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Abstract

The experimental control of physical systems to their ultimate quantum lim-
its has advanced tremendously in the last couple of decades. Parallel advance-
ments in the theoretical descriptions allowed for better understanding the per-
formance requirements needed for using quantum-enabled technologies in real
world applications. With that, it has also become more and more clear that a
single platform might not be able to realize all the protocols needed, for exam-
ple, in a future quantum information processing network. Hybrid quantum de-
vices attempt to combine fundamentally different systems with high efficiency,
harnessing the advantages from its constituent elements.

In this thesis, we report the recent developments on the hybrid interface
between a mechanical oscillator prepared in dielectric membrane and a spin
oscillator prepared in an atomic ensemble. The mechanical oscillator, a drum-
like stressed silicon nitride membrane, is placed inside a high finesse cavity
and mounted in a cryostat operating at 4 K. The spin oscillator is prepared
in the ground state manifold of an optically pumped cesium vapor, placed in
a homogeneous static magnetic field and confined in a glass vapor cell at ap-
proximately 330 K. Each subsystem is coupled to light, operating in the quan-
tum back-action limited regime, that is, at the limit in which the measurement
disturbs the dynamics of the oscillator significantly. The optical interface is es-
tablished by coupling the systems in a cascaded fashion. We show that the mea-
surement induced quantum back-action can be destructively interfered when
preparing the spin ensemble in a effective negative mass regime . In the exper-
iments, we show up to 4.6 dB reduction of the quantum back-action contribu-
tion. Furthermore, we show that the back-action evasion, along with the infor-
mation acquired via the measurement, allows for preparing the hybrid system
in an entangled continuous variables Einstein-Podolsky-Rosen-like state with
variance below the inseparability limit, 0.83± 0.03 < 1.

The established quantum link constitutes a new milestone in the hybrid sys-
tems landscape and paves the road towards measurement of motion beyond
the standard quantum limits of sensitivity, as well as towards teleportation-
based protocols in hybrid quantum networks.
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Sammenfatning

Over de sidste par årtier er den eksperimentelle kontrol over mange fysiske
systemer nået helt ned til deres kvanteniveau. Parallelle fremskridt indenfor
teoretiske beskrivelser af disse systemer har gjort det muligt at opnå en bedre
forståelse af de tekniske krav for fuldt at kunne udnytte disse kvante-klare sys-
temer som brugbare teknologier. Dertil er det blevet mere og mere tydeligt,
at ét enkelt system muligvis ikke vil kunne realisere samtlige protokoller nød-
vendige i fremtidens kvanteinformationprocesseringsnetværk. Hybride kvan-
teenheder sammensætter forskellige kvante-klare systemer på effektiv vis og
kan dermed udnytte fordelene af de individuelle systemer, således at helheden
er mere end summen af delene.

I denne afhandling rapporterer vi om de seneste fremskridt på den hybride
grænseflade mellem en mekanisk resonator i form af en dielektrisk membran
og en spin oscillator forberedt i et atomart ensemble. Den mekaniske oscillator,
en udspændt tromme-lignende silicium nitrid membran, er placeret i en optisk
kavitet med høj finesse og er monteret i en kryostat der opererer ved 4 K. Spin
oscillatoren er forberedt i grundtilstandsmanifolden af en optisk pumpet damp
af cæsium atomer, der er fanget i en glas celle ved omtrent 330 K og placeret
i et homogent statisk magnetfelt. Hvert delsystem er koblet til lys og oper-
erer i det kvantetilbagevirkningsbegrænsede regime, hvilket vil sige i grænsen
hvor målingen skaber en signifikant forstyrrelse i oscillatorens dynamik. Den
optiske grænseflade er etableret ved at koble de to systemer i en kaskaderet
konfiguration. Vi viser at den måleinducerede kvantetilbagevirkning kan in-
terferere destruktivt når det atomare spinensemble er forberedt i en effektiv
negativ-masse tilstand. I eksperimenterne viser vi op imod 4.6 dB reducer-
ing af bidraget fra kvantetilbagevirkningen. Ydermere viser vi at undvigelsen
af tilbagevirkningen, samt informationen anskaffet gennem målingen, mulig-
gør at forberede det hybride system i en sammenfiltret kontinuerlig-variabel
Einstein-Podolsky-Rosen-lignende tilstand med en varians under grænsen for
uadskillelighed, 0.83± 0.03 < 1.

Den etablerede kvanteforbindelse er en ny milepæl indenfor hybride kvan-
teenheder og baner vejen for målinger af bevægelser under den konventionelle
kvantegrænse, samt protokoller baseret på teleportation i hybride kvantenet-
værk.
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vi Chapter 0. Preface

In this thesis, I present a summary of the back-action evasion and entangle-
ment experiments in the optical interface between a cesium spin ensemble and
a nanomechanical device. I also present a set of spin oscillator calibration tech-
niques and state preparation analysis. The emphasis of the is primarily in the
experimental realization, with theoretical framework introduced as needed.

Readers with varied degree of background should read this manuscript dif-
ferently. Some chapters display a more pedagogical and bottom-up structure.
Other chapters are built upon knowledge previously described in the previous
thesis in the group, being —in the opinion of the writer —most useful when
connected to the discussions presented by Julsgaard (2003), Sherson (2006),
Krauter (2011), Jensen (2011), and Møller (2018).

The manuscript is divided in four parts. The structure goes as follows

Part I. The initial chapters lay the foundations of the hybrid system and describe
the implementation of the mechanical and spin oscillators.

Chapter 1. We give a general introduction to the goals of the experiment and its
context in the broader quantum optics community. We also present a
general picture negative mass reference frame and how back-action
evasion and entanglement come about.

Chapter 2. We describe the membrane-in-the-middle optomechanical system.
Starting with a short overview of the device’s design —both the me-
chanics and the optics —we focus on presenting the input-output
relations for the light interacting with the mechanical oscillator.

Chapter 3. We describe the atomic ensemble and its mapping to a spin oscilla-
tor, along with its interaction with light, with emphasis in describing
the input-output relations.

Part II. In a rather different set of gears, we dive in a technical accounting of the
experimental configuration, spin oscillator calibration techniques, and
performance of the spin ensemble in free space and in an optical cavity
are discussed.

Chapter 4. We give a detailed accounting of the various experimental compo-
nents used in our hybrid platform: the bits and pieces of the vapour
cell and the optomechanical cavity, the hardware used for trans-
forming the optical spin response into the desired light quadratures,
and the software used for controlling the apparatus.

Chapter 5. The continuous wave operation of the spin ensemble at relatively
high temperature introduces particular challenges not previously
described in our group. The techniques used for spin state prepa-
ration, detection, and characterization are presented. At last, we
present the connecting of spin polarization to effective thermal oc-
cupation.

Chapter 6. A technique for measuring the Faraday angle in experimental condi-
tions is presented, along with its modeling and measurements. We
finish by linking the Faraday angle to the quantum cooperativity
parameter.

Chapter 7. The spin noise observed via light has signatures of the motional av-
eraging of the spins over the beam during the interaction. We study
its dependence on laser beam parameters and present an effective
model to the total noise.

Chapter 8. We present CIFAR (Coherently Induced Faraday Rotation), a tech-
nique for calibrating the spin readout rate and compare it to a model
based in the input-output relations presented on Chapter 3.

Chapter 9. We present the initial results on studying the optodynamical effects
of the spin ensemble in an optical cavity. Similar to the optomechan-
ical system, the cavity acts as a feedback that can dampen/excite the
positive/negative mass oscillator motion.
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Part III. We return to the hybrid system, discussing the back-action evasion and
entanglement experiments.

Chapter 10. The back-action evasion scheme is presented both theoretically and
experimentally, summarizing the advances harvested in the last ex-
perimental update.

Chapter 11. The EPR entanglement between the spin and mechanical oscillators
is discussed. We also present a simplified picture of the Wiener fil-
tering and apply it to the hybrid system.

Chapter 12. We finish up concluding the work and presenting some of the pos-
sible next steps, along with envisioned updates.

Part IV. The supplementary information is a set of technical chapters with addi-
tional information on various lengthy topics that did not covered in the
main text. Many of the results can be found in atomic physics and quan-
tum optics textbooks, and are reproduced here as a matter of convenience.

Appendix A. This chapter contains a set of relations useful for treating the theo-
retical derivation of the equations of motion.

Appendix B. We consider the effect of optical losses in the double pass spin read-
out.

Appendix C. The method for calculating the an effective ground state Hamilto-
nian and non-Hamiltonian operators for arbitrary atomic level struc-
tures is presented.

Appendix D. The white noise drive method for calibrating the spin quantum co-
operativity is presented.

Appendix E. We relate the absorption profile of moving and stationary atoms,
considering the Doppler effect on the atomic motion.

Appendix F. The relation of κ2, the atoms-light interaction strength parameter
used in the early QUANTOP experiments, is linked to the quantum
cooperativity and spin readout rate parameters, language utilized in
the hybrid experiments.

Appendix G. We present the spin ensemble coherence time measurements in an
unshielded environment.

Appendix H. A reference table for estimating the cesium vapor density according
to the vapor cell temperature.

Appendix I. A summary of the experimental parameters extracted from the ex-
periments presented in Møller et al. (2017) and in Thomas et al.
(2020).
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Chapter 1

Introduction

In the last couple of decades, remarkable progress has been made in con-
trolling physical systems near their quantum limits. The advances in the fab-
rication of miniaturized electronic, optical, and mechanical structures, along
with respective mathematical and theoretical understandings, has prompted a
technological revolution. The advances in the control of micro- and nano-sized
structures allowed for engineering of devices that could fit the specific needs in
various fields of scientific research, helping push the boundaries of the respec-
tive fields.

The research on both single and ensembles of atoms, ions, and spins, to
nano- and micro-fabricated superconducting and mechanical devices, has ma-
tured so much that it will allow these advances to go beyond the scope of fun-
damental research, reaching industry and society (Riedel et al., 2019). Although
still advancing in baby steps, the second quantum revolution is happening (Mac-
Farlane et al., 2003).

From harnessing the supremacy in computing, simulating complex molec-
ular configurations, to cryptography and communication (Kimble, 2008), the
landscape of possible applications of quantum technologies is vast. Nonethe-
less, given the specificities of every experimental setup, it has become more and
more clear that a single platform might not be able to realize all the protocols
needed in a future quantum information processing network (Kurizki et al.,
2015). Hybrid quantum devices attempt to combine fundamentally different
systems with high efficiency, harnessing the advantages from its constituent
elements (Wallquist et al., 2009).

Let us consider quantum information protocols for a moment. In many of
these protocols, entanglement is a key resource in ensuring that these proto-
cols outperform their classical counterparts (if such exist). Entangled states
share very specific correlations, which due to their de-localized features, can be
shared among multiple parties. Given that quantum states cannot be copied
with arbitrary fidelity, information encoded in entangled states can be used
as a way to communicate with intrinsic fundamental security. In an envisioned
quantum-enabled network, the transmission of quantum information over long
distances (Duan et al., 2001), for example, can be realized by using optical pho-
tons as quantum information carriers about its source to distant nodes. The
task of developing quantum-enabled communication protocols is a topic under
major development (Wehner et al., 2018).

Another area that can harness advantages from the development of quan-
tum technologies is metrology. In this field of research, the task is to prepare
the measurement device in states with reduced uncertainties or increased sensi-
tivity to parameters of interest. The uncertainty in the estimation of parameters,
such as position, velocity, or frequency, are limited by the disturbance induced
by measurements and/or the Heisenberg uncertainty principle. There is a great
effort towards developing technologies that can exploit quantum effects to im-
prove precision past classical limits. Here, perhaps the most striking applica-
tion up-to-date is in the Laser Interferometer Gravitational-Wave Observatory

2
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(LIGO). There, the sensitivity to gravitational waves (Abbott et al., 2016) is lim-
ited by both the light shot noise and quantum back-action. The former arises
from quantum fluctuations in the arrival of photons at the photo-detector and
the latter induces quantum fluctuations in the motion of the tens-of-kilograms
scale mirrors by way of a fluctuating radiation pressure force. Recently, the
sensitivity of LIGO has been enhanced by probing the detector using squeezed
laser light, a quantum state of light with reduced noise over the sensitive band-
width of the measurement device (Tse et al., 2019). Other major topics of re-
search orbit around the effects of quantized gravity on massive objects (Bose
et al., 2017; Marletto and Vedral, 2017) and test the fundamental symmetries
(Lee et al., 2018) with table top experiments.

In the next sections, we will introduce the two platforms we are interested
in developing and use to interact with light, and preview the subjects covered
in this manuscript.

1.1 Atomic Spin Ensembles

The interaction of light with atomic ensembles, in its various forms, dates
from the early 1950’s with the studies from Brossel (Brossel and Bitter, 1952),
Kastler (Kastler, 1954), and Franzen (Franzen and Emslie, 1957). Other works
worth noting are related to the development of paraffin coated vapor cells
(Bouchiat and Brossel, 1966) and the optical pumping, summarized in Happer
(1972).

Throughout the following decades, with the development of quantum op-
tics and quantum electrodynamics, the non-classical features of photons inter-
acting with few atoms or even a single atom (Kimble et al., 1977) have been
explored, setting the stage for experimentally studying entanglement (Aspect
et al., 1981) and other features of the atom-light interface (Kimble, 1998). De-
spite the tremendous progress in this direction, the technical challenges asso-
ciated with these implementations called for alternative platforms to realize
strong interactions between atoms and photons.

The late 1990’s and early 2000’s came with a new approach to the inter-
face of light and matter. The understanding was that a large collection of
atoms could also offer an efficient platform for quantum optics experiments
if a collective superposition state of the ensemble could be used for the cou-
pling. A variety of proposals for preparing the ensemble in non-classical states
(Kuzmich et al., 1997, 1998) and for establishing quantum communication pro-
tocols (Duan et al., 2001) showed the feasibility of the platform. Since then,
strong light-matter coupling and various proof-of-principle experiments have
been realized using room temperature (Julsgaard et al., 2001) and laser cooled
ensembles (Chou et al., 2005), along with solid state atomic mediums (Simon
et al., 2007).

The interface of collective atomic ground state coherences with light, be it
envolving Zeeman or hyperfine levels, has shown particularly high perfor-
mance due to its long T2 coherence times, enabling long memory times (Kozhekin
et al., 2000; Julsgaard et al., 2004) for input light states. Alkali atoms as potas-
sium, rubidium and cesium, are the most popular choice of species. Several
groups around the world have been pursuing improved performance of this
type of systems, with Morgan Mitchell’s at ICFO1, Mike Romalis at Princeton,
Mikhail Lukin’s group at Harvard, Vladan Vuletic at MIT2, and Eugene Polzik’s
group here at the Niels Bohr Institute, to name a few.

1.2 Mechanical resonators

The mechanical effects of light on objects and their motion has long attracted
attention, with the earliest known accountings dating from Kepler in the 17th
century, observing that transiting comets have dust tails pointing away from
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the Sun. It took, however, a few additional centuries and the works of New-
ton, Maxwell, Einstein and many others, to develop a theory of electromag-
netic radiation and interactions that could account for the observed phenomena
(Mansuripur, 2011).

In its most simple form, radiation pressure coupling is due to light transfer-
ring momentum to the object. According to Quantum Mechanics, each photon
carries a momentum p, proportional to the photon energy E or, equivalently, its
angular frequency ω, and inversely proportional to the speed of light c,

p =
E
c
=

h̄ω

c
. (1.1)

Upon incidence on an object, momentum is transferred and a force is generated.
The forces exerted by light on objects are very small, and therefore observing
this effect often requires looking at the small length scales. The development of
Quantum Mechanics in the early 20th century, along with rapid technological
developments in various fields, has allowed tailoring interactions to be more
susceptible to such small actions. More generally, cavity optomechanical cou-
pling can be achieved when electromagnetic radiation leads to a change on its
own optical path length, either by changing the index of refraction or by modi-
fying the object’s boundary condition (Midolo et al., 2018). It can be realized by
any dispersive non-linear interaction, being direct momentum transfer, shifting
a cavity frequency or by optical near field effects (Aspelmeyer et al., 2014).

The interest in affecting motion with electromagnetic radiation has attracted
renewed attention during the 1960’s, with the advent of experimental gravita-
tional wave detection systems, as resonant Weber bars (Weber, 1967) and opti-
cal interferometry (Forward, 1978). Due to the extremely high measurement
sensitivity needed to detect gravitational waves, techniques that go beyond
classical measurement approaches have appeared (Braginsky et al., 1980).

In the 1990’s, techniques for preparing non-classical motional states in ions
(Meekhof et al., 1996) were developed, setting the scene for controlling motion
at and even below ground state levels. The interest in controlling larger me-
chanical systems with light has gained a new breath with the predictions and
experiments on ground state cooling via dynamical back-action, in Wilson-Rae
et al. (2007) and Chan et al. (2011), respectively. As the coupling of mechanical
degrees of freedom to light does not require the use of naturally occurring res-
onances, the application and design span many orders of magnitude in overall
mass and dimensions (Aspelmeyer et al., 2014).

1.3 Hybrid systems

As we discussed in the beginning of the chapter, a given platform for stud-
ies of light-matter interaction will likely not be able to perform an arbitrary
number of different protocols. Reasons for such limitations might arise from
which degrees of freedom the platform is sensitive to, or be due to a wave-
length mismatch between the constituent parties. For example, one might need
to transduce an optical signal into the microwave regime, requiring an electri-
cally tunable system. This is where hybrid systems are meant to harness the
best of all possible worlds involved in a more general quantum-linked hybrid
network Wehner et al. (2018). Here, we will focus on the hybrid implemen-
tations involving atomic ensembles interacting with mechanical systems via
light.

On the experimental side, apart from the activities in Eugene Polzik’s group
at NBI, there has been activities in Philip Treutlein’s group in Basel3, Dan Stam-
per Kurn’s at UC Berkeley4, and more recently at Christoph Becker’s in Ham-
burg5. Due to the different physical processes involved in the realizations, it
is useful to classify the experiments according to implementation. There have
been experiments coupling
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• external degrees of freedom of the atomic ensemble and a mechanical oscillator. In
this implementation, the center-of-mass degree of freedom of an optically
trapped atomic ensemble is coupled to a distant mechanical oscillator via
light. Early implementations had both systems in free space (Camerer
et al., 2011), that have been updated to place the membrane in an optical
resonator (Jöckel et al., 2015; Vochezer et al., 2018; Christoph et al., 2018),
enhancing the effects of the light onto the mechanical device. Here, the
experiments were mostly focused on optically cooling the membrane via
the signal written onto the light by the atomic ensemble.

• internal degrees of freedom of the atomic ensemble and mechanical oscillator.
Instead of the atomic motion, one can use the ground state angular mo-
mentum of the atomic ensemble to mediate interactions with light, and
consequently with the mechanical oscillator. Our implementation at NBI
fits into this category. The polarization of the light, modulated by the spin
ensemble, is converted into amplitude/phase modulation and directed to
a distant mechanical device in a cascaded fashion. We have demonstrated
quantum back-action evasion (Møller, 2018) and, more recently, entangle-
ment (Thomas et al., 2020) between the systems. In this implementation,
the spin oscillator can be prepared in an effective negative mass state,
significantly altering the landscape of interactions. We also note that it
is possible to increase the number of passes by the systems, interfacing
the parts with light which has already seen both systems once back to the
spin ensemble, as demonstrated in Karg et al. (2020).

• external and internal degrees of freedom of the atomic ensemble coupled to each
other. Finally, one can also implement both spin and mechanical degrees
of freedom in the same physical ensemble (Kohler et al., 2018). The en-
semble is positioned inside an optical cavity, interacting multiple times
with the systems and intra-cavity field. It has been observed that the
systems can exchange energies, amplifying the coupled mode as in a self-
driven parametric oscillator.

The backbone of the hybrid implementation presented in this manuscript
comes from the initial proposal for interfacing the spin and mechanics (Ham-
merer et al., 2009), which aimed to prepare the collective system in an entangled
EPR state. Since then, it has been perfected (Huang et al., 2018) to include dy-
namical cooling effects for improved performance with realistic parameters.

The origins of our implementation date to previous experiments involving
two spin systems, (Julsgaard et al., 2001), which already realized the intriguing
negative mass harmonic oscillator in the spin system. It was soon realized that
quantum mechanics free dynamics could be achieved in the positive-negative
mass configuration of harmonic oscillators (Tsang and Caves, 2012). The tra-
jectories of the joint oscillator in this subspace is free of quantum uncertain-
ties(Polzik and Hammerer, 2015). New regimes of light-matter interaction can
also be encountered when interacting the optical degrees of freedom multiple
times with the stationary systems (Karg et al., 2019).

Having introduced the systems, we move on to the topic of the present work.

1.4 Motivational outline

If you have reached this far, you might be wondering what we are going
to deal with in this manuscript. In this section, we will provide an overview
of the goals we pursue, along with some of the concepts used throughout our
implementation.

We start by asking the question: how precisely can one estimate the posi-
tion of an object? More generally, what are the effects of measurement on the
dynamics of a quantum object?

These questions have been asked multiple times, in one way or another,
throughout the last century. To name a few, physicists such as Einstein, Podol-
sky, and Rosen (Einstein et al., 1935), John Bell (Clauser and Shimony, 1978),
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Braginsky and Thorne (Braginsky et al., 1980), and Caves (Caves, 1980) have
contributed to the understanding and experimental developments. The latter
approach, by Caves, is formulated around the question of gravitational waves
and their detection.

The backbone of the quantum back-action effects we observe stems from
the quantized nature of photons and its effects when interacting with different
objects (Caves, 1980). For example, an ideal laser source outputs light with pho-
tons that obey Poissonian distribution p(n) of the photon number (Davidovich,
1996)

p(n) = e−〈n〉
〈n〉n

n!
, (1.2)

with 〈n〉 as the mean photon number. In an ideal laser, photons are emitted
independently from each other and arrive at random times at a given location,
for instance at a photo-detector. Therefore, the flux of photons fluctuates in
time, even when the ideal laser maintains a constant average output flux. This
fluctuation, of true quantum mechanical origin, manifests itself in a multitude
of effects. The transfer of momentum from light to a massive object, which
is the basis of radiation pressure coupling, will set the object in a respectively
fluctuating motion. Nonetheless, before talking about the forces of light on
objects, let us define the states of light we deal with.

The quantum mechanical analysis of a single mode electromagnetic radia-
tion with frequency ω, at time t, tells us that the total energy can be described
by the Hamiltonian

Ĥ(t) = h̄ω
(

â†(t)â(t) + 1
2

)
, (1.3)

where â(t) and â†(t) are the photon annihilation and creation operators satisfy-
ing [â(t), â†(t)] = δ(t− t′). The quantity â†(t)â(t) is also defined as the number
operator n̂, which follows from n̂|n〉 = n|n〉 with |n〉 as the photon state with
occupation n. The photon state with lowest energy is the vacuum state |0〉, the
state with null average occupation, whose energy is 〈0|Ĥ(t)|0〉 = h̄ω/2.

Instead of the total energy of the field, we are mostly interested in the electric
field of the electromagnetic wave. For example, the quantized electric field of a
wave in a resonator follows (Gerry and Knight, 2004)

Êx(z, t) = iE0

[
âei(kz−ωt) − â†e−i(kz−ωt)

]
(1.4)

with E0 = (h̄ω/2ε0V)1/2 being the field amplitude, which depends on the res-
onator volume V. Here we assume that the medium within this volume is vac-
uum, with a permittivity ε0. The electric field expression given above resembles
the one seen in Classical Electromagnetism books (Griffiths et al., 1999), with
the electric field amplitudes substituted by the creation and annihilation op-
erators. Although the |n〉 photon states do not accurately capture the output
state of a laser (Gerry and Knight, 2004), the coherent states |α〉, presented in
the next paragraph, represent a suitable description. The electric field has a
non-zero variance, that is

∆Ex ≡ 〈0|(Êx − 〈0|Êx|0〉)2|0〉
1
2 = E0, (1.5)

a consequence of the non-commutability between â and â†. The electric field
fluctuations has observable consequences in many light-matter interactions, as
in spontaneous emission of excited atoms and molecules.

Further analysis of the field and energies is done by defining a sensible state
for the electromagnetic radiation. We know that in free space the classical elec-
tric field is a periodic function. The ideal laser source outputs light in a coherent
state, which follows fromâ|α〉 = α|α〉, for α = |α|eiθ as the the state eigenvalue.
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Figure 1.1: Phase space representation of a co-
herent state. The coherent state with average
amplitude |α| and phase θ has non-zero vari-
ances, leading to an uncertainty area defined by
the standard deviations ∆XL and ∆PL.

The coherent states are the states that describes the classical expectations of a
laser field, as they match the classical expectation of an electric field

〈α|Êx(z, t)|α〉 = 2E0|α| sin(kz−ωt), (1.6)

but also displays vacuum fluctuations

〈α|(Êx − 〈α|Êx|α〉)2|α〉
1
2 = E0. (1.7)

Therefore, the coherent state is also a state with minimum fluctuations.
Instead of the using the creation and annihilation operators, it will be more

convenient to write the electric field in terms of the optical quadrature operators

Êx(z, t) = iE0(X̂L cos(kz−ωt) + P̂L sin(kz−ωt)), (1.8)

in which

X̂L =
â + â†

2
P̂L = −i

â− â†

2
, (1.9)

as the amplitude and phase quadrature operators, satisfying [X̂L, P̂L] =
i
2 . They

are the real and imaginary part of the electric field, but also play the role of
effective position and momentum operators of light. With the quadrature op-
erators we can write the Hamiltonian (1.3) as

Ĥ(t) =
h̄ω

2

(
X̂2

L + P̂2
L

)
, (1.10)

which resembles the harmonic oscillator, the favorite description of 10/10 physi-
cists. The mapping to harmonic variables allows us to visualize the coherent
state in a phase space picture, as shown in Figure 1.1. A given coherent state |α〉
with average amplitude |α| and phase φ occupies a certain area in phase space,
demonstrating that the vacuum level of energy and uncertainty. In particular,
the amplitude and phase have standard deviations ∆XL = ∆PL = 1

2 |[X̂L, P̂L]| =
1
4 .

We now return to the discussion of estimating the position of a given ob-
ject with maximum precision. We will here consider an interferometer, as in
the concrete case of LIGO, whose end-mirrors, which behave like suspended
pendula, are probed by light. Imagine an end-mirror having a mass m and res-
onant frequency ωM. In general, any external excitation will set the mass in an
oscillatory motion and the instantaneous mirror position will be given by

X̂M(t) = X̂M(0) cos ωMt + P̂M(0) sin ωMt, (1.11)

where X̂M(0) and P̂M(0) are the position and momentum of the mirror at time
t = 0. The harmonic motion is captured by the Hamiltonian

ĤM =
h̄ωM

2

(
X̂2

M + P̂2
M

)
. (1.12)

As the mass moves, it will alter the path length difference between the two
interferometer arms, imprinting the object’s motion onto the phase of light P̂L.
The task here is to determine the presence of a minute force Fgwd originating
from some far-away gravitational wave source. For isolated mirrors, the object
is on average at its equilibrium position. Because of that, the spectral analysis of
the oscillator motion will be the most interesting, as it gives information about
the Fourier frequency Ω of the motion. A change in the end-mirror position is
imprinted onto the phase of light, which can be described as follows

P̂out
L (Ω) = P̂in

L (Ω) +
√

ΓMX̂M(Ω), (1.13)
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Figure 1.2: Spin oscillator susceptibility. The
response of a positive (blue) and a negative mass
(yellow) spin oscillator to an external magnetic
field force with constant magnitude. Although
the oscillators respond with the same strength,
there is a π phase shift delay, characteristic of a
system responding oppositely to the drive.

for ΓM as the parameter that gauges the how much motion is mapped into
light, which is often referred to as the readout rate. The parameter ΓM, being
proportional to the photon flux 〈n〉, also has the complementary role of gauging
how much the light affects the objects motion. More precisely, the position of
the mirror behaves as

X̂M(Ω) = χM(Ω)[2
√

ΓMX̂L(Ω) +
√

γM F̂M(Ω) + Fgwd]. (1.14)

Before explaining the various terms of the equation above, we should point
out that the dynamics of the light quadratures and the mirror’s position and
momentum are inherently connected. A precise measurement of the objects
position, according to equation (1.13), requires a large coupling parameter ΓM.
Nonetheless, the large coupling rate will also set the mirror in motion with the
same rate. If too large, it can spoil the detection of the force Fgwd. The physics of
optimum coupling and detection performance is vast (Braginsky et al., 1992).
Here it suffices to say that there is an optimum for the coupling strength, in
which the input phase fluctuations P̂ in

L balance the effect of light on the object,
the measurement quantum back-action. This point of optimal coupling is often
referred to as the standard quantum limit (SQL).

Equation (1.14) contains the mechanical susceptibility χM

χM(Ω) = ωM/(ω2
M −Ω2 − 2iΩγM), (1.15)

which sets the responsivity of the mirror to all forces acting upon it. If the exter-
nal force acts at Ω ∼ ωM, the corresponding induced motion will be maximum.
The overall displacement is just limited by the damping mechanisms that spoil
otherwise perfect mirror oscillation. The damping is lumped in the quantity
γM. An example of the oscillator response to an external force is shown in
Figure 1.2 (blue points). The susceptibility is represented in polar coordinates,
R ∝ |χM| and the phase φ as the phase of the object response with respect to
the drive.

The other term in equation (1.14) is the thermal force F̂M, here present due to
inevitable coupling of the mirror to the environment thermal bath with occupa-
tion nM. Here we assume that we can describe the coupling of the mirror to its
surroundings via a Langevin equation, in which the damping term γM is due
to the overall viscosity experienced by the mirror motion during its motion.

An important quantity to be defined at this moment is the quantum coopera-
tivity of the optical measurement

Cq =
ΓM

2γM(nM + 1
2 )

, (1.16)

which is the ratio of the motion induced by the light, the quantum back-action,
ΓM, to the thermal forces. A high Cq � 1 would indicate that the motion of the
object is mostly due to the interaction with the laser light. In general, a small
quantum cooperativity leads to a decrease in sensitivity to external forces of
interest.

At this point, a central question arises: can we do anything to get around the
measurement noise induced by the optical probing? The answers is ”yes", and
there are many different approaches to circumvent quantum back-action. One
can engineer a different scheme of coupling to light (Kimble et al., 2001; Woolley
and Clerk, 2013; Ockeloen-Korppi et al., 2016) or stroboscopically modulate the
probe beam (Vasilakis et al., 2015), for example. Other proposals involve coher-
ent feed-forward (Tsang and Caves, 2010) and diverse atomic systems (Zhang
et al., 2013; Bariani et al., 2015).

Here, we take a different approach. We prepare another auxiliary oscillator,
insensitive to the force Fgwd, with canonical variables X̂S and P̂S, which will
couple to light in the same way as given in equation (1.13)

P̂out
L,S (Ω) = P̂in

L,S(Ω) +
√

ΓSX̂S(Ω). (1.17)
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This time the oscillator will be coupling to the external forces as follows

X̂S(Ω) = −χS(Ω)[2
√

ΓSX̂in
L,S(Ω) +

√
γS F̂S(Ω)]. (1.18)

Note the minus sign before the susceptibility. This minus sign manifests itself
as a π phase shift on the response to external forces, as seen in Figure 1.2 (or-
ange points), with the absolute value of the response unchanged. The auxiliary
oscillator is prepared in the magnetic coherences of the cesium ground state
levels. The minus sign in susceptibility is the consequence of the spin oscillator
Hamiltonian being

ĤS = − h̄ωS
2

(
X̂2

S + P̂2
S

)
, (1.19)

achieved when preparing the atomic system in its highest energy as a ground
state. In this configuration, the system behaves as an effective negative mass
oscillator, responding oppositely to external forces when compared to a canon-
ical harmonic oscillators. That is to say, pushing it leads to the motion in the
opposite direction to the input force (Baker and Bowen, 2017). The other terms
in equation (1.18) are analogous to the ones encountered in the equation (1.14),
with γS and F̂S(Ω) as the spin oscillator damping rate and effective thermal
spin bath force.

The back-action evasion measurement happens when we connect the output
light of the readout of the first oscillator as the input for the second, that is

P̂in
L (Ω) = P̂out

L,S (Ω), (1.20)

such that we can re-write equation (1.13) as

P̂out
L (Ω) = P̂in

L,S(Ω) +
√

ΓMX̂M(Ω) +
√

ΓSX̂S(Ω)

= P̂in
L,S(Ω) + 2[ΓMχM(Ω)− ΓSχS(Ω)]X̂in

L,S(Ω)

+
√

ΓMχM(Ω)[F̂M(Ω) + Fgwd]−
√

γSχS(Ω)F̂S(Ω).

(1.21)

The first term in the right hand side, P̂in
L,S(Ω), stands for the measurement shot

noise. The second term, proportional to X̂in
L,S(Ω), is the quantum back-action

contribution from each oscillator. The terms F̂M(Ω) and F̂S(Ω) are the thermal
noise contributions. By setting

ΓMχM(Ω) = ΓSχS(Ω), (1.22)

we can effectively remove all measurement induced back-action, recovering
the limit in which the quantum mechanics of the measurement is not present
(Polzik and Hammerer, 2015). The price paid here is the added spin thermal
noise. Nonetheless, this contribution should be vanishingly small compared to
the overall noise cancellation due to the back-action interference.

Interestingly, we notice an additional consequence of the light-matter inter-
action in this hybrid cascaded system. From equation (1.11), the light is now
carrying information about the overall position

X̂M(t) + X̂S(t) = [X̂M(0) + X̂S(0)] cos ω0t + [P̂M(0)− P̂S(0)] sin ω0t, (1.23)

in the case with ωM = −ωS ≡ ω0. The joint position operator has unique
property that the quantity measured carries no measurement induced back-
action due to the commutability of the measured quantities

[X̂M + X̂S, P̂M − P̂S] = 0. (1.24)

Therefore, measuring the hybrid system induces no quantum back-action, as
already seen in the discussion about equation (1.21). The state involving sum of
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position X̂M + X̂S and difference in momenta P̂M− P̂S is the Einstein-Podolsky-
Rosen state, theorized by authors with the same names (Einstein et al., 1935).

In this thesis, light plays the role of probing and linking two distant sys-
tems. Locally, at each site, the optical probe measures and accordingly disturbs
the system dynamics. Subsequently, light travels to the next site, interacting
with the second system. By engineering the overall interaction we can not only
remove the quantum back-action, enhancing the sensitivity of position mea-
surements, but also generate entanglement between the distant and disparate
quantum systems.

The generation of entanglement is connected to a complementary view of
the measurement disturbance. The quantum back-action induced by the probe
light is not bad in and of itself. On the contrary, it indicates that the light and
probed object are becoming highly correlated. In the high cooperativity limit,
for Cq � 1, significant correlations between light and object can be created, al-
lowing to reconstruct the trajectory of the system in phase space. Furthermore,
for strong measurements induced by light, the system can be tracked back to
its ground state uncertainty (Rossi et al., 2019).

Here we recompose the thinking by incorporating the information extracted
by measurement. More precisely, we filter the measured optical phase quadra-
ture using the Wiener filter KX , which incorporates the acquired knowledge
in an efficient manner. From the Wiener filter KX for X̂EPR, the conditional
quadrature is

Xc
EPR(t) =

∫ t

0
dt′ KX(t′ − t, t)P̂out

L (t′). (1.25)

In the simplest (ideal) case, the Wiener filter envelope is an exponential with a
time constant defined by its decoherence and readout processes.

Including all complexities not discussed in the reasoning presented above,
we prepare the hybrid system with generalized coordinates X̂EPR and P̂EPR

X̂EPR = (X̂M − aX̂β
S )/

√
1 + a2 (1.26)

P̂EPR = (P̂M + aP̂β
S )/

√
1 + a2, (1.27)

for a as an arbitrary weight scalar parameter and

X̂β
S = X̂S cos β + P̂S sin β (1.28)

P̂β
S = P̂S cos β− X̂S sin β, (1.29)

as generalized spin operators, accounting for a phase rotation β. The condi-
tional variance of the system for classical systems is bounded from below by
(Duan et al., 2000)

Vc = Varc[X̂EPR] + Varc[P̂EPR] = 1. (1.30)

Establishing Vc < 1 therefore demonstrates entanglement in the hybrid system.
In this chapter we have introduced the constituents of the hybrid system, the

mechanical and spin oscillators, and discussed how its performance can lead to
quantum back-action evasion and entanglement. In the next chapters, we will
consider in more detail the implementation as far as the individual systems are
concerned.



Chapter 2

Membrane in-the-middle
optomechanics

We start the main body of this by thesis devoting a chapter to the cavity
optomechanical system. We present some of the basic design principles of the
mechanical oscillators used in the hybrid experiments, defining the motional
eigenfrequencies and associated linewidths, the optical resonator and the mem-
brane in the middle configuration, and finish with the input-output relations
for the optical field.

2.1 Membranes as mechanical oscillators

In the field of cavity optomechanics a multitude of mechanical oscillators
and geometries for optical mode confinements are under study (Aspelmeyer
et al., 2014). Here, we work with a thin dielectric membrane embedded in an
optical cavity. This particular geometry allows us to partially decouple the me-
chanical resonator and optical cavity considerations and optimizations.

The optical cavity is a high-finesse Fabry-Perot resonator and the mechanical
resonator is based on a tensioned silicon nitride membrane.This configuration
was initially proposed in Jayich et al. (2008), and has been utilized in various
groups ever since (Thompson et al., 2008; Wilson et al., 2009; Yu et al., 2012;
Purdy et al., 2013; Nielsen et al., 2017).

The interest in silicon nitride (SiN) membranes dates back to 2008, where
studies on the mechanical quality of commercially available devices first ap-
peared (Zwickl et al., 2008). An example of such device is shown in Figure
2.1 (a). A thin (∼ 50 nm) silicon nitride membrane (in white) is suspended
on top of a silicon frame (in yellow), and supports a multitude of high-quality
vibrational modes. The mechanical quality factors Q > 106 for modes with
frequencies ωm/2π ∼ 130 kHz and low optical round trip loss, allowing for
cavities with finesse F > 104 —which are indeed quite promising numbers for
an optomechanical interface. The macroscopic size of the structure, on the or-
der of 5 mm, allows the experimenter to rigidly clamp the supporting silicon
frame, which in important in ensuring proper thermalization of the oscillator
in cryogenic experiments. The catch, and there is always a catch, is that the
SiN mechanical modes couple to the lossy frame modes, heavily influencing
the performance of the oscillator.

The loss of mechanical energy to the supporting frame and losses associ-
ated with bending near the clamping points of the membrane to the supporting
framehave been reported in (Jöckel et al., 2011; Yu et al., 2012). Typically, the
energy damping mechanisms present in the membrane mechanical oscillators
are summarized as

Q−1 = Q−1
gas + Q−1

rad + Q−1
mat, (2.1)

11
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a b c

1mm

Figure 2.1: Different generations of silicon nitride-based drum mechanical oscillators.
The engineering complexity of the mechanical oscillator (central light-colored patches)
has been built up from the (a) relatively simple drum resonator, adding a (b) 2D phononic
structure in the silicon frame. In (c), the soft clamping idea is applied, making the
phononic bandgap in the same material of the central pad. Figure reproduced from
(Møller, 2018).

Figure 2.2: Image of the membrane with an op-
tical mode placed at the center of the defect.
The hexagonal structure of the phononic shield
surrounds the defect, the central pad. Bright
spot in the center is the optical beam.

with Qgas as the gas damping, Qrad as the mechanical radiation (anchoring/-
mounting) losses and Qmat as the material losses. The gas damping losses are
due to collision of air molecules with the membrane and can be reduced by
placing the device in a low air pressure p environment Qgas ∝ p. The radiation
losses Qrad are due to the anchoring/mounting of the material to the surround-
ing structure, leading to a spatial overlap between the modes of interest with
the frame modes and allowing phonons to dissipate to the environment. The
final loss mechanism, Qmat, is due to imperfections in the mechanical device
material, as defects in the bulk and in the surface.

An important step towards better control of membrane modes was the de-
velopment of a phononic bandgap shield in the supporting silicon frame (Yu
et al., 2014; Tsaturyan et al., 2014), inspired by studies of phononic structures
in optomechanical crystals (Safavi-Naeini and Painter, 2010). The design of the
two-dimensional phononic crystal structure, along with the central pad, within
which the membrane resonator is embedded, can be seen in Figure 2.1 (b).
By introducing a phononic bandgap within the frequency range of the mem-
brane modes of interest, the whole outer region of the silicon frame could be
tightly clamped to a sample holder without affecting the Q-factors of mem-
brane modes within the phononic bandgap. The shield is composed of a peri-
odic structure consisting of large square silicon pads, connected with narrow
silicon tethers, forming a Bragg reflector for phonons within a frequency range
of several hundred kilohertz, suppressing excitations and couplings from the
outside world to affect the inner silicon pad, within which the membrane res-
onator resides. The finitude of the bandgap in the membranes used locally at
NBI leads to a finite mechanical noise suppression, e.g. ∼20 dB to 40 dB on a
∼200 kHz bandwidth centered on the defect mode in work of (Tsaturyan et al.,
2014). Locally, the performance of these devices in a cryogenic environment
was first presented in (Nielsen et al., 2017).

With anchoring/mounting losses removed by the presence of the phononic
crystal structure in the silicon frame, a new step towards improving the me-
chanical quality factors was set by having closer look on the geometry of the
mechanical device (Tsaturyan et al., 2017). In the devices presented in the pan-
els (a) and (b) of Figure 2.1, the central pad is directly attached to the silicon
frame. It turns out that tensioned membranes lose most of theor mechanical
energy at the boundary of the silicon nitride membrane and the supporting
frame. During the membrane oscillations the displacement fields associated
with different vibrational modes of the membrane have large mode curvatures
near the clamped edges of the membrane (Yu et al., 2012), leading to a consid-
erable about of bending related losses of elastic energy.
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a

b

Figure 2.3: Canonical and membrane-in-the-
middle optomechanical systems. (a) The mov-
able end-mirror optical resonator is the canonical
version of the experimental sketch. (b) In our ex-
periments, the movable part is sitting inside the
optical resonator. Figure adapted from (Wilson,
2012).

The strategy employed in Tsaturyan et al. (2017) was to tailor the boundary
condition of the mode of interest, such that its amplitude would be vanishingly
small at the hard silicon clamp. Images of these devices are shown in Figure
2.1 (c), and also in the zoom in Figure 2.2. The phononic crystal structure is
now patterned in the silicon nitride membrane, rather than the silicon frame,
as discussed previously. The soft clamping of the mechanical mode significantly
reduced the bending losses, improving the quality factors by approximately
×102 times compared to the previous best, reaching Q = 1.555 × 109 at its
highest (Tsaturyan, 2019). At cryogenic temperatures the high Q factors, along
with the MHz mechanical frequencies, leads to coherence times on the order of
T2 ∼1 ms. This allows for coherent processes between light and the device to
happen with high efficiency.

2.2 Cavity optomechanics

The interaction between light and a mechanical object is traditionally ideal-
ized as shown in Figure 2.3 (a). There we see the most important constituents
of the canonical optomechanical system: an optical cavity composed of two
mirrors, one of which is allowed to move, and the intra-cavity field.

The interaction between the light and mirror can be illustrated as follows.
The optical field (red oscillatingline) exerts a force on a small suspended mir-
ror, setting it in motion. As the mirror moves, the cavity length changes, and so
does the cavity resonance condition. The change in resonance condition leads
to a different intra-cavity number of photons on a timescale of the cavity life-
time τ = 2π/κ, changing the force on the mirror, and restarting the cycle of
mirror-light interaction. Here, κ/2π is the cavity bandwidth (FWHM), set by
the total losses (e.g. transmissivity) of the cavity mirrors. The cavity is also
defined to have length Lc and longitudinal mode spacing FSR= c/2Lc .

In a more formal language, the intracavity optical mode and the mechanical
mode are assumed to be harmonic, with frequencies ωcav and ωM. Following
equation (1.3), the total Hamiltonian, without the mirror-light interaction, can
be expressed as

Ĥ/h̄ = ωcav â† â + ωMb̂† b̂, (2.2)

in which we have disregarded the 1
2 contributions from the vacuum energies.

The operators â and b̂, along with their conjudates, are the operators related to
the destruction/creation of optical and motional quanta, with [â†, â] = [b̂†, b̂] =
1. The position and momentum operators of the motional degrees of freedom
are

x̂M = xzpf(b̂ + b̂†) X̂M = (b̂ + b̂†)/
√

2 (2.3)

p̂M = −ipzpf(b̂− b̂†) P̂M = −i(b̂− b̂†)/
√

2, (2.4)

with xzpf =
√

h̄/2MωM and pzpf =
√

h̄MωM/2 as the zero-point motion and
zero-point momentum of the movable mirror with effective mass M. The capi-
tal letter variables are the dimensionless version of the dimensioned variables.

We now allow the interaction to change the end-mirror position, such that
cavity frequency becomes ωcav(x). For small fluctuations around the equilib-
rium position, the cavity resonance will be only weakly modulated. Expanding
the frequency to first order and quantizing the position we find

ωcav(x̂) ∼ ωcav + x̂
∂

∂x
ωcav = ωcav + x̂G, (2.5)

with the quantity G defining the frequency shift per displacement. With the
interaction, the Hamiltonian becomes

Ĥ/h̄ = ωcav â† â + ωMb̂† b̂ + Gx̂â† â (2.6)

= ωcav â† â + ωMb̂† b̂ + g0(b̂ + b̂†)â† â (2.7)
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Figure 2.4: Single photon optomechanical coupling g0 and reflectivity |rm|. The single
photon optomechanical coupling rate g0 (orange) is a product of the membrane reflectiv-
ity (blue) and the zero-point fluctuation amplitude xzpf (green). The xzpf goes as 1/

√
t

(scale not shown) and has been rescaled such that xzpf = 1 fm for t = 60 nm. The curves
are calculated for λ = 852 nm, n = 2 and Lc = 2.5 mm. Figure adapted from (Barg, 2018).

in which g0 = Gxzpf is the single-photon optomechanical coupling rate.
In the experiments we deal with, g0 is typically smaller than any other cou-

pling rates involved in the optomechanical interaction. To boost the coupling
rate, we work in the regime of large intra-cavity field amplitudes 〈â〉 =

√
〈n̂〉.

The dynamics of interest will therefore be happening around the steady state

â→ 〈â〉+ â, (2.8)

transforming equation (2.6), to the first order in fluctuations, as

Ĥ/h̄ ∼ ωcav â† â + ωMb̂† b̂ + g(b̂ + b̂†)(â + â†), (2.9)

in which we have disregarded static and second order terms, and define the
optomechanical coupling rate g = g0〈â〉 .

The linearized hamiltonian presented in equation (2.9) is the basis of the op-
tomechanical effects involved in this thesis. In particular, two basic types of
photon-phonon couplings are presented there (Vasilyev et al., 2013): the beam
splitter interaction b̂â† + b̂† â exchanges excitations between the two fields, while
the entanglement interaction b̂â + b̂† â† is responsible for the pair-wise particle
creation/destruction. The relative weight of these processes can be tuned by
the cavity bandwidth κ, which acts as a frequency selector for intra-cavity pro-
cesses. In particular, when the cavity is tuned to resonance ∆ = 0, the two in-
teractions presented above are balanced, and a QND interaction proportional
to X̂MX̂L comes about.

However, the simple picture presented above, the movable end-mirror sys-
tem, is not really what we work with. A more accurate version of the exper-
imental situation is sketched in Figure 2.3 (b). The movable ”mirror" is now
placed inside the optical resonator. As discussed earlier in this chapter, decou-
pling of the movable part of the optomechanical cavity from the end-mirrors
allows for optimization of the individual parts independently, which is a great
feature for an experimental system.

The presence of the membrane, a dielectric slab with a finite reflectivity co-
efficient, inside of the cavity leads to a different physical picture, which, as
it turns out, can be readily mapped to the canonical optomechanical system
(Jayich et al., 2008; Wilson, 2012), which is what we do in our approach. Now,
the triple stack composed of the membrane sandwiched by the mirrors forms
two coupled cavities (Genes and Dantan, 2017). The coupling between the two
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Figure 2.5: Cavity decay rate versus membrane position. The cavity linewidth is mod-
ulated according to the membrane position in the cavity standing wave pattern (or-
ange). The empty cavity has length Lc = 2.6 mm ∼ 6104λ/2 and mirror transmissions
T1 = 20 ppm and T2 = 360 ppm, respectively. The membrane thickness is 20 nm. The
curve in blue stands for the empty cavity configuration.

cavities depends on the membrane position in a given standing wave, which is
what we call its "2kz position" (more on this later). Maximum sensitivity to the
membrane motion happens at the biggest slope of the optical standing wave.

The amplitude reflectivity of a membrane with index of refraction n and
thickness t is (Tsaturyan, 2019)

rm =

(
n2 − 1

)
sin(knh)

2in cos(knh) + (n2 + 1) sin(knh)
, (2.10)

for k = 2π/λ as the wavenumber of the incident light field. The reflectivity is a
periodic function of thickness t. In Figure 2.4 (blue curve) we show the reflec-
tivity over the thickness range of interest. It can be shown that the maximum
single photon coupling rate g0 for the membrane-in-the-middle configuration
is (Barg, 2018)

max (|g0|) = 4FSRxzpfk |rm| , (2.11)

which we show in orange in Figure 2.4. The green curve in Figure 2.4 is there
as a reminding that the zero-point fluctuations are inversely proportional to the
mass of the mode.

Overall, all the optomechanically related parameters can be obtained nu-
merically from the transfer matrix model (Wilson, 2012). Here, for complete-
ness, we reproduce the analytical expressions for the cavity frequency shift and
decay rate for the membrane at xM from (Dumont et al., 2019)

ωcav = qFSR +
FSR

π

(
arccos

[
(−1)q+1 |rm| cos

(
2kqxM

)]
− φr

)
(2.12)

κ/2π =
c

2π

(1− |rm|2) |t1|2 + (1 + 2 |rm| cos (2kxM + φr) + |rm|2) |t2|2

2xM(1− |rm|2) + 2(Lc − xM)(1 + 2 |rm| cos (2kxM + φr) + |rm|2)
,

(2.13)

for kq as the q-th empty cavity resonance, |t1|2 and |t2|2 as the cavity mirror
power transmissivities and φr as the phase change for light reflected from the
membrane, here assumed to be φr = 0, for simplicity. In Figure 2.5 we show the
cavity decay rate versus the membrane position inside the cavity. Here we use
experimental observed values – an empty cavity with length Lc = 2.6 mm ∼
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Figure 2.6: Optomechanical transduction of
motion. (a) A resonant optical field gets mod-
ulated in phase due to the membrane motion.
(b) A detuned optical field carries information
about mechanical motion both in its amplitude
and phase quadratures. Figure adapted from
(Kohler, 2018).

6104λ/2 and mirror transmissions T1 = 20 ppm and T2 = 360 ppm, respec-
tively. The membrane thickness is set to be 20 nm. Note how the membrane
alters the cavity decay rate, as it moves across the λ/2 standing wave period
and couples the two internal cavities with different rates. The position of the
membrane in the standing wave period is called the 2kz position.

Here, having introduced the basics of the optomechanical system, along
with the modifications introduced by the membrane-in-the-middle configura-
tion, we move on to describe how the optical field and the mechanical degree
of freedom couple.

2.3 Input-output relations

In cavity optomechanical experiments, we only have access to the light field
after the interaction with the optomechanical system. Establishing the rela-
tion between the observed light field and the mechanical degree of freedom is
therefore of great importance. The input-output relations for the light-mechanics
system therefore relates how the input light field, prior to the optical resonator,
and forces acting on the mechanics, are transduced to the output light field.

Although the radiation pressure changes the cavity resonance according to
the position of the moving object, in equation (2.9) we saw that, in our operat-
ing regime, the intra-cavity amplitude X̂L ∝ â + â† couples to the membrane
position X̂M ∝ â + â†. How the intra-cavity field is mapped to the outer world
depends on the whole optomechanical interaction.

In Figure 2.6, we sketch how the mechanical motion is mapped to light ac-
cording to the cavity detuning ∆. In this picture it becomes clear that due to
the phase dependent cavity response, shown as Rcav and φcav, both amplitude
X̂L and phase quadrature P̂L of the output light field can carry information
mechanical motion depending on the detuning. The effects shown also apply
for the input light, that is, incoming amplitude and phase fluctuactions will be
mixed according to the cavity detuning.

The journey through the input-output relations starts by writing the op-
tomechanical Hamiltonian (2.9) in terms of the optical and mechanical quadra-
ture operators, as

ĤM =
ωM

2

(
X̂2

M + P̂2
M

)
− ∆

(
X̂cav

L,M
2 + P̂cav

L,M
2
)

−4g
(

X̂cav
L,M cos ψin + P̂cav

L,M sin ψin

)
X̂M,

(2.14)

where ∆ = ωL − ωc is the detuning of the laser with respect to the cavity
resonance ωc. Note that we are here in a rotating frame with the laser fre-
quency ωL. Assuming you are detecting and probing through the same port,
the cavity linewidth κ can be decomposed into contributions from the in-and-
out-coupling mirror (κin), the highly-reflective (HR) back mirror (κHR

ex ), and
intracavity losses (κloss

ex ) such that κ = κin + κex, with κex = κHR
ex + κloss

ex , the
subscript ex signifies any extra loss mechanism not related to the input/out-
put coupler. Losses due to the HR mirror and due to intracavity scattering are
mathematically equivalent. Finally, ψin = arctan(2∆/κ) denotes the phase of
the intracavity field relative to input field.

The time evolution of the optical and mechanical variables must include,
apart from the dynamics induced by the Hamiltonian (2.14), coupling to the
environment, and associated decay and fluctuations. We use the Heisenberg-
Langevin formalism to account the various contributions. In this formalism,
The Heisenberg-Langevin equation for a generic variable Â, evolving due to the
Ĥ and decay to its environment via L̂, is defined as

d
dt

Â = i[Ĥ, Â] + (L̂†/2 + F̂†)[Â, L̂]− [Â, L̂†](L̂/2 + F̂). (2.15)
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1The dynamics of the membrane mo-
mentum are calculated from the relation
−iΩX̂M = ωM0 P̂M.

The first term on the right-hand side recalls the Schrödinger equation in the
Heisenberg picture, in which the time evolution is incorporated in the opera-
tors. The other terms involve L̂ and F̂ and represent the stochastic evolution of
the system interacting with the environment (?).

In the frequency domain and in the steady-state regime, the equations of
motion, using the Hamiltonian (2.14), is1

 κ/2− iΩ ∆ 2g sin ψin
−∆ κ/2− iΩ −2g cos ψin

−4g cos ψin −4g sin ψin χ−1
M00

X̂cav
L,M

P̂cav
L,M

X̂M


=

√κinX̂in
L,M +

√
κexX̂ex

L,M√
κinP̂in

L,M +
√

κexP̂ex
L,M

F̂M

 , (2.16)

in which X̂in
L,M (X̂ex

L,M) is the input quantum field leaking in via the port ‘in’
(‘ex’). The port ‘in’ corresponds to the main in/outcoupler, while mathemati-
cally port ‘ex’ corresponds to both the HR mirror and intra-cavity loss, which
act in the same way since no light is present at the input of HR. The natu-
ral linewidth of the mechanical mode is γM0, and the mean occupation due
to the thermal reservoir at temperature T is nM0 = h̄ωM0/kBT. The quantity
χ−1

M00 ≡ (ω2
M0 −Ω2 − iΩγM0)/ωM0 is the natural mechanical susceptibility.

Given the optical and mechanical couplings, the system of equations pre-
sented in (2.16) is all we need to solve. There are multiple ways to tackle the
problem, from a numerical (Nielsen, 2016; Møller et al., 2017) to analytical so-
lutions. We present both in the coming pages.

We are interested both in the effect of the mechanical mode on the light vari-
ables and in the dynamics of the oscillator itself. By defining the matrices

A =

(
κ/2− iΩ ∆
−∆ κ/2− iΩ

)
, Oψ =

(
cos ψ − sin ψ
sin ψ cos ψ

)
, (2.17)

B =

(
0
−2g

)
, C = (−4g 0) , X̂

j
L,M =

(
X̂ j

L,M

P̂j
L,M

)
, (2.18)

with the index j ∈ {cav, in, ex} for optical fields, we write (2.16) in a more
compact form, as system of matrix equations(

Oψ 0
0 1

)(
A B
C χ−1

M00

)(
Oᵀ

ψ 0
0 1

)(
X̂cav

L,M
X̂M

)
=

(√
κinX̂in

L,M +
√

κexX̂ex
L,M

F̂M

)
(2.19)

From here, we show two ways of solving the problem: the first being more
suited for analytical expressions, and the second for numerical procedures.

The analytical method is useful for separating the effects of the drive terms
on the intra-cavity field and mechanical degree of freedom; it will be partic-
ularly handy when dealing with the conditional entanglement procedure pre-
sented on Chapter 11. We start by multiplying the three square matrices on
the left hand side of (2.19). Noting that the cavity response matrix A is invari-
ant under quadrature rotations, OψAOᵀ

ψ = A, the intra-cavity field and the
mechanical variable are found by simple substitution, such that

X̂cav
L,M = A−1

(√
κinX̂in

L,M +
√

κexX̂ex
L,M

)
−A−1Oψin BX̂M, (2.20)

X̂M = χM

[
−CA−1Oᵀ

ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
+ F̂M

]
, (2.21)
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Figure 2.7: Optical modification of the mechanical susceptibility. The mechanical susceptibility is modified due to the presence of
intracavity optical field: the observed mechanical resonance is going to be shifted (left) and broadened/narrowed (right). Curves are
calculated for ωM/2π = 1.4 MHz and various κ. The coupling rate value g/2π = 76 kHz is set for ∆ = 0 and scaled according to the
detuning dependence of the intracavity photon number.

for the input fluctuations and thermal bath. The quantity χM = (χ−1
M00 −

CA−1B)−1 is the effective mechanical susceptibility in the presence of optome-
chanical coupling. We can rewrite it as

χ−1
M = χ−1

M00 − CA−1B (2.22)

= (ω2
M + 2ΩδωM −Ω2 − iΩγM)/ωM0 (2.23)

where γM = γM0 + δγM and

δωM(Ω) =
4g2ωM

κΩ

[
(∆ + Ω)κ/2

(∆ + Ω)2 + (κ/2)2 +
(∆−Ω)κ/2

(∆−Ω)2 + (κ/2)2

]
(2.24)

δγM(Ω) =
8g2ωM

κΩ

[
(κ/2)2

(∆ + Ω)2 + (κ/2)2 −
(κ/2)2

(∆−Ω)2 + (κ/2)2

]
. (2.25)

In the limit we operate our optomechanical system, g � κ, the expressions
above can be evaluated at the natural resonant frequency Ω = ωM; in this limit,
the effect of light is to shift and broaden/narrow the resonance, as can be seen
in Figure 2.7. Due to the small, of order 1 mHz, natural linewidth γM0, the blue
detuning (∆ > 0) section of the figures cannot be accessed due to mechanically
induced parametric instabilities (Kippenberg et al., 2005).

The equation (2.21) described how the mechanical mode is coupled to the
external light and thermal forces. By substituting (2.21) in (2.20), we solve for
the intra-cavity field

X̂cav
L,M = A−1

(
12 + χMOψin BCA−1Oᵀ

ψ in

) (√
κinX̂in

L,M +
√

κexX̂ex
L,M

)
−χMA−1Oψin BF̂M.

(2.26)

The field that leaks out of the cavity must respect the cavity input-output rela-
tions

X̂out
L,M = Oᵀ

ψin+ψout

{
X̂in

L,M −
√

κinX̂cav
L,M

}
= Oᵀ

ψin+ψout

{(
−12 + κinA−1

(
12 + χMOψin BCA−1Oᵀ

ψ in

))
X̂in

L,M

+ A−1
(

12 + χMOψin BCA−1Oᵀ
ψ in

)√
κinκexX̂ex

L,M

−
√

κinχMA−1Oψin BF̂M

}
.

(2.27)
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This solution marks the end, for now, of the derivation involving the to-be-
analytical solution. We will return to it in the end of this section.

The numerical approach was initially presented in this particular form in
(Møller et al., 2017). As all square matrices on the left hand side are invertible,
we can basically multiply both sides by the total inverse matrix, such that the
system of equations (2.19) becomes(

X̂cav
L,M

X̂M

)
=

(
Oψ 0
0 1

)(
A B
C χ−1

M00

)−1 (Oᵀ
ψ 0

0 1

)(√
κinX̂in

L,M +
√

κexX̂ex
L,M

F̂M

)
.

(2.28)

The non-trivial part of solution is calculating the inverse of the central block
matrix. As the determinant of A is non-zero, det A = ∆2 + (κ/2− iΩ)2 6= 0 for
any {∆, Ω}, A is invertible. Therefore, we can use the Schur complements of a
block matrix to write the inverse in two ways(

A B
C χ−1

M00

)−1
=

(
A−1 + A−1BχMCA−1 −A−1BχM

−χMCA−1 χM

)
(2.29)

=

(
Y−1 −Y−1BχM00

−χM00CY−1 χM00 + χM00CY−1BχM00.

)
(2.30)

Notice how the solution (2.29) resembles the result from the analytical method,
equation (2.26). With the relation (2.30), multiplying the matrices in (2.28), we
get the intra-cavity field

X̂cav
L,M = Oψin Y−1Oᵀ

ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
−Oψin Y−1BχM00 F̂M, (2.31)

where, in this formulation, Y = A − BχM00C is the effective cavity response
matrix in the presence of optomechanical coupling. The last step is connecting
the intra-cavity field to the outside world via the input-output relations

X̂out
L,M = Oᵀ

ψout
(κinY−1 − 12)O

ᵀ
ψin
X̂ in

L,M

+
√

κinκexOᵀ
ψout

Y−1Oᵀ
ψin
X̂ in

L,ex

−
√

κinOᵀ
ψout

Y−1BχM00 F̂M.

(2.32)

The formulation presented above is our favourite for numerical implementa-
tions. In order to faithfully reproduce the elements of a real experiment, optical
losses and finite detection effects must be included. We will discuss them in
detail in Chapter 10, when we present the implementation of the hybrid exper-
iment.

2.3.1 Simplified relations

We now return to the derivation of an analytical solution for the optome-
chanical input-output relations. The basis of this formulation follows from the
equation (2.26). We would like to simplify the final result, which, due to the
presence of many matrices, fails to convey what is really going on. The de-
scription presented here is also described in the Supplementary Information of
Thomas et al. (2020). We will focus on the limit of a lossless cavity, κex = 0, and
weak optomechanical coupling (g � κ). Within these assumptions, a rather
simple input-output relation will emerge.

We start by writing A, the cavity response matrix, in terms of the complex
Lorentzian sideband amplitude and phase, defined as

L(Ω) =
κ/2

κ/2− i(Ω + ∆)
. (2.33)
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As the matrix A and its inverse appear many times throughout the derivations,
L(Ω) will allow us to rewrite

A−1 =
1
κ

(
L(Ω) + L∗(−Ω) i(L(Ω)− L∗(−Ω))
−i(L(Ω)− L∗(−Ω)) L(Ω) + L∗(−Ω)

)
. (2.34)

It is particularly useful to decouple the amplitude and phase of the complex
Lorentzian sideband function; in the polar form, L(Ω) = |L(Ω)|eiΘ(Ω) and
L∗(−Ω) = |L∗(−Ω)|e−iΘ(−Ω), with

|L(Ω)| = κ/2√
(κ/2)2 + (∆ + Ω)2

(2.35)

|L∗(−Ω)| = κ/2√
(κ/2)2 + (∆−Ω)2

= |L(−Ω)| (2.36)

Arg[L(Ω)] = arctan
∆ + Ω

κ/2
= Θ(Ω) (2.37)

Arg[L∗(−Ω)] = − arctan
∆−Ω

κ/2
= −Θ(−Ω) (2.38)

With that, the decomposition is possible

A−1 =
|L(Ω)|+ |L(−Ω)|

κ
ei(Θ(Ω)−Θ(−Ω))/2O(Θ(Ω)+Θ(−Ω))/2×[

12 + i
|L(Ω)| − |L(−Ω)|
|L(Ω)|+ |L(−Ω)|O−π/2

]
. (2.39)

We proceed assuming that the dependence of L(Ω) on the Fourier frequency
Ω is negligible over the bandwidth of interest and that L(±Ω) ∼ L(±ωM) and
Θ(±Ω) ∼ Θ(±ωM)). This approximation is not needed to perform the cal-
culation per se, but within this limit, the interpretation of the optomechanical
broadening and frequency shift will become clear. In equation (2.21), we have

−CA−1Oᵀ
ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
∼

2
√

ΓM

(
1

iζM

)ᵀ (√
κin/κX̂ in′

L,M +
√

κex/κX̂ex′
L,M

)
,

(2.40)

in which the input/extra field has been redefined to include the phase the cav-
ity induced phases as

X
in(ex)′
L,M = ei[Θ(ωm)−Θ(−ωm)]/2O[Θ(ωm)+Θ(−ωm)]/2Oᵀ

ψin
X

in(ex)
L,M . (2.41)

Notably, we have also introduced the mechanical readout rate and sideband
asymmetry parameter as

ΓM ≡
4g2

κ
(|L(ωM)|+ |L(−ωM)|)2 (2.42a)

ζM ≡
|L(ωM)| − |L(−ωM)|
|L(ωM)|+ |L(−ωM)| , (2.42b)

respectively. With these two parameters, we have created a common language
with the spin oscillator description, to be discussed in Chapter 3. The readout
rate ΓM is related to the effect of the perturbance the light field produces on
the mechanical system, which is by itself linked to the extraction of informa-
tion about the mechanical degree of freedom. The asymmetry parameter ζM
is related to the sideband imbalance induced by the possibly detuned optical
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Figure 2.8: Optomechanical readout rate and sideband asymmetry parameter. Detuning dependence of the readout rate and sideband
asymmetry as defined by equation (2.42). We have set ωM/2π = 1.4 MHz and varied κ. The coupling rate value g/2π = 76 kHz is set for
∆ = 0 and scaled according to the detuning dependence of the intracavity photon number.

drive. The dependence of the parameters on the cavity detuning ∆ can be seen
in Figure 2.8. In the limit of ωM � κ, the parameters reduce to

ΓM ∼
4g2

κ

(κ/2)2

(κ/2)2 + ∆2 (2.43)

ζM ∼ −
∆ωM

∆2 + (κ/2)2 , (2.44)

limit which is not perfectly valid for the parameter regime in our latest experi-
ment (ωM/κ ∼ 0.3), it serves a good initial guess for gauging the experimental
expectations. As it will become more clear by the end of this chapter, the pa-
rameter ζM, being sensitive to the sideband amplitudes at ωM, represents the
conversion between optical phase and amplitude, and vice-versa.

As a last step, we set the cavity overcoupling to unity, by choosing κin = κ
(and hence κex = 0). The mechanical degree of freedom

X̂M ∼ χM

[
2
√

ΓM

(
1

iζM

)ᵀ

X̂in′
L,M + F̂M

]
(2.45)

The field outside the cavity, following the input-output relations

X̂out
L,M = Oᵀ

ψin+ψout

(
X̂in

L,M −
√

κinX̂cav
L,M

)
, (2.46)

becomes

Oψin+ψout X̂
out
L,M = (12 − κA−1)X̂in

L,M +
√

κA−1Oψ in BX̂M (2.47)

Xout′
L,M =X in′

L,M +
√

ΓM

(
iζM

1

)
X̂M, (2.48)

in which we have used (2.20) and

−12 + κA−1 = ei[Θ(ωm)−Θ(−ωm)]OΘ(ωm)+Θ(−ωm) (2.49)

Xout′
L,M = e−i[Θ(ωm)−Θ(−ωm)]/2Oᵀ

[Θ(ωm)+Θ(−ωm)]/2Oψout X
out
L,M. (2.50)

The equation (2.48) shows that the information about the mechanical oscillator
is not only written in the phase quadrature of light, but also in the amplitude
quadrature via the asymmetry parameter ζM. Moreover, the choice of phases
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indicated by the primed optical variables highlights that the relation is only
valid for a particular configuration of parameters.

With the simplified input-output relations, we conclude this chapter. Fur-
ther details on the optomechanical implementation can be found in Chapter 4
and in the Part IV of the manuscript.



1Note that since 1967 the definition of the
second is based in a cesium microwave
transition. More precisely, (Newell and
Tiesinga, 2019) “the unperturbed ground
state hyperfine transition frequency of the
cesium-133 atom ∆νhfs = 9 192 631 770 Hz”.
The widespread availability of optical
and electronic control resources for time
keeping purposes is certainly a contributor
for the popularity of cesium in atomic
physics experiments.

2A more consistent notation for the pro-
jection of total spin on the quantization
axis would be mF . As the total angular
momentum is the focus of study we drop
the subscript, for brevity.
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Figure 3.1: Optical pumping and laser config-
uration. Optical pumping lasers, pump and re-
pump, are frequency stabilized to certain transi-
tions in the D1 and D2 lines, respectively. The
probe laser is stabilized off resonant with respect
to the electronic transition, with detuning ∆ from
the F = 4 → F′ = 5 transition. See text for de-
tails.

Chapter 3

Room temperature spin oscillator

Following the optomechanical system, we present some of the basic con-
cepts of preparing a cesium atomic ensemble as a spin oscillator. We present the
implementation of the oscillator and the concept of effective mass. From there,
we discuss its time evolution due to coupling with light and its environment.
We finish with the input-output relations for spin-light interaction, presenting
the spectrum of the light carrying information about the spin system and its
relation with the quantum cooperativity parameter.

3.1 The cesium atom and magnetic fields

In the atomic physics part of our experiment, we use cesium. More specif-
ically, cesium-133, the only stable isotope of this species. Due to a relatively
simple level structure, wide availability of laser sources and high room tem-
perature vapor density, this neutral atom is a rather common1 choice in room-
temperature-based atomic physics experiments. Other alkali, as potassium (K)
and rubidium (Rb), are also popular choices.

We briefly comment now on the electronic level structure of cesium. For a
more detailed discussion on cesium and other alkali, we refer to Seltzer (2008)
and Steck (2019). The electronic transitions we deal with are components of the
fine structure doublet, see Figure 3.1. In spectroscopic notation, the transitions
are 62S1/2 → 62P1/2 (D1 line) and 62S1/2 → 62P3/2 (D2 line). This doublet is
further split by hyperfine interaction, giving rise to the levels F = 3, 4 in the
ground state, and F′ = 3, 4 and F′ = 2, 3, 4, 5 in the D1 and D2 excited states,
respectively.

At room temperature, where the atoms are almost exclusively in the ground
state manifold 62S1/2, we are particularly interested in how the atoms interact
with external magnetic fields. The nucleus, the electronic spin, and the orbital
angular momentum have their own magnetic moment µ contributing to the to-
tal magnetic moment of the atom. The moments interact with each other via
the fine and hyperfine coupling. For the ground state manifold, if the energy
shift due to the magnetic field B is small compared to the hyperfine splitting,
the good quantum numbers are the total angular momentum F and its projec-
tion on the quantization axis mF. The energy2 EFm of a given level is described
by the Breit-Rabi formula (Steck, 2019)

EFm = − hνhfs
2(2I + 1)

+ gIµBmB± hνhfs
2

√
1 +

4m
2I + 1

x + x2. (3.1)

in which ± is used for F = I ± 1/2, B = |B| is the magnetic field magnitude,
νhfs is the hyperfine splitting, and µB = h · 1.4 MHz G−1 is the Bohr Magneton.
The parameter x describes the strength of the Zeeman effect in respect to the

23
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3The selectivity of energy levels is set by its
linewidth. Typical linewidths values are on
the order of 10 Hz to 100 Hz. The 3rd order
term is ν3

L/ν2
hfs ∼ 10 mHz, much smaller

than the transition linewidth.

4Here we consider only one ground state
manifold. In the experiments, optical
pumping will transfer all atoms to a single
manifold.

hyperfine splitting, defined as

x =
(gJ − gI)µBB

hνhfs
. (3.2)

Here, gJ ∼ 2 and gI ∼ −4 × 10−4 are the spin-orbit and nuclear g-factors,
respectively; we refer to (Steck, 2019) for exact values. For our experiments, we
rarely go above B ∼ 10 G (or 1 mT), leaving x ∼ 10−3.

Expanding equation (3.1) around x = 0 gives us the energy values in the
limit of small perturbation by the magnetic field. Given the typical resolution
of the energy levels in the experiments, we consider the effects up to second
order3. The Zeeman level energies in the F = 4 hyperfine manifold follow
(Julsgaard et al., 2003)

Em = h̄ωSm + h̄ωqzsm2, (3.3)

where the Larmor frequency ωS and quadratic Zeeman splitting ωqzs are defined
as

ωS
2π

= νS =
gFµBB

h
(3.4)

ωqzs

2π
= νqzs =

2ν2
S

νhfs
. (3.5)

The frequencies above are first and second order contribution to the Zeeman
energy levels due to the presence of an external magnetic field. The hyperfine
Landé g-factor is

gF = gJ
F(F + 1)− I(I + 1) + J(J + 1)

2F(F + 1)
+ gI

F(F + 1) + I(I + 1)− J(J + 1)
2F(F + 1)

=

{
0.250390 for F = 4
−0.251194 for F = 3 (3.6)

The Larmor frequency scales as approximately 350 kHz G−1, being of order
1 MHz throughout the most experiments described here. Due to the sign in
gF, the two hyperfine levels shift oppositely with the external magnetic field.
The F = 3 manifold energies scale 0.3% faster with the applied magnetic field.

In our experiments, the laser light will induce transitions between ground
state Zeeman levels. The most common transitions are those fulfilling ∆m =
m′ −m = ±1, where energy goes as

Em′ − Em

h̄
= ωS + ωqzsm. (3.7)

Therefore, we will be inducing magnetic excitations when driving the system
satisfying the resonant condition ωrf ∼ ωS. On the other hand, in the limit
the quadratic Zeeman splitting is much larger than the transition linewidth,
ωqzs � γS, the ground state response will be split in 2F resonances. This split
is particularly important for characterizing the spin state in Chapter 5.

As we start talking about transitions within the ground state manifold, it is
useful to write the energies in the Hamiltonian description. In particular, the
Zeeman shifts induced by the external magnetic field given in equation (3.3),
are equivalently given by the Hamiltonian

ĤB = h̄ ∑
m

[
ωSm|m〉〈m|+ ωqzsm2|m〉〈m|

]
(3.8)

in which |m〉 is the ket state associated with the m-th Zeeman level4.
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5Here, we assume the atoms to interact
homogeneously with light. See Chapter
7 for the inclusion of inhomogeneous
coupling.

6See Appendix A for further details

7Including the quadratic magnetic field
contribution is more naturally written as

ĤB = h̄ωS F̂x + h̄ωqzs( Ĵm + F(F + 1)1̂F)/3,

with Ĵm = 2F̂2
z − F̂2

x − F̂2
y , as the effective

quadrupole moment (Colangelo et al.,
2013).

The Hamiltonian written as above motivates us to map, or rotate, the Zee-
man level basis into an angular momentum description. A complete angular
momentum basis for a collection of N spin-F atoms is

F̂x ≡∑
N

f̂ (i)x = ∑
N

∑
m

mA(i)
mm

F̂y ≡∑
N

f̂ (i)y =
1
2 ∑

N
∑
m

c(F, m)
(

A(i)
m+1,m + A(i)

m,m+1

)
F̂z ≡∑

N
f̂ (i)z =

1
2i ∑

N
∑
m

c(F, m)
(

A(i)
m+1,m − A(i)

m,m+1

)
F̂0 ≡∑

N
f̂ (i)0 = ∑

N
∑
m

A(i)
mm.

(3.9)

The (capitalized) F̂ spin operators are related the total ensemble spin. Strictly
speaking, the total interaction energy must be the weighted sum/integral over
all atoms in the ensemble given an interaction strength5, although for the case
of homogeneously coupled atoms the discrete summation agrees with the con-
tinuous model. Including the continuous description of the spin variables was
done in Julsgaard (2003). From here on, we will drop the atom number index.

The set of angular momentum operators from equation (3.9) is itself spanned
from the action of F̂x and F̂±, the spin projection in the quantization axis and
the ladder operators, respectively6. Note that we follow the QUANTOP school
of non-trivial quantization axis, in which the energies are quantized along the
x-axis. The coefficients c(F, m) =

√
F(F + 1)−m(m + 1) and the atomic oper-

ators Â(i)
a,b ≡ |a〉〈b|

(i) = |F, a〉〈F, b|(i) define the relative weights of the atomic
coherences in the angular momentum operator description. The definitions ful-
fill the standard commutation relations [F̂i, F̂j] = iεijk F̂k, with εxyz as the Levi-
Civita symbol. The anticommutation rules are {F̂x, F̂y} = 2δxy12, with 12 as the
identity matrix.

Within the angular momentum basis, the energy of the ground state level
due to the external field BDC given in equation (3.8), disregarding the quadratic
component7, is written as

ĤB = h̄ωS F̂x, (3.10)

resembling the magnetic dipole interaction, ∝ B · F, for a static field in the x-axis
direction.

In the hybrid experiments, we will work in the limit of a constant and high
spin polarization, that is, in the limit in which the ensemble magnetization is
large Fx ∼ |〈F̂x〉|, valid for an ensemble polarized close to |F = 4, mF = ±4〉.
For that, we can make use of the Holstein-Primakoff transformation to map the
spin variables, F̂± = F̂y ± iF̂z, to bosonic creation and annihilation operators b̂
and b̂†, respectively, satisfying [b̂, b̂†] = 1. We follow the approach described in
Hammerer (2006). According to the transformation, the spin component F̂x can
be written as

F̂x = Fx −
b̂† b̂
2

. (3.11)

In the low excitation limit 〈b̂† b̂〉 � Fx, the ladder operators are given by F̂+ ∼√
Fx b̂ and F̂− ∼

√
Fx b̂†. In this limit, the number of bosonic excitations in the

system is given by

b̂† b̂ =
F̂− F̂+

Fx
∼

F̂2
y + F̂2

z

Fx
, (3.12)
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Figure 3.2: Spin oscillators. The relative direc-
tion of the magnetic field B with respect to the
macroscopic spin F defines the sign of the spin
oscillator’s effective mass. Here we use the x co-
ordinate as quantization axis. If both spin and
magnetic field are aligned a, a negative mass os-
cillator is prepared and the ground state |0〉 has
bigger energy than the first excited state |1〉. On
the other hand, if both are anti-aligned b, a pos-
itive mass oscillator is prepared. Note that the
spin mass also sets the energy levels ladder and
spin variables X̂S and P̂S.
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Figure 3.3: Simplified level structure. The
ground state, composed of the states |0〉 and |1〉
is coupled by a single laser (solid lines) to the
excited state manifold, spanned by |2〉 and |3〉.
Dashed lines show the spontaneous decay chan-
nels. Color coding for Clebsch-Gordan coeffi-
cients: black for

√
2/3, red for

√
1/3 and blue

for −
√

2/3.

allowing us to finally write equation (3.10) as

ĤB/h̄ = ωS F̂x ∼ ωSFx −
ωS
2
(X̂2

S + P̂2
S ). (3.13)

We have redefined the spin variables as X̂S = F̂z/
√

h̄Fx and P̂S = ±F̂y/
√

h̄Fx,
with respect to Fx , the steady-state spin polarization, and [X̂S, P̂S] = i. The
± refers to a positive (+) and negative (-) mass spin scenario. The operators
{X̂S, P̂S} are the effective spin variables, describing the spin oscillator dynam-
ics. The term proportional the mean ensemble spin polarization Fx contributes
only as an offset to the dynamics and will be disregarded from here on.

To grant the Holstein-Primakoff approximation and map the dynamics of
the cesium spin ensemble to a harmonic oscillator, the atoms must be optically
pumped such that 〈b̂† b̂〉/|Fx| � 1. The pumping can be set in a way that
the atoms are transferred to a Zeeman level with maximal value of angular
momentum, here the |0〉 = |F = 4, mF = 4〉 state, a situation sketched in Figure
3.2 (a). In this configuration, the static magnetic field and the macroscopic spin
are aligned, and the ground state has the maximum Zeeman energy. Exciting
the system, that is, transferring energy to it, will lead to a decrease in total
energy of the system. This is the case described by equation (3.13), the case of
an effective negative mass oscillator.

On the other hand, one could have chosen to pump the atoms towards the
other extreme Zeeman level, or even invert the direction of the static magnetic
field, as depicted in Figure 3.2 (b). In this case, the final state would have been
|F = 4, mF = −4〉 and exciting the system would have increased the total
magnetic energy. In this case, a positive mass oscillator with Hamiltonian

ĤB/h̄ =
ωS
2
(X̂2

S + P̂2
S ), (3.14)

would have been created.

3.2 Interaction with light

Within a single atom, the light fields E couple to the atomic dipole moment
d, via the electric dipole coupling

Ĥint = d · E. (3.15)

The cesium atom, shown in Figure 3.1, has 16 magnetic sub-levels in its ground
state manifolds (F = 3 and F = 4) and, considering the D2 line, 27 more
in the excited states. Electric dipole interaction couples the ground states to
the excited states via exchange of photons. For dealing with such complex
energy level structures, effective formalisms are particularly powerful. Espe-
cially, as we work in a regime in which atoms spend most of their time in the
ground states and in a time scale much longer than the decay time of the ex-
cited states, we can adiabatically eliminate the excited states, as described in
Julsgaard (2003), leading to an Hamiltonian that contains only the ground state
levels. We will deal with this approach in Section 3.3.

For now, we take an alternative route, using the approach developed by Re-
iter and Sørensen (2012). By driving the atomic subsystem in subspaces accord-
ing to their effects and related time scales, the authors develop a self-consistent
procedure for eliminating the excited state manifolds of weakly driven arbi-
trary level structures via adiabatic elimination, including the effects of deco-
herence and decay induced by light. The description is valid in the limit of a
weakly coupled system to a Markovian reservoir. We will consider an ensemble
of atoms with level structure seen in Figure 3.3. We abstract this atomic system
to have a single ground state manifold and an excited state manifold, each with
total angular momentum F = 1

2 .
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8The full spelling of the basis is
|0〉 ≡ |F = 1/2, mF = −1/2〉
|1〉 ≡ |F = 1/2, mF = +1/2〉
|2〉 ≡ |F′ = 1/2, mF′ = −1/2〉
|3〉 ≡ |F′ = 1/2, mF′ = +1/2〉.

The four level system is written in the angular momentum basis |F, mF〉, here
compactly written as {|0〉, |1〉, |2〉, |3〉} 8. A quantized electric field described by
the operators âR, âL of a traveling laser beam with frequency ωL and transverse
mode are AB (Julsgaard, 2003), is

E = E0(âReR + âLeL + h.c.). (3.16)

The laser’s electric field couples the ground to the excited states via electric
dipole interaction, given in equation (3.15), with eR, eL as the polarization
unit vectors and h.c. as the Hermitian conjugate. The proportionality con-
stant E0 =

√
ωL h̄/2ε0 A is the single photon coupling rate per atom. For a laser

beam traveling along the z quantization axis, circularly polarized light couples
the ground and excited state manifolds via ∆m ≡ m′ − m = ±1 transitions.
Once in the excited state, the atoms return to the ground state by spontaneously
emitting a photon.

The total energy of the atom-light system is a combination of the atomic,
optical and interaction terms. In the rotating wave approximation and in the
laser frequency rotating frame (Sherson, 2006), is

Ĥ = Ĥatoms + Ĥint (3.17)

Ĥatoms = h̄∆(Â22 + Â33)

Ĥint = h̄g0(−âR Â30 + âL Â21 + h.c.),

with ∆ = ω0 − ωL as the detuning from the atomic resonance, Âij = |i〉〈j| as
a general operator in the atomic basis, and g0 = E0dge/h̄. The atomic basis
follows Âab Âcd = Âadδbc and [Âab, Âcd] = Âadδbc − Âadδda. The magnitude of
the atomic dipole moment dge includes the Clebsch-Gordan coefficients. The
interaction Hamiltonian Ĥint is derived from equation (3.15).

Following Reiter and Sørensen (2012), we divide the Hamiltonian (3.17) ac-
cording to the atomic subspaces. The ground state and excited state levels
evolve according to Ĥg and Ĥe. The interaction Ĥint mixes the two subspaces,
in principle independent from each other, via V̂+ and V̂−. Namely

Ĥg = 0 (3.18a)

Ĥe = h̄∆(Â22 + Â33) (3.18b)

V̂+ = h̄g0(−âR Â30 + âL Â21) (3.18c)

V̂− = (V̂+)
†, (3.18d)

Couplings among the ground state levels can be added directly to Ĥg. Once
in the excited state, the atoms decay spontaneously following the four possible
decay paths

L̂03 =
√

2γe/3Â03 (3.19a)

L̂02 =
√

γe/3Â02 (3.19b)

L̂13 =
√

γe/3Â13 (3.19c)

L̂12 =
√

2γe/3Â12, (3.19d)

where γe is the excited state decay rate. The L̂ operators are the jump operators
associated with a given reservoir coupling.

Having introduced the systems and interactions we proceed to apply the
effective formalism. According to Reiter and Sørensen (2012), the dynamics of
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9To be more precise, in Reiter and Sørensen
(2012) the authors give an effective master
equation for the system density operator
ρ. Here, it has been phrased in terms of
the analogous operator equation following
〈Â〉 = Tr[ρÂ].

10The angular momentum operators for
spin-1/2 in the z-quantization basis are
defined as

F̂x =
Â10 + Â01

2

F̂y =
i(Â10 − Â01)

2

F̂z =
Â00 − Â11

2

F̂0 =
Â00 + Â11

2
=

12

2
.

(3.24)

a system operator Â is given by the Heisenberg-Langevin equation of the form9

d
dt

Â = i[Ĥeff, Â] + ∑
k

[
L̂†

k,eff ÂL̂k,eff −
1
2
{L̂†

k,eff L̂k,eff, Â}
]

+ ∑
k

[
F̂†[Â, L̂k,eff]− [Â, L̂†

k,eff]F̂
]

,
(3.20)

where the effective Hamiltonian and decay processes parametrized are the op-
erators L̂k,eff and Ĥeff, respectively. Being an equation of the Langevin type,
the decay processes have the respective Langevin noise forces F̂. The effective
Hamiltonian and decays are given by

Ĥeff = −
1
2

V̂−
(

Ĥ−1
NH + Ĥ−1,†

NH

)
V̂+ + Ĥg (3.21a)

L̂k,eff = L̂k Ĥ−1
NHV̂+ (3.21b)

ĤNH = Ĥe −
i
2 ∑

k
L̂†

k L̂k, (3.21c)

see Appendix C for further details. Inserting the quantities defined in equations
(3.18) and (3.19), the effective interaction Hamiltonian becomes

Ĥeff =
h̄g2

0∆
∆2 + (γe/2)2

(
â†

R âR Â00 + â†
L âL Â11

)
. (3.22)

In this picture, we see that the interaction is due to ac Stark shifts, that is, the state
|0〉 (|1〉) is shifted in energy according to the number of photons n̂R = â†

R âR
(n̂L = â†

L âL).
For understanding the interaction presented in equation (3.22), we introduce

relevant polarization degrees of freedom. Polarized light plays an important
role in the interaction, as it is the source of the Stark shifts presented above.
The Stokes operators, given as

Ŝx =
n̂x − n̂y

2

Ŝy =
n̂+45◦ − n̂−45◦

2

Ŝz =
n̂R − n̂L

2
,

(3.23)

where n̂i = â†
i âi is the number operator, characterize the polarization of light.

The indices x, y, ±45◦, and R, L, describe the photons in linear, diagonal and
circular basis. The fourth and last operator is Ŝ0 = (n̂R + n̂L)/2, giving infor-
mation about the total amount of photons in the circular basis, for example.
The Stokes operators relate to each other via [Ŝx, Ŝy] = iεxyzŜz, with εxyz as
the Levi-Civita symbol. The operators can be related to each other via basis
transformations, as shown in Section A.3.

The ac Stark shift interaction (3.22) is also equivalent to the Faraday para-
magnetic rotation Hamiltonian (Hammerer et al., 2010). Writing the atomic
degrees of freedom in the angular momentum basis and the light operators in
terms of Stokes operators10 from equation (3.22), we get to

Ĥeff = h̄g(F̂0Ŝ0 − F̂zŜz), (3.25)

as previously shown by Sherson (2006), with g = 2g2
0∆/(∆2 + (γe/2)2). The

term F̂zŜz represents the mutual rotation of polarization of light and atomic
spins. The other term, proportional to F̂0Ŝ0, is an overall energy shift added
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11The remaining effective decays are

L̂eff
02 ∝ âL Â01

L̂eff
13 ∝ âR Â10

L̂eff
12 ∝

√
2âL Â11.

(3.27)

The operators above have

√
γe/3g0

∆− iγe/2
as

proportionality constant.

12In a more complete description, the light
variables evolve as the Maxwell-Bloch
equations (Julsgaard, 2003, Appendix C)(

d
dt

+ c
d
dz

)
âi =

i
h̄
[Ĥ, âi ].

For the case that τ � L/c, that is, when
the time scales of interest τ are much
longer than the interval of time needed
for a given pulse of light travel across the
atomic ensemble, we can disregard the time
evolution.

13Although we derive the equations of
motion asserting spatial directions to the
operators, we note that the interaction
is more generally defined when taking
the propagation of the optical probe and
the respective polarization components
as defining coordinates. See Deutsch and
Jessen (2010) for a detailed accounting.

to the system, not influencing the internal degrees of freedom or altering the
polarization of the light. It will be disregarded in most cases in this thesis.

The ac Stark shift Hamiltonian (3.22) is therefore equivalent to the Faraday
interaction (3.25). In general, the larger the excursions of the spin component
from its equilibrium coordinates, the larger the effect on the polarization of
light. We will, in general, utilize the Faraday interaction throughout. It allows,
when using the Holstein-Primakoff approximation, to map the spin system to
a canonical harmonic oscillator language.

Having calculated the Hamiltonian evolution, we proceed to the incoher-
ent contributions. As an example, we calculate the decay rate L̂eff

03 . According
to (3.21a), the effective decay channel is calculated by using (3.18), (3.19) and
(3.21c),such that

L̂eff
03 =

√
2γe/3g0

∆− iγe/2
Â00 âR. (3.26)

The same procedure11 can be applied to the other decay channels from equation
(3.19).

At this point, having both effective Hamiltonian (3.25) and the associated
decay processes, we can calculate the dynamics of the system using equation
(3.20). The angular momentum time evolution is

d
dt

F̂x = gŜz F̂y − γS0 F̂x + F̂Fx

d
dt

F̂y = −gŜz F̂x − γS0 F̂y + F̂Fy

d
dt

F̂z = −γŜz F̂0 − γS0 F̂z + F̂Fz

d
dt

F̂0 = 0,

(3.28)

in which we have lumped the Langevin forces as the generic F̂Fi. It is not crucial
to write the term explicitly, it is only important to know the diffusion associated
with it. The diffusion is calculated using the generalized Einstein relations,
presented in Chapter 5.

The light variables evolve as12

c
d
dz

Ŝx = −gŜy F̂z

c
d
dz

Ŝy = gŜx F̂z

c
d
dz

Ŝz = 0

c
d
dz

Ŝ0 = 0.

(3.29)

The according decay and induced fluctuations have been neglected as absorp-
tion is negligible (Vasilyev et al., 2012).

The equations (3.28) show that the interaction rotates the spin around the
z-axis with rate g. Simultaneously, the light polarization also rotates around
the z-axis. The interaction is of the quantum non-demolition type, as the z-
components of the light and spins is conserved in the interaction13. Due to
coupling of the ground states to the short-lived excited states, the spin com-
ponents decay with rate γS0. The detuning dependence of the decay constant
γ ≡ g2

0γe/2/(∆2 + (γe/2)2) is to be compared with the coupling constant g. If
∆� γ, coupling and decay scale as g ∼ 1/∆ and γ ∼ 1/∆2, just like dispersion
and absorption (Foot, 2005), respectively.
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14Typical scales for the decay of the ground
states is in the order of 50 µs, while the
optical coherence decays in the order of
10 ns.
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Figure 3.4: Detuning dependence of the interaction parameters. The coefficients a1 and a2 dependence on the detuning from the F =
4 → F′ = 5 transition are shown in a and b, respectively. The dashed lines present the asymptotic limit ∆ → ±∞. In c, we plot the ratio
a2/a1. For reference, the red shaded region is the frequency band in which significant optical absorption might be present.

It is important to notice that the decay terms in equation (3.28) are propor-
tional to the total photon flux S0, irrespective of the photon polarization. The
only term that does not follow this rule is−γŜz F̂0, which shows that if the laser
is circularly polarized, there will be optical pumping and a spin component
along the quantization axis that is non-zero. Having the effects of optical pump-
ing directly included in the dynamical equations highlight the self-consistency
of the adiabatic elimination method here used.

Summing up, the simplified description given by the level structure pre-
sented in Figure 3.3 allowed us to introduce the concepts of polarization rota-
tion and optically induced decay. In the next section we will increase the level
of complexity, discussing the effects on the electronic structure of cesium.

3.3 Atomic Polarizability

The cesium structure, presented in Figure 3.1, contains many more levels
than the case discussed above. The experimental configuration and hierarchy
of processes, nonetheless, is still valid. We operate the laser rather far detuned
from the atomic resonance, away from electronic transitions. Thus, by using
a low laser power, we operate far below the transition saturation, we make
sure the excited states will not be populated on average. The dynamics of our
interest will happen on a timescale much longer than the optical coherences’
lifetime. As the ground state evolves ∼ 3 orders of magnitude slower than the
fast decaying excited states 14, the excited states can be adiabatically eliminated.

Along the same lines of the derivation performed in the previous section, an
effective Hamiltonian governing the ground state dynamics can be found (Juls-
gaard, 2003; Sherson, 2006). For the cesium D2 level structure, here particularly
for the F = 4, the effective Hamiltonian is

Ĥ/h̄ = gCs(a0Ŝ01̂9 + a1Ŝz F̂z + a2

[
Ŝ0 F̂2

z − 2Ŝx(F̂2
x − F̂2

y )− 2Ŝy(F̂x F̂y + F̂y F̂x)
]
),

(3.30)

where the single photon and single atom coupling rate are

gcs = −
cγcs

8AB∆
λ2

cs
2π

, (3.31)

valid for ∆� γcs. Note the similarities between gcs and g, from equation (3.25).
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The ai-parameters are coefficients that set the relative weights of the interac-
tion terms, which for the present case are

a0 =
1
4

(
1

1− ∆35/∆
+

7
1− ∆45/∆

+ 8
)
→ 4

a1 =
1

120

(
− 35

1− ∆35/∆
− 21

1− ∆45/∆
+ 176

)
→ 1

a2 =
1

240

(
5

1− ∆35/∆
− 21

1− ∆45/∆
+ 16

)
→ 0,

(3.32)

with asymptotic values valid for ∆→ ±∞. The offset ∆35 (∆45) is the frequency
difference between F′ = 3 (F′ = 4) and F′ = 5. In Figure 3.4 (a) and (b), we
present the detuning dependence of a1 and a2. The region in red represents the
frequency band in which the Doppler broadened ensemble might absorb light
significantly, and should therefore be avoided.

The form of the Hamiltonian (3.30) is familiar. The contributions propor-
tional to a0 and a1 are similar to the ones presented in equation (3.25), rep-
resenting an overall phase shift and the Faraday rotation. The term propor-
tional to a2 appears as the ground state total angular momentum is F > 1

2 . The
laser light, detuned from the electronic transition, now interacts with the whole
excited state hyperfine structure. The parameter a2 tends to zero in the far de-
tuned limit, with overall interaction strength related with the parameter scaling
as 1/∆2. Notice that the a2 parameter scales with detuning in the same way as
the light induced decoherence rate γ. The effectiveness of the atom-light inter-
action will therefore be a balance between the desired coherent effects and the
decoherence induced by the coupling.

It is also useful to break down the interactions presented in equation (3.30)
according to their physical origin (Deutsch and Jessen, 2010). The interaction
induces the ac Stark shifts, a change on the energy levels, of the atom, which
is by itself polarizable. The terms proportional to a0, a1 and a2 are the scalar,
vector and tensor light shifts. Although not in its more explicit form, the Hamil-
tonian (3.30) is written into its irreducible tensor components (Vasilyev et al.,
2012). The scalar term couples to the total number of atoms, here as an iden-
tity matrix. The vector term, as the name goes, couples to the vectorial part
of the interaction and is maximized in media with a large spin polarization.
The tensor part, on the other hand, couples to the quadrupole spin components
(Di Domenico et al., 2006).

The spin-light interaction given in equation (3.30) describes a plethora of
physical effects. We point to de Echaniz et al. (2008) and Hammerer et al. (2010)
for the review of some of them. For us, particularly important are the tensor
Stark shifts ωtss, the ac Stark shifts induced by a2 terms. The tensor Stark shifts
will induce a mF dependent energy shift, which will change the spectral re-
sponse of the ensemble. We can calculate the shifts as described in Julsgaard
(2003). For an linearly polarized input field propagating along the z-axis, the
electric field is

E/E0 = cos αex + sin αey,

where {ex, ey} are the polarization unit vectors, and α as the angle between
the polarization vector and the static magnetic field B = BDCex. The average
Stokes parameters, in the linear basis, are

Sx/S0 = ExEx − EyEy = cos 2α

Sy/S0 = 2Re[ExE∗y ] = sin 2α

Sz/S0 = 0.

Substituting these values in equation (3.30) and performing first order pertur-
bation theory, it is possible to show that the Zeeman transition frequencies are
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affected as

ωtss =
Em+1 − Em

h̄
=

γcs

8AB∆
λ2

cs
2π

a2S0
1 + 3 cos 2α

2
. (3.33)

In particular, the shifts can be zeroed by choosing α ∼ 54.7◦. In our exper-
iments, we will routinely use the tensor Stark shifts to cancel the quadratic
Zeeman spliiting induced by the external magnetic field.

In the next section, we head to describe the physical effects we observe in
our light spins interface.

3.4 Input-output relations

Spin polarizing the ground state manifold allows for simplification of the
Hamiltonian in equation (3.30). In the limit of all atoms being in one of the
stretched states |F = 4, mF = ±4〉, using the relations given in Appendix A, the
terms quadratic on angular momentum operators, F̂2

z , F̂2
x − F̂2

y and F̂x F̂y + F̂y F̂x,
can be approximated in a spin- 1

2 description, such that equation (3.30) becomes

Ĥ/h̄ = ωS F̂x + gCs
(
a0Ŝ01̂2 + a1Ŝz F̂z + a2

[
2Ŝ01̂2 − 14Ŝx(F̂x − 21̂2)− 14Ŝy F̂y

])
.

(3.34)

The static magnetic field contribution, assuming the quadratic Zeeman split-
ting has been canceled by the tensor light shifts, is given by equation (3.10).
Given the energy introduced by the magnetic field, the terms proportional to
F̂x and 1̂2, are inducing frequency shifts that can be compensated by the exter-
nal magnetic field, we are then left with

Ĥ1/2/h̄ = ωS F̂x + gCs
(
a1Ŝz F̂z ± 14a2Ŝy F̂y

)
. (3.35)

From here we proceed to map the Hamiltonian above to the quadrature opera-
tors language. The quantum Stokes operators as Ŝx, Ŝy, Ŝz, Ŝ0 are redefined as
{Ŝ‖ = Ŝx cos 2α− Ŝy sin 2α, Ŝ⊥ = Ŝx sin 2α + Ŝy cos 2α, Ŝz, Ŝ0}, for α as the an-
gle between polarization of the probe laser with respect to the static magnetic
field BDC. Defining the Stokes operators as {Ŝ‖, Ŝ⊥, Ŝz} allow us to reference
an arbitrary linear polarization state according to its decomposition along and
perpendicular to the referenced magnetic field.

For mapping the polarization variables into quadrature variables, we choose
the parallel component as the classical variable – the local oscillator LO1 with
the photon flux 〈Ŝ‖〉 = 〈Ŝ0〉 = S‖, leaving Ŝ⊥, Ŝz as quantum variables. We

define the light quadratures as X̂L = Ŝz/
√

S‖ and P̂L = −Ŝ⊥/
√

S‖, such that

[X̂L, P̂L] =
i
2 . The negative mass spin oscillator variables are redefined as X̂S =

F̂z/
√

Fx and P̂S = −F̂y/
√

Fx, with Fx as the steady-state spin polarization Fx =

〈F̂x〉, and [X̂S, P̂S] = i.
In the quadrature language, after employing the Holstein-Primakoff approx-

imation, the Hamiltonian according to equations (3.13) and (3.35) is

ĤS/h̄ =
ωS
2
(X̂2

S + P̂2
S )− 2

√
ΓS
(
X̂SX̂L + ζSP̂SP̂L

)
, (3.36)

where ξS = −14 a2
a1

cos 2α as the tensor interaction strength. We have also intro-
duced the spin readout rate

ΓS = g2
csSxFx. (3.37)

The Hamiltonian (3.36) is the starting point of our theoretical understanding of
the spin ensemble, and will be analyzed in its various forms in the next chap-
ters. For our standard detuning ∆/2π = 3 GHz and polarization of the probe
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15Here we use the sub-indices L, S as for the
light variables related to the spin oscillator.
In the hybrid implementation, such indices
become important.

α = 60◦, the tensor interaction strength is rather small ξS ∼ 0.01, the light-
matter coupling is approximately of the QND-type. Notice the similarity of
equation (3.36) with the harmonic oscillator description presented in the last
chapter for the optomechanical system. The physics of atoms driven much be-
low the saturation being mapped to mechanical oscillators is also vast (Souza
et al., 2015).

Given the system Hamiltonian, equation (3.36), and by the Heisenberg-Lan-
gevin equations (3.20), the spin and optical operators15 evolve as

d
dt

(
X̂S
P̂S

)
=

(
−γS0/2 ωS
−ωS −γS0/2

)(
X̂S
P̂S

)
+ 2
√

ΓS

(
−ξSP̂L

X̂L

)
+

(
F̂X

S
F̂P

S

)
(3.38)(

X̂out
L,S

P̂out
L,S

)
=

(
X̂in

L,S
P̂in

L,S

)
+
√

ΓS

(
0 −ζS
1 0

)(
X̂S
P̂S

)
, (3.39)

with F̂X
S , F̂P

S as the effective Langevin forces acting on the spin oscillator. The
first term in equation (3.38) shows that the oscillator variables are coupled due
to the presence of the static magnetic field. The spin components decay with
rate γS0. The total bandwidth of the spin resonance in the absence of dynamical
processes is γS0 = γS0,dark + γpb + γop, summing the contributions from the
decay in the dark, power broadening and optical pumping, respectively. For
an accounting of the different decay processes, see Krauter (2011). The decay
in the dark contribution will be discussed in Chapter 4. The last two terms in
equation (3.38) are the optical and effective spin thermal forces, respectively.
In the abscence of extraneous couplings —as classical external magnetic fields
—these are the only two components that couple to the spins.

The last ingredient on the dynamics is accounting for the ensemble average
of the light variables. Due to atomic motion, the optical signal seen by the spins
is an average over the whole ensemble, that is(

X̂L
P̂L

)
→ 1

2

〈(
X̂out

L,S
P̂out

L,S

)
+

(
X̂in

L,S
P̂in

L,S

)〉
=

〈(
X̂in

L,S
P̂in

L,S

)〉
+

√
ΓS
2

(
0 −ζS
1 0

)〈(
X̂S
P̂S

)〉
.

(3.40)

Inserting this equation in the term related to the optical quadratures in (3.38),
we get to

d
dt

(
X̂S
P̂S

)
=

(
−γS0/2− ζSΓS ωS

−ωS −γS0/2− ζSΓS

)(
X̂S
P̂S

)
+ 2
√

ΓS

(
−ξSP̂ in

L
X̂ in

L

)
+

(
F̂X

S
F̂P

S

)
.

(3.41)

The extra decay term 2ζSΓS is the tensor (dynamical) broadening. Depending
on the choice of ξS, this term can be positive or negative.

We are interested in work in the steady state regime. Furthermore, the dy-
namics are best seen in frequency space, in which we have used the Fourier
transform definition F (ẊS) = −iΩX̂S, see Appendix A. In a shorthand matrix
notation, the spin evolution (3.41), in frequency space, is

X̂S = 2
√

ΓSZLX̂in
L,S + LF̂S, (3.42)

with

Z =

(
0 −ζS
1 0

)
, L =

(
γS0/2 + ζSΓS − iΩ −ωS

ωS γS0/2 + ζSΓS − iΩ

)−1
,

X̂in(out)
L,S =

(
X̂in(out)

L,S

P̂in(out)
L,S

)
, X̂S =

(
X̂S
P̂S

)
, F̂S =

(
F̂X

S
F̂P

S

)
. (3.43)
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Figure 3.5: Measurement of the Stokes param-
eters. The configurations required for detect-
ing the Stokes parameters. The half waveplates
(HWP) are set to π/8 and the quarter waveplate
(QWP) to π/4. Plus and minus are for sum and
difference of the photodiode’s electrical signals.

The matrix L contains the spin oscillator dynamics in frequency space. Element-
by-element, L is

L =

(
$S(Ω) χS(Ω)
−χS(Ω) $S(Ω)

)
, (3.44)

in which the general spin susceptibilities χS and $S are defined as

χS(Ω) =
ωS

ω2
S −Ω2 − iΩγS + (γS/2)2

(3.45)

$S(Ω) =
γS/2− iΩ

ω2
S −Ω2 − iΩγS + (γS/2)2

(3.46)

with γS = γS0 + 2ζSΓS as the total spin linewidth. As seen in equation (3.42),
the matrix L maps the input optical and thermal forces into the oscillator dy-
namics.

In the limit of γS � ωS, when only the dynamics around the resonance
(Ω ∼ ωS) are significant, the susceptibilities from equation (3.45) get the more
familiar form

χS(Ω) ∼ 1
2

1
ωS −Ω− iγS/2

(3.47)

$S(Ω) ∼ −iχS(Ω). (3.48)

The absolute squared of equation (3.47) |χS|2 is a Lorentzian function. In this
case, an approximate versions of equation (3.42) can be written. The effective
thermal forces F̂X

S and F̂P
S can be combined into the single thermal force term

F̂S ≈ iF̂X
S + F̂P

S , and

X̂S = χS

[
F̂S + 2

√
ΓS

(
1
−iζS

)ᵀ

X̂ in
L,S

]
= χS

[
2
√

ΓS(X̂in
L,S − iζSP̂in

L,S) + F̂S

]
.

(3.49)
The light variables, from equation (3.39), read

X̂out
L,S = X̂in

L,S +
√

ΓSZX̂S = (12 + 2ΓSZLZ)X̂in
L,S +

√
ΓSZLF̂S, (3.50)

in which 12 is the 2× 2 identity matrix, and we have already plugged in the
the expression for the spin dynamics. Approximate expressions for the out-
put light field in the limit γS � ωS can also be written. In Noting that P̂S ≈
−sign(ωS0)iX̂S, the simpler input-output are

X̂out
L,S = X̂in

L,S +
√

ΓS

(
−iζS

1

)
X̂S. (3.51)

This is the final result of this section. The equation (3.50) will be used in
depth throughout the next chapters.

3.5 Noise spectrum

The output light field, after interacting with the spin oscillator, is directed
towards a photo-detection setup. As the spin ensemble rotates the polarization
of light, to use standard photodiodes we need to convert the polarization signal
into an intensity signal. The simplest experimental setups uses waveplates and
polarizing beam splitters (Seltzer, 2008). We use the balanced detection-like
configuration shown in Figure 3.5 and described in Bowen et al. (2002), and in
Julsgaard (2003). We can select the measured Stokes parameter Ŝi, or optical
quadrature X̂L,S, P̂L,S in the linearized language, by adjusting the quarter and
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16See Appendix A for more details.

half waveplates, setting the light field’s polarization ellipticity. In this way, we
adjust the homodyning the angle ϕ, as

X̂det
L =

(
X̂det

L
P̂det

L

)
= MϕX̂out

L,S =

(
cos ϕX̂out

L,S − sin ϕP̂out
L,S

sin ϕX̂out
L,S + cos ϕP̂out

L,S

)
. (3.52)

An arbitrary angle ϕ leads to the measurement of a combination of the output
quadratures. As we will see in Chapter 4, the angle ϕ can be controlled via
balanced polarimetry, as described above, or using standard interferometric
homodyning techniques. In the noise analysis, we need to consider only one of
the vector entries, as P̂det

L for ϕ is the same as X̂det
L for ϕ + π/2.

Similarly to the previous chapter, we are mostly interested in the power
spectral density (PSD) of the detected output field. As the PSD is proportional
to the symmetrized correlation function16, the detected power spectral density
matrix is

Sdet
XXδ(Ω−Ω′) ≡ 1

2 〈X̂
det
L X̂det,†

L + X̂det,∗
L X̂det,ᵀ

L 〉

= MϕSout
XX Mᵀ

ϕ,
(3.53)

where Sdet
XXδ(Ω−Ω′) is the PSD of the output field, from equations (3.50) and

(3.52). The input power spectral density of the light field and thermal bath are

Sin
XX = 1

4

(
1 0
0 1

)
δ(Ω−Ω′) (3.54)

SFF =

(
0 0
0 1

)
γS(nS +

1
2 )δ(Ω−Ω′). (3.55)

The symbol ∗ represents the complex conjugate, while ᵀ stands for the trans-
pose matrix. The expressions from the matrix equation (3.53) can be used to fit
experimental data.

An important case is the QND interaction, ξS = 0. In this regime, equation
(3.53) for ϕ = 0 simplifies to

Sout
XX = 1

4

(
1 2ΓSχ∗S

2ΓSχS 1 + 4Γ2
S|χS|2

)
+ ΓS(|χS|2 + |$S|2)

(
0 0
0 1

)
γS0(nS +

1
2 ).

(3.56)

This matrix contains all the correlations written into light via the QND inter-
action with the spin ensemble. The diagonal terms represent the PSD of the
auto-correlation functions. The off-diagonal terms represent the PSD of the
cross-correlation between the optical quadratures.

Note that the coupling of light to the spins leads to non-zero off-diagonal
elements in the first matrix to the right hand side of (3.56), a consequence of
the spin-light interaction. The input light fluctuations X̂in

L,S induce spin fluctu-
ations F̂z, which are written back into light in the orthogonal quadrature P̂out

L,S
according to the spin susceptibility χS. In this way, the amplitude and phase
fluctuations get correlated according to the coupling rate ΓS.

Including a detection angle ϕ, according to equation (3.53), means multi-
plying the expression (3.56) by the rotation matrix Mϕ, as indicated in equation
(3.53). The rotation of the detected quadrature will give us access to the spin in-
duced optical correlations. The phase quadrature component, that is, the (2, 2)
element of equation (3.53), is

Sdet
PP /SN = 1 + 4Γ2

S|χS|2 cos2 ϕ+

4ΓSRe[χS] sin ϕ cos ϕ + 4γS0Γ(|χS|2 + |$S|2) cos2 ϕ(nS +
1
2 ).
(3.57)



36 Chapter 3. Room temperature spin oscillator

40 20 0 20 40
Relative frequency ( S)/2  [kHz]

100

101

102

PS
D 

[S
N]

40 20 0 20 40
Relative frequency ( S)/2  [kHz]

0.5

1.0

1.5

2.0

2.5

PS
D 

[S
N]

Figure 3.6: Spin noise for an increasing probe power. The power spectral densities of P̂out
S for ϕ0 = 0◦ (left) and ϕ1 = 84◦ (right), for

increasing probe powers (from blue to red). The detection angle ϕ1 has been optimized for maximum squeezing, given the chosen param-
eters. The quantum cooperativity is set to CS

q = 5. Other parameters are γS,dark/2π = 1 kHz and nS = 0. From blue to red, the linewidth
and readout rate were scaled as γS/2π = γS,dark/2π + [0, 0.125, 0.5, 1, 2.5, 5, 7.5, 10]kHz and ΓS/2π = [0, 0.125, 0.5, 1, 2.5, 5, 7.5, 10]× 5 kHz.

The PSD has been normalized to the shot-noise level, which is 1
4 according to

equation (3.54). Here, we include the effective spin occupancy nS for generality.
If nS = 0, we say that the spin is at is ground state. The associated noise is also
usually called projection noise. We will discuss its origin in Chapter 5.

For demonstrating the detected light fluctuations and their dependence on
the spin parameters, we present in Figure 3.6 the spin noise for increasing op-
tical drive Sx. We show the PSD of equation (3.57) for ϕ0 = 0 (left). Increasing
the light power leads to a higher spin readout rate ΓS and linewidth γS0. Over-
all, the spin noise grows with respect to the shot noise level up to the point in
which the linewidth is dominated by power broadening. From there on, the
spin response gets only broader.

When detecting a combination of the output amplitude and phase quadra-
tures, we will be able to measure the correlations induced by the read out on the
spin response. Setting ϕ1 = 84◦, in Figure 3.6 (right), we see a dispersive-like
feature. It is the measurement induced back-action that induces an asymmetric
response, due to the interference of the optical drive and its respective response
induced on light. The interference is related to the off-diagonal terms in equa-
tion (3.56). Being driven by the vacuum fluctuations of the light field, the de-
structive interference leads to a frequency dependent squeezing feature, here
reaching approximately 50% below the SN level. In the limit of ΓS/γS → ∞,
the minimum of Figure 3.6 (right) tends to zero. This indicates the feasibility of
using a spin ensemble as a non-linear gain media.

Had we set ϕ = 90◦, plotting equation (3.57) would have given us no spin
noise contribution. This is a consequence of the QND interaction, which leaves
the X̂L,S optical quadrature unaffected. In the case of ξS 6= 0, the coupling
induced by tensor effects would also be manifested as extra atomic noise in the
ϕ = 90◦ measurement.

3.6 Spectral response and quantum cooperativity

The detected light field, having interacted with the spin oscillator, carries
information about its dynamics. Therefore, for a calibrated spin readout, it is
possible to characterize the measurement strength, that is, the quantum coop-
erativity CS

q .
Let us examine the equation (3.57) for ϕ = 0. The total detected noise is

Sdet
PP /SN = 1 + 4Γ2

S|χS|2 + 4γS0Γ(|χS|2 + |$S|2)(nS +
1
2 ). (3.58)
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The three contributions to the right-hand side of the equation above are: shot
noise, back-action, and spin thermal noise, respectively. When evaluated at the
Larmor frequency Ω = ωS, it becomes

Sdet
PP /SN = 1 +

4Γ2
S

γ2
S
++

8ΓS(nS +
1
2 )

γS
, (3.59)

in which we have used the narrowband approximation for $S, given in equation
(3.47), such that |χS|2 + |$S|2 ∼ 2|χS|2. From here, by taking the ratio of the
back-action and thermal noise components

BA
TH
≡ CS

q =
ΓS

2γS0(nS + 1/2)
, (3.60)

we arrive at the definition of the spin quantum cooperativity CS
q .

Including the tensor contribution in the spectral response leads to more com-
plicated expressions, as now there will also be correlations induced by coupling
to P̂S. The spectra can be calculated from equations (3.53). We note that the total
noise can still be divided between back-action and thermal noise, allowing for
an estimation of the light induced noise.

It is meaningful to rewrite the quantum cooperativity in terms of fundamen-
tal light-matter interaction parameters. From simplicity, let us consider the case
of the ideal two-level system described in Section 3.2. Given the definition of
the spin readout rate,

√
ΓS =

√
FxSxg, the effective decay rate γS0

g = 2g2
0

∆
∆2 + (γe/2)2 (3.61)

γS0 = g2
0

γeS0/2
∆2 + (γe/2)2 , (3.62)

and the quantities (Steck, 2007)

g0 =

√
ωe

2h̄ε0 AL
deg (3.63)

γe =
d2

egω3
cs

3πh̄ε0c3 , (3.64)

we are able to write equation (3.60) as

CS
q =

SxFxg2

γS0
=

∆2

∆2 + (γe/2)2
4Nag2

0
γe

∼
4Nag2

0
γe

, (3.65)

in which we have assumed a perfectly spin polarized ensemble (Fx = FNa =
Na/2, nS = 0), a linearly polarized drive (Sx = S0) and a large detuning ∆ �
γe. We can give one step further to show that the quantum cooperativity is
related to the optical depth as

CS
q =

4Nag2
0

γe
= ρσ0L, (3.66)

for σ0 = 3λ2

2π as the absorption cross section (Jackson, 1999). Therefore, increas-
ing the quantum cooperativity can be made by increasing the density of the
vapor and/or by increasing the length of the ensemble.

Here, we finish the introduction of the hybrid system components and move
on to the experimental section.



Part II

Experimental methods and
characterizations

38



1MSquared SolsTiS 7W-SRX-F

2IntraAction ATM-A2 Series

3LINOS PM0202

F = 3

F = 4

F' = 2
F' = 5

F' = 4

D1 line

D2 line

repump

pump

probe

Δ

6P3/2

6P1/2

6S1/2

Figure 4.1: Optical pumping and laser config-
uration. Optical pumping lasers, pump and re-
pump, are frequency stabilized via polarization
spectroscopy to certain transitions in the D1 and
D2 lines, respectively. The probe laser is stabi-
lized off resonantly, with detuning ∆ from the
F = 4→ F′ = 5 transition. See text for details.

Chapter 4

Experimental methods

In this chapter we present the general experimental aspects of our hybrid
implementation. On the atomic physics side, this includes details on laser sys-
tems, vapor cells and fabrication thereof, and testing on unshielded environ-
ment. On the optomechanics side, we talk about the cavity design, the cryostat
and cavity locking. We finish presenting the operation of the hybrid setup.

4.1 Laser systems and optical pumping

Running the hybrid experiment requires the probe beam, and optical pump-
ing beams. Optical pumping is performed by one or two lasers, depending on
the particular experiment. The cesium electronic level structure was discussed
on Chapter 3 and is reproduced in Figure 4.1 for completeness.

The probe laser is a titanium-sapphire laser1, pumped pumped by a Sprout
semiconductor laser. For the standard pump power value of 2.5 W the Ti-Sapph
provides ∼150 mW of laser light, tunable from ∼760 nm to 900 nm. The laser
control interface allows us to readily tune the laser wavelength around the ce-
sium D1 and D2 lines, 852 nm and 894 nm. A small portion of the output power
is picked off and directed to a wavelength meter, which along a feedback loop
give us ∼ 40 MHz long term wavelength stability. The most common opera-
tion wavelength is 852.3490 nm, corresponding to a detuning ∆/2π = 3 GHz
from the F = 4 → F′ = 5 electronic transition. The titanium-sapphire am-
plitude and phase laser noise are shot-noise limited in Fourier frequencies of
interest Ω > 1 MHz for optical powers up to 100 µW. The polarization com-
ponents, whose noise performance depends mostly on good polarizers to clean
out unwanted polarization components, are shot noise limited up to the levels
of power commonly used in the experiments, about 10 mW.

The probe laser, along with optics for power distribution, is positioned on its
own breadboard stands with passive isolation on the main optical table. Isolat-
ing the laser from mechanical vibrations caused by interaction with the optical
table allows for stable operation throughout the workday. For fast light inten-
sity/phase control, an AOM2 and an EOM3 are installed in the optical path. A
polarization maintaining optical fiber delivers light from the laser breadboard
to the experiment. A typical hybrid experiment run requires ∼ 50 mW of laser
power, measured at the laser breadboard.

The pump and repump diode lasers are installed on a separate breadboard.
The output powers are 20 mW and 50 mW. Both lasers are frequency stabilized
via polarization spectroscopy (Pearman et al., 2002; Harris et al., 2006). The tech-
nique uses a counter-propagating pump-probe configuration, with the optical
pumping created by the pump inducing birefringence on the weak probe beam.
Balanced polarimetry of the transmitted signal gives access to a Doppler-free
dispersive signal. The detected polarization rotation is directly used as error
signal in a slow feedback circuit, stabilizing the laser frequency. The pump
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4Purchased from VitroCom Inc

5The microchannel perforation has been
performed at the Technical University of
Denmark (DTU) Danchip facilities.
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Figure 4.2: Front view of the J18 encapsulated vapour cell. The cell is mounted in a
wedged plastic holder and illuminated by the optical pumping beam, crossing the chip
from left to right. Light scattering shows the microchannel and its conical connection to
the encapsulation. Image taken with Flir BFLY-PGE-12A2M-CS.

Figure 4.3: Glass chip. The glass chip is a
small slab with a rectangular cross-section chan-
nel crossing its length. The access of atoms from
the encapsulation to the channel is done via the
microchannel, shown in the zoomed inset.

laser is locked on the F = 4 → F′ = 4 electronic transition of the D1 line; the
repump laser is locked on the F = 3 → F′ = 2 electronic transition of the D2
line. Details on the choice of locking transitions are given on Chapter 5.

Both pump and repump lasers are combined in a polarizing beam splitter
and sent to an AOM. The AOM is activated when the pumping lasers need to be
switched on and off. After the AOM the beams are projected in the same polar-
ization and sent to a polarization maintaining optical fiber. On the experiment,
the output laser beam is polarization controlled by achromatic waveplates. The
beam is reshaped by a pair of cylindrical lenses and focused at the vapour cell,
with a beam diameter in the vertical direction (1/e2) 2w0 = 400 µm and in the
horizontal direction 2w0 = 8 mm.

4.2 Vapour cell

The vapour cell contains the cesium atomic ensemble. The cell used in the
hybrid experiments is presented on Figure 4.2. This type of construction is
commonly referred to as encapsulated vapour cell, or simply cell. The encapsulat-
ing Pyrex cylinder and the flat windows are sealed by glass blowing. The flat
windows are anti-reflection coated, reflecting ∼ 0.2% (in power) per window.

The cylindrical glass encapsulation is mainly responsible for making the cell
vacuum tight. The stem is a narrow tube glass-blown to the encapsulation,
allowing connection to different equipment during the fabrication of the cell.
When ready for use, it is in the stem that a small drop of metallic cesium sits.

The glass encapsulation contains a perforated rectangular glass rod4 and
alignment/holding pieces. The rectangular glass rod, the glass chip, is (L×H×W)
10 mm× 2.5 mm× 8 mm and contain a 300 µm× 300 µm through hole, the chan-
nel, see Figure 4.3. The channel is connected to the housing via a femtosecond
laser5 drilled microchannel, measuring ∼ 30 µm to 50 µm in diameter.

Using a cell with such a small transverse cross-section allows for faster spin
motional averaging (Borregaard et al., 2016), vital for an efficient interaction of
the spin ensemble with light. It also allows for reducing the overhead in optical
probing power, further reducing the contributions of excess classical optical
noise.

In the experiment, the cell sits on non-magnetic post and holder, usually
made on machinable glass-ceramic Macor or 3D printed ABS thermoplastic.
The choice of material is also based on its thermal expansion coefficients, with
the former being much less affected by changes in temperature. A thermal cy-



Vapour cell 41

Figure 4.4: Effects of long term curing on the vapour cell. Close-up in the microchannel:
(left) cell J19, kept in storage at room temperature for ∼ 1 year; (right) cell J18, kept at
55 ◦C for the same period of time. Spots appear on the channel edges and a misty layer
covers the whole cross-section. Optical transmission decreased by 5% (from 92% to 87%)
over the year in which the cell was heated up.

Figure 4.5: Imaging of the transmitted optical
mode in the far field. A w0 = 60 µm 1/e2 di-
ameter Gaussian beam propagates through the
microcell. The characteristic diffraction pattern
is observed. Notice that the sensor is saturated
and relative brightness is not a measure of the
beam quality. Circular diffraction-like spots are
due to dust particles on the camera sensor.

cle between room temperature and 60 ◦C usually leads to misalignments on the
order of 100 µm, that are corrected when reaching stable operation temperature.

4.2.1 Anti-relaxation coating and cell performance

The microcell fabrication, anti-relaxation coating and alkali filling is per-
formed by Mikhail Balabas, from the St Petersburg State University, a expert
in the science of paraffin coated vapor cells (Balabas et al., 2010b). Most of
the cells used in the hybrid experiment have been fabricated at the in-house
workshop. The workshop is equipped with glass-blowing equipment, vacuum
pumps and an oven for anti-relaxation coating deposition. The procedure em-
ployed for characterization of the various steps of the process, see Zugenmaier
(2018, Chapter 4).

Over the period of 2015− 2020, four cells have been used in the hybrid ex-
periment: G4, J11, J18 and J19. The cell J11 was used in the back-action evasion
experiments presented in Møller et al. (2017), while the cell J19 has been used
in the entanglement experiments Thomas et al. (2020).

Operating the experiment at elevated temperatures for extended periods of
time has shown that the vapour cells continue to cure with time. We observed
that the Zeeman T2 of the all cells improved over the course of 1 year time-scales
on the order of 50 Hz to 100 Hz; we have also observed the optical transmission
decrease on the order of 5 % to 10 %. The effects of the high-temperature expo-
sure can be seen in Figure 4.4. On the two panels, we show (left) the cell J19,
which kept in storage at room temperature for∼ 1 year, and (right) the cell J18,
kept at 55 ◦C for the same period of time. Various spots appear on the chan-
nel edges and a misty layer covers the whole cross-section. The dark spots are
most likely cesium droplets that migrated from the stem to the cell body. Opti-
cal transmission decreased by 5% (from 92% to 87%) over the year in which the
cell was heated up.

We have also experienced the sudden disappearance of atoms, as described
in Zugenmaier (2018). The reason for this sudden loss of atomic density is cor-
related with the microchannel clogging, nonetheless we have not established
the conditions that lead to such effect.



42 Chapter 4. Experimental methods

6Due to diffraction of light through the
channel aperture, the measured transmitted
power might be position dependent. A
∼ 30 cm distance should be enough to let
the fast diverging contributions die out.

7See Appendix E for details on the absorp-
tion measurements, and Appendix H for
cesium density parameters.

8See Appendix H for vapor density consid-
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9We also note that, as far as vapour
cell characterization goes, simpler laser
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method presented in (Chalupczak et al.,
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Figure 4.6: The optical transmission of lin-
early polarized light through a Cs ensemble. A
10 mm long, room temperature (at 20 ◦C) ensem-
ble, probed by a laser scanning through the D2
line. The two labeled transmission dips are re-
lated to the transitions of a given ground state
hyperfine manifold to the allowed excited states.

4.2.2 Characterization

Once a vapour cell has been fabricated, filled, and cured (Balabas et al.,
2010a), it is ready for characterization. Three parameters are of great impor-
tance: optical transmission, vapour density and transverse coherence time.
These parameters are responsible for the important part of the overall photon
detection efficiency, optical depth and operating bandwidth, respectively.

The optical transmission might simply be measured by comparing how much
light passes through the cell with respect to the input6. However, given the
square transverse geometry of the channel, the input Gaussian optical mode
can be modified, see Figure 4.5. Therefore, a more precise method for estimat-
ing the optical losses, that is sensitive to both intensity and optical mode, in-
volves positioning the cell in a Fabry-Perot resonator and comparing the cavity
bandwidth with respect to the calibrated empty resonator. For detailed descrip-
tion on the cavity characterization method, see Zugenmaier et al. (2018).

The vapour density is estimated by measuring optical absorption and re-
lating it to the absorption cross section. For a 10 mm long ensemble at room
temperature (20 ◦C), about 30% of the light is absorbed on the D2 resonances,
see Figure 4.67. At this temperature, typical cesium volume densities8 are on
the order of 1016 m−3 . We refer to Stærkind (2016); Schmieg (2018) for detailed
methods of absorption measurement and calibration. It is also important to no-
tice that for anti-relaxation coated cells, the equilibrium cesium vapour density
also depends on the complex coating dynamics with temperature and time. As
studied in Li et al. (2017), the measured alkali density for a given temperature
is often smaller than in uncoated cells.

The transverse coherence time measurement is perhaps the most involved
part of the characterization. At times that cell production is being performed9,
a quick measurement procedure is valuable. The coherence time measurement
involves positioning the cell in a well-controlled homogeneous magnetic field
and optically pumping the ensemble along the same direction. Experimen-
tally, we have found that both conditions can be relaxed in our laboratory en-
vironment for typical encapsulated microcells: the observed transverse decay
at room temperature is the same, regardless of magnetic shielding or optimal
spin state preparation. The finding was shown to be valid both for 10 mm
and 25 mm encapsulated cells. For encapsulations with bigger volume and in-
creased spin lifetimes, the effects of magnetic field generated by nearby elec-
tronic components in the Free Induction Decay (FID) signal become evident.
The maximum coherence time observed in unshielded environment is 15 ms.
See Appendix G for details on the unshielded measurements.

4.3 Optomechanical system

As described in Chapter 2, the optomechanical system is implemented in
a membrane-in-the-middle configuration. In this section, we briefly describe
the construction of the cavity and sample holder. Here, we briefly point out
some basic design principles. For a detailed description of the two generations
of the cavity sample holders used in the hybrid experiments, we point out to
Nielsen (2016), Møller (2018) and Mathiassen (2019). For extensive description
of membrane fabrication and characterization, see Barg (2018) and Tsaturyan
(2019).

The optomechanical system is positioned in a flow cryostat10, evacuated to
10−6 mbar residual pressure and connected to a liquid Helium-4 dewar. The
cryostat contains two 0.5 inch diameter windows for optical access and feed-
through connectors for electrical cables. Typical operation brings the mechani-
cal mode of interest to a temperature of 7 K to 10 K.
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Figure 4.7: Hybrid experiment high-degree of freedom sample holder. The full construction is shown in a, along with the piezo control
electric connections. In b we show a side cut of the holder and in c a zoom around the optomechanical cavity region. This figure has been
adapted from Mathiassen (2019).
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Figure 4.8: Sample holder design used in
Møller et al. (2017). . Here, one of the mirrors is
glued to a piezo, allowing for cavity length tun-
ability. The second mirror and the membrane are
tightly clamped to the copper mount.

4.3.1 Cavity

The optomechanical cavity design considerations also involve the quality
of the laser source in the experiment. As we wish to operate with shot noise
limited light statistics, limiting the added classical laser noise to 1%, the maxi-
mum amount input photon flux is limited to order 100 µW at the 1 MHz Fourier
frequency range, for a 2.5 W laser pump power (Møller, 2018). With the pho-
ton flux set, the cavity parameters can be adjusted to the experimental require-
ments. In general, the cavity length must be small for maximizing single pho-
ton coupling rate, as g0 ∝ 1/Lcav. On the other hand, an efficient optical cool-
ing, required by hybrid matching conditions, works best for a cavity band-
width on the same order of magnitude of ωM, setting the total mirror trans-
missivity (including optical losses as scattering and absorption) to order 0.1 %.
The loss budget are set for single sided cavity, with the input mirror being
much more transmissive than the back mirror. In the experiments presented
in Møller et al. (2017), the cavity length is 1.3 mm and the cavity decay rate
is κ/2π = 25 MHz; in the entanglement experiments (Thomas et al., 2020)
Lcav =2.6 mm and κ/2π = 3 MHz. The cavity over-coupling, the fractional
leakage of intra-cavity photons in the optical mode of interest, is usually 90 %
to 95 %.

4.3.2 Sample holder

The sample holder employed in the optomechanics setup is shown in Figure
4.7. The noble role of the sample holder is to keep a fixed relative position of
the mirrors in respect to the membrane chip and to provide thermal contact
between the cold bath and the mechanical oscillator. The specific design and
configuration of the parts have been in constant development since the first
cryogenic optomechanical experiments realized in the early 2010’s, and that
have been summarized in Nielsen (2016).

The basic philosophy of the early sample holder design employed in the
optomechanics experiments orbited around passive stability. The various com-
ponents are to be pressed and bolted down together, forming a solid piece that
leaves minimal room for misalignments as the construction is cooled down.
Having all components in close contact also ensures that thermalization to the
cold bath temperature is possible. Lastly, as the motional noise of interest dis-
plays a order femtometer scale zero point fluctuations, the external vibrations
must be efficiently damped to scales smaller than that at the Fourier frequency
range of interest. In the latest sample holder design used in the hybrid ex-
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11The coupling of different transverse
cavity modes by a tilted membrane, in the
membrane-in-the-middle configuration,
has been studied in Sankey et al. (2010).
Here, we are mostly interested in getting
rid of the coupling, minimizing the overlap
between the various modes.
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Figure 4.9: Controlling the membrane position-
ing and cavity length. Two piezoelectric ele-
ments actively control the cavity length and the
membrane position in the intra-cavity standing
wave pattern (see inset). This figure is not in
scale. The membrane tilt adjustment is done
moving the XY stages sideways. As both cavity
mirrors are concave, lateral movements can tilt
the optical mode to match the membrane’s tilt.
This figure has been adapted from Mathiassen
(2019).

periment, the number of parts independently bolted to each other increased
significantly, as we will se in the next pages. Nonetheless, passive stability is
still a fundamental part of the design in use.

Let’s now dive in the sample holder design. The designs used through-
out the hybrid experiments require significantly more degrees of freedom than
optomechanics-only experiment. As the spin ensemble requires a rather spe-
cific laser wavelength, set withing a couple of GHz, a hybrid-ready optome-
chanical system must be able to fulfil the conditions

condition 1: a variable cavity length Lcav. With a fixed laser wavelength, the
cavity length must be externally controlled to ensure the incoming light will be
allowed to couple into the cavity. Therefore, Lcav must be adjustable by order
λ/2 ∼ 0.5 µm in order to reach the closest cavity resonance. Once close to
the resonance condition, relatively fast small adjustment of its position must be
possible to ensure a stable cavity detuning.

condition 2: a variable membrane position in the intracavity standing wave pat-
tern. Given a fixed laser wavelength, the membrane position within the stand-
ing wave pattern will determine the optomechanical coupling and related ef-
fects, described in Chapter 2. Therefore, optimal performance will require the
membrane to sit in a rather specific region of the λ/2 pattern. This degree of
freedom also requires a control range on the order of 0.5 µm, for arbitrary con-
trol of the coupling rate.

Another important feature of a good sample holder is the ability to control
the membrane tilt in respect to the cavity mode. For all intents and purposes,
the membrane is a piece of dielectric with non-zero reflectivity sitting in be-
tween two very good mirrors. Any tilt of the membrane plane from normal
beam incidence will reflect light off the cavity mode, leading to an increase in
optical cavity losses.

In the experiments presented in Møller et al. (2017), the cavity had a plano-
concave cavity geometry, see Figure 4.8. The curved mirror was glued to a
piezoelectric element, which itself was glued to one of the sample holder parts;
this fulfilled the condition 1. The membrane was positioned ∼500 µm away
from the flat mirror, separated by a tailor made silicon spacer. The position of
the curved mirror in respect to the membrane-flat mirror construction could
be adjusted to remove tilt losses. Although no other degree of freedom was
introduced to fulfil the condition 2, we noticed that we could effectively ran-
domly reshuffle the membrane position in the 2kz by thermal cycling the sam-
ple holder from 4 K to 80 K. Once back at base temperature, the membrane po-
sition was fixed. Achieving ideal position usually required a couple of thermal
cycles. Although workable, depending on thermal cyclings for controlling 2kz
position, one of the most important optomechanical parameters, is sub-optimal
and has lead to a new sample holder design.

The new design, presented on Figure 4.7, has been used in the entanglement
experiments. A completely new cavity and holder design were employed. The
cavity, composed by two concave mirrors, has the membrane positioned at the
beam waist position. Conditions 1 and 2 are fulfilled by clamping the mir-
rors between piezoelectric elements and a small lever, bending according to
the force exerted by the piezo. Typically, one of the mirrors is used for cavity
length feedback control and the other for 2kz adjustment. See Mathiassen (2019)
for further details.

The sample holder update happened simultaneously with the update in
membrane design, from a silicon 2D bandgap style to the new generation soft-
clamped silicon nitride generation. Due to the relatively small defect in the
new generation membranes, the higher order transverse cavity modes expe-
rience higher diffraction and optical losses due to the phononic structure. A
tilted membrane mixes the TEM00 mode of interest to the lossy modes, increas-
ing the decay rate of the mode of interest11. The tilt alignment is done by se-
ries of screws and adjusters that move the mirrors transverse to the membrane
plane, see Figure 4.9. In cryogenic experimental conditions, one of the piezos is
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Figure 4.10: Experimental setups. The simplified representation of the hybrid experiment, including, local oscillators, polarization/power
control, and detection. The piezo mirrors are the actuators for relative path length control. The setup in a was used in Møller et al. (2017),
while b was implemented for Thomas et al. (2020). The numbered PBS 1 marks the element in which the spin response and LO2 are
projected into the same polarization mode. The purple line in a marks the cavity locking optical path. See Chapter 10 for further discussion
and details.

fed with DC voltage, setting the membrane position in the intra-cavity stand-
ing wave pattern. The other piezo is actively controlled to stabilize the cavity
length to a given detuning is respect to the incoming laser frequency.

4.4 Hybrid setup

The last part of hybrid setup to be described is the conversion between the
optical modes the spins couple to the modes the optomechanics couple to. A
simplified version of experimental setups are presented in Figure 4.10.

A major section of the hybrid experiment setup is related to the filtering
of the spin response and addition of new local oscillators for optomechanical
drive and final homodyning. In Figure 4.10, we see them as a set of nested inter-
ferometers and different local oscillators. Historically, we have been calling the
strong spin classical drive LO1; the mechanical analogous is LO2, and the final
homodyning local oscillator as LO3. The local oscillators are manipulated using
polarization optics such as wave plates and polarizing beam splitters through-
out the entirety of the setup.

After the light has interacted with the spin ensemble, it is sent through a
polarizing beam splitter for suppressing the local oscillator, here LO1. As the
spins scatter light in the orthogonal polarization to the drive, we can remove
the carrier with extinction ratio on the order of 1 : 500, with minimal loss to the
scattered light.

A new local oscillator LO2, having a controllable path length difference in
respect to LO1, is overlapped with the light output from the atoms. This mode
is sub-sequentially coupled to the optomechanical cavity, whose output is ho-
modyned with a final local oscillator, LO3. Note how we using polarization
optics to direct light in the desired direction. Details on the operation of the
hybrid setup are presented in Chapter 10.

While the 2017 experiments used mostly analog feedback to control the path
length differences, which were detected interferometrically in the detectors D1,
D2, Dfringe, and DPDH, in the 2020 experiments it is made mostly digitally12,
with the aid of the PyRPL interface13. The interface provides low noise pro-
cessing of signals and modules for locking interferometers and Fabry-Perot
cavities. The processed signals are amplified via homemade amplifiers and
sent to piezoelectric elements for feedback.

documentationpyrpl.readthedocs.io
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14Spectrum M2i.4931

The data acquisition is made via a 30 MHz 4-channel analog-to-digital con-
verter14, with 1× 10−14 V2 Hz−1 dark noise from Fourier frequencies above
1 kHz.

With this, we finish the chapter describing the hardware and move on to the
characterization discussions.
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Figure 5.1: Experimental setup for atomic state
characterization, including microwave drive.
The atomic ensemble is positioned inside a mag-
netically shielded environment. Inside the mag-
netic shield, different sets of coils produce mag-
netic fields: the static field Bdc, and the oscillat-
ing Brf (ωRF/2π ∼ MHz) and Bmw (ωMW/2π ∼
9 GHz), RF field and microwave field, respec-
tively. The microwave field is only used on ex-
periments in Section 5.4.

Chapter 5

Spin State Preparation

The concept of effective spin mass — positive or negative — relies on the
preparation of the ensemble in a given atomic state. Loosely speaking, the
mapping from spin to harmonic oscillator physics relies only on a large col-
lective spin polarization along the DC magnetic field. In our experiment, op-
tical pumping towards the stretched Zeeman level |F, mF = ±F〉 creates spin
polarization of the ground state manifold.

In this chapter, we describe the optical pumping stage and the spin state
characterization via the Magneto Optical Resonance Signal (MORS) (Julsgaard
et al., 2003). The MORS method allows extraction of the Zeeman decoherence
rates and populations, as well as the Stark shifts induced by the laser beams,
in a general spin-F system. We start by discussing the MORS modelling, along
with the procedure to extract information from it. Focusing on the continuous
wave operation, we consider the effects of selecting the optimal frequency for
optical pumping beams and varying the vapor density. We also present the
principles of a power-broadening-free optical pumping technique using mi-
crowave tones. Finally, we finish by studying the intrinsic noise related to a
given Zeeman population distribution.

5.1 Magneto Optical Resonance Signal

The experimental setup is presented in Figure 5.1. Optical pumping lasers,
as described in Chapter 4, prepare the spin state to be studied. As discussed
in Chapter 3, due to the Faraday interaction, the spin ensemble induces optical
polarization rotation proportional to the length of the spin in the probe direc-
tion.

In the MORS experiments, the spin component along the probe is induced
by a weak RF magnetic field, orthogonal to the DC magnetic field, setting the
mean spin to precess about its equilibrium position. A weak probe beam, far
detuned from atomic resonance, probes the induced polarization rotation. In
cw-MORS experiments, as the lasers and RF field are ran continuously, the in-
formation extracted is related to steady state dynamics. In pulsed experiments,
the optical pumping, RF drive, and probe stages happen subsequently. The
current chapter is devoted to the cw version; pulsed experiments are only used
for estimating the spin state under the hybrid experiment conditions and is
discussed in Chapter 11.

The magnetic field Bdc sets the Larmor frequency ωS and the non-linear Zee-
man splitting ωqzs. The spin response is split in 2F resonances with natural
frequency ωm+1,m, each with linewidth γm+1,m. For a linearly polarized input
light field, the optimum signal-to-noise ratio for detecting Faraday rotation is
achieved when detecting the orthogonal direction to the input in the polariza-
tion sphere (Deutsch and Jessen, 2010). In the Stokes parameter language, for a
Sx input, detecting Sy is optimum. For an ensemble with N atoms, the MORS
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(Julsgaard et al., 2003) response is

MORS(ω) = c0

∣∣∣∣∣N F−1

∑
m=−F

(F(F + 1)−m(m + 1))(Pm+1 − Pm)γm+1,m
(ωm+1,m −ωrf)− iγm+1,m/2

∣∣∣∣∣
2

, (5.1)

for Pm as the mean population of the m-th Zeeman level and c0 as the propor-
tionality constant relating the magnitude of the polarization rotation to the de-
tected electrical signal1. Due to the phase coherent drive, the detected signal is
a phase sensitive quantity and can therefore be analysed in the polar form, with
magnitude squared as presented (5.1), and phase extracted from the function
before squaring. The expression (5.1) is valid for both continuous and pulsed
probing.

Although general in result, the expression (5.1) contains many parameters
that need to be extracted from the fitting procedure: populations Pm, frequen-
cies ωm, widths γm and c0N. As discussed in (Julsgaard, 2003; Julsgaard et al.,
2003), the practical effectiveness of the MORS method relies on a model with
few free variables describing a complex structure. The commonly used version
of (5.1) is

MORS0(ω) = c0

∣∣∣∣∣N F−1

∑
m=−F

(F(F + 1)−m(m + 1))(eβ(m+1) − eβm)γ0(
ωS + mωvqs −ωrf

)
− iγ0/2

∣∣∣∣∣
2

, (5.2)

for β as the reciprocal spin temperature. This version reduces the number of
free fitting variables from 26 to 5 and is extensively used in the group (Juls-
gaard, 2003; Sherson, 2006; Jensen, 2011; Krauter, 2011). The assumptions that
lead to (5.2) are

1. spin temperature distribution. The steady state population distribution
among the Zeeman levels is determined by the various decay and de-
coherence processes the atoms experience within the vapour cell. In gen-
eral, contributions are alkali collisions with other alkali atoms, with buffer
gases, with the container walls and interaction with laser beams/optical
pumping. As initially shown in the early ’60s (Anderson and Ramsey,
1963) and discussed in Appelt et al. (1998), if the rate of spin exchange
collisions is much bigger than any other spin relaxation rate, the Zeeman
level populations follows the spin temperature distribution, with density
matrix

ρth =
eβF̂x

Z
, (5.3)

for Z = Tr[eβF̂x ] as the partition function. In this case, the populations
follow an exponential function Pm = eβm and the only parameter to be
determined is β = 1/kBTS, with TS as the spin temperature.

2. equal linewidths γm. The decay of the spin coherence2 is affected by col-
lisions and dephasing, e.g, due to inhomogeneous magnetic fields. Some
of the population decay contributions described affect Zeeman coher-
ences differently (Savukov and Romalis, 2005). Spin exchange and optical
pumping interactions follow conservation rules which lead to mF depen-
dent linewidths. The collision of alkali-atoms with the anti-relaxation
coating leads to electron spin flips, conserving the nuclear spin state,
and total spin randomization collisions (Corsini et al., 2013). The rela-
tive weight of these contributions are highly vapor cell dependent and
need to be characterized for each case individually.

3. uniform line separation. Off-resonant interaction with laser light leads
to Stark shifts in the ground state levels. In the limit of vanishing op-
tical power, the resonances are equally spaced ωm+1,m = ωS + mωqzs.
The presence of light induces shifts to the lines in respect to each other,
competing with the quadratic Zeeman splitting.
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1Although the procedure to derive (5.1)
presented in (Julsgaard, 2003) includes the
quadratic Zeeman splitting by hand in the
final result, it can also be taken into account
in the Hamiltonian formulation presented
on Chapter 3.

2In analogy to the Nuclear Magnetic
Resonance (NMR) experiments, we define
the relation of the decay rate (FWHM) to
the coherence time as γm/2π = 1/(πT2).
We typically do not differentiate between
single particle and ensemble decay rate.

3The fitting procedure and residuals’
weighing plays a big role on extracting
parameters faithfully. As the magnitude
of the data varies by approximately 2
orders of magnitude, weighing residuals
linearly will focus on the features with
biggest absolute value. Weighing them
logarithmically gives bigger importance for
small values. We have tried both strategies
for the data on Figure 5.2: the procedure
returns p = 0.59 in the case of log weighing
of the MORS0 model (result not shown).
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Figure 5.2: Comparing MORS models. The models presented equations (5.1) (blue) and
(5.2) (orange) are fitted to signal (see Section 5.3 for details) from a 30 ◦C spin ensemble.
The fitting procedure weighs residuals linearly. Data is downsampled for clarity.

Given the assumptions described above, the choice of fitting model is a func-
tion of the experimental conditions. In our experimentally available alkali den-
sities, nonetheless, spin exchange is not the most dominant contribution. In
the absence of light, interaction with the container walls contribute as much as
atomic collisions. Moreover, in the hybrid experiments, the transverse decay
and population relaxation are dominated by the lasers, decay processes which
also affect some levels more than others. As it will be clear from the discussion
in the next sections, the Zeeman populations Pm are free parameters. Further
improvements of the agreement of fits with the data can be achieved by setting
the linewidths γm+1,m as free parameters. There are usually ∼ 10 to 15 free
parameters in a MORS fit.

Using MORS0, and therefore the spin temperature distribution, not only re-
duces the number of free variables in a fit, but also gives a rather simple way of
calculating the spin polarization p: given the parameter β, the spin polarization
is the relative size of the mean spin along the magnetic field axis

p =
〈Fx〉

F
=

1
F

Tr[ρthFx] =
1
F ∑

m
meβm. (5.4)

When the spin temperature distribution is not valid, as in equation (5.1),
the simplicity is lost and a new issue appears: the number of parameters Pm
is bigger than the number of independent variables obtained from the fitting
procedure, that is Pm+1 − Pm, being nine versus eight in total. This system of
equations has no unique solution. To solve this issue, we therefore assume that
one of the extreme mF = ±F levels is unpopulated, allowing for a unique solu-
tion. This assumption should be valid already for moderate spin polarization
values (on the order p ∼ 0.5), cases in which the population in one of the ex-
treme mF levels is negligible.

In Figure 5.2, we compare the curve fitting of the two MORS models, equa-
tions (5.1) and (5.2). It is clear that the spin temperature assumption does not
reproduce the experimental result faithfully. Note how the MORS0 model fails
to account for population distribution in the smallest peaks3. On the range of
temperature and laser powers used throughout, the extracted spin polariza-
tion absolute errors are commonly up to 5 % off when using the MORS0 model.
Given the importance of this parameter —it is directly linked to the effective
spin bath occupation and Faraday angle —systematic errors of this kind are
potentially of great consequence.

With the model introduced, we proceed to the study the Zeeman population
distribution with respect to optical pumping transitions and vapor density.
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Figure 5.3: Optical pumping efficiency for dif-
ferent D2 line repump locking transitions. The
spin polariztion increases from p = 0.54, when
the repump laser is tuned from F = 3→ F′ = 4,
to p = 0.65 for F = 3→ F′ = 2.

5.2 Optical pumping transition

Optical pumping is the process of exciting electrons from a low to a higher
electronic energy level via coupling to light. It has been used throughout the
atomic physics community to study and prepare atoms and molecules in the
most diverse electronic states. We refer to Franz (1966) and Happer (1972) for
the seminal description of the various physical concepts involved; to Happer
and Van Wijngaarden (1987) for a pedagogical introduction, and to Atoneche
and Kastberg (2017) for numerical implementation of the problem.

In a great deal of experiments shown in this document, the optical pump-
ing involves only a circularly polarized repumping beam. The repump laser
is responsible for the hyperfine pumping, that is, transferring atoms from the
F = 3 to F = 4. Traditionally, a circularly polarized pumping beam is also used
to ensure atoms are in the stretched state |F = 4, mF = 4〉. As it acts directly
on the coherences of interest, it causes broadening of the Zeeman line. In the
hybrid experiments, the total spin bandwidth is required to approximately the
mechanical oscillator, the pump beam use is rather limited. We are therefore
left to optimize the optical pumping with a single repump laser.

The choice of optical repumping transition greatly affects the F = 4 steady
state population distribution. In Figure 5.3 we show the MORS for different re-
pump laser locking points. While all the transitions are well within the Doppler
broadened absorption profile, the prepared steady spin state has a bigger spin
polarization for the case F = 3→ F′ = 2.

The best state preparation performance being achieved for the F = 3→ F′ =
2 transition might seem puzzling, given that considering the electric dipole se-
lection rules atoms in the F′ = 2 manifold can not decay to F = 4. Although a
complete modelling of the effect has not yet been performed, we argue that
the seemingly non-trivial optimum involves off-resonant optical transitions,
atomic motion and alkali spin-exchange interaction, and goes as follows.

Although the F′ = 2→ F = 4 decay channel is forbidden, repumping to the
F′ = 3, 4 excited state manifolds is possible: resonantly for some, those moving
towards the beam in a certain velocity class, off-resonantly for the remaining.
There are, therefore, two processes happening in parallel: (i) atoms are cycling
within the F = 3 manifold via the excited state F′ = 2, and (ii) atoms off-
resonantly coupling to F′ = 3, 4 and decaying back to the ground states. As
the former process is stronger than the latter, atoms will experience a number
of repumping cycles moving on average up in mF, due to the absorption of
circularly polarized photons. Eventually, when they do end up going to F = 4,
they will an have angular momentum projection that is closer to maximum
allowed.

Atoms within the F = 4 manifold will distribute themselves according to
the Zeeman population decay rates, which happen due to interaction with the
walls, other alkali and the probing laser. It has been shown that spin-exchange
collisions are an important factor for the steady state population distribution
in paraffin coated vapour cells. The collisions preserve total electron spin and
all states apart from |4,±4〉 are affected by it. With the aid of a repumping
beam, spin polarizations of up to 92% have been observed when the spin ex-
change collision rate dominates over the total Zeeman population decay rates
(Chalupczak et al., 2012).

Coupling the long lived ground state to an excited electronic state with life-
time limited by spontaneous emission causes decoherence, here called power
broadening. The repump laser power, for example, although ∼9 GHz detuned
from F = 4, can also induce power broadening. In the experiments, the repump
power is adjusted such that the F = 3 manifold is emptied and no significant
broadening is observed in the coherences of interest.

Improving the spin polarization above p ∼ 0.7 requires coupling to atoms
in the F = 4 manifold. While effective in transferring atoms to a stretched state,
for example, optical pumping comes with the cost of dampening the ground
level coherence. The standard approach is to use a circularly polarized light
resonant with F = 4 → F′ = 4 on the D1 line, directly coupling to the |4, 4〉 →
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Figure 5.4: D1 pump induced power broaden-
ing. A pump laser directly couples to the Zee-
man coherence of interest, here shown as the in-
duced broadening on the |4, 4〉〈4, 3| coherence.
Pumping on the D1 line, F = 4 → F′ = 4 tran-
sition, directly couples to this coherence; tuning
the laser to the F = 4 → F′ = 3 reduces the ef-
fect.

|4, 3〉 transition as a side effect. Alternatively, pumping on the F = 4 → F′ =
3 spares the aforementioned coherence. Nonetheless, perfect stretched state
preparation is not possible, as |4, 2〉 is also a dark state for circularly polarized
light. The effect is strong when using a pump laser, see Figure 5.4.

The ideal optical pumping cycle would move atoms from unwanted Zee-
man levels to the stretched state with no added broadening. In Section 5.4, we
discuss the usage of microwave fields to selectively couple levels across hyper-
fine manifolds, therefore controllably introducing decoherence.

5.3 Density dependent optical pumping

The temperature affects the alkali vapor pressure inside the glass cell. As
shown in Appendix H, the increase in vapor pressure leads to a higher density
and more frequent atomic collisions. The physics of atomic collisions are rich,
and we do not intent to cover them here. For an extensive review of alkali colli-
sions on vapor cells, we point to Happer (1972), Happer and Van Wijngaarden
(1987) and Appelt et al. (1998). It suffices to say that one of these collision pro-
cesses is the spin exchange collisions, a process in which alkali atoms interact as
they get in close proximity.

In Figure 5.5 we show the density dependent MORS signal, as the cell tem-
perature is varied from ∼55 ◦C to ∼30 ◦C. The curves have been fitted to the
model on equation (5.1). The decrease in atomic density leads to a signal scaled
by the total number of atoms, the resonant features that become narrower, and
the frequencies shift. This is a signature of spin collisions, which is further ex-
plored in Figure 5.6. The broadening of the resonances with atomic density can
be seen in Figure 5.5 (right), in which we have compared the signals with 55 ◦C
to ∼30 ◦C. The change in linewidths is evident on the depth of the signal in
between consecutive resonances. Up to this moment, we do not have a clear
explanation for the observed effects.

In Figure 5.6 (left) we show the change in linewidth of the four extreme-
most lines, labelled according to the mF coherences. It is noticeable how the
|4, 4〉 → |4, 3〉 coherence is more resilient to density changes. From the atomic
density series it is also possible to extract the linewidth in the dark and in the
absence of spin-spin collisions, being γS0/2π = 250 Hz. The change in density
is followed by a change in spin polarization, increasing by∼ 5% over the range
explored.

According to Appelt et al. (1999), the spin exchange collision contribution to
the Zeeman decay rate γF,mF of the coherence |F, mF〉〈F, mF − 1| for an ensem-
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Figure 5.5: Density dependent MORS signal. (left) As the temperature of the cell is decreased from∼55 ◦C to ∼30 ◦C (top to bottom), the
signal decreases in size and shifts in frequency. (right) Comparison of the signal at the maximum and minimum measured density. Data
has been shifted, rescaled, and resampled for clarity.
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Figure 5.6: Density dependent spin polarization and transverse coherence time. (left) Increasing with the number of atoms leads to
more frequent collisions between atoms and/or other buffer gasses, increasing the decoherence rate. (right) The collisions do not only
change the decoherence rate, but also affect the population distribution.

ble with spin polarization p, is

γFmF /2π = 2Rex

(
3[I]2 + 1− 4m̄2

F
4[I]2

− p
m̄F
[I]
−Qm̄F

[F]2 − 4m̄F
2

4[I]2

)
(5.5)

where [F] = 2F + 1, [I] = 2I + 1, m̄F = mF − 1
2 and

Qm̄F =
2p(1 + p)I+m̄F (1− p)I−m̄F

(1 + p)[I] − (1− p)[I]
.

Here, Rex = ρvthσse is the spin exchange collision rate, set by the atomic density
ρ, the Cesium atom mean thermal velocity vth =

√
8kBT/πm and the spin-

exchange cross section σse = 2× 10−14 cm2 (Seltzer, 2008).
The expression (5.5) is valid for spin-exchange limited dynamics, that is, the

same limit in which the spin-temperature distribution applies. As we already
seen from the model discussion, and also from with linewidths presented on
Figure 5.6, there are other collision processes that play important roles in our
case. Nonetheless, we use equation (5.5) as a guiding rule for estimating the ef-
fects of spin exchange in the experiments and show that it provides qualitative
agreement.

Let us examine equation (5.5). First of all, in the limit of perfect spin polar-
ization, p→ 1, Qm̄F → δm̄F ,I and γ44 → 0. Therefore, in this limit spin exchange
collisions cause no broadening. For all other values of spin polarization, the de-
cay rate is mF dependent and linear on the atomic density. The spin collision
rate at 60 ◦C is RSE ∼ 500 Hz, which for p = 0.7 would give γ44/2π ∼ 50 Hz,
close to the increase observed in Figure 5.6. The coherences that include smaller
mF’s are more affected by the collisions, differing from the prediction. We also
observe a rather non-linear scaling of the widths, for which up to now we have
not found a satisfactory explanation.

5.4 Microwave assisted optical pumping

The ideal optical pumping method for our cw hybrid experiments would
be a process that increases spin polarization with minimal added power broad-
ening. We have seen that a pump laser resonant with F = 4 adds significant
broadening to the Zeeman lines. Here, we show that microwave radiation can
be used to improve the spin polarization of the ensemble, adding negligible
broadening.
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4This rate is typical for a high-temperature
C30 paraffin coated cells. Alkene coated
cells with the same geometry, on the other
hand, can show much slower population
decay γ1,hf/2π ∼ 20 Hz (Shen, 2014).
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Figure 5.8: Hyperfine microwave spectroscopy. (left) The Zeeman levels are split in the presence of a static magnetic field. Due to opposite
gyromagnetic ratios, the F = 3 and F = 4 energy ladder have opposite slopes. A microwave tone can couple the hyperfine manifolds
according to its polarization with respect to the magnetic field: ∆m = −1(1) for left (right) handed circular polarization in blue (yellow),
and ∆m = 0 for π polarized photons. (right) Optical absorption measurement with a microwave tone scanned over the ground state
transitions, around the 0− 0 hyperfine transition frequency ωhfs. The polarization of the microwave field is a mixture of π and σ±. The 15
possible transitions, separated by a Larmor energy unit ωS/2π = 1.32 MHz are excited.

The basic idea of the microwave assisted optical pumping is presented in
Figure 5.8. In the first step, a circularly polarized repump laser empties the
F = 3 manifold. Shortly after, a microwave drive, with a given frequency
and polarization, couples Zeeman levels from different hyperfine manifolds,
|4, 2〉 → |3, 3〉 for example. The intensity of the microwave field is chosen such
the population is transferred via a π pulse to |3, 3〉. The repump laser then im-
mediately optically pumps the atom back to the F = 4 manifold, reshuffling
the population according to the spontaneous decay branching. This technique
is specially suited for cases in which the DC magnetic field splits the Zeeman
levels by many hundreds of kHz, allowing for addressing any pair of levels
(which are allowed by the selection rules) via suitably polarized microwave
fields.

In the experiments, decay processes reshuffle the atomic distribution, both
within and across the hyperfine levels, with order γ1,hf/2π = 1/πT1 ∼ 200 Hz4,
in the dark. An efficient population transfer requires microwave and opti-
cal pumping rates being much bigger than the population decay rates. The
microwave power is delivered by a microwave antenna, positioned approx-
imately at 5 cm from the vapor cell, pointing along the static magnetic field
direction.

We start by characterizing the microwave transitions. The microwave spec-
troscopy experiment are similar to (Budker et al., 2005), and described in detail
in (Zugenmaier et al., 2018) for vapour cells with geometry and characteristics
close to the used here. The total transmission of a weak probe beam, 1 µW in
power and on resonance with the F = 4 → F′ transition (λ = 852.3560 nm),
is monitored. The transmission signal, normalized to the signal without mi-
crowave pumping, is shown in Figure 5.8. The microwave tone, scanned around
the ground hyperfine Zeeman transitions, alters the equilibrium population
distribution, leading to change in absorption. The observed 15 peaks corre-
spond to the all possible ∆F = 1, ∆m = 0,±1 microwave transitions, all sep-
arated by ωS/2π = 1.32(1)MHz, the Larmor energy splitting induced by the
static magnetic field in this experiment. The linewidths were similar for all the
transitions, γ2,hf/2π = 19(1) kHz.

The effect of the microwave drive on the steady state population distribu-
tion can be measured via MORS. Setting the probe power to 10 µW and a weak
repump power of 10 µW, we probe the ensemble with and without the mi-
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Figure 5.9: MORS with microwave drive. Depending on the chosen microwave transition, the populations are going to be affected
differently. Setting the microwave frequency to ωmw/2π = 9195.31 MHz (right) has a smaller effect on the spin polarization than the
setting ωmw/2π = 9199.29 MHz (right).

crowave tone. In Figure 5.9, the frequency ωmw/2π = 9195.31 MHz (left) and
ωmw/2π = 9199.29 MHz (right), corresponding to the transitions |4, 1〉 → |3, 1〉
and |4, 3〉 → |3, 2〉+ |4, 2〉 → |3, 3〉, respectively. The microwave coupling alters
significantly the population distribution, increasing the spin polarization from
p = 0.55 to p = 0.69 for the data shown on Figure 5.9 (left).

For Figure 5.9 (right), even though one of the Zeeman resonances is almost
fully suppressed, the spin polarization is quite unchanged. This curious effect
is can be seen directly from the MORS theoretical model, in equation (5.1). The
peak heights are proportional to the population differences squared, |Pm + 1−
Pm|2. Therefore, if the population of two neighbouring levels is brought to
similar levels, there will be no peak, even though there is a potentially high
number of atoms on those Zeeman levels.

Although the microwave assisted optical pumping showed possibility of in-
creasing the spin polarization without broadening the coherences of interest in
the first principles experiments shown above, it failed to give meaningful re-
sults in the parameter regime of interest. In the hybrid experiment conditions,
overcoming the optical pumping and decoherence induced by the probe beam
required more microwave power than the available at the time. The maximum
available power was 30 dBm. Alternatively, instead of the microwave drive, an
optical Raman transition could be used.

5.5 Effective thermal occupation

The Zeeman state population distribution defines not only the spin polariza-
tion p, but also sets the effective excitation temperature Ts and the related extra
spin noise. As we will see in the end of this section, we like to define the extra
spin noise as giving an effective thermal occupation nS to the spin oscillator.

Consider, for example, a spin- 1
2 ensemble with ground and excited states

g and e with populations Pg = e−β/2 and Pe = eβ/2), respectively. The state
populations and the spin temperature are linked via equation (5.3).

Pe/Pg = eβ, (5.6)

where β = 1/kbTs. The temperature of the spin system is determined by the
ensemble population distribution.

Notice that the concept of spin temperature must not be confused with the
thermodynamic concept of temperature, established via the equipartition the-
orem. While the latter relates to the average energies of the system’s degrees of
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5As Abragam and Proctor point out: “there
does not seem to exist among physicists a
universal agreement as to the validity of the
concept of spin temperatures, positive or
negative. While some consider this concept
as perfectly natural and requiring no more
justification than, say, the temperature
of a crystal lattice or a gas, others think
that it lacks the deep physical meaning
of thermodynamic temperature and is at
best useless and often greatly misleading”
(Abragam and Proctor, 1958).

freedom, the former is solely defined by the average occupation of the energy
levels, as given by equation (5.6). This definition can lead to seemingly absurd
results. The spin temperature in a laser gain medium, for example, is negative
due to population inversion5

The aspects of finite temperature in the spin system are captured within the
Heisenberg-Langevin formalism, which has been used to describe the dynam-
ics of the spin system in Chapter 3. For a spin-F system, described by the set
of operators Â1, . . . , ÂN , the time evolution will be governed by (Davidovich,
1996)

d
dt

Âi = function[Â1, . . . , ÂN ] + F̂i(t).

In our case, the function of the system operators Â1, . . . , ÂN is determined by
the coupling to light and magnetic fields, as described in Chapter 3, equa-
tion (3.28). We picture the spin oscillator precession being driven externally
by forces that act on the transverse spin state components, which themselves
play the role of generalized position and velocity. Upon interaction with the en-
vironment, the trajectory is affected by random Langevin forces F̂i, leading to
a diffusion-like dynamics of the spin states. Similar approaches, in the context
of spin oscillators, were studied in Vasilyev et al. (2012) and in Vasilyev et al.
(2013).

Given that we are monitoring the noise properties of spin dynamics contin-
uously over time, we are interested in how the correlations of spins evolve with
time. In the limit of a memoryless bath, the forces F̂i(t) satisfy

〈F̂i(t)〉 = 0 (5.7)

〈F̂†
i (t)F̂i(t′)〉 = 2Dijδ(t− t′), (5.8)

with Dij as the diffusion coefficient. To calculate Dij we use the generalized
Einstein relations (Davidovich, 1996)

2Dij =

〈
d
dt

(
Â†

i Âj

)
−
(

d
dt

Âi

)†
Âj − Â†

i
d
dt

Âj

〉
. (5.9)

We would like to calculate the noise related to the evolution of our spin
system system. For that we will need the equations of motion described in
Chapter 3. The dynamics of the spin system is presented in equations (3.28).
The mean spin component 〈F̂x〉 = Fx is here assumed to be a classical variable,
in connection to the Holstein-Primakoff approximation. For the case of a spin- 1

2
description of the spin ensemble, the diffusing operators Âi are the transverse
spin components F̂y and F̂z. The diffusion coefficients are calculated as

1. 2Dyy. For this case Ai, Aj → F̂y. From equation (5.9), we have〈
d
dt
(

F̂y F̂y
)
−
(

d
dt

F̂y

)
F̂y − F̂y

d
dt

F̂y

〉
. (5.10)

Using the equations of motion, each of the terms in the equation above
are

d
dt

F̂2
y = 0(

d
dt

F̂y

)
F̂y = −ωS F̂z F̂y + gF̂x F̂y − γF̂2

y /2

F̂y

(
d
dt

F̂y

)
= −ωS F̂y F̂z + gF̂y F̂x − γF̂2

y /2.



56 Chapter 5. Spin State Preparation

Plugging the results above in equation (5.10), we have

2Dyy = γ〈F̂2
y 〉. (5.11)

2. 2Dzz. For this case Ai, Aj → F̂z. Applying same reasoning of the previous
case, the diffusion constant is

2Dzz = γ〈F̂2
z 〉 (5.12)

The diffusion coefficient of the spin variable is proportional to the variance of
the transverse spin component. In particular, using the angular momentum
relations (A.9) we can write (5.16) as

2Dzz = γTr[ρF̂2
z ]

=
γ

2
(
Tr[ρF̂x] + Tr[ρF̂− F̂+]

)
,

(5.13)

with the same relations applying for 2Dyy.
The spin state variance can be calculated with the knowledge of the density

matrix. The relations for the diffusion coefficients shown above also valid for
spin systems with total angular momentum F > 1

2 (Appelt et al., 1998). If the
population distribution follows the spin temperature density matrix (5.3), we
can calculate analytical expressions. For 2Dzz, for example, a spin temperature
distribution ρth gives

Tr[ρth F̂x] = ∑
m
〈m|ρth F̂x|m〉 = ∑

m
m〈m|ρth|m〉 =

1
Z ∑

m
meβm (5.14)

Tr[ρth F̂− F̂+] = ∑
m
〈m|ρth F̂− F̂+|m〉 =

1
Z ∑

m
c(F, m)2eβm, (5.15)

such that the diffusion coefficients are

2Dyy = 2Dzz =
γ

2Z ∑
m

eβm(F(F + 1)−m2). (5.16)

We also note that the equation (5.14) gives the mean spin component for a given
inverse temperature β. The decay constant γS is a proportionality constant
relating the spin dependent summation and the diffusion, so we will drop it
for now. Note how we have already used a similar result in Chapter 3, when
discussing about the spectral components of the spin noise, see Section 3.5.

For clarity of the derivation presented above for the diffusion coefficients
and their connection to the spin temperature, let us consider a couple of exam-
ples of different spin systems. For the case of

1. a spin- 1
2 system, the diffusion coefficients from equation (5.16) are

2Dyy = 2Dzz =
1

4Z ∑
m

eβm =
1
4

(5.17)

Therefore, the diffusion coefficients for the spin- 1
2 system are not affected

by the spin temperature parameter. The spin polarization of the ensem-
ble, that is

p ≡ F̂x

F
=

1
F

Tr[ρF̂x] =
1

ZF ∑ meβm = tanh β
2 , (5.18)

is a function of the spin temperature.
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Figure 5.10: Total diffusion and effective thermal occupation nS as a function of spin polarization. (left) The total diffusion coefficient (in
units of γ) induced by coupling the spin ensemble to a spin thermal reservoir depends on the total spin F. In general, the bigger the total
angular momentum F, the bigger is the incremental effect of a small spin polarization change. For perfect spin polarization, the ensemble
has minimum variance. (right) When the Holstein-Primakoff mapping is performed, we transform the transverse spin noise into an effective
occupation of the harmonic position and momentum variables.

2. a spin-F system, the overall situation gets more complicated. The expres-
sions for spin polarization (5.14) and diffusion coefficients (5.16) get more
complicated, due to the weighted sum of exponential functions. In Fig-
ure 5.10 (left), we show the dependency of the diffusion as a function
of the spin polarization for various spin- 1

2 , discussed above, and spin-3
and spin-4, the total angular momentum of the ground state manifolds
in cesium. Overall, the limiting cases can be worked out directly from
quantum angular momentum relations (see Appendix A). For example,
for

• for |p| = 1, all spins are aligned and we are in the state of minimum
variance, the ground state. This state is also called a coherent spin
state. At the ground state, we can use the Heisenberg Uncertainty
relation

〈F̂2
y 〉〈F̂2

z 〉 =
1
4
|〈[F̂y, F̂z]〉|2 =

1
4
|〈F̂x〉|2 =

F2

4
. (5.19)

The minimum uncertainty state has equal variances in its both vari-
ables, that is, 〈F̂2

y 〉 = 〈F̂2
z 〉 = F

2 , which is 1
2 when normalized to F.

• for |p| = 0, we are in a completely mixed state. From the total angu-
lar momentum relation 〈F̂2〉 = F(F + 1), we obtain

〈F̂2
x 〉+ 〈F̂2

y 〉+ 〈F̂2
z 〉 = F(F + 1). (5.20)

For a completely mixed state, we expect equal variances in all pos-
sible directions, which lead to 〈F̂2

x 〉 = 〈F̂2
y 〉 = 〈F̂2

z 〉 =
F(F+1)

3 , which
is F+1

3 when normalized to F.

3. mapping the diffusion coefficient to effective thermal occupancy nS. Having cal-
culated the diffusion coefficients, which are shown in Figure 5.10 (left),
we would like to map the extra diffusion into an effective thermal occu-
pancy of the effective position and momentum spin operators. For no-
tation symmetry, when comparing to the case of a mechanical oscillator
coupled to a thermal bath, we call the extra spin occupancy nS. This is
the case we deal with in the hybrid experiments, discussed in Chapter
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11. In the same limit of the Holstein-Primakoff approximation, in which
we map the spin transverse variables {F̂z, F̂y} into {X̂S, P̂S}, as already
shown in Section 3.1. In terms of total variance, the mapping is

nS ≡
2Dyy + 2Dzz

F|p| − 1
2
=
〈F̂2

y 〉+ 〈F̂2
z 〉

γ〈|F̂x|〉
− 1

2
, (5.21)

that is, the effective thermal occupancy nS is the total diffusion coefficient
normalized to the spin polarization.



Chapter 6

AC Faraday Angle

Besides characterizing the internal state of the spin ensemble, we are in-
terested in characterizing the strength with which the ensemble interacts with
light. Given the description presented in Chapter 3, the polarization rotation
light experiences due to interaction with the ensemble is parametrized by the
Faraday angle θF. For a given detuning ∆ from the atomic resonance with
wavelength λCs and width γCs, vapor density ρ and dimensions Ac × L (trans-
verse area and length), the rotation angle for light propagating in the z-direction
is given by (Sherson, 2006)

θF =
a1γCsλ2

CsρL
32πAc∆

〈F̂z〉, (6.1)

that is, it is proportional to the mean spin component in the propagation direc-
tion.

The standard approach for measuring θF is based on the measurement of the
DC Faraday rotation. The experiment goes as follows. In a pulsed pump/probe
cycle, optical pumping beams spin polarize the ensemble and a linearly polar-
ized probe beam travels along the bias magnetic field direction. Subsequently
to the preparation stage, the weak probe beam experiences the birefringence in-
duced by the ensemble, generating a non-zero signal in the probing polarime-
ter. As time evolves, the macroscopic mean spin decays and so does the signal.
The maximum polarization rotation detected is related directly to the DC Fara-
day angle.

There are two complications with this Faraday angle measurement method:
(i) it relies on the knowledge of ensemble spin polarization and (ii) requires
setting up optics and extra magnetic coil systems. Notice that the MORS tech-
nique, presented in Chapter 5, and basically any other experiment in this group
utilizes a different laser/magnetic field configuration. While the latter com-
plication is of more technical nature, the former, lack of knowledge about the
prepared atomic spin, can lead to systematic errors in the estimated coupling
parameters.

To solve this technical issue, in this chapter we use the AC Faraday rotation to
measure θF. This method uses the same experimental apparatus as the MORS
technique, relying only on (i) a RF pulse to realize a π/2-pulse in the spin po-
larization, (ii) a photodetector with calibrated frequency response and (iii) con-
version of the detected electrical signal in optical rotation.

In the next pages, we present the idea, a model to describe the observed
signal and the link between Faraday angle and other coupling parameters. We
finish the chapter linking θF to other quantities as the ratio of back-action to
projection noise and optical depth.

59
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1We understand the bias magnetic field as
being small when the quadratic Zeeman
splitting νqzs can not be resolved, that is,
νqzs � γS.

2Notice that treating the spin-magnetic
field interaction quantum mechanically is
not required to understand the experiment:
as long as fluctuations of the spins and
field are negligible, the dynamics can
be mapped to the classical description
of magnetic moments interacting with a
classic B field. Nonetheless, for consistency
of notation, I keep the operatorial notation.

3Using the Heisenberg picture

d
dt

Â = i[Ĥ, Â].

.

6.1 Model

Similar to the MORS method, the basic idea can be described in terms of the
Bloch equations and is the following. Consider an ensemble of spin- 1

2 particles,
in the presence of a static B field in the x-direction, prepared with macroscopic
spin F coordinates {Fx/F, Fy/F, Fz/F} = {1, 0, 0}, that is, on the north pole
of the Bloch sphere. The presence of the magnetic field leads to a Larmor fre-
quency ω0. At time t0, a transverse RF magnetic field with frequency ωrf = ω0
is turned on. This magnetic field will drive the magnetization out of the initial
state, precessing down the sphere towards the equator. When the magnetiza-
tion reaches the equatorial plane, the RF field is turned off, allowing the system
to relax towards the thermal state.

A linearly polarized probe beam, traveling in the z-direction probes the
transverse magnetization of the sample. If the duration τ of the RF pulse is
much shorter than the coherence times {T1, T2}, the initial magnetization is ef-
ficiently rotated to the equator, allowing the measurement of the total length of
the spin, as required to define the Faraday angle via equation (6.1).

For keeping the description simple, we will describe the spin ensemble in
the regime of a small bias magnetic field1, probed in the weak readout limit,
that is ΓS/γS � 1, by a far detuned laser beam. Fulfillment of these conditions
allows us to describe the ensemble dynamics as an effective spin- 1

2 system cou-
pled to light via Faraday rotation.

We proceed now to the modeling of the AC Faraday angle measurements.
Consider a spin- 1

2 ensemble in the presence of a static magnetic field in the
x-direction, leading to an energy splitting ω0, and an oscillating RF magnetic
field in the z-direction, with a constant amplitude BRF and frequency ωd. The
magnetic fields couple to the spin via its magnetic dipole, such that the total
energy2 of the coupled system reads

Ĥ = ω0 F̂x + AF̂z cos ωdt, (6.2)

with A = µBg4BRF as the coupling Rabi frequency, with µBg4 = 350 kHz G−1.
The time evolution3 of the mean spin variables components 〈F̂i〉 = Fi , includ-
ing the phenomenological spin decay rate γ

d
dt

Fx = −A cos ωdtFy − γFx

d
dt

Fy = −ω0Fz + A cos ωdtFx − γFy

d
dt

Fz = ω0Fy − γFz.

(6.3)

The decay terms are added by hand assuming, for simplicity, equal decay rates
for all components.

As the right hand side of the system of equations (6.3) contains a periodic
time dependency, it doesn’t look particularly simple to be solved analytically
in the most general case. Nonetheless, in the weak RF coupling limit, in which
A� ω0, the spin variables will evolve slowly. Furthermore, in the frame which
evolves with ω0, the approximate evolution will not contain an explicit time
dependence.

Let us move to the rotating frame. As described in Appendix A, for T =

ωd Ĵx and Û = e−iT̂t, the rotating frame Hamiltonian ĤR is given by

ĤR = ∆ ĴR
x + A( ĴR

z cos ωdt + ĴR
y sin ωdt) cos ωdt (6.4)

where ∆ ≡ ω0 − ωd is the detuning from the spin resonance. We proceed to
eliminate the fast evolving dynamics. If the RF coupling A is small compared
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4The system of equations can be rewritten
in the matrix form and solved as

d
dt

J = MJ, J(t) = eMtJ(0),

for J as the column vector with the spin
components and M as the matrix of
coefficients; J(0) is the initial spin condition.

to ω0, the fast oscillating terms will not dominate the dynamics, that is, the 2ωd
terms in (6.4) can be dropped,

cos2 ωdt =
1
2
(1 + cos 2ωdt) ∼ 1

2

cos ωdt sin ωdt =
1
2

sin 2ωdt ∼ 0,

which is equivalent to a rotating wave approximation. Therefore, in the small
coupling regime, equation (6.4) is rewritten as

HR = ∆FR
x + AFR

z /2.

The new equations of motion, using the Hamiltonian above, are

d
dt

Fx = −AFy/2− γFx

d
dt

Fy = −∆Fz + AFx/2− γFy

d
dt

Fz = ∆Fy − γFz,

(6.5)

to be compared with the equations (6.3). We have dropped the superscript R
for simplicity. The system of equations (6.5), now with right hand side time
independent, can be solved using simpler techniques4.

We start by focusing on a simple, but illustrative example. Consider the
spin ensemble prepared with maximum projection along the x-axis, the initial
condition is (Fx, Fy, Fz)0 = (J, 0, 0). The solution to (6.5) is

Fx(t)
J

=
e−γt

Ã2

[
cos

(
Ãt
2

)
A2 + 4∆2

]
(6.6)

Fy(t)
J

=
Ae−γt

Ã
sin
(

Ãt
2

)
(6.7)

Fz(t)
J

=
4A∆e−γt

Ã2 sin2
(

Ãt
4

)
, (6.8)

in which Ã2 ≡ A2 + 4∆2 is the generalized Rabi frequency, governing the
strength of the transition. The equations (6.6) are quite general, and some limits
are discussed in the following. For a

1. weak, resonant drive: ∆ = 0 & At � 1. The dynamics is similar to a
driven damped harmonic oscillator

Fx(t)
J
∼ e−γt

Fy(t)
J
∼ Ate−γt

Fz(t)
J
∼ 0,

that is, the transverse component of the spin will grow in amplitude as
long as the drive is on, being only damped by the natural dephasing of
the oscillator.

2. strong, resonant drive: i.e., ∆ = 0, γt � 1. In this limit, the spin is
rotated about the z-axis from pole to pole, reminding the Rabi cycling.
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The spin components evolve as

Fx(t)
J

= cos
(

At
2

)
Fy(t)

J
= sin

(
At
2

)
Fz(t)

J
= 0.

By choosing the correct time duration of the driving field, one can realize
π/2 and π-pulses, leaving the spin along the equator and opposite pole
of the Bloch sphere, respectively.

3. strong, off-resonant drive: i.e., ∆ 6= 0 & γt � 1. In this limit, the spin
fails to reach the equator or the other pole, as in the cases of the π/2 and
π-pulses, respectively. The spin components evolve as

Fx(t)
J

=
1

Ã2

[
cos

(
Ãt
2

)
A2 + 4∆2

]
Fy(t)

J
=

A
Ã

sin
(

Ãt
2

)
Fz(t)

J
= 0.

As can be seen in the equation for Fy(t)/J, the error in reaching the equa-
tor plane, that is Fy(t) = J, is of the order

A/Ã = 1/
√

1 + 4∆2/A2 ∼ 1− 2∆2/A2

for small ∆/A.

For the more general case, in which the initial conditions are unknown, ie,
the initial spin state is (Fx(0), Fy(0), Fz(0)) = (Fx0, Fy0, Fz0), the solution is

Fx(t) =
e−tγ

Ã2

[(
cos

(
Ãt
2

)
A2 + 4∆2

)
Fx0 − ÃA sin

(
Ãt
2

)
Fy0 + 4A∆ sin2

(
Ãt
4

)
Fz0

]
Fy(t) =

e−tγ

Ã

[
sin
(

Ãt
2

)
(AFx0 − 2∆Fz0) + Ã cos

(
Ãt
2

)
Fy0

]
Fz(t) =
e−γt

Ã2

[
2∆ cos

(
Ãt
2

)
(2∆Fz0 − AFx0) + A(AFz0 + 2∆Fx0) + 2∆ÃFy0 sin

(
Ãt
2

)]
.

(6.9)
These are the expressions used for fitting the experimental data and extracting
the parameters of interest, such as the Rabi frequency A and initial spin com-
ponents.

The optical signal couples to the spin dynamics via the atomic polarizability,
as discussed on Chapter 3. In the case of a weak far detuned probe, the Faraday
interaction Ĥ = gŜz Ĵz describes the spin dynamics mapping to light. In the
current case, we employed a rotating frame, leading to

ĤR = gŜz( ĴR
z cos ωdt + ĴR

y sin ωdt),
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Figure 6.1: Setup for the AC Faraday angle mea-
surements. a Optical pumping (green arrow)
generates spin polarization and probe beam (red
line) measures the ensemble positioned in a
magnetic shielded region. A DC bias field (BDC)
sets the Larmor frequency and the RF field (BRF)
forces the magnetization out of the equilibrium
position. The experiment can be run in a (b)
pulsed or (c) continuous fashion. See text for
more details

for g as the coupling constant. The Stokes operators Ŝi evolve according to
the Maxwell-Bloch equations, see Chapter 3. For the mean value of the Stokes
parameters Si = 〈Ŝi〉 for i = x, y, z, the solution isSx

Sy
Sz

 =

Sin
x cos θ(t)− Sin

y sin θ(t)
Sin

y sin θ(t) + Sin
x cos θ(t)

Sin
z

 , (6.10)

in which the rotation angle is

θ(t) =
gρABL

2c
(Fz cos ωdt + Fy sin ωdt) = − a1γρL

16∆
λ2

2π
(Fz cos ωdt + Fy sin ωdt).

Note that the constant outside the parenthesis is the Faraday angle defined in
equation (6.1). Most commonly, we operate in the regime 2θ(t) � 1. To the
first order, equation (6.10) is

Ŝout
x = Ŝin

x + Ŝin
y θ(t) (6.11)

Ŝout
y = Ŝin

y − Ŝin
x θ(t) (6.12)

Ŝout
z = Ŝin

z . (6.13)

Using the relations above, the Faraday angle can be directly extracted from the
detection of the suitable Stokes operator.

Summing up the discussion presented up to now, we see that if an RF pulse
with Rabi frequency A is applied to the spins for a duration τ = π/A, the
macroscopic spin is going to be pointing at the probing direction, as required
from equation 6.1. A calibrated detector would give the Faraday angle as the
maximum polarization rotation, θF = max(θ(t)). This description is valid as
long as the spin is coherent (γt� 1) and the Rabi frequency is smaller than the
natural frequency A� ω0.

In the next section we present measurements and study the validity of the
model.

6.2 Measurement and calibrations

Having discussed the model, we move to the experimental section. As for
the optical signal, a few parameters must be known to convert the detected sig-
nal (in units of voltage V) into rotation angle (in the units of radians or degrees).
If the internal state of the ensemble is of interest, there are more parameters
involved, as the RF drive, amplitude, frequency, and pulse timing also matter.

The experiment is set as shown in Figure 6.1 (a). The configuration of lasers
and magnetic fields is similar to the used in MORS experiments, discussed in
Chapter 5. The lasers in the experiments can be run in pulsed or continuous
mode. In general, the pulsed version is preferred when there is significant de-
coherence induced by the laser beams. For the results presented in this chapter,
the data in Figures 6.2 to 6.4 were taken in continuous wave operation, as rep-
resented in Figure 6.1 (c). The data presented in Figure 6.5 involved the pump
beam and used pulsed operation, as in Figure 6.1 (b). Regardless of the laser
intensity profile, the RF drive5 is always pulsed: while on, the RF drive is a sine
wave with constant amplitude. All data presented here is a single-shot result,
that is, multiple traces have not been averaged to generate the data shown. The
data, nonetheless, have been band-passed around the Larmor frequency with a
second order Butterworth filter with 50 kHz bandwidth.

The polarization rotation signal due to the RF drive is shown in Figure 6.2. A
10 µW probe beam, detuned ∆ = 3 GHz from the atomic resonance, couples to
the spin ensemble at T = 29 ◦C which is being repumped; the spin polarization
is ∼ 0.6. At time t = 0, a resonant drive field with Rabi frequency A is turned
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6As computed by the Python function
scipy.signal.hilbert.
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Figure 6.2: Time dependence of the
polarization rotation signal for in-
creasing RF field coupling rate. At
time t = 0, a sinusoidal RF field
drive with Rabi frequency A and fre-
quency ωd/2π = 400 kHz is turned
on. Up to t = 160 µs (left column), the
atomic system is forced to oscillate at
the drive frequency. When drive field
is turned off, the ensemble evolves
freely, with transverse spin compo-
nents decaying towards their steady
state values. (right column) The com-
plete time trace, including excitation
and decay.

on. For small A = A0, the amplitude of the oscillating signal increases linearly
with time until the end of the drive pulse. From this moment onwards, the spin
magnetization oscillates down to zero, with envelope decaying exponentially
with time.

Increasing the Rabi frequency to A = 4A0 shows that the rotation is bigger
than π/2, as the signal already passed its maximum. For A = 5.4A0, a π-
pulse is achieved: the spin has been rotated from north to south pole. Setting
A = 5.9A0 makes the precession start to return to the starting pole. We observe
that the spin can sustain several π rotations before significant decay happens.

For fitting the model to the measured data, we use the expressions from
equations (6.9) and a non-linear least squares function. To reduce the exten-
sive list of free parameters, knowledge and/or educated guesses of a few more
parameters is advisable.

In Figure 6.3 (left) we show a fitting result, here for the curve with drive
A = 4A0. The model agrees rather well with the data. Disagreement happens
mostly in the beginning of the driving period, as the current is loading the coil
and is therefore time dependent. Of the parameters returned by the fitting, the
RF Rabi frequency is of great interest and it is shown in Figure 6.3 (left). There
is a linear relationship between the applied voltage to the coil and the observed
Rabi frequency, as expected from equation (6.2).

The quality of the fit can be judged better when removing the fast oscilla-
tion. In Figure (6.4), we show the absolute value of detected signal envelope as
processed by a Hilbert transform6. The Hilbert transform is specially useful for
determining the instantaneous amplitude and phase/frequency of a fast oscil-
lating signal. The lines are calculated from the fitted parameters and calculated

as R =
√

F2
y + F2

z , for the spin components defined in equation (6.9).

The calibration of the detected signal from electrical units to rotation units
is described as follows. Consider a linearly polarized input beam, passing
through a half-wave plate. We can rotate this plate around its axis by an an-
gle θ. Chosen θ in a way that if θ = 0, then the light polarization is unaltered.
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Figure 6.3: AC Faraday rotation signal. (left) Close up on the first 50 µs of the forced precession for A = 4A0 and comparison between
the data (black points) and the fitted theory (orange line); (right) linear dependence of the RF Rabi frequency versus applied RF field
amplitude, as extracted from fits.
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Figure 6.4: AC Faraday signal envelope. The absolute value of the measured signal
Hilbert Transform from the data presented in Figure 6.2 is shown as points. The curves
are labelled according to RF Rabi frequency. Lines are the absolute value of spin on the
probe direction, using the fitted parameters obtained from the lab frame fitting proce-
dure.

The output polarization, using matrix notation, is

[
Sout

x
Sout

y

]
=

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

] [
Sin

x
Sin

y

]
=

[
Sin

x cos 2θ − Sin
y sin 2θ

Sin
x sin 2θ + Sin

y cos 2θ

] (6.14)

for an unchanged Ŝz component. Notice the similarity between the equation
above and (6.10). The spin ensemble behaves as a rotator with a time dependent
rotation angle.

To calibrate the rotation angle, one needs to know (i) the input polarization
state, (ii) the total available power, that is, S0, (iii) the change in the Stokes
parameters of interest. With this information in hand, given an input Sin

x = S0
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Figure 6.5: Calibrated AC Faraday signal and spin polarization dependence. A
pumping-probing pulsed experiment with optical pumping using repump only (orange)
and repump+pump (blue). The amplitude of the signal grows from ∼ 280 mrad to
∼ 400 mrad, which roughly agrees with the independently measured spin polarization
values increasing from 0.7 to 0.97.

and measuring Sout
y , the rotation angle can be calculated from (6.14), as

θ =
1
2

arcsin
Sout

y

S0
∼ 1

2

Sout
y

S0
, (6.15)

the approximation being valid for small changes in the polarization state, ie
θ � 1.

The effect of the optical pumping on the AC Faraday signal is shown in
Figure 6.5. For the data shown there, a probe beam with power 10 µW and
∆/2π = 3 GHz was used. The Larmor frequency was ω0/2π = 300 kHz and
the cell temperature T = 55 ◦C. The RF Rabi frequency is chosen such a π
pulse is achieved in a reasonably short time. The effect of the pump beam is
clearly seen as an increase in polarization rotation. This increase leads to a
bigger Fx, with the polarization rotation following the same relationship. The
amplitude of detected signal increases from ∼ 280 mrad to ∼ 400 mrad. The
spin polarization was measured independently, going from ∼ 0.7 to ∼ 0.97
with the addition of the pump beam, roughly matching the observed increase
in signal.

6.3 Connection to spin noise

The Faraday interaction described above also describes the polarization fluc-
tuations induced by the probe. In this section we relate θF to the observed spin
noise and the optical depth.

The description of the spin fluctuations follows the derivations by Julsgaard
(2003). There, quite similarly to the discussions presented in this chapter, a lin-
early polarized, far-detuned beam with mean photon flux Sx interacts with the
ensemble with mean spin Fx and coupling constant a. Disregarding tensor ef-
fects, ξS = 0, and decoherence in the dark, γS0 = 0, the output optical response
can be broken down according to source, decorrelating the light and spin vari-
ables. Within the aforementioned limits, the integrated Back-Action Noise Area
(here BANA) and the Projection Noise Area (here PNA) of the detected light sig-
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7For convenience, we remind the reader
the definitions of a and γ

a = − γ

8Ac∆
λ2

Cs
2π

a1 (6.16)

γ =
λ2

Csγ2
Cs

2π∆2
Sx

Ac
, (6.17)

the Faraday interaction coupling coefficient
and the decoherence rate induced by the
probe; Ac is the vapor cell transverse area
and γCs is the excited state spontaneous
decay rate, here γCs/2π = 5.22 MHz for the
D2 line. The expressions above are valid
only for a QND interaction. The mean
value of the classical drive in terms of the
Stokes operator language can be written in
terms of the incoming power P or intensity
I as I = P/A = h̄ωLnph/Ac = 2h̄ωLSx/Ac,
for ωL as the frequency of the laser, nph is
the number of photons per unit time and P
is the power.

nal are7

BANA =
πa4 |Fx|2

γS

(
Sx

2

)3

PNA = 2πa2 |Fx|
(

Sx

2

)2
.

(6.18)

These relations are valid for the spins interacting with light via an ideally ho-
mogeneous Faraday interaction. It is also assumed that the spins are perfectly
spin polarized. Although quite restrictive, the areas above serve as a good or-
der of magnitude estimation for the quantity of interest, which is the ratio of
rates in which the spins couple to light, the quantum back-action, to the ther-
mal environment. In Chapter 3, we also define the ratio (6.18) as the quantum
cooperativity CS

q.
For large detuning ∆ from the atomic resonance in respect to the absorption

profile width, the parameter a→ 1, and the ratio of BANA to PNA is

BANA
PNA

≈ λ2

2π

Fx

256Ac
, (6.19)

for λCs as the wavelength of the optical transition and Ac as the cell transverse
area. We now wish to express this ratio in terms of the Faraday angle. Combin-
ing equations (6.1) and (6.19), we get to

BANA
PNA

≈ θF∆
16γCs

. (6.20)

As an example, for the data presented on Figure 6.5, θF ∼ 200 mrad for optical
pumping with pump and repump. Given the detuning ∆/2π = 3 GHz, we
have BANA/PNA = CS

q ∼ 7. The estimation is in the right ballpark. For
the ensemble operated in similar conditions, it agrees with other calibration
techniques (see Chapter 8).



1Collective effects of light interacting with
atoms depend both on the optical mode
profile and the relative positioning of the
atoms. See (Tanji-Suzuki et al., 2011) for
related discussions.
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Figure 7.1: Time dependent coupling . The cell
is illuminated by a laser with a transverse Gaus-
sian beam profile (in red). Atoms move across
the cell, colliding with the container walls and
background gasses (black dots), experiencing a
time dependent coupling. Here, we sketch the
dynamics of the i-th atom, for simplicity. The
coupling experienced by the atom over time is
given by gi(t) and is sketched in the graph be-
low.

Chapter 7

Spin Noise

In this chapter we experimentally study the averaging effects on the time-
dependent spin-light coupling. We observe the polarization rotation noise de-
pendence on the beam profile and on the optical power and discuss about mod-
eling the contributions.

The interaction presented in Chapter 3, based on the polarizability of the ce-
sium atom due to coupling to the optical field, focusing on the effects of light
on the internal atomic degrees of freedom. In reality, the situation in our ex-
periments is more complex. We sketch the problem in Figure 7.1. Atoms move
around the optical field, interacting with the laser light in a time dependent
fashion, eventually also colliding with the glass walls. Upon interaction with
the wall, which is coated with paraffin-like material, the atoms return in dif-
ferent trajectories across the cell. The dependence of the internal degrees of
freedom on the external degrees of freedom, as position and velocity, force us
to think about the ensemble properties of the interaction1: what are the effects
of atomic motion on the light-matter interaction?

In most of the experiments presented here, Cs atoms are moving on the or-
der of ∼ 100 m s−1 across 50− 200 µm (diameter) Gaussian beams in channels
with 300− 500 µm side length. The atomic transit time across the beam is on the
order of ∼ 0.75 µs; the collective spin readout time, as described in Chapter 10,
is on the order of ∼ 15 µs, indicating that the ensemble spin state is read rather
slowly in comparison to the fly-through time. Given the stochastic nature of the
atomic motion, we can say that the spin noise and the corresponding degrees
of freedom we are interested in is somewhat the average in time and space of
the spin ensemble.

7.1 Modelling

The motional averaging of the light-matter coupling on thermal atomic vapours
is important for an efficient mapping of light to spins and vice-versa. The us-
age of spin-preserving coating on the container walls allows for atoms to move
in and out of the interaction with the laser beam, maintaining the phase re-
lation with light. Although not explicitly mentioned, the motional averaging
approach has been widely used in atomic ensemble-based continuous variable
Quantum Information protocols, see (Hammerer et al., 2010). As described in
(Borregaard et al., 2016), this concept can also be extended and applied to dis-
crete variable schemes, with the first experimental results presented in (Zugen-
maier et al., 2018).

The description presented here follows (Borregaard et al., 2016) closely. The
situation is sketched in Figure 7.1. The atoms move across the cell and expe-
rience a time-dependent coupling as flying through the Gaussian laser beam.
Assuming the atomic motion is classical and that the ensemble is in thermal
equilibrium with the cell walls, the atomic velocity distribution should follow

68
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Figure 7.2: Time evolution of the two-time cor-
relation function. Figure is adapted from (Bor-
regaard et al., 2016, SI Fig. 3). Numerically
simulated two-time correlation function (blue)
for atoms randomly flying through a Gaussian
beam with 2w0 = 110 µm in a container with
300 µm side length, and averaged over the en-
semble. The data is fitted (orange) to the model
presented equation (7.1), giving tb = 0.26 µs.

the Maxwell-Boltzmann distribution. For the case of non-interacting atoms, the
situation is further simplified as we can describe the atoms as point particles
moving within the cell.

In Borregaard et al. (2016), the motion of 5000 independent particles in a
microcell sized volume, across a 2w0 = 110 µm Gaussian beam, taking into ac-
count the cell walls’ randomization and trapping on the spin preserving coating
was simulated. Given the randomizing effect of the collisions, the atomic posi-
tion will be completely uncorrelated from its initial position after collisions with
the walls. The ensemble average of the light-matter coupling, nonetheless, does
not vanish. In particular, the two-time correlation of coupling 〈g(0)g(t)〉, which
gives us information about the spectral components of the coupling, does not
vanish. The simulation results are shown in Figure 7.2 (blue curve). The en-
semble average of the two-time correlation function decays rapidly with time
to a steady state value. The dynamics of this decay can be approximated by the
model

〈g(0)g(t)〉 = 〈g(0)2〉e−t/tb + 〈g(0)〉2(1− e−t/tb ), (7.1)

with the brackets 〈. . .〉 representing the ensemble average, involving the tra-
jectories of all atoms in the cell container. Fitting the correlation function with
this test model gives the yellow curve in Figure 7.2. The coupling constant of
the two-time correlation is time dependent and has two components: the first
term describes the fast correlations, with the transit time through the beam as
characteristic time constant, and the second contains the long term behaviour,
where the correlation happens through the mean values. The fitting presented
in Figure 7.2 gives tb = 0.26 µs. In frequency, it is equivalent to a rate of
γb/2π = 1/πtb = 1.24 MHz. This rate is quite close to the one observed in
the experiments, building up confidence on the simple model given in equa-
tion (7.1). According to these results, tb ∝ vCs/w0, with vCs as the average
thermal velocity of the atoms in the cell and w0 the Gaussian beam waist.

An alternative description is presented by Shaham et al. (2020). There, the
atomic motion is modelled via the diffusion equation for the density operator.
In this picture, the observed spin noise is decomposed in spatial dependent
modes, being subject to the boundary conditions of the cell wall, collisional
decay and evolution due to coupling via the light mode. The initial spatial
configuration of atoms is scrambled by the container walls and as the cell is
anti-relaxation coated, the atoms return to the area illuminated by the laser
beam after a brief period in the dark, coupling again to light with a random
spatial phase. Therefore, most of the spatial modes decay rather quickly; the
only mode that survives carries no information about atomic position.

The description given by Shaham et al. (2020) complements Borregaard et al.
(2016), as it gives insight into a formalism to treat the atomic motion in an an-
alytical fashion. Here, we adopt a qualitative approach that treats the total
polarization rotation induced by the spin ensemble as composed by two inde-
pendent spin modes: the so called narrow mode, the long lived mode of interest,
and the broad mode, which contains all other atomic responses. An approach
similar to this has also been experimentally tested by Tang et al. (2020).

We move now to introducing the effect of atomic motion in our input-output
relations. The interaction of light with the spins is given in Chapter 3. Here, we
rewrite the main results, in the light of the language introduced above. A spin
mode is coupled both to the optical mode X̂L,S and to its thermal environment
F̂S. In the limit of high spin polarization, the transverse spin components are
mapped to the harmonic variables X̂S. As described by the equation (3.42), the
response of the spin mode to the optical and thermal forces is written as

X̂S = 2
√

ΓSLZX̂ in
L,S + LF̂S. (7.2)

for the matrices defined in equation (3.43). The effect of the coupling on the
light variables is given by equation (3.50)

X̂out
L,S = X̂ in

L,S +
√

ΓSZX̂S = (12 + 2ΓSZLZ) X̂ in
L,S +

√
ΓSZLF̂S, (7.3)
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in which in the last step we used (7.2).
We are now in a position to include the broad mode in our description. As-

suming that the effective broad mode couples as described by equation (7.2),
that is

X̂S,b = 2
√

ΓbLbZX̂in
L,S + LbF̂S,b, (7.4)

for Lb as L with γS0 → γb and ΓS → ΓS,b. Here, we conjecture that the output
light field carries information about the total response of the ensemble as

X̂out
L,S = X̂in

L,S +
√

ΓSZX̂S +
√

ΓS,bZX̂S,b. (7.5)

In words, the output light reads out two spin modes: the narrow mode X̂S with
rate ΓS and the broad mode X̂S,b with rate ΓS,b. The broadband response read-
out rate, that is, the coupling rate of the light to the fast decaying spatial spin
modes is ΓS,b. We have therefore decomposed the response of the spins to light
in a modal basis: X̂S contains information about the long lived spin mode, while
X̂S,b contains information about all the other short lived spin modes. Assuming
the basis chosen decorrelates the modes, the spin mode cross-correlations will
be zero. This feature is specially important when the PSD of the detected light
is calculated, later in this chapter.

The matrix L represents the dynamics of the ensemble on frequency space.
While in Chapter 3 we dealt with the near-resonance description, that is for
Ω ∼ ωS, here we are interested in Fourier frequencies far from resonance. We
rewrite L as

L =

(
$S(Ω) χS(Ω)
−χS(Ω) $S(Ω)

)
, (7.6)

in which the general spin susceptibility χS and $S are

χS(Ω) =
ωS

ω2
S −Ω2 − iΩγS + (γS/2)2

(7.7)

$S(Ω) =
γS/2− iΩ

ω2
S −Ω2 − iΩγS + (γS/2)2

(7.8)

with γS = γS0 + 2ζSΓS as the total spin linewidth, including the tensor (dy-
namical) broadening. The parameter ξS is the tensor coupling constant. Given
an input force, the matrix L determines the response of the mode of interest
to this disturbance. In the high-Q limit, when only the dynamics around the
resonance (Ω ∼ ωS) are significant, the susceptibility gets the more familiar
form

χS(Ω) ∼ 1
2

1
ωS −Ω− iγS/2

(7.9)

$S(Ω) ∼ −iχS(Ω). (7.10)

These expressions are satisfied best for the narrow spin mode dynamics, cen-
tred around ωS. The narrow spin mode is commonly a couple of kHz wide. For
the broadband mode, whose linewidth γS,b ∼ ωS, the response can, in princi-
ple, also be considerable for Ω ∼ 0. In the experiments detailed below, we will
therefore use different functions to describe the narrow and broad spin noise
contributions.

The contributions presented on equation (7.3), in terms of L, the input opti-
cal, and thermal forces are

ZLZX̂in
L,S =

(
−ξ2

SχSP̂in − ξS$SX̂in
χSX̂in − ξS$SP̂in

)
(7.11)

ZLF̂S =

(
ξSχS F̂X

S − $SξS F̂P
S

χS F̂P
S + $S F̂X

S

)
. (7.12)
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The expressions above, along with equation (7.3), give the full model used to
describe the spin response in this thesis. The coupling with light is studied in
depth in Chapter 8, noise measurements and analysis are presented in Chapter
10 and 11.

In the absence of tensor broadening, ξS = 0, the PSD of the output phase
quadrature, calculated from equation (7.5), is

PSDPP
out = 1 + (Γ2

S|χS|2 + Γ2
S,b|χS,b|2)

+ ΓS(|χS|2 + |$S|2)γS0(nS +
1
2 )

+ ΓS,b(|χS,b|2 + |$S,b|2)γS0,b(nS,b +
1
2 ),

(7.13)

assuming a lossless detection. The contributions, line by line, are the probe shot
noise and back action noise, the narrow mode thermal noise, and the broad
mode thermal noise. Note that we assume both modes having the same effec-
tive occupation nS, as we assume the optical pumping preparing all atoms with
the same internal state density matrix. The functions χS,b and $S,b are the broad
spin mode susceptibilities.

For the analysis of the detected light noise, we detect the phase quadrature
of light and use the model from equation (7.13). We also set the tensor contribu-
tion to zero, for clarity. To simplify the data visualization, we divide the spec-
trum in two regions, according to the spin mode: (i) close to resonance Ω ∼ ωS
for observing the dynamics of the narrow mode, and (ii) wide range, excluding
the signal close to resonance, for the broad spin modes. The fitting functions
used are derived from equation (7.13). Its near-resonance approximation, for
the broad and narrow frequency regions, respectively, are

PSDnarrow = 1 + A
(γ/2)2

(ωS −Ω)2 + (γ/2)2 (7.14)

PSDbroad = 1 + A
(γ/2)2 + ω2

S + Ω2

(ω2
S −Ω2 + (γ/2)2)2 + Ω2γ

, (7.15)

where A is the coupling/scaling constant.
In the next sections we present the experiments and compare the results with

the theory predictions.

7.2 Beam size dependence

We start by studying the spin noise dependence on the beam size. A Gaus-
sian laser beam is sent through a microcell with channel dimensions L× d× d,
with length L = 25 mm and side length d = 500 µm. At some position be-
fore the cell, we insert a flip mirror and redirect the light to a waistmeter, with
which the beam profile is characterized as presented in Figure 9.1. The region
in grey represents the position in which the cell is positioned. The beam pro-
file is modified by adjusting the lens in an adjustable fiber collimator. Optical
transmission through the cell is ∼ 90%, dropping by 4% for the largest beam
used.

The power spectral density of the phase quadrature for fixed probe power
and various beam sizes is shown in Figure 7.5. The probe laser is detuned
∆/2π = 3 GHz and the power is set to 1 mW. At first sight, the detected noise
spectra are only slightly modified. The width and peak height of the narrow
feature are not strongly dependent on the beam size. The mean atomic mode
coupling, as described in the section above, only depends on the power and in
the cell transverse area. Therefore, on the limit of high probe power, the peak
height and width do not change with beam size.
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Figure 7.3: Narrow and broadband spin noise versus beam size. The analysis of signal presented in Fig 7.5 is divided in between
the narrow (left) and broad (right) frequency regions. The raw data is cut out in two sections and analyzed separately. Data has been
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Figure 7.4: Beam profiling for studying the spin
broadband noise. Region in grey represents the
vapour cell position. Fitted waist beam diame-
ters are 190 µm, 220 µm, 260 µm and 320 µm.
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Figure 7.5: Spectral density of the light noise.
A 1 mW probe beam with variable beam profile
interacts with the spin ensemble. The PSD is
normalized to detection efficiency and shot noise
(SN).

In Figure 7.3 we show the data already presented in Figure 7.5, for a different
frequency range. The detected noise is separated in two parts: a ±50 kHz cut
around the narrow feature (left) and the remaining range (right), here shown up
to 4 MHz. This perspective, along with the fitted widths and heights presented
in Figure 7.7, makes clear that the broad feature depends on the beam size. In
other words, the coupling to the rapidly decohering spin noise modes is highly
dependent on the coupling inhomogeneities.

To first order, the motional averaging theory and the model presented in
equation (7.13) correctly reproduces the shape and width of the fast decaying
mode seem from Figure 7.3. Nonetheless, as can be seen in Figure 7.3 (right),
the theory deviates from the data in the feature’s wings. The model described
here is not the complete answer to the problem. The feature seems to decay
faster than a Lorentzian in the wings.

The extracted width of the broad feature in Figure 7.7 (left) shows that the
width tends to saturate for increasing beam size; the scaling predicted from
motional averaging theory, tb ∝ vCs/w0, does not follow the fitted results,
as shown by the blue line. As the width seems to saturate with increasing
beam size, adding a constant offset reproduces the qualitative behaviour more
closely; for reference, the constant value is ∼ 500 kHz. The readout rate of
the broad mode, scales linearly with power (Figure 7.7 (right)); experiments
varying the atomic density (not shown) also showed a linear scaling for ΓS,b.
Effectively, we can say that ΓS,b scales the same way as ΓS.

The dependence on power shown on Fig.7.7 (right), shows that increas-
ing the beam size does not only change the width of the broad feature, but
also the height. In other words, the total noise area decreases. Increasing
the probe transverse area by a factor of ∼ 4 decreased the area by a factor
of ∼ 8. Nonetheless, the incremental noise reduction per increased probe area
decreases as the beam is made bigger, indicating that the remaining noise is for
a bigger beam is increasingly difficult to get rid of.

7.3 Power dependence

We proceed to study the noise dependence with power, for a fixed beam
size 2w0 = 440 µm. We measure two different optical quadratures: one very
close to φ = 0 —the phase quadrature —and the other very close to φ = π/2
—the amplitude quadrature —in Figure 7.8 (left) and (right), respectively. The
total photodetection efficiency, including propagation and photodiode losses,
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Figure 7.7: Broadband spin noise linewidth and peak height versus beam size. As the beam is enlarged, the fly-through time of the
spins through the beam increases, decreasing the width of the broadband spin noise (left); fitting to qualitative two models, with a and b as
free parameters, shows that best agreement is for model with constant independent of the beam size. The peak height of feature increases
linearly with power; lines show a linear fit to the various datasets.

is 87%. The peak value and width dependence of this feature were already
presented in Chapter 3, see Figure 7.6.

The phase quadrature measurements show that an increased power, leads to
a bigger readout rate and spin noise contribution. The height and width of the
narrow response, presented in Figure 7.6, show that for highest probe power
the spin readout is already saturated, that is, the optical read out is performed
faster than the decoherence processes. The increased power also requires ad-
justments of the linear input polarization from compensating the tensor Stark
shifts, as described in Chapter 3. The adjustment leads to an optical shift to the
resonant frequency, as expected from the tensor Stark shift contributions —see
Chapter 3.

The amplitude quadrature measurements, on the other hand, show the char-
acteristic frequency dependent squeezing of the light fluctuations below the
shot noise limit. The increase in power, nonetheless, leads to a degradation
of the squeezing; for the highest value used, the sub-shot noise feature disap-
pears completely, as extra atomic noise dominates the baseline of the detected
fluctuations. From the perspective of light coupling to multiple spin modes
in the vapour cell, given that most of the modes decays much faster than the
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Figure 7.8: Spin noise scaling with probe power. Probe power is increased from 1-9 mW, from blue to red. Power spectral density of the
detected phase (left) and approximately amplitude (right) quadrature are shown.
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Figure 7.6: Peak height and width of the narrow
response versus power. Increasing the probe
power leads to a higher ΓS and γS. For high
enough probe power, the peak height saturates,
indicating that the probing laser dominates the
spin oscillator dynamics.

narrow mode, the noise induced by the different contributions adds incoher-
ently. While we only discuss in Chapter 11 the implications of the added noise,
we note that it is particularly harmful in protocols that rely on discerning the
narrow mode from other noise sources with high efficiency, as the conditional
entanglement presented in Chapter 11.

7.4 Conclusions

In this chapter we studied the broadband spin response dependency on
power and transverse laser beam profile. The experimental results show that,
for a given detuning from the atomic resonance, if the broad response area is to
be minimized, a beam with the maximum size and smallest photon flux must
be used.

The theory of motional averaging, along with the insights given by diffusion
equation, while successfully qualitatively explaining most of the observed fea-
tures, fails to give precise quantitative predictions about the spectral shape and
coupling. Further studies are required to identify a more precise description of
the broadband noise.



Chapter 8

Coherently Induced Faraday Rotation

In this chapter, we present a spin readout rate ΓS calibration method. In the
Coherently Induced Faraday Rotation (CIFAR), an optical polarization mod-
ulation coherent tone couples to the spins, interferes with spin response and
reveals information about the readout rate ΓS. The signal is also sensitive to the
tensor coupling parameter ξS, spin linewidth γS and to the broad spin mode
dynamics. The technique has been developed as complementary method to
the presented in Chapter D, which itself gives information about the ratio of
quantum back-action to thermal noise (QBA/TH).

We start by describing the basic idea, the signal modeling, and finish the
chapter discussing experimental results.

8.1 Introduction

Estimating the spin-light interaction strength allows us to determine the ef-
fect of the light in the spin dynamics. For minimizing systematic errors, an
ideal calibration technique would provide the measurement in a disturbance
free and self-calibrated manner. From the practical point of view, it would also
only involve marginal change in the experimental setup.

Our spin ensemble, in the hybrid experiment, is operated in conditions rather
different from the previous setups in QUANTOP (Sherson, 2006; Krauter, 2011).
Operating the experiments in a continuous wave fashion makes most of the
techniques historically employed for calibrating spin-light interaction inappli-
cable.

In Møller et al. (2017), we have used a calibrated amount of classical optical
polarization noise to drive the spins and estimate QBA/TH. The necessity of
calibrating the amount of added noise is the essential crux of the problem, as it
relies in determining the quantum efficiency of the detection path. Essentially,
as the interaction strength increases, the fractional error in detection efficiency
will generate an increased uncertainty in the estimate of QBA/TH. As we aim
to work in the regime in which quantum back-action dominates the spin re-
sponse, we would therefore like to use a method that does not rely on knowing
the photon detection efficiency.

With a closer look on the similarities the spin and mechanical systems share,
we drew inspiration from the Optomechanically-Induced Transparency (OMIT) ex-
periments (Weis et al., 2010), widely used in the optomechanics community as
a calibration technique —see its usage in (Nielsen et al., 2017), for example.

The original OMIT experiment can be described as follows. A phase mod-
ulated input drive is sent to the optomechanical cavity; this cavity, being oper-
ated with a non-zero detuning, converts the phase into amplitude modulation,
quadrature which couples to the mechanical oscillator. The modulated drive is
swept in frequency around the mechanical resonance. For a given detuning, the
response of this drive then interferes with the input, generating a characteristic
dispersive signal. Most importantly, the interference pattern does not depend
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on photo-detector quantum efficiency and its shape is independent of driving
power.

For the case of our free-space spin ensemble, there is no cavity to reference
the response of the oscillator to its own the drive. Nonetheless, using a suitable
EOM we can make arbitrary combinations of input quadratures. Due to the
QND nature the coupling, the drive would then be unaffected by the interac-
tion, serving as reference for the process.

Let us consider the signal modeling. Starting from the QND input-output
relations presented in Chapter 3, the steady state response of the spin system,
in the frequency space is, from equations (3.38) and (3.39)

Xout
L = Xin

L (8.1)

Pout
L = Pin

L + 2ΓSχSXin
L , (8.2)

in which {Xin, Pin} and {Xout, Pout} are the optical quadratures of the input
and output light field, respectively. The coupling to the thermal bath is ne-
glected, as the classical drive dominates the response. We have also dropped
the operator notation and the tensor coupling, for simplicity. Choosing, for
example, an input modulation satisfying Xin = Pin = G, the output phase
quadrature becomes

Pout
L = (1 + 2ΓSχS) G. (8.3)

Notably, drive and response interfere independently of the input amplitude G
—as we were wishing for. In particular, the absolute square of (8.3), for the spin
susceptibility in the high-Q limit χS ∼ 1

2 (δ− iγS/2)−1, we have

|Pout
L |

2 ≡ CIFAR ∝ 1 + 4Γ2
S|χS|2 + 4ΓSReχS = 1 +

Γ2
S + 2ΓSδ

δ2 + (γS/2)2 ,

for δ as relative frequency between the spin resonance and the input modula-
tion tone. The CIFAR signal for a set of spin parameters is presented in Figure
8.1 (left), with θin = −π/4 the input drive satisfying Xin = Pin = G. The def-
inition of θin will be presented in the next section. Notice that the signal is a
combination of a constant, a lorentzian, and a dispersive term. The minimum
and maximum of the signal are at the frequencies

δmin =
1
2

(
−
√

γ2
S + Γ2

S − ΓS

)
(8.4)

δmax =
1
2

(√
γ2

S + Γ2
S − ΓS

)
, (8.5)

being separated by

δmin − δmax =
√

Γ2
S + γ2

S ∼ ΓS,

in the limit high coupling, ΓS � γS. Therefore, one can readily know the read-
out rate just by noting this frequency difference, directly from the sweep figure.
In Figure 8.1 (right), we show the CIFAR signal for various readout rates.

With this, we finish the introduction to the CIFAR signal. Comparing CIFAR
with the calibration technique presented in Chapter D, we see that in CIFAR we
do not need to precisely know the detection efficiency to estimate the coupling
rate. The sensitivity to the thermal occupation of the ensemble, nonetheless, is
lost when using CIFAR. In a sense, both techniques can work in parallel, giving
information about more parameters.

We now move on to the more detailed model, which includes the effects of
tensor coupling, and arbitrary input and detection quadratures.
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Figure 8.1: CIFAR signal and readout rate estimation. Driving the spins with different types of polarization modulation, parametrized
by θ in, leads to interference of the input field with the response. The tensor interaction parameter is set to zero, ζS = 0.(left) By detecting
the phase quadrature of light Pout and driving the spins with θ in ±π/4, leads to a dip at±10 kHz, which is the readout rate ΓS in the limit
of ΓS � γS. Setting the driving modulation and increasing the readout rate (right), leads to a dip shifting accordingly. Other parameters
for this figure are γS/2π = 1 kHz, ωS/2π = 1 MHz.

8.2 General CIFAR expression

A general CIFAR modelling relies on using the precise input-output rela-
tions. We point to Chapter 3 for the discussions on the matter. Here, we repro-
duce some of the steps, with emphasis on the CIFAR context.

The steady state response of the spin system to an optical field, in the matrix
notation, is given by equations (3.42) and (3.50). Dropping the term referring to
the thermal environment coupling, we have

X̂S = 2
√

ΓSLZX̂in
L (8.6)

for the spin system, and

X̂out
L = X̂in

L +
√

ΓSZX̂S = (12 + 2ΓSZLZ)X̂in
L , (8.7)

for the light field, where 12 is the 2× 2 identity matrix. The matrices Z, X̂in
L ,

X̂out
L , X̂S, and L are given in the sidebar1, for reference.

The input driving field X̂in
L can be generated by an EOM that is capable of

producing polarization modulation, as a free space EOM, as shown by Sherson
(2006). An alternative method is to use a polarization sensitive interfometer. A
standard phase modulator in one of the arms, modulates the phase of a weak
laser tone. This tone is subsequently mixed it with a the strong local oscillator
already in use in a polarization beam splitter. If the beams are mixed with or-
thogonal polarizations, the laser at the output of the interferometer will have its
polarization modulated. Controlling the relative path length in the interferom-
eter allows for selecting arbitrary polarization ellipticity or, in the quadratures
language, an arbitrary combination of Xin

L and Pin
L .

In any case, the effect of the arbitrary control is done by choosing θ in as(
Xin

L
Pin

L

)
=

(
cos θin − sin θin
sin θin cos θin

)(
0
G

)
=

(
− sin θin
cos θin

)
G,
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Figure 8.2: Tensor effects in the CIFAR signal. The presence of tensor effects, ζS = 0.04, leads to a non-zero spin response when
detecting the amplitude quadrature Xdet of light. (left) The sign of ζS determines if the response observed will be a dip or a peak. (right)
Detecting an optical quadrature away from the ideal value by ±10◦ leads to mixing with the phase quadrature response, resulting in a
dispersive feature; dashed curves are for ζS = 0 and solid curves have ζS = 0.04. Other parameters for this figure are γS/2π = 1 kHz,
ΓS/2π = 10 kHz andωS/2π = 1 MHz.

for a modulation with amplitude G. The detection quadrature, by the same line
of thought, can be chosen by its φ value(

Xdet

Pdet

)
=

(
cos φ − sin φ
sin φ cos φ

)(
Xout

L
Pout

L

)
.

If φ = 0, the detected quadratures are identical to the output from the spin en-
semble. We remind the reader that the quadratures {Xdet, Pdet} are measured
using balanced polarimetry and that the output quadratures are related to the
Stokes parameters Xout

L ∝ Sz and Pout
L ∝ Sy.

Finally, by plugging in all the matrices in equation (8.7), we get to the general
expressions

Xout
L =

2Pin
L ΓSζ2

SωS

ω2
S +

( γS
2 + ΓSζS + iΩ

)
2
+ Xin

L

(
1−

2ΓSζS
( γS

2 + ΓSζS + iΩ
)

ω2
S +

( γS
2 + ΓSζS + iΩ

)
2

)

Pout
L = Pin

L

(
1−

2ΓSζS
( γS

2 + ΓSζS + iΩ
)

ω2
S +

( γS
2 + ΓSζS + iΩ

)
2

)
−

2Xin
L ΓSωS

ω2
S +

( γS
2 + ΓSζS + iΩ

)
2

,

(8.8)

which are used throughout this chapter.
In particular, we can see the complexities added by the tensor interaction.

In Figure 8.2 (left), we plot the CIFAR signal for measuring the amplitude
quadrature, φ = π/2, and driving at θ in = π/4. The amplitude quadrature,
which contains no spin response in the QND regime, as per equation (8.1), gets
a Lorentzian feature that adds (subtracts) from the constant background for
(negative) positive ζS. The different width features represents the dynamical
cooling induced by the optical probe. When slightly deviating from the ideal
amplitude quadrature detection, a situation often encountered experimentally,
there is an interference with spin response present in the phase quadrature, see
Figure 8.2 (right).

We now move to discussing the experimental realization of CIFAR.

8.3 Experiments

In this section, we present a collection of experimental results accumulated
over the period of approximately 1 year. Being so, the measurements were
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Figure 8.3: Experimental setup. The single pass
a and double pass setups for the CIFAR experi-
ments. The EOM’s arm optical path is marked
in blue for reference. The spin ensemble is posi-
tioned in a constant magnetic field BDC within a
magnetically shielded volume. Optical pumping
(O.P.) is marked by the green arrow.

taken in different experimental conditions of probe power, atomic density and
Larmor frequency, and must not be directly compared to each other. We aim to
show the capabilities and sensitivities of the probing scheme.

For all measurements shown here, we have generated the polarization mod-
ulation using the scheme of a phase modulator within a polarization sensitive
interferometer, as shown in Figure 8.3. In simple terms, at an initial PBS the lo-
cal oscillator and the modulation light are split. The EOM modulates the phase
of the modulation light. At the output of the interferometer, the beams are
recombined in another PBS, leading to polarization modulation of the output
field. One of the output arms ports of the interferometer is aligned to the spin
ensemble and the other to phase stabilization.

The interferometric visibility between the modulation and local oscillator
beams is usually on the order of 90%. We can easily select the type of polar-
ization modulation by changing the interferometer locking point. On the other
hand, the quality of the path length difference control is very important to con-
trol the type of polarization modulation, needing to be stabilized via a feedback
control of a piezo installed in one of the interferometer’s arm.

As it can be seen from the theory curves from Figure 8.1 (right), the dip of
the detected signal will get more pronounced with larger spin readout rates.
Therefore, in this frequency region, in which the drive and the spin response
interfere destructively, the signal is the most sensitive to electronic pick-ups
and other technical imperfections. Having the collected the data, the fitting
procedure used for extracting the various parameters works best if educated
guesses are set as input.

In Figure 8.4 (left), we show the results for various drive amplitudes. We
have set the driving and detection angles such that φ = 0, measuring Pout

L , and
driving at θin = π/4. Increasing the voltage drive leads to a mere scaling of the
detected signal, as described in Section 8.1.

The dependence of the signal on the tensor interaction strength ζS is shown
in Figure 8.4 (right). As presented in Figure 8.2, the tensor coupling leads to a
frequency dependent change in the CIFAR response. We have controlled ζS =
−14 a2

a1
cos 2α by the angle α of the linearly polarized strong probe with respect

to the DC magnetic field. Measuring both {Xdet
L , Pdet

L } output light quadrature
for a drive with θin = π/4. We show that the tensor interaction can be turned
off at α = π/4. For α = {0, π/2}, a feature similar to the shown in Figure
8.2(left) appears in the measurement of Xmeas

L . The frequency shift is due to
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Figure 8.4: CIFAR signal for various drive amplitudes and tensor couplings ζS. The shape of the detected signal is not dependent on the
EOM drive voltage V (left), with detected power scaling linearly with the input drive power ∝ V2. The CIFAR signal is sensitive to the
tensor couplings parameter ζS (right). By choosing different angles of the linearly polarized strong probe with respect to the DC magnetic
field and measuring both {Xdet

L , Pdet
L } output light quadratures, we can set ζS = 0 (in green), ζS = 0.05 (in orange), and ζS = −0.05 (in

blue). Other parameters for this figure are ωS/2π = 340 kHz.
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Figure 8.5: Signatures of the broadband spin
noise. The polarization modulation drive also
couples to the broadband spin modes, altering
the wide CIFAR scan. The data for θ in = 0 pre-
sented in 8.6 is shown, along with the fit func-
tion for ΓS,b = 0, demonstrating the expected be-
haviour for a homogeneous spin-light coupling.

the static terms of tensor interaction, neglected in the Hamiltonian derivation
in Chapter 3.

8.3.1 Broadband spin noise

The modulation of the input polarization, mimicking an enhanced optical
coupling rate, couples to the spins in the same manner the quantum noise fluc-
tuations. Being so, both narrow and broad spin contributions will appear in the
CIFAR response, equation (8.7). The effect of the narrow and broadband noise
contribution, as discussed in Chapter 7, can be modeled as given in equation
(7.5)

X̂out
L,S = X̂in

L,S +
√

ΓSZX̂S +
√

ΓS,bZX̂S,b. (8.9)

with the broad spin mode dynamics as

X̂S,b = 2
√

ΓbLbZX̂in
L,S, (8.10)

where Lb is L with γS0 → γb, and ΓS → ΓS,b. ΓS,b is the broadband spin mode
readout rate. According to this model, both responses will driven by the same
light field. By having a common origin, they will interfere with the drive and be
present in output light. Given the characteristic broadband mode bandwidth
of order MHz, the CIFAR scan must be cover a large frequency band.

In Figure 8.6, we show a wideband CIFAR scan for φ = 0 and different
θ in. Differently than the figures shown above, we decompose the demodulated
signal in the polar form, plotting the amplitude squared R2 and its phase φ.
With ωS/2π = 1.3 MHz, we set the scan to cover a ∼ 1.1 MHz span. The trace
for θ in = π/2 should have a response to light that closely matches the case
for a driven harmonic oscillator. The fit to the model given in equation (8.9),
for ΓS,b = 0, is presented as the black curve in Figure 8.5. The extra noise in
the wings of Figure 8.5 (top) and the phase of the spin response in Figure 8.5
(bottom) give away the message of coupling to the broadband mode.

The full model fit, now including a non-zero broadband mode coupling rate,
is given in Figure 8.6. The presence of the broadband response as modeled
above reproduces the detected features rather well, including the electronic
phases response. The extracted spin mode coupling rates ΓS/2π = 19 kHz
and ΓS,b/2π = 83 kHz. Although rather well coupled to light, the broad mode
quantum cooperativity is ΓS,b/(2γb(nS + 1

2 )) ∼ 0.02, for γb/2π = 1.3 MHz
and ns = 0.8 (assumed to match the narrow mode occupation). Therefore, it is
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Figure 8.6: Wide CIFAR scan. The CIFAR signal for various input modulation θ in are shown, with detected power (left) and electronic
phase (right).
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safe to assume that quantum back-action effects on the broad mode are negli-
gible. The narrow mode, for example, shows CS

q ∼ 5.
In this chapter, we have shown a polarization modulation calibration tech-

nique the gives direct information about light-spins interaction strength. The
signal generated by this method is sensitive to the various intricacies of the
coupling, including tensor effects and broadband spin modes.



Chapter 9

Spin optodynamics in a warm cesium
ensemble

In this chapter we report on the performance of the spin oscillator placed
in an optical resonator. The results presented here were part of an effort to-
wards increasing the spin quantum cooperativity, one of the quantities that was
a major limitation in the performance of the first implementation of the hybrid
experiment (Møller et al., 2017).

Due to coherent build up of the intra-cavity field, the effective optical depth
of the ensemble, for a cavity with finesse F , is increased as 2

πF (Ye and Lynn,
2003), leading to a corresponding quantum cooperativity boost. Previous ex-
periences with cavity enhanced warm vapour in the group (Vasilakis et al.,
2015), showed that finesses as F ∼ 17 were achievable. An astounding ×10
increase in quantum cooperativity was a good reason to study this configura-
tion in more detail. If intra-cavity losses could be made low, the optical link
between spin and mechanics would also be efficient. Note how both a high Cq
and inter-system losses are important for optimal hybrid system performance.

It did not take long to realize that operating the spins in the of high probing
powers, as in the hybrid experiment, the optical resonator introduced drasti-
cally different spin oscillator dynamics. In particular, we observed a rather
sensitive dependence of the spin response on cavity detuning, effects that re-
semble the dynamics of an optomechanical system (Brahms and Stamper-Kurn,
2010). The spin optodynamical system, in which the mechanical oscillator is re-
placed by the spin analogous, can exhibit the same phenomena as those ex-
plored in the field of quantum optomechanics, as cooling (Gigan et al., 2006)
and amplification (Kippenberg et al., 2005), and ponderomotive squeezing of
light (Brooks et al., 2012). As we will see in the next pages, we observed all the
mentioned effects in our warm spin ensemble implementation. Many of these
effects have been observed in a cold spin ensemble cloud (Kohler et al., 2017),
also in a spin-mechanics hybrid configuration (Kohler et al., 2018).

As far as the hybrid experiment is concerned, we have not yet implement
the cavity-enhanced spin response in the next generation of experiments. The
trade-off between finesse enhancement and intra-cavity photons escape effi-
ciency κ in/κ, the fraction of intra-cavity photons leaking into the optical mode
of interest, was not beneficial for the hybrid experiment performance. Due to
around 10% vapor cell induced round-trip losses, requiring κ in/κ > 0.9 would
lead to F ∼ 1, undermining the Cq improvements.

In this chapter we present a summary of the procedures used for cell cavity
characterization and the initial results on the cavity enhanced spin response.

9.1 Cell cavity characterizations

As in the previous cell cavity designs utilized in the group, we positioned
the vapor cell in a Fabry-Perot interferometer in an almost concentric mirror
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1We chose mirrors with radius of curvature
such that there was a ∼ 10 mm gap for
placing a small mirror inside the cavity,
for free space-like characterizations of the
system.
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Figure 9.1: Beam waist sensitivity on the cav-
ity length. Percent scale uncertainties in the mir-
ror curvatures lead to a large uncertainty on the
beam waist, if calculated using equation (9.1).
The mirror radius of curvatures are R = 110 mm
and R2 = 120 mm.

configuration. The mirrors M1 and M2, with nominal radius of curvature1

R1 = 110 mm and R2 = 120 mm. The mirror transmissivities are r1 = 99.97%
and r2 = 80%, respectively. We placed the two cavity mirrors just outside the
magnetic shielding, at d ∼230 mm distance. With this mirror spacing configu-
ration, we operate with very small beam radius w0, required for fitting the light
through the 300 µm side length cell, but also close to the unstable resonator
regime. The beam radius w0, the transverse cavity mode frequency νmn of the
TEMmn mode, and the finesse coefficient are (Kogelnik and Li, 1966)

w4
0 =

(
λ

π

)2 d (R1 − d) (R2 − d) (R1 + R2 − d)

(R1 + R2 − 2d)2 (9.1)

νqmn

FSR
= (q + 1) +

1
π
(m + n + 1) arccos

√
(1− d/R1) (1− d/R2) (9.2)

F ≈ π (r1r2)
1
4

1− (r1r2)
1
2

(9.3)

in which λ is the wavelength of light, c the speed of light, d is the cavity length,
FSR = c/2d the free spectral range of the cavity, and q the longitudinal mode
number. The typical transmission spectrum of the cell cavity is shown in Figure
9.2 (orange points). Finite mode-matching of the input mode to the fundamen-
tal TEM00 cavity mode appears as non-zero contributions from the TEM10 and
TEM20 families.

The cavity parameters we are mostly interested in measuring are the cavity
beam waist w0 and the cavity decay rate κ. The beam waist defines the overall
interaction with the spins once the vapour cell is aligned to the cavity mode.
As discussed in Chapter 7, we are interested in the biggest filling factor of the
cell channel, for reducing the broadband spin contribution, entailing in a large
w0. Nonetheless, we are also interested in achieving the highest possible cavity
finesse, which entails using a small w0. The compromise is solved by choosing
a beam waist whose Rayleigh length zR = πw2

0/λ matches the cell length. For
a cell with Lcell =10 mm, it leads to w0 ∼ 50− 60 µm. The cavity decay rate
gives us information about the overall losses and can be used to determine the
vapor cell induced intra-cavity losses.
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Figure 9.2: FSR, TMS and empty cavity linewidth measurements. By scanning the cav-
ity piezo around resonance, cavity length and waist parameters are calibrated by using
phase modulated light. The transmitted light without modulation (yellow) shows the
spectral decomposition of the input mode in the cavity mode basis. We aim to match the
input to the TEM00 mode. Finite mode-matching appears as non-zero contributions from
the TEM10 and TEM20 families. The sidebands are set for calibrating the frequency axis
and the cavity FSR.
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Figure 9.3: Beam waist sensitivity on the trans-
verse mode splitting. The TEM00 beam waist
plotted versus the transverse mode splitting.
The mirror radius of curvatures are R = 110 mm
and R2 = 120 mm. Note how the dashed curves
represent a ×5 larger uncertainty than in Figure
9.1.

The beam waist can be estimated by measuring the using cavity length d
and mirror curvatures R1, R2, as given in equation 9.1. In Figure 9.1, we show
the beam waist as a function of the cavity length. Note the sensitivity to the
cavity length and in the mirror curvature R1. The manufacturer specifies the
curvatures with a ±5% margin.

A trustworthy method for estimating the beam size is using the frequency
of the higher order transverse modes TEMmn. As the different modes will pick
up different overall phases per cavity round trip, the frequency of the modes
is sensitive to the radius of curvature and to the total cavity length as given in
equation (9.2). We define the transverse mode splitting νtms as

νTMS ≡ νq10 − νq00 =
FSR

π
arccos

√
(1− d/R1) (1− d/R2). (9.4)

In Figure 9.3 we show how the transverse mode splitting measurement gives a
much more precise estimate of the beam waist, even considering the manufac-
turer mirror specs. The sensitivity of this method is about 2.5 MHz µm−1.

Given the sensitivity of the cavity waist estimation on the mirror’s radius
of curvature and cavity length, we proceed to characterize the cavity parame-
ters in an all optical method. We use an EOM to generate phase modulation
sidebands around the laser carrier. By scanning the cavity length around res-
onance, the transmission signal will give rise to transmission peaks allowing
for estimating the cavity decay rate κ and the transverse mode splitting νTMS.
Finally, we estimate the free spectral range by driving the EOM with with a
frequency close to the longitudinal mode spacing, here ∼ 560 MHz.

With the aid of calibration sidebands (ωcal/2π = 50 MHz). We determine
the FSR is ∼ 660 MHz. The calibration sidebands allow extraction of the cavity
decay rate and transversal mode spacing, here κ/2π = 26 MHz and νTMS =
63 MHz, respectively. The beam waist for this given cavity setting is 65(2)µm.

We proceed to align the cell to the resonator optical mode. Placing the cell
in the cavity will enlarge the optical length by ∼ 4 mm due to the glass cell
windows, therefore reducing the beam size to approximately 55 µm.

Placing the cell J18 in the resonator brings the cavity linewidth to κ/2π =
33 MHz, corresponding to a L = 7% of round trip added losses. The photon
escape efficiency through the mirror M2, here defined as

ηcav =
T2

T1 + T2 + L
(9.5)

goes from ∼ 0.9 to ∼ 0.67 for the cell cavity with the aligned cell. Correspond-
ingly, the finesse F goes from 26 to 19. Although the promising cavity finesse,
ηcav is prohibitively low. In the current hybrid experiments, the cell induced
losses should not exceed 5%, otherwise the spin system itself becomes the lim-
iting factor in quantum efficiency.

Overall, despite the low efficiency of the photon detection, a parameter
which the hybrid experiment is quite sensitive to, the enhancement of the spin-
light interaction is potentially substantial. In the next two sections we will
present some experimental results and provide some theoretical background
to the findings.

9.2 Experiments

We have set up the spin cavity as shown in Figure 9.4. The mirrors M1 and
M2 are mounted to Ø1.5” posts. The cavity is read out in transmission, with
the polarimetry detection set up after mirror M2. The probe laser frequency is
set to 852.3700 nm, approximately −6 GHz from the F = 4→ F′ = 5 electronic
transition in the D2 line. The cavity path length is stabilized by dither lock-
ing. The cavity resonance can be tuned and modulated via piezoelectric action.
We lock the cavity in reflection, with dither frequency ωdither/2π = 100 kHz.
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Figure 9.4: Sketch of the cell cavity setup. A
cavity is assembled around the magnetic shield-
ing (beige shaded area). The spin ensemble
pumping, probing, and detection are similar to
the described in Chapter 3. A sinusoidal drive
with frequency ωdither/2π = 100 kHz drives
the cavity resonance via a piezo-electric actuator.
The locking signal is fed back to a second piezo.
The output light from the cavity is detected in
balanced polarimetry.

The experiment is ran in the continuous mode, with the optical pumping per-
formed by a repump beam only. The photo-detection is set up in transmission,
allowing us to freely choose the optical quadrature of interest. The different op-
tical quadratures are set adjusting the HWP and QWP used in the polarimetric
measurements.

We start by showing the results with the optical cavity tuned to resonance,
∆ = 0. The effects of a considerable Cq in the optical signal are very similar
to the ones discussed in Chapter 3. In Figure 9.5 we show the power spec-
tral density of two different optical quadratures, with ϕ ∼ 0 deg (left) and
ϕ ∼ 90 deg. The quantum cooperativity was estimated by the white noise
method, described in Appendix D, being in the range of 0.5-1.5 for the experi-
ments shown in this section.

As discussed in Section 3.3, the probing beam induces light shifts due to
the non-zero tensor coupling. The initial Zeeman level splitting, set by the
quadratic component ωqzs/2π = 0.6 kHz, is further enhanced to approximately
1.9 kHz by the probe laser with linear polarization along BDC (α = 0 deg) in Fig-
ure 9.5 (left, orange curve). By setting the probe polarization to α ∼ 56 deg, we
cancel the shifts via light, recovering the effective single spin mode descrip-
tion (blue curve). Having set α, we rotate the detection waveplates to observe
an optical quadrature with ϕ ∼ 90 deg. We fine tune the phase to mostly ob-
serve the drive optical quadrature, to observe the optical correlations induced
by the spins. Notice the rather large broadband spin noise component, which
is approximately 6 shot noise units. In Figure 9.5 (right) we observe frequency
dependent squeezing of light, a quite remarkable feat as the overall detection
efficiency was measured to be η = 0.55. The detection efficiency is mainly lim-
ited by the intra-cavity losses, as the empty cavity κin/κ = 0.91 are decreased
to (κin + κex)/κ = 0.65.

By detuning the optical cavity from resonance, substantially different effects
than those explored in the free space case can be explored. In particular, the
dynamical effects described in Section 9.3.
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Figure 9.5: Cavity-enhanced spin noise in the phase and amplitude quadratures. (left) The PSD of cavity output phase noise (ϕ = 0 deg)
exhibiting the spin response for a probe laser with linear polarization at α = 0 deg (in orange) and α ∼ 56 deg (in blue). The latter
light polarization leads to tensor Stark shifts that cancel the quadratic Zeeman splitting. (right) The PSD of the optical quadrature with
ϕ ∼ 90 deg, showing squeezing of the light fluctuations.
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Figure 9.6: Cavity assisted spin heating and
cooling. (a) The spin ensemble exchanges en-
ergy with the laser beam. Detuning the laser
from the cavity allows for suppressing one of the
Stokes scattering processes. (b) For a positive
mass oscillator in a red detuned cavity, photons
will predominantly scatter at ωL + ωS, remov-
ing a spin excitation nS in the process. The states
|nph, nS〉 describe the number excitations in the
light and spin oscillators. (c) Switching the ef-
fective mass of the oscillator, for the same cav-
ity detuning, leads to preferential scattering at
ωL − ωS, adding a spin excitation nS in the pro-
cess. Figure adapted from Nielsen (2016).

In a new experimental run, we set the spin system as an effective positive
mass oscillator, resembling a true mechanical oscillator. In Figure 9.7 (left) we
detune the cavity by ∆/2π = ±3 MHz and observe the power spectral density
for ϕ = 0◦. The full lines are fits to Lorentzian functions. By detuning the cavity
to ∆ < 0 (∆ > 0), we observe a downshift (upshift) of the oscillator frequency
and optical broadening (narrowing) of the spin response. The spin linewidth
increases from γS/2π = 1.5 kHz. For the resonant probing, to γS/2π = 1.8 kHz
for the red detuned cavity (red curve). In the case of blue detuning, the spin
response narrows, becoming γS/2π = 1.2 kHz wide.

By reversing the effective mass sign, the same cavity detuning leads to the
opposite shift and broadening. For this configuration the cavity output power
is higher than the negative mass case, being 150 µW. The spin linewidth in-
creases from γS/2π = 2.1 kHz, for the resonant probing, to γS/2π = 2.4 kHz
for the blue detuned cavity (blue curve). In the opposite detuning, the spin
response narrows to γS/2π = 1.0 kHz.

The principles of the cavity induced cooling and heating can be better un-
derstood by considering energy conservation arguments (Schließer, 2009). The
atoms exchange energy with the laser beam, promoting excitations and de-
excitations of the spin ensemble, as depicted in Figure 9.6 (a). For a laser beam
far detuned from the excited state electronic states F′, the interaction with light
leads to the balanced Stokes (ωL−ωS) and anti-Stokes scattering (ωL +ωS) pro-
cesses. Placing the ensemble inside a resonator and setting the laser frequency
away from the resonance will unbalance the rates of the processes, favoring
one of them, as seen in Figure 9.6 (b and c). In the case of a red detuned cav-
ity (∆ < 0), scattering higher frequency photons ωL + ωS happens with higher
rate. The oscillator will provide the required energy difference. In the case of
a positive (negative) mass oscillator, a spin excitation will be removed (added)
from the spin system.

The dynamical effects induced by the cavity can be further enhanced when
increasing the intra-cavity power. If the cavity detuning is set in a way the
Stokes process scatters atoms away from the ground state level, these pho-
tons will parametrically drive the ensemble (Brahms and Stamper-Kurn, 2010).
When the rate of the Stokes scattering introduced by the probe overcomes the
intrinsic decay rates, the spin system is parametrically driven out of its initial
state. In the same way as in the AC Faraday angle experiments, the spin is set
to coherently oscillate around the Bloch sphere pumped by the optical field.
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Figure 9.7: Spin oscillator exhibiting dynamical heating and cooling. The effects of the cavity detuning resemble cavity optomechanics:
detuning the cavity to the red (blue) leads to a downshift (upshift) of the oscillator frequency and optical broadening (narrowing) for an
effetive positive mass spin oscillator (left). Switching the mass sign leads to the oppositve frequency shift and broadening behaviour. For
these sets, the cavity output power is 100 µW (left) and 150 µW (right). Detuned traces have ∆/2π = ±3 MHz. The difference in spin
frequency ωS is due to slight change in BDC.
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Figure 9.8: Spectrum of the signal exhibiting steady state coherent oscillations. By
tuning the input power and blue detuning, the positive mass spin oscillator is put in
a self-oscillator regime. We show the spectrum of the output light in shot noise units.
The features linewidth is limited by the resolution bandwidth of the spectrum analyzer
(< 50 Hz). Up to the 3rd harmonic are observable.

Spectrally, the output cavity field has its polarization modulated at the Lar-
mor frequency ωS with the amplitude determined by the effective coupling. In
our experiments, the optical spectrum we observe is presented in Figure 9.8.
The various narrow peaks are the harmonics of the 1.3 MHz Larmor frequency.
The width of the features is narrower than the natural spin linewidth, a conse-
quence of the parametric pumping.

9.3 Spin dynamics in a cavity

The optodynamical effects of the spin ensemble in an optical resonator have
been studied in depth, including experimental, in Kohler et al. (2017). For more
general aspects of the interaction, see (Brahms and Stamper-Kurn, 2010). Here,
we will describe the cavity input-output relations and the dynamical cooling
effects.

As described in Chapter 3, a probe beam far detuned from the F = 4 →
F′ = 5 in the D2 line, interacts with the ensemble via the scalar and vector light
polarizability as

Ĥeff/h̄ = ∆Ŝ0 + ωS F̂x + 2geff
(

F̂0Ŝ0 + F̂zŜz
)

(9.6)

with geff ∼ 1/∆La, in which ∆La ≡ ωL−ωa, the frequency detuning in between
the light and the atomic transition. The interaction, as well as operators F̂i and
Ŝi, have been introduced in Chapter 3, with the extra detail that the optical field
operators are now related to the intra-cavity field. We disregard tensor effects
for simplicity. The detuning ∆ ≡ ωL − ωc, is the frequency difference of the
input laser field with respect to the cavity resonance.

From here on, we will assume a strong, classical x̂-polarized drive field
and a ŷ-polarized quantum field, that is, âx → αxeiφ and ây → ây, in which
φ = arctan(2∆/κ) is the phase of the intracavity carrier field with respect to
the incoming field. This choice is such that the language here utilized and the
one in Chapter 2 match in the functional form. We proceed to linearize the
Hamiltonian (9.6) as

Ĥeff/h̄ ∼ −(∆− geffF0)â†
y ây + ωS F̂x − iαxgeff F̂z(âye−iφ − â†

yeiφ), (9.7)
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in which we have also assumed a constant number of atoms F̂0 → F0. We also
assume, a priori, that the steady state exists and is stable. We have disregarded
static terms (as ∝ |αx|2). The spin ensemble shifts the cavity frequency accord-
ing to the total number of atoms F0 ∼ Na, a shift that can be compensated by
tuning the cavity back to resonance.

From this hamiltonian, using the Heisenberg-Langevin formalism, we cal-
culate the equations of motion for the light and spin variables

d
dt

ây = (i∆− κ/2)ây + geffαxeiφ F̂z +
√

κ/2ây,in

d
dt

F̂x = igeffαx(âye−iφ − â†
yeiφ)F̂y − γS0 F̂x/2

d
dt

F̂y = −ωS F̂z − igeffαx F̂x(âye−iφ − â†
yeiφ)− γS0 F̂y/2

d
dt

F̂z = ωS F̂y − γS0 F̂z/2.

(9.8)

The equations look rather similar to the free space coupling, given in equations
(3.28). As in Chapter 3, we have added all the decay effects, induced by light
and other dephasing processes, via γS0.

A crucial difference is that the spin components now can be driven by a dif-
ferent optical quadrature, set by the phase φ. We can gain more intuition about
the evolution by re-writing the field in terms of the more familiar Stokes oper-
ators Ŝy and Ŝz, as given in Section A.3, and setting F̂x → Fx. This limit is valid
for small deviations from the unperturbed spin components, that is, without
coupling to light. With the transformation to the polarization operators, we
have

d
dt

Ŝy = −∆Ŝz − κŜy/2 + geff|αx|2 F̂z cos φ

d
dt

Ŝz = ∆Ŝy − κŜz/2 + geff|αx|2 F̂z sin φ

d
dt

F̂y = −ωS F̂z + geffFx(cos φŜz − sin φŜy)− γS0 F̂y/2

d
dt

F̂z = ωS F̂y − γS0 F̂z/2.

(9.9)

From this perspective, we see that the spin-cavity system rotates the polariza-
tion of light. The birefringence induced by the spins into the cavity, as well as
the rotation induced by light into the spins, is cavity detuning dependent. The
cavity detuning plays the role of a trigger to the feedback dynamics. If

• ∆ = 0, then φ = 0, and the cavity plays no role in the dynamics of the
ensemble (apart from boosting the coupling constant), that is, the atomic
response contained in Ŝy does not couple to the spin dynamics.

• ∆ 6= 0, the intracavity quadrature that drives the oscillator gets a contri-
bution from the spins response. As Ŝy is modulated by the sine function,
which is odd around φ = 0, the spin system will be acted uopn by an
optical force either in or out-of-phase with respect to the motion, effec-
tively dampening or amplifying the response depending in the sign of
the detuning ∆.

Let us now study the dynamical effects of the cavity in the spin susceptibil-
ity. For that, we go to the Fourier space and solve for the evolution of the spin
variables disregarding the input field fluctuations. We look for how an external
force F̂ acts on F̂z. From equations (9.8), for a constant mean spin, F̂x → Fx, we
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2The Fourier transform convention follows
the one from Møller et al. (2017).

have2

ây(Ω) =
αxgeff F̂z(Ω)

i(Ω− ∆) + κ/2

â†
y(Ω) = [ây(−Ω)]† =

αxgeff F̂z(Ω)

i(Ω + ∆) + κ/2

(iΩ + γS0/2)F̂z =
ωS

iΩ + γS0/2

[
−ωS F̂z − igeffαxFx(ây(Ω)− â†

y(Ω))
]
+ F̂.

Solving for F̂z, for a given input force F̂, will give us the cavity enhanced spin
susceptibility

χ−1
S ≡ F̂

F̂z

= (iΩ + γS0/2)2 + ω2
S + iωSg2

effα
2
xFx

[
1

i(Ω− ∆) + κ/2
− 1

i(Ω + ∆) + κ/2

]
.

(9.10)

The first three terms make the natural spin susceptibility in the absence of cou-
pling to the cavity. The term Σ(ω) contains the cavity induced feedback, a
Fourier frequency and cavity dependent contribution. Note that the overall
scaling goes as approximately the readout rate ΓS ∝ g2

effα
2
xFx.

The susceptibility (9.10) resembles the dynamical broadened mechanical anal-
ogous, given in equation (2.22). It is not a surprise, as we have been going on
our way to approximate the spin system as an oscillator. From equation (9.10),
we can simplify the susceptibility to contain the dependencies on the optical
damping/excitation and frequency shift

χ−1
S = ω2

S + 2ΩδωS −Ω2 − iΩγS, (9.11)

for γS = γS0 + δγS. For spin coupling rates satisfying g2
effα

2
xFx � κ, the cavity

effects can be approximated to their values at the spin resonance ωS, such that

δωopt ≡
ReΣ(ωS)

2ωS

= −
2g2

effα
2
xFx

κ

[
(∆ + ωS)κ/2

(∆ + ωS)2 + (κ/2)2 +
(∆−ωS)κ/2

(∆−ωS)2 + (κ/2)2

]
(9.12)

γopt ≡ −
ImΣ(ωS)

ωS

= −
2g2

effα
2
xFx

κ

[
(κ/2)2

(ωS − ∆)2 + (κ/2)2 −
(κ/2)2

(ωS + ∆)2 + (κ/2)2

]
, (9.13)

the frequency shift and dynamical broadening. The small coupling approxi-
mations entailed substituting Ω = ωS. The functional dependence of these
expressions was already shown in Figure 2.8, in connection fo the optomechan-
ical readout rate and sideband assymetry parameters. An important feature of
the spin oscillator is the dependence of the dynamical effects on the effective
mass, here parametrized by Fx. A negative mass Fx > 0 will have frequency
shift and broadening opposite to the positive mass Fx < 0 cases.
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Chapter 10

Back-action evasion

In this chapter we describe the back-action evasion experiments performed
in our hybrid system. We show that the measurement back-action imposed
in each of the constituents can be interfered, destructively or constructively, de-
pending on the choice of spin effective mass. We also show that the mismatch of
linewidths, along with the particular light-oscillator couplings, introduce limits
and intricacies to the otherwise simple QND interaction.

We start by presenting the full model and then proceed to break down the
various effects we encounter in the accessible parameter space, arriving at the
ideal models discussed in Chapter 1. With this approach, I hope to present
to the reader an accounting of the challenges imposed to recover the simpler
expressions and intuition built based on the ideal models.

The second part of the chapter deals with the experimental implementation
of our hybrid system. We breakdown the choice of parameters and the daily
check-ups followed in a operation run. The first experimental realization of the
back-action evasion in the spin-mechanics hybrid configuration is presented in
Møller et al. (2017). Further experimental improvements are also featured in
Thomas et al. (2020).

10.1 Full model

The intricate details of our hybrid system revolve around transformations
that light experiences from the input to photodetection. As shown in Figure
10.1, once the input light has interacted with the spin system, it passes by a se-
ries of rotations, encounters lossy elements, interacts with the optomechanical
system, to only then be directed to photodetection. All the relevant features are
included in our hybrid theory model, which will be discussed in short.

The spin system, interacting with light and its environment has been pre-
sented in Chapter 3. A full model must also include the effect of broadband
spin noise, discussed in Chapter 7. The mechanical system and its relevant
coupling, have been presented in Chapter 2. We start this section by describing
the optical link between the systems, fundamental in our hybrid system. We
will be writing the formulae in the matrix formalism, as we have done for the
individual systems. In this formalism, the hybrid system is reduced to a series
of matrix multiplications, linking the input vector states and parameters to a
vector output state. At the end of this section, hopefully the reader will be able
to simulate the hybrid system performance on their own.

There are two ingredients that will show up in different parts of the hybrid
implementation and will to be introduced first: optical losses ν and η, and in-
terferometric rotations ϕ and ϑ.

Optical losses that do not involve change of the transverse mode profile are
modelled as beam splitter-like operations. In this picture, a input mode X̂ in

L
is partially transmitted and admixed with vacuum X̂L,η from its dark port.
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1The interferometric visibility is extracted
from the interference fringe of two beams
with the same intensity and polarization,
as

V =
Imax − Imin

Imax + Imin
, (10.2)

for Imax(min) as the maximum (minimum)
intensity measured in the photo-detector.

2

Oϕ =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)

3

ZS =

(
0 −ζS
1 0

)

Figure 10.1: Symbols and notations. The schematic representation of the hybrid experiment, including, from left to right,
the sources, losses, various rotations, and detection. The spin system is represented in the orange box. The mechanical is the
dark blue. Optical losses (rotations) are pictured in the light blue (white) elements.

For each process with efficiency η (in power), we model a beam splitter with
transmission coefficient η, as

X̂out
L =

√
ηX̂ in

L +
√

1− ηX̂L,η . (10.1)

Optical losses that do involve modification of the transverse mode are also
modelled as beam splitters, but here with efficiency η = V2, a function of the
overlap V between the input and target mode, the interferometric visibility1 (or
simply visibility). The input-output relation for this type of loss is

X̂out
L = VX̂ in

L +
√

1−V2X̂L,V, (10.3)

for X̂L,V as the associated vacuum channel. The processes modelled by this
input-output relation are cavity mode-matching and final homodyning of the
optical field.

When two optical beams are combined in a interferometric configuration,
the resulting field will be a function of the path length difference the two beams
have separately propagated. Effectively, the interferometer’s input-output rela-
tion is of a beam splitter with sinusoidal reflection and transmission coefficients
(Danilishin and Khalili, 2012)

X̂out
L = OϕX̂

in
L (10.4)

for Oϕ as the rotation matrix. 2

With rotations and losses introduced, we can proceed to talk about connect-
ing the two systems. As shown in Chapter 3, the atomic system optical output,
in matrix form, is given by

X̂out
L,S = X̂ in

L,S +
√

ΓSZSX̂S (10.5)

= (12 + 2ΓSZSLZS)X̂
in
L,S +

√
ΓSZSLF̂S (10.6)

in which the definition of Z, from Eq. (XXX), is reproduced in the sidebar3.
In our hybrid platform, as shown in Figure 10.1, the output of the atomic

system becomes the optomechanical system input, according to the relation

X̂ in
L,M = Oϕ(

√
νX̂out

L,S +
√

1− νX̂L,ν), (10.7)

in which all optical loss channels have been lumped in the effective parameter
ν, and a rotation ϕ has been performed. The mapping above shows us that
given a rotation ϕ, the input amplitude quadrature will be a combination of the
spin amplitude and phase quadratures. As discussed on Chapter 2, the input
above will be further processed by the cavity, leading to extra optical rotations
for ∆ 6= 0. In Section 10.3, we will see that cavity detuning and intra-cavity
losses introduced rotations that can not be undone by interferometric control.
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4

A =

(
κ/2− iΩ ∆
−∆ κ/2− iΩ

)
B =

(
0
−2g

)
,

C = (−4g 0)

We point out that, in general, the optical quadrature driving the mechanical
system will contain a non-zero contribution of the spin oscillator response.

Once the spin output is mode matched to the optical cavity, the light after
interaction is described by the cavity input-output relations. Taking account
for the acquired phase shift with respect to the input, finite overcoupling and
intracavity losses rates κin and κex, respectively, the output field is given by
expression (2.32)

X̂out
L,M = Oᵀ

ψout
(κinY−1 − 12)O

ᵀ
ψin
X̂ in

L,M (10.8)

+
√

κinκexOᵀ
ψout

Y−1Oᵀ
ψin
X̂ in

L,ex (10.9)

−
√

κinOᵀ
ψout

Y−1BχM00 F̂M (10.10)

including the effects of the mechanical oscillator 4as Y = A− BχM00C and re-
spective coupling to the bath reservoir via the Langevin force F̂M. The output
field from the optomechanical cavity contains effects of the three different drive
forces which, line by line, are the input vacuum that contains the spin response
X̂ in

L,M, the vacuum leaking in the cavity from lossy channels X̂ in
L,ex, and the ther-

mal noise F̂M from the phonon bath reservoir. Each contribution is transduced
in a different way by the mechanical degree of freedom.

The last step in the description is the final homodyning of the joint signal.
The output cavity field, on its way to being finally detected, is overlapped with
a local oscillator with efficiency η and phase ϑ

X̂meas
L =

√
ηOϑX̂

out
L,M +

√
1− ηX̂L,η . (10.11)

Note that the our homodyne measurement only allows us to access one com-
ponent of X̂meas

L for a given choice of ϑ.
The equation (10.11) contains the full information needed to fit the experi-

mental data and quantify correlations among the various constituents. We may
now construct a bigger matrix U in the basis of the optical and thermal forces
acting on the systems, namely

Qin ≡ (F̂X
S , F̂P

S , F̂M, X̂in
L,S, P̂in

L,S, X̂in
L,ν, P̂in

L,ν, X̂in
L,ex, P̂in

L,ex, X̂in
L,η , P̂in

L,η)
ᵀ (10.12)

such that the equation (10.11) is now

Qout = UQin, (10.13)

with Qout ≡ (X̂M, P̂M, X̂S, P̂S, P̂meas
L )ᵀ as the output vector. The matrix U is,

therefore, rectangular.
To sum up, we have a linear system of equations, in which 5 degrees of free-

dom are of interest: P̂ meas
L , the detected phase light quadratures, and X̂S, P̂S, X̂M, P̂M,

the spin/mechanics canonical variables.
To relate the vectorQout to the measured power spectral density, we take the

absolute square of the vectorQout given the input matrix of spectral densities

S̄inδ(Ω−Ω′) =
1
2
〈Q†

in(Ω)[Qin(Ω′)]ᵀ +Qin(Ω)[Q†
in(Ω

′)]ᵀ〉. (10.14)

The input spectral density S̄in is a square matrix that characterizes the correla-
tion among the various input thermal and vacuum fluctuations. The spin and
mechanical thermal baths lead to independent dynamics for each system, as
they have independent phyiscal origin. The same applies to the amplitude and
phase quadrature terms X̂ in

L,i. Although all being vacuum noises, they represent
different uncorrelated realizations of it. Ultimately, the matrix S̄in has diagonal
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5Z0 =

(
0 0
1 0

)

entries

diag(S̄in) =

(
SFX

S FX
S

, SFP
S FP

S
, SFM FM , SXLXL , SPLPL , SXLXL , SPLPL +

ν

1− ν
SS,bb,

SXLXL , SPLPL , SXLXL , SPLPL

)
,

(10.15)

and all other elements are equal to zero. The broadband noise SS,bb is added
via the inter-system loss port in the P̂in

L,ν field, effectively experiencing the same
losses and rotation as the mean spin noise mode. This approach is valid in
(i) the narrow-band limit, as the broad spin mode PSD is approximately flat
when the frequency band of interest focus in mean spin mode, and (ii) in the
limit in which the spin modes do not significantly interfere among themselves.
The power spectral densities constituting equation (10.15) are defined in equa-
tions (A.7) and (A.8), with Fourier frequency dependencies Ω dropped for
brevity. The diagonal entries related to light variables are all vacuum noise,
therefore the indistinguishable labelling.

Finally, the spectral densities of the output signal is

S̄out = U†S̄inU. (10.16)

This expression contains not only the power spectral densities, but also the
cross-correlation of the various variables of interest. In Chapter 11, we will get
to use the correlations as calculated above.

Having introduced the full model, in the remaining part of this Chapter we
will focus on the light variables captured in Eq. (10.11), breaking down the
contributions in more digestible bits. For simplicity, we will take the lossless
scenario. We will connect the full model picture given here with the ideas dis-
cussed in Chapter 1, showing how the back-action evasion measurement can
lead to perfect noise removal.

10.2 QND limit

As described in the section above, many of the modelling complexities arise
due to rotations induced by interferometers and the optomechanical cavity, and
losses. By setting these contributions to zero, we start recovering the ideal QND
picture, presented initially in Chapter 1, language in which back-action evasion
is only due to the oscillators opposite relative mass. This is the approach taken
in the proposal Hammerer et al. (2009).

The initial point of the analysis is the measured optical quadratures, given
in equation (10.11). By setting the phase rotations ϕ, ϑ, ψin, ψout and optical
losses η, ν, κex to zero, also including the contribution from intracavity losses,
we obtain

X̂meas
L = (κY−1 − 12)X̂in

L,M +
√

κinY−1BχM00 F̂M. (10.17)

Note that by setting all phase rotations to zero, we are also setting ∆ = 0,
which plays in ψin and ψout. For an optomechanical readout with zero de-
tuning, the dynamical broadening is also zero. The mechanical response will
therefore have a profile that is derived from the natural susceptibility χM00.

At this moment, we note that the optical input to the optomechanical sytem
is the output from the spin response, equation (10.5). Inserting this expression
in equation (10.17), we have

X̂meas
L = (κY−1 − 12)((12 + 2ΓSZ0LZ0)X̂in

L,S +
√

ΓSZ0LF̂S) +
√

κinY−1BχM00 F̂M

, (10.18)

in which Z0 is ZS for ξS = 0 and shown in the sidebar 5 . Equation (10.18) shows
that the spin response is filtered by the optomechanical system and added to
the mechanical response driven by its thermal bath.
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We proceed by evaluating the matrix Y, which accounts for the optomechan-
ical coupling with light and thermal forces. For ∆ = 0, we have

κY−1 − 12 =
κ/2 + iΩ
κ/2− iΩ

12 +
8κg2χM00

(κ/2− iΩ)2 Z0

√
κY−1BχM00 F̂M = −2g

√
κχM00

κ/2− iΩ
,

(10.19)

in which we have also used the matrix Z0 for the optomechanical mapping.
Let us assume that the optomechanical read out is done far into the unre-

solved regime, κ � ωM, and in the weak coupling regime, g � κ. We can
expand the equation (10.17) in powers of Ω/κ, to the zeroth-order, such that
the optomechanical interaction, without the contribution from the spins

X̂meas
L = (12 + 2ΓMχM00Z0)X̂

in
L,M −

√
ΓMχM00 F̂Mv2, (10.20)

for the column vector v2 = (0, 1)ᵀ. The equation (10.20) has a functional depen-
dence similar to the spin response in the QND regime. Plugging in the equa-
tions (10.19) in equation (10.18), we arrive at our final expression, the QND
limit of the hybrid system

X̂meas
L = (12 + 2(ΓMχM00 + ΓSχS)Z0)X̂

in
L,S − (

√
ΓMχM00 F̂M −

√
ΓSχS F̂S)v2,

(10.21)

in which we have also approximated the spin response according to its high-Q
limit. The first term in the right hand side of the equation above contains the
input light quantum fluctuations and the system’s response induced by them,
the quantum back-action. The second and third terms are the thermal contri-
butions from the mechanical and spin system, respectively.

In the QND case, both systems susceptibilities appear via the matrices Z0,
which guarantee the multiple responses and forces do not couple directly to
each other. Although in abstract terms, the mapping via Z0 guarantees the
intuition that if no optical quadrature rotation happens between the systems,
both systems will interact with the same input vacuum fluctuations. We can
see this easier by writing the vector (10.21) term by term

X̂meas
L = X̂in

L,S (10.22)

P̂meas
L = P̂in

L,S + 2(ΓMχM00 + ΓSχS)X̂in
L,S −

√
ΓMχM00 F̂M +

√
ΓSχS F̂S. (10.23)

Therefore, for removing the back-action induced noise, the susceptibility match-
ing condition must be fulfilled

ΓMχM00 = −ΓSχS. (10.24)

If this condition is fulfilled, the quantum back-action noise will be completely
removed, in all frequency components. The fulfilment of the condition requires

1. susceptibilities χi matching. It is important to notice that this quantity is
Fourier frequency dependent. The two parameters available for matching
are the resonant frequencies ωS and ωM0, and the natural linewidths γS
and γM0.

2. readout rate matching. Under the current approximations, the mechanical
readout rate ΓM depends on the intracavity photon number n and single
photon coupling rate gM0; the spin readout rate ΓS, on the other hand,
can be adjusted by the atomic density.

Matching our spin and mechanical systems in the QND regime is a very dif-
ficult task, mainly due to the linewidths (in the absence of dynamical processes)
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6The narrowest Zeeman spin linewidth
ever reported, to the knowledge of the
writer, is γS/2π = 4 mHz, reported in
Balabas et al. (2010b), for an spherical
vapor cell with 30 mm diameter, at room
temperature.

being mismatched by approximately 6 orders of magnitude. For the results pre-
sented later in this chapter, we have γM0/2π ∼ mHz and γS0/2π ∼ kHz.

Our scheme also contains an intrinsic noise penalty factor. Matching the spin
and mechanics responses leads to the addition of uncorrelated spin thermal re-
sponse. The relative contribution of this penalty is nonetheless decreased in the
limit of high Cq’s, in which quantum back-action dominates over the thermal
contribution. In this limit, the total noise cancellation is bigger than the added
uncorrelated contribution and our scheme offers better noise performance.

As a last point, we note that our scheme also allows for back-action cancel-
lation in the regime of two oscillators with the same effective mass, although
only in a given Fourier frequency range. If we detune the matched oscillators
by δMS � {γS, γM}, the quantum back-action induced responses will interfere
in the frequency range in between the two resonances.

In the next section, we discuss how to match the systems linewidths via
dynamical broadening the mechanical system, and also some of the effects of
rotating the quadratures in between the systems.

10.3 Non-QND noise interference

In the last section, we saw that the susceptibilities in the QND readout of
the hybrid system are highly mismatched in linewidth. Given that reducing
the spins natural linewidth in our cell geometry to the level of the mechanics
natural linewidth is much beyond the current state of the art6, we will take
the approach of broadening the mechanical response via dynamical cooling,
achieved by detuning the probe laser from the cavity resoance, as discussed in
Chapter 2. Dynamical broadening is a rather standard effect, requiring only a
red detuned laser and some degree of sideband resolution.

This section is divided in three semi-independent parts. The first involves .
The second part follows the derivations also encountered in the methods sec-
tion of Møller (2018), in which the effects of a non-QND readout of the mechan-
ical system in the hybrid experiment are considered.

We start by rewriting equation (10.11). In the lossless case, but now includ-
ing the effects of ∆ 6= 0

O−1
ϑ X̂meas

L = Oᵀ
ψout

(κY−1 − 12)O
ᵀ
ψin
X̂ in

L,M, (10.25)

neglecting the thermal noise contribution, which will be discussed in the next
section. Before including the spin response, we choose a inter-system phase
rotation ϕ such that

Oᵀ
ψin

Oϕ = 12, (10.26)

for ϕ− ψin = ϕ− arctan(2∆/κ) = mπ, for an integer m. With this, we undo
the input cavity induced rotations. On the same hand, choosing the detection
phase as ϕ−ψout = mπ will allow us writing, from equations (10.5) and (10.25)

X̂meas
L = (κY−1 − 12)(12 + 2ΓSZSLZS)X̂in

L,S (10.27)

On this way, the phase rotations induced by a non-zero cavity detuning in the
input and output fields can be compensated by a appropriate choice of input
and output phases. The matrix Y, nonetheless, also contains cavity detuning
sensitive dynamics. In fact, as Y = A − BχM00C, it contains the dynamical
cooling effects.

For the case when the optomechanical broadening dominates the mechani-
cal damping, γM � γM0, and in the sideband unresolved limit, ωM � κ/2, an
analytical expression can be extracted. The power spectral density of the quan-
tum back-action contribution of the hybrid system can be written as (Møller,
2018)

S̄PL,meas (Ω)

S̄XL,in (Ω)
=

(ΓMδS ± ΓSδM)2 + Γ2
Mγ2

S
(δ2

M + γ2
M)(δ2

S + γ2
S)

, (10.28)
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for δM,S = Ω− ωM,S, SXL,in being the power spectral density of the input light
amplitude fluctuations, and ± for the spin oscillator effective mass sign. In
particular, the on-resonance matched hybrid response, with ωM = ωS, γS =
γM, and ΓS = ΓM, the expression (10.28), for the negative mass case becomes

S̄PL,meas (Ω)

S̄XL,in (Ω)
∼ Γ2γ2

(δ2 + γ2)2 . (10.29)

This expression is to be compared with the quantum back-action noise for me-
chanical oscillator only

S̄PL,meas (Ω)

S̄XL,in (Ω)
∼

Γ2
Mγ2

M
δ2

M + γ2
M

. (10.30)

The two expressions coincide for Ω = ωM, revealing that no back-action in-
terference happens on resonance for the matched oscillators. Note the stark
contrast to the QND case, in which the reduction of the light-induced noise
happens for all Fourier frequencies. Nonetheless, we also note that the valid-
ity of the expression (10.28), apart from not including the ever present optical
losses, depends on a unresolved sideband limit approximation. We will see
that for ωM/κ/2 ∼ 0.3, approximate regime for the 2020, there is significant
back-action reduction on resonance.

The non-QND noise intereference terms also affect the spin thermal noise
contribution. As shown in Huang et al. (2018), mismatched interactions be-
tween the systems and light, characterized by χM 6= χS, lead to efficient de-
structive interference of the spin response for χM > χS.

10.4 Losses

The last stop in the description of our model is adding the effect of optical
losses. The optical losses will add uncorrelated vacuum to the the oscillator
drive, reducing the total noise cancellation observed. We divide them in three
categories: inter-system, intra-cavity, and detection.

The intra-cavity losses, happening due to a non-unity cavity escape effi-
ciency κex 6= 0, will induce vacuum fluctuations that couples to the mechanical
oscillator as

√
κinκexOᵀ

ψout
Y−1Oᵀ

ψin
X̂ in

L,ex. (10.31)

As importantly, they also affect the phase rotation ψout, which needs to be fur-
ther compensated by the detection phase ϑ.

The inter-system losses happen anywhere in between the spin system and
the cavity mode-matching. Apart from reducing the back-action interference,
the vacuum fluctuations introduced by this loss channel will drive the mechan-
ical system as

√
1− νOᵀ

ψout
(κinY−1 − 12)O

ᵀ
ψin

X̂L,ν. (10.32)

spectrally mimicking the effects of X̂ in
L,S.

The detection losses are due to finite homodyning mode-matching and non-
unity power transmission. This loss channel will determine the ratio of the
hybrid signal to shot noise.

Having discussed the matching conditions and reasoning behind the vari-
ous phase rotations and loss channels, we move to the experimental implemen-
tation.
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7It is debatable if the same level of control
is actually needed. For the current experi-
mental conditions, as the ratio of powers in
the local oscillators LO1/LO2 is about 100,
perhaps it is not strictly necessary to strip
off the mechanics oscillator.

8The science light and locking light were
shifted in frequency by independent
acousto-optical modulators (AOM). With the
RF fields driving each AOM frequency
shifted by ∼5 MHz, selecting the same
AOM diffraction order means that the two
beams are detuned by the RF frequency
difference. The locking beam is then
sent through a phase modulating EOM,
generating the tone required by the PDH
technique.

10.5 Running the experiment

The basics of the implementation were already laid out in Hammerer et al.
(2009). There, although in the reverse order of the described in this thesis, the
conditions for transforming the polarization rotation signal induced by the spin
oscillator into the single-polarization amplitude and phase quadratures are de-
scribed as

• LO1 must be perfectly removed from the optical path. Nonetheless, as
the joint measurement involves only homodyning of the hybrid signal,
even finite LO extinction ratio in the order of part-per-thousand level is
sufficient.

• the signal/sidebands generated by the spin system must be mode matched
to LO2 with unity efficiency;

• the phase of the spin signal in respect to the local oscillator must be freely
adjustable.

Therefore, regardless of the spin-mechanics system ordering, that is, regardless
of which experiment is first in order of interaction with light, the filtering con-
ditions are the same. We have chosen the configuration “spins first, mechanics
second”, due to the possibility of filtering the first system local oscillator and
addition of the second local oscillator using polarization optics only. The same
level of control in the opposite orientation would require narrow auxiliary cav-
ities for the same role7.

Over the course of the hybrid experiment’s 2015-2020 period, the setup has
been in constant evolution. In Figure 10.2a, we show the setup used in the
experiments that culminated with the results presented in Møller et al. (2017);
in Figure 10.2b, the setup put together for the work Thomas et al. (2020). In
the latter experiments, the spin is read out in double pass, that is, the light
travels through the ensemble twice before heading out towards the mechanical
oscillator. The single-to-double pass update sparked a complete rebuilt in the
experimental layout in the spin-mechanics direction.

The knowledge gained in controlling the optomechanical system in the early
years also triggered a change in the cavity locking scheme. While in the 2020
experiments the cavity is locked via a fringe lock, in the 2017 experiments,
the cavity was locked using the Pound-Drever-Hall (PDH) technique (Black,
2001) in a frequency detuned lock beam8. Getting rid of the modulators and
lock beam greatly simplified the daily operation of the optomechanical system.
It also removed the various spurious interferences between the two counter-
propagating beams in the setup.

The spin local oscillator, LO1, is linearly polarized at an angle α in respect
to the DC magnetic field BDC. After the interaction with the spin ensemble, the
local oscillator is filtered out of the optical path. In the single pass configura-
tion, a set of quarter and half wave plates can be used for maximal extinction.
For the double pass case, the LO will be automatically re-directed to its original
direction; in this scenario, the LO extinction ratio is set by the performance of
the optical elements in the optical path, being in the order of 1 : 500 for the
experiments here described.

After its extinction, the spin signal is spatially overlapped with a intense
beam on a polarizing beam splitter and directed to the optical cavity for mode
matching. The combined beam is ready to interface with the optomechanical
system after being projected in the same polarization mode at the polariza-
tion beam splitter 1. Most of the intense beam is rejected at this splitter, as the
waveplate prior to the splitter 1 is for minimal loss of spin signal (usually on
the order of %).

In the next pages, we will go through a set of points followed in a standard
hybrid experiment operation. They are here to give an introductory idea of
how the experiment actually works. Most of the points are general enough to
be applied in both setups from Figure 10.2.
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Figure 10.2: Experimental setups. This figure has been presented in Chapter 4 and is reproduced here once more for convenience. The
simplified representation of the hybrid experiment, including, local oscillators, polarization/power control, and detection. The piezo
mirrors are the actuators for relative path length control. The setup in a was used in Møller et al. (2017), while b was implemented for
Thomas et al. (2020). The numbered PBS 1 marks the element in which the spin response and LO2 are projected into the same polarization
mode. The purple line in a marks the cavity locking optical path.

We have already discussed some features and procedures in Chapter 4. We
refer to that chapter for details on laser debugging, vapor cell alignment, op-
tical pumping power levels, optical cavity losses, mechanical Q, and light-
mechanics coupling.

Given the basic checks are done, or assumed to be good enough to move on,
we proceed to the operation points

1. The cryostat temperature must be stable, for order 30 min, at nominal
T = 4.3 K. The temperature is responsible for setting the whole cryostat
construction at a given horizontal and vertical position in respect to the
optics. A drift will eventually lead to a decrease in cavity mode matching,
which is rather detrimental to the hybrid system performance.

2. The optical power getting to the experimental island must be stable and
about 20-25 mW in total, measured right before the LO1/LO2/LO3 split-
ter. About 15 mW must be reserved for LO3. The homodyning beam re-
quires such high proportion of power as the optical path involves a series
of free-space to optical fiber conversions (not shown in the experiment
sketch), amounting to ∼3 mW of available power at the detector.
The remaining optical power is used for LO1 and LO2, with LO2 taking
a big proportion of it. LO1 power levels are on the 0.3-1 mW range. LO2
uses 2-5 mW as most of it is dumped when projecting the spin signal and
the to-be local oscillator in the same polarization, at the element 1, see
Figure 10.2. On the double pass setup, the EOM for spin readout readout
rate calibration requires only about 50 µW of laser power.

3. On the spin double pass setup, the power split at the Michelson interfer-
ometer input polarization beam splitter, used for LO1 and for the to-be
LO2, will also effectively set the LO1 polarization, as a consequence of
the finite extinction ratio and polarization leakage present in PBS. Com-
monly, about 1-2 µW of LO1 power leak down the path in the double
pass configuration; for the single pass, a set of waveplates is used for
optimally removing the carrier, with only 0.1-0.5 µW leaking. The half
waveplate angle in the spin arm of the interferometer must be set to can-
cel the quadratic Zeeman splitting, as discussed in Chapter 3, commonly
being in the range 55-60◦ with respect to the DC magnetic field. We cancel
the quadratic Zeeman splitting for restoring the single mode description
of the spin ensemble.
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4. LO1 and LO2 must be spatially and polarization overlapped. The visibil-
ity of such interference is typically ∼ 90%, being fine tuned by the cavity
mode matching. We recommend aligning LO1 first, using as many knobs
as necessary. After alignment, these knobs must not be touched. The LO2
adjustment is done by using the mirrors only coupled to this local oscilla-
tor, with matching being ∼ 80%. Finite cavity coupling is not critical for
this beam, as it will only boost the intracavity photon number.

5. The modematching of LO1 and LO3 should be as high as possible, reach-
ing > 92 %. This step finishes all the alignments.

6. Lock LO1-LO2 phase. This should stabilize total power sent to the me-
chanics

7. Measure input power to the mechanics. Preferably, for avoiding miscal-
ibrations, it should be done right before the cavity input mirror. This
power should be somewhere in the range 5-20 µW.

8. Find the amplitude quadrature for the atoms by sending signal from
atoms (including leakage) with LO2 onto a single diode photodector. Ob-
serve the power spectral density of the detected signal around the known
Larmor frequency range. The signal should look like one of the spin noise
spectra shown in Chapter 7. Adjust the LO1-LO2 phase until minimal re-
sponse is observed, that is, until the observed noise is the closest to the
shot noise level. As discussed earlier in this chapter, the selected interfer-
ometric phase is the one that puts the atomic response on the orthogonal
light quadrature. Cavity induced rotations can therefore be counter-acted
by small changes around the initial value.

Although presented in a numbered fashion, we emphasize that many points
can be switched in order or skipped without altering the final product.

10.6 Calibrations

Once the experiment is up and running, it is time to calibrate the light-
system interaction. Over the years, a series of calibration tools that suit our
working setup have been developed. Given the drifts and shifts experiences
by both spins and mechanics throughout a measurement series, we are partic-
ularly interested in techniques that allow the parameters estimation in exper-
imental conditions, with minimal modifications to the hybrid setup. All cali-
brations rely in one way or another in the full model presented earlier in this
chapter, and in the discussions in Chapter 2 and 3. We present the list of param-
eters, whose roles are shown in Figure 10.1. Some of the calibration procedures,
nonetheless, require a more careful approach than others.

Take the optomechanical bath temperature T estimation, for example. Al-
though there is a thermostat reading out the cryostat’s cold finger temperature,
which is itself firmly connected to the sample holder and membrane chip, we
can not rely in this reading for estimating the temperature of the mechanical
mode of interest (Nielsen, 2016; Møller, 2018).

Here, we follow the procedure described in (Møller et al., 2017), detailed
in (Møller, 2018), and briefly discussed here. As pointed out throughout this
work, the optical coupling to the mechanical degree of freedom acts not only
as a probe of the mechanical dynamics, but also as a force that induces motion.
As the measurement rate ΓM is cranked up, back-action effects start to induce
correlations between the optical and mechanical degrees of freedom. When ΓM
is on the same order of magnitude as the decoherence rate γMnM, the opti-
cal fluctuations of a detuned probe beam will start to effectively interact with
themselves via the mechanical mode susceptibility, leading to a frequency de-
pendent feature that has total noise below the shot noise level.

In the limit of ΓM � γMnM, the maximum squeezing attainable will be
limited by the ratio ΓM/γMnM and detection losses (Nielsen et al., 2017). For
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Figure 10.3: Optical estimation of the bath temperature. For a given set of known optomechanical interaction parameters {∆, κ1, κ, η},
the detected optical spectrum gives access to mechanical mode temperature. The mechanical device used in a has a 2D phononic bandgap
structure, while in b employs the soft-clamping technique. The fitting procedure outputs T = 7 K (left), and T = 11 K (right).

a known measurement rate, set by the parameters {∆, κ1, κ}, and photon de-
tection efficiency η, the amplitude noise spectrum has a frequency dependent
shape that is sensitive to the bath temperature. Alternatively, we have mea-
sured spectra for different parameters, as cavity detunings ∆, and globally fit-
ted them to the equation (10.16) using the known values of ∆ and a common
set of parameters.

In Figure 10.3 we show the temperature calibration for the 2017 and 2020
experiments. As the Figure 10.3(a) was measured in reflection, while Figure
10.3(b) was measured in transmission, the output cavity field will interfere
with the reflected input beam and alter the resulting spectrum of fluctuations
(Møller, 2018).

On the spins side, the quantum cooperativity CS
q and readout rate ΓS are

measured via polarization modulation induced by an EOM. The readout rate
calibration method is described at length in Chapter 8. Here we only present
the calibration result, shown in Figure 10.4(b). There, we show the CIFAR re-
sult for three different types of input modulation. The curves have been fitted
simultaneously, leading to ΓS/2π = 19 kHz.

An alternative spin calibration was used in Møller et al. (2017) and is de-
scribed in Chapter D. There, the EOM was to produce circular polarization
modulation Sz ∝ XL, polarization quadrature which couples to the spin os-
cillator via Faraday rotation. Driving the EOM with white noise will induced
extra polarization rotation noise. By applying a known amount of this mod-
ulation, and recording the driving and the respective response signal, we can
estimate the amount of noise induced by the shot noise limited readout via the
procedure described on Appendix D. In Figure 10.4(a), CS

q = 1.1.

10.7 Results

Given a hybrid experiment aligned and calibrated, we can start discussing
the back-action interference studies. We will cover the results presented in 2017
and 2020 in a chronological manner, highlighting the relevant updates and im-
portant numbers.

10.7.1 The 2017 experiments

The first quantum back-action evasion results of the hybrid were presented
in 2017. The experimental findings there reported concluded the first years
of intense characterization, debugging and modeling the physics involved in
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Figure 10.5: Mechanical and spin noise in the
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the final homodyning. The spin oscillator, with
resonant frequency ωS/2π = 1.52 MHz, has
been shifted down in post-processing for easier
visual comparison. See Figure 10.6 for the asso-
ciated hybrid signal.

the experiment. For storytelling purposes, we will navigate through some of
the non-trivial features of the experimental results. Given the intricate model,
discussed in length earlier in this chapter, we strived for seeing back action
interference in a rather calibration independent fashion.

We start by matching the systems bandwidths, γM ∼ γS, by selecting a
suitable local oscillator power and cavity detuning. The readout rates of the
systems {ΓM, ΓS} are also affected by such choice. The spin readout rate can
be further adjusted by the number of atoms in the vapor cell, which has been
pushed to the maximum possible for this experiment. We also set the phase
ϕ = 0, such that the amplitude quadrature to the optomechanical cavity con-
tains no spin response; with this, we guarantee that, apart from cavity rota-
tions, both systems will see the same vacuum. This condition allows us to have
the description presented in Section 10.3 as reference. The spectral responses
of the individual systems are presented in Figure 10.5, with the spin response
frequency shifted (in post-processing) to match the mechanical resonance, for
clarity.

The systems are then brought to resonance, ωM ∼ ωS, by tuning the mag-
netic field that controls the spin resonant frequency. The noise spectra, both for
spins with positive and negative mass, are presented in Figure 10.6. Note that
the negative mass hybrid spectrum is very similar to the mechanics only. The
positive mass case shows added extra noise at frequencies Ω 6= ωM. Given that
the only parameter that changed is the sign of the spin oscillator effective mass,
we claim that the difference in noise is due to the interference of the back-action
contributions. Notice that trustworthy modeling of the hybrid signal is vital for
all claims here presented.

Further evidence of the back-action interference is gained when breaking
down the noise spectra. In Figure 10.6, given the system parameters extracted
from fits and summarized in Appendix I, we color the detected noise in respect
to system and origin. The filled areas represent the thermal noise; the remain-
ing contribution is related to shot noise, light induced fluctuations and their
respective interferences. The correlation between shot noise and induced fluc-
tuations happen due to the non-QND type of system-light interactions and the
various phase rotations induced by the interferometers and optical cavity.

The non-Lorentzian spin thermal contribution demonstrates that the spin
response is being filtered by the optomechanical interaction, regardless of the
spin mass. This is an experimental signature of the non-local dynamical cool-
ing discussed in Section 10.3. The slight asymmetry around the peak response
is due to imperfect frequency matching and input phase adjustment. As the
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Figure 10.6: Back-action interference in the resonant hybrid system. We match the individual systems linewidths and readout rates,
and tune the spin oscillator such that ωS = ωM. In the left panel, we show the joint system noise for negative (red) and positive (green)
effective mass. The fit of the mechanical noise is shown in blue. In Figures right column panels, we show the noise breakdown for the two
mass configurations. Filled blue (yellow) area represents the mechanics (spins) thermal noise contribution for parameters extracted from
fitting. Vertical figure axis are presented both in shot noise units (SN) and in displacement.

Parameter QBA area % of mechanics

mechanics 2.0x2
zpf —

hybrid, +ωS 3.1x2
zpf (53± 8)%

hybrid, −ωS 1.5x2
zpf (−24± 5)%

Table 10.1: Noise breakdown for the data pre-
sented in Figure 10.6. Summary of the back-
action noise areas for the resonant hybrid sys-
tem. Error bars come from fit uncertainties.

total noise area for spins with negative mass similar to the mechanics case only,
the back-action evasion is evident as the hybrid signal contains the uncorrelated
spin noise, reaching 24% reduction in respect to the mechanics only back-action
noise. For spins with positive mass, the constructive interference leads to ad-
ditional 53% of back-action noise. For a summary of the results extracted from
the resonant hybrid system, see Table 10.1.

Although the light-induced noise is indeed reduced in the ωM ∼ ωS case,
our next step is to detune the oscillators and use the input phases to find the
biggest noise reduction. In this regime, we go away from the simpler picture
described in Section 10.3. By detuning the oscillators by ∼ 4 kHz and adding a
interferometer rotation ϕ of 6◦ we partially add the spin response to the input
amplitude quadrature. Now, the input to the mechanical system is squeezed as
shown in Figure 10.7, with overall shape determined by the spin effective mass.

The hybrid signals are presented in Figure 10.8. As in the resonant case,
the shape of the positive and negative mass cases are rather different. Most
importantly, there is a calibration independent overall noise reduction over a
couple of kHz bandwidth, as we initially wished.

The noise breakdown allows us to learn some more about the hybrid sys-
tem. The noise area numbers are presented in Table 10.2. The back-action can-
cellation is improved to 34%, while when positive mass, the spins contribute to
adding 73% of the mechanics only noise.
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Figure 10.7: Amplitude quadrature PSD before
the optomechanical cavity. The hybrid data pre-
sented in Figure 10.8, the amplitude quadrature
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chanical cavity present a frequency dependent
spectrum due to the spin-light interaction. For
the choice of phase ϕ, the light is squeezed be-
low (above) resonance for negative (positive) ef-
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With this, we finish the first incarnation of the hybrid experiment. At this
stage, the overall performance was limited by a range of parameters

• losses: with a inter-system power transmission efficiency of νP = 0.6 and
cavity mode matching on the order of νcav ∼ 0.9, about half of the spin
fluctuations are replaced with uncorrelated vacuum. From the cavity to
photo-detection, the efficiency was in the order of η ∼ 0.6, including cav-
ity out-coupling, propagation losses, homodyning visibility and photo-
detector quantum efficiency.

• coupling strengths: the light-system interaction parameters, the Cq’s, need
to be further increased to remove a bigger fraction of the total hybrid
noise. With quantum cooperativities in the order unity, the thermal noises
make a considerable part of the detection noise.

10.7.2 The 2020 experiments

Going beyond the levels of back-action evasion reported in the 2017 experi-
ments required a major rebuild period from us. Many of the constituent parts
of the hybrid experiment were drastically changed from the Autumn of 2017 to
early Spring 2019. The finished updated setups can be compared in Figure 10.2.

The experimental challenges to tackle the limitations encountered in the pre-
vious iterations are plentiful. Changing the membrane design, for devices with
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Parameter QBA area of mechanics

mechanics 1.7x2
zpf —

hybrid, +ωS 3.0x2
zpf (73± 10)%

hybrid, −ωS 1.1x2
zpf (−34± 5)%

Table 10.2: Noise breakdown for the data pre-
sented in Figure 10.8. Summary of the back-
action noise areas for the off-resonant hybrid
system. Error bars come from fit uncertainties.
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Figure 10.9: Spin and mechanical noise in the
2020 implementation. Power spectral density of
the optical readout of the individual systems in
the final homodyning. Spin noise is presented in
the top panel. Mechanical noise in the bottom
panel. The shaded orange and blue areas repre-
sents the thermal noise contribution from spins
and mechanics, respectively. See Figure 10.10 for
the associated hybrid signal.

higher Q factor but also with a smaller central defect, made us more sensitive to
membrane induced losses, which triggered the cavity design update described
in Chapter 4. With a fully controllable membrane in the middle setup we didn’t
need to rely on luck to achieve optimum 2kz position, sensibly improving the
operational time at cryogenic temperatures.

On the spins side, we have changed for a better performing microcell, with
significantly lower losses (7% to 2% per window) and better anti-relaxation
coating performance (natural linewidth decreasing from 1 kHz to 450 Hz). Given
the hybrid linewidth matching conditions, a narrower spin natural linewidth
gives more room for the broadening induced by probing and optical pumping.
In our case, it allows for adding a pump beam, which increases the spin po-
larization at the cost of line broadening. The spin polarization increased from
p = 0.65 to p = 0.8, further reducing the extra thermal spin noise. This noise re-
duction is particularly important for the entanglement experiments, discussed
in Chapter 11.

The spins readout rate and quantum cooperativity was boosted by employ-
ing a double pass probing scheme, see Chapter 3. While the quantum coopera-
tivity scales with the cell length, therefore doubling in the double pass scheme,
the double pass scheme also leads to an extra effective power enhancement.
The light back propagating over its incoming path leads to a spatial standing
wave pattern (with λ/2 periodicity), modulating the local laser intensity from
zero to four times the input value in the ideal lossless case. Atomic motion
averages out the intensity, leading to a twice bigger effective intensity at the
vapor cell. Therefore, for a given input power, the readout rate ΓS quadruples
and the spin linewidth γS doubles, when in comparison to the single pass en-
semble with the same single pass length and input power. The optical losses in
the double pass scenario are analyzed in Appendix B

By using a new cell and improving the optical pumping, the ratio of back-
action to thermal noise increased from ∼ 1 to ∼ 5. We have also considered
inserting the cell in an optical cavity, as discussed and shown in Chapter 9.
Nonetheless, the intra-cavity losses were a too high for that particular imple-
mentation.

The inter-system power losses were decreased, from ν = 0.4 to ν = 0.2.
Nonetheless, with the double pass implementation we became sensitive to back
reflections from the optomechanical to the spin system. Due to imperfect polar-
ization control, a small leakage from cavity output, travels upstream towards
the spin system. There, the leakage is boosted by LO1, drastically affecting the
spin performance. Further isolation was granted by using a Faraday isolator,
nonetheless adding 5% to the inter-system losses.

On the mechanics side, we moved from the 2D silicon bandgap membranes
to the improved ultra-soft clamped devices. The new design, particularly for
membranes with a reduced thickness, routinely exhibits Q-factors > 500× 106

at cryogenic temperatures. The reduced coupling to the environment allows
for a more efficient readout via light, amounting to higher quantum coopera-
tivities. In our case, the quality factor increased from 12× 106 to 650× 106. The
ratio of back-action to thermal noise increased from ∼ 2 to ∼ 20.

The individual systems noise, according to our calibrations, can be seen in
Figure 10.9. This figure can be directly compared to Figure 10.5. Both systems
QBA/TH ratio have clearly improved, demonstrating the quantum back-action
dominated readout. We have also matched the readout rates according ΓM ∼
νΓS, where ν is the transmission efficiency between the systems. This choice
of readout rate matching allows for canceling the back-action induced by the
input vacuum fluctuations.

The performance of the updated hybrid performance can be seen in Figure
10.11. The spin oscillator, set with negative mass, has resonant frequency ωS is
scanned around the mechanical resonance, showing the frequency dependent
noise spectrum. Particularly, on panels c and d, the hybrid signal is significantly
reduced in comparison to the mechanics only.

The noise breakdown of the measurement noise in Figure 10.11 d, in which
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Figure 10.10: Back-action interference in the 2020 implementation of the hybrid system. The spin oscillator with negative effective mass
is set on resonance with the mechanical oscillator and ϕ ∼ 0. Data and fits are shown in linear scale (left). The fits are also shown in log
scale (right). Filled areas stand for the different noise contributions.

the spins and mechanics are resonant and ϕ are ajusted to zero, is presented in
Figure 10.10. The back action noise of the hybrid system in respect to the me-
chanics only has been reduced by ∼ 45%, significantly improved in respect to
the previous experiment. In Figure 10.10 (right), we can also see that the mea-
surement is bigger than 1SN, demonstrating the broadband spin noise contri-
bution is a current limit factor.

We point out that in the data here presented, we have optimized the sys-
tem performance for entanglement generation. The entanglement experiment
requires a high detection quantum efficiency, quantity which is a function of
broadband spin noise as η ∝ 1/Sbb. As presented on Chapter 7, the broadband
spin noise power spectral density is reduced by decreasing the probe power
and atomic density. We have tweaked both parameters, reducing the spins
readout rate from initial ΓS/2π = 28 kHz, when at maximum operating tem-
perature (60 ◦C).

Going forward, improving the back-action evasion performance while keep-
ing extraneous noise sources at a low level, will require further improvement
on the inter-system efficiency and coupling strengths. These requirements, al-
ready discussed at the 2017 experiments, put significant limitations to the hy-
brid system operation. In particular, the cavity-mode matching contribution
of the inter-system losses requires further understanding. With overlap on the
order of νcav ∼ 0.9, it makes about half of the contribution.
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Figure 10.11: Back-action evasion detuning series. The negative spin oscillator resonant frequency ωS
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resonance frequency.



Chapter 11

Hybrid entanglement

In this chapter, we present the preparation of the spin-mechanics system in
an Einstein-Podolsky-Rosen state. We focus the presentation on the description
of the signal conditioning, the usage of the Wiener filter and the entanglement
error estimation.

In this chapter, we focus on the individual system with respect to the ground
state variances. This is different than the approach taken in Chapter 10, in
which the approach was based mostly on the optical degrees of freedom. In
the conditional entanglement procedure, we are also interested in estimating
the the hybrid system state with the highest possible measurement and detec-
tion efficiency.

11.1 Background

Quantum entanglement has long attracted attention due to its seemingly
spooky features (Einstein et al., 1935) and connections to the foundations of
quantum mechanics (Bohr, 1935). The transition from gedanken to laboratory
experiments had to wait for a couple of decades (Bell, 1964) until more experi-
mentally friendly criteria appeared (Clauser and Shimony, 1978). In the ensu-
ing decades, increasingly sophisticated methods testing the validity and limits
of the quantum theory have been explored.

The entanglement between photonic variables, such as the polarization of
single photons, has been studied since the 60’s (Clauser et al., 1969). Early
works mostly use atoms as sources of entangled photons (Fry and Thompson,
1976), with a shift towards parametric down conversion in non-linear crystals
in the 90’s (Kwiat et al., 1995).

In the 1990’s, key discoveries in the of quantum states for cryptography (Ek-
ert, 1991) and teleportation (Bennett et al., 1993) ushered the fields of quantum
information and computation (Feynman, 1982). Entanglement can nowadays
be manipulated, controlled and broadcast by a variety of experimental imple-
mentations and to a multitude of protocols (Zeilinger, 1999; Horodecki et al.,
2009).

The understanding that a large collection of atoms could also offer an ef-
ficient platform for quantum optics experiments and related applications in
quantum information experiments brought a new approach to the interfac-
ing of light and matter. Since then, in a non-extensive list, entanglement be-
tween separate ensembles has been generated in the continuous variables (Juls-
gaard et al., 2001; Krauter et al., 2011) and discrete variables (Chou et al., 2005)
regimes. due to its weak coupling with the environment, atomic ensembles are
viewed as good candidates for quantum-enabled memories. Proposals (Kozhekin
et al., 2000) and experiments using coherent states (Julsgaard et al., 2004) and
entangled states (Jensen et al., 2011) have demonstrated memory times on the
order ms .

108
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Figure 11.1: Schematic of the entanglement
scheme. The input traveling field couples the
distant atomic ensemble and the mechanical sys-
tem embedded in a cavity. The output light
is then directed to photo-detection. Note that
the spin oscillator rotates in the opposite direc-
tion in the phase-space representation, as a con-
sequence of the negative effective spin mass.
Shaded circle in the X̂, P̂ plane represents the
ground state variance of the system. Figure
adapted from Hammerer et al. (2009).

As for mechanical degrees of freedom, rapid developments have been hap-
pening in the last decade. The advances in the fabrication of miniaturized
electronic, optical, and mechanical structures, along with respective theoreti-
cal understandings, pushed the boundaries in the experimental optomechan-
ics research. As far as entanglement goes, it has been generated between two
micromechanical oscillators in a common microwave cavity (Ockeloen-Korppi
et al., 2018) in the continuous variable regime and between two distant me-
chanical oscillators at the single photon level (Riedinger et al., 2018). There has
also been work in using a mechanical device as a non-linear optical medium,
entangling different optical modes (Chen et al., 2020).

The entanglement between disparate degrees of freedom has been mostly
limited to single ion systems (Lo et al., 2015), in which the interaction between
motion and spin is short-range, at micron-scale distances, with motional and
spin degrees of freedom associated with the same atoms.

Our hybrid entanglement occurs in a very different regime. Our method al-
lows generation of long-range macroscopic entanglement between the motion
of one object and the spin of another. The initial proposal was presented by
Hammerer et al. (2009), in which the key point is to invoke a negative-mass
oscillator. We prepare this oscillator in ground state levels of an atomic spin en-
semble, which is subsequently coupled by a traveling optical field to a distant
mechanical oscillator. Back-action-evading measurement allows generating en-
tanglement between the two objects.

The procedure presented by Hammerer et al. (2009) differs from the pro-
cedure used in our experiments in many ways. First and foremost, the 2009
proposal uses the hybrid measurement result to generate a feedback that sta-
bilizes the spin-mechanics in the EPR state. It also does not include dynamical
effects in the light interaction with the individual sytems, which are a vital part
of our current implementation.

Important developments in the fabrication of mechanical devices allowed
for realizing the challenging parameter requirements. One of the basic experi-
mental requirements for the establishing entanglement is performing the mea-
surement within a time scale τ � 1/γ(n + 1

2 ), with γ being the system de-
cay rate and n as the bath thermal occupancy. The timescale τ must therefore
be much smaller than the average time it takes for the system to experience
coupling to the surrounding thermal environment. While for the spin system
n = nS < 1 and γS/2π ∼ 0.5 kHz are typical for encapsulated microcells, in
the mechanical system n = nM ∼ kBT/h̄ωM and γM/2π ∼ ω/2πQ, entailing
the requirement τ � h̄Q/kBT.

The initial proposal considered the membrane-in-the-middle design with
a ωM/2π = 30 MHz mechanical mode with Q = 105 at dilution refrigera-
tor temperatures T = 40 mK. Achieving high in-and-out optical coupling ef-
ficiencies using dilution refrigerators is specially hard as the device requires
complete shielding to achieve the design base temperature. Operating flow
cryostats with free space optical access sets the temperature at about 4 K, re-
quiring a ∼ ×100 improvement in mechanical Q for constant mechanical co-
herence times. The development of a phononic bandgap (Tsaturyan et al.,
2014) and carefully designed mechanical device boundaries (Tsaturyan et al.,
2017) allowed the required improvement. Our mechanical devices operates at
ωM/2π ∼ 1.5 MHz, with Q ∼ 0.5× 109 at T = 10 K. For these parameters,
h̄Q/kBT ∼ 1 ms, enough time to perform measurements.

In the next section, we start studying the entanglement generation scheme
and the various properties of the implementation.

11.2 Hybrid entanglement

We start by discussing the hybrid state we create by our measurement pro-
cedure. In Figure 11.1, we show the simplified interaction scheme. The spin
system, prepared as an effective negative mass oscillator, is read out via light.
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The output of the spin system is fed as input to the optomechanical system.
After interaction with the mechanical degrees of freedom, the light leaks from
the cavity towards a homodyne measurement setup.

The optical readout allows us to access the position and momentum vari-
ables of both systems. After treating the light according to our full model and
calibrations, we construct generalized coordinates X̂EPR and P̂EPR, defined as

X̂EPR = (X̂M − aX̂β
S )/

√
1 + a2 (11.1)

P̂EPR = (P̂M + aP̂β
S )/

√
1 + a2, (11.2)

where a as an arbitrary weight scalar parameter and

X̂β
S = X̂S cos β + P̂S sin β (11.3)

P̂β
S = P̂S cos β− X̂S sin β, (11.4)

are generalized spin operators, accounting for a phase rotation β. Such vari-
ables are a mere generalization of the original EPR states presented by Einstein
et al., and is also featured in Bohr’s reply. By choosing a = −1 we arrive at a re-
scaled version of the variable discussed in Hammerer et al. (2009). Commonly,
we will also write a superscript c in the EPR variables, e- g. X̂c

EPR, to define the
conditional state analogue.

The statistics of the states we deal with, being of light as well as the indi-
vidual oscillators, is Gaussian. Being so, the full statistical information can be
expressed from the first and second statistical moments, that is, the average
and the variances. The interaction between light and systems preserves the
Gaussianity, as it involves at most products of field operators. The inseparabil-
ity criterion for Gaussian systems and EPR-type operators was given in Duan
et al. (2000). For any separable state, i.e. non-entangled, the total variance of
the general EPR variables obeys

V = Var[X̂EPR] + Var[P̂EPR] ≥ 1. (11.5)

Therefore, achieving V < 1 demonstrates that the total quantum state of the
system can not be written in a product form and therefore that the spin and
mechanical oscillators are entangled. For conditional variances, we have Vc <
1. For Gaussian systems, this criterion is a necessary and sufficient condition
for inseparability between the two parties.

Let us now discuss how light carries information about both systems. For
simplicity, we will disregard losses and other imperfections discussed in con-
nection with the full model in Chapter 10, such as the broadband noise contri-
bution. We will also assume that the dynamics and coupling rates are much
smaller than the natural oscillation frequencies, setting the systems well within
the rotating wave approximations (RWA). In the RWA limit, we only need to
track the variance of one of the canonical variables, here X̂, as the variances of
the position and momentum variables becomes equal (Huang et al., 2018).

As discussed in Chapter 3, the spin system is coupled to the input light
fluctuations X̂in

L,S and to its own effective spin thermal bath F̂S, as

X̂S = χS

[
2
√

ΓS

(
1
−iζS

)ᵀ

X̂in
L,S + F̂S

]
, (11.6)

with χS being the spin susceptibility, and ΓS and ζS as the readout rate and
tensor coupling, respectively. The momentum variable can be directly obtained
from the Fourier-domain relation P̂S ≈ −sign(ωS0)iX̂S. The light carrying the
information of the spin oscillator has the form

Xout
L,S = Xin

L,S +
√

ΓS

(
−iζS

1

)
X̂S. (11.7)
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As discussed in Chapter 2, the mechanical variables evolve as

X̂M ∼ χM

[
2
√

ΓM

(
1

iζM

)ᵀ

X̂in′
L,M + F̂M

]
(11.8)

with χM as the spin susceptibility, and ΓM and ζM being the readout rate and
sideband asymmetry parameter, respectively. By analogy with the equations
for the spin oscillator, ζM is the mechanical analogue of the tensor interaction
strength. The output from the optomechanical cavity is

Xout′
L,M = Xin′

L,M +
√

ΓM

(
iζM

1

)
X̂M. (11.9)

As the hybrid system goes, the output light from the spin system is coupled
as input to the mechanical system. By choosing the appropriate phase rota-
tions, we can input equation (11.7) in equation (11.8), such that the mechanical
variable is

X̂M ∼ χM

[
2
√

ΓM

(
1

iζM

)ᵀ [
X̂in

L,S +
√

ΓS

(
−iζS

1

)
X̂S

]
+ F̂M

]
. (11.10)

Therefore, given the hybrid matching, the mechanical oscillator is not only cou-
pled to light and its own thermal bath. Multiplying the matrices, it can be
shown that for ζM 6= 0, the input phase quadrature also affects the motion.
For ζM 6= ζS the mechanics effectively also couples to the spin oscillator. The
dynamics of the mechanical driving optical force is therefore getting correlated
with the spins via light.

Let us return to the output light from the hybrid system for a moment. Plug-
ging equation (11.10) in (11.9), along with the spin equations (11.7) and (11.6),
we get the output phase quadrature

P̂out’
L,M ∝ [ΓSχS + ΓMχM] 2X̂in

L,S

+ 2iΓMχMχS

[
2ΓS[ζM − ζS]X̂in

L,S +
√

ΓS[ζM − ζS]F̂S

]
+
√

ΓSχS F̂S +
√

ΓMχM F̂M,

(11.11)

in which we have disregarded second order terms in ζ and terms proportional
to P̂in

L,S. The equation (11.11) shows the interplay between the types of interac-
tion and the interference of the input light fluctuations. It also features the spin
thermal force being processed by the mechanical system.

In the last chapter we mentioned the importance of detuning the optome-
chanical cavity, therefore making ζM > 0, to match the mechanical and the spin
susceptibility and improve the back-action evasion. We also mentioned that in
our parameter regime, ζS > 0. Therefore, in our case we have ζM 6= ζS, and the
spin-mechanics correlations might become important.

The connection between back-action evasion and entanglement is subtle and
involves defining the method by which the quantum states and dynamics are
engineered. It also involves acknowledging that the decoherence induced by
the optical field is related to the aquisition of information, as in the measure-
ment process. As is common in the literature (Vasilyev et al., 2013), we divide
the schemes into the conditional and unconditional/dissipative categories.

In the unconditional entanglement generation schemes, the dynamics of the
systems are engineered in such a way that the decoherence induced by the
probing light is the feature that allows generating the non-classical state (Ver-
straete et al., 2009), without the need of any active feedback or state prepa-
ration stages. In the case of atomic spin ensembles, it has been proposed in
Muschik et al. (2011) and realized in Krauter et al. (2011). In the case of our spin-
mechanics interface, it has been theoretically studied in Huang et al. (2018).

In the conditional entanglement generation schemes, the state or dynamics
of the system is conditioned upon a measurement performed on the light. Here,
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the measurement updates the knowledge about the system. The measurement
result may be used to control the dynamics via feedback, if that is desired. En-
tanglement (Julsgaard et al., 2001) and a variety of quantum information proto-
cols have been performed using atomic spin ensembles (Hammerer et al., 2010).

Let us imagine the spin and the mechanical system had identical suscepti-
bilities and were both interacting in a QND fashion with light, that is, ζM =
ζS = 0, such that χS = χM = χS00. As discussed in Chapter 10 and displayed
in equation (11.11) the back-action interference would be perfect in the case of
a negative mass spin oscillator. The unconditional variance of the EPR state
Vu, nonetheless, would not go below the inseparability limit, but would reach
Vu = 1 for nS = nM = 0. Including measurement and/or feedback, as shown
in (Vasilyev et al., 2013), the conditional variance of the EPR state Vc can be
made arbitrarily close to zero for high Γ/γ.

In our hybrid implementation, the system’s natural susceptibilities are mis-
matched, γS0/2π = 1 kHz and γM0/2π = 5 mHz. Furthermore, the mostly
QND light-spins interaction ζS ∼ 0.03 is also different from the light-mechanics
in which the red detuned laser induces important cooling/beam-splitter in-
teraction ζM ∼ 0.15. It has been shown (Huang et al., 2018) that the mis-
matches actually allow for improved unconditional entanglement performance
over matched system situations, as long as the readout rates can be appropri-
ately matched ΓS ∼ ΓM. Due to the mismatch in interaction types, part of the
spin response written into light will couple to the mechanical oscillator, which
in its turn, will generate a response that interferes with the input. For ζM > ζS,
the interference will be destructive, reducing the overall system noise even for
the highly asymmetric sub-systems we have.

While the negative mass spin oscillator and the related quantum back-action
cancellation is necessary to go below the inseparability limit, it is not sufficient.
Unless dynamical process are present, the inevitable coupling to the thermal
bath F̂ and the ground state noise will always bring the total unconditional
variance to or above the inseparability limit. The thermal fluctuations, along
with eventually residual un-canceled quantum back-action, can be suppressed
by conditioning the measurement results.

Our entanglement generation scheme, therefore, employs quantum back-
action evasion, additional interference induced by mismatched systems, and
conditioning/filtering of the detected light. In the next section we discuss the
filtering used.

11.3 Filtering

Estimating the knowledge of the present state based on existing information
is a problem we deal with daily. The estimation is usually a hard task due to
the measurment noise in measuring the current state of the system, blurring
the prediction’s effectiveness. Fortunately, in some tasks, the uncertainties are
either regular or have patterns that make the predictions work very precisely.
Commonly, some noise sources are stationary processes, in which the noise
statistics does not change when shifted in time. For this very type of processes
the Wiener filter was developed in the 1940’s by Norbert Wiener, in connection
to war related position estimation tasks. Happily, in our case we deal with
inoffensive low energy photons and vacuum fluctuations.

Estimating a quantum state or the evolution of a quantum system is a fun-
damental task, as quantum mechanics sets probabilistic rules on the possible
measurement outcomes. According to the Copenhagen interpretation of quan-
tum mechanics, an isolated quantum state can be represented by a wave func-
tion, a mathematical object that contains the knowledge about the system. Most
commonly, the system inevitably couples to its surroundings, losing informa-
tion irreversibly and evolving into a statistical mixture of states described via
the density matrix ρ.

Let us consider the case we deal with in our experiments. An oscillator is
prepared in the atomic spin ensemble, for example. The oscillator is coupled
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to its thermal bath, which over time leads to damping/decoherence and diffu-
sion/fluctuations in the canonical variables of the system. Furthermore, a light
field also couples to the system, interacting and extracting information about
its dynamics. The stronger the coupling, the stronger is the back-action effect
of light onto the spin oscillator and the more disturbed the oscillator becomes.

The measurement back-action is, nonetheless, an information extraction pro-
cess. Due to the light-spin coupling, the information about the system dynam-
ics is written into light. If the measurement is efficient, that is, if the back-action
dominates over other decoherence processes, the state of the oscillator can be
extracted with high fidelity from the measurements of light.

The full quantum dynamics of systems open to interactions with environ-
ments is usually treated via stochastic master equations (Carmichael, 1993)
or the Monte Carlo method (Mølmer et al., 1993). For the conditional den-
sity matrix master equation of a harmonic oscillator coupled to environments
with uncorrelated measurement noise and constant measurement strength, see
(Müller-Ebhardt et al., 2009).

For our particular case, our system and respective interactions have Gaus-
sian statistics. Operating our oscillators at MHz frequencies are acted only by
the quantum fluctuations of the light and the coupling to the thermal bath, both
following wide-sense stationary-noise statistics (Broersen, 2006). In this limit,
the conditional density matrix approach, the Kalman filter, and the Wiener fil-
ter have identical estimating power for incorporating the information recorded
at previous times t′ < t in the current time conditional quantum state ρc(t).
The application of Wiener filter to quantum state preparation tasks has been
discussed in Müller-Ebhardt et al. (2008), in Müller-Ebhardt et al. (2009), and in
Miao (2010).

As described by Buonanno and Chen (2002), the measurement of the quadra-
ture of light, here P̂out

L , follows two “classical” properties

• the operators associated with the measurement current obtained at dif-
ferent times t and t′ commute, [P̂out

L (t), P̂out
L (t′)] = 0, implying their si-

multaneous measurability;

• causality enforces [P̂out
L (t), X̂(t′)] = 0, t′ > t, with X̂ being any quadra-

ture of a hybrid spin-mechanics system, that is, the detection of the probe
light does not influence the future state of system of interest.

Therefore, quantum mechanics is enforces only the presence of amplitude and
phase quantum noise in the optical probing field. However, the fundamental
origin of the noise in the system is not important for the Wiener filtering theory.

Our approach focuses on the Wiener filter technique, for a number of rea-
sons. First of all, the Wiener filter does not require including the dynamics of
undesired noise sources in the modelling, contrary to the Kalman filter (Wiec-
zorek et al., 2015). In the steady state, as we will see below, all required by the
Wiener filter—on top of the conditions given in the paragraph above—is a pre-
cise estimation of the dynamics of interest in the measured signal, along with
the statistical properties of the measurement noise. Second of all, there is an
efficient numerical procedure to efficiently calculate the optimal Wiener filter.

For completeness, we stress that other approaches could have been taken.
The conditional master equation and Kalman filtering has been explored in
Lammers (2018) and in Rossi et al. (2019), respectively. If data from before and
after the moment of the time state estimation is available, the theory of past
quantum states (Gammelmark et al., 2013), which has been applied in Bao et al.
(2020), is also a possibility.

11.4 Wiener Filtering

To clarify the Wiener filtering procedure, we will first study an example with
a single variable. In the next subsection we will consider a situation closer to
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1We mark the signals as operators for
the sake of our own specific problem
involving noise of quantum origin. The
same reasoning apply for classical signals.

that of the experiment, in which we wish to extract multiple variables from the
light field.

Consider a general1 system with noisy output signal ŷ(t) which we can sep-
arate into the signal of interest, x̂(t), and the measurement noise, n̂(t), as

ŷ(t) = x̂(t) + n̂(t). (11.12)

The Wiener filter K(t) allows for obtaining the conditional signal estime as

~̂x(t) =
∫ t

−∞
K(t− t′)ŷ(t′)dt′. (11.13)

We decompose the signal as

x̂(t) = ~̂x(t) + R̂(t), (11.14)

where R̂(t) is the residual noise operator. If we want to estimate the signal x̂(t)
using the output ŷ(t), the optimal filter K(t) is found by requiring that R̂(t)
must be uncorrelated with the past output such that

〈R̂(t)ŷ(t′) + ŷ(t′)R̂(t)〉 = 0 ∀t′<t. (11.15)

To find the optimal filter function K(t) we solve the Wiener-Hopf equation
(which results from the above requirement)

Cxy(t)−
∫ ∞

0
dt′K(t′)Cyy(t− t′) = 0 ∀t>0 (11.16)

where Cxy(τ) is the cross-correlation function between signal and measure-
ment output, and Cyy(τ) is the auto-correlation function of the measurement
output. We demand K(t) = 0 for t < 0, in order to obtain a causal filter, and
that K(t) will be a decaying function (K(t) → 0 as t → ∞). The proofs and
more detailed derivations are given in Müller-Ebhardt et al. (2009).

In the hybrid experiment we deal with spectral densities. Formally, we have
(Clerk et al., 2010)

S̄XY(Ω) =
∫ ∞

−∞

dΩ′

2π

1
2
〈{X̂(Ω′), Ŷ†(Ω)}〉, (11.17)

where {·, ·} is an anti-commutator, which satisfies

S̄XY(−Ω) = S̄∗XY(Ω) (11.18)

S̄YX(Ω) = S̄∗XY(Ω) (11.19)

From the power spectral density, we can get the two-point temporal correlation
function via the Wiener-Khinchin theorem (Clerk et al., 2010)

CXY(τ) =
∫ ∞

−∞

dΩ
2π

S̄XY(Ω)eiΩτ = 2
∫ ∞

0

dΩ
2π

S̄XY(Ω)eiΩτ . (11.20)

The variance of a given variable is defined as

Var(X) = CXX(0) =
∫ ∞

−∞

dΩ
2π

S̄XX(Ω) = 2
∫ ∞

0

dΩ
2π

S̄XX(Ω). (11.21)

Now we go on to calculate the conditional variance. It can be shown using
equations (11.14) and (11.15) that

Vc = 〈R̂(0)2〉 = 〈x̂(0)2〉 − 〈~̂x(0)2〉 = Vu − 〈~̂x(0)2〉, (11.22)
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2We will follow the definitions

[X̂i, P̂i] = i [X̂L, P̂L] = i/2.

the conditional variance is equal to unconditional variance minus the variance
of the best estimate. Note that this equation is only true for an optimal estimator
(predictor), as otherwise equation 11.14 is not satisfied.

The conditional variance requires knowing the variance of the best estimate,
which is

〈~̂x(0)2〉 =
∫ ∞

0
dsK(s)Cxy(s) (11.23)

We will be using this to calculate the variance of the best estimate in the discrete
cases, also in the practical analysis.

Overall, solving the Wiener-Hopf equations to obtain the analytical expres-
sions for the Wiener filter and conditional variance, the two most important
quantities for our applications, is rather challenging. As for the full hybrid
model, we will rely on a numerical routine.

In the next section, we will provide the solution for the QND read out of a
single oscillator, and the case of matched oscillators in the quantum back-action
evasion configuration.

11.5 Filtering, QND readout

As an example that we can solve analytically, we will consider the QND
readout of the hybrid system. We start with the Hamiltonian

Ĥ =
ωM

2
(X̂2

M + P̂2
M)± ωS

2
(X̂2

S + P̂2
S ) + 2

√
ΓMX̂LX̂M + 2

√
ΓSX̂LX̂S, (11.24)

for ωM, ωS as the resonant frequencies, and ΓM, ΓS as the readout rate of the
spin and mechanics system.

We proceed to write equation (11.24) in a rotating frame at ωM. We will also
set ωM = −ωS = ω0 and match the readout rates Γ = ΓM = ΓS. The rotating
frame transformation is described in Appendix F

Ĥint = 2
√

ΓX̂L
[
(X̂S + X̂M) cos ω0t + (P̂M − P̂S) sin ω0t

]
(11.25)

In time, we will also assume identical thermal occupation for both oscillators,
that is, n = nS = nM.

Having the Hamiltonian, the time evolution2 of the operators can easily be
calculated.

11.5.1 Single oscillator

We will first study the case of a single oscillator, developing an intuition
about the behaviour of the Wiener filter.

For the spin operators, for example, the dynamics for the variables is

d
dt

R̂S = −γS0R̂S/2 + 2
√

ΓSM(t)R̂L + F̂S,th, (11.26)

for the matrices

R̂S =

(
X̂s
P̂s

)
M(t) =

(
± sin ω0t 0
− cos ω0t 0

)
R̂L =

(
X̂L
P̂L

)
F̂S,th =

(
F̂X,S
F̂P,S

)
.

(11.27)

In the steady state limit, that is t→ ∞, the spin variables respond as

R̂S(t) =
∫ t

−∞
dτ eγS0(τ−t)/2(2

√
ΓSM(τ)R̂L(τ) + F̂S,th(τ)) (11.28)
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The relations for the light variables can be written as

X̂out
L,S = X̂in

L,S

P̂out
L,S = P̂in

L,S +
√

ΓS
(
X̂S cos ω0t± P̂S sin ω0t

)
(11.29)

Therefore, demodulation will give access to spin oscillator variables in the in
and out-of-phase electronic quadratures.

We will measure the P̂L light quadrature. In the rotating frame, the dynamics
are the same for both electronic quadratures, thus we may consider only one of
them. Furthermore, including detection efficiency η, the readout of the position
quadrature X̂S is

P̂out
L,S = P̂in

L,S +
√

ηΓSX̂S. (11.30)

We compare the equation above to the equation (11.14), equation from which
the Wiener filter derivation starts. We map

x̂ →
√

ηΓSX̂S (11.31)

n̂→ P̂in
L,S, (11.32)

such that ŷ = x̂ + n̂.
We can now state the power spectral densities of the measurement current ŷ

and signal x̂. Being white-noise forces convolved by decaying exponentials in
equation (11.28), the PSD for ŷ and x̂ are

S̄yy(Ω) =
1 + S̄b

2
+

1
2

ηΓS

(γS0/2)2 + Ω2

(
ΓS + 2γS0(nS +

1
2 )
)

(11.33a)

S̄xx(Ω) =
1
2

ηΓS

(γS0/2)2 + Ω2

(
ΓS + 2γS0(nS +

1
2 )
)

. (11.33b)

The three terms in S̄xx are the quantum back-action, ground state and thermal
noises contributions. The extra term in S̄yy is the detection shot noise.

We now make use of equation (11.20) to calculate the two-time auto-correlation
functions in the time domain

Cyy(τ) =
1 + S̄b

2
δ(τ) +

ηΓSe−
1
2 γS0τ

2γS0
[θ(−τ)eγS0τ + θ(τ)]

(
ΓS + 2γS0(nS +

1
2 )
)

(11.34a)

Cxx(τ) =
ηΓSe−

1
2 γS0τ

2γS0
[θ(−τ)eγS0τ + θ(τ)]

(
ΓS + 2γS0(nS +

1
2 )
)

, (11.34b)

where δ(τ) and θ(τ) are the Dirac delta and the Heaviside functions, respec-
tively. For τ = 0, we have the auto-correlation function

Cxx(0) = ηΓS

(
nS +

1
2
+

ΓS
2γS0

)
= ηΓSVu = ηΓS〈X̂2

S〉, (11.35)

showing that the total (unconditional) noise variance is proportional to the total
occupancy of the oscillator.

We proceed to calculate the optimal filter function and the conditional vari-
ance related to such filtering. The Wiener-Hopf equation, defined in (11.16),
can be solved by plugging in a test filter function of the form

K(t) = Λeλtθ(t), (11.36)
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in which Λ and λ are parameters to be determined. Inserting equations (11.34)
and (11.36) in (11.16), we find

Λ =
1
2


√
(S̄b + 1)γ2

S0 + 4γS0ΓSη + 4Γ2
Sη + 8γS0ΓSηnS√

S̄b + 1
− γS0

 (11.37)

λ = −

√
(S̄b + 1)γ2

S0 + 4γS0ΓSη + 4Γ2
Sη + 8γS0ΓSηnS

2
√

S̄b + 1
. (11.38)

Important insights in the filtering dynamics can be extracted from the param-
eters above. Let us first consider the lossless and shot-noise limited case, in
which η = 1 and S̄b = 0. We will also set the effective thermal occupation to
zero, nS = 0.

In the limit of strong optical readout ΓS/2γS0(nS +
1
2 )� 1, the filter reduces

to

K(t) ∼ ΓSe−ΓSt, (11.39)

simplify determined the readout rate ΓS. Equivalently, in frequency space the
filter is a Lorentzian with linewidth ΓS/2π (FHWM), which narrows as the
readout rate increases towards infinity. This demonstrates that in the limit of
system dynamics dominates by the optical readout, the output light signal and
state of the oscillator are as correlated as possible.

In the opposite limit, ΓS/γS0 � 1, the filter becomes

K(t) ∼ ΓSe−γS0t/2. (11.40)

The optimal state estimation is done when taking into account the whole en-
velope decay of the system dynamics, extracting all the information from the
optical measurement.

The broadband spin noise contribution alters the Wiener filter parameters.
In the limit of ΓS � γS0, a non-zero S̄b makes the filtering time scale shorter
and reduces the absolute weight of the estimator, effectively broadening the
filter in frequency space.

The variance of the best estimate is calculated using equation (11.22). We use
the unconditional variance Vu from equation (11.35) and the best estimate vari-
ance 〈~̂x(0)2〉 and Wiener filter from equations (11.23) and (11.36), respectively,
to calculate the conditional variance

VX
c =

√
γ2

S0 + 4γS0ΓSη′(ΓS/γS0 + 2nS + 1)− γS0

4ΓSη′
(11.41)

for η′ = η/(S̄b + 1). Therefore, the broadband spin noise contribution reduces
the detection efficiency of the conditional state preparation, increasing the final
variance. In the strong read out limit, for η′ = 1, the conditional variance tends
to

VX
c →

1
2

. (11.42)

Therefore, the conditioning procedure can remove all the back-action noise in-
duced by the measurement and thermal noise induced bath the thermal bath.
The remaining variance is due to the ground state noise energy. The back-action
noise is, after all, a signature of the light field carrying information about the
oscillator dynamics.

The total conditional variance, in the rotating wave approximation limit, is
obtained by summing with the conditional variance for the P̂S spin variable,
such that

VX
c + VP

c = 1, (11.43)

in the perfect measurement limit.
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11.5.2 Hybrid system

For the matched hybrid configuration, the procedure for finding the Wiener
filter and conditional variance is basically the same. Nonetheless, now we have
the optical quadratures carrying information about the hybrid system

X̂out
L = X̂in

L

P̂out
L = P̂in

L +
√

ΓS
(
(X̂S + X̂M) cos ω0t + (P̂M − P̂S) sin ω0t

)
. (11.44)

As in the previous section, we will calculate the Wiener filtering for the cosine
component of P̂out

L , which will give access to
√

2X̂EPR = X̂S + X̂M. Due to the
symmetry of the problem, the sine component will have the same variance.

As for the spin and mechanical system variables, the power spectral densi-
ties S̄ij(Ω) and respective auto-correlation functions in the time domain Cij(τ),
for i, j as general indices, will not have the quantum back-action and ground
state contributions, that is

S̄yy(Ω) =
1
2
+

1
2

ηΓ
(γS0/2)2 + Ω2

(
4γS0(n + 1

2 )
)

(11.45a)

S̄xx(Ω) =
1
2

ηΓ
(γS0/2)2 + Ω2

(
4γS0(n + 1

2 )
)

, (11.45b)

for the power spectral densities, and

Cyy(τ) =
1
2

δ(τ) +
ηΓe−

1
2 γS0τ

2γS0
[θ(−τ)eγS0τ + θ(τ)]

(
4γS0(n + 1

2 )
)

(11.46a)

Cxx(τ) =
ηΓe−

1
2 γS0τ

2γS0
[θ(−τ)eγS0τ + θ(τ)]

(
4γS0(n + 1

2 )
)

, (11.46b)

for the auto-correlation functions. We have disregarded the broadband spin
noise contribution, for simplicity.

We proceed to find solutions for the Wiener-Hopf equation following the
same test function as in equation (11.36). We believe the decaying exponential
is a good test function because with both oscillators matched in all parameters,
spectrally we will only see a single feature, with Lorentzian shape. The Λ and
λ, and Vc parameters are modified relative to single-oscillator case akin to the
PSDs and auto-correlations, with no quantum back-action but double thermal
noise terms. Overall, they are found to be

Λ =
1
2

(√
γ2

S0 + 4γS0ΓSη + 8γS0ΓSηn− γS0

)

λ = −

√
γ2

S0 + 4γS0ΓSη + 8γS0ΓSηn

2

VXepr
c =

1
2

√
γ2

S0 + 8γS0Γη(2n + 1)− γS0

4Γη
.

(11.47)

Let us focus on the conditional variance Vc. In the limit of infinitely strong
readout, Γ/γ� 1, we have the remarkable result

VXepr
c → 0, (11.48)

which, when compared to the single oscillator variance, equation (11.42), re-
veals that the variance is not bounded from below. This is a direct consequence
of the collective Hamiltonian (11.25), which decouples X̂EPR from the dynam-
ical evolution. As [X̂EPR, P̂EPR] = 0, the measurement does not lead to the
accumulation of measurement back-action.
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A vanishing variance indicates we can have a perfect estimate of the col-
lective X̂EPR variable. As the same conclusion applies for the P̂EPR, the total
conditional variance lower bound goes to zero, as

VXepr
c + VPepr

c → 0, (11.49)

indicating the generation of a perfectly quantum-correlated EPR state.
In this section we have shown that an ideal conditional measurement of the

matched hybrid system can generate a certified quantum state with variance
below the inseparability limit Vc < 1. As we will see in the coming sections,
although the current status of experimental realization sets limitations in de-
tection efficiencies and oscillators matching, the frequency dependence of the
Wiener filter, for example, qualitatively agrees with the filter constructed from
the full hybrid model and measured noise spectra for the resonant ωS ∼ ωM
cases.

11.5.3 A discrete Wiener filter

In the experiments, the detected photo-current is sampled with a finite rate,
that is, we have access to a new measured after a certain amount of time ∆t.
The continuous description presented in the sections above, requiring integrals
over the continuously varying time variable, must be adapted for the our ex-
perimental needs.

A discrete Wiener filter can be derived from purely discrete considerations
(Wiener, 1964). Here, however, we choose to discretize the Wiener-Hopf equa-
tion, equation (11.16). For a discrete time from t = 0 to tn, we have t0 = 0, tn =
n∆t. This yields, for example

Cxy(t0) = K(t0)Cyy(t0) + K(t1)Cyy(−t1) + K(t2)Cyy(−t2) + . . .

Cxy(t1) = K(t0)Cyy(−t1) + K(t1)Cyy(−t2) + K(t2)Cyy(−t3) + . . .

Cxy(t2) = K(t0)Cyy(−t2) + K(t1)Cyy(−t3) + K(t2)Cyy(−t4) + . . .

(11.50)

We now notice that given the symmetry of the measured power spectral density
we have Cyy(−t) = Cyy(t). Given a finite correlation time, we can always
truncate the detected signal as Cy(x)y(τ) → 0 as τ → ∞. We may then rewrite
the system of equations (11.50) as a matrix equation

Cyy(t0) Cyy(t1) Cyy(t2) · · · Cyy(tN)
Cyy(t1) Cyy(t0) Cyy(t1) · · · Cyy(tN−1)
Cyy(t2) Cyy(t1) Cyy(t0) · · · Cyy(tN−2)

...
...

...
. . .

...
Cyy(tN) Cyy(tN−1) Cyy(tN−2) · · · Cyy(t0)




K(t0)
K(t1)
K(t2)

...
K(tN)

 =


Cxy(t0)
Cxy(t1)
Cxy(t2)

...
Cxy(tN)

 ,

(11.51)

as
CyyK = Cxy, (11.52)

which constitutes a set of linear equations for the optimal filter K. It can be
efficiently solved, as Cyy is a so-called Toeplitz matrix via the Levinson-Durbin
algorithm (Durbin, 1960).

As in equation (11.22), the conditional variance can be numerically calcu-
lated as

Vc = Cxx[0]−KTCxy. (11.53)

This relation is very important, as it gives a simple way to calculate the variance
of interest by just multiplying matrices.
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3Using the Python package
scipy.linalg.solve_toeplitz.

11.6 Experiments

The hybrid system and the experimental configuration have already been
discussed in Chapter 10, Section 10.7.2. In fact, the spectra presented and dis-
cussed there are further studied in this section, with the analysis viewed from
the perspective of conditional measurements.

We start by presenting the procedure for estimating the conditional vari-
ances, being

1. the digitized photo-current of the hybrid homodyning signal is either di-
rectly saved as time traces (for the time evolution analysis) or it is av-
eraged after being converted into power spectral densities. In any case,
the shot-noise and electronic noise levels must also be recorded for nor-
malization of the homodyning PSD and subtraction from the normalized
PSD, respectively.

2. the full model is fitted to the averaged PSDs for extracting the system pa-
rameters. It can be done using the MCMC procedure described in Section
11.7, or just a standard least-square minimization procedure. In general,
fitting is necessary for extracting the system parameters that best repro-
duce the experimental results.

3. from the fitted parameters, using the full model, we calculate C̄XX(t) and
C̄XY(t), the time domain auto-correlation of the oscillator variable of in-
terest and the variable-optical quadrature cross-correlation function, re-
spectively, as described in Section 11.4.

The steady-state unconditional variance of the spin, mechanical, and hy-
brid system can be calculated from covariance matrix in the spin-mechanics
subspace. From the full model presented in Chapter 10, we define the
submatrix of S̄out containing the first 4 rows and columns as S̄MS. The
unconditional covariances and covariances are calculated as

Vu =
∫ ∞

−∞

dΩ
2π

S̄MS(Ω). (11.54)

4. we calculate the optical quadrature time-domain auto-correlation func-
tion C̄YY(t) from the detected PSD or from the full model fitted with the
system parameters.

5. given the time-dependent correlation functions C̄XX , C̄XY and C̄YY , we
can solve the Wiener-Hopf equations by arranging the matrices according
to the Toeplitz form and using the Levinson algorithm3 to find the Wiener
filter.

6. finally, the conditional variance is calculated using equation (11.53), that
is, by subtracting the convolution of the signal-measurement current cross-
correlation with the extracted Wiener filter from the unconditional vari-
ance.

Having the procedure for estimating the conditonal variance of the hybrid
system, we move on to discussing the experiments. A table with a summary of
the experimental parameters is presented in Appendix I.

We start by analyzing the hybrid system in the time domain. During its
time evolution, the individual oscillators evolve according to the random fluc-
tuations induced by the coupling to light and the respective thermal baths. The
hybrid system, being composed of the spin and mechanical oscillators, will
evolve accordingly.

We record and apply the state estimation procedure to independent real-
izations of the hybrid homodyne photo-current, with the resonant frequencies
satisfying |ωS| − ωM ∼ −γM/2. Subsequently, we obtain the slowly varying
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Figure 11.2: Time resolved tracking of the EPR oscillator. (left) A single realization (gray curve)
of the conditional trajectory over time of the resonant (ωM ∼ ωS) EPR oscillator in the phase space
from t = 0 (red dot) to t = 110 µs (blue dot). The red (blue) shaded area represents the mean un-
conditional (conditional) variance Vu = 1.91 (Vc = 0.83), averaged over 1000 realizations. (right)
The conditional variance as a function of conditioning time. With the gradual accumulation of
information over time, the resonant EPR system variance (red to blue line) goes below the EPR
ground state variance (Vc = 1, orange shaded area). When the spin-mechanics resonant fre-
quency detuning is ∼ 110 kHz (green line), the conditioning does not lead to the preparation of
an entangled state.

conditional EPR position and momentum variables, X̃c
EPR and P̃c

EPR, by demod-
ulating the EPR variables with frequency ω/2π = 1.37 MHz. The demodu-
lation frequency is rather arbitrary, as the individual oscillators have different
resonant frequencies. The demodulation allows us to extract the trajectory of
the hybrid system in phase space.

We present one of the trajectories (gray line) in Figure 11.2 (left). The random
dynamics of the hybrid oscillator is seen in the diffusion-like trajectory from
t = 0 (red dot) to t = 110 µs (blue dot). The red shaded circle represents the
unconditional state variance, the variance before without applying the Wiener
filter. The blue shaded circle represents the conditional state variance, after
filtering the measured photo-current to estimate the system state. The radius
of the red (blue) circle is given by

√
Vu (
√

Vc). The variance of the hybrid state
is reduced, showing the effectiveness of the filtering procedure.

In Figure 11.2 (right) we show the dynamics of the conditonal variance Vc
with conditioning time. Additionally to the approximately resonant hybrid
system (in the red to blue line), we also show the case of the oscillators detuned
by ∼110 kHz (green line).

Let us first focus on the conditional variance for small conditioning times,
when the system variance is still rather unconditional. At t = 1 µs, we see
that the variance of the system decreases from 6.07 to 1.91 when bringing the
systems close to resonance. This indicates that the back-action-evading mea-
surement, along with the non-local dynamical cooling of the spin thermal noise
by the mechanical oscillator, brings the variance of the EPR oscillator down by
5 dB, which is a major factor considering the goal is to go below the classical
limit Vc = 1.

We now let the conditioning evolve. As the conditioning time increases, we
obtain a more precise estimate of the conditional state of the hybrid system,
observing the dynamics of the accumulated knowledge extracted from the op-
tical probe. The Vc decays approximately exponentially in the range of 10-20 µs,
when it goes below the classical limit, establishing that the spin-mechanics sys-
tem is indeed entangled. In the next 100 µs it basically reaches the steady state
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value of Vc = 0.83± 0.03. The far-detuned case also has a reduced variance at
the end of the conditioning procedure.

We can repeat the filtering procedure for different spin-mechanics detunings
|ωS| − ωM. Differently than the case discussed above, now we are interested
in the steady state conditional state preparation. The spectra are presented in
Figure 11.3 panels, each for a different spin-mechanics detuning. The spin res-
onant frequency is marked by the gray dashed lines. The homodyne spectra,
normalized to SN, are presented as colors. The full model fittings to the spectra
were already shown in Figure 10.11. In black, we present the respective Wiener
filters, extracted from the conditioning procedure.

The Wiener filters have a double-peak structure for the cases in which the
oscillators’ detuning can be resolved over their respective linewidths. For the
resonant cases, in panels d to g, the filter has a Lorentzian shape with width
∼ 20 kHz, on the order of the average oscillator’s readout rate.

The full modeling of the system, along with the conditioning procedure, al-
lows rejecting spurious noise contributions. In Figure 11.3, for example, the
narrow peak at Ω − ωM ∼ −2π × 10 kHz. Note that the Wiener filter has a
notch-like feature at that particular frequency, which indicates that the condi-
tional variance will reject the extra noise component.

The data presented in Figure 11.4 (top), shown as a wider Fourier frequency
range of the panel d from Figure 11.3 (also Figure 10.10), gives a clearer picture
of the noise sources presented in a hybrid experiment. First of all, we see that
the phononic bandgap created by the periodic patterning of holes in the mem-
brane leads to a significant noise density reduction at the 1.32-1.53 MHz range.
Apart from the laser phase noise peak at approximately 1.36 MHz, the mirror
mode at 1.45 MHz is the only other large noise structure due to a motion not
associated directly with a membrane mode. There are four other membrane
modes present in the bandgap, associated with higher order vibrations. For
completeness, we include the better coupled membrane modes to the joint sys-
tem modelling, whose fit to the full model is shown as the blue line. We also
show the joint system noise breakdown, the mechanical thermal noise (blue
shaded area), spin thermal noise (green shaded area) and quantum back-action
(striped area). The orange shaded baseline defines the measurement noise,
which accounts for the detection shot noise and the broadband spin noise com-
ponent.

In Figure 11.4 (bottom), we show the polar representation of the associated
Wiener filter, used for the conditional variance estimation. The absolute square
of the filter envelope normalized to its maximum (blue line), has a bandpass
like shape, centered at the joint system resonant frequency. It gives the central
feature with the largest weight and rejects all other noise components.

The contributions of the unwanted noise in the conditioning procedure, al-
though on the percent scale in the Wiener filter, decrease Vc as seen in Figure
11.5. The dots correspond to the conditional variance calculated for the experi-
mental data. The gray curve is the conditional variance calculated from the the-
oretical spectra, which includes only the variables included in the modelling.
The smallest variance occurs around zero atomic detuning from the mechani-
cal resonance, increasing towards the entanglement boundary as the detuning
is increased. Note that the influence of the spurious noise contributions in-
creases with the atomic detuning, as the Wiener filter needs a bigger frequency
range to estimate the signal. The error bar estimation is discussed in the next
section.

11.7 Estimation of uncertainties

Establishing meaningful uncertainty levels to the conditional variances is
central to claiming entanglement. For that, we require trustworthy calibrations
of the system parameters. The spectra associated with conditional variances
presented in Figure 11.5 —shown in Figure 10.11 or in Figure 11.3 —are col-
lectively fit to the full hybrid model, discussed in Chapter 10, Section 10.1. A
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Figure 11.3: Light noise and Wiener filter spectra. The hybrid system spectra for different spin-
mechanics detunings (colored), already presented along with the respective model fittings in Figure
10.11, are now presented along its steady state Wiener filter |K∞(Ω)|2 (black curves). Figure in panel d
is also shown in Figure 11.4. Dashed lines stand for the resonant frequency of the spin oscillator
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4The procedure is implemented in Python
using the package emcee.
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Figure 11.4: Light noise and Wiener filter spectra in a wider range. (top) A wide range power spectral density of the joint system
phase fluctuations and the various noise contributions. The orange, blue and green shaded areas are the measurement noise (including
shot-noise and broadband spin noise contributions), mechanical thermal noise, and spin thermal noise, respectively. The frequency band
protected by the phononic bandgap is populated by laser, mirror and other weakly coupled membrane modes, apart from the joint hybrid
system signal of interest. (bottom) The polar decomposition of the steady state filter. The normalized amplitude squared and phase are
shown in blue and orange, respectively. Given the system correlations in the detected signal, the Wiener filter rejects all other components.

subset of the parameters is shared in between all spectra, while a small fraction
of the parameters are allowed to vary from point to point, accounting for small
fluctuations while the data acquisition was being performed.

The major source of run-to-run fluctuations is the LO1-LO2 phase ϕ stability
due to spurious back reflections in the double pass spin readout and finite re-
jection of LO1. The effects of a time dependent ϕ are plentiful. First of all, drifts
and fluctuations of the phase ϕ lead to a change in the overall LO2 power. Due
to changes in LO2 power, the cavity locking point will lead to a different detun-
ing ∆ from the optomechanical cavity. With a drifting detuning, the intra-cavity
power and optomechanical coupling g change. Overall, typical drifts of ϕ ∼ 3◦
are present in a experiment lasting a couple of minutes. Given the cascaded
effect of the LO1-LO2 phase, we allow ϕ, ∆, and g to vary between plots.

Given the importance of the parameter values for the entanglement estima-
tion, we use Markov Chain Monte Carlo (MCMC) simulations for estimating
the values of the shared and not-shared fit parameters4. We establish priors
for all experimental parameters from independent measurements. By using
MCMC together with the fitting procedure, we aim to extracting a set of param-
eters that reproduces the experimental curves with best certainty given prior
parameter knowledge.

Overall, the MCMC fitting procedure operates in a parameter space of up to
17 variables per entanglement data point. We run 150 independent processes
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Figure 11.6: Error estimation of the conditional
variance. The MCMC routine optimizes the fit-
ting routine given the prior set of parameters
and respective uncertainties. We select a random
sample (N = 1000) of the output parameters
from the MCMC simulations, extract the corre-
sponding Wiener filter and calculate the condi-
tional variances. The distributions’ average and
standard deviations are shown in Figure 11.5.

exploring the parameter space, discarding the initial 4000 steps as the proce-
dure reaches steady state operation. From there, each walker evolves for 6000
sampling steps. From the 150× 6000 = 9× 105 possible sets of fitting variables,
the posteriors, we perform the conditional variance procedure for 1000 of them.
The results of the calculations are presented in Figure 11.6. The variances of the
distributions are all rather similar, at the level of ±0.03.

The posteriors of the MCMC routine, that is, the output parameters from the
fitting procedure, agree mostly rather well with the priors. The fitting curves
for the hybrid spectra related to this hybrid run are all done using the average
posterior values. The prior-posterior discrepancies mostly happens for the pa-
rameters related to transmission efficiencies of the quantum signal. The main
discrepancy is inter-system quantum efficiency ν. The prior νprior = 0.65± 0.03
differs significantly from the posterior νposterior = 0.53. The extra losses, not ac-
counted for the priors, can be due to polarization dependent losses and/or to
bad estimation of the cavity mode-matching. Other parameters that slightly de-
viate from the priors are the detection efficiencies η = 0.77, ηprior = 0.80± 0.03,
and cavity over-coupling (κin/κ) = 0.925(5), (κin/κ)prior = 0.91± 0.01. On the
spins side, ΓS,prior/2π = 18(1) kHz and posterior ΓS/2π = 20.3(4) kHz as well
as nS,prior = 0.72± 0.05 and posterior nS = 0.81± 0.05.

11.8 Conclusions

We have demonstrated long-range entanglement between a mechanical os-
cillator and an atomic spin ensemble via light, showing that the conditional
Einstein-Podolsky-Rosen variance goes below the inseparability limit, with vari-
ance Vc = 0.83± 0.02 < 1. This result sets a new milestone for macroscopic en-
tanglement between disparate systems, showing the versatility of the negative-
mass reference frame in quantum information protocols and in measuring noise-
less trajectories in the negative-mass reference frame.

Improving the performance requires further reduction of experimental im-
perfections. Our modeling shows that by reducing the the broadband spin
noise by a factor of 3 and the improvement of the fractional coherent spin read-
out ΓS/γS0 by another factor of 3, along with reduction of the optical losses
down to 10% and improvement of cavity over-coupling to κin/κ = 0.98, can
bring the conditional variance down to Vc ≈ 0.3 (−5 dB).
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Chapter 12

Conclusions and Outlook

In this thesis, we have described the experimental realization of an optical
interface between a room temperature spin ensemble and a mechanical oscilla-
tor to the quantum limits and beyond, preparing the joint system in an entan-
gled Einstein-Podolsky-Rosen state (Thomas et al., 2020). This result, building
up from the quantum back-action evasion results (Møller et al., 2017), demon-
strates that our hybrid platform has potential applications that range from the
sensing of minute forces and accelerations, to quantum information processing
protocols by providing a quantum link between vastly different systems.

As discussed in Chapter 11, the broadband spin noise, a consequence stem-
ming from a inhomogeneous spins-light interaction, adds significant noise to
the light output from the spin ensemble, limiting the EPR variables detection
efficiency. Reducing the broadband noise contribution can be done by making
the laser intensity more homogeneous across the transverse section of the cell
using a top-hat beam profiler, for example. In the spin-mechanics configuration
studied in this thesis, with spins interacting with light first, such transformation
would have to be undone for coupling to the optomechanical cavity fundamen-
tal TEM00 mode. As we will discuss below, by inverting the spin-mechanics or-
der we can avoid the top-hat-to-gaussian beam transformation. Regardless of
the order, tailoring the beam must be done with smallest possible added losses.

Achieving a higher spin quantum cooperativity requires a higher spin read-
out rate and better spin state preparation. Due to the unavoidable laser beam
divergence, optimally filling a longer cell also requires a larger transverse area
which leads to a lower spin natural linewidth γS0. As discussed in Chapter
10 and 11, reducing the total spin linewidth —a sizeable part of it composed
by the natural linewidth —facilitates working on the regime of γS � γM, en-
hancing the effects of dynamical noise cancellation by the mechanical oscillator,
therefore improving the performance of the hybrid experiment.

For improving the vapor cells optical performance, careful assembling of
the parts is required. Although a highly trained craftsmen can perform glass-
blowing with great precision, several applications still suffer from the common
imperfections. The smallest attainable flame size, on the order of a couple of
millimetres, sets a lower limit on the spot size that will be most affected by the
heating. Therefore, glass-blowing is not a good option cells that minimize vol-
ume or require a interferometrically flat windows over the full area of the cell.
For our applications, an ideal vapour cell is a sturdy vacuum tight container
with uniformly transparent windows. Preferably, the fabrication procedure
should allow for arbitrary choice of shapes and volumes. While glass-blowing
performs well for volumes down to the order of 1 cm3, further miniaturization
is hard to achieve.

During my PhD, we have tried employing two different bonding techniques,
anodic and CO2 laser bonding, to substitute it. Recently1, we have managed to
produce vacuum tight laser bonded cells, with an example shown in Figure
12.1. While still in its early stages, this technique is shown to be much less
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Figure 12.1: Side view of the glass-to-glass laser
bonding. A 1/2” glass window is laser bonded
to 13 mm diameter glass tube. The laser beam
heats the window-tube interface (bonded sec-
tion), fusing the parts together. Notice that glass
1 mm away from the bonded section is not visi-
bly affected by the heating.

invasive as it only significantly distorts the glass volume in the bonded section,
the outer rim of the glass tubing. If the optical quality promises become true, a
laser beam shaped to the fill the cell transverse area would experience minimal
loss.

A low optical loss vapor cell, altogether with a suited optical cavity, is a
direct way for improving spin readout rate, further increasing the quantum
cooperativity and quantum efficiency of the spin measurement. For efficiently
reducing the broadband contribution, the optical mode must fill the transverse
section of the vapor cell. Fabry-Perot resonators of the confocal and/or the
concentric type allow for match all higher order TEMmn modes along with the
fundamental Gaussian mode, tailoring the effective cavity mode to the desired
one.

Another avenue to continue improving the experiment is reducing the inter-
system losses. The mode matching of the spin’s output to the optomechanical
cavity is currently limited at νcav ∼ 90%, for reasons that are not completely
understood to the moment. We currently also have ∼ 10% of extra optical
losses, pointed out by our parameter estimation routine, which need further
understanding. The current leads point that this losses could be coming directly
from the spin ensemble cell.

On the mechanics side, removing mirror noise, the thermal vibrations of the
mirror structure itself, would be beneficial. As seen in the entanglement discus-
sion, the extra noise added by mirror modes has as non-negligible contribution.
As our mirrors don’t have phononic bandgaps, the modes that happen to lie in
the membrane bandgap further reduce the shot-noise limited frequency band.
Further increasing the mechanical readout rates, would broaden the Wiener
filter, making the contribution relatively more important. On a different note,
improving the thermal stability of the cryostat housing the optomechanical sys-
tem would make the experimental runs more stable and alignment free.

As for future hybrid experiments, having already shown the preparation
of the system in an entangled state, the complexity of the protocols can be in-
creased. As noted in Hammerer et al. (2009), one of the exciting advantages of
a hybrid interface is the possibility of increasing the toolbox of available prepa-
ration and measurement schemes from one system to another. Take, for exam-
ple, the preparation of a mechanical state with quantum fluctuations below the
zero-point level, that is, a mechanical squeezed state. Preparing a mode of a
macroscopic system in a quantum state offers studying the limits of quantum
mechanics on the quantum-to-classical limit and, possibly, its interconnections
with the quantum aspects of gravity. In our hybrid system, we could, for exam-
ple, prepare the spin ensemble in a squeezed state via measurement (Fernholz
et al., 2008; Vasilakis et al., 2015) and teleport it (Krauter et al., 2013) to the me-
chanical system. Our hybrid entanglement could also allow propagating the
quantum link forward to, for example, mechanical degrees of freedom elec-
tromechanically coupled superconducting qubits Higginbotham et al. (2018);
Mirhosseini et al. (2020).

Moreover, as the constituent parts of the entangled state respond to very
different perturbations, the entanglement could facilitate measurements of mo-
tion and fields, as off-resonant continuous force detection in gravitational wave
interferometers Khalili and Polzik (2018); Zeuthen et al. (2019), and resonant
pulsed measurements based on state preparation and retrodiction Wasilewski
et al. (2010).

The results presented in this work are part of an ongoing progress towards
better understanding and control of our mechanical and spins systems at their
quantum limits. Hopefully, this is just the beginning of a journey highlighted
by many pioneering experiments.
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Appendix A

Mathematical Methods

In this chapter, we summarize some of the useful relations used throughout
the main text. Although most of the results can be found in various textbooks,
it is handy to have them bunched together —even more for an experimentalist.

A.1 Commutators and power spectral densities

For a function in the time domain f̂ (t), we use the Fourier transform sign
convention and property

f̂ (Ω) = F{ f̂ (t)} =
∫ ∞

−∞
f̂ (t)eiΩt dt, F

{
d
dt

f̂ (t)
}

= −iΩ f̂ (Ω). (A.1)

For the localised optical cavity mode, we introduce the photon annihilation
and creation operators obeying the commutation relation [â, â†] = 1, and, in
turn, the light amplitude and phase quadratures (suppressing the time/Fourier-
frequency dependence for brevity)

X̂L =
â + â†

2
P̂L =

â− â†

2i
, (A.2)

which obey the same-time commutation relation [X̂L(t), P̂L(t)] = i/2. In Fig-
ure A.1 we present the relationship between the time and frequency version of
a general position operator X̂(t). Note how the conjugate of the position oper-
ator in frequency space related to the a different Fourier frequency, [X̂(Ω)]† =
X̂†(−Ω).

All travelling optical fields, including additional (vacuum) noise fields in-
troduced by optical losses, are described by amplitude and phase quadratures

X̂in(out)
L =

âin(out) + â†
in(out)

2
P̂in(out)

L =
âin(out) − â†

in(out)

2i
, (A.3)

X̂(t) = 1
2 (â(t) + â†(t)) [X̂(t)]† = X̂(t) = 1

2 (â†(t) + â(t))

X̂(Ω) = 1
2 (â(Ω) + â†(−Ω)) [X̂(Ω)]

†
= X̂†(−Ω) = 1

2 (â(Ω) + â†(−Ω))

F

†

†

F

Figure A.1: Fourier transform relations. The action of the Fourier transformations and
the conjugation of the generalized position operator X̂(t).
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defined in terms of the quantum amplitudes

âin(out)(t) =
1

2π

∫ ∞

−∞
dΩ e−iΩt âin(out)(Ω) (A.4)

â†
in(out)(t) =

1
2π

∫ ∞

−∞
dΩ e+iΩt â†

in(out)(Ω) (A.5)

where âin(out) is the field in a rotating frame with respect to the relevant opti-
cal carrier frequency ωlaser, so that âin(out)(Ω) represents the field at absolute
frequency Ω + ωlaser. This expression is valid for Fourier frequencies close to
the optical carrier, |Ω| � ωlaser. According to the above considerations the
Fourier transforms of the rotating-frame operators âin(out)(t) and â†

in(out)(t) (see
Eqs. (A.4)), using the convention in Eq. (A.1), are

F{âin(out)(t)} = âin(out)(Ω), F{â†
in(out)(t)} = â†

in(out)(−Ω). (A.6)

The non-vanishing commutation relations of the travelling field operators are
[X̂in(out)

L (t), P̂in(out)
L (t′)] = (i/2)δ(t− t′). Accordingly, the symmetrised power

spectral densities of the incoming vacuum light fields are

SXLXL (Ω)δ(Ω−Ω′) =
1
2
〈X̂in†

L,j (Ω)X̂in
L,j(Ω

′) + X̂in
L,j(Ω

′)X̂in†
L,j (Ω)〉 = 1

4
δ(Ω−Ω′)

(A.7a)

SPLPL (Ω)δ(Ω−Ω′) =
1
2
〈P̂in†

L,j (Ω)P̂in
L,j(Ω

′) + P̂in
L,j(Ω

′)P̂in†
L,j (Ω)〉 = 1

4
δ(Ω−Ω′).

(A.7b)

For the mechanical (M) and spin (S) oscillators, we follow the commutation
relation [X̂j, P̂j] = i for (j = M, S); the effect of the thermal reservoirs F̂j with
mean thermal occupancy nj is captured by the symmetrised correlation func-
tions

SFX
S FX

S
(Ω)δ(Ω−Ω′) ≡ 1

2
〈F̂X,†

S (Ω)F̂X
S (Ω

′) + F̂X
S (Ω

′)F̂X,†
S (Ω)〉

= γS0(nS + 1/2)δ(Ω−Ω′)

SFP
S FP

S
(Ω)δ(Ω−Ω′) ≡ 1

2
〈F̂P,†

S (Ω)F̂P
S (Ω

′) + F̂P
S (Ω

′)F̂P,†
S (Ω)〉

= γS0(nS + 1/2)δ(Ω−Ω′)

SFM FM (Ω)δ(Ω−Ω′) ≡ 1
2
〈F̂†

M(Ω)F̂M(Ω′) + F̂M(Ω′)F̂†
M(Ω)〉

= 2γM0(nM + 1/2)δ(Ω−Ω′).

(A.8)

A.2 Angular momentum operators

When dealing with atomic physics experiments, choosing a good quantiza-
tion axis can simplify and clarify many physical aspects of the process under
study. In the description of optical pumping, for example, light-matter cou-
pling follows selection rules which can be tailored according to the polarization
of the photon Historically, QUANTOP related works have been following the
non-trivial school of quantization axis along the x-axis.
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In the x-basis, we have

F̂x = ∑
m

mAmm

F̂y =
1
2 ∑

m
c(J, m) (Am+1,m + Am,m+1)

F̂z =
1
2i ∑

m
c(J, m) (Am+1,m − Am,m+1)

F̂0 = ∑
m

Amm,

in which c(J, m) =
√

J(J + 1)−m(m + 1) and Aa,b ≡ |a〉〈b| = |J, a〉〈J, b| are
the atomic operators; these definitions are useful as they fulfill the standard
commutation relations [F̂i, F̂j] = iεijk F̂k. It is also important to note that the
angular momentum operators can be constructed from the ladder operators

F̂+ = F̂y + iF̂z F̂y =
1
2
(F̂+ + F̂−)

F̂− = F̂y − iF̂z F̂z =
1
2i
(F̂+ − F̂−)

in which

F̂+ = ∑
m

c(J, m)Am+1,m

F̂− = ∑
m

c(J, m)Am,m+1.

Products of these operators will be particularly useful in the calculation of the
noise terms

F̂2
x = ∑

m
m2 Amm

F̂2
y =

1
4
(F̂+ F̂+ + F̂− F̂− + F̂+ F̂− + F̂− F̂+)

F̂2
z = −1

4
(F̂+ F̂+ + F̂− F̂− − F̂+ F̂− − F̂− F̂+)

F̂y F̂z =
1
4i
(F̂+ F̂+ + F̂− F̂− − 2F̂x)

F̂z F̂y =
1
4i
(F̂+ F̂+ + F̂− F̂− + 2F̂x)

(A.9)

A.3 Stokes operators

It is convenient to define the Stokes operators in a matrix form. By using the
Pauli matrices

σx =

(
0 1
1 0

)
σy = i

(
0 −1
1 0

)
σx =

(
1 0
0 −1

) (A.10)
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and its commutation relations [σa, σb] = 2εabcσc, we can define the Stokes oper-
ators as

Ŝx =
1
2

â†σx â =
1
2
(â†

R âL + â†
L âR)

Ŝy =
1
2

â†σy â =
i
2
(−â†

R âL + â†
L âR)

Ŝz =
1
2

â†σz â =
1
2
(â†

R âR − â†
L âL)

Ŝ0 =
1
2

â†1̂â =
1
2
(â†

R âR + â†
L âL),

(A.11)

with 1̂ being the identity matrix of order 2. The commutation relations for these
operators are given by [Ŝa, Ŝb] = iεabcŜc. In the linear basis, the relations above
are rewritten as

Ŝx =
1
2

â†σz â =
1
2
(â†

x âx − â†
y ây)

Ŝy =
1
2

â†σx â =
1
2
(â†

x ây + â†
y âx)

Ŝz =
1
2

â†σy â =
i
2
(−â†

x ây + â†
y âx)

Ŝ0 =
1
2

â†1̂â =
1
2
(â†

x âx + â†
y ây).

(A.12)

In a more mundane language, the point behind the Stokes parameters – the use-
fulness and the reason why going through all this mathematical trouble makes
any sense – is that all parameters can be accessed by measuring light intensities
and intensities differences. Remembering that n̂i ≡ â†

i âi, the number operator
for photons, we can already notice in Ŝz at (A.11) and Ŝx at (A.12) that the the
Stokes parameters can be generally written as

Ŝx =
1
2
(n̂x − n̂y)

Ŝx =
1
2
(n̂45 − n̂−45)

Ŝz =
1
2
(n̂R − n̂L)

Ŝ0 =
1
2
(n̂i + n̂j),

(A.13)

in which, in the last equation, i, j are the two components of a given basis.
A given optical power P gives rise to a mean voltage V at the photo-detector.

The mean flux of photons per unit second, is proportional to the optical power
P. Therefore, the mean number of photons, being proportional to the Stokes
parameters, is proportional to the voltage V.

A.4 1st order non-homogeneous differential equation

A non-homogeneous, constant coefficients, first order linear differential equa-
tions (or a system of)

d
dt

R(t) = MR(t) + F(t),

can be solved using the Integrating Factor technique. Its solution is

R(t) = eMtR(t0) + eMt
∫ t

t0

e−MsF(s)ds (A.14)
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Figure B.1: Notation for lossy beam splitter and
correspoding vacuum admixture. a beam split-
ter input-output, b a single pass, and c an un-
folded double pass interaction scheme.

Appendix B

Losses in the double-pass atomic
readout

In this chapter, we calculate and compare the input-output relations for the
atomic readout in single pass and double pass, including optical power losses
(adding to L) at the vapor cell windows. We find that the losses introduced in
between the two passes are not as bad they would naively be. We show that
for a cell with transmission T = 1− L, in the limit L � 1, the added losses
due to the second pass is Ladd4(1− 1/

√
2) ∼ 1.17 the single pass scenario. The

readout rate ΓS, which would double in a lossless scenario (scaling with the
effective cell length), also suffers a penalty Γloss = 1− L/2.

We start by reminding ourselves about the input-output relation of a beam
splitter with power transmittivity η = 1 − R, R being the power reflectivity,
following the convention of Figure B.1 (a), such that

Xout =
√

ηX1 +
√

1− ηX2 (B.1)

∼ (1− R/2)X1 +
√

RX2, (B.2)

in which {X1, X2} are the optical fields of interest; for notational simplicity,
we don’t include the hats for the light operators. The second line in (B.1) is
obtained from the first in the limit of R � 1, to the first order. In the matrix
form, for the vector Xi ≡ (Xi, Pi)

ᵀ with the amplitude and phase quadrature of
the field as components, we have

Xout = (1− R/2)X1 +
√

RX2. (B.3)

For a vapor cell with total power losses adding to L, we assume losses equally
divided over the two windows. This is not a restricting assumption, any other
factorization of losses is possible. For the symmetric case, each window be-
haves as a beam splitter with loss of η = 1 − R/2; equivalently, (B.3) for
R = L/2

Xo = (1− L/4)X1 +
√

L/2X2. (B.4)

Another important definition is the input-output relations for the light-atoms
interacion. As discussed in Chapter 3, for QND coupling, disregarding deco-
herence and extra noise

Xout
L = Xout

L (B.5a)

Pout
L = Pout

L +
√

ΓSXin
L , (B.5b)

in which ΓS ∝ Lcell is the light-matter coupling parameter, proportional to the
length Lcell of the spin ensemble. In the matrix form

Xout
L = (12 +

√
ΓSZ0).Xin

L , (B.6)
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After the interaction with the atomic ensemble, but before crossing the exit
window, the light vector is given by (B.6). Nonetheless, as the atomic output
is mixed with vacuum at the output interface, shown in Figure B.1 (b), we ap-
ply the relation (B.4) with X1 as the atomic output and X2 as the admixtured
vacuum,

Xout, single pass
L = (1− L/4)(1 +

√
dT)Xin

L +
√

L/2Xv. (B.7)

In the double pass case, unsurprisingly, light sees the ensemble twice. We
can unfold the retro-reflection as shown in Figure B.1 (c). In this case, as the
lossy output window will count twice, fresh vacuum to will also interact with
the spins. The fraction of light that didn’t get lost after the first trip through the
vapor will experience an ensemble effectively twice longer, ie,

√
ΓS →

√
2ΓS

(in red). The fraction that leaked in will also interact with the system, but with
strength

√
ΓS (in blue). It is the two spin contributions to the propagating field

that makes this description non-trivial.
In the double pass case, the transmission through the two lossy output win-

dows is equivalent to a single loss with L→ 2L, that is,

Xout
L ∼ (1− L/2)Xin

L +
√

LXv, (B.8)

in which Xv = (Xv,1 + Xv,2)/
√

2 is the normalized added vacuum field.
Including the interaction, the field after the first trip through the ensemble

and the twice the output window is, from (B.6) and (B.8)

Xout, single pass, two windows
L ∼ (1− L/2)(1 +

√
ΓSZ0)Xin

L +
√

LXv;

we proceed by serving this field as input to the final interaction round

Xout, double pass
L = (1 +

√
ΓSZ0)X

out, single pass, two windows
L (B.9)

∼ (1− L/2)(1 +
√

2ΓST)Xin
L +
√

L(1 +
√

ΓSZ0)Xv (B.10)

= (1− L/2)Xin
L +
√

LXv +
√

ΓSZ0

[√
2(1− L/2)Xin

L +
√

LXv

]
.

(B.11)

In the second line we have have made the substitution
√

ΓS +
√

ΓS →
√

2ΓS,
as a consequence of renormalizing the commutation relations for the new total
spin length, maintaining the canonical form for the spin commutation relations.
Breaking down the equation (B.11) by quadratures

Xout
L = (1− L/2)Xin

L +
√

LXv

Pout
L = (1− L/2)Pin

L +
√

LPv +
√

ΓS

[√
2(1− L/2)Xin

L +
√

LXv

]
,

(B.12)

we note that both output amplitude and phase quadratures have two vac-
uum contributions. Before propagating this field through the final window,
we would like to rewrite the equations above in the same form as (B.5), making
it easier to compare the single and double pass scenarios. To do so, we are re-
quired to redefine the driving vacuum quadrature, ie, the term that multiplies√

ΓS in (B.5a); nonetheless, in the double pass case, this quantity is not the same
as (B.5b).

Effectively, one needs to define a new basis, here X‖ and X⊥, to recover the
case of (B.5). The term in square brackets in equation (B.12) is defined as

X‖ ≡
√

2(1− L/2)Xin
L +
√

LXv

|X‖| ∼
√

2(1− L) + L =
√

2− L ∼
√

2(1− L/4)

X̂‖ =
X‖
|X‖|

=

√
2(1− L/2)Xin

L +
√

LXv√
2(1− L/4)

∼ (1− L/4)Xin
L +
√

L/2Xv.
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The vector X⊥ is calculated by noticing that its overlap with X‖ must be zero,
X⊥ · X‖ = 0; for X⊥ = aXin

L + bXv, with a2 + b2 = 1, we find

X⊥ =
√

L/2Xin
L +
√

1− L/2Xv.

The following step in the exercise is to rewrite (B.12) in this new basis; the
overlap of Xout

L and X̂‖, for example

Xout
L · X̂‖ = 1− L(3/4− 1/

√
2).

Applying the same procedure for the overlap with X̂⊥, leads us to

Xout
L = [1− L(3/4− 1/

√
2)]X̂‖ +

√
L/2[1−

√
1− L/2]X̂⊥

Pout
L = (1− L/2)Pin

L +
√

LPv +
√

2ΓS(1− L/4)X̂‖,
(B.13)

or

Xout
L = [1− L(3/4− 1/

√
2)]X̂‖ + orthogonal quadrature

Pout
L = input phase noise +

√
2ΓS(1− L/4)X̂‖,

to compare with (B.5).
The last step is to propagate this field through the final window. Using (B.4)

Xout
L = [1− LaddL/4]X̂‖ + orthogonal quadrature

Pout
L = input phase noise + dloss

√
2ΓSX̂‖,

in which Ladd = 4(1− 1/
√

2) ∼ 1.17, the added losses of the double pass case
in respect to the single pass, to compare with (B.7); Γloss = (1− L/2) is the loss
factor on the expected coupling strength.
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Appendix C

Effective hamiltonian evolution and
decay

In this chapter we comment on the adiabatic elimination procedure by Reiter
and Sørensen (2012). The procedure has been used in Chapter 3 for calculating
the dynamics of the spin ensemble interacting with light.

Consider an atomic system composed of g ground and e excited states. The
excited states are short-lived, due to radiative coupling to the environment;
therefore, after a short amount of time, the atoms are back to the assumed long-
lived states. The energy levels can be coupled to each other in arbitrary ways
within ground and excited manifolds. A complete atomic basis allows us to
structure the total Hilbert space according to subspaces, 1 = P̂g + P̂e. P̂i are
projector operators, that is, given a general atomic state, P̂i will decompose
such state in the basis of the i manifold. Therefore, in general, the total system
Hamiltonian Ĥ can be written as

Ĥ = Ĥg + Ĥe + V̂+ + V̂−, (C.1)

in which Ĥg = P̂g ĤP̂g and V̂+ = P̂e ĤP̂g, for example. Apart from the unitary
hamiltonian processes, there are also the effects of coupling the system to its
reservoir, which are denoted by L̂k, for the k-th channel. With all the tools and
decompositions discussed, we present master equation for the density operator
in the Lindblad form

d
dt

ρ = −i[Ĥ, ρ] + ∑
k

[
L̂kρL̂†

k −
1
2

(
L̂†

k L̂kρ + ρL̂†
k L̂k

)]
, (C.2)

as a starting point for the adiabatic elimination. In summary, it is shown in ?
that if the coupling rate of the ground to excited states is small, its effect in the
ground state evolution can be treated perturbatively. Furthermore, the popu-
lations of the excited state are eliminated if negligible, leading to the effective
master equation

d
dt

ρ = −i[Ĥeff, ρ] + ∑
k

[
L̂k,effρL̂†

k,eff −
1
2

(
L̂†

k,eff L̂k,effρ + ρL̂†
k,eff L̂k,eff

)]
, (C.3)

for the ground state dynamics, in which

Ĥeff = −
1
2

V̂−
(

Ĥ−1
NH + Ĥ−1,†

NH

)
V̂+ + Ĥg (C.4a)

L̂k,eff = L̂k Ĥ−1
NHV̂+ (C.4b)

ĤNH = Ĥe −
i
2 ∑

k
L̂†

k L̂k, (C.4c)
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are the effective Hamiltonian, effective decay terms and non-hermitian “hamil-
tonian”. In physical terms, Ĥeff is capturing the effect of coherent coupling
between the ground state levels via the excited manifold: the right hand side of
(C.4a), for Ĥg = 0, shows that an initial ground state will be transferred to its
excited part, evolve, then return to the ground state via V̂−. L̂eff, on the other
hand, describes processes the incoherent effect of photons that reached the ex-
cited state, but decay spontaneously back to the lower energy levels. Similar
reasoning can be made for this process, only with the decay process happening
due to spontaneous emission.

It can also be shown that summing over the no-jump processes

∑
k

L̂†
k,eff L̂k,eff = −iV̂−

(
Ĥ−1

NH − Ĥ−1,†
NH

)
V̂+, (C.5)

which will be very useful when considering specific level structures. As shown
in the toy model sections, to be presented below, the similarities with (C.4a)
show that coherent hamiltonian evolution and decay are intimately connected.

Before diving in the specifics of the formalism, it is important to point out
that we prefer using the Heisenberg-Langevin equivalent of Eq. (C.3). Namely,
for an operator Â, the evolution is given by

d
dt

Â = i[Ĥeff, Â] + ∑
k

[
L̂†

k ÂL̂k −
1
2
{L̂†

k L̂k, Â}
]
+ ∑

k

[
F̂†[Â, L̂k]− [Â, L̂†

k ]F̂
]

,

(C.6)

for the Langevin noise forces F̂.
Applying this formalism will give a mathematically consistent description

of the effects of light on the atomic system dynamics. In the next sections a few
examples will be presented, building up in complexity to the full accounting
on the dynamics of Cesium ground state. The toy models will be useful for
introducing some of the key aspects of the light-matter interaction1, such as
the Faraday interaction and power broadening for the spin-1/2 case and tensor
light shifts in the case of spin-1.

1This description would be somewhat suitable for the F = 1/2 → F′ = 1/2 transition in 6Li
atoms (Gehm, 2003).



1Note that we disregard the tensor probing
contribution and the effects of classical spin
noise. We only consider the narrow spin
mode dynamics.

Appendix D

Quantum cooperativity calibration via
white noise drive

In this chapter, we present the spin quantum cooperativity calibration used
in (Møller et al., 2017). This method requires modulating the circular polariza-
tion of light, input to the spins, with Gaussian white noise. As this polarization
component drives the spins via Faraday rotation, the spin response is going to
be enhanced proportionally to the input added. If the amount of added noise
is known, we show that the ratio of quantum back-action to thermal noise can
be estimated in the shot-noise driven case, without the added drive.

As shown in Chapter 3, the power spectral density of the spin response is1

Sout
PP = Sin

PP + 4Γ2
S|χS|2Sin

XX + ΓS|χS|2〈F̂†
S F̂S〉,

for Sii as the power spectral density of the optical quadrature i = {X, P}. When
the susceptibility χS evaluated at the Larmor frequency ωS, becomes

Sout
PP @ ω0 = Sin

PP +
4Γ2

S
γ2

S
Sin

XX +
2ΓS
γS

(nS + 1/2), (D.1)

in which we have used 〈F̂†
S F̂S〉 = 2γS(nS + 1/2). The three contributions for

the equation above are shot noise, back-action, and thermal noise, respectively.
Furthermore, one also arrives to the standard definition of the quantum cooper-
ativity CS

q by taking the ratio of the back-action and thermal noise components

BA
TH
≡ CS

q =
ΓS

2γS(nS + 1/2)
.

Experimentally, in this calibration technique, one drives the spin system
with a known amount of added light noise. From the input-output relations
(D.1), the resonant response of the spin system shows that the back action con-
tribution can be enhanced via increased light noise. The form of the equation
(D.1) is

peak height = a× S in
XX + b,

for unknown a, b back action and thermal contributions. Therefore, scaling a
will increase the peak height proportionally. The quantum cooperativity CS

q is
the ratio a/b.

More precisely, we can use equation (D.1) and compare the change of re-
sponse noise for the shot noise limited drive and for a known amount of Sin

XX ,
hereby nwn, at spin resonance. Namely, the peak height of the spin response,
normalized to the shot noise

Sout,wn
PP − Sin

PP ≡ β = BA(nwn + 1) + TH (D.2)

Sout
PP − Sin

PP ≡ α = BA + TH. (D.3)
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and the desired ratio is found by solving the equations above for BA and TH,
as

BA
TH

=
β− α

(nwn + 1)α− β
. (D.4)

This technique relies in knowing nwn at the atomic ensemble. Therefore, is
crucial to accurately determine the detection efficiency from the ensemble until
the detector, hereby η, and update nwn according to the measured ndet

wn

ndet
wn = ηnwn + (1− η)Sv

XX , (D.5)

in which Sv
XX = 1 is the power spectral density of the admixed vacuum.



1The photon ladder operators have such
units due to the travelling wave quanti-
zation of the field, see (Julsgaard, 2003,
Appendix C). Due to this quantization
choice, â†(z, t)â(z, t)dz is the photon num-
ber in between z and z + dz. For the atomic
operators, 〈Ajj(z, vz , t)〉ρLx Lydz is the
number of atoms in the level j between z
and z + dz.
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Figure E.1: The general two level system un-
der consideration. |0〉 ≡ |4, 4〉 and |s〉 are in the
ground state manifolds of Cs; |e〉 ≡ |5, 5〉 is the
excited state which can be electrically dipole ex-
cited.

Appendix E

Doppler broadening and two-level
system absorption

In this chapter we connect the absorption of a motionless two-level to a
Doppler broadened ensemble. We derive, in a semi-classical fashion, the ab-
sorption lineshape and connect it to the optical depth and the absorption cross-
section formulae.

We will work with the level structure depicted in Figure E.1. We assume
the atomic ensemble to be confined to a volume of dimensions Lx × Ly × Lz
and being initialized in |a〉. From there, a laser with frequency ωL couples this
level to |b〉; the difference between the laser and the transition frequency is
∆ = ωL −ωb. The spontaneous decay rate is γ.

The light-matter coupling is characterized by a coupling rate g, this being
the product of the single-photon and single photon coupling g0 and a spatial
profile, ie, a mode function. For the case of free-space ensembles, the longitudi-
nal mode functions are travelling waves, ∝ eik·r(t), with r(t) as the position of
a given atom. For the case of a Fabry-Perot resonator, the mode functions are
standing waves, ∝ sin(k · r(t)). The longitudinal mode functions account for
the spatial variations of the coupling along the light propagation direction. The
position time dependence r(t) = x0 + v0t accounts for the atomic motion. The
transverse profile of the laser beam is a Gaussian with 1/e2 (intensity) radius
w0, ∝ e−(x2(t)+y2(t))/w2

0 . After all, we will write the atom-light coupling as

g(r, v, t) = g0e−(x2(t)+y2(t))/w2
0 eikr(t)

= g0gxy(t)gz(t). (E.1)

As the ensemble is an extended object, composed of many moving bodies,
interacting with light also calls for considering the coupling over external de-
grees of freedom, being space (x, y, z) and velocities (vx, vy, vz). Moving atoms
along the laser propagation direction will lead to Doppler shifts of the reso-
nance frequency, spreading the absorption over a wide range of frequencies.
For an ensemble at thermal equilibrium at temperature T, the Doppler width
of the transition is ΓD.

Finally, the light-matter hamiltonian, derived in (Julsgaard, 2003, Appendix
C) is

Ĥ = −
∫ Lz

0
dz ρLx Ly

[
∆Âee(z, vz, t) + g(r, v, t)â(z, t)Âe0(z, vz, t) + h.c

]
, (E.2)

for Aij(z, vz, t) ≡ |i〉〈j| as the dimensionless density operator and â(z, t) (â†(z, t))
the photon’s destruction (creation) operator, having units1 1/

√
m; g(r, v, t) has

units of
√

m/s and ρ is the vapor density per unit volume. This hamiltonian
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2In the nanosecond timescale, room tem-
perature atoms, travelling at v ∼ 100m s−1,
have moved ∆r ∼ 0.1µs� w0.

captures the dynamics of the atoms having velocities in the range [vz, vz +dvz];
the integration over all the velocity classes is done further down in this notes.

The evolution of the coherences and field amplitude, including the effects of
decay is given by the Heisenberg-Langevin equation

c
d
dz

â = i[Ĥ, â] = iρlx lyg∗ Â0e

d
dt

Â0e = i[Ĥ, Â0e]− γÂ0e/2 = i∆Â0e − igâ(Âee − A00)− γÂ0e/2,
(E.3)

in which the explicit time dependencies of the variables is implicitly assumed
to be the same as the ones in Equation (E.2); the notation will be only revived
when explicitly needed. To arrive on the equations above, we used the follow-
ing commutators

[â(z, t), â†(z′, t)] = δ(z− z′)

[Âab(z, vz, t), Âcd(z
′, vz, t)] =

1
ρLx Ly

(Âad(z, vz, t)δbc − Âad(z, vz, t)δda)δ(z− z′).

In equation (E.3), we have neglected the fluctuation part of the dynamics. As
we will only deal with average values, the fluctuations of the light and atomic
variables will not play fundamental role.

From here on start solving (E.3). We proceed by taking the average value of
the variables, noting them as 〈Âij〉 = Aij and 〈â〉 = a. Assuming that we work
far from saturation, most of the atomic population will be at the ground state,
therefore Aee ∼ 0 and A00 ∼ 1. With this, (E.3) becomes

d
dt

Â0e = (i∆− γ/2)A0e + iga. (E.4)

For A0e(0) = 0, the solution of this differential equation is given by

A0e(t) = i
∫ t

0
ds g(r, v, s)a(z, s)e(i∆−γ/2)(t−s). (E.5)

The coherence in between the ground and excited state is a convolution of the
field amplitude (modulated by the coupling constant) with the atomic dynam-
ics as the kernel. Over the characteristic timescale, given by |i∆ + γ/2|−1 and
in the order of ns, the field a(s) and the transverse coupling2 are constant and
can be taken out of the integral, leaving us with

A0e(t) = ig0gxy(t)a(z, t)e(i∆−γ/2)t
∫ t

0
ds eik(z0+vz0s)e−(i∆−γ/2)s. (E.6)

The integral is solved as∫ t

0
ds eik(z0+vz0s)e−(i∆−γ/2)s = eikz0

∫ t

0
ds eikvz0se−(i∆−γ/2)s (E.7)

=
eikz0

i(kvz0 − ∆) + γ/2

[
eikvz0te−(i∆−γ/2)t − 1

]
.

(E.8)

With this, (E.6) becomes

A0e(t) = ig0gxy(t)a(z, t)e(i∆−γ/2)t eikz0 (eikvz0te−(i∆−γ/2)t − 1)
i(kvz0 − ∆) + γ/2

= ig0gxy(t)a(z, t)
eikz(t) − eikz0 e(i∆−γ/2)t

i(kvz0 − ∆) + γ/2
. (E.9)
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For the field, (E.3) is written as

c
d
dz

a = iρlx lyg∗A0e (E.10)

= −ρlx lyg2
0g2

xy(t)g∗z (t)
eikz(t) − eikz0 e(i∆−γ/2)t

i(kvz0 − ∆) + γ/2
a. (E.11)

The g∗z (t)A0e(s) term can be further simplified before solving the differential
equation

e−ik(z0+vz0s)A0e(s) ∝ e−ikz(s) eikz(s) − eikz0 e(i∆−γ/2)s

i(kvz0 − ∆) + γ/2

∼ 1
i(kvz0 − ∆) + γ/2

, (E.12)

in which we have neglected the fast evolving phases proportional to γ, as equa-
tion (16) at the SI from (Borregaard et al., 2016). Furthermore, we take the
ensemble average, averaging the position of the atoms over the cell volume,
leading to

〈g2
xy(t)〉e =

1
Lx LyLz

∫∫∫
dxdydz e−2(x2(t)+y2(t))/w2

0 (E.13)

=
πw2

0
2Lx Ly

erf
(

lx√
2w0

)
erf

(
ly√
2w0

)
(E.14)

∼ AB
Lx Ly

, (E.15)

in which the limits of the integrals are [−Li/2, Li/2], for i = x, y, z, and AB =
πw2

0/2. We proceed now by combining the results derived above in the equa-
tion for the field operator

c
d
dz

a = −ρg2
0 AB

1
i(kvz0 − ∆) + γ/2

a. (E.16)

The last step we need to cover is to integrate over the velocity distribution. As-
suming the atomic ensemble to be thermalized at temperature T, the can use the
Maxwell-Boltzmann distribution to describe the allowed velocities. Therefore,
we multiply the result above by the weight factor, sum over all the possibilities
and normalize to 1 —meaning that the probability of finding an atom within
the assigned probability distribution is unity —such that√

m
2πkBT

∫ +∞

−∞
dvz

e−mv2
z /2kBT

i(kvz − ∆) + γ/2
. (E.17)

To align this choice with the common definition of a Gaussian process, we de-
fine the standard deviation as σ ≡

√
kBT/m, obtaining the from equation above

1√
2πσ

∫ +∞

−∞
dvz

e−v2
z /2σ2

i(kvz − ∆) + γ/2
. (E.18)

We proceed by defining µ = vz/
√

2σ, consequently having dµ = dvz/
√

2σ.
Defining the Doppler standard deviation as σD ≡ kσ

√
2 = k

√
2kBT/m, we can

write the expression above as

1√
π

∫ +∞

−∞
dµ

e−µ2

i(
√

2kµσ− ∆) + γ/2
=

i
σD
√

π

∫ +∞

−∞
dµ

e−µ2

−µ + (∆ + iγ/2)/σD

=

√
π

σD

i
π

∫ +∞

−∞
dµ

e−µ2

−µ + (∆ + iγ/2)/σD
.
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The integral above is related to the Faddeeva function1

w(b) =
i
π

∫ +∞

−∞
dµ

e−µ2

−µ + b
=

ie−b2

π

(
πerfi(b)− ln

(
−1

b

)
− ln(b)

)
= e−b2

(1 + ierfi(b))

= e−b2
(

1 +
2i√
π

eb2
D+(b)

)
,

in which erfi(b) is the imaginary error function and D(b) is the Dawson func-
tion. The latter, in the very useful asymptotic limits is

D+(b) ∼ b, for|b| � 1 (E.19)

D+(b) ∼
1
2b

, for|b| � 1 (E.20)

With this result, we finish the derivation. The final expression for the field
amplitude, for b = (∆ + iγ/2)/σD, is

c
d
dz

a = −ρg2
0 AB

√
π

σD

(
e−b2

+
2i√
π

D+(b)
)

a (E.21)

We start studying (E.21). First we will consider the case of resonant probing,
∆ = 0. For

1. non-moving atoms, the integration of the velocities distribution is not nec-
essary, as all atoms have the same speed (vz = 0). We come back to
equation (E.16), namely

c
d
dz

a = −
2ρg2

0 AB

γ
a

a(z) = e
2ρg2

0 AB
cγ za(0)→ n(Lz)

n(0)
= e−od,

in which the optical depth is defined as

od =
4ρg2

0 ABLz

cγ
. (E.22)

2. moving atoms, in the limit of σD � γ, the Voigt profile is approximately
Gaussian. In equation (E.21), we therefore treat b as a real number; in this
case, the contribution from the Dawson function drop and

c
d
dz

a = −ρg2
0 AB

√
π

σD
e−∆2/σ2

D a

a(z) = e
−ρg2

0
AB

c

√
π

σD
ze−∆2/σ2

D

a(0) ∆=0−−→ n(Lz)

n(0)
= e−odhot (E.23)

for

odhot =
2ρg2

0 ABLz

c

√
π

σD
. (E.24)

1For relations and approximations of this function, check (Abrarov and Quine, 2014)
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Therefore, we comparing the absorption of light by moving to stationary atoms,
the ratio of optical depths is

od
odhot

=
2√
π

σD
γ

=
2√
π

√
2kσ

γ
=

1√
πln2

ΓD
γ
∼ 2

3
ΓD
γ

, (E.25)

for ΓD/2π = 2
√

2ln2kσ as the Doppler width. For a cesium ensemble at room
temperature and at zero temperature, the ratio of optical depths is ∼ 48.

Further insight on the expression for the optical depth can be achieved when
writing the coupling and decay rate in terms of fundamental parameters of the
interaction. From the definitions found in (Steck, 2019, eq. 38), applied to a
closed transition, as the F = 4→ F′ = 5 in cesium

g0 =

√
ωL

2h̄ε0 AB
d0e

γ =
ω3

0ed2
0e

3πc3ε0h̄

for AB being the laser beam transverse area. Plugging in these results in (E.22),
we get

od = 4
ρg2

0 AB

cγ
lz = ρ

3λ2

2π
lz = ρσCslz,

with σCs = 3λ2/(2π) agreeing with the standard definitions from (Jackson,
1999, Sec. 17.8, eq. 17.66) and (Steck, 2007, Sec. 4.3.1) as the resonant scattering
cross-section for a cyclic transition. More importantly, the equation above fully
agrees with the standard definition of optical depth (Hammerer et al., 2010, Sec.
C.1).

Another very interesting case is the absorption in the off-resonant limit, ∆�
γ, γD. For

1. cold, non-moving atoms. From equation (E.16), for vz = 0

c
d
dz

a = −ρg2
0 AB

1
−i∆ + γ/2

a

a(lz)
a(0)

= e−
od
4

γ
−i∆+γ/2 → n(lz)

n(0)
= e−od L(∆), (E.26)

for which we have defined the Lorentzian function L(∆)

L(∆) =
(γ/2)2

∆2 + (γ/2)2 .

Applying the same procedure as in (E.22) to define the optical depth, here
in the limit of ∆� γ

odcold, far detuned ∼ od
(γ/2)2

∆2 (E.27)

2. hot, moving atoms. Defining z → (∆ + iγ/2)/σD, using the approxima-
tion (E.20), to the first order in γ/∆ we have

D+(z) ∼
1
2z

.
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Figure E.2: Optical absorption spectrum. The absorption profile for an ensemble with od = 10, and T = 0 K and T = 300 K (left); the
blue curve reaches∼ 7× 10−3 at ∆ = 0. The transmission profile for Doppler broadened atomic ensemble of various od’s (right). We have
used γ/2π = 5.2 MHz and ΓD/2π = 376 MHz.

The optical field, as given in equation (E.21), becomes

c
d
dz

a ∼ −ρg2
0 AB

2i
σD

D+(b)a

∼ −ρg2
0 AB

i
∆ + iγ/2

a

∼ −ρg2
0 AB

γ

∆2 a,

such that the intensity, in the far detuned case, as in the case for non-
moving atoms, is attenuated by

odhot, far detuned = od
(γ/2)2

∆2 . (E.28)

Comparing equations (E.27) and (E.28), the far detuned optical depth is equiv-
alent for cold and hot ensembles. Not only that, as we rewrite the expression
for the optical depth in terms of the coupling parameters, obtaining

odfar detuned = od
(γ/2)2

∆2 = ρ
(γ/2)2

∆2
3λ2

2π
lz = ρσCs, far detunedlz

which, also matches with (Jackson, 1999) for off-resonant scattering.
Due to motion, the absorption spectrum is a convolution of a Gaussian and

a Lorentzian process, as shown in equation (E.18). In the limit of ΓD � γ,
limit which our cesium ensemble fulfils, the Gaussian process dominates the
absorption lineshape, see Figure E.2. In this figure, we have plotted the equa-
tions (E.23) and (E.26)

n(Lz)

n(0)
= e−od L(∆) for cold atoms

n̂(lz)
n̂(0)

= e−od
γ
√

π log 2
γD

G(∆) for hot atoms,
(E.29)

in which G(∆) is the Gaussian profile as

G(∆) = e−4 log 2(∆/γD)2
.
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Note that even significant od’s do not lead to a strong absorption on resonance
for Doppler broadened ensembles.

The results presented above, although using the parameter values for a ce-
sium ensemble, do not contain the various complexities of the alkali atomic
structure. We point to (Seltzer, 2008, Chapter 2) for discussing on optical line-
shapes of alkali atoms.



Appendix F

Connection with pulsed experiments

Historically, a great part of the experiments realized at QUANTOP was set
in quite different manner to the ones described in this document. Apart from
the constituent systems — most of the experiments employed two vapour cells,
we have substituted one of the cells with a mechanical oscillator — the exper-
imental differences are many: (i) vapour cell geometry, (ii) time scales and (iii)
state preparation stage. For comparison, in the historical experiments, the total
spin decay rate was on the order γS/2π ∼ 100 Hz and ωS/2π = 325 kHz. In
experiments presented in this thesis, γS/2π ∼ 1 kHz and ωS/2π ∼ 1.3 MHz.
On the theory side, the main light-matter coupling strength used the parameter
κ2 (Sherson, 2006; Hammerer, 2006).

In this Appendix, we relate the two approaches, linking κ2 to the readout
rate ΓS, and κ2 to the ratio of quantum back action to intrinsic atomic noise.

F.1 Modelling

We focus on the case of QND coupling and disregard losses and atomic mo-
tion, for simplicity. As the standard description, we will have the spin ensem-
ble in a transverse magnetic field, probed with a far detuned probing laser via
Faraday rotation. The total Hamiltonian is

Ĥ = ωS
2 (X̂2

S + P̂2
S ) + 2aX̂SX̂L, (F.1)

for a2/2π = a2
1Sx Jx as the coupling rate. Notice that the choice of coupling pa-

rameter as a is to match the input-output relations defined in (Julsgaard, 2003;
Sherson, 2006). The extra factor of 2 is due to the chosen light quadratures com-
mutation relation [X̂L, P̂L] = 1/2. As the total measured noise does not depend
on the definition of commutators, the final result will match. About the sign of
ωS, we are going to deal with only one oscillator and the effective mass of the
oscillator plays no fundamental role. It is here assumed to be positive.

We proceed by going to a rotating frame at frequency ωS. Choosing T̂ =
ωS(X̂2

S + P̂2
S )/2 as the rotation kernel according to the procedure described in

Appendix A, (F.1) becomes

Ĥint = 2a(X̂ cos ωSt + P̂ sin ωSt)X̂S. (F.2)

The transformation is exact and solely removes the rotation between the canon-
ical variables. In this frame, the time evolution of the spin operators

d
dt

X̂S = 2aX̂L sin ωSt− γSXS/2 + F̂X

d
dt

P̂S = −2aX̂L cos ωSt− γSPS/2 + F̂P

(F.3)
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and quadrature operators

d
dz

X̂L = 0

d
dz

P̂L = a
(
X̂S cos ωSt + P̂S sin ωSt

)
,

(F.4)

for γS and F̂X , F̂P as the decay and associated Langevin forces. In this frame,
X̂S and P̂S evolve independently from each other and the cosine (sine) light
quadratures of the light couple to a given spin component.

To simplify the manipulation of results, one might rewrite the system dy-
namics in the matrix formalism

d
dt

R̂S = −γR̂S/2 + 2aMR̂L + F̂S, (F.5)

for the vectors

R̂S =

[
X̂S
P̂S

]
M =

[
sin ωSt 0
− cos ωSt 0

]
(F.6)

R̂L =

[
X̂L
P̂L

]
F̂S =

[
F̂X
F̂P

]
. (F.7)

Solving for the light variables in (F.4), the input-output relations are

X̂out
L = X̂in

L

P̂out
L = P̂in

L + a
(
X̂S cos ωSt + P̂S sin ωSt

)
= P̂in

L + aNR̂S (F.8)

for

N = [ cos ωSt sin ωSt ] . (F.9)

From here on we proceed to solve (F.5) and (F.8) on different regimes.
The experiments were ran in a preparation-measurement scheme by imply-

ing pulsed laser drive. Given the timescales hierarchy, operating with pulses
with duration T � γS was feasible; this case will be discussed first. We will
then proceed to include the effects of decoherence, closing the connection with
the hybrid experiments. The measurement procedure involves demodulating
the detected light and calculating the variance of the recorded results.

F.2 Faster than (bad) decoherence

If experiments are run in a time scale T much faster than any decoherence
time scales, we can show that, to the first order, we can set γ = 0 and disregard
the corresponding bath coupling. In this limit, (F.5) is vastly simplified. Given
the importance role decoherence plays in a typical experiment, we show in
the next section that the results here derived hold in the limit of fast readout
(T � γ) and high coupling strength (κ2 � 1).

Back to derivation. We start by solving (F.5) for zero decay and respective
Langevin force

R̂S(t) = R̂in
S + 2a

∫ t

0
M(s)R̂L(s)ds,

with R̂in
S = R̂S(0) as the initial conditions for the spin variables. Using (F.6), the

output phase quadrature of light (F.8) is

P̂out
L (t) = P̂in

L (t) + aNR̂in
S + 2a2

∫ t

0
ds X̂in

L (s) sin ωS(s− t). (F.10)
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1The more restrictive condition TωS/2π =
m� 1 can also be used to supress harmonic
contributions. Alternatively, for best
estimation of the atomic state, different
filter functions can be — and certainly are
— employed in other scenarios (Krauter,
2011; Jensen, 2011). For simplicity, we
comply to the standard choice.

Although in a different form, the detected light field contributions should be
familiar at this point; from left to right, they are: detection shot noise, intrinsic
atomic noise and light induced noise, respectively.

The detection procedure involves demodulation of the detected signal with
a variable frequency ω and phase φ, the sometimes called electronic quadratures,
giving us access to the slowly varying fluctuations X̂S and P̂S. As an example,
for a detected signal i(t), by demodulating the output phase quadrature we
mean

p̂out
φ ≡ p̂out

φ (T) =

√
2
T

∫ T

0
dt i(t) cos(ωt + φ), (F.11)

that is, the detected signal i(t) ∝ P̂out
L (t) is mixed with a sinusoidal function

and integrated for a time T. Importantly, the condition TωS/2π � 1 ensures
that only the fluctuations around ω are contributing1. Given the choice of φ,
two orthogonal electronic quadratures are possible, p̂out

0 and p̂out
π/2. In the case

of a2 � ω0, the two contributions are identical.
Applying the demodulation procedure to (F.10) for ω = ωS and φ = 0,

p̂out
0 = p̂in

0 + a

√
2
T

∫ T

0
dt cos ωSt

(
X̂in

S cos ωSt + P̂in
S sin ωSt

)
+ 2a2

√
2
T

∫ T

0
dt
∫ t

0
ds X̂in

L (s) cos ωSt sin ωS(s− t)

= p̂in
0 + a

√
T
2

X̂in
S

+ a2
√

2
T

∫ T

0
ds X̂in

L (s)(T − s) sin ωSs. (F.12)

In the last passage, in the integral ∝ a2, we have interchanged the integration
order ∫ T

0
dt
∫ t

0
ds→

∫ T

0
ds
∫ T

s
dt,

and integrated over t.
We are interested in the noise power of the detected light, that is, the vari-

ance of pout
0 . Given the correlation functions for light prepared in its minimum

variance state

〈X̂in
L (t)X̂in

L (t′)〉 = 〈P̂in
L (t)P̂in

L (t′)〉 = 1
4 δ(t− t′), (F.13)

atoms in a state with initial occupation 〈(X̂in
S )2〉 = 〈(P̂in

S )2〉 = nin
S + 1

2 , and that
all other correlation functions are zero, we can calculate the variance of (F.12).
For example, if the mean is null, 〈pout

0 〉 = 0, the contribution of the input light
noise p̂in

0 is

〈( p̂in
0 )2〉 = 〈

(√
2
T

∫ T

0
dtP̂in

L (t) cos ωSt

)(√
2
T

∫ T

0
dt′ P̂in

L (t′) cos ωSt′
)
〉

=
1

2T

∫ T

0
cos2 ωSt ∼ 1

4
,

in which we have used the property that input light is delta correlated and
TωS/2π � 1. The remaining terms in (F.12) are calculated in similar proce-
dure. The back-action term is

〈
(

a2
√

2
T

∫ T

0
ds X̂in

L (s)(T − s) sin ωSs

)2

〉 = 2a4

4T

∫ T

0
ds (T − s)2 sin2 ωSs

∼ 1
4

2a4T2

6
.



150 Chapter F. Connection with pulsed experiments

Having calculated all Eq. (F.12) contributions, the total detected noise in the
output phase quadrature (F.12), for the oscillator prepared in its ground state
nin

S = 0, is

〈(pout
0 )2〉 = 1

4

(
1 + a2T +

a4T2

3

)

=
1
4

(
1 + κ2 +

κ4

3

)
,

(F.14)

for κ2 ≡ a2T as the dimensionless coupling constant. This classic result shows
that the ratio of back-action induced noise to the ground state noise is

QBA
PN

=
κ2

3
. (F.15)

Therefore, comparing to the quantum cooperativity language, a quantum back
action to thermal noise ratio of 1, that is Cq = 1, corresponds to κ2 = 3.

F.3 Including decoherence

We proceed to include the effects of coupling to the environment by con-
sidering the effect of decay, γ, and forces, F̂. In this limit, (F.5) is a first order
differential equation with constant coefficients (see Appendix A), whose solu-
tion is

R̂S(t) = e−γt/2R̂in
S +

∫ t

0
ds eγ(s−t)/2

(
2aM(s)R̂in

L (s) + F̂(s)
)

. (F.16)

This equation points out that as time progresses, the atomic variables convo-
lutes the optical X̂in

S and thermal F̂ forces with an exponential kernel; spectrally,
forces centred at ωS are filtered with width γ. The first term in (F.16) shows that
the initial atomic state is read out with characteristic rate γ.

The optical signal (F.8), using the definitions (F.6), carries the information
about the spin variables (F.16) as

Pout
L (t) = Pin

L (t) (F.17)

+ae−γt/2
(

X̂in
S cos ωSt + P̂in

S sin ωSt
)

(F.18)

+2a2
∫ t

0
ds eγ(s−t)/2X̂in

L (s) sin ωS(s− t) (F.19)

+a
∫ t

0
ds eγ(s−t)/2 (F̂X(s) cos ωSs + F̂P(s) sin ωSs

)
. (F.20)

Although lengthier, this equation is similar to (F.10). The contributions are shot
noise, input state noise, light induced and Langevin bath forces, respectively.

As in the previous section, we demodulate Pout
L with frequency ωS and

phase φ. The correlation for input light and atomic states are defined in (F.13).
The inclusion of the Langevin forces requires us to define the bath induced cor-
relations. For an environment with thermal occupation nS, we have

〈F̂X(t)F̂X(t′)〉 = 〈F̂P(t)F̂P(t′)〉 = γ(nS + 1/2)δ(t− t′).

We proceed to calculate the detected variances. The contributions (F.17) and
(F.18) are straightforward when plugging in the corresponding input variances.
The effect of backaction and thermal bath, (F.19) and (F.20), respectively, have
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Figure F.1: Temporal dependence of the noise
with integration time. (blue) initial condition,
(yellow) convoluted forces and (green) sum of
the previous curves.

the same functional shape. As an example, for the initial state (F.18) and back-
action contribution (F.19), multiplying the expression by itself and using the
input noise values we get to

shot noise =
1
4

initial state =
2a2(2nin

S + 1
2 )

γ
h(γT)

back action =
a4

γ2 g(γT)

thermal =
2a2(nS +

1
2 )

γ
g(γT),

for the envelope functions

g(x) =
x + 4e−x/2 − e−x − 3

x

h(x) =
1 + e−x − 2e−x/2

x
.

The functional dependence of these expressions is presented in Fig.F.1.
We study the noise contributions in the short and long time limit. For nor-

malized time scale

• γT � 1: the dynamics of interest are happening faster than the decoher-
ence rate. In this limit (F.17) is reduced to

〈(pout
0 )2〉 = 1

4

[
1 + 2a2T(2nin

S + 1) +
(

a4 + a2γ(2nS + 1)
) T2

3

]
.

For a bath and initial state with null occupation, nin
S = nS = 0, in the limit

of strong probe induced influence a2/γ = ΓS/γ� 1, we recover (F.14).

• γT � 1: we get to the steady state limit, that is, when the initial state
contribution is forgotten. A close inspection on Fig F.1 shows that this
contribution is negligible for γ−1 ∼ T/50. In this limit, the variance is

〈(pout
0 )2〉 = 1

4

[
1 +

4a2(2nS + 1)
γ

+
4a4

γ2

]
,

which looks like the function for the integrated spin noise spectrum. Us-
ing a2/γ = ΓS/γ = Cq, and setting nS = 0, the total noise is

1
4

[
1 + 4Cq + 4C2

q

]
. (F.21)



Appendix G

Unshielded measurements

In this chapter we describe the vapor cell characterization measurements
performed in unshielded environment, that is, the cell was not positioned in-
side a magnetically shielded volume. Characterizing the vapor cell outside the
shielding makes the whole procedure of alignment and corresponding debug-
ging much easier. More importantly, as we have discussed on Chapter 3, the
coherence time performance of small volume encapsulated cells in unaltered,
regardless of being measured in a shielded environment or not. Here, we derive
the Free Induction Decay (FID) signal, present the coherence time measurement
of a cubic vapor cell with sidelength 5 mm and discuss the results.

The transverse coherence time is extracted from the a single-shot Free Induc-
tion Decay (FID) signal. Due to environment time dependent magnetic fields,
multiple realizations are not phase coherent and the signal averages out to zero;
given this uncontrolled variation, the MORS method described in Chapter 5 is
not applicable here. We note that although averaging is not possible, the time
dependent magnetic field does not, by its own, lead to an increased decoher-
ence rate, as long it is homogenous across the ensemble.

In a FID experiment, we observe the decay of the transverse spin compo-
nents. On the light of description presented on Chapters 5 and 6, the ensemble
is prepared in a state with non-zero spin polarization via optical pumping. A
short and weak RF pulse induces a small transverse magnetization, rotating the
magnetization vector from its equilibrium position. The spins time evolution
after the RF drive, ie for A = 0, in the rotating frame at the Larmor frequency,
is given by equation (6.5) and reproduced here

d
dt

 Fx(t)
Fy(t)
Fz(t)

 =

 −γ1
−γ2

−γ2

 Fx(t)
Fy(t)
Fz(t)

 . (G.1)

We consider here that the probe laser is weak enough to disregard the effect of
power broadening and backaction, that is, γ2 is limited by decoherence in the
dark and ΓS � γ2. The decay rates γ1 = π/T1 and γ2 = π/T2 lump all the
processes that induce population and coherence damping. We also note that T2
is intrinsically limited by T1, as 1/T2 = 1/2T1 + 1/Tφ, with Tφ as the contri-
bution from dephasing. The weak probe beam measures the spin components
as

Sout
y ∝ gSin

x (Fz cos ωdt + Fy sin ωdt), (G.2)

for g as the light-matter coupling. The spins and the probing polarization are
prepared as ~F(0) = (Fx0, 0, Fz0) and ~S(0) = (Sin

x , 0, 0). The equation (G.1), in
the matrix form, has solution

d
dt
~J(t) = M~J(t) (G.3)

~J(t) = eMt~J(0), (G.4)
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Figure G.1: Single-shot unshielded FID signal.
At every 20 ms, a short RF pulse excites the spin
ensemble, leading to a non-zero polarimeter 〈Ŝy〉
signal. The presented signal has not been aver-
aged, only bandpass filtered around 95 kHz with
5 kHz 3 dB width. The coherence time observed
is T2 = 15 ms.

in which M is the matrix of coefficients from (G.1). Given the input spin state,
the spin components evolve as Fx(t)

Fy(t)
Fz(t)

 =

 Fx0e−γ1t

0
Fz0e−γ2t

 . (G.5)

From equation (G.2), the expected optical signal is a sinusoidal function, decay-
ing with an exponential envelope.

The unshielded measurement procedure is similar to the MORS presented
in Chapter 5. The cell is positioned in the center of a Helmholtz coil pair; this
coil will be generating an oscillating magnetic field close to the natural spin pre-
cession frequency. The cell is optically pumped and probed by a far-detuned
(∆/2π = 3 GHz), weak probe beam (with ∼ 5 µW). Optimal detection maxi-
mizes the signal to noise ratio of the Faraday rotation, which requires aligning
the optical pumping direction with the average static magnetic field and prob-
ing in a direction orthogonal to that. A section of the detected signal is shown
in Figure G.1.

The lasers are run continuously and the RF excitation is turned on for about
∼0.5 ms. The RF magnetic field is a sine wave with frequency ωd and ampli-
tude A. In our geolocation, the Earth’s magnetic field magnitude is ≈ 0.5 G,
leading to a Larmor frequency ωS ∼ 175 kHz; nonetheless, the presence of
magnetic materials close by lead to a reduced field, as shown by the ∼ 95 kHz
observed oscillation frequency, see Figure G.2.

The envelope of the decay signal is an exponential with time constant T2 =
15 ms. The fast oscillations, nonetheless, do not have a single frequency compo-
nent. Fitting a sine wave to chunks of signal presented in Figure G.1, with am-
plitude and frequency as free parameters, we can observe the time dependent
magnetic field frequency modulating the spin response, see Figure G.2 (left).
The ∼ 1 kHz frequency swing has a periodic time dependence. In Figure G.2
(right), we show the spectral composition of the measured Larmor frequency.
The main components are at 50 Hz and harmonics, demonstrating that the spin
ensemble is picking up the signal from nearby electronic components.

Finally, notice that the signal to noise ratio on G.2 (left) would allow to
use such cell as a sensor for the ambient magnetic field, being able to resolve
changes on the order of 0.1 kHz or, equivalently, 30 nT, within a couple of ms.
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Figure G.2: Time dependent Larmor frequency. We fit a sine wave to 1 ms chunks of signal presented in Figure G.1, extracting the
oscillation frequency. The periodic nature tells us that the mean magnetic field is evolving with time. Spectral analysis of the . Contribution
of 50 Hz and harmonics reveals the effect of magnetic fields from equipments and electrical line.



1A similar expression is presented in
(Seltzer, 2008, p. 238)
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Figure H.1: Cesium density as a function of tem-
perature. Blue (yellow) curve for solid (liquid)
cesium phase.

Appendix H

Cesium vapor density

For estimating the alkali density in a room temperature container, a common
procedure is to model the vapor as an ideal gas, following the ideal gas law

PV = nRT,

for a given pressure P in atm, volume V in L and temperature T in K. In this
formulation, the ideal gas constant is R ∼ 0.082 atmLK−1/mol, and the number
of particles n is given in mol. With the Avogadro constant, the atomic density
n/V (in terms of particles per m3) is

n
V

= 7.34× 1027 P
T
∼ 1027.866 P

T
. (H.1)

As described by Alcock et al.1, the saturated cesium vapor pressure for a tem-
perature T is

log10 P = A− BT−1

P = 10A−BT−1
. (H.2)

in which the values for A and B are presented in Table H.1, which also depend
on the temperature (the solid-liquid transition happens at 28.5 ◦C). The accu-
racy of the model above is ±5% in the range of temperature 298− 550 K (Steck,
2019).

Combining (H.1) and (H.2), the temperature dependence of the Cesium den-
sity is given by

ρCs =
1
T

1027.866+A−B/T ,

and presented in Figure H.1.

Parameter State of matter

Solid Liquid
A 4.711 4.165
B 3999 3830

Table H.1: A and B parameters for Cesium.
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Experimental parameters

Here we present a summary of the experimental parameters extracted from
modelling the hybrid in the 2017 and in the 2020 runs.
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156 Chapter I. Experimental parameters

Parameter Symbol Value

Atomic spin oscillator
Decoherence rate in the dark γS0,dark/2π 1 kHz

Intrinsic linewidth γS0/2π 4.8/4.2 kHz
Effective dynamical linewidth γS,dyn/2π 0.4 kHz

Total linewidth γS/2π 5.2/4.6 kHz
Tensor contribution ζS 0.02
LO1 driving power 1.7-1.5 mW

Readout rate ΓS/2π 23-21 kHz
Spin Polarisation p 0.6

Spin thermal occupancy nS 1.7
Microcell single pass optical losses ηmicrocell 13%

Microcell temperature 65◦C

Mechanical oscillator and cavity
Intrinsic mechanical frequency ωM0/2π 1.28 MHz

Intrinsic damping rate γM0/2π 100 mHz
Optical damping rate γM/2π 5.6-5.4 kHz

Cavity detuning ∆/2π -4.7 MHz
Total cavity linewidth κ/2π 17.4/15.4 MHz

LO2 drive power 54/38 µW
Intracavity photons N 5.8× 106/4.4× 106

Single photon coupling rate g0/2π 150 Hz
Cavity overcoupling κin/κ 0.96

Thermal bath temperature T 7 K
Bath occupancy nM0 114× 103

Mean occupancy nM 2
Quantum cooperativity CM

q 2.6/2.2

Hybrid & detection
Quantum efficiency between systems ν 0.45
Cavity mode-matching (amplitude) 0.89

Power transmission between systems 0.62
Detection efficiency η 0.65/0.67

Homodyning visibility 0.89
Power transmission and detector QE 0.74/.76

LO1 − LO2 phase ϕ 0/6◦

Table I.1: Summary of notation and experimental parameters for the experiments in
(Møller et al., 2017) and discussed in Chapter 10.
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Parameter Symbol Value

Atomic spin oscillator
Decoherence rate in the dark γS0,dark/2π 450 Hz

Intrinsic linewidth γS0/2π 1.7 kHz
Effective dynamical linewidth γS,dyn/2π 1.2 kHz

Effective linewidth (incl. dynamical damping) γS/2π 2.9 kHz
Tensor contribution ζS 0.028
LO1 driving power 350 µW

Readout rate ΓS/2π 20 kHz
Spin Polarisation p 0.82

Spin thermal occupancy nS 0.8
Microcell single pass optical losses ηmicrocell 4%

Microcell temperature 50◦C

Mechanical oscillator and cavity
Intrinsic mechanical frequency ωM0/2π 1.370 MHz

Intrinsic damping rate γM0/2π 2.1 mHz
Optical damping rate γM/2π 3.9 kHz

Cavity detuning ∆/2π −0.7 MHz
Total cavity linewidth κ/2π 4.2 MHz

LO2 drive power ∼8 µW
Intracavity photons N 1.6×106

Single photon coupling rate g0/2π 6× 101 Hz
Readout rate ΓM/2π 15 kHz

Cavity overcoupling κin/κ 0.93
Thermal bath temperature T 11 K

Bath occupancy nM0 173×103

Mean occupancy nM ∼ 2
Quantum cooperativity CM

q 15

Hybrid & detection
Quantum efficiency between systems ν 0.53
Cavity mode-matching (amplitude) 0.9

Power transmission between systems 0.8
Detection efficiency η 0.77

Homodyning visibility 0.96
Power transmission and detector QE 0.87

LO1 − LO2 phase ϕ ∼180◦
Detection phase ϑ 2◦

Table I.2: Summary of notation and experimental parameters for the experiments in
(Thomas et al., 2020) and discussed in Chapters 10 and 11.
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