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THE C I S S E F F ECT



ABSTRACT

In recent years, a wide range of experiments have been done that show spin selectivity
of electrons after they have passed through a layer of chiral molecules. This effect has
been termed chiral-induced spin selectivity (CISS) and is the subject of this thesis. Sev-
eral attempts have beenmade to explain the effect theoretically, but no consensus on the
origin or mechanism has emerged. In this thesis, we derive a mathematical framework
that aims to provide a foundation for a correct treatment of the effect. From simple
arguments involving time reversal symmetry, the so-called no-polarisation theorem
emerges. In essence, it says that the system must start in a non-thermal distribution,
i. e. a distribution where states with the same energy are unequally populated. Some
of the experiments involve transient effects, and we show that the same formalism that
is used in steady state can be generalised in such away that it can be used tomake state-
ments about the transient behaviour. In experiments involvingmagnetic leads, another
phenomenon emerges. In this case, the equilibrium distribution of amagnetic lead cou-
pled to a non-magnetic lead through a layer of chiral molecules changes non-trivially,
when the magnetisation is flipped. Therefore, when a bias is applied, the system be-
haves differently for different orientations of the magnetic field.

The theory is investigated further by studying models of organic molecules. Here it
is found that the polarisation can only reach a sizeable value, if themolecular spectrum
contains levels that are close in energy, compared to the size of the coupling to the leads.
It is shown that accidental degeneracies appear in the spectrum of polyacetylene, when
the bonds between neighbouring atoms are twisted in such a way that it forms a helix.
These degeneracies are shown to be a general feature of twisted chains of 𝑝-like orbitals.
Similar features are shown to be present in a model of helicene.
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DANSK RE SUMÉ

I de seneste år har en lang række eksperimenter vist en udvælgelse af elektroner på
baggrund af deres spin, efter de har bevæget sig gennem kirale molekyler. Denne ef-
fekt kaldes kiralinduceret spinselektivitet (eng.: chiral-induced spin selectivity, CISS)
og er emnet for denne afhandling. Effekten har været forsøgt forklaret teoretisk af
flere omgange, men der er endnu ikke opnået enighed omkring dens oprindelse eller
mekanisme. I denne afhandling vil vi udlede en matematisk model, der forsøger at
danne grundlag for en korrekt analyse af effekten. Fra simple argumenter vedrørende
tidsomvendingssymmetri fremkommer et teorem, der sætter strenge krav til, hvilken
form en teori for spin polarisering af elektroner kan tage. Grundessensen i teoremet er,
at et system skal starte i en utermisk fordeling, dvs. en fordeling hvori tilstande med
ellers samme energi ikke fremkommer med samme sandsynlighed. Nogle af eksperi-
menterne måler også transiente effekter og vi viser, at den samme formalisme, som vi
har udviklet til at beskrive forventningsværdier i steady state, kan udvides til også at
omfatte denne transiente opførsel. Et nyt fænomen gør sig imidlertid gældende for
eksperimenter, der involverer magnetiske kontakter. I dette tilfælde viser vi, at for
en magnetisk kontakt, der er koblet til en almindelig kontakt gennem et lag af kirale
molekyler, skifter ligevægtstilstanden på en utriviel måde, når magnetfeltet ændres.
Når en spænding påføres mellem de to kontakter, vil der derfor ikke løbe den samme
strøm for de to magnetfeltsretninger.

Teorien udforskes dernæst ved at studere modeller af organiske molekyler. Hertil
vises det, at der kun fremkommer en betydelig polarisering, såfremt at molekylets
spektrum indeholder molekylære tilstande, hvis energier er forholdsvis tæt på hinan-
den, sammenlignet med størrelsen af koblingen til kontakterne. Det vises derudover, at
udartninger forekommer i spektrummet for polyacetylen, når båndene mellem atom-
erne i kæden vrides, såmolekylet tager form af en helix. Disse udartninger er en generel
egenskab for vredet kæder af 𝑝-agtige orbitaler. Lignende egenskaber vises at gøre sig
gældende for en model af helicen.
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sequence rules would assign the names 𝑆 and 𝑅 to the enan-
tiomers, as indicated by the letters below. 4

Figure 1.2 Illustration of the experimental setup of Ray et al. (1999). The
figure shows a 1D2L2D sandwich, illuminated by a laser which
ejects electrons from the gold surface. To reach the detector, the
electrons must travel through all five layers of the sandwich.
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Figure 1.3 (A) Model of the chiral electric field felt by an electron moving
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Figure 1.4 Model of the photoemission experiments analysed using aMott
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Figure 1.5 The various configurations of electron andhole transport in pho-
toexcitation experiments. The dashed arrow indicate the direc-
tion in which the electron moves, and the small arrow indicates
its direction of spin, either parallel or anti-parallel to its motion.
On the right, the magnetic field direction for which the photo-
luminescence is quenched is indicated for each configuration.
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THE S I S OVERV I EW

This thesis is a monograph of work that has been done between 2016 and 2019 on the
subject of the chiral-induced spin selectivity effect (CISS). Many of the results pre-
sented here were published in Nano Letters in the summer of 20191, and part of the
aim of this thesis is to give a more comprehensive and detailed description of those
results. The thesis also contains results that have not yet been published. These include
the results presented in the sections 2.4.3, 3.1.4, 3.1.5, 3.2.3, 4.2, and 4.3.
The thesis is divided into four chapters. The first chapter serves as an introduction to

the history and concepts of chirality and as a comprehensive overview of most of the
experiments related to the CISS effect. Section 1.1 is meant to provide the reader who
is unfamiliar with the concept of chirality in chemistry with enough understanding to
follow any arguments related hereto. In section 1.2 we delve into the experimental and
theoretical history that lead to the discovery of the CISS effect. This is followed up in
section 1.3 by a structured summary and discussion of most of the related experiments
done in the past decade.

In chapter 2 we introduce the mathematical formalism that we use throughout the
thesis. It starts in section 2.1 with a brief discussion of statistical averages and the den-
sitymatrix and how to get an effective single-particle theory from amany-particle prob-
lem. In section 2.2 and 2.3 we introduce the scattering and initial state picture, respec-
tively. These two pictures provide two different ways of describing transport through
molecules. However, when considering steady state transport, they both reduce to the
same effective equations. In section 2.4 we derive a general formula for the particle
current in steady state, but also show that the same formalism can be generalised to
encompass transient effects as well, if one includes a kind of virtual lead, related to the
time-dependence. Section 2.5 extends this formalism to include spin currents andmag-
netic leads, and we arrive at general formulas for both the spin and particle currents
for any number of magnetic or non-magnetic leads.

In chapter 3 we use the fact that the atomic spin-orbit coupling in organic molecules
is weak. This allows us to derive an equation for the particle current in section 3.1 that
is valid for weak spin-orbit interactions, in which the spin degrees of freedom have
been traced out. It shows that if the electrons start in a thermal initial distribution, the
particle current is the same when the polarisation is flipped. This is referred to as the
no-polarisation theorem. If the electrons are not thermal, we can form a useful vector

1



2 THE S I S OVERV I EW
quantity that we call the �⃗�-vector, which quantifies the direction along which the po-
larisation is largest. This construct is then used to show that the electrons that are pho-
toexcited have different escape rates depending on their spin, which is consistent with
the experiments. In section 3.2 the concept is extended to include the spin current. Here
we find that the �⃗�-vector has a partner, the ⃗𝐶-vector which describes precession of the
spin as it moves through the molecule. These two constructs are used to understand a
number of experiments, and the no-polarisation theorem is revisited in this regard. Fi-
nally, it is shown that when chiral molecules are sandwiched between a magnetic lead
and a normal lead, the induced magnetisation in the normal lead due to the magnetic
lead is not simply anti-symmetric, when the magnetic field is flipped, due to the pres-
ence of the chiral molecules. This non-trivial effect forms the basis for understanding
experiments involving magnetic leads.

The thesis concludes with numerical models of organic molecules in chapter 4. In
section 4.1 we study a model of twisted polyacetylene. It is found that the �⃗�-vector
only reaches a magnitude comparable to the values obtained in experiments, when the
molecular spectrum contains almost degenerate levels. This is supported by considera-
tions of the mathematical formula for the �⃗�-vector, and it is found that at these degen-
eracies, the polarisation grows linearly with the length of the molecule. This result is
consistent with experiments in which the length of the molecules was varied. Finally,
in section 4.3 we find that the analysis carries over to a model of helicene, where the
�⃗�-vector is again enhanced near degeneracies.



1
I N TRODUCT ION

“I call any geometrical figure, or group of points, chiral, and say that it has chiral-
ity, if its image in a plane mirror, ideally realized, cannot be brought to coincide
with itself. Two equal and similar right hands are homochirally similar. Equal and
similar right and left hands are heterochirally similar or ’allochirally’ similar (but
heterochirally is better). These are also called ’enantiomorphs,’ after a usage intro-
duced, I believe, by German writers. Any chiral object and its image in a plane
mirror are heterochirally similar.”— LORD KELVIN2

Symmetries play a fundamental role in many branches of science, their absence dou-
bly so. In this thesis, we shall study the lack of so-called mirror symmetries and its
effect on electrons at the molecular level. Before delving into the depths of the theory,
we start off with a brief introduction to the relevant nomenclature.

1.1 CH I RAL I T Y

In general, systems which lack mirror symmetry are referred to as chiral, named after
the Greek word for hand, χειρ (kheir), a term which was coined by Lord Kelvin and
introduced into the literature in 1894 (the quote at the beginning of this chapter). The
reason for this name originates with the everyday observation that, in some sense, the
left and right hand of a person are similar. However, no matter how one orients one
hand, it cannot be made to superpose upon the other. There is a similarity, though,
which comes from the fact that when looked at in a mirror, the left hand would appear
to have become a right and vice versa. That is, a mirrored left hand will superpose
upon a right. We thus say that the chirality (or handedness) of a hand changes when
looked at in a mirror. An object, such as the head of a person (in its most idealised
form), however, does not have a handedness to it. In other words, a mirrored head will
readily superpose upon its unmirrored self, and as such, we refer to it as achiral.
These notions are easily extended to the molecular level. I. e. some molecules exhibit

handedness (chiral molecules) while others do not (achiral molecules). This is illus-
trated in Figure 1.1. The two molecules with opposite chirality are referred to as enan-

3



4 INTRODUCT ION

Reflection
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Figure 1.1: (A) An achiral molecule. After a mirror reflection, there exists a proper rotation that
brings themolecule back to its original configuration. (B)A chiralmolecule. By colouring the
balls, there exists no proper rotationwhich brings themolecule back after amirror reflection.
If the masses of the balls are ordered as 𝑚white < 𝑚red < 𝑚green < 𝑚blue, the Cahn-Ingold-
Prelog sequence rules would assign the names 𝑆 and 𝑅 to the enantiomers, as indicated by
the letters below.

tiomers, a name derived from the Ancient Greekword for opposite, ένᾰντῐός (enantíos).
Aswith the naming convention ofwhich side is right andwhich is left, there is some de-
gree of arbitrariness as to how to name the two enantiomers of a given chiral molecule.
One convention for this dates back to the discovery of chiral molecules by Louis Pasteur
in 18483. At the time, it was known from experiments by Jean Baptiste Biot in 1815, that
certain organic compounds could rotate the polarisation of a beam of light either left
or right, a property known as optical activity3. Pasteur found that by growing crystals
of synthetically produced compounds, the faces of the crystal structures rotated either
left or right, although the chemical formulæ of the compounds were the same. By dis-
solving the crystals and shining light on them, he was able to establish a connection
between the shape of the crystals and the optical activity of the compounds. Because
they did not have the necessary techniques or equipment at the time to determine the
structure of the molecules, the two enantiomers were assigned different names based
on their optical activity. According to this convention, one takes the cross-product of
the incoming and outgoing polarisations, and if it is parallel to the light propagation,
it is denoted D, and if it is anti-parallel, L. This notation comes from latin for right and
left, dexter and lævus, respectively.

A more recent convention for naming enantiomers in organic chemistry are the so-
called Cahn-Ingold-Prelog sequence rules4. In this convention, one can assign a hand-
edness (or lack thereof) to each carbon atom in a molecule based on the distribution of
the most massive atoms around it. The letters below the models in Figure 1.1B indicate
the names that these rules would assign to the two enantiomers of the central carbon
atom (black ball). The handedness is determined by using the commonmnemonic con-



1.2 H I STORY 5
ventions of the right-hand rule. That is, one orients the molecule such that the lightest
side-group, in this case the white ball, points away from the viewer. If remaining side-
groups are ordered in a counter-clockwise manner, from lowest to highest mass, the
enantiomer is right-handed and assigned the letter 𝑅, from latin, rectus. If they are
ordered in a clockwise manner, they are assigned 𝑆, again from latin, sinister, mean-
ing left. In more complex molecules, there may be several carbon atoms, so-called
stereocentres, for which a handedness can be defined. The various configurations are
known as stereoisomers. The enantiomer of a given chiral molecule is thus the stereoiso-
mer for which the handedness of each stereocentre has been flipped. Finally, when the
molecule has a so-called helical or axial chirality, i. e. the molecule looks like a screw,
the enantiomers are denoted M and P for minus and plus, respectively. This is the case
for the class of molecules known as helicenes, that we are going to encounter later.

Mathematically, a mirror reflection followed by a rotation is known as an improper
rotation. Note that if the rotation axis is in the mirror plane, it is equivalent to simply
rotating the mirror by half the angle around that axis. Thus, it is sufficient to consider
only rotations around an axis that is perpendicular to the mirror plane to describe all
improper rotations. We denote improper rotations by the symbol, 𝑆𝑛, after the German
word for mirror, Spiegel. The subscript, 𝑛, denotes the fraction of a full turn by which it
rotates around the rotation axis, i. e. the angle of rotation is given as 𝜃 = 2𝜋/𝑛. We can
now say that a molecule, denoted 𝑚, is achiral if there exists an improper rotation such
that 𝑆𝑛𝑚 = 𝑚. On the other hand, if no such improper rotation exists, it is chiral. The
set of all operators, 𝑆1, describe all possible mirror planes, typically denoted 𝜎, while
the 𝑆2’s are the set of all point inversions, denoted 𝑖.

1.2 H I STORY

When Pasteur discovered the chirality of molecules in 1848, he also discovered that nat-
urally occuring tartaric acid were all of the D-type5. Later on, it was found that several
other molecules involved in organic life on Earth are chiral. An example of this is DNA,
which in living organisms is found to form a right-handed double helix. Another exam-
ple is the amino acids that make up the proteins in living cells, which are all-but-one
enantiomers of the L-type. The question of why is often referred to as the asymmetry of
life. In 1961, Ulbricht and Vester, tried to shed some light on the problem6. Previous ex-
periments at the time had found that by exposing molecules to circularly polarised UV
light, the decay rate of the two enantiomers differed. Since Lee and Yang had shown
that the β-decay of atomic nuclei produced spin polarised electrons, a discovery for



6 INTRODUCT ION
which they were awarded the Nobel Prize in 1957, it was suggested that the asymme-
try of life could find its origin in the circularly polarized bremsstrahlung emitted by these
electrons. Thus, Ulbricht and Vester set out to test this hypothesis by exposing various
chiral molecules to bremsstrahlung from β-decay, but found no significant result. In
1968, however, an article was published in the magazine Nature in which the author,
Garay, had obtained positive results7. Garay had observed a significant difference in
the decay of the two enantiomers of the amino acid tyrosine,when left togetherwith the
radioactive isotope, Strontium-90. Although a mechanism could not be determined, it
was suggested that, perhaps, it was not the bremsstrahlung, but the polarised electrons
themselves which were the source of the differential decay. This hypothesis was first
confirmed by a subsequent experiment in 1975 by a group at Stanford using a linear
accelerator8, but was later disputed in a more extensive study in 19799.
These experiments inspired Farago, in 1980, to study the general problem of electron

scattering from chiral molecules using symmetry arguments10. Farago found that there
was nothing, in principle, which prohibited the scattered electrons from becoming spin
polarised, if the target was chiral, but did not predict the magnitude of the effect, leav-
ing it for experiments to determine. In particular, Farago proposed that there should
be a spin asymmetry in the transmission of a beam of electrons with opposite spin
polarisation, given by the equation:

𝐴(𝑃) = 𝐼(𝑃) − 𝐼(−𝑃)
𝐼(𝑃 ) + 𝐼(−𝑃), (1.1)

where 𝐴 is the asymmetry factor, 𝑃 is the polarisation of the incoming electron beam in
one orientation and 𝐼 is the beam intensity. This effect was termed electron dichroism. Al-
though the first follow up experiment could not measure any significant polarisation11,
in 1987, Campbell and Farago reported on a study12 of gas-phase chiral molecules (the
two enantiomers of camphor, C10H16O) in which the effect was of the order of ∼ 10−4

for beams with incoming polarisation, 𝑃 ≈ 0.28. The measured effect was small, but
significant according to their error estimates.

Eight years later, in 1995, attempts to reproduce these results with more accurate
equipment were unsuccessful, and concluded that the results for camphor in Campbell
and Farago’s experiments must have had been due to systematic errors13. In the same
study, however, they found a significant effect for a compound containing the much
heavier element, Ytterbium, known as Yb(hfc)3, chemical formula C42H45F21O6Yb,
and thus claimed to havemade the first true experimental verification of electrondichro-
ism. The effect they measured was still of the order ∼ 10−4, and was supported further
by experiments done by the same group for similar compounds, published in 199714.
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Figure 1.2: Illustration of the experimental setup of Ray et al. (1999). The figure shows a 1D2L2D
sandwich, illuminated by a laser which ejects electrons from the gold surface. To reach the
detector, the electrons must travel through all five layers of the sandwich.

Intuitively, and supported by a theoretical investigation into scattering from chiral
molecules using a continuum model15, the polarisation of scattered electrons were ex-
pected to depend on the scattering angle. Thus, it was suggested that experiments on
highly oriented molecules, rather than the random orientation that the molecules had
in the gas phase, could lead to a significant enhancement of the effect. This inspired
Ron Naaman and David Waldeck to attempt to show this effect by studying the scat-
tering of electrons through sandwiches of self-assembled monolayers (SAMs) of the
chiral molecule stearoyl lysine16. The experimental setup for this is sketched out in Fig-
ure 1.2. Note that stearoyl lysine is an organic compound with no heavy elements. The
results, published in 1999, suggested that the polarisation effect of these highly oriented
molecules indeed was much larger17. They measured an asymmetry of |𝐴| ≈ 0.12 for
a polarization of 𝑃 ≈ 0.18 of the incoming electrons, three orders of magnitude larger
than previous studies, for homochiral sandwiches. In addition, for heterochiral sand-
wiches, i. e. layers of SAMs with opposite chirality, they found a decrease in the total
quantum yield.

To understand this last result, we can use a very crude model with differential trans-
mission of spin species through a single chiral monolayer. Let,

𝑡𝐷,↑ = 𝑡𝐿,↓ = 𝑡(+), 𝑡𝐿,↑ = 𝑡𝐷,↓ = 𝑡(−), (1.2)
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where, for instance, 𝑡𝐷,↑ is the transmission probability through a D-layer for an electron
with spin up, and 𝑡(±) is the transmission probability of an electron with spin favoured
or unfavoured by the layer, respectively. Note that in this crude model, we are assum-
ing that the spin is not rotated during transmission, and that electrons that are not
transmitted are, in a sense, lost. The relative intensity of the transmission of an initially
unpolarised electron beam, through a sandwich of 𝑁𝐷 layers of D-enantiomers and 𝑁𝐿
layers of L-enantiomers is thus given by:

𝐼(𝑁𝐷, 𝑁𝐿)
𝐼0

=
𝑡𝑁𝐷
(+) 𝑡𝑁𝐿

(−) + 𝑡𝑁𝐷
(−) 𝑡𝑁𝐿

(+)
2 . (1.3)

Now, since 𝑡(+) is the expected relative intensity of a transmitted electron beam for fully
polarised (𝑃 = 1) electrons, we can relate the ideal asymmetry of a single layer to the
spin transmissions, through:

𝐴 =
𝑡(+) − 𝑡(−)
𝑡(+) + 𝑡(−)

= 𝑓 − 1
𝑓 + 1, where 𝑓 =

𝑡(+)
𝑡(−)

. (1.4)

The relative beam intensity of a sandwich with a variable composition of layers to one
with only D-monolayers is then found to be:

𝐼(𝑁𝐷, 𝑁𝐿)
𝐼(𝑁𝐷 + 𝑁𝐿, 0) = 𝑓𝑁𝐷 + 𝑓𝑁𝐿

𝑓𝑁𝐷+𝑁𝐿 + 1. (1.5)

Using the reported experimental values of the relative quantum yield of 5L and 3D2L
sandwiches, we extract an asymmetry factor of a single layer of |𝐴| ≈ 0.2, for fully
polarised electrons. Note that this value is smaller than the one reported in their paper,
where they used the transmission cross-section rather than the intensity to arrive at a
larger asymmetry factor of 0.7.

In 2002 resultswere reported by the samegroup for SAMsof polyalaninewith lengths
of 16 to 22 amino acids18. In this study, it was found that the polarisation not only
changed signwith the handedness of the amino acids, but also changedwhen the other
end of the peptide was connected to the substrate. It was thus proposed that the mech-
anism was related to the electric dipole of the peptides and consequent charge trans-
fer from the SAM to the substrate. This seemed further supported by results in 2003
which showed that the contact potential difference (CPD) varied and changed sign as
a function of temperature, and that the spin polarisation was correlated with this sign
inversion of the CPD19. Thirteen years later, further studies into this effect found that
the change in CPD was caused by a major structural change of the peptides at these
temperatures, which led to a sign flip of the dipole20.
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The same group published studies on DNA in 2006, in which they compared SAMs

of single-strandedDNA (ssDNA) and double-strandedDNA (dsDNA)21. While it was
found that dsDNA also exhibited significant asymmetry in the transmission of elec-
trons with opposite polarisation, ssDNA did not show any measurable effect. This was
attributed to the highly unorganised layers formedby ssDNAwhich lack the rigid struc-
tural backbone of dsDNA. This was followed up in 2011 with a paper in the magazine
Science that sparked a greater interest in the general field22. In this paper, they directly
measured the spin of the electrons after they had passed through a SAM of dsDNA,
and confirmed that there was a large polarisation of the transmitted electrons, even
for an unpolarised laser beam. The effect was found to depend roughly linearly on
the length of the DNA molecules and reached as high as 60% for the longest chains,
78 base pairs long. A complementary study was published the same year with con-
duction measurements through dsDNA adsorbed on a magnetised nickel substrate23.
Each dsDNAmolecule was connected to a single 10 nm gold nanoparticle on the other
end, and an AFM tip was used to ensure that transport was measured through a sin-
gle molecule-nanoparticle complex. Although they could not determine the polarisa-
tion of the transmitted electrons, they measured a significant difference in the current
when the substrate was magnetised either towards or away from the dsDNA. This ef-
fect was attributed to an effective spin-dependent barrier of about 1 eV. Combined, the
experiments were taken as evidence that transmission through chiral molecules is spin-
dependent, which led RonNaaman &David H.Waldeck to coin the term chiral-induced
spin selectivity (CISS) for the effect, distinguishing it from Farago’s electron dichroism.

Three different theoretical models were proposed in the immediate aftermath of the
two papers mentioned above24–26. Common to all three was the reliance on some form
of spin-orbit coupling (SOC). This coupling can be understood by considering the po-
tential energy of a magnetic moment, ⃗𝜇 in a magnetic field, �⃗�,

𝑉 = − ⃗𝜇 ⋅ �⃗�. (1.6)

If the electron orbits a nucleus, it carries two magnetic moments: one related to its
intrinsic spin, ⃗𝜇𝑆, and one related to its charge as it orbits the nucleus, ⃗𝜇𝐿. Now, in the
rest frame of the electron, where it has zero angular orbital momentum, it will appear
as if the positively charged nucleus is orbiting the electron. From the point of view of
the electron, this is itself a source of a magnetic field with a coupling to its spin angular
momentum of the form in Eq. (1.6). Thus, in the laboratory rest frame, we find an
effective coupling between the spin and orbital components of its magnetic moment,
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Figure 1.3: (A) Model of the chiral electric field felt by an electron moving through a helix due
to the electron seeing a higher concentration of nuclei towards the helix centre. (B) As the
electron moves through the helix, the strongest electric fields it experiences, and thus the
strongest source of spin-orbit coupling, are those it sees when orbiting the nuclei.

which we refer to as the atomic spin-orbit coupling. Mathematically, the interaction is
described by:

𝐻SO = 2𝜆
ℏ2 �⃗� ⋅ ⃗𝑆, (1.7)

where 𝜆 is a constant describing the interaction strength, �⃗� and ⃗𝑆 are the electronic
angular momentum and spin operators, respectively, and ℏ is the reduced Planck’s
constant. For the p-orbitals in a carbon atom, 𝜆 is around 6 meV.

This idea can be extended to an electron moving in any electrostatic field, and one
finds a spin-orbit interaction of the form:

𝐻SO = 𝑒ℏ
4𝑚𝑐2 ( ⃗𝑣 × ⃗𝐸) ⋅ �⃗�, (1.8)

where 𝑒 is the elementary charge, 𝑐 is the speed of light, 𝑚 is the mass of the electron,
⃗𝑣 its velocity, and ⃗𝐸 is the electric field. Considering the shape of a helix or cylinder,

there is an electric field pointing from the edge towards the centre. This is illustrated in
Figure 1.3A. An electronmoving along a helical pathway in such an electric field would
experience an energy splitting dependent on whether its spin was aligned parallel or
anti-parallel with the helix. This is also known as a Rashba-type spin-orbit interaction.
Now, the photoexcited electrons in the experiments have kinetic energy of about 1 eV,
which corresponds to a velocity of

𝑣 = √2𝐸kin
𝑚 ≈ 0.2% the speed of light.
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The electric field of a single charge at a distance of 1 Å is |𝐸| ≈ 1.4 × 1011 V/m. This
scales as 𝑟−2 and is thus much weaker for atoms further away. In addition, the cores
of those atoms are screened by bound electrons which means that, effectively, they do
not present a full unscreened charge for the propagating electron. Even in a gratuitous
model, where the helix does present an effective charge, 1 Å away, we find an energy
splitting of:

Δ𝐸SO ≈ 𝑒ℏ
𝑚𝑐 × (1.4 × 108 V/m) ≈ 56µeV.

This effect is thus more than a hundred times weaker than the atomic SOC of a carbon
atom.

In two of the theoretical models that followed the papers in 2011, the spin-orbit inter-
action used was of the type above—an electron moving in the electric field of a helix.
In order to reach reasonable values for the spin polarisation, such models have to as-
sume much larger values for the spin-orbit coupling than what the calculation above
gives. Thus, for the model to have explanatory power, one has to account for how such
an effect can be enhanced. We shall not attempt to do so here. Instead, we shall make
the claim that any model which attempts to explain the experiments on spin selectiv-
ity must use the atomic SOC as its basis, which is shown illustratively in Figure 1.3B.
This fact was also pointed out by Medina et al.26 in their paper, in which they studied
scattering of a normalised electron wave packet from a helix of six carbon atoms with
atomic SOC. In their study, they could reach polarisations up to 1% for specific param-
eters of the model, without tuning the SOC parameter. Their model, however, could
only handle a few atoms.

1.3 REV I EW OF C I S S E X P ER IMENT S

Inspired by the initial reports, a wealth of new experiments on the CISS effect started
to emerge. In this section, rather than list the experiments in chronological order, as
was done in the previous section, we shall group them according to the experimental
methods used in an attempt to systematise them. Because the experiments use many
different methods in which electrons are transported through molecules in both direc-
tions, we shall adopt the notation P, for parallel, when an electron is travelling in the
direction that its spin is pointing andAP, for antiparallel, when it points in the opposite
direction.

Broadly speaking, the experiments can be categorised into four different classes: pho-
toemission, photoexcitation, transport and electrochemistry. They each characterise dif-
ferent aspects of spin polarised transport through chiral molecules at different energy
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scales. To compare these experiments, we will outline the different experimental meth-
ods in the following subsections, and summarise the results in tables with the relevant
measured quantities. It is worth noting at this point that some molecules have been
studied using several different experimental methods, as well as by different groups.
These experiments are largely consistent in the sense that the sign of the polarisation
always changes when the opposite enantiomer is used. The different methods have dif-
ferent ways of calculating the polarisation, however, and thus the sign is not always
the same for the same molecule across experiments. At the end of this section, we shall
remark upon the most striking features across the various methods.

1.3.1 Photoemission

In the first class, we find most of the experiments discussed in the previous section.
Here, a laser is shun at a substrate (typically copper, silver or gold) to excite electrons
above its work function, which is generally around 5 eV27. The HOMO states of the
molecules being studied are typically a few eV below the Fermi level, and thus their
ionization energy is generally around 7 eV. This thus leaves a window in between for
the laser energy, where one ensures that electrons are excited to the vacuum level only
from the substrate. After the electrons have been excited to the vacuum level, they are
slowly accelerated through a weak electric field and brought to the analyser.

Photoemission experiments generally come in two forms. The first makes use of the
fact that when shun upon by circularly polarised light, the photoelectrons emitted from
a gold substrate are spin polarised. For a bare, single crystal, this polarisation is around
15% and changes signwhen the circular polarisation of the light changes22. Thus, when
the substrate is covered by organised chiral molecules, exciting photoelectrons in the
substrate produces a polarised beam of electrons which passes through the molecular
layer. By using a time-of-flight spectrometer, the kinetic energy distribution and total
intensity of the transmitted electron beams can be analysed and compared. The experi-
mental results of these kinds of photoemission experiments, with an asymmetry factor
calculated using in Eq. (1.1), are summarised in Table 1.1.
In the second form, the electrons are analysed by using a Mott polarimeter. The tech-

nique, first proposed in the late 1920’s by Nevill Mott and Niels Bohr28 as a way to
measure the existence of spin in free electrons, uses the fact that the scattering angle of
electrons from heavy atoms depends on their spin component orthogonal to their di-
rection of motion29. By accelerating the electrons to 10–300keV and bending the beam
by 90∘ using an electrostatic lens, the electrons are then shot directly at a thin gold foil
target and scattered into detectors placed at equal angles from the foil. This is shown
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Table 1.1: Asymmetry factor measured in photoemission experiments of the first kind given in
percentages. Unless otherwise indicated, the experiments were performed at room tempera-
ture.

Year Author(s) Molecule Substrate asymmetry
1999 Ray et al.17 5L-stearoyl lysine Au 11

5D-stearoyl lysine −13
2002 Carmeli et al.18 C-terminated poly(D-alanine) Au −9

N-term. poly(D-alanine) 10
2003 Carmeli et al.19 C-term. poly(L-alanine) Au 9

C-term. poly(L-alanine)a −11
2006 Ray et al.21 ssDNA Au 0

dsDNA −8
2011 Göhler et al.22 50-bp dsDNA Au −7

a this experiment was conducted at 250K

e–

hν
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Gold foil

SAM

Detectors

E

Figure 1.4: Model of the photoemission experiments analysed using a Mott polarimeter. Elec-
trons are excited in the substrate using a laser and then accelerated up and bent by 90∘ before
experiencing spin-dependent scattering from a gold foil.
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Table 1.2: Polarisation measured in photoemission experiments for different polarisations of
light. All polarisations are given as percentages.

Year Author(s) Molecule Substrate ccw. lin. cw.
2011 Göhler et al.22 50-bpa dsDNA Au(111) −29 −31 −35

40-bp dsDNA Au(poly.b) −40 −38 −35
50-bp dsDNA −39 −36 −32
78-bp dsDNA −61 −57 −55

2013 Mishra et al.30 Bacteriorhodopsin Au(poly.) 8 14 17
Al(poly.) 15 15 15

2015 Kettner et al.31 AL5 oligopeptide Au(poly.) −17 −11 −6
AL6 oligopeptide −20 −14 −10
AL7 oligopeptide −22 −18 −14

2018 Kettner et al.27 M-helicene Cu(332) −6 −7 −6
P-helicene 11 12 12
M-helicene Ag(110) −7 −9 −12
P-helicene 6 7 6
M-helicene Au(111) 22 −8 −35
P-helicene 34 8 −16

2019 Ghosh et al.32 L-CuO film (20nm) Au(111) – −12 –
D-CuO film (20nm) – 4 –

a bp stands for base pair.
b poly. stands for polycrystalline

in Figure 1.4. A comparison of the beam intensity into the two detectors thus gives an
asymmetry factor as before. By calibrating the detectors against a known source of spin,
one can thus measures the polarisation of the beam to a high accuracy. This method
allows direct detection of the polarisation of the electron beam along one axis, but does
not provide the energy resolution that one gets from time-of-flight measurements. Ex-
periments of this kind are summarised in Table 1.2.
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P-hole
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(+) (–)

Figure 1.5: The various configurations of electron and hole transport in photoexcitation experi-
ments. The dashed arrow indicate the direction in which the electron moves, and the small
arrow indicates its direction of spin, either parallel or anti-parallel to itsmotion. On the right,
the magnetic field direction for which the photoluminescence is quenched is indicated for
each configuration.

1.3.2 Photoexcitation

Although similar sounding to photoemission, the photoexcitation experiments use a
lower energy laser in the range of visible light to excite an electron-hole pair in a chro-
mophore (a nanoparticle or dye) attached to a chiral molecule. If transport of the elec-
tron or hole is affected by its spin, this will influence various properties of the system.
Three different kinds of photoexcitation experiments exist. In the first kind, the photolu-
minescence of the system ismeasured, i. e. the system is excitedwith a laser at a specific
energy and its emission spectrum due to recombination is recorded. The molecules are
adsorbed on a thin ferromagnetic substrate, typically nickel, and because some of the
excited electrons or holes will be transported to the substrate, the emission spectrum
will be quenched, as the energy will dissipate in the substrate instead. By putting the
substrate close to a permanent magnet, it becomes magnetised perpendicular to the
plane, and thus the density of states and therefore coupling of the molecule to the sub-
strate depends on spin.

Note that there are two competing mechanisms at play in these experiments related
to the charge carriers. One effect is the preferred transport of either electrons or holes
while the other is the preferred transport of spin. If transport is dominated byP-electrons,
that is, spin-down electrons transported from the chromophore to the substrate, the in-
tensity will be most quenched by a downward pointing magnetic field, as illustrated in
Figure 1.5. Similarly, AP-electrons will show higher quenching with an upward point-
ingmagnetic field. On the other hand, if transport is dominated by holes, the quenching
effects are reversed.
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Table 1.3: Laser energy and polarisation in photoexcitation experiments measured using pho-
toluminescence.

Year Author(s) Molecule Energy [eV] Pol. (%)
2016 Mondal et al.33 Ala8-CdSe 2.4 −10
2016 Roy et al.34 Bacteriorhodopsin 2.4 −17
2017 Abendroth et al.35 dsDNA-PDI 2.3 0.2

The quantity we are interested in is the polarisation of the transported electrons, for
comparison with other experiments. Assuming a crude model in which an electron is
either transported to the substrate or recombines with its hole partner, the intensity
of the photoluminescence can be related to the probability for an electron to be trans-
ported to the substrate through:

𝐼
𝐼0

= 1 − 𝑡, (1.9)

where 𝑡 is the transmission probability, 𝐼 is the photoluminescence intensity and 𝐼0
is the intensity one would measure for the bare molecule, uncoupled to the substrate.
Note that, by definition, 𝐼0 ≥ 𝐼 , but it is otherwise an undetermined quantity from the
experiments. Assuming 𝐼0 to be spin-independent, the transmission polarisation can
then be calculated as:

𝑃 = 𝑡P − 𝑡AP
𝑡P + 𝑡AP

= 𝐼AP − 𝐼P
2𝐼0 − 𝐼P − 𝐼AP

. (1.10)

Since the experiments do not provide a measure for 𝐼0, we have to guess its value. Typ-
ically, the polarisation reported in these experiments is defined as:

𝑃 = 𝐼+ − 𝐼−
𝐼+ + 𝐼−

. (1.11)

This is equivalent to choosing 𝐼0 = 𝐼P + 𝐼AP and assuming that electrons are the charge
carriers, in which case 𝐼AP = 𝐼+, i. e. the intensity with the magnet pointing up. If the
charge carriers are holes, however, 𝐼AP = 𝐼−, and the sign of the polarisation changes.
The measured polarisations for experiments of this kind a listed in Table 1.3. Unfor-
tunately, these experiments do not provide a way to measure the type of carrier. This
problem can be overcomeby the second kind of photoexcitation experiments, described
below.

The secondkind of experiments are rather similar, but instead of coupling themolecules
directly to the nickel substrate, a silver and dielectric (AlO𝑥) layer is put in between.
To balance out the current flow from the molecules to the silver during steady state, an
electrostatic potential builds up which involves charge transfer between the nickel and
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Table 1.4: Laser energy and polarisation in photoexcitation experiments of the second kind.

Year Author(s) Molecule Carriers Energy [eV] Pol. (%)
2013 Kumar et al.36 30-bp dsDNA holes 2.3 0.8

40-bp dsDNA 1.2
50-bp dsDNA 1.6

2014 Carmeli et al.37 Photosystem I holes 1.9 −8.0
Photosystem Ia electrons 4.0

a in this experiment, the substrate was connected to the opposite end of the molecule.

silver layers across the dielectric. This potential can bemeasured bymeasuring the volt-
age between the two layers. As in the photoluminescence experiments, the voltage is
reduced when it is easy for the electrons or holes to tunnel across the dielectric, which
is proportional to the density of states in the magnet. Thus, we have to face the same
problems related to quenching as mentioned above. In these experiments, though, the
sign of the voltage indicates which type is the predominant charge carrier. If electrons
are the primary ones, negative charge will accumulate in the silver layer leading to
a negative voltage. On the other hand, if transport occurs mainly by holes, negative
charge will flow away from the silver leading to a positive voltage. As before, we are
faced with the issue of translating the voltage into a polarisation of the transmitted
electrons. Thus, the polarisation in these experiments is by convention defined as

𝑃 = 𝑉+ − 𝑉−
𝑉0

, (1.12)

where 𝑉+, 𝑉− are the voltages for the magnetic field pointing either up or down, respec-
tively, and 𝑉0 is the voltagewithout amagnetic field. It is worth noting that experiments
of this kind find an increase in polarisation as the temperature is decreased, likely due
to temperature dependent loss of spin coherence in the substrate. Additionally, these
experiments also show a roughly linear increase in the effect with the magnetic field
strength.

In the third and final kind of photoexcitation experiments, no external magnet is
applied. Rather, the molecules are adsorbed on a thin ferromagnetic substrate which
becomes locally magnetised when spins are injected from the chiral molecules. This
thin layer is put on top of a Hall probe which is used to measure the effective generated
magnetic field, by calibrating the device against an externally applied one. Now, the
magnetic field through the Hall bar for the external magnet is 𝐻ext.Note that in these
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experiments, we can again not tell the difference between transport of P-electrons and
AP-holes in the sign of the magnetic field.

To get an idea of how polarised the electrons in these experiments are, we now cal-
culate the magnetic field resulting from a distribution of electrons lying in a plane. For
simplicity, we choose a cylindrical coordinate system such that the plane is the 𝑥𝑦-
plane and the electrons are placed a distance 𝑎 above the plane with their spin point-
ing in the positive 𝑧-direction. The magnetic moment of the electron’s spin is given by

⃗𝜇 = 𝑔𝜇𝐵 ⃗𝑆/ℏ, where 𝜇𝐵 is the Bohr magneton, 𝑔 is the electron’s spin 𝑔-factor and ⃗𝑆 is
its spin. Now, 𝑔 ≈ 2, and for a spin-up electron, 𝑆/ℏ = 1/2, so the magnetic field from
a single electron through the plane in the 𝑧-direction is:

𝐵(𝑟, 𝑧 = 0) = 𝜇𝐵𝜇0
4𝜋 [3𝑎2/(𝑎2 + 𝑟2) − 1

(𝑎2 + 𝑟2)3/2 ] , (1.13)

where 𝜇0 is the vacuum permeability. Note that, since we are dealing with a dipole,
the field measured at the plane is the same, independent of whether we place the spin
above or below it. If we naïvely assume all the electrons to lie in an infinite plane with
a constant dipole density, 𝜌𝑑, the field in the 𝑧-direction at any given point a distance 𝑎
above or below the electrons is given by:

𝐵 = 2𝜋𝜌𝑑 ∫
∞

0
𝐵(𝑟)𝑟𝑑𝑟 = 𝜌𝑑

𝜇𝐵𝜇0
2 ∫

∞

𝑎
[3𝑎2

𝑥4 − 1
𝑥2 ] 𝑑𝑥 = 0, (1.14)

where we have made the substitution, 𝑥 =
√

𝑎2 + 𝑟2 to solve the integral in the second
equality. This result for an infinite plane is due to the demagnetising effects of the other
electrons. Thus, such a simplemodel is not sufficient to describe themagnetic field from
the electrons.

If we treat the electrons by their discrete nature, the magnetic field near a single
dipole is not entirely cancelled, however. If we ignore the demagnetising effects of the
other electrons, we get an upper bound for the field strength by evaluating Eq. (1.13)
for 𝑟 = 0, i. e. right below the dipole. In the experiments, the 2DEG is reported to lie
about 20nm inside the substrate. There are impurity sites in the substrate, however,
into which the electrons might tunnel, so in a gratuitous model, the electrons might
get as close as 1nm to the 2DEG. With this assumption, the magnetic field from the
injected electrons would be around

𝐵0 ∼ 1mT,

if we ignore the demagnetising effects of the other electrons, and assume that the elec-
trons can tunnel to within 1nm of the 2DEG. Table 1.5 lists the effective 𝐻-field in-
duced by the spins being transported through the molecules. We see that the results
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Table 1.5: Laser energy and effectivemagnetic field in photoexcitation experiments using aHall
probe.

Year Author(s) Molecule Energy [eV] 𝐻eff [mT]
2014 Ben Dor et al.38 AHPA-L 2.3 28.0
2016 Eckshtein-Levi et al.20 Polyala.-COOH (300K) 2.4 2.0

Polyala.-COOH (120K) −0.5
Polyala.-PO4 (300K) 7.0
Polyala.-PO4 (120K) −0.8

for polyalanine are on the order of one mT, and are therefore not inconsistent with
this mechanism. The experiment on AHPA-L experiment, on the other hand, is twenty
times larger. Taking into account the fact that the density of molecules is reported to
be around 10−13 cm−2, corresponding to one every ten square nanometres, it is implau-
sible that the measured effective magnetic field could originate from the injected spin
alone. Therefore, some other mechanism must be in play in the substrate which leads
to an enhancement of the Hall effect. We discuss the possibility of such a mechanism a
little later, but it is beyond the scope of this thesis to give a detailed explanation of this
enhancement.

1.3.3 Transport

A third class of experiments is based on transport measurements. Here, a device is
made which consists of chiral molecules sandwiched between two leads, one of them
being ferromagnetic, i. e. nickel. This class of experiments come in two variations. In the
first, a permanent magnet is used to magnetise the nickel and the current through the
device as a function of bias voltage (I-V curve) ismeasured. Depending on the direction
of the magnetic field and the chirality of the molecules, the current is either enhanced
or suppressed. Unlike the photoexcitation experiments, the current here, typically on
the order of a few nA, is proportional to the transmission probability, and because the
bias is applied externally, there are no signs creeping in due to carrier type. Thus, the
polarisation at a given bias voltage is generally given as:

𝑃(𝑉 ) = 𝐼+ − 𝐼−
𝐼+ + 𝐼−

. (1.15)

The general idea is that transport between the two leads is dominated by the major-
ity spin in the nickel, and thus if there is a difference in the transmission for different
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Table 1.6: Gap difference and polarisation in transport experiments. A dash is used when the
gap difference was not reported.

Year Author(s) Molecule Gap diff. [eV] Bias [V] Pol. (%)
2011 Xie et al.23 26-bp dsDNA 1.1 1.5 −64

40-bp dsDNA 1.2 −60
50-bp dsDNA 1.0 −63

2015 Kettner et al.31 AL7 oligopeptide 0.5 1.5 −32
2016 Bloom et al.39 CdSe/L-cysteine −0.15 −1.5 33

CdSe/D-cysteine 0.2 −58
2016 Kiran et al.40 AL5 oligopeptide – 1.0 −38

AL7 oligopeptide – −49
AL5 oligopeptidea – −6
AL7 oligopeptidea – −17

2016 Kiran et al.41 M-helicene – 1.0 −45
P-helicene – 49

2017 Aragonès et al.42 L-α-22AA-peptide – 0.05 −60
D-α-22AA-peptide – 57

2018 Al-Bustami et al.43 AHPA-L – 1.0 −22
2018 Tassinari et al.44 L-oligopeptide – 1.5 68

D-oligopeptide – 1.5 −59
2019 Bullard et al.45 Pro8 – 1.5 51

Pro8PZn1 – 67
Pro8PZn2 – 24
Pro8PZn3 – 60

a these experiments were done by applying a 7nN force on the molecules with the AFM tip during
measurement
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Table 1.7: Saturated polarisation inmagnetoresistance transport experiments. Unless otherwise
noted, experiments were reported to have been done using a constant current of 1mA.

Year Author(s) Molecule Pol. (%)
2014 Mathew et al.46 L-polyalanine 2.5

L-cysteine 0.9
D-cysteine −4.2
— (higher quality) −10.0

2015 Mondal et al.47 PCT-L 1.5
2016 Bloom et al.39 CdSe/L-cysteine −0.4

CdSe/D-cysteine 0.3
2016 Kiran et al.41 M-helicenea −0.7

P-helicenea 0.7
2018 Varade et al.48 Bacteriorhodopsin 0.9

a these experiments were done using a constant current of 10µA.

spin species through the chiral molecules, this will manifest itself as a difference in the
current. In some of these experiments, the I-V curves show that the current is not just
suppressed by a constant factor, due to a reduced number of carriers with the right
spin type, but an apparent shift in the effective barrier for transport. This difference in
the effective barrier, or gap in the molecular spectrum, is reported in early experiments
of this type and listed in Table 1.6 alongside the calculated polarisation at a given bias
voltage.

The second variation uses a similar setup, butmeasures themagnetoresistance of the
device instead. That is, a constant current (typically around 1mA) is passed through
the system, and by measuring the voltage between the leads, the resistance of the de-
vice is obtained. By sweeping an external magnetic field, 𝐻 , the magnetoresistance is
defined as the relative resistance of the device at different magnetic fields:

MR(𝐻) = 𝑅(𝐻) − 𝑅(𝐻 = 0)
𝑅(𝐻 = 0) . (1.16)

Note that we can relate the magnetoresistance to a polarisation of the kind in Eq (1.15)
through the relationship:

𝑃(𝐻) = MR(𝐻) − MR(−𝐻)
2 + MR(𝐻) + MR(−𝐻) = 𝑅(𝐻) − 𝑅(−𝐻)

𝑅(𝐻) + 𝑅(−𝐻). (1.17)



22 INTRODUCT ION
For brevity, we list the magnetoresistance experiments in Table 1.7 using the polarisa-
tion as calculated using Eq. (1.17) at magnetic fields for which the magnetoresistance
has saturated. Note that the polarisations in these experiments aremuch lower then the
ones in experiments of the first kind. This can be understood by considering the fact
that the current through these systems are several orders of magnitudes larger, which
corresponds to a much larger bias voltage and thus many more molecular orbitals are
involved in transport. In addition, the sign of the polarisation changes for CdSe capped
cysteine SAMs between the two methods. This hints towards the fact that the polarisa-
tion may not be the same at all energies. Finally, the CdSe capped cysteine SAMs show
an opposite sign when compared to pure cysteine. This sign change was shown not
to be an artifact of the experiment39, and thus shows that the polarisation depends on
properties of the full system, and not just the chiral cysteine molecules.

1.3.4 Electrochemistry

Rather similar to the transport experiments are the electrochemistry ones. These exper-
iments use ions in a solution (an electrolyte) to physically “ferry” electrons from a so-
called counter electrode to a working electrode, which in these experiments are molecules
adsorbed on a substrate. A third electrode, the reference electrode, is used to measure
the voltage across the molecules. On top of the SAM, a redox couple—a molecule or
nanoparticle—sits at which the electron transfer happens, through reduction or oxida-
tion. This is shown in Figure 1.6A. These experiments again come in three variations,
the first of which uses a magnetised nickel substrate. In this kind, cyclic voltammetry is
used to measure so-called cyclic voltammograms (CV curves). I. e. an electron current
is generated by ramping the voltage up and down and measuring the current flowing
between the counter electrode and the working electrode. As the voltage is changed,
a reduction or oxidation process occurs at the working electrode which leads to peaks
in the current. The CV curves for opposite magnetisations is compared to establish the
presence of the CISS effect as in the transport case. Generally, the polarisation of the
current at the reduction and oxidation peaks is reported, as defined in Eq. (1.15), and
the values for different molecules are listed in Table 1.8. It is worth noting here that the
table lists two papers in which the so-called wild-type bacteriorhodopsin embedded in
a purple membrane was studied. Both papers share several authors and they reported
to have used similar buffers, electrolytes, redox couples and magnetic fields, but show
different CV curves and an order of magnitude difference in the polarisation.

The second variation also uses cyclic voltammetry, but the magnetic substrate is
replaced by a Hall probe—a two-dimensional electron gas (2DEG) formed between
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Table 1.8: Polarisation measured in electrochemistry experiments at the reduction and oxida-
tion peaks (low and high voltages, respectively). Unless otherwise noted, the magnetic field
strength was reported as 0.35T.

Year Author(s) Molecule Voltage [V] Pol. (%)
2013 Mishra et al.30 Bacteriorhodopsin 0.8 14

0.35 11
2015 Einati et al.49 Bacteriorhodopsin 0.11 3

0.30 0.5
2015 Kettner et al.31 AL5 oligopeptide 0.12 16

0.29 4
AL6 oligopeptide 0.12 21

0.29 8
AL7 oligopeptide 0.12 12

0.29 9
2015 Mondal et al.50 L-Cys-TBO −0.02 8

0.16 9
D-Cys-TBO −0.06 −5

0.19 −6
2016 Mondal et al.33 Ala8 0.05 −7

0.32 −5
Ala8-CdSea 0.05 4

0.32 4
2016 Zwang et al.51 16-bp dsDNA-MB −0.23 5

17-bp dsDNA-NB −0.20 4
2018 Gazzotti et al.52 L-tartaric acid 0.33 −21

0.51 −9
D-tartaric acid 0.52 15

0.65 26

a these experiments were done under laser illumination
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Figure 1.6: (A) Generic setup of the electrochemistry experiments. A current flows from the
counter electrode through the electrolyte to a redox couple on top of the SAM, where a re-
action occurs which transfers an electron or hole. The transferred electron or hole is then
transferred to the substrate and the current is measured. The voltage between the refer-
ence electrode and the working electrode/substrate is measured simultaneously. (B) Setup
where the counter and reference electrodes have been replaced by a gate, isolated from the
electrolyte.

layers of AlGaN and GaN. As in the photoexcitation experiments, this allows direct
detection of the induced magnetic field as a result of a spin polarised current. The
2DEG is again typically at a distance of about 20nm below the SAM and the density of
molecules is around 1013 cm−2, and thus the analysis for photoexcited electrons on a
Hall probe is valid here aswell. The calculated effectivemagnetic fieldmeasured at spe-
cific bias voltages in experiments of this kind are listed in Table 1.9. Note that the values
in these experiments are even larger than for the photoexcitation ones, corresponding
to hundreds of fully polarised electrons per molecule, even at low bias voltages. These
numbers do not make sense in the simple picture of just electrons being polarised by
transport through the SAM, and thus some other effects must be at playwhich enhance
the Hall response.

In the final variation, molecules are again adsorbed on a Hall probe, but instead of
driving a current through the system, the counter electrode is replaced by a gate which
is insulated from the electrolyte, as illustrated in Figure 1.6B. Such experiments display
a transient magnetisation of the substrate as the gate voltage is switched on. This tran-
sient effect is attributed to polarised charge transfer from the chiral molecules to the
substrate. Experiments of this type shows an increase of the magnetisation with an
increase in the applied voltage, as well as the length of the molecules being used. Ta-
ble 1.10 lists the peak value of the calculated effective 𝐻-field to generate the necessary
magnetisation.
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Table 1.9: Effectivemagnetic field at specific bias voltages in electrochemistry experimentswith-
out an external magnet.

Year Author(s) Molecule 𝑉bias [V] 𝐻eff [mT]
2017 Kumar et al.53 AL5 oligopeptide 0.2 27

AL7 oligopeptide 35
AL9 oligopeptide 113

2019 Bullard et al.45 Pro8
a 0.2 −31

Pro8PZn1
a −28

Pro8PZn2
a −42

Pro8PZn3
a −27

2019 Mishra et al.54 20-bp dsDNAa 0.6 121
30-bp dsDNAa 291
40-bp dsDNAa 369

a these experiments did not report the calibration of the Hall device to an external magnet, thus the
field is calculated using calibration from other experiments with a similar setup

It is worth mentioning that in the paper by Smolinsky et al.56, published in 2019,
they reported a sustained magnetic field for as long as the gate voltage was applied.
They suggested that a mechanism to explain this effect could be based on an RKKY
interaction, mediated by the electrons in the 2DEG. For this model to make sense, the
electrons have to pass through the 20nm GaN layer and be captured by defects in the
semiconductor near the 2DEG to allow for a significant interactionwith the conducting
electrons. This, incidentally, is also consistent with the high values of flux, correspond-
ing to each molecule contributing several thousand electrons at a 20nm distance from
the 2DEG, as the flux per electron scales as the cubed inverse of its distance. To give
credence to this model, we must consider the RKKY interaction between two spins in
two dimensions:

𝑉𝑖𝑗 ∝ −𝐽2( ⃗𝑆𝑖 ⋅ ⃗𝑆𝑗) ∫
∞

1

1
2𝑘𝐹 𝑟

𝐽1(2𝑘𝐹 𝑟𝑥)
𝑥

√
𝑥2 − 1

𝑑𝑥, (1.18)

where 𝐽1 is a Bessel function. For a doped semi-conductor where 𝑘𝐹 is small, and as-
suming that the distance between impurities, 𝑟, is small as well, such that, 𝑘𝐹 𝑟 ≪ 1, the
asymptotic behaviour of the integral tends to ln[2/𝑘𝐹 𝑟], which is always positive for the
values of 𝑘𝐹 𝑟 we are interested in57. This would suggest that the interaction is indeed
ferromagnetic, which would explain the sustained magnetisation. Curiously, the same
study also found spontaneous magnetisation without an applied gate voltage, as the
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chiral molecules were cooled down. It was suggested that the RKKY interaction was
also responsible for this effect in conjunction with hybridisation of the molecular states
with the states in the substrate. It awaits to be seen if experiments of this type are repro-
ducible. The RKKY mechanism might also be responsible for the high magnetic fields
measured in the other Hall probe experiments. An in-depth analysis of the RKKY in-
teraction in the substrate and 2DEG, and its interplay with the molecules, however, is
beyond the scope of this thesis.

1.3.5 Other experiments

There are a few other related experiments that fall outside the classification scheme
above. One of the most notable ones is the one by Ben Dor et al.58, in which they stud-
ied AHPA molecules adsorbed on a ferromagnet, and observed an induced magnetic
moment related to the handedness of the molecules. The measured induced moment
per molecule corresponded to around 300 Bohr magnetons, or 300 spins, similar in
magnitude to the values extracted from the gated electrochemistry experiments. This
result is consistent with the gated experiments, since during the adsorption charge is
transferred between the SAM and the substrate to equilibrate their chemical potentials.

Another experiment, also by BenDor et al.59, measures the transient behaviour of the
resistance in a device of AHPA sandwiched between two gold electrodes, with a thin
nickel layer on top. The the nickel layer is thin enough such that its easy axis is in the
plane due to demagnetising effects discussed earlier. The idea of the experiment is that
as a current flows through the chiral molecules, spin of one type will be injected into
the nickel, magnetising it out of plane. Depending on the voltage applied, the preferred
spin being transported through the SAM changes, which transfers opposite magnetic
moments to the nickel. Due to temperature fluctuations, however, this effect is in com-
petition with the fact that the magnetisation of the nickel will tend to relax towards
the easy axis. Thus, after some time, an equilibriummagnetisation will be reached. Be-
cause of the competition, the effect is only significant for temperatures below 100K.
When the ferromagnet is magnetised out of plane, the resistance through the device
is either higher or lower, depending on whether the magnet is aligned parallel or anti-
parallel to the electrons’ spin, and saturates around 600MΩ at 2.5K, with peak high
and low resistances of 1600MΩ and 100MΩ, respectively.
Finally, there are also a few of the papers already reported on, in which they do

additional electrochemical measurements showing that the current and induced mag-
netisation depends on the handedness of the redox couple being used46,47,53. By using
either S- or R-ferrocene, the ability of the redox couple to bind to the chiral molecules is
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different, and the electronic coupling between them is thus different for the two enan-
tiomers.

1.3.6 Additional remarks

As noted in the beginning of this section, some of the experiments on similar molecules
may seem inconsistent at first glance. For instance, the photoexcitation experiment on
Ala8 shown in Table 1.3, using CdSe nanoparticles as the chromophore shows the oppo-
site sign as compared to the electrochemistry experiments on Ala8, found in Table 1.8.
Fortunately, the authors of these experiments also conducted electrochemistry exper-
iments on Ala8 while simultaneously exciting electrons in the CdSe nanoparticles us-
ing a laser, which showed a change in sign when compared to the experiment without.
Because the electrochemistry experiments happen at much lower voltages, and thus
energies, this would suggest that the spin polarisation for electrons being transported
through these systems depends on the energy of the electrons. The same is true for the
experiments on the family of AL𝑛 (𝑛 = 5, 6, 7, 9) molecules. In the low voltage electro-
chemistry experiments, these molecules show positive polarisation, while the higher
energy experiments show negative polarisations. This again supports the idea that the
polarisation direction is an energy-dependent phenomenon. As we shall see later, this
is also what the theory we shall develop predicts.

For the photoexcitation experiments on dsDNA, although they find a positive po-
larisation, a different explanation is at play here. In this case, the predominant charge
carriers are holes, and thus the polarisation of the electrons is negative. Thus, like the
experiments on AL𝑛, the experiments on dsDNA indicate that the spins are negatively
polarised, with the exception of the negative voltage electrochemistry ones in Table 1.8.
The dsDNA experiments, alongside the AL𝑛 experiments, also generally show an in-
crease in the effect with an increase in length, which is again a feature that our theory
has.

Finally, not all experiments show exactly symmetric results for the two enantiomers.
This ismostly due to the fact that themethods used to synthesise themdiffers, resulting
inmore pure films of one kind than the other and is generally not something one should
worry about.
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Table 1.10: Peak effective magnetic fields measured at specific gate voltages in electrochemistry
experiments without an external magnet.

Year Author(s) Molecule 𝑉gate [V] 𝐻eff [mT]
2017 Kumar et al.55 L-AL5 oligopeptide 2 −0.2

D-AL5 oligopeptide 0.2
L-AL5 oligopeptide 10 −0.6
D-AL5 oligopeptide 0.4

2019 Bullard et al.45 Pro8
a 2 0.4

Pro8PZn1
a −1.6

Pro8PZn2
a −1.9

Pro8PZn3
a −3.1

Pro8
a 10 −0.6

Pro8PZn1
a −5.3

Pro8PZn2
a −7.4

Pro8PZn3
a −7.4

2019 Mishra et al.54 20-bp dsDNAa 2 21
30-bp dsDNAa 0.5
40-bp dsDNAa 1.6
20-bp dsDNAa 10 4.7
30-bp dsDNAa 6.7
40-bp dsDNAa 8.1

2019 Smolinsky et al.56 AHPA-L 0.3 23.3
−0.2 −43.4

a these experiments did not report the calibration of the Hall device to an external magnet, thus the
field is calculated using calibration from other experiments with a similar setup
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We saw in the previous chapter that quite a few experiments over the past decade had
found a significant spin polarisation of electrons transported through chiral molecules,
an effect termed chiral-induced spin selectivity (CISS). We also noted that the theoreti-
cal treatments of these experiments all made use of a spin-orbit coupling to explain the
effect, but that any theory which seeks explanatory power from the microscopic scale,
had to use the atomic spin-orbit coupling as its basis. We pointed to three early theory
papers, but the same is true for all subsequent CISS theory papers.

A large number of theoretical investigations into the CISS effect has been done using
a Landauer-Büttiker like approach24,25,60–68. That is, two thermally equilibrated leads
connected to the molecule at either end. The model systems are explicitly constructed
for specific helical molecules, and provide valuable insight into the effects at play for
that system. These models consistently find that in order to get a significant spin polar-
isation, it is necessary to introduce extra phenomenological leakage terms either via an
extra physical lead or virtual Büttiker leads—amathematical trick to model dephasing
effects. This dephasing is argued to occur, for instance, by vibrations in the molecule
and the environment. Other papers consider transport through a continuum helical
potential26,69–72, or assume spin-dependent transport through the system and derive
properties of such systems73,74, without going into details of how the spin-dependent
transport arises in the first place.

Several unpublished ab initio studies of the CISS effect using the non-equilibrium
Green’s function (NEGF) formalism has found similar results. Namely, in order to en-
hance the effect to an appreciable level, one has to tune a phenomenological dephasing
parameter. From a theoretical point of view, this is an unattractive feature of the mod-
els, which led us to explore the theoretical underpinnings of this result. This led to the
formalism that we shall present in the following chapters, and which was published
in the summer of 20191. It bears resemblance to standard NEGF or Landauer trans-
port theories but in this treatment we are careful not to throw the baby out with the
bathwater, by making assumptions about the electron distributions. A strength of the

29



30 FORMAL I SM
approach presented is that the resulting equations can easily be adapted to by existing
ab initio routines for transport calculation.
A notable feature of the formalism is a theoremwhich states that for two thermalised,

non-magnetic leads, the spin polarisation vanishes analytically to first order in the spin-
orbit coupling without dephasing effects or coupling to a third, external lead. This re-
sult arises from considerations of time-reversal symmetry, and explains why previous
models found such small effects in the absence of dephasing.One of the proposedmeth-
ods of introducing dephasing was via coupling to vibrations or phonons. As we shall
see, a full treatment of the problem shows that the polarisation which results from the
proposed dephasing (the self-energies of the electron-phonon interaction) is exactly
cancelled by their corresponding so-called vertex corrections. The same theorem says
that in a systemwith a single magnetic lead, there can be no difference in themeasured
current when the magnetisation of the lead is flipped. This result can also not be reme-
died by the introduction of vibrations. These findings significantly limit the space of
possible theoretical models. We defer discussions of the implications of the theorem
for the interpretation of the experiments until later. In the following sections, we shall
instead lay the groundwork leading to the theorem above, and in the next chapter, we
shall derive it.

2.1 STAT I S T I CAL AVERAGE S

Our first line of action is to discuss the types of models that we shall use. In experi-
ments of the photoemission kind, the intensity of the laser is low enough that the ex-
perimenters report that only a single electron is emitted at a time. The illuminated point
itself is wide enough that the excited electron is not necessarily localised underneath a
single molecule, though. Thus, one could in principle imagine spatially varying inter-
ference effects resulting from such a multi-slit experiment. The detector covers a large
area, though, and thus such spatially varying interference effects are cancelled out. An-
other effect to consider in this area is intermolecular couplings. Such couplings would
lead to a broadening of the spectrum, depending on the transversal momentum of the
electron. The distances between the molecules in the SAMs tend to be much greater
than the distances between atoms in the molecules, though, and thus such broaden-
ing would lead to a rather small effect. Based on this analysis, we shall think of the
photoemission experiments as a single electron travelling through a single molecule.

A similar argument can be made for the photoexcitation experiments. That is, the
rate at which electrons are excited from the chromophore is slow enough, such that
only one electron-hole pair is on the molecule at a time. Since the chromophores are
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generally locally coupled to just one molecule, transport of electrons again generally
happens through just a single molecule. In the transport experiments, an AFM tip is
put in contact with nanoparticles adsorbed on top of single molecules. The currents in
these experiments are on the order of nA, which corresponds to around 10 to 100 elec-
trons per nanosecond. A crude estimate for the time an electron stays on the molecule
can be obtained from the uncertainty principle, Δ𝑡 = ℏ/2Δ𝐸, which for Δ𝐸 = 1meV
is one-third of a picosecond. Thus, it is probably fair to assume that there really is only
one electron on the molecule at any one time in these experiments as well. In the elec-
trochemistry experiments, the measured currents are on the order of a few µA, which
can still be argued to be within the regime of one electron being transported at a time.
Finally, in themagnetoresistance experiments, a constant current of 1mA is used. Thus,
those experiments might reach a regime where charging of the molecule plays a role,
and so our treatment might not be entirely accurate in this case.

With that inmind, the experiments themselves are averaging over a lot of subsequent
and parallel processes, and as such we are interested in calculating the statistical dis-
tribution of observables of this system. I. e. for the experiments involving magnets, we
are interested in calculating the current through amolecule given different orientations
of an external magnet, while for the photoemission experiments, we want the average
orientation of spins that make it through. The mathematical tool that makes such a cal-
culation possible is known as a density matrix, and for the sake of completeness, we
begin with a brief discussion of its properties and how it comes about.

2.1.1 The density matrix

Let Ψ denote the quantum state of a many-body system and 𝑃Ψ the classical probability
that the system is prepared in the state Ψ. I. e. if one were to draw random states out
of a jar, 𝑃Ψ is the probability that one would draw the exact state Ψ. Note that in this
sense, the states Ψ are not necessarily orthogonal by construction. We are, at this stage,
not concerned with exactly how one obtains the probabilities, and simply assume that
they are given to us. Then the average expectation value of an operator, ̂𝐴, is given by
the expectation values of the operator for a given state Ψ, weighted by the probability
of having the system prepared in that state, summed over all possible system prepara-
tions. Mathematically, this is equivalent to:

⟨ ̂𝐴⟩ = ∑
Ψ

𝑃Ψ ⟨Ψ| ̂𝐴 |Ψ⟩ = ∑
Ψ

∑
𝜈

𝑃Ψ ⟨Ψ| ̂𝐴 |𝜈⟩ ⟨𝜈|Ψ⟩

= ∑
𝜈

⟨𝜈| (∑
Ψ

|Ψ⟩ 𝑃Ψ ⟨Ψ| ̂𝐴) |𝜈⟩ = tr[∑
Ψ

|Ψ⟩ 𝑃Ψ ⟨Ψ| ̂𝐴] = tr[ ̂𝜌 ̂𝐴],
(2.1)
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where we have inserted a complete span of states, 𝜈, and in the last equality, we have
defined the density operator:

̂𝜌 ≡ ∑
Ψ

𝑃Ψ |Ψ⟩ ⟨Ψ| . (2.2)

Note that there is no requirement that the states in the basis, {Ψ}, are orthogonal to
each other. In fact, if one knows nothing about the system, a priori, it is safe to say that
given a sufficient number of states, Ψ, the basis will be overcomplete. This is not an
issue, however, as there always exists a complete, orthonormal basis, {𝜈}. Inserting it
on either side, we find

̂𝜌 = ∑
𝜈𝜈′

∑
Ψ

|𝜈⟩ ⟨𝜈|Ψ⟩ 𝑃Ψ ⟨Ψ|𝜈′⟩ ⟨𝜈′| = ∑
𝜈𝜈′

𝜌𝜈𝜈′ |𝜈⟩ ⟨𝜈′| , (2.3)

where,
𝜌𝜈𝜈′ = ∑

Ψ
𝑃Ψ ⟨𝜈|Ψ⟩ ⟨Ψ|𝜈′⟩ . (2.4)

Since 𝑃Ψ is real, 𝜌𝜈𝜈′ = 𝜌∗
𝜈′𝜈 and thus 𝜌 is Hermitian. Additionally, any Hermitian oper-

ator can be diagonalised, and since probabilities and hence 𝑃Ψ is non-negative, 𝜌 must
be positive-semidefinite. Lastly, the probabilities must add up to unity, and thus:

1 = ∑
Ψ

𝑃Ψ = ∑
Ψ

𝑃Ψ ⟨Ψ|Ψ⟩ = ∑
Ψ

∑
𝜈

𝑃Ψ ⟨Ψ|𝜈⟩ ⟨𝜈|Ψ⟩ = ∑
𝜈

𝜌𝜈𝜈, (2.5)

wherewe have used Eq. (2.4) in the last equality. Note that Eq. (2.5) is equivalent to the
statement, tr[ ̂𝜌] = 1. This is a basis-independent statement,which thus further supports
the statement that we do not have to care about the basis chosen to describe the density
operator.

If all we are interested in are operators which count electrons, it suffices to treat only
single particle operators. In the language of second quantisation, such operators and
their statistical averages are given by:

̂𝐴 = ∑
𝑖𝑗

𝐴𝑖𝑗𝑎†
𝑖 𝑎𝑗, and ⟨ ̂𝐴⟩ = ∑

𝑖𝑗
𝐴𝑖𝑗⟨𝑎†

𝑖 𝑎𝑗⟩, (2.6)

where 𝑎†
𝑖 , 𝑎𝑗 are creation and annihilation operators, and their average should be cal-

culated using Eq. (2.1). Defining the single particle matrices in first quantisation:

𝐴 = ∑
𝑖𝑗

𝐴𝑖𝑗 |𝑖⟩ ⟨𝑗| , 𝜌 = 1
𝑁 ∑

𝑗𝑖
⟨𝑎†

𝑗𝑎𝑖⟩ |𝑗⟩ ⟨𝑖| , (2.7)

where 𝑁 = ∑𝑗𝑖⟨𝑎
†
𝑗𝑎𝑖⟩ is the total number of particles in the system, we can rewrite the

trace from Eq. (2.1) in our single particle space as:

⟨ ̂𝐴⟩ = 𝑁 ∑
𝑖𝑗

𝐴𝑖𝑗𝜌𝑗𝑖 = 𝑁 tr[𝜌𝐴]. (2.8)
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This gives us an effective starting point for our formalism. Note that the trace of the
single particle density matrix is also normalized to unity:

tr[𝜌] = 1
𝑁 ∑

𝑖
⟨�̂�𝑖⟩ = 1. (2.9)

The normalisation of 𝑁 of this single particle density matrix is due to the fact that
each electron can be in any one of the states described by the full density matrix. Note,
however, that exchange statistics, such as the Pauli principle, are included in this defi-
nition. Such a feature of the statistics will be captured by the expectation values of the
number operators, ⟨�̂�𝑖⟩. We shall refer to the trace without the hat over the operator,
⟨𝐴⟩ = tr[𝜌𝐴] as the single particle expectation value to distinguish it from the many-body
expectation value, ⟨ ̂𝐴⟩.

2.1.2 Thermal equilibrium

For completeness, we briefly review the expectation values of particle counting oper-
ators in thermal equilibrium, as these will be used to treat special cases later on. In
thermal equilibrium, we assume the system to have a well-defined energy, although it
may statistically fluctuate in time, which implies that the density operator is diagonal
in the eigenstates of the Hamiltonian. Moreover, the probability for the system to be
initialised in an eigenstate 𝜈 is given by:

𝑃𝜈 = 𝑒−𝛽𝐸𝜈

∑𝜈′ 𝑒−𝛽𝐸𝜈
⇒ ̂𝜌 = 𝑒−𝛽𝐻

tr[𝑒−𝛽𝐻] . (2.10)

For a Hamiltonian in a diagonal basis, 𝐻 = ∑𝑖 𝜀𝑖�̂�𝑖, the density operator factorizes as:

̂𝜌 = 𝑒−𝛽 ∑𝑖 𝜀𝑖�̂�𝑖

tr[𝑒−𝛽 ∑𝑖 𝜀𝑖�̂�𝑖] = ⨂𝑖 𝑒−𝛽𝜀𝑖�̂�𝑖

tr[⨂𝑖 𝑒−𝛽𝜀𝑖�̂�𝑖] = ⨂
𝑖

𝑒−𝛽𝜀𝑖�̂�𝑖

tr[𝑒−𝛽𝜀𝑖�̂�𝑖] = ⨂
𝑖

̂𝜌𝑖, (2.11)

where ⨂𝑖 ̂𝜌𝑖 = ̂𝜌1 ⊗ ̂𝜌2 ⊗ ⋯ ⊗ ̂𝜌𝑁 represents the folded tensor product of the operators.
Consequently, using the property of the trace that tr[⊗𝑖 ̂𝜌𝑖] = ∏𝑖 tr[ ̂𝜌𝑖]:

⟨�̂�𝑖⟩ = tr[�̂�𝑖 ⨂
𝑖

̂𝜌𝑖] = tr[ ̂𝜌𝑖�̂�𝑖] ∏
𝑗≠𝑖

tr[ ̂𝜌𝑗]⏟
= 1

= tr[ ̂𝜌𝑖�̂�𝑖]. (2.12)

To advance further, we must consider fermions and bosons separately.

F E RM ION STAT I S T I C S If �̂�𝑖 is a fermionic number operator, 𝑛𝑖 ∈ {0, 1} and thus:

⟨�̂�𝑖⟩ = 𝑒−𝛽𝜀𝑖

1 + 𝑒−𝛽𝜀𝑖
= 1

𝑒𝛽𝜀𝑖 + 1 = 𝑛𝐹 (𝜀𝑖). (2.13)
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Figure 2.1: (A) General setup of the scattering problem with four leads (labelled 1-4) and a
molecule (labelled 𝑀). The leads extend far out in the direction away from the molecule.
In (B), an incoming wave packet (yellow) in the first lead hits the molecule and (C) scatters
back into all of the leads with different amplitudes.

BO SON STAT I S T I C S If �̂�𝑖 is a bosonic number, on the other hand, we define 𝜆𝑖 =
𝑒−𝛽𝜀𝑖 :

⟨�̂�𝑖⟩ =
∑𝑛𝑖

𝑛𝑖𝑒−𝛽𝜀𝑖𝑛𝑖

∑𝑛𝑖
𝑒−𝛽𝜀𝑖𝑛𝑖

=
𝜆𝑖𝜕𝜆𝑖

∑𝑛𝑖
𝜆𝑛𝑖

𝑖
∑𝑛𝑖

𝜆𝑛𝑖
𝑖

, (2.14)

where 𝜕𝜆𝑖
is the derivative operator w.r.t. 𝜆𝑖. Noticing that, for |𝜆𝑖| < 1,

1
1 − 𝜆𝑖

= 1 + 𝜆𝑖(1 + 𝜆𝑖(1 + ⋯)) = ∑
𝑛𝑖

𝜆𝑛𝑖
𝑖 , (2.15)

we get:
⟨�̂�𝑖⟩ = (1 − 𝜆𝑖)𝜆𝑖𝜕𝜆𝑖

1
1 − 𝜆𝑖

= 𝜆𝑖
1 − 𝜆𝑖

= 1
𝑒𝛽𝜀𝑖 − 1 = 𝑛𝐵(𝜀𝑖). (2.16)

Importantly, both of these distributions only depend on the energy of the single par-
ticle state, 𝑖. This fact will turn out to be crucial later, and we shall refer more loosely
to distributions as being thermal, if the occupation number only depends on energy.

2.2 S CAT T ER ING P I C TURE

With the details of statistical averages and the density matrix out of the way, we now
turn our attention to describing electron transport in molecules. We shall do this using
two different approaches. The first, which is the focus of the current section, bears re-
semblance to the early experiments which looked at electron scattering frommolecules
in the gas phase. In this picture, electrons approach the molecule from afar and scatter
into incoming and outgoing wave packets. The advantage of this picture is the vivid-
ness conjured up by the physical propagation of the electrons. Aswe shall see, the same
line of thinking involved can also be used to describe photoemission experiments. The
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second approach, which we shall get into the details of in the next section, is subtly
different and simply starts with a given density matrix and lets it evolve in time. Per-
haps surprisingly, both approaches lead to the same equations for expectation values
in steady state in the end, and thus we are free to choose either when interpreting the
results and describing the experiments.

To get started, an abstract layout of the scattering problem is sketched out in Fig-
ure 2.1. In the figure, a molecule, indicated by a purple sphere and the letter 𝑀 in the
centre, is connected to by four leads. The actual number of leads is irrelevant to the
theory and the four leads serves merely to illustrate that the number of leads is an ar-
bitrary quantity in the theory that we develop. Even though it is not shown explicitly
in Figure 2.1, we are, for the moment, going to assume that the leads extend very far in
the direction away from the molecule.

Now, the Hamiltonian for such a system with 𝑁 leads can be given in block-form as

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻1 0 ⋯ 0 𝐻1𝑀

0 𝐻2 ⋯ 0 𝐻2𝑀

⋮ ⋮ ⋱ ⋮
0 0 𝐻𝑁 𝐻𝑁𝑀

𝐻𝑀1 𝐻𝑀2 ⋯ 𝐻𝑀𝑁 𝐻𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.17)

where 𝐻𝑛 is the uncoupled Hamiltonian of the 𝑛th lead, 𝐻𝑀 that of the free-standing
molecule and 𝐻𝑀𝑛 describe the coupling between the molecule and the 𝑛th lead. To
simplify our language,we split theHamiltonian into its block-diagonal and off-diagonal
terms. For a system of four leads, this amounts to the two matrices:

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻1 0 0 0 0
0 𝐻2 0 0 0
0 0 𝐻3 0 0
0 0 0 𝐻4 0
0 0 0 0 𝐻𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐻0

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 𝐻1𝑀

0 0 0 0 𝐻2𝑀

0 0 0 0 𝐻3𝑀

0 0 0 0 𝐻4𝑀

𝐻𝑀1 𝐻𝑀2 𝐻𝑀3 𝐻𝑀4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑉

. (2.18)

In other words, 𝐻0 describes a system of the leads and molecules in isolation, and 𝑉
describes the coupling between them.

We now consider an electronic wavepacket, Ψ, which has been prepared in one of
the leads. For simplicity, let us say the first. The wavepacket is prepared far away from
the molecule and in such a way that it moves towards it. This is shown in Figure 2.1B.
At some point in time, which we denote 𝑡0, the wavepacket reaches a point at which it
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starts to feel the molecule. As time evolves, the electron scatters off the molecule, some
of the packet being transmitted through to the other leads and some being reflected
back into the first lead, as illustrated in Figure 2.1C. Assuming the Hamiltonian has no
explicit time dependence, the time evolution of the wavepacket is entirely described by
the operator,

𝑈(𝑡2, 𝑡1) = 𝑒−𝑖𝐻(𝑡2−𝑡1)/ℏ. (2.19)

Now, we imagine a system which is entirely identical to the one above, except we
have removed the coupling between the molecule and the leads, 𝑉 . We shall refer to
this system as uncoupled, since electrons experience each lead as free-standing, isolated
systems. Starting out with the same wavepacket, |Ψ⟩, the time evolution in this simpli-
fied system, is governed by 𝐻0:

𝑈0(𝑡2, 𝑡1) = 𝑒−𝑖𝐻0(𝑡2−𝑡1)/ℏ, (2.20)

Because the coupling to themolecule is gone, as the electron runs up against the barrier
to the molecule, it will be entirely reflected back into the first lead. However, since the
wavepacket was prepared to be so far from the molecule that it could not initially feel
its potential, we have the identity:

|Ψ(𝑡)⟩ = |Ψ0(𝑡)⟩ , for 𝑡 ≤ 𝑡0, (2.21)

where |Ψ0(𝑡)⟩ is the wavepacket evolved using just 𝐻0. That is, although the wave pack-
ets live in different systems, because they are prepared far away from the point which
differentiates them, that is, the coupling to the molecule, the time evolution up until
the point in time where the wave packet would feel this coupling is the same. Conse-
quently, if we evolve the states described in the two systems back in time to 𝑡0, they
must coincide. Since this is true for all times prior to 𝑡0 as well, it must hold that

𝑈(𝑡0, 𝑡) |Ψ(𝑡)⟩ = 𝑈0(𝑡0, 𝑡) |Ψ0(𝑡)⟩ , for all 𝑡, (2.22)

and hence we obtain the identity:

|Ψ(𝑡)⟩ = 𝑈(𝑡, 𝑡0)𝑈0(𝑡0, 𝑡) |Ψ0(𝑡)⟩ . (2.23)

Since at any times prior to 𝑡0, the wave packets are far away from the molecule, the
identity in Eq. (2.23) holds for evolving the system back to all times 𝑡′ < 𝑡0. Thus, we
are free to average over all such times with an arbitrary weight factor, 𝑤(𝑡):

|Ψ(𝑡)⟩ =
∫𝑡0
−∞ 𝑑𝑡′𝑤(𝑡′)𝑈(𝑡, 𝑡′)𝑈0(𝑡′, 𝑡) |Ψ0(𝑡)⟩

∫𝑡0
−∞ 𝑑𝑡′𝑤(𝑡′)

. (2.24)
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Figure 2.2: The Møller operator is constructed by evolving backwards from 𝑡 along the uncou-
pled (upper) branch to any time prior to 𝑡0 and then forward again along the full (lower)
branch.

Here, we divide by the integral of the weight factor in order to ensure proper normal-
isation. Note that the statement that the wave packets are far away for all times prior
to 𝑡0 only strictly holds in the case of freely propagating electrons, if the leads are as-
sumed infinitely long. For leads with a finite size—arguably, all realistic leads do have
a finite size—we have to impose a lower cutoff. To allow a smooth cutoff, and because
it is analytically easier to manipulate, we choose a weight function, 𝑤(𝑡) = 𝑒𝜂𝑡/ℏ, where
ℏ𝜂−1 defines the timescale of the cutoff. For wavepackets in an infinitely long lead, they
are allowed to come in from infinitely far away, and we are free to take the limit 𝜂 → 0+.
Such a choice recovers an average with equal weight assigned to each prior time. Plug-
ging this weight factor in to the equation above, we obtain:

|Ψ(𝑡)⟩ = 𝜂
ℏ ∫

𝑡0

−∞
𝑑𝑡′𝑒𝜂(𝑡′−𝑡0)/ℏ𝑈(𝑡, 𝑡′)𝑈0(𝑡′, 𝑡) |Ψ0(𝑡)⟩ ≡ Ω−(𝑡) |Ψ0(𝑡)⟩ , (2.25)

where in the last equality, we have defined the Møller operator,

Ω−(𝑡0, 𝑡) = 𝜂
ℏ ∫

𝑡0

−∞
𝑑𝑡′𝑒𝜂(𝑡′−𝑡0)/ℏ𝑈(𝑡, 𝑡′)𝑈0(𝑡′, 𝑡)

= 𝜂
ℏ ∫

𝑡0

−∞
𝑑𝑡′𝑒𝜂(𝑡′−𝑡0)/ℏ𝑒−𝑖𝐻(𝑡−𝑡′)/ℏ𝑒−𝑖𝐻0(𝑡′−𝑡)/ℏ,

(2.26)

named after the Danish physicist, Christian Møller.
The next steps follows from realising that we are free to substitute 𝑡0 → 𝑡 for all finite

𝑡 in the equation above. To see this, note that such a substitution is akin to introducing
an error of:

ΔΩ− = 𝜂
ℏ𝑒𝜂(𝑡−𝑡0)/ℏ ∫

𝑡

𝑡0

𝑑𝑡′𝑒𝜂(𝑡′−𝑡)/ℏ𝑒−𝑖𝐻(𝑡−𝑡′)/ℏ𝑒−𝑖𝐻0(𝑡′−𝑡)/ℏ. (2.27)

In the limit 𝜂 → 0+, this error vanishes. This limit is of course only strictly valid for
infinite leads, but since the magnitude of the error scales as (𝑡 − 𝑡0)/ℏ𝜂−1, it is still a
good description provided 𝑡 is sufficiently close to 𝑡0. Performing the substitution and
discarding the vanishing error term, we are thus left with:

Ω−(𝑡) = 𝜂
ℏ ∫

𝑡

−∞
𝑑𝑡′𝑒𝜂(𝑡′−𝑡)/ℏ𝑒−𝑖𝐻(𝑡−𝑡′)/ℏ𝑒−𝑖𝐻0(𝑡′−𝑡)/ℏ. (2.28)
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Inserting a complete basis of eigenstates for 𝐻0, labelled by 𝑘, we obtain:

Ω−(𝑡) = 𝜂
ℏ ∑

𝑘
∫

𝑡

−∞
𝑑𝑡′𝑒−𝑖(𝐸𝑘−𝐻+𝑖𝜂)(𝑡′−𝑡)/ℏ |𝑘⟩ ⟨𝑘|

= ∑
𝑘

𝑖𝜂
𝐸𝑘 − 𝐻 + 𝑖𝜂 |𝑘⟩ ⟨𝑘| = ∑

𝑘
𝑖𝜂𝐺(𝐸𝑘) |𝑘⟩ ⟨𝑘| ,

(2.29)

where we have defined the propagator,

𝐺(𝐸) = 1
𝐸 − 𝐻 + 𝑖𝜂 , (2.30)

also known as the resolvent. Note that there is no time dependence on the right hand
side of Eq. (2.29). Thus, theMøller operator is in fact independent of both 𝑡 and 𝑡0, and
as such we do not have to worry about their values. Time dependence is not entirely
lost, however, as it still resides in the states. Consequently, the full state can be written
in terms of the uncoupled state as:

|Ψ(𝑡)⟩ = ∑
𝑘

𝑖𝜂𝐺(𝐸𝑘) |𝑘⟩ ⟨𝑘|Ψ0(𝑡)⟩⏟⏟⏟⏟⏟
𝜓𝑘(𝑡)

. (2.31)

In order to calculate statistical quantities using these states, wemust construct a density
matrix. This is, fortunately, a straightforward prescription following the definition in
Eq. (2.7):

𝜌(𝑡) = 1
𝑁 ∑

Ψ
⟨𝑛Ψ⟩ |Ψ(𝑡)⟩ ⟨Ψ(𝑡)|

= 𝜂2

𝑁 ∑
𝜓,𝑘,𝑘′

⟨𝑛𝜓⟩𝜓𝑘(𝑡)𝜓∗
𝑘′(𝑡)𝐺(𝐸𝑘) |𝑘⟩ ⟨𝑘′| 𝐺†(𝐸𝑘′).

(2.32)

Note that the uncoupled state referred to here, is the state one would get if there was
no molecule, i. e. one that is reflected back entirely into the first lead, if the wave packet
came from there.

2.2.1 Time-averaged expectation values

With the exception of a few experiments, most of them measure some sort of steady
state quantity. That is, for a large number of the experiments we are not actually con-
cerned with the transient behaviour of current, but rather the time-average of it over
long time scales. Fortunately for us, the analysis is actually simplified in this case. In the
scattering picture, a steady current means that we are considering a system in which
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we are continuously shooting electrons at the molecule. Because the incoming wave
packets will have some variation between them, the density matrix we construct from
such states is in general time-dependent. For a general operator, 𝐴, with no explicit
time dependence, the statistical expectation value of it is simply, ⟨𝐴(𝑡)⟩ = tr[𝜌(𝑡)𝐴]. Av-
eraging the expectation value with respect to time thus amounts to replacing 𝜌(𝑡) with
its time-average, ̄𝜌. Using a normalised weight factor, 𝑤(𝑡), this time-averaged density
matrix takes the form:

̄𝜌 = 𝜂2

𝑁 ∑
𝜓,𝑘,𝑘′

⟨𝑛𝜓⟩𝐺(𝐸𝑘) |𝑘⟩ ⟨𝑘′| 𝐺†(𝐸𝑘′) ∫
∞

−∞
𝑑𝑡 𝑤(𝑡)𝜓𝑘(𝑡)𝜓∗

𝑘′(𝑡)

= 𝜂2

𝑁 ∑
𝜓,𝑘,𝑘′

⟨𝑛𝜓⟩𝜓𝑘𝜓∗
𝑘′𝐺(𝐸𝑘) |𝑘⟩ ⟨𝑘′| 𝐺†(𝐸𝑘′)

× ∫
∞

−∞
𝑑𝑡 𝑤(𝑡)𝑒−𝑖(𝐸𝑘−𝐸𝑘′ )(𝑡−𝑡0)/ℏ.

(2.33)

Here, we have used the fact that 𝜓𝑘(𝑡) = 𝜓𝑘𝑒−𝑖𝐸𝑘(𝑡−𝑡0)/ℏ. Using a weight factor of

𝑤(𝑡) = 𝑒−𝜁|𝑡−𝑡0|/ℏ

∫∞
−∞ 𝑒−𝜁|𝑡′−𝑡0|/ℏ𝑑𝑡′ = 𝜁

2ℏ𝑒−𝜁|𝑡−𝑡0|/ℏ, (2.34)

the final integral in Eq. (2.33) becomes:

𝜁
2ℏ ∫

∞

𝑡0

𝑑𝑡 (𝑒𝑖(𝐸𝑘′−𝐸𝑘+𝑖𝜁)(𝑡−𝑡0)/ℏ + 𝑒−𝑖(𝐸𝑘′−𝐸𝑘−𝑖𝜁)(𝑡−𝑡0)/ℏ)

= 1
2 ( 𝑖𝜁

𝐸𝑘′ − 𝐸𝑘 + 𝑖𝜁 − 𝑖𝜁
𝐸𝑘′ − 𝐸𝑘 − 𝑖𝜁 ) =

𝜁→0+
𝛿𝐸𝑘,𝐸𝑘′ .

(2.35)

Plugging this back in, and using the identity, 1 = ∫ 𝛿(𝐸 − 𝐸𝑘)𝑑𝐸, the time-averaged
density matrix becomes:

̄𝜌 = ∫ 𝑑𝐸 𝛿(𝐸 − 𝐸𝑘)𝜂2

𝑁 ∑
𝜓,𝑘,𝑘′

⟨𝑛𝜓⟩𝜓𝑘𝜓∗
𝑘′𝛿𝐸𝑘,𝐸𝑘′ 𝐺(𝐸) |𝑘⟩ ⟨𝑘′| 𝐺†(𝐸). (2.36)

This equation is a bit of a mouthful, so in order to simplify it, we define the uncoupled
energy-resolved average density matrix

̄𝜌0(𝐸) ≡ 1
𝑁 ∑

𝜓,𝑘,𝑘′
⟨𝑛𝜓⟩𝜓𝑘𝜓∗

𝑘′𝛿(𝐸 − 𝐸𝑘)𝛿𝐸𝑘,𝐸𝑘′ |𝑘⟩ ⟨𝑘′| . (2.37)

The term uncoupled here refers to the fact that it is defined without the use of the
propagators, and is thus to be interpreted as the average density matrix one would get
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without coupling to the molecule. In combination, we finally obtain the time-averaged
single particle expectation value as

⟨ ̄𝐴⟩ = tr[ ̄𝜌𝐴] = 𝜂2 ∫
∞

−∞
𝑑𝐸 tr[𝐺(𝐸) ̄𝜌0(𝐸)𝐺†(𝐸)𝐴]. (2.38)

To proceed, it is instructive to consider the propagator 𝐺(𝐸). For brevity, we shall
omit the energy dependence, and simply write

𝐺 = 1
𝐸 − 𝐻 + 𝑖𝜂 = 1

𝐸 − 𝐻0 − 𝑉 + 𝑖𝜂 = 𝐺0 + 𝐺0𝑉 𝐺, (2.39)

where 𝐺0 = (𝐸 − 𝐻0 + 𝑖𝜂)−1. This is the familiar Dyson equation. Note that Eq. (2.39)
permits an equivalent solution with 𝐺 and 𝐺0 reversed in the final term, 𝐺 = 𝐺0 +
𝐺𝑉 𝐺0. Combining this with the identity:

𝑖𝜂𝐺0(𝐸)𝛿(𝐸 − 𝐸𝑘) |𝑘⟩ = 𝛿(𝐸 − 𝐸𝑘) |𝑘⟩ , (2.40)

we get rid of the 𝜂’s in front of the integral and the expectation value of Eq. (2.38)
factors into four terms:

⟨ ̄𝐴⟩ = ∫
∞

−∞
𝑑𝐸 tr[ ̄𝜌0 (𝐴 + 𝐴𝐺𝑉 + 𝑉 𝐺†𝐴 + 𝑉 𝐺†𝐴𝐺𝑉 )]. (2.41)

To advance further in our analytical exploration, we must insert a particular operator,
𝐴. We shall defer doing so for a little while, however. Instead, as we shall see in the
next section, the mathematical result above is, in fact, applicable in more physical de-
scriptions than just the scattering picture.

2.3 I N I T I A L STAT E P I C TURE

In this section, we take a different approach and assume that the density matrix is
known at a given time, 𝑡0. This approach is, as such, in some ways more general than
the scattering picture, and may be either more or less intuitive to grasp. Our starting
point is thus that we have a density matrix of the form

𝜌(𝑡0) ≡ 1
𝑁 ∑

𝜓,𝑘,𝑘′
⟨𝑛𝜓⟩𝜓𝑘𝑘′ |𝑘⟩ ⟨𝑘′| , (2.42)

where 𝑘, 𝑘′ are again eigenstates of the uncoupled Hamiltonian, 𝐻0. Evolving this den-
sity matrix forward in time and considering the single particle expectation value of an
operator 𝐴, we get:

⟨𝐴(𝑡)⟩ = tr[𝜌(𝑡)𝐴] = tr[𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈(𝑡0, 𝑡)𝐴], (2.43)
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Figure 2.3: Plot of a functionwith an impulse-behaviour, 𝑓(𝑡) and its time-average ̄𝑓(𝑡) versus 𝑡,
superposedwith its normalised Laplace transform, ̃𝑓(𝜏−1) versus 𝜏 . 𝜏−1 would be the usual
Laplace variable.

where 𝑈(𝑡, 𝑡′) is the time evolution operator with the full Hamiltonian. The time aver-
age from 𝑡0 onwards is then found as:

⟨ ̄𝐴⟩ = ∫
∞

𝑡0

𝑑𝑡𝑤(𝑡)⟨𝐴⟩ = ∫
∞

𝑡0

𝑑𝑡𝑤(𝑡) tr[𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈(𝑡0, 𝑡)𝐴], (2.44)

where 𝑤(𝑡) is a weight function. Unlike the scattering picture, we now want to be able
to deal with averages over any time scale. However, using a box weight function, i. e. ef-
fectively truncating the integral above at a finite value and normalising it, is going to
give expressions that are somewhat difficult to deal with analytically. To overcome this
issue, we are going to introduce aweight function analogous to the one in the scattering
picture, but instead of 𝜂, we shall use a finite “life-time” 𝜏 . That is, our weight function
will take the form,

𝑤(𝑡) = 𝑒−𝑡/𝜏

∫∞
𝑡0

𝑑𝑡′𝑒−𝑡′/𝜏 = 1
𝜏 𝑒−(𝑡−𝑡0)/𝜏 . (2.45)

Using this weight function when calculating the average amounts to doing a Laplace
transform in the Laplace variable 𝜏−1, normalised by the normalisation factor, 𝜏 . It is
worth considering how well the average obtained from the normalised Laplace trans-
form resembles the “actual” time-average using the box weight function.
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To answer this, let us for simplicity consider functions which can be written as a

power series:
𝑓(𝑡) = ∑

𝑛
𝑎𝑛𝑡𝑛. (2.46)

The mean value of a function 𝑓 on the interval 0 to 𝑡, versus its normalised Laplace
transform, ̃𝑓 , is then given as:

̄𝑓(𝑡) = 1
𝑡 ∫

𝑡

0
𝑓(𝑡′)𝑑𝑡′ = ∑

𝑛

1
𝑛 + 1𝑎𝑛𝑡𝑛, (2.47)

̃𝑓(𝜏−1) = 1
𝜏 ∫

∞

0
𝑒−𝑡′/𝜏𝑓(𝑡′)𝑑𝑡′ = ∑

𝑛
𝑛!𝑎𝑛𝜏𝑛. (2.48)

In the linear regime, 𝑓(𝑡) ∼ 𝑡, we thus find the equivalences,

𝑓(𝑡) ∼ 2 ̄𝑓(𝑡) ∼ ̃𝑓(𝜏−1). (2.49)

Therefore, the normalised Laplace transform resembles the actual function closer in
the linear regime than the average. Now, the power series of ̃𝑓(𝜏−1) contains factorials
which explode for high powers of 𝑛. We know that the integral should bewell-behaved,
however, so these must be regularised somehow. To illustrate this, we have plotted a
simple impulse-like function (a polynomial with a suppressing exponential) and com-
pared it to its time average and normalised Laplace transform in Figure 2.3. Here we
indeed see that for such a function, the normalised Laplace transform is a good approx-
imation of the rate at time 𝜏 ∼ 𝑡, and the higher order terms indeed do get regularised.
In the long time limit, for a converging function, the normalised Laplace transform
converges towards the box average.

Based on the analysis above, the normalised Laplace transform contains information
about the time average on long time scales, and, on short time scales, matches the linear
behaviour of the actual expectation value.With this inmind, we define the propagators
or resolvents in the time domain as:

𝐺(𝑡, 𝑡0) = −𝑖𝜗(𝑡 − 𝑡0)𝑈(𝑡, 𝑡0)𝑒−(𝑡−𝑡0)/2𝜏 , (2.50)

such that the Laplace transform of the expectation value takes the form:

⟨ ̃𝐴⟩ = 1
𝜏 ∫

∞

−∞
𝑑𝑡 tr[𝐺(𝑡, 𝑡0)𝜌(𝑡0)𝐺†(𝑡, 𝑡0)𝐴], (2.51)

and the Laplace variable is thus contained in the propagators. Note that, in contrast
to the scattering picture, the time dependence now also resides in the propagators. To



2.3 IN I T I A L STAT E P I C TURE 43
advance, we use the fact that for a function or operator 𝑓(𝑡) and its Fourier transform,
𝑓(𝐸), it holds that:

∫
∞

−∞
𝑑𝑡𝑓(𝑡)𝑓†(𝑡) = 1

4𝜋2ℏ2 ∫ 𝑑𝐸 ∫ 𝑑𝐸′𝑓(𝐸)𝑓†(𝐸′) ∫
∞

−∞
𝑑𝑡𝑒𝑖(𝐸−𝐸′)𝑡/ℏ

⏟⏟⏟⏟⏟⏟⏟
2𝜋ℏ𝛿(𝐸−𝐸′)

= 1
2𝜋ℏ ∫ 𝑑𝐸𝑓(𝐸)𝑓†(𝐸).

(2.52)

This relationship is also known as Plancherel’s theorem. Fourier transforming the prop-
agators, we get,

∫
∞

−∞
𝑑𝑡𝑒𝑖𝐸𝑡/ℏ𝐺(𝑡, 𝑡0) = ℏ

𝐸 − 𝐻 + 𝑖ℏ/2𝜏 = ℏ𝐺(𝐸), (2.53)

where 𝐺(𝐸) is similar to the propagator that we introduced in the scattering picture,
with 𝜂 → ℏ/2𝜏 . Consequently, by Plancherel’s theorem, the weighted time-average of
the expectation value of 𝐴 is given by an integral over energies as:

⟨ ̃𝐴⟩ = ℏ
2𝜋𝜏 ∫ 𝑑𝐸 tr[𝜌(𝑡0)𝐺†(𝐸)𝐴𝐺(𝐸)]. (2.54)

To massage the expression above into one that resembles the one we got in the scat-
tering picture, we now consider the long time limit, 𝜏 → ℏ/2𝜂, where 𝜂 → 0+ is an in-
finitesimal. To do so, we use the Dyson equation again and substitute 𝐺 = (1 + 𝐺𝑉 )𝐺0

into the equation above,

⟨ ̄𝐴⟩ = 𝜂
𝜋 ∫ 𝑑𝐸 tr[𝐺0(𝐸)𝜌(𝑡0)(𝐺0(𝐸))†(1 + 𝑉 𝐺†(𝐸))𝐴(1 + 𝐺(𝐸)𝑉 )]. (2.55)

This equation is almost on the formwe want, except we still have to deal with the term,
𝜂
𝜋𝐺0𝜌(𝑡0)(𝐺0)† = 𝜂

𝜋 ∑
𝑘𝑘′,𝜓

⟨𝑛𝜓⟩𝜓𝑘𝑘′𝐺0 |𝑘⟩ ⟨𝑘′| (𝐺0)†. (2.56)

Fortunately, the sum contains terms of various orders of 𝜂−1. Since 𝜂 is small, the sum
is dominated by terms with the highest negative power. To see this, consider the term:

𝜂
𝜋𝐺0 |𝑘⟩ ⟨𝑘′| (𝐺0)† = 𝜂

𝜋
1

𝐸 − 𝐸𝑘 + 𝑖𝜂
1

𝐸 − 𝐸𝑘′ − 𝑖𝜂
= 1

𝜂𝜋
1

1 + 𝑖(𝐸𝑘 − 𝐸𝑘′)/𝜂 + (𝐸 − 𝐸𝑘)(𝐸 − 𝐸𝑘′)/𝜂2 .
(2.57)

We can always pick an 𝜂 that is smaller than the smallest energy spacing 𝐸𝑘 − 𝐸𝑘′ . In
that case, the leading terms in the sum, are the ones for which 𝐸 = 𝐸𝑘 = 𝐸𝑘′ , which
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results in a delta function, 𝛿(𝐸 − 𝐸𝑘). The terms for which 𝐸 = 𝐸𝑘 or 𝐸 = 𝐸𝑘′ but
for which 𝐸𝑘 ≠ 𝐸𝑘′ have two delta-function-like peaks at each energy, but the height
of the peaks scale as 𝜂, and are thus vanishingly small. This is analogous to saying
that, in the long time limit, the relative phases of two states cancel if they do not have
the same energy. Thus, the only relevant terms are those for which 𝐸𝑘 = 𝐸𝑘′ , and we
can therefore insert a Kronecker delta 𝛿𝐸𝑘,𝐸𝑘′ under the sum in our expression for the
density matrix:

𝜂
𝜋𝐺0𝜌(𝑡0)(𝐺0)† = ∑

𝑘𝑘′,𝜓
⟨𝑛𝜓⟩𝜓𝑘𝑘′𝛿𝐸𝑘,𝐸𝑘′ |𝑘⟩ 𝜂/𝜋

(𝐸 − 𝐸𝑘)2 + 𝜂2 ⟨𝑘′|

= ∑
𝑘𝑘′,𝜓

⟨𝑛𝜓⟩𝜓𝑘𝑘′𝛿𝐸𝑘,𝐸𝑘′ |𝑘⟩ 𝛿(𝐸 − 𝐸𝑘) ⟨𝑘′| ≡ 𝜌0(𝐸).
(2.58)

Plugging this result back into Eq. (2.55), we find exactly the same formula as for the
scattering picture,

⟨ ̄𝐴⟩ = ∫ 𝑑𝐸 tr[𝜌0(𝐸)(1 + 𝑉 𝐺†(𝐸))𝐴(1 + 𝐺(𝐸)𝑉 )], (2.59)

and thus expanding the parentheses under the integral on the right hand side, we ob-
tain four similar terms:

⟨ ̄𝐴⟩ = ∫ 𝑑𝐸 tr[𝜌0 (𝐴 + 𝐴𝐺𝑉 + 𝑉 𝐺†𝐴 + 𝑉 𝐺†𝐴𝐺𝑉 )]. (2.60)

Note that although the resulting equations are identical, if one substitutes the initial
density matrix for the time-averaged one in the scattering picture, the pictures which
give rise to them are subtly different. In section 2.2, we considered a collection of in-
coming wave packets. These wave packets were allowed to take on any shape or form,
with the one condition that there existed a time before which the wave packet was far
away from the molecule. Doing a statistical and time average over all possible such
wave packets as evolved using the uncoupled Hamiltonian, we got a time-averaged
density matrix, ̄𝜌0, containing the information about the distribution of the incoming
wave packets. In our treatment above, we instead considered a distribution, 𝜌, which
we knew at time 𝑡0 and let it evolve in time. This density matrix was not subject to
any restrictions, but described the system at an exact point in time. In many ways, the
initial state picture is more general, since it requires no assumptions about the system.
However, the states in it are, in general, extended across the whole systemwhereas the
states in the scattering picture are localised in each lead. The reason for that is that a
wave packet starting out in one lead will, when evolved using the uncoupled Hamil-
tonian, remain in that lead. Importantly, the finite size of the molecule means that its
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Figure 2.4: (A) Sketch of the two-lead system. (B) Illustration of the density matrix, 𝜌0. The fact
that the filled orange blobs do not fill out the entire band indicates that the initial state is
not necessarily an equilibrium state, which would be a smooth distribution.

uncoupled Hamiltonian does not permit incoming wave packets, and thus the density
matrix in the scattering picture will have no components there. Such a restriction does
not exist for the initial state picture, which we shall use later. Thus, although the formal
equations, Eqs. (2.41) and (2.60) are similar, the density matrices and physics involved
are different.

Because of this, we can largely treat the two pictures in the samemathematical frame-
work, but we will have to refer to the specific pictures, when discussing the terms that
arise. In what follows, we shall use the notation 𝜌0 to refer to the energy-resolved den-
sity matrices of the type that we find in the scattering picture and initial state picture.
That is, calculations that happen in the long time limit, or steady state case. For quanti-
ties that relate to transient effects, where the 𝜂 → 0+ limit correspondence is no longer
valid, we shall use 𝜌(𝑡0) and refer back to Eq. (2.54) in the description.

2.4 PART I C L E CURRENT

A large number of the experiments we are trying to describe measure an electron or
charge current in steady state, and compare the measurements either using different
polarisations of light, magnetic orientation or the chirality of the redox couple. Thus, a
natural first operator to consider using the formalism above is the particle current. Since
in all of the experiments, current effectively flows between two leads, to keep themental
model simple and concrete, we are going to assume that there are just two leads in our
system in the following derivation. The extension to multiple leads is straightforward,
however, and we shall do so later. Of course, not all of the experiments have actual
leads in the sense of a wire. Instead, we use the term lead here to refer to any isolated
medium connected to the molecule which allows an electronic current to flow.

For the sake of concreteness,we imagine that themolecule is alignedhorisontally and
connected to leads on the left and right, which we denote 𝐿 and 𝑅 respectively. This
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is illustrated in Figure 2.4A. To help us in our notation, let us introduce the projection
operators, 𝐿, 𝑀 , 𝑅 as the full span over their respective regions, satisfying:

𝐿 + 𝑀 + 𝑅 = 1. (2.61)

That is, the projection operator 𝐿 is the full span of available states in the left lead,

𝐿 = ∑
𝑘∈left lead

|𝑘⟩ ⟨𝑘| , (2.62)

and similarly for 𝑀 and 𝑅. It is easy to see that the expectation value of, for instance,
the projection operator into the right lead,

⟨𝑅⟩ = 𝑁 tr[𝜌𝑅] = ∑
Ψ,𝑘∈right lead

⟨𝑛Ψ⟩| ⟨Ψ|𝑘⟩ |2, (2.63)

gives the expectation value for the number of particles in the right lead. Thus, the net
particle current into the right lead is∗: ⟨�̇�⟩ = 𝑖⟨[𝐻, 𝑅]⟩/ℏ = 𝑖⟨𝐻𝑀𝑅 −𝐻𝑅𝑀⟩/ℏ. Here the
dot indicates the derivative of the operator w.r.t. time and 𝐻𝑀𝑅 is a shorthand notation
for the product𝑀𝐻𝑅. The last equality above follows from expanding the commutator
and inserting unity,

[𝐻, 𝑅] = 𝐻𝑅 − 𝑅𝐻 = (𝐿 + 𝑀 + 𝑅)𝐻𝑅 − 𝑅𝐻(𝐿 + 𝑀 + 𝑅)
= (𝐿 + 𝑀)𝐻𝑅 − 𝑅𝐻(𝐿 + 𝑀) = 𝐻𝑀𝑅 − 𝐻𝑅𝑀 ,

(2.64)

since the two leads are isolated from each other and thus, 𝐿𝐻𝑅 = 0. This expression
can in fact be simplified further by realising that 𝐻𝑀𝑅 = 𝐻†

𝑅𝑀 , and thus the particle
current into the right lead is twice the imaginary part of the expectation value of 𝐻𝑅𝑀 :

⟨�̇�⟩ = 2
ℏIm[⟨𝐻𝑅𝑀⟩]. (2.65)

Now, the coupling between the leads and the molecule can be written using a similar
notation as:

𝑉 = (𝐿 + 𝑅)𝐻𝑀 + 𝑀𝐻(𝐿 + 𝑅) = 𝐻𝐿𝑀 + 𝐻𝑅𝑀 + 𝐻𝑀𝐿 + 𝐻𝑀𝑅, (2.66)

∗ The first equality can be shown by considering the time derivative of the expectation value of an
arbitrary operator, 𝐴:

𝜕𝑡⟨𝐴⟩ = tr[𝜕𝑡𝜌(𝑡)𝐴] = tr[𝜕𝑡𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈(𝑡0, 𝑡)𝐴]

= 𝑖
ℏ tr[𝑈(𝑡, 𝑡0)𝜌(𝑡0)𝑈(𝑡0, 𝑡)(𝐻𝐴 − 𝐴𝐻)] = 𝑖

ℏ⟨[𝐻, 𝐴]⟩,

where we have used 𝑈(𝑡, 𝑡0) = 𝑒−𝑖𝐻(𝑡−𝑡0)/ℏ and the cyclic property of the trace.
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which now have to plug back into Eqs. (2.41) or (2.60) along with the time derivative
of 𝑅 in order to calculate the expectation value of the particle current. Doing so, we
find all combinations of terms such as:

𝐻𝑅𝑀𝐺𝐻𝑀𝐿, 𝐻𝑀𝑅𝐺𝐻𝐿𝑀 , etc. (2.67)

Before writing them out explicitly, there is a convenient way to deal with them, though.
It involves defining the projections of the propagators in the same manner as we did
for the Hamiltonian, i. e. through, 𝐺𝑀 = 𝑀𝐺𝑀 , 𝐺𝑅𝐿 = 𝑅𝐺𝐿, etc. Using the fact
that the uncoupled propagators have no cross terms, i. e. 𝐿𝐺0𝑅 = 𝐿𝐺0𝑀 = 0, etc.,
the expansion of the projected propagator, 𝐺𝑀 , using the Dyson equation allows us to
conveniently collect terms related to the leads:

𝐺𝑀 = 𝐺0
𝑀 + 𝐺0

𝑀 𝐻𝑀𝐿𝐺0
𝐿𝐻𝐿𝑀⏟⏟⏟⏟⏟

Σ𝐿

𝐺𝑀 + 𝐺0
𝑀 𝐻𝑀𝑅𝐺0

𝑅𝐻𝑅𝑀⏟⏟⏟⏟⏟⏟⏟
Σ𝑅

𝐺𝑀

= 𝐺0
𝑀 + 𝐺0

𝑀(Σ𝐿 + Σ𝑅)𝐺𝑀 = 1
𝐸 − 𝐻𝑀 − Σ𝐿 − Σ𝑅 + 𝑖𝜂 ,

(2.68)

where Σ𝐿, Σ𝑅 are the so-called self-energies of the left and right lead, respectively. In a
similar way, we find for the other projections:

𝐺𝐿 = 𝐺0
𝐿 + 𝐺0

𝐿𝐻𝐿𝑀𝐺𝑀𝐻𝑀𝐿𝐺0
𝐿, (2.69)

𝐺𝐿𝑀 = 𝐺0
𝐿𝐻𝐿𝑀𝐺𝑀 , (2.70)

𝐺𝐿𝑅 = 𝐺0
𝐿𝐻𝐿𝑀𝐺𝑀𝐻𝑀𝑅𝐺0

𝑅. (2.71)

The equations for 𝐺𝑅, 𝐺𝑅𝑀 and 𝐺𝑅𝐿 are obtained by substituting 𝐿 ↔ 𝑅. Finally, the
same logic applies to the density matrix, where we apply the notation 𝑅𝜌0𝑅 = 𝜌𝑅

0 ,
𝐿𝜌0𝑅 = 𝜌𝐿𝑅

0 , etc.
Equipped with the tools above, we are now ready to tackle the problem of calcu-

lating the particle current. The first term in Eq. (2.41), related to the intrinsic current
embedded in the density matrix is

⟨�̄�𝑅𝑀⟩(1) = ∫ 𝑑𝐸 tr[𝜌𝑀𝑅
0 𝐻𝑅𝑀]. (2.72)

Now, tomake the number of termswehave to dealwithmoremanageable,we are going
to assume that the electronic states entering the density matrix are localised in either
lead or on the molecule. In the scattering picture, this assumption can be motivated
on physical grounds quite easily, as discussed at the end of the last section. It amounts
to assuming that the wave packets of the incoming electrons start out in a single lead.
To see that, recall that 𝜌0 in the scattering picture is the time-average of the density
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matrix evolved with the uncoupled Hamiltonian, and thus initially uncorrelated wave
packets remain so. In the initial state picture, on the other hand, it is an assumption
that the electrons are initially uncorrelated between regions. This will, in general, not
be true for a system in equilibrium where the states are extended across both leads
and the molecule. However, if we deal with an initial state that describes the excitation
or addition of an electron to a system that is otherwise in equilibrium, we can split
the initial density matrix into its equilibrium and non-equilibrium parts. The excited
or added electron will, in general, be localised and thus its associated density matrix
will be block-diagonal. For the equilibrium density we must still include all the cross-
terms, but if the equilibrium state is one in which no current flows, then these terms
can be ignored as they conspire to contribute zero current in total. For completeness,
we derive the equations for the cross-terms in Appendix C.1.

As a consequence of the considerations above, the density matrix will be assumed
diagonal in 𝐿, 𝑀, 𝑅, and therefore the term in Eq. (2.72) is zero. Before considering
the other terms of Eq. (2.60), it turns out that the terms related to 𝜌𝑀

0 are much easier
to deal with, if we make use of Eq. (2.54) for the states in the molecular subspace first.
This gives the expression:

⟨�̄�𝑅𝑀⟩𝑀 = 𝜂
𝜋 ∫ 𝑑𝐸 tr[𝜌𝑀(𝑡0)𝐺†

𝑀𝑅𝐻𝑅𝑀𝐺𝑀] = 𝜂
𝜋 ∫ 𝑑𝐸 tr[𝜌𝑀(𝑡0)𝐺†

𝑀Σ†
𝑅𝐺𝑀].

(2.73)
Consequently, the current into the right lead due to states starting out on the molecule
is:

⟨ ̇�̄�⟩𝑀 = 𝜂
𝜋 ∫ 𝑑𝐸

ℏ 2Im tr[𝜌𝑀(𝑡0)𝐺†
𝑀Σ†

𝑅𝐺𝑀]. (2.74)

To simplify our analysis,we shall introduce the function,𝒜, to represent the anti-hermitian
part of an operator, in analogy with Im for the imaginary part. That is, 2𝒜[𝐴] = 𝑖(𝐴† −
𝐴). Note that the imaginary part of a trace is Im[tr[𝐴]] = tr[𝒜[𝐴]], which follows from
the invariance of the trace under transposition. Thus,we can pull the imaginary part un-
der the trace, if we replace it by the anti-hermitian part. Using the fact that the product
of operators, 𝐺𝑀𝜌𝐺†

𝑀 , is hermitian, the anti-hermitian part only acts on the self-energy.
Defining, Γ𝑅 = 2𝒜[Σ†

𝑅], we thus end up with:

⟨ ̇�̄�⟩𝑀 = 𝜂
𝜋 ∫ 𝑑𝐸

ℏ tr[𝜌𝑀(𝑡0)𝐺†
𝑀Γ𝑅𝐺𝑀]. (2.75)

The Γ-matrix has a physical interpretation. It is proportional to the strength of the cou-
pling between the molecule and the leads and to the density of states in the lead at
energy 𝐸. More formally, it is given as Γ𝑅 = 2𝜋𝐻𝑀𝑅𝛿(𝐸 − 𝐻𝑅)𝐻𝑅𝑀 . In the limit of an
infinitely large lead, and thus a continuous spectrum of 𝐻𝑅, the fact that the coupling
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𝐻𝑅𝑀 only relates to the part of the lead connected to themolecule, and therefore scales
as the square root of the inverse of the lead size, means that Γ𝑅 is well approximated by
a continuous, finite function. Being the anti-hermitian part of the self-energy, it gives
rise to a non-unitary time evolution for states on the molecule, and thus describes leak-
age out of it. In steady state, we take the limit 𝜂 → 0+, and since the molecule has a
discrete spectrum and Γ𝑅 has finite measure, the integral is finite and thus the sup-
pression factor of 𝜂 quenches the steady state current resulting from electrons initially
on the molecule. This should make sense intuitively, since a steady state current from
these electrons would require an infinite number of electrons initially on the molecule,
to sustain a continuous current.

Such an infinite reservoir of electrons is found in the (comparatively) infinitely large
leads, however. To calculate the current from electrons in them, we collect the second
and third term from Eq. (2.41). Using the block diagonality of 𝜌0 and the fact that we
have already dealt with terms pertaining to 𝜌𝑀

0 , we are left with just a single term:

⟨�̄�𝑅𝑀⟩(2,3) = ∫ 𝑑𝐸 tr[𝜌0𝐻𝑅𝑀𝐺𝐻𝑀𝑅]. (2.76)

To simplify it, we now define the so-called 𝛾-matrix, 𝛾𝑅 ≡ 𝐻𝑀𝑅𝜌0𝐻𝑅𝑀 . The reason
for doing so is that this operator only lives in the molecular subspace. In fact, we are
going to end up with equations, in which all the operators are defined in the subspace
𝑀 , which for computational purposes is convenient since 𝑀 is, in general, of finite
dimensionality. Consequently, the steady state current into the right lead from these
terms is:

⟨ ̇�̄�⟩(2,3) = ∫ 𝑑𝐸
ℏ tr[𝛾𝑅(2𝒜[𝐺𝑀 ])], (2.77)

and all we need to know is the anti-hermitian part of the propagator. It is given by:

2𝒜[𝐺𝑀 ] = 𝑖(𝐺†
𝑀 − 𝐺𝑀) = 𝐺𝑀𝑖(𝐺−1

𝑀 − (𝐺†
𝑀)−1)𝐺†

𝑀
= −𝐺𝑀(Γ + 2𝜂)𝐺†

𝑀 .
(2.78)

The last equality above contains an important relationship that we shall use in deriva-
tions later. It is known as the Ward identity, named after John Clive Ward, and in our
single particle case it reads:

𝐺−1
𝑀 − (𝐺†

𝑀)−1 = 𝑖Γ+2𝑖𝜂, (2.79)

where in our current case, Γ = Γ𝐿 + Γ𝑅. Plugging this result back in we finally obtain:

⟨ ̇�̄�⟩(2,3) = − ∫ 𝑑𝐸
ℏ tr[𝛾𝑅𝐺𝑀(Γ𝐿 + Γ𝑅+2𝜂)𝐺†

𝑀], (2.80)
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Note that since we take the limit 𝜂 → 0+ in steady state, we have greyed out the term
2𝜂 in Eq. (2.80), as it can be ignored as long as Γ is non-zero. Even in that limit, it is still
required to ensure a mathematically well-defined behaviour in the limit Γ → 0 as well,
and thus it must be kept for consistency. For short times, it is replaced by ℏ𝜏−1, and
thus contributes to the total current in that case. In what follows, we will keep these
greyed out terms in the derivations, to the extent that they will turn out to prove useful
in transient calculations, but otherwise we shall act as though they vanish.

The final piece to calculate the average particle current is to deal with the last term
of Eq. (2.41). Ignoring cross-terms and terms related to 𝑀 in 𝜌0 again, we are left with:

⟨�̄�𝑅𝑀⟩(4) = ∫ 𝑑𝐸 tr[𝜌0(𝐻𝐿𝑀 + 𝐻𝑅𝑀)𝐺†𝐻𝑅𝑀𝐺(𝐻𝑀𝐿 + 𝐻𝑀𝑅)]. (2.81)

Using the definitions and identities introduced above, it is straightforward to show that
the particle current from this term becomes:

⟨ ̇�̄�⟩(4) = ∫ 𝑑𝐸
ℏ tr[(𝛾𝐿 + 𝛾𝑅)𝐺†

𝑀Γ𝑅𝐺𝑀]. (2.82)

Combining all the terms, we thus find that the total particle current is given by:

⟨ ̇�̄�⟩ = ∫ 𝑑𝐸
ℏ (tr[(𝛾𝐿 + 𝛾𝑅)𝐺†

𝑀Γ𝑅𝐺𝑀] − tr[(Γ𝐿 + Γ𝑅+2𝜂)𝐺†
𝑀𝛾𝑅𝐺𝑀]) . (2.83)

The result above can be simplified slightly by using the Ward identity, Eq. (2.79). Mul-
tiplying the identity by 𝐺𝑀 and 𝐺†

𝑀 from the left and right, we derive that we are free
to interchange the propagators, 𝐺𝑀 and 𝐺†

𝑀 on either side of the Γ-matrix:

𝐺𝑀(Γ+2𝜂)𝐺†
𝑀 = 𝐺†

𝑀(Γ+2𝜂)𝐺𝑀 . (2.84)

Combining this derived property of the Ward identity with the cyclic property of the
trace, we finally obtain:

⟨ ̇�̄�⟩ = ∫ 𝑑𝐸
ℏ

⎛⎜⎜
⎝

tr[𝛾𝐿𝐺†
𝑀Γ𝑅𝐺𝑀]⏟⏟⏟⏟⏟⏟⏟

𝑇𝐿→𝑅

− tr[𝛾𝑅𝐺†
𝑀Γ𝐿𝐺𝑀]⏟⏟⏟⏟⏟⏟⏟

𝑇𝑅→𝐿

−2𝜂 tr[𝛾𝑅𝐺†
𝑀𝐺𝑀]⎞⎟⎟

⎠
. (2.85)

This expression has a very intuitive interpretation, if we recognise that 𝑇𝐿→𝑅 describes
the particle current from the left lead to the right lead, and 𝑇𝑅→𝐿 from right to left. Thus,
the total particle current flowing into 𝑅 is simply the difference between the amount
flowing in and out.
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EXAMPLE
S INGLE L EVE L L EAD As a consistency check, let us calculate the average cur-
rent in the case where the left lead has just a single electronic level, closely cou-
pled to themolecule, and the right lead is infinitely large but initially empty. Intu-
itively, in this case, one would assume that after a period of time, the electron has
leaked out entirely from the left lead, and thus there should be no steady state
current. Let the single level in the left lead have energy 𝐸0, and its coupling to the
molecule be given as, 𝐻𝐿𝑀 = 𝑡 |𝐿⟩ ⟨1|. Assuming that the electron starts in this
single level in the left lead, the initial state is given by 𝜌0(𝐸) = |𝐿⟩ 𝛿(𝐸 − 𝐸0) ⟨𝐿|.
The current, using Eq. (2.85) is thus:

⟨ ̇�̄�⟩ = ∫ 𝑑𝐸
ℏ tr[𝛾𝐿𝐺†

𝑀Γ𝑅𝐺𝑀] = |𝑡|2
ℏ ⟨1| 𝐺†

𝑀(𝐸0)Γ𝑅(𝐸0)𝐺𝑀(𝐸0) |1⟩ . (2.86)

Now, the uncoupled propagator in the left lead at this energy is 𝐺0
1(𝐸0) = −𝑖𝜂−1,

and thus the self-energy from the left lead is Σ𝐿 = −𝑖𝜂−1|𝑡|2. In the limit, 𝜂 → 0+,
this term dominates entirely in the denominator of the propagator, 𝐺𝑀(𝐸0),
which is thus ∼ 𝑖𝜂/|𝑡|2. Plugging this back in, we thus find that the average cur-
rent for this system is:

⟨ ̇�̄�⟩ ∝ 𝜂2

ℏ|𝑡|2 Γ𝑅(𝐸0) =
𝜂→0+

0. (2.87)

Note that the limit is still zero in the case where the right lead is also a single level
with energy 𝐸0. In this case, however, Γ𝑅 ∼ 𝜂−1, and thus the scaling is to first
order in 𝜂.
One may ask the question why this is not the case for all systems, since 𝜌0 by
definition always contains eigenstates of the uncoupledHamiltonian in the leads.
When the left lead becomes infinitely large, it is important to observe that there
are two competing limits at play, one related to the −𝑖𝜂−1 from the uncoupled
propagator, and another to the normalisation of the wavefunctions in the lead.
Consequently, 𝐻𝑀𝐿 ∝ 𝑁−1/2, where 𝑁 is the size of the left lead, and thus Γ ∝
𝜂−1/𝑁 . In other words, an infinitely sustained steady state leakage can only be
sustained if the system from which it leaks is infinitely large. This observation is
what lead us to claim thatΓ𝑅(𝐸) as a function of energy has a finite value, despite
consisting of a sum of delta-functions.
In section 2.4.3 we shall deal with the example above in more details for shorter
time scales, where the limit 𝜂 → 0+ is no longer valid.
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2.4.1 Generalisation to multiple leads

In the calculations above, we have assumed the existence of only two leads, 𝐿 and 𝑅.
The extension to multiple leads, where we shall denote the projection into the 𝑖the lead
by 𝑁𝑖 is straightforward, however. Using the short-hand notation 𝛾𝑖 for the initial state
in the 𝑖th lead, and similarly for Γ𝑖, we find that Eq. (2.83) generalizes to:

⟨ ̇̄𝑁𝑗⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
(𝑇𝑖→𝑗(𝐸) − 𝑇𝑗→𝑖(𝐸)) −2𝜂

ℏ ∫ 𝑑𝐸 tr[𝛾𝑗𝐺†
𝑀𝐺𝑀]. (2.88)

That is, the current into 𝑗 is simply the difference between the sum of all the currents
flowing in and out of the lead. Note that summing over 𝑗, we find that thewhole system
retains net current conservation in steady state:

∑
𝑗

⟨ ̇̄𝑁𝑗⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖𝑗
(𝑇𝑖→𝑗(𝐸) − 𝑇𝑗→𝑖(𝐸)) = 0, (2.89)

as one would expect. The relationship above also functions as a consistency check,
which says that there is no net particle accumulation on the molecule. This follows
from the fact that the particle current into 𝑀 is given by:

⟨ ̇�̄�⟩ = ∑
𝑖

2Im[⟨𝐻𝑀𝑖⟩] = − ∑
𝑖

⟨ ̇̄𝑁𝑖⟩ = 0, (2.90)

exactly as one’s physical intuition would suggest.

2.4.2 Thermal equilibrium

Our next line of action is to show that in the limit where the initial state is in thermal
equilibrium,we recover the standard Landauer formula for steady state transport. First,
we have to define what we mean by the initial state being in thermal equilibrium. Ac-
cording to our brief discussion in section 2.1.2, it means that the electrons occupy the
eigenstates of the Hamiltonian according to an energy-dependent distribution. There
are two types of equilibria to consider. One is the whole system in equilibrium. In this
case, by definition of it being in equilibrium, no current will flow. Another is one in
which each of the leads are individually in thermal equilibrium with a reservoir with
chemical potential 𝜇. In this case, the initial state consists of eigenstates of the uncou-
pled Hamiltonian of each of the leads independently. Consequently, the density ma-
trix must be block-diagonal in the leads. In the scattering picture, the density matrix
is already block diagonal. Thus, we are simply requiring that the incoming wave pack-
ets follow a thermal distribution. In the initial state picture, the requirement is akin
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to preparing the system by thermalising the leads independently, and then at time 𝑡0,
inserting the molecule between the leads and letting time evolve.

Now, notice that the definition of Γ𝑅 is:

Γ𝑅 = 𝑖𝐻𝑀𝑅(𝐺0
𝑅 − (𝐺0

𝑅)†)𝐻𝑅𝑀 = 2𝜋𝐻𝑀𝑅𝛿(𝐸 − 𝐻𝑅)𝐻𝑅𝑀 . (2.91)

From the definition of 𝛾𝑅 in the case of block-diagonal 𝜌0, however:

𝛾𝑅 = 𝐻𝑀𝑅𝜌0𝐻𝑅𝑀 = 1
𝑁 ∑

𝑘∈𝑅
⟨𝑛𝑘⟩0𝐻𝑀𝑅 |𝑘⟩ 𝛿(𝐸 − 𝐸𝑘) ⟨𝑘| 𝐻𝑅𝑀

therm. eq.= 1
𝑁 𝑛(𝐸 − 𝜇𝑅)𝐻𝑀𝑅𝛿(𝐸 − 𝐻𝑅)𝐻𝑅𝑀 = 𝑛(𝐸 − 𝜇𝑅)

2𝜋𝑁 Γ𝑅,
(2.92)

and similarly for Γ𝐿 and 𝛾𝐿. Here, 𝑛(𝐸 − 𝜇𝑅) is the Fermi-Dirac or Bose-Einstein dis-
tributions for fermions and bosons respectively, which we derived in section 2.1.2 or
any other energy-dependent distribution, connected to a reservoir with chemical po-
tential 𝜇𝑅. Plugging these results back into Eq. (2.83), and multiplying by the number
of particles in the system, 𝑁 , to get the total particle current we find:

𝑗𝑅 = 𝑁⟨ ̇�̄�⟩ = ∫ 𝑑𝐸
ℎ (𝑛(𝐸 − 𝜇𝐿) − 𝑛(𝐸 − 𝜇𝑅)) tr[Γ𝐿𝐺†

𝑀Γ𝑅𝐺𝑀], (2.93)

which is exactly the Landauer formula. This holds not just in thermal equilibrium, but
as long as the expectation values of the particle number operators, ⟨𝑛𝑘⟩, only depend on
energy. Note that in thermal equilibrium, the only difference between 𝑇𝐿→𝑅 and 𝑇𝑅→𝐿
is to which side the chemical potential, 𝜇, in the distribution function belongs. Thus,
the trace found in Eq. (2.93), tr[Γ𝐿𝐺†

𝑀Γ𝑅𝐺𝑀], is often referred to as the transmission
function,which of course clasheswith our definition of the transmission function in the
more general case, 𝑇𝐿→𝑅. We shall denote this thermal transmission function, 𝑇𝐿𝑅(𝐸),
without the arrow, to distinguish it from the more general transmission function, as
they have different properties.

It is important to emphasize that for the thermal transmission function, in the case
of two leads, we have the important relationship 𝑇𝐿𝑅 = 𝑇𝑅𝐿 in steady state. To see this,
note that:

𝑇𝐿𝑅 = tr[(Γ𝐿 + Γ𝑅 + 2𝜂)𝐺†
𝑀Γ𝑅𝐺𝑀] − tr[(Γ𝑅 + 2𝜂)𝐺†

𝑀Γ𝑅𝐺𝑀]. (2.94)

Using theWard identity, Eq. (2.79), on the first term in the last equality and discarding
the vanishing 𝜂-term, we obtain:

𝑇𝐿𝑅 = tr[Γ𝑅𝐺†
𝑀(Γ𝐿 + Γ𝑅)𝐺𝑀] − tr[Γ𝑅𝐺†

𝑀Γ𝑅𝐺𝑀] = 𝑇𝑅𝐿, (2.95)

which proves the relationship.
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EXAMPLE
E L EC TR I C CURRENT To relate the particle current to electric current in thermal
equilibrium, we shall treat it in the case of fermions. In this case, the difference
between the Fermi distributions is:

𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅) = sinh(𝛽Δ𝜇/2)
cosh(𝛽(𝐸 − 𝐸𝐹 )) + cosh(𝛽Δ𝜇/2), (2.96)

where Δ𝜇 = 𝜇𝐿 − 𝜇𝑅 and 𝐸𝐹 = (𝜇𝐿 + 𝜇𝑅)/2. The detailed derivation of this
expression can be found in Appendix A.2.1. For Δ𝜇/2 ≪ 𝛽−1, this reduces to:

𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅) ≈ 𝛽Δ𝜇/2
cosh(𝛽(𝐸 − 𝐸𝐹 )), (2.97)

which is exponentially suppressed as 𝐸 deviates from 𝐸𝐹 . Thus, integrating the
transmission function with this factor will be dominated by its value around 𝐸𝐹 :

𝑗𝑅 ≈ 1
ℎ𝑇𝐿𝑅(𝐸𝐹 ) ∫

∞

−∞
𝑑𝐸 (𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅)) . (2.98)

As shown in Appendix A.2.2, the integral above gives exactly 𝜇𝐿 − 𝜇𝑅. Multiply-
ing by the charge of the electron, we get Ohm’s law:

− 𝑒𝑗𝑅⏟
𝐼

= (𝜇𝑅 − 𝜇𝐿)
𝑒⏟⏟⏟⏟⏟
𝑉

𝑒2

ℎ 𝑇𝐿𝑅(𝐸𝐹 )⏟⏟⏟⏟⏟
𝐺

, (2.99)

where 𝐼 , 𝑉 , and 𝐺 here refer to the electric current, voltage and conductance,
respectively. Rewritten in terms of the quantum of conductance, 𝐺0 = 2𝑒2/ℎ, the
electric current is given by:

𝐼 = 𝑉 𝐺0
𝑇𝐿𝑅(𝐸𝐹 )

2 . (2.100)

Note that the factor 1/2 above is due to the fact that the transmission function
includes spin degrees of freedom. If the transmission was assumed independent
of spin, the trace inside would yield a factor of two, cancelling it.
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Figure 2.5: (A) Illustration of the molecule connected to a single lead. (B) An electron that is
deposited on the molecule will after some time have left the molecule and have transferred
to the lead.

2.4.3 Transient effects

In the analysis above,wewanted to calculate the particle current in the steady state case.
This required either an endless flow of incoming electrons in the scattering picture, or
an infinitely large bath in the initial state picture, such that a current would leak for an
infinite amount of time. The steady state was reached in the limit 𝜂 → 0+.

There are cases, however, where there is no steady state current. An example of this
is illustrated in Figure 2.5, where the system consists of just a molecule coupled to
a lead, which is analogous to the example of a single level lead studied earlier. If an
electron is placed on the molecule, it will leak out into the lead, with a time-dependent
rate. Because the electron’s wavefunction is finite and the molecule has a finite size,
eventually, all of the wavefunction will have leaked out, and thus the transfer rate must
vanish for long times. On shorter time scales, however, this transfer rate or current is
non-zero. This can be dealt with in the initial state picture, by substituting 𝜂 → ℏ/2𝜏
back, as the time scale overwhichwe average the current. Aswe have seen in section 2.3,
this gives the linear behaviour of the current for short times.

There is one technicality with which wemust deal, though, which is the issue that in
thermal equilibrium, the result that the 𝛾-matrices are proportional to the Γ-matrices
no longer holds. I. e. the equilibrium distribution in the leads now looks like:

𝛾eq.
𝑗 = 2𝜋

𝑁 ∑
𝑘∈𝑗

𝑛(𝐸𝑘 − 𝜇𝑗)
𝜂/𝜋

(𝐸 − 𝐸𝑘)2 + 𝜂2 𝐻𝑀𝑅 |𝑘⟩ ⟨𝑘| 𝐻𝑅𝑀 , (2.101)

which is not trivially proportional to Γ𝑗 anymore. However, we are not going to worry
toomuch about this fact, since we know that in equilibrium, unless there are oscillating
currents, the steady state current should be independent of the time scale and, typically,
zero. Thus, if the density matrix consists of an equilibrium part and a non-equilibrium
part, we simply split the density matrix into two and handle them separately, using the
long time scale result for the equilibrium subspace.
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Provided the initial state in the leads is diagonal in the basis of the eigenstates of

the uncoupled Hamiltonian, the analysis from section 2.3 carries over to all values of 𝜂.
Since we have in our derivations meticulously kept track of where it went, the greyed
out terms now become physically relevant. Thus, all we have to do is to take the same
equations and substitute 𝜂 → ℏ/2𝜏 , which yields a current of:

⟨ ̇�̃�⟩𝜏 = 1
𝜏 ∫ 𝑑𝐸 ( 1

2𝜋 tr[𝜌𝑀(𝑡0)𝐺†
𝑀Γ𝑅𝐺𝑀] − tr[𝛾𝑅𝐺†

𝑀𝐺𝑀])

+ ∫ 𝑑𝐸
ℏ (𝑇𝐿→𝑅 − 𝑇𝑅→𝐿) .

(2.102)

If we now define 𝛾𝜏 = 𝜌𝑀(𝑡0)ℏ/2𝜋𝜏 and Γ𝜏 = ℏ/𝜏 , the current at 𝜏 reduces to:

⟨ ̇�̃�⟩𝜏 = ∫ 𝑑𝐸
ℏ (𝑇𝜏→𝑅 − 𝑇𝑅→𝜏 + 𝑇𝐿→𝑅 − 𝑇𝑅→𝐿) , (2.103)

where 𝑇𝜏→𝑅 = tr[𝛾𝜏𝐺†
𝑀Γ𝑅𝐺𝑀] are defined just as our usual transmission functions.

Thus, comparing to the case with multiple leads discussed in section 2.4.1, the effect
of including this time-dependence amounts to introducing an extra 𝜏−1 “lead” which
connects to every point in the system. We shall refer to it as the virtual 𝜏 -lead to distin-
guish it from the physical leads that we have discussed so far. However, in the multiple
lead generalisation, it enters into the equations on equal footing. Since this virtual lead
arises because of the greyed out terms from earlier, they should of course be ignored
from now on. In fact, if we define a 𝜏 -self energy as:

Σ𝜏 = −𝑖𝜂 = − 𝑖ℏ
2𝜏 , (2.104)

we can simply absorb it into the self-energy sum of the propagators, and thuswe do not
have to worry about keeping explicit track of it. Note, however, that there is no actual
lead, but the total number of particles in the system must be conserved, since it is a
closed system. Since we know that

⟨ ̇�̃�⟩ = − ∑
𝑖∈physical leads

⟨ ̇̄𝑁𝑖⟩, (2.105)

we can add and subtract the effect of the virtual 𝜏 -lead, to reduce the sum to zero by
virtue of Eq. (2.89), and thus we identify:

⟨ ̇�̃�⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
(𝑇𝑖→𝜏 − 𝑇𝜏→𝑖). (2.106)

This integral of course goes to zero in the long time limit, since all of the transmission
functions are suppressed, and we recover the statement that there is no net particle
accumulation on the molecule.
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In the next section,we turn our attention to the formalism as it relates to spin currents.

The reader interested in a perturbative treatment of the particle currents, and deriva-
tion of the no-polarisation theorem, can skip to chapter 3 and return to section 2.5 at a
later stage for a derivation of the formalism related to the spin currents.

2.5 S P IN CURRENT

We have now established a solid foundation upon which to calculate particle currents.
Before analysing them in the context of chiral molecules and thus relate them more
concretely to the experiments, we must discuss spin currents, as these are in fact what
the CISS effect is generally understood to cause. To get a measure for this, we again
consider a system of two leads, 𝐿, 𝑅 and a molecule, 𝑀 . The spin along an axis �̂� in the
right lead is given by the operator,

𝑆𝑅�̂� = 𝑅�⃗� ⋅ �̂�𝑅, (2.107)

where we have used the vector notation for the Pauli matrices,

�⃗� = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧). (2.108)

As with the particle current being the time derivative of the projection into 𝑅, the spin
current is analogously the rate of change of the spin polarisation operator:

̇𝑆𝑅�̂� = 𝑖
ℏ(𝐻𝑅�⃗� ⋅ �̂�𝑅 − 𝑅�⃗� ⋅ �̂�𝑅𝐻). (2.109)

In general, we can decouple the Hamiltonian into terms proportional to the various
Pauli matrices:

𝐻 = 𝐻0𝜎0 + 𝐻𝑥𝜎𝑥 + 𝐻𝑦𝜎𝑦 + 𝐻𝑧𝜎𝑧 = 𝐻0𝜎0 + �⃗� ⋅ �⃗�, (2.110)

where in the last equality, we have collapsed the 𝑥, 𝑦, 𝑧 operators into their vector form.
Plugging this result back into our equation for the spin current, Eq. (2.109), it reduces
to the following terms:

̇𝑆𝑅�̂� = 𝑖
ℏ(𝐻0

𝑀𝑅 − 𝐻0
𝑅𝑀)�⃗� ⋅ �̂� + 𝑖

ℏ[�⃗� ⋅ �⃗�, 𝑅�⃗� ⋅ �̂�𝑅]. (2.111)

To proceed, we must briefly review the commutation relations of operator products
with the Pauli matrices. They are easily derived by considering the product of two such
operators:

( ⃗𝑎 ⋅ �⃗�)( ⃗𝑏 ⋅ �⃗�) = ( ⃗𝑎 ⋅ ⃗𝑏)𝜎0 + 𝑖( ⃗𝑎 × �⃗�) ⋅ �⃗�. (2.112)
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Consequently, we derive the commutation relations:

[ ⃗𝑎 ⋅ �⃗�, ⃗𝑏 ⋅ �⃗�]± = ( ⃗𝑎 ⋅ ⃗𝑏 ± ⃗𝑏 ⋅ ⃗𝑎)𝜎0 + 𝑖( ⃗𝑎 × �⃗� ± ⃗𝑏 × ⃗𝑎) ⋅ �⃗�, (2.113)

where ± is used for the anticommutator and commutator, respectively. With these re-
lations in mind, the operator finally takes the vector form:

̇𝑆𝑅�̂� = 𝑖
ℏ(𝐻0

𝑀𝑅 − 𝐻0
𝑅𝑀)�⃗� ⋅ �̂� + 1

ℏ�̂� × (2�⃗�𝑅 + �⃗�𝑀𝑅 + �⃗�𝑅𝑀) ⋅ �⃗�

+ 𝑖
ℏ(�⃗�𝑀𝑅 − �⃗�𝑅𝑀) ⋅ �̂�.

(2.114)

For simplicity, for now we only deal with the case where the leads are independent
of spin, that is, the leads are non-magnetic. In other words, �⃗�𝑅 = �⃗�𝑅𝑀 = �⃗�𝑀𝑅 = 0,
and thus we are only left with the first term,

̇𝑆𝑅�̂� = 𝑖
ℏ(𝐻𝑀𝑅 − 𝐻𝑅𝑀)�⃗� ⋅ �̂� = 2

ℏ𝒜[𝐻𝑅𝑀 �⃗� ⋅ �̂�]. (2.115)

Carrying out an analysis similar to that of the particle current in section 2.4, we once
again find that, if the density matrix has no cross-terms, the first term of Eq. (2.60)
vanishes. The second and third terms, on the other hand, yield:

⟨ ̇̄𝑆𝑅�̂�⟩(2,3) = ∫ 𝑑𝐸
ℏ tr[𝛾𝑅(2𝒜[�⃗� ⋅ �̂�𝐺𝑀 ])]. (2.116)

Here we have ignored the part related to the initial state on the molecule, which we
shall deal with afterwards. Now, the anti-hermitian part of 𝐺𝑀 �⃗� ⋅ �̂� is slightly more
complicated than just that of 𝐺𝑀 , but not impossible to deal with:

2𝒜[�⃗� ⋅ �̂�𝐺𝑀 ] = 𝑖(𝐺†
𝑀 �⃗� ⋅ �̂� − �⃗� ⋅ �̂�𝐺𝑀)

= 𝑖𝐺†
𝑀 (�⃗� ⋅ �̂�𝐺−1

𝑀 − (𝐺†
𝑀)−1�⃗� ⋅ �̂�) 𝐺𝑀 .

(2.117)

The terms in the parentheses can be rewritten, by making use of the identity:

𝐶𝐴 − 𝐵𝐶 = {𝐴 − 𝐵
2 , 𝐶} − [𝐴 + 𝐵

2 , 𝐶] , (2.118)

And thus we finally end up with:

2𝒜[𝐺𝑀 �⃗� ⋅ �̂�] = −1
2𝐺†

𝑀 ({Γ, �⃗� ⋅ �̂�} + 𝑖 [𝐺−1
𝑀 + (𝐺†

𝑀)−1, �⃗� ⋅ �̂�]) 𝐺𝑀 . (2.119)

Note that based on our analysis above, we have extended Γ to include also the virtual
𝜏 -lead, i. e. we are using Γ = Γ𝐿 + Γ𝑅 + Γ𝜏 . Since we are dealing with normal leads, Γ
is independent of spin and thus the anti-commutator (including the factor one-half) is
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simply Γ�⃗� ⋅ �̂�, while the commutator becomes −𝑖[𝐻𝑀 , �⃗� ⋅ �̂�] = 2�⃗�𝑀 × �̂� ⋅ �⃗�, following
the commutation relations derived earlier. Thus, the contribution from the second and
third terms to the spin current is:

⟨ ̇̄𝑆𝑅�̂�⟩(2,3) = − ∫ 𝑑𝐸
ℏ tr[𝛾𝑅𝐺†

𝑀(Γ�̂� + 2�⃗�𝑀 × �̂�) ⋅ �⃗�𝐺𝑀]. (2.120)

Note that �⃗�𝑀 encodes the spin-dependence of the molecule. It is, of course, the atomic
spin-orbit coupling in the systems we are interested in, but for the sake of keeping the
formula generic, we leave it simply as an unspecified vector quantity.

Now, the fourth term of Eq. (2.60) and the term related to the initial state on the
molecule can be dealt with in one go, if we adopt the notation 𝛾 = 𝛾𝐿 + 𝛾𝑅 + 𝛾𝜏 . Doing
so, we find after a bit of algebra:

⟨ ̇̄𝑆𝑅�̂�⟩(4) = ∫ 𝑑𝐸
ℏ tr[𝛾𝐺†

𝑀(2𝒜[Σ†
𝑅�⃗� ⋅ �̂�])𝐺𝑀], (2.121)

where the anti-hermitian part again reduces to simply Γ𝑅�⃗� ⋅ �̂�, under the assumption
that the right lead is independent of spin. Putting it all together, the total spin current
in steady state into the right lead along an axis �̂� is given by:

⟨ ̇̄𝑆𝑅�̂�⟩ = ∫ 𝑑𝐸
ℏ ( tr[𝛾𝐿𝐺†

𝑀Γ𝑅(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑅𝐺†
𝑀Γ𝐿(�̂� ⋅ �⃗�)𝐺𝑀]

+ tr[𝛾𝜏𝐺†
𝑀Γ𝑅(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑅𝐺†

𝑀Γ𝜏(�̂� ⋅ �⃗�)𝐺𝑀]

+ 2 tr[𝛾𝑅𝐺†
𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀]).

(2.122)

2.5.1 Generalisation to multiple leads

To generalise the results above tomultiple leads, wemust first consider the spin current
in 𝑀 . Similar to Eq. (2.114), it is given by:

̇𝑆𝑀�̂� = 𝑖
ℏ ∑

𝑖
(𝐻𝑀𝑖 − 𝐻𝑖𝑀)�⃗� ⋅ �̂� + 2

ℏ(𝑛 × �⃗�𝑀) ⋅ �⃗�. (2.123)

Plugging it in and going through the same algebra as above, it is a simple exercise to
show that:

⟨ ̇̄𝑆𝑀�̂�⟩ = ∫ 𝑑𝐸
ℏ ( ∑

𝑖
(tr[𝛾𝜏𝐺†

𝑀Γ𝑖(�⃗� ⋅ �̂�)𝐺𝑀] − tr[𝛾𝑖𝐺†
𝑀Γ𝜏(�⃗� ⋅ �̂�)𝐺𝑀])

+ 2 tr[𝛾𝜏𝐺†
𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀]).

(2.124)
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The generalisation to multiple leads is therefore straightforward and yields:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ ( ∑

𝑖
tr[𝛾𝑖𝐺†

𝑀Γ𝑗(�̂� ⋅ �⃗�)𝐺𝑀] − ∑
𝑖

tr[𝛾𝑗𝐺†
𝑀Γ𝑖(�̂� ⋅ �⃗�)𝐺𝑀]

+ 2 tr[𝛾𝑗𝐺†
𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀]).

(2.125)

Perhaps surprisingly, however, if we sum over all of the leads, even in the long time
limit, the net spin is not conserved:

∑
𝑗

⟨ ̇𝑆𝑗�̂�⟩ = ∑
𝑗

∫ 𝑑𝐸
ℏ 2 tr[𝛾𝑗𝐺†

𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀]. (2.126)

There is no spin accumulation on the molecule, though, which can be shown by a sim-
ple consistency check, derived by calculating the rate of change of total spin in the
system, ̇𝑆�̂� = 𝑖[𝐻, �⃗� ⋅ �̂�] = 2�̂� × �⃗�𝑀 ⋅ �⃗�. Doing so, we find that it is exactly equal to the
sum above in the long time limit, and thus:

⟨ ̇𝑆�̂�⟩ = ⟨ ̇𝑆𝑀�̂�⟩ + ∑
𝑗

⟨ ̇𝑆𝑗�̂�⟩ = ∑
𝑗

⟨ ̇𝑆𝑗�̂�⟩ ⇒ ⟨ ̇𝑆𝑀�̂�⟩ = 0, (2.127)

as anticipated. What this spin current really represents, however, is the precession of
the spins, which can be seen by noting that if �⃗�𝑀 is a magnetic field, there is no change
in the spin along �⃗�𝑀 by virtue of the cross product. This argument also extends to
the case of the spin-orbit interaction, and in Appendix C.2, we present a proof that
in equilibrium, these terms do indeed vanish. Out of equilibrium, however, the spins
are allowed to precess and there will, in general, be a non-zero spin current due to
precession.

2.5.2 Magnetic leads

We now consider the case of magnetic leads. As our model Hamiltonian for a magnet,
we are going to use a kind of mean-field approach, in which electrons experience differ-
entHamiltonians depending only on its spin along a singlemagnetisation axis, �̂�. Note
that �̂� is a unit vector. Thus, the Hamiltonian for the magnetic leads can be written as:

𝐻0 = 1 + �̂� ⋅ �⃗�
2 𝐻0↑ + 1 − �̂� ⋅ �⃗�

2 𝐻0↓ = 𝐻0↑ + 𝐻0↓
2⏟⏟⏟⏟⏟

�̄�0

+(�̂� ⋅ �⃗�) 𝐻0↑ − 𝐻0↓
2⏟⏟⏟⏟⏟

Δ𝐻0

. (2.128)

In this case, we have an extra term creeping into the equation for the spin current. From
Eq. (2.114), it is given by:

Δ ̇𝑆𝑅�̂� = 2
ℏ(�̂� × �̂�) ⋅ �⃗�Δ𝐻𝑅. (2.129)
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As can be seen from the appearance of the cross product, this term describes precession
due to the magnetic field. The second and third terms of Eq. (2.60) give, in this case:

⟨Δ ̇̄𝑆𝑅�̂�⟩(2,3) = 2 ∫ 𝑑𝐸
ℏ tr[𝜌𝑅

0 Δ𝐻𝑅(�̂� × �̂�) ⋅ �⃗�𝐺0
𝑅𝐻𝑅𝑀𝐺𝑀𝐻𝑀𝑅]

+ 2 ∫ 𝑑𝐸
ℏ tr[𝜌𝑅

0 𝐻𝑅𝑀𝐺†
𝑀𝐻𝑀𝑅(𝐺0

𝑅)†(�̂� × �̂�) ⋅ �⃗�Δ𝐻𝑅].
(2.130)

Similarly, for the fourth term, we find:

⟨Δ ̇̄𝑆𝑅�̂�⟩(4) = 2 ∫ 𝑑𝐸
ℏ tr[𝛾𝐺†

𝑀𝐻𝑀𝑅(𝐺0
𝑅)†(�̂� × �̂�) ⋅ �⃗�Δ𝐻𝑅𝐺0

𝑅𝐻𝑅𝑀𝐺𝑀]. (2.131)

These terms can not immediately be reduced to a simpler formwithout further approx-
imations. However, if we consider only the spin current along the magnetisation axis,
i. e. setting �̂� = �̂�, the cross product vanishes, and we see that we do not have to deal
with this correction at all. This is, of course, due to the fact that spins aligned with the
axis of the magnet do not precess at all.

In the following, we are going to assume that all of the leads are magnetised along
the same axis, but with, in general, different strengths. Thus, there will be a �̄�𝐿, �̄�𝑅,
etc. that are not necessarily equal, and similarly for Δ𝐻𝐿 and Δ𝐻𝑅. The reason for
choosing the magnetisation along the same axis is such that we can ignore precession
terms of the kind above. However, we still have to deal with other terms resulting from
the magnetisation of the leads. The first is the anti-hermitian part from Eq. (2.119). To
deal with it, we must first consider the self-energy of the magnetic leads, which for the
right lead is given by Σ𝑅 = 𝐻𝑀𝑅𝐺0

𝑅𝐻𝑅𝑀 . Since the uncoupled propagator is diagonal
in the same basis as 𝐻𝑅, we can use the same magnetisation axis to write it as:

𝐺0
𝑅 =

𝐺0
𝑅↑ + 𝐺0

𝑅↓
2⏟⏟⏟⏟⏟
̄𝐺0
𝑅

+�̂� ⋅ �⃗�
𝐺0

𝑅↑ − 𝐺0
𝑅↓

2⏟⏟⏟⏟⏟
Δ𝐺0

𝑅

, (2.132)

where 𝐺0
𝑅↑ = (𝐸 − 𝐻𝑅↑ + 𝑖𝜂)−1, and similarly for 𝐺0

𝑅↓. Thus, the self-energy can be
decomposed in a similar manner as,

Σ = Σ̄ + �̂� ⋅ �⃗�ΔΣ. (2.133)

Consequently, going back to Eq. (2.119), we have to consider the terms:

{Γ̄ + (�⃗� ⋅ �̂�)ΔΓ, �⃗� ⋅ �̂�} + 𝑖 [�⃗� ⋅ �̂�, �⃗�𝑀 + (�⃗� ⋅ �̂�)ΔΣ] . (2.134)

The first thing we notice is that the term involving Γ̄ and �⃗�𝑀 are similar to before. Be-
cause we are considering the case of spin aligned along �̂�, the term in the commutator
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has two parallel vectors and is therefore zero. Thus, the only new term is the one in the
anti-commutator, which gives just 2ΔΓ, since �̂� is a unit vector. We are therefore left
with:

⟨ ̇̄𝑆𝑅�̂�⟩(2,3) = − ∫ 𝑑𝐸
ℏ tr[𝛾𝑅𝐺†

𝑀 ((Γ̄�̂� + 2�⃗�𝑀 × �̂�) ⋅ �⃗� + ΔΓ) 𝐺𝑀]. (2.135)

The final terms we have to deal with are from Eq. (2.121). The only quantity that has
changed has to do with 2𝒜[Σ†

𝑅�⃗� ⋅ �̂�], and thus calculating it, we find:

2𝒜[Σ†
𝑅�⃗� ⋅ �̂�] = 1

2 ({Γ, �⃗� ⋅ �̂�} + 𝑖 [Σ𝑅 + Σ†
𝑅, �⃗� ⋅ �̂�]) = Γ̄𝑅(�̂� ⋅ �⃗�) + ΔΓ𝑅, (2.136)

as above. Thus, the fourth term is:

⟨ ̇̄𝑆𝑅�̂�⟩(2,3) = ∫ 𝑑𝐸
ℏ tr[𝛾𝐺†

𝑀 (Γ̄𝑅(�̂� ⋅ �⃗�) + ΔΓ𝑅) 𝐺𝑀]. (2.137)

Putting it all together, the effect of magnetising the leads on the spin current along the
magnetisation axis is:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
( tr[𝛾𝑖𝐺†

𝑀 Γ̄𝑗(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑗𝐺†
𝑀 Γ̄𝑖(�̂� ⋅ �⃗�)𝐺𝑀]

+ tr[𝛾𝑖𝐺†
𝑀ΔΓ𝑗𝐺𝑀] − tr[𝛾𝑗𝐺†

𝑀ΔΓ𝑖𝐺𝑀])

+ 2 ∫ 𝑑𝐸
ℏ tr[𝛾𝑗𝐺†

𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀].

(2.138)

To round up, we note that the effect of includingmagnetisation in the case of the par-
ticle current is much simpler. Here, the derivation is unaffected by the possible mag-
netisation of the leads, and we simply have to substitute Γ → Γ̄ + (�⃗� ⋅ �̂�)ΔΓ. The result
of this leads to the generalised formula:

⟨ ̇̄𝑁𝑗⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
( tr[𝛾𝑖𝐺†

𝑀 Γ̄𝑗𝐺𝑀] − tr[𝛾𝑗𝐺†
𝑀 Γ̄𝑖𝐺𝑀]

+ tr[𝛾𝑖𝐺†
𝑀ΔΓ𝑗(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑗𝐺†

𝑀ΔΓ𝑖(�̂� ⋅ �⃗�)𝐺𝑀]).
(2.139)

Besides the presence of the precession term in the spin current, the expressions for
the particle and spin currents look identical under the interchange Γ̄ ↔ ΔΓ when
measured along themagnetisation axis, �̂�, whichmakes them easier tomemorise. One
should be careful not to take the comparison too far, however, since there are also Γ’s
hidden inside the propagators.
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2.6 SUMMARY

In this chapter, we set up the formalism for calculating particle and spin currents in the
general case of non-interacting electrons propagating through a molecule, connected
to any number of leads. The initial state of the electrons were described by the density
matrix, 𝜌0, which is either a time-averaged density matrix of scattering states, evolved
using the uncoupledHamiltonian,𝐻0, or a given initial statewith no off-diagonal terms
between the leads and themolecule. In this case, the initial density matrix could be rep-
resented in the molecule space through a set of operators 𝛾𝑖, where 𝑖 refers to the lead
index. The coupling out of themolecule to the leads is represented by a set of operators
Γ𝑖. In steady state, when the leads are in thermal equilibrium with an external reser-
voir, we find the equivalence 𝛾𝑖 = 𝑛(𝐸 − 𝜇𝑖)Γ𝑖/2𝜋, where 𝑛(𝐸 − 𝜇𝑖) is the equilibrium
distribution at chemical potential, 𝜇𝑖.

The general formula for the current into the 𝑗th lead, in the case of magnetic leads
with magnetisation along a unit vector, �̂�, is given by the formula:

⟨ ̇̄𝑁𝑗⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
( tr[𝛾𝑖𝐺†

𝑀 Γ̄𝑗𝐺𝑀] − tr[𝛾𝑗𝐺†
𝑀 Γ̄𝑖𝐺𝑀]

+ tr[𝛾𝑖𝐺†
𝑀ΔΓ𝑗(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑗𝐺†

𝑀ΔΓ𝑖(�̂� ⋅ �⃗�)𝐺𝑀]),

where Γ̄ is the average coupling to the leads, and ΔΓ represents the difference in the
coupling between spin aligned parallel and anti-parallel to the magnetisation direc-
tions. Thus, the non-magnetic limit is reached for ΔΓ → 0. This general formula is eas-
ily extended to handle transient effects by including an extra “virtual” lead, described
by:

𝛾𝜏 = 1
2𝜋𝜏 𝜌𝑀(𝑡0), Σ𝜏 = −𝑖

2𝜏 ,
where 𝜏 is effectively the time over which the current is averaged.

A similar analysis was done for the spin current, which gives an almost identical
generalised formula for the spin current into the 𝑗th lead along the magnetisation axis:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
( tr[𝛾𝑖𝐺†

𝑀 Γ̄𝑗(�̂� ⋅ �⃗�)𝐺𝑀] − tr[𝛾𝑗𝐺†
𝑀 Γ̄𝑖(�̂� ⋅ �⃗�)𝐺𝑀]

+ tr[𝛾𝑖𝐺†
𝑀ΔΓ𝑗𝐺𝑀] − tr[𝛾𝑗𝐺†

𝑀ΔΓ𝑖𝐺𝑀])

+ 2 ∫ 𝑑𝐸
ℏ tr[𝛾𝑗𝐺†

𝑀(�̂� × �⃗�𝑀) ⋅ �⃗�𝐺𝑀].

In the next chapter, we will treat the equations we have derived above pertubatively
in the spin-orbit coupling, which allows us to make statements about the magnitude of
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particle and spin currents in various scenarios, and derive the no-polarisation theorem
hinted at in the beginning of this chapter.



3
PERTURBAT ION THEORY

In this chapter, we start to use a bit more knowledge about themolecules being studied,
and apply the formalism introduced in chapter 2. In particular, we shall derive the no-
polarisation theorem that we mentioned in the beginning of the previous chapter. To do
so, we make use of the fact that the only spin-dependent term in the Hamiltonian of
the molecule, is the atomic spin-orbit interaction discussed in section 1.2 and given by
Eq. (1.7). As a notational convenience, we define the Λ-operator, Λ⃗ ≡ 𝜆�⃗�/ℏ and use the
definition of the electron spin operator, ⃗𝑆 = ℏ�⃗�/2, where �⃗� = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is the vector
of Pauli matrices, to write the atomic SOC as:

𝐻SO = Λ⃗ ⋅ �⃗�. (3.1)

For an atom with atomic number 𝑍, the coupling constant, 𝜆, scales roughly as 𝑍2

and thus the spin-orbit interaction is generally dominated by the heaviest elements
in a molecule visited by an electron. For organic molecules, typical atoms (C, N, O)
have a coupling constant of a few meV. In particular, for carbon atoms it is ∼ 6meV, as
mentioned in chapter 1. Compared to other energy scales in the molecule, such as the
energy spacing between molecular orbitals and the coupling to the leads, this energy
is generally small. This smallness of the SOC allows us to treat it perturbatively in the
propagators, which enables further manipulation of the equations derived earlier.

3.1 PART I C L E CURRENT

As a first study of the effect of the SOC and the techniqueswe shall use, we consider the
particle current. To relate it to the experiments, we consider an initial state that has a
spin polarisation, as is the case for the photoemission experiments using circularly po-
larised light, but in which the leads are considered independent of spin. For simplicity,
we assume that all of the electrons in each lead have the same degree of polarisation,
which allows us to write the density and 𝛾 matrices on the form:

𝜌0 → ∑
𝑖

1 + ⃗𝑎𝑖 ⋅ �⃗�
2 𝜌𝑖

0, 𝛾𝑖 → 1 + ⃗𝑎𝑖 ⋅ �⃗�
2 𝛾𝑖, (3.2)

65
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where ⃗𝑎𝑖 is a vector describing the polarisation axis and amount in the 𝑖th lead. It is
worth noting that this description does not generalise to all possible spin polarised
states. For instance, consider a state in an atom where the spin and orbital degrees are
entangled as:

|𝜓⟩ = 𝑎 |𝑝𝑥, ↑⟩ + 𝑏 ∣𝑝𝑦, ↓⟩ . (3.3)

Such a state cannot be written as a simple tensor product of the orbital and spin space,
and hence its associated densitymatrix does not factorise as above. To keep our descrip-
tion simple and manageable, we are going to ignore entangled states such as the one
above. The description does extend to the case where different states in the leads are
polarised a different amount. In that case, the label 𝑖 above can be extended to denote
each channel in the leads, or orbitals on the molecule, and thus ⃗𝑎𝑖 describes the spin
polarisation of electrons in that channel or orbital.

As we saw in section 2.4.1, all information regarding the particle current in the gen-
eral case is encoded in the transmission function, 𝑇𝑖→𝑗. In our case, it is given by:

𝑇𝑖→𝑗( ⃗𝑎𝑖) = tr[1 + ⃗𝑎𝑖 ⋅ �⃗�
2 𝛾𝑖𝐺†

𝑀Γ𝑗𝐺𝑀]. (3.4)

To make use of the smallness of the SOC, we write the Hamiltonian as 𝐻𝑀 = ℎ𝑀 +
Λ⃗ ⋅ �⃗�. Thus, expanding 𝐺𝑀 to first order in the SOC, we find

𝐺𝑀 ≈ 𝑔𝑀 + 𝑔𝑀(Λ⃗ ⋅ �⃗�)𝑔𝑀 , 𝑔𝑀 = 1
𝐸 − ℎ𝑀 − Σ + 𝑖𝜂 . (3.5)

Here, 𝑔𝑀 is the propagator of the molecule without the SO interaction. Plugging this
result back in, we find, again to first order:

𝑇𝑖→𝑗( ⃗𝑎𝑖) = tr[1 + ⃗𝑎𝑖 ⋅ �⃗�
2 𝛾𝑖𝑔†

𝑀 (Γ𝑗 + Λ⃗ ⋅ �⃗�𝑔†
𝑀Γ𝑗 + Γ𝑗𝑔𝑀Λ⃗ ⋅ �⃗�) 𝑔𝑀] + 𝒪[𝜆2]. (3.6)

For convenience, in all subsequent equations, the explicit notation that the equation
contains terms of order 𝜆2 and higher is omitted, unless otherwise noted.

To advance, we must use the fact that the trace over the identity matrix in spin space
is tr[𝜎0] = 2. The trace of all the Pauli matrices, though, are identical and equal to zero:
tr[𝜎𝑥] = tr[𝜎𝑦] = tr[𝜎𝑧] = 0. Thus, the trace over any Pauli matrix is zero,

tr[ ⃗𝑎 ⋅ �⃗�] = ⃗0. (3.7)

Using this result in conjuntion with Eq. (2.112), we conclude that for the trace of two
products of Pauli matrices, we get:

tr[( ⃗𝑎 ⋅ �⃗�)( ⃗𝑏 ⋅ �⃗�)] = 2 tr[ ⃗𝑎 ⋅ ⃗𝑏]. (3.8)
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These two equations cover exactly the types of traces involved in Eq. (3.6). Using the
fact that ⃗𝑎𝑖 is not an operator, and the operators 𝛾𝑖, Γ𝑗, 𝑔𝑀 are independent of spin, they
commute and application of the two equations above is straight forward. The resulting
transmission function becomes,

𝑇𝑖→𝑗( ⃗𝑎𝑖) = tr[𝛾𝑖𝑔†
𝑀Γ𝑗𝑔𝑀] + tr[𝛾𝑖𝑔†

𝑀 (Λ⃗ ⋅ ⃗𝑎𝑖𝑔†
𝑀Γ𝑗 + Γ𝑗𝑔𝑀Λ⃗ ⋅ ⃗𝑎𝑖) 𝑔𝑀], (3.9)

where we have now traced out the spin degrees of freedom to cancel the factor one-half.
The first thing we note about this expression is that if we define the propagator,

𝑔𝑀( ⃗𝑎𝑖) = 1
𝐸 − ℎ𝑀 − Σ − ⃗𝑎𝑖 ⋅ Λ⃗ + 𝑖𝜂

, (3.10)

it yields exactly the terms 𝑔𝑀 + 𝑔𝑀 ⃗𝑎𝑖 ⋅ Λ⃗𝑔𝑀 , when expanded to first order in Λ⃗. Thus,
as long as we only care about terms up to linear order in Λ⃗, we can substitute it back
into our equation for the transmission function, and we find the equivalence:

𝑇𝑖→𝑗( ⃗𝑎𝑖) = tr[𝛾𝑖𝑔†
𝑀( ⃗𝑎𝑖)Γ𝑗𝑔𝑀( ⃗𝑎𝑖)]. (3.11)

This equation is quite illuminating. First of all, the equation shows that the problem of
an electron with spin travelling through a molecule with spin orbit coupling is analo-
gous to a spinless electron travelling through amolecule with amagnetic field ∼ 𝜆 ⃗𝑎𝑖/ℏ.
That is, there is a Zeeman-like splitting of the energy of the electron, depending on the
alignment of its orbital angular momentum with this effective magnetic field. Because
it is proportional to ⃗𝑎𝑖, reversing the spin polarisation of the incoming electrons, in
effect, reverses the effective magnetic field.

Since the trace is basis-invariant, we are free to choose any basis we want. It turns
out that a convenient choice for a lot of calculations is a basis of real wave functions. In
such a basis, as shown in Appendix B, time-reversal symmetry can be represented by
complex conjugation. This ensures that the following identities hold for the matrices
involved:

ℎ𝑀 = ℎ∗
𝑀 = ℎ𝑇

𝑀 , Λ⃗ = −Λ⃗∗ = −Λ⃗𝑇 ,
where we have also used the hermitian nature of the Hamiltonian and angular mo-
mentum operators to relate them to their transpose. Similar equations also hold for the
spin-independent uncoupled Hamiltonians of the leads, 𝐻𝑗. Consequently, the uncou-
pled propagator in the leads is invariant under transposition:

𝐺0
𝑗 = (𝐺0

𝑗)𝑇 = 1
𝐸 − 𝐻𝑗 + 𝑖𝜂 (3.12)



68 PERTURBAT ION THEORY
fromwhich it follows that the self-energy is self-transposable, i. e.Σ𝑗 = Σ𝑇

𝑗 , orΣ∗
𝑅 = Σ†

𝑅.
In combination, the propagator 𝑔( ⃗𝑎𝑖) has a complex relationship with its adjoint. That
is,

𝑔∗
𝑀( ⃗𝑎𝑖) = 1

𝐸 − ℎ𝑀 − Σ† + ⃗𝑎𝑖 ⋅ Λ⃗ − 𝑖𝜂
= 𝑔†

𝑀(− ⃗𝑎𝑖). (3.13)

We are going to make one additional assumption. This assumption is that the initial
density matrix is also time-reversal invariant, which means that also 𝛾𝑖 = 𝛾∗

𝑖 = 𝛾𝑇
𝑖 .

Using the fact that the trace is invariant under transposition of its argument, tr[𝐴] =
tr[𝐴𝑇 ], we therefore find that Eq. (3.11) can be rewritten as:

𝑇𝑖→𝑗( ⃗𝑎𝑖) = tr[Γ𝑗𝑔∗
𝑀( ⃗𝑎𝑖)𝛾𝑖𝑔𝑇

𝑀( ⃗𝑎𝑖)] = tr[𝛾𝑖𝑔𝑀(− ⃗𝑎𝑖)Γ𝑗𝑔†
𝑀(− ⃗𝑎𝑖)]. (3.14)

This equation has the order of 𝑔𝑀 and 𝑔†
𝑀 reversed, when compared to our definition

of the transmission functions. However, if we sum over 𝑗, we can use theWard identity,
Eq. (2.79), to flip them over across Γ, to restore their normal ordering. Doing so, we
find the important identity:

∑
𝑗

𝑇𝑖→𝑗( ⃗𝑎𝑖) = ∑
𝑗

𝑇𝑖→𝑗(− ⃗𝑎𝑖), (3.15)

where the sum runs over both physical leads, and the time-dependent 𝜏 -lead in the
short time limit. It is important to note that this equation does not say that 𝑇𝑖→𝑗( ⃗𝑎𝑖) =
𝑇𝑖→𝑗(− ⃗𝑎𝑖), which would immediately get rid of any dependence of the transmission on
the spin polarisation.

Now, for systems with more leads, it is more illuminating to consider the net particle
current in and out of the 𝑗th lead, which we found in Eq. (2.88). It is given by:

⟨ ̇̄𝑁𝑗( ⃗𝑎)⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
(𝑇𝑖→𝑗( ⃗𝑎𝑖) − 𝑇𝑗→𝑖( ⃗𝑎𝑗)) . (3.16)

Using Eq. (3.15) on the last term, we find that the difference in the particle current
between opposite initial polarisations is therefore:

⟨ ̇̄𝑁𝑗( ⃗𝑎)⟩ − ⟨ ̇̄𝑁𝑗(− ⃗𝑎)⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
(𝑇𝑖→𝑗( ⃗𝑎𝑖) − 𝑇𝑖→𝑗(− ⃗𝑎𝑖)) . (3.17)

Note that in contrast to Eq (3.15), the sum here runs over the initial state index, 𝑖, and
not 𝑗.

3.1.1 Thermal equilibrium

We are now in a position to show a version of the no-polarisation theorem. It deals
specifically with the steady state limit. In this limit, the first thing to realise is that in
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thermal equilibrium, where as we saw in the previous chapter, 𝛾𝑖 = 𝑛(𝐸 − 𝜇𝑖)Γ𝑖/2𝜋𝑁 ,
Eq. (3.14) permits another identity, namely:

𝑇𝑖→𝑗( ⃗𝑎) = 𝑛𝐹 (𝐸 − 𝜇𝑖)𝑇𝑖𝑗( ⃗𝑎) = 𝑛𝐹 (𝐸 − 𝜇𝑖)𝑇𝑗𝑖(− ⃗𝑎), (3.18)

which follows by a permutation under the trace. Here, 𝑇𝑖𝑗( ⃗𝑎) = tr[Γ𝑖𝑔†
𝑀( ⃗𝑎)Γ𝑗𝑔𝑀( ⃗𝑎)]

are the standard thermal transmission functions from Landauer transport that we dis-
cussed in section 2.4.2. This equation tells us that, 𝑇𝑖𝑗( ⃗𝑎) = 𝑇𝑗𝑖(− ⃗𝑎), which is a state-
ment about time reversal symmetry and is a consequence of the Onsager reciprocal rela-
tions, named after the physicist Lars Onsager. I. e. moving from the 𝑖th to the 𝑗th lead
with an effective magnetic field strength ⃗𝑎 has the same transmission probability as
going in the opposite direction, with an opposite magnetic field. However, in the case
of just two leads, 𝐿 and 𝑅, we also derived using the Ward identity in Eq. (2.95) that,
𝑇𝐿𝑅( ⃗𝑎) = 𝑇𝑅𝐿( ⃗𝑎), i. e. equal transmission in both directions for the same effective mag-
netic field. Therefore, for a system with two leads in thermal equilibrium we arrive at
the important result:

𝑇𝐿𝑅( ⃗𝑎) therm. eq.= 𝑇𝐿𝑅(− ⃗𝑎). (3.19)

This relationship is quite profound and is exactlywhatwas stated as the no-polarisation
theorem. It tells us that to first order in the spin orbit coupling, no difference can be
measured between the particle current of oppositely polarised initial states, for two
leads in thermal equilibrium. It is in fact valid not just in thermal equilibrium, but for
any thermal distribution, i. e. a density matrix for which states of equal energy have
equal probability.

3.1.2 Breaking the theorem

The version of the theorem above, strictly speaking, only relates to experiments in
which the transmission of oppositely polarised electrons ismeasured. This is realised in
the photoemission experiments that use left- and right-handed polarised light to excite
the electrons of opposite handedness andmeasure the intensity of the transmitted elec-
trons. In those experiments, they do measure a difference between electrons polarised
in opposite directions, however. It is therefore important to ask why the theorem does
not hold in this case. The reason for that has to do with the fact that the initial state
of the photoemitted electrons is not in general equally populated for states with the
same energy. This is due to the fact that the transition elements of the interaction be-
tween an electron and an electromagnetic field between otherwise degenerate states is
not the same, leading to so-called selection rules. These are indicated by a black dashed
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Figure 3.1: Illustration of the photoexcitation or photoemission process. Electrons from a band
in the left lead are excited to higher-energy states. Because of the selection rules, otherwise
degenerate excited states are not equally populated. The electrons transport through the
molecule, primarily through resonant states and end up in the right lead where the current
is measured. Adapted with permission from Ref. 1.

arrow in Figure 3.1, which illustrates the whole transport process. To see this, consider
the matrix element in the Hamiltonian for an electron in an electric field, between two
states, 𝜓𝑖 and 𝜓𝑗:

𝑉𝑖𝑗 = ∫ 𝑑 ⃗𝑟 𝜓∗
𝑖 ( ⃗𝑟)𝜓𝑗( ⃗𝑟) ⃗𝑟 ⋅ ⃗𝐸( ⃗𝑟). (3.20)

For simplicity, we consider the case where 𝜓𝑖 is an 𝑠 orbital and 𝜓𝑗 is a 𝑝 orbital. If the
electric field is in the ̂𝑥-direction, then ⃗𝑟 ⋅ ⃗𝐸( ⃗𝑟) is anti-symmetric along the ̂𝑥-axis. Thus,
the matrix element is only non-zero if 𝜓𝑗 is also anti-symmetric along this axis. This is
the case for the 𝑝𝑥 orbital, but not for 𝑝𝑦 and 𝑝𝑧. Thus, an electron in such an electric field
will have a finite transition probability to the 𝑝𝑥 state, but not 𝑝𝑦 and 𝑝𝑧. However, for
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a free atom, the three 𝑝 orbitals are degenerate, so in thermal equilibrium, they should
be equally populated, leading to the excited electrons following a different distribution
than the thermal one.

This argument also applies to larger systems, where the states are more complicated.
The main message, however, is still the same, that is, the rate at which electrons are
excited by photons into otherwise degenerate states depend on symmetry considera-
tions related to the polarisation of the photon and the states. Therefore, the photoemit-
ted electrons will, in general, not populate degenerate states with equal probability,
thus breaking a fundamental assumption of the no-polarisation theorem. The theory
we have derived so far is thus consistent with the fact that there is a non-zero difference
in transmission in photoemission experiments.

3.1.3 The �⃗�-vector

An alternative description of Eq. (3.9), which shall prove to be a powerful tool in de-
scribing spin polarisation comes from defining a vector quantity, which we shall refer
to as the �⃗�-vector,

�⃗�𝑖→𝑗(𝐸) =
tr[𝛾𝑖𝑔†

𝑀 (Λ⃗𝑔†
𝑀Γ𝑗 + Γ𝑗𝑔𝑀Λ⃗) 𝑔𝑀]

tr[𝛾𝑖𝑔†
𝑀Γ𝑗𝑔𝑀]

. (3.21)

Note that the �⃗�-vector is a dimensionless quantity that exists independent of the spin
polarisation of the incoming electrons. It does, however, dependon the spin-independent
part of the density matrix and so is not entirely independent of the initial conditions by
which the electrons were prepared. With the definition of the �⃗�-vector, the transmis-
sion function takes another form,

𝑇𝑖→𝑗( ⃗𝑎𝑖) = 𝑇𝑖→𝑗(0) [1 + ⃗𝑎𝑖 ⋅ �⃗�𝑖→𝑗(𝐸)] , (3.22)

and thus we see that the �⃗�-vector describes the polarisation direction along which
transmission is maximised. Note that the transmission function is, by construction, lin-
ear in ⃗𝑎𝑖, and thus the transmission grows linearly with increasing polarisation.

Using Eq. (3.22), we can use it to write the difference in the particle current for op-
posite polarisations, Eq. (3.17), in terms of the �⃗�-vector as:

⟨ ̇̄𝑁𝑗( ⃗𝑎)⟩ − ⟨ ̇̄𝑁𝑗(− ⃗𝑎)⟩ = 2 ∫ 𝑑𝐸
ℏ ∑

𝑖
𝑇𝑖→𝑗(0) ⃗𝑎𝑖 ⋅ �⃗�𝑖→𝑗. (3.23)

Since the bare transmission, 𝑇𝑖→𝑗(0), is in general non-zero in thermal equilibrium, the
no-polarisation theorem is thus a statement that the �⃗�-vector vanishes in this case.
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Note that the �⃗�-vector is proportional to the angular momentum operator, �⃗�, which

is a so-called axial vector. Thus, the �⃗�-vector is itself an axial vector. Axial vectors trans-
form differently to polar vectors when looked at in a mirror. In particular, a mirror
operation in the 𝑥𝑦-plane, 𝜎𝑥𝑦, transforms the �⃗�-vector as:

𝜎𝑥𝑦(𝐷𝑥, 𝐷𝑦, 𝐷𝑧) = (−𝐷𝑥, −𝐷𝑦, 𝐷𝑧).

Consequently, if a systemhas amirror plane symmetry, the components of the �⃗�-vector
in the plane vanishes. It follows that if two such unique symmetry planes exist, the �⃗�-
vector vanishes entirely. These symmetry considerations must be extended to include
both the coupling to the leads and the molecule, however. If we align the leads such
that they are facing each other in the ̂𝑧-direction, the fact that we distinguish between
the leads in our setup breaks 𝑥𝑦-plane symmetry, since it would interchange the two
leads.

These symmetry considerations are important for understandingwhy the CISS effect
is only seen in SAMs of chiral molecules. If the molecule is a flat, conjugated polymer
like polyacetylene, the mirror symmetry in the plane prevents any polarisation in the
transmission direction. The symmetry would of course still allow polarisation normal
to the plane, but if the molecule is free to rotate along the axis, such a polarisation
would cancel out.

Finally, with the definition of the �⃗�-vector, we can begin to relate the asymmetry
factors measured in the photoemission experiments in Table 1.1 back to it. Recall that
the asymmetry factors were defined as 𝐴 = (𝐼+ − 𝐼−)/(𝐼+ + 𝐼−), where 𝐼+ and 𝐼−
are the beam intensities for opposite orientations of the circular polarised light, which
produce an electron beam with a polarisation of |𝑎| ≈ 0.15. These beam intensities are
equivalent to the particle currents we have calculated, and thus the asymmetry factor
is:

𝐴 = (1 + ⃗𝑎𝑖 ⋅ �⃗�+) − (1 − ⃗𝑎𝑖 ⋅ �⃗�−)
(1 + ⃗𝑎𝑖 ⋅ �⃗�+) + (1 − ⃗𝑎𝑖 ⋅ �⃗�−)

= ⃗𝑎𝑖 ⋅ (�⃗�+ + �⃗�−)
2 + ⃗𝑎𝑖 ⋅ (�⃗�+ − �⃗�−)

. (3.24)

Here we distinguish between �⃗�+ and �⃗�−, since induced chirality of the wave functions
of the substrate near the surface would, in principle, lead to two inequivalent initial
states being produced for the two directions of circular polarisation. In the limiting
case where the two are equal, the asymmetry factor reduces to ⃗𝑎𝑖 ⋅ �⃗�, and is thus a
direct way to probe the �⃗�-vector. In section 3.2, however, we shall see that the second
generation of photoemission experiments, whichmeasured the spin polarisation of the
outgoing electrons directly, allow for an even better determination.
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3.1.4 Transient effects

We now turn our attention to transient effects. As we saw earlier, in the long time limit,
the transmission function in the case of just a single lead was the same for opposite
directions of polarisation. This means that an electron with spin up has escaped with
equal certainty as an electron with spin down after enough time has passed. The state-
mentwas not that they escaped at the same rate, though.On shorter time scales, though,
we have to include the transmission functions, 𝑇𝜏→𝑅 and 𝑇𝑅→𝜏 . Assuming that only the
initial state on the molecule is spin polarised, the difference between the transfer rates
for opposite polarisations is again given by:

⟨�̇�( ⃗𝑎)⟩𝜏 − ⟨�̇�(− ⃗𝑎)⟩𝜏 = ∫ 𝑑𝐸
ℏ (𝑇𝜏→𝑅( ⃗𝑎) − 𝑇𝜏→𝑅(− ⃗𝑎))

= 2 ∫ 𝑑𝐸
ℏ 𝑇𝜏→𝑅(0) ⃗𝑎 ⋅ �⃗�𝜏→𝑅.

(3.25)

Here we again see the appearance of a �⃗�-vector quantity. The equation tells us that
two electrons put on the molecule with opposite spin, but in otherwise identical states
will, as time evolves, escape the molecule at different rates. They will both eventually
escape, but there is a difference in how long they will stay on the molecule. This dif-
ference is relevant for all of the experiments that rely on transient effects. For instance,
in the experiment where molecules were adsorbed on a surface, if equilibrium is estab-
lished after only a single electron has left the molecule, this electron will preferentially
have one spin over the other. It is also relevant for photoexcitation experiments, where
recombination is measured, since one spin species will stay longer on the molecule,
thus giving it more time to recombine. In these experiments, the working hypothesis
was that one spin species would be preferentially transported to the substrate. To test
this, they put the molecules on a magnetic substrate and claimed that by changing the
orientation of the magnet, one spin species would preferentially escape. It is not imme-
diately clear, however, that the magnet does not have an additional influence on the
experiment. Thus, in order to fully understand the mechanism, we must treat the case
of magnetic leads explicitly.

3.1.5 Transient effects with magnetic leads

We saw at the end of chapter 2 that the inclusion ofmagnetic leads lead to a substitution
of Σ → Σ̄ + (�̂� ⋅ �⃗�)ΔΣ, where �̂� is a unit vector pointing along the magnetisation
direction. This substitutionmust be done not only in the numerator of the transmission
functions, but also in denominators of the propagators. Fortunately, we can use the fact
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Table 3.1: Result of performing the partial trace over products of Pauli matrices.

Rank Formula
0 2
1 0
2 2 ⃗𝑎 ⋅ �⃗�
3 2𝑖( ⃗𝑎 × ⃗𝑏) ⋅ ⃗𝑐
4 2 [( ⃗𝑎 ⋅ ⃗𝑏)( ⃗𝑐 ⋅ ⃗𝑑) − ( ⃗𝑎 × ⃗𝑏) ⋅ ( ⃗𝑐 × ⃗𝑑)]
5 2𝑖[(( ⃗𝑎 ⋅ ⃗𝑏)( ⃗𝑐 × ⃗𝑑) + ( ⃗𝑎 × ⃗𝑏)( ⃗𝑐 ⋅ ⃗𝑑) − ( ⃗𝑎 × ⃗𝑏) × ( ⃗𝑐 × ⃗𝑑)) ⋅ ⃗𝑒]

that the only spin dependence of the propagators comes from this self energy, which
is diagonal for spin pointing along �̂�. Thus, we can identify:

𝑔𝑀 = 𝑔𝑀↑ + 𝑔𝑀↓
2⏟⏟⏟⏟⏟
̄𝑔𝑀

+(�̂� ⋅ �⃗�) 𝑔𝑀↑ − 𝑔𝑀↓
2⏟⏟⏟⏟⏟

Δ𝑔𝑀

, where 𝑔𝑀𝜎 = 1
𝐸 − ℎ𝑀 − Σ𝜎

. (3.26)

In fact, we can make an additional simplification by realising that to first order in ΔΣ:

̄𝑔𝑀 = 1
𝐸 − ℎ𝑀 − Σ̄, Δ𝑔𝑀 = ̄𝑔𝑀ΔΣ ̄𝑔𝑀 . (3.27)

If we substitute this back into our equations for the bare transmission and the �⃗�-vector,
we are going to get a rich number of terms, containing up to six products of Pauli
matrices. To keep things manageable, we are going to assume that the initial states
are unpolarised. In that case, we only have to include up to five. Thus, our first line
of action must be to extend our trace rules to higher number of products, so we can
deal with the terms efficiently. They can be derived from Eq. (2.112), and the result of
performing the partial trace over spin for traces of various ranks is shown in Table 3.1.

After using the formulas, only terms of rank 0, 2 and 4 survive andwe end upwith a
total of twenty non-zero terms, involving different permutations of the various barred
and Δ’d operators. All twenty terms are listed in Appendix D.1 for completeness. In
order to get a handle of the terms, we assume that the magnetisation is weak, so that
ΔΣ is small compared to Σ̄. In this case, only nine of the twenty terms are left to first
order in ΔΣ. The first term is the bare transmission:

𝑇 0
𝑖→𝑗 = tr[𝛾𝑖 ̄𝑔†

𝑀 Γ̄𝑗 ̄𝑔𝑀], (3.28)

while the second and third looks reminiscent of the numerator in the �⃗�-vector, butwith
ΔΓ𝑗 instead of Γ𝑗:

𝑇 1
𝑖→𝑗 = �̂� ⋅ tr[𝛾𝑖 ̄𝑔†

𝑀 (Λ⃗ ̄𝑔†
𝑀ΔΓ𝑗 + ΔΓ𝑗 ̄𝑔𝑀Λ⃗) ̄𝑔𝑀]. (3.29)
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The final six terms are a bit more involved and can be reduced to:

2�̂� ⋅ Re tr[𝛾𝑖 ̄𝑔†
𝑀 (Λ⃗ ̄𝑔†

𝑀 Γ̄𝑗 ̄𝑔𝑀ΔΣ + Λ⃗ ̄𝑔𝑀ΔΣ† ̄𝑔†
𝑀 Γ̄𝑗 + ̄𝑔†

𝑀ΔΣ†Λ⃗ ̄𝑔†
𝑀 Γ̄𝑗) ̄𝑔𝑀]. (3.30)

They represent a correction to the �⃗�-vector, arising from the induced magnetisation
of the electron from going in and out of the lead. Near molecular resonances, 𝑔𝑀 is
in general comparable to Γ𝑗, and thus they will be of the same order as the term in
Eq. (3.29). Away from resonances, however, the extra factor of 𝑔𝑀 causes them to be
suppressed. Note, on short time scales, Γ𝜏 is large and thus the resonances of 𝑔𝑀 are
smeared out, which means that the term in Eq. (3.29) dominates. Another way to view
this is by considering the fact that on short time scales, the electron does not have time
to become magnetised by proximity to the lead.

In either case, in the case of the photoexcitation experiments, we find that we can
formulate the problem of finding the difference in the escape rates for two different
orientations using the same construct, namely the �⃗�-vector. The existence of a �⃗�-vector
for this problem means that the rate at which electrons escape the molecule, does in-
deed depend on the orientation of the magnet in relation to this vector, specific to the
molecule. Thus, our theory at least qualitatively predicts the experimental observations
that the quenching of the emission spectrum depends on the orientation of the mag-
net. To actually calculate the emission spectrum, we can consider recombination in the
chromophore as a kind of lead, in the sense that once an electron emits a photon, and
it is detected, the system has relaxed back to its ground state.

To join the results of the no-polarisation theorem and the result above, we can in-
terpret them as saying that there is a difference in the speed with which an electron
traverses the molecule, depending on its spin. It does not say that there is a difference
in the conductance, though, since we saw that there is no difference in the current for
two oppositely polarised electron beams in equilibrium. To get a better understanding
of this observation, we now turn our attention to the spin current.

3.2 S P IN CURRENT

Armedwith the tools from the previous section, we now tackle the problem of calculat-
ing the spin current. To keep things simple, we are still going to assume that the leads
are independent of spin, and thus this description does not apply to magnetised leads.
Furthermore, to avoid unnecessary complications, we are going to consider an initial
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state that is entirely in one lead, while calculating the spin current into another. From
Eq. (2.138), the spin current from 𝑖 into 𝑗 is thus given by a single term:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ tr[𝛾𝑖𝐺†

𝑀Γ𝑗(�̂� ⋅ �⃗�)𝐺𝑀]. (3.31)

To dealwith the expansion of the propagators and the introduction of a polarised initial
state, we must consider traces over products of up to three Pauli matrices. Using the
fact that both ⃗𝑎𝑖 and �⃗� are not operators, we canmove them freely about under the trace.
By counting the number of Pauli matrices and applying the appropriate formulas for
the traces, from Table 3.1, it is straightforward to show that the surviving terms are:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ 𝑇 0

𝑖→𝑗 ( ⃗𝑎𝑖 + �⃗�𝑖→𝑗 + ⃗𝐶𝑖→𝑗 × ⃗𝑎𝑖) ⋅ �⃗�, (3.32)

where the �⃗�-vector is the same �⃗�-vector that we encountered when calculating the
particle current. There is a new vector showing up, though, which we call the ⃗𝐶-vector.
It is defined through the relation:

𝑇 0
𝑖→𝑗 ⃗𝐶𝑖→𝑗 = 𝑖 (tr[𝛾𝑖𝑔†

𝑀Γ𝑗𝑔𝑀Λ⃗𝑔𝑀] − tr[𝛾𝑖𝑔†
𝑀Λ⃗𝑔†

𝑀Γ𝑗𝑔𝑀]) , (3.33)

and, as evidenced by its cross-product with ⃗𝑎𝑖, describes a kind of precession of the
polarisation in the measured spin current. Like the �⃗�-vector, the ⃗𝐶-vector is also con-
structed from the angular momentum operator, and so it is also an axial vector and
share similar symmetry properties. The two vectors are in fact very closely connected
through a complex vector construct that we shall refer to as the ⃗𝐴-vector:

⃗𝐴𝑖→𝑗 =
tr[𝛾𝑖𝑔†

𝑀Λ⃗𝑔†
𝑀Γ𝑗𝑔𝑀]

tr[𝛾𝑖𝑔†
𝑀Γ𝑗𝑔𝑀]

= �⃗�𝑖→𝑗 + 𝑖 ⃗𝐶𝑖→𝑗
2 . (3.34)

That is, the �⃗�- and ⃗𝐶-vectors are twice the real and imaginary parts of the ⃗𝐴-vector,
respectively.

To help interpret these two vector quantities, it is instructive to consider the polar-
isation of the current, which we define as the ratio between the spin current and the
particle current. In the case studied above, where the initial state is entirely in the 𝑖th
lead and we measure the currents in another, 𝑗th lead, the total polarisation of the cur-
rent along the axis �̂� can be written as:

𝑃𝑗�̂� = ⟨ ̇̄𝑆𝑗�̂�⟩
⟨ ̇̄𝑁𝑗⟩

= ⃗𝑎𝑖 + �⃗�𝑖→𝑗 + ⃗𝐶𝑖→𝑗 × ⃗𝑎𝑖

1 + �⃗�𝑖→𝑗 ⋅ ⃗𝑎𝑖
⋅ �⃗�. (3.35)



3.2 S P IN CURRENT 77
Here we have introduced the “barred” vectors, �⃗�, ⃗𝐶, which are defined through the
integrals over their energy-resolved counterparts, and weighted by the bare transmis-
sion at that energy. They are therefore again related to an analogous barred ⃗𝐴-vector
as twice its real and imaginary parts,

⃗𝐴𝑖→𝑗 =
∫ 𝑑𝐸 𝑇 0

𝑖→𝑗(𝐸) ⃗𝐴𝑖→𝑗(𝐸)
∫ 𝑑𝐸 𝑇 0

𝑖→𝑗(𝐸) = �⃗�𝑖→𝑗 + 𝑖 ⃗𝐶𝑖→𝑗
2 . (3.36)

Before delving into the meaning of these equations, let us put Eq. (3.35) on a slightly
different form by loosening the notation. That is, we get rid of the subscripts and the
bars and replace ⃗𝑎𝑖 by ⃗𝑃in:

⃗𝑃out =
⃗𝑃in + �⃗� + ⃗𝐶 × ⃗𝑃in

1 + �⃗� ⋅ ⃗𝑃in
. (3.37)

This equation is probably easiest to interpret using the scattering picture. It gives us a
way to calculate the polarisation of the outgoing wave packets, given the polarisation
of the incomingwave packets, alongwith some vectors that are specific to themolecule
and the distribution of the electrons. Themost striking feature of the equation is that for
an unpolarised electron beam, ⃗𝑃in = 0, the outgoing electrons will become polarised
with polarisation �⃗�. If the electrons are already polarised, they will gain an additional
polarisation along �⃗�, which is renormalised by the factor 1 + �⃗� ⋅ ⃗𝑎 in the denominator,
and rotated around the axis, ⃗𝐶. It is important to remember that this equation is the
result of a perturbation to first order in aweak spin-orbit interaction, and thus the cross
product must be rescaled appropriately by higher order terms in 𝜆, which allows us to
interpret it as a rotation. Importantly, the fact that the net polarisation is a result of
the quantities being integrated up and weighted with the bare transmission functions
means that the effect is dominated by the �⃗�-vectors near molecular resonances. We
shall return to this point in the next chapter. For now, we shall try relate the values for
the photoemission experiments found in Table 1.2 to the �⃗�- and ⃗𝐶-vectors above.

Todo so,wefirst realise that taking the dot productwith ⃗𝑃in onboth sides of Eq. (3.37)
allows us to isolate �⃗� ⋅ ⃗𝑃in as:

�⃗� ⋅ ⃗𝑃in =
⃗𝑃in ⋅ ⃗𝑃in − ⃗𝑃out ⋅ ⃗𝑃in

⃗𝑃out ⋅ ⃗𝑃in − 1
. (3.38)

Thus, unlike the first generation of photoemission experiments, where the spin polar-
isation was determined using an asymmetry factor, we can extract the component of
the �⃗�-vector along ⃗𝑃in directly using the polarisation measurements before and after.
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Substituting this result back into Eq. (3.37) yields, after some algebra, an expression
for the �⃗� vector directly:

�⃗� = 1 − ⃗𝑃in ⋅ ⃗𝑃in
1 − ⃗𝑃out ⋅ ⃗𝑃in

⃗𝑃out − ⃗𝑃in − ⃗𝐶 × ⃗𝑃in. (3.39)

Note that if the experiments produce excitations for different polarisations of light
which only affects the spin polarisation, ⃗𝑃in, but otherwise leave the distribution un-
touched, we can add the �⃗�-vectors together from two experiments with ± ⃗𝑃in, and di-
vide by two which then yields:

�⃗� = 1 − ⃗𝑃in ⋅ ⃗𝑃in
2 (

⃗𝑃 +
out

1 − ⃗𝑃 +
out ⋅ ⃗𝑃in

+
⃗𝑃 −
out

1 + ⃗𝑃 −
out ⋅ ⃗𝑃in

) , (3.40)

where the superscripts ± on ⃗𝑃out refer to the measured outgoing polarisation for the
corresponding incoming spin polarisations of ± ⃗𝑃in, respectively.
It is worth pointing out that the whole analysis above is also valid for transient ef-

fects through the virtual 𝜏 -lead. Thus, just as we found earlier, there are also �⃗�- and
⃗𝐶-vectors associated with the spin current on short time scales.

3.2.1 Analysis of photoemission experiments

To fully understand the photoemission experiments, we must discuss the physics in-
volved in creating the initial state or density matrix. To this end, it is helpful to think of
a single electron in a bath of photons. The electron is initially in a non-excited state, but
as time evolves, it may interact with one of the photons and become excited. We are
interested only in what happens to the excited electrons. Thus, we are going to intro-
duce the projection operators, 𝑃 and 𝑁 that project into the excited and ground state
electronic subspaces, respectively. Following our brief discussion in section 3.1.1, the
absorption of a photon leading to the excitation is dependent on its polarisation. We
are going to consider photons that can be polarised either along the 𝑥- or the 𝑦-axis,
i. e. they are incident along the 𝑧-axis.
We consider states in the scattering picture. For simplicity, let us assume that the

system contains 𝑛 photons initially. Projecting into the 𝑃 space, we find:

𝑃 |Ψ⟩ = 𝑖𝜂 ∑
𝑘∈𝑁

𝜓𝑘𝑃𝐺(𝐸𝑘 + ℏ𝜔𝑛) |𝑘, 𝑛⟩ , (3.41)

where the sum runs over ground state states. Consequently, inserting a complete set
𝑃 + 𝑁 , and using 𝑃 |𝑘, 𝑛⟩ = 0, we end up with

𝑃 |Ψ⟩ = 𝑖𝜂 ∑
𝑘∈𝑁

𝜓𝑘𝐺0
𝑃 𝐻𝑃𝑁𝐺𝑁 |𝑘, 𝑛⟩ , (3.42)
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where we have omitted the energy dependence for brevity and 𝐻𝑃𝑁 are the transition
matrix elements of the interaction of the electron with the electromagnetic field, that
was given in Eq. (3.20). The superscripted zero on𝐺0

𝑃 indicates that it is the propagator
in the 𝑃 subspace without this transition matrix, but still evolved using the full pure
electronicHamiltonian. Consequently, the derivation is exactly identical to before, with
|𝑘⟩ substituted by 𝐻𝑃𝑁𝐺𝑁 |𝑘⟩.

Importantly, as we have seen, the transition elements depend on the polarisation of
the incoming light. Therefore, for linearly polarised light, the associated density matrix
will look like:

𝜌𝑥/𝑦
𝑃 = 𝐻𝑥/𝑦

𝑃𝑁𝐺𝑥/𝑦
𝑁 𝜌0(𝐺𝑥/𝑦

𝑁 )†𝐻𝑥/𝑦
𝑁𝑃 . (3.43)

Now, in the experiments they use either clockwise (+) or counter-clockwise(−) po-
larised light, which have transition matrices given by:

𝐻±
𝑃𝑁 = 1√

2
(𝐻𝑥

𝑃𝑁 ± 𝑖𝐻𝑦
𝑃𝑁) , 𝐻±

𝑁𝑃 = 1√
2

(𝐻𝑥
𝑁𝑃 ∓ 𝑖𝐻𝑦

𝑁𝑃 ) . (3.44)

The full propagators, 𝐺𝑥/𝑦
𝑁 are going to contain self-energies of the type:

Σ𝑥/𝑦
𝑃 = 𝐻𝑥/𝑦

𝑁𝑃 𝐺𝑃
0 𝐻𝑥/𝑦

𝑃𝑁 . (3.45)

Consequently, the corresponding self-energies for circularly polarised light are given
by:

Σ±
𝑃 = 1

2 (𝐻𝑥
𝑁𝑃 ∓ 𝑖𝐻𝑦

𝑁𝑃 ) 𝐺𝑃
0 (𝐻𝑥

𝑃𝑁 ± 𝑖𝐻𝑦
𝑃𝑁) = Σ𝑥

𝑃 + Σ𝑦
𝑃

2⏟⏟⏟⏟⏟
Σ̄𝑃

∓ Σ𝑥𝑦
𝑃 − Σ𝑦𝑥

𝑃
2𝑖⏟⏟⏟⏟⏟

ΔΣ𝑃

, (3.46)

and we find
𝐺±

𝑁 = 1
𝐸 − 𝐻𝑁 − Σ̄𝑃 ± ΔΣ𝑃 + 𝑖𝜂 . (3.47)

Here, Σ̄𝑃 represents the self-energy onewould get for randomly polarised/unpolarised
light, and ΔΣ𝑃 represents the deviation from this.
If the coupling is weak, such that 𝐻𝑁𝑃 is small, we can treat it pertubatively. Since

the densitymatrix already contains two factors of𝐻𝑁𝑃 , terms involving the self-energy
would be to fourth order, and assuming that ΔΣ𝑃 is smaller than Σ̄𝑃 , we can approxi-
mate 𝐺𝑁 ≈ ̄𝐺𝑁 . In this case, we can write the density matrix as:

𝜌±
𝑃 = 1

2 (𝐻𝑥
𝑃𝑁 ± 𝑖𝐻𝑦

𝑃𝑁) ̄𝐺𝑁𝜌0 ̄𝐺†
𝑁 (𝐻𝑥

𝑁𝑃 ∓ 𝑖𝐻𝑦
𝑁𝑃 ) = 𝜌𝑥

𝑃 + 𝜌𝑦
𝑃

2⏟
̄𝜌𝑃

± 𝜌𝑥𝑦
𝑃 − 𝜌𝑦𝑥

𝑃
2𝑖⏟⏟⏟⏟⏟

Δ𝜌𝑃

, (3.48)

where ̄𝜌𝑃 is the density matrix of randomly polarised light, and Δ𝜌𝑃 is the deviation.
Note that the notation Δ𝜌𝑃 might be a bit misleading, since Δ𝜌𝑃 does not satisfy the
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usual requirements of a densitymatrix, i. e. it is not positive semi-definite. It is, however,
still hermitian and when added or subtracted from ̄𝜌𝑃 it must form a proper density
matrix, since 𝜌±

𝑃 is. Assuming that the substrate is achiral, symmetrywould dictate that
the number of electrons excited by the incoming light is independent of its handedness.
Thus, it must be the case that tr[𝜌+

𝑃 ] = tr[𝜌−
𝑃 ]. Consequently,

tr[𝜌±
𝑃 ] = tr[ ̄𝜌𝑃 ] ± tr[Δ𝜌𝑃 ] ⇒ tr[Δ𝜌𝑃 ] = 0. (3.49)

This is trivially satisfied if Δ𝜌𝑃 = ∑𝑖( ⃗𝑎𝑖 ⋅ �⃗�) ̄𝜌𝑃,𝑖, i. e. if the correction is only related to
changing the distribution of spin of the excited electrons. Note that the right hand side
must contain the blocks of ̄𝜌, since an unpaired �⃗� would result in negative probabili-
ties, which is unphysical. Δ𝜌𝑃 may, however, also contain terms that are unrelated to
spin, but modulate the distribution of the orbitals into which the electrons are excited.
Pulling out the spin-dependence of Δ𝜌𝑃 , we thus find:

𝜌±
𝑃 = ∑

𝑖

1 ± ⃗𝑎𝑖 ⋅ �⃗�
2 ̄𝜌𝑃,𝑖 ± 1

2Δ𝜌𝑃 . (3.50)

Note that the factors of a half is to ensure that a fully polarised state does not contain
two electrons. The analysis now carries on as before, except we are now going to con-
sider the possibility of multiple channels for the ̄𝜌𝑃 terms. Summing over all of the
channels, we get that the spin current is given by:

⟨ ̇̄𝑆𝑗�̂�⟩ = ∫ 𝑑𝐸
ℏ (∑

𝑖
𝑇 0

𝑖→𝑗(± ⃗𝑎𝑖 + �⃗�𝑖→𝑗 ± Δ�⃗� ± ⃗𝐶𝑖→𝑗 × ⃗𝑎𝑖) ⋅ �̂�) , (3.51)

where, the bare transmission is defined as that relating only to ̄𝜌𝑃 , i. e.

𝑇 0
𝑖→𝑗 = tr[ ̄𝛾𝑖𝑔†

𝑀Γ𝑗𝑔𝑀]. (3.52)

Eq. (3.51) is a kind of average over the different initial polarisations and �⃗�-vectors from
each channel, weighted by the transmission through that channel andmultiplied by the
bare transmission. To see this, if we divide and multiply the integrand by the sum over
bare transmissions,

(∑
𝑖

𝑇 0
𝑖→𝑗) [

∑𝑖 𝑇 0
𝑖→𝑗( ⃗𝑎𝑖 + �⃗�𝑖→𝑗 + ⃗𝐶𝑖→𝑗 × ⃗𝑎𝑖) ⋅ �̂�

∑𝑖 𝑇 0
𝑖→𝑗

] , (3.53)

the object inside square brackets is the weighted average of each of the terms. The term
related to the ⃗𝐶-vector, however, becomes theweighted average of thewhole precession
term, ⃗𝐶𝑖 × ⃗𝑎𝑖. There is also a new vector in the problem, the Δ�⃗�-vector, which we have
defined as:

Δ�⃗� =
2Re tr[Δ𝛾𝑔†

𝑀Λ⃗𝑔†
𝑀Γ𝑗𝑔𝑀]

∑𝑖 𝑇 0
𝑖→𝑗

, (3.54)
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and thus relates to the difference in the orbital distribution of the excited electrons.

To get the polarisation, we have to consider the particle current as well. It is given by:

⟨ ̇̄𝑁 𝑗⟩ = ∫ 𝑑𝐸
ℏ ∑

𝑖
𝑇 0

𝑖→𝑗(1 ± ⃗𝑎𝑖 ⋅ �⃗�𝑖→𝑗 ± Δ𝑇 ), (3.55)

where, analogous to the Δ�⃗�-vector, Δ𝑇 is defined as:

Δ𝑇 =
tr[Δ𝛾𝑔†

𝑀Γ𝑗𝑔𝑀]
∑𝑖 𝑇 0

𝑖→𝑗
. (3.56)

Introducing bars as before, to indicate the weighted average now over both energies
and channels, we thus find that the total polarisation of the outgoing electrons is given
by:

⃗𝑃 ± = ± ⃗𝑎 + �⃗� ± Δ�⃗� + ⃗𝐶 × ⃗𝑎
1 ± �⃗� ⋅ ⃗𝑎 ± Δ𝑇

. (3.57)

Now, if ⃗𝑎𝑖 and �⃗�𝑖→𝑗 and ⃗𝑎𝑖 and ⃗𝐶𝑖→𝑗 are uncorrelated, then we can split up the average
into the product of the average of the two vectors independently. To attempt to justify
this, we must consider the origin of the two quantities. ⃗𝑎𝑖 is related to the polarisation
of the light, while �⃗�𝑖 and ⃗𝐶𝑖 are related to the initial state for random light polarisation,
and should therefore be independent. Consequently, the vectors must be uncorrelated
and we may write �⃗� ⋅ ⃗𝑎 = �⃗� ⋅ ⃗𝑎.
We can thus lose the bars and replace ⃗𝑎 by the incoming polarisation:

⃗𝑃 ±
out =

⃗𝑃 ±
in + �⃗� ± Δ�⃗� + ⃗𝐶 × ⃗𝑃 ±

in
1 + �⃗� ⋅ ⃗𝑃 ±

in ± Δ𝑇
. (3.58)

Similar to how we did at the end of the previous section, we can now take the inner
product with ⃗𝑃 ±

in to isolate the �⃗�-vector. After a bit of algebra, this yields:

�⃗� = 1 ± Δ𝑇 − |𝑃 ±
in |2

1 − ⃗𝑃 ±
in ⋅ ⃗𝑃 ±

out

⃗𝑃 ±
out − ⃗𝑃 ±

in − ⃗𝐶 × ⃗𝑃 ±
in ± (( ⃗𝑃 ±

in ⋅ Δ�⃗�) ⃗𝑃 ±
out

⃗𝑃 ±
in ⋅ ⃗𝑃 ±

out − 1
− Δ�⃗�) . (3.59)

This equation is similar to what we got before, except for the terms involving Δ�⃗� and
Δ𝑇 . Unfortunately, this equation contains four unknowns, �⃗�, ⃗𝐶, Δ�⃗� and Δ𝑇 , but in all
of the photoemission experiments, only three polarisations were measured: linear and
the two circular polarisations. This leaves us unable to determine all four quantities.

We can make some progress, however, by noting that the experiments all measure
the spin polarisation only along the ̂𝑧-axis. Projecting along this axis, assuming that the
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photoemitted electrons are initially polarised in the ̂𝑧-direction, the cross product with
the ⃗𝐶-vector vanishes. We are thus left with the simpler equations:

𝑃 ±
out = 𝑃 ±

in + 𝐷 ± Δ𝐷
1 + 𝐷𝑃 ±

in ± Δ𝑇 ⇒ 𝐷 = 𝑃 ±
out − 𝑃 ±

in ± (Δ𝑇 𝑃 ±
out − Δ𝐷)

1 − 𝑃 ±
in𝑃 ±

out
. (3.60)

Using the fact thatΔ𝐷 andΔ𝑇 are only present for circularly polarised light, and gives-
the projection of �⃗�-vector can easily be calculated for unpolarised photons, and gives:

𝐷 = 𝑃 𝑢
out − 𝑃 𝑢

in
1 − 𝑃 𝑢

in𝑃 𝑢
out

, (3.61)

where the superscript, 𝑢, refers to unpolarised light. Note that we retain the possibility
of the unpolarised light to still generate spin polarised electrons. The reason for keep-
ing this is due to the fact that such a non-zero polarisation for linearly polarised light
is found in experiments on polycrystalline gold substrates. Plugging this into the equa-
tion for circularly polarised light, we can define a factor relating the quantities Δ𝑇 and
Δ𝐷, to the measured polarisations:

𝐴± ≡ (1 − 𝑃 ±
in𝑃 ±

out)
𝑃 𝑢
out − 𝑃 𝑢

in
1 − 𝑃 𝑢

in𝑃 𝑢
out

− (𝑃 ±
out − 𝑃 ±

in ) = ±(Δ𝑇 𝑃 ±
out − Δ𝐷). (3.62)

From this definition, a bit of algebra lets us extract Δ𝑇 and Δ𝐷 as:

Δ𝑇 = 𝐴+ + 𝐴−

𝑃 +
out − 𝑃 −

out
, Δ𝐷 = Δ𝑇 𝑃 +

out + 𝑃 −
out

2 − 𝐴+ − 𝐴−

2 . (3.63)

Now, there is one technicality that we have not dealt with. It is related to the fact that
in our derivation, we have spoken of unpolarised light, whereas in the experiments,
they use a linearly polarising filter, such that the incoming light is in fact not randomly
polarised, as we had assumed. However, we are going to blindly ignore this fact and
assume that the distribution of excited electrons for linearly polarised and randomly
polarised light is, for our purpose, the same. In Table 3.2 we list the calculated values
of the projection of the 𝐷- and Δ𝐷-vectors, as well as Δ𝑇 , for the different experiments
using the reported data. The errors on the experimental data have been estimated from
the data to be around ±5% for all experiments. Although there are slight variations,
the 5% error has been choosen as a reasonable lower bound. In some of the columns, a
dash is printed instead of a value. This has been done in the cases where the calculation
yielded an error of more than 103. For the experiments, on polycrystalline gold using
bacteriorhodopsin and oligopeptides, the polarisation of the bare gold profiles were
not reported and the values from the dsDNA studies was used instead as the incoming
polarisations. The polarisation from the bare surfaces are shown in Table D.1.
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Table 3.2: Polarisation quantities for photoemission experiments calculated from experimental
data.

Molecule Substrate 𝐷 (%) Δ𝐷 (%) Δ𝑇 (%) 𝛿 (%)
50-bp dsDNA Au(111) −31 ± 7 30 ± 90 −40 ± 280 0.0 ± 8
40-bp dsDNA Au(poly.) −40 ± 7 20 ± 120 −50 ± 330 1.3 ± 8
50-bp dsDNA −38 ± 7 12 ± 82 −40 ± 230 1.3 ± 8
78-bp dsDNA −58 ± 6 −10 ± 140 10 ± 240 −0.4 ± 7
Bacteriorhodopsin Au(poly.) 12 ± 7 1 ± 24 10 ± 190 −0.5 ± 9
Bacteriorhodopsin Al(poly.) 15 ± 7 – – 0.0 ± 9
AL5 oligopeptide Au(poly.) −13 ± 7 2 ± 18 −10 ± 160 0.4 ± 8
AL6 oligopeptide −16 ± 7 0 ± 26 0 ± 170 −0.1 ± 9
AL7 oligopeptide −20 ± 7 3 ± 38 −20 ± 210 0.9 ± 9
M-helicene Cu(332) −7 ± 7 20 ± 630 – 0.6 ± 9
P-helicene 12 ± 7 10 ± 210 – −0.5 ± 9
M-helicene Ag(110) −9 ± 7 2 ± 34 −20 ± 350 −0.5 ± 9
P-helicene 7 ± 7 – – −0.9 ± 9
M-helicene Au(111) −8 ± 7 −3 ± 5 −2 ± 29 0.7 ± 9
P-helicene 8 ± 7 0 ± 6 0 ± 33 0.0 ± 9
L-CuO film (20nm) Au(111) −12 ± 7 – – –
D-CuO film (20nm) 4 ± 7 – – –

The last column of the table contains a value, 𝛿, which we have defined as:

𝛿 = 𝐷+ + 𝐷−

2 − �⃗�𝑢, (3.64)

where 𝐷± are the �⃗�-vectors calculated assuming Δ𝐷 and Δ𝑇 are zero. I. e. the differ-
ence between the �⃗�-vector for unpolarised light and the �⃗�-vector as calculated using
Eq. (3.40). If this assumption was true, we should find 𝛿 = 0. In our analysis above, we
assumed that the emitted electrons had their spin aligned exactly parallel to the ̂𝑧-axis.
If this was not the case, Eq. (3.40) would still hold assuming Δ𝐷 and Δ𝑇 were zero.
Thus, 𝛿 is a measure of how consistent the experiments are with Δ𝐷 and Δ𝑇 being
zero.

Unfortunately, as evidenced by the table, the errors on the experiments are too large
to really say anything meaningful about Δ𝐷 and Δ𝑇 , except for the fact that they are
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consistent with being zero. This is also reflected in 𝛿, which, despite the large errors,
is generally vanishing. Thus, the data is consistent with the simpler model, i. e. the
assumption that the part of Δ𝜌𝑃 pertaining to the orbital degrees of the excitation can
be ignored.

3.2.2 No-polarisation theorem

Having studied the particle and spin currents and how they relate to the experiments,
we are now ready to derive a more general form of the no-polarisation theorem. It
takes its outset in traces of the type tr[𝛾𝐿𝑔†

𝑀Λ⃗𝑔†
𝑀Γ𝑅𝑔𝑀], which we have seen in the

numerator of the ⃗𝐴-vector. The proof is about showing that if 𝛾𝐿 is proportional to Γ𝐿,
and the system has only two leads, the ⃗𝐴-vector is a purely imaginary quantity, i. e. the
�⃗�-vector vanishes. Our starting point is to consider the trace

tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀Γ𝑅𝑔𝑀] = 𝑖 tr[Γ𝐿𝑔†
𝑀Λ⃗(𝑔𝑀 − 𝑔†

𝑀)] − tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀(Γ − Γ𝑅)𝑔𝑀], (3.65)

where in the last equality, we have used Γ = Γ𝐿 + Γ𝑅 and the relationship, 𝑖(𝑔𝑀 −
𝑔†

𝑀) = 𝑔†
𝑀Γ𝑔𝑀 that we have seen several times already. Using the fact that in a real

basis, Λ⃗ = −Λ⃗𝑇 , Γ𝐿 = Γ𝑇
𝐿 and 𝑔𝑀 = 𝑔𝑇

𝑀 , the real part of the first term is identically
zero. To see this, note that from transposition and cyclic permutations of the argument
inside the trace, we find that

tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀] = − tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀] = 0, (3.66)

and,
tr[Γ𝐿𝑔†

𝑀Λ⃗𝑔𝑀] = − tr[Γ𝐿𝑔𝑀Λ⃗𝑔†
𝑀] = − tr[Γ𝐿𝑔†

𝑀Λ⃗𝑔𝑀]
∗
. (3.67)

Since the first equation is zero and the last equation tells us that it is purely imaginary,
we find that the real part of this term vanishes.

For the second term in Eq. (3.65), we again use the invariance of the trace under
transposition and cyclic permutations, to end up with:

tr[Λ⃗𝑔†
𝑀Γ𝐿𝑔𝑀Γ𝐿𝑔†

𝑀] = − tr[Λ⃗𝑔†
𝑀Γ𝐿𝑔𝑀Γ𝐿𝑔†

𝑀] = 0. (3.68)

Consequently, the ⃗𝐴-vector is purely imaginary and given by:

⃗𝐴𝐿→𝑅 = 𝑖
tr[Γ𝐿𝑔†

𝑀Λ⃗𝑔𝑀]
tr[Γ𝐿𝑔†

𝑀Γ𝑅𝑔𝑀]
. (3.69)

The fact that the real part of the ⃗𝐴-vector vanishes, means that only the ⃗𝐶-vector sur-
vives. Thus, the spin of the incoming electrons may precess, but they will not become
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additionally polarised. Crucially, the theorem depends on the requirement that Γ =
Γ𝐿 + Γ𝑅. If we add an extra lead to the system, which contributes a term to the self-
energy, Γ𝑌 , we would have found instead: Γ − Γ𝑅 = Γ𝐿 + Γ𝑌 . The Γ𝐿 term would still
vanish, but now there would be a new non-zero real part,

Re tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀Γ𝑅𝑔𝑀] = −Re tr[Γ𝐿𝑔†
𝑀Λ⃗𝑔†

𝑀Γ𝑌 𝑔𝑀]. (3.70)

This is consistent with previous theoretical works, which found that in the Landauer
transport regime, significant spin polarisation could only be achieved if a third lead or
other dephasing terms, resulting in an anti-hermitian self-energy, were added to the
system.

In fact, we see that the total spin is conserved. The addition of an extra lead simply
means that a spin current into the right lead results in an opposite spin current into the
extra 𝑌 -lead. Therefore, to make an argument for dephasing terms, somehow spin has
to be lost to the environment.

As mentioned, dephasing due to coupling to vibrations or other bosonic degrees
of the system does not permit breaking of the no-polarisation theorem. This can be
realised by the following analysis: Let the fullHamiltonian of the electronic and bosonic
system be written in second quantisation as:

𝐻full = 𝐻𝑒 ⊗ 𝐻𝑏⏟
𝐻

+𝑉int, 𝑉int = ∑
𝑘𝑘′,𝑞

𝑉𝑘𝑘′,𝑞𝑐†
𝑘𝑐𝑘′(𝑏𝑞 + 𝑏†

𝑞). (3.71)

If there is a total of 𝑁 bosonic modes, the full state can be written using 𝑁 +1 quantum
numbers: the electron state and the occupation of the 𝑁 bosonic modes:

|Ψ⟩ = |𝑘, 𝑛1, … 𝑛𝑁⟩ . (3.72)

Now, the claim is that the self-energy from the coupling to bosons leads to an extra
“dephasing lead”. If we look at the propagator for the full state, and only consider terms
which leave the bosonic part unchanged, we do indeed get out an effective electronic
propagator, with an effective self-energy from the coupling to the bosons. To see this,
we can write the full propagator using the Dyson equation as:

𝐺full = 𝐺 + 𝐺𝑉int𝐺 + 𝐺𝑉int𝐺𝑉int𝐺full. (3.73)

Because of the fact that 𝑉int contains only products involving one bosonic creation or
annihilation operator, wemust have an even number of interactions to leave the bosonic
degrees unchanged. Thus, the self-energy from the bosons in this case becomes:

Σ𝑏 = tr𝑏[𝑉int𝐺𝑉int], (3.74)
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where the trace only runs over the bosonic degrees, and it has been introduced to ensure
that only diagonal terms are included. We therefore get an effective electron propaga-
tor,

𝐺𝑒 = 1
𝐸 − 𝐻𝑒 − Σ𝑏 + 𝑖𝜂 , (3.75)

whichwould indeed appear to allowus to break the no-polarisation theorem.However,
if we are calculating the current, the transmission function, tr[𝛾𝐿𝐺†

𝑀Γ𝑅𝐺𝑀], contains
two full propagators. Thus, from the Dyson expansion above, there is an extra term re-
lated to taking one power of 𝑉int from each propagator. This term is known as a vertex
correction, and turns out to be a crucial ingredient to a correct analysis. To see this, no
additional calculations actually need to be done, since at no point in our derivations
have we assumed that the states we were dealing with did not include extra bosonic
degrees of the type above. Thus, we can simply use the full Hamiltonian given above
which includes both the electronic and bosonic degrees and do the analysis using the
full states. Consequently, if the combined electron and bosonic system is in thermal
equilibrium, the no-polarisation theorem will still hold. It does mean, however, that if
the electronic system is in thermal equilibrium, but the bosonic system is not, the theo-
remwill be broken. An example of coupling to a bosonic system out of equilibrium are
the experiments which involve laser irradiation, since the laser beam comes from a par-
ticular direction, often with a specific polarisation. In this case, otherwise degenerate
photonic states are unequally populated. In general, though, in the case of phonons or
vibrations, it is fair to assume that the bosonic system is thermalised. Therefore, such
a coupling to the environment does not provide a means to break the no-polarisation
theorem.

3.2.3 Electrochemistry experiments and the sudden approximation

We now turn our attention towards the electrochemistry experiments in which a gate
voltage is applied. In these experiments, we have a molecule connected to a single lead.
The system is initially in equilibrium, and thus no current flows between the molecule
and the lead. When the gate voltage is applied, the Hamiltonian of the molecule is
altered by adding a constant electric field across, and thus a linear potential, 𝑈 , de-
pending on the 𝑧 coordinate:

𝐻𝑀 = 𝐻𝑀,0 + 𝑒𝑈(𝑧). (3.76)

To describe this, we can attempt to use a very simple model, the sudden approximation.
This approximation says that the density matrix before and after the field is applied
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Figure 3.2: (A) Illustration of a molecule in equilibrium with a lead. (B) The application of an
electric field shifts the molecular levels and causes electrons to flow from the molecule to
the lead.

is the same. In other words, the field is applied so suddenly that the electrons do not
have time to react. Of course, the application of the voltage does not happen so fast in
reality, but we shall use it for illustrative purposes. Now, we know that the initial state
was in equilibrium for the system without the gate. We denote the associated density
matrix 𝜌𝑖. We also assume that as time evolves, the density matrix with the gate will
evolve into an equilibrium configuration, that we denote 𝜌𝑈 . In this configuration, by
assumption of it being an equilibrium state, no net current will flow on any time scale.
The interesting physics happens in the transition between the two configurations. Thus,
we are interested in the difference,

Δ𝜌 = 𝜌𝑖 − 𝜌𝑈 , (3.77)

which is the densitymatrixwe are going to plug into our equations, to find the response
of the system on short time scales.

Now, we assume that the gate is grounded to the lead, such that the equilibrium
state projected into the lead is the same with and without it. The cross-terms between
the lead and the molecule, are a little harder to do away with, and should in principle
be treated in full. However, for simplicity, we are going to argue that the important
physics can be understood from the fact that the molecular orbitals are shifted above
the chemical potential of the leads, thus resulting in the transfer of electrons away
from the molecules. The information about the number of electrons on the molecule
resides in the block of the density matrix belonging to the molecule, i. e. the diagonal
𝜌𝑀 block. To see this, note that the number of electrons on the molecule is exactly the
trace, tr[𝜌𝑀] = tr[𝜌𝑀 ]. Thus, the change in the occupation numbers can be understood
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from the diagonal part, andwe therefore ignore the cross-terms of Δ𝜌 between the lead
and the molecule. The spin current is therefore given by the usual equation:

⟨ ̇̃𝑆𝑅�̂�⟩𝜏 = ∫ 𝑑𝐸
ℏ tr[Δ𝛾𝜏𝐺†

𝑀Γ𝑅(�⃗� ⋅ �̂�)𝐺𝑀], (3.78)

whereΔ𝛾𝜏 = Δ𝜌ℏ/2𝜋𝜏 . Importantly, this equation is not covered by the no-polarisation
theorem. To see this, note that Δ𝛾𝜏 is, in general, not proportional to Γ𝜏 , which is pro-
portional to the identity matrix. Only in the specific case where Δ𝛾𝜏 spans the entire
molecular subspace are they proportional, and the no-polarisation theorem causes the
effect to vanish. As a consequence, applying a sudden gate voltage leads to charge re-
organisation. Because of the charging of the molecule, it is likely that only one electron
will have to be transferred to the substrate. Sincewe have already seen that for such tran-
sient effects, one spin escapes faster than the other, there will be a preferential transfer
of that spin species. We can find associated time-dependent �⃗�- and ⃗𝐶-vectors to de-
scribe the polarisation. The time scale over which this happens is undoubtedly shorter
than the experimental relaxations observed in the Hall response of devices measur-
ing this effect. However, as discussed in section 1.3.4, the anomalous Hall effect is also
much stronger than can be explained by just an interactionwith themagnetic moments
of the injected spins. Thus, further work needs to be done in order to explain the details
of the response of the Hall device to this transient polarisation.

3.2.4 Magnetic equilibrium

We end this chapter with a discussion of the transport experiments involving a mag-
net, as covered in section 1.3.3 and the analogous cyclic voltammetry electrochemistry
experiments. These are the only types of experiments that we have not yet discussed in
the context of the theory. In these experiments, they measure a difference in the steady
state current, depending on the direction of the magnetic field for a finite applied bias.
To describe the current when the leads are in thermal equilibrium, we are going to use
the scattering picture. In this case, the cross-terms in the density matrix vanish, so we
do not have toworry about them at all, and the case of thermal equilibrium is described
exactly by the 𝛾-matrices, 𝛾𝑖 → 𝑛(𝐸 − 𝜇𝑖)Γ𝑖/2𝜋𝑁 .

Now, in the experiments, they use two leads, one of which is magnetic. As usual, we
denote the leads 𝐿 and 𝑅, and let 𝑅 be the magnetic lead. It turns out that we have
to be extremely careful with applying our perturbation to describe this problem. If we
considered only the first-order terms, we would find that there is an effect. However, a
full numerical calculation shows that the transmission is symmetric in under a reversal
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of the direction of the magnetisation of the lead. This can also be shown from the sym-
metry arguments that we present below. The full propagator of the molecule is given
by:

𝐺𝑀(�̂�) = 1
𝐸 − 𝐻𝑀 − Σ(�̂�), (3.79)

where the dependence on the magnetisation direction, �̂�, is only present in the self-
energy, Σ(�̂�). The only term in the self-energy that depends on the magnetisation, is
the self-energy from the right lead, which is given by:

Σ𝑅(�̂�) = 𝐻𝑀𝑅
1

𝐸 − �̄�𝑅 − Δ𝐻𝑅(�̂� ⋅ �⃗�) + 𝑖𝜂𝐻𝑅𝑀 . (3.80)

In thermal equilibrium, as we have seen in section 2.4.2, transport is governed by the
thermal transmission functions,

𝑇𝐿𝑅(�̂�) = tr[Γ𝐿𝐺†(�̂�)Γ𝑅(�̂�)𝐺(�̂�)]. (3.81)

For these, it holds that if the full self-energy is given by Σ = Σ𝐿 + Σ𝑅, then the Ward
identity guarantees that, 𝑇𝐿𝑅(�̂�) = 𝑇𝑅𝐿(�̂�). However, from the identities following
from time reversal of the Hamiltonian, we also find that:

𝑇𝐿𝑅(�̂�) = tr[𝐺(−�̂�)Γ𝑅(−�̂�)𝐺†(−�̂�)Γ𝐿] = 𝑇𝑅𝐿(−�̂�), (3.82)

the derivation of which is found in Appendix B. Consequently, 𝑇𝐿𝑅(�̂�) = 𝑇𝐿𝑅(−�̂�).
This result is analogous to the first version of the no-polarisation theoremwe presented
in section 3.1.1, except this is valid to all orders of the spin-orbit coupling, i. e. it is an
exact result. It is not a result that says that there is no-polarisation of the electrons, how-
ever. The spin current is non-zero and dependent on the direction of themagnetisation,
but the total current is the same for opposite magnetisations, which simply states that
the magnet works as a spin injector into the other lead. Thus, it seems like we have
proven that there can be no difference in the measured current, when the magnet is
flipped. The experiments do show an effect though, so there must be something wrong
with our assumptions somehow. In these transport experiments, we would be hard
pressed to argue that the initial state is non-thermal. Thus, there either has to be an-
other term in the self-energy in order to break the Ward identity, or some alternative
explanation altogether that helps us in this regard. There is no third lead in the prob-
lem, and as we have mentioned already, even coupling to phonons or another bosonic
bath does not permit breaking of the no-polarisation theorem.
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Figure 3.3: Integrated asymmetry in the induced magnetisation of the left lead, as a function
of the chemical potential for a model of twisted polyacetylene, to be described in detail in
section 4.1. The dashed line indicates the position of the chemical potential of the molecule
in its ground state.

To explore the possibility of another explanation, it is worth considering the effi-
ciency of the spin-injection. From Eq. (2.138) the total spin current (i. e. multiplied by
the total number of particles, 𝑁) into the left lead is given by:

⟨ ̇̄𝑆𝐿�̂�⟩ = ∫ 𝑑𝐸
ℎ (𝑛(𝐸 − 𝜇𝑅) tr[(Γ̄𝑅 + ΔΓ𝑅(�̂� ⋅ �⃗�))𝐺†

𝑀(�̂�)Γ𝐿(�̂� ⋅ �⃗�)𝐺𝑀(�̂�)]

− 𝑛(𝐸 − 𝜇𝐿) tr[Γ𝐿𝐺†
𝑀(�̂�)(ΔΓ𝑅 + Γ̄𝑅(�̂� ⋅ �⃗�))𝐺𝑀(�̂�)]).

(3.83)

In this case, the fact that the roles of ΔΓ𝑅 and Γ̄𝑅 has been interchanged in the first
term, as compared to their order in the self-energy, and that Γ𝐿 is attached to a (�̂� ⋅ �⃗�)
in the second term means that we can not use the Ward identity to interchange the
order of the propagators. In fact, the two terms do not even translate into each other
using the time reversal identities. That they are different is also confirmed by numerical
calculations for amodel system, the details ofwhichwe shall get into in the next chapter.
In Figure 3.3, we show a plot of the sum of the spin current into the left lead as a
function of the chemical potential, 𝜇, when the two leads are assumed in equilibrium,
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i. e. their chemical potentials are equal 𝜇 = 𝜇𝐿 = 𝜇𝑅. For simplicity, we have assumed
𝑛(𝐸 − 𝜇) = 𝜗(𝜇 − 𝐸), i. e. the low temperature limit such that:

𝑓(𝜇) = 𝑒
ℎ ∫

𝜇

−∞
𝑑𝐸 (𝑆𝐿,�̂�(𝐸) + 𝑆𝐿,−�̂�(𝐸)) , (3.84)

where:

𝑆𝐿,�̂�(𝐸) = tr[(Γ̄𝑅 + ΔΓ𝑅(�̂� ⋅ �⃗�))𝐺†
𝑀(�̂�)Γ𝐿(�̂� ⋅ �⃗�)𝐺𝑀(�̂�)]

− tr[Γ𝐿𝐺†
𝑀(�̂�)(ΔΓ𝑅 + Γ̄𝑅(�̂� ⋅ �⃗�))𝐺𝑀(�̂�)].

(3.85)

The reason for plotting this quantity is that one would expect that reversing the mag-
netisation would simply lead to a sign change in the spin current, in which case 𝑓(𝜇)
should be zero for all values. However, Figure 3.3 clearly shows that this is not the case.
In fact, there are some noticable steps in the spin current, as if there are some hotspots
or specific states in the molecular spectrum that carries the spin current. We will get
into more details about this in the next chapter.

Tomove forward, there are two important things to notice in the analysis above. First,
there is a finite spin currentwhen amagnetic lead is put into contactwith a normal lead.
This result is hardly surprising, as the electrons in the normal lead feels the effect of the
magnetisation in the magnetic lead through the self-energy. Here we have ignored the
effect of the paramagnetic response of the normal lead, but focus purely on the effects
due to electrons hybridising near the interface. Consequently, we know that the real
equilibrium state of the system is one in which the normal lead is magnetised slightly,
at least locally close to the magnetic lead. Typically, however, we would assume that
this effect is anti-symmetric when the magnetisation is changed. I. e. the induced mag-
netisation simply changes sign. However, when the two leads are connected through a
chiralmoleculewith spin orbit coupling, this is not the case. In otherwords, the induced
magnetisation in the normal lead is not anti-symmetric under reversal of the magnetic
field, as evidenced by the non-zero values found in Figure 3.3. The result of this effect
is that there is a kind of magnetoresistance effect, due to fact that the magnitude of the
induced magnetisation is not equal when the magnetic lead is flipped.

Let us denote this induced magnetisation ⃗𝑎+ and ⃗𝑎− for magnetisations of the lead
±�̂�, respectively. That is, our new equilibrium state in the left lead is now

Γ±
𝐿 = Γ̄𝐿 + ΔΓ𝐿( ⃗𝑎± ⋅ �⃗�), (3.86)

where ± stands for the magnetisation of the right lead. Here we have assumed, for
simplicity, that only the magnitude of the magnetisation is different, and thus Γ̄𝐿 and
ΔΓ𝐿 are independent of �̂�. For the current, the Ward identity still holds for the trans-
mission functions, i. e. 𝑇𝐿𝑅(±�̂�) = 𝑇𝑅𝐿(±�̂�), but the new equilibrium state means
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that time reversal no longer takes us from one to the other, i. e. ⃗𝑎+ ≠ − ⃗𝑎− and thus
𝑇𝐿𝑅(+�̂�) ≠ 𝑇𝐿𝑅(−�̂�). We can now go back and calculate the difference between the
electric current of the two magnetisations.

𝐼+ − 𝐼− = 𝑒
ℎ ∫ 𝑑𝐸 (𝑛(𝐸 − 𝜇𝐿) − 𝑛(𝐸 − 𝜇𝑅)) (𝑇𝐿𝑅(+�̂�) − 𝑇𝐿𝑅(−�̂�)) . (3.87)

To proceed, we have to consider the explicit form of the thermal transmission functions:

𝑇𝐿𝑅(±�̂�) = tr[(Γ̄𝐿 + ΔΓ𝐿( ⃗𝑎± ⋅ �⃗�))𝐺†
𝑀(±�̂�)(Γ̄𝑅 ± ΔΓ𝑅(�̂� ⋅ �⃗�))𝐺𝑀(±�̂�)]. (3.88)

Since we have established that there is an induced magnetisation and non-zero differ-
ence in the current, we are going to ignore the spin dependence of the propagators for
simplicity. In this case we find:

𝑇𝐿𝑅(±�̂�) = 2 tr[Γ̄𝐿𝑔†
𝑀 Γ̄𝑅𝑔𝑀] ± 2( ⃗𝑎± ⋅ �̂�) tr[ΔΓ𝐿𝑔†

𝑀ΔΓ𝑅𝑔𝑀], (3.89)

where the factor of two comes from tracing out the spin degrees. Defining,

𝐴 ≡
tr[ΔΓ𝐿𝑔†

𝑀ΔΓ𝑅𝑔𝑀]
tr[Γ̄𝐿𝑔†

𝑀 Γ̄𝑅𝑔𝑀]
, 𝑇 0

𝐿𝑅 = tr[Γ̄𝐿𝑔†
𝑀 Γ̄𝑅𝑔𝑀], (3.90)

the difference between the currents for opposite magnetisations, Eq. (3.87), becomes:

𝐼+ − 𝐼− = 2𝑒
ℎ ∫

∞

−∞
𝑇 0

𝐿𝑅𝐴 �̂� ⋅ ( ⃗𝑎+ + ⃗𝑎−)(𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅)) 𝑑𝐸. (3.91)

Since ⃗𝑎+ ≠ ⃗𝑎−, this is finite even for small bias voltages. In fact, for small bias voltages,
assuming 𝑇 0

𝐿𝑅𝐴 �̂� ⋅ ( ⃗𝑎+ + ⃗𝑎−) is slowly varying as a function of energy, we can follow
the example in section 2.4.2, and find a kind of Ohmic relationship:

𝐼+ − 𝐼− = 𝑉 𝐺0𝑇 0
𝐿𝑅(𝐸𝐹 )𝐴(𝐸𝐹 ) �̂� ⋅ ( ⃗𝑎+ + ⃗𝑎−). (3.92)

Consequently, in the linear regime the ratio of the difference over the sum of the cur-
rents is

𝐼+ − 𝐼−
𝐼+ + 𝐼−

= 𝑉 𝐺0𝑇 0
𝐿𝑅(𝐸𝐹 )𝐴(𝐸𝐹 ) �̂� ⋅ ( ⃗𝑎+ + ⃗𝑎−)

2𝑉 𝐺0𝑇 0
𝐿𝑅(𝐸𝐹 ) = 𝐴 ⃗𝑎+ + ⃗𝑎−

2 ⋅ �̂�. (3.93)

The experimental values listed in Table 1.6 is for values where the I-V curves clearly
show, that it is not linear around zero bias anymore. In that case, we would still have
to retain the integrals, but the simplicity of the formula above can be used as an effec-
tive picture, where 𝐴(𝐸𝐹 ) has to be replaced by a “weighted average” over the energy
window,

𝐴 =
∫𝜇𝑅
𝜇𝐿

𝑇 0
𝐿𝑅(𝐸) 𝐴(𝐸) 𝑑𝐸

∫𝜇𝑅
𝜇𝐿

𝑇 0
𝐿𝑅(𝐸) 𝑑𝐸

. (3.94)
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3.3 SUMMARY

In this chapter we developed on the formalism introduced in chapter 2 by assuming a
weak spin-orbit coupling on themolecule and expanding the equations to first order in
the strength. We found that the problem of finding the particle current with an initially
spin polarised distribution was, to first order, equivalent to the problem of spinless
electrons moving in a magnetic field coupling to their angular momenta, i. e.the trans-
mission functions could be written as

tr[(1 + ⃗𝑎 ⋅ �⃗�)
2 𝛾𝐿𝐺†

𝑀Γ𝑅𝐺𝑀] ≈ tr[𝛾𝐿𝑔†
𝑀( ⃗𝑎)Γ𝑅𝑔𝑀( ⃗𝑎)], 𝑔𝑀( ⃗𝑎) = 1

𝐸 − ℎ𝑀 − 𝜆 ⃗𝑎 ⋅ Λ⃗ − Σ
.

In the casewhere the leadswere in thermal equilibrium, 𝛾𝐿 → 𝑛𝐹 (𝐸−𝜇𝐿)Γ𝐿/2𝜋, a com-
bination of time reversal and the Ward identity, Eq. (2.79), gave us the no-polarisation
theorem. It states that there can be no difference in the transmission to first order in the
spin-orbit coupling of two electron beams prepared with opposite spin. If the initial
state is not thermal, a difference in the transmission can arise, and a complex vector
quantity for the transport can be defined, ⃗𝐴, which allows one to calculate the polari-
sation of the outgoing electrons. Its real and imaginary parts are referred to as the �⃗�-
and ⃗𝐶-vectors, which relate to the incoming and outgoing polarisation of the electrons
through the non-linear relation:

⃗𝑃out =
⃗𝑃in + �⃗� + ⃗𝐶 × ⃗𝑃in

1 + �⃗� ⋅ ⃗𝑃in
.

This model can be used to understand most of the photoemission and photoexcitation
experiments, due to the fact that the excitations created by the light due to selection
rules that populates otherwise degenerate states with unequal probabilities. When ex-
tended to include short times, similar time-dependent �⃗�- and ⃗𝐶-vectors describe the
polarisation of electrons escaping a molecule. The fact that the �⃗�-vector is non-zero,
but an electron will eventually escape independent of its spin, shows that an electron
effectively propagates with a spin-dependent velocity through a chiral molecule.

We also saw that for transport experiments, where the current through the molecule
is measured for two opposite directions of magnetisation of one of the leads, a naïve
assumption about the equilibrium distribution does not yield any difference. Instead, if
we include the effect of the injected spin into the other lead, we find that it is not simply
anti-symmetric, when themagnetisation is flipped. As a consequence, the experiments
do not measure a difference in a spin-dependent resistance through the molecule, but
rather a difference in the magnetoresistance of the two different equilibrium distribu-
tions induced by the chirality of the molecule.
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We now take the theory developed in the preceding two chapters, and apply them to
models of some simple, but realistic molecules for numerical evaluation. It is therefore
relevant to discuss how to construct the relevant molecular Hamiltonian. Since we are
concerned with the properties of electrons in molecules of finite size and odd shapes,
we cannot in general assume any spatial symmetries. An adequate level of description
for such a problem is generally to use a linear combination of atomic orbitals (LCAO)
for each atom in the molecule. Let us label all the atomic orbitals of the molecule by 𝜙𝑛,
where 𝑛 is an index that refers both to its position and orbital index. Then the matrix
elements of the single-particle Hamiltonian take the form:

𝐻𝑛𝑛′ = ⟨𝜙𝑛| 𝐻 |𝜙𝑛′⟩ = ∫ 𝜙∗
𝑛( ⃗𝑟) (−ℏ∇2

2𝑚 + 𝑉 ( ⃗𝑟)) 𝜙𝑛′( ⃗𝑟) 𝑑 ⃗𝑟, (4.1)

where 𝑉 ( ⃗𝑟) is the effective self-consistent potential at position ⃗𝑟 due to the other elec-
trons and nuclei of the atoms.

For practical purposes when modelling, it is convenient to assume spherically sym-
metric potentials centered around each atom. To simplify further, we also only include
potentials of the nuclei associated with the two labels, 𝑛, 𝑛′, an approximation known
as the two-center approximation. It is a simple exercise to show that for real 𝑠 and 𝑝 or-
bitals, with the centres separated by ⃗𝑑, the matrix elements in the two-center approxi-
mation take the form:

𝐻𝑠,𝑠 = 𝑉𝑠𝑠𝜎(𝑑), 𝐻𝑠,𝑝𝑖
= 𝑑𝑖𝑉𝑠𝑝𝜎(𝑑),

𝐻𝑝𝑖,𝑝𝑖
= 𝑑2

𝑖 𝑉𝑝𝑝𝜎(𝑑) + (1 − 𝑑2
𝑖 )𝑉𝑝𝑝𝜋(𝑑), 𝐻𝑝𝑖,𝑝𝑗

= 𝑑𝑖𝑑𝑗(𝑉𝑝𝑝𝜎(𝑑) − 𝑉𝑝𝑝𝜋(𝑑)), for 𝑖 ≠ 𝑗,

where the 𝑉 s are functions which depend only on the magnitude of the distance be-
tween them, and 𝑖, 𝑗 are indices which run over the three spatial components, 𝑥, 𝑦, 𝑧.
This was first realised by Slater and Koster in 195475, and thus this parameterisation is
generally referred to as the Slater-Koster scheme. In this rewriting, we have of course
not actually performed the integral in Eq. (4.1), but simply reduced it to a form in
which the directionality of the separation of the orbitals have been extracted explicitly.
That is, the 𝑉 s are still integrals that include the positions of the two atoms involved.

94
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Now, since these atomic orbitals have exponential tails that extend outwards, two

states 𝜙𝑛, 𝜙𝑛′ are in general not orthogonal,

⟨𝜙𝑛|𝜙𝑛′⟩ = ∫ 𝑑 ⃗𝑟𝜙∗
𝑛( ⃗𝑟)𝜙𝑛′( ⃗𝑟) ≠ 0, (4.2)

unless symmetry dictates it. We demand, however, that the states are normalised to
unity such that ⟨𝜙𝑛|𝜙𝑛⟩ = 1. If we insist on using the Hamiltonian matrix elements,
𝐻𝑛𝑛′ as given above, this non-orthogonality has important implications for our math-
ematical description. To see this, let us denote the Hilbert space in which the atomic
orbitals, 𝜙𝑛, reside by ℋ. Next, we define a new Hilbert space, 𝒞, and for each orbital,
we associate a unique orthonormal state, 𝑐𝑛 ∈ 𝒞. Since the states, 𝑐𝑛, are orthonormal,
we can define the linear map, 𝑥 ∶ 𝒞 ↦ ℋ in the usual bra-ket notation:

𝑥 = ∑
𝑛

|𝜙𝑛⟩ ⟨𝑐𝑛| . (4.3)

In other words, 𝑥 is an operator that takes an orthonormal ket in 𝒞-space, |𝑐𝑛⟩ from
the right and yields the corresponding orbital, |𝜙𝑛⟩ in the atomic orbital space, ℋ,
|𝜙𝑛⟩ = 𝑥 |𝑐𝑛⟩. To find the time evolution of the states in 𝒞-space, we simply plug the
relationship above into the time-dependent Schrödinger equation:

𝑖𝜕𝑡 |𝜙𝑛(𝑡)⟩ = 𝑖𝑥𝜕𝑡 |𝑐𝑛(𝑡)⟩ = �̂�𝑥 |𝑐𝑛(𝑡)⟩ . (4.4)

Multiplying by 𝑥† from the left we get

𝑖𝑆𝜕𝑡 |𝑐𝑛⟩ = 𝐻 |𝑐𝑛⟩ , (4.5)

where we have omitted the time-dependence for brevity and defined the Hamiltonian
and so-called overlap matrix, 𝑆, in 𝒞-space as:

𝐻 ≡ 𝑥†�̂�𝑥 = ∑
𝑗𝑗′

∣𝑐𝑗⟩ 𝐻𝑗𝑗′ ⟨𝑐𝑗′∣ , 𝑆 ≡ 𝑥†𝑥 = ∑
𝑛𝑛′

|𝑐𝑛⟩ ⟨𝜙𝑛|𝜙𝑛′⟩ ⟨𝑐𝑛′| . (4.6)

Consequently, for a time-independent Hamiltonian, the time-evolution operator in 𝒞-
space becomes

𝑈(𝑡) = 𝑒−𝑖𝑆−1𝐻𝑡. (4.7)

Note that the energy of an eigenstate, 𝑐𝜓, obtained by diagonalising the matrix 𝑆−1𝐻
is the same as its counterpart, 𝜓, which is an eigenstate of �̂� . To see this, we use the fact
that the atomic orbitals is a complete basis. Thus, we can express any vector in terms
of coefficients in this basis, including eigenstates:

|𝜓⟩ = ∑
𝑛

𝜓𝑛 |𝜙𝑛⟩ = ∑
𝑛

𝜓𝑛𝑥 |𝑐𝑛⟩ = 𝑥 ∣𝑐𝜓⟩ . (4.8)
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Note that in the last equality above, we have defined the state vector, 𝑐𝜓 residing in
the Hilbert space 𝒞 through the relationship 𝑐𝜓 ≡ ∑𝑛 𝜓𝑛 |𝑐𝑛⟩. It is important to stress,
however, that such an eigenstate is in general not normalised to unity due to the non-
orthogonality of the basis. As a concrete example, consider the non-orthogonal basis
vectors 𝑎1 = (1, 0), 𝑎2 = (1/

√
2, 1/

√
2). To construct the vector (0, 1) we need a linear

combination,
√

2𝑎2 − 𝑎1. In the corresponding 𝒞-space, in which 𝑎1, 𝑎2 are assumed
orthogonal, this vector would have a norm of

√
3. Thus, in the non-orthogonal repre-

sentation of the states, properly normalised states such as the eigenstates of the system
will appear incorrectly normalised. Although there are generally numerical routines to
deal with this, it is an issue conceptually, so we shall seek to put it the problem on a
form in which we are dealing with properly normalised and orthogonal states.

Now, the time-independent Schrödinger equation reads:

�̂� |𝜓⟩ = �̂�𝑥 ∣𝑐𝜓⟩ = 𝐸𝜓𝑥 ∣𝑐𝜓⟩ . (4.9)

Multiplying again from the left by 𝑥†, we find:

𝐻 ∣𝑐𝜓⟩ = 𝐸𝜓𝑆 ∣𝑐𝜓⟩ , (4.10)

which shows that ∣𝑐𝜓⟩ is a right eigenvector of 𝑆−1𝐻 with eigenvalue 𝐸𝜓. As noted
above, there are some issues with this formulation. Because the matrix 𝑆−1𝐻 is non-
hermitian, the eigenstates 𝑐𝜓 are not related to the 𝑐𝑛’s through a unitary transforma-
tion, and thus they are not properly normalised. Secondly, the non-hermiticity also
means that the left and right eigenvectors are not simply the adjoint of each other,
which is an annoyance to keep track of.

To overcome this, we first note that the overlap matrix is a Grammian matrix, named
after the Danish mathematician, Jørgen Pedersen Gram, which endows it with a num-
ber of desirable properties. The first property serves as a sanity check and simply is
that if the atomic orbitals were orthonormal, 𝑆 becomes the identity operator, and we
restore our usual equations. The second property is that the overlap matrix is positive
definite. This ensures that both the inverse and principal square root of the matrix ex-
ists, and thus we can, in a well-defined manner, substitute:

|𝐶𝑛⟩ ≡ 𝑆1/2 |𝑐𝑛⟩ , 𝐻′ ≡ 𝑆−1/2𝐻𝑆−1/2, (4.11)

into Eq. (4.10), which after some basic algebra brings it on the familiar form:

𝐻′ ∣𝐶𝜓⟩ = 𝐸𝜓 ∣𝐶𝜓⟩ . (4.12)

This form of the problem was first discovered by Per-Olov Löwdin in 195076. On this
form, 𝐻′ is hermitian, and thus diagonalisation of the matrix yields eigenvectors, ∣𝐶𝜓⟩
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which behave as usual, i. e. the left eigenvectors are simply the corresponding adjoint
bra, ⟨𝐶𝜓∣. The eigenstates are therefore also related to the 𝐶𝑛’s by a unitary transforma-
tion, and are thus normalised by definition. To see this, note that the diagonal of 𝑆 is
1, and thus ⟨𝐶𝑛|𝐶𝑛⟩ = ⟨𝑐𝑛| 𝑆 |𝑐𝑛⟩ = 1. Using the definitions in Eq. (4.11) on the time-
dependent Schrödinger equation, we also get a more familiar time-evolution operator,

𝑖𝜕𝑡 |𝐶𝑛⟩ = 𝑆−1/2𝐻𝑆−1/2 |𝐶𝑛⟩ ⇒ 𝑈(𝑡) = 𝑒−𝑖𝐻′𝑡, (4.13)

in the space of𝐶𝑛-vectors. Finally, for a general operator𝐴written in the non-orthogonal
basis, we find that

𝐴 = ∑
𝑖𝑗

𝐴𝑖𝑗 |𝜙𝑖⟩ ⟨𝜙𝑗∣ = ∑
𝑖𝑗

𝐴𝑖𝑗𝑥𝑆−1/2 |𝐶𝑖⟩ ⟨𝐶𝑗∣ 𝑆−1/2𝑥†, (4.14)

and as a consequence, traces over operators are unaffected by changing to an orthogo-
nal basis:

tr[𝜌𝐴] = tr[∑
𝑖𝑗𝑘𝑙

𝑥𝑆−1/2 |𝐶𝑖⟩ 𝜌𝑖𝑗 ⟨𝐶𝑗∣ 𝑆−1/2𝑥†𝑥𝑆−1/2 |𝐶𝑘⟩ 𝐴𝑘𝑙 ⟨𝐶𝑙| 𝑆−1/2𝑥†]

= tr[∑
𝑖𝑗𝑘𝑙

|𝐶𝑖⟩ 𝜌𝑖𝑗 ⟨𝐶𝑗∣𝐶𝑘⟩ 𝐴𝑘𝑙 ⟨𝐶𝑙|] = ∑
𝑖𝑗

𝜌𝑖𝑗𝐴𝑗𝑖.
(4.15)

Thus, after the dust has settled, the effect of describing the problemusingnon-orthogonal
atomic orbitals for our formalism is that the Hamiltonian has to be adjusted using the
overlap matrix as prescribed in Eq. (4.11).

Of course, we still need to know the Hamiltonian and overlap matrix elements. For
the purpose of this thesis, we use parameter sets that have been extracted from ab initio
studies andfitted to a number of organicmolecules77. The energy spectra obtainedwith
the given parameter sets for our model systems were compared to density functional
calculations of the same structure, and found to be in good agreement. To facilitate the
calculation andmodelling of themolecules, a small package suite for the Julia scientific
programming language was developed and is available from public repositories at:

• Main repository: https://github.com/dalum/TheoryOfCISS.jl

• Modelling toolkit: https://github.com/dalum/Molecules.jl

• SKF-file importing: https://github.com/dalum/SlaterKoster.jl

https://github.com/dalum/TheoryOfCISS.jl
https://github.com/dalum/Molecules.jl
https://github.com/dalum/SlaterKoster.jl
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Figure 4.1: Illustration of flat polyacetylene placed between two leads. In the model, the leads
connect to the outermost carbon atoms and the coupling must obey the flat symmetry of
the molecule for the whole system to be achiral.

4.1 POLYACE TY L ENE

With the modelling details out of the way, we can start to explore the theory derived in
the previous chapters in the context of semi-realistic molecules. In particular, we want
to calculate the �⃗�- and ⃗𝐶-vectors given some generic non-thermal initial state and leads.
To better be able to understand the ingredients that lead to finite �⃗�-vectors, we start
by considering polyacetylene, i. e. a flat chain of conjugated carbon atoms. The setup
is illustrated in Figure 4.1. We know that in such molecules transport occurs mainly
through the 𝜋-band of 𝑝𝑧 orbitals, orthogonal to the plane of the molecule. Here, we
consider the molecule when aligned such that the leads are connected to the far ends
of the molecule along the 𝑥-direction. By virtue of being flat in the 𝑥𝑦-plane, and hence
achiral, the symmetry of the molecule also demands that the �⃗�-vector does not have
any components in the 𝑥-direction. Therefore, if the model does not reproduce this
result, we know there is something wrong with it.

Now, to introduce chirality into the system, we apply a “twist” to each of the bonds,
which we denote 𝜃. We do this in such a way that the angles and distance between
neighbouring bonds is preserved, which retains the general 𝑠𝑝2-hybridisation of the
orbitals. This allows us to smoothly vary the geometry of the molecule from an achiral
configuration to a chiral one, to observe the effect of breaking the mirror symmetry of
the system. It also allows us to change the chirality from one handedness to the other,
by twisting the bonds either way. The twist angle denotes the relative angle between
adjacent 𝑝𝑧 orbitals, where we have chosen 𝜃 = 𝜋 to correspond to flat polyacetylene,
and 𝜃 = 0 to correspond to a flat benzene-like helix. Figure 4.2 shows a stereoscopic
cross-eyed view of a twisted polyacetylene molecule with 𝜃 = 𝜋/2.
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Figure 4.2: Stereoscopic cross-eyed model of twisted polyacetylene with 𝑁 = 14 carbon atoms.
To get a stereoscopic view, the left eye should focus on the image on the right, while the right eye
should focus on the image on the left.



100 NUMER I CAL MODEL S
For simplicity, in the numerical calculation, we are going to assume that the leads

only connect to the outermost carbon atoms in the chain. The carbon atoms are mod-
elled using the four 𝑛 = 2 real orbitals, 2𝑠, 2𝑝𝑥, 2𝑝𝑦, and 2𝑝𝑧, such that the spinless
couplings, Γ, and initial state 𝛾, are positive-semidefinite 4-by-4 matrices. Additionally,
we are going to ignore the hermitian part of the self-energies, Σ. The reason for this is
the fact that the only effect of the hermitian part is to change the effective molecular
Hamiltonian, and thus the molecular spectrum. The key to the polarisation effects that
we are after, though, relate to the anti-hermitian part, as we have seen in the previous
chapters. Therefore, inclusion of the hermitian part of the self-energy will lead to a
correction of the eigenstates and energies of the Hamiltonian, but is not expected to
change the overall picture.

To ensure that we are measuring the effect of the chirality of the molecule and not an
effect related to a chiral coupling of the leads to the molecule, it is worth considering
how theΓ-matrices transformunder symmetry operations. For instance, let us consider
the achiral polyacetylene in Figure 4.1, where the molecule is invariant under a mirror
operation in the 𝑥𝑦-plane. If one or both of the leads are positioned out of plane, the
full system lacks this symmetry and therefore it is still chiral. For the whole system to
be achiral, we must require that the leads are coupled to the molecule in such a way
that the symmetry of the molecule is still a symmetry of the full system. If the leads is
diagonal in states of 𝑝-orbital-like symmetries, the symmetric placementmeans that the
coupling elements between the molecule and the lead, for instance 𝐻𝐿𝑀 , only couples
𝑝𝑧 orbitals on the molecule to 𝑝𝑧 orbitals in the lead. Therefore, if we demand that the
coupling to the leads should not introduce chirality into the system, the Γ-matrices
must have no off-diagonal elements coupling the outermost 𝑝𝑧 orbitals to the rest of
the orbital subspace of the molecule.

With this in mind, we now want to investigate the effect of twisting. Because the
molecule changes orientation as the bonds are twisted, we fix the ̂𝑧-direction to always
point along the helix axis of themolecule. In Figure 4.3, we plot themolecular spectrum
of twisted polyacetylene for 𝑁 = 14 as a function of the twist angle, and show a rep-
resentative molecule with 𝑁 = 6 below for reference. The most notable feature of the
plot is the fact that as the molecule is twisted, some of the molecular levels cross lead-
ing to degeneracies in the spectrum. This is particularly pronounced around 𝜃 = 𝜋/2.
The inset shows the levels in the lower band overlaid ontop of a heatmap of the energy-
resolved �⃗�-vector component in the ̂𝑧 direction, i. e. along the molecular axis. In this
plot, following our discussion above, to ensure that there is no chirality in the coupling
to the leads, the Γ-matrices are diagonal in the orbitals of the outermost carbon atoms.
Additionally, in order to perform the calculation, we are considering the so-calledwide-
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Figure 4.3: Energy levels of twisted polyacetylene as a function of the twist angle. The levels
form bands that interweave as the molecule is deformed and becomes more helical. The
inset shows the lower bands indicated by a blue square, overlaid on a heatmap of the ̂𝑧-
component of the �⃗�-vector.



102 NUMER I CAL MODEL S
band limit in which the Γ and 𝛾-matrices are finite and constant as a function of energy.
To ensure that the SOC is small in comparison to the coupling to the leads, the diag-
onal components are set to 100𝜆, i. e. a hundred times the atomic SOC of carbon of
𝜆 = 6meV. The 𝛾-matrix is chosen to couple only to the 𝑝𝑦-orbital of the carbon atom
near the left lead. From the inset we see that the ̂𝑧-component of the �⃗�-vector indeed
vanishes for 𝜃 = 𝜋, as the symmetry dictates. In the limit 𝜃 = 0, the molecule becomes
highly unphysical, since the atoms have been mashed ontop of eachother. The reason
that the polarisation does not vanish in the limit 𝜃 = 0, is due to the fact that the tight-
binding model of the molecule in this configuration is in fact still chiral, and therefore
does not have the necessary mirror symmetry for the ̂𝑧-component to vanish.

Upon closer inspection, the inset in Figure 4.3 also shows us that the �⃗�-vector is
largest near level crossings or around the edges of the band. The large polarisation
near the band edges, however, generally happens for surface states that carry vanish-
ingly little current. Thus, since the total spin polarisation is the integral over energy
of the �⃗�-vector weighed by the transmission, the spin polarisation due to these states
have a negligible contribution. Themain contribution to the spin polarisation therefore
comes from the level crossings. This is more visible, when the length of the molecule is
increased, which is shown in in Figure 4.4, where we have zoomed further in around
the centre of the band for a length of 𝑁 = 30. In Figure 4.4B, we show a heatmap of
the transmission. This observation allows us to understand the sudden jump in the
asymmetry of the induced magnetisation we saw in the previous section in Figure 3.3,
which happened exactly around −10 eV, and was done using twisted polyacetylene
with 𝜃 = 𝜋/2. The jump is due to the fact that the �⃗�-vector, and therefore the polarisa-
tion of the current due to the chirality of the molecule, is largest near degeneracies in
the spectrum.

We saw another jump around 8 eV, which matches the upper bands in Figure 4.3.
This is caused by similar features. To show that the form of the polarisation is robust
against changes in the coupling and Hamiltonian matrix elements, Figure 4.5A shows
a plot of the upper band when the overlap matrix is not taken into account, and where
the coupling to the leads is randomly generated, for𝑁 = 38. In this casewe still see that
the polarisation is generally largest near the web-like level crossings of the spectrum.
Figure 4.5B shows theweighted integral over the energies indicated by the orange box in
Figure 4.5A, where we indeed see spikes in the polarisation when level crossings enter
the integration window. To investigate the length dependence of the polarisation, the

̂𝑧-component of the �⃗�-vector is plotted in Figure 4.5C as a function of the length of the
molecule at a level crossing near the blue circle in Figure 4.3A. Because the degeneracies
shift when the length changes, we have employed an optimisation routine to find the
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dependence. Adapted with permission from Ref. 1.

nearest level crossing, by varying both energy and bond twist. This fact is responsible
for the sawtooth-like shape of the length dependence. However, we clearly see a linear
dependence emerging below the oscillations.

To understand these results, it is helpful to consider the fact that near resonances,
the propagators are dominated by terms involving the resonant states. Thus, near a
level crossing, two states enter the picture, which we shall denote |1⟩ and |2⟩. Note
that |1⟩ and |2⟩ are eigenstates of the uncoupled, spinless molecular Hamiltonian. Be-
cause the eigenstates of the molecule are real, the matrix elements of the operator Λ⃗
are purely imaginary, i. e. Λ⃗12 = −Λ⃗21. Because Λ⃗ is hermitian, this fact also tells us
that the diagonal matrix elements are zero, Λ⃗11 = 0, etc. Thus, the �⃗�-vector can only
be non-zero when more than one state is involved, which is why we observe peaks
near degeneracies. If a large value is found away from degeneracies, it must generally
be due to quenching of the transmission, which allows contributions from off-resonant
states. From this observation, we can calculate the �⃗�-vector more easily at the degen-
eracy point, by inserting projection operators into the subspace of the states |1⟩ and |2⟩
around each propagator. To see this, consider the ⃗𝐴-vector, defined as:

⃗𝐴 = tr12[Λ⃗𝑔†
𝑀Γ𝑅𝑔𝑀𝛾𝐿𝑔†

𝑀 ]
tr12[𝛾𝐿𝑔†

𝑀Γ𝑅𝑔𝑀 ]
. (4.16)
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Table 4.1: Polarisation factors for three selected level crossings in polyacetylene.

Circle Im[Λ𝑧
12] [meV] Re[𝑓21] [meV−1] 𝐷𝑧 (%)

Blue 0.62 0.69 43
Purple 0.08 1.3 10
Red 0.22 0.31 7

Expanding the trace in the numerator in a real basis, and using the fact that Λ⃗ only
contains off-diagonal elements, the trace reduces to:

Λ⃗12 ⟨2| 𝑔†
𝑀Γ𝑅𝑔𝑀𝛾𝐿𝑔†

𝑀 |1⟩ + Λ⃗21 ⟨1| 𝑔†
𝑀Γ𝑅𝑔𝑀𝛾𝐿𝑔†

𝑀 |2⟩ , (4.17)

where the matrices are all projected into the subspace of degenerate states. Using the
fact that we are dealing with a real basis, Λ⃗21 = −Λ⃗12, and assuming that the initial
state is time-reversal invariant, we end up with:

Λ⃗12 ⟨2| 𝑔†
𝑀(Γ𝑅𝑔𝑀𝛾𝐿 − 𝛾𝐿𝑔𝑀Γ𝑅)𝑔†

𝑀 |1⟩ . (4.18)

At resonance, in the degenerate subspace, 𝑔𝑀 = −2𝑖Γ−1, and consequentlywe find that
the �⃗�-vector at the crossing point is given by:

�⃗� = Im[Λ⃗12]Re[𝑓21], where 𝑓21 = 4⟨2| Γ−1(𝛾𝐿Γ−1Γ𝑅 − Γ𝑅Γ−1𝛾𝐿)Γ−1 |1⟩
tr12[𝛾𝐿Γ−1Γ𝑅Γ−1] , (4.19)

where the trace again runs over the two degenerate states, and the matrices are all 2-by-
2 matrices in the degenerate subspace. Evaluation of the factors, Im[Λ⃗12] and Re[𝑓21]
at the level crossings marked by a blue, purple and red circle in Figure 4.5, are sum-
marised in Table 4.1. Here we see that the magnitude of the polarisation is not domi-
nated by either Λ⃗12 or 𝑓21, but can be due to either factor. I. e. the purple circle has a
large 𝑓21 as compared to the blue circle, but Λ⃗12 is comparatively much smaller which
leads to a net reduced �⃗�-vector. At the red circle, on the other hand, both factors are
slightly smaller, leading to a reduction.

Now, we have only commented on the component of the �⃗�-vector in polyacetylene
parallel to its helical axis. This is due to two factors. First, in experiments, if themolecule
has some freedom to rotate around the molecular axis, the perpendicular components
will on average cancel. Second, and more importantly the perpendicular components
are in fact much smaller than the parallel ones. This is illustrated in Figure 4.6, where
the direction of the �⃗�- and ⃗𝐶-vectors of the molecule are plotted, in relation to the
orientation of the molecule. Additionally, the red arrows on the molecule indicate the
relative magnitude and direction of the �⃗�-vector, when the SOC is included only for
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Figure 4.6: Illustration of the direction of the �⃗�-vector (blue) and ⃗𝐶-vector (green) in relation
to the molecule near a level crossing. The red arrows indicate the relative magnitude of the
polarisation if the SOC is only included for atoms left of each of the respective red balls. The
magnitude of the ⃗𝐶-vector has been multiplied by a factor of 10, relative to the �⃗�-vector.

carbon atoms to the left of themarked site.We see that, as we includemore atoms in the
calculation, the magnitude of the polarisation increases. This shows that the resultant
spin polarisation is a cumulative effect of the electron interacting with all of the carbon
atoms in the molecule.

Finally, to understand the linear increase with the length of the molecule seen in Fig-
ure 4.5C, we can study the length dependence of the �⃗�-vector from Eq. (4.19). Assume
that the molecule contains 𝑁 atoms. In that case, the amplitude of a normalised wave
function on each atom scales approximately as 1/

√
𝑁 . Because the Γ- and 𝛾-matrices

are located at the end of the molecule, this leads to a scaling behaviour of 1/𝑁 for the
matrix elements between the two degenerate states. However, since Λ⃗ consists of a con-
tribution from each atom, we expect it to be independent of the length of the molecule.
Consequently, because the denominator in 𝑓21 contains two terms that scale as 𝑁 and
two that scale as 1/𝑁 , the denominator has no scaling behaviour. The numerator, on
the other hand, contains three terms that scale as𝑁 , but only two that scale as 1/𝑁 , and
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thus the net scaling of the �⃗�-vector is �⃗� ∼ 𝑁 , as we see in Figure 4.5C. This behaviour
is also consistent with the experiments, which generally found a linear increase in the
measured polarisation with the length of the molecule.

4.2 BAND TW I ST ING

In Figure 4.3, we saw a general trend where, as we twisted the bonds, degeneracies
started to appear in the spectrum. We thus dedicate this section to studying whether
this is a general feature of twisted linear molecules. We do this by considering a class
of parameterised Hamiltonians, 𝐻(𝜃), where 𝜃 is a cyclic parameter, that is, 𝐻(0) =
𝐻(2𝜋𝑛) for all 𝑛 ∈ ℤ. We shall refer to 𝜃 as the helicity parameter. The cyclicity of 𝜃
allows us to write the Hamiltonian in its diagonal form as a Fourier series:

𝐻(𝜃) = ∑
𝑖

𝐸𝑖(𝜃) |𝑖(𝜃)⟩ ⟨𝑖(𝜃)|

= ∑
𝑖

|𝑖(𝜃)⟩ ⟨𝑖(𝜃)| ∑
𝑛

(𝑎𝑛,𝑖 cos𝑛𝜃 + 𝑏𝑛,𝑖 sin𝑛𝜃) ,
(4.20)

where 𝑎𝑛,𝑖, 𝑏𝑛,𝑖 are Fourier components. Degeneracies in the spectrum are foundwhen,
for two states, 𝑖, 𝑗,

𝐸𝑖(𝜃) − 𝐸𝑗(𝜃) = ∑
𝑛

[(𝑎𝑛,𝑖 − 𝑎𝑛,𝑗) cos𝑛𝜃 + (𝑏𝑛,𝑖 − 𝑏𝑛,𝑗) sin𝑛𝜃] = 0, (4.21)

which is itself a Fourier series. The important thing to note about this equation is the fact
that if the constant, direct component 𝑎0,𝑖 −𝑎0,𝑗 is sufficiently small, the two states will,
at least twice during one cycle, become degenerate. To see this, note that the average
energy gap over one cycle is given by:

1
2𝜋 ∫

2𝜋

0
𝑑𝜃(𝐸𝑖(𝜃) − 𝐸𝑗(𝜃)) = 𝑎0,𝑖 − 𝑎0,𝑗. (4.22)

Thus, if the fluctuations exceed this threshold, they will cross an even number of times
during one cycle.

Let us illustrate this concept by considering a simplemodel of an infinitely long chain
of sites with up to next-nearest neighbour hopping. For the sake of simplicity, we imag-
ine that at each site, we have a single 𝑝-orbital sticking out perpendicular to the axis of
the chain. This is can be seen as an effective model of the 𝜋-band of polyacetylene, but



108 NUMER I CAL MODEL S
generalises to other molecules with a similar structure. Mathematically, such a model
is described by the Hamiltonian:

𝐻 = −𝑡1 ∑
𝑛

(|𝑛⟩ ⟨𝑛 + 1| + |𝑛 + 1⟩ ⟨𝑛|)

− 𝑡2 ∑
𝑛

(|𝑛⟩ ⟨𝑛 + 2| + |𝑛 + 2⟩ ⟨𝑛|) ,
(4.23)

where 𝑡1 and 𝑡2 are the coupling between nearest and next-nearest neighbours respec-
tively. The model is readily diagonalised in the basis of Bloch states, {𝑘},

|𝑘⟩ = 1√
𝑁

∑
𝑛

𝑒𝑖𝑛𝑘 |𝑛⟩ , |𝑛⟩ = 1√
𝑁

∑
𝑘

𝑒−𝑖𝑛𝑘 |𝑘⟩ , (4.24)

as:
𝐻 = −2 ∑

𝑘
|𝑘⟩ ⟨𝑘| (𝑡1 cos 𝑘 + 𝑡2 cos 2𝑘). (4.25)

We now introduce a helicity parameter, 𝜃, describing the relative angle of rotation
around the helicity axis between adjacent sites. Since we are dealing with 𝑝-orbitals,
this angular dependence enters through a cosine relationship, such that

𝑡1(𝜃) = 𝑡1 cos 𝜃, 𝑡2(𝜃) = 𝑡2 cos 2𝜃. (4.26)

Degeneracies in this spectrum are thus found by looking for solutions to the equation:

𝐸𝑘 = 2𝑡1 cos 𝑘 cos 𝜃 + 2𝑡2 cos 2𝑘 cos 2𝜃, (4.27)

for different 𝑘. From our analysis above, we note that the direct component is zero and
thus there must exist at least two values on the interval 𝜃 ∈ [0, 2𝜋) for which we find
a degeneracy. The values of 𝜃 for which this happens for any given pair of momenta,
𝑘, 𝑘′, are found by solving the equation:

𝑡1(cos 𝑘′ − cos 𝑘) cos 𝜃 + 𝑡2(cos 2𝑘′ − cos 2𝑘) cos 2𝜃 = 0, (4.28)

which can be re-arranged as the requirement:

𝑡1
𝑡2

cos 𝑘′ − cos 𝑘
cos 2𝑘′ − cos 2𝑘 = −cos 2𝜃

cos 𝜃 = 1 − 2 cos2 𝜃
cos 𝜃 . (4.29)

Before solving this equation, let us first simplify the left hand side:

𝑡1
𝑡2

cos 𝑘′ − cos 𝑘
cos 2𝑘′ − cos 2𝑘 ≡ 4𝑦. (4.30)
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Here, we have defined it as 4𝑦, in anticipation of a later simplification step. Using the
three trigonometric identities,

2 sin 𝑎 sin 𝑏 = cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏), (4.31)
2 cos 𝑎 cos 𝑏 = cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏), and (4.32)

sin 2𝑎 = 2 sin 𝑎 cos 𝑎, (4.33)

on the numerator and denominator, we find:

𝑦 = 1
8

𝑡1/𝑡2
cos 𝑘 + cos 𝑘′ . (4.34)

Returning now to Eq. (4.29), it reads:

2 cos2 𝜃 + 4𝑦 cos 𝜃 − 1 = 0. ⇒ cos 𝜃 = ±√𝑦2 + 1/2 − 𝑦. (4.35)

Because cos 𝜃 is bounded between ±1, we find the solutions for 𝜃 as:

𝜃 =

⎧{{
⎨{{⎩

arccos [−√𝑦2 + 1/2 − 𝑦] for 𝑦 < −1
4 ,

arccos [±√𝑦2 + 1/2 − 𝑦] for − 1
4 ≤ 𝑦 ≤ 1

4 ,

arccos [√𝑦2 + 1/2 − 𝑦] for 1
4 < 𝑦.

(4.36)

This result is quite remarkable. First of all, it confirms the theorem that for any two
pairs of momenta, 𝑘, 𝑘′, there exists an angle, 𝜃 ∈ [0, 𝜋], for which the two states are
degenerate. Second, if the two momenta satisfy:

| cos 𝑘 + cos 𝑘′| ≥ 1
2 ∣𝑡1

𝑡2
∣ , (4.37)

two angles exist on the interval, for which the momenta are degenerate. Note that the
left hand side of Eq. (4.37) is bounded on the interval [0, 2], and can thus only be sat-
isfied if |𝑡2| ≥ |𝑡1|/4. This exercise thus shows that in twisted chains of 𝑝-orbitals, it is
a general feature that accidental degeneracies appear as the twisting is increased. Of
course, in actual molecules and even the twisted polyacetylene molecule we studied
above, the eigenstates share characteristics of different orbitals. Therefore, the symme-
try properties of an individual eigenstate may change as the bonds are twisted, result-
ing in avoided crossings and deviations from the general principle that all levels will
cross. However, since we know from our study of polyacetylene that we do have level
crossings, this simple model can help understand why. Note that the hydrogen atoms
in twisted polyacetylene are crucial in order to establish an 𝑠𝑝2-hybridisation, which
separates the 𝜋-band from the rest.
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Figure 4.7: Stereoscopic cross-eyed model of helicene with 𝑁 = 7 rings.

4.3 HEL I C ENE

Before concluding the thesis, we end by considering amodel of helicene. This molecule
is simple enough that we can model it using a similar method that we used for poly-
acetylene, but complex enough that it is not obvious whether non-trivial effects may
come into play. Crucially, however, it has been studied experimentally and therefore
it serves as a testbed to see whether our observations for polyacetylene carries over to
more complex molecules.

The specific molecule that we shall consider is what is generally referred to as [7]P-
helicene, and is shown in cross-eye stereoscopy in Figure 4.7. This exact molecule has
been studied experimentally using photoemission on different surfaces by Kettner et
al.27, and is summarised in Table 1.2. Since the planar staircase structure of the rings in
the helicene molecule is rigid compared to polyacetylene, we cannot use bond twisting.
Instead, in order to have a tunable parameter related to the geometry, we are going to
vary the height between neighbouring rings, which we denote 𝛿𝑧. Tuning this parame-
ter effectively amounts to stretching and squeezing the molecule along the helical axis.
In Figure 4.8, we plot the result of this variation in an energy window above the chem-
ical potential. When compared to a relaxed structure of free standing helicene from
ab initio calculations, a realistic value of 𝛿𝑧 is between 0.5 and 1.0Å. Importantly, Fig-
ure 4.8A shows a heatmap of the magnitude of the �⃗�-vector in which we see that, first
of all, the structure has level crossings, and second, that near these crossings the polar-
isation increases. The leads are again coupled to the outermost carbon atoms at either
end of the molecule, and the initial state, 𝛾𝐿 is not proportional to Γ𝐿. There is also
high polarisation for some parameters away from level crossings. However, these high
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Figure 4.8: (A) Energy levels and heatmap of the magnitude of the �⃗�-vector for energies above
the chemical potential (dashed red line) as a function of the stretching of the molecule, 𝛿𝑧.
As with polyacetylene, we generally see peaks in the polarisation near level crossings. (B)
Transmission function in the same region.
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Table 4.2: �⃗�- and ⃗𝐶-vectors for three selected level crossings in [7]P-helicene.

Circle 𝐷𝑥 (%) 𝐷𝑦 (%) 𝐷𝑧 (%) 𝐶𝑥 (%) 𝐶𝑦 (%) 𝐶𝑧 (%)
Blue −3.9 6.8 −53.4 0.3 −0.3 −3.3
Purple 2.3 −4.0 −12.2 1.1 −0.8 −1.6
Red 0.1 −0.2 −4.4 0.8 −0.8 −0.7

values are artifacts of a vanishing transmission, as seen in Figure 4.8B, and thus do not
contribute significantly to the spin current when integrated over.

In Table 4.2 we list the components of the �⃗�- and ⃗𝐶-vectors at the level crossings
marked by circles. We see that despite the fact that the molecule is more planar than
polyacetylene, the �⃗�-vector is still generally dominated by its component along the he-
lical axis. The ⃗𝐶-vectors at the same points are generally an order of magnitude smaller,
which was also the case for polyacetylene. It is worth noting that the projection into the
two degenerate states yields the same �⃗�-vectors up to the third decimal point, when
compared to the full treatment.

Now, by comparison with the experiments on [7]P-helicene, we find that the polari-
sation is in the opposite direction. This might seem contradictory at first. However, we
have in our calculation picked an initial state that is a random subset Γ𝐿. Since the no
polarisation theorem guarantees that for 𝛾𝐿 proportional to Γ𝐿, the �⃗�-vector vanishes,
it follows that Γ𝐿 − 𝛾𝐿 leads to the opposite polarisation. Therefore, the calculations
that we have done can only serve to highlight the mechanisms that are important to
get a significant polarisation, rather than predict what the polarisation of a given ex-
periment will be. In particular, we have found that the polarisation is greatly enhanced
and reaches experimentally observed values only when two molecular levels are close
in energy. The analysis above should therefore not be used to predict the polarisation,
but to highlight the importance of these hotspots in the spectrum.

4.4 CONCLUD ING REMARKS

In this thesis, we have introduced a formalism for dealing with the CISS effect in a
single particle picture. This formalism allows us to capture most previous theoretical
models and explain the results obtained therein. Because the CISS effect has been mea-
sured in organic molecules, where the atomic spin orbit coupling is weak, the CISS
effect must be a first order effect in the SOC. This lead to a profound theorem which
says that it should not be possible to measure any spin polarisation to first order, in a
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standard Landauer-Büttiker setup with two leads, where the electrons populate states
with the same energy with equal probability. Thus, a crucial ingredient to any theory
of the CISS effect must be that this symmetry is broken somehow. It is in fact broken in
all experiments involving photoemission or photoexcitation, since the electrons are ex-
cited by means of a laser with selection rules that preferentially populate certain states.
Moreover, in photoexcitation experiments that relied on different recombination rates
for two opposite directions of spin, we indeed found that on short time scales, the theo-
rem did not prevent one spin from escaping the molecule faster than the other. Using a
similar observation for the electrochemistry experiments, we found that a similar argu-
ment could be applied to explain howmagnetisation could be induced on a short time
scale, when the molecule is gated. The measured magnetic fields in the experiments
using a Hall probe, however, is much too large to be explained by injected polarised
electrons. Thus, another mechanism must be responsible for the Hall effect measured
in those experiments, which is beyond the scope of this thesis. All of the effects above
could in general be reduced to two vector quantities related to the molecule, the �⃗�-
and ⃗𝐶-vectors. These vectors describe the polarisation and precession of an incoming
electron beam, respectively.

In the case of experiments involving transport and a magnetic lead, we had to be
more careful, since initial considerations using time reversal symmetry and the Ward
identity lead to the result that it should not be possible to measure a difference in the
current for oppositely oriented magnetic fields. A more careful analysis showed, how-
ever, that the spin current from the magnetic lead to the normal lead was non-zero.
More importantly, when a chiral molecule was sandwiched between, the inducedmag-
netisation into the normal lead was not anti-symmetric as one would usually expect.
Instead, it was a combination of the magnetisation of the lead and the chirality of the
molecule. Thus, any description of transport between a magnetic lead and a normal
lead with a chiral molecule between must take this asymmetric effect into account.

Finally, we showed that in models of organic molecules, the spin polarisation gen-
erally only reaches a sizeable value, when two molecular levels are close in energy,
i. e. are almost degenerate. At these hotspots, the polarisation in our model systems
could reach values comparable to those measured in experiments. The occurence of ac-
cidental degeneracies was shown to be a general feature of idealised twisted molecules
with 𝑝-like orbitals, and found to exist in both twisted polyacetylene and helicene. The
points made in this thesis thus represents the foundations upon which more compre-
hensive treatments of molecules in relation to the CISS effect can be built. That is, the
no polarisation theorem, the concept of the �⃗�- and ⃗𝐶-vectors in both steady state and
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short time limits, the asymmetric induced magnetisation, and the enhancement of the
polarisation near degeneracies.
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A
MATHEMAT ICAL IDENT I T I E S

A.1 VECTOR OPERATOR S

A.1.1

I D ENT I T Y
( ⃗𝐴 × �⃗�)𝑇 = −�⃗�𝑇 × ⃗𝐴𝑇 (A.1)

PROOF Writing the cross product using the anti-symmetric tensor,

⃗𝐴 × �⃗� = ∑
𝑖𝑗𝑘

𝜖𝑖𝑗𝑘𝐴𝑖𝐵𝑗�̂�𝑘, (A.2)

and the fact that the transpose changes the order of its arguments, we immediately find
that

( ⃗𝐴 × �⃗�)𝑇 = ∑
𝑖𝑗𝑘

𝜖𝑖𝑗𝑘𝐵𝑇
𝑗 𝐴𝑇

𝑖 �̂�𝑘 = −�⃗�𝑇 × ⃗𝐴𝑇 . (A.3)

A.2 D I ST R I BUT ION FUNCT IONS

A.2.1

I D ENT I T Y

𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅) = sinh(𝛽Δ𝜇/2)
cosh(𝛽(𝐸 − ̄𝜇)) + cosh(𝛽Δ𝜇/2). (A.4)
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PROOF We first plug in the definitions:

𝑛𝐹 (𝑥) − 𝑛𝐹 (𝑦) = (𝑛−1
𝐹 (𝑦) − 𝑛−1

𝐹 (𝑥))𝑛𝐹 (𝑥)𝑛𝐹 (𝑦)
= (𝑒𝛽𝑦 − 𝑒𝛽𝑥) 𝑛𝐹 (𝑥)𝑛𝐹 (𝑦)
= 𝑒𝛽(𝑥+𝑦)/2 (𝑒𝛽(𝑦−𝑥)/2 − 𝑒−𝛽(𝑦−𝑥)/2) 𝑛𝐹 (𝑥)𝑛𝐹 (𝑦)

= 2 sinh(𝛽(𝑦 − 𝑥)/2) 𝑒𝛽𝑥/2

𝑒𝛽𝑥 + 1
𝑒𝛽𝑦/2

𝑒𝛽𝑦 + 1.

(A.5)

Using:

𝑒𝛽𝑥/2

𝑒𝛽𝑥 + 1 = 1
2 cosh(𝛽𝑥/2), (A.6)

we find:
𝑛𝐹 (𝑥) − 𝑛𝐹 (𝑦) = 1

2
sinh(𝛽(𝑦 − 𝑥)/2)

cosh(𝛽𝑥/2) cosh(𝛽𝑦/2). (A.7)

Finally, from:

cosh(𝑥) cosh(𝑦) = (𝑒𝑥 + 𝑒−𝑥)(𝑒𝑦 + 𝑒−𝑦)
4

= 𝑒𝑥+𝑦 + 𝑒−(𝑥+𝑦) + 𝑒𝑥−𝑦 + 𝑒−(𝑥−𝑦)

4
= cosh(𝑥 + 𝑦) + cosh(𝑥 − 𝑦)

2 ,

(A.8)

and setting 𝑥 = 𝐸 − 𝜇𝐿, 𝑦 = 𝐸 − 𝜇𝑅, and defining Δ𝜇 = 𝜇𝐿 − 𝜇𝑅, ̄𝜇 = (𝜇𝐿 + 𝜇𝑅)/2,
we obtain the identity, Eq. (A.4).

A.2.2

I D ENT I T Y
∫

∞

−∞
(𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅))𝑑𝐸 = 𝜇𝐿 − 𝜇𝑅 (A.9)

PROOF Using,

∫
𝑎

−𝑎
𝑛𝐹 (𝑥) 𝑑𝑥 = ∫

𝑎

−𝑎

𝑑𝑥
𝑒𝛽𝑥 + 1 = 2𝑎 + 1

𝛽 ln [1 + 𝑒−𝛽𝑎

1 + 𝑒𝛽𝑎 ] , (A.10)

we find:

∫
𝑎

−𝑎
𝑑𝐸(𝑛𝐹 (𝐸 − 𝜇𝐿) − 𝑛𝐹 (𝐸 − 𝜇𝑅)) = 1

𝛽 ln [1 + 𝑒𝛽(−𝑎−𝜇𝐿)

1 + 𝑒𝛽(𝑎−𝜇𝐿)
1 + 𝑒𝛽(𝑎−𝜇𝑅)

1 + 𝑒𝛽(−𝑎−𝜇𝑅) ] . (A.11)
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In the limit, 𝑎 → ∞, direct evaluation of this expression diverges. We thus have to use
L’Hôpital’s rule. Note that:

𝜕𝑎(1 + 𝑒−𝛽(𝑎−𝜇𝐿))(1 + 𝑒𝛽(𝑎−𝜇𝑅)) = 𝛽 [𝑒𝛽(𝑎−𝜇𝑅) − 𝑒𝛽(−𝑎−𝜇𝐿)] . (A.12)

Thus,

lim
𝑎→∞

1 + 𝑒𝛽(−𝑎−𝜇𝐿)

1 + 𝑒𝛽(𝑎−𝜇𝐿)
1 + 𝑒𝛽(𝑎−𝜇𝑅)

1 + 𝑒𝛽(−𝑎−𝜇𝑅) = lim
𝑎→∞

𝑒𝛽(𝑎−𝜇𝑅) − 𝑒𝛽(−𝑎−𝜇𝐿)

𝑒𝛽(𝑎−𝜇𝐿) − 𝑒𝛽(−𝑎−𝜇𝑅) , (A.13)

and by multiplying by 𝑒−𝛽𝑎 in the numerator and denominator, we obtain:

lim
𝑎→∞

𝑒−𝛽𝜇𝑅 − 𝑒−2𝛽𝑎𝑒−𝛽𝜇𝐿

𝑒−𝛽𝜇𝐿 − 𝑒−2𝛽𝑎𝑒−𝛽𝜇𝑅
= 𝑒𝛽(𝜇𝐿−𝜇𝑅). (A.14)

Plugging this result back into Eq. (A.11), we arrive at the identity, Eq. (A.9).
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In this appendix, we want to prove some properties and relations of systems as a con-
sequence of time reversal and time reversal symmetry. We define, in informal terms,
the time reversal operator, 𝕋, as an operator that reverses the direction of time. To fig-
ure out its form as an operator, we consider the position operator, ̂𝑥. Under time re-
versal, changing the direction of time does not affect the instantaneous position of a
particle, and thus we demand that 𝕋 ̂𝑥 = ̂𝑥𝕋. Conversely, for the momentum operator,
̂𝑝 = 𝑚𝜕𝑡 ̂𝑥 = 𝑖[�̂�, 𝑚 ̂𝑥]/ℏ, we expect it to change sign:

𝕋 ̂𝑝 = − ̂𝑝𝕋 = − 𝑖
ℏ[�̂�, 𝑚 ̂𝑥]𝕋. (B.1)

In real space, for a particle in a potential,

�̂� = ̂𝑝2

2𝑚 + ̂𝑉 . (B.2)

The kinetic energy term is quadratic in ̂𝑝 and thus does not change sign. In general, the
potential can be found by considering the forces acting on the particle:

⃗𝐹 = −∇⃗𝑉 . (B.3)

For a particle in an electromagnetic field, the force field can be found as:

⃗𝐹 = 𝑞
𝑚(𝑚 ⃗𝐸 + ⃗𝑝 × �⃗�) = −∇⃗𝑉 . (B.4)

The contribution from the electric field reads:

𝑉 ( ⃗𝑟) = −𝑞 ∫
⃗𝑟

⃗𝑟0

𝑑 ⃗𝑟′ ⋅ ⃗𝐸( ⃗𝑟′). (B.5)

Assuming the electric field to be unaffected by time reversal, this term, like the kinetic
energy, also does not change sign.

The magnetic field is different. Assuming for simplicity, that the magnetic field is
constant, we get:

𝑉 ( ⃗𝑟) = 𝑞
𝑚 ⃗𝑟 ⋅ ⃗𝑝 × �⃗� = �⃗� ⋅ 𝑞

𝑚( ⃗𝑟 × ⃗𝑝)⏟⏟⏟⏟⏟
�⃗�

, (B.6)
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where ⃗𝜇 is the magnetic moment of the particle. Since ⃗𝑝 changes sign, this whole term
changes sign under time reversal, and thus a magnetic field is often said to break time
reversal symmetry∗. Note that matrix elements of the operator �̂� are real, if the states
are real:

⟨𝜓| �̂� |𝜙⟩ = ∫ 𝑑 ⃗𝑟 𝜓( ⃗𝑟) (− ∇2

2𝑚 + 𝑉 ( ⃗𝑟)) 𝜙( ⃗𝑟), (B.7)

since 𝑉 ( ⃗𝑟) is a real field. Consequently, going back to Eq. (B.1), it is satisfied in a real
basis, if 𝕋 = 𝐾 is the complex conjugation operator.
Operators that only depend on the position of a particle and even powers of its mo-

mentumare time reversal symmetric. For such an operator,𝐴, it thus follows that,when
expressed in a real basis, 𝐴 = 𝐴∗. Operators that depend on odd powers of momen-
tum or momentum-like quantities of a particle are anti-symmetric under time reversal,
and thus obey 𝐴 = −𝐴∗ instead. The latter is the case for the energy of a particle in a
magnetic field, its the angular momentum and spin degrees of freedom.

B.1 S P IN

In our analysis above, we have ignored the properties of spin. Since the electron spin
is also an angular momentum, we must also require 𝕋 ⃗𝑎 ⋅ �⃗� = − ⃗𝑎 ⋅ �⃗�𝕋. This is satisfied
if we let the spinful representation of the time reversal operator be 𝕋 = −𝑖𝜎𝑦𝐾. To see
this, we use the fact that 𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥:

𝕋𝜎𝑥 = −𝑖𝜎𝑦𝜎𝑥𝐾 = −𝜎𝑥(−𝑖𝜎𝑦𝐾) = −𝜎𝑥𝕋. (B.8)

And similarly for 𝜎𝑧. For 𝜎𝑦 we use the complex conjugation operator to find the same
relationship:

𝕋𝜎𝑦 = −𝑖𝜎𝑦𝜎∗
𝑦𝐾 = −𝜎𝑦(−𝑖𝜎𝑦𝐾) = −𝜎𝑦𝕋. (B.9)

This proves that 𝕋 = −𝑖𝜎𝑦𝐾 is the time reversal operator in a spinful (spin-1
2) repre-

sentation.
All the spinful operators we are interested in can be written on so-called quarternion

form:
𝐴 = 𝐴0𝜎0 + ⃗𝐴 ⋅ �⃗�, (B.10)

where 𝜎0 is the identity matrix in spin space. By applying the time reversal operators,
we see that in a real basis, they must obey:

𝕋𝐴 = 𝕋(𝐴0 + ⃗𝐴 ⋅ �⃗�) = (𝐴∗
0 − ⃗𝐴∗ ⋅ �⃗�)𝕋 = 𝐴𝑄𝕋, (B.11)

∗ In a full treatment, we want our physical laws to look identical, when we “play the movie backwards”,
and thus the way out of this conundrum is to let the magnetic field change sign under time reversal,
which would also be the case if one considered the sources giving rise to the field in the first place.
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where the superscript 𝑄 denotes the quarternion conjugate, defined by the equality.
Note that because of the tracelessness of the Pauli matrices, the trace of the product of
two quarternion operators is given by:

tr[(𝐴0 + ⃗𝐴 ⋅ �⃗�)(𝐵0 + �⃗� ⋅ �⃗�)] = tr[𝐴𝐵] + tr[ ⃗𝐴 ⋅ �⃗�]. (B.12)

Plugging in the definition of the quarternion conjugate and using the invariance of the
trace under transposition, it is therefore trivial to show that:

tr[𝐴𝐵] = tr[𝐴𝑄𝐵𝑄]∗ = tr[(𝐴𝑄)†(𝐵𝑄)†] = tr[𝐴𝜏𝐵𝜏 ], (B.13)

for all quarternion operators, where 𝐴𝜏 = (𝐴𝑄)† denotes what we refer to as the quar-
ternion transpose.

Note that, like normal conjugation,

(𝐴𝐵)𝑄 = 𝐴𝑄𝐵𝑄. (B.14)

To see this, the explicit calculation of the product of the two quarternion operators
gives:

𝐴𝐵 = 𝐴0𝐵0 + ⃗𝐴 ⋅ �⃗� + (𝐴0�⃗� + ⃗𝐴𝐵0 + 𝑖 ⃗𝐴 × �⃗�) ⋅ �⃗�, (B.15)

while the product of their quarternion conjugates gives:

𝐴𝑄𝐵𝑄 = 𝐴∗
0𝐵∗

0 + ⃗𝐴∗ ⋅ �⃗�∗ − (𝐴∗
0�⃗�∗ + ⃗𝐴∗𝐵∗

0 + 𝑖 ⃗𝐴∗ × �⃗�∗) ⋅ �⃗�, (B.16)

which is exactly equal to (𝐴𝐵)𝑄. This relationship can be extended to the quarternion
transpose, by taking the adjoint of the expressions above. We thus find:

(𝐴𝑄𝐵𝑄)† = 𝐵𝜏𝐴𝜏 = 𝐵𝑇
0 𝐴𝑇

0 + �⃗�𝑇 ⋅ ⃗𝐴𝑇 − (�⃗�𝑇 𝐴𝑇
0 + 𝐵𝑇

0 ⃗𝐴𝑇 + 𝑖�⃗�𝑇 × ⃗𝐴𝑇 ) ⋅ �⃗�, (B.17)

where we have used the identity A.1.1 for transposition of cross products to cancel
the sign change from the conjugation of 𝑖. Thus, we find that analogous to the normal
transpose, it also holds that:

(𝐴𝐵)𝜏 = 𝐵𝜏𝐴𝜏 . (B.18)

This allows us to extend the trace identity to:

tr[𝐴𝐵𝐶] = tr[𝐶𝜏𝐵𝜏𝐴𝜏 ], (B.19)

for all quarternion operators, which of course generalises to higher order products as
well.
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B.1.1 Time reversed operators

If the Hamiltonian is time reversal invariant, it must hold that in a real basis:

𝕋𝐻 = 𝐻𝕋 = 𝐻𝑄𝕋 ⇒ 𝐻 = 𝐻𝑄 = 𝐻† = 𝐻𝜏 . (B.20)

If we include the spin-orbit coupling, it consists of the product of two angularmomenta
(spin and orbital), thus it must also hold that:

𝕋�⃗� ⋅ Λ⃗ = �⃗� ⋅ Λ⃗𝕋. (B.21)

If the Hamiltonian is time reversal invariant, 𝕋𝐻 = 𝐻𝕋, the propagator is related to its
adjoint through time reversal as:

𝕋𝐺0 = 1
𝐸𝕋−1 − 𝐻𝕋−1 + 𝑖𝜂𝕋−1 = 1

𝕋−1𝐸 − 𝕋−1𝐻 − 𝕋−1𝑖𝜂 = (𝐺0)†𝕋. (B.22)

It thus follows that for self-energies of the type:

𝕋Σ𝑅 = 𝕋𝐻𝑀𝑅𝐺0
𝑅𝐻𝑅𝑀 = 𝐻𝑀𝑅(𝐺0

𝑅)†𝐻𝑅𝑀𝕋 = Σ†
𝑅𝕋, (B.23)

and therefore the time reverse partner of the full propagator is also its adjoint:

𝕋𝐺 = 𝕋 1
𝐸 − 𝐻 − Σ = 𝕋 1

𝐸 − 𝐻 − Σ† 𝕋 = 𝐺†𝕋. (B.24)

Since the time reverse of any spinful operator is its quarternion conjugate, we thus find
𝐺𝑄 = 𝐺†, and 𝐺 = 𝐺𝜏 , if the whole system is time reversal invariant.
In the case of amagnetic lead, time reversal symmetry is broken. However, if the lead

has magnetisation along an axis �̂�, we can write,

𝕋𝐻(�̂�) = 𝕋𝐻0 + 𝕋Δ𝐻(�̂� ⋅ �⃗�) = 𝐻0𝕋 − Δ𝐻(�̂� ⋅ �⃗�)𝕋 = 𝐻(−�̂�)𝕋. (B.25)

Consequently, we find for the other operators,

𝕋𝐺0(�̂�) = (𝐺0(−�̂�))†𝕋, 𝕋Σ(�̂�) = Σ†(−�̂�)𝕋, 𝕋𝐺(�̂�) = 𝐺†(−�̂�)𝕋, (B.26)

or 𝐺𝑄(�̂�) = 𝐺†(−�̂�), 𝐺(�̂�) = 𝐺𝜏(−�̂�), etc.
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C.1 PART I C L E CURRENT OF CROS S -T E RMS

In the case of cross-terms in the density matrix involving the molecule subspace, it
turns out to be convenient to go back to Eq. (2.54) and introduce projection operators
there:

tr[(𝐿 + 𝑅)𝜌(𝑡0)𝑀𝐺†𝐴𝐺] = tr[𝜌(𝑡0)𝑀𝐺†𝐴(𝐺𝑉 + 1)(𝐿 + 𝑅)𝐺0], (C.1)

and

tr[𝑀𝜌(𝑡0)(𝐿 + 𝑅)𝐺†𝐴𝐺] = tr[𝑀𝜌(𝑡0)(𝐺0)†(𝐿 + 𝑅)(1 + 𝑉 𝐺†)𝐴𝐺]. (C.2)

The cross-term density matrix is then defined as:

𝜌𝐿𝑀(𝐸) = 𝜂
𝜋𝐿𝐺0𝜌(𝑡0)𝑀 = ∑

𝜓𝑘𝑘′
⟨𝑛𝜓⟩𝜓𝑘𝑘′

𝜂/𝜋
𝐸 − 𝐸𝑘 + 𝑖𝜂𝐿 |𝑘⟩ ⟨𝑘′| 𝑀. (C.3)

And similarly for 𝜌𝑀𝐿, etc. Note that in the limit, 𝜂 → 0+,

𝜌𝐿𝑀(𝐸) = ∑
𝜓𝑘𝑘′

⟨𝑛𝜓⟩𝜓𝑘𝑘′ (𝒫 𝜂/𝜋
𝐸 − 𝐸𝑘

− 𝑖𝜂𝛿(𝐸 − 𝐸𝑘)) 𝐿 |𝑘⟩ ⟨𝑘′| 𝑀, (C.4)

where 𝒫 denotes the principal value. When integrated over 𝐸, both of the terms vanish
identically, in this limit. Thus, we are justified in ignoring cross-terms related to the
molecule when calculating the steady state current.

For cross-terms related to the leads, we find one non-zero trace from the second and
third terms of Eq. (2.60). It is:

⟨𝐻𝑅𝑀⟩(2,3)
𝐿𝑅 = ∫ 𝑑𝐸 tr[𝜌𝐿𝑅

0 𝐻𝑅𝑀𝐺𝑀𝐻𝑀𝐿] = ∫ 𝑑𝐸 tr[𝛾𝐿𝑅𝐺𝑀 ]. (C.5)

The terms related to 𝜌𝑅𝐿
0 are zero. To see this, note that due to the projections, it is not

possible to find operators that “line up” under the trace:

tr[𝜌𝑅𝐿
0 𝐻𝑅𝑀𝐺𝑀𝐻𝑀𝑅] + tr[𝜌𝑅𝐿

0 𝐻𝐿𝑀𝐺†
𝑀𝑅𝐻𝑅𝑀] = 0. (C.6)
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Consequently, the particle current associated with these cross-terms are of the form:

⟨ ̇�̄�⟩(2,3)
𝐿𝑅 = ∫ 𝑑𝐸

ℏ 2Im tr[𝛾𝐿𝑅𝐺𝑀 ] = ∫ 𝑑𝐸
ℏ 𝑖 tr[𝛾𝑅𝐿𝐺†

𝑀 − 𝛾𝐿𝑅𝐺𝑀], (C.7)

where we have used the fact that 𝛾†
𝐿𝑅 = 𝛾𝑅𝐿. Now, in the steady state limit,

𝛾𝐿𝑅 = ∑
𝜓𝑘𝑘′

⟨𝑛𝜓⟩𝜓𝑘𝑘′𝛿𝐸𝑘,𝐸′
𝑘
𝐿 |𝑘⟩ 𝛿(𝐸 − 𝐸𝑘) ⟨𝑘′| 𝑅, (C.8)

in both the scattering and initial state picture. If the density matrix is time-reversal
invariant, the equation above tells us that 𝛾𝐿𝑅 = 𝛾𝑄

𝐿𝑅, where the superscript 𝑄 denotes
the quarternion conjugate, as discussed in Appendix B. Using Eq. (B.13), we are thus
left with the trace:

tr[𝛾𝐿𝑅𝐺𝑀 ] = tr[𝛾𝜏
𝐿𝑅𝐺𝜏

𝑀 ] = tr[𝛾𝑅𝐿𝐺𝑀 ]. (C.9)

Here we have used the fact that in a real basis, 𝐺𝜏
𝑀 = 𝐺𝑀 for a time-reversal invariant

Hamiltonian. Therefore, we finally find that the corresponding particle current is given
by:

⟨ ̇�̄�⟩(2,3)
𝐿𝑅 = ∫ 𝑑𝐸

ℏ 𝑖 tr[𝛾𝑅𝐿(𝐺†
𝑀 − 𝐺𝑀)] = − ∫ 𝑑𝐸

ℏ tr[𝛾𝑅𝐿𝐺†
𝑀Γ𝐺𝑀]. (C.10)

For the fourth term of Eq. (2.60), an analysis analogous to the one in section 2.4 leads
to:

⟨ ̇�̄�⟩(4)
𝐿𝑅 + ⟨ ̇�̄�⟩(4)

𝑅𝐿 = ∫ 𝑑𝐸
ℏ tr[(𝛾𝐿𝑅 + 𝛾𝑅𝐿)𝐺†

𝑀Γ𝑅𝐺𝑀], (C.11)

and putting it all together:

⟨ ̇�̄�⟩𝐿𝑅 + ⟨ ̇�̄�⟩𝑅𝐿 = ∫ 𝑑𝐸
ℏ (tr[𝛾𝐿𝑅𝐺†

𝑀Γ𝑅𝐺𝑀] − tr[𝛾𝑅𝐿𝐺†
𝑀Γ𝐿𝐺𝑀]) . (C.12)

C.1.1 Transient effects

On short time scales, we consider only the issue of a molecule coupled to a single lead.
In this case, we have to consider the density matrix:

𝜌𝑅𝑀(𝐸) = ℏ
2𝜋𝜏 𝑅𝐺0𝜌(𝑡0)𝑀 = ∑

𝜓𝑘𝑘′
⟨𝑛𝜓⟩𝜓𝑘𝑘′

Γ𝜏/2𝜋
𝐸 − 𝐸𝑘 + 𝑖Γ𝜏/2𝑅 |𝑘⟩ ⟨𝑘′| 𝑀

= Γ𝜏
2𝜋 ∑

𝜓𝑘𝑘′
⟨𝑛𝜓⟩𝜓𝑘𝑘′ ( 𝐸 − 𝐸𝑘 − 𝑖Γ𝜏/2

(𝐸 − 𝐸𝑘)2 + (Γ𝜏/2)2 ) 𝑅 |𝑘⟩ ⟨𝑘′| 𝑀
(C.13)

For very short time scales, Γ𝜏 is large, and therefore find that the density matrix tends
towards a constant for finite 𝐸:

𝜌𝑅𝑀(𝐸 ≪ Γ𝜏) = − 𝑖
𝜋𝑅𝜌(𝑡0)𝑀. (C.14)



C.2 THE PRECE S S I ON TERM IN EQU I L I B R IUM 125
Assuming 𝜌 is spinless and time-reversal invariant, in which case it is real, 𝜌𝑅𝑀 thus
becomes imaginary. This might initially seem counterintuitive, but it is important to
remember that 𝜌𝑅𝑀 represents off-diagonal elements of the density matrix. All we re-
quire is that the full density matrix is hermitian, and we indeed find by the same anal-
ysis that the corresponding 𝜌𝑀𝑅 comes with an opposite sign. Thus the form of the
density matrix is consistent.

Now, to calculate the particle current into the lead, we again have to consider two
kinds of traces. The first trace is of the type:

⟨𝐻𝑅𝑀⟩(1)
𝑀𝑅 = ∫ 𝑑𝐸 tr[𝜌𝑀𝑅𝐻𝑅𝑀𝐺𝑀 ] = ∫ 𝑑𝐸 tr[𝛾𝜏𝑅𝐺𝑀 ], (C.15)

where we have defined 𝛾𝑅𝜏 = 𝐻𝑀𝑅𝜌𝑅𝑀 , analogous to our usual definitions. The cur-
rent from this term thus yields:

⟨ ̇�̄�⟩(1)
𝜏𝑅 = ∫ 𝑑𝐸

ℏ 2Im tr[𝛾𝜏𝑅𝐺𝑀 ] = ∫ 𝑑𝐸
ℏ 𝑖 tr[𝛾𝑅𝜏𝐺†

𝑀 − 𝛾𝜏𝑅𝐺𝑀]. (C.16)

Joining itwith the remaining term, analogous to the fourth term in Eq. (2.60),we finally
obtain:

⟨ ̇�̄�⟩𝑀𝑅 = ∫ 𝑑𝐸
ℏ (tr[(𝛾𝑅𝜏 + 𝛾𝜏𝑅)𝐺†

𝑀Γ𝑅𝐺𝑀] + tr[𝛾𝑅𝜏𝑖𝐺†
𝑀 − 𝛾𝜏𝑅𝑖𝐺𝑀]) . (C.17)

Unfortunately, unlike in the steady state case, 𝛾𝑅𝜏 is now complex, and thus time rever-
sal invariance of the initial state does not ensure time reversal invariance of 𝛾𝑅𝜏 . Thus
we cannot simplify the last term under the integral above, without further assumptions
about the whole system.

C.2 THE PRECE S S I ON TERM IN EQU I L I B R IUM

Note: this derivation depends on quantities and notation introduced in chapter 3. Ex-
panding the propagators to first order in the SOC, �⃗�𝑀 = Λ⃗, we get:

tr[𝛾𝐺†
𝑀 �̂� × Λ⃗ ⋅ �⃗�𝐺𝑀] = tr[𝛾𝑔†

𝑀(Λ⃗ ⋅ �⃗�)𝑔†
𝑀(�̂� × Λ⃗) ⋅ �⃗�𝑔𝑀]

+ tr[𝛾𝑔†
𝑀(�̂� × Λ⃗) ⋅ �⃗�𝑔𝑀(Λ⃗ ⋅ �⃗�)𝑔𝑀]

= 2 tr[(𝑔𝑀𝛾𝑔†
𝑀) (∑

𝑖𝑗𝑘
𝜖𝑖𝑗𝑘𝑛𝑖Λ𝑘(𝑔𝑀 − 𝑔†

𝑀)Λ𝑗)].
(C.18)

Now, since in a real basis:
𝑔 = 𝑔𝑇 , Λ⃗ = −Λ⃗𝑇 , (C.19)
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we find:

Λ𝑘𝑔†Λ𝑗 = (Λ𝑗𝑔†Λ𝑘)𝑇 . (C.20)

Additionally, in the equilibrium situation where 𝛾 ∝ Γ, we can make use of the Ward
identity to find that 𝑔𝑀Γ𝑔†

𝑀 = (𝑔𝑀Γ𝑔†
𝑀)𝑇 . From the property of the trace,

tr[𝐴𝐵] = tr[𝐴𝑇 𝐵𝑇 ], (C.21)

and (C.20) above, we thus end up with:

tr[(𝑔𝑀Γ𝑔†
𝑀) (∑

𝑖𝑗𝑘
𝜖𝑖𝑗𝑘𝑛𝑖Λ𝑘(𝑔𝑀 − 𝑔†

𝑀)Λ𝑗)]

= tr⎡⎢
⎣

(𝑔𝑀Γ𝑔†
𝑀)

𝑇
(∑

𝑖𝑗𝑘
𝜖𝑖𝑗𝑘𝑛𝑖Λ𝑘(𝑔𝑀 − 𝑔†

𝑀)Λ𝑗)
𝑇

⎤⎥
⎦

= tr[(𝑔𝑀Γ𝑔†
𝑀) (∑

𝑖𝑗𝑘
𝜖𝑖𝑗𝑘𝑛𝑖Λ𝑗(𝑔𝑀 − 𝑔†

𝑀)Λ𝑘)].

(C.22)

Note that in the last equality, the indices 𝑗 and 𝑘 have been reversed. Using the fact that
the anti-symmetric tensor, 𝜖𝑖𝑗𝑘 changes sign under such an interchange, the trace must
be zero. In other words, in equilibrium, there is no net spin polarisation of the system
in steady state up to second order in the atomic SOC.

Using the quarternion notation of Appendix B, this can be shown to hold more gen-
erally. In a spinful representation, 𝐺𝑀 = 𝐺𝜏

𝑀 = (𝐺𝑄
𝑀)†. Consequently, if Γ is time-

reversal symmetric, since it is hermitian, Γ = Γ𝑄 = Γ† = Γ𝜏 . Thus we have the analo-
gous quarternion transpose identity, using the Ward identity, Eq. (2.79): 𝐺𝑀Γ𝐺†

𝑀 =
(𝐺𝑀Γ𝐺†

𝑀)𝜏 . Consequently:

tr[(𝐺𝑀Γ𝐺†
𝑀)(�̂� × Λ⃗) ⋅ �⃗�] = tr[(𝐺𝑀Γ𝐺†

𝑀)𝜏((�̂� × Λ⃗) ⋅ �⃗�)𝜏]
= − tr[𝐺𝑀Γ𝐺†

𝑀(�̂� × Λ⃗) ⋅ �⃗�] = 0.
(C.23)

In the last equality, we have used the fact that Λ⃗ and �⃗� are hermitian, and the fact that
the quarternion conjugation yields:

((�̂� × Λ⃗) ⋅ �⃗�)𝑄 = −(�̂� × Λ⃗) ⋅ �⃗�. (C.24)
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Inserting the spin-resolved propagators and Γ-matrix, the transmission function takes
the form:

𝑇𝑖→𝑗 = tr[𝛾𝑖( ̄𝑔†
𝑀 + (�̂� ⋅ �⃗�)Δ𝑔†

𝑀)(Λ⃗ ⋅ �⃗�)( ̄𝑔†
𝑀 + (�̂� ⋅ �⃗�)Δ𝑔†

𝑀)
× (Γ̄𝑗 + (�̂� ⋅ �⃗�)ΔΓ𝑗)( ̄𝑔𝑀 + (�̂� ⋅ �⃗�)Δ𝑔𝑀)]

(D.1)

Applying the rules listed in Table 3.1, only the following terms involved in the pertu-
bative expansion of the transmission function survive:

𝑇𝑖→𝑗 = 2 tr[𝛾𝑖 ̄𝑔†
𝑀 Γ̄𝑗 ̄𝑔𝑀] + 2 tr[𝛾𝑖Δ𝑔†

𝑀ΔΓ𝑗 ̄𝑔𝑀]
+ 2 tr[𝛾𝑖 ̄𝑔†

𝑀ΔΓ𝑗Δ𝑔𝑀] + 2 tr[𝛾𝑖Δ𝑔†
𝑀 Γ̄𝑗Δ𝑔𝑀]

+ 2 tr[𝛾𝑖Δ𝑔†
𝑀(Λ⃗ ⋅ �̂�) ̄𝑔†

𝑀 Γ̄𝑗 ̄𝑔𝑀] + 2 tr[𝛾𝑖 ̄𝑔†
𝑀(Λ⃗ ⋅ �̂�)Δ𝑔†

𝑀 Γ̄𝑗 ̄𝑔𝑀]
+ 2 tr[𝛾𝑖 ̄𝑔†

𝑀(Λ⃗ ⋅ �̂�) ̄𝑔†
𝑀ΔΓ𝑗 ̄𝑔𝑀] + 2 tr[𝛾𝑖 ̄𝑔†

𝑀(Λ⃗ ⋅ �̂�) ̄𝑔†
𝑀 Γ̄𝑗Δ𝑔𝑀]

+ 2 tr[𝛾𝑖 ̄𝑔†
𝑀(Λ⃗ ⋅ �̂�)Δ𝑔†

𝑀ΔΓ𝑗Δ𝑔𝑀] + 2 tr[𝛾𝑖Δ𝑔†
𝑀(Λ⃗ ⋅ �̂�) ̄𝑔†

𝑀ΔΓ𝑗Δ𝑔𝑀]
+ 2 tr[𝛾𝑖Δ𝑔†

𝑀(Λ⃗ ⋅ �̂�)Δ𝑔†
𝑀 Γ̄𝑗Δ𝑔𝑀] + 2 tr[𝛾𝑖Δ𝑔†

𝑀(Λ⃗ ⋅ �̂�)Δ𝑔†
𝑀ΔΓ𝑗 ̄𝑔𝑀].

+ 2 tr[𝛾𝑖Δ𝑔†
𝑀 Γ̄𝑗 ̄𝑔𝑀(Λ⃗ ⋅ �̂�) ̄𝑔𝑀] + 2 tr[𝛾𝑖 ̄𝑔†

𝑀ΔΓ𝑗 ̄𝑔𝑀(Λ⃗ ⋅ �̂�) ̄𝑔𝑀]
+ 2 tr[𝛾𝑖 ̄𝑔†

𝑀 Γ̄𝑗Δ𝑔𝑀(Λ⃗ ⋅ �̂�) ̄𝑔𝑀] + 2 tr[𝛾𝑖 ̄𝑔†
𝑀 Γ̄𝑗 ̄𝑔𝑀(Λ⃗ ⋅ �̂�)Δ𝑔𝑀]

+ 2 tr[𝛾𝑖 ̄𝑔†
𝑀ΔΓ𝑗Δ𝑔𝑀(Λ⃗ ⋅ �̂�)Δ𝑔𝑀] + 2 tr[𝛾𝑖Δ𝑔†

𝑀 Γ̄𝑗Δ𝑔𝑀(Λ⃗ ⋅ �̂�)Δ𝑔𝑀]
+ 2 tr[𝛾𝑖Δ𝑔†

𝑀ΔΓ𝑗 ̄𝑔𝑀(Λ⃗ ⋅ �̂�)Δ𝑔𝑀]. + 2 tr[𝛾𝑖Δ𝑔†
𝑀ΔΓ𝑗Δ𝑔𝑀(Λ⃗ ⋅ �̂�) ̄𝑔𝑀]

(D.2)
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Table D.1: Incoming polarisations for photoemission experiments.

Year Author(s) Molecule Substrate ccw. lin. cw.
2011 Göhler et al.22 50-bp dsDNA Au(111) 22 0 −22

40-bp dsDNA Au(poly.) −4 2 6
50-bp dsDNA −4 2 6
78-bp dsDNA −4 2 6

2013 Mishra et al.30 Bacteriorhodopsin Au(poly.)a −4 2 6
Al(poly.) 0 0 0

2015 Kettner et al.31 AL5 oligopeptide Au(poly.)a −4 2 6
AL6 oligopeptide −4 2 6
AL7 oligopeptide −4 2 6

2018 Kettner et al.27 M-helicene Cu(332) 0 0 0
P-helicene 0 0 0
M-helicene Ag(110) 3 0 −3
P-helicene 3 0 −3
M-helicene Au(111) 27 0 −24
P-helicene 27 0 −24

2019 Ghosh et al.32 L-CuO film (20nm) Au(111) – 0 –
D-CuO film (20nm) – 0 –

a The values were not reported and have been assumed similar to the experiments on dsDNA above.
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