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Abstract

When seeking new scientific insights, critical aspects of any scientific inquiry is the acquisition, analysis, and
storage of scientific evidence. In today’s environment, with the vast growth in data generation, computational
platforms have become a key pillar in making such insights feasible. Additionally, with the underlying increase
in compute power not coming from faster processors, but rather from the increase in the number of cores within
a particular compute platform, the task of speeding up existing applications is no longer achieved by waiting
for the next processor. As a complement to this, additional compute capacity is also emerging in specialized
hardware platforms, that also leverage the possibility of increasing the number of computational cores within
a single device. Nevertheless, this additional capacity on its own does not make up for the projected amount
of data that has to be processed in the future. Because of this, the organizing and employment of the existing
resources, and how and where data is stored becomes ever important.

Historically, the organising of computational resources have changed as per the technological developments
of their time. Both the Grid and Cloud notions seek to organize resources such that they can be effectively used
by multiple users.

In this thesis, I explore how the modern computational infrastructures can be used and deployed to provide
scientists with the tools they require to achieve new scientific insights at the different stages of inquiry, be they at
the acquisition, analysis or storage stage. Specifically, I present how data can be ubiquitously stored and retrieve
as part of data acquisition, or within a particular analysis with the introduced MiG Utils library. Furthermore,
I present a design solution for how high throughput data generation from large scientific instruments could be
optimized by applying in-situ computational kernels to datastream via The HIgh Throughput Storage System.

Beyond investigating the storage and extraction of scientific data for subsequent analysis, another important
aspect is also how the organised computational platforms allow the scientist to devise and conduct their analysis.
At UCPH, I present the introduced interactive programming services Data Analysis Gateway and MPI Oriented
Development and Investigation platforms. These platforms enable scientists and students to define and schedule
processing tasks in a web based environment. Furthermore, I present how cloud computational resources can be
utilized in a scientific or commercial settings. This is achieved with the introduction of the Cloud Orchestrator,
which enables both orchestration, utilization, and job scheduling at a set of supported cloud providers. In the
thesis, I will present how this was utilized to enable both a novel JupyterHub Spawner and a traditional neutron
ray-tracing simulator to utilize cloud resources to achieve their function. Finally, I present how the Cloud
Orchestrator can be used to establish a Grid of Clouds, that is how cloud resources can be shared across a set of
providers by establishing a GridCloud extension on top of the Cloud Orchestrator. In doing so, such an extension
should be able to establish a mechanism to share resources amongst both public and private clouds, in a loosely
coupled network via a decentralized broker. Thereby establishing a Grid of Clouds model, that can be utilized
in collaborative environments such as the MUMMERING ITN.
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Resumé

I jagten på ny videnskablig indsigt, indgår kritiske aspekter af enhver videnskabelig undersøgelse erhvervelse,
analysering og opbevaring af data. I dagens miljø, med den enorme vækst i datagenerering er effektive bereg-
ningsplatforme blevet en nøgle komponent til at finde ny indsigt muligt. Derudover følger, at den fremtidige
stigning i beregningsevne ikke vil kommer fra hurtigere processorer. I stedet vil stigningen snarere kommer
fra et øget antal kerner inden for en bestemt beregningsplatform, hvilket betyder at man ikke længere bare kan
forvente at opnå en øget beregningsevne, ved at vente på den næste processor.

Som et supplement til dette, vil der også opstå yderligere beregningskapacitet i specialiserede hardwareplat-
forme, der også udnytter muligheden for at øge antallet af beregningskerner inden for en enkelt enhed. Dog
selv med disse fremskridt, vil denne ekstra kapacitet ikke alene være tilstrækkelig til at behandle den forvent-
ede mængde data der bliver genereret i fremtiden. På grund af dette, bliver organisering og anvendelsen af de
eksisterende ressourcer, og hvordan og hvor data lagres, stadig vigtigere.

Historisk har organiseringen af beregningsressourcer ændret sig i henhold til den underliggende teknologiske
udvikling. Både med Grid- og Cloud-modellerne søges der at organisere ressourcer, så de effektivt kan bruges
på tværs af organisatinoner og brugere.

I denne afhandling undersøger jeg, hvordan de moderne beregningsinfrastrukturer kan bruges og imple-
menteres til at give forskere de værktøjer, de har brug for til at opnå ny videnskabelig indsigt på de forskel-
lige stadier af en videnskablig undersøgelse. Det er hvad enten det er i anskaffelses-, analyse- eller opbevar-
ingsstadiet af processen. Specifikt præsenterer jeg, hvordan data kan lagres og hentes som en del af dataopsam-
ling eller inden for en bestemt analyse med det introducerede MiG Utils-bibliotek. Desuden præsenterer jeg
en designløsning til, hvordan generering af data med høj kapacitet fra store videnskabelige instrumenter kunne
optimeres ved at anvende in-situ beregningskerner på data strømme via det forslåede The HIgh Throughput
Storage System.

Ud over at undersøge lagring og udvinding af videnskabelige data til efterfølgende analyse, er et andet
vigtigt aspekt også, hvordan de organiserede beregningsplatforme tillader forskeren at udtænke og udføre deres
analyse. På KU præsenterer jeg de introducerede interaktive programmeringstjenester Data Analysis Gateway
og MPI Oriented Development and Investigation. Disse platforme gør det muligt for forskere og studerende
at definere og planlægge behandlingsopgaver i et webbaseret miljø. Desuden præsenterer jeg, hvordan cloud-
beregningsressourcer kan udnyttes i videnskabelige eller kommercielle omgivelser. Dette opnås med introduk-
tionen af Cloud Orchestrator biblioteket, som muliggør både orkestrering, udnyttelse og jobplanlægning hos et
sæt understøttede cloud udbydere. I afhandlingen vil jeg præsentere, hvordan dette blev brugt til at muliggøre
både en ny JupyterHub Spawner og en traditionel neutronstråle sporing simulator til at udnytte cloud ressourcer
til at opnå deres funktion. Endelig præsenterer jeg, hvordan Cloud Orchestrator muligt kan bruges til at etablere
et net af clouds, det er, hvordan cloud ressourcer kan deles på tværs af et sæt udbydere og organisationer ved at
etablere em GridCloud-udvidelse oven på Cloud Orchestrator. Dermed skulle en sådan udvidelse være i stand til,
at etablere en mekanisme til at dele ressourcer mellem både offentlige og private clouds i et løst koblet netværk,
via en decentral mægler. Til at etablere dette, forslås der en model for at oprette et Grid of Clouds netværk,
der kan bruges til at dele resourcer på tværs af organisationer i tidsbegrænsede projekter såsom MUMMERING
ITNet.
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Chapter 1

Introduction

In today’s science environment, the importance of computational platforms cannot be overstated. From the
use of computational simulations, modelling and analysis to pursue new scientific discoveries in fields such as
astronomy [128], climate [56] and physics [156], the need for computational capacity is not going away.

In addition to wanting to either increase the resolution or speed of the current computational tasks, the
challenge for future system developments and scientific projects is also the continual growth in data generation.
For instance, International Data Corporation (IDC) predicts that the worlds data collection will grow from 45
Zettabytes (ZB) in 2019 to 175ZB in 2025 [152]. This is also reflected in the scientific sphere, where both
educational and scientific institutions will experience tremendous growth, both in the amount of data that is
going to be generated and subsequently processed. For instance, facilities such as the European Synchrotron
Radiation Facility (ESRF) [42] and the European XFEL (EuXFEL) [44] expect that their output will increase
from 8 petabyte (PB) in 2019, to 50 PB by 2023. To meet this challenge, the existing computational capacity
has to increase as well.

However, at the individual machine level, the rate at which processors execute operations have not seen
exponential improvement since the mid 2000s, topping out at a clock rate of about 4 GHz. Instead, the de-
velopment of the multi-core architecture with parallel running processors at the same executing rate has been
the main method in which additional compute capacity has been achieved up until recently. This in addition to
utilizing accelerator technologies such as GPUs that employ a massive amount of parallel processors at a lower
rate compared to high-end CPUs. However, from this point on, the coming increases in computational power
is mainly provided by the utilization of heterogeneous system architectures with multiple computational types
including, System on a Chip (SOC)s and Accelerated Processing Units (APU)s such as CPUs, GPUs, DSPs, and
FPGAs. Gains in performance from SOCs and APUs will mainly come from an increasing number of individual
cores within each device. Enabling an increasing amount of calculations that can be executed in parallel within a
given time frame. Furthermore, novel architecture developments such as co-locating compute capacity with data
storage thereby minimizing the distance in which data has to travel before being computing is another prospect
that could have great benefit at the individual machine level.

Looking beyond the single device, another strategy that has been employed since the introduction of com-
puter networks, is to employ multiple machines to increase the number of operations that can be conducted in
parallel at a given time. Since the early days of computational machines, the organising of these connected
resources have changed as different technologies and architectures have emerged. This includes distributed ar-
chitectures such as Grid federated networks from the early 2000s which was inspired by the early electricity
grids, where distributed resources across organisations become a shared commodity. This was followed by de-
velopments in the early 2010s, with the introduction of the Cloud computing concept, which is heavily inspired
by the Grid notion. In contrast though, Cloud computing puts its emphasises on providing resources that are
dynamically established through on-demand elastic scaling of compute instances. This was both made possible
and cost effective through technologies such as virtualisation.

To establish the initial Grids [50], middleware frameworks and tools such as the Globus Toolkit [53] have
been developed as a do-it-yourself distributed toolkit, and have historically been the de-facto standard for es-
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tablishing Grids [53]. However, Grids have only seen limited success outside of the scientific arena, in that no
commercial introduction produced the same wide scale success as established scientific Grids. For instance, the
European Grid Infrastructure (EGI) currently hosts 1e6 computing cores and +740 PB of disk [40] and are used
in many Pan-European scientific projects. Part of the reason for this, was due to commercial vendors seeing little
usage in allowing external entities to utilize their infrastructure. That, in addition to the limitation that Cloud
Computing eventually solved, including on-demand and scaling computational capacity via technologies such
as virtualisation. Such innovations allowed for the dynamic expansion of isolated compute environments across
underused resources.

Given this, the Globus Toolkit for instance has been deprecated since 2018 [53]. Furthermore, the ability for
scientific organisation and institutions to establish Grids is also limited by this development. However, this does
not mean that the Grid architecture can not be of use today. In particular the sharing of computational resources
is still of great usage to institutions with limited budgets and commercial constraints like public institutions.
In addition, the ability utilize a combination of institutional and commercial resources could have a potentially
great benefit.

The challenge however, is how such a Grid should be established. This has typically involved the deployment
and configuration of a complex service stack on an existing computing cluster. Followed by the continuous
support and maintenance required to keep the Grid operational. This often implies that vast resources in terms
of personal hours have to be dedicated to keep the Grid operational. Examples of such includes Advanced
Resource Connector (ARC) [41], The Globus Toolkit [53], Distributed Interactive Engineering Toolbox (DIET)
[34] and the Minimum Intrusion Grid (MiG) [19] to name a few.

The ability to define distributed Grid resources at a DIY level for ephemeral or burst infrastructures is limited
in these frameworks, in that their target audience is to define long term resource infrastructure. In addition,
they often don’t allow the expansion of the classic institutional grid resources to be expanded commercial cloud
resources, there at some development in this area, such as DIET supporting EC2 instances [34] but this capability
is still at the prototyping level. Furthermore, the ability to migrate running computational tasks between Grid
providers is not something that is enabled by any known Grid middleware system.

Therefore, the aim of this work, is to enable scientist, and potentially educational and scientific institutions
to establish and share a resource pool of compute capabilities across organisational boundaries with inspiration
from both the previous and recent Grid initiatives. Thereby enabling the establishment of a Grid of multiple
clouds that can be exploited for both small and large scale scientific inquiries. This would be especially beneficial
to temporary projects and collaborations between institutions that don’t have the scale that deem it worthy to
apply for huge grid resources such as the EGI. A high-level overview of such a Grid of Clouds between four
participating organisations can be seen in Figure 1.1.

In addition, a challenge that often arises when computational tasks are to be scheduled on remote resources,
is the staging and extraction of data. Since the early days, this has been solved by either manually copying
the data back and forth via some network, giving access to a shared data repository such as network or parallel
filesystems, object storage solutions, or enabling access to other forms of external data repositories. Beyond
the manual approach, middleware frameworks have employed multiple strategies to provide this capability. A
common approach is to decouple the definitions of inputs from the code itself and let them be provided by the
middleware framework as part of the job description that is being scheduled. ARC for instance allows for the
staging through input and output files definitions that specifies which files are to be copied to and from the job.
However, this approach does come with some limitations, most importantly, each identical job description has
to define its own inputs. Meaning that if multiple Grids were to define the same job, they would each have to
specify the same set of data staging definitions.

As a response to this, I will present a prototype through the mig utils library on how data staging could
be coupled as part of an implementation, to make the defined computation ubiquitous, in that wherever it is
executed the data would be pulled and utilized for that particular computation. This approach by its nature
in general does impose a lower speed at which jobs can be executed, because of the increased distance and
potentially lower bandwidth data has to travel before reaching where it was requested. Therefore another model
was also developed to target the high throughput requirement that organisations also have, namely the design of
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Figure 1.1: A high-level overview of an established Grid of Clouds between four participating organisations.
Compute = Cloud Computational Resources, Data = The organisations data storage service

a HIgh throughput Storage System (HISS), that is designed to act as a big funnel for staging datasets from vast
producers such as a scientific instrument temporarily.

1.1 Publications

This thesis is based on a number of publications that have been published as work progressed during the PhD.
In this Section a brief overview of these are given. They are listed in the order in which they were published.
Rasmus Munk, Brian Vinter. MUMMERING Platform Idea’s & Ubiquitous Data Analysis
In Communicating Process Architectures 2017 & 2018 WoTUG-39 & WoTUG-40

Rasmus Munk, Artur Barczyk, Zdenek Matej, Brian Vinter. From instrument to publication: A First
Attempt at an Integrated Cloud for X-ray Facilities
At 6th Cloud Storage Services for File Synchronization and Sharing Conference

David Marchant, Rasmus Munk, Elise O. Brenne, Brian Vinter. Managing Event Oriented Workflows
XLOOP 2020 at Super Computing 2020

Rasmus Munk, David Marchant, Brian Vinter. Cloud enabling educational platforms with corc
At 8th Workshop on Cloud Technologies in Education (CTE 2020)

David Marchant, Rasmus Munk, Brian Vinter, Further Developments in Event Oriented, Emergent
Workflows*
Euro-Par 2021, Workshop
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1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 will provide the background knowledge necessary to understand
the thesis. Chapter 3 describes the research and results in developing the MiG Utils data sharing library and the
HISS model. Chapter 4 describes the research and results in developing a set of interactive computational plat-
forms to enable access to computational resources. Chapter 5 describes the research and results in developing the
Cloud Orchestrator library, and cloud enabling novel and existing applications including the MultipleSpawner
and the McStas simulator. Furthermore, presenting how a set of institutional Clouds could be connected in
a Grid model for sharing resources. Chapter 6 presents the future work to be done from here and Chapter 7
contains the final conclusions.
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Chapter 2

Providing Computational Resources

As highlighted in Chapter 1, the way in which computational resources are organised is dictated by the available
technology and the challenges of their time. This Chapter will give a brief overview over how distributed
architectures like Grids and Clouds have come about and how different approaches and developments have
provided computational resources in a Grid or Cloud architecture. This Chapter will not however be a complete
survey of these developments, but to give a highlight of some of the most popular and common approaches in
providing computational resources, including their benefits and drawbacks. To begin with a brief outline will
be given for how the notion of the Grid has developed, followed by its common components, how in practice
they have been established, developments that have provided Grid infrastructure, and how Cloud Computing has
build upon this context.

2.1 Distributed Architectures

There are numerous architectural approaches in which organisational compute resources can be organised both
physically and logically. For starters at the physical level, distributed resources can be deployed on opposite
sides of the planet, while being interconnected through the internet. Alternatively they could also be installed in
the same physical location, being interconnected via dedicated high bandwidth low latency links.

The choice amongst these depends on numerous factors. Including the goal of the particular problem that the
resources are to be employed against. For instance, low latency is very important when dealing with problems
that require a tight coupling between the individual processes. This is typically the case in talkative applications
such as large scale climate and astronomy simulations, where there typically is a as a large amount of messages
are exchanged between processes to conduct the simulation. This makes latency a very important performance
factor in these applications, i.e. the delay in time it takes to transmit a message to another process. In such
a scenario, a classic HPC oriented architecture with fully connected nodes would be appropriate to utilize due
to its emphasis on being physically close with high bandwidth and low latency interconnects between nodes.
Pivoting to loosely coupled applications the importance of latency flips. Here a set of distributed compute
resources spread out over great physical distances is not as much of a worry. Thereby enabling the usage of a
greater compute capacity than is available at a particular institution.

Similarly, in terms of logical organisation, the computational resources can be organised in multiple ways,
including a graph, tree, layered, and flat architecture or possibly in a combination of multiple logical structure.
As with the physical organisation, the choice depends on the problem that is to be solved or service that is to be
provided, i.e. what requirements are there in terms of availability, scalability to the provided system.

Given this development from the early days of homogeneous compute infrastructures, to today’s varied land-
scape of multiple compute providers and platforms, the complexity in both defining, utilizing and maintaining
these resources is a substantial challenge even for computer science and infrastructure professionals. This typi-
cally leads to a cascade of complicated distributed network architectures and software stacks that have to be both
provided and maintained to be operational. The areas involve covers both the interconnect and management of
the resources themselves in addition to the required software dependencies enabling their use, while attempting
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to expose a minimal amount of complexity to the user. Establishing such internal infrastructures, has typically
been dedicated to an operations team that ensures that the installation, configuration and maintenance is taken
care of. However after this has been established an an individual institution, the point of concern stops at the
organisational boundary. Within the institution, a typical infrastructure stack is composed of three layers as
shown in Figure 2.1, namely the Hardware, Infrastructure and Service Layer. The Hardware Layer is concerned
with the architectural design and installation of physical hardware to serve a particular need. For instance, com-
modity servers, such as off the shelf desktop computers, typically do not have the same high requirement for
low latency interconnects as HPC oriented servers. Therefore their installation will differ, typically in a simple
design that ensure availability compared to performance if they are to host a critical service for the institution.

Figure 2.1: An example of an scientific compute stack

This is where the federated Grids comes into play, because they act as a gateway for access to internal
organisational resources. However, with the existing federated Grids, the internal compute nodes are directly
registered and managed by the external Grid.

2.2 The Grid model

Each era of computational developments have defined how the innovations of the day should be organised to face
the challenges of their time. This has been the case from the early days of independent mainframes in the 1950s
with their shared mainframe environments. To the establishment of network connected research computers
during the 60s and 70s [58]. Followed by the emergence of interconnected powerful desktop devices in the 80s
and 90s, to the present day of the reemergence of cluster computational such as High Performance Computing
(HPC) centers across organisations [88].

With the combined development of high-speed interconnected networks, capable desktop compute capabil-
ities, and the requirements of applications in the 90s, the emergence of new computing infrastructure designs
started to develop in the scientific community. One of such designs was the establishment of compute clusters
based on commodity hardware from powerful desktop computers across scientific, federal and educational or-
ganisations [88]. To effectively leverage these acquired resources, a push was made to make these resources
accessible across such distributed institutions via federated networks.

The idea was to allow access to computing resources on demand through flexible, secure and coordinated
sharing of resources amongst a dynamic set of individuals, institutions and resources [50] [49]. A so called Grid
of on-demand computational resources, analogous to how the electrical power grid operates, where individuals
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are given access to a shared commodity, with all the benefits and drawbacks that follows from a large scale
federated network of resources. In addition to mere access to greater computational capacity through a federated
network, the Grid notion also implied other capabilities. Including how such resources should be coordinated in
a non-centralized manner across a federated network of potentially disconnected domains that are controlled by
different administrators. This is often provided via so called Virtual Organisations (VO), that spans the entire
Grid, enabling members and users with the essential ability to share resources, data, etc across different Grid
members. VOs enable such sharing by establishing a logical grouping that spans every member of the Grid,
users that are then part of such VOs are typically able to associate shared organisational resources as part of a
particular VO. Furthermore, the Grid model imposes that resources and entities should be interconnected “using
standard, general-purpose protocols and interfaces“ [49], in addition to delivering some quality of service so
that resource usage can be coordinated to meet defined standards of for instance throughput or response time, to
serve multiple users at a given point.

This led to the establishment of numerous Grid infrastructures, e.g. the European Grid Infrastructure (EGI),
the Open Science Grid (OSC) and The Laser Interferometer Gravitational Wave Observatory (LIGO) Data Grid
[75]. A timeline of some of the important developments and Grid establishments can be seen in Figure 2.2.
However, at the end of the 2000s, the Grid model had only achieved success in specific scientific fields such as
high energy physics [73], climate [4], and gas methane research [45] to assist in solving large scale problems in
pan-national environments.

Figure 2.2: 30 representative events in Grid development [49]

These successes did however not carry over into the commercial space. Part of the issue in this, was that
the developing Grids did not have of enough utilization to establish an sufficient scale to be economical. In-
stead since the middle of the 2000s till the present, Grid oriented platforms in the commercial space has been
superseded or complemented by introduction of Cloud computing [49] platforms. Multiple contributory factors
are the reason for this, foremost is that they had the required scale and demand to establish a cost effective
architecture that had been the crux of the Grid initiatives. The early frontrunner in the public arena has been the
Amazon Web Services (AWS) [8] [182], which due to business necessity validated the establishment of a large
scale web service. As part of this development, the requirements for AWS produced duplicate service func-
tionalities across the organisation, which validated the creation of common services and APIs. Furthermore,
the fluctuating annual demand of compute resources meant that periods would occur with under-usage, or in
contrast huge spikes. The most classic example of which are big online shopping days in the United States like
Black Friday. As a result of this AWS established a set of common services that could be used by outside users
in an on-demand manner, For instance Simple Queue Service (SQS) for inter-service messaging, Simple Stor-
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age Service (S3) for object oriented storage, and Elastic Compute Cloud (EC2) as a Infrastructure-as-a-Service
(IaaS) platform. These were some of the first releases of such services [21] [182]. Enabling worldwide access to
them in 2004 and 2006 with the addition of similar such services from other public Cloud Computing providers
[51].

However, in the world of large scale scientific research, Cloud Computing capabilities such as Infrastructure-
as-a-Service (IaaS) have not taken off in a similar manner as in the commercial space. As presented by [111],
the challenges have historically included lower raw performance, especially when scaling compute-intensive
workloads with a high degree of inter-process communication, as found by [197] where certain HPC applica-
tions suffered a slowdown of 50 times that of a dedicated HPC cluster, due to the high degree of small inter-
process messages between compute nodes. Instead, HPC applications can benefit from access to cloud allocated
resources if they exhibit other characteristics. For instance, decent performance can be achieved with embar-
rassingly parallel and bandwidth-limited applications because they don’t utilize an extensive communication
pattern that inherently relies on low-latency connections. Furthermore, what is often disregarded when compar-
ing application performance between infrastructures, is as defined by [78] the turnaround time from queuing an
application to it being scheduled and completed. The authors shows that in public cloud environments, such as
EC2 produce better turnaround times than that of a classic HPC clusters at Lawrence Livermore National Labo-
ratory (LLNL). This is in part due to oversubscribing of HPC resources, which could lead to a total turnaround
of more than a factor of four when compared to a comparable cloud instance.

Taking this to the present date, where computational landscape is composed of a heterogeneous set of pri-
vate and public infrastructures, compute platforms, and services to expose a given compute capacity. Including
classic institutional computational clusters or clouds, national or pan-national HPC centers, distributed Grid re-
sources, public cloud computing services. Adding to this mixture of compute capacities the internals also offer
heterogeneous configurations, from bare-bone CPU based servers, to APU enabled systems including GPUs,
FPGAs and TPUs. For instance, at scientific instruments such as MAX IV [85], and EuXFEL where computa-
tional resources are provided through classic internally shared institutional compute clusters. Namely the Lund
University Compute Center [77] and the DESY compute centers [33]. Similarly at educational institutions like
The University of Copenhagen (UCPH), that has its own HPC center associated with the Science faculty. These
computing resources are typically exposed internally either via traditional remote shell access to a login node,
or through some web-based portal to submit batch oriented jobs to the internal system. In contrast to these local
institutional systems, facilities such as the Large Hadron Collider (LHC) [24] have compute requirements that
simple can’t be met by an individual institution. Since its inception in the early 2000s, the LHC has instead
been a main motivational component for established the worlds largest Computing Grid [25] [73]. This network
of compute capacity is made up of the European Grid Infrastructure (EGI) and the Open Science Grid (OSG),
spanning 41 countries and 170 compute centers in a hierarchical structure serving 8000 physicists in accessing
and analysing data in near real-time.

2.2.1 Grid Components

When defining what constitutes a Grid, many different opinions merge. Particularly what components and
behaviour are required before a federated network of resources can be referred to as a Grid. The following
statement by Ian Foster makes a good attempt in making such a definition. “A computational grid is a hardware
and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities.” [48]. This definition was later extended in [50] to include, that Grids are concerned
with “Coordinated resources sharing and problem solving in dynamic, multi-institutional virtual organisations“.
That is, a Grid provides a shared infrastructure between organisations to exploit cross institutional resources to
perform large scale problem solving in virtual groupings. To provide this capability, a Grid is typically made up
of the following components.

• Authentication and Authorization

• Resource and Service registration and discovery
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• Scheduling of computational jobs across resources

• Data management to and from the Grid

2.2.1.1 Authentication and Authorization

Authentication is the term used to describe the process in which an entity is validated to be whom they claim to
be. This process typically involves providing some secret information that the service can verify is as expected.
In the Grid setting, this gets additionally complex and important, because trust has to be established between
various decentralized resources across different organisations with different security models and procedures.
Authorization on the other hand is concerned with the level of privileges or access a properly authenticated
entity is allowed to perform. A classic example of this is the definition of User Groups that dictates what rights a
particular user has. For instance an authenticated user’s rights could be divided into either administrative, basic,
or guest capabilities.

Much effort has already been devoted to provide proper authentication and authorization mechanisms to Grid
infrastructures. This includes authentication through digital certificates, tickets, usernames and passwords and
beyond [64]. With developments such as Globus Grid Security Infrastructure (GSI), Kerberos, and Single Sign-
On (SSO) architectures including Shibboleth and OpenID. Where some of the first distributed authentication
schemes such as GSI relied on Public Key Infrastructure (PKI) to establish trust between federated organisations
through validation of X.509 certificates by Certificate Authorities.

In this thesis, the scope will not include an extensive review of potential authentication and authorization
techniques, but instead the proposed Grid framework relies on the authentication and authorization techniques
established by the existing Clouds and Infrastructures the proposed framework will utilize.

2.2.1.2 Providing Grid Resources

When providing Grid resource, middleware frameworks have generally relied on the local administrative body of
a particular Grid member to be responsible for provisioning, configuring, and maintaining their resources. The
middleware frameworks were instead responsible for providing the interconnect fabric between the components
as mentioned in Section 2.2.1.

When establishing Grid resources, the task has traditionally involved the following. First, validating that the
Grid resource can be created, meaning that a particular compute resource can join the Grid, while adhering to
the organisations policies, i.e. whether in doing so violates policies such as security, data protection, or privacy.
Second, exploring the technical requirements for establishing a compute resource, this can typically involve
the provisioning and configuration of prototype node in a restricted environment to validate that the provided
specifications actually match up with reality. This can also include if possible, the registration of the prototype
resource, to test the capability and subsequent usage of the resource. For instance, it could be used to carry
out some computational task, such as running a small scale ocean or neutron ray-trace simulation, to explore
how a potential experimental workflow would be conducted. Given that this process produces a satisfactory
result, the organisation will typically have to map out which and how resources they would want to provide to
the Grid should be established. This typically involves a process that is daunting in terms of formal procedures
and required paperwork that has to be completed, before the resource can actually be established as a Grid
resources. The task of establishing the resource, for instance a Virtual Machine (VM) for computational work,
is often known these days as resource orchestration by the providers administrative team.

2.2.1.3 Orchestration

Orchestration is about providing an automated method to configure, manage and coordinate computer systems,
such as establishing compute resources through a bundled and easy workflow [151]. Through orchestration, an
organisation or individual such as a University or a researcher is able to establish a complex infrastructure via a
well defined workflow. As I presented in [105], each task is carried out to establish the required component to
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Figure 2.3: Workflow for orchestrating a compute node [105]

provide the defined infrastructure. An example of a simplified orchestration workflow can be seen in Figure 2.3.
To orchestrate the requested resource, a valid operating system Image, a Shape that defines the specification of
the compute resource, a Location of where the resource shuold be orchestrated and how it should be connected
to providers Network [105].

In the context of a federated network like a Grid, the orchestration would ideally involve the automated
provisioning of the computational resource, the configuration of said resource, and ensure that the resource is
correctly reachable via a configured network infrastructure [105]. In terms of providing orchestration, multiple
tools have been developed that enables this. This thesis will not present a complete survey over every orchestra-
tion tool, but instead will present the themes and common approaches that have been employed to automate the
tasks necessary to establish a complex computing infrastructure such as establishing a set of Grid resources at an
institution like a Research Instrument. Examples of such automation tools includes Ansible [12], Puppet [146],
and TerraForm [166]. As presented in [105], each of these tools don’t provide full orchestration capability on
their own, instead they each have been born out of the specialty they are designed to perform.

2.2.1.4 Ansible

Primarily Ansible is a configuration tool, that helps automating the configuration of existing systems after they
have been provisioned, i.e. the compute resource have been created and is running, with the operating system
is ready to be configured. In addition, Ansible is a so-called agent-less application, meaning that it does not
require the nodes that it wants to configure to have an active agent running. Instead Ansible only requires to
be installed and executed on a single node which can be a designated configuration server. In terms of design
model, this is also known as the push model, where the server pushes the data it wants to apply to the client in
question. This requires, that the designated server that Ansible is executed on, can reach the specified node via
the connected network to reach the exposed port.

To configure a particular node, Ansible only requires that it is told which connection and authentication
method it should use to gain access to the node in question. The chosen connection method, then subsequently
dictates which authentication methods are available. By default Ansible uses OpenSSH [13] [123] to connect to a
particular node. Subsequently, public key authentication via SSH keys are the default authentication mechanism
used when utilizing an OpenSSH connection [13]. When Ansible configures a node, it expects to be told which
instructions it should execute on the target node. This set of instructions are defined in a file called a Playbook
[14]. A Playbook is at its core a YAML Ain’t Markup Language (YAML) [196] structured file, as the name
indicates, is a Markup Language formatted file. An example of this structure can be seen in Listing 2.1, where
a user with the attributes name and mail is defined. As this demonstrates, YAML is arguably easy for humans
to read and write, due it its simple structure and limited amount of required formatting. It is based on the same
principal as the Python programming language, in that indentation is used to define same level structures.

u s e r :
name : Rasmus Munk
ma i l : rasmus . munk@nbi . ku . dk

Listing 2.1: YAML syntax example

Ansible, as indicated, is not a tool that is able to provide full orchestration capabilities, it does not establish
a primary method for instantiating resources, but instead focuses on configuring existing resources that have
already been established. Nevertheless, due to its simply architecture, it is a good candidate for introducing
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configuration management with minimal intrusion and footprint on the target orchestration and resources. The
reason being that it only requires a single port to access a node, and that it simply applies a set of instructions on
said resources makes it quite attractive in a federated model, where a uniform architecture and state management
is not feasible.

2.2.1.5 Puppet

Puppet like Ansible is also mainly a tool for automating administrative tasks such configuration of computer
systems. In contrast to Ansible, Puppet is based on a master-agent architecture. This means that every node
that is to be configured has to be installed with the client application before it can be configured by Puppet.
Another substantial difference is that Puppet is designed to maintain the specified configuration state of the node
instead of the simple apply and leave alone model that Ansible applies. Maintaining a particular configuration
on every node, is made possible via the added complexity of using the agent based model. Having an agent
daemon on a resource, imposes its own set of additional complexities and requirements. For instance, the health,
correctness, and version of each agent daemon has to be maintained in order for the configuration management
to work as expected. Furthermore, since the agents have to retrieve the configuration from the master node,
the nodes are required to ’pull’ any configuration that they have to apply. This has the added caveat that the
server has to be reachable by the agents on the designated port, potentially requiring this port to be opened
across multiple organisational firewalls. Alternatively, the configuration traffic could be forwarded to and from
the nodes via other secure networking mechanisms, such as Secure Shell (SSH) tunneling, or Virtual Private
Networks (VPN)s. However, this only introduces more complexity onto the underlying architecture, thereby
increasing the risk of failure and the required maintenance required to keep it operational.

In terms of orchestration, Puppet allows for the definition of tasks and plans that can be applied on-demand
[147]. Nevertheless, Puppet’s orchestration capabilities are limited to controlling how configuration updates are
applied, or how node data should be changed. [148]. Therefore, Puppet, like Ansible is designed to control the
state of resources after they have been established. Similarly, this makes it infeasible to use for orchestrational
tasks beyond ensuring the state of established resources.

2.2.1.6 TerraForm

TerraForm is a infrastructure deployment tool developed in Go by Hashicorp [166]. It is quite different to both
Ansible and Puppet. Foremost, TerraForm is not about configuring existing resources, but is about building
infrastructures in a cloud setting. To create an infrastructure, TerraForm expects a set of .tf files that describes
in declarative form how the infrastructure should look like after being provisioned. Upon provisioning, the
descriptions in the .tf files are then translated into state files in a JavaScript Object Notation (JSON) structure.
These state files are TerraForm’s way of maintaining records that describe the desired state of the specified
infrastructure. This has the implication, that in a multi-user environment, the state files have to be kept in a
shared location. Meaning that due to the sharing constraint, consistency of the file immediately becomes an
issue that has to be handled. The reason being that if multiple processes tries to update the same state file at
a given time, the outcome will become an inconsistent state file that may not reflect every change that should
have been applied. For example, when a series of processes are tasked with appling a set of changes to the
infrastructure, the last process to commit its changes will determine the end result of the state file. To mitigate
this issue, TerraForm provides the capability to manage the state file through a set of remote backends, that
ensure that any change is applied without causing consistency problems. Specifically, TerraForm utilizes locks
to guarantee that only one process can change the state file at a given time, thereby removing the possibility of
multiple changes being applied at the same instant. Examples of such remote backends includes, Amazon S3,
Azure Storage, Google Cloud Storage, and Terraform Pro. In terms of security, TerraForm does not provide
a mechanism to encrypt the state file before it is being stored at the remote site, but relies on the encryption
capabilities of the selected remote backend. Implicit trust is thereby given to the responsible storage provider,
including that they wont access your data without permission, nor that they will fail to protect it from potential
breaches.
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TerraForm supports infrastructure orchestration and maintenance across different cloud providers, this in-
cludes all the major public compute clouds such as AWS, Azure, Google Cloud Platform, Oracle Cloud In-
frastructure and beyond [57]. When constructing a particular defined infrastructure, TerraForm defines a core
workflow of multiple stages. The two most important of these stages are the Plan and Apply stage. The Plan
stage is where the user defined .tf files are read and the target infrastructure is derived from the combined infor-
mation, the result of this stage is a plan that is ready to be applied to the defined cloud providers. Subsequently,
when the Apply stage is carried out, TerraForm will provision the specified infrastructure.

In addition, TerraForm supports orchestration across cloud provider infrastructures and is not limited to a
single cloud during the Apply Phase. This capability, makes it suitable to utilize when the need is to provi-
sion and maintain a complex compute infrastructure across multiple cloud environments. Overall, TerraForm
is a tool targeted towards teams of infrastructure operators, system administrator, and DevOps teams that are
tasked with maintaining large and complex cloud infrastructures. As found by [72], the complexity of the tool
introduces a steep learning curve for its usage. Also, when transitioning between different cloud providers,
TerraForm’s infrastructure descriptions are not portable. Which means that TerraForm might be used for orches-
trating resources at different cloud providers, but is not easily capable of transitioning an existing infrastructure
to a different cloud provider without substantial effort. This lack of portability imposes a substantial barrier
when transitioning infrastructures across clouds. Additionally, TerraForm is only concerned with provisioning
resources, it is not built to support job scheduling and data staging.

2.2.1.7 Configuration and Provisioning

In terms of configuring resources, both Ansible and Puppet can provide this. In addition, since this is not an
exhaustive list, there are multiple other projects that could be considered to provide configuration management.
However, these two do highlight some of the overall traits that most configuration management tools provide.
That is the agent-less vs. server-agent model, push vs. pull data flow, maintaining or applying configurations.

Putting it all together, from the two presented options, Ansible has the simple architecture model in that it
does not require an agent to be running the node in question. Furthermore, the ability to push changes simplifies
the owning entities responsibilities for ensuring that configurations can be applied successfully. Specifically, the
owner of the nodes that are to be configured, is as a default, responsible for ensuring that they are reachable by
the configuration server on the designated port. In contrast, by using the pull technology, the owner of the server
can be necessitate to expose ports in multiple firewalls to allow a range of client nodes to access the designated
port to retrieve their configuration. Similarly, it is simple to apply configurations in contrast to maintaining
them, because there is no continual monitoring that has to happen, in order for the configuration manager to
ensure that the current configuration is correct. It does though follow, that in only applying configuration, as
Ansible does, the owner of the nodes can not be sure that the individual configured nodes are kept in a correct
state. This concern is bigger, when the resource in question is utilized by multiple users, or multiple purposes
that introduces configuration changes.

The choice of configuration manager therefore, is all up to circumstance, and the particular situation in
which it has to be applied. If the target infrastructure is tightly coupled and well controlled system by a single
owner or organisation. The more leeway there is to use more complex configuration managers such as Puppet,
because it ensures greater control and assurance that the participating nodes are in a correctly configured state
while the infrastructure is running.

However, in terms of providing a Grid of Clouds, the expectation is that multiple resources will be dis-
tributed across multiple organisations and security boundaries. This implies that it is infeasible to expect that
the entire resource Grid is tightly integrated, connected, or homogeneous. Therefore it can be hard to expect that
a configuration manager like Puppet is suitable to be utilizes in such a decoupled architecture. Instead, simpler
and looser coupled configurations seems more feasible in that it does not require specialized firewall rules or
the maintenance of numeros agent clients on Grid resources. This however, could validate further investigation
because a deep analysis of every tool was not conducted during this work.
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2.2.1.8 Discovery of Resources

In a distributed architecture, the discovery of resources is crucial in order to commit the requested action to the
correct resource or service. Multiple different approaches have been applied to provide this capability. In a Grid
structure the challenge is greater, in that resources are typically organised in distinct administrative domains,
where there is no central control of underlying infrastructure layers such as networking, and external firewalls.
Instead since resources are under the control of the members that provides them, which typically configures
them in a non-public network of their organisation, the resources often have to be accessed indirectly. Be it
through a public proxy node that relays authenticated and authorized resource oriented messages to the internal
node, or via more elaborate architectures such as SSH tunnels or VPNs

What is common beyond this, is that when a job is submitted by a user to the Grid, the Grid middleware,
typically in the form of a Manager node that is responsible for discovering and selecting an appropriate resource
or resources from a list of potential candidates where the job could feasible be executed. In Globus Toolkit for
instance, the combination of the Gatekeeper service and the Grid Resource Allocation Management (GRAM)
protocol provides the backbone functionality for ensuring both authentication and authorization in addition to
resource discovery and utilization from a particular client’s perspective. The selection of an appropriate resource
is based on the set of job requirements supplied with the client’s submission. Upon selecting a valid resource, the
Gatekeeper is subsequently also responsible for instantiating a Job Manager that then schedules the particular
process. How this happens is defined by the particular selection of job scheduler, be it a simple process fork
or a submission to a Local Resource Manager (LRM) such as Condor or PBS [71] [47] [46]. A limitation of
this design, is that the Globus Toolkit relies on the client submitting the job directly to the resource in which it
executes, thereby claiming all the responsibility of interacting with the resource to handle the job lifecycle and
the staging of input and output data from the job [20].

An upside down approach of this is employed by the MiG [132] [20], where the resources themselves
are responsible for discovering whether the Grid node has any jobs that are available for them to carry out. By
flipping this responsibility between the central Grid server and the resources, it ensures a simplified model, where
the Grid oriented logic of the resources is provided entirely by the central server and no resource discovery is
required. This model limits the amount of cross domain server administration there has to occur for maintaining
a Grid resource. The reason being that the provider is responsible for defining and registering their resources
through the central server, hereafter these configurations are utilized to configure the resource itself as long as
it is accessible from the Grid itself. The result being that the Grid maintainers only are required a minimal
involvement in maintaining external providers resources. This difference also has effect on the client side when
it comes to job management, because the client is interacting with the central Grid server instead of a resource
directly, the responsibility the client is alleviated from having to manage the life cycle of the job directly as was
the case in Globus [46].

In ARC [41], which extends upon Globus, inherits many of its components and design decisions. However
this does not include the approach to resource mapping and discovery. The management and discovery of ARC
resources are instead provided through two services namely the Local Information Services (LIS), the Index
Services (IS) and relies on the OpenLDAP protocol for exchanging and storing any resource related information.
In term of data structure the ISs and LISs entries are organised in a topological structure of a multi-level tree
where the LISs constitute the bottom leafs of the tree. The LIS are responsible for describing and characterizing
resources be they storage, computing, or job oriented. This information is collected on the resource itself by
the service and can be subsequently extracted. The ISs are used to maintain a dynamic list of the resources
themselves. Entries are added to this by a registrant which can either an LIS or another IS. This basically makes
the Index Service a list of contacts URLs of ISs and LISs [41]. The end result is a bottom-up approach, where
the LIS on a particular resource ensure that it is registered in an IS by sending it its endpoint URL of the LIS
service. This process occurs at a periodical interval to update the LDAP entries as according to the current state
of the registered resources.

Each of these approaches have certain benefits and drawbacks. In the native Globus Toolkit, the Gatekeeper
has to actively find a node on which the users job can be submitted, meaning that the it potentially has to go
through N-1 nodes before finding an appropriate resource. This hurts the scalability of the GRAM oriented
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architecture, in that with the growth of the number of nodes in the Grid, the worst case discovery equally grows
linearly in runtime complexity. In contrast the MiG architecture relies on the resources themselves having to
query for an appropriate job, flipping the discovery mechanism on its head, however it does mean that the MiG
server is central to the successful execution of jobs, since no jobs can be discovered without it, leaving it as a
potential single point of failure. ARC on the other hand adopts a tree like model where of discovery of resources
relies on the

Overall, resource discovery and subsequent registered state is always a set of potentially outdated infor-
mation due to the distributed nature of Grid and Grid-like systems. Which means that whatever the model of
the Grid, resource discovery and subsequent state tracking is critical to have a functioning Grid of reliable and
reachable resources.

2.2.2 Jobs

As highlighted in the inception of the initial Grids, before a Grid can be useful to the participating community,
the users will have to be able to utilize the shared computational resources. A popular approach to enable this,
is to enable the user to define jobs. A job can be defined as a description of how a particular computational task
should be executed, in addition to what is required of the underlying system before the execution can take place.
This description can be wide ranging in terms of the information that it specifies. Covering attributes such as
the type of job, the amount of required hardware capabilities and additional runtime dependencies for a job to
successfully execute. The following enumeration is an non-exhaustive list of common attributes that are defined
in a Grid framework’s job description.

• CPU: The amount of CPUs (cores) required

• Memory: The amount of Memory required, typically defined in MegaBytes or GigaBytes.

• Input: The required data that needs to be staged in the Grid resource before the job can execute success-
fully.

• Output: The generated output from the job, typically in the form of files or streams

• RuntimeEnvironment: Defines an environment that indicates the presence of a certain set of operating
system attributes, can include details such as available compiler, file system, dedicated hardware, acceler-
ators and beyond.

• CPU Time: The amount of time required to finish the job.

The format of the particular job description depends on the framework at hand. Globus utilizes the Resource
Specification Language (RSL), while ARC uses an extended version of it [41]. Both the basic and the extended
version use the following structure to define a particular job.

• Resource requirements are a set of constraints that the underlying resource must provide in order for the
job to be successfully execute, they include attributes such as the Machine type, number of nodes, amount
of memory, Max CPU time.

• Job configuration on the other hand are the attributes that specifies how the job is to be carried out on the
valid resource. They include attributes such as Directory, executable, arguments, and environment.

2.2.3 Job Scheduling

Job scheduling in a Grid setting is the task of matching a particular job description to a matching resource that
fulfill the requirement of that job. Upon matching a job to a resource, the subsequent task of the scheduler is to
translate the job description into a structure that can be executed on the resource in question. To translate the
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description, a common abstraction layer is often employed to provide a uniform interface for transforming the
description into a format that can be scheduled and processed on a supported system. In terms of the particular
scheduling type, Grids have often scheduled jobs in a batch oriented manner.

2.2.3.1 Batch Oriented

Batch oriented scheduling, is the act of executing a job in a non-interactive manner, this means that jobs are
queue and executed when a system is ready to process it. A major reason for this is that since a Grid is made up
of shared resources amongst its participants, a job’s requirements can’t be expected to be fulfilled at the time of
job submission. Therefore, upon submission from a user, jobs are put into a queue where they will wait until a
matching resource becomes available.

Existing and historical Grid frameworks have often provided batch oriented scheduling by utilizing tradi-
tional Local Resource Management System (LRMS). The LRMS in question is then responsible for receiving,
handling, queuing, submitting, and retrieving jobs received from the Grid. For instance, Grid frameworks such
as Arc or Globus utilize and support many LRMS back-ends [114], including HTCondor [60], SLURM [92],
Portable Batch System (PBS) [6].

2.2.4 Job Strategy

Job strategy is deciding in which order queued jobs should be executed. The following enumeration list some
common scheduling Strategies that are common for scheduling user jobs.

• FirstFit: The job will be scheduled on the first resource that fits.

• BestFit: Find the best resource that matches the jobs requirements.

• FairFit: Like BestFit but with an increasing priority as time passes, this is to avoid the starvation tendency
of BestFit.

• First in First Out: The First queued job is also the first to be scheduled

• Last In First Out: The most recent job to be queued is also the first to be scheduled.

2.2.5 Job Dependencies

Job dependencies are the set of requirements that a resource runtime environment have to fulfill in order for
the job to be processed successfully. For instance, if a particular job executes an application that is tasked with
generating a model that can classify images, how that classification application is developed defines its set of
dependencies. Specifically, if the application was developed in Python3.8 with the use of packages such as Ten-
sorflow and Keras. The dependency for that job would include an operating system that supports Python3.8, in
addition to having the Tensorflow and Keras packages installed in the particular Python3.8 execution environ-
ment.

How job dependencies have been provided has evolved over the years. From early on with native compilation
and installation from the source code, to the leveraging of package managers to install the compiled binaries
and required support libraries over the internet. At the present, the use of package managers is still one of
the default ways that dependencies are provided on computational resources. Therefore, a simple approach to
provide its dependencies could be to make the user specify a list of the required software that their intended
application requires. This list could then be installed as a script before the job is executed. The MiG [19] for
instance handles dependencies through the definition of a set of user and Grid provided runtime environments.
A particular runtime environment then establishes a kind of contract between the users and the resources. In
MiG, both the user and the resource have to uphold the contract before a job can be successfully scheduled.
Specifically, users are responsible for creating runtime environments, subsequently it is up to the owner of the
resource to advertise the environments that the resource provide.
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2.2.6 Resource environments

A problem that naturally follows from the requirement of having to support a wide range of software depen-
dencies across multiple resources is the maintenance of the resources while being a Grid participant. With
fluctuating dependency requirements, and an increasing user pool, the resource nodes are bound to be the tar-
get of a wide range of applications. This variety increases the likelihood of package, version, and dependency
conflicts, which increases the amount of administration that a resource node imposes to keep it operational. To
mitigate the possibility of environmental conflicts, there are several existing models that can be utilized. The
most popular includes the bundling of job dependencies in virtual environments, VM images, or container im-
ages. All have the objective in common that they attempt to segment the job requirements into their own self
contained compartments, thereby removing the possibility of conflicting with other dependencies beyond their
own compartment.

2.2.6.1 Virtual Environments

A virtual environment in the context of an operating system is a method for isolating a particular language
runtime with the required packages in a separated compartment. When such a compartment is loaded, it ensures
that requests to a package or library is first searched for within the compartment. If this search did not produce
a valid research, the search is widen to check whether the global system provides it instead. This provides a
hierarchical search structure, where the lowest virtual environment can be swapped at runtime. Examples of
virtual environment managers includes, debootstrap [32] for Debian, virtualenv [149] for Python 2 and 3, Gem
for Ruby and Anaconda [11] for multiple language dependencies including Python, R, Go and beyond. However,
virtual environments are not part of the basic operating system installation on major Linux distributions such
as CentOS or Debian. Instead these have to be selected, installed and configured after a resource has been
provisioned.

2.2.6.2 Virtual Machines

Desktop Virtualization as according to Wikipedia is the concept of detaching the physical hardware from the
operating system [183]. This gives the ability to have simultaneous operating systems utilizing the same under-
lying hardware resources, also known as time-sharing, thereby enabling a more efficient usage of the hardware.
A beneficial side-effect of being able to run multiple operating systems on a single computational node, is the
ability to segment and isolate users into their respective system. This segmentation introduces a security bar-
rier between the running operating systems and their processes [17]. In terms of Grids, VMs are useful in that
they allow the dynamic management of resources. This capability is enabled through the hypervisor, which
provides on-demand scaling and provisioning of VMs, given there is hardware capabilities to support it. This
ability is available in both on premise cloud frameworks such as OpenStack or through every major public cloud
provider, including AWS, Oracle Cloud Infrastructure (OCI), or Azure. In addition, what is equally important
when thinking about providing complex resource environments, are the hypervisor and cloud provider abilities
to create VM templates. A template can be seen as a copy of an existing VM, which includes the installed OS,
its applications and the VMs configuration.

The usefulness of VMs to provide dynamic resources in Grid and cloud solutions is well established across
multiple projects and providers. Including EGI FedCloud [43], INDIGO-DataCloud [62], OpenNebula [122],
AWS [8], OCI, AWS and beyond.

2.2.6.3 Containers

Containers are a form of operating system virtualization that enables the isolation and segmentation of environ-
ments within a single operating system [186]. This is in contrast to the classic notion of VMs, that provides
isolation and segmentation via virtualization of fully-fledged operating systems. This has the implication that
containers usually imposes less resource requirements because they rely on a single operating system, which
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resources are shared amongst them. Specifically, containers usually utilizes normal operating system call inter-
faces and do not rely on emulation as virtualized VMs [186]. In Unix-like systems the capability is provided via
the underlying operating system kernel, an overview of this can be seen in Figure 2.4. Examples of container
implementations for Unix-like systems includes LXC [185], Docker [37], Singularity [162], and Podman [133].
A more extensive overview of implementations can be seen at [186].

Figure 2.4: Unix-like operating system virtualisation

In terms of standardisation, the Open Container Initiative (OCI) project [169] is the structure tasked with
creating a standard API for containers. The OCI aims to enable cross container implementations to be com-
patible with each other. To mark whether a container implementation adheres to the OCI standard, the project
is developing a certification program that validates the adherence to the standard and thereby ensures compat-
ibility. As of writing, the OCI has seen adopting by projects such as Kubernetes, Apache Mesos [170]. An
additional important defacto standard that has been developed in the container world, is how containers are built
to provide pre-configured environments. Specifically, the Docker image format [170] is the go-to standard for
how a container should be built. This has the implication that other implementations often has the ability to
either convert existing Docker images or is able to make them directly. [38] [161]. Aligning with the OCI
compatible implementations or future adopters will give the broadest support for supporting container runtime
environments across a wide range of heterogeneous resources. For instance, Buildah [108] is a project that spe-
cializes in building OCI container compatible images. By utilizing Buildah, the compatibility and maintenance
of current specified image builds down the road should be manageable at a minimum cost.

However, containers as a runtime environment, does not come without certain costs and potential pitfalls.
For starters, the runtime environment has to be build before it can be utilized, this build can range from seconds
to hours depending on how complex the target environment is. Furthermore, managing the complexity of such
environment is a compromise between minimizing the libraries, binaries and applications in the build, while
fulfilling the wishes and requirement of its prospective users. The result of this, is that the time it takes to build
an image can range from seconds to hours. In addition, due to the changing nature of dependencies, the container
image has to be maintained if it is to be used on a long term basis. For maintaining images to be feasible at scale,
such as with hundreds of images utilized across federated organisations, centralized management of these images
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is a major task. Therefore, the development and maintenance of such container based runtime environments, is
likely to be most scaleable and manageable for federated organisations if the responsibility for managing these
is delegated to either the end user themselves, or to as low as level as possible within the organisation.

2.2.7 Workflows

Workflows are used to describe the order in which a set of jobs should be scheduled and executed. Originating
in the world of business applications, classic workflows have enabled the automation of tasks that have had a
predictable order and requirement. Classic example of this includes workflows such as ordering tickets, generat-
ing annual financial records, automating complex administrative computing tasks including automated backup,
provisioning of compute resources and many more. Scientific workflow however, are typically of a different
nature. These workflows tend to consist of longer running tasks that are not functionality oriented but are typi-
cally compute oriented towards discerning information from collected datasets. For instance, a classic scientific
workflow could involve the analysis of 3D imaging tomography datasets that have been generated at a scientific
instrument. Specifically, the workflow could be tasked with investigating voids in composite materials [76].
What such a workflow example also implies, is that because the task is often exploratory in nature, the time it
will take is often not deterministic at the outset.

Numerous frameworks exists to define workflows, including traditional ones such as Apache Airflow [167],
Kepler [7], Globus Workflow [47], Tarvena [26], and more recent ones such as Dask [154]. These frameworks
typically employ a top down or data flow model to organise the specific tasks to be executed as part of a singular
workflow. In terms of how the frameworks structures the tasks to be executed, they typically employ a list or a
Directed Acyclic Graph (DAG) of tasks to be executed. A simple example of a scientific workflow can be seen
in Figure 2.5.

Figure 2.5: Example Workflow

2.2.7.1 Data Management

A key component in providing a computational infrastructure to users, is to ensure that the users are able to
manage their data when utilizing the infrastructure. In scientific computing, there are two extreme scenarios
when it comes to handling data in a computational infrastructure. One extreme is the handling of large datasets,
that consists of multi gigabyte or terabyte data files, another is the management of millions of kilobyte sized
files. This reality does not change when computational resources are spread out across multiple organisations.
Either of the two scenarios, requires the underlying ability to both upload and download data to and from
the infrastructure, what distinguishes them is how they each are best optimized to gain the best performance.
However, this is not something that is going to be covered extensible in this thesis, but the basic aspect of how
the data should be provided to the infrastructure in the first place. Specifically in the Grid of Clouds context, the
ability to both, stage and extract data to and from the utilized resources from multiple locations is key. There
have been multiple approaches in how this can be achieved. One approach is to define the specific datasets via
the computational framework itself. MiG [20], Globus Toolkit [53], and ARC [41] for instance allows for this
by enabling the user to set the required input during the creation of a job. These inputs are then staged to the
executing resource before the job is being executed.

25



In the MiG, the data files are then required to be staged in the responsible user’s filesystem on the central
Grid server. This means that the data first has to be uploaded to the data storage of the MiG, before it can be
utilized for a job. In addition, once uploaded, the executing resource has to transfer the data to itself, via a
transfer protocol such as SSH File Transfer Protocol (SFTP) [187]. Upon a subsequent job submission, the job
file then describes where the resource can expect to find the input data relative to its own filesystem environment.

ARC handles the staging of inputs and outputs via the Data Transfer Request (DTR) framework, as described
by [113] it is a three-layer architecture. An overview of the architecture can be seen in Figure 2.6. As this
figure indicates, the DTR is responsible for the staging the data requirements of jobs, managing transfers, and
transfer resources such as bandwidth and cached connections [115]. The DTR is managed by the ARC Compute
Element, which the user can stage files to via the available client tools or as part of a job submission. The
location of the data, can therefore either be designated as a local systems path, or as an URL. If locally available,
the client will upload the data directly as part of the job submission, on the other hand, if a URL is specified, the
resource will download the data directly [116].

Figure 2.6: ARC’s Data Transfer Request framework [113]

What is the case across these middleware frameworks, is that the data staging is described as part of the
job definition, meaning that for each job the input data has to be specified at submission. This means that the
implementation that constituents the job is being separated from the input it typically requires to be executed
successfully. This enables the framework, to execute the same job with differing inputs. However, in terms
of transfer-ability of the job, i.e. the ability to execute the same job at another infrastructure or provider, the
traditional Grid middleware approach does impose some difficulties. For starters, because the input data is
tied to the job definition, it is required that each infrastructure and provider support the same job definition.
Furthermore, the job definition format of how data files are staged has to be available between the infrastructures.

An alternative solution to this will be presented in Chapter 3.

2.2.8 Establishing a Grid

An example of how a modern Grid architecture could be defined can be seen in Figure 2.7. The small Grid pre-
sented here consists of a network of four organisations that enable Grid users access to a set of shared resources
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across their institutions. This could for instance include access to classic HPC Centers, Cloud infrastructures
and data generated at a scientific instrument such as an x-ray beamline facility. In order to establish such a Grid,
the classical approach would be to utilize a Grid middleware framework, like the Globus Toolkit, ARC, DIET
or the Minimum intrusion Grid [20] to name a few. Given that a operating system had been pre-installed and
configured on the to be Grid resources, the task would then typical involve the installation and configuration of
the Grid middleware framework on each individual resource in accordance with their designated role, be it a
Manager or Client agent of the Grid. This however would also typically involve the convincing of the several
organisational stakeholders that this is a worthwhile endeavor to begin with, including both management and the
institutions IT infrastructure team that is to carry out this action. In addition, each individual organisation have to
commit how long they will support such a network of resources, which involves the management, maintenance,
support and development of the network with the associated cost. Adding this all together, the establishment of
cross organisation Grids can often be a daunting task in terms of reaching the consensus that it actually should
be done.

2.2.9 Grid Disadvantages

Part of the reasons why Grids themselves and the associated Grid middleware projects did not develop into
sustained commercial and open source projects, is that they tried to be all encompassing. Specifically, they tried
to do everything that was required within the Grid project as per the traditional Grid definitions. Furthermore,
as previously highlighted, they did not experience enough utilization to be commercially viable. This in part
was also due to the work required to register, manage, and support individual resources before the introduction
of technologies such as virtualization. Another common drawback of Grids, is that to either join or exploit
these resources restrict external institutions and organisations from exposing or sharing internal resources in an
ad-hoc manner. Instead the enrollment of a new provider, or adoption of a new user does typically involve a
substantial bureaucratic process which is established to evaluate the potential impact from giving access to said
purpose. Additionally, the selection on which IaaS provider to utilized is often not exposed, limiting the choice
of provider to the actual implementation.

2.2.9.1 Modern Grid Alternative

The ability to easily establish minor Grid networks for smaller ephemeral collaborations and projects can be of
great benefit to the involved organisations. For instance, at UCPH, as one would expect there are a wide range
of ongoing scientific projects typically with the involvement of external scientific, educational and commercial
institutions, one of these is a collaboration between the eScience group at NBI and the MAX IV laboratory on
how to provide interactive and shared compute capacity in addition to data access at their respective institutions.
In such scenarios, it would be of benefit to be able to establish smaller Grids for sharing resources between a
select number of institutions for a particular project or collaboration. Furthermore, they should be established in
such a way that it doesn’t require a complete architecture redesign or relinquishing the resource to be completely
dedicated to only the established Grid.

2.3 Cloud Computing

Cloud computing as according to National Institute of Standards and Technology (NIST) [112] is a model for
enabling ubiquitous, convenient, on-demand network access to shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal management [87]. Cloud computing is not in itself
a new technology, but a combination of several existing technologies into a coherent service [59]. The cloud
computing model exposes the shared pool of computing resources, be they networking, servers, storage, appli-
cations, or services in a variety of models. These includes Software as a Service (SaaS), Platform as a Service
(PaaS), Infrastructure as a Service (IaaS) in the original definition [87]. These models describe what level of
the cloud computing software stack the service is operating. An overview of these service models and how they
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Figure 2.7: A small Grid example

apply to the cloud computing stack can be seen in Figure 2.8. Furthermore, the Figure 2.8 also highlights ex-
amples of cloud services that each layer enables. For instance, AWS EC2 is an infrastructure service because it
enables the user with the capability to provision and manage virtual machine resources on-demand. In addition
to providing different functionality, the different service models also imply a separation of responsibilities of
the computational stack. An overview of this can be seen in Figure 2.9. From Figure 2.9 we can also verify
that the capabilities provided to us by the AWS EC2 service is made possible because the networking, storage,
servers and virtualization components are provided by the IaaS. What this implies, is that the responsibility of
providing and managing the different components of the computational stack diminishes the further we move
up the hierarchy in Figure 2.8.

These service models are distinct for how the services are actually deployed. That is described by the
Deployment Models concept [87]. The Deployment Model describes how the cloud is deployed, be it a Private,
Community, Public, or Hybrid cloud. A detailed overview of the traditional Deployment Models can be seen in
Table 2.1.

In addition to the NIST deployment model definition, there exist additional models in the general literature
for how clouds can be deployed. Related to the concept of a Grid of Clouds is the Multi-Cloud and the Cloud
Federation deployment models [175]. The definition of these is still up for debate, but in regards to this thesis,
the definitions provided by [175] [172] [59] will suffice. Namely, that Multi-Cloud is defined as being a system
that uses more than one Cloud Service Provider (CSP) to provide services from multiple providers. In addition,
that in Multi-Cloud represents a user-centric solution [175], where the user is aware that the system is using
multiple clouds and has to make an active choice about which one to chose. In contrast, Cloud Federation is
defined by [175] as being ”an agreement for the cooperation among medium-sized Cloud providers, enabling
them to share computing, storage and networking resources”. That is, the Cloud Federation enables the exchange
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Table 2.1: Cloud Computing Deployment Models per NIST definition [87]

Type Description

Private Cloud The cloud is provisioned exclusively by a single organisation comprising multiple users.
Does not have to be operated by the organisation itself and can exist both on or off
premise.

Community Cloud The cloud is provisioned for exclusive usage by a specific community. Like a Private
cloud it may exist both on or off premise.

Public Cloud The cloud is provisioned to be used by the general public. The cloud exists on premise
of the cloud provider.

Hybrid Cloud The cloud infrastructure is a combination of two or more distinct cloud infrastructure
such as a private and public cloud. Each of these are independent infrastructures but
support the exchange of data and applications portability.

of virtual resources such as VMs or PaaS services amongst the participating clouds.

2.3.1 Multi-Cloud

Multi-Cloud is a common research problem that has seen much attention in the cloud community [131]. The
attraction of Multi-Cloud is that it potentially empowers the users with greater capabilities when utilizing cloud
resources. This includes the increased access to cloud resources in general, be they compute, storage, networking
etc. The ability to switch between a current and future cloud provider, thereby increasing the flexibility of the
CSP user, allowing them to utilize other CSPs to provide the same or additional services. In addition, it mitigates
the so called lock-in effect. Lock-in is commonly understood as being the phenomenon when the cost of moving
from one type of software, service, solution etc to another is so great, that it makes it very unattractive to do so.
In the case of Cloud Computing, it should be understood as the CSP having locked the user into their ecosystem,
thereby limiting or making it infeasible for the user to switch to another CSP that provides the same or additional
functionalities and services. A lock-in is typically caused by the CSP’s usage of proprietary APIs and services
that are not compatible with other CSPs or cloud infrastructures in general. For instance, the difference between
the APIs for creating an OCI VM in Table 2.2 and an AWS EC2 VM as can be seen in Table 2.3. From these
two tables, it is clear that a request to create an instance at OCI is not compatible with the EC2 API. It should
be noted though, that some attributes for the two APIs have been left out in order for the tables to fit on a single
page. This however does not detract from the point of them being inherently incompatible.

There have been plentiful of attempts at establishing common API standards in the area of cloud computing
to establish cloud provider interoperability. Examples of attempted standards includes OCCI [121], CIMI [190],
CDMI [159] TOSCA [120]. However, these have not seen widespread adoption or a lot of attention by the
commercial CSPs, nor in the realm of academic and scientific cloud installations [172]. The most successful,
as far as I have been able to tell is TOSCA, which have been adopted for a number of Multi-Cloud projects
such as SeaClouds, Cloudify, and INDIGO-Datacloud [172]. Even with a number of adoptions, TOSCA is still
limited to non-public Cloud Computing infrastructures. One of the reasons is that it is both a complex and
complicated specification, in that it aims at describing the entire infrastructure via a single common standard.
Other approaches includes the adoption of a common broker, that is then tasked with establishing semantic
interoperability amongst the designated CSPs by establishing common abstractions. Similarly, a more practical
approach would be to rely on the common abstraction via libraries such as Apache libcloud or Apache Jclouds
[168], that allows for local Multi-Cloud usage without having to interact with an external broker.

In terms of orchestrating resources across multiple CSPs, existing frameworks includes Cloudiator, Robo-
conf, INDIGO-DataCloud, SeaClouds and beyond [172]. All of which supports some form of Multi-Cloud, that
is they are able to create resources at multiple CSPs. Each of these foremost enables the user in some form to
orchestrate resources at a designated cloud platform. However, none of these frameworks enables the user to
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Figure 2.8: Updated Cloud Computing Service Stack with inspiration from [23]

establish a federation of clouds. Furthermore, they are developed to be hosted as their individual services and
are not suitable for ad-hoc installation and execution on for instance a scientist’s laptop. Instead they focus on
being persistent services with capabilities such as cross-cloud orchestration.

Multi-Cloud addresses multiple issues according to [131] and highlighted in [59]. Specifically, they list the
following 10 issues that it addresses:

1. Dealing with peaks in service/resource requests using external ones on demand

2. Optimising costs or improving quality of services

3. Reacting to changes of the offers by the providers

4. Following constraints such as new locations or laws

5. Ensuring the high availability of resources and services

6. Avoiding the dependence on only one external provider

7. Ensuring backups to deal with disasters or scheduled inactivity

8. Acting as intermediary

9. Enhance own Cloud service/resources offers, based on agreements with others

10. Consuming different services for their particularities not provided elsewhere

A sub category of Multi-Cloud is the area of Cross-Cloud. There is not an exact distinction between Multi-
Cloud and Cross-Cloud. In general the most common stated difference is that Multi-Cloud uses multiple CSPs
to provide a service or application, whereas Cross-Cloud is designed for transferring data and applications
across different clouds more streamlined and cohesive [59]. Meaning that Cross-Cloud introduces additional
enhancements to Multi-Cloud by enabling a single deployment of multiple instances for a particular application
across different CSPs, thereby potentially unlocking more sophisticated best-fitting selection amongst the sup-
ported CSPs [172]. Furthermore, it can potentially also reduced the impact of a single CSP failure in terms of
application availability.
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Figure 2.9: Cloud Computing Service Responsibilities [27]

2.4 Cloud Federation

As according to [175] not much research in decentralized Cloud Federations has been conducted. Existing
results points out that the usage of a per Cloud broker as a viable solution to interconnect cloud. By loosely cou-
pling the clouds, each provider that can dynamically discover, select, and schedule their respective resources in-
dependently of each other. In Chapter 5 this thesis will present its contribution to providing a Grid of Clouds via
the establishment of a decentralized broker that is responsible for discovering and selecting a resource provider
to create a Grid of Clouds. An alternative to a decentralized broker, is the centralized approach, where a sole ar-
biter is the decision making entity, which every participant has to interact with to discovery, select and schedule
resources.

2.5 Summary

In this Chapter, I presented the related and background work on how distributed architecture models like Grids
and Clouds have developed. This includes the different approaches applied for providing computational re-
sources to users. Furthermore, the Chapter covered some of the important components in establishing a Grid,
including Authentication and Authorization, Resource and Service registration and discovery, Scheduling of
computational jobs, and how data is managed in a distributed architecture. Additionally, other aspects of provid-
ing computational resources were covered, including Orchestration, Configuration, and how environments can
be isolated in a shared settings, such as a provision resource. Furthermore, the Chapter covered how the Cloud
notion developed from the Grid context and how it has been able to allow dynamic provisioning of resources.
Finally, some of the most recent developments in this area was introduced, specifically how techniques such as
Multi-Cloud, Cross-Cloud and Cloud Federations are being pursued in academia.
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Table 2.2: VM Instance API OCI Subset for LaunchInstanceDetails [124]

Attribute Required Type Minlength MaxLength

availabilityDomain Yes string 1 255
compartmentId Yes string 1 255
createVnicDetails No CreateVnicDetails NA NA
dedicatedVMHostId No string 1 255
definedTags No object NA NA
displayName No string 1 255
extendedMetadata No object NA NA
faultDomain No string 1 255
freeformTags No object NA NA
hostnameLabel No string 1 63
imageId No string 1 255
instanceOptions No InstanceOptions NA NA
ipxeScript No string 1 10240
isPvEncryptionInTransitEnabled No boolean NA NA
launchMode No string NA NA
launchOptions No LaunchOptions NA NA
metadata No object NA NA
shape Yes string 1 255
shapeConfig No LaunchInstanceShapeConfigDetails NA NA
sourceDetails No InstanceSourceDetails NA NA
subnetId No string 1 255
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Table 2.3: Instance API AWS EC2 Subset for RunInstances [9]

Attribute Required Type Constraints

AdditionalInfo No string NA
BlockDeviceMapping.N No Array of BlockDeviceMapping NA
CapacityReservationSpecification No CapacityReservationSpecification NA
ClientToken No string Max 64 ASCII characters
CpuOptions No CpuOptionsRequest NA
CreditSpecification No CreditSpecificationRequest NA
DisableApiTerminiation No Boolean NA
DryRun No Boolean NA
ElasticGpuSpecification.N No Array of ElasticGpuSpecifcation NA
ElasticInferenceAccelerator.N No Array of ElasticInferenceAccelerator NA
EnclaveOptions No EnclaveOptionsRequest NA
HibernationOptions No HibernationOptionsRequest NA
IamInstanceProfile No IamInstanceProfileSpecification NA
ImageId No string NA
InstanceInitiatedShutdownBehavior No string (stop — terminate)
InstanceMarketOptions No InstanceMarketOptionsRequest NA
Ipv6Address.N No Array of Ipv6Address NA
Ipv6AddressCount No Integer NA
KernelId No string NA
KeyName No string NA
LaunchTemplate No LaunchTemplateSpecification NA
Monitoring No LaunchTemplatesMonitoringRequest NA
NetworkInterfaces No Array of LaunchTemplateInstance... NA
Placement No LaunchTemplatePlacementRequest NA
RamDiskId No String NA
SecurityGroupIds No Array of strings NA
UserData No String NA
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Chapter 3

Ubiquitous Data Access

In this Chapter, the research and results in developing the mig utils [95] data access library will be presented,
that in addition to the presentation of the HISS model and what impact it potentially could have.

The idea and motivation for sharing data in an ubiquitous manner, was inspired from the scenario in the
MultiScale Multimodal and Multidimensional for Engineering (MUMMERING) project [2]. This project was
established with the aim of creating a research tool that could empower scientists with access to the wealth of 3D
imaging modalities for applications in materials engineering, in addition to training 15 Early Stage Researcher
(ESR) students [2]. This tool and applications are to be used to analyse the terabytes and petabytes worth
of collected 3D imaging tomography data from scanned materials at various European scientific instruments.
As part of this, a fundamental issue is how the data is to be managed as explained in 2.2.7.1. Specifically,
where should the generated data be stored and show should it be made accessible for analysis. In [106] I
introduced the notion of utilising the existing Imaging Data Management System (IDMS) [181] at UCPH as
the designated data management platform. The reason for choosing this system was that it provided us with
the necessary foundations to both access, manage, and process the generated data. The combination of these
functionalities and a web based user interface made it applicable to our project. Furthermore, because the
computational infrastructure knowledge of the participants in the project is wide ranging, it was important that
the data management platform be usable across this range. Allow varied skill sets to still get usage out of the
platform, be they physicist that are mostly application and analysis oriented to computer scientists that develop
computational infrastructures. Where the first has often a limited notion of computational architectures and
benefits from limited choice and interactive interfaces, whereas the second can often be an expert and required
access to low-level features and commandline usage.

This scenario is not just applicable to the MUMMERING project, but is the case for many collaborations,
be they in the world of academic or industrial. In addition, another typical aspect, is that in collaborations
where the participants are a collection of cross institutional entities, a classic problem, is that both the data and
analysis are kept within each organisation. A common data management platform, like IDMC facilitates the
sharing of data, but it does not alleviate the fact that all datasets then will be located at the IDMS provider. This
however might not be feasible, especially in collaborations with organisations that produce data in the tera and
petabyte range like scientific instruments, such as ESRF, EuXFEL, and MAX IV. The issues here includes, the
amount of data to be stored, the amount that would have to be transferred, in addition to how access rights,
including ownership, read, and write rights are to be given and upheld. Also, in a collaboration, such as an
EU research project is by its nature limited in time. This means that at some point, the collaboration will have
to be dismantled. The institutions involved would likely want to have continued access to the generated data
beyond the scope of the project, likely feeding into other research projects. Having to rely on a central data
repository controlled by a single organisation is therefore not suitable or adequate. Instead, a more realistic and
manageable architecture, would be that each organisation is responsible for their own data management platform
which is the primary repository for their data. Sharing within the collaboration is then based upon given access
on a use case basis where it is deemed necessary. An example of how I imagine this would work can be seen
in Figure 3.1 and as I originally presented in [106]. Here I imagine that a User has some analysis that they
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would like to execute on a piece of data that is being generated by one of MAX IV’s scientific instruments.
In this scenario, its imagined that the instrument is able to store the data directly at the UCPH’s data storage,
namely D1. Meanwhile, the User is able to implement their analysis on their own computational resource, such
as their own laptop. Furthermore, if the UCPH D1 storage provides a method for accessing the data no matter
the location of the data nor the analysis, i.e. enable the ability to define a unique access method, the User
would be able to develop their analysis, such that it would be executable across any compute resource that can
reach the D1 storage. In addition, this setup does not limit MAX IV from developing and scheduling their own
analysis, which would subsequently be scheduled at their own Compute resource without interfering with their
collaborators work.

By defining that the analysis states where the data should be accessible from, is inverse to how Grid frame-
works have traditionally provided data input to a particular analysis. As explained in 2.2.7.1, these frameworks
have commonly been responsible for both hosting the data and subsequently staging it on computational re-
sources as part of the job execution with a name that matches the expectations of the analysis.

Pn

Dn Cn

Pn

P1
P2

Dn Cn

D1 C1

C2

In

User

UCPH

UAntwerp
MAX IV

Figure 3.1: MUMMERING Organizational Overview. P = Partner/Organization, D = Datastore, C = Compute
resource, I = Instrument, — = Submit execution on remote compute resource, - - - = load or store data from/on
data store, ⇐⇒ High speed 1 Gbit/s bandwidth. [106]

To provide this capability, mig utils leverages the fact that the IDMS system has an existing feature called
Share Links for sharing datasets with external collaborators. This was used as the primary method for enabling
Ubiquitous Data Access in [106].

3.1 Share Links

With the preexisting IDMS Share Links functionality, a user is able to share a specific directory or file path inside
their personal user directory on the IDMS platform with external users that are not registered on the platform.
At its core, this feature is similar to the Dropbox [39] sharing feature, or a Google Drive sharing [55]. While
enabling additional security and control measure in how the data can be accessed, in addition to being accessible
via multiple protocols. The supported protocols includes SFTP, WebDAV [188], File Transfer Protocol Secure
(FTPS) [184], and SSH Filesystem (SSHFS) [163].

35



3.1.1 Security

The IDMS Share Link is a 10 character string of randomly selected ASCII characters. Given that there are ˜62
possible characters to chose from, we are able to generate 6210 distinct Share Links. This space size was chosen
as to mitigate the potential for possible Share Link collisions and in turn mitigate the potential for brute force
attacks.

At the creation of a Share Link, the sharer is able to select the access control rights that an individual with the
link has. The selection here includes one of the following options, namely ReadOnly, ReadWrite, or WriteOnly.
A big part of the Share Links additional security, is that the link is kept secret, and is not shared with any that
is not intended to access the data. This model is the so called security through obscurity, which on its own, is
not a very secure model. However it is not the only protection, the underlying IDMS system does also impose
security mechanism to limit the abuse of or potential breach of Share Links. This includes rate limits and IP
bans for any violators of a preset amount of attempts over a given interval.

In addition, it is planned that the Share Links will have an adjustable levels of security, which could include
the requirement for passwords or private/public authentication keys. Furthermore, it has been contemplated that
the users could be allowed to define the entropy of the Share Link, or be able to specify an expiry date. For
instance, this could be achieved in a similar manner to how S3 implements the expiration. S3 does this by
encrypting an expiration timestamp with a private key. The server then decrypts with the public key and checks
the validity of the timestamp. This allows the link creator to set expiry at the time of creation, with no possibility
of manipulation. The value is simply passed as a query parameter.

3.2 MiG Utils

The MiG Utils [95] library was developed as an initial prototype to provide ubiquitous data access to the IDMS.
As presented in [106] it is a Python 3 library that provides a simple interface for accessing, managing and
interacting with a pre-existing Share Link. The library establishes an API that is similar to what one would
expect for using the regular Python operating system interface [150], including functionalities such as open,
close, remove, mkdir, rmdir, read, write, list, exists, seek, tell, and more. Currently the MiG Utils support two
protocols to interact with a designated datastorage, namely SFTP and SSHFS.

The overall architecture of the MiG Utils library can be seen in Figure 3.2. As indicated by the interface
layer, the library tries to make life easy for the users by establishing a set of interface helper classes. These
classes implement the boilerplate code that is necessary before the library can establish a connection to the
designated datastorage. The result is that typically the user only has to provide the designated Share Link, in
addition to the datastorage in question.

A basic example of MiG Utils usage can be seen in Listing 1. In this listing, the IDMC system is defined
as the designated datastorage, afterwards the current content of the share is listed. Afterwards a basic file called
example write is created and subsequently read from the share. As a simple validation of its correctness, the
content of the created and read file’s equality is verified before listing the content of the root location of the
share. The result of executing this simple example can be seen in Listing 2 where as expected the example write
file is created and the content of that file is Hello World.

from mig.io import IDMCShare

if __name__ == "__main__":
datastorage = IDMCShare("SHARELINK")
data = b"Hello World"
# List files/dirs in share
print(datastorage.list())

# Write binary string
with datastorage.open("example_write", "wb") as _file:
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Figure 3.2: The Minimum Intrusion Grid Utilities Library

_file.write(data)

read_data = None
# Read the binary string
with datastorage.open("example_write", "rb") as _file:

read_data = _file.read()

assert data == read_data
print(datastorage.list())
print(read_data)

Listing 1: mig utils hello world.py

(venv) rasmus@debian:˜/repos/mig_utils$ python3 example.py
[]
['example_write']
b'Hello World'
(venv) rasmus@debian:˜/repos/mig_utils$

Listing 2: mig utils run example.py

3.2.1 Benchmarks

To evaluate the effectiveness of the MiG Utils library, a number of benchmarks will be presented in this sec-
tion. This includes how the library can be used to submit the same analysis across multiple systems without
code adaption. In addition, it will be shown how the it then can be utilized across different computational
infrastructures to decrease the time it would have taken to collect the same number of results.

37



The first benchmark involves the analysis of a 3D X-ray computer generated computed tomography (CT) dataset
of 100 samples. These samples are artificial generated to represent aluminum foam [158]. This is the same
benchmark that was used in [81] to test the dynamic capabilities of a novel workflows framework that will be
introduced in Chapter 4. The example is tasked with analysing the pore radius distribution in every sample. Here
some samples only have a very few pores and needs to be discarded. The aim therefore is to evaluate the CT
datasets into which samples have a sufficient number of pores to be analysed. An overview of this process can
be seen in Figure 3.3. As can be seen here, the benchmark is a three step workflow. Each of these steps requires
both an input dataset and in turn generates a file, either for subsequent analysis or to indicate that the foam has
to few pores. Additional details about what each step is doing can be seen in the following enumeration adopted
from [81].

1. Step 1 (‘initial porosity check‘): A two-component Gaussian Mix- ture Model is fitted to a small sample
(around 1 %) of the intensity data, providing a rough idea of the air-to- aluminium

2. Step 2 (‘segment foam data‘): In the first step of the segmentation process, noise is reduced using a
Median filter. The filter kernel size is defined as a variable whose value is set in the Pattern. Thereafter,
the image is segmented using Otsu thresholding [127]. Finally, a morphological closing operation is
performed to remove possible remaining single-voxel noise.

3. Step 3 (‘foam pore analysis‘): To investigate the pore size distribution, the individual pores are identified
using the watershed algorithm [35] with local peaks in a distance transform of the segmented data as
seeds.

*.txt*.txt

foam_ct_data/*.npy

foam_ct_data_discarded/*.txt

foam_ct_data_accepted/*.txt

foam_ct_data_segmented/*.npy

foam_pore_analysis

segment_foam_data

inital_porosity_check

foam_ct_data_pore_analysis/*.png

*.txt

*.txt*.txt*.txt

Figure 3.3: The foam analysis workflow with additional file images to make the data state clearer through the
different stages. Taken from [81]

The workflow presented in [81] was adjusted it utilized the MiG utils library for staging inputs and outputs
instead of relying on the MiG [20] to accomplish this. To evaluate and test that the library performed as expected,
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the adjusted workflow was executed in four different environments. Namely a normal desktop PC, a shared
compute server, an external cloud resource, and a dedicated SLURM cluster. The specifications for these systems
can be found in Appendix D.1. Since this benchmark is dependent on collecting and storing data to a remote
storage unit, the bandwidth from the specific compute environment to the storage is going to have an impact on
the performance. Therefore a set of bandwidth benchmarks was made from the benchmark environments to the
IDMC system, an overview of these results can be seen in figures 3.4a through 3.4b in Section 3.2.1.1.

(a) Sequential Read from MODI SLURM to IDMC (b) Sequential Write from MODI SLURM to IDMC

(c) Sequential Read from DAG to IDMC (d) Sequential Write from DAG to IDMC

(e) Sequential Read from Scientist PC (f) Sequential Write from Scientist PC

Figure 3.4: Bandwidth measures from mig utils benchmark environments, see Appendix D.1

3.2.1.1 Test environments

As is shown in the bandwidth Figures from 3.4a to 3.4f, the bandwidth from the different environments ranges
from a peak of from MODI at 200 MBps with the PC having the lowest bandwidth at a rate of xx. In addition,
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the specifications for the different benchmark systems can be found in Appendix D.1.

3.2.1.2 Benchmarking Mig Utils

The results of the Mig Utils library can be seen in Figure 3.5a through 3.5c. The figures presents the results
of running the ‘mig utils benchmarks‘ implementations, which can be found in Appendix E.1. In addition, the
original implementations of which can be found at [80]. However, it should be noted in this instance, there there
were additional changes for benchmarking the pore analysis steps, compared to the original implementation
[80], as can be seen in Appendix 13, 14, 15. These changes were made to facility the benchmarking of the
individual steps, and the ability to automatically schedule the 100 jobs per benchmark via the runner script as
can be seen in Appendix 16. Furthermore, an additional SLURM based runner was implemented to enable the
submission of the foam pore analysis steps to the MODI cluster.
As shown in Figure 3.5a and Figure 3.5b, the DAG and MODI systems, exhibit a comparable performance on
the ‘foam pore analysis bench‘. This is in contrast to the Internal OpenStack VM consistently performs an
estimated 20 to 40 seconds faster. The reason likely being that DAG and MODI are shared systems, whereas the
Internal OpenStack VM is a machine with dedicated resources. Looking at the first two steps of the workflow,
there is less deviation across the benchmarks, with DAG and the Internal OpenStack VM consistently executing
the ‘initial porosity check bench‘ step faster than the ‘segment foam data bench‘ step. This is in contrast to
the MODI benchmarks which in comparison have a fluctuating performance on the same two steps. However,
it should be noted that on the MODI system, each individual three step benchmark were submitted in parallel,
meaning that they as far as the system had capability for it, executed the benchmarks in parallel. This may have
been the cause of the both increase and fluctuating runtime as shown in Figure 3.5a.

(a) MODI Compute times (b) DAG compute times

(c) An Internal Openstack VM times

Figure 3.5: Benchmarks for the workflow shown in Figure 3.3

As these benchmark shows, utilizing the MiG Utils library enables the same implementation to be executed
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across multiple systems. This is possible through minor changes only to how the specific implementation loads
and saves its inputs and outputs.
As the results also indicate, the performance of the individual steps is impacted by how fast the inputs and outputs
can be served. However, whether to utilize the MiG Utils library and a central or several data storage repositories
to facility the data management of a particular analysis in this seamless manner, has to be judged on a case by
case basis. What has to be considered here, is the amount of data that has to be loaded and stored, for each job
that has to be executed and whether the time it requires to complete this staging, makes it worthwhile converting
existing implementations to the MiG Utils structure. In addition, what also has to come into consideration, is
the scenarios in which the data has to be used. That is, does the owner and users foresee a scenario as in the
MUMMERING project as highlighted in Figure 3.1 where multiple collaborators would benefit from having
cross organisational sharing of data. In such an environment, a tool like the MiG Utils library could be a useful
complement, to traditional sharing. Specifically, enabling the sharing of algorithms via their implementations
without the direct sharing of the underlying datasets and results.

3.3 Data on the Grid

By abstracting the placement of the underlying datasets, it enables users to design their implementations to be
independent of where they are executed. Instead, the responsibility falls on the organisation and the people
responsible for providing data management and data access gateways. This includes the establishment of a
sharing functionality that enables the tools like the MiG Utils library to both retrieve and store datasets. Inspi-
ration to this can be drawn from both the presented IDMS Share Links [106], and commercial solutions such as
Google Drive [55] and Dropbox [39]. Extending from these implementations, a three tier sharing stack could be
imagined. Namely the ability to share at a Basic, Advanced, Complex level.

3.3.1 Basic Sharing

Basic sharing would involve the basic functionalities provided by the current implementations of IDMC Share
Links, Google Drive, and Dropbox. The basic part involves providing users with the ability to share the datasets
anonymously at a unique endpoint, such as an URL. Furthermore, the users should be able to define basic
access restrictions on said endpoint. Thereby covering controls such as determining whether requests are able
to perform read, write operations. Also, whether anonymous users are able to access the endpoint at all.

3.3.2 Advanced Sharing

Advanced sharing functionalities builds on the foundations set by Basic Sharing and enhances the users ability
to control how their datasets can be accessed. What is imagined at the advanced level it that a specific user is
able to define the security level or policy of the endpoint. What is meant by the security level in this context,
is which preset policies for each level that should be enforced on the Shared resource. One could imagine a
three tier model of Low, Medium, and a High security level. Low security would be the default sharing as is the
case with the current IDMC Share Links, that is that they are only protected by the generated unique id that the
user is responsible for only sharing with who they wish to share. Medium security would increase the required
amount of authentication to require a valid and allowed set of credentials before a request is accepted, this could
be either a valid password or an allowed public key authentication. High security could allow the user to define
which IP addresses would be allowed to access the shared resource, High security could also require that two
factor authentication is validated before a connection can be establish to the shared link.

3.3.3 Complex Sharing

Complex sharing would allow the same possibilities as Advanced sharing, but instead of having a set of prede-
fined levels, the user would instead be able to enable or disable the specific policies manually.
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3.4 The HIgh Throughput Model

As I presented in [107], data production and processing is a substantial challenge at scientific instruments such
as MAX IV, where when fully operational, will have 16 x-Ray beamlines that can potentially produce upwards
of 18TB per hour of imaging data. With the current approaches, a classic way to manage this data, would be
to construct an in house infrastructure consisting of a high speed parallel files and an associated batch oriented
computer cluster. An example of this can be seen in Figure 3.6 which displays the MAX IV infrastructure
architecture for handling beamline data flows and processing. The subsequent processing workflow typical
involves three steps, namely pre-processing, analysis, and postprocessing. The pre-processing covers the task
for preparing the data before it can be analysed, this could include tasks such as transforming or transposing the
produced datasets. Pre-processing could also cover tasks such as filtering out incorrect or unwanted data points.

Figure 3.6: MAX IV Architecture at the end of 2019 [82]

A traditional approach to perform such workflow steps, would be to utilize a Big Data framework such as
Hadoop or Spark to complete the workflow. An example of how this typically would be accomplished can be
seen in Figure 3.7.
When performing pre-processing tasks, such as filtering out noisy or invalid data points, a classic architectural
approach also typically implies a substantial amount of data movement. An example of this can be seen in Figure
3.8. In this Figure, the beamline produces rays of X-ray that are directed towards the object at a given set of
angles. Then the rays that interact with the object, will experience electron absorption from the object, the rate
at which is determined by the material of the object. After the interaction, the remaining electrons are absorbed
by the detector. It is from the detector absorption, and the measured electron levels from each angle, that the
internal structure of the object can be imaged. The detector itself outputs the datasets for each angle as image
slices that are stored at a designated storage location. This step is also known as acquisition in the a tomography
workflow as illustrated in Figure 3.9. Subsequent to this, the object slices can then be used for reconstruction a
3D image, which then can segmented into areas of interest and eventually modelled for material characteristics.
Acquisition describes the phase of generating the raw datasets as described in the previous section. After the
raw datasets have been written to the storage, typically in scenarios such as 3D imagining, a number of pre-
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Figure 3.7: Hadoop HDFS Workflow [31]

Figure 3.8: A Beamline scenario

Figure 3.9: An overview of the tomography workflow [22]

processing tasks have to performed before the data can be successfully reconstructed. For instance, the gener-
ated data could have noisy signals that would have to be discarded before an adequate reconstruction could be
performed. Discarding such noisy signals, requires the complete traversal of the collected datasets, which could
involve processing TB of data. At MAX IV for example an 8 hour beamtime experiment can produce up to 144
TB. This implies that potentially 144 TB could subsequently have to be pre-processed, by having the individual
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nodes in the compute cluster load a certain subset of the data from the parallel file system before storing the
filtered data back to the storage.

(a) 1. The data is loaded into CPU via the
network interface, and the North Bridge. 2.
It is then stored on the disk to be ready for
subsequent processing.

(b) 1. The data is then loaded into memory
where it is now ready to be processed by the
CPU. 2. The CPU will then copy the data
into its registers, perform some operations
before storing it back into memory.

(c) 1. Filtered data is written back to the
disk. 2. When ready, the filtered data is then
transferred to the external storage where it is
now ready for subsequent processing.

Figure 3.10: An example of data movement in a traditional compute-oriented infrastructure

As is shown in Figures 3.10a to 3.10c, when conducting a pre-processing task, substantial amount of data
transfers can occur in a classic computational cluster setup, such as the one displayed from MAX IV. This
movement includes both loading the data into a particular node, but also when transferring back the filtered
data. Similarly, as was also illustrated by Figure 3.7, Big Data frameworks such as Hadoop can exhibit the same
substantial amount of data movement, which is not unexpected since their task is to process data. It should be
noted though, that how the data is being stored and handled within the node is only an example of a classic
computer architecture, and will vary both depending on the vendor, design of the logic board, and the chosen set
of components that a particular node have been configured with. For instance, specialized hardware like Remote
Direct Memory Access (RDMA) network cards will change and optimize the data flow within a particular node,
by being able to access data in the memory directly. Furthermore, frameworks like Hadoop, also have variants
that allow for the data to be processed in memory without having to be stored on the disk itself. However, this
does not detract from the fact, that any savings in data movement beyond this, still still wanted and beneficial.
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The result of any additional data movement, results in increased compute time consumed before the task is
completed. Any reduction in terms of required data movement will have a beneficial impact on performance. As
part of this PhD. I in collaboration with my supervisor and external collaborators at MAX IV developed a storage
system design, that is aimed at reducing the required data transfer in the workflow scenarios like tomography.
Specifically, applying in-situ computation to data as it is being either transferred. To perform this, we created a
design for establishing a front-end storage buffer system that would be able to perform computation on incoming
and outgoing data streams. Namely, the HIgh Throughput Storage System (HIIS), which an overview of can be
seen in Figure 3.11.

Figure 3.11: An example of a HISS use case [107]

The HISS system was designed to perform these in-situ computation by applying computational kernels to data
streams as they passed through the system. The computation was intended to be performed by translating non-
loop Python code to VHDL that can be synthesised to Field-Programmable-Gate-Array via the software stack
shown in Figure 3.12.
Furthermore, HISS was designed to act as a front buffer systems that is located in front of regular persistent
storage systems such as a parallel file system, a collection of bare bone storage blades, or a tape archive. This
implies that HISS is not designed to be a permanent storage location, but as an ephemeral location where data
is fed through before it is being stored or delivered at its intended endpoint. In this regard of being a temporary
storage location, the aim of HISS is similar to storage systems such as GekkoFS [180], with the extension of
applying computational kernels to the data streams as they flow through the system. HISS was designed to be a
distributed storage system with no central master server.
The result of this work, was a partial Go prototype implementation of an object storage file system [99]. This
initial file system introduce a three tier hierarchy data storage structure. An overview of this hierarchy can be
seen in Figure 3.13. In HISS, an individual Block is the lowest denomination of some form of data that can
be interacted with, a Block is defined by a three attributes, i.e. Data, an ID and a Length. The ID is a unique
identifier that specifies where a particular block is located on the storage device. A Stream, is defined by two
attributes, i.e. an ID and an array of blocks. At the top of the hierarchy is the Collection, a Collection contains
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Figure 3.12: From NumPy to hardware Synthesis in HISS [107]

a number of Streams. The aim of this structure, is to enable the user to read and write spatially and temporally
coherent data structures to and from the designated storage device. By doing so the design seeks to enable high
bandwidth read and write operations from and to HISS.

Figure 3.13: HISS Storage Object Hierarchy

HISS was designed with the three tier hierarchy to reflect the reality of scientific applications. Scientific ap-
plications have been shown to exhibit both read and write intensive I/O requests on both extremely large and
extremely small sizes on sequential and irregular access patterns. [29]. In the initial design, HISS focused on
enabling the computational kernels being applied to sequential and high bandwidth I/O patterns. An example of

46



how Blocks, Streams, and Collections are utilized in the HISS prototype can be seen in Listing 3. Here a single
hello world block is uploaded and subsequently downloaded to the client PC.

import (
"github.com/rasmunk/hiss_prototype/pkg/client"
)

client := client.NewClient()
// Connect to the HISS endpoint (Specify public service IP)
client.Connect("127.0.0.1", "5001")
// Disconnect from HISS
client.Disconnect()

// Define a block
buffer := []byte("Hello World")
block := io.NewBlockV2(io.Data(buffer))

// Define a BlockStream
blocks := []io.BlockV2{*block}
blockStream := io.NewBlockStream(io.Blocks(blocks))

// Define a BlockCollection
streams := []io.BlockStream{*blockStream}
blockCollection := io.NewBlockCollection(io.BlockStreams(streams))

// Upload blocks in a user controlled size
client.Execute(block2.Upload(block))
client.Execute(stream.Upload(blockStream))
client.Execute(collection.Upload(blockCollection))

Listing 3: HISS hello world.go
The work on HISS did not progress beyond the initial design and prototype of achieving basic I/O of Blocks,
Streams, and Collections. Multiple set of circumstances was the reason for this. The largest of these was that,
the HISS systems primary contribution would be the introduction of enabling the users to define and apply
computational kernels in-situ to the I/O data streams. To accomplish this, the plan was to acquire the necessary
hardware to conduct such tests and benchmarks. A number of viable hardware platforms were identified. The
most promising of which was a variant of the Stratix 10 board and the prototype Samsung SmartSSD, each of
these can be seen in the following enumeration. However these were subsequently deemed to be inaccessible
either due to price or access and therefore made an actual implementation of the full HISS design infeasible.

1. Samsung SmartSSD [195]

2. DE10-Pro-GH2E2-165 - DE10-Pro GX 1650KLE Development Kit, 4GBx4 [165]

3. DE10-Pro-GH2E2-280 - DE10-Pro GX 2800KLE Development Kit, 4GBx4 [164]

3.5 Summary

In this Chapter, I presented my work in providing ubiquitous access to datasets across organisational boundaries.
The MiG Utils library was presented, including how it can be used to make a foam analysis implementation
location independent, by allowing it to both stage input data and store results at a predetermined data repository.
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The Chapter showed the impact of running a three step tomography analysis, including initial benchmarks of
how the various stepped performed across five different systems. Furthermore, the idea and design for the
HISS storage was presented, including how such a system could benefit large data producers such as scientific
instruments. Specifically, that alleviating the classic compute cluster of pre-processing tasks, such as filtering to
a front buffer storage system could potentially save subsequent processing time. In addition, the basic design for
the underlying object storage engine was presented, including how collection of data could be stored in order
for it to subsequently apply computational kernels to a particular data Block, Stream or Collection.
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Chapter 4

Interactive Data Analysis

In this Chapter I will present the development and integration of interactive data analysis platforms that were
developed throughout the PhD. This includes the establishment of two computational services at UCPH, namely
the Data Analysis Gateway (DAG) and Message Passing Interface (MPI) Oriented Development and Investiga-
tion (MODI). What will be covered, includes the design of these services, the developed architecture, and their
subsequent use and contributions to the area of interactive compute platforms.

4.1 Data Analysis Gateway

Providing large computational resources to users has long been a challenge in the scientific community. Histor-
ically, the approach has been to establish large Unix-like compute cluster platforms that researchers, teachers,
and maybe students could utilize at a defined consumption rate. However, to use such resources, the traditional
approach has been to rely on command line access with accounts managed either via regular local user synchro-
nisation, or via an integrated user database distributed across the computational nodes. This approach requires
that the user has certain knowledge and skills in utilizing a shell-based system which the younger the user, the
less likely they are to have encountered before. In today’s world, non computer scientists are typically only fa-
miliar with GUI based interfaces such as web based platforms. The traditional skills of utilizing command-line
skills can of course be acquired through training and usage, but such a time investment is in contrast to what the
typical scientists, teacher or student is interested in. They want to utilize the computational resources to discover
answers to their research questions.

4.1.1 Existing interactive services

In terms of existing solutions, several projects have dedicated their mission to provide web based interactive
programming and data processing [5] [52] [91] [145]. Furthermore, specialized platforms such as RStudio
[155], Google Colab [3], Kaggle [68] are also an area that has seen much development. However, as presented
in [105], these platforms have certain limitations, such as the available hardware platforms, the given lifespans
of a session, and the available development environments, an overview of which can be seen in Table 4.1 and
4.2. The most significant of which, is that the limitations and the overall usage policy is defined by the external
provider. A highlight of which is that the most generous in terms of session time before being stopped was
CoCalc with 24 hours. In comparison to this, internally provided services allow the institution to define a policy
that suits their needs. Because of this, the DAG service was developed and introduced at UCPH. The platform
delivers a JupyterLab [137] based web experience for scientists to perform interactive programming in various
languages. Currently this includes Python, R, C, and Q with the possibility of extensions.
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4.1.2 Jupyter

Jupyter [138] is the overall project that develops and delivers tools for interactive data analysis tools and scientific
computing. At the inception, the foundation of this project was the IPython Notebook [130] format (.ipynb).
As presented in [103]. “It is based on interpreting special segments of a JSON document as source code,
which can be executed by a custom programming language runtime environment (also known as a kernel).“ The
Jupyter Notebook is then the subsequent developed web interface, to allow an interactive document experience.
This in turn was replaced by the JupyterLab [137] interface, which aims at providing a Interactive Development
Environment (IDE) in a browser setting. Both of these web interfaces are based on providing a single web-based
user experience.
JupyterHub [136] is instead not a data analysis interface per say, but is the de-facto standard to enable multiple
users to utilize the same compute resources for individual Jupyter Notebook/Lab sessions. It does this through
its own web interface gateway and backend database to segment and register individual users before allowing
them to start/spawn a Jupyter session. In addition, it allows for the extension of both custom Spawners and
Authenticators to allow for site specific implementations on how the users should be allowed to spawn an
instance and how either the Jupyter Notebook or JupyterLab instances should be spawned [103]. An overview
of its architecture can be seen in Figure 4.1.

Figure 4.1: JupyterHub Architecture [142]

4.1.3 DAG in detail

The service leverages several known Jupyter based technologies, including the multi-user version of JupyterLab
named JupyterHub [136] to allow multiple different users to initiate a personal environment. Furthermore, a
common obstacle when utilizing either public or private interactive data processing environments is how data
management will be provided. This is typically established via a public or private data platform. The mentioned
public data processing services have a variety of limitations the most common being the maximum allowed
space. Google Colab for instance defaults to using Google Drive which as of writing is limited to 15 GB of free
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Table 4.1: Subset of Jupyter Cloud Platforms Features, taken from [105]

Provider Native Persistence Languages Collaborate MaxTime (inactive,max)

Binder[1] None User specified 1 Git 10m, 12h2

Kaggle [70] Kaggle Datasets Python3,R Yes 60m, 9h
Google Colab [54] GDrive, GCloud Storage Python3,R Yes 60m,12h* 3

Azure Notebooks [90] [89] Azure Libraries Python{2,3},R,F# NA 60m,8h* 4

CoCalc [28] CoCalc Project Python{2,3},R,Julia,etc Yes* 30m, 24h
Datalore [63] Per Workbook Python3 Yes 60m, 120h 5

DAG [96] ERDA Python2,3,R,C++,etc Yes 2h, unlimited 6

Table 4.2: Hardware available on Jupyter Cloud Platforms, taken from [105]

Provider CPU Memory (GB) Disk Size (GB) Accelerators

Binder NA 1 Min, 2 MAX No specified limit* None
Kaggle1 4 cores 17 5 None
Kaggle2 2 cores 14 5 GPU 7 or TPU 8 [69]

Google Colab Free NA NA GDrive 15 GPU or TPU (thresholded access)
Azure Notebooks (per project) NA 4 1 GPU (Pay)

Cocalc (per project) 1 shared core 1 shared 3 None
Datalore 2 cores 4 10 None

DAG 8 cores 8 unlimited 9 None

storage [105]. An overview over the different interactive data processing providers and their limitations can be
seen in Table 4.1 and 4.2.
In terms of providing the computational environment, the DAG service leverages a container based software
stack to provide both application dependencies and process isolation. This was chosen over utilizing bare metal
or visualized environments, the reason for this was to benefit from the capabilities of containers compared to
the other options as highlighted in Section 2.2.6. This includes the increased isolation compared to bare metal,
the reduced load from operating system processes compared to virtual machines, and the increased efficiency
when hosting multiple users compared both to bare metal and virtual machines. To provide the orchestration
of the containers, DAG at the moment utilizes the Docker Swarm cluster container orchestrator [36], which is
responsible for keeping track of each participating node, their health, and their scheduled services. It schedules
services as underlying containers across the available nodes in a load aware manner. The reason being, that
since every participating node in the prototype was internally hosted, Docker Swarm allowed for an instant an
easy to manage infrastructure that could schedule JuptyerLab sessions via an adapted version of the Jupyter
SwarmSpawner [94]. To provide data persistence, Docker Swarm uses the notion of volumes. A volume is a
special created directory on the host within the Docker application’s state. When a container or Swarm service
for that matter is created, a volume can be associated with it. When this happens, the external volume directory
is mapped into a specified path within the spawned container. Thereby it ensures, that any data written to that
container path, is kept persistent by the host after the container has been terminated. This however is not the case
for any other data created inside a container, these cease to exists due to the ephemeral nature of the container’s
default overlay filesystem. An overview of the current DAG architecture can be seen in Figure 4.2.
At UCPH, the Electronic Research Data Archive (ERDA) provide several services. The prominent of which as
the name indicates is data management. In addition, it also provides other services including archiving, sharing,
and project collaboration [176]. ERDA like the IDMC is a specialized deployed version of the MiG. Because
both ERDA and IDMC are the go to platforms for scientific datasets at UCPH, they were deemed as reasonable
candidates for integrating with the DAG architecture to empower them with data processing capabilities. To
enable access to the users individual datasets at either ERDA or IDMC, the underlying MiG project was extended
with the ability to both act as a front proxy to a data processing platform like DAG. In addition, the MiG was
also adjusted to allow the generation, management, and forwarding of time limited user credentials to the data
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Figure 4.2: DAG Architecture

processing system. The choice fell on utilizing public key authentication as introduced in Section 2.2.1.1. These
credentials were then subsequently used by DAG to mount the users individual home directory via SSHFS. To
enable the DAG Docker Swarm service to receive and utilize the received credentials, the specialized docker
volume plugin docker-volume-sshfs [93], was used. With this plugin, the DAG service was able to create and
maintain the SSHFS connection in a host specific directory, prior to it being mounted into a spawned user Jupyter
service. An overview of the integrated system can be seen in Figure 4.3.
As Figure 4.3 indicates, the integration was made possible by forwarding ERDA/IDMC user and mounting cre-
dentials to the backend DAG service. Since native JupyterHub does not support accepting such information, a
supported extenstion instead had to be defined to make such integration possible. JupyterHub by default support
three types of third party extensions. Specifically, the Authenticator, Spawner, and Services. When dealing with
the authentication and storing of user associated information, the Authenticator is the defined part of the archi-
tecture that could support such functionality. In this scenario, it was deemed sufficient to pass the information by
leveraging the data management platform’s ability to forward user associated Headers since it would be acting as
a front proxy to the DAG service. In terms of available options, none of the existing authenticators [66] had the
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Figure 4.3: DAG integration with MiG

capability to allow both for authentication and subsequent storage of forwarded headers. The closest existing
authenticator that provide part of this functionality is the REMOTE USER authenticator [30]. Although this
does enable an Apache front proxy to forward the user credentials as part of that particular header, it does not
allow for any customisation of any additional headers or which URL endpoint the headers should be posted to.

4.1.4 HeaderAuthenticator

In response to the limitations of the REMOTE USER, I introduced a new Authenticator called HeaderAuthen-
ticator, which alters the REMOTE USER authenticator’s functionality, such that the JupyterHub administrator
can define a custom set of endpoints that can receive header posts, in addition to defining how they should be
parsed. An example of how the HeaderAuthenticator can be activated in JupyterHub can be seen in Listing 4.
The reason for the enable auth state boolean is set, is because the HeaderAuthenticator stores the transmitted
data in the JupyterHub’s user authentication state [67] dictionary, which JupyterHub automatically encrypts be-
fore it stores it in its database. Beyond defining the specific header names, and the endpoint on which they
should be expected, the HeaderAuthenticator also allows the administrator to define how the particular headers
should be parsed. It allows for this custom parsing via the header parser classes attribute as shown in example
one in Listing 5. The second example in Listing 5 shows how a regular expression parser could be used too
extract usernames from the header MyAuthHeader.
c = get_config()

c.JupyterHub.authenticator_class = 'jhubauthenticators.HeaderAuthenticator'

c.HeaderAuthenticator.enable_auth_state = True
c.HeaderAuthenticator.allowed_headers = {'auth': 'MyAuthHeader',

'auth_data': 'MyCustomHeader'}

Listing 4: JupyterHub HeaderAuthenticator
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from jhubauthenticators import JSONParser, RegexUsernameParser
c = get_config()

c.JupyterHub.authenticator_class = 'jhubauthenticators.HeaderAuthenticator'
c.HeaderAuthenticator.enable_auth_state = True

### Example 1 ###
# JSON Parser
c.HeaderAuthenticator.header_parser_classes = {'auth_data': JSONParser}

### Example 2 ###
# RegexUsernameParser
c.HeaderAuthenticator.header_parser_classes = {'auth': RegexUsernameParser}

# Email regex extractor
RegexUsernameParser.username_extract_regex = \

'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'

# Replace every '@' and '.' char in the extracted username with '_'
RegexUsernameParser.replace_extract_chars = {'@': '_', '.': '_'}

Listing 5: JupyterHub HeaderAuthenticator with custom parsers

4.1.5 Runtime Environments

To provide the users a set of pre-built environments a set of base container images were established at [104].
These are specialized extensions of the base image called jupyter/base-notebook provided by the Jupyter project
[141]. Using this base image, has the benefit that the underlying Jupyter environment is both maintained and
updated by the Jupyter developers, which alleviates the task of performing administrative burdens in keeping
Jupyter itself up to date. The result of this was a stack of docker images [104], that covered some of the most
requested packages bundled in different images. An example of this, is the datascience-notebook which contains
what in our experience was the most common Python packages for performing data analysis tasks, including
Numpy [118], SciPy [157], and Pandas [129]. The full stack is hosted at the DockerHub public repository, which
makes it free to use by anyone which wishes to use it. Whether it be in a local user environment, or in a shared
service scenario such as DAG.

4.1.6 Result

The result of this, was that UCPH was able to provide an integrated data management and data processing
platform in an interactive environment for single user tasks. The university was able to accomplish this through
the deployment of DAG and the integration of MiG. Since its deployment, the service has been a beneficial
tool at UCPH, this includes serving teachers in delivering courses. In particular courses that covers areas such
as data analytic, programming, or modelling has reported great benefit from the DAG service. A couple of
course highlights include Introduction to Computing for Physicists [178], Applied Statistics [177] and Physcial
Oceanography [65]. Beyond the installation at UCPH, a DAG-like service has also been deployed in a prototype
environment at MAX IV. This was established from an ongoing collaboration between the eScience group at
NBI and the Controls IT [84] department at MAX IV. This has enabled continued refinement and development
of the service.
Since the DAG service is designed to allow each user to spawn an isolated environment with only access to
a limited set of resources on a particular node, it is not well suited for large scale applications and analysis.
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Instead, such needs could be served by an environment like a classic batch oriented cluster that allows cross
node coordination. In its current inception, DAG does not enable the user to utilize such platforms. Because
of this limitation, a complementary service was subsequently developed at UCPH, namely the MPI Oriented
Development and Investigation (MODI) service.

4.2 MPI Oriented Development and Investigation

The initial motivation for MODI, as presented in B.1, was to enable the High Performance Parallel Computing
course and researchers at UCPH access to a small scale high performance computing cluster with an interactive
portal like the DAG service. The aim therefore was to establish a small sandbox cluster, that could both act as a
teaching platform for how a classic batch oriented compute cluster is used and as a general multi node compute
resource. The target audience for this included both the students, teachers, and researchers in UCPH and similar
institutions that utilize such systems. The point being that the MODI systems would act as a stepping stone
towards using greater and more complex computational platforms such as a regular HPC Center [179], or a
EuroHPC facility such as the Barcelona Supercomputing Center [15]. To provide such an experience, several
features and tools had to be available on the platform. Foremost, it meant that all complexity should not be
hidden away or handled for the user. The reason being that, in a regular HPC environment, the user is typically
required to stage their datasets to a shared scratch space which each compute node has access to. Furthermore,
these systems in contrast to DAG, still rely on a command-line interface, one of the most prominent reasons
for this, is the legacy of the tools used to provide a multi-node batch-oriented compute cluster. For instance,
in SLURM as presented in Section 2.2.3.1, the default interface is still the usage of command-line programs
such as sinfo, squeue, and sbatch. Because of this, it was important that the MODI service delivered a regular
command-line interface. However, this did not mean that MODI could just be a regular Unix-like compute
cluster with a standard primary login node, which every user had to authenticate against to get access to the
service. This would require the manual creation and management of both user creation, authentication, staging,
and maintenance. Instead, the user management should be automatically handled, leaving only the task of data
staging and job management to the user.

4.2.1 Difference to DAG

As in DAG, other solutions have focused on integrating a web portal environment with a compute environment
like a batch oriented cluster [153], [145], [52]. MODI differs to these as presented in B.1 that it delivers all of its
functionality through the common JupyterLab and JupyterHub interfaces by integrating it with an existing data
management platform, namely the ERDA/IDMC services at UCPH. Via this, it established an easy to access
web powered computational platform that automatically integrates the users datasets and their user credentials
with a classic SLURM cluster.

4.2.2 MODI Design

To provide this, several features and capabilities had to be established before such a service could be initiated.
The features included the integration with ERDA/IDMC, the authentication and authorization of the user, the
integration with a regular Unix-like batch oriented cluster, and the handling of user information so that it is
properly translated between the involved systems. An overview of the MODI Architecture image can be seen in
Figure 4.4.
As indicated by Figure 4.4, the implementation of MODI, relies on a backend Lightweight Directory Access
Protocol (LDAP) database to store user information. The reason for this was that in the Unix-like world, it is
one of the most standardised and proven methods for providing distributed and uniform user accounts. [191].
A detailed explanation of how LDAP was utilized can be found in Appendix B.1. The HeaderAuthenticator
was utilized across both the DAG and MODI service to enable the custom forwarding of user and mounting
credentials from the ERDA/IDMC front proxies.
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Figure 4.4: MODI Architecture

4.2.3 LDAP Hooks

Because JupyterHub manages its own user accounts, their information had to be integrated into the backend
LDAP user database to ensure consistency between the two systems. Although the existing LDAPAuthenticator
[134] would allow JupyterHub to authenticate via an LDAP based database. Nevertheless, the LDAPAuthenti-
cator is not able to fully automate the integration of external users into the subsequent LDAP provided database.
The reason being that it does not allow for the management of user accounts beyond verifying that the requested
user exists and that it can be correctly authenticated [134]. Because of this, a different approach had to be
employed to deliver the MODI system as described. For instance, JupyterHub’s API for Spawners does allow
for the execution of external functions before a particular Notebook is spawned. Any function that should be
executed at this state, must be assigned to the pre spawn hook. This functionality could be leveraged by the
JupyterHub service to ensure the translation of its internal user information to be LDAP compatible before a
user’s JupyterLab session is spawned. Therefore this was deemed a good place for inserting logic that ensures
that any external user is properly integrated into the LDAP database.
I created the ldap hooks [97] library to exploit the hooks functionality in the JupyterHub API, and to enable the
automatic integration of external users into a designated LDAP based database. To integrate the library with
an existing JupyterHub service, the service configuration has to define which library hook should be executed
before a particular Notebook is spawned. An example of such a configuration can be seen in Listing 6. In this
example, the hello hook is a simple function that tells the Spawner to log a ”Hello World” string before the
Notebook is spawned. In contrast to this, the example in Listing 7 shows a realistic usage of the ldap hooks
library.
With the configuration in Listing 7, the JupyterHub service is able to create a user in the LDAP based
database before the Notebook is initiated. Achieving this was made possible with the ldap hooks library
setup ldap entry hook functions, that validates the required information is provided by the specified sub-
mit spawner attribute and submit spawner attribute keys. Hereafter, the ldap hooks library utilizes the connec-
tion options to ensure that the LDAP.url is reachable and that the provided authentication details can establish a
valid connection.
Since certain pieces of information might not be externally provided, the library enables attribute val-
ues to be dynamically discovered via a set of predefined methods. The reason for this, is that before
any user information can be successfully submitted to the LDAP database, it has to be correctly for-
matted as per the specified objectclasses that is expected by the underlying Directory Information Tree
(DIT). To account for this translation and eventual missing required pieces of information, the ldap hooks
library implements a set of dynamic search methods. The set of available search constants includes
the three options (LDAP FIRST SEARCH ATTRIBUTE QUERY, LDAP SEARCH ATTRIBUTE QUERY, and
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Figure 4.5: MODI Login Stack

SPAWNER SUBMIT DATA) in Listing 7 that are assigned to the LDAP.dynamic attributes variable. In order,
they try to extract the key value of the dictionary by utilizing the method described by the value constants.
LDAP FIRST SEARCH ATTRIBUTE QUERY searches the LDAP database for the first matching object that
has the specified key attribute. LDAP SEARCH ATTRIBUTE QUERY has the same behaviour, but potentially
returns multiple matches of the specific attribute. The library conducts the searches by constructing search query
based on the defined LDAP.object classes, LDAP.unique object attributes, and LDAP.search attribute queries.
In addition, the LDAP.search result operations allows for the library to modify the result of searched attribute
before it is associated with a new user. For instance, as shown in the example in Listing 7, the uidNumber
attribute is incremented by one before it is associated with the new user and submitted to the LDAP DIT.
Beyond the used methods in the example, ldap hooks implements a number of additional search methods that
can be found in the library itself. Additional details on the how this is accomplished can be found at [97].

# Example config
from ldap_hooks import hello_hook

c = get_config()
# Make the Spawner log "Hello World"
c.Spawner.pre_spawn_hook = hello_hook

Listing 6: Basic JupyterHub LDAP Hooks configuration

# Example config
from jhubauthenticators import RegexUsernameParser
from ldap_hooks import setup_ldap_entry_hook
from ldap_hooks import (

LDAP,
LDAP_SEARCH_ATTRIBUTE_QUERY,
SPAWNER_SUBMIT_DATA,
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INCREMENT_ATTRIBUTE,
LDAP_FIRST_SEARCH_ATTRIBUTE_QUERY,

)
c = get_config()
c.JupyterHub.ip = "0.0.0.0"
c.JupyterHub.hub_ip = "0.0.0.0"
c.JupyterHub.port = 80

# Spawner setup
c.JupyterHub.spawner_class = "dockerspawner.DockerSpawner"
c.DockerSpawner.image = "nielsbohr/base-notebook:latest"
c.DockerSpawner.pre_spawn_hook = setup_ldap_entry_hook

# Authenticator setup
c.JupyterHub.authenticator_class = "jhubauthenticators.DummyAuthenticator"

# Define LDAP connection options
LDAP.url = "openldap"
LDAP.user = "cn=admin,dc=migrid,dc=org"
LDAP.password = "dummyldap_password"
LDAP.base_dn = "dc=migrid,dc=org"

# LDAP get dn to submit to the DIT
LDAP.submit_spawner_attribute = "user.data"
LDAP.submit_spawner_attribute_keys = ("User", "CERT")

# Prepare LDAP object
LDAP.replace_object_with = {"/": "+"}

# Dynamic attributes and where to find the value
LDAP.dynamic_attributes = {

"uid": LDAP_FIRST_SEARCH_ATTRIBUTE_QUERY,
"emailAddress": SPAWNER_SUBMIT_DATA,
"uidNumber": LDAP_SEARCH_ATTRIBUTE_QUERY,

}

LDAP.set_spawner_attributes = {
"environment": {"NB_USER": "{uid}", "NB_UID": "{uidNumber}"},

}

# Attributes used to check whether the ldap data
# of type object_classes already exists
LDAP.unique_object_attributes = ["uid"]
LDAP.search_attribute_queries = [

{
"search_base": LDAP.base_dn,
"search_filter": "(objectclass=X-nextUserIdentifier)",
"attributes": ["uidNumber"],

}
]
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#
modify_dn = "cn=uidNext" + "," + LDAP.base_dn
LDAP.search_result_operations = {

"uidNumber": {"action": INCREMENT_ATTRIBUTE, "modify_dn": modify_dn}
}

# Submit object settings
LDAP.object_classes = ["X-certsDistinguishedName", "PosixAccount"]
LDAP.object_attributes = {

"uid": "{uid}",
"uidNumber": "{uidNumber}",
"gidNumber": "100",
"homeDirectory": "/home/{uid}",

}

Listing 7: Complex JupyterHub LDAP Hooks configuration

4.3 Dynamic scheduling of tasks

When providing computational platforms, as highlighted in 2.2.2 through 2.2.5, an important aspect is how
scheduling is to occur. Traditionally, scientific workflows have been scheduled in a static manner. Static mean-
ing that the set of tasks that have to be completed is predetermined when the workflow is scheduled. The static
workflow itself has typically been parsed by various libraries and frameworks as a Directed Acyclic Graph
(DAG). This has been sufficient in scenarios where the amount of tasks that have to be completed is known
at the start. However, in scientific computing, the static approach have been identified by some [83] to not
always fulfill the requirements of scientific workflows. At UCPH, this has been addressed by designing a dy-
namic scheduling solution for modern scientific workflows [81]. The design consists of splitting workflow tasks
into their constituent parts by defining a combination of Patterns and Recipes which disjoints any meaningful
inter-dependencies. The definitions for Patterns and Recipes are presented in the two following enumerations,
which are excerpts from [81]. It should be noted though, that traditional static systems can indeed change their
execution branch as they progress through a workflow, but with the introduction of the Patterns and Recipes a
workflow is inherently dynamic and does not require complex or costly patches to achieve it.
A Recipe is defined by the following properties.

• Name: This is the unique identifier of the Recipe. It is used by Patterns to identify the linked Recipe, and
by the implementation to keep track of changes to an already registered Recipe

• Instructions: User defined code. For instance, a user’s analysis algorithm. It may rely on input data or
variables, provided by a Pattern

A Pattern is defined by the following properties.

• Name: A unique identifier.

• Triggering Event: This describes how the systems should match a given event with the execution of a
particular Recipe.

• Recipe: The name of a Recipe, used to define the processing taking place in a job.

• Variables: A set of variables to be passed to the Recipe by this Pattern at job creation. These could
be any data structure understood by the Recipe and may include additional input files or possible output
locations.
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Via these two constructs, the user is able to define how processing should be scheduled by the system. This
is accomplished without specifically defining how one task might lead to another, thereby only implicitly con-
structing how different processing tasks could lead to additional processing. Instead, the workflows becomes
an emergent property of the system. The user is responsible for organising the conditions for when processing
should occur via the construction of Patterns and Recipes. Specifically, the Patterns are constructed to specify
what system events should trigger a certain Recipe that describe the instructions that should be executed.
The overall construct of Patterns and Recipes was named Managing Event Oriented Workflows (MEOW). To
act as a prototype implementation, a Python library named mig meow [79] was developed by David Marchant
to allow programmatic management of MEOW. While the MiG was chosen as a good candidate for imple-
menting MEOW themselves. The main reason for this, was that it recently introduced an event-driven trigger
system [16], that enables the scheduling of jobs based on a particular event being triggered. This trigger system
could therefore be leveraged in MEOW Patterns to schedule a particular Recipe as a job to the MiG job grid
infrastructure.
To integrate MEOW into the MiG, the initial implementation relies on the user submitting their Recipes as .ipynb
Jupyter Notebooks. By utilizing Notebooks, the workflows implementation would be able to support multiple
programming languages as part of the Recipe Instructions field. Currently the MiG workflows implementation
only supports Python, but this is not an architectural limitation. Additional languages could be supported if how
the Notebooks inputs and outputs are recognized would be updated to work with other languages. Currently,
both Patterns and the Recipe Notebooks are registered via the ‘mig meow‘ library.

4.4 Jupyter Notebook Parameterizer

When an .ipynb Notebook is registered in the MiG, the MiG prepares a combination of executable statements
that utilizes the notebook parameterizer [102] and papermill [117] to parameterize and execute the registered
Notebook. Papermill is a general tool to parameterize and execute .ipynb Notebooks, that expected the variables
to be parameterized to be defined single cell that is then tagged with the keyword parameters as can be seen
at [117]. Although this is sufficient for simple scenarios, where the variable definitions to be parameterized
can be separated into an individual cell, complex scenarios with variable definitions throughout multiple cells
call for another solution. In such complex parameterization scenarios, the notebook parameterizer allows for
multiple cell parameterization without the tag requirement. I developed the notebook parameterizer to achieve
this by iterating through every code cell of a specified Notebook to conduct parameterization via variable value
replacements.
In addition, the notebook parameterizer is implemented as an command line tool, that requires two positional
arguments and two optional once. An example of its usage can be seen in Listing 8. The first positional
argument (NOTEBOOK PATH) is the path to the Notebook that should be parameterized, the second positional
argument (PARAMETERS PATH) is the path to the parameters file that is used to parameterize the specified
Notebook. The parameters file, is expected to be a YAML formatted file, containing key value pairs of the
variable name of the variables the notebook parameterizer should look for in the Notebook, and the value that
it should assign to that variable. An example of this format can be seen in Listing 9. As part of the variable
definitions in the YAML parameters file, the notebook parameterizer also supports using system environment
variables for parameterization, this is achieved by prefixing the parameter key value with the string ”ENV ”
followed by the name of the environment variable. These can then be expanded by the tool, if so specified
via the -e flag. After applying a parameters file to an input Notebook the notebook parameterizer outputs the
parameterized Notebook at the path specified with the -o flag. The example in 9 for instance could be used to
parameterize the benchmark example in Chapter 3. The example currently hardcodes the two parameters extra
and threshold while dynamically loading the infile, outfile insufficient, and outfile thresholded values. After
generating a parameterized Notebook, the MiG implementation of the MEOW then subsequently uses Papermill
to execute the resulting Notebook.

rasmus@debian:˜/repos/notebook_parameterizer$ notebook_parameterizer -h
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Usage: notebook_parameterizer [OPTIONS] NOTEBOOK_PATH PARAMETERS_PATH

Options:
-o, --output_notebook_path TEXT

Path to the parameterized output notebook
-e, --expand_env_values Should ENV_ prefixed parameter values be

expanded to their matching OS environment
variable value

-h, --help Show this message and exit.

Listing 8: notebook parameterizer.py usage example

extra: 1
infile: ENV_WORKFLOW_INPUT_PATH
outfile_insufficent: ENV_outfile_insufficent
outfile_thresholded: ENV_outfile_thresholded
threshold: 10000

Listing 9: notebook parameterizer.py example parameters file

4.5 A Dynamic Workflow

Scientific applications that might benefit from dynamic workflows have certain key characteristics. Foremost,
they exhibit a dynamic behaviour, where the set of expected execution steps cannot be predetermined, but are
discovered during their runtime. Secondly, they rely on a set of iterations in which a similar task is executed,
such as in a reduction scenario. Furthermore, other use cases includes settings, such as environment monitoring
of a certain environment where the set of available monitors that supply data to the workflow are fluctuating.
In such as scenario, a static workflow might not be suitable, since it is not easily adaptable to include new
monitors or remove existing ones, without redefining the entire workflow. Since this work, is not the central
work of this thesis, only a simple example of a dynamic workflow will be provided, instead more advanced
examples are avilable in [81]. A simple example can be seen in Figure 4.6, the workflow here is an illustration
of how a dynamic scientific workflow could be constituted. In this instance, an experiment E, which could be
an X-ray detector, would produce hundreds of data files that needs to be stored and processed. To begin with,
E stores the data files in D1, each of these data files will then trigger a MEOW event by a registered Pattern.
This event produced in D1 will then subsequently schedule a job (purple), which determines whether the data
is relevant for keeping or if it should be discarded. The data that is deemed relevant, is written to D2, while the
discarded ones might trigger additional experiments in E. When writing to D2, an additional MEOW events are
triggered. Since two Patterns are registered at D2, the first one schedules a job for further processing (green)
which produces D3. This first job, could an analysis or segmentation of the data received in D2. The second job
(blue) is also scheduled but requires some human interaction before it can complete successfully, this could be
that some threshold has to be set, or a region of interest has to be identified. Any identified data is then written
to D4 which then triggers another layer of processing, such as a final analysis of the selected region which is the
output to D5. MEOW makes such a scenario easy because of its inherent dynamic design, where workflows can
emerge without being predetermined.
Management of MEOW workflows is possible via the mig meow Python library that enables the user to submit
MEOW related requests to a designated endpoint that supports MEOW workflows. Currently, MiG is the only
known supported grid middleware framework that supports MEOW workflows. It enables this by establishing
a JSON API endpoint that the mig meow library can communicate with. The MiG exposes this endpoint at
the /cgi-sid/jsoninterface.py?output format=json path, which supports the MEOW API which can be seen in
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Figure 4.6: An example workflow. Data directories and external actors are shown as nodes. Solid arrows are
MEOW workflow jobs. Dotted arrows show calls for an experiment run [81]

Appendix 17. With the integration of MEOW into MiG, the user is able to construct Patterns with associated
triggers within the MiG architecture. Because MiG is based on providing file based event job scheduling via
shared MiG Workgroups directories and inotify events [16], the MEOW workflows were implemented to lever-
age the underlying event-driven architecture as Pattern Triggering Events. In addition, any submitted Recipe, is
parsed and prepared as a job description by the MiG to be subsequently scheduled once the designated event is
triggered in the filesystem.

4.6 Summary

In this Chapter, the work surrounding interactive data analysis was presented. This included the two developed
services DAG and MODI at UCPH that enabled the university to provide interactive teaching and programming
environments. Underlying both systems was the utilization of several technologies from the Jupyter project,
including JupyterHub for multi-user management and JupyterLab for providing a web based interactive user
environment. JupyterLab was the basis for providing several web based functionalities, namely interactive
programming, shell based access, and general file management. The result of this work was a basic service
definition, that enables institutions like UCPH to deploy similar DAG and MODI services. DAG was designed
to provide the individual user with an isolated single machine environment by utilizing Docker and the under-
lying container technology. MODI on the other hand, was designed and implemented to provide users with an
isolated development environment that integrates with a small scale classic batch-oriented cluster environment
that allows for scheduling of multi-node applications. This was made possible by extending the existing DAG
architecture with additional components. Specifically, the MODI cluster integration with JupyterHub was made
possible with the introduction of the novel ldap hooks library, which ensures that external user information are
integrated with a designated LDAP based database DIT. Data management and access was established with the
integration of the external UCPH ERDA and IDMC data repositories. This integration was made possible with
the introduction of the HeaderAuthenticator JupyterHub authenticator, which enables the JupyterHub service to
receive both user and additional data via Header forwards from a front proxy. Both of these services, are not
restricted to be only applicable to UCPH, both DAG and MODI are generic software architectures that can be
deployed with specialized configuration in different infrastructure environments. For instance, DAG was de-
ployed as a prototype platform at MAX IV, which I have continuously collaborated with. Furthermore, the work
in providing dynamic workflows was presented, including how it was integrated into the MiG and enabled the
creation and execution of inherent dynamic workflows at UCPH as presented in [81].
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Chapter 5

Proposing a Grid of Clouds

In this Chapter, the work related to integrating different cloud environments in an overall architecture. This
includes the initial work in introduce the underlying Cloud Orchestrator corc, and how it supports the future
establishment and interconnecting of disassociated resources in separate cloud environments. Relating this to
the existing literature, the work presented here provides a model to which a Cloud Federation or Grid of Clouds
via a decentralized broker structure where each individual owning entity in the grid hosts an independent cloud
broker. With an independent decentralized broker, each organisation in the Grid of Clouds would be able to run
their infrastructure without having to request permission or coordinate with a central control unit, which would
be the case if a centralized broker design was employed.

5.1 Cloud Orchestrator

When establishing a Grid of Clouds, the interconnection between cloud providers is typically established with
the aim of sharing resources across amongst the entities within the collaborating organisations. Before such
sharing can happen, fundamentals, such as orchestration of said resources is required. Orchestration as defined
in Section 2.2.1.3 is about providing a method for configuring, managing and coordinating computer systems
such as establishing compute resources through a bundled and easy workflow [151]. Many projects have been
devoted to the task of providing an over composing tool or framework to enable generic management and or-
chestration across multiple cloud providers. As highlighted in Section 2.2.1.3 and 2.3.1, this includes tools such
as TerraForm, Cloudiator, SeaClouds, Cloudify, and INDIGO-Datacloud. Each of these are able to orchestrate
resources at cloud providers, in addition to some of them that are able to provide Cross-Cloud functionality.
However, these projects are developed as full stack platforms, that centralize the responsibility of orchestrating
and managing the organisations cloud computing infrastructure. Although, this is not possible without the intro-
duction of substantial complexity, which requires a team of people to operate and maintain. Corc takes another
approach to these projects. It does not try to be an all-encompassing framework for orchestrating and managing
a running infrastructure at an organisational level. Instead, it has three aims in mind, foremost enabling a single
user, such as an individual scientist, with the ability to orchestrate and managing Multi-Cloud resources without
the involvement of cloud experts. Secondly, in extension to this, it aims at empowering them with the capability
to schedule their applications or scientific analysis at such orchestrated resources. Thirdly, it aims at providing
the foundations necessary, to interconnect the orchestrated resources in a Grid of Clouds. Foremost by using
its orchestration capabilities and management features, to subsequently interconnect various computing infras-
tructures via a decentralized broker. In terms of implementation, corc was developed as a Python3 package,
the reason behind this, was due to the growing popularity and usage of Python in the scientific community.
For instance, it was being estimated by IEEE in being the top programming language in 2019 [61]. Because
of this, amongst other factors, it was deemed as a reasonable expectation, that the subsequent contributors and
users corc would already be avid users of Python or at least familiar with if it they wished to contribute to the
project. Also, since I had most experience with Python compared to other languages, it was deemed the best
usage of time resources. In terms of usage, corc exposes two different interfaces, i.e. either via the provided
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CLI, or by using it as a framework within an existing application or service. No matter the choice in interface,
by using the exposed interface classes, both approaches will utilize corc’s underlying configuration to discover
its infrastructure settings.
In essence, what corc is contributing, is a combined toolbox and framework for orchestrating and conducting
scientific experiments on a range of cloud providers that is expandable due to the extend-ability of the underlying
framework structure. The tool part of the package, aims to enable scientist to conduct computational experiment
on large scale infrastructure without having to ask for resources at the organisation’s IT department, Furthermore,
corc itself provides Multi-Cloud functionality to the users, in that it enables users to switch between cloud
providers by changing the designated target of the orchestration request. Thereby gaining the some of the
benefits of Multi-Cloud as described in 2.3.1.

5.1.1 Framework

Corc defines a set of abstract interfaces, that exposes APIs to conduct a certain task or functionality. For or-
chestration, corc introduces the Orchestrator abstract API, which can be seen in Appendix 18. As shown here,
the interface provides a set of methods, which a specific provider specification can choose to implement. The
point of each method, is described by the doc-string associated with each method. Particular highlights include
the setup and tear down methods that are responsible for controlling the lifetime of resources. The others are
complementary to these functionalities, to determine whether a resource has been orchestrated or not. Beyond
Orchestration, the framework also defines APIs for how a Scheduler should operate and how Storage should be
provided. These two API definitions can be found in Appendix 19 and 20.
To implement a provider into the underlying framework, corc currently adopts two approaches. The most
straightforward approach, is to utilize a well established abstraction library, that already implements the required
functionality for orchestrating resources at said provider. As was highlighted in Section 2.3.1, the Apache
libcloud library is exactly such a project, abstracting as of writing more than 30 providers [168]. Therefore,
it was deemed a reasonable candidate as an initial cloud provider, which enabled the integration of the AWS
EC2 into corc, with the possible of additional libcloud providers with little effort because of the introduction the
general Apache Orchestrators. Specialized cloud providers that are not supported by such general libraries often
defines their own set of development frameworks and usage libraries. For instance, OCI is current not supported
by any known Pythonic abstraction library. Therefore, it was integrated into corc by utilizing the OCI provided
oci-python-sdk [126], with a set of complementary OCI Orchestrators.

5.1.2 Architecture

Corc is designed such that the different responsibilities you would expect in orchestration is split into their
own compartment. An overview of this can be seen in Figure 5.1. The Orchestrator itself is devised of a set
of underlying sub-components as shown in Figure 5.2. It exposes the combined functionality of these sub-
components via the common API, which can be seen in Appendix 18. The sub-components are provider specific
implementation for how that particular component can be provided. For instance, both the OCI and AWS EC2
provider implementations each have an instance Orchestrator implementation which utilizes the shared sub-
components to provide the functionality defined by the Orchestrator API.

Provider

Orchestrator

Compute Configurer

AuthenticatorSchedulerStorage Job

Figure 5.1: Cloud Orchestrator Framework Architectural Overview [105]
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Similarly to the Orchestrator, corc also defines a division of responsibility for providing a Scheduler, an overview
of its component framework can be seen in Figure 5.3. The Scheduler too exposes a common API, which can
be seen in Appendix 19, where also each scheduling backend, be it Kubernetes, or a simple process submission,
is defined as a particular Scheduler extension.
In terms of configuring orchestrated resources, corc currently only implements the AnsibleConfigurer, which as
highlighted in 2.2.1.4 is but one of many possible configuration management tools. The reason for using Ansible
in this instance, was that it is a minimal configuration tool, that does not require a daemon running on either
the platform that is responsible for carrying out the configuration, nor on the resource that is to be configured.
The simplicity of Ansible’s architecture allows for minimal intrusion, imposed requirements on the overall
architecture, and potential failures of having to ensure the state of daemon applications. However, a limitation
is that it only applies the configuration, it does not ensure that the configured resources are consistent to that
configuration over time. Since the intended primary task of corc is to orchestrate ephemeral resources that have
a limited lifespan to for instance carry out an experiment, this limitation was deemed acceptable. Furthermore,
in use cases such as hosting Jupyter Notebook applications on orchestrated resources, this also allows the user
to configure the resources to their needs after it has been deployed and configured by corc. Making it malleable
by each user needs beyond or as a complement to the standard corc configuration.

Figure 5.2: Corc Orchestrator Components
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Figure 5.3: Corc Scheduler Components

5.1.2.1 Configuration

Corc’s own configuration is defined as a YAML file that defines the underlying settings of corc. The expected
format of this file can be seen in Listing 10. As indicated by the structure of Listing 10, corc defines a set of high
level configuration attributes, that each defines attributes for each specific component of corc. Currently, the set
of attributes includes, configuers, job, providers, and storage. Currently, the configurers and providers attributes,
accept a list of definitions, each for their particular configurer or provider that corc supports. Likewise with
storage, corc expects definitions for which storage provider it should use when staging job inputs and outputs.
Finally, there is the job definition itself, which expects to be told which application it should execute via the
supported scheduler. An example of a full configuration file which defines an OCI VM instance infrastructure
can be seen in Appendix 21.
corc:
configurers:
job:
providers:
storage:

Listing 10: Corc Configuration Structure
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5.1.2.2 Providers

As previously highlighted, corc currently supports two providers for orchestration, namely the OCI and AWS
EC2 platforms. In addition, due to the nature of utilizing the Apache libcloud library and the generalized imple-
mentation of the Apache Orchestrators within corc, 30 some providers that libcloud supports can subsequently
be integrated into without much effort. In terms of provider authentication and authorization, corc does not at-
tempt to re-implement these. Instead it expects that the user, defines their personal credentials as expected by the
specific provider. Upon usage, corc will instead dynamically load those credentials as per the authentication and
authorization conventions of the specific provider. To ensure that an introduced provider, not only is supported
in the underlying framework, via the component definitions, such as a provider Orchestrator implementation.
The provider should also be integrated into the CLI of corc to provide the full functionality to the user. This is
achieved by integrating the introduced provider into the CLI component of the corc framework, here the devel-
oper is given the option of specifying which features of corc the provider support, be it the orchestration types,
job submission, or any other particular provider features or semantics. Examples of corc CLI usage can be found
at [98].

5.2 Cloud enabling applications and computation

When the pool of available resources is increased in an organisation, either through cloud bursting, machine
purchase, or virtual expansion, the next question that is posed, is often how these additional resources should
be employed. Depending on the existing infrastructure, the associated application stack, and the needs of the
associated stakeholders, multiple different priorities could be employed when designating which area should
benefit from the availability of additional resources. One possibility is to enable existing services that currently
are tied in a traditional fashion to the existing resources to exploit the additional capability. However, how this
can be achieved depends on many factors, including the design and implementation of the existing services.
With corc, one such options is to enable the service to use cloud resources either via a shared Grid of Clouds or
at a singular cloud provider. Cloud enabling is made possible in corc via two approaches, either integrating corc
into the service/application itself, or utilize the CLI tool to schedule a computational resource with an associated
service inside of it. Both of these two approaches were employed in two different scenarios for cloud enabling
an existing service and application. The first as shown in Section 5.2.2, was utilized to enable the DAG service
presented in 4.1 to spawn interactive Jupyter sessions at an external cloud provider with the integration of corc
into a novel JupyterHub Spawner. The second example, as shown in Section 5.2.3, allowed the expansion of an
existing neutron scattering simulator and called McStas and its X-ray extension McXtrace.

5.2.1 MultipleSpawner

As explained in Section 4.1, the DAG service at UCPH provides a JupyterHub powered service that allows
for scheduling and running JupyterLab user sessions in a container based environment. Although this proved
sufficient in providing a small scale teaching and research environment at UCPH, it however, as most installed
infrastructures are, limited in both the amount of compute power and hardware it can deliver and of which kind.
As shown in Appendix C.1, the DAG service is composed of eight compute nodes, each with a 2 GHz AMD
EPYC 7501 processor and 256 GB of memory. Since none of the existing internal nodes have any accelerator
capacity, the usefulness of DAG has been limited to quick initial exploration and CPU intensive jobs that does
not require massive amounts of parallization to be efficient. The reason being that any violations of the resource
restrictions as highlighted in Section 4.1 will result in a termination of the JupyterLab user session. A way to
both loosen this restriction and expand the set of available hardware platforms on which the DAG JupyterLab
user sessions can be hosted, is by expanding its resource pool to include dynamically allocated cloud resources.
The standard method for doing this, would be to discover a JupyterHub Spawner that supports the dynamic
scheduling of JupyterLab sessions across both different cloud providers as well as on a local infrastructure.
However, at the time of writing, to our knowledge no Spawner with such capability currently exists. There are
however, many existing Spawners [139] that allow for spawning session at a dedicated cloud provider. Examples
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of this includes the Amazon ECS FargateSpawner [10], the Google Dataproc [86] cloud Spawners, followed by
a wide variety of local Spawners, including DockerSpawner [140] for Docker containers, SwarmSpawner [140]
[94] for Docker Swarm services, KubeSpawner [143] for a local or remote Kubernetes cluster, and YarnSpawner
[144] to spawn instances on an Apache Hadoop/YARN cluster.
The WrapSpawner [135] has the closest match for providing dynamic selection of cloud providers to host the
JupyterLab user session. With its capability, it is possible to wrap multiple different Spawners to allow the
selection of different Spawners, and in extension of this, different cloud providers to host the session from
each spawn. Nevertheless, it still falls short of the wanted behaviour. Dynamic management of the supported
Spawners for instance is not possible, meaning that once the JupyterHub service has been launched with a
preset WrapSpawner configuration, that list of supported Spawners cannot be changed without re-configuring
the JupyterHub service. This has the unfortunate consequence that the service requires a restart to activate such
as change, forcing the existing users to reconnect to the JupyterHub service. This can be avoid by separating
the HTTP Proxy as depicted in Figure 4.1 from the JupyterHub service itself. This will ensure the established
connections of the existing users, but does not enable the dynamic change of Spawner without the JupyterHub
application being restarted. Furthermore, many of the existing Spawners does not support the orchestration of
resources, but rely on them already existing at the designated provider. The FargateSpawner for instance requires
that an existing ECS cluster has been created before a JupyterLab instance can be spawned. Equally, the same
applies to every local Spawner I know of, including the previously highlighted ones.
I therefore introduced the MultipleSpawner [105] to allow for both dynamic updates and selection of Spawn-
ers. Furthermore, the MultipleSpawner provides the added capability of orchestrating resources to host the
JupyterLab sessions. With corc, the MultipleSpawner allow for the orchestration at multiple cloud providers,
which currently includes the OCI and the AWS‘ EC2 cloud environments. The overall framework layout of
the MultipleSpawner can be seen in Figure 5.4, as shown here, the most important component, is the Spawner,
which implements both the multiple and scheduler sub components. The multiple component defines the ac-
tual Spawner with support from the additional modules, while the scheduler is responsible for interacting with
the sub Spawner that schedules the actual JupyterLab session on the provided resource. Controlling the life-
time of the scheduled JupyterLab session, is made possible by delegating this responsibility to the sub Spawner
that schedules it. An overview of how this is accomplished can be seen in Figure 5.5, specifically, the Multi-
pleSpawner each of the JupyterHub defined control methods with calling the matching sub Spawner method via
the defined scheduler. It is therefore expected that the chosen Spawner implements these methods in accordance
with the defined JupyterHub API.
In terms of supported resource types, the MultipleSpawner is designed to allow the administrator to define
three different types of resources. Namely, Bare-metal, Container, and Virtual Machine. To define how each
of these resource types are deployed at the cloud target, the MultipleSpawner expects a Spawner Deployment
Configuration file to provide such definitions. An example of the Deployment Configuration can be seen in
Listing 12 where the three types are defined with a single configuration. As Listing 12 also indicates, each
resource type can define a list of configurations that are available to that resource type. The defined deployment
configuration can then be used by the Spawner to specify arguments that should be passed on to the Spawner for
deployment.
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Figure 5.4: MultipleSpawner Framework

{
"container": [

{
"name": "python_notebook",
"image": "nielsbohr/python-notebook"

}
],
"virtual_machine": [

{
"name": "oracle_linux_7_8",
"provider": "oci",
"image": "Oracle Linux 7.8"

}
],
"bare_metal": [

{
"name": "local_machine",
"provider": "local"

}
]

}

Listing 11: Spawner Deployment Configuration
In addition to the Spawner Deployment Configuration, the MultipleSpawner also expects that the administra-
tor defines a Spawner Template Configuration file. An example of such a file can be seen in Listing 12. The
Template Configuration acts as a baseline for how each provided Spawner is configured. Because the Multi-
pleSpawner supports orchestrating underlying resources via corc, the Template Configuration expects that it be
told how that resource should be configured if so required. Furthermore, before the resource can be accessed
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Figure 5.5: MultipleSpawner Wrap Sub Spawner Methods

for either configuring or spawning the JupyterLab user session, the MultipleSpawner also has to be told how it
should authenticate against the resource. The configuration and authentication is specified in the Template Con-
figuration via the configurer and authenticator keys as shown in Listing 12. The expected format for these is a
Python class path that is known to the environment in which the JupyterHub is executed. In terms of supported
configurer, the administrator is free to specify whatever class they wish, but in order to ensure that the specified
class is compliant with the API expectations of the MultipleSpawner, it is recommended that the provided corc
configurers and authenticators be used. Currently, corc implements the corc.configurer.AnsibleConfigurer and
the corc.authenticator.SSHAuthenticator. An example of their usage can also be seen in Listing 12.
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[
{

"name": "VirtualMachine Spawner",
"resource_type": "virtual_machine",
"providers": ["oci"],
"spawner": {

"class": "cloudsshspawner.cloudsshspawner.CloudSSHSpawner",
"kwargs": {

# CloudSSHSpawner Kwargs
}

},
"configurer": {

"class": "corc.configurer.AnsibleConfigurer",
"options": {

"host_variables": {
"ansible_user": "opc",
"ansible_become": "yes",
"ansible_become_method": "sudo",
"users": [{

"name": "{JUPYTERHUB_USER}",
"auth_key": "{auth_key}",
"sudoer": "yes"

}],
"jupyterhub": {

"server_public_ip": "{server_public_ip}",
"server_host_key": "{server_host_key}"

}
},
"host_settings": {

"group": "compute",
"port": "22"

},
"apply_kwargs": {

"playbook_paths": [
"˜/.multiplespawner/playbooks/prep_environment.yml",
"˜/.multiplespawner/playbooks/change_user.yml"

]
}

}
},
"authenticator": {

"class": "corc.authenticator.SSHAuthenticator",
"kwargs": {

"create_certificate": "True",
"key_name": "{JUPYTERHUB_USER}_id_rsa",
"load_existing": "True"}

}
}

]

Listing 12: Spawner Template Configuration
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In terms of the MultipleSpawner’s architecture, it can be viewed as laying on top of the capabilities provided by
corc. Figure 5.6 depicts how the MultipleSpawner stack and the underlying corc library are connected.

Figure 5.6: MultipleSpawner Spawn Page

The MultipleSpawner has been deployed and tested with the JupyterHub provided LocalProcessSpawner in
a local environment at UPCH and with the CloudSSHSpawner [101] at OCI. Therefore it would benefit from
additional testing from an incremental roll-out fashion. For instance, deploying it in a private cluster environment
inside an organisation like UCPH or MAX IV where the user base could be expanded over time. Furthermore,
because the MultipleSpawner relies on a specific sub Spawner to scheduled the requested Notebook, additional
testing and benchmarking has to be conducted for each individual Spawner.

5.2.2 Secure communication with resources

Before a JupyterLab session can be spawned, there has to be a method for establishing communication between
where the session is scheduled, and where the JupyterHub service is hosted. Usually, this prerequisite has been
fulfilled by the underlying infrastructure, where the Spawner simply leverages it. For instance, the KubeSpawner
expects that the JupyterHub service is hosted on a node that has access to an existing Kubernetes Cluster, the
Kubernetes service is then responsible providing communication between JupyterHub service and the resource
on which the JupyterLab session is scheduled by Kubernetes. The same applies to configurations that don’t
impose a distributed architecture. For instance, the LocalProcessSpawner also is able to successfully manage
the JupyterLab session, because it is scheduled directly on the resource that hosts the JupyterHub service. It
therefore can be reached directly via operating system services.
The typical scenario though, implies that either the underlying infrastructure, or the selected Spawner pro-
vides an adequate method for establishing a connection to the designated resource. There do however, ex-
ist scenarios where this is not so, especially with the MultipleSpawner, where the designated resources can
be adhoc external resources that might not fit the internal architecture stack of the hosting organisation. For
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instance, when the MultipleSpawner orchestrates a VM at OCI, the resource has to be both reachable and
manageable in a secure manner. One approach to accomplish this, is to leverage the existing automatically
provided SSH access to the resource, that also allows for the configuration of said resource via the presented
corc.configurer.AnsibleConfigurer. In terms of feasible Spawners, the SSHSpawner provided by the National
Energy Research Scientific Computing Center (NERSC) [109], at first glance seems like a viable candidate.
Although at a closer look, it is only a reference implementation, and instead can be a source of inspiration.
It is clear from investigating the NERSC SSHSpawner, that it relies on the designated resource, to be hosted
within a trusted network, such as inside an HPC Center. This realisation comes from the fact, that subsequent to
the JupyterHub SSHSpawner authenticating against said resource with SSH, it relies on the JupyterLab session
being instantiated to listen on the external interface of the node.
Furthermore, it expects that the JupyterLab resource can reach the JupyterHub service directly over the network,
to establish connections to both the API and activity endpoints. This may be adequate in a closed off environ-
ment, such as between nodes in an HPC Center, though one can argue that not even an internal network should
be considered secure or trusted. In contrast though, when scheduling resources at a public cloud provider, the
communication will always (given you are not the provider itself) happen over an external network that can
never be trusted. In such a scenario, the communication between the JupyterHub service and the JupyterLab
session has to be protected. One approach to accomplish this, would be to ensure that all traffic between the
JupyterHub service and the designated JupyterLab resource travels over an SSH connection. However, since
the SSHSpawner was not designed to accomplish this, it was instead used as a foundation for the extended
CloudSSHSpawner [101]. The CloudSSHSpawner adds two improvements to the original SSHSpawner, first
it creates a remote forward SSH connection [160] to the designated resource before the JupyterLab session is
scheduled. This ensure that every request the JupyterLab resource makes against the JupyterHub service travels
over the encrypted remote forward connection. Secondly, the CloudSSHSpawner also creates a SSH forward
connection from the JupyterHub resource to the JupyterLab resource, thus ensuring that the JupyterHub service
is likewise able to communicate with the JupyterLab session over an encrypted connection. An overview of how
this is established during the scheduling of a JupyterLab session can be seen in Figure 5.7.

5.2.2.1 Benchmarks

In this section, a simple scenario will be presented and carried out with the MultipleSpawner. As presented
in [105], it includes the spawning of a resource type at a designated cloud provider. Specifically a VM with
an Nvidia P100 GPU, orchestrated at the OCI. Subsequently to the orchestration, a JupyterLab instance was
spawned on said resource. Once spawned, a simple Notebook that utilizes Tensorflow and Keras [119] to build
a simple network to classify images was executed and timed before the instance was stopped again via the
MultipleSpawner. To compare this performance with DAG, a similar scenario was carried out on said service.
The expectation being that since DAG is currently only based on CPU nodes, there would be a significant
performance difference. The result these two benchmarks can be seen in Figure 5.8.
As is shown, the MultipleSpawner was able to successfully orchestrate and spawn a JupyterLab user session
at the designated resource type and cloud provider. As expected, Figure 5.8 also shows, there is a substantial
difference in the execution time of the two Notebooks. With the OCI GPU version having on average a speedup
of 2.8 compared to the DAG CPU version. Furthermore, it is expected, when expanded to additional resource
types beyond the orchestration of VMs at the designated cloud provider. It is also expected that there will be
a substantial difference in spawn time between the different resource types. The reason being that the variance
in complexity when orchestrating containers vs. VMs vs. bare-metal machines. For instance, when a container
cluster has already been orchestrated and configured, the time it takes to schedule a new container is comparable
to that of spawning a new process. This however, is of course also true for existing VMs and bare-metal
machines, meaning that the orchestration part of the spawning is the most significant part of the time delay from
spawning to being redirected to the resource.
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Figure 5.7: CloudSSHSpawner [101] Start Flowchart

5.2.3 McStas and McXtrace

Another possibility when enabling shared resources across organisational boundaries, is enabling existing ap-
plications to utilize cloud resources, to for instance gain access to additional compute capabilities, or simply
offloading from existing resources. During this PhD, such a scenario occurred, when a commercial collaborator
(Xnovo Technology ApS) of the MUMMERING project wanted to enable their neutron and X-ray ray-trace
simulation applications to a commercial cloud provider. The application in question, was McStas [194] and its
McXtrace [18] extension. With corc, we was able to accomplish this, but in contrast to the MultipleSpawner, this
instead was made possible by utilizing the CLI that corc exposes. Furthermore, in addition to the two simulation
tools, the team behind it is also developing a web based platform called McWeb [193] to schedule and monitor
simulations using either simulation tool. By utilizing corc in the job submission step of McWeb, it able to al-
low the scheduling of said job on pre-orchestrated cloud resources. By using the job functionality of the corc
CLI, the platform was able to schedule simulations to a supported corc scheduler. Because corc only currently
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Figure 5.8: Timing data from OCI vs DAG Tensorflow neural network training [105]

supports Kubernetes for job scheduling, the foremost benchmarks were executed as Kubernetes pods. Also,
since the job component of corc relies on executing the specific job submission within a container, when a con-
tainerized scheduler is used. A container image also had to be specified in corc, since this image had to support
the execution of either McStas or McXtrace, a specialized container called nielsbohr/mccode-job-runner:latest
[100], which included both the default corc jobio control package and the mentioned simulation tools.
Furthermore, since McWeb only utilizes corc to schedule the simulations and stage the subsequent inputs and
outputs, the Kubernetes cluster itself had to be pre-orchestrated before McWeb can successfully submit the
simulations. In addition, as highlighted in Section 5.1, the job part of the corc framework allows for staging
of both input and output datasets via storage endpoints. Therefore, at the scheduling of each simulation, the
required input data for the McStas or McXtrace simulation, was staged to an S3 endpoint, before being mounted
into the subsequent Kubernetes container pod. Similarly, any corc designated output directory, would have
its content uploaded to the same S3 endpoint upon simulation completion. To evaluate the effectiveness of
empowering the McWeb platform with the ability to submit and execute simulations on a remote cloud resource,
a series of benchmarks were conducted.

5.2.3.1 Benchmarks

McStas and McXtrace are Monto Carlo ray tracing simulation tools [18] that aims at modelling the behaviour
of neutron and X-ray instrumentation. For instance, a simulation could be defined to model the instrumentation
of a potential beamline station at an X-ray facility such as MAX IV. By utilizing modelling, the feasibility of a
particular design can be evaluated before construction with the fidelity that the simulation provides [18].
A beamline consists of a long series of devices, from the source of the beam to the detector. Each device
along this space, modifies the beam which causes cascading changes for each subsequent device change, which
introduces a complexity that but in a few cases makes analytical approaches impossible. Instead, the effect
of a particular device is modelled with the Monte Carlo ray tracing method. This method has provide as a
viable solution for modelling complex instrumentation chains in simulations with tools such as McStas [18].
In McStas, a large number of numerical photons are traced from the source to the detector, where they are
either detected or absorbed [18]. As a particular photon travels through the beamline devices, its parameters are
independently changed, as per the interaction between itself and the devices it encounters along the beamline.
The independence of the photons, becomes a significant factor when computational performance comes into
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the picture. The reason being that since every photon can be calculated independently, we can apply parallel
architectures to this task to achieve computational speedup. Therefore, to present the potential speedup of
utilizing cloud resources a series of McStas benchmarks were executed on both a scientist laptop and a OCI
Kubernetes cluster. The specifications for each of these systems can be seen in Appendix D.2. Also, since
both the McStas and McXtrace simulations inherently benefit from parallization techniques, the developers has
already enabled the usage of multiple cores on a particular system with the integration of Message Passing
Interface (MPI) [171]. Therefore, the scalability, and subsequent speedup of the simulations when deployed to
the cloud was verified via an increasing number of applied MPI processes.

Figure 5.9: McStas Benchmarks, the penalty of local vs remote execution

The following benchmarks were configured as follows, first two set of times would be captured, namely how
long time it took to execute the job, and how long time for the simulation itself. In addition, the McWeb
standard test instrument, template-Small-Angle-Neutron-Scattering (SANS) [74] was used for benchmarking
how a particular simulation would benefit from the introduced remote execution feature. Secondly, the number
of MPI processes applied to the simulation would be scaled from zero to four, as per the available cores in the
available systems as shown in Appendix D.2 (PC and OCI Cluster 1). The McStas simulation was executed with
109 number of rays, to display the effect of an increasing number of processes on the execution time. The results
of these benchmarks can be seen in Figure 5.9.
As is shown here, as one would expect, when executing the simulation on a local environment vs. a remote
environment with similar specs, there is little difference between them. Furthermore, the local environment is
a little bit faster than the remote execution, because it does not have the runtime penalty of having to stage
both the inputs and outputs before and after the actual simulation. However, as Figure 5.10 shows, when a
remote environment with larger specs (See Appendix D.2 OCI Cluster 2) , and potentially additional nodes.
The execution time for a single simulation is not only faster, the overall system is also able to process more
simulations in a given time frame.

76



Figure 5.10: McStas Benchmarks, the benefits of cloud execution

5.3 GridCloud

With corc providing the underlying architecture to orchestrate cloud resources at designated cloud providers.
The grid cloud extension aims at introducing a decentralized layer on-top of corc. It will achieve this by imple-
menting a light weight prototype broker that is designed to be in complete control over the domain in which it
operates. For now it is a model based solution, but given its further development, it should be a promising model
for how a set of individual organisations can interconnect and share resources amongst them. Specifically, by
introducing a decentralized broker at each provider, each participating member, can commit resources without
having to rely on a 3rd party for discovery and selection. Instead, an individual broker will be able to request
information from its peers to determine whether the requested resources should be provided internally or exter-
nally. A simple model of how I imagine these brokers will be connected can be seen in Figure 5.11. Here the a
simple network is shown of three participating members, A, B, and C. Each of these have a running grid cloud
broker. Each broker is then responsible for discovering which particular member, be it A, B, or C has available
resources fit to serve a particular request.

5.3.1 Design

The grid cloud broker extension design is such that it will create a P2P layer on top of the regular orchestration.
An overview of how of the developing broker is structured can be seen in Figure 5.12. Here the broker cloud
expose a common API from which requests for resources can be oriented. For now, the task is limited to
providing a CLI extension to corc, that allows for the request of resources from the P2P overlay network.
However, since IPv8 defines its own API for enrollment into the network, this could prove as a useful foundation
for establishing a common grid cloud API, for both enrollment and resource management [174].

5.3.2 Connecting the Grid of Clouds

In terms of establishing connections between the brokers, grid cloud aims to utilize the IPv8 [173] library to
enable a secure interconnected P2P network between the independent instances of the broker. In doing so, it
organises these participants into groupings called Communities. To join such a Community, proper trust have
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Figure 5.11: Grid of Clouds Network

Figure 5.12: Grid of Clouds Architecture

to be established with the prospective participants. Trust and mutual authentication and verification in IPv8 is
ensured via public key verification, with the initial secret exchange [173]. In doing so, IPv8 is able to establish
a decentralized network that grid cloud can use to messages for resource both resource discovery, selection, in
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Figure 5.13: Selecting a resource Provider

addition to general management requests.
By connecting the participating members as shown in Figure 5.11. Each participating member is hosting their
own broker. With this, it then is able to communicate with the other participants via the IPv8 overlay network.
Because the grid cloud is designed to operate on-top of corc, it is therefore intended to be inherently able to
orchestrate resources at a designated provider. This of course means that if the organisation hosts an internal
cloud, this would have to be incorporated into corc before grid clouds can make use of it. As part of the
design, the intended process for selecting a cloud provider can be seen in Figure 5.13. Specifically, that the
broker is foremost tasked with discovering a suitable candidate for the particular request. Secondly, that it
does a continuous lookup of potential resource providers, the discovery here draws inspiration for how data
is distributed in S3. Namely, that the network is made up of a set of broker entities, which are placed in a
distributed hash table [198], that ensures that each member is distributed across a figurative circle, which in turn
maps each member its supported set of resources. Each member, therefore holds information about every other
member, making it possible to do direct lookups for a particular request.

5.3.3 Orchestrating Resources

When orchestrating resources in a network of providers, as highlighted in Section 2.2.1.2, the task of has typi-
cally fallen to the network participant. Namely that each resource that had to be part of the network, has to be
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provision, configured and maintained by the local administrative body. However, because of the reliance on corc
and the added extension, the local administrative body would instead be responsible for configuring for joining
the overall network and which particular cloud provider that should be utilized for resources. Thereby allevi-
ating the burden of conducting this task for every member resource. Nevertheless, this does not absolve them
from the task of maintaining the resources over time. Because as highlighted, corc in its current incarnation,
does not guarantee that an applied configuration state is maintained over time.
In terms of maintain the state of the orchestrated resource, in the current model, the grid cloud is designated
to be responsible for this, In particular, each broker is to maintains their own state, thereby alleviating the
requirement for ensuring a consistency across the individual brokers. Instead, the broker is only responsible for
maintain its set of orchestrated resources, as illustrated in the presented framework design in Figure 5.12. Here
the Resources layer is an abstraction layer on top of the set of resource pools that are currently maintained by the
individual broker. The Broker layer, is subsequently responsible for exchanging and receiving messages from
the P2P network, i.e. other brokers, in addition to receiving requests from a prospective user.

5.3.4 Grid of Clouds

By implementing the Grid of Clouds model, the prospective organisational members will be able to share re-
sources amongst each other. In particular, this would be beneficial to time limited projects and ephemeral
collaborations that does not validate the burden of joining a full scale Grid like EGI. Instead, with the continued
development of grid cloud in tandem with the underlying corc, such projects will gain significant improvement
for the individual scientists. Because with the ability to establish such sharing at a local level, their research
can gain access to an increased number of resources and could foster further collaboration if such sharing is
bidirectional. Furthermore, it would enable the usage of organisational resources to be employed in existing
applications that could be empowered with cloud capabilities, as shown with the MultipleSpawner and McStas
applications. However, further research and development in this area is necessary before such fruits can be
picked, but it is definitely a worthwhile endeavour.

5.4 Summary

In this Chapter, the work conducted by me surrounding Cloud and Grid solutions was presented. Foremost,
the Cloud Orchestrator (corc) library was introduced, it is a tool that can be used to orchestrate resources at
supported cloud providers. Furthermore, it is able to schedule job at said provider, given that a supported
resource for scheduling has been orchestrated. Additionally, it enables the user to stage both the inputs and
outputs of said scheduled jobs. Secondly, it was presented how corc could and have been used to cloud enable
both novel and existing applications such as the MultipleSpawner and the McStas neutron ray-tracing simulator,
meaning that they were able to utilize cloud resources as part of delivering their purpose.
In addition, the novel MultipleSpawner was introduced. The Spawner allows for the dynamic selection and
adaption of cloud providers and configurations in a running JupyterHub service. Furthermore, it enables the
Spawner itself to orchestrate resources by cloud enabling the Spawner with via corc library. Furthermore,
the Section introduced the augmented SSHSpawner [109], named CloudSSHSpawner [101], that allows for
dynamically establishing secure SSH tunnnels both to and from an external resource that hosts a JupyterLab
user session. I also showed that the MultipleSpawner was able to spawn a GPU based instance with a with
JupyterLab and Tensorflow incoporated. As shown in the benchmarking section, the MultipleSpawner was
successful in leveraging the integrated corc library to schedule the JupyterLab user session at the OCI cloud
provider, namely the OCI. In terms of future developments, the MultipleSpawner is still in an early stage of
development and should be exposed to extensive testing in larger real world scenarios with hundreds of users
and additional cloud providers. A roll-out at an institution like UCPH or MAX IV could provide the necessary
facilities and requirements to conduct such testing.
Finally, the Grid of Clouds model was introduced, including the developing grid cloud library. It aims to provide
the ability to orchestrate and schedule resources dynamically across individual CSPs via a P2P network. As
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a prospective mechanism, the design suggests an IPv8 overlay network to establish a decentralized network
amongst the set of Grid participants. Furthermore, by utilizing corc, it will be able to orchestrate resource across
its set of supported CSPs. By establishing this network, organisations will be able to share resources amongst
each other via the creation of small and ephemeral networks that enable such exchange.
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Chapter 6

Future Work

The various projects, including Mig Utils, HISS, DAG/MODI, Cloud Orchestrator, MultipleSpawner and Grid-
Clouds are by no means finished or perfect in their current state. In this Chapter I will explain how each of these
could be further developed, enhanced, or adjusted to provide additional benefit.

6.1 MiG Utils

Even though the Mig Utils library has the basic functionality to allow the staging of inputs and outputs as part of
a job execution. It still could benefit from several enhancements. For instance, at the present date, loading and
storing of data only support synchronous calls. Therefore, the introduction of asynchronous capabilities could
in certain cases speedup the runtime of jobs via techniques such as latency hiding. Furthermore, currently the
conversion of the data streams, is achieved by hand. Therefore it would be of benefit, it MiG Utils provided
methods to, for instance, load a dataset as a NumPy array. In addition, in the future, MiG Utils could be
envisioned to be a prime candidate for loading and storing data to the HISS when the requirement for high
throughput is present. Also, because the MiG Utils library loads the input data every time it is executed, it does
lead to a substantial amount of downloads for the same particular dataset, if an analysis is executed multiple
times. Therefore, it would be of great benefit to implement a caching mechanism, that temporarily stores the
dataset on the running resource between executions. To validate that the data has not changed since the last
caching, a hash could be calculated and compared, to ensure that they are exactly the same.

6.2 HIgh Throughput Storage System

Since the HISS is currently only at the design and basic prototype stage, substantial work still needs to be put
into this project, including additional development. Furthermore, to fully evaluate such a system, specialized
hardware such as the presented options in Section 3.4 is required. Specifically, FPGA platforms that would
enable the translation of NumPy/Bohrium code into VHDL which could be synthesised onto hardware. In the
mean time, the general architecture around the kernel translations could be developed more, but this could prove
wasteful if the key element of applying synthesised kernels in-situ is not achievable. However, if feasible, the Go
prototype should be developed further to be able to attach computational kernels to each part storage hierarchy.
In addition, because Go uses a garbage collector to unallocate unused memory, the language might not scale
well with the expected quantities of data. Therefore future benchmarks will determine whether it is necessary to
move to a different memory management model that don’t rely on a process to detect and cleanup memory. For
instance, RUST [192] uses a reference counting model, that unallocates memory as soon as a particular object
counter reaches zero. This is provided without having to manually allocate or unallocate memory as is the case
in C [189].
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6.3 Data Analysis Gateway

Currently DAG is a running service at UCPH, and a variant of it is deployed at MAX IV. DAG has proved itself
a useful software stack for providing interactive data analysis at an educational and scientific institution. At this
point, DAG could though benefit from some general quality of life improvements, this includes an automatic
split between the JupyterHub service itself and the HTTP Proxy as depicted in Figure 4.1. This split will ensure
that DAG is able to apply changes without interrupting the current users by default. Furthermore, with the
integration of the MultipleSpawner into DAG, the service will be able to provide environments from multiple
providers with different Spawners. This would also enable DAG to be utilized with different infrastructure than
the current that relies on Docker Swarm and the SwarmSpawner. In doing so, it could be suitable to be used
across additional infrastructure configurations. Furthermore, another interesting addition, would be to enable
DAG administrators to define permissions for specific environments on who should be able to use it and for how
long. For instance, when deploying container images, it could be defined such that only a certain set of users
would have access to it, and for a limited amount of time. This would add a granularity to the service, which
will help serve different needs. For instance, students typically have a short and ephemeral environment need,
while scientists require long and persistent sessions to conduct large experiments.

6.4 MPI Oriented Development and Investigation

In the future, similar to DAG, MODI would benefit from general administrative life improvements, which in-
cludes the points covered in Section 6.3. In addition, because MODI currently relies on interactions with the
backend cluster via shell commands, an improvement to the structure such that these don’t have to take place
in the specific ˜/modi mount directory would clear up the typical initial confusion for users. Furthermore, be-
cause the Jupyter instances in MODI, are not the intended place for computations to be carried out, an interface
integration with the SLURM scheduler would be beneficial. Specifically, enabling the ability for submitting
a particular .ipynb Jupyter Notebook as a job to the backend cluster. Developments for this has already been
started, with the NERSC SLURM JupyterLab extension [110]. However, this extension is limited in that it is
not continuously supported, nor does it currently provide great feedback for how a particular job is doing.

6.5 Cloud Orchestrator

As it currently stands, corc is a useful tool for orchestrating cloud resources at OCI and AWS EC2, in addition
to providing job scheduling at a designated Kubernetes cluster and general data staging capabilities. Because
of this, corc would benefit from the inclusion of additional schedulers. To make this happen, the Schedulers
integration with the CLI will have to be refactored such that it fits with the current dynamic structure used for
the Orchestrator. In doing so, it will enable the dynamic extension of multiple Schedulers. For instance, a
scheduler of interest would be the inclusion of a DASK [154] oriented scheduler, this in addition to being able
to orchestrate such a cluster, would enable users to spawn ephemeral compute clusters that support advanced
parallelism jobs with intercommunication and not just the current batch-oriented types. Furthermore, additional
work should be put into making corc easy to get started with. This could include a CLI setup tutorial that
provides an interactive process to setup a particular provider. In doing so, it would alleviate the initial huddle
of defining the external provider configurations that corc relies on, when for instance authenticating against a
particular provider. Also, another aspect would be the ability to define multiple instances in the configuration
file, as it stands, it currently is only able to accept a single instance or cluster. Although orchestrating multiple
instances or clusters is still possible via the CLI, it should also be available via the underlying configuration.
With such improvements, corc will be both simpler to use for an individual user to orchestrate complex external
infrastructures and scheduling both batch and data oriented jobs.
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6.6 MultipleSpawner

The current MultipleSpawner is able to use the improved SSHSpawner [101] to orchestrate resources and sched-
ule JupyterLab sessions at an external cloud provider. Since it has only been tested in a prototype and develop-
ment environment, it would benefit from a stress tested in a larger and more complex scenario. For instance, in
the future it should be integrated to DAG and utilized at UCPH to examine how it operates when multiple users
are utilizing it. Furthermore, because it allows for the usage of basically every implemented Spawner, it does
not mean that these are inherently supported without modifications. The reason being that Spawners themselves
bring certain expectations to the underlying infrastructure. To account for this, the MultipleSpawner should be
tested with additional Spawners such as the KubeSpawner to validate their compatibility.

6.7 GridClouds

The GridClouds extension is by no means finished, therefore the grid cloud prototype should see significant
additional development. In particular, the inclusion of non public CSPs in corc, to extend its capability to
utilize typical internal cloud infrastructures such as OpenStack. In addition, grid cloud requires substantial
further development and testing of the IPv8 overlay network, to establish the P2P network amongst the Grid
participants. In turn, substantial stress testing of how the extension will function under load with multiple
participants. In general, the Grid of Clouds framework should be suitable platform for establishing a loosly
coupled set of decentralized brokers that are able to achieve cross organisational resource orchestration and
subsequent service or job scheduling.
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Chapter 7

Conclusions

In this thesis, I have been involved with quite a number of topics in relation to how you enable scientists to use
computational resources to conduct their research. For instance, how data should be staged and extracted when
executing a particular analysis on an external resource. The MiG Utils data sharing and staging library show how
the loading and storage of data for a particular analysis can be defined as part of a particular implementation.
It allows the scientists to define the data storage on which their particular dataset is available, in addition to
defining where the results should be stored. In coupling the loading and storing of input and output data to the
analysis, it ensures that it can be ubiquitously executed on any given resource that is able to reach the designated
data storage. Currently, the MiG Utils library provides a set of helper classes that supports the UCPH ERDA
and IDMC storage services. This however can be easily extended to include additional storage providers, as
long as they support either SFTP or SSHFS. Furthermore, as the benchmarks shows, the not surprising fact that
the execution time of a particular analysis, can be greatly impacted by the available bandwidth of the executing
resources. Nevertheless, the MiG Utils does enable the scientist to develop their analysis, oblivious to how a
particular computational platform is other-wised designed to stage inputs and outputs. Given of course that they
allow the external access to the designated data storage. In addition to the MiG Utils library, the HISS model was
presented, including how such a model could benefit high throughput producers such as MAX IV or EuXFEL
by applying simple prepossessing tasks during the acquisition phase in-situ before the data is stored on a parallel
file system.
Beyond data handling, I have also investigated and developed a certain set of computational platforms to serve
as tools in a scientific setting. Specifically, the DAG and MODI services with their complementary projects
provides two bundled platforms for data analysis. This platforms allow educational institutions like UCPH or
scientific instruments to provide interactive data analysis platforms. As part of the bundled stack, DAG and
MODI allows for the automatic integration of external storage providers via the developed HeaderAuthenticator
and extension of the SSHFS volume plugin. Furthermore, with the ldap hooks library, it was possible to integrate
the interactive environment of MODI with a classic LDAP based SLURM cluster. Beyond the establishment
of computational platforms, the collaboration of how jobs should be organised and scheduled was investigated.
The result of which was the establishment of MEOW that in contrast to static workflows are inherently dynamic,
where workflows are an emergent property that will exhibit themselves after the individual steps have been
executed. Another result of this work, was the Notebook Parameterizer, that in contrast to Papermill allows for
dynamic overload of parameters throughout a Notebook and not just a designated part of it. This enabled the
MEOW to provide proper paramterization, without requiring users to predefine in their analysis which variables
that could potentially be overwritten during the workflow execution.
As the final piece of this thesis, I investigated how cloud computing is and could be used in the area of science.
This work was inspired by the collaboration with Xnovo Technology and Oracle, on how such computational
resources could be made available to scientists, educational institutions, and existing applications or services.
The result of which was the corc tool/framework, that allows for orchestration and scheduling of computational
jobs at a designated CSP via either its CLI or by using its framework. Furthermore, it allows for the integration
with novel or existing applications. It was namely used to cloud enable the novel MulitpleSpawner and the
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existing neutron ray-tracing simulator to utilize cloud resources as part of their execution. However, corc is
limited in that it is still a developing tool. For instance, it currently only supports two cloud providers for
orchestration, namely OCI and AWS EC2. To extend this should be relatively easy extendable by its usage
of the Apache libcloud library which supports 30 somewhat providers. It is implemented in Python 3, which
makes restricts the API of the framework to only be usable in such projects. For instance, McStas in its Python
2 implementation was instead cloud enabled by utilizing corc’s CLI interface. In addition, the last Section of the
thesis presents how the integration of corc into the grid cloud extension could provide a means to interconnect
different organisations, in a Grid of Clouds. Specifically, by establishing a decentralized broker that is solely
responsible for discovering and selecting where a particular resource request should be served. In turn, they
can be interconnected by utilizing IPv8 overlay networks, which provides advanced networking features such
as a decentralized network, which is critical for the broker to work. By establishing such an interconnected
Grid, organisations will be able to share surplus or specialized resources dynamically amongst each other in
ephemeral projects that don’t validate the establishment of a permanent Grid. Thereby potentially furthering the
scientific advances in smaller and temporary cross organisational projects such as MUMMERING.
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MUMMERING Platform Idea’s &
Ubiquitous Data Analysis

Rasmus MUNK a,1, Brian VINTER a

a Niels Bohr Institute, University of Copenhagen

Abstract. The growth from terabytes of 3D imaging data and soon approaching
petabytes from material analysis has left the scientists involved with a set of chal-
lenges. In particular, the ability to efficiently analyze an ever growing collection of
material tomography scans. The MUMMERING research project aims to solve this
by providing ability to submit workflows to automate the process of analyzing the col-
lected data. We explore and present our initial design thoughts in this endeavor. This
includes a proposal to utilize the IDMC system developed at UCPH to provide an ef-
ficient method in terms of scheduling and execution of workflows. Beyond this mere
exploration of thoughts about a potential solution for the MUMMERING project,
this paper will also we introduce our initial work in providing ubiquitous access to
the produced datasets. The aim here is to provide a simple API for loading/storing
datasets during an image analysis, by providing this universal data access library (i,e.
mig utils). With this we hope to help the non computer scientists involved in defining
imaging analysis programs that easily either can executed locally during the experi-
mentation phase or subsequently scheduled by a workflow scheduler.

Keywords. MUMMERING, X-ray Imaging, Scientific Workflows, Data Analysis

Introduction

This paper sets out to describe the initial design thoughts and the work completed so far
in providing a ubiquitous data sharing/analysis gateway for the MultiScale Multimodal and
Multidimensional for Engineering aka MUMMERING research project. The overall aim of
this research project is to create an open platform that can empower scientist efficiency by
automating a number of standardized workflow tasks. The aim here is to extract meaning
from terabytes and soon to be petabytes of 3D imaging tomography data of various materials.
This is in contrast to the status quo of letting each scientist being let to their own accord, i.e.
managing and figuring out how to efficiently exploit the distributed and parallel capabilities
of modern compute resources with continuous growing datasets.

In this paper we will lay out our of initial design thoughts and decisions in delivering the
stated aim. This includes how we should provide seamless sharing to the collected datasets
between the various project participant organizations such MAX IV, University of Copen-
hagen, SAERTEX etc.

This sharing is suppose to both enable computational access to the data across numerous
compute devices for later analysis, ranging from a scientist playing with a subset of the
dataset on his workstation at home while developing a particular analysis, i.e. not really
caring about performance but correctness, to being able to scale up an experiment to require
terabytes of input data, while only imposing a minimal amount of necessary adjustments.

1Corresponding Author: Rasmus Munk, sterbrogade 89, 5th. Tel.: +45 61780755; E-mail: munk1@live.dk.

CPA 2018 preprint – the proceedings version will have other page numbers and may have minor differences.



2 MUMMERING Platform Idea’s & Ubiquitous Data Analysis

Furthermore, we will also explore how users should be able to define and submit work-
flows, how they will be executed, and in turn stored on the platform while providing the
possible speedup benefits of exploiting an underlying distributed set of machines. This is to
happen while having the subsequent users of the system in mind, especially in regards to the
user interface and the required know-how it imposes on the users. Instead the scientist should
be able to efficiently conduct their experiments without regard for trying to manually opti-
mize their analysis, e.g. manually parallelize their algorithm to exploit a multi-core system
or having to think about the physical data placement.

In regard to sharing datasets, an initial solution for the ubiquitous data analysis will be
presented in the form of a Python library. This library is provided as a optional helper in
transitioning existing data analysis scripts from depending on locally available storage, to
reading resources from an external storage with only minor modifications. This prototype has
for now only been evaluated with a number of runtime benchmarks, these will be presented
to illustrate the expected runtime penalty that is imposed by loading data over the network
instead of from a local disk drive.

Finally a set of conclusions will be drawn, based on the experience gained so far and the
future steps from this point towards fulfilling the MUMMERING aims.

1. Background

As mentioned, MUMMERING is about analyzing various composite engineering materials at
high imaging resolutions. e.g. analysis the strength properties of novel materials in a pressure
simulation. This process normally involves scanning the material in question by firing X-rays
at the object and subsequently using the detected wavelength variance to produce a set of
high-resolution tomography images of the object.

These images are then collected and analyzed by executing either an existing analysis
or having a domain expert develop one that parses the dataset for areas of particular interest
to the project. For instance, investigating voids in fiber reinforced composite materials [1].
To conduct such an analysis, a number of steps has to be completed. This includes scanning
the material in question at a facility that can generate the required X-ray’s (e.g. a synchrotron
such as [2]). Between scans either the material itself or the scanning instruments are continu-
ously rotated to generate a set of images that can be used to create a 3D model of the sample.
For example, in [3] a scan is performed for every 1/3 of a degree for 360 degrees resulting
in 1080 images, which depending on the resolution and pixel data type can accumulate to
several GB of data per image. For instance, a single high-resolution image can easily reach
50GB for a single image. Resulting in that only 20 material scans can produce 1̃TB of data.

1.1. Workflows and Analysis development

After the collection has been completed, the next step is typically to produce a 3D physi-
cal modeling of the object/material in question. To produce such a model, a series of typi-
cal image transformation steps has to be executed, i.e. 3D reconstruction, segmentation and
meshing.

This process is currently being taught to be manually implemented by each scientist/re-
searcher for each of their particular research e.g. at PhD summer schools [4]. The process
itself is important to know from a science perspective, but going from a simple experiment
on a single image, to scaling up to hundreds of images while still maintaining an efficient
and reasonable execution time can be a daunting, tedious and repetitive task. In addition, this
process also naturally restricts the amount data that can be explored for features that might
be of interest to the research. Furthermore, it also often leads to re-implementations of the
same workflow building blocks across similar projects.
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What is required here is a workflow framework that is able to schedule and execute
imaging analysis tasks. One similar case study to this is the development of the MapReduce
framework [5] that has lead/inspired numerous Big Data frameworks such as the batch ori-
ented Hadoop framework that almost replicated it [6] or its data streaming successors such
as Storm and Heron [7]. The project was tasked with a similar objective as the MUMMER-
ING project, namely to develop a platform that provides the capabilities that engineer was
reimplementing across numerous data analysis problems. In particular modifying existing
sequential implementations to exploit the parallel nature of the distributed machines that they
had access to, while taking care of the underling tedious fall-pits of a distributed architec-
ture (e.g. fault tolerance, redundancy, etc). This was accomplished by implementing a query
processor that accepted batch jobs that got divided into two tasks, namely Map and Reduce.
A Map job which is defined as the function that filters the dataset in question for records of
interest, whereas Reduce performs some form of reduction operation that results in the final
output of the job. What is common is that these are both exposed as user defined functions,
i.e. exposed API methods that the user can implement their normal analysis without worrying
about job scheduling and the likes as-long as the input/output data structures abide by the
API contract. This simplifies the the usage experience and limits the amount of errors that
can be introduced by non-computer experts.

Similar to this capability of scheduling and executing jobs, the MiG (Minimum Intrusion
Grid) [8] has been developed at UPCH which provides similar capabilities. Specifically it
can also accept and manage job scheduling on a set of distributed resources like Hadoop. It
differentiates itself by being a middleware system that requires little of the nodes that join the
grid as an available compute resource. In this regard it aims to reduce the software complexity
that a distributed or grid system would usually impose on every compute resource (e.g. Java
and Hadoop has to installed on every node for the cluster to function [6]. It does this by only
requiring SSH and secure HTTP access to a given grid resource before the resource is able to
pull jobs from the grid [8].

Recently the MiG system was extended with an event-driven and adaptable scientific
workflow model well-suited for collaboration between multiple users [9]. This event-driven
architecture can schedule a series of workflow tasks (e.g. reconstruction, segmentation and
meshing from a set of input images). The cornerstone of this execution chain is that in com-
parison to a typical workflow manager like Apache Oozie [6] that takes the top-down ap-
proach of expecting a series of interdependent jobs to be either defined as a linear job chain
or direct acyclic graph [6], which imposes the constraint of knowing beforehand what output
will be produced ahead of time to develop the appropriate set of jobs. Instead the data event-
driven workflows introduced by MiG will schedule the necessary jobs required to complete a
workflow based on a set of preset triggers. The event triggers in this instance are implemented
by the MiG system and are built on-top of the inode notify Linux kernel feature [10]. This
means that the starting mechanism to a workflow is based on some sort of file operations,
whether it be a created/modified/deleted request that is captured by the inotify monitor [11].
This also means that after an initial event is set in motion, the subsequent flow of executed
jobs/tasks is dependent on the preset triggers and the output generated from theses processes.
The decision about which files should be monitored and what sort of job should be executed
is defined by the user themselves. However, currently this has a somewhat laking interface in
terms of ease of use because of the complexity involved in defining correct triggers.

Beyond this, UPCH has recently developed an optional extension to the MiG system in
terms of a web based development environment. Specifically the MiG is now capable of for-
warding users from the native data management platform to a JupyterHub host where users
can run individual JupyterLab’s [12]. This platform provides a web powered interactive envi-
ronments that exposes a set of development environments in capable data analysis languages
such as Python or R. The aim of this is that scientists, students and similar users with a re-
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quirement here have an environment to develop their analysis/programs. This is useful in that
Jupyter notebooks have become a popular method to share data analysis programs at places
such as Kaggel [13]. This is expected to be useful in MUMMERING in that it can provide
easy access to compute resources that can be used by the researchers when they develop and
test their analysis. Especially since the integration with the MiG system allows native access
to personal files stored in the MiG system within Jupyter environment, making the task of
loading in data from it no different than on a local system.

1.2. Data Management

Beyond the workflow capability, the MiG also provides an entire web based interface to sup-
port management of project data. In addition the system also provides a number of collabora-
tion tools. This includes the WorkGroup feature [14] that enables sharing files with different
users on a project basis (i.e. a shared folder that is often tide to a particular project that only
the participants have access to). This is in addition to just managing the ever growing amount
of data uploaded to the system. At UCPH the IDMS (Imaging Data Management System)
[15] has been developed to face this challenge in particular when it comes to imaging data,
at its core, the IDMS is build on-top of the MiG base so it natural inherits the mentioned
MiG features. For instance it is possible to setup a trigger that schedules imaging processing
jobs when they are uploaded to a specified workgroup on IDMS, e.g. trigger a job that re-
turns a preview for each image, in addition a number of common statistics are calculated and
viewable directly in the web interface. [15].

Currently a version of IDMS, namely IDMC (Imaging Data Management Center) is
hosted at the UCPH HPC center. It is setup as a shared storage system specifically to solve the
mentioned problem of storing large scientific imaging datasets. At present date the system has
1.6 PB of disk storage designated for free use for UCPH employees and accepted affiliated
project partners. So far the system has accumulated 1.4 PB of data, which is growing at an
estimated 4 TB a day. Based on the presented findings, the IDMC system seems to be a prime
candidate for being part of the solution to deliver the goals stated in the MUMMERING
project, with the mentioned current lack of usability for features such as the trigger and
workflow setup in mind.

1.3. Sharing Data

In terms support for accessing data on the IDMC system a variety of SSH based methods
are supported including SSHFS [16] and SFTP [17]. Utilizing these transfer protocols, a user
can for instance upload/download datasets via SFTP or synchronize a home drive via SSHFS
. This is provided that the user authenticates either via public key authentication or a preset
password. Beyond this personal access model, IDMC also provides a feature for users to
share access to their own files with external non-users such as a MUMMERING partner. The
mechanism for providing this is called Share links [14]. A Share link is defined as a URL
that can provide anonymous access to a set of resources on the IDMC system. It is made up
of 2 parts, the base URL that defines where the resources are hosted and additional random
ID. The ID is string of 10 random characters (e.g. ’FjCd54pWd7’), the 10 characters are
picked from a set of 64 possible characters which encompasses both the lower and uppercase
English alphabet and digits ranging from 0 to 9. The Share link itself is generated when a
user requests to share file resources via the IDMC web interface. In addition to specifying the
resource, the user is also presented with the option of specifying access permissions to the
resource i.e., either read, write or both. At the end of this process the user is giving a URL
(e.g. https://sid.idmc.dk/sharelink/FjCd54pWd7) which can be used to share the resources in
question with any external or internal entity.
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Essentially this behavior is similar to the Dropbox sharing feature [18], with the de-
scribed extension of defining access controls. In summary, by both providing sharing capabil-
ities and being an existing integrated part of the IDMC system makes it a suitable candidate
for enabling ubiquitous data access to both scientists and external partners involved in the
MUMMERING project.

2. Initial Platform Ideas

In this section the proposed software stack for the open platform is presented. This includes
what interfaces will be exposed to the users/scientists and our thoughts about how we provide
a user friendly way of defining workflows that can be mapped to the underlying MiG job
scheduler. This is followed by an overview of the MUMMERING organization and how we
propose to provide ubiquitous data analysis/storage between the various partners.

2.1. MUMMERING Platform Stack

To provide an open platform with the capability of executing image analysis workflows. We
propose the following design as shown in Figure 1. The stack is divided into 3 areas of
responsibility. As defined in the legend section of Figure 1.

The submit layer is where the users can submit workflows, the layer depth here indicate
the amount of controllability and options that will be available to the user. For basic users we
propose that they define their job as Jupyter Notebook, which can then be submitted with an
adjacent DSL description of the input data to be processed and the code within. The initial
thought to how this DSL could be structured can be seen Listing 1. As presented here the
idea is to provide capabilities to define a set of overall processes that should take place e.g.
which code pieces/functions inside an arbitrary Notebook should be executed on the pro-
vided dataset. This of course has to be mapped down to the MiG workflow implementation.
Whether this is feasible in the shown format is something that has to be explored further.

Big Data Algorithms

Semantic Oriented Data Analysis (SODA) 

Semantic Oriented File Archive (SOFA)

Submit Analysis/Dataset
Execute Analysis/Store Dataset

Storage

Amazon s3 

LEGEND

Figure 1. Infrastructure Stack for MUMMERING.

input: {path: "images"}
execute:{

{ notebook[’function’].ipynb, output file } −>
{ notebook[’function’].ipynb, output file } −>
{ notebook[’function’].ipynb, output file}

}
output: sharelink/IDMC homedrive

Listing 1: Example Job DSL.
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In addition beneath the Jupyter job submission interface, a number of existing service
layers are defined. MiG in this instance would be the IDMC system that would handle and
accept the submitted DSL descriptions. In addition the underlying layers (particular SODA/-
SOFA) are defined to optimize the read/write operations of large datasets as presented in
[19]. In particular the ability to gain fine grained control of how the data is organized in terms
of what defines an individual block in dataset, or the ability to file/process data while it is
being uploaded to the system. However, the takeaway at this point is that the layers should
be loosely coupled so that an individual service layer can be swapped out. For instance, the
designated storage could be a Cloud service such as Amazon s3 or RackSpace Block Storage,
as well as the internal storage system at UCPH i.e Gluster.

2.2. Ubiquitous Data Analysis

As introduced earlier, we proposed to utilize the IDMC Share links feature to enable scien-
tist to access their hosted datasets from within their Python image analysis or Jupyter Note-
book implementations. This is accomplished by introducing a Python utilities library called
mig utils [20] that abstracts the Share link access method of establishing an SFTP connection
to the target Datastore.

Pn

Dn Cn

Pn

P1
P2

Dn Cn

D1 C1

C2

In

User

UCPH

UAntwerp
MAX IV

Figure 2. MUMMERING Organizational Overview. P = Partner/Organization, D = Datastore, C = Compute
resource, — = Submit execution on remote compute resource, - - - = load or store data from/on data store,⇐⇒
High speed 1 Gbit/s bandwidth.

The design example of this can be seen in Figure 2, where for instance a scientist located
at MAX IV, implements an image analysis algorithm to investigate recent X-ray scans of a
novel material composition. During the scanning process the instrument is configured to store
the data directly at a UCPH storage facility (i.e. D1). When this is completed the researcher
implements their analysis as usual, but instead of using the standard Python io module to load
in the images. They instead uses the mig utils.io module to open and read the image from a
predefined Share link location. Now, during the acquisition phase the mig utils library will
download the required dataset from where it is hosted, in this case D1 at the UPCH center
before proceeding to execute the actual analysis.

To provide the capability of receiving large quantities of data and storing it for an in-
definite time frame, the UPCH provides a generic data management cloud system for imag-
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ing data, i.e IDMC [3] [15]. At present date the system has 1.4 PB of storage available to
users such as UCPH employees and affiliated organizations which could possible include
MUMMERING partners.

3. Initial Implementation

Mig utils [20] is a Python library that is compatible with Python version 2.7, 3.5, 3.6 and
3.6-dev. Currently it provides a single io module, that enables remote file access via SFTP. It
provides an API that mimics the built-in file IO syntax of [21]. A simple example of writing
and reading a file to/from the IDMC system can be seen in Listing 2. The share open(path,
flag) method, supports the following modes of operation ’w’, ’r’ ’a’ and ’b’ operates as de-
fined by Python’s built-in open method [22]. It’s important to note here that the IDMCShare
object is a simple child of the general SFTPShare that makes it possible to connect to other
host systems that supports SFTP clients. The child class is simply added as syntactic sugar,
i.e. making it very simple to use from the perspective of UCPH, MUMMERING and the
involved participants and collaborators when interacting with the IDMC system.

from mig.io import IDMCShare
# returns an IDMCShare class that inherits from SFTPStore
share = IDMCShare(’SHARELINKID’)

# open share with the
# open a file for writing, truncate if exist
with share.open(’write test’, ’w’) as tmp:

tmp.write("sdfsfsf")

# Read a file, return as a string
with share.open(’write test’, ’r’) as tmp:

print(tmp.read())

# close the connection
share.close()

# outputs ’sdfsfsf’

Listing 2: Write and Read example.

Beyond the standard ’open’ and the ’close’ method, the share object also provides ad-
ditional methods. This is to support client-side exploration and cleanup of files as shown in
Listing 3. Here the ’list’ path by default is set to ’.’, which returns a list of files in the root
context of the connected Share link.

from mig.io import IDMCShare
share = IDMCShare(’SHARELINKID’)
share.list(path=’path/to/sub/dir’)
share.remove(path=’path/to/file/to/remove’)
share.close()

Listing 3: Share API.

In terms of the call to ’open’ as shown in Listing 2, the return value is an SFTPFileHandle
object, the supported methods of which includes ’read’ and ’write’. Which depending on the
flag of operation either returns strings ’r’/’w’ or byte strings ’rb’/’wb’. In addition it also
provides access to ’seek’, ’tell’ and ’close’ as defined by the default abstract BaseIO object in
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the core IO module [23]. With the single caveat that ’seek’ does not support the ’whence’ flag
but can only seek from the current position. An example of their use can be seen in Listing 4.

with share.open(’another example’, ’w’) as tmp:
tmp.write("Hello remote file")

# open another example in string read mode
tmp = share.open(’another example’, ’r’)
# Read from current file position, default 0
print(tmp.read())
# Return current file position
print(tmp.tell())
# Go to file position 0
tmp.seek(0)

# Return current file position
print(tmp.tell())
# Read from current file position
print(tmp.read())
# Go to file position 6
tmp.seek(6)
# Read from current file position
print(tmp.read())

tmp.seek(0)
# Close the current SFTPFileHandle
tmp.close()
# Try to read again
print(tmp.read())

#### The output of which is ###
Hello remote file
17
0
Hello remote file
remote file

Listing 4: SFTPFileHandle IO.

Beneath the exposed API, the connection to the share is by default established via a set
of SFTP calls. The SFTP connection itself is provided by utilizing the ssh2-python library
[24]. This library in turn is a thin wrapper around libssh2, which is a C implementation of the
SSH2 protocol [25].

4. Prototype Benchmarks

To evaluate the performance of the mig utils library, i.e. its ability to extract/store data at
native link speed seamlessly with minor adjustment to an existing implementation. Two sim-
ple image analysis/overview notebooks provided by [26] and [27] were used for the bench-
marking [26]. Each of these notebooks perform their analysis on a single image, respectively
large-set.tif at 127.07 MB and small-set.tif at 68.47 MB. In terms of implementation the code
itself can be categorized as mostly sequential array programming via Numpy. Therefore it
has no benefit of underlying parallelism capabilities.

By default each notebook loads in the image with the skimage library [28] imread func-
tion, which takes a path parameter to a local file or URL and returns an N-dimensional Numpy
array. This transformation in the instance of a TIF formated image happens by using the
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Python Imaging Library [29] to produce an nd array by first passing the filename or filehan-
dler to the PIL.Image.Image.open method which returns an PIL object that can be convert
into an nd array by using the supplied pil to ndarray function. This functionality, as shown
in Listing 5 is extracted directly from the libraries. This is to ensure that when the image byte
string is downloaded from the remote storage it is transformed into a numpy array which is
the format that the notebook examples expects.

import time
from PIL import Image
from skimage.io. plugins.pil plugin import pil to ndarray

share = IDMCShare(’SHARELINKID’)
file1 = ’rec 8bit ph03 cropC kmeans scale510.tif’
start = time.time()
with share.open(file1, ’rb’) as fh:

load start = time.time()
# Load image into an PIl.Image.Image obj
pil image = Image.open(io.BytesIO(fh.read()))
# Transform PIL into an ndarray
nd image = pil to ndarray(pil image)
load stop = time.time()
# execute notebook
foam labelling(nd image)

stop = time.time()

share.close()

Listing 5: Transform image bytestring into an nd array.

For these benchmarks, the physical location of the required images was on the IDMC
system hosted at UCPH i.e. D1 in Figure 2 and the executing compute resource were C1
and C2. This translates into bandwidth connection of 1 Gbit/s and 100 Mbit/s respectively.
In addition to highlight the penalty of loading the data externally, the benchmarks were also
with the image locally stored on C2.

In terms of underlying compute power the C1 device is a shared compute resource with
an Intel 20 core CPU with hyper-threading running at 2.59 GHz and 230 GB of memory. The
access is provided by UCPH HPC center as an isolated containerized JupyterLab environment
with downscaled access to 8 logical cores and 8 GB of memory. C2 however is a personal
workstation with an AMD Ryzen 7 2700x 8 core CPU with hyper-threading running at a
base clock of 3.7 GHz. In terms of local storage I/O, C2 has an EVO 970 V-NAND SSD
with a theoretical sequential read speed of 3400 MB/s. However, practical tests with hdparm
showed an estimated read speed 1500 MB/s equivalent to 12 Gbit/s.

In terms of the number of executions, each benchmark result listed in Table 1 and 2 is
the result of 40 runs.

Table 1. Foam Labeling Notebook Performance (large-set.tif).

compute location ‘avg load time’ ‘avg total exec time’ ‘bandwidth’ ‘data location’
UCPH C1 1.49 207.02 1 Gbit/s D1
User C2 10.51 147.10 100 Mbit/s D1
User C2 0.2 138.4 12 Gbit/s Local Storage

As shown in Table 1 and 2 the results live up to the expectation of the improved perfor-
mance in tandem with the increased bandwidth. I.e. with a 127.07 MB image loaded in 1,49
seconds, the benchmarks shows an estimated minimum transfer rate of 85.77 MB/s. However
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Table 2. Aluminum Overview Notebook Performance (small-set.tif).

compute location ‘avg load time’ ‘avg exec time’ ‘bandwidth’ ‘data location’
UCPH C1 3.92 7.67 1 Gbit/s D1
User C2 32.2 35.14 100 Mbit/s D1
User C2 0.62 3.38 12 Gbit/s Local Storage

this should be interpreted with the addition that this includes the additional time it takes to
transform the image bytes into an numpy array as shown in Listing 5. This means that the
load times shows the actual time it takes for the image to be ready for analysis as required
by the provided notebooks. However, still with this in mind it is no surprise that local im-
age has both the fastest load and execution time of 0,2 and 138,4 seconds. The reason being
both because of the smaller latency and greater bandwidth in terms of load time from a local
V-NAND SSD, but also in regards to a substantial lower total execution time with a 1.42
GHz greater clock speed in comparison to C1. When evaluating the displayed performance in
Table 2, it is important to note that the provided Aluminum Notebook is inefficiently imple-
mented, such that it reads the same image 5 times during the execution. I.e. a total of 342.35
MB to load, which in the C2 100 Mbit/s bench gives an estimated transfer average of at least
10.6 MB/s and 87.33 MB/s for C1.

5. Conclusions

In this paper we put forward our initial thoughts in terms of how to provide an open platform
for the MUMMERING research project. This included that scientists should be able to submit
Jupyter Notebooks as workflow jobs in combination with a DSL description. We plan to
provide this capability on top of the existing IDMC system at UPHC, which will handle the
underlying job scheduling/queuing with it’s recent event driven workflow support.

In addition, we propose an initial implementation of how scientists in MUMMERING
can get ubiquitous access to their generated imaging datasets via Share links on the IDMC
system. This provides the capability of making an data analysis independent of where the data
is actually stored. However, with the caveat of a slowdown in performance that is based on
the available bandwidth at the point of execution. Furthermore the prototype is also currently
limited by the executing nodes physical memory and swap sizes, i.e. presently the entire
datasets is downloaded into memory before proceeding with the analysis. However, this is no
different than the present constraint when loading data from a local storage drive.

6. Future Work

A number of things have to be accomplished from this point. This includes abstracting the
IDMC workflow definitions in a user-friendly manner, that makes them accessible to non
computer scientists. Furthermore, the ability to define Jupyter notebooks as jobs that can be
scheduled in the underlying MiG infrastructure is a recommended approach because of the
user friendly interface and the ability to support numerous languages and the ability to easily
export and share notebook kernels. In the best case scenario the ability to submit a notebook
as a workflow job should be language agnostic. Currently the mig utils library only supports
typical Python IO operations. However, providing a set of standard image processing func-
tions, such as the ones provided by the pillow library (e.g. imread/imsave) would be prefer-
able. This would ease the transition of redefining a standard notebook that requires data to
be locally present to one that utilizes the ubiquitous io operations. Furthermore, initial test-
ing of using coroutines and the async/await capabilities of Python 3.5/6 for pre-fecthing im-
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age data shows good promise for bringing down the total runtime of an individual notebook,
especially when processing multiple images over the same notebook.
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CS3 2020 - Cloud Storage Synchronization and Sharing Services / Book of Abstracts

Europe has to make hard choices in all areas if it wants to maintain its sovereignty to be able to
orient, decide and act in the information age. The presentation will elaborate developments that led
to the current situation and explore options and consequences that could be taken.
A special focus will be taken towards how a CS3 Stack as precursor could lead to a “European Stan-
dard Stack” that could technologically lead to a next generation technology leap akin and in the
tradition of the wwww.

Digital Sovereignty / 102

The importance of open source software in delivering large stor-
age services
Author: Alberto Pace1

1 CERN

Corresponding Author: alberto.pace@cern.ch

This (short) presentation will address the aspect of on on-premises versus cloud storage and the
importance of using open source software in maintaining data sovereignty while delivering large
storage services.

Clearly commercially licensed software can also be used as a part of a general complex architecture,
but the presentation will discuss the checklist to be validated to avoid vendor lock-in or uncontrolled
growing infrastructure costs.

Digital Sovereignty / 124

Digital Sovereignty can only be achieved throughpureOpen Source
Software

Corresponding Author: frank@nextcloud.com

Fabric and platforms for Global Science / 108

From instrument to publication: A First Attempt at an Integrated
Cloud for X-ray Facilities
Authors: Rasmus Munk1 ; Brian Vinter1 ; Zdnek Matej2 ; Artur Barczyk2

1 Niels Bohr Institute
2 MAX IV Laboratory

Corresponding Authors: rasmus.munk@nbi.ku.dk, vinter@nbi.ku.dk

Large scientific X-ray instruments such as MAX IV [1] or XFEL [2] are massive producers of annual
data collections from experiments such as imaging sample materials. MAX IV for instance has 16
fully funded beamlines, where 6 of which can produce up to 40 Gbps of experimental data during
a typical 5 to 8 hour time-slot, resulting in up to 90 to 144 TBs for a particular beamline experi-
ment.
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Scenarios like this calls for solutions that can manage petabytes of datasets in an efficient manner,
while enabling scientists with a path of least resistance to define on the fly and subsequent batch
processing that often seeks to find needle answers in the data haystack. General outlier detection,
pattern recognition and basic statistics just as bin counting are some of the typically tasks conducted
during the post analysis phase. To enable scientist with such capabilities, the current challenges calls
for an integrated solution that is both able to scale horizontal in terms of available storage, but also
be able to make on the fly informed decisions that could potentially either reduce the experimental
data stream before it is persistently stored, or enable feedback mechanisms to the instrument itself
about which data is of interest to the scientists and that which has no or little value.

The continuous collaboration between the eScience group [3] at the Niels Bohr Institute and the
MAX IV facility through their Data STorage andManagement Project (DataSTaMP) [4] and European
Open Science Cloud (EOSC) [5] participation aims to provide just such an integrated cloud solution
to elevate the combined data services available to researchers in general.

The architecture design to enable this is made of two distinct services. The HIghThroughput Storage
System (HISS) and the Electronic ResearchData Archive (ERDA) [6]. HISS is a developing distributed
system that is designed as a high speed I/O gateway of storage nodes for stream oriented data col-
lections. The system does this through temporary buffering during storage and retrieval of high
bandwidth streams, acting in a sense as a front proxy to a subsequent persistent storage location
such as a PFS or tape archive system. In addition to being a mere set of buffer nodes that allows for
temporal storage reservations, the system is also being designed to allow for an on the fly scheduling
of operations to be conducted during the I/O of datasets by scheduling preprocessing tasks on an
FPGA accelerator. This enables for both in situ decisions about particular data points mid stream or
general data reduction/prefiltering as specified by a user defined kernel, that may also introduce feed-
back streams to the data provider itself. A provider in this instance could be a beamline instrument
at MAX IV.

The system enables access through a REST API that is inspired by and aims to be compatible with the
AWS S3 [7] service and commandline tools. To define the computational kernels that are targeted for
accelerated computation the proposal is to transpile python kernels into VHDL through an eScience
developed toolchain that consists of Bohrium [8], SMEIL [9] and SME [10].

The target of the HISS offloading in our instance, is the ERDA system that is subsequently respon-
sible for retaining the incoming collections, that is either stored GPFS or tape archives. The archive
then on top of this provides a rich set of features for both managing and post-processing of data
upon being stored. This includes Dropbox like sharing and synchronization in addition to efficient
data access to home and collaborative datasets through standard secure protocols like WebDAV
over SSL/TLS (WebDAVS), FTPS and SFTP. For processing the service enables processing of existing
datasets through a JupyterHub [11] environment with container based JupyterLab [12] sessions for
interactive executions of personal or collaborative resources.

It is the aim of this integrated cloud solution to enable both the receival of instrumentation data
streams directly from the source, while allowing user defined decision making to take place before
the data is persistently stored. For instance, the user could specify a reduction or statistics kernel
that would alleviate the need to schedule such processing upon finishing the experimental phase.
Enabling them to immediately interpret the results generated from the computed metadata.

[1] https://www.maxiv.lu.se
[2] https://www.xfel.eu
[3] https://www.nbi.ku.dk/Forskning/escience/
[4] https://www.maxiv.lu.se/accelerators-beamlines/technology/kits-projects/datastamp/
[5] https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
[6] http://www.erda.dk
[7] https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3.html
[8] https://bohrium.readthedocs.io
[9] https://github.com/truls/libsme
[10] https://github.com/kenkendk/sme
[11] https://jupyterhub.readthedocs.io/en/stable/
[12] https://jupyterlab.readthedocs.io/en/stable/
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Abstract—This paper introduces an event-driven solution for
modern scientific workflows. This novel approach enables truly
dynamic workflows by splitting them into their constituent
parts, defined using combinations of Patterns and Recipes, and
lacking any meaningful inter-dependencies. The theory behind
this system is set out, and an example workflow is presented.
A python package mig meow, which implements this workflow
system is also shown and explained. The use cases of various user
groups are considered to asses the feasibility of the design, and
it is found to be sufficient, especially in light of recent workflow
requirements for dynamic looping, optional outputs and in-the-
loop interactions.

I. INTRODUCTION

Scientific workflow systems are an essential part of modern
research. They are used to process large datasets on numerous
heterogeneous resources. Traditional scientific workflow sys-
tems adopt a so-called static structure, where all processing,
data and outcomes are set at the beginning of the workflow.
This is sufficient for a number of use cases, but some have
identified a need for a dynamic structure to their workflows
[20].

To address this, this paper proposes Managing Event Ori-
ented Workflows (MEOW), a system for defining event-driven
workflows. This is done by splitting workflows into separate
steps, each individually defined using Patterns and Recipes.
This differs from the more traditional approach, which is
typically built on a static pre-runtime analysis of the complete
workflow structure. The proposed dynamic structure facilitates
recent scientific workflow innovations such as cyclic execu-
tion, or workflow branching. It also enables some unique
features such as completely optional outputs from individual
workflow steps.

To illustrate the system described, this paper outlines a
prototype implementation of a MEOW based event-driven
workflow scheduler on the Minimum Intrusion Grid (MiG) [5],
[6]. Furthermore, it is demonstrated how this system is suitable
for a whole range of scientific use cases, and is particularly
suitable for modern workflow developments.

This project is developed as part of the MUMMERING1

[24] research project with the aim of providing researchers
with a generic tool of the management and processing of
scientific sets of data.

1MUltiscale, Multimodal, and Multidimensional imaging for EngineeRING
(MUMMERING)

II. BACKGROUND

A. Scientific Workflows

To meet the needs of scientists, workflows as a concept
have been adapted from the more ‘traditional’ models used
within business. The specific implementations of workflow
systems designed for scientists are referred to as ‘scientific
workflows’ with examples such as Kepler [1], Pegasus [9],
Taverna [25], and Globus Workflow [15], among others. These
efforts usually employ a top-down model when defining how
the set of tasks should be processed, which in turn produces
a workflow that defines a complete chain of steps [10].
The resulting jobs are then scheduled appropriately according
to their various dependencies. However, for tasks such as
exploring large datasets [11], it is unlikely that the initial
assumptions will produce a successful result without having
first explored several workflow permutations. In this situation,
a dynamic workflow which can be adapted at runtime would
be advantageous [20].

B. Static and Dynamic Workflows

Scientific workflows tend to be data oriented and ex-
ploratory in nature [7]. This is as scientists are often running
workflows as part of their experiments, and so may be running
the same workflow repeatedly to explore an experiment space.
The nature of these repeated runs may be unknown at the
start of a scientific investigation, unlike in more traditional
business workflows where it is expected that a user will already
have a full understanding of the work to be carried out. This
means that scientific workflows often have a specific need to
be dynamic [7], [11], [17], [20]. Dynamic here means that
jobs within the workflow may be added, modified, rerun, or
removed without having to restart the whole workflow.

The majority of recent scientific workflow developments
such as Apache Airflow [4], Dask [28], PyCOMPSs [30], and
DagOn [23] employ a data-flow model for their workflows,
and commonly represent them as a static Directed Acyclic
Graph (DAG) [14]. Static in this regard means that, once
the workflow is defined it is immutable, which does not
address the need for scientific workflows to be dynamic. As
highlighted by [7], [11], this possesses several constraints
when the experiment at hand involves the exploration of large
datasets.



Despite being referred to as ’static’, many workflow systems
currently allow for some degree of runtime adaption. For ex-
ample, DVega [31] allows for exception handling in individual
workflow steps. These exceptions are caught by the workflow
system, which can recover by scheduling a new and potentially
different step in its place. Other solutions in other workflow
systems also use a similar method for workflow alteration
at runtime, with steps replaced or rescheduled on different
resources. Additionally, many existing workflow systems allow
for whole workflows to be used as individual steps within
a larger workflow. This is a common feature of workflow
definitions such as CWL [3], and is demonstrated by the
heterogeneous system presented in [16]. The presented system
can make use of sub-workflows to loop several times through
an in-situ workflow, which is in turn just one step in an end-to-
end workflow run using PyCOMPSs [30]. Through techniques
such as step swapping and sub-workflows, some dynamism is
achieved, though the possible dynamic options must be defined
ahead of time and so are limited to expected outcomes. It
is suspected that this limitation comes from workflows still
being defined in a static paradigm, with adaptions applied later
within a model that does not sufficiently support such changes.

A fundamentally different approach would be to design
workflows from the ground up to be dynamic. This would
allow for easier implementation of recent innovations such
as workflow loops, branching, or optional outputs. Requests
[20] for human/experiment-in-the-loop workflows would also
be suited to a dynamic model as it allows for a myriad
of different inputs disparate in time, flow and nature. The
proposed MEOW system is intended as such a system.

III. THE PROPOSED SOLUTION

A. Designing MEOW

To create a truly dynamic workflow a DAG cannot be
used, or anything that can be reduced down to one before job
scheduling. This is as such an expression of the workflow will,
by necessity mean we understand the entire path through the
workflow, and so have no need of a dynamic workflow. Instead,
we will adopt the bottom up approach first demonstrated in
[5] to create meaningfully distinct jobs, scheduled according to
filesystem events. These jobs can be thought of as individual
workflow steps, with their own input and output, and may
even be workflows in their own right such as is demonstrated
in [16]. However, each step is meaningfully distinct, in that
they have no predetermined dependencies or links between
them. As a result, a workflow becomes an emergent property
of the system, rather than being explicitly defined by the user.
This bottom up, event-driven approach shall be referred to as
Managing Event-Oriented Workflows, or MEOW.

Within MEOW, users do not define workflows, but create
individual steps out of Patterns and Recipes. Patterns are a
description of what events should result in processing. This
event description can be as broad or specific as the user
requires. For instance, in an implementation based on file
system events it could be a specific file path, or be broad
enough to cover any instance of a certain file extension. The

processing that is triggered by a Pattern is defined in a Recipe.
A Recipe should process some input data and then should
(but is not required to) produce some output. As well as the
event description, a Pattern must also declare a Recipe as the
processing that shall be triggered in the event of a match.
Taken together, a Pattern and Recipe define one step of a
workflow. As a user defines multiple Patterns and Recipes,
a workflow emerges from the collection of individual steps.

The advantage of breaking down the workflows into these
Patterns and Recipes is that each step of the workflow is now
completely independent. This contrasts with other scientific
workflow systems, where the entire workflow is processed
together2. As a result, individual steps could be said to
lack meaningful inter-dependencies and are scheduled and
completed in isolation. This isolation is what enables the
emergent workflow to be completely dynamic, as any job can
be changed, cancelled or added regardless of the state of other
jobs.

This level of job independence is novel in scientific work-
flow systems. It allows for some new possibilities in work-
flows, such as entirely optional job output, and is a better
semantic fit for recent efforts in scientific workflows such
as branching and looping. This is especially true if the track
through said branches and loops is difficult to predict.

B. MEOW Requirements

To properly define a MEOW system, the following defini-
tions for Patterns and Recipes have been constructed. These
would be the minimum that would need to be defined in a
Pattern or Recipe by a user for them to create a functioning
system as described. For a Recipe the requirements are:

• Name: This is the unique identifier of the Recipe. It is
used by Patterns to identify the linked Recipe, and by the
implementation to keep track of changes to an already
registered Recipe.

• Instructions: User defined code. For instance, a user’s
analysis algorithm. It may rely on input data or variables,
provided by a Pattern.

The requirements for a Pattern are:
• Name: This is the unique identifier of the Pattern.
• Triggering Event: This is an event description, used to

match against system events. In case of a match then a
job should be scheduled according to the definition of the
Pattern. This job will receive the event source as input.

• Recipe: The name of a Recipe, used to define the
processing taking place in a job.

• Variables: A set of variables to be passed to the Recipe
by this Pattern at job creation. These could be any data
structure understood by the Recipe and may include
additional input files or possible output locations.

Further requirements must be met for a MEOW based
workflow system to be truly dynamic. These are:

2This may in practice be done in several batches of processing running in
parallel, or sequentially. It is nevertheless defined as one holistic system.



• When the system registers a Pattern/Recipe, the system
must check to see if any existing Patterns or Recipes
require the new Pattern/Recipe. If so, they should be
linked.

• Every time that a Pattern and Recipe are linked, the
system must create an appropriate event trigger.

• If a new trigger is created, it must be able to check within
the system, would any existing event sources activate the
trigger, were they created now. If any matching event
sources are present they must be treated as though they
were just created and so activate the trigger.

• If a Pattern or Recipe is deleted, then any triggers created
from it must be deleted.

• If a trigger is ever deleted then any jobs that were
scheduled as a result of activating that trigger should be
cancelled. This is not strictly necessary but without it the
system may quickly bloat with outdated jobs and output,
potentially confusing a user.

• If a Pattern/Recipe is ever updated then it should be
processed in the system by the existing Pattern/Recipe
being deleted, and a new one being registered as though
it was created for the first time.

The presented requirements, when taken together ensure
that the resulting workflow is adaptive to changes in Patterns,
Recipes, and the underlying event sources. It ensures that jobs
will be rescheduled automatically according to these changes.
If each requirement is implemented correctly then a workflow
will, by necessity, be an emergent property of Pattern and
Recipe definitions.

IV. IMPLEMENTING MEOW WITHIN MIG
A. mig meow: A Package for Defining MEOW Workflows

A Python package was developed allowing users to define
Patterns and Recipes, called mig meow [19]. This package
is based on a file event system and contains the definition
of a Pattern object, along with a number of helper functions
for defining a Pattern’s event paths, Recipes, outputs3, and
variables.

Recipes are defined as Jupyter Notebooks [18]. This is as
they are already commonly used in scientific computing, and
can offer a user-friendly and interactive interface. According
to the specification, Recipes require a Name and Instructions,
which Notebooks already have with their filename and the
code cells within them. Variables can be passed to a Recipe
by a Pattern allowing the same Recipe to be used by multiple
jobs/Patterns with different results, in the manner of a function
or method.

To aid in the management of MEOW workflows, a Jupyter
Notebook widget is provided as part of mig meow, allowing
for Pattern and Recipe construction. This widget also provides
a visualisation of the emergent workflow from defined Patterns
and Recipes. This is especially important due to the separated

3Note that a Pattern’s outputs can be defined in mig meow, despite this
not being necessary according to MEOW. These do not have any effect other
than aiding workflow visualisation, and actual outputs are not limited to those
defined, nor are the defined outputs expected.

nature of the individual workflow steps, as they are not
definitionally linked like in a traditional workflow. Having a
method for checking that the outputs of one Pattern leads into
the inputs of another is therefore helpful. Each defined input
and output path is attached to a Pattern via arrows, showing
the route along which data is processed. Where these inputs
and outputs overlap they will point to the same location, such
as in Figure 1. The visualisation also helps users identify
potential loops in the workflow. As discussed in more detail
in Section VI, loops are a useful feature of MEOW so are
not discouraged, but an unintended one can cause a cascade
of jobs. The visualisation can help identify these before they
happen, but a secondary job monitoring widget can also be
used to view, cancel and resubmit individual jobs scheduled
from existing Patterns and Recipes. These widgets are intended
as the primary means for a user to manage a MEOW workflow
on the MiG, though the MiG’s internal job status and feedback
tools may also be used in conjunction if a user prefers.

A final contribution from mig meow is a model workflow
runner, which can run MEOW workflows locally on a user’s
machine. This is useful as a demonstration of the MEOW
model, as a way of exploring the dynamic system, and of
testing workflows locally. It is not however, intended as a
deployment system and so shall not be considered in further
detail. A fuller explanation can be found within mig meow
[22] if required.

B. mig meow on the Minimum Intrusion Grid (MiG)

To both test and demonstrate how MEOW might be inte-
grated into a mature scientific platform, an implementation
was developed on the MiG [6]. This is a middleware grid
oriented data management and processing platform. The MiG
is a feature rich, production grade system serving researchers,
students and external collaborators at the University of Copen-
hagen across a wide range of scientific fields. It was therefore
deemed a good basis for the MEOW workflow implementa-
tion. The ability to provide runtime adaptable job scheduling
was also recently introduced in [5]. While this notion is
suitable for providing runtime adaptability, the initial imple-
mentation suffers from being highly complex in terms of being
able to define individual trigger rules correctly and organising
these independent rules to produce fully fledged workflows. To
address this mig meow is used to define Patterns and Recipes
which can be exported to the MiG, whereupon the necessary
triggers are created, updated or deleted as appropriate.

The heart of the MiG system from a user’s perspective, is
the concept of Virtual Grids (VGrids). These are a super-set
of a typical grid organisation for storing, processing, sharing,
and managing data in collaborative groups. The MiG also
comes with a number of options to connect to it, or mount
VGrid directories. This means that heterogeneous hardware
such as user workstations or experiment instruments can
instigate MEOW workflow events by uploading data to the
MiG. This is an especially useful feature as modern scientific
workflows are sought after that enable human/experiment-



in-the-loop workflows, with decisions taken external to the
workflow system.

V. A WORKED EXAMPLE

An example MEOW workflow is presented here. This ex-
ample examines the size and distribution of the pores within an
artificial dataset representing 3D X-ray computed tomography
(CT) data of 100 samples of aluminium foam [29]. The
goal is to analyse the pore radius distribution in all samples.
Some samples have very few pores. We want to discard these
samples and exclude them from the final analysis. This can be
done effectively in a dynamic system, meaning we can setup
the whole workflow at once and do not need to pre-sort our
data sets as would often be required in a static system.

To perform this analysis, we need to segment the data, i.e.
label the image voxels according to the two phases present;
aluminium and air. Then, we identify the individual pores
and estimate their radii. This is a time consuming process, so
before we attempt these two steps we can perform an initial
check to ensure that the porosity is within the desired range.
This will exclude defect samples from the time consuming
analysis.

1) The Recipes: The following items of processing were
required before any workflow could be constructed. Each was
written as a Jupyter Notebook and registered under the given
name. Recipe code is available in [32].

• Recipe ‘porosity check’ linked to Pattern ‘ini-
tial porosity check’: A two-component Gaussian Mix-
ture Model is fitted to a small sample (around 1 %) of
the intensity data, providing a rough idea of the air-to-
aluminium ratio through the model component weights.

• Recipe ‘segmentation’ linked to Pattern ‘seg-
ment foam data’: In the first step of the segmentation
process, noise is reduced using a Median filter. The filter
kernel size is defined as a variable whose value is set
in the Pattern. Thereafter, the image is segmented using
Otsu thresholding [26]. Finally, a morphological closing
operation is performed to remove possible remaining
single-voxel noise.

• Recipe ‘pore analysis’ linked to Pattern
‘foam pore analysis’: To investigate the pore size
distribution, the individual pores are identified using the
watershed algorithm [12] with local peaks in a distance
transform of the segmented data as seeds.

2) The Foam Analysis Workflow: The final implementation
of the workflow is illustrated in Figure 1. Each of the three
created Patterns is shown in green circles. Each Pattern has as
an input path a file type in a directory, as shown by the white
rounded rectangles with arrows pointing to the Pattern. Any
output locations are shown with the arrows leading out of the
Pattern. Each Pattern specifies the corresponding Recipe, as
stated in the previous paragraph.

100 artificial CT datasets to be analysed were gener-
ated using the Python package foam ct phantom [27] and
the ASTRA toolbox [33]. 20 phantoms were generated
with insufficient porosity compared to the remaining 80

phantoms. To start processing using the workflow, all 100
datasets were uploaded to the ‘foam ct data’ directory in
the ‘.npy’ NumPy array format. This triggers the first Pat-
tern, ‘initial porosity check’. The Recipe linked to this Pat-
tern classifies each dataset as either “accepted” or “dis-
carded” depending on some predefined porosity threshold,
and accordingly, a text file with the dataset filename is
created in one of the directories ‘foam ct data accepted’ or
‘foam ct data discarded’. This was done to avoid copying the
whole dataset needlessly, as this would result in gigabytes
of additional space being used up. The creation of each
text file triggers the next Pattern, ‘segment foam data’. The
segmentation method described in the linked Recipe is applied
to the accepted datasets and the result stored in the directory
‘foam ct data segmented’. Finally, the pore analysis is per-
formed on the segmented data, producing the final plots stored
in the directory ‘foam ct data pore statistics’ as determined
by the ‘foam pore analysis’ Pattern.

*.txt*.txt

foam_ct_data/*.npy

foam_ct_data_discarded/*.txt

foam_ct_data_accepted/*.txt

foam_ct_data_segmented/*.npy

foam_pore_analysis

segment_foam_data

inital_porosity_check

foam_ct_data_pore_analysis/*.png

*.txt

*.txt*.txt*.txt

Fig. 1: The foam analysis workflow. Note that this image
is based on the visualisation described in Section IV-A, but
additional file images have been added to make the data state
clearer at the different stages.

3) Results: All 100 datasets, totalling 6.25GB were gener-
ated and uploaded to the MiG. This triggered 100 jobs initially,
and then a further 78 from the accepted data sets, and a final
78 from the segmentation. To complete all 256 resulting jobs
took approximately 4 hours and 15 minutes using a 4 core,



3.4 GHz resource. 2 files of the original 100 were corrupted
during their upload and so their initial jobs failed. Note that
the processing of the other 98 jobs completed, demonstrating
that the dynamic nature of this workflow can cope even when
errors not predicted by the user occurs. Once all jobs were
completed it was obvious that the results of 2 were missing
from the final data and so the 2 files were re-uploaded. All 6
appropriate jobs were re-scheduled without having to re-run
the entire workflow and all expected 80 final analysis images
were present within 5 minutes of the corrected upload.

4) Suitability: The toy workflow presented here demon-
strates how an event-driven workflow may be constructed, and
a scenario in which it would be advantageous to do so. This
is as we can setup one continuous workflow without any prior
sorting of the data. In addition, individual job scheduling is
completely separated so one dataset may be sorted, segmented
and analysed before all datasets have been sorted. Lastly, as
shown in the previous paragraph, the workflow is now an
active part of the VGrid and is able to process any further
data that is created or modified without any need of additional
user interaction. This makes the analysis easily repeatable if
further data is generated.

VI. USERS AND USE CASES

When using MEOW to define a dynamic workflow rather
than a static workflow system, different design paradigms are
possible. Some possibilities and use cases are presented here
as inspiration. These are not intended as improvements per se
over any other methodology, but merely as possibilities within
MEOW that are either not possible in other systems or very
difficult to achieve.

An event-driven, dynamic workflow system such as MEOW
is ideally suited to repeatable jobs, especially if they have
unpredictable outputs. This could be extremely useful for facil-
ities such as CERN [8], MAX IV [21] or EuXFEL [13], where
external users can book experiment time. These users are
often an eclectic mix of specialists in their own field but may
have limited technical understanding of complex computing
environments such as high performance computing systems.
For some users, their only concern is with the finally produced
experiment data on which they shall perform their analysis.
They are largely unconcerned with pre-processing tasks such
as reformatting or cleaning data inputs. MEOW could be a
valuable tool to ensure this is automatically scheduled before
being handed off to data analysers.

Similarly, a dynamic workflow would be suited to continu-
ous monitoring systems such as WIFIRE [2], a system for
simulating, monitoring and predicting wildfires in southern
California. WIFIRE uses Kepler, a static workflow system
to create workflows where heterogeneous data from cameras,
satellites, weather stations and previous data sets is used to
predict/simulate fire risks. Notably, the output state of one
run can be used as input for the next run so as to generate
an updating and continuous fire risk simulation. If additional
sensors are brought online, or existing ones removed, the
workflow needs to be modifiable at runtime without the system

needing extensive downtime for modification. This continuous,
looping, dynamic nature maps well to a workflow system such
as MEOW.

A dynamic system is also well suited to the increasing
calls for human or experiment in-the-loop interactions within
workflows. This is where workflow progression depends on
decision making by either a user, or by hardware/software
external to the workflow system. As MEOW functions use
events, any external interaction can be enabled from a wide
range of heterogeneous systems, as long as it can produce an
event within a MEOW implementation.

An example of some of these use cases is presented in
Figure 2. The specifics of the workflow will not be considered
as it is the structure rather than the processing that is the focus
here. In this workflow we can start with some experiment,
E, such as an X-ray detector. This detector will produce
potentially hundreds of data files in D1. Each file in D1
triggers a MEOW event, scheduling a job (purple) which
assesses if the D1 data is worth keeping, e.g. as was shown in
the ’initial porosity check’ Pattern in Figure 1. The acceptable
data is written to D2, whilst invalid data might trigger more ex-
periment reads from E. These reads could be given new input
parameters according to the results of the purple job. Writing
to D2 will trigger 2 MEOW events. The first event schedules
the green job which produces D3, and is analogous to the
sort of processing shown in the ’segment foam data’ and
’foam pore analysis’ Patterns in Figure 1. The blue MEOW
event schedules a job requiring some human interaction, such
as to finely calibrate some input, or identifying particularly
regions of interest. Any identified data is written to D4. This
then triggers further, more in depth processing to D5 or could
be the basis for more experiment reads.

E D1 D2
D3

H

D5

D4

Fig. 2: An example workflow. Data directories and external
actors are shown as nodes. Solid arrows are MEOW workflow
jobs. Dotted arrows show calls for an experiment run.

VII. LIMITATIONS AND FUTURE WORK

The presented workflow system has several limitations.
The separated nature of individual jobs means that it is
more difficult for job execution to be optimised, such as by
compressing together directly linked jobs. On a related note,
within the MiG, the choice of file based events means that
keeping data in memory on job processing resources between
jobs is also difficult to achieve. Both of these limitations are
inherent to the current design of MEOW, and whilst solutions
may be possible it is expected that they would be more difficult



to achieve than in a static workflow system. Mitigating these
limitations could be a significant avenue of future work.

Another limitation with the current implementation is a lack
of user friendly provenance reporting. Reporting is currently
available but it is hard to access, and is only done on a
per job basis. A workflow wide report should connect linked
jobs into common overview traceback reports that details
what processing happened based on the defined Patterns and
Recipes. A final point of future work would be to demonstrate
a more complex, real world example of a MEOW workflow
in action.

VIII. CONCLUSIONS

This paper has proposed one possible solution to some of
the problems of modern scientific workflows. Unlike static
workflows that require all steps to be defined at the very
beginning, MEOW is proposed as a bottom up approach which
breaks workflows down into Patterns and Recipes. This allows
for an event-driven workflow system, which is fully dynamic
at runtime. This enables a whole host of new ways of thinking
about scientific workflows and how they are structured.

A demonstration system was implemented and described
working in conjunction with the MiG. An example dynamic
workflow using mig meow was presented. The design reper-
cussions of MEOW were also considered, with it being of
particular note that the event-driven nature enables workflow
structures for which traditional static workflow systems are un-
suited. For example, optional branching and cyclic workflows
are possible within this system.

This work is worth continuing as it presents scientists with
a dynamic paradigm for workflows, enabling new ways of
interacting with and exploring even extremely large datasets.
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Abstract
In this paper, it is shown how teaching platforms at educational institutions can utilize cloud platforms to scale
a particular service, or gain access to compute instances with accelerator capability such as GPUs.

Specifically at the University of Copenhagen (UCPH), it is demonstrated how the internal JupyterHub ser-
vice, named Data Analysis Gateway (DAG), could utilize compute resources in the Oracle Cloud Infrastructure
(OCI). This is achieved by utilizing the introduced Cloud Orchestrator (corc) framework, in conjunction with
the novel JupyterHub spawner named MultipleSpawner. Through this combination, we are able to dynamically
orchestrate, authenticate, configure, and access interactive Jupyter Notebooks in the OCI with user defined
hardware capabilities. These capabilities include settings such as the minimum amount of CPU cores, memory
and GPUs the particular orchestrated resources must have. This enables teachers and students at educational
institutions such as UCPH to gain easy access to the required capabilities for a particular course. In addition,
we lay out how this groundwork, will enable us to establish a Grid of Clouds between multiple trusted insti-
tutions. This enables the exchange of surplus computational resources that could be employed across their
organisational boundaries.

Keywords
Teaching, Cloud Computing, Grid of Clouds, Jupyter Notebook

1. Introduction

The availability of required computational resources in organisations, such as scientific or educational
institutions, is a crucial aspect of delivering the best scientific research and teaching. When teaching
courses involving data analysis techniques it can be beneficial to have access to specialized platforms,
such as GPU accelerated architectures.

At higher educational institutions, such as the University of Copenhagen (UCPH) or Lund Univer-
sity (LU), these centers are substantial investments, that are continuously maintained and upgraded.
However, the usage of these resources often varies wildly between being fully utilized to sitting idly
by.

We therefore propose, that these institutional resources be made available (with varying priority)
across trusted educational and scientific organisations. Foremost, this is to enable the voluntary shar-
ing of underused resources to other institutions, thereby potential establishing greater scalability than
can be found within each individual institution.
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1.1. Basic IT

Within institutions such as UCPH, there is a mixture of services that each provides. At the very
basic level, there are infrastructure services such as networking, account management, email, video
conferencing, payroll management, license management, as well OS and software provisioning. In
this paper, we define these as Basic IT services. At educational institutions, additional services can
be added to this list, these include services for handling student enrollment, submissions, grading,
course management, and forum discussions. As with the initial Basic IT services, these are typically
off the shelf products that needs to be procured, installed, configured and maintained on a continuous
basis.

A distinguishing trait of Basic IT services, in an education context, is that they are very predictable
in terms of the load they will exhibit, both in times of high and low demand. For instance, there will
be busy junctions, such as assignment hand in days, release of grades, student enrollment, and so
on. In contrast, holiday and inter-semester periods will likely experience minor to no usage. Given
this, these services are classic examples of what cloud computing was developed to provide. Efficient
utilization of on-demand resources, with high availability and scalability to handle fluctuating usage
in a cost effective manner.

1.2. Science IT

Science IT services, in contrast, revolve around the institutions scientific activities whether by re-
searchers or students. They include services such as management, sharing, transferring, archiving,
publishing, and processing of data, in order to facilitate the scientific process. In addition, these fa-
cilities also enable lecturers to utilize their research material in courses, giving students access to the
same platform and resources.

What distinguishes these services, is that they impose different constraints compared to Basic IT
services. These typically involve areas such as, computational load, security, budgetary, scientific, and
legal requirements, among others. For example, it is often too inefficient, or costly to utilize public
cloud resources for the storing and processing of large scientific datasets at the petabyte scale. In this
case, a more traditional approach such as institutional compute resources is required. [1].

Research fields such as climate science [2], oceanography [3], and astronomy [4], often employ ex-
perimental simulations as a common scientific tool. These simulations produce output up to petabytes
in size, that still need to be stored for subsequent postprocessing and analysis. Upon a scientific dis-
covery from this process, the resulting datasets needs to be archived in accordance with regulatory
requirements, which in the case of UCPH is 5 years [5] (only available in Danish).

1.3. Institutional Resources

High Performance Computing (HPC) and regular compute centers are often established at higher
educational institutions to provide Science IT services. The UCPH [6], University of Antwerp [7], and
LU [8] compute centers are examples of this. In addition, institutions can also gain access to similar
resources through joint facilities like the Vienna Scientific Cluster [9], which supports 19 institutions,
10 of which are higher educational institutions. Finally there are national and pan-national resources
such as ARCHER (UK) [10] or the EuroHPC [11] that review applications before access is granted.

These established centers are very expensive to build and have a limited lifespan before they need
to be replaced. Even smaller educational compute platforms follow a similar life-cycle. For instance,
at the UCPH a typical machine has a lifetime of 5 years before it needs to be replaced. This is whether



the machine has been heavily utilized or not. Therefore, it is important that these systems across
institutions are utilized, not only efficiently, but at maximum capacity throughout their lifetime.

For organising the sharing of resources across trusted educational and scientific organisations, in-
spiration is drawn from the way traditional computational Grids have been established [12]. The
difference is, that instead of establishing a Grid where individual resources are attached, this model
will instead be based on each institution establishing a Cloud of resources that are shared via a Grid.
This means that the Grid is responsible for interconnecting disjointed clouds, whether they be insti-
tutional or public cloud platforms. The result being an established model for sharing cloud resources
across educational institutions in support of cloud services for bachelor and master courses, general
workshops, seminars and scientific research.

In this paper, we present how an existing teaching and research service at UCPH could be enabled
with access to a cloud framework, which is the first step towards a Grid of Clouds resources. We
accomplish this by using the Cloud Orchestrator (corc) framework [13]. Through this, we are able
to empower the DAG service with previously inaccessible compute resources across every course at
UCPH. This was previously not feasible with internal resources alone. Since we do not have access
to other institutional resources at this point in time, we utilized a public cloud provider to scale the
service with external resources.

2. Background

At the Niels Bohr Institute (NBI), part of UCPH, we host a number of Science IT services that are part
of providing a holistic educational platform for researchers, teachers, students, and general staff. A
subset of these Science IT services have been especially beneficial across all levels of teaching. Namely,
services such as the University Learning Management System (LMS), called Absalon, which is based
on Canvas [14] for submissions and grading. The Electronic Research Data Archive (ERDA) [15] for
data management and sharing tasks. In addition to the Data Analysis Gateway (DAG) [16], which is
a JupyterHub powered platform for interactive programming and data processing in preconfigured
environments.

2.1. Teaching Platforms

The combination of these subset services, in particular the combination of ERDA and DAG, has been
especially successful. Teachers have used these to distribute course material through ERDA, which
made the materials available for students to work on at the outset of the course. This ensures that
students can get on with the actual learning outcomes from the get go, and not spend time on tedious
tasks such as installing prerequisite software for a particular course. Due to budgetary limitations,
we have only been able to host the DAG service with standard servers, that don’t give access to any
accelerated architectures.

Across education institutions, courses in general have varying requirements in terms of computing
resources, environments, and data management, as defined by the learning outcomes of the course.
The requirements from computer science, data analysis, and physics oriented courses are many, and
often involve specialized compute platforms. For example, novel data analysis techniques, such as
Machine Learning or Deep Learning have been employed across a wide range of scientific fields. What
is distinct about these techniques is the importance of the underlying compute platform on which
it is being executed. Parallel architectures such as GPUs in particular are beneficial in this regard,
specifically since the amount of independent linear systems that typically needs to be calculated to



Figure 1: ERDA Interface

give adequate and reliably answers are immense. The inherent independence of these calculations,
makes them suitable for being performed in parallel, making it hugely beneficial to utilize GPUs. [17].

Given that the DAG service was an established service at UCPH for data analysing and program-
ming in teaching bachelor and master students, it seemed the ideal candidate to enable with access to
cloud resources with accelerator technology. For instance, courses such as Introduction to Computing
for Physicists (abbreviated to DATF in Danish) [18], Applied Statistics: From Data to Results (APP-
STAT) [19], and High Performance Parallel Computing (HPPC) [20], all would benefit from having
access to GPU accelerators to solve several of the practical exercises and hand-in assignments.

2.2. ERDA

ERDA provides a web based data management platform across UCPH with a primary focus on the
Faculty of Science. Its primary role is to be a data repository for all employees and students across
UCPH. Through a simple web UI powered by a combination of an Apache webserver and a Python
based backend, users are able to either interact with the different services through its navigation menu,
or a user’s individual files and folders via its file manager. An example of the interface can be seen in
Figure 1. The platform itself is a UCPH-specific version of the open source Minimum Intrusion Grid
(MiG) [21], that provides multiple data management functionalities. These functionalities includes
easy and secure upload of datasets, simple access mechanisms through a web file manager, and the
ability to establish collaboration and data sharing between users through Workgroups.



2.3. Jupyter

Project Jupyter [22] develops a variety of open source tools. These tools aim at supporting interactive
data science, and scientific computing in general. The foundation of these is the IPython Notebook
(.ipynb) format (evolved out of the IPython Project [23]). This format is based on interpreting special
segments of a JSON document as source code, which can be executed by a custom programming
language runtime environment, also known as a kernel. The JupyterLab [24] interface (as shown in
Figure 2) is the standard web interface for interacting with the underlying notebooks. JupyterHub [25]
is the de-facto standard to enable multiple users to utilize the same compute resources for individual
Jupyter Notebook/Lab sessions. It does this through its own web interface gateway and backend
database, to segment and register individual users before allowing them to start a Jupyter session.

In addition, JupyterHub allows for the extension of both custom Spawners and Authenticators,
enabling 3rd party implementations. The Authenticator is in charge of validating that a particular
request is from an authentic user. The responsibility of the Spawner is how a Jupyter session is to be
scheduled on a resource. Currently there exist only static Spawners that utilize either preconfigured
resources that have been deployed via Batch, or Container Spawners, or at selective cloud providers
such as AWS [26]. As an exception to this, the WrapSpawner [27] allows for dynamic user selections
through predefined provides. However, these profiles cannot be changed after the JupyterHub service
is launched, making it impossible to dynamically change the set of supported resources and providers.
Therefore it would be of benefit if a Spawner extended the WrapSpawner’s existing capabilities with
the ability to dynamically add or remove providers and resources.

3. Related Work

As presented in [28], Web-based learning by utilizing cloud services and platforms as part of the cur-
riculum is not only feasible, but advisable. In particular, when it comes to courses with programming
activities for students, educational institutions should enable access to innovative Web-based tech-
nologies that supports their learning. These include interactive programming, version control and
automated programming assessments to ensure instant feedback.

3.1. Interactive Programming Portals

Research in cloud computing for education typically revolves around using Web-enabled Software
as a Service (SaaS) applications. Examples of such include platforms such as GitHub [29], Google
Docs [30], Google Colaboratory [31], Kaggle [32], and Binder [33]. Each of these can fill a particular
niche in a course at the teacher’s or student’s discretion. Nevertheless, the provided capability often
does come with its own burdens, in that the administration of the service is often left to the teaching
team responsible for the course. This responsibility typically includes establishing student access,
course material distribution to the specific platform, guides on how to get started with the service
and solving eventual problems related to the service throughout the course. In addition, many of the
external cloud services that offer free usage, often have certain limitations, such as how much instance
utilisation a given user can consume in a given time span. Instead, providing such functionalities as
Science IT services, could reduce these overheads and enable seamless integration into the courses.
Furthermore, existing resources could be used to serve the service by scaling through an established
Grid of Clouds.

In terms of existing public cloud platforms that can provide Jupyter Notebook experiences, DAG
is similar to Google Colaboratory, Binder, Kaggle, Azure Notebooks [34], CoCalc [35], and Datalore



Figure 2: JupyterLab Interface

[36]. All of these online options, have the following in common. They all have free tier plans available
with certain hardware and usage limitations. All are run entirely in the web browser and don’t require
anything to be installed locally. At most they require a valid account to get started. Each of them
present a Jupyter Notebook or Notebook like interface, which allows for both export and import of
Notebooks in the standard format. An overview of a subset of the supported features and usage
limits across these platforms can be seen in Table 1, and their hardware capabilities in Table 2. From
looking at the features, each provider is fairly similar in terms of enabling Languages, Collaborating,
and Native Persistence (i.e. the ability to keep data after the session has ended). However, there is a
noticeable difference, in the maximum time (MaxTime) that each provider allows a given session to
be inactive before it is stopped. With CoCalc being the most generous, allowing 24 hours of activity
before termination. In contrast, internal hosted services such as DAG allow for the institution to define
this policy. At UCPH, we have defined this to be 2 hours of inactivity, and an unlimited amount of
active time for an individual session. However, as Table 2 shows, we currently don’t provide any GPU
capability, which is something that could be changed through the utilisation of an external cloud with
GPU powered compute resources.

Given this, the DAG service seemed as the ideal candidate to empower with external cloud re-
sources. Both because it provides similar features as the public cloud providers in terms of Languages
and Collaborate ability, but also since it is integrated directly with UCPHs data management service.



Table 1
Subset of Jupyter Cloud Platforms Features

Provider Native Persistence Languages Collaborate MaxTime (inactive,max)

Binder[37] None User specified 1 Git 10m, 12h2

Kaggle [38] Kaggle Datasets Python3,R Yes 60m, 9h
Google Colab [39] GDrive, GCloud Storage Python3,R Yes 60m,12h* 3

Azure Notebooks [40] [41] Azure Libraries Python{2,3},R,F# NA 60m,8h* 4

CoCalc [42] CoCalc Project Python{2,3},R,Julia,etc Yes* 30m, 24h
Datalore [43] Per Workbook Python3 Yes 60m, 120h 5

DAG [44] ERDA Python2,3,R,C++,etc Yes 2h, unlimited 6

Table 2
Hardware available on Jupyter Cloud Platforms

Provider CPU Memory (GB) Disk Size (GB) Accelerators

Binder NA 1 Min, 2 MAX No specified limit* None
Kaggle1 4 cores 17 5 None
Kaggle2 2 cores 14 5 GPU 7 or TPU 8 [45]

Google Colab Free NA NA GDrive 15 GPU or TPU (thresholded access)
Azure Notebooks (per project) NA 4 1 GPU (Pay)

Cocalc (per project) 1 shared core 1 shared 3 None
Datalore 2 cores 4 10 None
DAG 8 cores 8 unlimited 9 None

3.2. Cloud Orchestration

Cloud resources are typically provided by the infrastructure service through some form of orchestra-
tion. Orchestration is a term for providing an automated method to configure, manage and coordinate
computer systems [46]. Through orchestration, an organisation or individual is able to establish a
complex infrastructure through a well defined workflow. For instance, the successful creation of a
compute node involves the processing of a series of complex tasks that all must succeed. An example
of such a workflow can be seen in Figure 3. Here a valid Image, Shape, Location and Network has
to be discovered, selected, and successfully utilized together in order for the cloud compute node to
be established. An Image is the target operating system and distribution, for instance Ubuntu 20.04
LTS. A Shape is the physical configuration of the node, typically involving the amount of CPU cores,
memory and potential accelerators. Location is typically the physical location of where the resource
is to be created. Cloud providers often use the term Availability Zone instead but it generally defines
which datacenter to utilize for the given task. Network encompasses the entirety of the underlying
network configuration, including which Subnet, Gateway, and IP address the compute node should
utilize. In the context of a federated network like a Grid, the orchestration would ideally involve the
automated provisioning of the computational resource, the configuration of said resource, and ensure
that the resource is correctly reachable through a network infrastructure.

Multiple projects have been developed that automate development and system administration tasks
such as maintenance, testing, upgrading, and configuration. These includes packages such as Ter-
raForm [47], Puppet [48], Chef [49], and Ansible [50], all of which open source projects that can be
utilized across a range of supported cloud providers. Nevertheless, in terms of enabling workflows that
can provide orchestration capabilities, these tools are limited in that they typically only focuses on a



Figure 3: Workflow for orchestrating a compute node

subset of the orchestration functionalities such as provisioning and deployment or configuration and
maintenance. For instance TerraFrom is a tool that focuses on infrastructure deployment whereas
Puppet, Chef and Ansible are primarily concerned with configuration and maintenance of existing
systems. In contrast commercial cloud providers typically also provide their own orchestration-like
tools and Software Development Kits (SDK)s, enabling the ability to interact with their respective
cloud system. For instance, Oracle provides the Oracle Cloud Infrastructure CLI [51] tool that can in-
teract with their infrastructure. The same applies to the Amazon AWS CLI [52], in addition to a vast
complement of tool-kits [53] that provide many different AWS functionalities including orchestration.
In contrast, commercial cloud provided tools are often limited to only support the publishing cloud
vendor and do not offer cross-cloud compatibility, or the ability to utilize multiple cloud providers
interchangeably.

Cloud orchestration developments for the scientific community, especially those aiming to provide
cross-cloud deployments, have mostly been based on utilizing on premise cloud IaaS platforms such
as OpenStack [54] and OpenNebula [55]. Developments have focused on providing higher layers of
abstraction to expose a common APIs that allow for the interchangeable usage of the underlying sup-
ported IaaS platforms. The infrastructure is typically defined in these frameworks through a Domain
Specific Language (DSL) that describes how the infrastructure should look when orchestrated. Ex-
amples of this include cloud projects such as INDIGO-cloud [56] [57], AgroDAT [58] and Occupus
[58]. These frameworks, nonetheless do not allow for the utilization of commercial or public cloud
platforms, since they rely on the utilization of organisationally defined clouds that are traditionally
deployed, managed, and hosted by the organisation itself. Although required, if as stated, we are
to establish a Grid of Clouds which should allow for the inclusion of public and commercial cloud
platforms. The corc framework was developed and designed to eventually support the scheduling of
cloud resources across both organisations and public cloud providers.

4. The first cloud enabled service

To establish a Grid of Cloud resources, we started with enabling the usage of a single public cloud
provider to schedule DAG Notebooks on. Through this we created the foundations for the eventual
Grid structure that would allow the resources to be scheduled across multiple clouds and organisa-
tions.

4.1. Corc

The corc framework was implemented as a Python package. The package establishes the foundations
for essential functions such as orchestration, computation, configuration, and authentication against
supported cloud providers and cloud resources. Overall, corc is a combination of an Infrastructure as
a Service (IaaS) management library, and a computation oriented scheduler. This enables the ability
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Figure 4: Cloud Orchestrator Framework Overview

to schedule services on a given orchestrated resource. An overview of the architecture can be seen in
Figure 4.1.

The first provider to be integrated into the framework was the OCI IaaS. This was chosen, because
the UCPH had a preexisting collaboration with Oracle, that enabled the usage of donated cloud re-
sources for testing and development. As also highlighted, this does not limit the integration of other
cloud providers into the framework, which the framework was designed for. Furthermore, as explored
in section 2.3. A new Spawner, named MultipleSpawner was introduced, to provide the necessary dy-
namic selection of cloud providers.

As Figure 4.1 indicates, for each provider that corc supports, an orchestrator for that provider
needs to be defined within corc. In addition, the framework defines three other top level compo-
nents, namely Compute, Configurer, and Authenticator. All three are abstract definitions allowing
for specific implementations to support the targeted resources which they apply to. A service can
therefore be enabled with the ability to utilize cloud resources by integrating the corc components
into the service itself. This method is limited to services that are developed in Python. In addition,
corc also defines a Command Line Interface (CLI), that can be used to interact with the cloud provided
resources directly. Details about how the framework and CLI can be used will not be presented in this
paper, but can be found in [13].

{
" v i r t u a l _ m a c h i n e " : [

{
" name " : " o r a c l e _ l i n u x _ 7 _ 8 " ,
" p r o v i d e r " : " o c i " ,
" image " : " O r a c l e Linux 7 . 8 "

}
]

}

Listing 1: Spawner Deployment configuration

4.2. MultipleSpawner

MultipleSpawner [59] is a Python package allowing for the selection of dynamic Spawners and re-
sources. Structurally, it is inspired by the WrapSpawner [27], through the MultipleSpawner inte-
grates corc into the Spawner ifself. This enables the JupyterHub service to manage and utilize cloud
resources on a dynamic set of providers. In order to enable the MultipleSpawner to support these dy-
namic resources providers, two JSON configuration files needs to be defined. One of these is shown
in Listing 1, and defines the specific resource type that should be deployed on the provider. Currently



the MultipleSpawner supports deploying, ‘virtual_machine‘, ‘container‘, and ‘bare_metal‘ resources.
The other configuration file is shown in Listing 2. It defines the template configuration settings that
specify which Spawner, Configurer, and Authenticator the MultipleSpawner should use to spawn,
configure and connect to the deployed resource.

[
{

" name " : " V i r t u a l M a c h i n e Spawner " ,
" r e s o u r c e _ t y p e " : " v i r t u a l _ m a c h i n e " ,
" p r o v i d e r s " : [ " o c i " ] ,
" spawner " : {

" c l a s s " : " sshspawner . sshspawner . SSHSpawner " ,
" kwargs " : {

" r e m o t e _ h o s t s " : [ " { e n d p o i n t } " ] ,
" r e m o t e _ p o r t " : " 2 2 " ,
" s s h _ k e y f i l e " : " ~ / . c o r c / s sh / i d _ r s a " ,
" remote_port_command " : " / u s r / b in / python3
/ u s r / l o c a l / b in / g e t _ p o r t . py "

}
} ,
" c o n f i g u r e r " : {

" c l a s s " : " c o r c . c o n f i g u r e r . A n s i b l e C o n f i g u r e r " ,
" o p t i o n s " : {

" h o s t _ v a r i a b l e s " : {
" a n s i b l e _ u s e r " : " opc " ,
" a n s i b l e _ b e c o m e " : " yes " ,
" ans ib le_become_method " : " sudo " ,
" new_username " : " { JUPYTERHUB_USER } "

} ,
" h o s t _ s e t t i n g s " : {

" group " : " compute " ,
" p o r t " : " 2 2 "

} ,
" app ly_kwargs " : {

" p l aybook_pa th " : " s e tup_s sh_spawner . yml "
}

}
} ,
" a u t h e n t i c a t o r " : {

" c l a s s " : " c o r c . a u t h e n t i c a t o r . S S H A u t h e n t i c a t o r " ,
" kwargs " : { " c r e a t e _ c e r t i f i c a t e " : " True " }

}
} ,

]

Listing 2: Spawner Template configuration



5. Results

By integrating corc into the MultipleSpawner, we enabled the architecture shown in Figure 5, where
the DAG service is able to dynamically schedule Jupyter Notebooks across the two resource providers.
As is indicated by Figure 5, the UCPH and OCI providers are defined to orchestrate resources, in this
case cloud compute instances, in preparation for scheduling a requested Notebook. In order to validate
that the architecture worked as expected, we setup a test environment on a separate machine. This
machine was configured with a corc and JupyterHub environment, where OCI was defined as a corc
provider and the MultipleSpawner as the designated JupyterHub Spawner. With this in order, the
JupyterHub service was ready to be launched on the machine.

The MultipleSpawner was configured to use the template and deployment settings defined in List-
ing 1 and 2. This enables the MultipleSpawner to create Virtual Machine cloud resources at the OCI.
Subsequently, the MultipleSpawner uses the SSHSpawner [60] created by the National Energy Re-
search Scientific Computing (NERSC) Center to connect and launch the Notebook on the orchestrated
resource. Prior to this, it uses the corc defined SSHAuthenticator and AnsibleConfigurer to ensure
that the MultipleSpawner can connect to a particular spawned resource and subsequently configure
it with the necessary dependencies.

An example of a such a spawn with the specified requirements can be seen in Figure 6. To validate
that this resource had been correctly orchestrated, the corc CLI was utilized to fetch the current
allocated resources on OCI. Listing 3 shows that an instance with 12 oracle CPUs, 72 GB of memory
and one NVIDIA P100 GPU had been orchestrated. This reflects the minimum shape that could be
found in the EU-FRANKFURT-1-AD-2 availability domain that met the GPU requirement.

rasmusmunk$ c o r c o c i o r c h e s t r a t i o n i n s t a n c e l i s t
{

" i n s t a n c e s " : [
{

. . .
" a v a i l a b i l i t y _ d o m a i n " : " l f c b : EU−FRANKFURT−1−AD−2 " ,
" d i sp lay_name " : " i n s t a n c e 2 0 2 0 1 0 1 8 1 0 3 6 3 8 " ,
" image_ id " : " o c i d 1 . image . oc1 . eu− f r a n k f u r t . . . . " ,
" shape " : "VM. GPU2 . 1 " ,
" s h a p e _ c o n f i g " : {

. . .
" gpus " : 1 ,
" max_vn ic_a t tachments " : 1 2 ,
" memory_in_gbs " : 7 2 . 0 ,
" ocpus " : 1 2 . 0 ,

} ,
}
] ,
" s t a t u s " : " s u c c e s s "

}

Listing 3: Running OCI Notebook Instance

As shown in Figure 7, the JupyterHub spawn action redirected the Web interface to the hosted
Notebook on the cloud resources. Relating this to the mentioned courses at UCPH, this then enabled
the students with access to an interactive programming environment via the JupyterLab interface.



Figure 5: DAG MultipleSpawner Architecture, R = Resource

Building upon this, a simple benchmark was made to evaluate the gain in getting access to a com-
pute resource with a NVIDIA P100 GPU. A Notebook with the Tensorflow and Keras quick start
application [61] was used to get a rough estimate of how much time would be saved in building a
simple neural network that classifies images. Listing 5, shows the results of running the notebook on
the GPU powered compute resource for ten times in a row, and Listing 4 shows the results of running



Figure 6: MultipleSpawner Interface

the same benchmark on an existing DAG resource. As this shows, the GPU version was on average
24,7 seconds faster or in other words gained on average a 2,8 speedup compared to the DAG resource
without a GPU.

( python3 ) jovyan@d203812f76e8 : ~ / work / c t e _ 2 0 2 0 _ p a p e r / no tebooks$ \
> python3 b e g i n n e r . py
Took : 3 8 . 1 0 7 9 4 5 9 1 9 0 3 6 8 6 5
Took : 3 6 . 1 2 3 3 5 0 3 8 1 8 5 1 1 9 6
Took : 3 7 . 3 7 4 5 5 7 0 1 8 2 8 0 0 3
Took : 3 7 . 6 9 0 5 1 7 9 0 2 3 7 4 2 7
Took : 4 1 . 1 6 2 4 2 7 9 0 2 2 2 1 6 8
Took : 3 7 . 2 4 0 5 2 0 9 5 4 1 3 2 0 8
Took : 3 8 . 6 8 5 3 9 1 9 0 2 9 2 3 5 8 4
Took : 4 0 . 0 2 7 8 2 3 2 0 9 7 6 2 5 7
Took : 3 8 . 4 0 9 3 6 9 9 4 5 5 2 6 1 2
Took : 3 9 . 3 4 7 0 4 7 8 0 5 7 8 6 1 3
Average : 3 8 . 4 1 6 8 9 5 2 9 4 1 8 9 4 5

Listing 4: DAG compute resource Tensorflow times



Figure 7: A Tensorflow + Keras Notebook on an OCI resource

( python3 ) jovyan@56e3c30c2a f6 : ~ / work / c t e _ 2 0 2 0 _ p a p e r / no tebooks$ \
> python3 b e g i n n e r . py
Took : 1 9 . 4 7 9 9 0 0 3 6 0 1 0 7 4 2 2
Took : 1 2 . 8 5 9 1 2 3 7 0 6 8 1 7 6 2 7
Took : 1 3 . 0 4 7 2 9 3 1 8 6 1 8 7 7 4 4
Took : 1 3 . 2 9 6 7 7 6 0 5 6 2 8 9 6 7 3
Took : 1 3 . 0 0 2 3 6 3 2 0 4 9 5 6 0 5 5
Took : 1 3 . 1 1 8 3 2 9 0 4 8 1 5 6 7 3 8
Took : 1 3 . 0 6 7 5 0 8 9 3 5 9 2 8 3 4 5
Took : 1 3 . 0 8 9 2 8 4 6 5 8 4 3 2 0 0 7
Took : 1 3 . 1 6 0 0 9 9 5 0 6 3 7 8 1 7 4
Took : 1 3 . 0 3 2 1 7 8 4 0 1 9 4 7 0 2 1
Average : 1 3 . 7 1 5 2 8 5 7 0 6 5 2 0 0 8 1

Listing 5: OCI GPU compute resource Tensorflow times

From this simple benchmarking example, we can see that by utilizing the MultipleSpawner in com-
bination with corc, users are able to get access through a simple gateway to the expected performance
gains of accelerators like a GPU. Expanding on this, the teachers and students at UCPH will now be
able to request a compute resource with a GPU on demand, thereby gaining simple access to achieving
similar faster runtimes in their exercises and assignments.



6. Conclusions and Future Work

In this paper, we presented our work towards establishing a Grid of Clouds that enables organisations,
such as educational institutions to share computational resources amongst themselves and external
collaborators. To accomplish this, we introduced corc as a basic building block enables the ability to
orchestrate, authenticate, configure, and schedule computation on a set of resources by a supported
provider.

OCI was the first provider we chose to support in corc, foremost because of the existing collabora-
tion with UCPH and the associated credits that got donated to this project. This enabled us to utilize
said provider to cloud enable part of the DAG service at UCPH. This was made possible through the
introduction of the MultipleSpawner package that utilized corc to dynamically chose between sup-
ported cloud providers. We demonstrated that the MultipleSpawner was capable of scheduling and
stopping orchestrated and configured resources at OCI via a local researcher’s machine.

In terms of future work, the next step involves the establishment of a Grid layer on top of the UCPH
and OCI clouds. This Grid layer is planned to enable the establishment of a federated pool of par-
ticipating organisations to share their resources. By doing so, we will be able to dynamically utilize
cross organisation resources for services such as DAG, allowing us for instance to spawn Notebooks
across multiple institutions such as other universities. Enabling the sharing of underused resources
across the Grid participants. To accomplish this, corc also needs to be expanded to support additional
providers, foremost through the integration of the Apache libcloud [62] library which natively sup-
ports more than 30 providers, we will allow corc and subsequently the MultipleSpawner to be utilized
across a wide range of cloud providers.
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Abstract—Teaching parallel computing traditionally comes
with a significant amount of setup and maintenance work over-
head for the students, often taking away focus and time from the
core learning activities. At UCPH we created a small scale HPC
sandbox service to remedy this situation and used it excessively
during the 2019 High Performance Parallel Computing course.
The service itself was designed to provide a user-friendly web
environment to teach novice users about HPC systems and
techniques without worrying a lot about the underlying software
setup details. A tailor-made JupyterLab infrastructure was at
the core of enabling this experience, while also allowing the use
of a traditional command-line oriented HPC workflows via its
shell. Containers were added to the mix to isolate the compute
environment of users and control resources. For the storage
part, a scalable and persistent user data storage was provided
through integration of the universitys scientific data management
platform, ERDA. As a result, the students and the scientific staff
at the university have been empowered with a quick and easily
accessible small scale HPC system to explore and exploit the
potential performance benefits of e.g. multi-threaded or MPI
based solutions.

Index Terms—Teaching, Computing, HPC, Parallel and Dis-
tributed, Programming, Jupyter+JupyterLab, Docker, Shifter,
SLURM

I. INTRODUCTION

The effective and efficient usage of High Performance Com-
puting (HPC) Systems is essential to conduct experimental
research across various scientific fields. This includes research
in energy, climate, physics, and life-sciences where the use
of HPC Systems is increasingly common and necessary. The
use case across such fields typically involves some kind of
complex environment or phenomenon that, because of real
world limitations including infeasibility, associated cost, or
legal constraints is instead simulated on an HPC system.
Examples include ocean modelling, weather and climate fore-
casts, nuclear energy research and astrophysics simulations,
all of which suffer from one or more of these limitations. In
the field of HPC Systems, there is a push towards developing
bigger exascale machines, i.e. systems that can perform 1018

floating point operations per second. To achieve it, future HPC
Systems will likely utilize heterogeneous compute capabilities

This project has received funding from the European Unions Horizon 2020
research and innovation programme under the Marie Skodowska-Curie grant
agreement No 765604.

including GPUs and similar accelerator devices to reach such
scale. This development will impose additional programmer
complexity in developing applications that can utilize such
heterogeneous systems, which is in contrast to the homoge-
neous CPU based systems of the past. With that in mind, the
challenge of effective and efficient usage of HPC systems is
not going away but is only an increasing challenge to both
veteran and novice users.

Typically when teaching both students and researchers alike
in how to accomplish this at the Niels Bohr Institute (NBI), as
part of the University of Copenhagen (UCPH), the task often
has not been limited to simply instructing the students on how
such a system can be efficiently used. Instead a substantial part
of the teaching resources has been allocated to ensure that the
students had access to an environment representative of a real
HPC system, for example in terms of reflecting the workflow
of using a batch queuing system to schedule jobs for compu-
tation. This environment would typically be either their own
machines which had to be configured separately or a temporary
shared system available only for the duration of the teaching
period. It imposed a number of steps that were not directly
related to the teaching of using HPC systems, but involved
system administrative tasks such as installing development
dependencies, which in itself is neither particularly relevant
nor interesting for students not in the Computer Science field.
Furthermore it often complicates and distracts from the lessons
critical to learn as a user rather than an administrator.

To reduce the complexity of getting prepared for the course
and to provide a user-friendly environment for exploring the
world of HPC computation, the MPI [1] Oriented Develop-
ment and Investigation (MODI) service has been introduced
at UCPH. It aims to provide such an environment while still
allowing for a classical interaction with a HPC system via
for instance a Unix-like shell and a batch queuing system.
The service is based on utilizing a range of technologies to
wrap a classic SLURM [2] based cluster setup with Message
Passing Interface (MPI) capabilities. It also includes numerous
technologies that the Jupyter [3] project provides, which
mainly focuses on providing a user-friendly interactive data
analysis and scientific computing platforms. In our instance,
we made use of both the JupyterHub multi-user gateway and
the recently introduced JupyterLab interface to allow both



students and researchers to interact with the small scale HPC
system via their local web browser. Beyond being intended
as the default environment for teaching HPC technologies and
techniques at UCPH, the service is also dedicated to act as a
University resource to conduct suitable experiments. For in-
stance, running small scale MPI powered physics simulations
that aren’t feasible in terms of cost nor scale to schedule on a
fully fledged HPC environment like the ones operated by the
Partnership for Advanced Computing in Europe (PRACE) [4].
In addition to providing a set of computational resources, the
MODI service has also been integrated with the university’s
existing data management platform to allow automatic access
to the individual user datasets which span from giga to tera
bytes in size for subsequent processing. This paper introduces
this new service, covering both the provided user experience,
the technologies used, and the general architecture behind it
to produce the complete environment. It includes a newly
developed library (ldap hooks), that extends JupyterHub with
the novel functionality of allowing the creation of Directory
Informatsion Tree (DIT) entities via LDAP during the spawn-
ing process, which allowed for the integration of externally
generated profiles with a classic Unix-like user setup. This is
followed by how the service was used in a limited roll-out
for teaching the 2019 High Performance Parallel Computing
(HPPC) course to a set of Physics and Computer Science Mas-
ter’s students at NBI. Furthermore, the paper also discusses
how the course was received by the students in learning HPC
techniques and how such system was subsequently exposed
to the Universities researchers and collaboration partners as a
general resource.

II. RELATED WORK & BACKGROUND

A web based platform for data processing is not a novel
idea, at least since 1997 it has been accomplished with [5] and
in various forms of systems and research as also reiterated by
[6]. In addition, versions of utilizing JupyterHub and Jupyter
Notebook based platforms to give access to HPC resources
have also previously been discussed in various papers [7], [8].

Our approach is similar to the system presented by [7], in
that our service also utilizes a JupyterHub gateway behind an
optional front-end proxy server which handles authentication
via the HTTP/HTTPS header authentication mechanism. How-
ever, we add to this functionality through the introduction of
a new Authenticator module. It allows both a user defined au-
thentication header and the ability to supply custom metadata
to an authenticated user from an external system to effectively
support deeper integration with external services.

In addition, like [6] we aim at providing a fully integrated
platform that acts as a unified interface which is easy for users
with non-HPC backgrounds to get initial hands-on experience
with, such as scheduling tasks to a classic batch system. This
is in contrast to [8], which focuses on providing a single
functionality such as allowing the users to host a Jupyter
Notebook via the existing batch queuing system. However, in
our case it does not mean that we provide a custom interface to
submit jobs or workflows on a back-end HPC cluster. Instead,

we rely on providing the capability to integrate the JupyterHub
gateway with existing web services, such as the UCPH’s
existing data management platform, Electronic Research Data
Archive (ERDA) [9]. By integrating the new MODI service
with ERDA it enables both easy access to computational
resources for processing of existing and future datasets on the
platform. It also enables the same data management capabili-
ties of results generated on the MODI service, either through
various supported languages via the JupyterLab’s interactive
interface for non-intensive add-hoc data analysis, or through
the supported shell interface to submit classic batch jobs to a
backend HPC system.

III. USER WORKFLOW

From the user perspective, the result of this overall process
was a fully web based platform, that enables users to access
both their regular datasets and services that ERDA provides.
Additionally it enables them to access the MODI service
via the regular ERDA web interface as shown in the top
right corner of Figure 3. Upon such a selection the user is
then redirected to a JupyterHub gateway website from ERDA,
which enables them to select a particular pre-built Jupyter
Notebook from a drop-down menu and spawn it. When they do
so they are redirected to their own notebook instance, which
will expose the default JupyterLab interface. Figure 1 shows
an example of this where an instance of the ’HPC Notebook’
has been spawned. As seen, the user is provided with a set
of default home directories, i.e. erda mount which contains
the user’s ERDA content, modi images that contains the set
of pre-built image environments available to the user for job
submissions, and modi mount which is the mount point of the
user’s staging scratch space. The scratch space is used to share
files such as job scripts with each of the HPC nodes and to
temporarily store the generated results from the jobs before
moving them to a permanent destination i.e. the ERDA home.
Depending on the particular image the user selects from the
initial drop-down menu, the JupyterLab session will provide
support for various programming languages. As indicated by
Figure 1, the ’HPC Notebook’ for instance supports multiple
types of programming languages for interactive computation,
i.e. Python3 and C++11,14,17. These can be utilized either
through the interactive Console to typically execute one-off
statements, or through the Notebook to define a document of
multiple code blocks that can be executed independently. In
terms of scheduling tasks to the backend HPC system, the
user is expected to utilize the JupyterLab’s Terminal shell to
interact with the cluster via regular SLURM commands.

IV. TECHNOLOGIES

To provide the highlighted workflow experience, several dif-
ferent technologies and components were used and integrated.
This section will describe how they were all used to develop
the service.

A. ERDA
ERDA provides a web based data management platform

across UCPH with a primary focus on the Faculty of Science.



Fig. 1: MODI JupyterLab Interface

Its primary role is to be a data repository for students,
researchers and general employees across UCPH. It enables
this through a simple web UI powered by a combination
of an Apache webserver and a Python based backend that
enables the users to either interact with the different services
through its navigation menu, or the user’s individual files and
folders via its file manager. An example of the interface can
be seen in Figure 3. The platform itself is a UCPH-specific
version of the open source Minimum intrusion Grid (MiG)
[10] project, that provides multiple data management func-
tionalities, such as easy and secure upload of datasets, simple
access mechanisms through a web file manager, and the ability
to enable internal collaboration and data sharing between users
through Workgroups/VGrids. The platform also provides users
with efficient IO access to their data through standard secure
protocols like WebDAV over SSL/TLS (WebDAVS), FTPS
and SFTP. WebDAVS additionally allows users to natively
mount or map their ERDA home as a network drive and
on all commonly used platforms. On Linux/Unix the SSHFS
software can similarly even do so through the more efficient
SFTP protocol. All these capabilities have turned it into
an intrinsic data repository for the University’s researchers,
students, and partners. With a current userbase of ∼2000 users
and a usage of 2.3 PB out of 3.2 PB available. An upgrade to
the system is currently being developed/implemented which
up-scales the available capacity to 8.7 PB.

B. Jupyter

Project Jupyter [3] is the overall open source project that
develops multiple tools aiming to support interactive data sci-
ence and scientific computing. The foundation of these is the
IPython Notebook (.ipynb) format (evolved out of the IPython
Project [11]). It is based on interpreting special segments of
a JSON document as source code, which can be executed
by a custom programming language runtime environment
(also known as a kernel). The Jupyter Notebook was the
subsequently developed web based interface to both allow the
creation and execution of such documents through a browser,
while also providing numerous features such as access to an

Fig. 2: Login Node Software Stack

IPython shell, a classic shell or a regular text document to
name a few. In time this interface will be superseded by the
JupyterLab [12] interface (as shown in Figure 1). Both of
these web interfaces are based on providing a single web-based
user experience. JupyterHub [13] is the de-facto standard to
enable multiple users to utilize the same compute resources
for individual Jupyter Notebook/Lab sessions. It does this
through its own web interface gateway and backend database
to segment and register individual users before allowing them
to start/spawn a Jupyter session. In addition, it allows for
the extension of both custom Spawners and Authenticators to
allow for site specific implementations on how the users should
be allowed to spawn an instance and how either the Jupyter
Notebook or JupyterLab instances should be spawned.

C. SLURM

SLURM or historically Simple Linux Utility for Resource
Management [14] [2] [15] is a highly scalable open source
job scheduling and cluster workload manager frequently used
in both small and large HPC Systems. It is typically used to
allocate parallel tasks (compute jobs) to resources (compute
nodes), with subsequent job lifetime management from start to
finish of the individual tasks. It does this through a selected job
scheduling algorithm to pick individual tasks from a dedicated
queue of user submitted jobs. As a minimum configuration,
SLURM requires a cluster control daemon and a compute
node daemon. In MODI the login node hosts the dedicated
control daemon managing the task queue, while the backend
SLURM Nodes host the compute daemon which executes
the user jobs. The JupyterLab instance Terminal enables the
users to do typical SLURM tasks such as inspecting nodes,
the queue, or adding job tasks to name a few.

D. Architecture

The underlying architecture supporting all of the different
components can be seen in Figure 3. As highlighted, the
MODI service itself is provided by two sets of systems, a
non-computation intensive part of four interconnected virtual
nodes, and eight bare-metal SLURM nodes dedicated to the
computational tasks that the users submit to them.

When a user requests access to the MODI service on ERDA,
the user is redirected to the node responsible for providing it.
As shown in Figure 3 the login node has this responsibility.
To provide this, the login node hosts both the JupyterHub
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gateway and the user’s individual JupyterLab instances. It does
this through the software-stack as shown in Figure 2, to enable
the scheduling of both the JupyterHub gateway and the user
instances as individual Docker Services [16] via the Docker
Swarm Orchestration engine. This will result in the services
being scheduled in isolated containers. In that way we are
able to limit the amount of resources the individual services
can claim on the host through cgroups [17] restrictions. It also
enables us to isolate the individual user’s perspective of the
operating system environment through namespaces, including
both their perspective of the file system and their process tree.
In turn this also provides us with the capability to scale the
service to a multi-node service if so needed in the future.

The running JupyterHub service itself is a custom Docker
image build [18], that includes the JupyterHub SwarmSpawner
[19], which enables the scheduling of JupyterLab sessions as
Docker Swarm services. Furthermore, the JupyterHub build
also comes with the new HeaderAuthenticator as provided
by [20] and inspired by [21]. It enables the sought after
integration with ERDA through its API by allowing additional
state information to be provided to a particular user.

E. Authentication and Security

The primary responsibility of ensuring that only authen-
ticated users are granted access remains with the ERDA
platform. It ensures this through one of its supported authen-
tication mechanisms, which currently includes OpenID and
X.509 certificates.

On MODI, the introduced HeaderAuthenticator configures
the JupyterHub service such that users are able to authen-
ticate themselves by providing a required ’auth’ header for
authenticating. By default the authenticator is set to expect the
’Remote-User’ header, similar to what [7] uses. However in
[20] this preset header is changeable, i.e it can be customized
as per the specific architecture demands. In our instance, the

default ’Remote-User’ header fitted the purpose adequately.
Furthermore, the allowed headers option, allows for the ad-
ministrator to specify additional header values that the user,
during the authentication phase is able to provide to the
subsequent Spawner. Additionally the underlying Linux/Unix
environment can also be provided with this information for the
lifetime of the authenticated session or as a permanent state.
Details on how either of these can be achieved and configured
can be found at [20].

The HeaderAuthenticator enables ERDA to share the nec-
essary information to integrate the ability for users to access
their external ERDA data, but also to supply the MODI setup
with the user details necessary to instantiate a unique and valid
MODI Linux profile. To access the external data, ERDA was
extended with the capability to generate and supply limited
lifetime SSH key sets for an individual user, which could
subsequently be re-used by MODI to mount a users ERDA
home via SSHFS. In the Linux profile case, it enabled us to
share the ERDA user profile information, which, because of
its original authentication method is based on the x.509 certifi-
cate format and their associated Distinguished Name strings.
Therefore, every user no matter the choice of authentication
is represented by such a data-structure on ERDA. We chose
to provide this identifier to the JupyterHub user state via the
HeaderAuthenticator, which could subsequently be used for
creation/lookup of that user’s Linux profile information during
the spawning phase.

It is important to note, this type of header authentication
should only be allowed when the JupyterHub service is
deployed behind a proxy (in our case ERDA). It takes care
of proper authentication and ensures that the user can’t forge
the header before it is forwarded to the service. The reason
being that on its own, the HeaderAuthenticator doesn’t attempt
to validate whether the user isn’t impersonating another, by for
instance requiring secret information which only the real user



should known such as a password, or other forms of external
verification such as directly with the OpenID authentication
provider. Also of note in regards to this is that the web
requests in general should only be allowed to come from
the proxy itself, i.e. the system should limit who is allowed
to make HTTP/HTTPS request against the service. In our
instance we imposed iptables firewall rules to enforce this,
i.e. by only exposing the JupyterHub webserver to the ERDA
frontend proxy. If similar safeguards can’t be enforced, another
Authenticator should be used, a list of which can be found at
[22].

F. Providing Linux Profiles

In the Linux profile case, it was necessary to have them
uniformly distributed across multiple services, in particular
across the user’s Lab session, and the SLURM compute nodes
for job execution, and on the shared NFS storage to ensure
proper file access between the services. Here, we used the
typical LDAP based authentication through a combination of
the Name Service Switch (NSS) module and Pluggable Au-
thentication Module (PAM) approach [23] against a centralized
Directory server. This provided us with an internal DIT service
that could both manage external and internal LDAP requests.
In MODI, the ldap node as highlighted in Figure 3 was
dedicated to provide this functionality by being configured
with the OpenLDAP directory server.

The task of storing the supplied user information on the ldap
node’s DIT, was accomplished by utilizing the JupyterHub
‘pre spawn hook‘ [24] mechanism. It allows for a pre-stage
function to be executed before the user’s JupyterLab session
is created. The ldap hooks [25] leverages this to interact with
an LDAP service during the spawning phase to either lookup
or create a user entry inside the LDAP DIT.

Ldap hooks accomplishes it by utilizing the ldap3 [26]
library to either, add, update, or delete entries in an exter-
nal DIT by communicating over LDAP to a specified host.
Furthermore, the library enables the JupyterHub configuration
to search the existing DIT for an entry with a particular ob-
jectclass and attributes combination before an entry is created.
The search operation can also be used to perform subsequent
operations on the retrieved results, such as generating unique
UIDs for new users.

o b j e c t c l a s s ( O b j e c t I d e n t i f i e r
NAME ’x−n e x t U s e r I d e n t i f i e r ’
DESC ’An o b j e c t c o n t a i n i n g an u i d

a t t r i b u t e , can be used wi th an a t omi c
d e l e t e +add o p e r a t i o n t o g e n e r a t e a new

uid ’
SUP t o p STRUCTURAL
MUST ( cn $ uidNumber )

)

Listing 1: x-nextUserIdentifier

In MODI, this was accomplished by introducing a custom
objectclass, i.e. x-nextUserIdentifer that with its attribute ’uid-
Number’, keeps track of the most recent allocated UID to a
user. The DIT schema definition for this objectclass can be

seen in Listing 1. This enabled the creation of the ’uidNext’
entry instance. Which allowed for the generation and alloca-
tion of unique UID’s by utilizing the built-in atomic LDAP op-
eration ’modify-delete-add’ [27]. To support ERDA’s specific
selection of x509 certificate Distinguished Name attributes to
define a user, an additional structural objectclass was created
to support every field that the user could potentially provide,
with a minimum requirement of providing a common name
attribute. The schema definition for this particular class can
be seen in Listing 2. The MUST and MAY fields should be
translated as follows; cn=’common name’, c=country, s=state,
l=language, o=organisation, ou=organisational-unit.

o b j e c t c l a s s ( O b j e c t I d e n t i f i e r
NAME ’x−c e r t s D i s t i n g u i s h e d N a m e ’ SUP t o p
STRUCTURAL
DESC ’An o b j e c t c o n t a i n i n g t h e a t t r i b u t e s

f o r a common x509 D i s t i n g u i s h e d Name
’

MUST cn
MAY ( c $ s t $ l $ o $ ou $ e m a i l A d d r e s s )

)

Listing 2: x-certsDistinguishedName

In addition, this objectclass type was combined with the
predefined schema class ’PosixAccount’ [28] to enable that
the subsequent user entry could be assigned the generated
UID, a potential Group Identifying Digit (GID), and a default
’homeDirectory’ value.

G. Staging Scratch Space

To allow the authenticated users and their associated
JupyterLab services to share resources with the SLURM
nodes, the nfs node provides a per user scratch space. This
is utilized by a user’s scheduled container to stage files
they either produced or collected from their ERDA home
before a particular job is scheduled to the SLURM nodes.
The mounting of the external NFS share was provided by
dedicating the login node to mount the share containing the
user’s home directories. Subsequently the individual user’s
home directory is mounted into the scheduled JupyterLab
service when spawned. It ensures that we would not introduce
the substantial overhead of establishing an individual mount
session/connection for each spawned JupyterLab user session.

H. Shifter

Finally there is a need to ensure that the users environment
on MODI provides consistency and compatibility between the
place where the users develop their HPC applications and
the actual execution environment on the SLURM nodes. A
solution to this, was to allow for pre-built Docker Notebook
image environments as part of the job execution on the
SLURM nodes.

This was accomplished by introducing Shifter [29] on the
SLURM nodes on MODI. It ensured that the users, as part of
their SLURM jobs, would be enabled to specify which Shifter
pre-converted image the job tasks should be executed within.



This meant the users were able to compile their source code in-
side the JupyterLab service session, stage it to the NFS shared
directory and subsequently submit the job to the SLURM
cluster without issues of potential mismatches. The Shifter
container runtime environment, requires that the images are
in a supported format such as ext4 or squashfs [30] before
they can be successfully executed. To maintain and accomplish
this, the setup encourages the use of an Image Gateway [31],
either on a dedicated or shared system. The Image Gateway
will then pre-stage the container images, either by pulling
and converting them directly from the official DockerHub
repository automatically during execution or manually pre-
pulled by a user. It does introduce the additional complexity of
having a required daemon running to manage this, which has
to be maintained in terms of keeping the service running and
up to date. Once established, the individual SLURM nodes can
accept jobs that utilize the user’s applications and a prepared
image to execute the specific task within.

V. ADDITIONAL COMPUTE SERVICES

Beyond the introduced MODI service, a prior developed
service named Data Analysis Gateway (DAG) was also avail-
able to the ERDA users, which included the HPPC students
during the course. DAG consists of an eight node setup all
part of a combined Docker Swarm cluster configuration. In this
service, the user can similarly spawn containerized JupyterLab
sessions with intermediate session lifetime for computation.
However, on DAG the user is limited to the resource granted
by that particular session, which as of May 2019 was eight
GB of memory and 100% utilization of eight logical cores on
a single machine. In contrast to MODI, these sessions have
no access to external compute resources such as a SLURM
cluster and are limited to a single node environment. This
setup has been supporting other courses and teaching activities
at UCPH, including Introduction to Computing for Physicists
[32] in 2018, and Applied Statistics [33] in 2019 and several
intermediate workshops.

This service was also highlighted to the students as a
potential resource for prototyping, testing and benchmarking
their applications that do not utilize parallel and distributed
techniques, such as MPI, MPI-IO, or excessive Threading
beyond the limited eight logical cores.

VI. COURSES AND CURRICULUM’S

The HPPC course intends to teach the postgraduate/mas-
ters students in several HPC topics. This includes areas
such as Basic Computer Architecture, Vectorization, Shared
Memory Architecture/Programming, Distributed Memory and
Networked Architecture and I/O related topics such as disk,
tape, parallel I/O, staging and file systems. During the 2019
edition, the course had 26 students enrolled from Computer
Science, Physics and the Biology departments.

The course itself was taught over an eight week period,
where the students had two weekly taught lectures. One of
these was a classical two hour presentation which introduced

that week’s topic, while the second was a two hour hands-
on practical session. Over the course of these eight weeks
the students were given a total of four assignments, each one
including a C++ application that the students were tasked
with optimizing. The applications included an N-body NICE
simulation, a Climate Model, a Shallow Water Simulation and
a CT Imaging Reconstruction assignment [34].

For each assignment, the students were expected to uti-
lize the taught techniques to improve the performance of
that particular implementation. For instance, in the N-body
assignment, the task was to speedup a basic sequential imple-
mentation by for instance adapting it to utilize Vectorization
to update the velocity and position of each object in the
solar system during each timestep [34]. The results of the
achieved benefits and how they were accomplished was to be
described and documented in a subsequent assignment report.
The grading would then be based on the average of the 3 best
passing reports produced by the student.

To complete these assignments, the students also had to
get familiar with associated subjects such as writing basic
C++ code, compilation, debugging (typical print statements
or GDB) in addition to using techniques such Single Program
Multiple Data (SPMD) through MPI or Threading through ei-
ther explicit POSIX threads (pthreads) or implicit via OpenMP.

Since the MODI system was still being developed while
the course was running, the initial 2 assignments were not
able to utilize the backend SLURM cluster for performance
benchmarks. Instead the students were instructed to utilize the
existing DAG service with the mentioned limitations. This did
not pose a big issue, since the 2 initial assignments were fo-
cused on using vectorization and shared memory programming
i.e. Threading/OpenMP to optimize the implementation, which
didn’t require the availability of SLURM cluster to execute or
perform adequate benchmarks.

However, for the final two assignments, i.e. the Shallow
Water Simulation and CT Imaging Reconstruction the MODI
service was available to all course students for both testing and
benchmarking their solutions on the backend SLURM cluster.
To ease the transition of using the Shifter images to execute
the student solutions, Makefiles were provided as part of the
assignments. These could produce a SLURM ready job script
that would specify the developed HPC image as the default
environment in which the individual nodes should execute the
compiled binary.

During the course, the students could raise questions and
issues either directly during the teaching sessions or through
the UCPH course platform, Absalon which enables both
the distribution of course material and the ability to raise
Discussions or Announcements on. It was used to resolve
issues throughout the course including MODI and DAG related
problems. This included trouble such as incorrect execute
permission on compiled binaries that were submitted to the
SLURM queue, reporting of OpenID authentication problems,
and service down times and general compile and programming
errors.

Once the course was completed, the students were given
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Fig. 4: Student Feedback Questions [35]
Q1=”I believe that I have acquired the competencies

described in the course objectives”
Q2=”In my opinion, the teaching material was relevant to

the course”
Q3=”Overall, I find that the course has been useful”

the opportunity to give feedback on the teaching experience.
A summary of some of this feedback can be seen in Figure
4. What can be drawn from it is that the responding students
had a general good experience during the course, with both an
adequate workload for ten out of 13 respondents and general
agreement from 11 out of 13 students that the course was
useful. Another good impression is that ten out of 13 found
the teaching material relevant and that 11 out of 13 felt that
they had learned the course objectives.

Furthermore, ten out of 13 responding students thought that
the course workload was adequate, while two thought it was
too high, and one that it was too low.

Beyond this, the students were given the opportunity to
give comments on the course. These comments were posed
as responses to the two phrases, ”What was good about the
course? Why?” and ”I would like to suggest the following
improvements”. The good aspects included that the students in
general liked the weekly assignments, the notebook handouts
which explained the tasks at hand, and the useful topics.
In relation to the introduced DAG and MODI services, the
students highlighted that additional information/documentation
about these systems, such as general explanations of their ter-
minologies would be helpful. Also additional minor practical
exercises would improve the understanding of the presented
material, especially for those without a Computer Science
background. Furthermore, that the two final assignments could
benefit for more time to accomplish the tasks at hand, since
they impose a steeper learning curve compared to the two
initial assignments.

VII. CONCLUSIONS

The ability to both utilize current and future HPC systems
capabilities, from existing tera- and peta scale systems to

developing exascale systems is important across many research
and industry fields. Through the effective and efficient use
of these systems existing and developing research can be
explored at increasing scale and detail. At UCPH we have
developed the MODI service which consist of an eight node
small scale HPC-like SLURM cluster. The service is designed
to act both as a sandbox where UPCH students and employees
can gain experience with such a system, but also as a general
service where HPC-like jobs can be developed and bench-
marked before being scheduled to an expensive dedicated HPC
resource such as PRACE.

The service itself allows users to conduct both web-based
interactive and classical terminal computing via individual
containerized JupyterLab sessions. In addition, the develop-
ment of this service introduced the ldap hooks library, which
makes it possible for JupyterHub spawners to automatically
create and load entries in a DIT via LDAP. This can be
utilized to provide an automatic conversion from external user
profiles to appropriate Linux profiles that via nss-pam-ldap
can be used to validate their subsequent access to shared
resources such as submitting jobs on a SLURM cluster. In
addition, by utilizing Shifter to provide the pre-built container
image environments as part of the job submissions, the service
ensures that environment-specific expectations such as shared
library dependencies, version, and file system locations are
consistent between the systems involved.

During this introduction, the service was used in teaching
the HPPC course at UCPH for a set of 26 enrolled students
from Computer Science, Physics and Biology. The students
utilized the system to develop, test, and benchmark various
programs as part of their course assignments. Specifically the
students were taught in HPC related subjects such as Vec-
torization, Shared Memory Architecture/Programming, Dis-
tributed Memory and Networked Architecture, and Distributed
I/O.

To accomplish this, two Jupyter powered services, namely
MODI and DAG were introduced in the beginning of the
course as resources to complete these assignments. Here the
students were instructed to complete the assignments relat-
ing to the single node techniques (Vectoraction and Shared
Memory Programming) on the existing DAG service while
the multiple node assignment and techniques (both Distribute
Memory and I/O) were designated to utilize the newly in-
troduced MODI service. Across all assignments the students
were instructed to optimize the performance of the provided
implementations with the taught techniques such as Threading,
OpenMP and MPI.

During the 2019 instance, the course was completed by 24
students. As highlighted in Figure 4, these students were given
the opportunity to submit feedback to the overall experience.
The result of which was that the responding students had a
general favourable experience during the course. For instance,
the majority agreed to having acquiring the competencies of
the course objectives, they found the course useful, and the
teaching material relevant. The students also gave commentary
feedback in regards to both the good aspects of the course



and potential improvements. Specifically, the assignments,
notebook handouts and how the topics were relevant to the
HPPC field were highlighted as good aspects. In relation
to the Jupyter services, the students requested additional
documentation about both the DAG and MODI services and
that minor practical exercises to complement the hand-in
assignments would be of benefit. Overall the course was well
rated across the responding students, both in terms of the
workload required, the level at which the course was taught,
and that the vast majority strongly agreed with the course
being useful.

Subsequent to course completion, MODI was made avail-
able to every ERDA user on UCPH to utilize as a sandbox for
intermediate HPC tasks. For this rollout, the SLURM cluster
setup was augmented to a 3 partition queue split (devel, short,
long), with a decreasing job priority and increasing allowed job
time (20 mins, 48 hours, one week) from devel to long. This
was to ensure that future HPPC course instances and short
term development and benchmarking tasks were prioritized
above hour and multiple day tasks. In addition, as per stu-
dent feedback about lacking documentation about the MODI
service, a user manual was created as a getting started guide
to both future instances of the course and the ERDA users
in general. Furthermore, the introduced Shifter service was
replaced by a Singularity [36] powered setup to provide the
same benefits of containerized SLURM jobs while removing
the dependency of a dedicated Image Gateway daemon. The
setup was simplified by this change by removing the additional
imagegw node while providing the same functionality.

VIII. FUTURE WORK

In the future we will focus on supporting the MODI service
as a permanent service at the UCPH. In this regard, we
would like to introduce an image management service to
handle the preparation of the Singularity images upon changes,
updates or upgrades, which would reduce the general manual
management required to keep the service up to date. In terms
of the ldap hooks library, the current usage relies on simple
username+password authentication from the login node, in the
future this should be changed to utilize the SSL/TLS-based
authentication via temporary LetsEncrypt certificates to im-
prove the security of the system. Finally in relation to the next
instances of the HPPC course, we are considering swapping
the order of assignment three and four as a response to the
student feedback about the difficulty jump from assignment
two to three.
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Appendix C

Compute Systems Specifications

Table C.1: System specifications for benchmark environments

System Num Nodes CPU Cores Ghz Memory (GB) Internal Network Internet

PC 1 AMD Ryzen 7 2700X 8 2.2 16 1 Gbps 60/20 Mbps
DAG 8 AMD EPYC 7501 8 2 256 25 Gbps 10 Gbps

MODI 8 2x AMD EPYC 7501 64 2 256 25 Gbps RoCE (1 µs) 10 Gbit
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Appendix D

Benchmark Environments

Table D.1: System specifications for benchmark environments

System CPU Cores Ghz Memory (GB)

PC AMD Ryzen 7 2700X 8 2.2 16
Data Analysis Gateway AMD EPYC 7501 8 2 8

MPI Oriented Development and Investigation 2x AMD EPYC 7501 64 2 256
Oracle Standard VM.Standard2.2 [125] Intel Xeon Platinum 8167M 2 2 16

Table D.2: McStas Benchmark Specifications

System Num Nodes CPU Cores Ghz Memory (GB)

Laptop 1 i7-8550U 4 1.8 8
OCI Cluster 1 1 EPYC 7551 4 2.0 60
OCI Cluster 2 20 EPYC 7551 24 2.0 320
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Appendix E

Benchmark Examples

E.1 Mig Utils

#!/usr/bin/env python
# coding: utf-8
import argparse
import os

parser = argparse.ArgumentParser()
parser.add_argument("sharelink",

default="", type=str)
parser.add_argument("input_filename",

default="", type=str)
parser.add_argument("--data_dir",

default="foam_ct_data", type=str)
parser.add_argument("--bench_type",

default="default", type=str)
parser.add_argument("--output_accepted_dir",

default="foam_ct_data_discarded", type=str)
parser.add_argument("--output_discarded_dir",

default="foam_ct_data_accepted", type=str)
parser.add_argument("--timing_dir",

default="timings", type=str)
parser.add_argument("--index",

default="0", type=str)
args = parser.parse_args()

share_link = args.sharelink
bench_type = args.bench_type
output_filedir_accepted = args.output_accepted_dir
output_filedir_discarded = args.output_discarded_dir
timing_dir = args.timing_dir
index = args.index
input_filename = os.path.join(args.data_dir,
"{}.npy".format(args.input_filename))

# input_filename = 'foam_ct_data/foam_000_ideal_CT.npy'
# input_filename = 'foam_ct_data/foam_027_big_CT.npy'
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# input_filename = "foam_ct_data/
# foam_0{}_ideal_CT_I0_1000.npy".format(iteration_number)
# input_filename = 'foam_ct_data/foam_045_few_CT.npy'
# output_filedir_accepted = "foam_ct_data_accepted"
# output_filedir_discarded = "foam_ct_data_discarded"
print("Loading: {}".format(input_filename))
porosity_lower_threshold = 0.8
utils_path = "idmc_utils_module.py"

import numpy as np
import importlib
import matplotlib.pyplot as plt
import time
import importlib.util
from mig.io import IDMCShare

file_name = os.path.basename(__file__).split(".")[0]
bench_file = os.path.join(timing_dir, "{}_{}_bench.csv".format(bench_type,
file_name))
start = time.time()

datastorage = IDMCShare(share_link)

spec = importlib.util.spec_from_file_location("utils", utils_path)
utils = importlib.util.module_from_spec(spec)
spec.loader.exec_module(utils)

# Parameters
n_samples = 10000

# Load data
ct_data = None
with datastorage.open(input_filename, "rb") as _file:

ct_data = np.load(_file)

assert ct_data is not None
utils.plot_center_slices(ct_data)

sample_inds = np.random.randint(0, len(ct_data.ravel()), n_samples)
n_components = 2
# Perform GMM fitting on samples from dataset
means, stds, weights = utils.perform_GMM_np(

ct_data.ravel()[sample_inds],
n_components,
plot=True,
title="GMM fitted to "
+ str(n_samples)
+ " of "
+ str(len(ct_data.ravel()))
+ " datapoints",
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)
print("weights: ", weights)

# Classify data as 'accepted' or 'dircarded' according to porosity level
# Text file named according to the
# dataset will be stored in appropriate directories
filename_withouth_npy = input_filename.split("/")[-1].split(".")[0]

output_file = None
if np.max(weights) > porosity_lower_threshold:

if not datastorage.exists(output_filedir_accepted):
datastorage.mkdir(output_filedir_accepted)

output_file = os.path.join(
output_filedir_accepted, "{}_{}.txt".format(bench_type,
filename_withouth_npy)

)
else:

if not datastorage.exists(output_filedir_discarded):
datastorage.mkdir(output_filedir_discarded)

output_file = os.path.join(
output_filedir_discarded, "{}_{}.txt".format(bench_type, filename_withouth_npy)

)

with datastorage.open(output_file, "wb") as _file:
data = str(np.max(weights)) + " " + str(np.min(weights))
_file.write(data)

stop = time.time()

if not datastorage.exists(timing_dir):
datastorage.mkdir(timing_dir)

if not datastorage.exists(bench_file):
with datastorage.open(bench_file, 'w') as _file:

_file.write("index, start, stop, time, size\n")

# Save timing data
with datastorage.open(bench_file, "a") as _file:

content = "{},{},{},{},{}\n".format(
index, start, stop, stop - start, ct_data.nbytes

)
_file.write(content)

Listing 13: initial porosity check.py

#!/usr/bin/env python
# coding: utf-8
import argparse
import os
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# foam_ct_data_accepted/default_foam_000_ideal_CT_I0_1000.txt
parser = argparse.ArgumentParser()
parser.add_argument("sharelink", default="", type=str)
parser.add_argument("input_filename", default="", type=str)
parser.add_argument("--bench_type", default="default", type=str)
parser.add_argument("--data_dir", default="foam_ct_data_accepted", type=str)
parser.add_argument("--output_dir", default="foam_ct_data_segmented", type=str)
parser.add_argument("--timing_dir", default="timings", type=str)
parser.add_argument("--index", default="0", type=str)
args = parser.parse_args()

share_link = args.sharelink
bench_type = args.bench_type
output_filedir = args.output_dir
timing_dir = args.timing_dir
index = args.index
input_base = "{}_{}".format(bench_type, args.input_filename)
required_file = os.path.join(args.data_dir, "{}.txt".format(input_base))

# Variables that will be overwritten accoring to pattern:
print("Checking for: {}".format(required_file))
input_filedir = "foam_ct_data"
utils_path = "idmc_utils_module.py"

import numpy as np
import importlib
import matplotlib.pyplot as plt
import time
import scipy.ndimage as snd
import skimage
import importlib.util
from mig.io import IDMCShare

script_name = os.path.basename(__file__).split(".")[0]
bench_file = os.path.join(timing_dir,

"{}_{}_bench.csv".format(bench_type, script_name))
start = time.time()

datastorage = IDMCShare(share_link)
# No accepted data for that file exists
if not datastorage.exists(required_file):

print("Failed to find required file: {}".format(required_file))
exit(1)

spec = importlib.util.spec_from_file_location("utils", utils_path)
utils = importlib.util.module_from_spec(spec)
spec.loader.exec_module(utils)

# Segmentation method used:
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# - Median filter applied to reduce noise
# - Otsu thresholding applied to get binary data
# - Morphological closing performed to remove remaining single-voxel noise

# Parameters
median_filter_kernel_size = 2

# Load data
filename_withouth_txt = input_base.split(bench_type)[1][1:]
input_data = os.path.join(input_filedir, filename_withouth_txt + ".npy")
print("Loading: {}".format(filename_withouth_txt))

ct_data = None
with datastorage.open(input_data, "rb") as _file:

ct_data = np.load(_file)

utils.plot_center_slices(ct_data, title=filename_withouth_txt)

# Median filtering
data_filtered = snd.median_filter(ct_data, median_filter_kernel_size)
utils.plot_center_slices(

data_filtered, title=filename_withouth_txt + " median filtered"
)

# Otsu thresholding
threshold = skimage.filters.threshold_otsu(data_filtered)
data_thresholded = (data_filtered > threshold) * 1
utils.plot_center_slices(

data_thresholded, title=filename_withouth_txt + " Otsu thresholded"
)

# Morphological closing
data_segmented = skimage.morphology.binary_closing((data_thresholded == 0)) == 0
utils.plot_center_slices(

data_segmented, title=filename_withouth_txt + " Otsu thresholded"
)

# Save data
filename_save = input_base + "_segmented.npy"
if not datastorage.exists(output_filedir):

datastorage.mkdir(output_filedir)

output_file = os.path.join(output_filedir, filename_save)
with datastorage.open(output_file, "wb") as _file:

np.save(_file, data_segmented)

stop = time.time()

if not datastorage.exists(timing_dir):
datastorage.mkdir(timing_dir)
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if not datastorage.exists(bench_file):
with datastorage.open(bench_file, 'w') as _file:

_file.write("index, start, stop, time, size\n")

# Save timing data
with datastorage.open(bench_file, "a") as _file:

content = "{},{},{},{},{}\n".format(
index, start, stop, stop - start, ct_data.nbytes

)
_file.write(content)

Listing 14: segment foam data.py

#!/usr/bin/env python
# coding: utf-8
import argparse
import os

parser = argparse.ArgumentParser()
parser.add_argument("sharelink", default="", type=str)
parser.add_argument("input_filename", default="", type=str)
parser.add_argument("--data_dir",

default="foam_ct_data_segmented", type=str)
parser.add_argument("--bench_type",

default="default", type=str)
parser.add_argument("--output_dir",

default="foam_ct_data_pore_analysis", type=str)
parser.add_argument("--timing_dir",

default="timings", type=str)
parser.add_argument("--index",

default="0", type=str)
args = parser.parse_args()

share_link = args.sharelink
bench_type = args.bench_type
output_filedir = args.output_dir
timing_dir = args.timing_dir
index = args.index
input_filename = os.path.join(

args.data_dir, "{}_{}_segmented.npy".format(bench_type, args.input_filename)
)

# Variables that will be overwritten accoring to pattern:
# input_filename =
# "foam_ct_data_segmented/foam_000_ideal_CT_I0_1000_segmented.npy"
print("Checking for: {}".format(input_filename))
utils_path = "idmc_utils_module.py"

import numpy as np
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import importlib
import matplotlib.pyplot as plt
import time
import scipy.ndimage as snd
import importlib.util

from skimage.morphology import watershed
from skimage.feature import peak_local_max
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
from mig.io import IDMCShare

script_name = os.path.basename(__file__).split(".")[0]
bench_file = os.path.join(timing_dir,
"{}_{}_bench.csv".format(bench_type, script_name))
start = time.time()

datastorage = IDMCShare(share_link)
if not datastorage.exists(input_filename):

print("Failed to find required file: {}".format(input_filename))
exit(1)

spec = importlib.util.spec_from_file_location("utils", utils_path)
utils = importlib.util.module_from_spec(spec)
spec.loader.exec_module(utils)

# # Foam pore analysis
#
# - Use Watershed algorithm to separate pores
# - Plot statistics
#

# Load data
data = None
with datastorage.open(input_filename, "rb") as _file:

data = np.load(_file)

utils.plot_center_slices(data, title=input_filename)
# Watershed: Identify separate pores

# distance map
distance = snd.distance_transform_edt((data == 0))

# get watershed seeds
local_maxi = peak_local_max(

distance, indices=False, footprint=np.ones((3, 3, 3)), labels=(data == 0)
)
markers = snd.label(local_maxi)[0]

# perform watershed pore seapration

155



labels = watershed(-distance, markers, mask=(data == 0))

# Pore color mad
somecmap = cm.get_cmap("magma", 256)
cvals = np.random.uniform(0, 1, len(np.unique(labels)))
newcmp = ListedColormap(somecmap(cvals))

utils.plot_center_slices(-distance, cmap=plt.cm.gray, title="Distances")
utils.plot_center_slices(labels, cmap=newcmp, title="Separated pores")

# Plot statistics: pore radii
volumes = np.array([np.sum(labels == label) for label in np.unique(labels)])
volumes.sort()
# ignore two largest labels (background and matrix)
radii = (volumes[:-2] * 3 / (4 * np.pi)) ** (

1 / 3
) # find radii, assuming spherical pores
_ = plt.hist(radii, bins=200)

# Save plot
filename_withouth_npy = input_filename.split("/")[1].strip(".npy")
filename_save = filename_withouth_npy + "_statistics.png"

print("Loading: {}".format(filename_withouth_npy))

fig, ax = plt.subplots(1, 3, figsize=(15, 4))
ax[0].imshow(labels[:, :, np.shape(labels)[2] // 2], cmap=newcmp)
ax[1].imshow(labels[:, np.shape(labels)[2] // 2, :], cmap=newcmp)
_ = ax[2].hist(radii, bins=200)
ax[2].set_title("Foam pore radii")

if not datastorage.exists(output_filedir):
datastorage.mkdir(output_filedir)

print(output_filedir)
print(filename_save)
with datastorage.open(os.path.join(output_filedir,
filename_save), "wb") as _file:

plt.savefig(_file)

stop = time.time()
if not datastorage.exists(timing_dir):

datastorage.mkdir(timing_dir)

if not datastorage.exists(bench_file):
with datastorage.open(bench_file, 'w') as _file:

_file.write("index, start, stop, time, size\n")

# Save timing data
with datastorage.open(bench_file, "a") as _file:
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content = "{},{},{},{},{}\n".format(index, start, stop,
stop - start, data.nbytes)
_file.write(content)

Listing 15: foam pore analysis.py

import os
import time
import subprocess
from mig.io import IDMCShare

def run_bench(program, args):
cmd = ["python3", program]
cmd.extend(args)
subprocess.run(cmd)

def ensure_datastorage_dir(datastorage, directory):
if not datastorage.exists(directory):

datastorage.mkdir(directory)

if __name__ == "__main__":
prefix = "foam_processing"
steps = [

"initial_porosity_check.py",
"segment_foam_data.py",
"foam_pore_analysis.py",

]
throttle = True

if throttle:
steps_per_min = 3

steps_since_delay = 0
delay_timestamp = int(time.time())
share_link = "SHARELINK"
bench_type = "default"
datastorage = IDMCShare(share_link)
files = [f.strip(".npy") for f in sorted(datastorage.list("foam_ct_data"))]
iterations = 10

base_data_dir = "foam_ct_data"
if not datastorage.exists(base_data_dir):

print("Required data dir: {} is missing".format(base_data_dir))
exit(1)

for i in range(iterations):
# Create the required directories
accepted_dir = "{}_{}_{}_accepted".format(bench_type, i,
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base_data_dir)
discarded_dir = "{}_{}_{}_discarded".format(bench_type, i,
base_data_dir)
pore_analysis_dir = "{}_{}_{}_pore_analysis".format(bench_type, i, base_data_dir)
segmented_dir = "{}_{}_{}_segmented".format(bench_type, i,
base_data_dir)
timing_dir = "{}_{}_times".format(bench_type, i)

ensure_datastorage_dir(datastorage, accepted_dir)
ensure_datastorage_dir(datastorage, discarded_dir)
ensure_datastorage_dir(datastorage, pore_analysis_dir)
ensure_datastorage_dir(datastorage, segmented_dir)
ensure_datastorage_dir(datastorage, timing_dir)

for idx, input_filename in enumerate(files):
for step in steps:

program_path = os.path.join(prefix, step)
args = [

share_link,
input_filename,
"--bench_type",
bench_type,
"--index",
str(idx),
"--timing_dir",
timing_dir

]

if step == "initial_porosity_check.py":
args.extend([

"--output_accepted_dir", accepted_dir,
"--output_discarded_dir", discarded_dir])

if step == "segment_foam_data.py":
args.extend([

"--data_dir", accepted_dir,
"--output_dir", segmented_dir

])
if step == "foam_pore_analysis.py":

args.extend([
"--data_dir", segmented_dir,
"--output_dir", pore_analysis_dir

])

run_bench(program_path, args)
steps_since_delay += 1
time_since_delay = int(time.time()) - delay_timestamp
if (

throttle
and steps_since_delay >= steps_per_min
and time_since_delay < 60
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):
wait_for = 60 - time_since_delay
print("throttle, waiting for: {}".format(wait_for))
time.sleep(wait_for)
delay_timestamp = int(time.time())
steps_since_delay = 0

Listing 16: mig utils benchmark runner.py
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Appendix F

MEOW API

Listing 17: The MiG MEOW Workflows API
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Appendix G

Corc APIs

class Orchestrator:

options = None
_is_ready = False
_is_reachable = False
_resource_id = None

def __init__(self, options):
self.options = options

def is_ready(self):
return self._is_ready

def is_reachable(self):
return self._is_reachable

def endpoint(self, select=None):
raise NotImplementedError

def endpoints(self, select=None):
raise NotImplementedError

def get_resource(self):
raise NotImplementedError

def poll(self):
raise NotImplementedError

def setup(self, resource_config=None, credentials=None):
raise NotImplementedError

def resource_id(self):
return self._resource_id

def tear_down(self):
raise NotImplementedError
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@classmethod
def adapt_options(cls, **kwargs):

"""Used to adapt the orchestrators options if required
before they are passed to the validate_options"""
return {}

@classmethod
def load_config_options(cls, provider="", path=None):

raise NotImplementedError

@classmethod
def make_resource_config(cls, provider, **kwargs):

return None

@classmethod
def make_credentials(cls, **kwargs):

return None

@classmethod
def validate_options(cls, options):

raise NotImplementedError

Listing 18: Corc Orchestrator API

class Scheduler:
def provision_storage(self, config):

raise NotImplementedError

def prepare(self, config):
raise NotImplementedError

def submit(self, task):
raise NotImplementedError

def list_scheduled(self):
raise NotImplementedError

def retrieve(self, job_id):
raise NotImplementedError

def remove(self, job_id):
raise NotImplementedError

Listing 19: Corc Scheduler API

Listing 20: Corc Storage API
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Appendix H

Corc Configurations

corc:
configurers:

ANSIBLE: {}
job:

capture: true
meta:

debug: false
env_override: true
name: ''
num_jobs: 1
num_parallel: 1

output_path: /tmp/output
working_dir: ''

providers:
ec2:

instance:
image: ami-0f18ced0fd6aae5c2
name: instance
size: t1.micro
ssh_authorized_key: ''

profile:
config_file: ˜/.aws/config
credentials_file: ˜/.aws/credentials
name: default

oci:
cluster:

domain: ''
image: nielsbohr/mccode-job-runner:latest
kubernetes_version: ''
name: cluster
node:

availability_domain: 'lfcb:EU-FRANKFURT-1-AD-1'
id: ''
image: Oracle-Linux-7.9-2020.11.10-1
name: NodePool
node_shape: VM.Standard2.1
size: 1
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instance:
availability_domain: ''
operating_system: CentOS
operating_system_version: '7'
shape: VM.Standard2.1
ssh_authorized_keys: []

profile:
compartment_id: ''
name: DEFAULT

vcn:
cidr_block: 10.0.0.0/16
display_name: VCN Network
dns_label: vcn
id: ''
internetgateway:

display_name: default_gateway
id: ''
is_enabled: true

routetable:
display_name: default_route_table
id: ''
routerules:
- cidr_block: null

destination: 0.0.0.0/0
destination_type: CIDR_BLOCK
id: ''

subnet:
cidr_block: 10.0.1.0/24
display_name: worker_subnet
dns_label: workers
id: ''

storage:
credentials_path: /mnt/creds
download_path: ''
enable: false
endpoint: ''
input_path: /tmp/input
output_path: /tmp/output
s3:

bucket_id: ''
bucket_input_prefix: input
bucket_name: ''
bucket_output_prefix: output
config_file: ˜/.aws/config
credentials_file: ˜/.aws/credentials
name: default

upload_path: ''

Listing 21: Corc Configuration Example
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corc:
configurers:

ANSIBLE: {}
job:

capture: true
meta:

debug: false
env_override: true
name: ''
num_jobs: 1
num_parallel: 1

output_path: /tmp/output
working_dir: ''

providers:
aws: {}
oci:

cluster:
domain: ''
image: nielsbohr/mccode-job-runner:latest
kubernetes_version: ''
name: cluster
node:

availability_domain: lfcb:EU-FRANKFURT-1-AD-1
id: ''
image: Oracle-Linux-7.8-2020.09.23-0
name: NodePool
node_shape: VM.Standard2.4
size: 1

instance:
availability_domain: ''
operating_system: CentOS
operating_system_version: '7'
shape: VM.Standard2.1
ssh_authorized_keys: []

profile:
compartment_id: 'ocid1.compartment.oci'
'..aaaaaaaaqbl3z74j5tmii74tgtukhmkv5lx3uwsvwddynaawpyddzsmw27aa'
name: DEFAULT

vcn:
cidr_block: 10.0.0.0/16
display_name: VCN Patch Network
dns_label: vcn
id: ''
internetgateway:

display_name: default_gateway
id: ''
is_enabled: true

routetable:
display_name: default_route_table
id: ''
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routerules:
- cidr_block: null
destination: 0.0.0.0/0
destination_type: CIDR_BLOCK
id: ''

subnet:
cidr_block: 10.0.1.0/24
display_name: worker_subnet
dns_label: workers
id: ''

storage:
credentials_path: /mnt/creds
download_path: ''
enable: false
endpoint: 'https://ku.compat'
'.objectstorage.eu-frankfurt-1.oraclecloud.com'
input_path: /tmp/input
output_path: /tmp/output
s3:

bucket_id: ''
bucket_input_prefix: input
bucket_name: ''
bucket_output_prefix: output
config_file: ˜/.aws/config
credentials_file: ˜/.aws/credentials
name: default

upload_path: ''

Listing 22: Corc McStas Benchmark Configuration
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