ = Γ/2π = 5.2 MHz. In the case of 133Cs the cooling transition is the so-called cycling
transition 6S1/2(F = 4) → 6P3/2(F

′ = 5). The name cycling comes from the fact that the
transition to the lower ground state hyperfine level F = 3 is dipole forbidden, since the
excited state is F ′ = 5. This would mean that the atom can perform many absorption
cycles before being pumped to the lower hyperfine ground state. The mechanism of that
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Figure 3.1: Caesium levels diagram (a). Schematic description of MOT (b).

depumping is via populating the lower laying F ′ = 4 state. Unfortunately, the probability
of that process to happen is high enough to overcome the cooling effect on the cycling
transition. To bring back the atom into the cooling cycle an additional ”hyperfine re-
pump” laser couples the ground state F = 3 to the excited state F ′ = 4 via the transition
6S1/2(F = 3) → 6P3/2(F

′ = 4).

3.2 Laser cooling of neutral atoms

The idea that the light can exert pressure has been explored for many centuries. However
the first experimental evidence has been observed in 1933 by R. Frisch [29]. In 1970
Ashkin has showed that an optical transitions in alkali metal atoms can produce a force
that can be used for atom trapping [30]. The ability of the light force to guide macroscopic
particles has been proved in [31]. In 1975 Hänsch and Schawlow [32] has proposed that
the light could exert substantial force to be potentially used for cooling of atoms. Since
that time directionally cold atomic beams have been created giving rise to a possibility
of using the light absorption to slow an atomic vapor. The combination of both laser
light and spatially varying magnetic fields has proven to be an efficient way to slow an
atomic beams [33]. Later, it has been realized [34] that using three dimensional optical
molasses one can reduce the atomic kinetic energy thus cooling the atomic vapor to low
temperatures. However, in most of the cases the lifetime of the molasses is limited in
some milliseconds thus preventing of long interaction with light fields for the sake of
spectroscopy. Then the implementation of spontaneous force trap [35] which combines the
light scattering force with a quadrupole magnetic field has made it possible to open a new
branch of the atomic spectroscopy known as laser cooling and trapping. The spontaneous
force trap has also been named as magneto-optical trap or shortly MOT. The theory of
atom cooling using light in a MOT is described elsewhere [36,37] and in the following few
pages we make a brief introduction to laser cooling and trapping techniques.
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Figure 3.2: The force on an atom in the case of optical molasses (a)

3.2.1 Magneto-optical trap

The magneto-optical trap consists of spatially varying magnetic field B(z) = bz created by
gradient coils with opposing currents of the same value and a cooling laser light detuned
slightly below the atomic resonance Fig.3.1(b). Since the magnetic field drops linearly
towards the center of the trap this would mean that the atomic transition frequency will
change in the same manner due to the position dependent Zeeman shift. Let us consider
the case of transition Jg = 0 → Je = 1. The ground state does not shift in an external field
mg = 0, while the excited state has magnetic sublevels with me = −1, 0,+1. The process
of cooling can be explained with an optical pumping between the magnetic sublevels of
the ground and excited states for a slowly moving atom. Suppose that an atom is at
a position z′ in Fig.3.1(b). At that position the magnetic field of the trap shifts the
sublevel me = −1 of the excited state closer to resonance with the circularly polarized
beam σ−. Thus the atom initially in me = −1 state will scatter more photons from the
beam counteracting its motion than the co-propagating beam. Hence the light scattering
force will push the atom towards the center of the trap. Oppositely, an atom moving to
the left and initially in me = +1 state at a position −z′ will predominantly scatter photons
from the σ+ beam and hence will be pushed toward the trap center. During these cycles
of absorption and subsequent spontaneous emission the atom loses kinetic energy due to
the recoil momentum transfer of the oppositely propagating photons. As a results the
atoms are accumulated around the trap center and stored for long times. According to
discussion above we can extend the 1D case to 3D having counterpropagating beams for
all three coordinate axes. The scheme can also be applied with the same success to the
general case of Jg → Je = Jg + 1.

The force acting on an atom is a result of two forces from the σ− and σ+ beams. Let’s
denote these two forces as F− and F+. They depend on the cooling light parameters:
s0 = I/Is the saturation parameter on resonance and Is = π~νγ/3 is the saturation
intensity, the detunings ∆±, and photon momentum ~k.

F± = ±~γk

2

s0

1 + s0 + (2∆±/γ)2
(3.1)
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The detunings ∆± for each of the laser beams depend on atom velocity and magnetic field.

∆± = ∆ ∓ k · v ± (geme − ggmg)µBB

~
(3.2)

The second term in Eq.(3.2) denotes the doppler shift of the atomic transition due to the
atomic velocity v. The third term is the Zeeman shift of the atomic transition frequency,
proportional to the magnetic field B.

Then the resulting force on an atom is F = F+ + F−. Note that the forces in Eq.(3.1)
are position dependent since the magnetic field depends linearly on the distance to the trap
center i.e. B(z) = bz where b denotes the magnetic field gradient. If we fix the position
the force F will look exactly as the one in the case of optical molasses [see Fig.3.2(a)] as
a function of atom velocity.

In the limit of small Doppler and Zeeman shifts the force on an atom can be ap-
proximated to an expression which looks exactly like a damped oscillator equation in the
classical mechanics.

F = −βv − κr (3.3)

where the damping coefficient β and the spring constant κ are given by the following
relations [36]:

β =
8~k2s0

∆
γ

[

1 + s0 +
(

2∆
γ

)2
]2 , κ =

(geme − ggmg) µBb

~k
β (3.4)

In the last set of equations the value of k = |k| is the modulo of the light propagation
vector and in Eq.(3.3) the magnetic field is represented as a vector B = br, where b denotes
the magnetic field gradient.

Once the force is known the equation of motion for an atom can be found using the
second Newton’s principle. The differential equation governing the motion of an atom in
the MOT is then:

r̈ + ΓMOT ṙ + ω2
MOTr = 0. (3.5)

It is straightforward that the above equation describes damped harmonic motion of an
atom in the trap as expected from the origin of the force in Eq.(3.1). The damping rate
of the motion is defined as ΓMOT = β/M and the oscillations in the trap are given by
ωMOT =

√

κ/M . For a magnetic field gradient of 10 G/cm the oscillation frequency is
typically few kHz and the damping rate is of the order of few hundred kHz. Then the
motion is overdamped with characteristic restoring time of 2ΓMOT /ω2

MOT .
The temperature of the atoms in the MOT is expected to be comparable with that of

a 3D optical molasses. In the early days it was believed that the Doppler limit is the lower
temperature that can be achieved with laser cooling. The limiting Doppler temperature
for low light intensity is found to be proportional to the detuning of laser light [38]:

kBTD =
~γ

4

1 + (2∆/γ)2

2|∆|/γ . (3.6)

Setting the red detuning to ∆ = γ/2 gives minimum value for the Doppler temperature of
TD = ~γ

2kB
. For atomic caesium the value is 124 µK. However, later much lower tempera-

tures have been measured for sodium atoms released from 3D optical molasses [38]. This
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on the other hand stimulated the development of the sub-Doppler cooling theory [39, 40]
in order to explain these lower temperatures. We will give short theoretical description of
these sub-Doppler cooling techniques in the following section.

3.2.2 Sub-Doppler cooling techniques

When two light beams with orthogonal linear polarization are counterpropagating the
resulting light field exhibits spatially dependent polarization as shown in Fig.3.3(a). This
is the so called polarization gradient. The two light fields E1(x, z, t) = E0x cos(ωt + kz)
and E2(y, z, t) = E0y cos(ωt − kz) will superpose and the resulting field is expressed by:

E(z) = E0 [(x + y) cos(ωt) cos(kz) + (x − y) sin(ωt) sin(kz)] (3.7)

E(z) = 2E0 cos ωt [(x) cos(kz) + (y) sin(kz)] (3.8)

where x = (1, 0, 0) and y = (0, 1, 0) are the polarization vectors of the light beams,
k = 2π/λ is the wavenumber, z is the distance along the propagation axis. It is seen that
at z=0 the polarization is linear forming an angle w.r.t. the x-axis of π/4, further at λ/8
or kz = π/4 the polarization converts to σ−. At a distance of quarter-wavelength the
resulting field is again linear but with a polarization rotated at an angle of −π/4 along
the x-axis and so forth. In the case of σ+ σ− beams another expression can be derived
but this time the polarization only rotates at an angle of π/2 along the propagation axis
at a distance of λ/4 [see Eq.(3.7)]. These two polarization configurations, however, lead
to completely different sub-Doppler cooling schemes.

Suppose that the transition coupled by the molasses beams is Jg = 1/2 → Je = 3/2.
In the case of linear polarizations the light shift changes along the propagation axis in
accordance with polarization change from linear to circular and again to linear with a
period of λ/2 [Fig.3.3(a)]. The shift of the mg = +1/2 ground state is largest for σ+

light, whereas the mg = −1/2 state is maximally shifted for σ−. The change is due to the
different Clebsh-Gordan coefficients for the different polarization of the coupling light. In
the case of the σ+ σ− polarized beams the sublevels of the ground state are equally shifted
and the energy shift does not depend on the position along the propagation axis, since the
polarization is always linear [Fig.3.3(b)].

Assume that an atom is moving along z axis in a 1D molasses beams as in Fig.3.3(a).
At the position of λ/8 the atom initially in mg = −1/2 will remain in that state if the
velocity of the atom is such that it travels a distance of λ/4 before being optically pumped
to the mg = +1/2 state i.e. to the bottom of the next potential valley at z = 3λ/8.
During this travel the atom ”climbs” a potential hill and reduces its kinetic energy. Thus
on average an atom will remain on the same magnetic sublevel climbing the potential hill-
Sisyphus effect. The equilibrium temperature in this cooling configuration according to
Dalibard et al. [39] is found to be of the order of the light shift of the ground state:

kBTeq =
~Ω2

8|∆| (3.9)

where Ω is the Rabi frequency per molasses beam. Since the calculation in [39] is in the
semiclassical approach the limiting temperature in optical molasses will always be higher
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Figure 3.3: Polarization gradients in lin⊥lin and Sisyphus effect on a slowly moving atom
in lin⊥lin optical molasses (a). Polarization gradients in σ+ σ− configuration and equi-
librium population of the ground state sublevels (b).

than the recoil temperature given by the kinetic energy associated with one photon recoil:

kBTR =
~

2k2

2M
(3.10)

In σ+ σ− optical molasses the damping force has different origin. It arises from un-
balanced radiation pressures due to different absorption of the two counter-propagating
beams. However, the force is not due to the Doppler effect but results from the different
population of the magnetic sublevels mg = −1 and mg = +1 of the ground Jg = 1 state.
If an atom with velocity v is moving towards z > 0 it will absorb more photons from the
σ− beam than from the co-propagating σ+. In the atomic rest frame which rotates with
angular velocity of kv the polarization of light is always parallel to the quantization axis,
thus allowing only for π transitions to be produced. Then the interaction hamiltonian
contains a term which results from the rotation of the light polarization and is equal to
Vrot = kvJz according to [39]. The mean value of 〈Jz〉 is proportional to the population
number difference between the levels mg = −1 and mg = +1. The population differ-
ence between these levels changes in accordance with the angle of rotation of the linear
polarization along the propagation axis [Fig.3.3(b)].

Π+1 − Π−1 =
40

17

kv

∆0
(3.11)

where ∆0 is the light shift of the mg = 0 state in frequency units. If the atom is at rest the
populations of the different sublevels have their steady state values of Π−1 : Π0 : Π+1 =
4/17 : 9/17 : 4/17. If the atom is moving then non-adiabatic couplings between the Zeeman
sublevels appear so that the equilibrium populations in Fig.3.3(b) changes in accordance
with Eq.(3.11). In short, the motion induced atomic orientation in the ground state creates
a friction or damping force due to the induced imbalance of the photon absorption rates
of the two oppositely propagating molasses beams. The equilibrium temperature of this
cooling method is calculated by the authors of [39] to be of the order of the one obtained
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in the lin⊥lin configuration

kBTeq =
~Ω2

10|∆| (3.12)

Note that for a ground state of Jg = 1/2 the second cooling mechanism does not work
since in that state no alignment can exist. Despite of that in alkali metals when using
transitions between hyperfine magnetic sublevels the σ+σ− polarization gradient cooling
can be applied since the total angular momentum of the ground states is always higher
than 1/2.

3.2.3 Dark states

Another method of attaining low temperatures in laser cooling physics is the use of states
that cannot be excite by light. These states are called dark states. The dark state have
different origin. In the case of coherent quantum superposition states created by Raman
coupling between ground state hyperfine components in the alkalis the excitation prob-
ability of the excited state vanishes and a coherent population transfer can be achieved,
between the hyperfine components. These processes creating dark states are coherent
population trapping (CPT) [41] and electromagnetically induced transparency (EIT) [42].
Other type of dark states are the ones that simply cannot be excited by light since the light
is very far detuned and the excitation probability is negligible. For example in Cs atom
the ground state hyperfine component F = 3 is a dark state for the cooling light, that
couples the cycling transition 6S1/2(F = 4) → 6P3/2(F

′ = 5). An atom on F = 3 cannot
be excited by the cooling light to one of the 6P3/2 hyperfine states, because the light is
about 9 GHz detuned with respect to any of the transitions F = 3 → F ′ = 2, 3, 4. The
lower hyperfine state of the alkalis plays an important role in reducing the light scattering
force for the purpose of loading the cold atomic sample from a MOT into an optical dipole
trap. The experimental sequence for loading an optical dipole trap is described in detail
in the experimental part of the thesis [Ch.7].

3.3 Optical dipole trap

The section deals with theoretical concepts of the optical trapping of neutral atoms. The
theory behind the optical trapping [43] is explained by the dressed state picture of the
atom light interaction. Since the first demonstration of optical trapping by Chu et al. [44]
the optical dipole traps have became an efficient tool for storing cold atomic samples.
The first optical dipole trap had detuning of only -650 GHz, but nowadays traps are
very far from resonance with a wavelength detuning ranging from several nm for the
FORT to the extreme 10 µm in the case of quasi-electrostatic traps (QUEST) created
by CO2 lasers. This large detunings have allowed formation of all-optical Bose-Einstein
Condensation (BEC) of alkali atoms [45,46] and Li2 molecules [47]. Very tight dipole traps
has been produced to trap a single atom [48]. The standing wave dipole traps allowed the
manipulation of single atoms [49–51] in an optical conveyor belt [52] for the use in quantum
information with neutral atoms [53]. Standing wave dipole traps has also opened the way
two a very interesting field of cold atoms in optical latices [54, 55] for both cold atoms
and ultra-cold quantum gasses as BEC [56]. The cancelation of the stark shift induced by
the dipole trap laser on the intercombination transition in the alkali-earth atoms [57] has
enabled the construction of optical lattice clocks [58]. High density large atomic clouds in
red detuned dipole traps has been observed in both single beam focused trap and optical
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lattice [59, 60]. An extensive analysis of the loading dynamics of optical dipole traps has
been done in [61] and a review of dipole traps has been made in [62].

3.3.1 Classical Lorentz model

The dipole force on an atom can be explained with the classical Lorentz model
of a driven induced dipole. Suppose that an electric field of the form E(r, t) =
1
2 [E(r) exp (−iωt) + c.c.] induces a dipole moment of an atom p = α(ω)E = −er. The
dipole potential associated with the induced dipole is given by:

U(r) = −1

2
〈p ·E〉 = − 1

2ǫ0c
ℜ(α)I(r) (3.13)

where ǫ0 is the electric permeability of the vacuum, c speed of light, α(ω) is the induced
complex atomic scalar polarizability, and I(r) is the intensity of the light beam. It is seen
that the dipole potential depends on the position r. Hence, there will be a dipole force
acting on an atom:

F = −∇U(r) =
1

2ǫ0c
ℜ(α)∇I(r) (3.14)

Along with this dispersive interaction proportional to the ℜ(α), there is an absorption
which scales as the ℑ(α). The power dissipated by the atomic dipole is characterized by
the scattering rate or absorption rate Γsc:

Γsc(r) =
1

~ǫ0c
ℑ(α)I(r). (3.15)

In the classical Lorentz model the motion of the electron around the nucleus induced by
the light field is described by a driven oscillator equation and the atomic polarizability is
expressed as a function of the driving field frequency:

α(ω) = −6πǫ0c
3γ

ω2
0

1

ω2 − ω2
0 + i(ω3/ω2

0)γ
. (3.16)

where γ is the on-resonance damping rate and ω0 is the atomic resonance frequency.
Substituting equation Eq.(3.16) in equations Eq.(3.13) and Eq.(3.15) we arrive at the
final expressions for the potential depth U(r) and photon scattering rate in the classical
Lorentz description of the dipole trap:

U(r) =
3πc2

2ω3
0

γ

∆
I(r). (3.17)

Γsc(r) =
3πc2

2~ω3
0

( γ

∆

)2
I(r) (3.18)

where ∆ = ω−ω0 is the detuning of the trapping laser w.r.t the atomic resonance. In the
last equation we have also assumed that the detining ∆ is small compared to the optical
frequencies ω and ω0 thus having the ratio between them ω/ω0 ≈ 1.

The dipole potential depth is proportional to 1/∆, whereas the scattering rate is pro-
portional to 1/∆2. It is then clear from the above equations that the far off-resonant
dipole trap has the advantage over the near resonant that the scattering rate of the FORT
is much lower. Another consequence is that when the detuning is negative ∆ < 0 the trap
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is called red detuned and atoms are collected at the maximum intensity. If the detuning
is positive ∆ > 0 the trap is blue detuned and the atoms are repelled from the maximum
of the light intensity towards its minimum.

The choice of the detuning demands different experimental realization of optical trap-
ping. The red detuned traps are easily produced by focusing a gaussian light beam using
a lens. The blue detuned traps require additional manipulation to create local minima
of the light field. The main experimental configurations employ focused ”donut” light
beams [63], light sheets [64] or a rapidly rotating single focused beam [65].

3.3.2 Quantum description. Dressed states.

In this section we will give in short the quantum mechanical description of the calculation
of the dipole trap potential and the associated scattering rate using the full quantum
treatment of light interacting with a two level atom via the electric dipole interaction. An
atom in the ground state |g〉 and a light field with |n〉 photons can be represented by the
combined product state |g, n〉 = |g〉⊗ |n〉. When the atom absorbs a photon from the field
the state becomes |e, n − 1〉 = |e〉 ⊗ |n − 1〉 which means that the atom is excited to state
|e〉 and the number of photons in the field has decreased by one |n − 1〉.

The system hamiltonian Ĥ is a sum of the atomic hamiltonian ĤA, the light hamilto-
nian ĤL, and the electric dipole interaction hamiltonian ĤED. These three terms can be
expressed, as it has already been done in Sec.2.3, in the following way:

ĤA = ~ω0|e〉〈e| (3.19)

ĤL = ~ω

(

â†â +
1

2

)

(3.20)

ĤED = −d ·E =
~Ω

2

(

|e〉〈g|âe−iωt + |g〉〈e|â†eiωt
)

(3.21)

where ω0 is the frequency of the atomic transition between the levels |g〉 and |e〉, ω is the
frequency of the single mode field with annihilation operator â, and Ω is the on-resonance
Rabi frequency. It also must be noted that the atomic hamiltonian is referenced to the
energy of the ground state which is taken to be zero, in contrast to Sec.2.3 where the
reference is between the levels. The eigenvalues of the Ĥ in the field rotating frame are
calculated in Appendix C. Here we only give the result:

E±(n) = ~

(

−∆

2
+ ωn ± 1

2

√

∆2 + Ω2n

)

(3.22)

The corresponding eigenstates |1n〉 and |2n〉 to the eigenvalues of the Hamiltonian are the
so-called ”dressed” states [66] which are combined state of single mode electromagnetic
field and a two-level atom and can be expressed in the basis of the product states |g, n〉
and |e, n − 1〉 in the form:

|1n〉 = sin θ|g, n〉 + cos θ|e, n − 1〉 (3.23)

|2n〉 = cos θ|g, n〉 − sin θ|e, n − 1〉 (3.24)

where the mixing angle θ is defined as tan 2θ = −Ω
√

n
∆ . It can be noted that the dressed

states depend on the number of photons in the field. A pictorial representation of the
dressed state approach is shown in Fig.3.4. The combined light-atom states are separated
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Figure 3.4: Pictorial representation of the dressed state approach. Uncoupled combined
states of atom and light (right) and dressed states (left).

by the photon energy of the driving field ~ω. The dressed states, on the other hand, are
separated by the energy quanta associated with the generalized Rabi frequency ~Ω′ =
~
√

∆2 + Ω2. The value of δE in the figure is the light shift of the state in presence of the
radiation field with a very large detuning ∆ ≫ Ω from the atomic resonance:

δE =
~Ω2

4∆
. (3.25)

Another interesting feature of the light shift in the dressed approach is that the ground
state shifts differently depending on the sign of the detuning ∆. If the laser is red detuned
∆ < 0 the ground state is down-shifted w.r.t the unperturbed case, and for blue detuning
∆ > 0 the energy of the ground state is increased. The same applies for the excited state
but with an opposite sign. In order to include the spatial dependance of the light shift
we have to express the Rabi frequency in terms of the light intensity and the absorption
linewidth. The absorption linewidth γ is expressed by the dipole operator matrix element
[67] as:

γ =
ω3

0 |〈e|d|g〉|2
3π~ǫ0c3

(3.26)

This equation along with the relation ~Ω = −E(r)|〈e|d|g〉| and inserting the light intensity
via I(r) = 1

2cǫ0E(r)2 leads to the final expression for the light shift or equivalently the
dipole potential

U(r) = δE(r) =
3πc2

2ω3
0

γ

∆
I(r) (3.27)

It is not surprising that the last result is the same as the one obtained from the classical
model in Eq.(3.17). However in reality the atoms have many electronic levels and the model
of a two level atom is not entirely accurate. These levels are coupled via dipole allowed
transitions to the ground state, or to each other. Then in the presence of dipole trap field
the resulting transitions will be driven with a strength, depending on the detuning and
power of the driving laser (i.e. dipole laser), thus modifying the light shift or respectively
the dipole potential. In order to apply Eq.(3.27) to a multilevel atom one has to know
the dipole matrix elements dij = 〈gi|d|ej〉, as defined in Ch.2, of the transitions from the
ground states |gi〉 to the excited states |ej〉. The matrix element can be also written as
the product of the reduced matrix element ||d|| and the Clebsch-Gordon coefficients Cij
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according to [23]. Whit this substitution the shift of the ground state |gi〉 becomes:

δEi(r) =
3πc2

2

∑

j

C2
ijγij

ω3
ij∆ij

I(r) (3.28)

The sum in the above equation is done over all excited states coupled to the ground state
via the dipole allowed transition |gi〉 → |ej〉 with relevant detunings ∆ij = ω − ωij where
ωij = Ej −Ei the frequency of the earlier mentioned transition. The contribution of each
excited state is determined by its transition strength factor C2

ij. The last equation is valid
for arbitrary detuning ∆ij.

Now let us consider the case of alkali metal atoms. The level scheme of D line transi-
tions are similar for all elements from the first group of the periodic table, thus we can use
the level scheme of caesium in Fig.3.1 as an example to express our point. At detunings
much larger than the fine structure splitting of the excited state ∆ ≫ ∆′

FS both fine and
hyperfine structure of the excited state are not resolved. Hence, we can pull the ωij out
of the sum and use an effective natural linewidth γ. In this case we say that the trap is
far-off-resonant and the hyperfine and fine structure do not necessarily has to be taken
into account. In contrast to that in the case of detunings smaller than the fine splitting
of the excited state the light shift depends on the polarization of the trapped light [62].
For linear polarization it still obeys Eq.3.28, whereas for σ± an additional term appears
in the numerator [61].

In our experiment the dipole trap laser is far off resonant with a wavelength of 1030nm.
Then the wavelength detunings from the 6P1/2 and 6P3/2 electronic states of Cs become
136 nm and 178 nm, whereas the fine structure splitting of the first electronic excited state
is 42 nm. The light shift induced by this laser and consequently the optical trap potential
can be calculated as:

U(r) =
πc2

2

(

γ1/2

ω3
1/2∆1/2

+
2γ3/2

ω3
3/2∆3/2

)

I(r) (3.29)

where ω1/2 and ω3/2 are the detunings of the trap laser w.r.t. the transitions 6S1/2 → 6P1/2

and 6S1/2 → 6P3/2, with a natural linewidth of γ1/2 = 4.56 MHz and γ3/2 = 5.22 MHz,
respectively.

3.3.3 Focused beam red-detuned dipole trap

This section is dedicated to the dipole trap realized in the present experiment. It is based
on a single focused gaussian beam. Since the gaussian beam has a non-uniform intensity
distribution it can be used to create a gradient of the electric field vector that translates
into a dipole force caused by position dependent light shift or also called dynamical Stark
shift. Generally speaking the dipole traps are result of the position dependent Stark shift
of the atomic ground state as explained in the previous section. It is well known that
focusing a gaussian beam of light leads to highest intensity at the waist position. Away
from the waist it decreases quadratically with the position z and by a gaussian law in
the direction r perpendicular to the beam propagation direction. The following system of
equations describe the gaussian beam:

I(r) =
cǫ0E

2

2

w2
0

w(z)2
exp

(

− 2r2

w(z)2

)

(3.30)
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Figure 3.5: Potential surface of the dipole trap

w(z) = w0

√

1 +

(

z

zR

)2

,zR =
πw2

0

λ
(3.31)

where w0 is the waist radius, zR the Rayleigh range and λ the light wavelength. Using
the last equations we can transform the dipole potential U(r) to:

U(r) = U0
w2

0

w(z)2
exp

(

− 2r2

w(z)2

)

(3.32)

U0 =
c2P

w2
0

(

γ1/2

ω3
1/2∆1/2

+
2γ3/2

ω3
3/2∆3/2

)

(3.33)

where the optical beam power P = πcǫ0
4 E2w2

0 has been introduced. The above equations
fully describe the spatial features of the optical trap and a sample potential surface is
presented in Fig.3.5. It can be seen that due to the radial gaussian profile the confinement
is much stronger in the radial direction. The radial scale is in micrometers, whereas the
axial scale is in centimeters. The plotted surface is a result of a simulation which also
takes into account the gravity potential UGrav = Mgr

kB
. The resulting dipole potential will

then be reduced by the UGrav(r). The optical trap in Fig.3.5 is created by a gaussian beam
with a waist radius of w0 = 40 µm and an optical power of 3.5 W at a laser wavelength
of 1030 nm, which accounts to a potential depth of 380 µK. The rate at which an atom
scatters the photons of the trapping field is easily expressed using the relation:

~Γsc =
γ1/2

∆1/2
U1/2 +

γ3/2

∆3/2
U3/2 (3.34)

with U1/2 and with U3/2 being the terms of the r.h.s. of Eq.(3.33). Finally, after substi-
tuting these terms in Eq.(3.34) we get:

Γsc =
c2P

~w2
0

(

γ2
1/2

ω3
1/2∆

2
1/2

+
2γ2

3/2

ω3
3/2∆

2
3/2

)

(3.35)
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Figure 3.6: Dipole potential (left) and scattering rate (right). Parameters listed in text.

Again, as we have found in the classical calculation, the scattering rate Γsc scales as 1/∆2,
whereas the dipole potential scales as 1/∆.

The scattering rate and dipole potential curves are shown in Fig.3.6 for a trap with
same parameters as in Fig.3.5 as a function of the dipole trap laser frequency. It is seen
that the scattering rate for a dipole laser light at a wavelength of 1030 nm is very low.
At the same time there is a reasonable trapping potential of 380 µK. The last value is
more than enough to obtain a deep trap since the temperature of the atoms after the
sub-Doppler cooling can be as low as several µK [59]. Note that for a wavelength of the
laser of around 880 nm the light shifts of the two electronic states are opposite in sign and
equal in absolute value, which practically means that no trapping effect can be observed
for that wavelength.

The trap potential is also characterized by its oscillation frequencies. These are the
frequencies at which trapped atoms oscillate inside the potential. From a classical point
of view these oscillations are connected with a eigenfrequencies of a classical harmonic
oscillator and are often used in experiments to characterize the trap potential [68]. The
deeper the trap the higher the trap frequencies. A single beam focused trap has two
eigenfrequencies i.e. radial ωr and axial ωax defined as:

ωr =

√

4U0

Mw2
0

, ωax =

√

2U0

Mz2
R

(3.36)

In the quantum mechanics case, if the trap depth is much higher than the temperature
of the trapped atoms, we can assume that the potential is harmonic and the atoms will
occupy different levels inside the trap with energies:

En = ~ωi

(

n +
1

2

)

(3.37)

where ωi is the eigenfrequency of the trap which can be the radial or the axial one in
Eq.(3.36) for a gaussian beam trap. It can also be seen that the trap frequencies differ
significantly in the case of single focused beam trap due to the large difference between
the w0 and zr.



Chapter 4

Mach-Zehnder Interferometer

theory

This chapter gives an introduction to the interferometry used in the experiment to char-
acterize the atomic sample by monitoring the phase shift of a coherent light beam. As it
was mentioned in Ch.2.3 the off-resonant interaction is characterized by the phase shift
of the light imposed by the atoms. In optics the light interferometry is the best way to
measure optical phase. In the current experiment we use a Mach-Zehnder interferometer
which has the atomic sample in one arm and the other is used as a reference.

We start the introduction with the quantum mechanical treatment of the light inter-
ferometer. Secondly we outline the main noise sources influencing the pulsed homodyne
detection of the phase shift.

4.1 Interferometer calculations

The section introduces the operator method for the evolution of the light fields entering
the interferometer [12, 69]. Let’s assume we have a Mach-Zehnder interferometer which
has in one arm an atomic sample inserted. The light with annihilation operator â enters
the interferometer from the left as shown in Fig.4.1. The vacuum field is denoted by
the annihilation operator with b̂. The interferometer consists of two arms: an arm with
atoms i.e. probe arm and a reference arm. The pathlength difference between the two
arms is (z1 − z2) with z1 and z2 being the optical lengths of the probe and reference
arm, respectively. These lengths are measured between the first beamsplitter BS1 and the
second one BS2.

4.1.1 Lossless interferometer

Firstly we will consider the case of a lossless interferometer, which would mean that the
total number of photons entering the interferometer is conserved.

n̂in = â†â + b̂†b̂ = d̂†1d̂1 + d̂†2d̂2 = n̂out = n̂ (4.1)

The homodyne detection scheme works by subtraction of the number of photons emerging
from the two outputs of the interferometer. This way the desired signal will be proportional
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Figure 4.1: A sketch of the interferometer operator model

to the difference of the number of photons detected in each output port.

n̂− = d̂†1d̂1 − d̂†2d̂2 (4.2)

The annihilation operators of the output fields d̂1 and d̂2 are expressed with the input
fields annihilation operators â and b̂ using the interferometer transformation matrix also
called scattering matrix.

(

d̂1

d̂2

)

=

(

S11 S12

S21 S22

)(

â

b̂

)

(4.3)

The scattering matrix S is a product of three matrices describing the transformation of
the input operators after each beamsplitter SBS2

and SBS1
and a diagonal propagation

matrix Sp:

S = SBS2
SpSBS1

=

(

r2 it2
it2 r2

)(

eikz1 0
0 eikz2

)(

r1 it1
it1 r1

)

(4.4)

In the last equation we have inserted the reflectivity and transmission of the two beam-
splitters r1, t1 and r2, t2, respectively. After the transformation of the input operators the
n̂− operator is found to be:

n̂− =
(

|S11|2 − |S21|2
)

â†â +
(

|S12|2 − |S22|2
)

b̂†b̂ +

+ (S11S
∗
12 − S∗

22S21) b̂†â + (S∗
11S12 − S22S

∗
21) â†b̂ (4.5)

The initial light state is a coherent input in one channel and vacuum in the other |Ψ〉 =
|α〉a ⊗ |0〉b. Then the mean value of the n̂− is:

〈n̂−〉 = 〈Ψ|n̂−|Ψ〉 =
[(

r2
1 − t21

) (

r2
2 − t22

)

− 4r1r2t1t2 cos (k∆l)
]

〈n̂〉 (4.6)

In the last equation the only term which has a non-zero contribution to the mean is the
one of the coherent input. The mean value of the vacuum field operator vanishes as well
as the cross terms in Eq.(4.5). The new variable inserted in Eq.(4.6) is the pathlength
difference between the two arms ∆l = z1− z2, which also includes the atomic contribution
to the mean value of n̂−. The last equation has to be converted in terms of appropriate
experimental variables. In the experiment, we use silicon photodiodes to detect the light.
The photodiode does not conduct if there is no light incident on it. However, when light
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is impinging on the photodiode the conductivity changes and the voltage drop across the
semiconductor creates a photocurrent. The resulting photocurrent is proportional to the
quantum efficiency of the detector ε, the elementary charge e, the mean photon number
〈n̂−〉 and inversely proportional to the duration of the interaction τ . Having these collected
and inserting the value of the phase difference between the two arms as φ = k∆l we have:

〈i−〉 =
εe〈n̂〉

τ

[(

r2
1 − t21

) (

r2
2 − t22

)

− 4r1r2t1t2 cos (φ)
]

(4.7)

In the case of symmetric interferometer with 50/50 beamsplitters we substitute the
values of reflection and transmission coefficients with r1 = r2 = t1 = t2 = 1/

√
2. Then

the first term in the square brackets of Eq.(4.7) vanishes. Calculating the coefficients in
front of every term in Eq.(4.5) for a symmetric interferometer we obtain the following
expression for the subtracted photon number operator as:

n̂− = cos(φ)
(

â†â − b̂†b̂
)

+ sin(φ)
(

â†b̂ + b̂†â
)

(4.8)

The last equation can be compared to the result for a symmetric Mach-Zehnder inter-
ferometer characterized by unitary operations in the group SU(2) developed by Yurke et
al [28]. According to this formalism the interferometer can be described by a set of Hermi-
tian operators very similar to the projections of the atomic collective angular momentum
operators introduced in Sec.2.1.4

Ŝx =
1

2
(â†b̂ + b̂†â),

Ŝy =
−i

2
(â†b̂ − b̂†â), (4.9)

Ŝz =
1

2
(â†â − b̂†b̂),

with a commutation relation [Ŝi, Ŝj ] = iεijkŜk. The annihilation operators â and b̂ rep-
resent the two fields entering or leaving a beamsplitter. When a measurement of the two
outputs is performed the operator of interest is the Ŝz, since it gives the photon’s number
difference between the two output channels. Using Eq.(4.9) we can express the detected
photon number operator in Eq.(4.8) as:

n̂−
2

= cos(φ)Ŝz + sin(φ)Ŝx (4.10)

The vector operators Ŝi, i = x, y, z define a fictitious (Sx, Sy, Sz) space. The input in-
terferometer state is a coherent one and can be described as a vector with a length of
〈Ŝz〉 = 〈n̂〉

2 directed along the z axis. The output state then is rotated on an angle φ
around the y axis as seen from Eq.(4.10).

This angular momentum formalism of the interferometer operation is useful for the
description of the atom light interaction at the off-resonant limit.

4.1.2 Losses in the interferometer

The above calculations are made under assumption that the number of photons is pre-
served, which means that the equations do not account for absorption of photons or
non-perfect mode overlap resulting in reduced visibility. To include these factors in the
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problem we model the overlap and the losses due to absorption via mixing of the vacuum
fields b̂i on beamsplitters as shown in Fig.4.1. The beamsplitters have transmission of

√
µ

and
√

V with µ being the probe arm intensity transmission coefficient and V the coefficient
describing the non-perfect mode overlap at the second beamsplitter.

The beamsplitters modify the scattering matrix of the interferometer and after the
transformation of the operators, taking the expectation value of the photocurrent as de-
scribed in Sec.4.1.1 and choosing 50/50 beamsplitters we arrive at:

〈i−〉 =
εe〈n̂〉

τ

√

µV cos (φ) (4.11)

The last equation is a result of algebraic calculation of 5× 5 matrix equation with column
vectors having coordinates of (â, b̂, b̂1, b̂2, b̂3). The general result is given in [11].

The value of µ lies between 0 and 1. At µ = 0 trivially no interference will appear
meaning that the light is lost in the probe arm and never reaches the detector. When η = 1
there aren’t any losses and the interference have maximum visibility according to Eq.(4.12).
The losses µ due to absorption are dominant when the light is near-resonant. These losses
are connected with the absorption coefficient defined in Sec.2.3 via the exponential low
η = exp(−α∆).

The V parameter is connected with the visibility of the interference pattern V as:

V =
〈d̂†1d̂1〉φ=π − 〈d̂†1d̂1〉φ=0

〈d̂†1d̂1〉φ=π + 〈d̂†1d̂1〉φ=0

=
2
√

µV

1 + µ
(4.12)

when the absorption is negligible µ ≈ 1 the visibility of the interference is V =
√

V .
The phase difference φ between the two arms in the above equation can change due to

change of the pathlengths difference, change in the refractive index and shift of the laser
wavelength. If there are atoms present in the probe arm the light can also shift but this
time due to the interaction with atoms. The last phase modification is the useful signal
which caries information about the atomic sample, and the first three contribute to the
noise. Hence the phase difference is a sum of two contributions:

φ = φN + φ∆ (4.13)

The atomic contribution to the light phase is denoted as φ∆ as already discussed in Sec.2.3.
The phase shift resulting from the noise sources is depicted with φN . It has to be mentioned
that φN can also have a non-zero mean vale. In the next section we will see how the value
of φN and its noise can be minimized.

4.2 Noise Sources

The section introduces the different noise contributions to the measured signal. In the ex-
periment we measure the subtraction photocurrent i− produced by the light impinging on
the two detectors in the balanced detection scheme. The fluctuations in the photocurrent
we denote as δi− or with their variance (δi−)2.

In practice the photocurrent is a function of time and the same holds for its fluctuations.
Then the photocurrent can be expressed as the sum of its mean value 〈i−〉 which is
independent of time and a time dependent fluctuations δi−(t) i.e. i−(t) = 〈i−〉 + δi−(t).



4.2 Noise Sources 33

The noise of the measured variable can be expressed via its spectral density W (ω) =
〈|(δi−(ω))2|〉/2π. The spectral density is a measure for the magnitude of the fluctuations
at a given detection frequency ω.

〈(δi−(t))2〉 =

∫ ∞

−∞
W (ω)dω (4.14)

The last formula will be used to characterize all the classical noise contributions to the
photocurrent since they are frequency dependent. The shot noise of light is a white noise,
and is independent of the detection frequency, which would mean that it is constant in
time.

In practice the detectors have spectral response function r(ω), which defines the ability
of the detector to react to external disturbance at the detection frequency. Then the
bandwidth of the detection is expressed as:

B =

∫ ∞

0
|r(ω)|2dω (4.15)

With this consideration the noise of the detected photocurrent can be studied in the limits
of the detection bandwidth:

〈(δi−(t))2〉 =

∫ ∞

−∞
W (ω)B(ω)dω =

∫ ∞

−∞
W (ω)|r(ω)|2dω (4.16)

For a white noise spectrum the noise spectral density does not depend on the detection
frequency and the W can be pulled out of the integral.

4.2.1 Shot noise

The fluctuations of the number of photons in a light beam (δn)2 for a coherent light state
will scale linearly with the mean value of the photon number. This has already been
mentioned in the Sec.2.2 in the discussion of coherent state, and here we adopt it to the
case of an interferometer. For a lossless interferometer we have derived an equation for
the detected photon number n̂− in Eq.(4.5). According to the definition for the operator
variance we can write that:

〈(δn̂−)2〉 = 〈n̂2
−〉 − 〈n̂−〉2 (4.17)

When taking the square of n̂− we get cross terms containing the annihilation and creation
operators of the vacuum state, which expectation values are zero for a product state
with a coherent state in one input and vacuum in the other. The only term with non-zero
expectation value would be the one which contains the (â†â)2. It expectation value is easily
calculated using the commutation relations of the creation and annihilation operators
[â, â†] = 1 as shown in [12]. Then for a lossless symmetric interferometer we can write
that:

〈(δn̂−)2〉 = 〈n̂〉 (4.18)

The last equation describes the physical nature of the shot noise. It scales linearly with the
number of atoms and is an inherent feature of the coherent states as it has been described
in the Sec.2.2.

For the case of interferometer with losses we expect that the shot noise reduces accord-
ing to the loss of photons from the probe beam. Since the loss can be modeled to happen
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only in one of the arms say probe arm. This way we can write that the noise is

〈(δn̂−)2〉 =
(

T 2 + 1
) 〈n̂〉

2
(4.19)

where T 2 = µV is the transmission through the probe arm. For a lossless interferometer
the value of T 2 = 1.

Since the shot noise is a white noise, it is constant for all times and frequencies. Then
for the variance of the detector photocurrent we obtain with the help of Eq.(4.11) and
Eq.(4.16):

〈(δi−)2SN 〉 =
B(εe)2〈n̂〉

τp

(T 2 + 1)

2
. (4.20)

4.2.2 Classical noise

In that section we will treat the problem of classical noise. As we have already mentioned
the classical noise is frequency dependent in contrast to the shot noise. There are different
kind of disturbances which give rise to a classical noise. The most important for our inter-
ferometric measurement are the amplitude and phase noise of the laser and the acoustic
noise. In the following lines we give the general description of these noise contributions
and an estimate of their influence on the detector photocurrent.

Amplitude noise

The field in one of the output ports of the interferometer can be expressed in classical
terms as E1,2 = E(t)±E(t−∆t)

2 , where ∆t is a time delay associated with the pathlength
difference ∆l between the two arms. The E is the input field that enters the interferometer
given by Eq.(2.17).

The photocurrent can be calculated using the intensity of the light beam and its cross
section A as:

im = εe
cǫ0A

2~ω
|Em|2, m = 1, 2 (4.21)

where m denotes which output of the interferometer is considered. The other quantities
are already defined in previous chapters. Using the last two equations we can derive an
expression for the subtracted photocurrent as

i− = εe
cǫ0A

2~ω

(

|E2|2 − |E1|2
)

(4.22)

At this point we can introduce a perturbation to the amplitude of the light field as E(t) =
E(1 + δP (t)), where P (t) is a real function of time. Using this relation we arrive at:

i− = −i0T cos φ (1 + δP (t)) (1 + δP (t − ∆t)) (4.23)

The last expression is obtained using the interference term E(t)E∗(t−∆t) by factoring out
the EE∗ and introducing a quantity which carries the dimension of the photocurrent i0 =
εe2cǫ0A

~ω |E|2. The value of the photocurrent is also modified by the probe arm transmission
T as shown discussed in Sec.4.2.1. Omitting the cross term in the equation above we get
that:

i− = −i0T cos φ (1 + δP (t) + δP (t − ∆t)) (4.24)
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In the above equation the first term is the mean value and the second and the third
are fluctuating terms. We can approximate the sum of the two noise terms with 2δP (t)
since ∆t is small compared to the coherence time of the laser light tc = lc/c, where lc
is coherence length. Then leaving out only the fluctuating term we can extract from the
above equation information about the standard deviation and the noise

(δi−(t))a = 2i0T cos φδP (t) (4.25)

〈(δi−(t))2〉a =

(

2ε
eT cos φ〈n̂〉

τp

)2 ∫ ∞

−∞
Wa(ω)δω (4.26)

It is interesting to note that the classical amplitude noise scales as 〈n̂〉2 and also depends
on the interferometer residual phase shift when there are not atoms in the probe arm
φ = φN . Thus setting the residual phase of the interferometer to (m+1/2)π would cancel
the amplitude noise. This can be done by employing an additional laser far detuned from
the atomic transition to lock the interferometer to the side of the interference fringe. The
wavelength of that laser is chosen to be several nanometers away from the probed atomic
transition. Locking the interferometer at half fringe is also demanded by the possibility of
detecting small phase shifts at large probe detunings.

The use of balanced homodyne detection is also imposed by the cancelation of the
non-interference terms in Eq.(4.22). These terms have the same sign for the two outputs
thus vanishing after subtraction. We must also note here that for the quantum amplitude
noise the above does not hold, since it is uncorrelated and instead of vanishing it will add
after the subtraction.

Phase noise

To describe the phase noise we introduce a perturbation δφ(t) to the phase of the light in
the expression for the electric field E(r, t) = E exp(i(k · r − ωt)) in the following way:

ω∆t = 〈ω〉∆t + δφ(t) (4.27)

Inserting this equation in the exponent of the field and using the non-zero interference
terms in Eq.(4.22) we find that the perturbation of the light phase is directly transferred
onto the detection photocurrent as:

i− = −i0T cos (φ + δφ(t) − δφ(t − ∆t)) (4.28)

The last equation includes a linearized phase inside the cosine argument. For ∆t ≪ tc the
phase perturbation δφ(t,∆t) = δφ(t) − δφ(t − ∆t) ≪ π/2, thus allowing for expansion of
the cosine

i− = −i0T (cos φ − δφ(t,∆t) sin φ) (4.29)

The above equation is also justified by the fact that the coherence length lc of an extended
cavity diode lasers is hundreds of meters which is much longer compared to the typical
pathlength difference ∆l of few milliliters. Than the condition of ∆t ≪ tc is readily satis-
fied in our experimental conditions. Next, taking only the fluctuating part and calculating
its variance we get

〈(δi−(t))2ph〉 =

(

2ε
eT sin φc〈n̂〉

τp

)2 ∫ ∞

−∞
Wph(ω′)dω′ (4.30)
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The phase noise spectral density Wph(ω′) in the above equation can be converted to
frequency noise spectral density Wω(ω′) using the relation given in [70].

Wph(ω′) = Wω(ω′)
sin2(ω′∆t/2)

(ω′/2)2
. (4.31)

For a pathlength difference of less than a millimeter the time delay between the two arms
is ∆t < 3ps. Then the product ω′∆t < 0.01 for detection frequencies less than 3GHz.
Then the sin function in the above expression can be expanded to first order in ω′∆t/2
and we get

〈(δi−(t))2ph〉 =

(

2ε
eT sin φc∆t〈n̂〉

τp

)2 ∫ ∞

−∞
Wω(ω′)dω′. (4.32)

In Eq.(4.32) as well as in Eq.(4.30) we have substituted the value of i0. We see that the
phase Eq.(4.30) and frequency noise Eq.(4.32) again as a classical noise sources are propor-
tional to 〈n̂〉2. In practice the phase noise of the diode laser translates into frequency noise
having the 1/f content at low frequencies, followed by a white noise level for intermediate
frequency ranging from around 100 kHz up to 10 MHz and relaxation oscillation in the
GHz region.

We have already mentioned that we need to lock the interferometer to a half fringe
to cancel the amplitude noise contribution and now a different method for phase noise
cancelation is required since the phase noise depends on the sine function. The Eq.(4.30)
contains the pathlength difference between the interferometer arms c∆t. Hence, if the the
pathlength between the arms is set to zero, then the phase noise will vanish. This can
be accomplished by aligning the interferometer in the so called white light position. This
would mean that the two arms have equal optical pathlengths thus making possible an
interference of incoherent light. Since in the practice we do not have a pure white light
source, the condition for a white light alignment would translate to a pathlength difference
smaller than the coherence length of the light source.

Acoustic noise

As acoustic noise we refer to any external disturbance that can perturb the path-length
difference between the two interferometer arms. This type of noise is caused by mechanical
vibration of mirrors, optical mounts, air fluxes etc. Lets assume that the pathlength is
disturbed by a small perturbation kcδ(∆t) = ωδ(∆t). Then the photocurrent can be
written in the form:

i(t) = i0T cos(ω〈δt〉 + ωδ(∆t)(t)) (4.33)

Taking the variance of the above equation and substituting the value of i0.

〈(δi(t))2∆t〉 = (i0Tω sin φ)2〈δ(∆t)2〉 =

(

eε〈n̂〉 sin φT

τp

)2 ∫ ∞

−∞
W (ω′)∆tdω′ (4.34)

We have found difficult to characterize the acoustic noise spectral density W∆t and the
adopted way of fighting the acoustic noise was to isolate the interferometer as it will be
shown in the experimental part of the thesis. An extensive analysis of this type of noise
is done in the thesis by Daniel Oblak [22].
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4.2.3 Atomic noise

In the previous section we have shown that the interferometer phase shift can be influenced
by variations in the phase and amplitude of the probe light. We have also marked these
as noise contributions to the detected signal and found ways to surpass them.

However, as it was mentioned in Sec.4.1.2, the phase of the light can also change due
to interaction with atoms. The noise imposed in that way we refer as atomic noise φ∆.
Then the atomic noise can be also named as atom induced phase noise. Hence we can use
Eq.(4.29) to calculate the induced noise in the detector photocurrent.

〈(δi−(t))2〉∆ =

(

2ε
eT sin(φ)〈n̂〉

τp

)2

〈(δφ∆(t))2〉 (4.35)

The atomic noise in the above equation is dependent on the atom number as seen from
Eq.(2.44) and Eq.(2.47).

In the measurements presented in this thesis the experimentally observed phase shift
is proportional to the atomic population of a particular atomic state of atoms prepared
in a MOT or FORT as also seen from Eq.(2.42). This way if the population of that state
fluctuates, then this will directly result in fluctuations in the measured phase shift. We
will refer to this type of noise as atom number fluctuations or population noise.

Let’s assume we have the following conditions. The collective state of Cs atoms is a
coherent superposition as described in Ch.2, Eq.(2.11) in the case of a single atom. The
probe light is off-resonant, and the detuning is set so that the light is equally sensitive to
the populations of the two levels. The population of the excited state in these conditions is
negligible. Then performing a measurement on the sample will project the ensemble state
to one of the states |3〉 or |4〉. If the measurement is repeated many times, with a state
preparation in between the consecutive measurements, the outcomes will show that the
collective atomic state is projected to either of the state |3〉 or |4〉. Then the indeterminism
on which state the projection happens is called quantum projection noise.

The phase shift of the interferometer in presence of atoms is a function of the probe
light detuning with respect to the F = 3 and F = 4 hyperfine components of the ground
6S1/2 state and the atomic population of these levels. By the use of equations Eq.(2.48)
and Eq.(2.51) we can express the phase shift with the operator of the total number of
atoms N̂ and the population number difference Ĵz

φ∆ =
φ0

AlN

(

D+(∆)
N̂

2
+ D−(∆)Ĵz

)

(4.36)

D±(∆) =
5
∑

F ′=3

S4F ′

γ
2∆4F ′

∆2
4F ′ +

(γ
2

)2 ±
4
∑

F ′=2

S3F ′

γ
2∆3F ′

∆2
3F ′ +

(γ
2

)2 (4.37)

The Eq.(4.36) is valid only for expectation values or variances of the variables. Calculating
the variance of φ∆ gives

〈(δφ∆)2〉 =

(

φ0

AlN

)2
(

D2
+(∆)

〈(δN̂ )2〉
4

+ D2
−(∆)〈(δĴz)

2〉
)

(4.38)

We see that the atomic noise can be divided to two main contributions i.e. the projection
noise (δĴz)

2 and the atom number fluctuations (δN̂ )2. In the following few lines we will
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give some explanation of these two.

Projection noise

The second term in Eq.(4.38) is the quantum projection noise of a collective coherent su-
perposition state. When this state is created the pseudospin vector Ĵ lies in the equatorial
plane of the Bloch sphere and the uncertainties of its projections Ĵz and Ĵy satisfy the
Heisenberg uncertainty relation. Substituting the value of (δĴz)

2 we get

〈(δφ∆)2
Ĵz
〉 =

(

λ2

2πA

)2

D2
−(∆)

Nat

4
, (4.39)

where we have inserted the value of φ0. The last equation tells that the coherent superpo-
sition state has a variance of the population number difference proportional to the total
number of atoms Nat in the ensemble, as expected from Eq.(2.11).

In many experiment it is necessary to characterize the atomic state by measuring the
projection noise, being the fundamental quantum noise limit. To measure the projection
noise of the sample prepared in a pure superposition state one needs to perform a mea-
surement on a coherently prepared atomic samples. The measurement protocol should
have the following sequence. First the atomic state is prepared in a superposition state.
Second, an off-resonant pulse is applied that projects the ensemble state to one of the
states creating the superposition. To have a good statistics we need to perform several
measurements. However, to be in the same conditions, we need after every optical probing
to prepare again the superposition state, since after the measurement has taken place the
state of the ensemble is already projected. We have to also ensure that the measurement
is performed with the same sensitivity for both ground state hyperfine levels.

Population noise

The noise measurements performed in our experiment involve a mixed ensemble state
where atoms are distributed among the hyperfine levels |3〉 and |4〉 of the ground electronic
state in caesium. This would mean that density matrix of the ensemble is ρ = p3|3〉〈3| +
p4|4〉〈4|. Since during cooling process the repump laser prevents atoms to accumulate on
the |3〉 the population of that level is much less than the population of |4〉. Moreover,
in the experiment, the light probe we use, is far detuned from the transitions coupling
the |3〉 state to the excited 6P3/2 state (around 9 GHz). Then the variance of Ĵz will be
proportional to the number of atoms in |4〉 state i.e. we will observe population noise.

There are two type of population noise which can be measured by interferometric
setup. First, one can choose to make a measurement of freshly prepared atomic samples
in a consecutive MOT or FORT loading cycles. The variance of the equilibrium number
of atoms loaded in the MOT or the FORT scales linearly with the loaded atom number
since the different loading cycles are not correlated.

The second type of population fluctuations arises from the atomic motion in the cold
cloud. Since the atoms have a finite kinetic energy associated with their mean velocity they
will move in and out of the probing volume resulting in a population noise. To measure
these fluctuations one needs to send consecutive pulses and perform measurement in a
single trapping cycle. Hence, we need to send the pulses with a time separation longer
than the time it takes an atom with average velocity to cross the probing beam cross-
section. This way we will assure that when the second pulse arrives it will already see new
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atoms.
To calculate the number of atoms which have been replaced by the thermal motion in

the trap [71] we use a numerical analysis similar to the release and recapture experiments
[72]. The number of atoms replaced Nre by new ones after waiting a time t is found to
behave as

Nre = Nat

(

1 − e−
t

tre

)

(4.40)

with tre the effective time at which Nat/e atoms have been replaced or refreshed. Choosing
very short time separation between probe pulses will reflect in probing of atoms which state
has already been measured by the first pulse. The above equation is valid for times much
shorter than the atomic sample lifetime. The noise associated with the thermal motion is
proportional to the number of atoms replaced after some time t as:

〈(δφ∆)2
N̂
〉 =

(

λ2

2πA

)2

D2
+(∆)

Nre

4
(4.41)

At the end of this section we want to collect all the noise contributions to the experi-
mentally measured detector photocurrent.

〈(δi)2〉 = 〈(δi)2e〉 + 〈(δi)2SN 〉 + 〈(δi)2a〉 + 〈(δi)2ph〉 + 〈(δi)2δt〉 + 〈(δi)2
Ĵz
〉 + 〈(δi)2

N̂
〉 (4.42)

The variances in Eq.(4.42) are expressed through the measured phase-shift and the num-
ber of atoms using the equations from the previous sections. The new noise contribution
added here is the electronic noise 〈(δi)2e〉. The shot noise 〈(δi)2SN 〉 is given by Eq.(4.20).
The amplitude noise is calculated from Eq.(4.25) and can be canceled by locking the inter-
ferometer at a half fringe. The phase noise Eq.(4.30) depends on the pathlength difference
and is surpassed by aligning the interferometer in the white-light position. The acoustic
noise is given by Eq.(4.34). The atom induced phase noise is separated to projection noise
in Eq.(4.39) and the density or population noise in Eq.(4.41)



Chapter 5

Diffraction effects on light-matter

quantum interface

The light atom interaction in the context of the collective variables couples atomic col-
lective variable to a light variable. The importance of the interaction is connected with
generation of spin-squeezed states, quantum mapping between atoms and light, quantum
memory operations, creation of macroscopic entanglement, and teleportation of atomic
states [5, 8, 73–78]. The efficiency or signal-to-noise ratio (SNR) of the interaction is a
function of parameters as optical depth on resonance and absorption. In the experiment
a collection of atoms in an atomic cloud interacts with a light beam. Often the light is
off-resonant [6, 7, 26,27] and the interaction is considered to be of the nondestructive [11]
or QND type [6,9]. The elastically scattered photons carry information about the atomic
state. Since the interaction is non-dissipative the scattered waves are coherent and diffrac-
tion effects can occur thus in some cases reducing the SNR. To overcome the diffraction
or at least to minimize it one needs to predefine the atomic sample geometry as well as
the geometry of the light beam.

In most of the experimentally demonstrated interaction schemes the light beam is often
large compared to the atomic sample [7,26] prepared in a MOT. In other experiments using
room temperature atoms in a vapor cell [6, 27] the atomic density is constant along the
entire sample. Coupling an inhomogeneous light beam to a cold atomic sample has been
realized using a cavity [10] or a focused gaussian beams [11]. The choice of a cavity or a
focused beam is dictated by the possibility to increase the photon density at the region
of the atomic sample and to enhance the interaction using the cavity finesse. However,
along with this positive effect the diffraction can influence the interaction especially when
a dipole trapped atomic samples are used [79].

In this section we present a model to describe the effects of the diffraction on light atom
coupling in terms of collective atomic and light variables [25]. Starting from a purely clas-
sical model of light atom elastic scattering we derive simple scaling geometrical parameters
to describe the 3D problem and relate it to the already investigated 1D scattering.

5.1 Collective light-atom coupling

The effective hamiltonian in the off resonant limit Eq.(2.48) contains a coupling term ŜzĴz,
that describes the time-dependent interaction between a pulse of light and an ensemble of
two-ground-states atoms in a sample with cross-sectional area A and length l. The atomic
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Figure 5.1: Light-atom interaction in a Mach-Zehnder interferometer

sample is placed in one of the arms of a Mach-Zehnder interferometer as shown in Fig.5.1.

Ĥc = ~
2σ0

Alτ

( γ

2∆

)

∫ l

0
ŝz(z, t)ĵz(z, t)dz (5.1)

The light is detuned by ∆ from the atomic resonance, as shown in Fig.2.3, and σ0 = λ2/2π
is the on-resonance absorption cross-section. The integration of the Ĥc runs over the length
of the atomic sample, with a coefficient in front of the integral describing the coupling
strength of the interaction.

The z components of the collective angular momentum operators for atoms and light
per unit length are defined as in Eq.(2.10) and Eq.(4.9). Here the difference is that the
discrete sum over all atoms in the sample now runs in a slab with length δz

ĵz =
1

2δz

N(z)
∑

k

(

σ̂
(k)
44 (t) − σ̂

(k)
33 (t)

)

(5.2)

ŝz =
1

2δz

n(z)
∑

k

(

â
†(k)
1 â

(k)
1 − â

†(k)
2 â

(k)
2

)

(5.3)

The annihilation operators for the probe and reference arm’s light fields are â1 and â2,
respectively. In expressing the atomic operators we have assumed that the levels of interest
are the ground states of atomic caesium. The time evolution of the system is governed
by the Heisenberg equation of motion Eq.(2.30) and the transformation of the input in
operator projections at the output out is expressed by the following relations

δĴout
y = δĴ in

y − 2σ0

A

γ

2∆
< Ĵx > δŜin

z

δĴout
z = δĴ in

z

δŜout
y = δŜin

y − 2σ0

A

γ

2∆
< Ŝx > δĴ in

z

δŜout
z = δŜin

z

The operators with Ĵz and Ŝz have replaced the atomic and light operators in Eq.(5.2)
after an integration along the sample length.

The z components of the atomic and light collective pseudospin are conserved, whereas
the y components are transformed according to the above equations. Then a measurement
on Ŝy would reveal an information about the population number difference Ĵz. Assuming
an initially prepared coherent state of the macroscopic atomic and light vectors, along the



42 Chapter 5: Diffraction effects on light-matter quantum interface

x axis, a set of measurements of Ŝy with 〈Ŝy〉 = 0 will give a variance

(δŜout
y )2 =

nph

4
+

(

2σ0

A

γ

2∆

nph

2

)2 Nat

4
(5.4)

The first term on the right hand side is the shot noise of light and the second is the excess
light noise due to atomic fluctuations amplified by the value of 〈Ŝx〉. The first term is
constant since it describes white noise as already discussed in previous chapter. The value
of the atomic variable Ĵ in

z can be deduced from the measurement with a signal to noise
ratio (SNR) defined by

(

S

N

)2

1D

=
σ2

0

A2
Natnph

( γ

2∆

)2
(5.5)

The index 1D in Eq.(5.5) refers to the one dimensional problem.
In the experimental configuration employing the Mach-Zehnder interferometer, as in

Fig.5.1 the detected by the homodyne detector signal is expressed as the photocurrent i−
in units of elementary charge integrated over the pulse duration τ

SD =

∫ τ

0

i−
e

dt

= ε
τ

~ω

cε0

2

(

2|Esc||Er|
∫

AD

MscMrdA + 2|Ep||Er|
∫

AD

MpMrdA

)

. (5.6)

The indexes p, r, and sc refer to the probe, reference, and scattered wave propagating
in the interferometer arms. The terms in the brackets describe the transverse overlap of
the waves over the photodetector area AD, with M being the mode functions. The last
include the oscillatory dependance on the interferometer pathlength difference. Generally,
we assume that the probe field Ep and scattered field Esc do not share the same spatial
mode and have different phases due to the atom light interaction generating the scattered
waves.

The second term in Eq.(5.6) does not carry any information about the atomic variable
and its fluctuations are the classical noise in amplitude and phase of the probe light. The
first and the second term are nearly π/2 out of phase, which means that when the first
term is maximum the second will vanish. Setting the pathlength of the interferometer to
zero and the residual phase to π/2 makes the second term disappear as it was discussed
in Sec.4.2.2. The value of the signal S2 = SDS∗

D and the noise N2 are then expressed as

S2 = 2ε2
( τ

~ω

)2
PscPr

N2 =
ετ

~ω
2Pr

The signal depends on the product of the scattered power Psc and the power of the
reference light beam Pr. On the other hand the noise depends on Pr only. The last has a
lower limit defined by the shot noise. The coupling strength κ2 or SNR then obtains its
general expression

κ2 =

(

S

N

)2

= εnsc
ph (5.7)

As it was expected the coupling strength is proportional to the detected fraction of the
coherently scattered photons nsc

ph. It is then straightforward that the scattered power can
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be increased by increasing the input optical power to the interferometer. However, the
detection saturation power and the requirement for low spontaneous emission rate set a
limit to the input power.

The SNR can be expressed by using two additional parameters called integrated rate
of spontaneous emission η and optical depth or optical column density α0.

η = nph
σ0

A

( γ

2∆

)2
(5.8)

α0 = Nat
σ0

A
(5.9)

Then the strength of the interaction becomes:

κ2 = ηα0. (5.10)

The last has also been recognized as a figure of merit for collective variable light-atom
coupling [80].

5.2 Scattering model

In the discussion here we are mostly interested in maximizing the scattered power by
choosing an optimal sample geometry. We develop a simple classical method to calculate
the stationary diffracted field by an atomic sample regarded as an ensemble of fixed point
scatterers with a certain density distribution. Since we are interested in cold atoms the
doppler shift can be neglected. The time, for which a measurement takes place is short
enough compared to the recoil time.

5.2.1 Description

To describe the scattering process we use the first Born approximation [81], neglecting the
multiple scattering events. The scatterers are assumed to be independent, which is true
for not too high atomic densities nat < k3. The scattering is coherent and happens mainly
in the forward direction i.e. along the propagation direction of the probe field. The total
scattered field is calculated as a sum over the scattered fields of independent scatterers.

The model parameter which characterizes the scattering event is the scattering ampli-
tude f . In our calculation we assume s-wave scattering thus having f independent on the
scattering angle Ω. Integrating |f |2 over the solid angle renders the scattering cross-section
at a given detuning ∆ of the probe laser from the atomic resonance. For detunings large
compared to the excited state hyperfine splitting the scattering cross-section for any of
the sublevels of the ground state is approximately the same for linearly polarized light.

∫

4π
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1

1 +
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)2
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√

3

8π2

1 + i
(

2∆
γ

)

1 +
(

2∆
γ

)2 (5.11)

The total scattered wave is the sum of the waves scattered by individual scatterers
j (j = 1..Nat) and can be expressed in terms of electromagnetic field vector in complex
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Figure 5.2: Description of the scattering model (a). Diffraction limited scattering cones
for transversally (left) and longitudinally extended atomic samples (b).

notation as [Fig.5.2(a)]:

~Esc(~r′) =
Nat
∑

j=1

~Ep(~rj)f
exp(−ik|~r′ − ~rj|)

|~r′ − ~rj |
(5.12)

Since atoms can occupy the two hyperfine states |3〉 and |4〉 they will contribute with
opposite signs to the total scattered field. Then atomic density or density of the point
scatterers can be written in the form:

δn(~r) =

N4
∑

j=1

δ(~r − ~rj) −
N3
∑

k=1

δ(~r − ~rk) (5.13)

with normalization condition giving the population difference between the two levels

δNat =

∫

R3

dr3δn(~r). (5.14)

Next, we use a continuous density distribution according to a smooth probability dis-
tribution to find a particle in a small volume element, again suitably normalized to the
total number of particles. The scattered field at some observation point ~r′ outside the
sample in integral form becomes:

~Esc(~r′) =

∫

R2

dxdy

∫ L

−L
dz ~Ep(~r)δn(~r)f

exp(−ik|~r′ − ~r|)
|~r′ − ~r|

(5.15)

At this point we need to make assumption of the scattering angle. We expect that con-
structive interference of the scattering amplitudes happens for small angles along the
forward propagation direction. In the paraxial domain (small angles to the optical axis),
we can approximate the spherical wave propagator in Eq.(5.15) by using a Fresnel expan-
sion formula for the distance |~r′−~r| [24,81]. Then the kernel or propagator in the integral
is transformed to

K(|~r′ − ~r|) ≃ exp(−ik(z′ − z))

(z′ − z)
exp

{

ik
xx′ + yy′

z′ − z

}

× exp

{

−ik
x2 + y2

2(z′ − z)

}

exp

{

−ik
x′2 + y′2

2(z′ − z)

}

We choose the incident probe beam not as a plane wave but rather as gaussian with
parameters w(z), R(z),Φ(z) being the beam radius, wavefront radius and Guoy phase,
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respectively:

~Ep(x, y, z) = ~E0
w(0)

w(z)

× exp

{

−i[kz − Φ(z)] − x2 + y2

w2(z)
− ik

x2 + y2

2R(z)

}

The density distribution is modeled as a Gaussian in the radial and longitudinal di-
rections. This choice of density profile is also compatible with the density distribution of
atoms inside a harmonic potential at thermal equilibrium. In the case of dipole trapped
atomic sample when the kinetic energy of trapped particles is low enough w.r.t. the trap
depth, the gaussian shape of the trap potential can be considered parabolic and the shape
of atomic sample gaussian.

The atomic density distribution in the transverse direction has a radius wa, which de-
pends on z due to the weaker confinement by the dipole trap laser beam (wavelength λdip)
away from its minimal beam waist. In the longitudinal direction (along the propagation
axis of the probe beam) it is described by a 1/e-length parameter L0.

δn(x, y, z) =
δNat

π3/2L0w2
a(z)

exp
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−x2 + y2

w2
a(z)

− z2

L2
0
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√
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zdip =
πw2

a

λdip
(5.16)

Finally, the scattered wave field can be evaluated by solving the integral

~Esc(~r′) =

∫

R2

dxdy

∫ L

−L
dz ~Eprobe(~r)n(~r)fK(|~r′ − ~r|) (5.17)

Here the integration over z runs over the length effectively occupied by the sample.
We evaluate the scattered field distribution in some distant observation plane (M ′ in
Fig.5.2(a)) by carrying out the integration over the transverse coordinates of the sample
analytically and integrating numerically over the length of the sample. Using standard
software on a desktop PC a scattered field profile can be calculated in several seconds
allowing for fast interactive optimization of parameters. Not surprisingly for our model
assumptions and the choice of the density distribution, we find the scattered mode profile
to be very close to Gaussian in all of the studied cases and we can extract parameters like
width and radius of curvature by fitting to the corresponding mode profile. The scattering
efficiency is evaluated by calculating the total scattered power in the observation plane.

5.2.2 Qualitative examples

Before presenting results from numerical calculation we wish to look closely to some ex-
amples of scattering by different sample geometries. The on-axis scattering intensity is
essentially independent on the sample geometry at the far-field since all waves will interfere
constructively in the forward direction. Thus the scattering efficiency is mainly determined
by the opening angle of the scattering cone around the propagation axis. To demonstrate
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these consideration we will consider two types of atomic samples i.e. transversally and
longitudinally extended.

Let us first consider a short sample of width 2wa as drawn in Fig.5.2(b) to the left. The
limiting angle at which the interference ceases to be constructive can be found by dividing
the sample into two parts. The pathlength difference between the waves scattered from
the center and the end of a half has to be half wavelength in order to have complete
cancelation. From that condition the maximum opening angle of scattering cone is

νtr ≈ tan νtr =
λ

πwa
(5.18)

A close look to νtr will discover analogy with the far field diffraction angle of the Gaussian
beam. A narrow sample will scatter more than a wide sample since the corresponding
diffraction angle will be greater. The scattering angle goes as 1/wa and the scattered
intensity as 1/w2

a.
Next we consider a pencil-shaped atomic sample, readily obtained in a single focused

beam dipole trap. The sample length is much greater than the sample width L0 ≫ wa

as shown in Fig.5.2(b) to the right. We apply the same procedure as before and find the
limiting opening angle of the diffraction cone to be

δ = L0(1 − cos θL) ≈ L0
θ2
L

2
=

λ

2π

θL =

(

λ

πL0

)1/2

. (5.19)

By equating the two angles we combine the effect of the sample length and width, and
define a characteristic length of the atomic sample zra

zra =
πw2

a

λ
(5.20)

For atomic sample with length L0 longer or comparable with zra, the scattered waves by
different section along the propagation axis are mismatched in phase and consequently
will interfere destructively, thus significantly reducing the scattered wave intensity with
respect to a short sample with the same number of atoms.

An approximate formula for the scattered power can be derived by the help of the
above considerations using the procedure described in [25], which combines the influence
of the experimental parameters sample length, sample width and probe beam radius.

Psc ≃ PprobeN
2
at

3σλ2

4π3w2
0w

2
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2
0

1
√
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(5.21)

θ2
T =

λ2(w2
a + w2

0)

π2w2
0w

2
a

(5.22)

Here we introduced z̃ra, the modified atomic Rayleigh range by using the definition of
θT from the second equation in Eq.(5.21)and the relation z̃ra = λ/(πθ2

T ). The above
expression does not take into account the transverse change of the probe beam diameter
along the sample length, or in other words, the probe beam is assumed to have a plane
phase front curvature.

The last equation is an attempt to find a compact analytical expression to estimate
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Figure 5.3: (a) Power of the scattered wave (symbols) vs. the characteristic transverse
radius of atomic sample of length L0 = 1µm for constant number of atoms and a wide
probe beam w0 = 1000µm together with the analytic prediction from Eq.(5.21)(solid line).
b) FWHM of the intensity distribution in the observation plane for the same parameters.

the diffraction effects based on the qualitative consideration made for the different sample
geometries. For more accurate results we must do the integration in Eq.(5.17) - the essence
of the scattering model we have developed so far. Then comparing the analytical estimate
in Eq.(5.21) and the output results of the scattering model will tell us how well the
analytical prediction can be used for a quick estimation of the optimum sample geometry.

5.2.3 Numerical results

The section presents results from the scattering model in comparison with the analytical
prediction of Eq.(5.21). Again, the data is calculated for the D2 line of Cs. The probe
detuning and power are fixed as well as the number of atoms in the sample for all results
presented.

We start with the dependance of the scattered power on the sample transverse di-
mension. For a ”hypothetically” short atomic sample with a width of 1 µm and a wide
probe beam of w0 = 1000 µm we would expect that as long as the width of the ”pan-
cake” shaped sample increases, the scattered power should decrease since the destructive
interference in forward direction is appreciable for wide atomic samples. The result is
shown in Fig.5.3(a). The scattering efficiency drops dramatically with increasing sample
size. A comparison with the (1/w2

a)[1/(w
2
a +w2

0)] dependence from our analytical estimate
shows perfect agreement. At a fixed position of the observation plane for different sample
widths the condition for Fraunhofer diffraction is different. The full width at half maxi-
mum (FWHM) of the scattered wave transverse intensity distribution in the observation
plane is shown in Fig.5.3(b). The observation plane does not appear in the far field for
all the samples with different widths. Then the plotted dependance can be explained as
the transverse span of a gaussian beams with a varying waist diameter and fixed posi-
tion. Hence, one must be careful when choosing the position of the observation plane. Its
position has to meet the requirement for propagation in the far field.

The dependance of the scattered optical power as a function of the sample length in
units of zra is shown in Fig.5.4(a) in the case of wide probe beam and fixed sample width of
wa = 20 µm. The numerical solution is in a good agreement with the analytical estimate.
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Figure 5.4: (a) Scattered power vs. the characteristic length of the atomic sample with
atomic waist radius wa = 20µm probed by a beam w0 = 1000µm. Numerical data (symbols)
and analytic prediction from Eq.(5.21) (solid line) are shown together. (b) Same as in (a)
for sample width wa = 3, 5, 10, 20µm (squares) and for a narrow probe beam w0 = wa =
20µm (circles) with the length scaled to z̃ra.

Note that the dependance does not include the effective Rayleigh length z̃ra - a product
of the considerations we have made in Sec.5.2.2. We define the geometric factor gL as the
function describing universally the length dependence:

gL = Psc(L0)/Psc(0) ≃
1

√

1 + (L0/z̃ra)2
(5.23)

The parameter gL obtains a value of 1 for a sample of infinitesimally short length, and
approaching zero for a infinitely long atomic samples. A check of that dependance is shown
in Fig.5.4. For a wide beam the analytical estimate agrees well with the scattering model
for scaled sample lengths up to L0/z̃ra = 8. The mismatch between the model and the
analytical prediction is of the order of 20% for a sample with Fresnel number of 1/8. The
Fresnel number of the sample is defined as z̃−1

ra . In contrast, for the case of a matched with
the sample size beam the analytical estimate fails to describe accurately the behavior of
the longitudinal geometrical factor gL, since Eq.(5.21) does not include transverse change
of the probe beam geometry over the sample length. To include the effect of the changing
beam geometry one must introduce an axial average of the of the incident intensity over
the sample length as it is done in the Appendix of [25].

The third important parameter in the coupling problem which can be experimentally
varied is the probe beam radius. A very large probe is not optimum. The sample is
illuminated homogeneously but the intensity experienced by an atom is rather low. The
scattering efficiency dependance on the decreasing probe diameter is a function on two
parameters. Decreasing the probe beam size will increase the intensity an atom can see,
but in the same time the number of atoms addressed by the probe beam will decrease.
The result of the numerical calculations in the case of varying probe beam radius is shown
in Fig.(5.5). Again for a very short sample the analytical estimate agrees well with the
scattering model results. For long samples both the analytical formula and scattering
model predict a finite probe beam diameter at which the scattering efficiency maximizes.
For reasons already discussed in the context of Fig.5.4(b), the analytical estimate starts
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Figure 5.5: Scattered power vs relative size of sample and probe beam for samples (wa =
10µm) of length L0 = 1, 400, 738, 1000µm (diamonds, squares, stars, triangles)together
with the analytic prediction from Eq.(5.21)(solid lines) in scaled units.

to deviate from the numerical result for small probe beam radii. By dropping out the
straightforward dependance on the probe intensity and the degree of transverse localization
(∝ w−2

0 · w−2
a ) we arrive at a new parameter that we refer to as transversal geometrical

factor gT

gT =
1

1 + w2
a/w

2
0

(5.24)

The optimum value of gT is higher for relatively short samples since the optimum probe
beam size relative to the fixed width of atomic density distribution is smaller than one as
seen in Fig.5.4(a). For long samples the transversal factor approximates 1/2.

5.3 Application to a dipole trapped sample

In the next lines we present numerical results for the case of dipole trapped sample. The
sample is trapped in a single focused gaussian beam. In thermal equilibrium the sample
geometry is determined by the trapping beam waist [62]. For the purpose of our experiment
we consider a 1030 nm wavelength of trap laser at a constant depth of U0 = kB×1 mK.
The temperature of trapped atoms is also fixed to 100 µK. Specifying the dipole trap laser
power determines the waist needed to achieve the desired trap depth, thus also fixing the
thermal radius wa and the sample length L0. In our calculation we fix the peak density
of the sample to npeak = 1012cm−3, which specifies the number of atoms Nat.

In Fig.5.5 we see that for long samples the probe beam size equal to the sample size
is close to the optimum condition at which the scattered power is maximum. Next, we
choose nph = 108 to interact with the sample, at a detuning in natural linewidth units
of ∆/γ = 100. Then we can numerically calculate the SNR using Eq.(5.7) by calculating
the scattered power and convert it into number of coherently scattered photons, for unity
quantum efficiency. The results are plotted in Fig.5.6(a). The increase of the dipole power
is translated into increase of the number of atoms. This is a result of the above made
assumptions for constant peak density. It can be seen that for bigger atomic samples the
SNR saturates. Thus the benefit of having more atoms is reduced by the increasingly
unfavorable elongated geometry.
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Figure 5.6: (a) achievable coupling strength (filled symbols, left axis) and number of trapped
atoms(open symbols, right axis) as a function of invested dipole trap power; (b) achievable
coupling strength (filled symbols, left axis) and probe detuning (open symbols, right axis)
needed to satisfy η = 0.1 (see text for details).

In the real experiment along with the elastic scattering there is a spontaneous emission.
The parameter we use to describe the spontaneous emission is the rate at which it hap-
pens. Every point in Fig.5.6(a) represents different transverse size of the atomic sample.
Then the rate η will also change and has to be calculated for each point of the graph by
calculating the number of spontaneously emitted photons per atom for an average incident
intensity experienced by the atoms and integrating over the pulse duration time τ as done
in [25]. To include the same non-destructive conditions, i.e. the same η for each point, we
adjust the detuning so that the values of η become identical for all the points. The result
of the numerical calculation of κ2 with η = 1 and scaled detuning is shown in Fig.5.6(b).
The advantage of the bigger samples over the samples with less atoms is again restored.

5.4 Coupling strength in the 3D model

In Sec.5.1 we have introduced the SNR or coupling strength of the light atom interaction at
the off-resonant limit. We have shown that calculating the number of coherently scattered
photons gives the κ2 parameter. However in the real experiment we cannot distinguish
between coherently scattered photons and incident photons. The signal we detect is the
interference between these photons. To overcome this problem we need to express the
power of the scattered wave with the incident power by inclusion of the geometrical cor-
rections to it. The scattered power in Eq.5.21 can be rewritten using two new parameters
the transverse beam area Aph as πw2

0 and the sample area Aat as πw2
a

Psc =
3

2
N2

at

σ0

Aph

σ0

Aat

( γ

2∆

)2
gT gLPinc

Using eq.(5.7) we obtain the SNR assuming unit quantum efficiency detection and inserting
the (δNat)

2 = Nat/4 as:

κ2 =

(

S

N

)2

3D

=
1

8
gT gL

3σ2
0

AatAph
Natnph

( γ

2∆

)2
(5.25)
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In the last equation we have substituted the value of the atom number fluctuations with
the noise of an atomic sample prepared in a coherent superposition state of the kind
introduced in Ch.2, Eq.(2.11). Comparing Eq.(5.25) to the expression Eq.(5.7), obtained
from the 1-D model in Sec.5.1, we see that the coupling strength is modified by the
diffraction effects encoded in the geometrical factors. The equations give the same results
for samples with Fresnel numbers close to 1 and equal probe and sample diameter. For
an elongated atomic samples with L0 ≫ z̃ra and size equal to the probe beam size we can
expand the geometrical factors and obtain an expression for the coupling strength in the
case of elongated samples as

κ2 =
π3/2

8

(

λ

2π

)3

npeaknph

( γ

2∆

)2
. (5.26)

where npeak is the peak atomic density.
At the end as a conclusion to this chapter we can summarize that we have found

a simple analytical formula to include the diffraction effects in the light-matter quantum
interface. The validity of the analytical prediction was tested using a numerical calculation
of the scattering integral for atomic samples of different geometries. We found that the
analytical estimate agrees with the numerical results at 20% level over a wide range of
parameters.

The coupling strength of the interaction is modified by the geometry of the atomic sam-
ple through the geometrical factors describing the effect on the longitudinal and transverse
extent of the sample.



Chapter 6

Magneto-Optical Trap

The magneto optical trap is a main ingredient in our experiment. In this chapter we give
a detailed description of the magneto-optical traps used in the experiments performed at
Århus University (AU) and Niels Bohr Institute (NBI). The MOT at Aarhus we refer to as
a first generation MOT or AU MOT and the MOT at NBI we refer to as second generation
MOT or NBI MOT.

The chapter start with description of the optical setup for laser cooling of Cs atoms in
a MOT in Sec.6.1. The setup is the same for AU and NBI MOT’s. Next, we describe the
master lasers locked to a saturation spectroscopy resonances via a frequency modulation
technique and the slave lasers. Third, in Sec.6.2, we describe the vacuum setups of the
two experiments at AU and NBI. In Sec.6.3, we continue with the characterization of the
quadrupole traps used in the two experiments, including a section devoted to compensation
of eddy-current induced magnetic fields. In Sec.6.4 we present the main components
of the imaging systems used in the first and second generation MOT. The last section
presents results from fluorescence measurement of the density, number of atoms, size and
temperature of the atoms in the AU MOT.

6.1 Optical setup

The laser cooling of atoms as it has been shown in the theoretical part require 6 opposing
beams with polarization chosen to drive ∆m = ±1 transition between magnetic sublevels
of ground and excited states. The frequency of the laser must be smaller than the atomic
transition frequency and has to be easily changed to allow for implementation of different
sub-Doppler cooling schemes. The intensity in each beam has to be large enough to
saturate the atomic transition. The bigger the beam radius the larger the trap volume,
and the higher the number of atoms collected in the MOT.

To access the demands of the cooling process we chose firstly to stabilize two extended
cavity diode lasers and then to inject their light into two additional powerful laser diodes
[82], for the cooling and repumping light, respectively. We refer to the first as ”master”
lasers and to the second as ”slave” lasers. The method is widely used in laser cooling
experiments.
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Figure 6.1: Master lasers mechanical design. (a) Ball design top and side view, laser diode
(LD), diffraction grating (DG), piezo-electric transducer (PZT). (b) Laser design adopted
from Ricci et. al.

6.1.1 Master lasers

The master lasers are based on two AR coated laser diodes1 which emit up to 35 mW
of optical power under a feedback from a grating2 in Litrow configuration [83, 84]. The
first diffraction order creates the feedback and the zero-th order is reflected as the laser
output beam. We used two different mechanical mounts for the grating and laser diode.
The schemes of these mounts are shown in Fig.6.1.

To the setup described in Fig.6.1(a) we refer as the ”ball” design and the mechanical
mount in Fig.6.1(b) is a worldwide famous mount first introduced by Ricci et al. [84].

In the ball design the laser diode is placed in a cooper cylindrical housing with outer
radius of 12.5 mm, which is trimmed by one third of its radius. The laser diode is positioned
in the housing in a prefabricated nest and tapped by a lid attached with M3 bolts. A
small hole in the lid allows for inserting of a temperature sensor inside the nest. The laser
collimation lens is placed in a small threaded-end tube with dimensions adapted to the
standard size of collimation lens holders provided by Thorlabs3. The lens is attached to
the diode laser housing by six M3 bolts placed in groups of two along the housing and
separated radially by 120◦.

Since the diode laser wavelength depends on the temperature the latter has to be
stabilized actively on a mK range. The active element which provides the connection
between the laser and the environment is an Peltier thermoelectric cooler. The Peltier
element is based on a semiconductor material which creates a temperature difference when
an electric current flows through it. Depending on the direction of the current the Peltier
can cool or heat.

1Eagleyard ridge waveguide lasers
2holographic replica 1200 lines/mm Optometric Co.
3Achromatic diode laser collimator f=13.5mm, Thorlabs Inc.
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Figure 6.2: Master laser setup: master laser (ML), anamorphic prism pair (AP), opti-
cal isolator (OI), polarizing beam-splitter cube (PBS), beamsplitter (BS), f= −25mm lens
(L1), f= 175mm lens (L2), caesium cell (Cs), high-reflection mirror (HR), DC detec-
tor(D1), 5 MHz tuned detector (D2). Electronics setup also shown except temperature
controller: current controller(ILASER), high-voltage piezo-driver (UPIEZO), sweep genera-
tor (LFG), radio-frequency generator (RFG), servo amplifier (SA) or PI controller.

The change in the temperature inside the diode laser housing is monitored by a ther-
mistor i.e. semiconductor material which changes its resistance when the temperature of
the environment changes.

The whole construction of the laser diode housing is placed on the Peltier element
and attached to a brass base by use of curved clamp and plastic screws. The upper
surface of the Peltier is covered with heat-conductive paste in order to increase the thermal
conductivity.

The grating is holographic replica with 1200 lines/mm and is glued to a high-voltage
piezoelectric transducer (PZT). The latter is glued to a stainless steel ball with a welded
M6 screw on it, used for alignment purposes. Finally the ball is clamped to the base
using M6 screws. We usually use a micrometer translation stage to tune to the desired
wavelength. The stage is adapted to the M6 screw on the ball.

Further, the whole base is placed on a second big Peltier element attached to an
aluminum cylindrical holder with groove at the bottom to adapt a fork for clamping to
the optical table. The setup has very good long term stability even though it looks a little
bit strange. The wavelength at which the fluorescence can be observed in the atomic cell
(look at the next section) is roughly tuned very easily, thus the mechanical design allows
for very quick tuning.

The mechanical construction showed considerably good long term stability of up to 4-6
months without major adjustment. There was only one alignment pitfall. The fixing of
the screws used to attach the ball to the base is difficult, because the ball can slip during
the tightening.

The second mechanical design consist of a lever arm (LA), attached with a M4 screw
to the base [see Fig.6.1(b)]. The opening of the lever is adjusted by pushing with a
micrometric screw (M1). Between the screw and the lever a low-voltage PZT is attached.
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Figure 6.3: Saturation absorption spectroscopy. (a) Saturation absorption profile for
F = 4 → F′ = 3, 4, 5. (b) FM spectroscopy error signal for the relevant levels from (a).

The diode is placed in a housing, and fixed to the base. The base is also slotted in the
horizontal direction to form a lever, the position of which can be adjusted with another
screw (M2). The diode laser collimation lens is placed in threaded housing.

The adjustment of the angle is done by the M4 screw coarsely and by the MM1
finely. The vertical direction is adjusted by MM2. The lens holder can be attached to a
micrometric translation stage during the alignment process. After collimation of the laser
beam the lens holder is fixed to the base using epoxy glue.

6.1.2 Saturation Absorption Spectroscopy

In our experiments we use an atomic resonance as a reference for stabilization of the diode
lasers. This section will briefly introduce the concept of saturation absorption spectroscopy
as a tool to produce narrow doppler-free absorption resonances.

The saturation absorption spectroscopy is investigated in detail [85, 86]. Briefly, it
consists in the following. A powerful ”pump” light beam interacts with a group of atoms
having a certain velocity i.e. certain atomic velocity class. Atoms initially in the ground
state absorb photons from the laser beam with a detuning that matches the Doppler shift
of the resonance of an atom at rest. In other words, the pump beam burns a hole in the
velocity distribution of the ground state. Then a weak counter-propagating probe beam
is used to detect the resulting atomic velocity distribution. If the frequency of the pump
and probe beams are the same then they interact with the same velocity class of atoms
that has zero velocity component in the propagation direction. Thus the Doppler shift is
canceled and a peak in the transmission profile of the probe beam is observed when the
laser frequency is scanned across the resonance Fig 6.3(a). If the atomic excited state has
hyperfine structure, then the individual hyperfine levels can be resolved using this method.
An additional crossover resonances appear between the adjacent hyperfine levels due to
the interaction with atoms with the same velocity but excited to a different hyperfine
component.

In the experiment the output laser beam is directed to a pair of anamorphic prisms,
one pair for each of the master lasers, to convert it from elliptical to a circular one [see
Fig.6.2]. After the shaping the laser beam passes through an optical isolator4 to ensure

4OFR, mod. IO-2.5D-852-VLP, transm. 86-90 % isol. 34-40 dB
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Figure 6.4: Principle scheme of frequency modulation spectroscopy (left), and spectrum of
the laser light after the phase modulation along with absorption resonance (right).

that there is no optical feedback to the laser. With a PBS and half waveplate we can split
and adjust the laser beam in two channels. One channel is used to prepare a seeding beam
for injection-locking of the slave laser, and the other goes to the saturation spectroscopy
stage containing the Cs atomic vapor filled in a low pressure glass cell5. The strong pump
beam depletes the ground state. The reflected beam probes the created population in the
atomic medium and is detected by a photodiode (D1).

The laser frequency is tuned via changing the cavity length by modulating the voltage
applied to the PZT at a given rate and modulation depth. In our case the PZT voltage is
modulated at 100 Hz with a triangular waveform from a low frequency generator6. The
amplitude of the modulation signal is chosen to allow for a full scan of the hyperfine man-
ifold of the excited state. The curve in Fig 6.3(a) represents the power of the transmitted
probe beam as a function of the frequency separation between the adjacent excited states
when the frequency of the cycling transition is chosen as a reference. We can clearly
distinct the three hyperfine transitions F = 4 → F′ = 5, 4, 3 along with the crossover res-
onances 3 × 4, 4 × 4, 4 × 5, respectively. The transmission at the crossovers is higher and
they are good candidates for use as a reference to lock the master lasers using an frequency
modulation (FM) spectroscopy technique.

6.1.3 Frequency modulation spectroscopy

The long term stability of the lasers is of main importance in a laser cooling experiment.
Thermal fluctuations and mechanical vibrations are among the worst influences that can
destabilize the laser frequency. This generates laser frequency jitter i.e. laser frequency
noise. The later is connected to the linewidth of the laser [87]. To prevent the detrimental
effects of this noise onto laser radiation frequency one needs to stabilize i.e. ”lock” the
laser frequency to a stable frequency reference. The stabilization of the laser frequency
leads to a reduction of the linewidth of the laser.

Stabilization of lasers is a vast laser physics field and we are not going to discuss it
in much detail here. We will only present briefly our stabilization scheme. In general
a reference for the laser stabilization can be either an atomic medium [86] or an optical
cavity [88]. Another already stabilized laser or a beat-note of two lasers [89] can also be
used as a reference for locking.

510−3mbar
6Escort 2MHz frequency generator
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Figure 6.5: Beat note of two extended cavity master diode lasers. The lasers are locked to
F = 4 → F′ = 4 and F = 4 → F′ = 3 × 5 transition. The sidebands at 4 MHz are due to
the modulation of the diode laser injection currents. The onset shows the beat-note width
of 700 kHz.

The idea behind the stabilization of the laser frequency in general is the following.
The output laser frequency is compared to the frequency of the reference, and the result is
used in a feedback scheme to create correction of a controllable laser parameter, such that
the difference between the laser frequency ω and the reference frequency ω0 vanishes. To
accomplish this the laser phase is modulated at a frequency ωm with a modulation depth
of M by a phase modulator using a radio-frequency (RF) oscillator. The phase modulation
results in a frequency modulation (FM) [90–92] with a spectrum that contains, a carrier
at the laser frequency ωc = ω, and two sidebands with frequencies of ω ± ωm as shown in
Fig.6.4. The modulated laser light is sent through a sample that ”contains” the spectral
reference. If the spectral feature is not present the two sidebands have equal intensities
and opposite phases, thus resulting in constant intensity at the detector (Det). However,
when one of the sidebands interacts with the spectral feature its intensity is reduced and
the amplitude of the detected signal changes. If the carrier frequency is scanned (in
our case using the PZT of the diode laser) then the output signal exhibits an amplitude
modulation (AM) depending on the frequency modulation. Thus the effect of the atomic
sample is conversion of FM to AM. The produced photocurrent contains beat signals at
the ωm and is directed to a double balanced mixer, where it is demodulated via mixing
with the local oscillator at ωm. The result at the intermediate frequency (IF) of the mixer
is a bipolar error signal proportional to the frequency offset ω0 − ωc. After a low-pass
filtering the error signal is fed to a servo amplifier (ServoAmp) or proportional integral
derivative (PID) controller to produce a time dependent correction for the controllable
laser parameter.

In our experiment the reference is a saturation absorption resonance, created with the
method already discussed in Sec.6.1.2. Usually we use a crossover peak from the signal
plotted in Fig.6.3(a). The laser current is directly modulated using a sine waveform from
a RFG7 at a frequency of 4MHz [see Fig.6.2]. This results in sidebands separated from
the main carrier at 4MHz. They are detected by a phase sensitive 4 MHz-tuned detector-
mixer (D2) that generates an error signal Fig.6.3(b) via demodulation at 4 MHz. Further

7HAMEG 10MHz programable function generator
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the error signal is sent to a proportional integrator circuit (SA) to produce slow and
fast correction to the voltage and current of the piezo-driver and laser current controller,
respectively.

With that procedure applied we lock the cooling master laser to the 3 × 4 crossover
and the repump laser to the 2 × 3 crossover. Then the frequency is further shifted with
acousto-optical modulators (AOM’s) by an amount of 336 MHz and 276.5 MHz for the
cooling and repump lasers, respectively. The AOM setup is explained in a next section.

As we mentioned above locking the laser to a reference will reduce its emission
linewidth. Typically the extended cavity diode lasers have a linewidth of several 100 kHz.
The estimation of the laser linewidth can be done in various experimental ways [93–95].
Here we look at the beat-note of two extended cavity diode lasers when they are combined
on a 50/50 beamsplitter.

The beat-note contains two components: sum and difference of the frequencies of the
two lasers. The first is filtered out due to the limited bandwidth of the fast photodiode8

and the second one is detected and observed with an RF spectrum analyzer9. The detector
is also used to measure the beat-note of the lasers with a frequency difference as large as
the ground state hyperfine splitting (9.192 GHz) of Cs. The result from the beat-note
measurement is shown in Fig.6.5. The difference between the laser frequencies is 25MHz
and the sidebands are due to the modulation of the laser current with an RF signal of
4MHz explained earlier in this section. The width of the carrier is estimated to be around
700 kHz, indicating that at least one of the two lasers has a linewidth lower than 1 MHz.

6.1.4 Slave lasers

The two slave lasers are high power laser diodes10 which provide up to 200 mW and 150
mW, respectively, of optical power at 852nm. They are injection-locked to the master
lasers. Two experimental setups are made for the cooling and repump light, respectively.
The slave laser setup is shown in Fig.6.6.

The seeding beam comes from the left and is denoted with an arrow. It is further split
by a PBS1 and the reflected part is focused with a lens L1 in an AOM111 in a double
pass configuration, to a waist 0.2mm inside the crystal. The overall shift of the AOM1 is
251 MHz for the cooling laser and 251 MHz and 191.5 MHz for the repump laser. The
obtained diffraction efficiency is 80%. The AOM1 controls the detuning of the MOT
cooling light and its RF drive frequency can be changed by varying the input voltage of
the voltage-controlled oscillator (VCO) of the AOM driver.

The reflected from the curved mirror HCR beam propagates in the same path as the
incoming beam. However, its polarization is orthogonal with respect to the incoming beam
and thus it is transmitted through the PBS1. Further the seeding beam is transmitted
through the PBS2 and subsequently through the lens system L2-L3 where its radius is
reduced 5 times in order to match it with the slave laser beam. The weak slave laser beam
reflected off the optical isolator’s PBS [the dashed line in Fig.6.6] is used to align the
overlap of the slave laser beam and the seeding beam, via the two high reflection mirrors
HR1 and HR2. For a good alignment overlap the seeding and the weak reflected slave
beam propagate almost along the same path. This eventually can induce instability in

8NewFocus Inc. 15GHz bandwidth, GaAs photodiode, model 1480-S
9Agilent HP 4411B, maximum frequency 1.5GHz

10JDS Uniphase SDL-5432, SDL-5422
11TeO2 frequency shifter Brimrose Co.
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Figure 6.6: Slave laser setup: slave laser (SL), anamorphic prism pair (AP), optical iso-
lator (OI), polarizing beam-splitter cube (PBS), f= 200mm lens (L1), f= 125mm lens
(L2), f= −25mm lens (L3), high-reflection mirror (HR), high-reflection curved mirror
R = 100mm (HCR), acousto-optical modulators (AOM1) and (AOM2) with drive fre-
quency 125MHz and 85MHz, beam blocks (BB), fiber coupler (FC).

the master laser. For that reason a PBS and half-wave plate are inserted in the path of
the seeding beam to reflect off the counter-propagating slave laser beam. Another thing
to emphasize here is that the power of the seeding beam has to be as low as possible to
prevent for master-laser-light-induced instabilities. The values of the seeding beam power
typically is less than 1 mW.

The injection locked slave laser beam is sent through an AOM2 which is used as an
intensity modulator with a fixed frequency shift of 85 MHz. Additionally, mechanical
shutters are used to completely blocked the light of the two slave lasers, when it is needed.
The maximum obtained diffraction efficiency is 81%, and 73% for the cooling and repump
slave lasers, respectively. The first diffracted order of the AOM2 is sent to a telescope lens
system to match the beam diameter with the diameter of the fiber eigenmode via the fiber
connector FC.

Two independent saturation absorption spectroscopy stages are set up for both slaves
in order to monitor their injection locking.

6.1.5 Trap optics

The MOT requires 6 beams to provide cooling in three dimensions. Two basic configu-
rations of the light fields in MOT are known. The beams can be either three which are
retro-reflected or six which are independent. In our setup we use six independent beams
which are produced by splitting the cooling and repump beam. The beams are combined
in advance on a PBS. Then the six beams are sent to six fiber couplers where they are
coupled into six polarization maintaining fibers.

As we have shown in Ch.3, the MOT requires that the pairs of opposing beams must
have σ+ and σ− polarization with respect to the direction of the magnetic field. This would
mean that the beams in the horizontal plane must have polarization which is opposite to
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Figure 6.7: Trap beam collimator. fiber connector (FC), collimating lens f= 30mm (L1),
polarizing beam-splitter cube (PBS), f= −15mm lens (L2), 50mm dia. f= 60mm lens
(L3), photodiode (PD).

the polarization of the vertical beams. Since in the first generation MOT a Ti chamber
have been used the trap optics was designed to meet the requirements of the chambers
flange radius. Then we adopted this design to the second generation MOT which employs
a quartz cell. The design of the beam collimator is shown in Fig.6.7.

The optical setup includes a collimating lens, polarizing beam cube quarter-wave plate
to produce circular polarization and a 4x telescope. The resulting gaussian beam diameter
is 2.5 cm. A photodiode is inserted in the reflected beam path for monitoring purposes.
The fiber coupling varies on a monthly bases and has to be checked regularly using either
the photodiode or a fiber optic powermeter. Nevertheless, the variation in the power is
about 10% when monitored for approximately 30 days. The efficiency of light coupling
in the fibers on average is around 50% per fiber. There is slight difference between the
coupling efficiency of the two lasers due to the slightly different beam radii of the two
beams - cooling and repump. The maximum power levels obtained for the six beams are
60 mW and 30 mW for the cooling and repump light respectively.

6.2 Vacuum setup

In this section we describe briefly the vacuum setup used in the experiments at Århus and
NBI. The AU MOT was loaded in a Titanium chamber, whereas the NBI MOT employed
a ultra-high vacuum (UHV) quartz cell. The vacuum setup builded for AU MOT was
extended from an initial vacuum setup employing a quartz cell for application in a atomic
fountain. The initial line of thought for this project was building an atomic fountain
and testing possibilities for generation of squeezed states specifically addressed to the Cs
fountain clock (see Sec.10.2.3). However, since the generation of this non-classical state
is a fundamental quantum-mechanical problem it can also be studied separately and then
applied to the atomic fountain. This second ”line of thought”, was completely adopted
when we moved the laboratory to Copenhagen.
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6.2.1 Århus vacuum setup

The chamber used in the experiment at Århus University was made out of Titanium by
Kimbal Physics Corp12. A picture of the chamber is shown in Fig.6.8. Titanium is a good
vacuum material [96] since it shows faster decrease of the degassing effect when heated
compared to the stainless steel. The choice of Titanium is also favored by its non-magnetic
properties. Stray magnetic fields and their gradients could cause population of magnetic
sublevels with magnetic quantum number different from m = 0. This is crucial for Cs
atomic clock, where the 0 → 0 transition in the ground state is required.

As it can be seen the chamber has 6 big viewports corresponding to the DN63CF flange
and 8 small corresponding to DN16CF. The six big windows provide the inputs for the six
MOT beams, and the small windows are used for both interferometric and fluorescence
detection. The optical access of these viewports is 55mm and 13mm in diameter. The
chamber uses titanium flanges attached to it by hex-head Titanium bolts. The chamber
viewports13 were also made out of Titanium and BK7 glass with an anti-reflective coating
(AR) at 852nm 63mm diameter optical windows14 and 14mm in diameter AR coated for
both 852 and 1064nm.

The optical windows were glued to the Ti flanges using thermoplastic epoxy15, which
was cured at 100 deg. for 30 min. The epoxy is advertised as very-low-outgassing-rate
material. The BK7 glass and Ti have similar thermal expansion coefficient (8.3µm/◦C :
9.2µm/◦C) but unfortunately different modulo of elasticity (60 GPa:116 GPa). As a
consequence the BK7 window cracked during sealing with copper gaskets. The only choice
to keep the windows intact was to use Viton gaskets16 in order to prevent the mechanical
stress over the viewports. Since some of the windows were already broken we needed to
repair them by placing a thin layer of the same glue along the joint between the glass and
Ti flange from the side ”facing” the vacuum.

The crack on the windows and the Viton gaskets did not alow for efficient bake out of
the apparatus. The maximum bake-out temperature for the chamber was not more than
130◦C. The ion pump was baked up to 150◦C with magnets in place. The pressure after
the cool-down and starting the ion-pump was of the order of 2 × 10−8mbar. Since we do
not use gauge the estimation of the pressure inside the apparatus can be done either by
the ion pump leak current or by the loss rate of the MOT.

The vacuum setup sketch is shown in Fig.6.9. We use a 20 l/s ion pump17 to maintain
the vacuum inside the apparatus. The chamber was supported by home-built aluminium
holder and pumped out through thin 9.5cm long tube with a working aperture of 1.2cm
in diameter. The calculated effective pumping speed of the apparatus is 1.65 l/s taking
into account the overall length of about 60cm long tubing and the reduction due to the
small orifice. The overall outgassing rate was calculated to be around 4.4 × 10−7 mbar.l/s,
which with the calculated pumping speed gives the limiting pressure of 2.7 × 10−7 mbar.
The real value of the pressure inside the experimental chamber was probably higher due
to the leaks through the cracked windows, which have appeared after the baking.

The atomic source, 4mg of solid Cs, was placed in a small container and heated to

12Kimbal Physics Inc. Spherical cube
13MBE Components GmBH.
14EKSPLA Co.
15Epotek H74
16MDC vacuum Co.
17Varian Vacuum Inc. VacIon-20, Star Cell pump
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Figure 6.8: Titanium chamber used in the AU MOT(a). Assembly of the AU MOT (b).

evaporate certain amount. The container was attached to a right angle valve18 with Viton
seal. Two different attachment configurations of the Cs container were used. Firstly, the
container was attached close to the ion pump. Due to the long distance to the chamber
and the thin connecting tube the migration speed of the Cs vapor to the chamber was
rather low. Moreover the gravity force is directed opposite to the mean velocity of the
particles traveling upward. The other configuration was to place the source at the top so
that atom will be helped by the gravity, but again the effect of the thin tube dominates.
Nevertheless after a week the chamber was supplied with atoms.

6.2.2 NBI vacuum setup

After the moving at the Niels Bohr Institute we took the decision to rebuild the vacuum
setup so to get rid of the cracked viewports and the Viton gaskets. It turned out that the
windows can only be removed from the flanges by mechanical means i.e. machining them
out. Then we switch to use a quartz cell19. The vacuum setup along with the orientation
of the trap beams is shown in Fig.6.10.

This time the setup is a lot easier to assemble, maintain and use. The ion pump
and its holder are the heaviest parts in the whole construction attached to an optical
bredboard. The coils and the collimators are attached to a home-made aluminum plate
with dimensions 750×580 mm. The plate is supported to the optical bredboard by using
Strut aluminum profile20.

The bake-out procedure this time went up to 180◦C for the quartz cell and 200◦C for
the ion pump which had its magnets taken off. After baking for a week and subsequent
cooling down we get to the level of 10−9mbar with an effective pumping speed of 2.6 l/s.
The pressure we estimated from the ion pump current which showed less then 6µA. The
gauge at the turbo pump at the same time showed 8 × 10−10mbar.

The old Cs container was replaced with four Cs dispensers21 connected in series two by

18MDC Caburn, check number
19Starna Inc.
20Bosch-Rexroth Inc.
21SAES Getters CS/NF/17/50 FT10+10
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Figure 6.9: Layout of the vacuum setup in Aarhus: non-magnetic viewports (V1,V2,V3),
caesium container (Cs), compensating coils (CC), lenses (L1,L2), photodiodes (Pd1,Pd2).



64 Chapter 6: Magneto-Optical Trap

Figure 6.10: Layout of the trap setup and interferometer in Copenhagen: beam collima-
tors (BC), mounted achromatic lens pair (L3). The compensating coils not shown here.
Interferometer components: high reflectors (HR), dichroic mirrors (DM), 50/50 beamsplit-
ters (BS), polarizing beamsplitters (PBS), achromatic doublet lenses f = 100 mm (L4,L5),
probe beam detectors (Pd1,Pd2), locking beam detectors (Ld1,Ld2), movable high reflectors
(MHR), auxiliary detector (Det2), high-power powermeter (PM).

two. The release of Cs from the dispenser is done by evaporation when an electrical current
flows trough it. The maximum Cs content in a dispenser is 7.3 mg. The operating current
used is in the range of 3.2 − 3.5 A. The necessary amount of Cs in the cell is produced for
a time interval of 3 hours to 3h − 20min depending on the value of the current.
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6.3 Magnetic field and trap orientation

In this section we describe the geometry of the MOT including the quadrupole magnetic
trap [97] and light beams. As before, here we also consider the two traps AU MOT and
NBI MOT separately.

In the second part of this section we briefly present the switching characteristics of the
quadrupole field in the NBI MOT. The switching was done using a home-built current
driver to compensate the eddy-currents induced magnetic fields.

In both AU and NBI MOT the stray laboratory magnetic field were compensated by
3 pair of compensating coils. Each coil pair have the currents in every coil flowing in the
same direction.

6.3.1 Århus trap

The trap at Århus University was created by a pair of coils with radius of 77mm separated
186mm apart and placed on the Ti flanges. The copper wire was wound on a teflon ring.
The number of turns in each coil is 170 and with a current of 7.3A we get to field gradient of
10G/cm. The power dissipated from the coils was around 30W which leads to substantial
heating of the coil. To prevent this we switched to a hollow copper tube, which can be
water cooled. Due to the large cross-section of the tube the number of achievable turns
was limited to only 24 thus leading to an increase of the current to 50A.

The switching time of the magnetic field was mainly determined by the coils inductance
and the eddy current induced magnetic fields. The latter were almost the same for both
coils due to the symmetry of the chamber (see Fig.6.8(b)). The magnetic transient decay
time constant was estimated by measuring the decay of the MOT after switching of the
magnetic field. The value deduced from the experimental data at 10G/cm is 10 ms. The
presence of molasses cooling light during the detection could also contribute to the decay
i.e. to increase its time constant.

6.3.2 NBI trap

The trap at Niels Bohr Institute has smaller coils with radius of 50mm but this time they
are placed very close to each other. The distance between coils is 50mm and the number of
turns 38 per coil. This value with a current of 7A gives 11.7G/cm magnetic field gradient.
The power dissipated during continuous operation dropped down to 4W compared to the
Århus coils and water cooling is not required. The magnetic field as a function of the
distance between the coils is shown in Fig.6.11(a). The experimentally obtained value of
the magnetic field gradient is 11.4G/cm, which agrees well with the theoretical one. In
temperature units the maximum trap depth for that field gradient is around 64 mK at a
distance of around 9 cm from the trap center. The switching of the coils in the second
generation MOT is provided by a home-built current driver in order to compensate the
eddy-current magnetic field and a brief description of that is given in the following chapter.

6.3.3 Compensation of magnetic field transients

The fast switching of magnetic field in a MOT depends solely on the eddy-currents induced
magnetic field transients. The dynamics of these transient is governed by the well-known
Lenz law. The time we have to perform a measurement on an atomic sample in most
cases is limited by the interval which is required for the current flowing through the coil
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Figure 6.11: Magnetic fields of the quadrupole trap at NBI: experimental data (◦) and
a fit shows 11.7 G/cm for a current of 7 A (a). Compensation coils field for the z-pair
(b), magnetic field of the coils in Helmholtz configuration (red curve), and in the actual
experiment (blue curve). Magnetic field transient (c). Suppression of the magnetic field
transients when using the coil driver (d).

to completely die out. To turn off the current in the coil on a microsecond time scale
can be done by using a suppression diode for switching inductive loads [98]. However,
bringing down to zero the magnetic field in a MOT is not an easy task since the magnetic
flux change induces eddy-current in the metallic parts around the experimental chamber,
which on the other hand produces magnetic field. Thus the field cannot be switched off
until the eddy-current dies out.

Generally speaking the methods for compensation of the residual magnetic field can
be divided to passive and active. Placing the coils inside the MOT chamber seems to be
very efficient, but this would greatly complicate the mechanical design. Another passive
compensation is to use magnetic shield around the gradient coils. An active stabilization
can be achieved by monitoring the magnetic field via a sensor in order to implement an
electronic feedback to correct the value of the coils current [99]. A more convenient way
to quickly switch the MOT field is to reverse the polarity of the current flowing through
the coil. A switching time of the order of 350µs can be achieved with this technique [100].

The magnetic field of NBI MOT is switched off on microsecond timescale by a home-
built fast switching current driver which relies on the latter described technique. The full
description of the current driver is done in [101] and here only the result will be included.
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The switching time constant of the setup is measured using a cryptically damped pick-
up coil. The coil is a lot smaller than the gradient coils and has inductance of 7 µH and
resistance 0.1 Ω connected in parallel with a capacitor of 2.2 µF and in series with 3.3Ω
resistor. The bandwidth of the circuit is limited to 40kHz in order to prevent for high
frequency noise pick-up. The voltage drop across the pick-up coil is shown in Fig.6.11(c).
The two-exponential fit to the collected data showed exponential decay with time constant
of 1.97(17) ms and 0.80(18) ms with a settling time of around 10 ms. This is much slower
than the switching time of the supply and therefore attributed to the eddy-currents induced
magnetic field transients. When performing the switching of the coils using the driver the
duration of the magnetic field transient is reduced to 150 µs (the red curve) and when
reducing the settling time due to the Lenz effect we get around 90 µs transient duration
(the black curve) as shown in Fig.6.11(d).

At the end of the magnetic field discussion we will dedicate few lines to the compen-
sation coils of the MOT. We use three pairs of square compensation coils which form
the six sides of a cube with dimension of approximately 55 cm. If the distance between
the coils was roughly equal to half of their dimension, then every coil pair would sat-
isfy the Helmholtz configuration. In Fig.6.11(b) we present theoretical calculation of the
field of one pair, taking into account the actual dimensions and number of turns. In the
Helmholtz configuration (red curve) we have a constant field along a distance as long as
20 cm, whereas in the actual experimental configuration (blue curve) the field is constant
along a distance of 8 cm. However, in the experiment the MOT size is around 3 mm,
which is well in the region of the constant bias field.

6.4 Imaging system

In many of the atom cooling experiments the imaging both absorption and fluorescence
are primary method of quantitative and qualitative atomic sample characterization. How-
ever, in our experiment we use an interferometer as a principal characterization tool and
the imaging is only used for determining the cloud size or for qualitative and alignment
purposes.

The basic ingredient of an imaging setup is the CCD (charged-couple device) camera.
The CCD chip consists of a silicon pixel photo-capacitors array which produces charges
when the light impinges on it. The higher the flux is the higher the value of the charge.
The charge is collected until the exposure lasts. At the end of the exposure this charge is
electronically read out an converted to an analog voltage, which is further digitized by an
ADC (Analog-digital converter).

In our experiment the CCD cameras are analog, which means that the video signal
is digitized after the camera using a frame-grabber card or other additional electronic
equipment which has an ADC. Two types of CCD cameras were used: 60 Hz progressive
scan22 equipped with 1/3-inch frame transfer CCD chip23 and a standard CCIR interlace24

mainly used for alignment purposes.
The progressive scan camera allows for taking an image of the atomic cloud on demand.

The exposure is controlled by an external voltage and the duration of the trigger pulse
sets the exposure time. The analog video signal is converted to digital by a 4-channel 8-

22Hitachi KP-F2B
23Texas Instruments TC237, 680×500 pixel CCD sensor, 7.4µm pixel size
24Philips LDH0701, 1/2-inch interline transfer CCD, 8.2µm pixel size
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Figure 6.12: Scheme of the imaging optics of the NBI trap.

bit monochrome frame-grabber.25 The frame-grabber is set to external H-lock operation
mode, which means that the horizontal and vertical synchronization signals are directly
supplied by stripping them of the video signal using an sync-separator.26 The typical
exposure time used is not more than 10 ms and not less than 1 ms. During this relatively
short time the level of collected fluorescence is rather low, which results in a very low
contrast, especially in the case of very weak photon fluxes. To overcome this problem
an average over a sequence of images is taken. A simple home-written software with NI-
IMAQ facility in LabView allows for snapping a certain number of images in a consecutive
loading cycles and taking their average.

6.4.1 Aarhus imaging setup

Two different imaging schemes are used for the first and second generation magneto-
optical traps. The MOT at Aarhus was imaged only by the two interlaced cameras. The
cameras have an 80mm TV zoom lens27 attached. One of the cameras was used in a
combination of 100mm lens to produce a 10 times magnification. The second one had a
lens system which produces an image of the atomic cloud onto the CCD with an effective
pixel size of 30.8µm/pixel. The images with the higher magnification are greatly obscured
due to spherical abberations thus preventing for reliable estimation of the cloud size.
The high magnification CCD camera was only used to finely adjust the position of the
probe beam with respect to the center of the atomic cloud required for the interferometric
measurement.

6.4.2 NBI imaging setup

In the NBI MOT imaging in addition to the two interlace cameras we uses the progressive
one to take instant images of the dipole trapped atoms. The imaging optics of the second
generation experiment at NBI is constructed to be mainly used for observation of the dipole
trap. The scheme is shown in Fig.6.12. A pair of achromatic doublet lenses creates 1:1
imaging of the atomic cloud which is then magnified by a 5× infinity corrected objective28

and focused on the CCD chip of the progressive scan camera by a 200 mm focal distance
achromatic doublet lens.29 The resulting rescaled pixel size after magnification is 1.54µm.
We must say that this is not a resolution since the determination of the resolution requires
an imaging of an objects spaced on a distance as small as 1.5 µm.

25National Instruments PCI frame-grabber, mod. 1409
26Elantec Inc., mod. EL4583
27Ernitec of Denmark 1:1.4/8-80mm
28Infinity Achrovid 5× objective
29Thorlabs, AC254-200-B
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Figure 6.13: General diagram of the computer control of the experiment: PCI cards
(Dev.1,2,3) , voltage-controlled oscillators (VCO1..6), RF amplifiers (A), acousto-optical
modulators (AOM1..6), current supplies (PS1..4) for the x-axis (X), y-axis (Y), z-axis (Z)
compensation coils and (G) for the gradient coils of the MOT, integrator of the probe pulse
area (INT), detectors (D1) and (D2). The colored arrows represent the light of the master
cooling and repump lasers (MC) and (MR), respectively, and of the cooling and repump
slave lasers (SC) and (SR), respectively, and of the probe and dipole trap laser.

The CCD camera is mounted on a translation stage to finely adjust the image plane.
Due to the high magnification the depth of the focus is limited to 18µm, which does
not allow for high degree of adjustability in order to track large fluctuation in the cloud
position.

6.5 Computer Control

The section describes the computer control of the experiment. General diagram of the
hardware control and data acquisition is shown in Fig.6.13. We use National Instruments
cards30 to produce the transistor-tiristor-logic (TTL) signals for controlling the apparatus
that provides signals for changing the light detuning and intensity of the lasers as well as
the current of trap and compensation coils.

The Dev.1 card is the main workhorse in the experiment’s control. It provides analog
voltage signals to control the frequency of the master lasers via the voltage-controlled

30National instruments cards PCI-6713 (Dev.1), PCI-MIO-16E-4 (Dev.2), and PCI-6111 (Dev.3)
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Figure 6.14: Loading of the MOT.

oscillators VCO1 and VCO2. The slave laser intensity is controlled by changing the RF
power through the intensity AOM’s drivers represented with the dashed lines combining
the VCO4 and VCO5 with the RF amplifiers, and additionally by the mechanical shutters
S1 and S2. The probe laser and dipole laser AOM are also controlled by TTL pulses
from Dev.1. In addition to that 4 analog channels of Dev.1 are used to produce triggering
signals for the MOT compensation X,Y,Z, and gradient coils G. The Dev.2 and Dev.3 are
mutually synchronized to the reset switch (SW) of the integrator INT. The SW signal is
produced by Dev.2. The Dev.3 performs the acquisition of already integrated pulse area.
The three PCI cards are synchronized by a common clock. The software control of the
above described hardware control is provided by home-written program in LabView.31

6.6 Diagnostics

This section deals with fluorescence characterization of the first generation magneto-optical
trap. As we have mentioned earlier in the characterization of the second generation MOT
we have emphasized on the interferometric characterization and especially on the density
estimation.

The fluorescence of the MOT is detected by two low noise photodiodes32 placed in
the positions shown in Fig.6.9. The image of the MOT on the photodiode Pd1 is made
by a 25mm diameter 63 mm focal distance lens L1, and a 60mm focal distance 50mm
diameter lens L2 makes an image of the cloud on a photodiode Pd2. The signal from the
photodiodes is amplified by a photo pre-amplifier and send to a low-noise preamplifier33

and observed on a digital oscilloscope.34

6.6.1 Loading and loss

The dynamics of the MOT loading process is investigated in detail [102–105] since its
foundation [35]. Along with the MOT filling process there is also a loss mechanism which
is proportional to the number of atoms. When the number of atoms loaded in the MOT

31CA-MOT program written in LabView 6.1
32Hammamatsu Inc.
33Stanford Research System, model SR560, low noise voltage preamplifier
34LeCroy 9354C, 4-channel, 500MHz bandwidth
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Figure 6.15: Optimum magnetic field gradient (a) and trap laser detuning (b) for maximum
number of atoms. The measurements are taken at ∆ = −3Γ for (a) and at b = 10G/cm.
The solid curves are spline fit (a) and a lorentzian fit (b).

increases the loss also increases. After some time an equilibrium is reached and the number
of atoms in the MOT does not increases any further. The number of atoms in the MOT
N(t) as a function of loading time obeys the solution of the following differential equation.

dN(t)

dt
= R0 − γMOT N(t), (6.1)

where R0 is the MOT loading rate, and γMOT = 1/τ is the atomic loss rate with τ being
the characteristic loading time. The solution of that equation is:

N(t) =
R0

γMOT
(1 − e−γMOT t). (6.2)

A typical loading trace of the first generation MOT is shown in Fig.6.14(a). The magnetic
field gradient is 13.6G/cm. The characteristic loading time is τ = 18.6 ms which gives
a loss coefficient of γMOT = 53.8 Hz. The experimentally obtained value for the loading
rate R0 = 17.2 109atoms/s agrees well with the one obtained by fitting the initial slope
of the loading curve with a straight line i.e. 15.6 109atoms/s. The equilibrium number of
atoms loaded in the MOT is estimated to be Neq = 3.2 × 108. This also is the maximum
number of atoms for the setup constructed at the Aarhus University. At the same time
the lifetime of the MOT after switching off the magnetic field and the cooling beams is of
the order of 10-15ms [see Fig.6.18(b)].

The Cs container was heated up to 85◦C. A further increase of the temperature would
suggest an increase of the number of atoms, but since the pressure of the Cs vapor becomes
higher the loss is also higher which eventually decreases the equilibrium number of atoms in
the MOT. The fit in Fig.6.14(a) does not include the first 15 points due to the influence of
the magnetic field transients. Thus the initial delay due to eddy-current induced magnetic
fields is of the order of 10.7 ms.

The optimum loading parameters for maximizing the number of loaded atoms in the
MOT are empirically found. Similar methods of experimental determination has been
reported elsewhere [102,106,107]. First a measurement of the number of atoms at different
magnetic field gradients fixes the value of the optimum gradient at 10G/cm, and then at
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Figure 6.16: A CCD image of the atomic cloud (a) at detuning ∆ = −3Γ and gradient
b = 10G/cm. A two-component gaussian (b) fit of the stronger confined trap axis for the
image from the left.

this value the number of atoms is measured again but this time as a function of the cooling
laser detuning finding an optimum value of 2.5Γ. The results are plotted in Fig.6.15. In
frequency units the above would mean that the Zeeman shift at 1 cm away from the trap
center is around 14MHz, whereas the detuning is 13MHz.

6.6.2 Density and size

The density of the atomic sample is an important parameter for off-resonant interaction
between atoms and light as we saw in the previous chapters.

The number density of atoms in the trap is determined by measuring the cloud diameter
i.e. the cloud volume, and the number of atoms in it. The estimation of the density can
also be done using the phase shift of the interferometer as it will be explained in Ch.9.

The collection of atoms in the MOT as we have already seen is competed by the
loss mechanism and at steady sate there is equilibrium between loading and loss which
maintains the number of atoms in the MOT constant with time. The behavior of the trap
can be divided to three different regimes [106].

At very low number of trapped atoms i.e. less than 104 the cloud diameter depends
on the temperature and so the density. This regime is called temperature limited regime.
The multiple scattering in this regime is insignificant.

When the number of atoms increases further the reabsorption of scattered photons
becomes important. The cloud enters in the multiple scattering regime. The density is
almost independent on the number of atoms.

At still higher number of trapped atoms the central part of the trap, where the con-
finement is stronger, is filled and then the non-linearity of the spatial dependence of the
trapping force becomes important. Further increase of the atom number leads to filling
the peripheral regions, where the trapping force is weaker. Thus the cloud enters in the
so-called two component regime.

The transition between the multiple scattering regime and the two-component regime
is characterized with a two component profile of the atomic density distribution. We
measure the fluorescence profile of our MOT by a digitized image taken with the Philips
camera. We found that a superposition of two gaussian functions fits best the profile along
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Figure 6.17: Plot of the two radii of the atomic cloud as a function of the number of atoms.
The red curve is a fit to the experimental data for the weaker confined direction and the
blue to the stronger one.

the stronger confined direction. The weaker direction is fitted better to a gaussian. The
image and a two-component gaussian fit to it are shown in Fig.6.16.

The cloud has an ellipsoidal shape imparted by the rotational symmetry of the magnetic
field due to the different gradients. The circle around the cloud is due to the iris of the
camera. We see that there is an appreciable amount of scattered light and background
fluorescence. The graph in (b) part of the figure represents a line profile across the direction
of the stronger trap confinement. The tilt of the image is due to the 20◦ inclination of the
chamber.

The cloud radii in the multiple scattering regime has been sown to be dictated by the
limiting density of the atoms [106]. In both direction the radii are proportional to the

N
1/3
at as:

rMS =
1√
2π

(

Nat

nMS

)1/3

(6.3)

where nMS is the limiting density in the multiple scattering regime.
In Fig.6.17 we show an Eq(.6.3) fit of the cloud radii in both cloud directions vs the

loaded atom number Nat for the AU MOT. The density calculated using a gaussian density
distribution is N = 1.2 × 109cm−3. At the same time the limiting density of the multiple
scattering regime in our conditions is estimated from the fit to the data in Fig.6.17 to be
around nMS = 1010cm−3. The number of atoms in the MOT is changed by increasing
the concentration of Cs vapor in the chamber via increasing the temperature of the Cs
container. This also results in increasing the background fluorescence level which can be
seen in the image of the trapped cloud. The last point is an indication that the number
of atoms collected in the MOT does not rise any further when changing the number of
atoms in the reservoir.

We can summarize that our MOT, with number of atoms around 3 × 108, behaves as
if it is at the transition between the multiple scattering regime and the two component
regime.



74 Chapter 6: Magneto-Optical Trap

Figure 6.18: Results from the release R&R measurement: A raw data trace of 5 ms release
(a). Recaptured fraction (◦) as a function of release time and a fit (solid line) to it using
the result from the theoretical model of cloud ballistic expansion (b). The dashed curve is
corrected for background gas collisions.

6.6.3 Temperature

The laser cooled atomic sample is characterized by a root mean square velocity of the
particles which is connected to the temperature. The temperature can be measured in
several methods. An extensive analysis of the temperature measurement techniques is
done elsewhere [34,38,107–109]. In general, the atoms are released from the trap and then
probed during free ballistic expansion.

In the time-of-flight (TOF) technique the atoms fall under gravity and cross a retro-
reflected elliptical probe beam at a certain distance below the trap. The fluorescence when
interacting with probe beam is detected and plotted as a function of the time which takes
for an atom to fall from the molasses region to the probe region.

When the release-recapture method (R&R) method is used the atoms are released for
a variable time and then recaptured in the molasses beams. The fluorescence from the
recaptured atoms is plotted as a function of the release time. This method is sensitive to all
velocity components whereas the TOF only measures the vertical (the gravity influenced)
one.

In the AU MOT the temperature of the atoms was measured using the release-recapture
method. We tried TOF, but did not succeed. The non-magnetic viewports V1 and V2
30cm below the trap region (see Fig.6.9) were placed with the intention to be used in a TOF
measurement, but since the background gas pressure was too high the atoms eventually
heat up and collide with the wall of the thin Ti pipe connecting the chamber with the
detection region. A simple estimation shows that the time of flight before intersecting the
probe region is around 0.25s, which is much longer than the timescale of the background
collision losses (10-15ms). Besides, to make the cloud pass through the narrow tube the
drift velocity of the atomic sample should be as low as 2.4cm/s, which means that the
atom temperature has to be as low as 3.2µK.

The release-recapture method seemed to be experimentally feasible in the ”violent”
environment in the MOT chamber. In the measurement about 106 atoms are collected in
the MOT at a detuning of ∆ = −3Γ and then released for a variable time (Fig.6.18(a)).
At the end of the dark period the light is switched on again and the remaining atoms are
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recaptured by the molasses beams. The light is shined for another 500ms until the cloud
is completely gone in order to record the background fluorescence level.

The recaptured fraction is calculated as the ratio of the fluorescence signal from the
recaptured atoms to the signal from the MOT. The result is plotted against the release
time in Fig.6.18(b). After turning the laser back the signal is little delayed of 0.1ms as a
result of the low pass filtering to 30kHz. But this does not pose any problems since the
subsequent molasses decay is of the order of 10ms. To deduce the temperature the data
is fitted to a convenient expression of the ballistic expansion of the atomic cloud shown in
Appendix D.

The image of the cloud is magnified 2.2 times and projected onto 5.8×5.8mm photodi-
ode, thus reducing the viewing area to 2.6×2.6mm. Along the line of sight of the detector
the integration is performed over the whole trap region.

Under UHV conditions the influence of the background gas collisions over the lifetime
of the MOT and respectively the R&R measurement signal is negligible. However, the
loss rate due to background gas collisions is quite high γMOT ∼ 50Hz corresponding to
a characteristic time of 20ms. Thus the contribution of the background collisions to the
expansion of the atomic cloud can not be neglected. It could be modeled as an additional
exponential decay of the signal of the form e−γMOT t.

Finally, the data is fitted to the Eq.(D.6) and plotted in Fig.6.18(b) with a solid line.
The estimated temperature is 772 ± 30µK. When accounting for the background gas
collisions we get a value of 417± 49µK (dashed line). The last result agrees well with the
Doppler temperature limit for Cs atoms cooled with light detuned by ∆ = −3Γ.
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Dipole Trap

The chapter describes the loading of the far-off-resonant optical trap for cesium atoms.
We start with the loading scheme of the optical dipole trap. The second and third sections
describe the experimental setup of dipole beam coupling optics and some results on imaging
of the dipole trap with the triggerable CCD camera described in the previous chapter. Here
we must also point out that the loading of the dipole trap is done by using the second
generation MOT at the Niels Bohr Institute.

7.1 Loading scheme

The far off resonant optical traps as mentioned earlier are low-scattering rate conservative
potentials which are created by focused light beams. The low scattering rate is desired in
experiment where the absorption of light is unwanted i.e. in a non-destructive manipula-
tion of atomic samples.

The application of optical trapping in our interferometric measurement is dictated by
the possibility to improve the signal-to-noise ratio of the off-resonant interaction. As seen
from Eq.(5.10) the interaction strength κ2 is proportional to the resonant optical density
α0 = λ2lN/2π, which on the other hand is proportional to the atomic density. At the same
time the phase shift is linear in the atomic density as shown in Eq.(2.47). Then increasing
the density of the atomic sample should allow us to increase the probe light detuning,
thus improving the non-destructive character of the interaction or even approaching the
regime of QND measurement.

Since the capture rate of a dipole trap is rather low for room temperature atoms then
the atoms must be pre-cooled in a MOT and optical molasses. The methods of sub-doppler
cooling were discussed in Ch.3, and here we will only describe the current experimental
scheme used to load the dipole trap from a MOT.

In our experiment the loading is done in two ways. First, we don’t switch the magnetic
field during loading. The atomic cloud does not expand during the loading. The second
regime is when the magnetic field is adiabatically switched off.

The dipole trap loading scheme is shown in Fig.7.1. Firstly, about 108 − 109 atoms
are collected in the MOT for 3 sec. Then the cooler detuning is reduced as well as the
hyperfine repump intensity in 3 stages with different durations. The overall decrease of
the hyperfine repump intensity is about 80 times, and the cooler detuning is increased
to −8γ from the typical value of −3γ. At the same time the magnetic field is increased
from 10 to 12 G/cm. The initial intention was to compress the MOT, but we found
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Figure 7.1: Loading sequence of the dipole trap

out that for higher than 12 G/cm settings in the CA-MOT program the driver does not
deliver more current and the magnetic field gradient saturates around the above mentioned
values. The sub-Doppler cooling stages are followed by a ”dark” stage with a duration of
1ms to 1s, to allow for the non-trapped atoms to leave the trapping region or to measure
different parameters of the dipole trap. After the dark period a detection stage comes
which incorporates either probe laser pulses or molasses beams for detection of atoms in
the dipole trap. When a detection is done with the MOT beams an additional triggering
pulse is sent to start the exposure of CCD camera.

7.2 Experimental setup

The dipole trap is created by a single focused Gaussian beam. The waist position of the
dipole beam coincides approximately with the waist of the interferometer probe beam and
the position where the MOT is located as shown in Fig.6.10 from the previous chapter.
The optical setup of the dipole trap is shown in Fig.7.2.

The light is provided by an Yb:YAG laser1, which can emit up to 40W of continuous
wave (CW) radiation at 1030nm. The laser is equipped with a Fabry-Perot etalon, which
reduces the linewidth of the output light to 5 MHz. The laser spatial mode is approxi-
mately gaussian with a beam quality factor of M2 = 1.3. Initially the light is collimated
by a single plane-convex lens (L1) with a focal distance of 500mm. Then an s-polarized
wave is selected via a PBS and half-wave plate and sent to a mode-matching telescope
with a magnification of 0.75 (L2-L3). The first order of the light diffracted by an AOM2

with a frequency shift of 80MHz is selected and sent to the interferometer table. The
AOM driving frequency is provided by an microwave synthesizer which can be gated by
an external pulse. The power of the RF wave is 1dBm and the overall diffraction efficiency
is around 80%. Further, the beam is reflected off a dichroic mirror (DM) and focused by
a 100 mm focal distance double cemented achromatic lens (L4), which also focuses the
probe beam. The waist is found to be around 40µm. After being again collimated by the

1ELS Versa-Disk Yb:YAG laser
2IntraAction Corp. ATM-80A6 AO modulator
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Figure 7.2: Optical setup of the dipole laser and interferometer.

second achromatic lens (L5) the beam is reflected off a dichroic mirror and send to a beam
dump or to a high-power powermeter.

The alignment of the dipole trap beam with respect to the MOT cloud is done in
the following way. First, the power in the interferometer probe arm is increased and the
position of the probe beam waist is aligned with respect to the MOT. Second, the visibility
of the interference of the probe and locking beams from the probe and reference arm of
the interferometer are maximized. If the alignment and mode matching of the two arms
is good, it should be possible to couple a reasonable amount of locking laser light back
into the probe laser fiber by using a half-wave plate after the first BS before the coupling
PBS [see Fig.7.2]. Since the locking beam propagates in the same direction as the dipole
trap beam the last is steered out with two high reflection mirrors and overlapped with the
locking beam coarsely. Once this is done the power in the dipole beam is increased and by
an additional waveplate after the first interferometer BS the weak leakage beam is coupled
back into the probe beam fiber. In that way a coupling efficiency of the order of 15− 20%
can be obtained which ensures the good spatial overlap with the MOT cloud. Further
alignment of the dipole trap waist with respect to the MOT is done once the dipole trap
is loaded. The fine alignment is done by observing the real time fluorescence image of the
dipole trap captured by the CCD camera.

7.3 Imaging of the dipole trap

The optically trapped atomic cloud is observed using the imaging system described in
Sec.6.4. The images can be taken at different storage time in the dipole trap using dif-
ferent exposure times from 1 to 10ms. During the exposure of the camera the cloud is
illuminated by the MOT cooling and repump beams, thus the influence of the light onto
cloud dimensions has to be taken into account. The detuning of the MOT beams during
the detection region is set to −3.2γ. A sample image of the dipole trap is shown in Fig.7.3.

The image is taken with an exposure duration of 10 ms and after 50 ms storage time
in the trap. It is averaged over 100 frames from 100 loadings of the trap. The background
is subtracted using a reference image again averaged over 100 frames. We find the axial
and radial profile of the trapped atomic cloud by averaging over the 648 columns of the
image pixel array for the axial, and the 243 rows for the radial profile, respectively. The
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Figure 7.3: Image of the dipole trap (a) with radial profile (b) and axial profile (c).

characteristic radii found are wr = 31(1) µm for the radial direction perpendicular to the
direction of propagation and wax = 626(29) µm for the axial one along the propagation of
the dipole beam. A single camera output contains an image with the even or odd lines only.
Since we acquire only one output of the camera, the digitized by the framegrabber image
contains twice as less horizontal lines. Then the radial cloud dimension in Fig.7.3(a,b) has
to be multiplied by a factor of 2. Then the measured characteristic radius in the direction
perpendicular to the propagation axis is wr = 62 µm.

The atomic cloud radial size in the dipole trap at conditions of thermal equilibrium is
given by the balance between the mean kinetic energy and the potential energy of a single
atom [59]. Hence for the wr we have:

wr =
1

ωr

√

kbT

M
(7.1)

In Ch.9 we measure the radial oscillation frequency of the trap to be ωr = 2π×225 Hz at a
power of 3.5 W. The atom temperature, we will see later, is measured to be around 14 µK.
Then the radial size of the cloud is calculated, using Eq.(7.1), to be weq = 20.8 µm. The
result is three times lower than the one obtained from the fit of the image in Fig.7.3(a,b).
We attribute this discrepancy to the excitation of the atoms in the trap due to the light
used to image the cloud. In previous section we mentioned that the MOT cooling and
repump light is shined with a maximum power so that the on-resonance Rabi frequency per
beam is Ω = 1.6γ and saturation parameter s0 of roughly 5. At a detuning of ∆ = −3.2γ
the overall scattering rate given by the equation [110]:

Rsc =
γ

2

s0

1 + s0 + 4
(

∆
γ

)2 , (7.2)
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will account to 277 kHz. For the time the exposure lasts (τexp = 10ms) the atom will
scatter on average Nsc = τexpRsc = 2.77 × 103 photons. The energy transferred to a
Cs atom for one recoil is calculated using Eq.(3.10). The kinetic energy of an atom will
increase with an amount Erec = ~ωrec = ~ × 26 kHz for each spontaneous emission event.
In the last expression ωrec is the recoil frequency. It is obvious, that for 10 ms exposure
there will be appreciable heating.

If we assume that the trap is harmonic and the atoms do not interact with each other,
we can express the energy of a particle inside the dipole potential in terms of harmonic
oscillator states. These states, as we know, are equidistant with a separation of ~ωr. The
number of recoils on average needed for an atom to increase its energy such that it can be
excited to the next oscillator state is ωr

ωrec
= 18. Then Nsc photons for 10 ms will cause the

atom to increase its potential energy to a state with a number nr ≈ 5 × 104. The spread
of the harmonic oscillator wavefunction for that state is given by the relation:

σnr = σ0

√
2nr + 1, σ0 =

√

~

2Mωr
, (7.3)

where σ0 is the ground state wavefunction width [66](p.505). Then using Eq.(7.3) and the
above considerations we find that the spread of the nr-th excited state is around 126 µm.
This result is with a factor of two bigger than the experimentally observed one. Since
the imaging is done with all the cooling and repump light in the six beams, it is possible
to have molasses cooling which can counteract the expansion due to heating. This would
eventually lead to an equilibrium size of the atomic sample which we assume to satisfy the
condition 20.8 µm < wr < 126.8 µm.

Nevertheless, at that high excitation the kinetic energy of the hottest atoms is higher
than the trap depth and they are simply ejected from it. We must also note here that
we did not include collisions of any kind. As we will see in the next section and in Ch.9,
collisions play important role in trap dynamics.

7.4 Loading dynamics

A comprehensive analysis of loading dynamics of FORT is done by Kuppens et al [61].
In this section we discuss the loading dynamics of an optical dipole trap and give some
experimental data on atom loss from a dipole trap without presence of MOT light. The
data is taken in a fluorescence measurement, which means that the cloud is not sustained
after the measurement. A more detailed experimental data will be presented in a later
chapter concerning the nondestructive interferometric detection.

The losses from the trap can be caused by heating mechanisms or collisional processes.
As heating mechanisms are identified the spontaneous scattering of FORT light photons,
background gas collisions [111,112], intensity fluctuation and the pointing stability of the
FORT beam [113]. For large atom numbers the losses are dominated by cold collisional
processes [114], including photoassociation, ground state hyperfine changing collisions and
radiative escape. Photoassociation collisions can be induced by the FORT light and lead
to production of a untrapped molecules. During the ground state hyperfine changing
collisions the atoms gain as much kinetic energy as the ground state hyperfine splitting
(0.44 K for Cs), which is enough to eject them from the trap. In the radiative escape
the characteristic time of a collision between two atoms is longer then the spontaneous
decay, which results in a spontaneous emission of a photon during collision. As a result
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Figure 7.4: Theoretical loading curve (a) and experimental loss curve of FORT without
any MOT light present (b): experimental data (◦) and fit (solid curve) to the solution of
Eq.(7.5) with parameters Γ = 9(1)Hz, β = 1.3(3) × 10−3 Hz.

the energy of the photon is transferred to the colliding atoms, which will obviously eject
the atoms from the trap.

In general the dynamics of the loading process is described by the following equation:

dN

dt
= R0 exp (−γMOT t) − ΓLN − βLN2, (7.4)

where γMOT is the rate at which the MOT loses atoms, R0 is the loading rate of the dipole
trap, ΓL is the light assisted loss rate of FORT, βL is the density dependent light assisted
loss rate of dipole trap. We see that the loss processes in Eq.(7.4) can be separated to
exponential −ΓLN and collisional −βLN2. The L indexing of the loss parameters denotes
their value in presence of light. In general they are different from the losses ”in the
dark” [115], i.e. where all the light is switched off except the dipole trap light.

It is essential for the investigation of the loss rates to separate the loading process
from the loss process. Since we need to apply sub-Doppler cooling to lower the MOT
temperature the light will always introduce losses during loading. To separate the loading
from the loss one can perform the following measurement. First atoms are loaded in the
FORT and after a variable delay the cloud is exposed to a short ”flash” of light with
the MOT beams [61]. After that the remaining atom number is measured. This way we
can omit the first term in Eq.(7.4) and simplify its solution to estimating only the loss
parameters. Then the trap atom number obeys the solution of the following differential
equation:

dN

dt
= −ΓN − βN2. (7.5)

The Eq.(7.5) can be used to study both light-assisted losses and dark losses.
The above described measurement for the case of light-assisted losses is performed

non-destructively using interferometric detection and the results of the detection will be
presented in Ch.9. For now we restrict ourselves only to fluorescence detection the dark
losses of dipole trapped atoms. The result of that measurement is shown in Fig.7.4.

In the fluorescence measurement, after a variable delay period, we shine the MOT
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Figure 7.5: Expansion of the atomic cloud after atoms are released from the trap. Gravity
not included.

light and at the same time start the exposure of the CCD. The exposure lasts for 10 ms
and the resulting average fluorescence is detected. The fluorescence signal collected from
the atoms is plotted as a function of the delay time. Although, this measurement is not
exactly what we aimed for, we can use at as a qualitative example of the lifetime of the
FORT. To extract the correct information from the fit one must include the heating effect
due to MOT light. The values of Γ and β are listed in the figure caption. More elaborate
discussion on them will be done in Ch.9. Here we only state that the values of Γ are
mainly determined by the background gas pressure as in the MOT [116], regardless of the
presence of light and the values of β are connected with the cross-section for two-body
collision and depend on atomic density.

7.5 Temperature

In this section we present results on cloud expansion when atoms are released from the
dipole trap. This time the exposure of the camera is set to 0.5ms in order to be able to
track a reasonable amount of frames before the density of the cloud drops significantly. The
results are shown in Fig.7.5. A fit to Eg.(D.4) gives a temperature value of T = 14(2) µK
for an initial atomic radius of σ0 = 38(8) µm. The fit does not take into account the gravity
effect on the falling atoms and thus would give lower temperature. However, in our case
as we will also see in Ch.9 the contribution of the gravity for the typical measurement
times is negligible.
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Mach-Zehnder Interferometer

The chapter describes the main experimental tool for characterizing the atomic sample
in this work - the Mach-Zehnder interferometer. Two interferometer setups have been
used in the two generation experiments: fibre-optic at Århus University and free-space
construction at the Niels Bohr Institute.

The chapter starts with presentation of the optical setup in Sec.8.1. We discuss the
generation of the probe light using the diode laser and shortly describe the technique of the
frequency lock used to tune the frequency of the probe. Next we continue with the locking
laser. In Sec.8.1.3 and Sec.8.1.4 we present the design of the fiber-optic and the free-space
interferometers. Further we continue with description of the detection system and the
data analysis. We end the section of the interferometer optical setup with presenting the
white light alignment. In Sec.8.3 we present the measurements done to characterize the
interferometer noise in both amplitude and phase.

8.1 Optical Setup

In this section we describe the part of the optical setup which is responsible for interfer-
ometric detection of the phase shift imposed on the light by a dispersive interaction with
cold atomic sample. A separate subsection will be dedicated to each of the the three main
components of the optical setup i.e. the interferometer, the probe and the locking laser.

8.1.1 Probe laser

The probe laser used in the experiment is a grating stabilized external cavity diode laser.
The construction of it has already been discussed in the Sec.6.1. Here we will describe
in more detail the tunable frequency offset locking technique used in the experiment per-
formed with the fiber-optic interferometer. according to that scheme two lasers with
different frequencies are overlapped on a 50/50 beamsplitter to produce a beat-note at a
frequency equal the frequency separation between them [89,117]. One of the lasers which
we refer to as reference laser is locked to a Cs atomic resonance in a saturation absorption
spectroscopy setup.

Let’s assume that two light beams Ep(t) =
√

2Ep cos(ωpt + φp) and Er(t) =√
2Er cos(ωrt + φr) are overlapped on a beamsplitter. The electric field amplitudes are

denoted by Ep,r for the probe and reference lasers with frequency of ωp, ωr, and phase
φp φr, respectively. The resulting interference signal will have the following form:
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Figure 8.1: Experimental setup employed to lock the probe beam (a). The elements included
in the sketch are: BS - 50/50 beam splitter; FPD - fast photodetector; SA - spectrum
analyser; DBM - double balanced mixer; LPF - low pass filter; Amp - amplifier. Frequency
diagram of beat-note (b).

|E(t)|2 = |Ep(t)|2 + |Er(t)|2 + 2EpEr{cos [(ωp − ωr)t + (φp − φr)] + (8.1)

+ cos [(ωp + ωr)t + (φp + φr)]}

The signal spectrum has a low frequency component at the frequency of the difference
between the laser frequencies of the two lasers also called a beat-note and an optical
frequency equal to the sum of the two frequencies. The last is not detected by our RF
detector1 with a bandwidth of 15 GHz.

The photodiode signal at RF frequency of ωB is further mixed with the local oscillator
ωLO of the SA analyzer in a zero-span mode as shown in Fig.8.1(a). In zero span mode
the frequency of the internal spectrum analyzer local oscillator (LO) is fixed and the
fluctuations of the RF power at the ωLO is monitored. A frequency diagram of the beatnote
is shown in Fig.8.1(b). The resulting sideband peaks are due to the 4 MHz modulation of
the laser diode current resulting in direct modulation of the diode laser phase, in case of
low modulation depth. Next, the low frequency component of the intermediate frequency
output ωIF of the mixer is selected via low-pass filtering by LPF1. The resulting signal
is further mixed on a DBM with the signal used to modulate the laser current for locking
purposes at a frequency of ωM = 1MHz and a modulation depth of 1% or less. After a
second low-pass filtering with FPL2 we obtain an error signal at a frequency of ωB −ωLO.
At the end the signal is amplified and send to a PI circuit to produce a correction for the
piezo voltage.

In the following few lines we give the derivation of the error signal following the mixing
and filtering performed after the detection as shown in Fig.8.1(a). The light detected
by the FPD [see Eq.(8.1)] produces a photocurrent iB(t) = iB cos(ωBt + φB), where
φB = φp − φr. After a phase modulation by modulation of the laser current with a
sine wave at a frequency ωM , we get sidebands as shown in Fig.8.1(b) at the modulation
frequency. Mixing further with the local oscillator iLO(t) = iLO cos(ωLOt + φLO) of the

1Newport, model 1480-S, GaAs photodetector
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spectrum analyzer and low-pass filtering we get for small modulation depths M :

iIF =
iBiLO

2
{cos[(ωB − ωLO)t + φ] − M cos(ωM t) sin[(ωB − ωLO)t + φ]} (8.2)

where φ = φB − φLO. At the DBM the signal is mixed with the modulation signal of
the laser current at iM (t) = iM cos ωM t and further low pass filtered. The resulting error
signal is expressed as:

ierr =
MiBiLOiM

4
sin[(ωB − ωLO)t + φ]. (8.3)

In the last equation the terms fluctuating with ωM are filtered by the second LPF2 and
only the small difference frequency ωB − ωLO is transmitted. In the locking position the
error signal is zero for negligible phase drifts between the local oscillator and the beat note
signals. Hence, by changing the frequency of the internal local oscillator of the spectrum
analyzer we can tune the relative frequency separation of the two lasers in a very large
range given by the range of frequencies of the SA. In this case that range varies from
100 kHz to 23 GHz.2. With the above described locking technique and the reference
laser locked to the atomic transition 6S1/2(F = 4) → 6P3/2(F

′ = 5) by FM saturation
spectroscopy, we are able to lock the probe laser by specific detuning ∆ variable from a
few MHz to a few GHz from the hyperfine transition 6S1/2(F = 4) → 6P3/2(F

′= 5).
The interferometric measurements in this work are performed using a pulsed laser

light coupled into a polarization maintaining single mode optical fiber. An AOM is used
to produce light pulses of controllable duration. The drive frequency of the modulator
can be slightly tuned in a range of 20 MHz.3 around the center frequency of 80 MHz.
This method is used to tune the probe laser frequency in the NBI experiment. Certainly,
that kind of tuning leads to a different coupling conditions and diffraction efficiency. To
maintain the same power level after changing the frequency in this way, we either change
the power of the incoming beam or optimize the fiber coupling efficiency.

In the atomic noise experiments and in the experiments on dipole trap characterization
the used probe detuning is fixed to a value of 15, 25 and 100 MHz, thus removing the
necessity for a tunable detuning. However for the sake of a QND measurement on the
clock transition using only one probe a large value of the detuning is required i.e around
4.5 GHz [see Fig.2.3(a)]. Then a frequency offset locking technique becomes very useful.
In the experiment at Aarhus the scheme was also used in a phase shift measurement with
atoms on a different excited state hyperfine levels.

8.1.2 Locking Laser

The monitoring of the optical phase in an interferometer is sensitive to acoustic and
thermal noise. In the fiber-optic interferometer the change of fiber temperature changes
the index of refraction of the silica material thus giving rise to a fluctuations in the optical
power transmitted. In the free-space interferometer any mechanical or acoustic vibration
leads to fluctuation in the optical path-length difference. To overcome these unwanted
effects the interferometer is locked using an additional laser i.e. locking laser. The laser
is off-resonant with the atomic transition (the Cs D lines with all hyperfine components).
The idea is to use the interference signal of the locking laser as an error signal to lock the

2Anritsu, spectrum analyzer, mod. MS2665C
3Brimrose Corp. TeO2 frequency shifter
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path length difference of the interferometer. Since the two wavelengths are different the
interference fringes from the two lasers would have different width. Then to lock the probe
signal at zero crossing, where the sensitivity to phase changes is highest, the locking signal
is electronically shifted by adding an offset to the detector photocurrent. The wavelength
of the locking laser was 840 nm and 866 nm for the experiments in Aarhus and NBI,
respectively.

8.1.3 Fibre-optic interferometer

The interferometer as shown on Fig. 8.2 is a Mach-Zehnder type made of single mode
optical fibers with an angle polished connectors to prevent for an etalon effects and optical
feedback into the probe and locking laser. The motivation for using fibers instead of free
space propagating beams is the enhanced mechanical stability as well as excellent mode
overlap of the interfering beams in single mode fibers.

The two laser beams probe and locking are combined on a 50/50 BS and coupled in the
input fiber of the interferometer. After splitting by the first fiber-optic beamsplitter C1
the light is directed to the two arms. Each arm along with the input coupling channel is
equipped with a polarization controller PC# made up by coiling the fiber to three loops,
two λ/4 and one λ/2 with a diameter of 25 mm. Part of the fiber in the probe arm is
coiled on a PZT element which diameter is changed under applied voltage. This result
in stretching the fiber and increasing its length. This way we can adjust the pathlength
difference between the interferometer arms. The probe arm is surrounding the Ti chamber
where the MOT is formed, having about 20cm free space propagation. The probe light is
focused to a waist of 20 µm at the center of the vacuum chamber by a 100 mm achromatic
doublet lens4 L1. Another lens L2 of the same focal distance is used to re-collimate the
beam after the chamber. The lenses are mounted in a vertical drive mounts,5 which give
a possibility for fine adjustment of the fiber-air-fiber coupling. The fiber connector in the
probe arm is mounted on a z-translation stage6 to finely adjust the air gap length for
the alignment of the white-light operation. The coupling efficiency of the interface fiber-
free-space-fiber is preliminary checked to be around 85% before placement at the final
experimental position i.e. around the vacuum chamber and without the focusing optics.
Unfortunately, due to abberations of the lenses and non-perfect mode overlap after the
second focusing lens, the coupling efficiency from fiber to fiber dropped to 35% with
chamber in place. The chamber and also the interferometer plate are inclined at 20◦ with
respect to the horizontal plate thus giving a somewhat inconvenient work position. The
reference arm contains only the PC2 polarization controller to adjust the reference arm
polarization parallel to the polarization of the probe arm. The light from the two arms is
again combined on the fiber optic beamsplitter C2 and the two channels are detected using
a pair of detectors for the probe and for the locking beams. Since the probe and locking
beam propagate in the same direction they are separated using dichroic filters with a peak
transmission of 50% at 850 nm and a FWHM of 15nm. Thus the probe laser beams of
each arm are transmitted with around 50% loss and the locking beams are reflected. The
photocurrents of the two pairs of detectors for probe and locking beams are subtracted
for balanced detection.

The chromatic dispersion of the fibers is found to be very sensitive to slow variations

4Thorlabs, NIR achromat, mod. AC254-100-B
5Thorlabs, mod. VM1/M
6Thorlabs, mod. SM1Z
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Figure 8.2: Sketch of the setup of the interferometer with following elements: BS − 50/50
beam-splitter; C1&C2 − 50/50 fiber couplers; PC1,PC2&PC3 - fiber polarization con-
trollers; L1&L2 - achromatic lenses; F1&F2 - interference filters transmitting @ 852 nm;
D1&D2 - Hamamatsu low noise, high gain photodiodes; D3&D4 - photodetectors; and sev-
eral half wave plates λ/2 and collimating lenses for fiber coupling. iL is the locking signal,
whereas i− = i1 − i2 is the probe signal.

of the temperature, which on the other hand leads to different index of refraction for the
the locking and probe beams, thus giving rise to a drift in the lock offset. After all, it
was possible to get a stable lock operation on a timescale of about 1s. Further adjustment
of the locking position for balanced detection of the probe beam is done by electronically
adding a small offset to the subtracted locking detector photocurrent.

After the alignment and taking into account the losses of 30% in the probe arm the
obtained visibility of the interference pattern is measured to be V = 85%.

The final conclusion is that the setup employing single mode fibers is superior in
mechanical and acoustic stability, but is lacking of good transmission in the probe arm
and is sensitive to polarization drifts and chromatic dispersion of the optical fibers.

8.1.4 Free-space interferometer

After relocation of the experiment at the Niels Bohr Institute the fiber optic interferometer
was replaced by a free-space one. This decision was made in favor of minimizing the light
losses in the probe arm and eliminating the problem connected with polarization drifts and
chromatic dispersion. The only drawback of that design is the susceptibility to acoustic and
mechanical vibrations. For that reason the whole construction is closed in an aluminum
cage with a sound damping material glued to the plates of the cage.

The interferometer is sketched in Fig. 8.3. It is in a Mach-Zehnder configuration with
free space propagating beams. The linearly polarized probe beam hits the interferometer
input coupler and is split 50/50 into a reference and a probe arm. The overall power
of the probe laser sent through the interferometer is measured using the powermeter
PM1 by reflection of a beamsplitter with splitting ratio of T/R = 40/60. An additional
auxiliary detector (AuxD) is placed after the PBS in order to maximize the power at
the interferometer input. The probe arm contains a HR mirror mounted on piezo-electric
to adjust finely the pathlength difference. In addition to that the pathlength difference
between the two arms is adjusted by an optical delay line made out of two high-reflection
mirrors mounted on a micrometer translation stage inserted in the reference arm. As in
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Figure 8.3: Sketch of the setup of the interferometer with following elements: BS - 50/50
beam-splitter; PBS - polarizing beam-splitter; L4 & L5 - f = 100mm achromatic lenses;
DM - dichroic mirrors (HT @ 852nm, HR @ 1030nm); PZT - Piezo electric tube; Pd1 & -2
- Hamamatsu low noise, high gain photodiodes for probe detection; Ld1 & 2 - photodetectors
for locking beam detection; and half wave plates λ/2, PM1&-2 powermeters for the probe
and dipole trap beams, AuxD - auxiliary detector, TS -micrometer translation stage.

the fiber-optic interferometer two lenses are used to create a probe waist of 20µm inside the
quartz cell. The reference and probe arm are combined again on the second beamsplitter
and detected by the Pd1 and Pd2 in a homodyne scheme. The locking beam in this setup
propagates in an opposite direction to the probe beam and its polarization is orthogonal
to the probe beam polarization. It is detected in a homodyne detection scheme employing
the subtracted photocurrents of Ld1 and Ld2. Two dichroic mirrors DM are placed around
the MOT cell to overlap the probe beam with the dipole trap beam. The achieved optimal
visibility in the free-space configuration is V = 98%.

8.1.5 Detection

As we have mentioned earlier the detection of the pulsed laser light is done in a balanced
homodyne detection scheme. The light from the two output channels of the Mach-Zehnder
is detected with 2 photodiodes which photocurrents are subtracted to give a balanced
photocurrent i−(t). When the detection is balanced the mean value of that current should
approach zero. A necessary requirement here is that the detectors electronic noise must
not exceed the shot noise of light in order to have shot-noise limited balanced detection.
The noise of the detection system is discussed in detail in the following sections. Here we
will only introduce the detection scheme.

In the experiment we use a low-noise balanced detector described in [118] incorporating
two Hamammatsu photodiodes7. The optical probe pulses are generated typically at a rate
of 166 kHz and have duration of 2µs. After detection the photodiode current is integrated

7Hamammatsu, mod. Si PIN S3883, NEP 6.7×10−15W/
√

Hz, 20V reverse voltage
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Figure 8.4: Two-sample variance. Electronic noise of the detection: experimental data (◦)
and theoretical simulation (solid curve)(a). Sine wave modulation at 565 Hz: theory (red),
experiment (black).

over the pulse duration τp:

ap = G

∫ τp

0
i−(t)dt (8.4)

where G is detection gain, which is a product of the gain of the photodiode preamplifier
and the integrator circuit gain. The expectation value of ap is then obtained as 〈ap〉 =

ap

τp
=

G〈i−〉. The integration circuit8 is gated by an external pulse which starts the integration.
The integration lasts until the gating pulse is high and then after 1µs resets. Since the
optical pulse is delayed w.r.t. the VCO drive pulse with about 1µs the integrator has to
be gated by a second pulse generated from the PC.

Further, the value of the integrated pulse is acquired by a NI card with a home-written
software in Lab-View 6.1.9 The program is made such it processes the data giving the
mean values and the variances in real time so that storing of large amount of data on the
PC hard-drive is not necessary. The program also has an option to save the raw data if
required.

8.1.6 Data analysis

This section presents the way data is being analyzed i.e which parameters are calculated
by the data acquisition program and their connection with the actual parameters of the
detected light.

To obtain better statistics we need many pulses. The number of pulses per pulse train
depends on the purpose of measurement. Let us consider that the i-th pulse of a pulse
train containing M pulses is ai. Then after the pulse areas are acquired we have an M×1-
dimensional array of real numbers which has been further processed using the acquisition
program. The program calculates the expectation value 〈a〉 and the square of the standard

8Burr-Brown, mod. IVC102
9DO-DAQ-QND 2.6 data acquisition program
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deviation i.e. variance (δa)2.

〈a〉 =
1

M

M
∑

i=1

ai, (δa)2 =
1

M

M
∑

i=1

(ai − 〈a〉)2 (8.5)

In addition to above quantities the program can also calculate the mean of several pulse
trains and the variance of the mean value averaged over the number of trains. This is
convenient way of determining shot-to-shot fluctuations especially in the case of charac-
terization of the atomic sample where short pulse trains are used in a multiple loading
cycles. The variance over a whole pulse train gives information about the fluctuations in
the train itself and is useful for tracking fluctuations of uncorrelated events. To track the
fluctuations of correlated events or to describe the stability of the interferometer another
statistical quantity is used i.e. the so called 2-sample variance. Let us assume that we
have the same pulse train as before but this time we take the i-th element of the array
and subtract it from the (i + k)-th element so that we get the below expression.

σ2(k) =
1

2(M − k)

M−k
∑

i=0

(ai+k − ai)
2 , (8.6)

As it can be seen the value of k determines which two pulse areas have to be subtracted. In
our experiment the pulses have repetition period of τ0, which would indicate that the above
expression can be converted in time units by substituting the value of k with tk = kτ0.
This would mean that f.ex. the 2-sample variance on tk = 12µs time-scale will reflect how
different are the pulse areas of pulses separated by 12µs, having that the pulse repetition
period is τ0 = 6µs.

Next, we want to give an example of how our analysis will reflect the nature of the
real physical process, for example the white noise. It is well known that the white noise
should not depend on frequency [70]. Thus its spectral density W (ω) = W would be
constant, and moreover will be constant with time. Then an useful expression for the
2-point variance will be [70]:

σ2(tk) = 2(Gτ)2
∫ ∞

0
W

sin2 (ωτ/2)

(ωτ/2)2
sin2 (ωtk/2)dω. (8.7)

The integration is done over the whole frequency space and the result expected should be
constant with time for a white noise. However, experimentally the detectors have limited
bandwidth B, thus the integration is always done for a given bandwidth. The integration
in limited bandwidth should approach the above integral for times tk ≫ Bτ .

A good experimental example of a white noise is the electronic noise of detection
system. We have measured the electronic noise of our balanced detector for 1000 pulses
of τ = 6µs duration and τ0 = 6µs repetition period. The result of the experimentally
obtained two-sample variance is shown in Fig.8.4(a) along with a theoretical simulation
using Eq.8.7. The resemblance of the data with the theoretical curve is obvious for a
detection bandwidth of around 200 kHz.

The modulation of the laser frequency results in direct modulation of the 2-sample
variance (see Fig.8.4(b)). In this case the integration of Eq.8.7 is done easily since the
spectral noise density have one and only component at the modulation frequency Ω i.e.
W (ω) = µδ(Ω − ω). This gives a straightforward result for σ2(tk) as a sine function.
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Figure 8.5: Interferometer signal: broadband LED (a) and multi-mode laser without grating
feedback (b).

8.2 White-light alignment

As we have shown in the theoretical part the white-light alignment of the interferometer
would guarantee the cancelation of the classical phase noise. The white-light position
corresponds to zero optical path length difference between the probe and reference arm
thus raising the requirements for the alignment procedure [119]. First, the alignment is
done very coarsely i.e. to within a 1-2 mm, and then is finely adjusted.

It is well known that the interference in a interferometer depends on the pathlength
difference between the arms. Two light beams of the same frequency and polarization,
propagating in the interferometer arms will interfere if the optical pathlength difference
of the arms is smaller then the coherence length of the source emitting them. Thus, if our
goal is to make the pathlength difference very small we need to use a light source with
sufficiently short coherence length. In any case a single mode laser is not a good source
for alignment of the white-light position since it has a coherence length of meters. As an
example, a grating stabilized diode laser with a linewidth of ∆ν = 800 kHz have coherence
length of lc = c/∆ν = 375 m.

In our experiment for the white-light alignment we use a fiber-coupled light-emitting
diode (LED),10 which has a wavelength FWHM bandwidth of ∆λ=35 nm centered around
850 nm, thus giving a coherence length of λ = 21 µm. This would indicate that the two
arms of the interferometer can be brought to the same path length with around 21 µm
precision.

The alignment is done by monitoring the interference signal obtained from the LED,
when scanning the interferometer pathlength difference using the micrometer translation
stage in the probe arm of the fiber-optic interferometer or the optical delay line of the
free-space one.

It can be shown that when scanning the pathlength difference ∆l of the interferometer
the subtraction detector photocurrent is given by [70]:

i−(∆l) = i0 exp

(

−|∆l|
lc

)

cos(2π∆l/λ). (8.8)

10Fiber-Optic Devices, mod. FOD-3102
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Figure 8.6: Modulation of the 2-sample variance. (a) 2-sample variance when the laser
frequency is modulated (red) , white light position (blue). (b) Mean value of the 2-sample
variance as a function of the pathlength difference when the laser frequency is modulated
(◦), parabola fit to the data, shot noise level (green), electronic noise (blue). Data (a) is
taken with the fiber-optic interferometer and data (b) with the free-space one.

The exponential factor in front of the cosine describes the coherence of the light source
from classical point of view. When we have a highly coherent laser the lc is very large
thus turning the exponent to zero. For an incoherent or ”white-light” source as we have
already shown above the coherence length is very small thus giving an exponential decay
of the interference signal when increasing the optical path length difference [Fig.8.5(a)].

Another option for alignment of the white-light is to use a multimode laser or a diode
laser without grating feedback. In that case several modes will contribute to the inter-
ference signal. Let’s assume that we have a laser diode with cavity length of L and a
coherence length for the single mode of lc. Using the theory presented in [70] we can write
for the output photocurrent the following:

i−(∆l) = i0 exp

(

−|∆l|
lc

) N
∑

n

cos(nπ∆l/L). (8.9)

The sum is done over the number of generated modes. An example of i− for a laser with
lc = 3 mm and L = 1.5 mm, generating 30 modes is shown in Fig.8.5(b). It is clear that a
broadband light source is more suitable for the fine alignment of the white light position
since the characteristic length at which the interference signal from the LED drops is
around 103 shorter.

The use of the LED ensures equal pathlengths of the two arms in the a range down
to a 20 µm, but for our purposes we would like to check whether we are really in that
position. The white light position, i.e. the position where an incoherent light would
interfere when propagating through interferometer, is also the position where the detection
is most insensitive to classical phase noise. For that reason a modulation of the phase of
the probe laser should induce modulation in the 2 sample variance as we have seen in
Sec.8.1.6. The detected photocurrent is proportional to the optical phase φ [see Ch.4] and
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the time delay between the two arms ∆t = ∆l/c. Then for σ2(∆l) we get:

σ2(∆l, t) =

[

1

cτ
µg∆l sin φ cos(Ωt/2)

]2

. (8.10)

The amplitude of the induced modulation of the 2-sample variance when vary the inter-
ferometer pathlength difference can be used to finely determine the white-light position.
An experimental example of that modulation is shown in Fig.8.6(a) for the fiber-optic
interferometer. The modulation of the probe laser frequency results in a modulation of
the 2-sample variance, when the interferometer is not in the white light position. The
modulation disappears when he interferometer is in the white light position.

A more thoroughly done measurement is shown in Fig.8.6(b). The probe laser external
grating is swept with a frequency of 355 Hz. The 2-sample variance of 1000 pulses, 2 µs
long with a repetition period of 6 µs, is extracted from the balanced detector photocurrent.
The measurement is done for different positions of the optical delay line, which translates
in scanning the optical pathlength difference of the interferometer (x-axis in Fig.8.6(b)).
For every pathlength difference the average value of the 2-sample variance is calculated
and plotted in Fig.8.6(b). Changing the position of the delay line in the free-space inter-
ferometer, yields different amplitude of the induced 2-sample variance oscillations. The
amplitude of the oscillation vanishes at the white light position. The level of the fluctu-
ations at the white light would correspond to the shot noise level for that optical power
which is 200 nW. This level is indicated with green line in Fig.8.6(b) along with the
electronic noise (blue line).

8.3 Noise properties

In previous section we have emphasized the necessity of having the interferometer in
white-light position in order to cancel the classical phase noise. Here we continue the
same line of thought, however this time showing the effect of the white-light alignment on
the interferometer noise. We would expect that the noise would scale linearly with the
optical power i.e. number of photons if the interferometer is shot-noise limited as it has
been shown in the theoretical part.

8.3.1 Amplitude noise

The amplitude noise of the detection is a mixture of quantum and classical noise. The
last depends quadratically on the optical power and can be overcomed if the detection is
balanced. However, the same thing does not apply for the quantum amplitude noise [11].
It scales linearly with the optical power or number of photons. If the scaling becomes
quadratic this means that the detection acquires classical amplitude noise.

In general, the diode lasers have very well defined amplitude and thus their output can
be considered as almost quantum noise limited in terms of amplitude. Nevertheless, we
have to convince ourselves that our detection is shot noise limited in terms of amplitude
noise.

The amplitude noise of the detection does not require interferometric operation, which
means that the measurement can be done by blocking one interferometer arm and observ-
ing the detectors subtracted photocurrent noise at different power levels of the probe laser.
For both fiber optic and free-space interferometer we use 1000-2000 pulses 2µs each with a
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Figure 8.7: Interferometer noise. (a) Fiber-optic interferometer amplitude (◦) and phase
(�) noise as function of number of photons n, fits to the amplitude (red curve, slope:
1.2(2)) and phase (blue, slope: 1.2(3)). (b) Free-space interferometer the same as (a),
slopes for amplitude and phase fits 1.036(8) and 0.990(5), respectively.

repetition period of 6µs. The results from the the measurements are shown in Fig.8.7. The
probe pulse area variance is calculated in real time and plotted against the optical power
converted into number of photons per pulse using the relation 〈n〉 = 4.3× 106 P (µW)τp(µs)
for an optical wavelength of 852 nm. The fits to the experimental data show that both
interferometer constructions, fiber-optic and free-space, are shot-noise limited in ampli-
tude detection since the log-log scale representation of the noise shows linear dependance
with a slope of 1.2(2) and 1.036(8), which in a liner scale would mean linear dependance
of the noise as a function of number of photons per pulse. The data taken with free-space
interferometer is much less noisy due to the better lock performance eliminating the chro-
matic dispersion effect in the optical fibers. The detection is shot-noise-limited for up to
107 and 3 × 109 photons per single pulse for the fiber-optic and free-space interferometer
respectively.

8.3.2 Phase noise

To be able to measure atomic phase shift the interferometer needs to be locked to a half
fringe i.e. φ + π/2, and the detection to be balanced. However, at that position the
susceptibility to acoustic noise and path-length variations, resulting in phase fluctuations
is highest. This leads to acquisition of a large amount of classical phase noise during
detection leading to a square dependance of the phase noise with the number of photons.
When the influence of these disturbances on the interferometer is diminished one would
expect a linear dependance of the phase noise as a function of photon number i.e. shot
noise limited operation in terms of phase noise.

The interferometer noise characterization experiment is done having both arms un-
blocked and the homodyne detector photocurrent balanced. The input power in the in-
terferometer is varied and the photocurrent variance is measured for the different power
levels. Along with the statistical variance (the square of the standard deviation) we can
also produce the 2-sample variance σ2(tk) as in Eq.(8.6) on a different timescales. The last
would tell us how the phase fluctuations due to the above-mentioned phenomena modify
the interferometer noise in time. The result from these measurements with the fiber optic
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Figure 8.8: Interferometer noise on a different timescales. Experimental data (◦) and a
power function fits (solid lines). At the left is shown the value of the power coefficient p.

interferometer and the free-space one are shown in Fig.8.7(a) and Fig.8.7(b), respectively.
Again, the interferometer is shot-noise-limited in terms of phase noise for up to 107 and
2 × 108 for the fiber-optic and free-space design. The slopes of the fitting lines are 1.2(3)
and 0.990(5) for the two design configurations. It should be noted that the experimental
data from the fiber optic interferometer strongly depends on the detectors balance. As it
was already mentioned the polarization drift in the fibers and chromatic dispersion due to
heating at photon numbers above 108 led to difficulties in taking more data.

Additional data can be extracted by measuring the 2-sample variance σ2(tk). One
would expect that with increasing the time interval tk between the subtracted pulse areas,
the variance would grow since more frequency components would contribute to the signal.
Thus the longer the timescale tk the bigger the variance σ2(tk). The last is expected to
rise until it reaches the classical value, which is prone to have quadratic dependance on
the number of photons. The data is presented in Fig.8.8 for timescale of 6µs, 60µs, 120µs,
180µs, 300µs, and 600µs together with correspondent fits to the function σ2(tk) ≃ 〈n〉p.
The values of p are shown on the right in Fig.8.8. It can be clearly seen that after 60µs
the fits tend to be quadratic, thus revealing the classical phase noise influence at low
frequencies. However, for relatively low photon number, less then 107, the points can
be fitted to a straight line. This would indicate that in the low photon number limit,
the interferometer is shot-noise-limited even on timescales up to 0.5 ms. The longer the
timescale is the lower is the number of photons at which the interferometer is shot-noise-
limited. For the atomic phase shift and noise measurements the power chosen is typically
not more that 600 nW, which is well in the range of the optical powers where the detection
is quantum noise limited.

As a conclusion we can summarize that the interferometer is shot-noise-limited in both
phase and amplitude for up to 2× 108 for the free-space and 107 for the fiber-optic design
configuration. The noise grows on longer timescales and eventually becomes quadratic i.e.
classical for large photon number. For photon numbers below 107 the detection is still
quantum-noise limited.

An additional care was taken to isolate the free-space interferometer from acoustic
noise by shielding it in a box of a sound damping material glued on aluminum sheets.
We have also detached the bottom coil from interferometer plate since the fast switching



96 Chapter 8: Mach-Zehnder Interferometer

of the trap field induces an acoustic noise, which eventually couple to the light signal.
Detailed analysis of the acoustic noise performance of the setup is done in a master thesis
by Daniel Oblak [22].



Chapter 9

Interferometric measurements

with cold atoms

In this chapter we present our results on shot-noise limited light interferometry with
cold and trapped atoms. In general the interferometric measurements performed in this
experiment are divided into two groups: DC or phase shift measurements and noise mea-
surements.

For the first group of measurement the important variable is the mean value of the
phase shift of light interacting with atoms. This mean value is proportional to the number
of atoms and depend on the detuning of the probe laser from the atomic transition in
concern. Then by monitoring the value of the phase shift in different conditions we get a
knowledge of important characteristics of the atomic sample.

The second group of measurements are the ones which involve monitoring of the fluc-
tuations of the phase shift in order to get a knowledge of the collective atomic state or
simply to determine the accuracy at which the mean value of the phase shift is measured.

The chapter is organized as follows. We start with Sec.9.1 where we describe the
transformation of the measured phase shift into the experimentally measured voltage. In
Sec.9.2, we present results from nondestructive characterization of atoms during a free ex-
pansion from a magneto-optical trap using fiber-optic and free-space interferometer. We
perform measurements to estimate the loading time and density of the atomic samples in
both AU and NBI MOT’s. Then we continue with noise of the atomic ensemble prepared in
AU and NBI MOT. The third section of the chapter is devoted to non-destructive charac-
terization of dipole trapped atoms [Sec.9.3]. The characterization includes measurements
of both light-assisted and light-independent losses, the loading rate, the radial oscillation
frequency, the number of atoms, the density and the temperature of trapped atoms. At
the end of Sec.9.3 we present results of the noise measurement of dipole trapped atoms.
The chapter ends with a summary of the experiments done on characterization of MOT
and FORT.

9.1 Experimental variable

The measurement of atomic phase shift is done via detection of probe light photons.
They are detected by detectors which produce a photocurrent. The photocurrent itself is
converted to an analog voltage, which is acquired by a computer. The current section is
devoted to these transformations of the measured phase shift.
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Figure 9.1: Interferometer fringe

Let’s assume that our interferometer is locked at a half fringe and the homodyne
detector is balanced when there are no atoms in the probe arm. The interference fringe
of the interferometer is shown in Fig.9.1. The phase shift due to atoms is then calculated
as arcsin of the ratio between the measured value of the photocurrent and the fringe
amplitude. The fringe amplitude is determined as the half of the difference 2i0T and
adjusted for the transmission factor T due to absorption of probe light and losses due to
coupling. Finally, the value of φ∆ is found by:

φ∆ = arcsin

[〈i(φ)〉
i0T

]

. (9.1)

The last expression can be used to determine the phase shift from the detector generated
photocurrent. One can also approximate the sin function with its argument for small φ,
which would mean that the phase excursions from the locking point at φ = 0 are very
small.

The above equation though very understandable is not much useful since at the end
of the detection the generated photocurrent is converted into a voltage and the voltage is
acquired by the acquisition card. For that reason we introduce the relationship between
the measured voltage at given detuning V∆ and the atomic phase shift as:

φ∆ = arcsin

(

V∆

GPDC

)

(9.2)

where GPDC = V0 is the maximum fringe amplitude as shown in Fig.9.1, but this time in
voltage units. The fringe amplitude is calculated as the product of the DC optical power
per pulse PDC and the detection gain G.

As we have already mentioned in the introduction the measurements can be divided
into two groups: DC phase shift and noise measurements. In the current status of the
experiment we are only sensitive to the population of F = 4 ground state level, since the
probe light is at best 100 MHz away from the F = 4 → F ′ = 5 cycling transition. Then the
measured mean value and standard deviation of the phase shift concern the atoms residing
on F = 4 ground hyperfine level. Hence in a DC measurement we can deduce the number
of atoms N4 by the experimentally obtained value of the phase shift via modification of
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Eq.(2.42) taking into account only the population of the F=4 ground state:

N4 =
2πA

λ2

1

S45

∆2
45 +

(γ
2

)2

∆45
γ
2

φ∆. (9.3)

where ∆45 is the detuning from the cycling F = 4 → F ′ = 5 transition. The above
equation depends on the probe cross-sectional area A = πw2

0/2 with gaussian beam waist
radius of w0. The value of S45 = 11/18 is the relative strength of cycling transition.

So far we have considered a DC measurements. Now we want to add to the above
considerations the measurement of the noise, which would indicate how well we know the
value of the phase shift. Then the noise of the φ∆ is obtained by differentiating and taking
the square of Eq.(9.2)

(δφ∆)2 =
1

(GPDC)2 cos2 φ∆
(δV∆)2 (9.4)

where φ∆ is given by Eq.(9.2). For an ensemble of uncorrelated particles which obey the
poissonian statistics we can write using Eq.(2.44) the following expression for the ratio
between the phase shift and its variance

φ2
∆

(δφ∆)2
=

k(∆)2N2
at

k(∆)2Nat
= Nat. (9.5)

The above equation gives an estimate of the atom number in the ensemble which is inde-
pendent of the probe beam waist. This is an useful relation since the error in the estimation
of the waist can be big enough for non-Gaussian beams. The coefficient k(∆) denotes the
detuning dependent and probe-beam-area dependent coefficient of proportionality.

At the end of that section we want to emphasize that the measured experimental
signal in case of the noise characterization contains several noise contributions as also
discussed in Sec.4.2, Eq.(4.42). Throughout the discussion so far we have shown that
classical amplitude and phase noise are canceled and the only noise contributions we have,
are the shot noise of light and the electronic noise of the detection system [see Sec.8.3].
Hence for the noise of the experimental signal we can write:

(δV )2 = (δV∆)2 + (δVSN )2 + (δVe)
2 (9.6)

The shot noise of light (δVSN )2 depends on the number of photons nph and has to be
subtracted from the overall signal in a reference measurement. The same applies for the
electronic noise (δVe)

2. Having addressed the issue on how exactly the number of atoms
and the phase shift can be determined by the detected experimental signal we can now
proceed to presenting the results of the experiments.

9.2 Interferometry with cold atoms in a MOT

The section presents measurements with atoms in a MOT performed with fiber-optic and
a free-space interferometers described in the previous chapter. The experimental variable
is the phase shift imposed on the coherent probe light by dispersive interaction with
the atomic cloud. The section also includes measurement of shot-to-shot atom number
fluctuations in the MOT. The physical nature of these fluctuations was already discussed
in Ch.4.
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Figure 9.2: Experimental cycle diagram for fiber-optic (a), and free-space interferometer
(b). Loading curve of MOT taken with free-space interferometer (c).

The measurements include two pulse trains. The first pulse train measures the phase
shift due to atoms and the second is a reference measurement with probe light only.
The difference of the two would give the necessary information about atomic population.
The typical experimental cycles used when performing measurements with fiber-optic and
free-space interferometer are shown in Fig.9.2(a,b). Before the reference measurement is
performed the atoms has to be removed from the probing volume by applying a resonant
light pulse of cooling light.

For the measurements performed on the AU MOT with the fiber-optic interferometer,
the application of resonant light pulse was not necessary since the MOT has decayed at
the arrival of the second pulse after 10 ms. In this case the second and the third pulse
merely take the reference measurement.

For the measurements done on the NBI MOT with the free-space interferometer, due
to the long decay of the NBI MOT (about 0.5 s), a resonant pulse of MOT light or a
negative-gradient magnetic field ”kick” has to be applied in order to ”clean” the probing
volume for the sake of the reference measurement.

9.2.1 Loading dynamics

This measurement is done with the free-space interferometer to estimate the loading time,
loading and loss rates of the MOT. The light phase shift depends on the number of atoms
residing in the atomic level of concern. In our experiment the probed atomic level is the
F=4 ground hyperfine state of Cs atoms. Since the atoms are mainly distributed over the
magnetic sublevels of that state after the cooling process the choice to probe that level is
reasonable.

The atoms are loaded in the MOT for variable time from 100 ms to 5 s. Then the
MOT light fields are switched off for 4 ms. In the beginning of that stage 100 probe pulses
of 2 µs duration and 6 µs repetition period are sent to the released atomic sample. The
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probe light is detuned by ∆45 = −25MHz from the 6S1/2(F = 4) → 6P3/2(F
′ = 5) cycling

transition. The influence of the magnetic field results in a Zeeman shift of the probed
atomic transition of about 1 MHz. A second pulse train of 100 pulses takes a reference
measurement with no atoms present 4 ms after the atom probing. The result is shown in
Fig.9.2(c).

The characteristic loading time of the MOT is found to be around 1.88(15) s, which
indicates a loss rate of 0.53(0.04) Hz. The idea behind this measurement, except determin-
ing the loading time, is to find a a method of changing the number of atoms for the sake
of the noise measurement described later. However, we have found out that the values
of the phase shift have very large uncertainties (not shown in the graph). When we plot
the square of the standard deviation we see a clear quadratic dependance, which is an
evidence for an excess classical noise over the measured signal. Hence there is a classical
noise mechanism that couples to the system. Later we have found a different method to
change the number of atoms by changing the dispenser current. The dependance of the
equilibrium number of atoms on the dispenser current is almost linear for low currents up
to 3.4 A.

9.2.2 Density in the MOT

The strength of the off-resonant interaction depends on the optical density, which on the
other hand is proportional to the number density of the atomic sample [see Eq.(5.26)].
To determine the number density of the atomic sample we can use its relation to the
measured phase shift [see Eq.(2.47)]. The phase shift as we have shown is a function of the
detuning of the probe laser with respect to the atomic resonance in our case the cycling
6S1/2(F = 4) → 6P3/2(F

′ = 5) transition. By scanning the detuning of the probe laser
across the excited state hyperfine manifold we can observe the characteristic dispersive
curve as the one shown in Fig.2.3(a), but for atoms on F = 4 ground hyperfine state.

The experiment is done with the fiber-optic interferometer by using the experimental
cycle shown in Fig9.2(a). The frequency is varied using the advantages of the tunable
frequency offset locking described in Ch.8.

About 108 caesium atoms are collected in the MOT for 100 ms at a detuning of −3γ
and magnetic field gradient of 10 G/cm. Then the light and magnetic field are switched
off for 10 ms. Since the switching of the magnetic field is at the millisecond level, the
atomic transition frequency is Zeeman shifted during the measurement of about 1 MHz.
During that stage the first probe pulse of duration 2 µs and power of 1 µW interacts with
atoms. At the end of that stage the atoms have already left the probing region and second
pulse is applied for a reference.

The frequency of the probe laser is scanned in the range of -550 to 600 MHz, with
respect to the cycling transition frequency and the corresponding phase shift is measured.
The result is plotted in Fig.9.3.

The dispersive curve is similar to the F = 4 → F ′ = 3, 4, 5 part of the one pre-
sented in Fig.2.3(a). The relative amplitudes of the linewidth functions near the hyperfine
transitions have to be equal to the relative hyperfine transitions strengths. For example
φ45/φ44 = S45/S44 = 2.1 and φ44/φ43 = S44/S43 = 3. However, the experimental results
do not agree with the above. The values obtained from a linewidth function fit are 4.55 and
2.13. The transition F = 4 → F ′ = 5 is cycling and the decay of the excited state F ′ = 5
to the ground hyperfine component F = 3 is dipole forbidden. However the two lower
hyperfine states of the excited 6P3/2(F

′ = 3, 4) manifold are coupled to the F = 3 state
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Figure 9.3: Atomic phase shift as a function of probe laser detuning (b), fit with a fixed
values of the lineshape amplitudes (solid line); fit with the amplitudes varied and corrected
for depumping by the probe light (dashed line).

via dipole allowed transition, allowing for depumping of the F = 4. This indicates that
the probe does redistribution of atomic population among the ground hyperfine states.
When correcting for the depumping using the rate equation analysis the fit to the data
agrees well with the experiment as shown in Fig.9.3.

The value obtained for the natural linewidth is γexp = 9 MHz, which is about 1.7
times higher than the actual one of γ = 5.2 MHz. At a temperature of the probed atoms
of around T = 417 µK the value of the Doppler broadening γD can be found using the
expression [120]:

γD = 2ν

√

2kBT

Mc2
ln 2,

where ν = 350 THz is the value of the atomic transition frequency. The calculated
Doppler broadening is about 0.44 MHz, which tells us that there is additional broadening
mechanisms that contribute to the observed linewidth.

Broadening can arise due to collisions wit the background gas inside the apparatus.
The collisions with nitrogen N2 molecules are dominant. In that case the induced linewidth
broadening is of the order of 22 MHz/Torr as measured by [121]. In our experiment the
background pressure is 2 × 10−7 Torr, which amounts to a pressure broadening due to
background molecule collisions of 0.44Hz, which is obviously negligible. The transit-time
broadening is connected with the time it takes for an atom to traverse the probe beam
i.e. τtr = 2w0/v. Then the associated linewidth broadening would be γtr = 1/(2πτtr).
For our experimental parameters w0 = 20µm, v = 16cm/s the transit time broadening is
calculated to be 0.6 kHz, which obviously does not contribute much to the line broadening.

Then the last possible broadening mechanism, which can contribute to the wide
linewidth is the power broadening. The power broadened linewidth γ′ is calculated from
Eq.(9.8) in the next section. Since the beam has a waist inside the cloud the intensity
varies along the cloud diameter. For that reason we can use an average beam radius to
calculate the probe light intensity. For 150 nW probe laser power used in the measurement
and a waist of 20 µm the expected power-broadened linewidth is 21.4 MHz, which is about
two times higher from the one deduced by the measurement. We aware that the probe
beam waist could be off-centered w.r.t the atomic cloud. Then the atoms will see lower
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intensity due to the bigger beam diameter. Since the cloud has a gaussian diameter of
around 3 mm and the probe is directed along its longer diameter it is possible that the
waist of the probe beam is positioned before or after the cloud center.

The number density of the probed atomic sample is estimated from the fit in Fig.9.3,
using the experimentally obtained value for the total phase shift and the Eq.(2.47). The
length of the atomic sample is taken to be 3 mm and the probe gaussian radius of 20 µm.
The result obtained is N = 2.2×109 cm−3, which agrees well with the value 1.2×109cm−3

obtained by fluorescence measurement in Ch.6.

9.2.3 Stark shift measurement

In the experiments performed with the MOT the only light field, which is on during
probing stage, is the probe laser filed. The presence of MOT light during probing could
introduce wave mixing effects [122], which could give a wrong estimate of the phase shift at
given detuning, thus resulting in wrong estimate for the number of atoms. For that reason
we have installed shutters to block the light completely during probing stage. However, in
some cases we would like to have MOT cooling light during probing in order to determine
important parameters such as the Stark shift induced by this light.

In this section we present an interferometric measurement of the Stark shift of the
atomic transition caused by the presence of strong light field during probing. Let’s assume
that in addition to the probing field there is one more optical field which causes a Stark
shift of the atomic transition frequency depending on its power and spatial distribution.
The detuning of the probe field is denoted by ∆, and the MOT detuning is ∆MOT . Then
∆ is modified by the induced Stark shift as:

∆′ = ∆ +
γ2

4|∆MOT |
I

Is
(9.7)

where Is is the saturation intensity, and I is the intensity of the trapping beams with
gaussian beam radius of 1.25 cm. The atomic transition linewidth also becomes power
dependent through the power broadened linewidth [123]:

γ′ = γ

√

1 +
I

Is
. (9.8)

In the case of interferometric measurement the detected phase shift would change due to
the Stark shift, which is equivalent to change of the probe detuning as seen below. Then
the atomic phase shift becomes function of a new set of parameters ∆′, γ′ the modified
detuning and the power broadened transition linewidth.

φ(∆′) =
φ0

2

γ′∆′

∆′2 +
(

γ′

2

)2 (9.9)

The measurement is done with the free-space interferometer in the NBI MOT. The
trap fills for 1 s at detuning of the cooling laser ∆MOT = −2γ and magnetic field gradient
b = 12G/cm. Next, the light beams are switched off for 1 ms and again applied for 1 ms
more, but this time with different power. The power of the cooling light at the second 1 ms
long stage is varied from 35% to 100% of the maximum power Pmax=18 mW available
for that measurement. During the whole 2 ms long period a long probe pulse train of 200
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Figure 9.4: Stark shift experiment. Raw data traces for three different power level of
MOT light (a). Lorentzian fit of the atomic lineshape function in terms of phase shift of
interferometer (b).

pulses with the usual duration and repetition period of 10 µs is sent through the sample
and the dynamics of the phase shift is recorded. The probe light detuning is fixed to
∆ = −25 MHz from the cycling transition, and the power is 0.6µW.

We anticipate that the phase shift, right at the border of switching on the MOT light
again will undergo a fast change due to Stark shift as long as the number of atoms does not
change much for 10 µs. Thus, at the end we expect to have MOT-light-power-dependent
phase shift difference between the 100-th and 101-st pulses. The raw experimental data
traces for three different power levels are plotted in Fig.9.4(a) along with the difference of
the phase shifts between 100-th and 101-st pulses for all the powers in the range of 0.35Pmax

to Pmax [Fig.9.4(b)]. The fit is directed through zero as a physically feasible result when
there is not any MOT light. Unfortunately, the current experimental conditions did not
allow to take points below 6.3 mW since the hyperfine repump laser did not have stable
lock. Nevertheless, the fit to 15 data points showed a Stark shift per milliwatt optical power
of 0.21 MHz/mW, which agrees with the theoretically calculated one 0.24 MHz/mW from
Eq.(9.7). The maximum value obtained for the phase shift is φ0 = 0.047(1)Rad, which
can also be used to determine the density in the MOT using the following equation:

N =
2πφ0

S45λ2l
(9.10)

where l = 0.05 cm is the radius of the atomic sample. The result obtained show that the
density is around N = 1.32 × 109 cm−3, which can also be compared to the density of
the Ti chamber MOT from the previous chapter. The density has almost the same value
for the two MOT setups in Aarhus and Copenhagen, as anticipated. The only difference
appears in the loading times. The lifetime of the NBI MOT is far longer than the one of
the AU MOT, owing to the lower background gas pressure in the quartz cell.
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Figure 9.5: Atomic noise measurements. Fiber-optic interferometer data (a)and a linear
fit through 0. Free-space interferometer (b) and a fit to the equation (δN)2 = p1N

p2,
p2 = 1.51(5).

9.2.4 Atomic noise

The section is devoted to atomic noise measurements performed on a cold atomic sample
prepared in a MOT. The noise measured is not the spin noise, which will be discussed in
the scope of the QND measurement, but rather the population fluctuations of a specific
hyperfine level. The data presented here is obtained in measurements done with both AU
MOT using the fiber-optic interferometer and NBI MOT using the free-space one.

The noise of the atomic population on the F=4 ground state hyperfine level is pois-
sonian when multiple loading of the MOT are considered [see Ch.4, Sec.4.2]. This means
that the noise has linear dependance on the number of atoms. In this section we show
that our apparatus is capable of detecting the population noise, indicating that the setup
has the sensitivity to detect atomic fluctuations at the projection noise level.

The experimental sequence for measuring the atomic noise in the AU MOT is described
in Fig.9.2(a). The three pulses are detuned by ∆ = −15 MHz from the cycling transition.
The power in each pulse is PDC = 0.6µW, and with duration of 2 µs gives a total number of
photons per pulse of 5.2×106. The number of atoms is varied by changing the temperature
of the Cs container.

Let’s denote the areas of the pulses as ai, i = 1..3. The first pulse obtains information
about atomic noise and the second detects the shot noise, since the cloud has already
decayed for about 10 ms. An additional reference pulse is sent through the sample another
10 ms after to account for locking point drifts. The difference between the first and
second d12 = a1 − a2, and the second and the third d23 = a2 − a3 pulses as well as
their variances (δd12)

2 and (δd23)
2 are calculated. The latter are further expressed as

(δd12)
2 = (δaat)

2 + 2(δaSN )2 and (δd23)
2 = 2(δaSN )2, where (δaat)

2 and (δaSN )2 denote
the atomic and shot-noise contribution to the noise, respectively. The atomic variance
is then expressed as (δaat)

2 = (δd12)
2 − (δd23)

2, using the above relations. The data
acquisition program has given us the values of ai and the atomic noise contribution was
calculated. The number of atoms and noise are transformed from voltage units by use of
the analysis presented in Sec.9.1. The result is plotted in Fig.9.5(a).

Fitting the data to a straight line would compare how well the noise can be approx-
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imated to poissonian. The fit shows the anticipated linear dependency of the noise with
the atomic number as discussed in Sec.4.2. This would mean that the built interferometer
has the required sensitivity to detect the projection noise.

The NBI MOT setup contains Cs dispenser as a source of atoms, and the number of
atoms in the background can be changed by varying the dispenser current. The current
is firstly increased to about 3.5 A for a short time and then gradually decreased by steps
of 0.5 A down to 2.5 A. After every current change a short delay period of 5 min enables
system equilibrium before the next measurement is taken.

For this measurement we send two pulse trains, both containing 100 pulses, through the
atomic sample prepared in the MOT using the scheme shown in Fig.9.2(b) with magnetic
field switched off during measurement. The atoms are collected in the MOT at a detuning
of ∆ = −2Γ and trap magnetic field gradient of 10G/cm for 1 s. Then they are released
and probed by the light for total of 0.6 ms. After the typical ”cleaning” of 9ms we take a
reference measurement, which lasts for another 0.6 ms. After the end of the cycle a blank
period of 4 ms separates the next loading cycle. The number of cycles or equivalently the
number of averages is 200, which means that every point on Fig.9.5(b) is a result of the
200 averages.

The fit of the data to a power function gives a parameter of p2 = 1.51(5), which means
that the atomic noise has some classical noise influence, but is not dominated by classical
noise since p2 < 2. At the same time the measured noise is not poissonian since in these
units the power parameter must be one. It has to be mentioned that the uncertainty in
the x-axis i.e. the number of atoms or DC phase shift is large. The result indicates that
the equilibrium number of atoms is not reached for 5 min delay before every measurement.
An evidence for that are the points at highest atom numbers, which are taken first in the
measurement.

9.3 Nondestructive characterization of dipole trap

There are different techniques to measure various parameters of trapped samples. The
conventional ones rely on a destructive measurement i.e. absorption imaging or collection
of atomic fluorescence. When applying these techniques the atomic sample is destroyed
after the measurement. However, if one wants to track dynamical processes happening
in the atomic sample, the probe light must not introduce heating or even loss of atoms
from the cloud. It has been shown that in the above case for optically thick samples,
the nondestructive techniques are superior [124,125]. The dark-ground imaging [126], the
phase-contrast imaging [124] and the phase shift measurement [127] has been implemented
for a BEC and the spatial heterodyne imaging for a dark-spot MOT [128]. A recent paper
introduces the diffraction-contrast imaging as a non-destructive measurement technique
[129] of cold atoms. However, most of these experiments consider imaging with a CCD
camera and off-resonant light. In this section we will present a novel method of shot-noise
limited interferometric nondestructive characterization of dipole trapped atomic sample.

The dipole trap is loaded using the sequence described in Ch.7. Then after a variable
storage time, but not shorter than 10 ms, the atoms in the dipole trap are probed by light
pulses with duration of typically 2 µs and repetition period between 6 µs and 100 µs,
depending on the current measurement. The number of pulses is chosen upon the purpose
of the measurement, but it usually varies from 10 to 100. The probe light is 100MHz from
the cycling 6S1/2(F = 4) → 6S3/2(F

′ = 5) transition in caesium. The power is varied
from 150 to 300nW. After the probing, a resonant light pulse with the MOT beams is
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Figure 9.6: Loading curves of FORT: compression (a) and molasses (b).The data is fitted
to the loading and loss terms in Eg.7.4. The parameters deduced from the fits are stated
in Table 9.1.

applied in order to remove the atoms from the probing volume and consecutive reference
measurement is taken using the same probe light characteristics.

9.3.1 Loading dynamics

In this section we present our nondestructive measurement method to determine the load-
ing and loss parameters of the dipole trapped atomic sample. The dynamics of the loading
process is described by the Eq.(7.4) from Ch.7. However, we only consider the population
of the F = 4 hyperfine ground state, since the probe laser is closer to it. The nature of
the losses during loading was discussed earlier and here we only show the results obtained
via nondestructive population measurement.

The measurement is done in two regimes of loading the dipole trap from the MOT.
First, atoms from the MOT are loaded in the FORT by increasing the magnetic field as
shown in Fig.7.1. We will refer to this regime as compression regime. Second atoms are
loaded in the FORT using molasses cooling. This means that the magnetic field is switched
off during the loading stage. This way the density of the atomic sample is reduced due
to expansion of the cloud during the molasses. We will refer to this regime of loading as
molasses regime. The corresponding results from these two loading schemes are presented
in Fig.9.6, where the number of atoms is plotted against the loading stage duration. The
conditions at which the two measurements are done are described below.

For the first measurement, presented in Fig.9.6(a), the magnetic field gradient is in-
creased from 10 to 12 G/cm, during the dipole trap loading stages as also shown in Ch.7,
Fig.7.1, and is rapidly decreased to zero for 100 µs [101] at the end of the loading stages.
Next, after a delay stage of 100 ms the atomic sample is probed by 10 light pulses, 2 µs
long and with 40 µs repetition period. The power per pulse is 300 nW, and the detuning
of the probe light is ∆45 = 100 MHz with respect to the cycling transition. The reference
measurement is taken 25 ms after with the same probe pulse parameters.

The second measurement referred to as a molasses regime [Fig.9.6(b)] is performed as
follows. The loading is done as shown in Ch.7, Fig.7.1, but this time the field gradient is
adiabatically reduced to zero during the entire first loading stage and the cooler detuning
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Parameter Compression Molasses regime With light Without light

R0 [Hz] 1.34 × 107 3.2(6) × 104 - -
γMOT [Hz] 831 5 - -
ΓL [Hz] 3.5 1.2 47(20) -
βL [Hz] 1.1 × 10−4 3(1) × 10−5 1.1(1) × 10−2 -
Γ [Hz] - - - 21(1)
β [Hz] - - - 2.3(2) × 10−4

Table 9.1: Loading and loss parameters of the dipole trap

is only decreased to −6.5γ. Again, after a storage time in the dipole trap for 100 ms the
atoms are probed by 10 light pulses with 2 µs duration and in this case 10 µs repetition
period. The power and detuning are the same as in the compression regime and the
reference measurement comes after 25 ms, with the same probe light parameters.

For each point in Fig.9.6 we have repeated the loading cycle 20 times, and taken the
average over the obtained values for the number of atoms.

Since the general solution of Eq.(7.4) is expressed with Bessel functions, which makes
very difficult and time consuming the fitting of the experimental data on an ordinary PC,
we have adopted the method of separating the loading process to two parts: initial loading
during which the MOT loses atoms exponentially and subsequent loss mechanism caused
by collisions and decay due to cooling light. In this way for short times we fit to a solution
of the differential equation which includes only the first term on the right-hand-side of
Eq.(7.4), and for longer times we fit to a solution of the Eq.(7.5). We must emphasize
here that in this case Eq.(7.5) will actually give the value of light dependent losses. The
results from the two measurements are compared in the following Table.9.1

We see that in the case of compression loading is faster due to the magnetic field
gradient, or in other words the MOT does not expand, which helps atoms to be transferred
to the FORT faster. However the density dependent loss-mechanism is a main trap loss
source compared to the molasses regime where the βL coefficient is around 30 times lower.
The difference between the ΓL loss coefficients in both cases is not significant since they
do not depend on the atomic density, but mainly on the background gas pressure.

As it was discussed earlier in the Ch.7 the losses during loading are different in presence
of MOT light. To study the light induced losses independently from the loading rate we
use the method suggested in [61] and described in Ch.7. After a 10 ms storage in the dipole
trap we switch on the MOT beams with total intensity of the cooling laser of 4.6 mW/cm2,
detuning of −8γ and repump laser intensity of 1.1 mW/cm2 on resonance for a certain
time. Next, the MOT light is switched off again and 10 probe light pulses of 2µs duration
and repetition period of 40µs are applied. In Fig.9.7 we plot the average number of atoms
over 30 loading cycles as a function of the delay time i.e. the time for which the MOT
light is applied.

The losses in presence of light are compared to the losses without any MOT light in
Table 9.1. It can be clearly seen that the light induced density dependent loss increases
by factor of roughly 50 in the case of large detuning −8γ, which tells us that the FORT
undergoes severe loss through multiple scattering. At the same time the linear loss coeffi-
cient stays almost the same as expected since it depends on the background pressure. We
must also note that the values of Γ in the third and fourth columns are measured at a
higher background gas pressure.



9.3 Nondestructive characterization of dipole trap 109

Figure 9.7: Loss curves of FORT. With MOT light on: (�). Without any MOT light (◦).

9.3.2 Oscillation frequency

In this section we present a non-destructive measurement of the trap radial oscillation
frequency. We adopt a different measurement technique and demonstrate that the inter-
ferometric characterization can give information about important parameters of FORT
in an measurement procedure which is significantly less time consuming than the con-
ventional methods [59, 68]. The nondestructive monitoring of the atomic sample under
different perturbations allows to explore phenomena which take place on a microsecond
timescale.

We induce radial oscillation in the FORT by switching off the Yb:YAG laser for 500µs.
Then the atoms in the trap start to oscillate with a frequency which is twice the radial
oscillation frequency. These oscillations are damped following an exponential law. We
track the radial ”breathing” mode of the FORT cloud by sending a long pulse train of 100
pulses with 2µs duration, 100µs repetition period and power of 150 nW.

The result is shown in Fig.9.8(a). We must emphasize here that the measurement
can be done in only one measurement cycle since the atomic sample is not destroyed
after the measurement. The curve in the upper graph in Fig.9.8(a) is a result of a single
measurement cycle and every point represents the phaseshift obtain by the interaction of
the oscillating atoms with each probe pulse from the pulse train. The lower graph is an
average of the 50 cycles and is less influenced by the shot-to-shot fluctuations. For the
two graphs we also take a reference measurement without inducing radial oscillations in
order to account for the possible depumping due to probe light. The deduced oscillation
frequencies from the damped sinusoidal fits are 454(5) Hz and 453(3)Hz for the single and
averaged traces, respectively. The exponential damping time constant of the oscillations
is 1.76(9) ms and 1.87(7) ms for the upper and lower traces respectively. We see that the
fit values are similar which indicates that the single run measurement is little influenced
by the shot-to-shot fluctuations.

The above measurement was also performed for several different values of the dipole
beam power. The result is plotted in Fig.9.8(b), for a single run measurements (upper
graph) and for multiple cycles measurement. The estimated dipole beam waist radius,
using Eq.(3.36), is almost 2.25 times bigger as expected one of 40µm, and is similar for
both measurement cases. The expected dipole beam radius 40µm is calculated taking into
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Figure 9.8: (a). Oscillation in the trap after its revival by switching the dipole trap laser
again after 500 µs release. The period of the damped oscillations corresponds to oscillation
frequency of 453(3) Hz. The upper curve is a single experimental trace from one measure-
ment, the lower curve represents a 50 times average from 50 independent loading cycles.
Dipole beam power of 1.4W. The damping constant of the oscillation is 536(20)Hz. (b).
Trap radial oscillation frequency as a function of dipole beam power for a single run case
(upper) and 50 times averaged (lower). The estimated from this fit waist of dipole trap
beam is 90(1)µm.

account the experimentally obtained divergency of the incoming beam and beam quality
factor of M2 = 1.34. Then the experimentally obtained value for the dipole potential
depth is reduced by a factor of 2.252 for a dipole power of 3.5 W. The rescaled value of
the potential becomes Uexp = 75 µK.

For cold enough atoms the induced oscillation are of the center of mass motion, which
in fact will give the right scaling. However, for an initial atomic temperature of the order
of 14µK the ballistic expansion of the cloud for 500µs is roughly 14µm in horizontal, and
about 15µm in the vertical direction. This indicates that the gravity has a little influence
on the measured frequency. Since the gravity is the only way the cloud can acquire velocity
component of the center of mass motion, it is evident that the observed oscillations cannot
be attributed to the ”sloshing” mode.

The observed discrepancy of a factor of two is probably due to the wrong estimate of
the dipole beam waist since the laser beam is not entirely gaussian.
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Figure 9.9: Ballistic expansion of the released atomic cloud. Data from multiple mea-
surement runs gives T = 14.5(2) µK, and νr = 259(4) Hz for temperature and radial os-
cillation frequency at probe power of 300 nW (a). Data from single run and continuous
pulse train of 50 pulses 100µs apart with probe power of 150 nW gives T = 15(2) µK, and
νr = 275(4) Hz, respectively (b).

9.3.3 Temperature

This subsection is devoted to our measurement of atoms temperature using the interfer-
ometer phase shift. Initially the atoms are stored in the dipole trap having all MOT light
and magnetic fields switched off. Then they are released by switching off the dipole laser.
The atomic cloud starts to expand ballistically under gravity influence and the atoms will
acquire velocity proportional to their temperature. Then after a variable time delay the
cloud is probed during free expansion using optical pulses.

The measured atomic phase shift can be used to find out how great is the fraction of
atoms that have left the probe beam volume after a given time. In other words, we can
measure the probability P (t) of an atom initially inside the probe volume, to be outside
it after a certain time t. We derive a simple model for estimation of the temperature
using the ballistic expansion of the atomic cloud [see Appendix E]. The model describes
the evolution of P (t) as a function of the time of flight and is similar to already known
time-of-flight technique [38,109].

After 50 ms storage the atoms are released and two pulse trains are applied. The first
pulse train is delayed by time t from the atom release. The reference pulse train is applied
25 ms after the probing. Each pulse train consists of 10 probe pulses with repetition period
of 10µs. The results are plotted in Fig.9.9(a) along with the fits to the experimental data.
The fit to the data is done by using an approximate expression for the probability function
which has the following form:

P (t) = 1 −
w2

0 + 4σ2
r,0

w2
0 + 4σr(t)2

exp

{

− (gt2)2

2[w2
0 + 4σr(t)2]

}

, (9.11)

where w0 = 20µm is the probe beam waist radius, σr(t) =
√

σ2
r,0 + σ2

vt
2 is the radius

of atomic sample as a function of time with σr,0 =
√

kBT/(Mω2
r ) and σv =

√

kBT/M
being the initial radial extension of the atomic cloud and the initial atom velocity, respec-
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T [µK] νr[Hz] Pp[nW] ∆45[MHz] τp[µs] Trep[µs] Pulses Averages

(a) 14.5(2) 259(4) 300 100 2 10 10 20
(b) 15(2) 275(4) 150 100 2 50 100 1

Table 9.2: Temperature of dipole trapped atoms

tively, which depend on the temperature T , Boltzman’s constant kB , angular radial trap
frequency ωr and atomic mass of 133Cs.

The data for short delay times of the probe pulses is scattered and has some oscillation
behavior. The model function Eq.(9.11) fits better in the wing of the ballistic expansion
and the obtained parameters from the fit give temperature of T = 14.5(2) µK for an oscil-
lation frequency of νr = 259(4) Hz. The estimated value of the radial oscillation frequency
is in a good agreement with the previously obtained value of 244 Hz [Fig.9.8(b)] for a
power of dipole laser of approximately 4 W. Each point in Fig.9.9(a) is a result of 20
averages and the error bars come from the shot-to-shot fluctuations in the loaded atom
number in the dipole trap.

In another measurement we send a long pulse train through the atomic sample once
the atoms are released from the FORT. The pulse train contains 50 pulses with duration
of 2µs and repetition period of 100µs. The probe power is 150 nW. Hence, each point on
the graph in Fig.9.9(b) is a result of the phase shift recorded by a single pulse.

A single measurement trace of that kind represents a ballistic expansion besides free
from shot-to-shot fluctuations in the atom number. We also take a reference measurement
while the dipole trap operates and subtract it from the ballistic data in order to correct for
eventual decay due to probe light depumping. The estimated relative decay of the detected
signal due to probe light depumping is found to be around 3.5%. A more detailed analysis
of the depumping mechanism will be presented in the next section.

We see that the obtained results for temperature T = 15(2) µK and oscillation fre-
quency νr = 275(4) Hz are also in reasonable agreement with the ones obtained by the
multiple runs method. The data from the to measurements is listed in Table 9.2. The
(a) and (b) rows of the table concern the graphs in Fig.9.9(a) and (b), respectively. The
obtained values compared with the temperature estimated from the fluorescence mea-
surement in Ch.7, Fig.7.5 of T = 14(2) µK shows a very good agreement. The fit of the
fluorescence measurement does not take into account the gravity influence and agrees well
with the non-destructive measurements which do include the gravity. This is another con-
firmation that the gravity does not play a significant role on a timescale similar to the the
traverse time i.e. the time it takes for an atom to cross the probe beam.

9.3.4 Density and number of atoms

In this section we give an estimation of the maximum number of atoms in the dipole trap
and the corresponding density at conditions of thermal equilibrium.

At thermal equilibrium the radius of the dipole trapped sample is estimated from the
measurement of the oscillation frequencies to be around weq = 20.8 µm [see Ch.7, Sec.7.3].
In the dipole trap interferometric measurements presented in this thesis, the probing of
the atoms is done after several tens of milliseconds storage in the dipole trap (except
the loading rate measurements), which ensures that the sample is at thermal equilibrium.
Then its radial extent wa = weq, matches the probe beam size of 20 µm. In that way
the geometrical factors defined in Ch.5, Eq.(5.23,5.24) are calculated to be gL = 0.76 and
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gT = 0.5 for the longitudinal and transverse factors, respectively. The last two modify the
coherently scattered power by a factor of gLgT = 0.38. In the following lines we will use
the above considerations to estimate the density and number of atoms in the trap.

As we have already shown in Ch.2.3 and Ch.5 the atomic phaseshift φ0 and interaction
strength κ2 depend on the atomic density. In the case of a MOT the estimated density
is of the order of 109 cm−3. Loading the atoms in the dipole trap increases the density
and improves the matching to the focused probe due to the elongated geometry of the
atomic sample. The typical maximum phaseshift measured on a daily bases at a detuning
of 100 MHz from the cycling transition is around 1 Rad. Then using the Eq.(2.51) for
the case when we measure only the population of F = 4 ground state, we calculate the
maximum phaseshift φ0 and then insert it in Eq.(2.47). For a sample length of 1.25 mm
as deduced form the fit in Fig.7.3, and correcting for gLgT we get a number density of
N = 3 × 1011 cm−3. The last result is almost 100 times higher than the density in the
MOT.

For the number of atoms we need to calculate the volume of the atomic cloud using the

equilibrium sample size weq and sample length l. The volume is V =
πw2

eq

2 l = 8×10−6 cm−3

and the number of atoms N4 = 2.4 × 105.

9.3.5 Rate of real transitions

The last issue that we want to address is the problem of depumping due to absorption
of probe light photons. The absorption is a process working parallel to the dispersive
interaction. Absorption of photons induces heating of the atoms in the trap and can lead
to atom loss. This on the other hand reduces the atomic phase shift. When we claim
to perform a nondestructive measurement we must estimate the probability of atom to
undergo a real transition due to absorption of photon.

We have already introduced the pulse-integrated rate of spontaneous emission η∆

[see Ch.5.1] as a relevant parameter to describe the depumping due to probe excitations
in the off-resonant case. However, in the experiment the probe light detuning is only
100 MHz with respect to the cycling transition. Thus, an excitation to the weakly coupled
F ′ = 4 excited state would pump the atoms to the lower hyperfine ground state level via
spontaneous emission. For the η parameter we can write [11]:

η∆ =
λ2

3πA
L∆nph (9.12)

where L∆ is a linewidth function which can be derived using Eq.(2.43). The linewidth
function has the usual 1/∆2 dependance of the absorption in Eq.(2.43) on the probe beam
detuning. For a probe light near to the cycling transition the value of this function is:

L∆ =

5
∑

F ′=3

S4F ′

(γ
2

)2

∆2
4F ′ +

(γ
2

)2 (9.13)

The pulse integrated rate of excitations is independent on the atom number but is a
function of the number of photons in the probe beam nph. The next few paragraphs we
present an experimental method for estimation of η∆ when the probe light is 100 MHz
detuned from the cycling 6S1/2(F = 4) → 6P3/2(F

′ = 5) transition. Since the depumping
parameter is proportional to the number of photons we would naturally expect that it will
change in accordance with the power of our probing beam. Hence, we choose to monitor
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Figure 9.10: Pulse integrated rate of spontaneous emission. Raw data for probe power of
1.2µW and a fit to the selected depumping part (the inset)(a), and experimentally obtained
value for the pe parameter as a function of the probe power for a 10µs long probe pulses:
values of η∆ for different power obtained from the fit of the phase shift decay (◦), theoreti-
cally calculated values for a probe beam waist radius of 21.2µm (�), and a linear fit to the
data (solid line) (b).

the decay of the interferometer phase shift as a function of the probe power. The direct
experimental parameter is the characteristic time constant of that decay and we expect
that it will increase linearly with the probe power.

We send a long pulse train consisting of 40 pulses of 10µs duration and 100µs repe-
tition period through the atomic sample along with the usual reference pulse train. The
measurement is done at four different power levels of the probe beam. The blue detuning
is set to 100 MHz.

An example measurement trace for probe power of 1.2µW is shown in Fig.9.10(a). The
initial decay during a period of 1 ms is caused by the probe light depumping. It is then
followed by an approximately flat region which is a result from an equilibrium between
probe depumping and repumping process due to residual light of the MOT repump laser.
The last 4 ms from the raw data presented is a reference level without atoms in the dipole
trap.

The interesting for us part of the trace is the first one since it contains the depumping
due to probe light. The inset in Fig.9.10 shows a fit to the solution of the rate equations
described in Appendix F. The value of η∆ for a given power of the probe is obtained by
fitting the initial decay of the phase shift to an expression obtained from integration of the
rate equations for the levels of concern taking into account two optical fields: probe and
repump laser [see Appendix F]. Then the values of the η∆ are plotted against the probe
power and fitted to a straight line Fig.9.10(b). An additional theoretically calculated
values of η∆ using Eq.(9.12) and Eq.(9.13) for a probe waist radius of 21.2 µm agrees well
with the experimentally measured waist radius of 20 µm. We see that for very low probe
power the pulse integrated rate of spontaneous emission per atom is less than one. The
lowest power used in our experiment is 150 nW, in a pulse with duration of 2 µs. This
would mean that the lowest photon scattering rate per atom in our experiment is of the
order of η∆ = 0.038.
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9.3.6 Noise of dipole trapped atoms

In this section we present measurements of the atomic population noise done with atoms
prepared in a dipole trap. To study the nature of atomic noise we need to find how the
latter is changing as a function of the atom number. For the MOT measurements described
in Sec.9.2.4 we change the number of atoms by changing the dispenser current. The same
procedure can also be applied in the case of dipole trap which in fact uses the MOT as an
atomic reservoir. However, it turned out that after a several months of operation of the
MOT the above described method was no longer a reliable one due to the formation of
low pressure Cs background vapor. Then a different technique was adopted. The number
of atoms was changed by varying the time delay before they are probed.

In the experiment the probe laser is close to the F = 4 → F = 5 transition at a blue
detuning of 100 MHz. Using 2 µs long pulses of 0.6 µW power, this yields, according
to Eq.(9.12) a pulse integrated rate of atomic transitions of η = 0.4. This number has
been verified experimentally by monitoring the de-pumping of the F = 4 to the F = 3
ground state through the weakly coupled1 F = 4 → F ′ = 4 transition in a measurement
described in the previous section. The value deduced is η = 0.33. With the photon flux
of 2.5 × 106, every atom performs about 43 absorption cycles on resonance in the center
of the probing volume, whereby the largest possible recoil velocity of an atom will be
approximately 15cm/s. In this extreme case the atom would move 1.5µm during 10µs,
which is well in the range of the probing beam waist radius of approximately 20µm.

The measurement of the atomic population fluctuations can be performed on an inde-
pendently prepared atomic samples or on a single atomic sample. We refer to independent
samples the ones prepared in consecutive loading cycles when the loading and probing
conditions are the same. The number of atoms in samples prepared in consecutive loading
cycles are uncorrelated, and so the fluctuation of this number. Then population noise will
scale linearly with the number of atoms as already discussed in Sec.4.2. Since our probe
light is closer to the cycling transition, as in the case of MOT measurements, the atom
number fluctuations are expected to scale linearly with the population of F = 4 ground
state level, namely N4.

When the noise measurement is performed on a single atomic sample we expect that the
phase shift measured by consecutive pulses would contain both uncorrelated and correlated
fluctuations. We will get back to it further in the discussion.

Let us start with the first type of measurement. The procedure is as follows: We
send a probe pulse through the atomic sample and obtain a pulse area a1, then after
10ms a reference measurement a2 is taken. The reason to take a reference phase mea-
surement in each loading cycle, is that over the 3-4s of a full cycle the interferometer may
drift significantly, or in other words the light noise could no longer be white noise. The
atomic phase shift is then computed as φ∆ = arcsin(a1 − a2)/a+, where a+ is the pulse
area corresponding to a π/2 phase shift (i.e. the fringe amplitude in units of integrated
photocurrent). The calculation of the phase shift is basically done using the expressions
Eq.(9.1) for the difference between the two pulse areas a1 − a2 in voltage units.

The areas of the two pulses are uncorrelated, hence in a sequence of many repeated
measurements the variance of their difference is the sum of the variances of each pulse.
The variance of the first pulse (δa1)

2 contains noise of dipole trapped atoms and shot
noise. In Sec.4.2 we saw how the classical phase and amplitude noise can be overcomed,
hence the only noise contributions to the atomic signal are the photon shot noise and

1the probe is detuned by 351MHz from this transition.
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electronic noise. The variance of the second pulse only consists of a shot and electronic
noise. Then the variance of their difference is expressed as

(δ{a1 − a2})2 = 2(δi)2SN +

(

2
εe

τp
T 〈n̂〉 cos φ∆

)2

(δφ∆)2. (9.14)

In the last equation the second term is the atomic noise given by Eq.(4.35) with the sin φ
simplified as sin(φN + φ∆) = sin(π/2 + φ∆) = cos φ∆ by the use of the phaseshift φ in
Eq.(4.13). To extract the atomic contribution to the noise, we need to measure the shot
noise independently, which is done by taking a measurement without atoms in any of the
pulses. Then the noise of this reference measurement becomes (δ{a1 − a2})2SN = 2(δi)2SN .
Further the atomic noise is calculated by subtracting the last from from Eq.(9.14):

(δφ∆)2 =
(δ{a1 − a2})2 − (δ{a1 − a2})2SN

(

2 εe
τp

T 〈n̂〉
)2

cos2(φ∆)
, (9.15)

The result of the measurement on independent samples is shown in Fig.9.11(a). The
number of atoms is varied by changing the storage time in the dipole trap. The atomic
contribution to the phase noise of the interferometer (δφ∆)2 is translated into population
fluctuations and is plotted as a function of the number of atoms extracted from the DC-
phase shift φ∆. The linear fit within the uncertainty shows that the variance of the atomic
fluctuations scales as Nat. Thus the white light interferometry is capable of achieving the
sensitivity approaching the level of projection noise fluctuations.

The second measurement type, as mentioned above, is to make consecutive measure-
ments of the same dipole trapped sample to see how the population of F = 4 fluctuates
from pulse to pulse. This would mean that the noise is characterized by the 2-sample
variance on a different timescales. The two point variance in Eq.(8.6) is essentially the
mean value of the squared pulse differences i.e. σ2p = 〈(ai+k − ai)

2〉 2. Assuming that
there is no average difference between the pulses involved i.e. 〈ai+1 − ai〉 = 0, which is
true if the fluctuations are truly randomly distributed around zero, then we can re-write

σ2p = 〈(ai+1 − ai − 〈ai+1 − ai〉)2〉 = (δai)
2 + (δai+1)

2 − 2(δaiai+1) (9.16)

In this form it becomes simpler to identify the contributions to the noise. The pulse
variances in the two first terms are the same since the number of atom does not change
much in 10µs. The term (δaiai+1) = 〈aiai+1〉 − 〈ai〉〈ai+1〉 is the covariance of the two
pulses and measures the correlation between them. If there is no correlation then the
covariance will be zero. However, if the pulses are correlated the last term would have
positive or negative value.

The measurement consists of two pulse trains 20ms apart and each containing 10
pulses, which are 2µs long and separated by 10µs. The first pulse train probes the dipole
trapped atoms, then and the second pulse train is taken as a reference, to extract the
atomic phase shift and thus the number of atoms. A special feature is that the dipole trap
laser is switched off right before probing the atoms. Hence, during the first pulse train the
atomic sample begins to expand.

As for the first type of measurement, the contributions to the variance are given by
the non-vanishing terms of Eq.(4.42). Hence by subtracting the 2-point variance of the

2The index in the mean value is to be understood as 〈ai+k〉 =
PM−k

i=0
ai ≈

PM

i=k
ai.
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Figure 9.11: Phase noise induced in the probe light from the interaction with cold atoms.
The density is derived from the dc phase-shift. (a) The linear fit (—–) of the experimental
data (◦), shows poissonian statistics of the loading process. (b), (c) Atomic two point vari-
ance on 10 µs and 20 µs timescale, respectively. The fit (—–) of the experimental data (◦)
to (δN4)

2 = aiN4 + biN
2
4 , i = 10, 20, a10 = 25 ± 3 and b10 = −(8 ± 4) × 10−5, and a20 =

51 ± 9 and b20 = −(4 ± 1) × 10−4, for the case of (b) and (c), respectively, shows correla-
tions between consecutive pulses.

reference pulse train from that of the first ”atom probing” pulse train we get the 2-point
variance caused by atomic population fluctuations. As for the correlations, the pulses of
reference train are uncorrelated since they are affected purely by quantum light noise. In
the presence of atoms it is natural to expect that if the pulses are not far separated, then
the number of atoms will not have changed much between them. In essence, the probe
pulses interact with the same atoms. This way the measured fraction of atoms does not
contribute to the noise but only to the phaseshift since after the interaction with the first
pulse their state will be well known. As a result only the fraction of atoms which have not
been measured will contribute to the noise.

The experimental results in Fig. 9.11(b), shows the two point variance for pulses sep-
arated by 10µs. The points for different number of atoms are obtained by varying the
probe light delay while atoms are released from the trap. We see that the 2-point variance
does not grow linearly with the atom number N4. Fitting a second order polynomial with
no 0’th order term, we extract the linear and the quadratic term of the scaling. Given the
quality of the fit we conclude that we see the signature of correlations between the pulses.

We can also plot the 2-point variance for 20µs pulse separation [Fig.9.11(c)], where we
see that the correlation term becomes negative, so that the 2-point variance grows faster
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than a linear curve. This is not surprising since the atoms are being released from the
dipole trap, and thus the density is decaying rather fast. Therefore, given the pulse area
ai it is most likely that the pulse area ai+1 will be smaller, i.e. the two areas are anti-
correlated or the covariance δaiai+1 becomes negative. Strictly speaking, the assumption
that 〈ai+1−ai〉 = 0 breaks down, but the considerations still help illustrate what happens.

From the above we conclude that our apparatus has measured the statistical trapping
fluctuations, and has been able to detect correlations in the atomic number density from
one pulse to the other.

9.4 Conclusion

With the above described measurements the experimental part of the current thesis comes
to its end. It can be summarized in the following lines.

First, a shot noise limited Mach-Zehnder interferometer was built and characterized
using a balanced homodyne detection technique. The white light alignment of the inter-
ferometer allows for efficient laser phase noise cancelation. The interferometer is locked
to an off-resonant interference fringe in order to avoid thermal and acoustic drifts. The
fiber optic interferometer showed better performance in terms of resistivity to acoustic
and mechanical vibrations, whereas the free-space one is shot noise limited for a photon
number as high as 2×108 for the phase and 2×109 amplitude quadrature.

We have also demonstrated a method for nondestructive characterization of cold atomic
samples prepared in an optical dipole trap and MOT. The atomic sample is placed in one
of the arms of the Mach-Zehnder interferometer. The phase shift of the light imposed by
dispersive interaction with atoms is detected via a pulsed balanced homodyne detection
scheme. This phase shift is proportional to the population of the level in concern.

The measured parameters of the MOT are in reasonable agreement with the ones
performed using fluorescence detection. The MOT at Aarhus and NBI experiment are
found to have almost the same atom number density which is expected since the trap
geometry was preserved. The loading time of the second generation MOT is longer owing
to the lower background pressure achieved.

The dipole trap is loaded from a MOT through a molasses cooling stage. The number
of atoms trapped is around 105 which corresponds to around a 1 Rad of phase shift and
a number density of the order of 1011cm−3. We have measured several parameters of the
dipole trap characterizing its loading and loss dynamics. The radial oscillation frequen-
cies and temperature measurements were done in a single loading run, thus enabling us
for fast characterization of atomic sample. The temperature estimated from both single
and multiple runs nondestructive measurements agrees with the one obtained in the fluo-
rescence measurement. The trap radial oscillation frequency is measured directly by the
release-recapture method, and indirectly by estimation from temperature measurements
data. Both values are in a good agreement. Furthermore an estimation of the nondestruc-
tive character of the measurement was done by measuring the pulse integrated rate of
real transitions tracking the decay of the phase shift of dipole trapped atoms at different
probe power levels. The estimated rate of real transitions induced by a single probe pulse
is found to be as low as η∆ = 0.038.

The real time monitoring of the phase shift in a Mach-Zehnder interferometer allows
for fast and nondestructive characterization of atomic samples. The method is applied to
a dipole trapped atomic sample but with the same success it can be expanded to Bose-
Einstein condensates, where the optical density is much higher and the absorption imaging
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does not give the necessary contrast [124]. Moreover, our pulsed detection scheme allows
for microsecond timescale monitoring of processes and phenomena taking place in the
atomic cloud, which in other cases as absorption or fluorescence imaging are not visible
due to the requirement of long exposure time of the CCD cameras.



Chapter 10

Summary and Outlook

At the end of this thesis we will summarize the experimental work done on characterization
of atomic samples using a shot noise limited interferometer. In the second part of the
chapter we briefly discuss the concept of QND measurement via off-resonant interaction
- the near future application of the built interferometric setup. The feature of the QND
measurement to act as a quantum state preparation device is pointed out as a tool to
produce a squeezed state of the population number difference in the Cs microwave clock.

10.1 Summary

In this work we have built an experimental setup that is able to characterize non-
destructively various parameters of an cold atomic sample prepared in a MOT and sub-
sequently trapped in a far-off-resonant optical dipole trap. The measurement is done via
monitoring of the phase of a weak light probe interacting with the atomic sample placed
in one of the arms of a Mach-Zehnder interferometer. The light is detuned by several tens
of natural linewidths from the cycling atomic transition 6S1/2(F = 4) → 6P3/2(F

′ = 5) in
Caesium and detected in a pulsed homodyne detection scheme involving the two output
ports of the interferometer.

The different noise contributions to the obtained homodyne signal are investigated.
The main contribution are divided in two: quantum noise and classical noise. The first
is the shot-noise of the probe light. The second is the classical noise, which consists of
amplitude noise of the detection and classical phase noise that comes from the excess
phase noise of diode lasers. The quantum noise of the probe is a fundamental noise limit
in our interferometric measurement. The classical amplitude noise, although very small
in the case of semiconductor laser, is canceled by the balanced detection. The phase
noise of diode laser is found to depend on the optical path-length difference between
the interferometer arms. Thus aligning the interferometer in the white-light position,
overcomes the influence of the excess phase noise over the experimental signal. In practice
the white light alignment is limited in the coherence length of the white light source.
To keep the the interferometer in white-light position and to be sensitive to small phase
shifts the interferometer is locked in a quadrature, using the interference of an additional
off-resonant laser, and a piezo actuator.

Two different interferometric designs have been used. The fiber-optic and free-space
construction. The first one showed better mechanical and acoustic stability, as well as
good mode overlap in the fibers, but difficulties in balancing the photocurrents from the
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two arms has appeared due to the temperature dependent chromatic dispersion of the
single mode fibers. Moreover an additional losses in fiber-free-space-fiber coupling interface
reduced the photon flux to about 30% of its initial value in the air gap of the probe arm.
The free space interferometric setup showed much better balance and losses from the
coupling were greatly reduced. However, the free-space interferometer had poor stability
to acoustic and mechanical vibration, which forced us to use shielding of the interferometer
using a construction with sound damping material.

The noise properties of both free-space and fiber-optic interferometer were checked,
making a measurement of the fluctuations in the detected homodyne photocurrent, at
different input photon fluxes and found linear dependance of the former with the photon
number - a signature of shot-noise limited operation. The interferometers were found to
be shot noise limited in amplitude and phase up to 4× 108 photons for the free-space and
107 for the fiber-optic construction.

In this work we used two different constructions of magneto-optical trap for initial
preparation of the atomic sample. The first generation trap, the AU MOT, was loaded in
a titanium chamber, and the second one, the NBI MOT in a quartz cell. The AU MOT
had better aligned beams, however the problems with home-made Ti-viewports did not
allow for better than 10−7mbar vacuum. An additional difficulty was connected with the
low efficiency transport of Cs atoms from their container to the experimental chamber.
The NBI MOT is loaded in a quartz cell and has very compact design allowing for lower
gas load, due to the smaller inner surface of the vacuum apparatus. The lowest pressure
achieved is of the order of 10−9Torr reflecting in longer lifetime.

The first generation MOT was investigated using destructive fluorescence collection
method and non-destructive interferometric measurement of the atomic population, taking
advantage on the cycling transition in Cs. The number of atoms collected in the MOT
was of the order of 108 with a number density of 109cm−3. The performed interferometric
measurement of the population noise of F = 4 in a multiple loading cycles scaled linearly
with the population itself as expected from the stochastic nature of the loading process.
A release and recapture measurement, done by fluorescence detection of the remained
fraction of the atoms in the MOT after free flight of variable time, showed temperature
of 417 ± 49 µK. The nondestructive measurement of the loading-to-loading population
fluctuations showed linear dependence with the number of atoms as theoretically predicted.

The second generation MOT was non-destructively characterized using the free-space
interferometer. The density of the MOT was extracted by measuring the Stark-Shift
induced by the MOT light during the probing of the atomic cloud. The noise of the
atomic population of F = 4 was also measured in consecutive loading cycles and is found
to have a power dependance on the atom number with a coefficient of 1.5. The linear
scaling of the atomic noise with the number of atoms is a signature of population noise.

The atoms prepared in the second generation MOT were loaded in a far-off-resonant
dipole trap made by a single focused gaussian laser beam. The trap was loaded through an
optical molasses stage in two ways - with magnetic field on to maintain the MOT density
during loading and with a magnetic field adiabatically switched off.

The loading dynamics in these two cases was monitored by measuring the phase shift of
weak light beam imposed by interaction with the atomic sample at a detuning of 100 MHz.
The loading and loss coefficients are experimentally obtained for two cases: in presence of
MOT light i.e. light induced losses and without any light i.e. light independent losses. We
found that the density dependent light losses are dependent on the MOT light parameters
as expected. The linear losses are mainly determined by the background gas pressure.
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A measurement of the radial oscillation frequency was done by releasing the atoms
from the dipole trap for a short time and probing the induced density oscillation using
a long train of weak light pulses. The measurement is much faster than the standard
oscillation frequency measurement, since it is done in a single loading cycle in contrast
with the fluorescence collection and absorption imaging techniques.

We have also performed a measurement of the trapped atoms temperature by probing
the density of the expanding atomic cloud when released from the dipole trap for a variable
delay of the probe light pulses. The measurement was done in two ways, for a multiple
loading cycles and for a single cycle. The two methods showed reasonable agreement
with a similar fluorescence measurement and the temperature found was of the order of
14µK. The single run measurement allows for fast and non-destructive determination of
the atom temperature as an advantage over the common destructive fluorescence and
absorption techniques.

The non-destructive nature of the off-resonant probing was independently checked by
performing a measurement of the pulse integrated rate of spontaneous emission. The last
was estimated to be as low as 0.038 for a single probe pulse. This rate of real transitions
allows for detection of a phase change as small as 0.002 Rad.

The measurement, presented in this thesis, to our knowledge, is the first implementa-
tion of interferometric non-destructive characterization of cold and trapped atomic samples
with a sensitivity limited only by the fundamental quantum noise of the optical probe. We
have also shown that the described interferometric technique has the necessary sensitivity
to measure atomic projection noise. The last is known to scale linearly with the atom
number.

10.2 Outlook

In this chapter we discuss the two main experimental directions in which the current
experimental setup will be involved. These are the implementation of a QND measurement
and subsequent generation of a spin squeezed state.

10.2.1 QND measurement

When performing a measurement on a quantum system we gain a knowledge about the
system, but in the same time the system is also changed and its internal state is not the
same after the measurement. Then it is natural to ask whether it is possible to find a way
to measure a variable of the system without disturbing it. The answer is yes, this can be
done by performing the so-called quantum non-demolition measurement.

The concept of QND measurement is the following. A quantum mechanical variable
Â is a QND (or signal) variable if it is a constant of motion i.e. Â commutes with the
free Hamiltonian of the system or [Â, Ĥ0] = 0 (in the case of atom-light system it is the
unperturbed part of the Hamiltonian). The QND variable has to remain unchanged after
the interaction, which constitutes that it must commute with the interaction Hamiltonian
Ĥint or [Â, Ĥint] = 0. To gain a knowledge of Â one has to find a meter variable B̂
which does not commute with the interaction Hamiltonian Ĥint [130], or in other words
it does not conserve during the interaction. The variable Â is coupled to B̂ via the
appropriately chosen QND interaction Hamiltonian Ĥint. During a certain interaction
time an information about the quantum state of the signal variable Â is transferred to
the meter variable B̂. Then a conventional destructive measurement on B̂ reads out that
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information. Aside to the unchanged by the interaction quantum state of Â, a strong back-
action is exerted into a variable conjugate to Â namely Ĉ. Thus by making a destructive
measurement on B̂ one obtains an information of Â without disturbing it via hiding the
measurement back-action noise into a conjugate variable Ĉ.

In the off-resonant case the interaction hamiltonian is given by Eq.(2.49). The Ĵz

projection of the collective atomic spin is a QND variable, and Ŝz is the meter variable.
Dropping out the constant term in Eq.(2.49) we get that that the part of the Hamiltonian
responsible for the evolution of the atomic and light variables is

Ĥi = 4~κ̃ŜzĴz (10.1)

Then after integration over the interaction τ of the Heisenberg equations of motion for
the different component of J and S we get the following input output relations:

Ŝout
y = Ŝin

y + 4κ̃τ Ŝin
x Ĵ in

z , Ŝin
z = Ŝout

z (10.2)

Ĵout
y = Ĵ in

y + 4κ̃τ Ĵ in
x Ŝin

z , Ĵ in
z = Ĵout

z (10.3)

The information about the atomic system Ĵz is encoded in the light variable Ŝy, and the
value of the QND variable Ĵz is conserved throughout the measurement process. Thus
making a destructive measurement on Ŝy a knowledge about the quantum state of Ĵz is
obtained, with the back-action transferred to variable conjugate to Ĵz, namely Ĵy. In
our experiment the destructive measurement is done by detecting the light from the two
outputs of the interferometer via the homodyne detection. The subtracted photocurrent
is proportional to the phase shift of the light.

The quantum mechanical variance of the measured variable is expressed, as it was
already mentioned in Sec.5.1, by

(

δSout
y

)2
=
(

δSin
y

)2
+ (2τ κ̃)2〈n̂〉2

(

δJ in
z

)2
(10.4)

In the above equation the Ĵ in
z variance scales with the number of atoms Nat as shown in

Eq.(2.12) for a coherent input atomic state or
(

δJ in
z

)2
= Nat/4. Then inserting this in the

above equation we can separate a parameter κ2 the same as the one defined in Sec.5.1

κ2 = (τ κ̃)2〈n̂〉〈N̂〉 (10.5)

The last equation is only valid if the variance is limited from below by the shot noise of
light or in other words the above equation assumes that the initial light state is coherent.
Substituting the value for κ̃ in the above equation and taking into account that τ = l/c -
the time it takes the light to travel through the atomic sample we get:

κ2 =

(

λ2D−(∆)

4πA

)2

nphNat (10.6)

where D−(∆) is the detuning function given by Eq.(4.36). The last formula does not
account for a possible atomic decoherence. The figure of merit of the interaction κ2 depends
on the atom Nat and photon nph number and can be increased by increasing the column
number density lN = Nat/A, or by having higher photon numbers. The column density
can be increased by increasing the atom number density. The increase of the photon
number is limited by the requirement for shot-noise operation of our interferometer.
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10.2.2 Spin-squeezing

In that section we discuss how a possible QND measurement can be used for production
of a squeezed atomic state as it has been predicted by Kuzmich et al. [5]. In the pervious
section attention was brought to the light variable Ŝy, which carries information about
the atomic state. Now the emphasis is on the atomic variable Ĵy, with an input-output
relation for the variances given by

(δĴout
y )2 = (δĴ in

y )2 + (2κ̃)2τN2
at(δŜ

in
z )2 =

Nat

4

(

1 + 4κ2
)

, (10.7)

where we have substituted the noise of the (δSin
z )2 = nph/4 of a coherent light state in

terms of angular momentum operators. Since the QND variable Jz is a conjugate to the Jy

their variances obey the Heisenberg uncertainty principle, as mentioned in Ch.2. Hence,
we can write that:

(δĴout
z )2 =

Nat

4

1

1 + 4κ2
(10.8)

The two expressions contain a common factor Nat/4, and a comparison with Eq.(2.12),
valid for a coherent superposition state, reveals that the (δJz)

2
coh = Nat/4. The noise of

the coherent state defines the standard quantum limit and comparing the noise of Ĵy and
Ĵz after the measurement one can find that the noise of Ĵy is increased by a factor of
1 + 4κ2 and the noise of the Ĵz is reduced by the same factor, whereas the uncertainty
principle is not violated. Thus, by performing a QND measurement of the Ĵz we have
prepared it in a state with noise reduced below the standard quantum limit, or in other
words the Ĵz is in a squeezed spin state [2, 4]. The conjugate variable Ĵy is anti-squeezed
according to Eq.(10.7).

The squeezed state is characterized by the squeezing parameter ξ. The definition used
here is taken from [2]:

ξ =
(δĴz)

2

〈Ĵ〉2
Nat (10.9)

Inserting the value of 〈Ĵ〉 = Nat we get that (δJz)
2
sq = ξ(δJz)

2
coh with the squeezing

parameter defined as:

ξ =
1

1 + 4κ2
. (10.10)

The value of ξ is 1 for a coherent state and ξ < 1 for a squeezed state. The degree of
spin squeezing as seen from above equation is related to κ2. In Sec.5.1 we have shown
that the figure of merit of the interaction is proportional to the optical depth α0 and
the decoherence parameter η∆. To obtain a large spin-squeezing one need to increase the
optical column density α0, while in the same time keep small the rate of real transitions
or decoherence η∆.

10.2.3 Spin-squeezing on the Cs clock transition

The caesium microwave transition between the two hyperfine levels of the ground state
6S1/2(F = 3,mF = 0) → 6S1/2(F = 4,mF = 0) is chosen worldwide for a frequency and
time standard. The idea behind the atomic clock consists of isolating the transition fre-
quency from external disturbances and stabilizing an oscillator to it. The atomic frequency
standards is a vast field, and nowadays also a brunch of the commercial scientific tech-
nology. The quantum physics of the atomic clocks and their construction are extensively
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Figure 10.1: Bloch-sphere representation of the clock operation

discussed in [131,132] for both beam and cold atomic fountain standards. Experimentally,
the atomic clocks rely on the Ramsey method of the separated oscillatory fields [133].
This method is briefly presented in Fig.10.1 using the angular momentum formalism with
Bloch-spheres pictorial representation.

The atoms are initially prepared in a coherent spin state with mF = 0 in one of the
hyperfine states of the ground electronic state of Cs atom. Here we choose to use the
F = 3 hyperfine state as represented by the spin vector pointing to the south pole of the
Bloch sphere [Fig.10.1(a)]. Then a microwave pulse with duration τπ/2, Rabi frequency
Ωµ and detuning ∆µ from the atomic resonance ω0 interacts with the atoms while they
pass a region of microwave radiation i.e. the microwave cavity. In the literature this pulse
is called a π/2 pulse. The π/2 pulse creates a superposition state of the kind introduced in
Eq.(2.11). In the language of the Bloch spheres this translates to rotation of the collective
spin vector to the equatorial plane around the y axis [Fig.10.1(b)]. Then the microwave
radiation is switched off and the system freely evolves for a time T , which corresponds to
a rotation of the macroscopic spin around the z-axis on an angle defined by the time T
and the detuning ∆µ i.e. φrot = ∆µT [Fig.10.1(c)]. After the free precession another π/2
pulse is applied which translates in a rotation along y-axis Fig.10.1(d). At the end of that
period the population of the levels |3〉 and |4〉 is measured destructively.

The method of the oscillatory fields can also be explained using the formalism of SU(2)
interferometers described by Yurke et al [28]. The two regions of microwave interaction in
the beam clocks or the two passes through the microwave cavity in the atomic fountains
are represented by the two 50/50 beamsplitters of the Mach-Zehnder interferometer, and
the accumulated phase during the free precession φrot by the phase difference between the
two interferometer arms φ.

The today state of the art clocks are limited by the quantum projection noise of an
ensemble of uncorrelated particles [1]. The noise scales linearly with the number of atoms
and the uncertainty of the frequency offsets has been sown to be dominated by 1/

√
Nat [1].

However increasing the atom number, to improve the accuracy, increases the probability
of collisions between particles, and thus the collision shift [134] could become a dominant
factor for the standard. To overcome the projection noise, when the cold collision shift
does not dominate, on needs to create a spin squeezed state.

Our proposal for generation of a squeezed state on the Cs clock transition involves
off-resonant QND interaction with light in an interferometer as it is described extensively
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in [11]. Here only a short pictorial representation is shown as a natural continuation of
the presented in this thesis experiment.

The sequence of rotations in the Bloch space are more or less the same but this time
we start from the second step of the Ramsey cycle. Right after the first π/2 pulse has
created the coherent superposition an off resonant light pulse is applied at a detuning ∆0

[see Ch.2.3]. After the QND measurement the Ĵz component of the collective spin is left
in a state with reduced noise of the population number difference i.e. a squeezed state of
Ĵz is created [Fig.10.1(e)]. Since 〈Jz〉 = 0 then the result of the measurement will have
a certain outcome (Jz)1 6= 0 which has to be corrected for as shown in Fig.10.1(f). At
the same time as explained in the previous section the conjugate to Ĵz variable i.e. is
anti-squeezed as shown in Fig.10.1(e). Before letting the system to freely evolve we must
apply an additional π/2 pulse to convert the population squeezing into phase squeezing
[Fig.10.1(g)]. After a free evolution during time T = π/(2Ωµ) [see Fig.10.1(h)] the second
π/2 pulse from the Ramsey sequence transfers the phase squeezing again into population
squeezing [Fig.10.1(i)]. At the end the uncertainty in the population number difference is
reduced by a factor defined by Eq.(10.10) compared to that of an uncorrelated state.
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The Electro-Magnetic Field

A.1 Classical field

The classical electric E(r,t) and magnetic fields B(r,t) obey Maxwell,s equations:

∇ · E(r, t) =
1

ǫ0
ρ(r, t) (A.1)

∇× E(r, t) = −∂B(r, t)

∂t
(A.2)

∇ · B(r, t) = 0 (A.3)

∇× B(r, t) = µ0J(r, t) + µ0ǫ0
∂E(r, t)

∂t
(A.4)

where ρ(r, t) and J(r,t) are the charge and current densities, µ0 and ε0 are the magnetic
and electric constants of vacuum. In free space, or in a space, which does not contain
any charges or currents i.e. ρ, J = 0 the equations can reduce to the two famous wave
equations:

∇2E(r, t) = µ0ǫ0
∂E2(r, t)

∂2t
(A.5)

∇2B(r, t) = µ0ǫ0
∂B2(r, t)

∂2t
(A.6)

where c = 1/
√

µ0ε0 is the velocity of light in vacuum. The solution of the wave equation
for E is:

E(r, t) =
1√
2
(ǫE(t)ei(k·r−ωt) + ǫ∗E(t)∗e−i(k·r−ωt)) (A.7)

where ω = |k|c is the frequency of a single mode electromagnetic (EM) field, with k being
the wave-vector along which the EM wave propagates. The amplitude of the wave is given
by E(t) and in general is a function of time. The intensity of the EM field is defined as:

I(r, t) =
1

2
cǫ0|E(r, t)|2 =

1

2
cǫ0|E(t)|2 (A.8)



128 Chapter A: The Electro-Magnetic Field

Another representation of the classical EM field arises from the introduction of the
vector potential A(r,t) [12]:

E(r, t) = −∂A(r, t)

∂t
(A.9)

B(r, t) = ∇× A(r, t). (A.10)

Substituting the above into the Maxwell’s equations and applying the Coulomb gauge
where ∇ · A(r, t) = 0 we arrive at a wave equation for the vector potential A:

∇2A(r, t) =
1

c2

∂A2(r, t)

∂2t
(A.11)

In a cubic space with dimension L and periodic boundary conditions the vector field is
expanded as a sum of contributions from the different modes:

A(r, t) =
∑

k,p

ǫkpAkp(t)e
ik·r + c.c. (A.12)

where k is the wave vector, which values are restricted by the boundary conditions, ǫ is
the polarization vector, and Akp(t) is the mode function. Then in the Coulomb gauge they
must satisfy k · ǫk = 0, or the polarization of light is orthogonal to its propagation vector.
Another condition arises from the orthogonality of the polarization vectors ǫkp ·ǫkp′ = δp,p′ .
Further, inserting Eq.(A.12) into the wave equation we get an equation for the mode
function with a solution Akp(t) = Akp exp(−iωkt), with ωk being the frequency of the k-th
mode. Finally, inserting the above in Eq.(A.12) we get:

A(r, t) =
∑

k,p

ǫkpAkpe
i(k·r−ωkt) + c.c. (A.13)

To express the E and B we need to solve Eq.(A.9). Then for the energy of the classical
field Hc = 1

2

∫

V dV [ǫ0|E|2 + µ−1
0 |B|2] we obtain:

Hc =
∑

k,p

ε0V ω2
k(AkpA

∗
kp + A∗

kpAkp) (A.14)

where V = L3 is the quantization volume.

A.2 Field Quantization

The quantization of the electromagnetic field is done by association of a quantum mechan-
ical harmonic oscillator to each mode of the classical field [12]. The conversion from the
classical to quantum description we do by making the following substitutions:

Akp →
√

~

2ε0V ωk
âkp (A.15)

A∗
kp →

√

~

2ε0V ωk
â†kp (A.16)
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The relations Eq.(A.15) when inserted in Eq.(A.13) give the quantized vector potential of
the EM field as:

Â(r, t) =
∑

k,p

√

~

2ǫ0V ωk
(ǫkpâkpe

i(k·r−ωkt) + ǫ∗kpâ
†
kpe

−i(k·r−ωkt)) (A.17)

The field operators âkp and â†kp fulfill the commutation relations:

[âkp, â
†
k′p′ ] = δkk′δpp′ (A.18)

[âkp, âk′p′ ] = [â†kp, â
†
k′p′ ] = 0 (A.19)

The electric and magnetic field can be found from Eq.(A.9). We will only write the
expression for the electric field vector of a single mode quantum field:

Ê(r, t) =

√

~ω

2ǫ0V
(ǫâei(k·r−ωt) + ǫ∗â†e−i(k·r−ωt)) (A.20)

The energy or the Hamiltonian of the EM field can be found by substituting into the
classical formula Eq.(A.14).

Ĥq =
1

2

∫

V

[

ǫ0Ê
2(r, t) +

1

µ0
B̂2(r, t)

]

d3r (A.21)

=
1

2

∑

k,p

~ω
[

âkp(t)â
†
kp(t) + â†kp(t)âkp(t)

]

(A.22)

=
∑

k,p

~ω

[

â†kp(t)âkp(t) +
1

2

]

(A.23)

The integration is done over the quantization volume V introduced earlier. In most cases
we can neglect the 1

2~ωkp zero point energy. The operators n̂kp = â†
kpâkp give the photon

number in each mode and the summation in Eq.(A.21) gives the total number of photons
in the field multiplied by ~ω.



Appendix B

Dipole Transition Strengths

The discussion in this appendix is based on the data provided by D. Steck [110]. In the
theoretical part Sec.2.3 we have given the formula for the coupling constant g in Eq.(2.27).

g =
iωgeǫ · d̂ge√

2~V ωǫ0
(B.1)

It includes the dipole matrix element d̂eg, the volume overlap of the probe beam with
the atomic sample V , the atomic transition frequency ωge, EM field frequency ω, and
polarization vector ǫ, which is parallel to the quantization axis.

In this appendix we will derive an expression to help us calculate the dipole matrix
element d̂ge for a specific transition. Since the dipole matrix element is a characteristic of
an atomic transition between two levels |g〉 and |e〉 in the dipole approximation, we can
write that:

d̂ge = 〈FgmFg |er|FemFe〉 (B.2)

where F and mF are the quantum number for the total atomic spin and its projection
respectively. The indices g and e as usual denote ground and excited state. The probability
of transition to happen between these two levels is proportional to the square of the
modulus of the dipole matrix element. considering a spherical symmetry we can write
that |d̂ge|2 = 3|d̂q|2. Then using the Wigner-Eckart theorem [13], we factor out the

angular dependance and write the matrix element d̂q as a product of the Clebsch-Gordon
coefficient and the reduced matrix element:

|d̂q|2 = |〈FgmFg |erq|FemFe〉|2 = |〈Fg ||er||Fe〉|2|〈FgmFg |Fe1mFeq〉|2 (B.3)

where the Clebsch-Gordan coefficient 〈FgmFg |Fe1mFeq〉 will vanish unless mFe = mFg − q.
For linearly polarized light we only have q = 0 transitions. Moreover, the field interacts
with all magnetic sublevels mFg , so the dipole operator becomes:

∑

mFg ,mFe

|d̂q|2 =
∑

mFg ,mFe

|〈Fg ||er|Fe〉|2|〈FgmFg |Fe1mFe0〉|2 =
1

3
|〈Fg ||er||Fe〉|2. (B.4)

The reduced matrix element in the basis of the Fg, Fe states can be expressed as a product
of the hyperfine transition strength factors SFgFe and the reduced matrix element in the
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basis of Jg, Je. Then the dipole matrix element becomes:

|d̂q|2 =
1

3
SFgFe |〈Jg||er||Je〉|2. (B.5)

SFgFe = (2Fe + 1)(2Fg + 1)

(

Jg Fg I
Fe Jg 1

)2

(B.6)

The transition strength satisfy the following condition
∑

Fe
SFgFe = 1. In other words the

values of S sum up to unity for transitions to the same ground state. The values of SFgFe

are given in [110]. The connection of the matrix element |〈Jg||er||Je〉|2 with the emission
linewidth γ is given by [23]:

|〈Jg||er||Je〉|2 = (2Jg + 1)
3~ǫ0λ

3γ

8π2
(B.7)

Then at the end for the square of the coupling constant |g|2, assuming that ω ≈ ωge and
the volume is V = Al, where A is cross-section of probe beam and l is the length of the
atomic sample, we get:

|g|2 = (2Fe + 1)(2Fg + 1)(2Jg + 1)

(

Jg Fg I
Fe Jg 1

)2
λ2c

4πAl

γ

2
(B.8)

= (2J + 1)SFgFe

λ2c

4πAl

γ

2
(B.9)
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Eigenvalues of the dressed states

Hamiltonian

In the full quantum treatment of light interaction with a two-level atom we have the
following Hamiltonian:

Ĥtot = ~ω0|e〉〈e| + ~ω

(

â†â +
1

2

)

+
~Ω

2

(

|e〉〈g|âe−iωt + |g〉〈e|â†eiωt
)

(C.1)

where the first term is the atomic Hamiltonian with an energy referenced to the ground
state |g〉, the second term is the light field Hamiltonian, and the third is the dipole in-
teraction Hamiltonian. The three terms are also given in Sec.3.3.2, Eq.(3.19). The above
Eq.(C.1) is another expression for the total system Hamiltonian given in Eq.(2.29).

The combined state of atom-light system is expressed as direct tensor product of the
atom and light state |g n〉 = |g〉 ⊗ |n〉 as shown in Sec.3.3.2. The matrix representation of
the Ĥtot in the basis of these combined states is:

H =

(

〈g n|Ĥ|g n〉 〈g n|Ĥ|e n − 1〉
〈e n − 1|Ĥ |g n〉 〈e n − 1|Ĥ|e n − 1〉

)

. (C.2)

By the use of the annihilation and creation operations in Eq.(2.20), and taking into account
the orthogonality conditions 〈m|n〉 = δmn, m = g, e we arrive at the following matrix form:

H = ~

(

ωn 1
2Ω

√
neiωt

1
2Ω

√
ne−iωt ω0 + ω(n − 1)

)

+
~ω

2
1. (C.3)

In the field rotating frame H transforms by the law H̃ = S†HS, where S is given by

S = ~

(

eiωt 0
0 e−iωt

)

. (C.4)

After this transformation we to the following form of the Hamiltonian:

H̃ = ~

(

ωn 1
2Ω

√
n

1
2Ω

√
n ω0 + ω(n − 1)

)

+
~ω

2
1. (C.5)

Now we can proceed to calculate the eigenvalues of H̃. The result obtained is the energy
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levels of combined light-atom system in a multiplicity of n photons as in Eq.(3.22).

E±(n) = ~

(

−∆

2
+ ωn ± 1

2

√

∆2 + Ω2n

)

. (C.6)

The eigenstates depend on the photon number n and the detuning of the EM field from
the resonance ∆. The states |e n − 1〉 and |g n〉 in the far-off-resonant case are separated
by an amount δE which depends on the detuning ∆:

δE = E±(n) − E(n − 1)± =
~Ω2

4∆
. (C.7)

For red detuning (∆ < 0) the ground state shifts down and for blue detuning (∆ > 0)
shifts up.



Appendix D

Numerical model for R&R

temperature measurement

Lets assume for initial conditions that we have a Gaussian density profile. This is not
entirely true as refereing to the Fig.6.16(b), but we found out that the only difference
from the Gaussian density distribution is at the very top of the profile. Next, let us
consider a Maxwell-Boltzman initial velocity distribution corresponding to temperature
T . Hence the initial phase-space density distribution is described by:

Φ(r0,v0, 0) =
1

(2πσ2
0)

3/2
exp

(

− r2
0

2σ2
0

)

1

(2πσ2
v)3/2

exp

(

− v2
0

2σ2
v

)

σv =

√

kBT

M
(D.1)

where σ0 is the initial cloud radius, and σv the rms velocity spread. The transformation
of the coordinates with time is given by:

r = r0 + v0t +
1

2
gt2ẑ, v = v0 + gtẑ (D.2)

Then the density profile as a function of the release time t is obtained by integration over
the velocity distribution:

n(r, t) =

∫

Φ(r0,v0, 0)dv =
1

(2πσ(t)2)3/2
exp

[

−x2 + y2 + (z − 1
2gt2)

2σ(t)2

]

(D.3)

σ(t) =
√

σ2
0 + σ2

vt
2 (D.4)

The signal from the recaptured atoms is proportional to the convolution of the density
profile and the trapping beam profile. The last can be expressed as:

I(r) =
2P

πw2
exp

(

−2r2

w2

)

(D.5)

Finally the R&R signal is obtained by integration over the volume V seen by detector [109]
and a subsequent normalization to the value of that signal for t = 0.

S(t) =
1

S(0)

∫

d3rn(r, t)I(r) (D.6)



Appendix E

Model of dipole trap phase-shift

temperature measurement

In this appendix we present a theoretical model for fitting the data obtained from the
temperature measurement described in Sec.9.3.3. The atoms are held in a dipole trap for
a certain time and then released. During the time of flight the atomic expand ballistically,
and the density in the probing volume drops as a function of time of flight.

Lets assume that at time t0 = 0 the atoms are released from the dipole trap and start
to expand. The atomic radii can be expressed as in Appendix D:

σ(t) =
√

σ2
0i + σ2

vt
2, i = r, a (E.1)

where r and a stands for radial and axial directions, respectively, and t is the time of flight.
In our case for the measurements on multiple loading cycles this time translates into delay
time of the probe pulses. In the case of a measurement in a single loading cycle this time
is just the delay of the i-th pulse with respect to the release of the atoms. The first term
is the initial radius of the cloud and is expressed with the help of the trap frequencies ωi

as:

σi(0) =

√

kBT

Mω2
i

(E.2)

The density distribution of the atomic sample falling under gravity we express as:

n(x, y, z, t) =
1

8π3/2
√

σ2
rσ

2
rσ

2
a

exp

[

−(x − gt2

2 )2 + y2

2σ2
r

− z2

2σ2
a

]

(E.3)

The probe beam intensity I(x, y, z) is given by the intensity of the gaussian beam as shown
in Eq.(3.30), with w0 being the probe beam waist radius. We assume that the propagation
direction is along the z-axis. Then the overlap function between the cloud and the laser
beam is:

n(x, y, z, t) = n(x, y, z, t)I(x, y, z) (E.4)

The probability p(t) of an atom to be inside the probing volume after a time t is given by
the integration of the overlap function over the whole space:
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p(t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
N(x, y, z, t)dxdydz (E.5)
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w2(z) + 4σ2
r (t)

The above equation integral cannot be solved analytically. The Rayleigh range of the
probe beam πw2

0/λ = 1.5 mm. That compared to the cloud half-length of l/2 = 0.625 mm
is almost to times longer, which means that at a distance of l/2 the probe beam radius
increases with only 10%. Than we can assume that the atoms see the probe beam almost
collimated i.e. w(z) = w0. Then the above equation simplifies to:

p(t) =
P

π(w2
0 + 4σ2

r (t))
exp

[

− g2t4

2(w2
0 + 4σ2

r (t))

]

, (E.6)

where P is the probe power. Then for the fitting expression in Eq.(9.11) we need to
normalize p(t) to its initial value and subtract it from unity in order to get the probability
of atom initially in the probing volume to be outside it at a given time t.

P (t) = 1 − p(t)

p(0)
(E.7)



Appendix F

Estimation of the rate of real

transitions

In this appendix we treat the problem of real transition due to probe light. As we
mentioned in Sec.9.3 the blue detuning of the probe laser from the cycling transition
is ∆1 = 100 MHz. However, there is a certain probability the probe light to excite atoms
on the F ′ = 4 state, which is 351 MHz detuned. An additional complication comes from
the weak residual repump power present at the time of performing the experiment. To
estimate the depumping due to probe light we build a rate equation model of the depop-
ulation dynamics of F = 4 state to F = 3 via the weakly coupled F = 4 → F ′ = 4 (the
probe light is 351 MHz detuned from that transition) state in a presence of additional
light field, i.e. the repump laser. The scheme of the analysis is shown in Fig.F.1 below.
Considering the excitations and levels as depicted in the figure, the evolution equations
will be as follows

dN3(t)

dt
= Γ3N

′
4(t) +

ηr

τr
(N ′

4(t) − N3(t))

dN4(t)

dt
= Γ2N

′
4(t) +

ηp

τp
(N ′

4(t) − N4(t)) (F.1)

dN ′
4(t)

dt
= −(Γ2 + Γ3)N

′
4(t) +

ηr

τr
(N ′

4(t) − N3(t)) −
ηp

τp
(N ′

4(t) − N4(t))

where we can consider the excitation by two lasers of the atomic populations of the ground
states. The populations of F = 3, F = 4, and F ′ = 4 are denoted with N3, N4 and N ′

4,
respectively. The values of Γ1 = 44

144γ, Γ2 = 21
144γ, and Γ2 = 15

112γ are the decay rates
as shown in Fig.F.1. The depumping parameter due to probe and repump light are ηp,
and ηr, respectively, with τp and τr being the probe pulse duration, and the duration
of the repump light exposure. The last is equivalent to the duration of the probe pulse
train. Solving the above system of equations for the population of the F = 4 ground
state, namely N4, would allow us to fit the data obtained in the measurement described
in Sec.9.3.5 and extract from this fit the value of ηp. We search for solutions in the form:

N3(t) = Aeλt, N4(t) = Beλt, N4(t) = Ceλt (F.2)
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Figure F.1: Scheme of the relevant levels included in the rate equation analysis

we get the following characteristics roots (Pe1 = ηr

τr
, Pe2 =

ηp

τp
)
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λ2 = −1

2
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+
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and the solutions for initial conditions N3(0) = N ′
4(0) = 0, and, N4(0) = N04 are
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where
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D = c(d − e) + a(e − f) + b(f − d)

a =
Pe1

Pe2

Pe2 + Γ2

Pe1 + Γ3
, b =

λ2 + Pe1

λ2 + Pe2
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Pe1 + Γ3
, c =
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The obtained expression for the N4(t) is used to fit the data in Fig.9.10.



List of Figures

2.1 Bloch sphere representation of the collective atomic pseudo-spin (a). An
example of trajectory over the sphere surface with initial state having all
atoms in |3〉 and after a π/2 pulse of radiation is applied the new state
becomes a superposition state (see text for details)(b). . . . . . . . . . . . . 6

2.2 Scheme of a coherent state with the uncertainties in the phase and photon
number. The horizontal axis is the mean value of the electric field with and
its deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Theoretical phase shift φ∆ for equal populations of the two ground states.
The phase shift is zero at a detuning of ∆0 = 4312 MHz (a); and absorption
α∆ (b) for the case of caesium atom interacting with light field detuned as
shown in the levels scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Caesium levels diagram (a). Schematic description of MOT (b). . . . . . . 17
3.2 The force on an atom in the case of optical molasses (a) . . . . . . . . . . . 18
3.3 Polarization gradients in lin⊥lin and Sisyphus effect on a slowly moving

atom in lin⊥lin optical molasses (a). Polarization gradients in σ+ σ− con-
figuration and equilibrium population of the ground state sublevels (b). . . . 21

3.4 Pictorial representation of the dressed state approach. Uncoupled combined
states of atom and light (right) and dressed states (left). . . . . . . . . . . . 25

3.5 Potential surface of the dipole trap . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Dipole potential (left) and scattering rate (right). Parameters listed in text. 28

4.1 A sketch of the interferometer operator model . . . . . . . . . . . . . . . . . 30

5.1 Light-atom interaction in a Mach-Zehnder interferometer . . . . . . . . . . 41
5.2 Description of the scattering model (a). Diffraction limited scattering cones

for transversally (left) and longitudinally extended atomic samples (b). . . . 44
5.3 (a) Power of the scattered wave (symbols) vs. the characteristic transverse

radius of atomic sample of length L0 = 1µm for constant number of atoms
and a wide probe beam w0 = 1000µm together with the analytic prediction
from Eq.(5.21)(solid line). b) FWHM of the intensity distribution in the
observation plane for the same parameters. . . . . . . . . . . . . . . . . . . 47

5.4 (a) Scattered power vs. the characteristic length of the atomic sample with
atomic waist radius wa = 20µm probed by a beam w0 = 1000µm. Numerical
data (symbols) and analytic prediction from Eq.(5.21) (solid line) are shown
together. (b) Same as in (a) for sample width wa = 3, 5, 10, 20µm (squares)
and for a narrow probe beam w0 = wa = 20µm (circles) with the length
scaled to z̃ra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



140 LIST OF FIGURES

5.5 Scattered power vs relative size of sample and probe beam for samples
(wa = 10µm) of length L0 = 1, 400, 738, 1000µm (diamonds, squares, stars,
triangles)together with the analytic prediction from Eq.(5.21)(solid lines) in
scaled units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 (a) achievable coupling strength (filled symbols, left axis) and number of
trapped atoms(open symbols, right axis) as a function of invested dipole
trap power; (b) achievable coupling strength (filled symbols, left axis) and
probe detuning (open symbols, right axis) needed to satisfy η = 0.1 (see text
for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Master lasers mechanical design. (a) Ball design top and side view, laser
diode (LD), diffraction grating (DG), piezo-electric transducer (PZT). (b)
Laser design adopted from Ricci et. al. . . . . . . . . . . . . . . . . . . . . . 53

6.2 Master laser setup: master laser (ML), anamorphic prism pair (AP),
optical isolator (OI), polarizing beam-splitter cube (PBS), beamsplitter
(BS), f= −25mm lens (L1), f= 175mm lens (L2), caesium cell (Cs),
high-reflection mirror (HR), DC detector(D1), 5 MHz tuned detector
(D2). Electronics setup also shown except temperature controller: cur-
rent controller(ILASER), high-voltage piezo-driver (UPIEZO), sweep gener-
ator (LFG), radio-frequency generator (RFG), servo amplifier (SA) or PI
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Saturation absorption spectroscopy. (a) Saturation absorption profile for
F = 4 → F′ = 3, 4, 5. (b) FM spectroscopy error signal for the relevant levels
from (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Principle scheme of frequency modulation spectroscopy (left), and spectrum
of the laser light after the phase modulation along with absorption resonance
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Beat note of two extended cavity master diode lasers. The lasers are locked
to F = 4 → F′ = 4 and F = 4 → F′ = 3 × 5 transition. The sidebands at
4 MHz are due to the modulation of the diode laser injection currents. The
onset shows the beat-note width of 700 kHz. . . . . . . . . . . . . . . . . . . 57

6.6 Slave laser setup: slave laser (SL), anamorphic prism pair (AP), optical
isolator (OI), polarizing beam-splitter cube (PBS), f= 200mm lens (L1),
f= 125mm lens (L2), f= −25mm lens (L3), high-reflection mirror (HR),
high-reflection curved mirror R = 100mm (HCR), acousto-optical modula-
tors (AOM1) and (AOM2) with drive frequency 125MHz and 85MHz, beam
blocks (BB), fiber coupler (FC). . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7 Trap beam collimator. fiber connector (FC), collimating lens f= 30mm
(L1), polarizing beam-splitter cube (PBS), f= −15mm lens (L2), 50mm
dia. f= 60mm lens (L3), photodiode (PD). . . . . . . . . . . . . . . . . . . 60

6.8 Titanium chamber used in the AU MOT(a). Assembly of the AU MOT (b). 62
6.9 Layout of the vacuum setup in Aarhus: non-magnetic viewports (V1,V2,V3),

caesium container (Cs), compensating coils (CC), lenses (L1,L2), photodi-
odes (Pd1,Pd2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES 141

6.10 Layout of the trap setup and interferometer in Copenhagen: beam col-
limators (BC), mounted achromatic lens pair (L3). The compensating
coils not shown here. Interferometer components: high reflectors (HR),
dichroic mirrors (DM), 50/50 beamsplitters (BS), polarizing beamsplitters
(PBS), achromatic doublet lenses f = 100 mm (L4,L5), probe beam detec-
tors (Pd1,Pd2), locking beam detectors (Ld1,Ld2), movable high reflectors
(MHR), auxiliary detector (Det2), high-power powermeter (PM). . . . . . . 64

6.11 Magnetic fields of the quadrupole trap at NBI: experimental data (◦) and
a fit shows 11.7 G/cm for a current of 7 A (a). Compensation coils field
for the z-pair (b), magnetic field of the coils in Helmholtz configuration (red
curve), and in the actual experiment (blue curve). Magnetic field transient
(c). Suppression of the magnetic field transients when using the coil driver
(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.12 Scheme of the imaging optics of the NBI trap. . . . . . . . . . . . . . . . . . 68
6.13 General diagram of the computer control of the experiment: PCI cards

(Dev.1,2,3) , voltage-controlled oscillators (VCO1..6), RF amplifiers (A),
acousto-optical modulators (AOM1..6), current supplies (PS1..4) for the x-
axis (X), y-axis (Y), z-axis (Z) compensation coils and (G) for the gradient
coils of the MOT, integrator of the probe pulse area (INT), detectors (D1)
and (D2). The colored arrows represent the light of the master cooling and
repump lasers (MC) and (MR), respectively, and of the cooling and repump
slave lasers (SC) and (SR), respectively, and of the probe and dipole trap
laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.14 Loading of the MOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.15 Optimum magnetic field gradient (a) and trap laser detuning (b) for max-

imum number of atoms. The measurements are taken at ∆ = −3Γ for (a)
and at b = 10G/cm. The solid curves are spline fit (a) and a lorentzian fit
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.16 A CCD image of the atomic cloud (a) at detuning ∆ = −3Γ and gradient
b = 10G/cm. A two-component gaussian (b) fit of the stronger confined
trap axis for the image from the left. . . . . . . . . . . . . . . . . . . . . . . 72

6.17 Plot of the two radii of the atomic cloud as a function of the number of
atoms. The red curve is a fit to the experimental data for the weaker confined
direction and the blue to the stronger one. . . . . . . . . . . . . . . . . . . . 73

6.18 Results from the release R&R measurement: A raw data trace of 5 ms
release (a). Recaptured fraction (◦) as a function of release time and a fit
(solid line) to it using the result from the theoretical model of cloud ballistic
expansion (b). The dashed curve is corrected for background gas collisions. 74

7.1 Loading sequence of the dipole trap . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Optical setup of the dipole laser and interferometer. . . . . . . . . . . . . . . 78
7.3 Image of the dipole trap (a) with radial profile (b) and axial profile (c). . . . 79
7.4 Theoretical loading curve (a) and experimental loss curve of FORT without

any MOT light present (b): experimental data (◦) and fit (solid curve) to
the solution of Eq.(7.5) with parameters Γ = 9(1)Hz, β = 1.3(3) × 10−3 Hz. 81

7.5 Expansion of the atomic cloud after atoms are released from the trap. Grav-
ity not included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



142 LIST OF FIGURES

8.1 Experimental setup employed to lock the probe beam (a). The elements
included in the sketch are: BS - 50/50 beam splitter; FPD - fast photode-
tector; SA - spectrum analyser; DBM - double balanced mixer; LPF - low
pass filter; Amp - amplifier. Frequency diagram of beat-note (b). . . . . . . 84

8.2 Sketch of the setup of the interferometer with following elements: BS − 50/50
beam-splitter; C1&C2 − 50/50 fiber couplers; PC1,PC2&PC3 - fiber polar-
ization controllers; L1&L2 - achromatic lenses; F1&F2 - interference filters
transmitting @ 852 nm; D1&D2 - Hamamatsu low noise, high gain photo-
diodes; D3&D4 - photodetectors; and several half wave plates λ/2 and colli-
mating lenses for fiber coupling. iL is the locking signal, whereas i− = i1−i2
is the probe signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Sketch of the setup of the interferometer with following elements: BS -
50/50 beam-splitter; PBS - polarizing beam-splitter; L4 & L5 - f = 100mm
achromatic lenses; DM - dichroic mirrors (HT @ 852nm, HR @ 1030nm);
PZT - Piezo electric tube; Pd1 & -2 - Hamamatsu low noise, high gain
photodiodes for probe detection; Ld1 & 2 - photodetectors for locking beam
detection; and half wave plates λ/2, PM1&-2 powermeters for the probe and
dipole trap beams, AuxD - auxiliary detector, TS -micrometer translation
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.4 Two-sample variance. Electronic noise of the detection: experimental data
(◦) and theoretical simulation (solid curve)(a). Sine wave modulation at
565 Hz: theory (red), experiment (black). . . . . . . . . . . . . . . . . . . . 89

8.5 Interferometer signal: broadband LED (a) and multi-mode laser without
grating feedback (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.6 Modulation of the 2-sample variance. (a) 2-sample variance when the laser
frequency is modulated (red) , white light position (blue). (b) Mean value
of the 2-sample variance as a function of the pathlength difference when
the laser frequency is modulated (◦), parabola fit to the data, shot noise
level (green), electronic noise (blue). Data (a) is taken with the fiber-optic
interferometer and data (b) with the free-space one. . . . . . . . . . . . . . . 92

8.7 Interferometer noise. (a) Fiber-optic interferometer amplitude (◦) and
phase (�) noise as function of number of photons n, fits to the amplitude
(red curve, slope: 1.2(2)) and phase (blue, slope: 1.2(3)). (b) Free-space
interferometer the same as (a), slopes for amplitude and phase fits 1.036(8)
and 0.990(5), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.8 Interferometer noise on a different timescales. Experimental data (◦) and a
power function fits (solid lines). At the left is shown the value of the power
coefficient p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.1 Interferometer fringe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2 Experimental cycle diagram for fiber-optic (a), and free-space interferometer

(b). Loading curve of MOT taken with free-space interferometer (c). . . . . 100
9.3 Atomic phase shift as a function of probe laser detuning (b), fit with a fixed

values of the lineshape amplitudes (solid line); fit with the amplitudes varied
and corrected for depumping by the probe light (dashed line). . . . . . . . . . 102

9.4 Stark shift experiment. Raw data traces for three different power level of
MOT light (a). Lorentzian fit of the atomic lineshape function in terms of
phase shift of interferometer (b). . . . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF FIGURES 143

9.5 Atomic noise measurements. Fiber-optic interferometer data (a)and a lin-
ear fit through 0. Free-space interferometer (b) and a fit to the equation
(δN)2 = p1N

p2 , p2 = 1.51(5). . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.6 Loading curves of FORT: compression (a) and molasses (b).The data is

fitted to the loading and loss terms in Eg.7.4. The parameters deduced from
the fits are stated in Table 9.1. . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.7 Loss curves of FORT. With MOT light on: (�). Without any MOT light (◦).109
9.8 (a). Oscillation in the trap after its revival by switching the dipole trap

laser again after 500 µs release. The period of the damped oscillations
corresponds to oscillation frequency of 453(3) Hz. The upper curve is a
single experimental trace from one measurement, the lower curve represents
a 50 times average from 50 independent loading cycles. Dipole beam power
of 1.4W. The damping constant of the oscillation is 536(20)Hz. (b). Trap
radial oscillation frequency as a function of dipole beam power for a single
run case (upper) and 50 times averaged (lower). The estimated from this
fit waist of dipole trap beam is 90(1)µm. . . . . . . . . . . . . . . . . . . . . 110

9.9 Ballistic expansion of the released atomic cloud. Data from multiple mea-
surement runs gives T = 14.5(2) µK, and νr = 259(4) Hz for temperature
and radial oscillation frequency at probe power of 300 nW (a). Data from
single run and continuous pulse train of 50 pulses 100µs apart with probe
power of 150 nW gives T = 15(2) µK, and νr = 275(4) Hz, respectively (b). 111

9.10 Pulse integrated rate of spontaneous emission. Raw data for probe power
of 1.2µW and a fit to the selected depumping part (the inset)(a), and ex-
perimentally obtained value for the pe parameter as a function of the probe
power for a 10µs long probe pulses: values of η∆ for different power obtained
from the fit of the phase shift decay (◦), theoretically calculated values for a
probe beam waist radius of 21.2µm (�), and a linear fit to the data (solid
line) (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.11 Phase noise induced in the probe light from the interaction with cold atoms.
The density is derived from the dc phase-shift. (a) The linear fit (—–
) of the experimental data (◦), shows poissonian statistics of the loading
process. (b), (c) Atomic two point variance on 10 µs and 20 µs timescale,
respectively. The fit (—–) of the experimental data (◦) to (δN4)

2 = aiN4 +
biN

2
4 , i = 10, 20, a10 = 25 ± 3 and b10 = −(8 ± 4) × 10−5, and a20 =

51 ± 9 and b20 = −(4 ± 1) × 10−4, for the case of (b) and (c), respectively,
shows correlations between consecutive pulses. . . . . . . . . . . . . . . . . . 117

10.1 Bloch-sphere representation of the clock operation . . . . . . . . . . . . . . . 125

F.1 Scheme of the relevant levels included in the rate equation analysis . . . . . 138



List of Tables

9.1 Loading and loss parameters of the dipole trap . . . . . . . . . . . . . . . . 108
9.2 Temperature of dipole trapped atoms . . . . . . . . . . . . . . . . . . . . . 112



Bibliography

[1] G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N.
Luiten, and C. Salomon. Quantum projection noise in an atomic fountain: A high
stability cesium frequency standard. Phys. Rev. Lett., 82:4619, (1999).

[2] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen. Squeezed atomic
states and projection noise in spectroscopy. Phys. Rev. A, 50:67, (1994).

[3] A. Einstein, B. Podolsky, and N. Rosen. Phys. Rev., 47:777, (1935).

[4] M. Kitagawa and M. Ueda. Squeezed spin states. Phys. Rev. A, 47:5138, (1993).

[5] A. Kuzmich, N. P. Bigelow, and L. Mandel. Atomic quantum non-demolition mea-
surements and squeezing. Europhys. Lett., 42:481, (1998).

[6] A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejnisman, and N. P. Bigelow.
Quantum nondemolition measurements of collective atomic spin. Phys. Rev. A,
60:2346, (1999).

[7] J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik. Spin squeezed atoms: A
macroscopic entangled ensemble created by light. Phys. Rev. Lett., 83:1319, (1999).

[8] L. K. Thomsen, S. Mancini, and H. M. Wiseman. Spin squeezing via quantum
feedback. Phys. Rev. A, 65:061801, (2002).

[9] J.M. Geremia, J.K. Stockton, and H. Mabuchi. Real-time quantum feedback control
of atomic spin-squeezing. Science, 304:270, (2004).

[10] J.F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J.Ph. Poizat, and Ph. Grangier.
Quantum nondemolition measurements with cold trapped atoms. Phys. Rev. Lett.,
78:634, (1997).

[11] D. Oblak, P.G. Petrov, C.L. Alzar, W. Tittel, A.K. Vershovski, J.K. Mikkelsen, J.L.
Sørensen, and E.S. Polzik. Quantum-noise-limited interferometric measurements of
atomic noise: Towards spin squeezing on the cs clock transition. Phys. Rev. A,
71:045504, (2005).

[12] R. Loudon. The quantum theory of light. Oxford University Press, New York, 3rd
edition, 2000.

[13] J.J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, rev. ed. edition, 1994.

[14] J. M. Radcliffe. Some properties of coherent spin states. J. Phys. A, 4:313, (1971).



146 BIBLIOGRAPHY

[15] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas. Atomic coherent states in
quantum optics. Phys. Rev. A, 6:2211, (1972).

[16] R. P. Feynman, F.L. Vernon, and R.E. Hellwarth. Geometrical representation of
schrödinger equation for solving maser problems. J. Appl. Phys., 28:49, (1957).

[17] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L.
Moore, M. G. Raizen, and D. J. Wineland. Quantum projection noise: Population
fluctuations in two-level systems.

[18] J.D. Jackson. Classical Electrodynamics. Wiley, 3th. ed edition, 1998.

[19] V.A. Fock. Zs. f. Phys., 49:339, (1928).

[20] R.J. Glauber. Coherent and incoherent state of radiation field. Phys. Rev., 131:2766,
(1963).

[21] D.F. Walls and G.J. Milburn. Quantum Optics. Springer-Verlag, 1994.

[22] D. Oblak. Non-destructive quantum noise limited interferometric measurements on
cold cs atoms. Master’s thesis, Århus University, (2004).
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