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abstract

The field of optomechanics concerns interaction between me-
chanical motion and electromagnetic radiation. The interaction
allows for exceptionally precise measurement of the motion and
control of mechanical motion on the level of a single quantum. In
the recent decades, steady progress in fabrication techniques has
enabled increasing number of experiments probing fundamental
quantum mechanics. On the other hand, the optomechanical
interaction promises new applications in force sensing, detection
of electromagnetic fields and as a platform for budding quan-
tum networks. In this thesis, we present two room temperature
experiments as steps towards such technologies

First, we have developed an integrated opto-electromechanical
transducer for use in clinical MRI machines. The device inte-
grates an optical optical cavity and electrodes on a single chip
and is fiber coupled. An aluminium membrane forms one half of
a parallel plate capacitor and one mirror of a Fabry-Pérot-cavity.
The device is connected to a resonant electrical detection circuit
and we infer the noise temperature of the transducer device to
be 210 K. In a proof of principle experiment, we image an MRI
phantom in a commercial 3 T MRI scanner.

Second, we have built an optical cavity consisting of a fiber
mirror and a phononic crystal mirror exhibiting low phase noise.
Combined with a soft-clamped silicon nitride membrane, the
optomechanical system can reach Cq > 1. We further feedback
cool the resonators mode from room temperature to an occupa-
tion of n = 20 phonons. The final occupation is limited by poor
detection efficiency caused by suboptimal mode matching.
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sammenfatning

Forskningsfeltet optomekanik beskæftiger sig med vekselvirknin-
gen mellem mekanisk bevægelse og elektromagnetisk stråling.
Denne vekselvirkning tillader exceptionelt nøjagtig måling af
bevægelse og kontrol over den mekaniske bevægelse ned til
niveauet af enkelte kvanter. Igennem de seneste årtier har støt
fremgang i fabrikationsteknikker tilladt flere og flere eksperi-
menter der tester fundamental kvantefysik. Derudover er den
optomekaniske vekselvirkning lovende for anvendelser indenfor
kraftsensorer, detektion af elektromagnetiske felter og som en
platform for nye kvantenetværk. I denne afhandling præsen-
terer vi to stue-temperaturseksperimenter, som trin på vejen til
sådanne teknologier.

For det første har vi udviklet en integreret opto-elektromekanisk
transducer til brug i kliniske MRI maskiner. Dette apparat in-
tegrerer en optisk kavitet og elektroder på en enkelt chip og er
fiberkoblet. En aluminiummembran udgør den ene halvdel af
en parallel-plade kapacitor samt et spejl i en Fabry-Pérot kavitet.
Dette apparat er forbundet til et resonant elektrisk målekredsløb
og vi udleder transducerens støjtemperatur til 210 K. I et princip-
bevis eksperiment afbilleder vi en MRI kalibreringsprøve i en
kommerciel 3 T MRI scanner.

For det andet har vi bygget en optisk kavitet bestående
af et fiberspejl og et fononisk-krystal spejl der besidder lav
fasestøj. Kombineret med en blødt fastspændt siliciumnitrid
membran, kan det optomekaniske system opnå Cq > 1. Vi
tilbagekoblingskøler yderligere resonatorens svingning fra stuetem-
peratur til et gennemsnitligt fononantal på 20. Det endelige
fononantal er begrænset af ringe detektionseffektivitet, hvilket
skyldes suboptimal tilstandstilpasning.
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1I N T R O D U C T I O N

radiation pressure and mechanical motion

Nowadays optomechanics is starting to be a mature field where
simple demonstrations of a platform is no longer sufficient to
raise interest. The very core of optomechanics is interaction
between light and a mechanical resonator. This interaction is
mediated by the radiation pressure force i.e. the fact that despite
being massless particles, photons have momentum. As is already
a tradition in theses in optomechanics, we would like to first
take brief historical look.

The observation that photons apply a force can be traced
back to the astronomical records of Johannes Kepler, where he
noticed that the tail of a comet points away from the sun and even
formulated a hypothesis, that the light of the sun would push the
the particles. More accurate measurements, explicitly looking for
radiation pressure force predicted by Maxwell’s formulation of
electromagnetism [1]. were made a the turn of the 20th century
by Crooke with a device where a light torsion pendulum was
placed in a partial vacuum and a light was shone on one of the
arms [2]. However, the first experiment was less than ideal and
the motion observed was caused by local pressure change due to
temperature gradients. Nevertheless, improved measurements
with broadly similar apparatuses were independently made by
P.N. Lebedev and Nichols and Hull and the were able to rule
out effects other than radiation pressure[3, 4].

While in principle it could be said that these experiments
were already a form of optical control of mechanical motion,
what we usually have in mind is something finer. One such
demonstration of finer control was the invention of optical
tweezers where a dielectric particle - later atoms and ions -
was trapped using a tightly focused laser beam [5]. Around the
same time, it was theoretically and experimentally shown that
the radiation pressure force damps or anti-damps the motion
of a movable end mirror in a Fabry Perot cavity [6, 7]. Interest-
ingly, such a system also lends itself to an exceptionally accurate
measurement of the moving mirrors motion. In fact, modern
gravitational wave detectors such as LIGO [8] and the less well
known advanced VIRGO [9] consist of two perpendicular multi-
ple kilometre long optical cavities. When the gravitational wave
passes, one of the cavities is elongated relative to the other and
the length difference is picked up. The position measurement in
an optomechanical system is based on the same principle.
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introduction

optomechanics : from fundamental science to quan-
tum applications

Advancing nanofabrication techniques enabled engineering ever
finer and lighter nanomechanical resonators sensitive to ever
smaller forces. Under suitable conditions, measuring the effect
of the quantum fluctuations of light, or the so called radiation
pressure shot noise, ecame possible [10] and further control
of mechanical motion soon followed. Nowadays, preparing a
mechanical mechanical at ground state is almost routine and
achieved with multiple different configurations [11, 12, 13, 14, 15].
Optomechanical systems have been used to generate squeezed
states of light [16], entangling both disparate electromagnetic
fields [17, 18], separate mechanical resonators [19, 20] and the
field with the mechanical resonator[21]. Most strikingly, the
collective degrees of freedom of a very macroscopic resonator
behave exactly according to a quantum mechanical model. One
can imagine pushing for more massive resonators to investigate
the quantum to classical transition, investigate state collapse
models or measure the effect of gravitation [22, 23].

While many of the phenomena probed in such a system are
inherently interesting from the point of view of fundamental
quantum mechanics, optomechanics also promises new appli-
cations. Low loss mechanical resonators combined with precise
position measurement allow for ultralow force sensitivity down
to few tens of zeptonewton at moderate cryogenic temperature
[24] and a suitably coupled optomechanical device could be used
to pick up minute electromagnetic fields. Alternatively, optome-
chanical systems could provide tools for a budding quantum
internet [25]. For this purpose, a tantalizing prospect is con-
verting microwave photons originating from a superconducting
qubit to optical photons at telecom wavelengths that are much
easier to transport over long distances1. Mechanical resonators
couple easily to both microwave and optical cavities facilitating
such frequency conversion. Recent advances in increasing the
mechanical coherence times to ever higher values would also
suggest the possibility of using a mechanical element as a quan-
tum memory[27]. Thus, optomechanical devices could play a
key role in enabling the budding quantum internet.

1 In fact as of June 2021, there are already startups aiming to commercialize
the technology, such as QphoX in Netherlands [26].
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stucture of the thesis

The common thread of this thesis is optomechanics at the room
temperature. So far, most experiments require a cryogenic en-
vironment and a complicated experimental setup. Room tem-
perature operation would not only simplify system design, but
enable the use of optomechanical devices in situations, where
cooling is impractical or outright impossible. We thus present
two experiments demonstrating sufficient performance at the
room temperature. First, we have developed an integrated opto-
electromechanical transducer that is used in a clinical magnetic
resonance imaging scanner to replace the electrical detection
circuit. Second, we have built a fiber mirror based cavity and
leveraged phononic engineering both in mirrors and in silicon
nitride membranes to create a compact, low phase noise optome-
chanical cavity enabling quantum experiments and cooling to
low occupation at the room temperature.

As is the convention, we will start with a theory chapter
covering the constituent elements of the optomechanical system
and, especially for the following experiments, the most important
consequences of the optomechanical interaction. Next, we will
cover the integrated transducer where we will focus on the main
results since the author joined the project in progress and the
development and the results have been covered in detail in a
previous thesis[28]. Nevertheless, reading chapter 3 should give
an excellent overview on the device and its capabilities.

Finally, we finish with a detailed look at the room tempera-
ture quantum experiment that has been the authors main focus
in the latter part of the PhD.

3





2T H E O RY

In this chapter we will start with ahoe couple of mathematical
conventions and then cover the fundamentals of optomechanics
with the focus on aspects necessary to understand the experi-
mental results. As a notational convention throughout this thesis,
unless otherwise noted, Greek letters Ω and ω refer to angular
frequency. More specifically, capital Ω is reserved for the Fourier
frequency and lower case ω typically denotes some frequency
of the system.

Much of the discussion will undoubtedly be familiar to many
readers. Optomechanics is already starting to be a mature field
and there are excellent review articles [29] and even textbooks
[30] covering the theoretical model in detail. Nevertheless, the
level of detail and the amount of intermediate steps is chosen for
completeness sake, to set a consistent notation and to improve
the author’s understanding. Experienced readers are encouraged
to skim, but to some extent, this is also a theory section I would
have liked to read when I first started in optomechanics.

2 .1 mathematical tools

Before diving into the theoretical model in detail, let us introduce
two important mathematical tools, the Fourier transform and the
power spectral density (PSD) and define the conventions used in
this thesis.

2 .1 .1 Fourier transform

In optomechanics, it is often much more convenient to work in
the frequency rather than in the time domain. The link between
the domains is of course the Fourier transformation and in this
thesis, we use the convention

F [h(t)] =

∫
h (t) eiΩtdt, (2.1)

where we work with angular frequency Ω = 2πν. In the follow-
ing sections, when there is no risk of confusion, we often denote
the Fourier transform of a function h simply by replacing time t

with frequency Ω, i.e. F [h(t)] = h (Ω).

5



theory

A useful identity for the Fourier transform of a time deriva-
tive follows immediately from the definition

F

[
∂h(t)

∂t

]
= −iΩF [h(t)] = −iΩh (Ω) . (2.2)

The identity extends to higher derivatives as one would expect

F

[
∂nh(t)

∂tn

]
= (−iΩ)n h (Ω) . (2.3)

2 .1 .2 Power spectral density

PSD is an important analytical tool, not the least because exper-
imental data is acquired as a spectral density. However, in the
theoretical model, we usually solve the equations of motion for
the operators of the system in the frequency domain and it is
not immediately obvious1 how to connect the parameter of the
system – e.g. position – to the measured spectrum.

It is perhaps easiest to to start by considering a time trace
x(t) of the position of a damped driven harmonic oscillator with
resonance frequency ωm. We record the position of the oscillator
over time τ such that τ is much longer than any correlation times
of the system. The time-gated Fourier transform of such trace is
then

x(Ω)τ =
1√
τ

∫τ
0
eiΩtx(t)dt. (2.4)

However, the trace x(t) is noisy and if we simply look at the
square norm |x(Ω)|2, we would see a collection of sharp peaks
around ±ωm. To recover the expected Lorentzian peak, we need
to average over many realizations of the trace x(t), looking at〈
|x(Ω)|2

〉
instead. The average norm can then be calculated from

the time traces as〈
|x(Ω)|2

〉
=

1
τ

∫τ
0

∫τ
0
eiΩ(t1−t2) ⟨x(t1)x(t2)⟩dt1dt2. (2.5)

First, the autocorrelation ⟨x(t1)x(t2)⟩ depends only on the differ-
ence between t1 and t2. Let us set t = t1 − t2 and evaluate one
of the integrals yielding a factor of τ. We are then left with〈

|x(Ω)|2
〉
=

∫τ
−τ

eiΩt ⟨x(t)x(0)⟩dt. (2.6)

If the autocorrelation decays in a much shorter time than the
integration bounds ±τ, which we is true for all cases we are in-
terested in this thesis, the integration bounds can be extended to

1 At least to the author.
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2 .2 qualitative picture of the optomechanical

interaction

±∞ without introducing significant error. Then, we are left with
a Fourier transform of the autocorrelation function. This is the
essence of the Wiener-Khinchin theorem connecting the Fourier
transform of an autocorrelation function to the power spectral
density of said function. Now we have a relatively straightfor-
ward way of connecting the solutions of the equations of motion
to the measured spectrum. Given the solutions and knowledge
of their correlators, it takes only a few algebraic manipulations
to find the theoretical power spectral density which is fitted to
the measurement data.

For quantum mechanical operators, a bit more care needs to
be taken to account for noncommutation. Thus, for an operator
Â and it’s frequency domain autocorrelation, the power spectral
density is simply

SAA(Ω) =

∫∞
−∞
〈
Â†(Ω ′)Â(Ω)

〉 dΩ ′

2π
. (2.7)

It should be noted, that we can also consider cross spectra densities
SAB with direct substitution of operators.

To make a final remark before moving on, in the experiments
we consider ergodic2 systems, essentially meaning that ensemble
and time averages are the same. The consequence is that instead
of one impractically long time trace we can acquire multiple
shorter ones and average over them, making experiments much
more feasible.

2 .2 qualitative picture of the optomechanical in-
teraction

Before treating the subject matter with formal mathematics, it
is illustrative to consider a conceptual sketch. In the canonical
optomechanical scheme, we consider a Fabry-Pérot cavity con-
sisting of two mirrors facing each other. One of the mirrors is
free to move but subject to a harmonic potential and as such the
cavity length changes as the mirror oscillates while the other is
taken to be stationary, as shown in figure 2.1.

Such cavity supports standing waves if the cavity length
equals an integer number of half-wavelengths. Each such wave-
length λn corresponds to a resonance frequency of the cavity.
If the cavity is pumped with a laser at one such wavelength,

2 An illustrative example about the difference between ergodic and non-ergodic
processes comes from Nicholas Nassim Taleb [31]. It’s a different thing to
have one hundred players play one round of roulette than for one person to
play a hundred rounds. In the latter case, the player can go bust and cannot
continue playing! Thus ensemble and time averages are not the same and the
situation is not ergodic.

7



theory

L x
Figure 2.1: The canonical optomechanical system consists of a Fabry-
Pèrot cavity where one end mirror is free to move in a harmonic
potential, for example we can imagine it is connected to a spring.
The resonance frequency depends on the cavity length and thus, the
movement of the mirror changes the resonance condition. On the other
hand, the intracavity field applies a radiation pressure force on the
mirrors and thus changes it’s position.

it builds intensity. The magnitude of the intracavity intensity
depends on how closely the pump laser frequency matches the
resonance frequency of the cavity. Away from resonance, the
intracavity field’s intensity is reduced.

This formulation already points to the mechanism of the
optomechanical interaction - if the cavity length changes, the res-
onance condition also changes correspondingly. Further, when
the cavity field leaves the cavity, this output field then carries
information about the length fluctuations allowing very accurate
position measurement on the motion of the movable mirror. In
fact, this kind of interferometric measurement is the basis of grav-
itational wave detectors where the passing of the gravitational
wave changes the length of a very long optical cavity.

However, photons have momentum and to preserve momen-
tum, when they reflect off the mirror, they apply a ’kick’ on it.
This force is proportional to the number of photons or, in other
words, the intensity of the light beam, in this case, the magnitude
of the intracavity field. The light inside the cavity then moves
the mirror. This in turn changes the cavity length and thus the
resonance condition. Since the pump laser is at a constant wave-
length, the changing resonance condition causes the magnitude
of the intracavity field to change and thus the force on the mirror
changes, changing the length of the cavity again. This interplay
between the mirror’s motion and the optical resonator is the
very core of optomechanics.
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2 .3 optical resonators

Given suitable experimental conditions, such a system can
be used to control mechanical motion by preparing a nanome-
chanical resonator in it’s quantum ground state [14, 12, 13],
entangling different optical [18] or microwave fields[17] or even
distinct mechanical resonators [19]. Given the recent advances
in superconducting quantum computing, a particularly timely
application is the promise of quantum transduction between
microwave qubits and telecom wavelength photons allowing
for long distance quantum networks. This kind of frequency
conversion is widely investigated with different systems, such as
metallized membrane resonators [32, 33], optomechanical crystal
resonators coupled to a photonic crystal cavity [34, 35, 36, 37] or
whispering gallery mode resonators [38, 39].

With the appetizers out of the way, let us then move on to take
deeper look at the optomechanical formalism. Before formaliz-
ing the interaction, let us start with the individual ingredients,
optical and mechanical resonators.

2 .3 optical resonators

Let us again start by considering a Fabry-Pérot cavity. There are
many other geometries for optical resonators, such as photonic
crystal cavities or whispering gallery resonators, all of which can
be used in optomechanical experiments. Hoever, the venerable
Fabry-Pérot configuration is perhaps the most illustrative one
and the theory worked out for it describes equally well all the
other geometries, some of which are shown in figure 2.2. Most
importantly, in this thesis, we employ exclusively Fabry-Pérot
cavities.

As already seen in figure 2.1, a Fabry-Pèrot cavity consists
of two partially reflective mirrors separated by length L. Such a
cavity hosts an infinite number of modes where the cavity length
equals an integer number of half-wavelenghts, L = nλn/2, or
equivalently, the cavity hosts optical resonances at frequencies

ωc,n =
πcn

L
, (2.8)

where ωc,n is the cavity resonance frequency and c is the speed
of light in the chosen medium, in this case, vacuum.

The separation between two optical modes is called the free
spectral range (FSR)

∆ωFSR = ωc,n+1 −ωc,n =
πc

L
. (2.9)

Typically, we consider situations where only one optical mode
is relevant and in the following discussion, when referring to

9



theory

Figure 2.2: Various geometries for optical cavities, each of which can
be used in optomechanical experiments. Clockwise from the top: First,
the photonic crystal pattern reflects photons in a photonic waveg-
uide creating a cavity. The resonator can be fabricated such that the
breathing modes of the beam change the optical resonance frequency.
Second, a disc of suitable material supports optical whispering gallery
modes. The disc cavity is typically evanescently coupled to a tapered
optical fiber. The disc vibrations change the optical path length leading
to optical frequency change. Finally, on bottom left, the Fabry-Pérot
cavity, where the resonance frequency is determined by the mirror
separation. The mirror movement then changes the cavity length and
thus the optical frequency.

the optical cavity frequency, we simply write ωc, dropping the
subscript n. In practice, this means, that the FSR should be
sufficiently large compared to the linewidth of the resonance,
such that there is no interaction between the modes. This is
usually the case for the cavities employed in optomechanics.

The cavity mirrors are partially reflective. It is both impossi-
ble and experimentally undesirable to have perfectly reflective
mirrors - there are always imperfections in the substrates. More
importantly without partially transmissive mirrors, there would
be no way to access the intracavity field and thus nothing to
measure. Each photon is then only confined in the cavity for
a finite time, τc. However, it is more commonplace to consider
its inverse, the decay rate κ = τ−1

c . It should be noted, that κ
contains all loss channels of the cavity. We typically divide it
between input-output loss rates of the mirrors, κ1 and κ2 for
the cavity mirrors, or κR and κL for right and left mirrors re-
spectively if we wish to emphasize the spatial ordering of the
mirrors. Additionally, we denote the internal loss rate κint con-
taining channels such as absorption or the photon scattering out
of the cavity due to misalignment. Even though we call them
loss rates, only photons decaying through κint are truly lost
whereas light leaving the cavity through the measurement ports,
in other words the mirrors of the cavity, can be directed to a
measurement apparatus and the information is recovered.

Instead of treating the electrical fields themselves, we will
consider the evolution of the complex field amplitude a(t). It is

10



2 .3 optical resonators

perhaps less intuitive than amplitude and phase of the field, but
it is convenient for mathematical treatment and quantization. Its
square norm corresponds to the number of photons inside the
cavity |a(t)|2 = ncav and its time evolution is determined by the
equation of motion

ȧ(t) =
(
−
κ

2
− iωc

)
a(t) +

√
κinain, (2.10)

where we have introduced the driving field ain reaching the
cavity through the input port with decay rate κin. Here, and
throughout the thesis, unless it would lead to unclear typogra-
phy, we have used the ’dot notation’ for time derivatives

ȧ(t) =
da(t)

dt
. (2.11)

The driving field is taken to be a coherent field oscillating at
frequency ωL. Even though we are using terms such as ’optical’
or ’laser’, most of the discussion is equally valid for electrical
resonators. The resonance condition and the cavity field a(t) are
defined differently, but the equations of motion are similar.

It is convenient to transform to coordinates oscillating at the
drive frequency where the cavity frequency is replaced with
detuning ∆ = ωL −ωc and the equation of motion becomes

ȧ(t) =
(
−
κ

2
+ i∆

)
a(t) +

√
κināin. (2.12)

Now the driving field is a constant āin. We can immediately
obtain the steady state solution by setting ȧ(t) = 0

āc =

√
κinain
κ
2 − i∆

. (2.13)

The cavity field amplitude |āc|
2 follows a Lorentzian function

centred at zero detuning i.e. the point where the drive frequency
coincides with the cavity resonance frequency with a maximum
value |āc|

2
∆=0 = 4κin|āin|

2/κ2. When crossing the resonance, the
phase of the cavity field shifts by π as seen in figure 2.8.

As mentioned, the cavity field is not directly accessible to
measurement, we can only detect light leaving the cavity through
the mirrors. In other words, we must either measure the reflected
or transmitted light. In the following discussion, we take the
cavity to have two ports, left and right with decay rates κL and
κR. The cavity is driven through the left port and that is also the
reflection port.

The transmitted light simply consists of the cavity light de-
caying trough the right port

aT (t) =
√
κRac(t). (2.14)

11



theory

For the reflected light, the situation is slightly more compli-
cated. The cavity reflection consists of two parts. There is the
light from the cavity, but part of the driving beam is also imme-
diately reflected without even entering the cavity, the so called
promptly reflected beam. On reflection this promptly reflected
beam picks up a phase factor eiπ and thus the total reflected
field in the steady state is

arefl(t) = ain(t)e
iπ +

√
κRac(t). (2.15)

We may substitute in the steady state solution to find

ārefl = −āin +
κRāin
κ
2 − i∆

(2.16)

= −

(
1 −

κL
κ
2 − i∆

)
āin. (2.17)

There are a few remarks to be made. First, under suitable con-
ditions, namely when κL = κ/2, the cavity reflection vanishes
completely on resonance! In such case, the cavity is said to be
critically coupled. If the coupling is less than half of the total loss
rate, the cavity is said to be undercoupled and conversely overcou-
pled when κR > κ/2. It should be noted that ’coupling regime’
is determined only for the port in question and it is common
that the cavity is undercoupled on one port and overcoupled on
another3.
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Figure 2.3: The amplitude |a| and phase a/|a| of the cavity transmis-
sion with output coupling 0.5κ, 0.2κ and 0.1κ from tallest to lowest
amplitude. The transmitted phase response is the same for all output
couplings. The

It should be noted that the coupling regime of a cavity can-
not be distinguished from a simple measurement of reflected

3 A mathematical necessity unless the loss channels are large.
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2 .3 optical resonators

amplitude – both undercoupled and overcoupled cavities have
similar reflected amplitudes. To characterize a cavity without
prior knowledge of the relative reflectivities of the the mirrors,
we would need to measure both the amplitude and the phase of
the reflected beam and reconstruct the resonance in the complex
plane. In figure 2.4 we have plotted the reflected power with
different cavity outcouplings and the corresponding complex
plane representations. In practice, it is much preferred to just
know the relative magnitude of the mirror transmissivities such
that one knows which port is over- or undercoupled.
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Figure 2.4: The reflected power |aR|
2 and complex plane response of

the resonance. The outcoupling is, 0.2κ for the red line, 0.5κ for the grey
and 0.8κ for the blue one. When measuring only the reflected power,
the under- and overcoupled cavities coincide, but in the imaginary
plane, they are very clearly distinct.

As a final remark, we often define coupling efficiency for
each port of interest ηc,i = κi/κ such that κi = ηc,iκ.

2 .3 .1 Electrical resonators

In anticipation of later sections, let us briefly discuss electrical
resonators. An electrical circuit consisting of an inductor with
inductance L and a capacitor with capacitance C exhibits similar
resonance behaviour as the optical cavities presented above.
Current I and voltage V in the circuit follow equations of motion
V(t) = Lİ(t) and I(t) = −CV̇(t) yielding

V̈(t) = −
1
LC

V(t)2. (2.18)

If we identify 1/
√
LC as the resonance frequency ωLC, the above

equation more clearly describes a harmonic oscillator. We can
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use a complex amplitude similar to the optical resonators

a(t) =

√
C

2V(t)
+ i

√
L

2I(t)
, (2.19)

and introduce dissipation to recover the same equation of mo-
tion as for the optical cavity and the analysis above remains
unchanged.

One approach to facilitate the electromechanical interaction
is to make a mechanically compliant capacitor such that dis-
placement modifies the circuit’s capacitance. A typical approach
would be to either create a fully metallic resonator or functional-
ize otherwise non-conducting resonator with a conducting layer
and use such resonator as one half of a parallel plate capacitor.
Less common, but nevertheless possible approach is to instead
mediate the coupling via inductance [40].

2 .4 mechanical resonators

The second half of an optomechanical system is the mechanical
resonator. Let us start by considering the prototypical one di-
mensional classical harmonic oscillator, a mass on a spring. In
fact, even for complicated experimental geometries, there is no
need to deviate from the simple model. In most cases, mapping
the motional degrees of freedom to one dimension is a relatively
straightforward task. The 1D equation of motion is

mẍ = −kx, (2.20)

where x is the position, m the mass of the oscillator and k the
spring constant. The solution is x(t) = x0 cos (ωmt), where x0
is the amplitude of oscillation and ωm =

√
k/m the natural

frequency of the oscillator.
However, real oscillators are coupled to the environment and

thus lose or gain energy until they are at equilibrium. In the
classical ’everyday’ regime, thermal fluctuations of mechanical
resonators are negligible, and it is quite reasonable to use the
word ’decay’4.

Introducing the mechanical decay rate Γm, the resonator’s
equation of motion becomes

mẍ(t) +mΓmẋ(t) +mω2
mx(t) = F(t), (2.21)

where we have included any forces affecting the resonator as
F(t).

4 However, a low energy quantum state in contact with the environment is
heated out to a high energy classical state with a speed proportional to Γm.
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2 .4 mechanical resonators

Assuming that the damping rate is small, specifically 2Γm <

ωm
5, and that there are no forces acting on the resonator, the

solution is

x(t) = x0 exp
[
−
Γmt

2

]
cos

tωm

√
1 −

Γ2
m

4ωm

 . (2.22)

The solution still oscillates between ±x0 but now the amplitude
decays exponentially in time, or it is also said that the resonator
rings down, as seen in figure 2.5. Exiting the resonator to a large
amplitude and observing the decay is a very straightforward
way to characterize the decay rate of nanomechanical resonators.
For particularly low decay rates, the ringdown can last many
minutes even at megahertz frequencies.
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Figure 2.5: The decay of a damped harmonic oscillator with parameters
Γm = 0.5 and ωm = 10.

Instead of decay rates, it is also common to use the me-
chanical quality factor, a dimensionless quantity defined as
Q = ωm/Γm

6. The Q-factor can be interpreted as the number of
oscillations the resonator undergoes before losing a fraction 1/e
of its energy.

Even in the everyday regime, we are often interested in what
is the resonator’s response to a driving force. For small and
light nanomechanical resonators, especially when we want to
consider quantum mechanical effects, the thermal force from
the environment is significant. For an unspecified force, the

5 This limit is very reasonable for typical, high quality nanomechanical res-
onators. They often feature megahertz or higher frequencies and the damping
rates are often much less than one hertz.

6 If we wish to emphasize that the quality factor is for a mechanical resonator,
we can add subscript m, but this is exceedingly rare. Thus, whenever Q is
seen in the thesis, it should be understood to refer to the mechanical quality
factor.
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solution is most easily found in the frequency domain. Fourier
transforming equation 2.21, we find

−Ω2x(Ω) − iΩΓmx(Ω) +ω2
mx(Ω) =

F(Ω)

m
, (2.23)

where we have used properties of the Fourier transform for
derivatives (see eq. 2.3). After a few algebraic steps, the solution
is found to be

x(Ω) =
1

m (ω2
m −Ω2 − iΩΓm)

F(Ω) = χm(Ω)F(Ω), (2.24)

where we have defined the mechanical susceptibility χm(Ω). As a
consistency check, we see that if Ω is very small, χm(Ω ≈ 0) ≈
1/(mω2

m) = 1/k, i.e. we have recovered Hooke’s law.
Transforming back to time domain is quite frankly rather

tedious, especially for the general case. However, we will make a
qualitative remark regarding an a drive oscillating at frequency
ωD such that the driving force is F = F0 cos (ωDt). Previously,
we saw that without any forces acting on it, the resonator loses
energy and the amplitude decays exponentially. Naturally, we
would be curious to know, how the oscillator responds to a drive.
Indeed,the oscillator gains energy and there is a corresponding
’ring-up’ time before the steady state – i.e. oscillation at the drive
frequency – is reached. However, the behaviour in the transient
regime can differ greatly depending on how the drive frequency
is chosen. So called on resonance driving, that is ωD = ωm

results in an exponential buildud. Far away from the resonance,
where the response is proportional to (ω2

m−ωD)
−2, the resulting

oscillations are modest.
As already hinted, any real system is always coupled to the

environment and is subject to a thermal Brownian force. While
this force is often small in magnitude, it is enough to drive a
resonator all the from the quantum regime to a high energy state,
where the behaviour is fully classical. Recalling the definitions
for power spectral densities, the displacement power spectrum
of a thermally driven resonator is

Sxx(Ω) = |χm(Ω)|2 SFthFth(Ω), (2.25)

where we have introduced the PSD of the thermal force SFthFth .
Knowing the temperature of the environment T and parameters
of the resonator, it can be calculated via the fluctuation-dissipation
theorem

SFthFth = 4kBTΓmm, (2.26)

where kB is the Boltzmann constant. Given that the incoherent
thermal force prevents experiments from realizing quantum
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2 .4 mechanical resonators

experiments, even at cryogenic experiments, it is very desirable
to minimize it in favour of coherent interactions. The formula
tells us which parameters are of importance. We should engineer
devices with mass and dissipation both as low as possible.

The thermal force is spectrally flat, in other words, constant
over all frequencies. The spectral shape of the displacement PSD
is then solely determined by the square norm of the mechanical
susceptibility

|χm(Ω)|2 =
1

m
(
(ω2

m −Ω2)
2
+Ω2Γ2

m

) . (2.27)

The response of the resonator is very sharply centred around
the natural frequency of the resonator. It makes very good sense
to call this frequency the resonant frequency of the resonator and
that is indeed what we will do in the rest of this thesis.

If the quality factor is high, that is the damping rate is very
small compared to the resonant frequency ωm and we are only
interested in the area near the resonance – as is the case for most
optomechanical experiments – we can simplify the equation
above somewhat

|χm(Ω)|2 ≈ 1
4ω2

mm

1

(ωm −Ω)2 + (Γm/2)2 . (2.28)

We have approximated Ω ≈ ωm such that ω2
m −Ω2 = (ωm −

Ω)(ωm + Ω) ≈ (ωm − Ω)(2ωm). The approximated square
norm is then a Lorentzian function centred at ωm with a full
width half maximum (FWHM) Γm. Besides a ringdown measure-
ment, simply fitting a measured spectrum with the square norm
is a simple way to characterize the dissipation of a particular
resonator device. However, for very low dissipation rates, that
can be as low as millihertz, the resolution bandwidth of the
spectrum analyser is typically not sufficient to resolve the peak
and hence, the Lorentzian fit is unlikely to yield an accurate
result.

A further feature to note is that the integral over the the me-
chanical spectral density equals the mean square displacement〈

x2
〉
=

∫
Sxx(Ω)

dΩ

2π
. (2.29)

The mean square displacement can also be calculated via the
equipartition theorem 〈

x2
〉
=

kBT

mω2
m

. (2.30)

Therefore, the area under the Lorentzian peak is connected to
the temperature – or equivalently the energy – of the resonator.
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Then, given a displacement spectrum and knowledge of the tem-
perature, the (effective) mass of the resonator can be determined.
Alternatively, and more commonly, since the resonator device’s
parameters are usually well known, the area can be used to
calibrate spectrum from arbitrary units, in practice often (Volts)2

or dBm, to displacement units.
We can also imagine a resonator coupled to two – or more!

– thermal baths, with temperatures T1 and T2, each applying
thermal Brownian force with dissipation rate γi. We can then
define an effective temperature

Teff =
γ1T1 + γ2T2

γ1 + γ2
. (2.31)

We can further imagine, that one of these baths is an optical
field that can be taken to be at almost zero temperature. Setting
T1 = Tenv ≡ T , γ1 = Γm, T2 = Topt ≈ 0 and γ2 = Γopt, and the
effective temperature becomes

Teff =
ΓmT

Γm + Γopt
. (2.32)

In other words, by tuning the dissipation to optical bath, we can
cool the temperature of the mechanical resonator!

2 .5 optomechanical interaction

With the constituent systems introduced, it is time to take a for-
mal look at the optomechanical interaction. First, let us remind
ourselves of equation 2.8

ωc(x) =
cπn

L+ x
, (2.33)

where we have written the length of the optical cavity as L+ x,
where L is the equilibrium cavity length and x the displacement
of the mechanical resonator, in this case, the movable end mirror.

As show in figure 2.6, a change in displacement shift the
resonance frequency. The motion of the mechanical resonator is
very small and we can expand the equation above to first order

ωc(x) ≈ ωc(x = 0) +
∂ωc(x)

∂x
x (2.34)

= ωc,0 −Gx, (2.35)

where we have identified the unperturbed cavity resonance fre-
quency ωc,0 and, more importantly, the optomechanical coupling
rate G = −∂ωc(x)/∂x. Its units are frequency over displacement
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2 .5 optomechanical interaction

L-δx L L+δx

ωc(+δx)

ωc(0)

ωc(−δx)

ωc(x)

Figure 2.6: The resonance frequency of the optical cavity shifts as the
cavity length changes. We have chosen a convention, where positive δx

increases the cavity length and thus decreases the resonance frequency.
The thinner, gray lines correspond to adjacent resonances one (or more)
FSR away.

and it determines how much the cavity frequency shifts per unit
of displacement. The equation of motion for the field amplitude
2.10 is also modified

ȧ(t) =
(
−
κ

2
− i(ωc,0 −Gx)

)
a(t) +

√
κLain, (2.36)

where we have replaced the cavity resonance frequency with
equation 2.35 and we have chosen the convention where the
cavity is driven via the left mirror with decay rate κL. The in-
troduction of the optomechanical coupling does not change the
dynamics of the cavity much by itself. However, the field inside
the cavity applies a radiation pressure force, Frad = − hG|a(t)|2

to the mechanical resonator. The equation of motion for the
mechanical resonator is then

ẍ(t) + Γmẋ(t) +ω2
mx(t) =

1
m

(Frad + Fth) . (2.37)

Thus, we have two coupled equations of motion

ȧ(t) =
(
−
κ

2
− i(ωc,0 −Gx(t))

)
a(t) +

√
κLain, (2.38)

ẍ(t) + Γmẋ(t) +ω2
mx(t) =

1
m

(
− hG|a(t)|2 + Fth

)
. (2.39)

The pair of differential equations is difficult to solve exactly.
Fortunately, in most situations, we can linearize them around
small displacement and field fluctuations and solve the simpler,
linear pair of equations. The steady state solution, however, is
straightforward to find. We set the time derivatives to zero and
note that the average of the thermal force is also zero. We thus
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find the steady state solution

ā =

√
κLāin

−κ
2 − i(ωc,0 −Gx̄)

, (2.40)

x̄ = −
 hG|ā|2

ω2
mm

. (2.41)

Interestingly, the steady state equations already allow for multi-
ple solutions – a consequence of the optomechanical interaction!

2 .5 .1 Dynamical backaction

While the static bistability is already an optomechanical effect,
the more interesting consequence is the so called dynamical
backaction, that allows for control of mechanical motion. We
begin by linearizing the equations. To that end, we consider
small fluctuations around the steady state values

x(t) = x̄+ δx(t) (2.42)
a(t) = ā+ δa(t). (2.43)

The fluctuations δx(t) and δa(t) are small such that any terms
proportional to their higher powers are neglected. The steady
state part cancels out and we are left with the equations of
motion for only the fluctuations

˙δa(t) =
(
−
κ

2
+ i∆

)
δa(t) − iGδx(t)ā+

√
κLδain, (2.44)

δ̈x(t) + Γmδ̇x(t) +ω2
mδx(t) = −

 hG|ā+ δa(t)|2 + δF

m
, (2.45)

where we have neglected second order terms δx(t)δa(t) as small.
We have also included fluctuations of the input field δain and
those of the thermal force δF. Fort the most parts, equations are
straightforward, but the radiation pressure force term requires a
little more care. We can choose the steady state field ā to be real
and expand the complex norm

|ā+ δa(t)|2 = ā2 + āδa(t) + āδa∗(t) + δaδa∗. (2.46)

Here ā only results in static displacement and does not affect the
dynamics, δaδa∗ is small and thus neglected, but the complex
conjugate δa∗(t) needs its own equation of motion when solving
the equations via Fourier Transform. To find the correct equation,
we can take advantage of a property of Fourier transform

h∗(Ω) = (h(−Ω))∗ . (2.47)
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2 .5 optomechanical interaction

To start, we Fourier transform the equation of motion for δa

− iΩδa (Ω) =
(
−
κ

2
+ i∆

)
δa (Ω) − iGāδx (Ω) , (2.48)

and take the complex conjugate

iΩ (δa (Ω))∗ =
(
−
κ

2
− i∆

)
(δa (Ω))∗ + iGāδx (Ω) (2.49)

iΩδa∗ (−Ω) =
(
−
κ

2
− i∆

)
δa∗ (−Ω) + iGāδx (−Ω) . (2.50)

Given that δx is real, δx (−Ω) = δx (Ω) and as a final step, we
set Ω → −Ω to get

− iΩδa∗ (Ω) =
(
−
κ

2
− i∆

)
δa∗ (Ω) + iGāδx (Ω) . (2.51)

With the equations of motion in the frequency space, we
solve for δa (Ω) and δa∗ (Ω)

δa (Ω) =
−iGāδx (Ω)

−i (∆+Ω) + κ
2

, (2.52)

δa∗ (Ω) =
+iGāδx (Ω)

i (∆−Ω) + κ
2

. (2.53)

To simplify the notation, we introduce the cavity susceptibility
χc

χc (Ω) =
[κ

2
− i (∆+Ω)

]−1
, (2.54)

such that the solutions can be written as

δa (Ω) = −iχc (Ω)Gāδx (Ω) (2.55)
δa∗ (Ω) = +iχ∗c (−Ω)Gāδx (Ω) . (2.56)

Similarly, the solution for δx is found in frequency domain

−Ω2δx (Ω) − iΩΓmδx (Ω) +ω2
mδx (Ω)

= −
 hGā

m
(δa (Ω) + δa∗ (Ω)) +

δF (Ω)

m
(2.57)

Substituting in δa (Ω) and δa∗ (Ω), we find

−Ω2δx (Ω) − iΩΓmδx (Ω) +ω2
mδx (Ω)

= i
 hG2ā2

m
(χc(Ω) − χ∗c(−Ω)) δx (Ω) +

δF

m
(2.58)

Solving the above for δx

δx (Ω) =
δF (Ω)

m (ω2
m −Ω2 − iΩΓm − iΣ (Ω))

, (2.59)
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where we have defined

Σ (Ω) =
 hG2ā2

m
[χc (Ω) − χ∗c (Ω)] . (2.60)

The solution resembles the one found for driven harmonic os-
cillator (cf. equation 2.24), but with an extra term proportional
to the optomechanical frequency pull factor G. The optome-
chanical interaction thus changes both the resonance frequency
and the dissipation rate of the mechanical resonator such that
iΣ (Ω) = kba (Ω) + iγba where kba is the optomechanical fre-
quency shift and γba the optical spring effect such that

kba (Ω) =
 hG2ā2

m

(
Ω−∆(

κ
2

)2
+ (Ω−∆)2

−
Ω+∆(

κ
2

)2
+ (Ω+∆)2

)
,

(2.61)

γba (Ω) =
 hG2ā2

m

(
κ/2(

κ
2

)2
+ (Ω+∆)2

−
κ/2(

κ
2

)2
+ (Ω−∆)2

)
.

(2.62)

The frequency shift and the optical spring are shown as function
of detuning in figure 2.7. With these definitions7, the effective
mechanical susceptibility χeff can be written as

χeff (Ω) =

[
m

(
ω2

m − kba (Ω) −Ω2 − iΩ

(
Γm +

γba (Ω)

Ω

))]−1

.

(2.63)
In this formulation the shift in resonance frequency and in
mechanical linewidth is explicit.

Interestingly, the sign and magnitude of the dynamical back-
action depends on how the optical field is detuned from the
cavity resonance. When detuning is zero, the optical field has no
effect on the mechanical resonator. However, when the field is
red detuned, that is when detuning ∆ is negative, the optomechan-
ical interaction shifts the mechanical resonance frequency down
and broadens the mechanical linewidth Γm. Conversely, when
the detuning is positive or blue detuned, the resonance frequency
shifts up and the mechanical linewidth is narrowed.

As a final remark, given suitable experimental conditions,
dynamical backaction allows for a straightforward way of prepar-
ing the mechanical resonator in the quantum ground state. The

7 At this point, we will remark that, like with many other definitions and
notations in optomechanics, the council of Elrond has not yet convened, the
Narsil remains broken and the signs of the dynamical backaction terms are
at the mercy of the author and many have chosen, unwisely of course, the
opposite convention.
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Figure 2.7: Here we show the optical spring and the frequency shift for
an optomechanical system where κ = 5ωm. The magnitude and sign
of the dynamical backaction depends on the detuning of the drive.

broadened mechanical linewidth corresponds to colder temper-
ature. Given that a typical laser is at zero occupancy, the inter-
action can cool the resonator at a very high purity mechanical
ground state, i.e. to a state where the ground state probability is
high.

2 .6 quantum optomechanics

While the classical treatment of the previous section is enough
to describe many experiments and applications, many of the
most interesting experiments in optomechanics require the full
quantum treatment. We will start with a brief recapitulation of
the quantum harmonic oscillator. In the following, symbols with
’hat’ refer to quantum mechanical operators and ones without to
classical variables. For example, x̂ would be the position operator
and x the position variable.
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2 .6 .1 Quantum Harmonic Oscillator

The quantum harmonic oscillator is one of the first systems fully
treated in a quantum mechanics course8. It features nonclassi-
cal properties, such as quantization of energy levels, but more
importantly, it is a very useful model. In fact, the entire field of
optomechanics mostly concerns coupled harmonic oscillators. To
that end, let use remind ourselves about the harmonic oscillator
Hamiltonian

H =
p̂

2m
+mω2

mx̂, (2.64)

where p̂ and x̂ are momentum and position operators respec-
tively. As opposed to classical variables, their commutator is no
longer zero

[x̂, p̂] = x̂p̂− p̂x̂ = i h. (2.65)

As a consequence, the product of the position and momen-
tum standard deviations has a lower bound, also known as
the Heisenberg uncertainty relation

σxσp ⩾
 h

2
. (2.66)

Instead of position and momentum, it is often more conve-
nient to work on the so called number state. The energy of the
state is expressed as number of quanta n each corresponding to
amount of energy equal to  hωm and the state is denoted as ket
|n⟩. In the case of mechanical motion, the quantum of energy is
called phonon. Instead of position and momentum operators, we
defined creation and annihilation operators b̂† and b̂ respectively
that, as the name suggest, add or subtract an excitation. They
relate to position and momentum operators as

x̂ = xzpf

(
b̂+ b̂†

)
, (2.67)

p̂ = ipzpf

(
b̂− b̂†

)
, (2.68)

where we have introduced zero point fluctuations of position and
momentum

xzpf =

√
 h

2mωm
, (2.69)

pzpf =

√
 hmωm

2
. (2.70)

8 Quite literally, any quantum mechanics book will do. The author was first
subjected to [41]
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The creation and annihilation operators act on number states as

b̂|n⟩ =
√
n|n− 1⟩ (2.71)

b̂†|n⟩ =
√
n+ 1|n+ 1⟩. (2.72)

With the ladder operators, the Hamiltonian becomes

H =  hωm

(
b̂†b̂+

1
2

)
. (2.73)

The operator b̂†b̂ is also known as the number operator n̂|n⟩ =
n|n⟩. It should be noted that the ground state |0⟩ has nonzero
energy. When we are interested only in the dynamics of the
system, we often omit the static  hωm/2 -part.

Occasionally, it more convenient to work with dimensionless
units, and to that end, we define dimensionless position and
momentum

Q̂ =
x̂√

2xzpf
=

1√
2

(
b̂+ b̂†

)
(2.74)

P̂ =
p̂√

2pzpf
=

i√
2

(
b̂− b̂†

)
, (2.75)

where we have used capital Q̂ for the dimensionless position
and capital P̂ for the dimensionless momentum.

2 .6 .2 Thermal occupation and the ground state

Before moving on to optomechanical dynamics, there are a cou-
ple of remarks that should be made about thermal occupation
and the ground state. The ladder operators are defined with
regard to the number or Fock states |n⟩. However, an oscillator
in contact with the environment is in an incoherent superpo-
sition of multiple Fock states. The probability weight for each
occupation state is

p(n) = e
−

 hωmn
kBT

(
1 − e

−
 hωm
kBT

)
, (2.76)

where T is the temperature of the system and kB the Boltzmann
constant. It should be noted that the formula is valid for all
harmonic oscillators even though we have used the mechanical
resonance frequency. For other oscillators, simply replace ωm

with the correct frequency, e.g. the driving laser frequency. With
the probability weight, we can calculate the mean occupancy

n̄ =

∞∑
n=0

p(n)n =

(
e

 hωm
kBT − 1

)−1

. (2.77)
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This formula has important consequences. First, a typical laser at
Terahertz frequencies is at practically zero occupancy already at
the room temperature and can thus act as a cooling bath for the
mechanical resonator. Second, many nanomechanical resonators
feature resonance frequencies of at most few tens of megahertz.
This means that even when cooled to few milliKelvins inside a
dilution refrigerator, these resonators still have an appreciable
thermal occupation and thus need further active cooling to reach
the ground state. At high temperatures, or when kBT ≫  hωm,
the mean occupation can be approximated as

n̄ =
kBT
 hωm

. (2.78)

A typical starting point for many optomechanical quantum
protocols and thus an important benchmark for various sys-
tems, is the ability to cool he mechanical resonator’s motion to
the ground state. In optomechanics, the accepted criterion for a
ground state mechanical resonator is that the probability of find-
ing the resonator in state |0⟩ is greater than half. This translates
to mean that the occupation of the mechanical resonator must
be less than one.

2 .6 .3 Optomechanical Hamiltonian

Now we are ready to dive into the quantum mechanical treat-
ment of an optomechanical system. As a first simplification, we
will only consider a single mechanical and single optical mode.
This is a well justified choice if the modes are well separated,
meaning that the distance from one optical mode to another is
much larger than both the cavity linewidth and the mechanical
frequency. Similarly, the mechanical modes of the system should
be separated by much more than the mechanical linewidth Γm.
With the caveats in place, we can write the Hamiltonian of the
system as

H = Hm +Ho +HD, (2.79)

where Hm is the Hamiltonian for the mechanical oscillator, Ho

for the optical and HD for the drive. Omitting the drive for the
moment, we can write the Hamiltonian explicitly as

H =  hωm

(
b̂†b̂+

1
2

)
+  hωc (x̂)

(
â†â+

1
2

)
, (2.80)

where we have introduced the creation and annihilation oper-
ators â† and â for the optical mode. At first glance, we have
only two separate harmonic oscillators. However, the optical
resonance frequency depends on the position of the mechanical
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2 .6 quantum optomechanics

resonator. As before, we may write ωc(x̂) = ωc − Gx̂ where
G = −∂ωc(x̂)/∂x̂. We have also chosen to denote the unperturbed
resonance frequency as ωc for simplicity. Writing the position
operator with the appropriate ladder operators, we find

H =  hωmb̂†b̂+  hωcâ
†â−  hGxzpf

(
b̂† + b̂

)(
â†â

)
, (2.81)

where we have neglected the static  hωi/2-parts. At this stage, it
is convenient to introduce the vacuum optomechanical coupling

g0 = Gxzpf, (2.82)

the frequency shift of the cavity associated with the zero point
fluctuation of the mechanical oscillator.

At first glance, the Hamiltonian looks simple, but it does
contain three operator terms and is thus difficult to solve exactly.
The way out is the same as in the classical case, namely we
consider field fluctuations around a mean and introduce creation
and annihilation operators for the field fluctuation such that â
becomes

â = ā+ δâ, (2.83)

and similarly for â†. We then neglect second (or higher) order
terms in δâ and are left with the interaction

Hint = − hg0

(
b̂† + b̂

)(
ā2 + āδâ+ āδâ†

)
. (2.84)

The mean field results only in a static displacement and the
’meat’ of the interaction is thus

Hint = − hg0ā
(
b̂† + b̂

)(
δâ+ δâ†

)
= − hg

(
b̂†δâ+ b̂†δâ† + b̂δâ+ b̂δâ†

)
, (2.85)

where we have introduced the field enhanced optomechanical cou-
pling

g = g0ā = g0
√
ncav, (2.86)

where ncav is the number of intracavity photons.
Let’s pause for a moment here and qualitatively consider

what happens in this interaction. First, the pair b̂†δâ+ b̂δâ† ex-
changes excitations between the cavity field and the mechanical
resonator and it is sometimes referred to as the beamsplitter inter-
action. The other pair either creates or annihilates an excitation
in both the mechanical resonator and is called two mode squeezing.

More interestingly, depending on the cavity detuning, we can
choose to favour one over the other. The mechanism is that in a
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frame rotating with the laser frequency, the operators evolve in
time as

δâ(t) = δâ(0)e−i∆t, (2.87)

δb̂(t) = δb̂(0)e−iωmt. (2.88)

Thus, the beam splitter interaction rotates at exp (±i(∆+ωm))
and the squeezing interaction at exp (±i(∆−ωm)).

If we set detuning at ∆ = −ωm, that is our drive is red
detuned, the beamsplitter interaction is constant in time, but
the squeezing terms rotate at ±2ωm. If this rate is much larger
than the cavity linewidth, i.e. if the cavity is sideband resolved,
the term can be neglected in what is known as the rotating wave
approximation and the beamsplitter interaction is the dominant
one.

2 .6 .4 Quantum Langevin equations of motion

X, Y

Xin, Yin XT, YT

XR, YR Xin, Yin

(1) (1)

(2) (2)

η1 η2

Figure 2.8: The optical fields involved in the quantum model of an
optomechanical cavity. Here, we have chosen not to include the me-
chanical resonator for clarity. The cavity is driven on port 1 with
coupling efficiency η1. The fields X

(1)
in and Y

(1)
in contain both the drive

and vacuum noise. The circulating cavity fields X and Y exit the cavity
via both reflection XR and YR and transmission XT and YT . However,
vacuum noise also enters via the transmission port 2, as signified by
fields X

(2)
in and Y

(2)
in

Before writing the Quantum Langevin9 equations, there are
a couple of remarks to make. First, the cavity field operator
δâ is not an observable. We only have access to the amplitude
and phase quadratures of the light and we need corresponding

9 Sometimes also known as the Heisenberg-Langevin equations.
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operators X̂ and Ŷ respectively, related to the field operators as

X̂ =
1√
2

(
δâ+ δâ†

)
(2.89)

Ŷ =
i√
2

(
δâ− δâ†

)
. (2.90)

It is a matter of taste whether to solve the systems of equations
with the creation and annihilation operators and then calculate
the amplitude or phase of the output field or to have equations
of motion for the amplitude and phase to begin with. Here,
we choose to use optical quadratures from the beginning since
the interaction of the mechanics with different quadratures is
explicit.

Let us then sketch the system under investigation. We have a
two port optical cavity, that is both mirrors are partially transmis-
sive with decay rates κ1 and κ2. The losses are negligible such
that the total decay rate is simply the sum of these decay rates
κ = κ1 +κ2. We drive the cavity with a large, coherent amplitude
through port 1. However, the drive has vacuum correlated noise
and vacuum noise also enters through port 2. The mechanical
resonator is damped and driven by both coupling to the envi-
ronment via thermal noise and by the radiation pressure of the
cavity field. The end result is the following set of equations of
motion for the optical and mechanical fluctuations [Bowen2016]

˙̂X = −
κ

2
X̂−∆Ŷ +

√
κ1X̂

(1)
in +

√
κ2X̂

(2)
in , (2.91)

˙̂Y = −
κ

2
Ŷ +∆X̂+ 2gQ+

√
κ1Ŷ

(1)
in +

√
κ2Ŷ

(2)
in , (2.92)

˙̂Q = ωmP̂, (2.93)
˙̂P = −ωmQ̂− ΓmP̂+

√
2ΓmFth + 2gX̂. (2.94)

For simplified notation, we will write the optical noise terms as

X̃in =
√
η1X̂

(1)
in +

√
η2X̂

(2)
in , (2.95)

Ỹin =
√
η1Ŷ

(1)
in +

√
η2Ŷ

(2)
in , (2.96)

where ηi = κi/κ and we have assumed that the losses in the
cavity are negligible such that η1 + η2 = 1. We can introduce
losses by adding another port, κloss through which vacuum noise
would also enter.

The two equations of motion for the position and momentum
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are combined leaving us with

˙̂X = −
κ

2
X̂−∆Ŷ +

√
κX̃in, (2.97)

˙̂Y = −
κ

2
Ŷ +∆X̂+ 2gQ+

√
κỸin, (2.98)

¨̂Q
ωm

= −ωmQ̂− Γm

˙̂Q
ωm

+
√

2ΓmFth + 2gX̂. (2.99)

Here we see that the amplitude of the field drives the mechanical
resonator and the record of the position is imprinted on the phase
of the field. Thus we need to either directly measure the phase
of the output field via e.g. balanced homodyne or have a way
of transferring the motion record to the amplitude quadrature.
Again, the equations give a good hint on where to look: with
nonzero detuning, the phase and amplitude are coupled. Mea-
suring on the side of the cavity, away from the resonance, thus
transforms phase fluctuations to amplitude fluctuations.

Again, the solution to this set of equations is most conve-
niently found in frequency domain. The Fourier transform leaves
us with

−iΩX̂(Ω) = −
κ

2
X̂(Ω) −∆Ŷ(Ω) +

√
κX̃in, (2.100)

−iΩŶ(Ω) = −
κ

2
Ŷ(Ω) +∆X̂(Ω) + 2gQ̂(Ω) +

√
κỸin. (2.101)

−Ω2Q̂(Ω) = −ω2
mQ̂(Ω) + iΓmΩQ̂(Ω) +ωm

(√
2ΓmFth + 2gX̂(Ω)

)
.

(2.102)

Again, we can identify the dimensionless mechanical suscepti-
bility

χm(Ω) =
ωm

ω2
m −Ω2 − ΓmΩ

, (2.103)

and write the equation for the dimensionless position as

Q̂(Ω) = χm(Ω)
(√

2ΓmFth + 2gX̂(Ω)
)

. (2.104)

If we substitute in X̂(Ω), interesting things happen. First, we
recover the same dynamical backaction as in the classical case
modifying the mechanical susceptibility in a similar fashion.
However, we also have an extra driving term from the quantum
noise that we neglected in the classical limit. To write the contri-
butions more explicitly, let us solve the equations of motion for
amplitude and phase(κ

2
− iΩ

)
X̂(Ω) = −∆Ŷ(Ω) +

√
κX̃in, (2.105)(κ

2
− iΩ

)
Ŷ(Ω) = ∆X̂(Ω) + 2gQ̂(Ω) +

√
κỸin. (2.106)
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We first substitute the phase Ŷ in equation 2.105 to find

X̂(Ω) =
−∆

κ
2 − iΩ

(
1

κ
2 − iΩ

(
∆X̂(Ω) + 2gQ̂(Ω) +

√
κỸin

)
+
√
κX̃in

)
(2.107)

Solving for X̂(Ω), we are left with

X̂(Ω) =
−∆(

κ
2 − iΩ

)2
+∆2

(
2gQ̂(Ω) +

√
κỸin

)
+

κ
2 − iΩ(

κ
2 − iΩ

)2
+∆2

√
κX̃in. (2.108)

Again, for notational convenience, we will define two new func-
tions

v(Ω) =
−∆(

κ
2 − iΩ

)2
+∆2

, (2.109)

u(Ω) =
κ
2 − iΩ(

κ
2 − iΩ

)2
+∆2

. (2.110)

With these, we can rewrite X̂(Ω) and solve for Ŷ(Ω)

X̂(Ω) = v(Ω)
(

2gQ̂(Ω) +
√
κỸin

)
+ u(Ω)

√
κX̃in, (2.111)

Ŷ(Ω) = u(Ω)
(

2gQ̂(Ω) +
√
κỸin

)
− v(Ω)

√
κX̃in. (2.112)

Substituting X̂ back into equation 2.104, we find

χ−1
m Q̂(Ω) =

√
2ΓmFth

+ 2g
(
v(Ω)

(
2gQ̂(Ω) +

√
κỸin

)
+ u(Ω)

√
κX̃in

)
(2.113)

(
χ−1
m + χ−1

dba

)
Q̂(Ω) =

√
2ΓmFth

+ 2g
(
v(Ω)

√
κỸin + u(Ω)

√
κX̃in

)
, (2.114)

where we identified the dynamical backaction susceptibility as

χdba = 4g2v(Ω), (2.115)

such that the the effective susceptibility is χ−1
eff = χ−1

m + χ−1
dba.

At the risk of repeating myself10, let us write the solution for
position once more

Q̂(Ω) = χeff

(√
2ΓmFth + 2g

(
v(Ω)

√
κỸin + u(Ω)

√
κX̃in

))
.

(2.116)

10 Repetita iuvant, as the Romans, or perhaps medieval scholars, allegedly said!
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Up until the very end, the solution is identical to the the classical
one - motion with modified susceptibility driven by thermal
motion. But, in the quantum regime, the quantum noise of the
light field becomes significant and we have an additional driving
term, the so called quantum backaction (QBA) due to the so-called
radiation pressure shot noise.

2 .6 .5 Quantum backaction and the Standard Quantum Limit

To understand the consequences of the QBA, let us consider res-
onant probing of the mechanical motion, that is, set ∆ = 0. This
is a very relevant example as resonant probing nullifies the effect
of dynamical backaction allowing us to measure unperturbed
mechanical motion. Such measurement is also a starting point of
the quantum feedback scheme presented later, making the case
highly relevant.

As said, dynamical backaction has no effect and the coupling
between optical quadratures vanishes and we are left with

Q̂(Ω) = χm

(√
2ΓmFth +

2g
κ
2 − iΩ

√
κX̃in

)
, (2.117)

Ŷ(Ω) =
1

κ
2 − iΩ

(
2gQ̂(Ω) +

√
κỸin

)
. (2.118)

We do not have direct access to the cavity field. We can only
measure the cavity field leaving the cavity from one of the ports.
The output field is calculated with the input-output relations as

Ŷ(Ω)out = −Ŷ
(1)
in +

√
η1κŶ(Ω), (2.119)

where we have chosen port 1 as the output port. The total output
field, is then

Ŷout = −Y
(1)
in +

√
η1κ

[
1

κ
2 − iΩ

(
2gQ̂(Ω) +

√
κỸin

)]
(2.120)

We can simplify the equation a little by collecting all the phase
noise terms under single variable

Ỹ ′
in = −Y

(1)
in +

√
η1κ

κ
2 − iΩ

(√
η1Y

(1)
in +

√
1 − η1Y

(2)
in

)
, (2.121)

where we use the prime to signify that this noise term is different
from the one introduced in equations 2.95 and 2.96 and where
we have substituted for η2 = 1 − η1. Rearranging, we find

Ỹ ′
in =

(
2
√
η1

1 − i2Ω
κ

− 1

)
Y
(1)
in +

2
√

η1(1 − η1)

1 − i2Ω
κ

Y
(2)
in . (2.122)
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Interestingly, if we calculate the symmetrized power spectrum,
assuming no cross correlation between the noises, for this noise
operator, we find

S̄
Ỹ ′
inỸ

′
in

=
1
2

, (2.123)

the same we would expect for any of the individual noise terms
Y
(i)
in .

The solution for position Q̂(Ω) can also be rearranged a bit
to make the relation between QBA and thermal noise explicit

Q̂(Ω) = χm

(√
2ΓmFth +

√
2Γm2gκ√

2Γmκ
2

(
1 − i2Ω

κ

)X̃in

)
, (2.124)

= χm
√

2Γm

(
Fth +

√
2

1 − i2Ω
κ

2g√
κΓm

X̃in

)
, (2.125)

= χm
√

2Γm
(
Fth +

√
2CeffX̃in

)
, (2.126)

where we have identified the effective cooperativity

Ceff =
C(

1 − i2Ω
κ

)2 =
4g2

κΓm

1(
1 − i2Ω

κ

)2 , (2.127)

where the cooperativity C is defined as

C =
4g2

κΓm
(2.128)

We can think of the cooperativity as the ratio between coupling
and loss rates.

With the rearrangement in equation 2.126, the effect of quan-
tum noise becomes even more explicit. The quantum noise drives
the mechanical motion in a similar fashion as the thermal noise.

With the digressions out of the way, we can then finally write
the output field and calculate the corresponding spectral density.
The phase Ŷout(Ω) is then

Ŷout(Ω) = Ỹ ′
in + 2

√
η1ΓmCeff

[
χm
√

2Γm
(
Fth +

√
2CeffX̃in

)]
.

(2.129)
where we have again identified the effective cooperativity

2g
√
η1κ

κ
2 − iΩ

= 2
√
η1ΓmCeff. (2.130)

Thus, the cooperativity also determines the signal to noise of the
position relative to the background! The symmetrized spectral
density is then

S̄ŶoutŶout
(Ω) = S̄

Ỹ ′
inỸ

′
in

+ 4η1Γm|Ceff|
[
|χm|22Γm

(
S̄FF + 2|Ceff|S̄X̃inX̃in

)]
. (2.131)
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Both shot noise spectra S̄
Ỹ ′
inỸ

′
in

and S̄
X̃inX̃in

are valued at 1/2 at
all frequencies and the thermal noise spectrum is

S̄FthFth = nth +
1
2
≈ nth, (2.132)

where we have chosen a regime where nth is much larger than
1/2. The final spectrum then reads

S̄ŶoutŶout
(Ω) =

1
2
+ 8η1Γ

2
m|Ceff||χ

2
m| (nth + |Ceff|) . (2.133)

The expression inside the last parenthesis invites a closer look.
First, we have the effective cooperativity. In the unresolved side-
band limit, where κ ≫ ωm, we may simply write C = Ceff. The
total force noise S̄totFF then consists of the thermal force S̄FthFth
and the quantum backaction drive S̄QBA

S̄totFF = SFthFth + SQBA = nth +C. (2.134)

Let us then take the ratio of the QBA to the thermal force

S̄QBA

S̄FF
=

C

nth
= Cq, (2.135)

where we have introduced the quantum cooperativity that quanti-
fies the ratio between thermal forces and the quantum backation.
Let us write it out explicitly

Cq =
4g2

κnthΓm
=

4g2

κΓdecoh
, (2.136)

where we have introduced the mechanical decoherence rate
Γdecoh = Γm(nth + 1/2). A regime where Cq > 1 is especially
interesting. This means that the quantum backaction exceeds
the incoherent thermal drive in importance.

To give an alternative interpretation, let us introduce the
measurement rate

Γmeas =
4g2

κ
, (2.137)

and rewrite the output spectrum 2.131 with its help. Here, we
continue to operate with the unresolved sideband assumption11

such that Ceff = C and we find

S̄ŶoutŶout
(Ω) =

1
2
+ 4η1ΓmeasS̄QQ(Ω), (2.138)

where we have chosen not to write the position spectrum S̄QQ

explicitly. The measurement rate can then be thought as the rate

11 After all, our experiments operate in this regime.
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at which we extract information from the system. Looking back
at the quantum cooperativity, we can write it as

Cq =
Γmeas

Γdecoh
, (2.139)

that is, the ratio of the rate at which we extract information
against the rate at which the information decoheres meaning
that the cooperativity is not only a measure of how important
QBA is, but also a measure of our measurement efficiency.

Looking at equation 2.138, it would seem that we can reach
arbitrarily good signal to noise or alternatively, arbitrarily small
imprecision. The noise floor is constant 1/2 and whatever mo-
tion there is, gets multiplied by the measurement rate that is
proportional to our probe power12 where the only limit is the
cavity and physical limitations of the equipment.

An alternative way to think about the noise floor is, that
we can calculate, how much motion would produce a signal
corresponding to the shot noise level13. This imprecision is then

S̄
imp
QQ =

1
4η1Γmeas

S̄ŶinŶin
. (2.140)

As intuited, the smallest motion that can be measured can be im-
proved without limit by cranking up the measurement strength.

Writing the output field with the equivalent position impre-
cision, we get

S̄ŶoutŶout
(Ω) = 4η1Γmeas

(
S̄
imp
QQ + S̄thermal

QQ + S̄
QBA
QQ

)
, (2.141)

where we have separated the position spectrum to thermal and
backaction noise. The above expression gives us the apparent
mechanical displacement. Before going further, let us (once more)
write the contributing terms, evaluated at the mechanical fre-
quency ωm

S̄
imp
QQ (ωm) =

1
8η1Γmeas

, (2.142)

S̄thermal
QQ (ωm) = 2Γm|χm(ωm)|2

(
nth +

1
2

)
, (2.143)

S̄
QBA
QQ (ωm) = 2Γm|χm(ωm)|2

Γmeas

Γm
. (2.144)

Here, |χm(ωm)|2 = 1/Γ2
m and, to maintain consistency between

the terms, we have used the measurement rate to write the back-
action spectrum. Here, the interplay between the contributions

12 Γmeas ∝ g2 = g2
0ncav

13 Strictly speaking, this term can also include classical noise, but for quantum
experiments, we want to be as close to the shot noise limit as possible and
thus the classical contribution is taken to be insignificant and thus neglected.
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is the following: As measurement rate increases, the imprecision
decreases, but the backaction rate increases while the thermal
force is a constant lower bound on the measurement. The point
of lowest total uncertainty is called the Standard Quantum Limit
(SQL) and it is most clearly demonstrated in figure 2.9.

10−3 10−1 101 103

Γmeas/Γm

100

101

102

103

Sto
t

Q
Q

nth = 0

Imp.
QBA
nth = 100

Figure 2.9: The standard quantum limit. The dark gray line corre-
sponds to the ground state SQL, where there are zero thermal phonons
and the orange line to such situation, where there are 100 thermal
phonons. The dashed red line corresponds to the measurement impre-
cision and the dashed blue line to the quantum backaction noise. The
mechanical linewidth is set to Γm = 1 in the graph. We can read the
minimum at Γmeas = Γm/4.

We cannot stress enough, that the existence of SQL is not
due to any practical measurement apparatus or specific optome-
chanical platform but rather a direct consequence of quantum
mechanics. It sets the lower limit on the displacement that can
be measured. Remember, that so far, there are no external forces
other than those resulting from coupling to the thermal environ-
ment and the QBA from the probe. One very salient example
is the interferometric detection of gravitational waves, such as
is done at LIGO or VIRGO. The passing of a wave causes a
displacement in a multi-kilometer long interferometer and this
displacement needs to be distinguished from the background
given by the SQL.
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2 .6 .6 Sideband cooling

In the previous section we reached a startling conclusion. No
matter what, there is a fundamental limit in position measure-
ment accuracy. However, under suitable experimental conditions
that will be elaborated in a moment, the optomechanical interac-
tion allows for quantum control of motion. We already saw in the
classical treatment, that the dynamical backaction can broaden
the mechanical linewidth and this broadening is interpreted as
cooling of the mechanical mode’s temperature. As a shot noise
limited laser light source can be considered to be a zero thermal
phonon bath, in principle this process can prepare the mechani-
cal mode in the ground state. The optomechanical interaction
facilitates both cooling and heating of the mechanical resonator.
At the same time, without external forces, the resonator would
equilibrate with the bath. The change in the occupation can thus
be written as

ṅ = (n+ 1)
(
A+ +A+

th

)
+n

(
A− +A−

th

)
, (2.145)

where we have introduced the thermal and optical transition
rates A±

th and A± respectively. The thermal rates are

A+
th = nthΓm, (2.146)

A−
th = (nth + 1)Γm. (2.147)

If we turn off the optical interaction, that is A± = 0, the equation
of motion for mean occupation becomes

ṅ = (n+ 1)nthΓm −n(nth + 1)Γm. (2.148)

For the equilibrium, we set ṅ = 0 and we find the steady state
occupation nss = nth.

Due to the cavity, the two optical transition rates have differ-
ent values. Their balance is then the damping – or anti-damping
– rate of the mechanical resonator

Γopt = A− −A+. (2.149)

The steady state, or the final occupation nf is then

nf =
A+ +nthΓm

Γopt + Γm
≈ A+

Γopt
+nth

Γm

Γopt
, (2.150)

where we have approximated Γopt ≫ Γm. For quantum exper-
iments, the mechanical linewidth is often less than one hertz
whereas Γopt can be tens of hertz. If ωm ≫ κ, Γopt ≈ 4g2/κ, the
final occupation becomes

nf =
A+

Γopt
+

1
Cq

. (2.151)
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Thus, the quantum cooperativity needs to be greater than one, if
the final occupation is to be less than one.

The remaining matter is then the form of the optical transition
rates, and there Fermi’s golden rule can be applied to find

A± = g2
0SNN(∓ωm), (2.152)

where the photon number spectrum is

SNN(ω) = ncav
κ(

κ
2

)2
+ (∆+ω)2

, (2.153)

is the photon number noise spectrum. It should be reassuring,
that the expression for the optomechanical damping obtained
this way is the same as the one we found previously by solving
the equations of motion. We can immediately identify the first
criterion for ground state cooling. The second term in equation
2.150 must be smaller than one. In practice, this is not a very
prohibitive obstacle. Quality factors of tens and hundreds of
million are commonplace and a moderate cryogenic environ-
ment reduces nth such that the thermal contribution to the final
occupation is small already at moderate damping Γopt. However,
the first term A+/(A− −A+) is more interesting to analyse. Let
us write it out explicitly

A+

A− −A+
= nSB

min =

[(
κ
2

)2
+ (∆−ωm)2(

κ
2

)2
+ (∆+ωm)2

− 1

]−1

, (2.154)

where we have defined the minimum achievable phonon number
in sideband cooling nSB

min. We have also included superscript
’SB’ to underline that this is the limit in sideband cooling. As will
become evident in later sections, measurement based protocols
can surpass this limit.

The limit is a function of optical linewidth, detuning and
mechanical resonance frequency. It is instructive to consider two
regimes - the resolved and unresolved sideband cavities. The
behaviour of nSB

min as a function of detuning ∆ is shown in figure
2.10. As we see, for a sufficiently unresolved cavity, the final
occupation never reaches the ground state14. The optimal detun-
ing, that is detuning that allows for lowest occupation, depends
on the cavity linewidth and mechanical resonance frequency.
Solving for the optimal detuning, we find

∆min = −
1
2

√
κ2 + 4ω2

m. (2.155)

As shown in figure 2.11 when ωm ≫ κ, we can approximate
∆min ≈ ωm and in the opposite regime κ ≫ ωm, the optimal
detuning is ∆min ≈ κ/2.

14 As a reminder, the optomechanical ground state is occupation less than one.
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Figure 2.10: The minimum achievable occupation, given negligible
thermal occupation. Increasing sideband resolution allows for ever
lower occupation. The optical detuning for the minimum changes
with the κ/ωm ratio and too high ratio prohibits ground state cooling
altogether.
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Figure 2.11: The black line shows the optimal detuning (equation
2.155) and the asymptotic behaviour. When κ ≫ ωm, the optimal
detuning for sideband cooling approaches κ/2, here marked with the
red dashed line. When ωm ≫ κ the optimal detuning is ωm, marked
with dashed orange line.

As a final note, equation 2.154 can be simplified for the re-
solved and unresolved regimes. When the cavity is resolved,
the minimum occupation is nSB

min = (κ/4ωm)2 which is well
below one whereas in the unresolved case, the minimum is
nSB
min = κ/4ωm, this time greater than one.

The conclusion is then, that in order to sideband cool a me-
chanical resonator to the ground state, the optical cavity needs to
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sufficiently resolve the mechanical sideband15. In practice, this
slightly complicates experimental design16. For silicon nitride
membrane resonators, the resonance frequency of the mode of
interest is typically between 1 and 1.5 megahertz. To reach an
optical linewidth below megahertz then requires both very high
finesse mirrors and a long cavity. Both of these features increase
the difficulty of operating the system. However, an alternative
approach, the measurement based quantum control is agnostic
to sideband resolution and also, under suitable experimental
conditions, allows for preparation of the motional ground state.
We will cover this approach in more detail in a later chapter.

2 .6 .7 Modelling inefficiencies

ηdet
Sout

Svac

Sdet

Figure 2.12: Detection inefficiency can be modelled as a beam splitter
in the measurement path where part of the measurement signal, here
labeled as Sout, is replaced by vacuum noise Svac resulting in detected
spectrum Sdet.

As much as we would like, the path from the cavity to detec-
tion is not without losses. Imperfections in the optical compo-
nents along the way scatter and absorb some of the light and the
detector has below unity quantum efficiency, essentially meaning
that not every photon creates an electron in the photodiode. We
can imagined the output light passing through a beamsplitter,
where part of the signal is replaced by vacuum noise, as shown
in figure 2.12. We will thus introduce detection efficiency ηD such
that the detected phase is

Ŷdet =
√
ηDŶout +

√
1 − ηDYv, (2.156)

where part of the detected signal is replaced by vacuum noise.
The vacuum noise is again uncorrelated and can be absorbed to
the phase noise operator such that the shot noise background

15 Althought it is possible to use properly squeezed light to surpass this limit
[42].

16 Though not that much. Resolved sideband systems are routinely utilized in
many experiments.
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is still 1/2. The end result is that we simply multiply Q̂ in the
output field by

√
ηD such that the output field becomes

S̄ŶoutŶout
(Ω) =

1
2
+ 4ηDη1ΓmeasS̄QQ(Ω). (2.157)

2 .7 membrane in the middle

Figure 2.13: The membrane in the middle system can be modelled
as a Fabry-Pérot cavity, that is divided into two subcavities by a thin,
dielectric membrane. Inside each subcavity, there are left and right
travelling fields labelled A1, A2, B1 and B2. For completeness, we have
included the input field Ain, the reflected field AR and the transmitted
field AT .

All of the considerations so far have assumed a Fabry-Pérot
cavity with a movable end mirror. However, as we already saw
in the introduction, optomechanical systems come in multiple
shapes and forms where the common thread is that the motion
of the mechanical resonator modifies the cavity resonance.

The chosen approach in Copenhagen quantum optomechan-
ics experiments is the so called membrane in the middle (MIM)
geometry. Instead of a movable end mirror, we have a static
Fabry-Pèrot cavity and introduce a thin, dielectric membrane in
the middle of the cavity and, as we will see, this gives rise to ex-
actly the same dispersive coupling as in the case of the movable
end mirror. The main advantage of the MIM geometry is that it
allows for independent engineering of both the nanomechanical
resonator and the cavity mirrors without compromising e.g. the
mass of the resonator or the reflectivity of the mirror.

In the following treatment, we follow mostly the analysis
presented in [43, 44, 45]. The starting point of the analysis is the
the usual Fabry-Pèrot cavity of length L formed by two mirrors
with reflectivities −r1 and −r2 and transmissivities t1 and t2. In
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the cavity, near the center, there is a dielectric membrane at posi-
tion x dividing the cavity into two subcavities. The membrane
is partially reflective with reflection rm and transmission tm. In
each subcavity, there are two electric fields, the right propagating
A1 and A2 and the left propagating B1 and B2. The cavity fields
are presented in figure 2.13.

Since we are mostly interested in how the mechanical motion
modifies the cavity parameters, we will make the simplifying
assumption, that the cavity end mirrors are perfectly reflective.
This is not a very far fetched assumption. Transmissivities as
low as few tens of part-per-million (ppm) are commonplace. The
equations determining the cavity fields are then

A1 = −B1 exp (2ikx) ,
A2 = tmA1 + rmB2,
B1 = tmB2 + rmA1,
B2 = −A2 exp (2ik(L− x)) ,

where k = 2π/λ is the wavenumber. These equations yield a
transcendental equation for the resonant condition that can in
principle be solved numerically. The solution can be simplified
greatly by assuming that the losses in the membrane are neg-
ligible such that |rm|2 + |tm|2 ≈ 1. With the approximation, the
resonant length of the cavity can be written as

Lres =
1
k

arctan
(

cos(ϕr) + |rm| cos(2kx)
sin(ϕr) − |rm| sin(2kx)

)
, (2.158)

where we have introduced the phase and amplitude of the re-
flection coefficient, rm = |rm| exp(iϕr). In principle, the resonant
length is quite simple to connect to the resonance frequency.
However, each length can host an infinite number of resonances.
Nth such resonant wavenumber is then

kres =
Nπ

Lres
. (2.159)

Further, it is instructive to consider small correction to the reso-
nant wavenumber such that

kres(δx) = kN + δk(δx), (2.160)

and thus, the resonance frequency of the cavity modified by the
membrane is

ωc = NωFSR +
ωFSR

π

[
arccos

(
(−1)N+1|rm| cos(2kNδx)

)
−ϕr

]
,

(2.161)
where ωFSR is the free spectral range and kN the unperturbed
resonant wavenumber. The resulting shift for various membrane
reflectivities is shown in figure 2.14.
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Figure 2.14: The membrane position modulates the cavity resonance
frequency. The membrane reflectivity goes from 0 (dashed grey line)
to 1 (solid dark gray line) with intermediate values plotted in blue
such with reflectivity increasing from light to dark. When reflectivity
is zero there is no modulation and when the membrane is perfectly
reflective, we recover the usual linear cavity length dependence. For
intermediate values, the mechanical motion shifts the frequency and
allows for optomechanical coupling.

In the canonical optomechanical system with a movable end
mirror, the relation between the cavity resonance and position is
linear and thus the coupling strength is the same for all positions.
However, for a membrane in the middle, the coupling strength is
again proportional to the derivative of the cavity resonance that
is no longer constant. Thus, the optomechanical coupling can be
tuned by choosing a suitable membrane position. The membrane
position also modifies the cavity linewidth and outcoupling.
However, as the formal equations do not provide immediate
enlightenment, we have chosen to only graph the results in
figure 2.15.

2 .8 from 2d to 1d motion

Both experiments described later in the thesis utilize membrane
resonator. Membranes are particularly interesting due to the
extreme aspect ratio enabled by modern fabrication techniques.
Thicknesses of few tens of nanometers are common and the
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Figure 2.15: The position of the membrane modifies the linewidth of
the cavity (left) and the optomechanical coupling (right). The values
are calculated with L ≈ 49.3 µm, t2

1 = 0.00034, t2
2 = 0.0017, ϕ = −π/2,

and r2
m ≈ 0.0013.

L

Figure 2.16: The membrane’s motion can be modelled as a thin plate,
such that the side length L is much larger than the thickness h. The
sides are clamped, i.e. the displacement at the edge is zero. The vibra-
tion modes thus follow a wave equation.

side length can vary from a few hundred micrometers to a few
millimeters. As a consequence, the membranes are light and thus
very sensitive to external forces and at the same time, have a
large surface area that accommodates easier optical or electrical
coupling and offers large space for samples. Further, they can
functionalized by e.g. depositing a metal layer on the membrane.

However, the discussion so far has assumed one dimensional
motion that is hard to find outside of a textbook. To make use
of the simple theoretical foundation of 1D motion, the task in
any experimental system is to map the motion of the physical
resonator to a one dimensional effective resonator with effective
mass meff and effective spring constant keff.

For a membrane resonator, a good starting point is the eigen-
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2 .8 from 2d to 1d motion

modes of a vibrating square plate clamped at the edges. We will
make a number of simplifying assumptions. First, the plate thick-
ness h is taken to be thin compared to its side length Lm and
the in-plane motion is negligible. Neglecting bending losses17

for the moment, the out of plane displacement wz(t, x,y) follows
the wave equation[46]

T∇2wz(x,y, t) = ρ
∂2

∂t2wz(x,y, t), (2.162)

where ρ is the density of the plate and T the in plane tensile
stress. The equation is solved by separation of variables, where
we look for a solution in the form of wz(t, x,y) = uz(t)ϕ(x,y).
Assuming a square membrane, the spatial part of the solution is
found to be

ϕi,j(x,y) = sin
(
iπx

Lm

)
sin
(
jπy

Lm

)
. (2.163)

The main feature of such solution is that the spatial and temporal
evolution are separate. Thus, ϕi,j(x,y) gives the shape of the
motion and the time evolution of each point in the membrane is
given by uz(t) = u0 cos(ω(i,j)

m t), where ω
(i,j)
m is the frequency of

the mode (i, j).
For a square membrane, the effective mass is in principle

straightforward to find. We may calculate the total potential en-
ergy and compare it to a one dimensional resonator and choose
the effective mass such that the expressions match. This is done
by integrating over the membrane volume

U =
ωm

2

∫
w2

z(t, x,y)dV =
ωm

2
ρL2

mh

4
uz(t)

2. (2.164)

The membrane volume multiplied by density is simply the mass
of the physical device ρL2h = m and we can thus map meff =
m/4.

However, this becomes increasingly difficult for more com-
plex geometries. As we will see, the typical membranes used
in the experiment feature intricate designs. In such a situation,
the effective mass is found by integrating over the mode shape
using what is known as the Galerkin’s method [47]

meff = ρ

∫
ϕi,j(x,y)dV . (2.165)

Conveniently, the method is implemented in most common fi-
nite element modelling (FEM) packages allowing us to estimate
the effective masses of complicated structures already at the
simulation stage.

17 The contribution in the equation is proportional to h2 and thus very small
for all membranes we’d like to consider.
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2 .8 .1 Practical membrane resonators and Dissipation engineering

Figure 2.17: The main loss channels in a typical silicon nitride mem-
brane resonator result from air molecule collisions i.e. gas damping,
radiation to and from the substrate and bending losses due to sharp
curvature near the clamping point. Here, the orange dashed line in-
dicates the ideal displacement solution and the solid line is a more
realistic representation of the membrane displacement. The red accents
indicate area of sharp curvature.

While full understanding of membrane mechanics is not nec-
essary to understand the following discussion nor is it the focus
of the this thesis, we would like to make a couple of remarks
about soft clamped silicon nitride membranes, especially on the
main sources of loss. We already introduced the quality factor
Qm. More formally, it can be seen as the number of oscillations
it takes to dissipate all energy in the resonator

Q = 2π
W

∆W
, (2.166)

where W is to total energy and ∆W the amount of energy lost
per oscillation. The losses, or the quality factor is further divided
into different processes such that the total Q is the inverse sum of
the individual quality factors associated with each loss channel

Q−1
tot =

∑
i

Q−1
i . (2.167)

A practical consequence of this formulation is that the domi-
nating loss channel or the lowest quality factor determines the
device’s final Q18.

Before exploring some loss mechanisms mechanisms, we
would like to make a brief remark about dissipation dilution. We
can further divide the total stored energy and the loss channels
in equation 2.166 [47]

Q = 2π
Wtensile +Welongation +Wbending

∆Welongation +∆Wbending
. (2.168)

18 For example, if Q1 = 104 while Q2 = 10, the total is Q ≈ 9.999.
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First, we assume that Wtensile, the energy needed to deflect
the membrane against tension, is dominating, that is Wtensile +
Welongation +Wbending ≈ Wtensile and that the bending losses
are equal to the the elongation losses, Qe = Qb = Qintrinsic. The
quality factor is then approximately

Q ≈ αDQintrinsic, (2.169)

where αD is

αD =

(
Wb

Wt
+

We

Wt

)−1

. (2.170)

Since Wt dominates, the dilution factor αD can become very
large boosting the quality factor significantly.

In the case of silicon nitride membranes, the most relevant
loss rates are the bending, radiation and gas damping losses. Gas
damping is perhaps the most straightforward to consider. In
atmosphere, gas molecules constantly bombard the membrane
damping it. However, simply placing the membrane in a good
vacuum, in practice < 10−7 millibar for typical membranes in
our experiments, renders gas damping negligible.

Second, the resonator must be anchored to some substrate19.
The substrate also features mechanical modes some of which are
near the modes of interest of the membrane and thus the me-
chanical energy easily propagates between the substrate and the
membrane mode increasing the speed at which the membrane
reaches equilibrium with the frame, that is the damping rate Γm
increases. This mechanism is know as radiation loss. One strat-
egy to reduce it is to embed the membrane inside a phononic
crystal structure [49, 50]. The crystal then features a bandgap
designed such that the membrane modes of interest lie within
it. The propagation of vibrational modes within the bandgap is
greatly suppressed and as consequence, the membrane modes
are isolated from the environment. Such phononic shielding
is quite versatile and also works for gigahertz optomechanical
crystal resonators with the scaling and redesign of the pattern
[51].

Finally, there are losses resulting from bending. At the an-
choring point, the supporting structure forces zero displacement
and as a consequence, the mode shape features a very sharp
bend near the edge. This bending is one of the most significant
loss channels in membrane resonators.

Relatively recently developed soft-clamped membrane res-
onators [52] work around this issue by engineering the mem-
brane such that mode of interest decays gently before the clamp-

19 With the notable exception of levitated particles. Nowadays there is consid-
erable interest in the levitated optomechanics and a recent review article
provides an overview of the field [48].
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Figure 2.18: A first generation soft clamped silicon nitride membrane
resonator. On the left, a photograph of a typical device shows the
phononic crystal pattern isolating the mechanical modes localized in
the defect. The measured displacement on the right confirms that the
defect mode decays very quickly before reaching the frame. Adapter
from [52]

ing point and avoids any sharp bends. This is achieved by pat-
terning a phononic crystal pattern on the membrane and intro-
ducing a larger pad usually called a defect since it breaks the
symmetry of the pattern as shown in figure 2.18. The pattern
then plays double duty. On hand it isolates the defect modes
from the environment and on the other hand, it localises the mo-
tion to the defect. As a consequence, quality factors of hundreds
of millions are routinely fabricated at megahertz frequencies.
The technique also works in doubly clamped beams localizing
motion to the center [53].

2 .9 measuring mechanical motion

In the previous discussion, we simply stated, that we will mea-
sure the phase fluctuations of the output field. This however,
creates a bit of a practical conundrum. Photodiodes will only
measure the power of the incoming laser beam. The power in-
deed oscillates with the laser frequency, but that is typically in
the Terahertz range and thus outside the bandwidth of current
photodetectors. However, what we can do, is to beat the output
field with a reference beam, usually referred to as the local os-
cillator (LO), such that the beat note between them depends on
the relative phase of the two beams. This then transforms any
phase fluctuations originating from the cavity to comparatively
slow20 amplitude fluctuations that a typical photodetector can

20 Order of mechanical frequency, typically between 1 and 1.5 MHz in our
experiments, so the slowness is indeed only relative.
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2 .9 measuring mechanical motion

pick up with ease. This is the idea behind homodyne or hetero-
dyne detection. In the experiments in this thesis, we use either
direct detection or homodyne. Let us then explore the latter in
more details.

S
Figure 2.19: A Mach-Zehnder interferometer. The laser source on the
left is split into a strong LO travelling on top and a weaker probe beam
on the bottom. The probe beam passes through the system of interest
S and is recombined with the LO on a 50:50 beamsplitter. The phase θ

of the LO is controlled such that quadrature of interest X̂θ is measured.
The outputs of the beamsplitter are measured on two photodiodes
(hence the name balanced homodyne measurement) and their difference
produces the photocurrent of interest.

In a homodyne measurement, we typically split the source
into two beams, the LO and the probe beam. The ratio of powers
is such that the LO is much stronger than the probe. In a typical
interferometer setup, often in our chase in the Mach-Zehnder
configuration, the LO travels trough a reference arm and the probe
beam passes through or reflects from the system of interest in
the probe arm. The beams are then combined in a 50:50 beam
splitter and measured on two photodiodes producing currents
I+ and I−. In principle, a singled diode detection already has all
of the information needed, but measuring the sum of positive
and negative photocurrents suppresses classical amplitude noise
allowing for a more sensitive measurement. A typical scheme is
sketched in figure 2.19.

Mathematically, we introduce another field operator, aLO

such that |aLO| = αLO ≫ |aout|. The large amplitude allows
us to treat the field classically. The final field, after interaction of
the LO and probe is thus

E± =
1√
2

(
(αLO ± âout)e

−iωLt) + (α∗
LO ± â

†
out)e

−iωLt)
)

.

(2.171)
The measured power and thus, the measured photocurrent is
then the square norm of this field. The photodetector has a
limited bandwidth and thus we neglect all fast oscillating terms
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and are left with

I± = |αLO|
2 ±

(
αLOâout +α∗

LOâ
†
out

)
+

1
2

(
âoutâ

†
out + â

†
outâout

)
(2.172)

In balanced homodyne, where we measured the difference of pho-
tocurrents I+ − I−, the only surviving term is

I = 2αLOe
iθ (âout + â) , (2.173)

= 2
√

2αLOX̂
θ
out, (2.174)

where we have written the LO as αLO = |αLO|e
iθ, with θ being

the LO phase and have introduced the arbitrary quadrature

X̂θ
out =

1√
2

(
âe−iθ + â†eiθ

)
. (2.175)

If we set θ = π/2, we recover the phase quadrature. Alternatively,
if θ = 0, we measure the amplitude.

The interesting feature to not in equation 2.174 is that we
measure only the output signal from the cavity, but the signal
strength is multiplied by the LO amplitude! Hence, the homo-
dyne measurement not only allows for measurement of arbitrary
quadrature of light, but also increases the signal strength. It
should be noted however, that the enhancement applies to the
entire output field, including the imprecision and QBA terms.
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In this chapter, we will cover the effort to create an integrated
opto-electromechanical transducer for clinical MRI machines. We
start with an overview of conventional MRI technology, make
a few remarks about the theoretical background and cover the
results for the fabricated devices. The author’s involvement was
mostly in characterizing and measuring the devices. This chap-
ter will be relatively concise, highlighting only the key measure-
ments and results. For a more in depth treatment, we recommend
studying [28] or [54] and [55]

3 .1 overview of optomechanical transduction ef-
forts

As already hinted in earlier sections, many of the optomechani-
cal transduction efforts aim specifically to convert a microwave
photon originating from a superconducting qubit to optical fre-
quencies to enable long distance quantum networking. This is
perhaps not an unreasonable focus, given the steady progress
in superconducting quantum computing exemplified by demon-
stration of quantum supremacy already two years ago[56]1.

However, there is room for improvement in the classical
domain. Measurements based on nuclear magnetic resonance
(NMR), the most well known example being magnetic resonance
imaging (MRI), rely on being able to detect faint magnetic fields.
The typical detection chain is based on electronic amplifiers.
However, the electronic circuits and cables are susceptible to
magnetic fields and crosstalk. This means using stronger mag-
netic fields or multiple coils is challenging. In contrast, optical
fibers are immune to external magnetic fields, lightweight and
do not suffer from cross talk. Further, the losses in fibers are
much smaller compared to radio frequency electrical cables. In
principle, this would allow placing the analysis unit far away
from the scanner and avoid having any signal processing equip-
ment near the strong magnetic field

There have been a few demonstrations of purely optical
detection schemes for NMR signals. NV-center-based magne-
tometry features impressive sensitivity and spatial resolution
but is limited to small samples[58, 59]. Similarly, magnetic res-
onance force microscopy (MRFM) can achieve sub-nanometer
resolution but is limited to very small samples[60, 61]. Vapor

1 Though not without some sour grapes from competition[57].
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cell magnetometers are low noise, but at higher frequencies, con-
ventional electronics match and exceed their performance[62,
63]. In contrast, optomechanical detection is frequency agnostic,
compatible with telecom wavelengths, directly compatible with
existing detection coils and, leveraging interferometric readout,
very sensitive.

In fact, an experiment based on an earlier proposal[64] from
Copenhagen demonstrated optical readout of radio frequency
signals and could in principle reach noise temperature down to
4K[65]. Getting much lower noise temperature with an electric
amplifier typically requires cooling the device down to cryo-
genic temperatures. However, despite impressive performance
the device was otherwise limited. DC biasing meant that only
signals at the mechanical frequency could be picked up and the
bandwidth was limited to 4 kHz. Since then, optomechanical
transduction has been demonstrated for NMR signals using AC
bias[66, 67] although with limited bandwidth and the noise per-
formance was still worse compared to conventional electronic
amplifiers. It is possible to boost the detection bandwith by us-
ing multiple mechanical modes, but the first proof of principle
experiment featured less than ideal sensitivity[68].

All of the aforementioned experiments are comparatively
complex and require large amounts of space. Our objective was
thus to integrate both the optical cavity and electrodes into a
single chip and use as simple and affordable optical setup as
possible. Before moving on to the experiment, let us briefly cover
the basic principle of MRI.

3 .2 brief overview of magnetic resonance imaging

B0 B0

BE

B0

a) c)b)

Figure 3.1: The basic sequence of an NMR process. a) The spins of
nuclei align along a strong external field B0. b) A transmit pulse BE,
perpendicular to the main field excites the spins. c) The spins continue
to precess around B0 gradually returning to the ground state. The
precession creates a magnetic field perpendicular to B0 that can be
measured. In the figure, the red arrow indicates the spin precession
and the dark gray arrow the spin axis.
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Magnetic resonance imaging is a well established technology,
perhaps most familiar in a medical setting. While it’s techni-
cal details are somewhat unnecessary for appreciation of the
electro-optomechanical device, we nevertheless provide a brief
recapitulation of the main principle mostly based on treatment
in [69]. The core idea of MRI is to measure a radio frequency
signal originating from nuclear magnetic resonance (NRM).

The principle is simple. In a strong external magnetic fields
the nuclear spins in the sample align along the field. In a mag-
netic field, the spins will also precess around the field vector at
frequency dependant on the particular nucleus and the strength
of the external magnetic field, ωn = γB0, where γ is the gyro-
magnetic ratio2 and B0 the magnitude of the magnetic field. The
scanner our device is designed for detects the nuclear spin of C13

in a 3T field such that the precession frequency is approximately
32 MHz.

An excitation pulse is used to flip the spins perpendicular to
the external field B0. Once the pulse passes, the spins will relax
back to the initial, aligned arrangement. The precession of the
spins creates an oscillating magnetic field perpendicular to B⃗0.
As the spins relax the magnitude of this field also drops.

The imaging algorithms are much more complex and don’t
really add much to the discussion. However, we will make a
brief comment about gradient fields. Besides the excitation field
and the constant external field, MRI scanners employ spatially
changing fields. The purpose of the field is to make sure spins
in a specific area of the sample are excited thus distinguishing
different layers of the sample. Since the target frequency will
change slightly from the one set by the constant field, the ampli-
fier on the pick-up circuit needs to have sufficient bandwidth.

3 .3 electro-optomechanical transduction for mri

Within the field of optomechanics, both electro- and optomechan-
ical experiments are well represented. Given the multitude of
technical platforms, one can easily imagine that the mechanical
resonator in an electromechanical system could also be part of
an optical device. One example would be a membrane resonator
acting at the same time as one side of a parallel plate capaci-
tor and the movable end mirror of an optical cavity. In such a
system we the radio frequency signal drives the motion of the
mechanical resonator and resonator’s motion can be read out
optically.

2 This is the only time γ is used to refer to the gyromagnetic ratio. Most
previous and subsequent uses of γ will refer to decay rates, unless very, very
clearly noted.
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3 .3 .1 Electromechanical system and cavity readout

In the very beginning, we briefly mentioned that electrical res-
onators behave identically to optical ones with resonance fre-
quency determined by ωLC = 1/

√
LC, where subscript LC refers

to the the fact that, in a lumped element model, the electrical
resonator consists of an inductor and a capacitor.

Before delving into the electromechanical theory, let us sketch
the device. First, an aluminium membrane forms the end mir-
ror of an optical cavity. However, the cavity has a very large
linewidth owing to the only approximately 90% reflectivity
of the membrane. Thus, we omit any dynamical effects aris-
ing from the optics. Instead, dynamics are fully determined
by the electromechanical interaction and we only consider the
motion readout via the cavity. In the following, any variables
are understood to include any steady state effects arising from
the optomechanical interaction. To remind ourselves of this, we
employ subscript om in the variables. For example, ωom is to
be understood to include the optical frequency shift ωom =
ωm +ωdba. The membrane also forms one side of a parallel
plate capacitor. The device is then connected to an LC circuit
together with a detection coil. We have further included a tun-
able capacitor in the circuit to match the electrical resonance
frequency to a particular device realization. Without further
ado, the equations of motion for charge q and position x can be
written as

mẍ = −mω2
omx−mΓomẋ+ Fm −

q2

m

∂C(x)

∂x
, (3.1)

Lq̈ = −
q

C(x)
− LΓLCq̇+ Fe, (3.2)

where we have already eliminated the conjugate variables mo-
mentum p and flux φ via

p = mẋ, (3.3)
φ = Lq̇. (3.4)

Up to the last term, the equation for position looks identical
to one found in the earlier section3 except the optical force is
replaced by a term proportional to the square of charge and
a derivative of the capacitance C(x), where we have explicitly
noted the position dependence. The second equation for charge
q should also look familiar. It contains similar terms as the
equation for the optical field, but adapted for an electrical res-
onator. The electromotive force Fe contains all forces acting on

3 up to ultimately meaningless sign convention.
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3 .3 electro-optomechanical transduction for mri

the electrical resonator, namely the drive VD, the signal VS and
the electrical Johnson noise VJ. In the equations, we have also
introduced the inductance L and the electrical decay rate ΓLC of
the circuit.

Since the solution of the equations follows similar steps as
outlined for optomechanical system in the theory chapter, we
will omit most of the intermediate steps and simply state the
most relevant conclusions.

To enable the electromechanical coupling, the resonant circuit
needs a driving voltage, frequently called bias. In principle, both
DC and AC biases work and enable transduction of signals.
However, when the system is biased with a DC voltage, it is
sensitive only to signals at the mechanical frequency, since this
signal needs to to modulate the mechanical motion. Already at
very moderate quality factor, the mechanical response away from
the resonance decays very fast. An AC bias can work around
this issue. The idea is, that instead of the signal itself, the beat
note between the bias frequency and the signal frequency will
drive the membrane. A single device can then be tuned to pick
up signals over a large frequency range and the mechanical
resonator can be designed more freely, making this kind of
scheme much more convenient and versatile.

Here, we only consider the AC bias. The theoretical treatment
is broadly similar for both cases with some subtle differences.
Simply taking the limit ωD → 0 recovers the DC bias result
without much trouble.

3 .3 .2 Necessity for AC bias

To enable the beat note modulation of the mechanical resonator,
we drive the circuit with a voltage oscillating at frequency chosen
such that the sum of the drive ωD and the mechanical frequency
ωom equals the signal frequency4 ωLC = ωD +ωom.

Let us then write the bias voltage as

VAC = V0 cos (ωDt+ θ) , (3.5)

where V0 is the drive amplitude and θ a phase term. The drive
frequency is directly translated to the charge such that

q = q0 cos (ωDt) + δq, (3.6)

where δq is a small charge fluctuation around the steady state
value q0. Similarly, the position is linearized x = x0 + δx.

4 We will use the terms signal frequency and LC-resonator frequency somewhat
interchangeably. They are distinct, but to detect the signal, they must coincide
ωLC = ωsignal
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Figure 3.2: A conceptual sketch of transduction between RF and optical
frequencies. The beat note between the AC bias at ωAC and the signal
at ωLC drives the membrane at ωm. The mechanical motion then
creates sidebands of frequency ωm on the probe laser at ωl that can
be picked up with a standard photodetector. Without the beat note
between the AC bias and the signal, the mechanical frequency would
have to coincide with the signal frequency to allow for transduction.

The end result is two equations

χe(Ω)δq = Fe + Vsignal

+GAC
em [δx(Ω+ωD) + δx(Ω−ωD)] (3.7)

χom(Ω)δx = Fm + GAC
em [δq(Ω+ωD) + δq(Ω−ωD)] , (3.8)

where we have included the electrical and mechanical suscepti-
bilities χe and χom. The equations look again familiar, but now in-
clude troubling terms at frequencies Ω±ωD.Tto get rid of them,
we note the form of the susceptibilities and consider the motion
at ωom and charge at ωLC. Mechanical response away from ωom

is very modest. Setting Ω = ωLC in the first equation the po-
sition terms become δx(ωLC +ωLC −ωom) = δx(2ΩLC −ωom)
and δx(ωLC−ωLC+ωom) = δx(ωom). The first term is far away
from resonance and thus can be safely neglected. Similarly,
for the second equation evaluated at Ω = ωom, only the term
δq(ωom +ωLC −ωom) = δq(ωLC) survives.

In the equations, we have also included the electromechanical
coupling

GAC
em =

q̄0

2C
∂C(x)

∂δx
, (3.9)

where q̄0 denotes the average charge. It is also useful to define
the electromechanical cooperativity that helps us gauge the strength
of the eletromechanical coupling

Ce =
G2

em

mLωmωLCΓmΓLC
. (3.10)

56



3 .4 integrated device and measurement scheme

The broadened mechanical resonance can then be written as

Γm,e = Γm(1 +Ce), (3.11)

and allow us to easily determine the cooperativity by measuring
the mechanical linewidth.

3 .3 .3 Optimal cooperativity

With the cooperativity, the total measured optical output spec-
trum in voltage units is then

SoutVV (ω) = Ss(ωLC)

+ 4kbLΓLC

(
T0 +

TmωLC

Cωm
+

To(1 +C)2ωLC

Cωm

)
, (3.12)

where T0 is the bath or the environment temperature, and we
have defined the optical noise as

To =
mΓomω2

m

kBn̄

(
R0

R ′
0

)2

, (3.13)

with n̄ being the photon number, R0 the reflectivity of the cavity
and R ′

0 the cavity slope, i.e. the derivative of the reflectivity.
In the total noise equation, the first term corresponds to the

signal we wish to detect and the second term contains all of
the noise terms in the system. Strikingly, there is an optimum
operating point, or an optimal cooperativity that minimizes the
added noise or, equivalently, maximizes the signal to noise in
transduction

Copt =

√
1 +

Tm

To
=

√
1 +

Sxx(ωm)

S
opt
xx

. (3.14)

Here, S̄xx(ωm) is the peak of the thermally driven mechanical
response and S̄

opt
xx corresponds to the optical shot noise floor as

an equivalent displacement spectrum. The optimal cooperativity
for a given device can then be easily estimated by simply mea-
suring a thermal spectrum and determining the ratio of the peak
mechanical response to the background noise. For most of the
integrated devices, we found optimal values between 30 and 40.

3 .4 integrated device and measurement scheme

As one easily imagines, creating a single chip integrating optical
cavity, membrane and capacitors is a highly involved nanofab-
rication project. While the author had no involvement in the
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design process, we have included a simplified fabrication flow.
For a more detailed exploration of the development and fab-
rication process, we recommend [28] or [54]. The simplified
fabrication flow is also shown in figure 3.3.

Figure 3.3: A simplified fabrication flow. The steps are elaborated on
in the main text.

The entire device was fabricated in a 10-100 class cleanroom5

using only standard techniques. The starting point of the process
is a fused silica wafer with a protective alumina (ALD Al2O3)
layer deposited on top. Then, the bottom electrodes, that will
form one part of the mechanically compliant capacitor are pat-
terned on the wafer with UV lithography and lift-off (step 1).
Then, a sacrificial PECVD nitride layer is deposited on top. The
layer is approximately 500 nm thick and will set the length of
the optical cavity.

The membrane is then deposited on the sacrificial layer in
two stages (step 2). First, 50 nm of alumina is deposited followed
by 100 nm of Aluminium patterned with lift-off. We then per-
forate the membrane stack with a dry-etch to define a circular
membrane. At this stage, the device is annealed to make sure
the membrane has ideal tensile stress (step 3). As the final stage,
the sacrificial layer is etched away releasing the membrane and
forming the optical cavity. The target length of the optical cavity
is approximately one wavelength at 1064 nm (step 4).

The wafer is then diced to 5 by 5 millimetre chips and indi-
vidual devices are wire bonded into standard IC sockets for ease
of use. We added a switch to the socket to short the membrane
capacitor when the device was not in use. The device was very
sensitive to static charge but shorting the capacitor was very
effective in protecting the device. For optical access, we further

5 DTU Danchip
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3 .4 integrated device and measurement scheme

attach a GRIN lens on the device chip to focus the input beam
into the optical cavity. The final assembly steps and the compete
device is shown in figure 3.4.

Figure 3.4: a) The diced chip is wire bonded on a standard IC socket
for easy connectivity. This photo shows the backside of the cavity and
the switch used to short the device when not in use. b) Another view of
the device, this time with the fiber already attached. The membrane is
protected by a custom made cap on the socket glued in place. The side
of the socket is approximately 1 cm. c) A schematic of the coupling
mechanism. The light is delivered via a fiber terminated in a ferrule
(1.). The ferrule is attached in a guiding tube (2.) with a GRIN lens
(3.) on the other end. The GRIN lens is positioned on the cavity with a
Silicon guide on the chip. The coupling to the cavity is optimized by
tuning the distance between the GRIN lens and the fiber ferrule. Once
optimum point is found, the fiber is glued in place.

The measurement scheme is purposefully kept simple and
affordable. The probe laser is comparatively cheap diode laser
at 1064 nm. The wavelength choice is to some extent arbitrary,
but for the first proof of principle devices, we chose a wave-
length where large amount of equipment was already available.
For example, a telecom wavelength near 1550 nm or 1310 nm
would be a prudent choice since there is a good amount amount
of affordable components available and the reflectivity of the
aluminium membrane would also be higher.

The optical setup consists of an isolator to protect the diode
from backscattering and a single circulator. The setup is com-
pletely fiber based for ease of handling and adaptability to dif-
ferent environments. For example, the ultimate environment of
a clinical MRI scanner does not afford for a complicated optical
setup.

The probe light enters the optical cavity via the input fiber
aligned to the GRIN lens on the device. The reflected light
is collected with the same fiber and the circulator diverts the
reflection to a single diode photodetector, where we measure
the amplitude fluctuations.
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3 .5 characterization

With the devices ready, there are number of characterization
checks to be done to make sure that the parameters are suit-
able and that the behaviour is as expected. Before measuring
the transduction performance, we need to measure mechanical
properties of the membrane resonator, any dynamical optical
effects at the operating power and the effect of the bias voltage.

3 .5 .1 Mechanical properties

The initial mechanical characterization is done with a commer-
cial vibrometer. The measurement is good enough to see if the
mechanical frequency lands near the target frequency and if the
quality factor is sufficient. We target ωm/2π between 1 and 1.3
megahertz and quality factor of approximately 104.

More accurate measurements are performed in a custom
built Michelson interferometer where the probe laser measures
the thermal motion of the membrane. The device is placed
in a vacuum chamber at pressure below 10−5 millibars. The
design of the integrated chip enables bypassing the cavity and
probing the thermally driven motion of the membrane without
dynamical optical effects. The linewidth is found by fitting a
Lorentzian function to the measured thermal motion spectrum.
The bandwidth of the spectrum analyzer module of the lock
in amplifier easily resolves the linewidth6 and for most devices
the vibrometer measurements match the values found in the
interferometer.

According to the electromechanical theory, the resonance
frequency of the membrane is proportional to the applied bias
voltage, ωm ∝ V2

DC such that both positive and negative voltage
shift the frequency down. However, we observe that the highest
frequency is offset from zero bias and rather happens at a mod-
erate positive bias. We attribute this shift to trapped charges in
the device. The effect is shown in figure 3.5.

We have also observed that the mechanical quality factor
and frequency are stable over a period of at least a year. This is
particularly important if the device should become a component
in a clinical MRI scanner.

6 This is a very important consideration. To accurately measure the linewidth
from the spectrum, the bandwidth or the binning of the spectrum analyzer
should be significantly smaller than the measured linewidth.
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Figure 3.5: A typical mechanical response driven only by the ther-
mal noise (red line) and a Lorentzian fit (gray line). The resonance
frequency is proportional to the square of the applied DC bias voltage.
However, the maximum is not at 0 volts as expected, but shifted to
approximately -1.2 V. This is due to trapped charges in the electrodes
or the membrane presumably from the fabrication process.

3 .5 .2 Optical effects

The optical cavity is very low finesse. The reflectivities of the
membrane and the end mirrors are approximately 80% at the
chosen wavelength. This means, that any dynamical backaction
effects should be negligible. However, we observe a linear broad-
ening of the mechanical linewidth with increased probe power7

The effect is consistent with photothermal backaction. We ex-
trapolate the intrinsic mechanical linewidth Γm/2π = 124 Hz
without optical or electrical broadening and the optically broad-
ened linewidth at the typical operating power of approximately
700 µW input to the incoupling fiber of Γom/2π = 234 Hz.

7 On some devices, the probe decreases the linewidth. The direction of the effect
depends on the exact cavity length.
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Figure 3.6: The bias causes a static displacement of the membrane that
in turn changes the length of the cavity. The voltage bias is converted
to displacement of the membrane and the measured reflectivity R of
the cavity is fitted against the compared against the predicted cavity
reflection (solid lines). The dashed lines indicate values expected from
the fabrication parameters. The measurement agrees with the model,
but indicates that there is an approximately 10 nm shift compared to
the planned cavity.

The bias voltage also causes a static membrane displacement
and thus also changes the cavity length. This can be seen as a
change in the cavity reflectivity R. Seeing the cavity response
also allows us to determine how the probe laser is detuned from
the cavity.

3 .5 .3 LC circuit

From an electrical point of view, the device is a simple capacitor
and as such must be included in an LC resonant circuit to enable
the electromechanical interaction. However, the presence of the
AC bias complicates the circuit design. To properly detect a
signal, the resonant frequency of the LC circuit must coincide
with the signal frequency. However, an AC bias near the LC
resonance would load the circuit degrading its quality factor. To
preserve the circuit Q, the design mechanical frequency is above
1 MHz such that the drive frequency is sufficiently different
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Figure 3.7: The photothermal backaction damps the mechanical os-
cillator. The broadened linewidth can also be presented as the effec-
tive temperature of the mechanical motion. Here, we infer intrinsic
linewidth of approximately 124 Hz and the photohermal, backaction
cools the resonators effective temperature to approximately 150 K.

from the circuit resonance. We have further included a bandpass
filter on the AC drive port to reduce any noise in the drive away
from the carrier. In the circuit, there is also a tunable capacitor
to match the resonant frequency to the signal.

We construct a full scattering parameter model of the circuit
with a Markov Chain Monte Carlo simulation. The agreement
between model and measured response is very good and allows
us to model the currents in the circuit to a good degree of
accuracy.

3 .5 .4 AC transduction setup

Given that the device is planned to detect faint magnetic fields,
it is not surprising that it is extremely sensitive to environmental
noise. Thus, to measure the transduction noise, the device is
shielded by a large aluminium box. The frequency of the LC
circuit is high enough, that a thin layer of metal is enough to
shield the device and the enclosure is not very sensitive to small
gaps in the shielding.

The circuit with the transducer chip is placed in a glass
domed vacuum chamber. The glass dome is necessary in order
for the signal not to dissipate in the metal structure. The shield-
ing is also chosen such, that there is a good amount of space,
approximately 20 cm, around the coils. The probe light is deliv-
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Figure 3.8: a) The circuit diagram of the detection circuit. The AC bias
is heavily filtered. There is tunable capacitor Cp in parallel with the
membrane Cm to match the frequency of the LC circuit to the detected
signal. b) The fitted values for the circuit components. c) There is an
excellent agreement between the measured scattering parameters (red
poitns) and the fitted model (gray line). Adapted from [54]

ered via a custom fiber feedthrough based on a Teflon ferrule[70].
The AC bias is delivered through a commercial feedtrough. The
chamber is kept under pressure of much less than 10−3 mbar.
The pressure reading is somewhat uncertain, since the vacuum
gauge is approximately 1 meter away from the device, connected
via KF40 vacuum hose. The gauge reads a much lower pressure,
but based on the measured mechanical spectrum and experience
with the device, we infer an upper bound for the pressure near
the transducer.

To determine the transduction performance, a custom built
excitation coil is placed outside of the glass dome, near the
detection coil to provide a test signal.
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Noise drive

10-5 mbar

Al shieldAC bias
Figure 3.9: A simplified schematic of the noise measurement. The
transducer chip together with the LC circuit is inside a vacuum cham-
ber with a glass dome such that the noise drive can be applied via an
external coil. The entire vacuum chamber is inside an aluminium box
to shield the device from environmental noise.

3 .5 .5 Transduction noise

The most crucial question for the transduction performance is of
course the added noise, or the noise temperature of the device.
However, in a transduction measurement, we only have access to
the driven mechanical spectrum that contains both the intrinsic
noise of the device and the noise in the driving field. To separate
the noise sources, we perform a Y-factor like measurement. In the
typical Y-factor measurement, an amplifier is fed Johnson noise
originating from a resistor at different temperatures. Since the
amplifier noise is constant, the source noise can be extrapolated
away and the amplifier noise temperature extracted[71].

In a similar fashion, we inject varying levels of voltage noise
to the circuit. The driven response of the mechanical response is
then proportional to this noise and contains the constant, device
term. Very loosely, TN = TD + PinTJ, where TD is the intrinsic
transducer noise and TJ the Johnson noise proportional to the
input power Pin. Once the Johnson noise is extrapolated away,
the remaining transducer noise is easily separated into optical
noise and mechanical noise due to different spectral shapes - flat
and Lorentzian respectively.

The measurement procedure is simple. First, we find the AC
bias such that the cooperativity is at or close to the optimal
value determined in previous stages of characterisation. Then,
we apply white noise with a waveform generator to the excitation
coil and measure the mechanical spectrum.

In this kind of measurement, it is important to be able to
convert the injected noise to Johnson noise in the circuit. To
this end, we use the circuit model to calculate the full circuit
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impedance in parallel with the transducer and the equivalent
Johnson noise in the circuit. Similarly, we find the current in the
detection coil due to the noise drive and convert this to units
of room temperature Johnson noise found in the first step. The
results are shown in figures 3.10 and 3.11.

The displacement spectrum grows linearly with increasing
Johnson noise temperature and it is a straightforward exercise to
find the intrinsic noise of the device. Based on the measurement,
we find TD = 210 ± 16 K. The noise temperature can be further
divided into optical and mechanical noises and we find Tm =
112 K.
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Figure 3.10: The device noise is extrapolated in a Y-factor like mea-
surement. White noise drives the membrane motion. The blue, red
and green spectra correspond to different levels of noise drive. The
shaded gray area is the extrapolated device noise.

3 .5 .6 Device summary

To summarize, the intrinsic noise temperature of the transducer
was found to be approximately 210 K consisting of mechani-
cal noise 120 ± 6 K and optical noise 90 ± 15 K. Based on the
measured cooperativity, we would expect mechanical noise tem-
perature of 112± 3 K, close to the extrapolated value. In practice,
we found the system most convenient to operate with cooper-
ativity C = 33.0, determined from the broadened linewidth of
Γem = 8.260 ± 130 kHz, away from the optimal cooperativity as
is evident from the difference beween optical and mechanical
noise.
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Figure 3.11: The extrapolated noise temperature of the integrated
transducer is approximately 210 K. The data points correspond to
different levels of injected noise in the Y-factor inspired measurement.
The orange line is a guide for the eye to locate the zero level where
the intersect with the fitted line determines the noise temperature.

Based on the circuit model, this can be equivalently stated
as voltage noise of 99 pV/

√
Hz or magnetic field sensitivity

8 fT/
√

Hz. The noise temperature can also be expressed as a
noise figure NF = 2.33 ± 14 dB. The practical signal-to-noise
bandwidth is wider than the broadened mechanical response
and it is found to be BW = 12.3 ± 7 kHz.

However, the state of the art MRI amplifiers boast noise
temperatures of approximately 55K and thus, the first genera-
tion device falls short of the current best electrical amplifiers.
Nevertheless, the devices compares favourably to other optome-
chanical transduction schemes in a similar regime. For example,
the noise is lower and the bandwidth larger than in [66] or [67].
While a previous experiment in Copenhagen did achieve signifi-
cantly lower noise it was based on a DC bias and the device and
required measurement setup was not very portable [65].

3 .6 magnetic resonance imaging

As mentioned repeatedly, the ultimate goal of the project is to
replace the electrical amplification circuit in a commercial MRI
scanner. We had access to a clinical 3T scanner8 and targeted the
13C resonance at approximately 32 MHz.

8 GE MR750
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As a proof of principle, we image an MRI phantom in a
clinical setting. Imaging phantoms are a typical calibration tech-
nique for various imaging technologies. They should have a
good contrast and feature distinct spectral shape. In our case,
the phantom is a simple plastic9 bottle of ehtylene glycole that
has an easily recognisable triplet spectrum.

While the device was similar10, the experimental setup was
slightly different. The most significant changes were limited to
the LC-circuit.

3 .6 .1 Circuit modifications

The very first tests at the scanner proved disappointing. During
the MRI sequence, the devices simply broke. On closer inspec-
tion, the membrane collapsed on the capacitor. The cause was
ultimately found to be the excitation pulse used to flip the spins.
The so called transmit pulse is strong, at the resonance frequency
of the LC circuit, and thus causes a large voltage in the circuit
and this collapses the membrane.

We take two protective steps in the circuit to prevent the col-
lapse. First, during the excitation pulse, the resonance frequency
of the LC circuit is tuned away from the pulse frequency and
then switched back once the pulse has passed to pick up the de-
sired NMR signal. It goes without saying, that the shift must be
reversed, and the resonance frequency returned to the original
value quickly, before the spins have relaxed to their initial state
and the NMR signal has passed.

To facilitate the shift, we split the detection coil and added
a so-called trap circuit in the coil [72]. When a trigger voltage
activates the circuit, the frequency shifts and the circuit is insensi-
tive to the magnetic field at the excitation frequency. The trigger
signal is derived from the MRI machine itself and it follows the
pulse.

Second, we add cross diodes in the main circuit. The purpose
of the diodes is to prevent too large voltage across the mem-
brane capacitor. The modifications are highlighted in figure 3.12
showing a photo of the circuit and the circuit diagram.

9 Due to the strong magnetic fields, all material near the scanner should be
nonconductive.

10 The particular transducer chip was different than the one explored in the
previous section, but with broadly similar performance.
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Figure 3.12: The modified detection circuit. Compared to the previous
circuit, we have added a detuning circuit and crossed diodes to protect
the transducer during the imaging pulse sequence. Adapted from [55]

3 .6 .2 Imaging setup

Operating the transducer in the scanner creates its own set of
problems in addition to the membrane collapse. As mentioned,
the strong magnetic fields mean, that all components near the
scanner have to be immune to them. Most prominently, we
replace the metal vacuum chamber with a fiber glass one11. The
vacuum pump is evacuated with a molecular sieve instead of
the usual turbo pump.

Further, the scanner is inside a shielded room and the amount
of equipment that can be placed there is very limited. Most of
the equipment, such as the laser, detector and bias generator had
to be in the adjacent operating room. In principle, long fibers

11 The chamber was provided by our collaborators at DTU Hypermag group.
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should prove no trouble and with proper shielding, electrical
connections are likewise possible.

However, the circulator is based on a local magnetic field and
thus, cannot be placed in the room with the scanner. Further-
more, we found that with the circulator in the adjacent rooms
with 10 m fiber between it and the transducer, additional noise
appeared in the optical readout. We suspect, that the long fiber
allowed interference between the propagating fields and part
of the field reflects back to the laser source. The source is a
comparatively cheap diode laser without built in protection and
it is hence susceptible to the backscattered light causing mode
hops in the output.

Figure 3.13: The modified optical setup to account for the shield MRI
scanner room. The circulator is replaced with 90-10 beamsplitter. The
laser is connected to the 10% input. 10% of the output goes to the
transducer and 90% is terminated in a beam dump. Then 90% of the
reflection is routed to a detector.

We replaced the circulator with a 90-10 fiber coupler. The
coupler is a passive component based on two fiber cores in
close proximity and thus could be placed next to the scanner.
The schematic is shown in figure 3.13. With the splitter, the
optical noise disappeared and the performance was similar to
characterization setups in our local laboratory.

3 .6 .3 Imaging with optical amplification

Setting up the electrical connections required a few more steps.
The connections are shown in detail in figure 3.14 and elaborated
in the caption. For now it suffices to say that we chose, for sim-
plicity, to use the analysis and imaging software of the scanner.
In practice, this means that the output of the photodetector is
at the mechanical frequency but the machinery of the scanner
expects an input at the NMR frequency. Thus, the signal needs
to be upconverted from ωm to ωLC ≈ ωNMR. This conversion
is most conveniently done by deriving the demodulation signal
from the same signal generator that provides the AC-bias.
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Figure 3.14: The complete connections of the imaging setup. The
trigger signal is derived from the scanner itself and the output of the
photodetector is upconverted to the NMR frequency and directed to
the MRI scanner’s receiver. Since the trigger signal and the MRI signal
are at very distinct frequencies, we use the same cable to route both
signals and a bias-tee to separate them. Adapted from [55]

Phantom spectrum

Instead of reconstructing an image, it is instructive to look at the
spectrum of the signal. As hinted before, the chosen phantom,
ethylene glycol has a very distinct triplet spectrum. Compared to
the conventional detection circuit, the amplifier recovers the the
same spectral shape with comparable signal to noise as shown
in figure 3.15.

Image reconstruction

While the spectrum is already proof enough that the transducer
picks up the correct signal, the most salient feature of the MRI
scanner is imaging12. To that end, we run the imaging routine
and construct the image using the scanner’s reconstruction algo-
rithm. The end result is shown in figure 3.16. The transducer can
indeed be used in the scanner to record an image verified against
the image acquired with the conventional circuit. The images
are not directly comparable due to a difference in receiver coils
between them.

12 There is a hint in the name of the technology.
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Figure 3.15: The transducer circuit recovers the same spectrum with
comparable signal to noise as the standard electrical detection circuit.
Adapter from [55].

3 .7 future development

As it is, the integrated transducer is a very useful device. While
the current noise performance is still worse than state of the
art electric amplifiers, straightforward improvements such as
increasing the reflectivity of the cavity mirrors could help bridge
the gap. On the other hand, the device is compact and lightweight
and compatible with commercial MRI scanners. Thus, even with
the current performance, it could offer benefit in a strong mag-
netic field or in a situations where a larger number of coils is
required. As an example, we can imagine using the transducer
chip in a 96 coil receiver ”helmet” to significantly reduce the
weight and size of the array[73].
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Figure 3.16: The acquired image with commercial electronic amplifier
(left) and the transducer (right). The orientation between the measure-
ments is slightly different and the standard detection used a different
coil with improved depth penetration. However, the curvature of the
bottle is clearly seen.

The most significant drawback of the current device is that it
still requires an external vacuum chamber. However, the vacuum
requirement is not particularly stringent. The mechanical quality
factor is relatively low and hence a relatively low vacuum is not
an issue and individual vacuum packaging is possible. Another
venue of development would be to remove the need for the AC
bias cable. One possibility would be wireless delivery of the
bias such that the only physical connection needed would be the
optical fiber[74].
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4R O O M T E M P E R AT U R E Q UA N T U M
E X P E R I M E N T S

Most optomechanical experiments in the quantum regime oper-
ate at the very least at moderate cryogenic temperatures from
liquid Helium flow cryostats all the way down to millikelvin
temperatures routinely enabled by dilution refrigerators. The
reason for this becomes very apparent as we take a look at quan-
tum cooperativity. As we may recall from chapter 2, the quantum
cooperativity is defined as

Cq =
4g2

κΓm
(
nth +

1
2

) , (4.1)

where we have written the mechanical decoherence rate explic-
itly. Again, as we may recall, to a very good approximation, the
thermal occupation of the bath at the mechanical frequency is

nth =
kBT
 hωm

. (4.2)

For a megahertz resonator, we would expect more than six mil-
lion thermal phonons at the room temperature. The consequently
larger thermal coherence rate places very stringent requirements
on the other parameters g, κ and Γm to reach the quantum regime
of Cq > 1.

A typical demonstration of ’quantum operation’ and a start-
ing point for more advanced optomechanical protocols is the
preparation of the motional ground state. In a cryogenic envi-
ronment, such experiment can be described as almost routine
and the motional ground state has been prepared in numerous
systems [12, 13, 11, 14, 15].

Despite already quite remarkable progress in exploring and
developing ever finer optomechanical systems, the goal remains
challenging at the room temperature. Only four years ago1, the
best effort was generating quantum correlations in the output
field of a room temperature optomechanical system [75]. Even to-
day, to the author’s best knowledge, only levitated nanoparticles
have been successfully cooled to the ground state from the room
temperature[76, 77]. For nanomechanical resonators, the closest
approach is 26 phonons for a 950 kHz nanobeam coupled to an
optical crystal cavity [78]. More recently, the LIGO collaboration
has shown cooling of a 10 kg mirror’s center of mass motion
down to just above 10 phonons [79].

1 As of 2021
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Our approach is based on leveraging the exceptionally low
mechanical decay rate of soft-clamped silicon nitride membranes
and the local expertise in their fabrication. In a relatively recent
experiment, such membrane’s mode was feedback cooled down
to the ground state [14]. The particular assembly could be op-
erated at Cq > 100 at bath temperature of approximately 10K.
In our experience, the cryogenic temperature increases the me-
chanical quality factor by roughly a factor of three. Thus, without
any modifications, the particular assembly should already enable
Cq > 1 and thus ground state cooling alread at the room tem-
perature of 300K! But, as the reader perhaps already senses, the
situation is more complicated.

4 .1 mirror noise and mitigation

The typical optomecahnical cavity in our laboratory, is couple
millimeters long and formed by two cylindrical mirrors, a flat
and curved one, both 7.75 mm in diameter and 4 mm long.
Like all objects, the mirror substrate supports mechanical mode
and this motion causes fluctuations in the cavity length. These
cavity length fluctuations translate into phase with exactly the
same mechanism as in the canonical optomechanical system.
The excess phase noise, most often called mirror noise due to its
origin, if at too high level, will prevent cooling the mechanical
resonator to its quantum ground state. The motion of the mirrors
causes incoherent frequency fluctuations that prevent coherent
control of the mechanical motion.

The lowest occupation for a given level of phase noise can be
calculated as [29]

n̄min =

√
nthΓm

g2
0

Sωω(ωm), (4.3)

where Sωω(ωm) is the phase level at the mechanical frequency.
Settin nmin < 1, the expression can be recast as

Sωω(ωm) < g2
0

 hQ

kBT
=

g2
0

nthΓm
(4.4)

With this expression, the ’knobs’ that can be turned are clear.
Lowering the temperature reduces the number of thermal phonons
and at the same time, damps the motion of the cavity end mir-
rors reducing the amount of mirror noise. However, for obvious
reasons, for a room temperature experiment, cooling is not an
option.

That leaves three options, increase the coupling, increase the
mechanical quality factor or reduce the mirror noise. To some
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extend, we employ all three strategies. Let us start with ways to
engineer the mirror noise.

4 .1 .1 Fiber mirrors

To the best of our understanding, the mirror noise results from
vibrational modes of the substrate itself and as such, frequen-
cies of the modes are dependant on the bulk properties of the
mirrors. Furthermore, excess phase noise is only a problem near
the mechanical frequency and can in principle be just avoided. Un-
fortunately, our usual cavity mirrors do not have a quiet enough
region around feasible membrane frequencies2.

Instead of membrane frequency, our aim is then to engineer
the vibrational spectrum of the mirror modes. To that end, we
have chosen to investigate fiber based mirrors[80, 81]. A typical
optical fiber has diameter of only 125 µm, a reduction by more
than a factor of 60 compared to our typical mirror. The smaller
size of the fibers should move the mirror modes to much higher
frequencies leaving the region around the membrane mode of
interest relatively quiet.

The first use cases for a fiber cavity3 was to demonstrate
strong-coupling cavity QED with Bose-Einstein condensates[82].
For most experiments, the main attractive features of fiber cav-
ities were compactness, direct cavity-fiber coupling and tiny
beam waist compared to cavities with macroscopic mirrors.

It should also be noted, that fiber cavities are not without
precedent in optomechanics, though typically not for mirror
noise reasons. They have been used in a membrane in the middle
setup [83], carbon nanotubes [84], single clamped rods [85] even
for optomechanics with liquid helium [86].

To fabricate our fibers, we collaborated with professor Eva
Weig’s group in University of Konstanz4 with whom we pre-
pared the fibers for the subsequent fabrication steps. The fab-
rication or ’shooting’ - the descriptiveness of the term will be
apparent very soon - was done at the Karlsruhe Institute of
Technology, where professor David Hunger provided access to
a shooting setup and offered fabrication expertise.

2 In principle, there is great freedom to choose where the membrane frequency
lies. In practice, values between 1 to 1.5 megahertz have been found to yield
highest quality factors. Venturing beyond this regime has proven counterpro-
ductive even when taking into account the other benefits of higher frequency.

3 We’ll simply write fiber cavity instead of other, more cumbersome terms such
as Fiber based Fabry Perot cavity or something equally contrived.

4 At the time of writing, professor Weig has moved to the Technical University
München, whereas during the fiber mirror fabrication, her group was still at
University of Konstanz.
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Fabrication of fiber mirrors is in principle simple, but requires
dedicated equipment and special fibers. The steps are shown
in figure 4.1. Typical fibers have their glass core surrounded
by a thin polymer layer and depending on configuration, there
are usually additional protective layers. The bare fiber is very
fragile and thus at least the innermost protection is needed.
However, the typical polymer used to protect the fiber will not
withstand the temperatures the fiber would be exposed to during
the deposition of the high quality mirror coating. Instead, we
choose to use copper coated fibers5 that are otherwise identical
to usual ones.

The initial step in the fabrication is removing all protective
coatings and cleaving the fiber face. Ideally, the fiber face should
be perpendicular to the fiber core, such that the cavity axis
coincides with it. Any angle between the core and axis would
cause additional losses. It is equally important, the cleave is as
clean and that there are no imperfections that would scatter light
and once again, cause extra losses.

In the fabrication setup, we have access to a conventional
microscope view and a white light interferometer (WLI). The
WLI in particular is essential in ensuring the quality of the
cleave. As one can imagine, the quality of the fiber cleaver is of
paramount importance. Good results have been achieved with
both automatic and manual cleavers.

The next step in fabrication is the actual shooting. In order to
build a stable cavity in practice6, at least one of the mirrors needs
to be curved and for fibers mirros, curved-curved configuration
is often most convenient to work with. The curvature is created
by shooting the substrate with a strong7 CO2 laser pulse. The
pulse is short enough, that the fiber does not melt and form a
convex shape, but rather the pulse evaporates part of the fiber in
proportion to the intensity. The pulse shape is Gaussian and the
successfully fabricated fiber follows the intensity profile of the
pulse. After the shot, the result is again confirmed with the WLI.
As a final step, the radius of curvature is fitted with a homebuilt
analysis and control program.

As a final step, the fibers are sent to a specialized coating
company8 for the mirror coating. We separated the fibers to
two batches such that one batch would be more transmissive
at the chosen wavelength. To maximize the detection efficiency,
it advantageous to operate a highly one sided cavity such that

5 IVG fiber CU-1300, 125 µm diameter.
6 In theory world, flat-flat cavity is perfectly possible.
7 While it poses no risk for Alderaan, the laser is powerful enough to burn

skin and clothing, so very careful operation of the setup is recommended.
8 Laseroptick GmbH

78



4 .1 mirror noise and mitigation

Figure 4.1: The fabrication process of a single fiber mirror. The fiber
is first cleaved to create a smooth, perpendicular surface. Then a CO2
laser pulse is used to evaporate part of the material to create a concave
mirror surface. Finally, a high quality mirror coating is deposited on
top.

most intracavity light carrying information leaves through one
port.

Coupling efficciency and cavity design

Before we glossed over the fact that the cavity mode shape is
not necessarily the same as the fiber mode and the coupling
between them is not perfect. This is typically modelled as mode
matching ε that signifies the fraction of light coupling to the
desired mode. From the perspective of the detector, the rest
of the light is lost as it couples to some other modes. When
considering the entire experiment, mode matching is part of the
total detection efficiency, ηD ∝ ε.

Given the radius of curvature, the length of the optical cavity
and the parameters of the incoming light field, mode matching
can be estimated with a relatively simple formula [80]

ε = 4

[(
wf

wm
+

wm

wf

)2

+
(πnfwfwm

λR

)2
]−1

, (4.5)

where wf is the fiber mode field radius, wm the cavity mode
radius at the mirror of interest, nf the refractive index of the fiber
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and R the radius of curvature of the mirror. From the formula-
tion, we immediately see that much of the mismatch is due to
the difference in mode size. wf is given by the properties of the
particular fiber and for the cavity mode radius at the mirror, the
mode radius at mirror 1 is found to be

w
(1)
m =

√
2L
k

(
g2

g1(1 − g1g2)

) 1
4

, (4.6)

where λ is the resonant wavelength, L the length of the cavity
and where we have introduced notation gi = 1 − L/Ri. In the
experiment, we are interested in two special cases. First, the case
where both mirror curvatures are the same R1 ≈ R2 = R where

w
(R1=R2)
m =

√
2L
k

(
1

1 − g2

) 1
4

. (4.7)

Second, one of the curved mirrors is replaced with a flat one. In
that case, the cavity mode radius is given by

w
(R2=∞)
m =

√
2L
k

(
1

g− g2

) 1
4

. (4.8)
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Figure 4.2: Mode matching efficiency shown against mirror curvature
and cavity length. On left, we have a cavity consisting of two curved
mirrors and on the right, similar graph but for a cavity where one
mirror is flat and the in- and outcoupling is via the curved mirror.

Aggregate data about the final fibers is shown in figure 4.3.
Some shooting results, good and bad, are shown in figure 4.4.
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Figure 4.3: The fiber mirror curvature and asymmetry. Most fibers
had a decent, less than 0.2 asymmetry calculated from the difference
between x- and y-direction curvatures.

Figure 4.4: Some examples of shot fiber faces taken with a white
light interferometer. The green box indicates the fitting area of the
characterization algorithm. a) There are only few interference fringes
across the face meaning it is perpendicular to the imaging axis. The
indentation is also very close to the center of the fiber. b) The fiber face
is clearly angled and the indentation is towards the edge. c) This fiber
probably had some dust before the shot that caused the ’splattered’
look.

1

4 .1 .2 Fiber-fiber cavities

Our initial focus was on building fiber-fiber cavities and measur-
ing their noise performance. The initial ’test bench’ was made
without any consideration for membrane integration. We pre-
aligned two 145 µm bore ceramic ferrules9 with a spare piece
of fiber and glued them in place with either UV curable glue10

or Stycast 2850FT. The base of the assembly was a simple alu-

9 Off the shelf models from OZ-optics
10 Norland Optical Adhesives 81, custom built UV source
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minium piece with milled space for a shear piezo and a 200 µm
thick ’bumper’ to set the distance between the ferrules. One of
the fibers is glued or taped on a shear piezo to tune the cavity
length and the other one is fixed on a fiber rotator to find the
optimal angle between the fibers. While in principle, the fibers
mirrors would be symmetric around their core, there are a num-
ber of fabrication imperfections that will break the symmetry
such as the indentation being off center of significant asymmetry
in the pulse shape. Some examples are shown in figure 4.4. If
the chosen fibers were ’good’, that is, the indentation was rel-
atively symmetric and placed over the fiber core, finding and
optimizing the cavity was typically fast. In practice, we found
shorter cavities performing better than longer ones.

Figure 4.5: A simplified, not to scale, schematic of the first generation
fiber cavity. Pre-aligned ferrules set the ’xy-position’, where z is chosen
to be along the cavity axis. The left fiber was glued on a shear piezo
with Stycast to scan the cavity length and lock the cavity. The other
fiber was free to move and attached to a fiber rotator. In principle, the
fibers should be radially symmetric, but in practice, there are some
asymmetric features.

4 .1 .3 Exoskeleton mirrors

While the fiber cavity seemed to function, we had not yet devel-
oped a satisfactory way to integrate a membrane in the cavity.
As we had seen, both in theory and in practice best performing
cavities were very short, much less than 100 micrometers and
the test bench was quite stable. Membrane frame however, is
500 µm thick. In order to insert the membrane into the cavity,
the the separation between the mirrors would need to be in-
creased by nearly a millimeter and brought back to 100 µm once
the membrane Alternatively, the cavity could be assembled and
aligned with the membrane already in place. In principle, longer
fiber cavities are possible and lengths up to 1.5 mm have been
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Figure 4.6: The planned transmissivities of the fiber mirrors. The
red vertical line indicates the wavelength of the laser. At the target
wavelength, the coatings should allow an 8 dB difference between
the cavity mirror transmissivities translating into XX % overcoupled
cavity.

demonstrated [87]. However, the radii of curvature of our fiber
mirrors precludes the possibility in our experiment. Thus ulti-
mately, neither option is very desirable. Pulling back the fibers
risk instability and doing so could degrate the cavity alignment.
On the other hand building the cavity around the membraned
adds complexity to the alignment process and makes sample
exchange difficult.

Fortunately, in parallel with the fabrication of the fiber mir-
rors, Yeghishe Tsaturyan had thought about extending the phononic
engineering to mirrors. Before the advent of soft clamping, the
silicon nitride membrane was embedded in a phononic crystal
shield to reduce radiation losses to the environment. In a similar
fashion, the strategy is to bond a thin pyrex glass wafer on a sili-
con phononic crystal exoskeleton structure [88]. Based on finite
element simulations, the combined structure would feature a
bandgap and thus reduced motion near the center of the mirror.

The pyrex wafer is however only 100 µm thick and simply
handling it is not a trivial task. However, we managed to fabri-
cate six mirrors that were coated with a broadly similar coating
as the fibers, but slightly shifted in wavelength. However, on
some devices, the bonding was not uniform leaving part of the
mirror disconnected from the silicon structure. When using such
mirror with the ’bubble’ in a particularly unfortunate place, we
observed significant noise both in the cavity resonance and in
the phase of the output light.

The main advantage of the so called exoskeleton mirrors is
that they allow very simple and stable integration of membranes
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Figure 4.7: A photograph of an exoskeleton mirror. The mirror consists
of a silicon exoskeleton structure patterned with a phononic crystal
and a thin pyrex glass bonded on it. The combined structure has
a bandgap suppressing mirror noise around 1.5 MHz. Interference
rings indicate areas where the bonding was not successful. The cross
sectional schematic at bottom shows the structure. The silicon is indeed
patterned through.

in the optical cavity. Assuming that both the membrane frame
and the mirror surface are clean, when the membrane chip is
clamped on top of the exoskeleton mirror, they can be taken to
be very parallel. Such arrangement ensures that the cavity axis
is perpendicular to the membrane surface and thus there are
no scattering losses nor is the coupling reduced due to off axis
motion.

4 .1 .4 Fiber-Exoskeleton Cavity assembly

As a first try, the exoskeleton mirror was placed on a mirror
mount and the fiber was brought close to it on a three axis trans-
lation stage. The configuration gave full control of the cavity
alignment. The fiber position was monitored with an infrared
microscope and, if the fiber mirror was good, a cavity was typi-
cally found almost instantaneously. However, during the initial
setups, achieving a stable lock proved challenging. Ultimately,
we moved to a monolithic cavity design with no degrees of free-
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Figure 4.8: The driven response of the exoskeleton mirror measured
near the edge, where the phononic crystal has no effect and at the
center where noise is suppressed. We see that the bandgap opens as
predicted between 1.4 and 1.6 MHz. The sharp peak at 1.5 MHz is a
calibration tone.

dom except for a single shear piezo to tune and lock the cavity
length.

The cavity assembly consists of an aluminium base that had a
threaded through hole for lens to focus transmission and vented
screwholes to clamp the mirror on the base. The second half held
the fiber mirror that was glued on the piezo with UV curable
glue and it was clamped on the exoskeleton side with four M4
screws. To form the cavity, the exoskeleton mirror was clamped
on one half and the mount was assembled without the fiber but
with the piezo already in place. The fiber was then brought in on
a separate 5-axis stage and once good cavity was found, the fiber
was glued on the piezo with a UV curing glue and the 5-axis
stage was removed. Once in place, the cavity alignment proved
robust to gentle shaking and tapping with various light tools.
Happily enough, the halves could be taken apart and brought
back together without degradation of the cavity alignment. This,
and the fact that the ’in plane’ fiber position could be adjusted
by approximately ±100 µm, proved invaluable features when
we started assembling optomechanical cavities with membranes.
The cavity could then be take apart, the membrane exchanged
and the fiber position optimised in rapid succession. A cross
sectional sketch of the mount, already with a membrane, and a
photograph of a finished assembly are shown in figure 4.9.

Based on the planned coating curves, we expected to realize
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cavities with finesse up to 40000. However, most of the cavities
we built featured finesses between 4000 to 20000. The reduction
could in part be explained by misalignment, but a direct mea-
surement of the transmitted power placed an upper bound on
the reflectivity at a much lower value than expected. To establish
a crude upper bound on the reflectivity, we simply measured
the transmitted light through the mirrors. Based on the measure-
ment, the following transmissivities were established Texo ⩾ 250
ppm and Tf ⩾ 2140 ppm, considerably higher than the expected
values. The measured transmissivities would also indicate, that
the fiber is more transmissive by about a factor of four. In the
end, the fiber mirror being more transmissive proved advan-
tageous. Collimating and collecting the transmitted, now free
space, beam would have considerable increased the experimen-
tal complexity and fragility compared to the already integrated
fiber mirror.

Figure 4.9: On the left, a cross sectional, not to scale, schematic of the
monolithic fiber-exoskeleton cavity mount with a membrane. We have
omitted to show the top screw for clarity. All screw holes are vented
to avoid pockets of air for the eventual use in ultra high vacuum
of less than 10−7 mbar. We have also included a through-hole for
transmitted light from the cavity, but ultimately, given that the cavity
is very overcoupled in reflection, decided against using it, that is the
transmitted light is allowed to disperse. On the right, a photograph of
a complete assembly.

4 .1 .5 Cavity performance

Keeping in mind the criteria presented in earlier section, the
critical question regarding the cavity is of course the spectral
shape and the level of the mirror noise. Measuring the amount
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Figure 4.10: The mirror noise spectrum in arbitrary units. The region
between 1 and 2 MHz is reasonably clean without large peaks. The
gray line indicates the frequency of the membrane mode of interest.

of mirror noise in the cavity is in principle a straightforward
task and already an example of an optomechanical position mea-
surement. We place a laser probe on resonance with the cavity
and measure phase, on which the mirror motion is imprinted
with a balanced homodyme interferometer in Mach-Zehnder
configuration. Such spectrum is shown in figure 4.10.

However, we were unable to use the phase modulation cal-
ibration tone common in optomechanics [89] due to residual
amplitude modulation (AM) in the phase modulator. Alterna-
tive calibration methods require very precise knowledge of all
system parameters beyond the level we were able to estimate.

4 .2 theory of feedback cooling

Now that it indeed looks like the cavity performs is at a suffi-
cient level, we can start looking how to prepare the mechanical
resonator at the ground state, or look into strategies for quantum
control. A very simple way to reduce the thermal occupation is
to just cool the environment to a low temperature. For gigahertz
resonators, such as many optomechanical crystal devices, this is
a straightforward way to obtain the ground state ’for free’. The
device is cooled to 10 millikelvin where the thermal occupation
is only 0.2 phonons for 1 gigahertz resonator. This is incidentally
a way to initialize superconducting qubits in the ground state.
With a megahertz resonator at the room temperature however,
another technique is needed.
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Figure 4.11: A block schematic of feedback in an optomechanical
system. The open loop dynamics are determined by the total input
force consisting of thermal force and quantum backaction and the
mechanical response χm. When the loop is closed, feedback adds
another force FFB and the system evolves to a different equilibrium
determined by the closed loop dynamics.

Alternative to passive cooling is the so called coherent quan-
tum control. To step back for a moment, any measurement must
inevitably perturb the system. Incidentally, this kind of measure-
ment perturbation was analyzed already in the very early days of
quantum mechanics by Heisenberg in a thought experiment that
came to be known as the Heisenberg’s microscope[90]. In coher-
ent control, there is no measurement and hence no perturbation
but rather the coupling between the system and the controller is
engineered such that the system evolves to the desired quantum
state at the expense of the controller system.

In chapter 2, we looked into sideband cooling that is example
of such coherent control scheme11. The system of interest, in this
case, the mechanical resonator, is contact with a zero tempera-
ture optical bath. Under suitable conditions, that is with Cq > 1
and when the cavity resolves the mechanical sideband, the me-
chanical resonator is prepared in the ground state. However,
the linewidth of the fiber cavity is typically between 250 and
500 MHz and thus the cavity is very unresolved and sideband
cooling will not be sufficient.

Alternative paradigm to coherent control is the measurement
based quantum control, sometimes, especially in the context of
mechanical motion, also known as feedback cooling. The core

11 Alternative way to think about sideband cooling is to consider it as open loop
control where the measured output is determined by the input, in this case a
red detuned drive.
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idea is very simple and largely analogous to the principle of
noise cancelling headphones. We make a careful measurement
of the mechanical resonators position. Then, the measurement
record is used to apply a damping force via amplitude modu-
lated light. The motion of the resonator then changes and this
change again changes the damping force and the loop continues
until an equilibrium position is reached. Most remarkably, a well
chosen feedback force counters the effect of quantum backaction!

The name of the technique already gives a good hint at what
to look for as figures of merit. In order to apply feedback, the cur-
rent state of the resonator needs to be known. This necessitates
a measurement, and as we already mentioned, the measurement
disturbs the system. Then, measurement should extract as much
information as possible and disturb the system as little as possi-
ble. The ratio between information and decoherence is quantified
by the total measurement efficiency η and the total measurement
efficiency determines how low occupation the feedback control
can reach.

4 .2 .1 Feedback control of a mechanical resonator

While dynamical backation is an immediate consequence of
the optomechanical interaction, feedback control is less obvious.
Nevertheless, First proposals and experiments are already well
over two decades old [91, 92]. Since then, feedback control has
been successfully applied in cooling multiple systems ranging
from atoms, ions, nanoparticles and nanomechanical resonators
all the way to multi kilogram scale gravitational wave detector
test masses [93, 94, 95, 96, 97, 98].

In an optomechanical system, the feedback is most conve-
niently introduced by adding another force term in the mechani-
cal equation of motion

Q̈ = −ω2
mQ− ΓmQ̇+ (Fth + Frad + FFB) , (4.9)

where we have the usual equation of motion for a weakly
damped harmonic oscillator with the motion driven by the radi-
ation pressure force Frad and the thermal force Fth. Additionally,
there is a new feedback force term FFB.

Without the feedback force, the actual position Q is found to
be

Q(Ω) = χm(Ω)Ftot, (4.10)

and the measured or inferred position y(Ω) is

y(Ω) = Q(Ω) +Qimp, (4.11)
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where χm(Ω) is the familiar mechanical susceptibility12 and we
have combined the quantum backaction force and the thermal
force in a single term Ftot. The important feature to note, as we
already saw in the treatment of quantum backaction and the
standard quantum limit, is that we have no access to the actual
position but are limited to finding the measured position y(Ω)
that also a has a contribution from the measurement imprecision.

Feedback force is base on the measured position y such that
the feedback force is simply the position multiplied bye a filter
function hFB. The equation of motion becomes

Q(Ω) = χm(Ω) (Ftot + hFB y(Ω)) . (4.12)

The position Q is solved easily and we can write both it and the
measured position when the feedback loop is closed

Q(Ω) =
χm(Ω)

1 − hFB(Ω)χm(Ω)

(
Ftot + hFB(Ω)Qimp

)
, (4.13)

y(Ω) =
χm(Ω)Ftot +Qimp

1 − hFB(Ω)χm(Ω)
. (4.14)

There are a couple of features to note. First, solution looks
very similar to the one found previously without the feedback.
The position is simply force multiplied by a susceptibility, but
the susceptibility is modified by the chosen filter and if the filter
is chosen carefully, the feedback will lead to similar cooling as
we found in the case of sideband cooling.

Second, the driving force has a peculiar form, Ftot+hFB(Ω)Qimp

i.e. the resonator is driven by the bath but also by the measure-
ment imprecision. In order to cool the resonator, the filter setting
must be such that the filtered imprecision noise is insignificant
compared to the total force noise, that is Ftot ≫ hFB(Ω)Qimp. If
this is not the case, the noise heats the mechanical mode.

The symmetrized spectra are then found to be

S̄QQ(Ω) = |χFBeff(Ω)|2
(
StotFF + |hFB|

2S̄imp(Ω)
)

, (4.15)

S̄yy(Ω) = |χFBeff(Ω)|2
(
StotFF + |χm(Ω)|−2S̄imp(Ω)

)
, (4.16)

where we have introduced the feedback-effective susceptibility13

χFBeff(Ω) =
χm(Ω)

1 − hFB(Ω)χm(Ω)
. (4.17)

12 For simplicity, we have chosen to write χm but the treatment is no different
if we consider the effective susceptibility containing dynamical backaction
terms.

13 Different from the effective susceptibility modified by the dynamical backac-
tion.
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In the experiment, we only have access to S̄yy(Ω). We must
then fit equation 4.16 against the measured spectrum, and cal-
culate the actual motional spectrum S̄QQ(Ω) and the resonator
occupation based on the fitted parameters.

An illustrative example of the feedback control is the so
called cold damping where the filter is hFB(Ω) = iΓmgFBΩ/ωm

where gFB is the feedback gain proportional to the amount of
electrical amplification on the measured photocurrent. With the
filter choise, the effective susceptibility becomes

χFB(Ω) =
ωm

ω2
m −Ω2 − iΓm(1 + gFB)Ω

, (4.18)

that is, the mechanical linewidth is broadened and the occupa-
tion reduced. An important feature to note, is that the feedback
force is chosen to be purely imaginary and thus, the only effect
is that it broadens the mechanical linewidth. Any real part of
the force, for example due to unideal phase, translates into a
frequency shift of the mechanical resonator.

With the cold damping filter, the minimum occupation as a
function of the bath and imprecision can be written as

ncold
min =

nbath + g2
FBnimp

1 + gFB
, (4.19)

where nimp is the measurement imprecision level represented as
an equivalent phonon occupation. The most interesting feature
of the minimum occupation is, that it has a minimum achieved at
optical gain. Thus, in order to reach ncold

min < 1, the measurement
efficiency must be sufficiently high.

4 .2 .2 Practical feedback loop

Instead of cold damping, we choose to employ a filter based
on multiple Lorentzian bandpass filters. In principle, in the
presence of only single mechanical mode, one such filter would
be sufficient. The mechanical devices however feature multiple
out of bandgap modes and the filter can excite some of them
at high gain. The strategy in experiment is to start with the
single filter and add additional, auxiliary filters to stabilize the
troublesome modes as they are identified. Each filter follows
approximately the form

h(Ω) = gFB exp (iΩτ− iϕ)

(
ΓFB

ω2
FB −ω2 − iΓFBΩ

)
, (4.20)

where we have introduced the filter phase ϕ and the delay τ.
The filter is centred at frequency ωFB and has bandwidth ΓFB.
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The delay is determined by the time it takes to process the signal
in FPGA based controller and the total length of the cables. The
phase is then tuned such that the total phase of the filter is
π/2. The dominant delay in the feedback chain is the controller
that causes approximately 320 nanosecond delay. Based on this
number, we calculate the approximate phase and fine tune it
until increasing the feedback gain no longer causes significant
frequency shift.

4 .2 .3 Minimum occupation

As we have already hinted, under suitable experimental condi-
tions, measurement based control can prepare the mechanical
resonator in the quantum ground state. In sideband cooling, we
care little about the measurement chain. It only matters that
the measurement is able to resolve the zero point fluctuation
such that the state of the resonator can be verified. If the system
parameters are suitable, the resonator evolves to the ground state
without intervention.

In contrast, as we have already stated14 , feedback cooling
requires active measurement of the resonator’s state and we
only have access to the inferred position that contains the mea-
surement imprecision Qimp. Thus it is imperative to minimize
the imprecision requiring both strong measurement and a good
detection efficiency. It is perhaps most instructive to cast the
imprecision as an equivalent phonon occupation. To that end,
let us introduce the spectrum of a single phonon excitation at
the mechanical frequency

S̄ZP(Ωm) =
2
Γm

. (4.21)

The equivalent imprecision phonon number is then found as

nimp =
S̄imp

S̄ZP
=

Γm

16Γmeas
=

1
16ηDC

, (4.22)

where we should remind ourselves of the classical cooperativity
C = 4g2/κΓm. The total measurement15 efficiency ηm can then be
cast as

ηm =
(
16nimpntot

)−1 , (4.23)

where ntot is the total bath phonon occupation consisting of
thermal phonons and both probe and cooling beam quantum

14 Repetita iuvant, also for Latin phrases!
15 Here we stress, that the measurement efficiency is distinct from detection

efficiency although the former is in part determined by the latter.
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backation. To get a better handle on the parameters that should
be optimized, let us write the total phonon number explicitly
ntot = nth

(
1 +C

p
q +Ca

q

)
to get

ηm =

(
nth(1 +C

p
q +Ca

q)

ηDC

)−1

, (4.24)

=

(
1

ηDCq
+

1
ηD

+
Ca
q

ηDC
p
q

)−1

, (4.25)

where Ca
q is the quantum cooperativity of the auxiliary beam

providing the feedback force. For the moment, let us assume it
is weak, that is Ca

q ≈ 0. In that case, the measurement efficiency
becomes

ηm =
ηD

1 +C−1
q

. (4.26)

For optimal control of a single mechanical mode, the minimum
occupation is related to the measurement efficiency as

n
opt
min =

1
2

(√
1
ηm

− 1

)
. (4.27)

Thus, our intuition at the beginning of this chapter has proven
correct. Both high detection efficiency determined by cavity
outcoupling and losses in the detection chain and high quantum
cooperativity are necessary to prepare the mechanical resonator
in the ground state.

4 .3 the feedback experiment

Before exploring the feedback cooling results, we will cover both
the experimental setup and most important techniques.

For the most part, the optical setup is relatively conventional.
We use a single laser source16 at 1542 nm. The source is pro-
tected with an isolator and routed trough a fiber polarization
controller (FPC). The beam is first split into the feedback arm
and the homodyne detection scheme with a 70-30 splitter. The
interferometer is further split into the probe arm and the local
oscillator (LO). The LO arm has a variable optical attenuator
(VOA) to control the LO power, a fiber stretcher to control the
relative phase ϕ between LO and the probe and thus lock the
homodyne, and finally, another FPC to optimize the polarization
overlap between the probe and the LO. The probe arm has a
phase modulator to generate the Pound-Drever-Hall-error signal

16 NKT Koheras Basik E15
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Figure 4.12: The full optical setup consists of a balanced homodyne
measurement scheme and and auxiliary feedback beam derived from
a single laser source at 1542 nm. The feedback beam is detuned -80
MHz from the probe and LO. Refer to the main text for the detailed
description.

for cavity lock and a VOA to control the probe strength. The
probe is then combined with the feedback beam.

The feedback arm is routed through a fiber acousto-optic
modulator (AOM) that shifts the beam frequency down by
ωAOM = 80 MHz. The feedback control is applied via amplitude
modulation at the mechanical frequency. The purpose of the
shift is then to separate the feedback spectrally from the probe
and also provide moderate sideband cooling to stabilize the
system. We see approximately 40 dB attenuation of amplitude
modulation when the feedback is shifted. After the AOM, there
is a VOA after which 1% of the light is diverted to a power
meter to monitor the amount of power in the feedback beam.
The polarization is again controlled with a FPC to minimize the
polarization overlap between the probe and the feedback beam
in order to further avoid the contamination of the measurement
by the feedback signal.

The feedback beam is combined with the probe beam and
routed to the cavity with a circulator that also diverts the re-
flected beam to detection. 10% of the reflected beam is used to
both monitor to reflection and to generate the error signal. The
rest is combined with the LO in a variable fiber coupler and
measured in a balanced homodyne measurement.

The measurement record is filtered with a Red Pitaya using
the IQ module of an an open source software package[99]. The
filtered record is used to amplitude modulate the feedback beam
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with the AOM to provide the actual feedback force.

4 .3 .1 Optomechanical assembly in a fiber cavity

Integrating a membrane in the cavity is in principle straightfor-
ward. However, the cavity length is only approximately 50 µm
based on a microscope image and using the known fiber diame-
ter as reference. We wanted to have some distance between the
membrane and the flat mirror and thus aimed for separation be-
tween 10 and 20 µm. The spacer material thus needed to be thin,
UHV compatible and stable. Our initial idea was to use a thin
Mylar sheet, but we the assembly proved unstable in vacuum.
For unknown reason, when pressure dropped below 10−3 mbar,
the cavity alignment changed irreversibly such that restoring
alignment required venting the chamber and reassembling the
cavity. In principle, Mylar should be vacuum compatible, but
it might be pliable enough that a pressure gradient would for
example shift the membrane tilt.

We found that regular kitchen-grade aluminium foil mea-
sured at approximately 15.5 µm thick, was thin enough. Prop-
erly cleaned, it was also compatible with the UHV system. With
aluminium instead of Mylar, we managed to make assemblies
lasting many weeks under vacuum.

As vacuum chamber, we used a repurposed UHV cryostat17

that could reach vacuum of 10−10 mbar. The good vacuum how-
ever meant, that the turbo pump was mounted directly to the
chamber and the operation of the turbo pump vibrates the cavity
such that operating the experiment becomes very challenging.
In other experiments, the turbo pump is usually away from the
chamber and the connecting vacuum hose is led through a con-
crete block18 to isolate the vibrations. This typically completely
removes the pump noise from the system. As a consequence, the
vacuum quality is somewhat compromised, but for cryogenic
experiments, cryo-pumping improves the vacuum significantly.

Our first attempt to mitigate the pump noise was to mount
the cavity on a heavy copper base suspended with four springs.
The swing did reduce the noise, but at same time, meant that
the fiber would have to hang freely for a relatively long distance.
In our experience, this translated into amplitude fluctuations in
the reflected light.

Instead, we chose to mount the cavity directly on the the
cold finger19 and we added an ion pump to the chamber. The

17 Cryovac Konti
18 Humorously referred to as an impedance mismatcher.
19 The cold finger was the most convenient mounting location. However, despite

the name, there is no cooling and the entire system is operated at room
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ion pump has no mechanical parts and creates no vibrations
but it can only be operated in a good vacuum. Thus, we added
a valve between the turbo pump and the chamber such that
the chamber is evacuated to approximately 10−7 mbar with the
usual roughing pump - turbo pump combination. Then the
ion pump is turned on and the valve can be closed and the
turbo pump turned off. With a Teflon fiber feedthrough [70] and
electrical coaxial feedthroughs, pumping only with the ion pump,
we reach pressure of approximately 4 · 10−8 mbar, more then
sufficient to reduce the gas damping such that the mechanical Q
is no longer limited by it.

Low Mass design

While the fiber cavity investigation was prompted by mirror
noise considerations, we soon realized that their small mode
waist would allow further engineering of the soft clamped mem-
branes. We covered the optomechanical coupling and the mem-
brane in the middle geometry already in the theory chapter.

The cavity resonance is modulated when the membrane
moves in the standing wave. Yet, the membrane does not move
as a rigid sheet but rather it has a distinct modeshape. The cou-
pling must then be scaled by the overlap between such mode
and the mode function of the optical mode. Additionally, the
membrane should be significantly larger to avoid losses and
reduced coupling due to clipping. Ideally, we would want to
probe the membrane with a point like beam at the point of
largest displacement.

The mode waist in the fiber cavity is only a few micrometers.
This allows us to reduce the size of the defect. This reduces the
effective mass of the resonator increasing coupling by increas-
ing the zero point fluctuation as g0 = Gxzpf ∝

√
1/meff and

boosting force sensitivity.
A design dubbed ’Dandelion’ with a defect size of only few

tens of micrometers, typically 30 µm in the fiber cavity exper-
iment, was developed in our laboratory [100] . The design re-
duces the effective mass of the membrane compared to the first
generation soft clamped design by approximately a factor of ten.

Cavity piezo

While the first generation monolithic cavity proved stable and
allowed for feedback cooling runs, in situ tuning of the mem-
brane position in the cavity was not possible. In principle, a
widely tunable laser could achieve similar effect, but given the
equipment available, this was not an option.

temperature.
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Figure 4.13: An example of a low mass defect membrane. The defect
size in the center is only 30 µm in diameter compared to 300 to 500
µm of the first generation soft clamped membrane. The mass of the
membrane is reduced boosting force sensitivity and coupling. Adapted
from [100]

Instead, we have integrated a ring piezo in the cavity, in a
somewhat similar fashion as [44]. The purpose of the piezo is
to move the membrane in the standing wave either via bending
the membrane frame or via squeezing the aluminium spacers.
No matter the exact mechanism, the cavity parameters indeed
shift in qualitative agreement with the membrane in the middle
model explored earlier. The change in resonance frequency is
shown in figure 4.15.

However, we found out, that the introducing the piezo to the
cavity seemed to very consistently break some of the tethers in
the membrane degrading the mechanical performance signifi-
cantly. Our suspicion is that this could be due to charging. The
fabrication process can create an ununiform charge distribution
and the charging from the piezo causes the membrane to break.

To isolate the piezo from the cavity mount, we cover each
face of the ring piezo in contact with the membrane of the clamp
with Kapton tape. The Kapton take was found to be compatible
with good vacuum and was also used to attach the loose fibers
and wires to the vacuum insert. The isolated piezo no longer
broke the membrane, but it also no longer tuned the membrane
position significantly. The Kapton tape is thicker and much softer
than the aluminium spacer and thus we suspect that the the tape
absorbed most of the piezo expansion. Given the experience, we
decided to not explore the piezo tuning further and reverted
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Figure 4.14: The pattern in the membrane opens a bandgap with only
the defect modes present. The lower spectrum is a zoom in on the
defect modes corresponding the shaded area in the broader spectrum.
The defect features two modes, separated by approximately 9 kHz. The
mode at ω(1)

m /2π = 1.299 MHz is the fundamental and one below it
at ω(2)

m /2π ≈ 1.290 MHz. In this spectrum, the fundamental mode is
already subject to some sideband cooling.

back to the minimal monolithic cavity design without degrees
of freedom.

4 .3 .2 Experimental techniques and calibration

In this section we briefly cover the techniques used to operate the
experiment and how to calibrate various parameters of interest.

Pound-Drever-Hall-technique

In the theory section, we simply stated, as is often done in the-
oretical considerations, that we would have the probing field
on resonance with the cavity. However, since the optical wave-
lengths are of the order of 1 µm, even a small shift in the cavity
length or a drift in the laser frequency is enough to move the
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Figure 4.15: The optical resonance changes with increasing travel of
the piezo in qualitative agreement with the membrane in the middle
model.

probe away from the desired detuning. The typical way around
this issues is to use active feedback control to either have the
laser follow the shifts in the cavity or tune the cavity length
according to the laser frequency. The fundamental principles are
the same in either case and the only difference is whether the
feedback signal is applied to the laser or to the cavity.

In the case of the fiber cavity, we have included a shear piezo
to tune the cavity length. This is equivalent to scanning the
cavity frequency and it is a natural lever to feedback on.

As mentioned, for the quantum feedback scheme, we would
employ an on resonance probe. However, to lock the cavity, we
need a proper error signal. A first guess could be to use the
reflected or transmitted power and have the control unit keep
them at a set level. Such a scheme works fine, but only for lock-
ing the cavity away from resonance. On resonance, any shift in
frequency would reduce (increase) the transmitted (reflected)
power in a same way irrespective of the direction of the shift!
Thus, the controller would have only a 50% chance of ’guessing’
the direction of the correction correctly and the cavity would in-
evitably shift out of resonance before any experimental protocols
could be attempted.

One widely used method for deriving a proper error signal
for on resonance locking is the Pound-Drever-Hall -technique
[101]. It relies on creating sidebands on the probe beam via
phase modulation at frequency ωPDH and measuring the re-
flected signal from the cavity. The error signal is derived by
demodulating the reflection at the modulation frequency. The
resulting error signal features a linear slope across the resonance
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with opposite signs on the different sides and thus the cavity can
be maintained on resonance with the laser. Given the relatively
wide cavity and available equipment, we have chosen to operate
the lock with ’unresolved’ modulation such that the modulation
frequency is smaller than the cavity linewidth, ωmod < κ. In
such case, the error signal is approximately

EPDH ≈ 2
√

PcPSB
d|F(∆)|2

d∆
∆, (4.28)

where Pc and PSB are powers in the carrier and sideband respec-
tively and F(∆) is the reflection coefficient, defined as the ratio
between incoming and reflected fields. For a symmetric cavity
with mirror reflectivity r, it can be written as

F(∆FSR) =
r (exp (i∆FSR) − 1)
1 − r2 exp (i∆FSR)

, (4.29)

where we have written the detuning as ∆FSR to remind ourselves,
that in this formulation, it is in units of free spectral range
ωFSR = πc/L. The error signal takes different values at different
sides of the cavity, as shown in figure 4.16.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
∆/ωFSR

-2
√

PcPsb

0

2
√

PcPsb

Figure 4.16: The PDH error signa in the slow modulation regime is
linear accross the cavity resonance allowing for reliable on resonance
lock. The height of the signal is determined by the product of the power
in the carrier and the power in the sideband with the maximum found
when Pc = PSB. Here, we the error signal is shown for a symmetric
cavity with both mirrors having reflectivity r = 0.95.

In the experiment, we modulate the probe beam typically at
frequency between 60 and 80 MHz. However, frequencies near
80 MHz interfere with the feedback beam causing noise in the
reflected signal. In principle, this is only an aesthetic problem

100



4 .3 the feedback experiment

Figure 4.17: Implementation of the PDH locking scheme. The probe
laser is phase modulated at frequency ωmod and we measure the
reflected amplitude. The photocurrent is demodulated with a signal
derived from the the same source as the modulation. This brings the
desired error signal to DC where it can be fed to a PI controller to lock
the cavity to the laser.

if the frequency is sufficiently far away from the mechanical
frequency. Modulation and demodulation signals are generated
with the same function generator using two channels and the
relative phase between the channels is optimized already at the
generator. The photocurrent from the detector20 is demodulated
with a mixer21. The output of the mixer is amplified and fil-
tered22 and a PI controller23 together with a homebuilt low noise
amplifier is used to control the cavity length.

Quantifying fiber imperfections

The are often minor imperfections in the fiber mirror such as
angle between the fiber core axis and the fiber face, off centred
indentation or asymmetry. Because of the imperfections, fraction
of the light from the cavity is scattered to modes other than the
fiber mode. To quantify the fraction of cavity light coupling back
to the fiber mode, we use an approach where we compare a fiber
mirror to a more ideal reflector[102].

First, we measured reflected power from the cavity Pf via a
circulator. Then, the cavity was replaced with a retroreflector
and the reflected power Prr was recorded. Then, the fraction of
light scattered the modes other than the fiber mode is the ratio
of these to powers

α =
Pf
Prr

. (4.30)

20 Thorlabs PDA05CF2
21 Minicircuits ZP-3+
22 Stanford research SR560
23 New focus LB1005-S
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The mechanism for scattering is similar for both the prompt
reflection and the cavity output. Hence, only a fraction

√
α of

the cavity light is routed to the fiber mode and makes its way to
the detector. For the particular fiber mirror forming one half of
the cavity, we measured combined value including losses in the
fiber αL2 = 0.42.

Mirror transmissivities

To verify the transmissivities of the mirror coatings, we peformed
a comparatively crude measurement where we recorded the
incident light on each mirror and measured the transmitted
light. The fiber mirror required an additional step in order to
measure the incident light on the fiber mirror. Simply measuring
power at the input of the fiber would underestimate due to
losses in fiber splices or at the input coupling. Thus, we first
measured the light transmitted through the fiber and then cut the
mirrored fiber after the splice to the connecting fiber to measure
the power in the fiber. The measurements yielded Texo = 250
ppm and Tf = 2140 ppm, significantly higher than specified.
Based on the measured transmissivities, we expect the cavity to
have approximately 3000 finesse.

Cavity linewidth calibration

Cavity linewidth κ is an important parameter in the optomechan-
ical model. In principle it could be estimated from the knowledge
of the mirror coatings or even from knowing the speed at which
the frequency is swept across the resonance, but in practice such
considerations are both unnecessary and inaccurate. Instead, we
will modulate the probe beam at frequency ωmod ≫ κ creating
sidebands around the carrier at ±ωmod. When the cavity length
is swept across the resonance, we see three reflection dips, two
corresponding to the sidebands and one corresponding to the
carrier. Based on the distance between the carrier dip and the
sideband dip, the time axis is converted into frequency.

Fiber cavities present an additional subtlety compared to
typical free space ones. Any observed light reflected from the
cavity must travel via the fiber mode and thus is subject to
spatial filtering [103]. As a consequence, the cavity reflection is
no longer a simple Lorentzian, but also contains a dispersive
term. The normalized reflected power is thus

Pout(v) = 1 −L

(
1

1 + v2 −A
v

1 + v2

)
, (4.31)

where we have introduced normalized detuning v = 2∆/κ, the
cavity dip depth L and the asymmetry parameter A determining
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Figure 4.18: The cavity reflection via a fiber mirror is a conbination of
a Lorentzian and a dispersive feature.

the relative strength of the dispersive feature. The model fits
the measured reflection well, as seen in figure 4.19 and yields
optical linewidth of κ/2π = 343.8 ± 11.9 MHz.
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Figure 4.19: The linewidth of the optical cavity is found via a simple fit.
Phase modulation at ωMOD ≫ κ is used to create frequency markers
and the cavity length is swept over the resonance. The asymmetric
lineshape is a feature of the fiber cavity. The cavity linewidth is approx-
imately 343.8 MHz. In the figure, the sidebands are visible at ±2 GHz.

Cavity length measurement

In principle, the cavity length does not enter the optomechanical
model describing the experiment. However, it is useful figure
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to know in order to translate the measured cavity linewidth
to optical finesse that can be compared to the expected value
obtained with the mirror transmissivities. Finesse can be inter-
preted as the average number of round trips a photon makes
in a cavity before exiting via one of the ports. It connects to the
cavity length and losses as

F ≈ 2π
T1 + T2 + TL

, F =
c

2Lκ
, (4.32)

where T1 and T2 are the transmissivities of the cavity mirrors, TL
the loss rate and L the cavity length.

As a first approximation, we estimatee the cavity length with
a microscope using the known fiber diameter as a measure.
Based on the image, the cavity length is between 50-100 µm. For
a more accurate length, we measured the free spectral range
of the cavity. We used a tunable laser to find the approximate
wavelength of two adjacent resonances at λ1 = 1542.38 nm and
λ2 = 155.78 nm. A useful trick is to employ two lasers. The
cavity length is swept such that the cavity resonance is found.
Keeping the original laser on and still sweeping the cavity length,
a tunable laser is routed to the cavity and the wavelength is tuned
until the same resonance is found at a different wavelength. The
laser is then further tuned until the resonances coincide. Using
the definition of FRS in equation 2.9, we find

1
λ1

−
1
λ2

=
c

2L
. (4.33)

Solving for the cavity length, we find L = 96.7 µm.

Optomechanical coupling

In principle, the optomechanical coupling is unnecessary to
determine the final occupation. However, it is necessary to de-
termine the quantum cooperativy and where the system stands
with respect to the mirror noise. For the fiber cavity setup, the
most convenient way to characterize the coupling is to consider
the frequency shift arising from dynamical backation. In the
unresolved sideband limit where κ ≫ ωm, the frequency shift
simplifies to

δωm(∆) = g2
0ncav

(
2∆(

κ
2

)2
+∆2

)
, (4.34)

where ∆ is the detuning of the beam and κ the linewidth of
the optical cavity. For most realizations of the fiber cavity we
have measured linewidths between 200 Mhz and 1 GHz. With
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Figure 4.20: In the unresolved sideband regime, a detuned beam
shifts the cavity frequency linearly and the magnitude of the shift is
proportional to the field enhanced optomechanical coupling g that is
in turn proportional to the intracavity photon number that in turn
depends on the input light field. We record the frequency shift for
different optical powers and with the detuning and the cavity linewidth
known, the coupling can be extracted with a straightforward linear fit.
The frequency shift (upper graph) shows a clear linear relation to the
input power of the detuned field measured at the input of the cavity
fiber. Based on the shift, we infer the corresponding coupling. With a
detuning of the same order of magnitude as the cavity linewidth, we
must take into account, that the probe beam on resonance results into
higher intracavity photon number and hence a larger coupling g. In
the lower plot, the blue dots and the curve and the dots correspond
to data and fits based on the acquired data and the red dots and line
include a correction for on resonance driving.

mechanical resonance frequency at most 1.5 MHz, the cavity is
extremely unresolved and the above approximation very good.

In practice, we lock a weak probe beam on resonance with
a cavity. Then, an AOM is used to derive another beam from
the same laser source detuned -80 MHz from the probe and we
measure the frequency shift versus intracavity power derived
from knowledge of the input power to the cavity and cavity
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linewidth. It is possible, that the probe already causes a shift due
to nonzero detuning, but since the probe power is kept constant,
the linear relation still holds but with a constant offset, such that
the total frequency shift compared to the intrinsic mechanical
frequency is δω ′

m = δω
(probe)
m + δω

(c)
m .
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Figure 4.21: The linewidth of the mechanical resonance follows the
prediction of the dynamical backaction model. The dashed line is the
expected broadening given the coupling inferred from the frequency
shift. Each point corresponds to average of five linewidths at a given
coupling. There is a good agreement between the predicted increase
and the measured linewidth. It should be noted that the probe beam is
likely slightly red detuned and thus already cools the mode somewhat.

In principle, an even more ’black box’ measurement can be
made, where we simply connect the measured input power to
the observed frequency shift and the field enhanced coupling
g such that the conversion factor accounts for all the losses
between the input fiber and the cavity. In fact, for the feedback
protocol and calibration of the results, there is no need to know
the single photon coupling and we can make use of the more
accurately known24 field enhanced coupling. An example of one
such characterization is shown in figure 4.20. The shift is indeed
linear as the model predicts. Based on the measurement, with
the experimentally relevant probe power, the field enhanced
optomechanical coupling is g/2π ≈ 650 kHz.

It is important to keep in mind, that it is still g0 that deter-
mines the effect of mirror noise. The mirror noise couples to
the output phase via similar optomechanical coupling and thus
the proportionality of the it and the membrane motion stays

24 Measuring g requires only knowledge of the cavity linewidth and the detun-
ing of the cooling beam both of which are known very accurately.
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constant for all intracavity powers. In order to determine the
single photon coupling, we estimate the losses in the fiber and
the cavity coupling efficiency to find g0/2π ≈ 2360 hz.

Mechanical linewidth

Typical soft clamped resonators feature linewidths of only a few
millihertz and thus well below the bandwidth of most practical
spectrum analyzers. The typical characterization routine instead
involves exciting the membrane motion well above thermal en-
ergy level either via optical driving or mechanical excitation
with a piezo. The excitation is then turned off, and the resonator
is left to decay freely. Fitting the decay trace with an exponential
exp(−Γmt) then yields the mechanical linewidth. Typically, the
measurements are done in a dedicated interferometer, where an
entire wafer, typically around 20 membranes, can be character-
ized simultaneously without venting the chamber inbetween.

Without baking, the interferometer reaches vacuum of ap-
proximately 3 · 10−7 mbar. This pressure still limits the quality
factor of membranes somewhat. Based on measuring the effect
of pressure to the quality factor, we would expect an approxi-
mately 10% boost in Q in the better, below 10−7 mbar vacuum
achieved in the fiber cavity UHV chamber.

Homodyne spectrum

The spectrum analyser measures the mechanical spectrum, but
in voltage units. To connect the measured spectrum to the mo-
tion of the membrane, there needs to be a conversion factor
between voltage and position25. In the fiber cavity experiment,
we choose to exploit two features of the system. First, there is
absolute certainty on the bath temperature. In cryogenic environ-
ments in liquid helium flow cryostats, despite the temperature
sensor on the cold finger reading approximately 4 K, we have
often seen, that the membrane thermalizes to only 10 K. In room
temperature, however, the membrane has essentially unlimited
time to thermalize to the room temperature and is thus taken
to be at 300 K. Second, the mechanical linewidth is very accu-
rately known and thus, we know the thermal occupation of the
mechanical resonator with very little uncertainty. Then, integral
over the measured spectrum should correspond to the thermal
occupation and the conversion factor is found.

In practice, there are a couple fine points that should be
accounted for when calibrating the spectra. First of all, we wish
to do the calibration with the exact experimental setup we wish
to use during the feedback cooling runs and this necessitates

25 Either in meters or in units of zero point fluctuation.
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a strong probe. As we recall from chapter 2, the bath has a
contribution from the quantum backation. Thus, the thermal
occupation becomes

n
QBA
th = nth (1 +Cq) . (4.35)

The second complication is due to the the feedback cooing
beam that also sideband cools the mechanics. The optical spring is
found from the cooled mechanical peak. We may further approx-
imate Γopt ≈ Γom, where Γom is the sideband cooled linewidth,
since the initial mechanical linewidth is typically around 10
mHz, and therefore much smaller than the broadened peak, typ-
ically at tens of Hz. With sideband cooling and accounting for
the quantum backation of the probe, we find the mechanical
occupation to be

nSB =
n
QBA
th Γm

Γopt
+nSB

min, (4.36)

where nSB
min is the already familiar sideband cooling limit

nSB
min =

(
κ2

4 + (∆−ωm)2

κ2

4 + (∆+ωm)2
− 1

)−1

, (4.37)

which accounts for the QBA of the cooling beam.
With the occupation known, the calibration is a simple matter

of finding a constant K such that∫
KS̄VV(Ω)

dΩ

2π
=

∫
S̄QQ(Ω)

dΩ

2π
= 2nSB + 1. (4.38)

Interferometer visibility

To measure and optimize the visibility of the interferometer, we
set the signal arm and LO power to the same value and block
one port of the balanced detector. The maximum and minimum
measured voltages then relate to the visibility as

V =
Vmax − Vmin

Vmax − Vmin
, (4.39)

where Vmax and Vmin are the maximum and minimum voltages
respectively.

Detection efficiency

In the theoretical background of feedback control, we saw that is
of critical importance to extract as much information as possible
per unit of backation, i.e. to have as high measurement efficiency
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as possible. The measurement efficiency ηm depends on the de-
tection efficiency ηD that in turn is a measure of what portion
of the measured light comes from the cavity. In the case of the
fiber cavity, the total detection efficiency is

ηD = ε · ηc ·
√
α · L ·V · PQE, (4.40)

where ε is the cavity mode matching, ηc the outcoupling effi-
ciency, α the parameter accounting for an unideal fiber mirror, L
the combined losses in the path from the cavity to the detector,
V the interferometer visibility and finally PQE the quantum effi-
ciency of the detector. We use the manufacturer number for the
quantum efficiency and measure other quantities independently.
For some of the parameters, we only measure the product of
two or more individual parameters. The measured values are
shown in table 4.1.

Outcoupling efficiency ηc · ϵ 0.04
Visibility V 0.9

Fiber losses
√
α · L 0.42

Quantum efficiecny PQE 0.8

Table 4.1: Individual decomposition of detection efficiency.

The total detection efficiency of the detection chain is thus

ηD = 1.21%. (4.41)

Assuming Cq = 1, this corresponds optimal control occupation
floor of nopt

min ≈ 6.0. With a large cooperativity, the limit becomes
n
opt
min ≈ 4.1. It is thus obvious, that in order to prepare the

resonator in below unity occupation, the detection efficiency
must be improved. Luckily, relatively straightforward steps are
possible.

First, based on the mirror coatings, we expect that the out-
coupling efficiency through the fiber mirror would be up to
89%. To have the effective outcoupling η ′

c = εηc approach this
value, mode matching needs to be improved. Low mode match-
ing efficiency is not intrinsic property of the fiber mirrors and
values more than ε ⩾ 0.75 are within reach by improving the
optical cavity alignment. Alternatively, choosing a more ideal
fiber mirror can improve the mode matching.

Improving mode matching to 0.8 would, without any other
improvements, improve detection efficiency to 22%. With Cq = 1,
the optimal control limit becomes n

opt
min = 1.01, just barely above

unity. Increasing quantum cooperativity further would then al-
low for below unity occupation. Choosing a better fiber and
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improving losses in splices and feedthroughs should allow for
increasing the detection efficiency up to 30% without any other
modifications in the cavity assembly. However, significantly im-
proving the cavity alignment will likely require finer positioning
stage than the one used previously but otherwise, the alignment
procedure should stay relatively intact.

4 .4 feedback cooling close to the quantum ground

sate

We use a single main filter, centred at ωFB/2π = 1.34 MHz with
linewidth ΓFB/2π = 77.86 kHz. As the electronic gain of the
filter is increase, the mechanical peak flattens and broadens, as
seen in figure 4.22. The mechanical frequency also shifts with
increasing gain. This is due to unideal phase such that the filter
function is not purely imaginary. In addition to the main filter,
we employ an auxiliary filter at ωaux

FB /2π = 1.195 MHz with
linewidth ΓauxFB /2π = 9.716 kHz to stabilize an out of bandgap
mode that the main filter excites.
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Figure 4.22: The mechanical mode broadens and flattens, that is be-
comes cooler as the feedback gain is increased from light to dark red.
The gray spectrum corresponds to the shot noise level and the solid
charcoal lines are fits. ’The peak around 1.291 MHz is very likely a
spurious mechanical mode.

In the experiment, the probe quantum cooperativity is C
p
q =

0.1 and the corresponding optimal control limit nopt
min = 14.4. The

electronic gain of the main filter is increased until we reached
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sate

a mechanical instability that we were unable to stabilize with
additional auxiliary filters. The spectrum with the lowest occu-
pation is shown in figure 4.23 and the occupation as a function
electronic gain in figure 4.24.
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Figure 4.23: The lowest occupation reached is approximately nmin =
20.3 ± 0.5. The red spectrum correspond to the measured mechanical
spectrum, Syy. The dark gray line is fitted Syy and the dashed purple
line is the inferred mechanical motion Sxx. The light gray line corre-
sponds to the shot noise level.
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Figure 4.24: The occupation falls with increasing gain until the impre-
cision starts dominating.
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4 .4 .1 Limiting factors

The initial experiment was limited by the low detection efficiency.
Even with Cq approaching infinity, the experiment would be
unable to cool the resonator’s mode to below unity occupation.
In fact, the lowest occupation achieved is already close to the op-
timal control limit. Possible reason for excess occupation include
technical noise such as laser noise, unideal filter or mirror phase
noise. Detection efficiency is most limited by mode matching
and increasing it should improve detection efficiency enough to
make ground state cooling feasible, assuming other noises do
not prove to be a limiting factor.

The low mass membrane design in the fiber cavity also ex-
hibited high enough coupling to allow for Cq > 1 with enough
intracavity power. We have experimentally confirmed that oper-
ating at such power is possible without onset of bistability, but
due to power budget and equipment limitations, we chose to
work at a lower Cq for the cooling experiment.

Although likely unnecessary for the next iteration, further im-
provements could be found with higher optical finesse. Recently,
fiber based optomechanical cavities have been demonstrated
with Finesse up to 165000 [104]. Smaller optical linewidth would
increase quantum cooperativity given that other system parame-
ters stay constant. Alternatively, a longer fiber-fiber cavity would
allow for easier sample exchange and, at the same time, reduce
optical linewidth. Fiber cavities up to 1.5 mm in length have been
demonstrated [87], more than enough to fit the 400 to 500 µm
thick silicon frame of our membranes.

112



5C O N C L U D I N G R E M A R K S

In the previous sections, we have covered two room temperature
experiments. First, in a proof or principle experiment, we have
demonstrated an integrated optomechanical transducer in a
clinical MRI scanner. The performance of the first generation
device was not on par with state of the art electronic amplifiers,
but as a lightweight optical device, it could enable operation in a
high magnetic field or in a multi-coil-setup. The most important
improvement would be individual vacuum packaging of the
device such that it could function as a truly stand-alone device.
Other avenues would include investigating wireless biasing and
targeting telecom wavelengths.

Second, we have build a compact, low phase noise cavity that
together with a low mass soft-clamped membrane enables quan-
tum optomechanical experiments at room temperature. Based on
the measured coupling, reaching Cq > 1 requires field enhanced
coupling of g/2π ≈ 2 MHz. We verified that the optomechanical
system operates stably at the required intracavity power. We
further cooled the resonator’s mode to nmin ≈ 20.3 phonons at
Cq = 0.1.

For the first generation optomechanical cavity, the final occu-
pation was limited by low detection efficiency. More specifically,
the detection efficiency suffered from poor mode matching be-
tween the cavity mode and the fiber mirror. Poor mode matching
is not an intrinsic property of the fiber mirrors and hence, the
detection efficiency could be boosted in subsequent cavity as-
semblies. With improved mode matching and reduced losses, the
achievable detection efficiency allows for cooling the resonator
to below unity occupation without other modifications to the
system, barring other noise sources.

These experiments present steps towards realizing optome-
chanical technologies both for biomecical applications and for the
nascent quantum internet.
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