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Abstract 
 
A key feature of optimizing subsurface resource exploration is accurate 

geophysical modelling. In this regard, associating, combining and integrating 

petrophysical, geological and geophysical data play a crucial role. To do so, 

solving probabilistic inverse problems of desired model parameters in the 

subsurface is used to describe reservoir properties. Subsurface uncertainty 

quantification is obtained through probabilistic solutions to corresponding geo-

statistical and geophysical inverse problems. In geoscience, Monte Carlo 

sampling methods are widely used in producing solutions for nonlinear inverse 

problems. A fundamental problem when using Mont Carlo search or sampling 

algorithms is the inefficiency due to the high computational cost of forward 

calculations, particularly when dealing with large scale inverse problems. This 

thesis addresses this issue and describes a new methodology that significantly 

improves the performance of MCMC algorithms, resulting in more effective 

uncertainty analysis. 

 

 There are a number of algorithms that attempt to guide Monte Carlo sampling 

by exploring the target distribution while it is being performed. However, 

many of them are limited by the No-Free-Lunch theorem. According to the 

No-Free-Lunch theorem, the more information about the problem we add, the 

more efficient algorithm could potentially be. This study presents a new 

methodology for the Markov Chain Mont Carlo (MCMC) algorithm designed 

for highly nonlinear problems with computationally expensive forward 

calculations and a large number of model parameters.  
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In this thesis, we first explain Informed Proposal Monte Carlo, in which 

information about the target distribution is introduced to the sampling 

procedure by using a global proposal distribution. This can be achieved by 

finding an approximate posterior distribution and using it as global proposal  

in MCMC algorithm. This proposal distribution is problem dependent and 

typically calculated using simplified physics. 

 

Afterwards we review some of the most recent, blind and informed MCMC 

algorithms. Then the theoretical and methodological framework of our 

approach is presented. We introduce our specific strategy for generating prior 

models in which image warping is used to perturb the subsurface velocity. 

Finally, we apply our proposed methodology to the probabilistic problem of 

full-waveform inversion of seismic data with a large number of model 

parameters. The results indicate that injecting external information in the form 

of a global proposal can significantly reduce the convergence time and increase 

efficiency of the algorithm.  
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Dansk Resume 
  
Afgørende for optimering af geofysisk ressourceefterforskning er brugen af 

nøjagtige og beregningseffektive modelleringsmetoder. I den henseende spiller 

integration af petrofysiske, geologiske og geofysiske data en afgørende rolle. Til 

det formål udnyttes sandsynlighedsbaserede inverse metoder til beregning af de 

ønskede modelparametre i undergrunden. Kvantificering af usikkerhed af 

undergrundsparametre opnås ved at sample sandsynlige løsninger til 

geostatistiske og geofysiske inverse problemer. Inden for geovidenskab anvendes 

Monte Carlo samplingmetoder i vid udstrækning til generering af løsninger til 

ikke-lineære inverse problemer. Et grundlæggende problem ved disse metoder er 

ineffektivitet på grund af høje beregningsomkostninger ved fremadberegninger 

(beregning af data udfra modelparametre), især når der er tale om store inverse 

problemer.  

 

Denne afhandling behandler dette problem og beskriver en ny metode, der 

forbedrer ydeevnen for MCMC-algoritmer betydeligt, hvilket resulterer i en mere 

effektiv usikkerhedsanalyse. 

 

Der findes en række algoritmer, der forsøger at styre Monte Carlo-sampling ved 

at indsamle information om sandsynlighedsfordelingen mens den samples. 

Mange af dem er dog begrænset af No-Free-Lunch-teoremet. Ifølge No-Free-

Lunch-teoremet er det sådan, at jo flere oplysninger om problemet vi tilføjer, jo 

mere effektiv vil  algoritmen være. Denne undersøgelse præsenterer en ny 

Markov Chain Monte Carlo (MCMC)-algoritme designet til meget ikke-lineære 

problemer med beregningsdyre fremadberegninger og et stort antal 
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modelparametre. I denne afhandling forklarer vi først informed-proposal Monte 

Carlo, hvor information om fordelingen indbygges i samplingproceduren ved 

hjælp af en global proposal-fordeling. Dette kan opnås ved at finde en omtrentlig 

posterior fordeling og bruge den som en global proposal i MCMC-algoritmen. 

Proposalfordelingen er problemafhængig, og den beregnes ved hjælp af en 

forenklet fysisk model. 

 

Først gennemgår vi nogle af de nyeste "blinde" og informerede MCMC-

algoritmer i denne afhandling. Derefter præsenteres den teoretiske og metodiske 

ramme for vores tilgang. Vi introducerer vores specifikke strategi til generering 

af a priori model. Endelig anvender vi vores foreslåede metode til  

sandsynlighedsbaseret, fuld bølgeforminversion med et stort antal 

modelparametre. Resultaterne indikerer, at brugen af fysisk baseret ekstern 

information i form af en global proposalfordeling kan reducere konvergenstiden 

betydeligt og øge effektiviteten af algoritmen. 
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Chapter 1 
 
Introduction 

 
Earth scientists have always been seeking new methods for investigating and 

exploring the Earth structure in order to obtain useful and practical information 

and produce reliable models. One main application is in oil and gas industry 

where a proper reservoir description is of key importance. This involves 

determination of spatial variability of reservoir rock properties and behaviour of 

the fluids in the reservoir. Seismic data inversion and seismic data integration has 

an important role in this matter. Earth model reconstruction from observed 

seismic data requires solving inverse problems and uncertainty analysis in 

subsurface modelling. Inverse problem methods are among the most widely used 

in geophysics and reservoir characterization studies for creating geological 

models. In an attempt to integrate all the knowledge available about the earth 

parameters including indirect or direct information, we built probabilistic inverse 

problems to perform an uncertainty analysis in desired areas. Complexity and 

non-linearity of forward models, high-dimensionality of model space and 

uncertainty related to prior knowledge or data are some of the challenges that 

probabilistic modelling methods face.    
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This thesis seeks to address some of the mentioned challenges. In this research, 

we seek to find a methodology for solving high-dimensional highly non-linear 

seismic inverse problems in an efficient way. In our research, we look at Markov 

Chain Monte Carlo algorithm when an informed proposal distribution is used to 

guide the search or sampling process and to improve the algorithm’s efficiency. 

We’ll begin with a brief overview of the general inverse problem and some 

common methods used for solving it. 

 

1.1 Inverse Problem 

 

Parametrization or describing the Earth as numbers is the very first step of 

inversion in geophysics. This process includes obtaining a group of model 

parameters ! through a mapping function " applied on Earth structure #. Here 

# is an abstract model and not yet parameterized.  

 

! = 	$(&)	                                             (1.1) 
 

Data can be defined as a set of numbers which is the result of interaction between 

our physical system and measuring tools and sometimes a third system have the 

task of measurement digitization. The forward mathematical relationship 

between observed data and physical parameters in a particular system is shown 

in the formula below. The inverse problem is the problem of achieving 

unmeasurable models ! from observed and measured data $ (Tarantola, 2005; 

Mosegaard and Tarantola, 1995; Mosegaard and Tarantola 2002). 

 

                                                    (	 = 	)(!)	                                             (1.2) 
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In deterministic approaches the mismatch between observed data and result from 

theoretical calculation is minimized and one final model is obtained that describes 

the best achievable model. By minimizing a misfit function some data fitting 

methods such as least square attempt to estimate the best match. The possible 

limitation of these methods are non-uniqueness of the solution and sensitivity to 

errors. The inverse problem is usually ill-posed in sense of Hadamard since it’s 

dependence between the observable and the model may have lack of continuity, 

causing the solution to be unstable, or it happens that the solution may not exist 

or be non-unique (Hadamard, 1902; 1923). Methods such as regularization 

techniques estimate a well-posed problem and try to find the closest solution that 

fits the data by adding additional constraints. Tikhonov regularization is a typical 

regularization technique in which an extra expression is added to the least square 

mismatch function that controls the prior knowledge with a regularization 

parameter (Tikhonov, 1963). 

 

For a proper analysis of an inverse problem, it is necessary to take into account 

possible measurement errors and uncertainty related to modelization or lack of 

data and information.  In a probabilistic strategy a probability density is defined 

in data space that characterizes observed or measured information, and another 

probability density is described in model space that refers to our prior knowledge 

about model parameters which is completely independent from observed data.  

Linear Gaussian inverse problem is the simplest form of Inverse problem where 

the forward function in linear. 

 

( = *!                                             (1.3) 

 
The posterior probability density can be shown to be a Gaussian with the 

following mean and covariance (Tarantola 2005): 
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(1.4) 

 

                             (1.5) 

 

It is quite common in reality that we encounter nonlinear problems where the 

exact form of the posterior distribution is unknown and prior distribution is 

complicated. Bayes’s theorem is an outcome of the definition of conditional 

probabilities described in the Kolmogoroff space (Box and Tiao 1992). 

According to Bayes’s theorem the probabilities of an event can be updated by 

giving the occurrence of a relevant event. For instance the probability of event A 

giving event B is written as: 

                                    (1.6) 

 

Where %('|)) represents the probability of B happening when A is true, and 

%()) and %(') are marginal probabilities.  

In Bayesian statistics the prior probability density is our approximate belief 

showing the probable parameter values before inspecting the data. The measured 

data is used in the likelihood function for computing probable parameter values 

that fit the data within the errors. These two distributions are integrated to create 

the posterior probability which does not always have an analytical form. 

Generating an ensemble of models that contain independent realizations from the 

posterior is one way of dealing with this issue (Mosegaard and Tarantola, 1995). 

In a probabilistic framework where + = -(!) defines our nonlinear forward 

problem, the joint prior probability density can be written: 

          = + ( G + (d − G )          mpost m0 GTC−1
n C−1

m )−1GTC−1
n m0

          = ( G +           Cpost GTC−1
n C−1

m )−1

          p(A|B) =           
p(B|A)p(A)

p(B)
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                                  (1.7) 

 

If .($,!) is a distribution in the joint data-model space describing the (exact or 

uncertain) correlation between $  and !  according to the physical laws, the 

conjunction of theoretical and experimental information according to (Tarantola, 

2005) is: 

 

                                 (1.8) 

 

Where 0 is the homogenous probability density. The homogeneous probability 

distribution appoints a probability proportional to the volume for each region 

(Mosegaard, 2002). Considering the following assumption: 

 

                                    (1.9) 

 

The marginal posterior probability density in the model space can be shown to 

be: 

 

                        (1.10) 

 

Hence, the solution to the inverse problem is defined as a probability density 

function which is related to the product of the prior probability density and an 

integral named the likelihood function 1(!).  

                                                                                           

                                     (1.11) 

          ρ(d, m) = (d) (m)          ρD ρM

          σ(d, m) = k           
ρ(d, m)Θ(d, m)

µ(d, m)

          µ(d, m) = µ(d)µ(m)          

          (m) = k (m) dd           σM ρM ∫
D

(d)Θ(d|m)ρD

(d)µD

          σ(m) = k (m)L(m)          ρM
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1(!)  represents the physical principles that connect model parameters and 

observed data. Figure 1 shows a one-dimensional example in which the 

conjunction of prior information and Likelihood function produce a posterior 

probability distribution which is the solution to the problem and represents the 

combination of the two states of information (Tarantola, 2005).  

 

 

 
Figure 1.1.  !!(#) and !"(%) are probability densities showing our knowledge about data 

and prior information respectively. !(#,%) is the joint probabilty density and 

'(#,%)	represents the physical theory and connection between # and %. )(#,%) is the 

solution of inverse problem and shows the conjunction of the two states of information 

(Tarantola, 2005).  

 

1.2 Monte Carlo methods 

 

When the physical relation between data space and model space is highly 

nonlinear, the posterior probability density function is far from Gaussian, and 

linearization methods are inadequate for achieving satisfactory results. The non-

Gaussianity of the posterior could also come from non-Gaussianity of the noise 
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or the prior probability density (Mosegaard, 2006). As previously stated, 

obtaining the analytic expression of a probability density is not always feasible 

and practical, so we can instead sample it. Monte Carlo is recognized as being 

one of the most important methods for sampling a probability density by 

performing a random walk in the space. It has grown in popularity as 

computational technology has developed over time (starting with Yanovskaya, 

1967; Press 1968). One major benefit of using Mont Carlo methods is that the 

analytical representation of the probability density is not required and all we need 

is the ability to calculate the function at a particular location (Mosegaard et al 

2002). One of the first applications of Monte Carlo for investigating nonlinear 

problems was done by Koren et al. 1991 in which, for the first time, they 

introduced the movie strategy where a number of sample models are created and 

displayed to describe the posterior (Mosegaard, 2011). Monte Carlo methods can 

be categorized as two different groups: 

 

1. Monte Carlo algorithms used for sampling purposes such as the Metropolis 

algorithm and Gibbs sampler. 

2. Monte Carlo algorithms used for optimization purposes such as simulated 

annealing and genetic algorithms. 

 

One of the first studies of Markov chain Monte Carlo simulation was conducted 

by Metropolis et al. (1953) where they used this sampling method to simulate 

thermodynamic equilibrium. Hastings (1970) made a generalization of 

Metropolis’s previous method, later named the Metropolis-Hasting’s algorithm. 

The Metropolis-Hastings algorithm is a well-known algorithm for sampling any 

kind of probability density function. In the Metropolis-Hastings algorithm we 

need to be able to compute the likelihood 1(!)	and the prior 3!(!) at any 

selected point in the model space. Then the algorithm will run as follows: 
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I. Beginning from the current model !", a new model !# is proposed using 

a uniform sampler A (the proposal generator). 

II. The proposed model is accepted with the following probability: 

%$%% = #45 61,
1(!#)3!(!#)
1(!")3!(!")

8 

III. If the model is rejected we re-sample !" 

 

IV. If it is accepted we replace !" by !# in the next step. 

 

In the literature, there are many examples of using Metropolis algorithm for 

obtaining the posterior probability distribution (Pedersen and Knudsen, 1990; 

Koren et al, 1991; Gouveia and Scales, 1998; Dahl-Jensen et al, 1998; Khan et 

al, 2000; Khan and Mosegaard, 2001). When the prior is complex or far from 

uniform, the  Metropolis algorithm can be computationally expensive (Hansen et 

al 2012). Mosegaard and Tarantola introduced extended Metropolis, a more 

powerful algorithm for non-linear inverse problems with complex priors. In 

chapter 2 the Extended Metropolis is explained.  

Geman and Geman (1984) proposed a particular form of Metropolis-Hastings 

algorithm which was known as the Gibbs sampler (Gelfand et al 1990) and 

closely similar to the data augmentation algorithm by Tanner (1987). As 

explained by Mosegaard and Sambridge 2002, in the Gibbs sampler operates in 

the following way: 

I. The proposal distribution  

 

 

9&
'is the group of points that deviates from :&  

. 

II. The acceptance probability  %$%% = 1 for all proposed models. 

          ( | ) =           Uk xi xj

⎧
⎩⎨
⎪
⎪

p( )xi

p( )∑ ∈xk Nk
j

xk

0,

∈xi Nk
j

otherwise,
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We will not have any rejected models using this method; however, when the 

computational cost of calculating the target distribution %(:) is expensive, the 

Gibbs sampler is not a good option for solving the problem. Detecting essential 

(high-probability) locations of the probability density in a high dimensional space 

is the main challenge of the Monte Carlo sampling approach and any other 

inversion methods. There are several Monte Carlo-based methods that have been 

commonly used for optimization purposes: Simulated annealing, genetic 

algorithms and particle swarm methods are some examples of evolutionary 

algorithms used for optimization. Implementing ideas from statistical mechanics, 

simulated annealing is used to enhance the sampling procedure and detecting the 

global optimum of the posterior function (Kirkpatrick 1983). This is 

accomplished by increasing a system’s temperature to a high level and  gradually 

lowering it until it reaches the lowest energy state. If the energy difference 

between the current and the proposed states is negative in Monte Carlo simulated 

annealing, the move is accepted, otherwise,´ the acceptance probability is given 

by ;:% <−
∆)
'!*

>, where T is the temperature and ?+	 is the Boltzman constant 

(Metropolis 1953).  

 

Another example is Genetic Algorithms, which find the global minimum using 

ideas from biological evolution. Genetic Algorithms can be seen as a group of 

techniques rather than a single straightforward algorithm. This approach has been 

used to solve a variety of problems in earth science (Stoffa and Sen, 1991; 

Gallagher et al, 1991; Wilson and Vasudevan 1991; Sambridge and Drijkoningen, 

1992; Scales et al, 1992; Sen and Stoffa 1992; Smith et al 1992). 

 

As Markov Chain Monte Carlo became more and more popular in sampling 

posterior distributions and uncertainty analysis, new applications emerged with 
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larger computational challenges, such as inverse problems with computationally 

expensive forward calculations and complicated prior models. The main source 

of computational challenges in MCMC  is the curse of dimensionality (Curtis and 

Lomax, 2001) which is related to the long time it takes for the algorithm to 

achieve convergence. There are plenty of different algorithms proposed for 

making MCMC sampling more efficient and practical (Liu 2002, MacKay 2003, 

Brooks et al 2005).  

 

A newly developed method for dealing with computationally expensive Monte 

Carlo likelihood calculations is neural-network-based algorithms. Trained neural 

networks can estimate the hidden mapping function that connects two model 

spaces given a set of inputs and outputs to the algorithm. In order to train the 

algorithm a great number of randomly drawn realizations from the prior needs to 

be subject to forward calculations. By computing the forward response we will 

have the required training pairs. (Devilee et al. 1999 ;de Wit et al., 2013; Laloy 

et al. (2017); Laloy et al. (2018); Holm-Jensen and Hansen (2020); Earp & Curtis, 

2020; Earp et al., 2020). 

 

1.3 Blind algorithms  

 

These methods (Classical Monte Carlo, Simulated annealing, Genetic algorithms 

and Neural Networks) are categorized as blind algorithms where the 

characteristics of the target probability distribution are not considered in the 

sampling process. In blind algorithms just the input models and the output data 

from  an optimization black box are considered in searching and sampling, and 

no additional information of the target distribution is used. Some blind algorithms 

try to detect the properties of the posterior distribution while in operation and 

sampling, but they are still bounded by the amount of information in the sample 

points they have visited.  
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According to No-Free-Lunch Theorem introduced by Wolpert et al 1997, the 

average efficiency of all blind optimization algorithms is exactly the same for all 

optimization problems. In other words, if a certain algorithm is more effective for 

a specific problem then it should not be true for other problems.  Mosegaard 2012 

specifies the limitation of blind inversions for large-scale nonlinear sampling or 

optimization problems and the essential role of tuning for each specific problem.  

 

 
Figure1.2. The average efficiency of all optimization algorithms is similar when dealing with all available problems.  

 

If external characteristics of an posterior probability density is taken into account 

as additional information guiding the searching process for a specific problem,  

then we will have an informed algorithm. According to No-Free-Lunch Theorem 

informed algorithms that consider known features of the selected target 

distribution in sampling should be more effective than blind algorithms. 

Hamiltonian Monte Carlo algorithm is a well-known example of informed 

algorithms (Fitchner et al., 2018; 2019; Gebraad et al., 2020).  By obtaining 

information form the geometry of the model space and finding directions aligned 

with the iso-surfaces of high probability areas the algorithm aims at performing 

an efficient sampling. In Hamiltonian Monte Carlo the model is considered as a 

mechanical particle moving along a trajectory in the joint position-momentum 
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space which will be later projected back onto the position space, which is 

identical to our model space. The moving direction is controlled by the gradient 

of the misfit function which is described as  the potential energy of  the particle. 

Examples of applying Hamiltonian Monte Carlo in geophysics can be found in 

Fitchner et al. (2018, 2019) and Gebraad et al., (2020).   

 

1.4 Our direction and contribution 

 

This Ph.D. thesis investigates a new  probabilistic approach for solving large scale 

inverse problems that are strongly non-linear. In chapter 2 we explain and discuss 

the theory of Informed proposal Monte Carlo (IPMC), which will later be applied 

to a real case with the aim of increasing the speed of sampling and the efficiency 

of the algorithm. In IPMC we insert information obtained from a simplified 

physical theory of our problem into the algorithm in form of a global proposal 

distribution. The global proposal is gained through a simplified classical 

inversion and interpretation and it will only have an effect on the speed of 

convergence and the sampling process. 

 

The forward modelling of our problem is described in chapter 3 along with the 

strategy for generating the prior model. 

 

In chapter 4 we demonstrate how IPMC can be applied on a large-scale full 

waveform seismic problem. This methodology can be adopted for any large-scale 

non-linear problem when classical MCMC is extremely inefficient. However it 

should be noted that the efficiency depends on the quality of our proposal, or in 

the other words, it is problem dependent. In our case the proposal distribution is 

associated to an approximate posterior obtained via a simplified deterministic 

inversion, which determines the degree of efficiency as it approaches the true 

posterior.  
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Appendix E (E1-E5) consists of our scientific work associated with this PhD 

research, either published or under review. Appendix E1 is a research paper 

reviewed and published in Geophysical Journal International. Appendix E2 is 

submitted to Geophysical Journal International and currently under review. 

Appendix E3 is submitted to Applied Computing and Geosciences Journal and 

currently under review. Appendix E4 is a project report and the basis for 

Appendix E3. Appendix E5 is a conference abstract for the GEOSTATS 

conference in 2016. 
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Chapter 2 
 

 

Monte Carlo with problem dependent proposal 

 
2.1 Sampling the probability density 

 

 

A direct analytical technique for solving inverse problems is not always 

applicable. In this case sampling the posterior probability density is the only way 

to describe the target distribution. In the probabilistic/Bayesian framework, 

information about model parameters is usually described by the posterior 

probability density with an unknown structure. For small inverse problems, 

exhaustive sampling can be implemented to visit every point in the model space. 

For larger problems, however, sampling is based on random model selection in 

the model space. This is known as importance sampling, and only models 

sampled from the prior density function and with an acceptable data fit will be 

considered in the sampling (Mosegaard 1998).  
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Figure 2.1.   Complex probability densities  can be represented by a collection of samples in the model space 
(Mosegaard, 2006) 
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2.2 Extended Metropolis 

 

Markov chain Monte Carlo (MCMC) methods describe a stochastic sampling 

technique based on Markov processes where the prediction of future sample 

models is conditionally independent of the past and only depends on the current 

sample model. Extended metropolis is an MCMC-based algorithm that can be 

used for sampling of the posterior and consists of two separate algorithms @	and 

A. @ is a random iterative algorithm !(-./) = @(!(-)) that samples the prior 

probability density, whereas A(0,1)  generates uniformly distributed random 

numbers (Mosegaard et al., 1995; Mosegaard, 2006). The updating algorithm C 

is defined as:   

 

 

(2.1) 

 

Which will sample the posterior probability density  D(!) ∝ 1(!)	3(!). 

In this regard, the choice of @  has a significant impact on the algorithm’s 

performance. But because there is usually a large difference between the prior 

and the likelihood function, suggested models chosen by @ often have a small 

likelihood value. Therefore, for large-scale problems, a blind extended 

Metropolis algorithm will not be so efficient (Mosegaard and Tarantola, 1995 ).  

 

2.3 Proposal distribution 

 

As previously stated, the Metropolis algorithm works by rejecting or accepting 

proposed models from the prior distribution. If "(:) is a posterior probability 

density and :  is the current value, a proposed new model is offered from a 

          = W( ) =           m(n+1) m(n)
⎧
⎩⎨
⎪⎪
⎪⎪

V( ) if U(0, 1) ≤ min[1, ]m(n) L(V( ))m(n)

L( )m(n)

elsem(n)
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probability distribution known as proposal distribution F(:′|:). This model will 

be accepted with the following probability (Metropolis et al., 1953; Hastings,  

1970; Khoshkholgh et al., 2021): 

 

   

(2.2) 

As mentioned by Mosegaard et al., 2002 any random walk should satisfy two 

conditions: microscopic reversibility meaning that the probability of entering a 

microscopic neighbourhood should be equal to the probability of leaving it, and 

detailed balance meaning that the probability of a transition from :1 to :& is equal 

to the probability of transition from :& to :1. That is, 

 

 

(2.3) 

The proposal distribution has no effect on the posterior distribution being 

sampled; but it is essential because it influences convergence time. The 

algorithm’s search procedure is determined by the proposal probability density, 

and a proper proposal distribution should result in minimum settling time (burn-

in time). The interval between sampling an initial low probability area and 

sampling regions with high probability model parameters is known as the burn-

in time (Mosegaard, 2006). The proposal distribution can be divided into two 

categories: Local proposal distributions and global proposal distributions.  

 

A local proposal distribution F(:ʹ|:) is reliant on the starting point :. Under the 

two assumptions that F(:ʹ|:) 	= 	F(:ʹ + J|: + J) and F(:ʹ|:) 	= 	F(:|:ʹ), we 

can simplify the acceptance probability as follows: 

 

          = min( , 1)          Px→x ′

acc

f( )q(x| )x ′ x ′

f(x)q( |x)x ′

          q( |x)f(x) = q(x| )f( )          Px→x ′

acc x ′ P →xx ′

acc x ′ x ′
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(2.4) 

The downside of using a local proposal distribution is that when it is very narrow 

and only allows small proposed steps, many iterations are needed for searching 

and sampling, and the ideal situation that the proposal is locally proportional to 

the target distribution, "(:ʹ) = 	K ∙ 	F(:ʹ|:),  where C is constant, will rarely 

occur. Khoshkholgh et al. 2021 provides a more detailed explanation. 

 

On the other hand, a global proposal distribution has no connection with the 

current starting point :, and can be defined as a constant probability distribution 

where F(:|:ʹ) = ℎ(:) . If F(:ʹ|:) = ℎ(:ʹ)  is closely similar to "(:ʹ)  the 

Metropolis algorithm will be very efficient. If ℎ(:ʹ) and "(:ʹ) are equal there 

will be no rejections and we will have the perfect situation. There are two 

different methods for finding global proposal distributions: The first approach is 

to interpolate the visited points to generate a local approximate proposal ℎ(:) 

similar to "(:) in the vicinity of : (Christen 2005). However, such interpolation 

methods are constrained by the No-Free-Lunch Theorem because no external 

information is added and only already generated models are used in the sampling 

improvement. 

 

The second approach is to use external information to generate a global proposal 

distribution which is not obtained from previously explored regions. This can be 

done by computing a rough version of the target distribution. The global proposal 

should be very much alike the target distribution everywhere even far from 

generated samples. In this thesis we propose a new approach to find a global 

approximation by using external information from simplified physics. By 

estimating a simple forward model and acquiring an approximate posterior, a 

global proposal distribution is obtained and used in the sampling process. In this 

          = min( , 1)          Px→x ′

acc

f( )x ′

f(x)
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approach we keep the prior distribution and the likelihood the same as in the 

probabilistic/Bayesian framework.  

 

2.4 Informed proposal Monte Carlo  

 

If the problem is linear or Gaussian, the analytical form of posterior is known and 

can be used as a proposal. If the problem is nonlinear, there are two general 

situations. In the first scenario, we have external information about derivatives of 

the misfit and it is possible to calculate the derivative at each point. A known 

example that can be placed in this category is the Hamiltonian Monte Carlo  

method, where external information is used for coordinate transformation 

(Fitchner et al., 2018). A transformation in the parameter space is made where 

the transformed global proposal is close to the transformed target distribution. 

More details regarding how HMC should be understood in this framework can be 

found in Khoshkholgh et al., 2021. 

 

In the second scenario, our external information is obtained from knowledge of 

the forward relationship between model parameters and data. The idea behind 

MCMC with a problem dependent proposal is to find an approximate posterior 

"N(:) using the physics of the problem. In this way the approximate and the true 

posterior will, to some degree, be similar everywhere in the space or at least in 

most places where probabilities are significant. Figure 2 shows a simple example 

of such situation where we have a) a true posterior distribution and b) an 

approximate posterior which is used as a global proposal distribution. The 

approximate posterior is used for guiding and accelerating the sampling process 

therefore increasing the acceptance rate and having a more efficient algorithm.  
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Figure 2.2. a) The true posterior distribution b) approximate posterior 

 

Assume now that, in equation 1.1, the homogeneous probability density and the 

marginal prior are assumed to be constant. This gives 

 

D($,!) = 	? ∙ 3($)	.($,!) 

(2.5) 

We assume that	3($) is only nonzero close to $234 or, in the other words, 

modelization errors, described by .($,!), are much larger than observational 

data errors. Then we can rewrite the equation as follows: 

 

D5(!) ∝ D($234,!) ≈ 	.($234,!) 

(2.6) 

If we find an approximate solution PQ  by performing a simplified deterministic 

inversion, the true modelization error could be obtained if we had the true 

solution. But since we don’t have the true solution, we create a new inverse 

problem, similar to the original one, that has PQ  as the true solution. 

 

We propose the following method: First a simplified version of the physics 

behind the problem is determined and used to create an approximate forward 

-R(: ) which would provide a simple, but inaccurate inversion. Second, an 
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approximate solution !Q = 	ℎ($234)   to this simplified inversion is obtained. 

Third, we evaluate the modelization error by replacing the true model with the 

obtained approximate solution !Q  . Now, instead of computing the true 

modelization error 

S!6789 = !Q −!6789 , 

(2.7) 

which is impossible because we do not have !6789 , we compute the 

approximation  

S!$::72; 	= 	!Q − ℎ(-(!Q )).	 

(2.8) 

The more similar !Q  and !6789  are, the closer  S!$::72;   and S!6789 . The 

approximate solution !Q  and the components of the approximate modelization 

error vector S!$::72;  are used to create a modelization error distribution 

.U($234,!) in a functional form centered at PQ . One simple possibility is to use 

an isotropic Gaussian with !Q  as the mean, and the components of S!$::72; as 

standard deviations. The approximate modelization error distribution can be used 

as the proposal distribution: 

 

q(mʹ|m)= .U(dobs, m) 

(2.9) 

Figure 5 shows the true acoustic impedance and the approximated acoustic 

impedance for a 1D, 1000-parameter inverse scattering problem. Figure 6 

compares the true model envelope and the approximate model error envelope 

calculated from (2.8). 

For this one-dimensional example the proposal distribution can be built using an 

isotropic Gaussian with !Q  as the mean, and squared elements of the envelope 

function as the diagonal of a covariance matrix. A complete example of applying 

IPMC to a 1D case can be found in Khoshkholgh et al. 2021. The essential role 
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of  using a proposal distribution is to increase the frequency of independent 

models being accepted without affecting the prior information used in the 

calculations.   

 

 

 

 

 
Figure 2.3. The true accoustic impedence and appproximated accoustic impedence 
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Figure 2.4. The true model error envelope and the approximate model error envelope 
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Chapter 3 
 
Forward modelling and prior computation 
 
3.1 Forward modelling 

 

In reality, it often happens that certain variables cannot be directly measured or 

observed. Data is the information we observe and can be collected as the outcome 

of some physical experiments. The physical laws that show the connection 

between measured data and model parameters are known as forward models. 

When dealing with geophysical inverse problems, understanding and 

implementing forward calculations is necessary. As stated previously, the misfit 

is calculated by subtracting observed and predicted data. Physical theory provides 

the forward operator - or a computer modelling that must be applied to the model 

parameters in order to produce predicted values (Tarantola 2005):  

 

                                                    + = -(!) 

(3.1) 

Seismic data is generated by sending pressure waves originating from a seismic 

source into the subsurface, causing energy to propagate. Energy is reflected at 

boundaries where there is contrast in rock properties, and the arrival time is 
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recorded by receivers at the surface (Sheriff, 1995). The most accurate and 

complete way to generate a seismic data set is through full waveform modelling.  

A short introduction to full waveform modelling including elastic and acoustic 

wave equations and the mathematical procedure for finite difference modelling 

of acoustic waves is provided in appendix D. 

 

 

3.2 Prior computation 

 

In a probabilistic/Bayesian framework, our previous knowledge and information 

about the model parameters that is completely independent from observed data, 

and is called prior information. This information is formed as a probability 

distribution and  shows  expected models of the subsurface from previous 

experience or professional’s estimation. In the Bayesian approach, choosing the 

prior model has been a heavily debated topic (Jaynes, 1985; Scales, 1997; 

Mosegaard, 2011). Some believe that the prior information is even more 

important than information from observed data (Journel, 1994; Jaynes, 1984). 

Some believe in the probabilistic point of view proposed by Tarantola and Valette 

but they suggest that the prior information should be noninformative in order to  

avoid bias in the solution (Buland and More, 2003;  Khan and Mosegaard, 2002). 

Some support the idea that the prior information has its own value and importance 

and should be considered as an independent piece of information (Hansen et al, 

2012; Hansen et al, 2016). 

 

In this section we use a piecewise velocity model of the subsurface as an 

approximate solution to the inverse problem. The aim is to adopt a type of prior 

probability that would preserve the main topology of the model and at the same 

time permit large variations in the model. Our prior probability density appoints 

non-zero probability to layered velocity models where each layer is homogenous 
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with constant velocity values. In other words, the prior model has the topology of 

the layering found in the approximate solution. After randomly selecting a 

window inside the image, a warping strategy is used for perturbing the selected 

area. In the following, the mathematics behind the warping procedure is 

explained (Khoshkholgh et al., 2021). 

 

 

3.2.1 Image Warping 

 

A topology-preserving, continuous transformation of an image is called image 

warping and it can be defined as a redefinition in coordinates of each point in the 

image. There are two different procedures in image warping: A transformation 

that defined the new positions for each pixel and interpolation that calculates their 

new values. We have a two-dimensional function "(:/	, :<) that describes our 

image where f is the velocity value and :/	, :<   are horizontal and vertical 

directions.  

 

A displacement field is an image with vectors at each pixel and each vector 

defines the displacement between the original image and the warped image. 

Displacement field show how individual pixels in the image will be moved to a 

new point. Warping is described by a vector displacement field V, W
=8"
=;#
W < 1 | 

where :/	, :<  defines image coordinate position. If a random square window is 

chosen inside the image, the displacement coordinates can, e.g., be calculated in 

two directions using cosine variations. The displacements are zero at the window 

boundaries. The displacement size is random such that the maximum 

displacement is chosen from the modelization error. The direction of the  

displacement field is random. The size of the window is pre-defined and zero at 

the boundaries (Khoshkholgh et al., 2021). 
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3.2.2 Producing samples from the prior  

 

As explained in chapter 2, in IPMC our algorithm, a global proposal could be an 

approximate posterior that is obtained by simplified physics. For a full-waveform 

inversion problem, a layered approximate velocity model can be generated by 

classical signal processing, deterministic approaches, and/or interpretation. If we 

generate accurate synthetic data from this approximate velocity model, and invert 

the synthetic data with a simplified inverse (or an interpretation procedure), we 

will have a modelization error matrix containing a velocity difference at each 

point in the model. An envelope of these velocity differences can now be 

generated by using a Hilbert transformation, and the matrix of envelope values  

determines the maximum of (or standard deviation of) the velocity perturbations 

at each point, and hence also the maximum warping displacement. In order to 

generate samples from the prior we can randomly choose between perturbing the 

velocity value at each layer or the warping procedure. Figure 6 shows seven 

different realizations from the prior. 
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Figure 3.1.  Approximate velocity model  
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Figure 3.2. Some realization from the prior 
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Chapter 4 
 

Full-waveform inversion using Informed proposal MCMC 

 

Full-waveform inversion is a well-known technique for producing high-

resolution models that present physical properties of the subsurface. In FWI The 

full content of seismic data is used to create models that are able to fit observed 

data in a chosen area. Initial studies in FWI tried to look at this problem as an 

optimization procedure and they aim at solving it by minimizing the misfit in an 

iterative approach (Lailly 1983, Tarantola 1984). A full review of FWI that 

highlights least-squares optimization with elastic and acoustic examples is given 

by Virieus and Operto 2009. Since this problem is highly non-linear with extreme 

multimodality in the posterior, optimization approaches cannot supply proper 

uncertainty analysis for evaluating and understanding all aspects of the outcome 

of FWI problem.  
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Applying Markov chain Monte Carlo methods for FWI provides uncertainty 

analysis from the samples generated from posterior distribution. In MCMC the 

form and mathematical description of the posterior distribution is not needed and 

it is, in principle, easy to deal with complex multi-modal posterior distributions. 

However, in a high-dimensional space and for such computationally expensive 

forward calculations as we have in FWI, regular MCMC is not efficient and 

practical. Here we explore a couple of methods available for handling full-

waveform inversion where we have large scale, highly nonlinear probabilistic 

problems.  

Variational inference for full-waveform inversion is a non-sampling method first 

proposed by Nawaz and Curtis 2018.  Zhang et al 2020 applied the method to 

full-waveform inversion and named it VFWI. In this approach, a family of 

variational functions is determined and through optimization the algorithm 

searches for the best approximate posterior. This can be done by minimizing the 

Kullback-Leibler divergence (Kullback & Leibler 1951) iteratively to find the 

best approximate posterior.  

Hamiltonian Monte Carlo is another successful approach applied to FWI problem 

(Fichtner et al. 2018, Gebraad et al. 2020). In these methods our knowledge and 

information about the characteristics of the problem plays an important role. 

4.1 Sampling with an Informed proposal  

In this section we will describe our application of IPMC to a 2D full-waveform, 

seismic inverse problem in the acoustic approximation (Khoshkholgh et al., 

2021). The problem has ~10> parameters, but it illustrates how a combination of 

an informed proposal and prior information can make such a problem 

computationally tractable. 
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We use an Extended Metropolis-Hastings algorithm (Mosegaard and Tarantola, 

1995) where we sample the posterior in the following way: 

 

1. A model from proposal distribution  q(m′|m) is chosen and proposed 

to perturb the current model m. 

 

2. This new model m′ will be either accepted or rejected with the 

following probability: 

 

(4.2) 

         If m′ gets rejected, we repeat m (the current model). 

 

3. If m′ is accepted in step 2, another acceptance probability generated 

from the misfit function (likelihood) determines if m′ should be 

accepted or rejected. 

 

(4.3) 

                If m′ gets rejected, m will be repeated again. 

 

4.2 IPMC procedure for sampling the posterior probability in full-

waveform inversion  

 

We use 2D data from part of the Marmousi velocity model (Versteeg, 1994). The 

overall procedure can be expressed as follows: 

 

• 2D synthetic seismic data is generated by using the exploding reflector 

model that approximates zero offset data.  

          = min( , 1)          Pρ
acc

ρ( )q(m| )m ′ m ′

ρ( )q( |m)m ′ m ′

          = min( , 1)          PL
acc

L( )m ′

L(m)
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• Depth migration and deconvolution is done for obtaining a reflectivity 

model. 

• From the reflectivity, a high resolution velocity model is produced and 

added to the background velocity. 

• Interpreting the visible reflectors, a homogeneous-layer approximate 

velocity model is obtained that is an approximation to the true velocity 

model. 

• Synthetic data are calculated from the approximate model, using accurate 

finite-difference wave simulation. 

• The synthetic data is now inverted and a second approximation is obtained. 

• The difference between the first and the second approximation is an 

estimation of the modeling error. 

• Using a Hilbert transform, we can find the model error envelope and the  

modelization error distribution that informs us about a reasonable standard 

deviation of the perturbation at each point. 

• IPMC now starts from the approximate model, using the modelization error 

distribution as global proposal. 

• In 30 percent of the perturbations, a random layer in the model is chosen 

and the velocity at all the points inside the layer are perturbed. 

• In the rest of the perturbations, the layer boundaries are perturbed by 

warping the model, whereas the velocity value in each layer is constant. 

 

Looking at the results from IPMC inversion, we notice a considerable gain in 

efficiency and reduction in convergence time. This is noticeable when we 

compare result from the IPMC algorithm to those of the classical Extended 

Metropolis algorithm. It should be noted that noise variance has effect on 

convergence time in both of the algorithms, and also the fact that more data 

would influence the sampling speed and results in more constraint solution. 
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Chapter 5 
Discussion 

 
Inversion of seismic data for providing reasonable models of the subsurface has 

been widely used in geophysics. A probabilistic framework for solving an inverse 

problem is usually more practical and trustworthy than deterministic approaches 

due to ill-posedness and bias. Monte Carlo sampling methods are widely used for 

obtaining solutions to nonlinear probabilistic problems, but the challenges of 

using MCMC in highly-nonlinear high-dimensional problems have been a topic 

of research in different research areas, and many algorithms have been proposed 

for efficient sampling through MCMC. We should keep in mind that for a fair 

comparison between different algorithms we should consider all the information 

provided by the problem and all numerical operations performed in the algorithm. 

 

In the following the challenges and problems in applying and comparing MCMC 

to different problems is discussed and the advantages of using IPMC is explained.   
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It happens quite often that we see comparisons in the literature where different 

algorithms are considered without making sure that they are solving the exact 

same problem. When comparing the efficiency of different algorithms it is 

important to consider the same problem, and to use the total number of numerical 

operations as a measure of the computational workload. For example, when 

comparing Machine learning algorithms to other algorithms, the computational 

part of the training process must be included when evaluating the efficiency. 

 

Another example is in gradient-based methods when the numerical operations 

needed to compute the gradients are not considered. It should also be noted that 

a derivative-based algorithm could be very fast on a smooth problem but 

meaningless for a non-smooth case. For example in case of a geostatistical 

problem with categorical parameters. This highlights that we should know there 

is no general, practical MCMC sampler that could be efficient for all problems.  

 

A consequence of the No Free Lunch Theorem is that an informed algorithm that 

employs external knowledge about characteristics of the target distribution in 

order to navigate the search or sampling procedure is more efficient than a blind 

algorithm without any additional information. For any inversion algorithm the 

posterior distribution has a fixed amount of information but in addition to this 

information we might have external knowledge about the characteristics of the 

posterior such as smoothness, maximum value etc. Using this additional 

information results in better efficiency, as measured by the number of numerical 

operations needed to generate a specific number of independent models. This 

statement is true for both deterministic (optimization based) and sampling based 

methods. 
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It is clear that if external information about the target distribution is used then the 

sampling process will gain efficiency. In our methodology this information is 

introduced as a global proposal. In the IPMC approach a global proposal is 

obtained from the approximate physics of the problem. It is important to note that 

by using this method we are not just focusing to sample a given area of the model 

space. But the proposal is arranged such that the areas which are considered more 

probable by the approximation are being searched. This will not generate any bias 

asymptotically because when a model with high probability is proposed the  

acceptance probability will be decreased. If the sampler is paused sooner than 

expected we would notice that it has mostly explored the regions where the 

proposal distribution has higher value. If we continue sampling for a considerable 

amount of time we will see that the model space will be explored everywhere.  

This is typically not the case for simple MCMC because if the algorithm is 

stopped earlier, then the area around the arbitrary starting point may be over-

represented, even if it does not properly represent high-probability areas.  

 

There are some algorithms and practical implementations in the literature where 

they use approximate calculations in order to gain efficiency. For example in the 

neighbourhood algorithm (Sambridge 1999) the likelihood value is approximated 

by using the computed values of adjacent models and thus misfit and forward 

calculations are replaced by a nearest neighbourhood approximation. Lekic and 

Romanowicz 2011 proposed a method that uses approximate techniques in 

waveform tomography for imaging the Earth structure. They develop a hybrid 

approach that uses spectral element method for modelling waveforms in upper 

mantle. It should be pointed out that the performance of such algorithms depends 

directly on the quality of the approximations being made and if an approximate 

operation is not properly chosen it will produce an inaccurate posterior and false 

results.  
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However a new aspect in our approach is that we use the approximation but take 

it out again to avoid bias. And even if misleading and inaccurate information is 

injected as the approximate proposal, it will not distort the posterior in the long 

run. This is not the case for a prior or a likelihood where misinformation will 

mislead the posterior. Our proposal is obtained from the physics of the problem 

and represents important structure of the posterior. New additional information is 

being injected to construct an approximation that makes it different from other 

algorithms whose information comes from samples of the posterior density alone.  

 

We believe that our methodology can cause significant improvement in any 

available algorithms by augmenting them with an informed proposal. One could 

argue that the external information can augment the prior instead of being used 

as a proposal. The reason we introduce the external information only via the 

proposal is that the overlap between the external information and information 

already represented by the posterior will not be a problem and this could have 

significant practical value. Furthermore, in the worst case, even an oversimplified 

(poor) external information introduced by a proposal will only make the 

algorithm slower, but not introduce any bias.  

 

By implementing the methodology described in this thesis we can augment an 

existing blind sampler with an informed proposal which is built from external 

knowledge and we can turn the sampler into a specialized algorithm directed 

towards sampling our particular target distribution. In this way we obtain a single 

purpose algorithm that will probably function well in our specific problem but 

most likely fail in other cases. This approach can be applicable to problems with 

both smooth or non-smooth posterior distribution. 
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Chapter 6 
 
Conclusion 

 
This thesis explores some challenges and limitations in probabilistic inverse 

problems in geoscience. Practical issues in uncertainty quantification of the 

subsurface, including the lack of efficiency, non-linearity, high-dimensionality 

and high computational cost have been addressed.  

 

In this study we focus on the case of using Markov Chain Monte Carlo for solving  

inverse problems and sampling the posterior distribution. We have investigated 

the effect of using external information in form of a proposal distribution in order 

to make MCMC algorithm considerably more efficient. This external information 

presents the properties and structure of the target distribution. The evidence from 

this study suggest that by using simplified physics of a specific problem we can 

build an approximate posterior and use it as a global proposal to provide 

consistency between the proposal mechanism and the posterior distribution.  
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The suggested methodology enables the MCMC algorithm to complete the 

convergence process faster and the proposed models in sampling process will be 

chosen from regions with higher probabilities. Another significance of this 

method lies in the fact that even a poor approximate proposal will not distort or 

mislead the algorithm asymptotically, it will just affect the computation time. 

 

In a numerical example provided by this study we use an approximate posterior 

obtained by processing and interpretation of seismic data. This approximate 

model is used for evaluating the modelization error and then we use it to make a 

global proposal distribution. We have managed to significantly increase the 

efficiency of MCMC sampling strategy by using informed global proposal in our 

inverse problem.   

 

It should be noted that the algorithm performance using IPMC depends on the 

external proposal selected for the problem. The more similarity between the target 

distribution and the proposal, the higher efficiency of the algorithm. The 

proposed methodology has a potential to be applied to any type of MCMC 

sampling algorithm as long as we are able to form a proposal probability density 

that can approximate the posterior properly.  
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A 
Ricker Wavelet 

 

Ricker wavelet is a symmetric theoretical wavelet which can be defined as the 

second derivative of a Gaussian function mathematically (Ricker 1943, 1944; 

Wang, 2015). The amplitude of Ricker wavelet in time domain is shown as: 

 

r(t) = (1-!" ωp
2 t2 ) exp (-!# ωp

2 t2) 

 

Where t is time and ωp is the peak frequency. Figure A.1 shows the 2D Ricker 

wavelet with maximum frequency of ωp  and the frequency spectrum of it.  
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Figure C.1. a) Ricker wavelet r(τ). b) The frequency spectrum. (Wang, 2015) 
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B 
The Gaussian Distribution 

 

The multivariate normal (Gaussian) distribution is defined by Johnson and 

Wichern which is a generalization of univariate normal distribution to several 

dimensions. The Gaussian distribution in p dimensions for a random vector 

X=[X1, X2,…, Xp ] is shown as: 

 

f(x)= !
("%)

!
" 	|)|

#
"
 !*(+*,)’	)$#(+*,)/" 

 

Where C is a symmetric p × p  matrix that is variance -covariance matrix of X 

and μ is a p × 1  vector showing expected value of X. The multivariate normal 

distribution can be denoted by Np (μ , C) (Johnson and Wichern, 2007). 
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C 
Exploding reflectors 

 

When the reflectors in the subsurface act as imaginary sources and explode, the 

waves from explosion travel upward to the surface where we have hypothetical 

receivers. This conceptual modeling is called exploding reflectors and it is 

equivalent to zero-offset section. This similarity is not very accurate in existence 

of strong lateral velocity variations (Kjartansson and Rocca, 1979) 

 

 

 

Zero-offset section and exploding reflectors conceptual models 
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D 
 Full Waveform modelling 

 

The Elastic wave equation 

The process of approximating the seismic wavefield propagation when the 

subsurface medium properties are known, is called full-waveform modelling. The 

propagation of seismic wave-field in the subsurface can be modelled by solving 

the elastic or acoustic wave equations. If elastic wave equation is used for 

simulation then the propagation can be modelled as: 

  

ρ (x) ü(x, t) - ∇D (x , t) = f (x , t) 

 

Where u is the displacement field, ρ is density and D is the stress tensor and f is 

the external force density ( Fichtner, 2011). This equation is a form of Newton’s 

second law that shows equilibrium of momentum of particle, forces caused by 

internal stress and external forces ( Fichtner, 2011). By replacing the stress-strain 

tensor and using spatial derivatives of u we get a set of differential equations that 

characterize elastic wave equation (Aki and Richards, 2002; Kennett 2001). 

There are several approaches for deriving a numerical solution for wave equation, 

and the finite difference method is the most well-known and commonly used 

procedure in the literature. 
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The Acoustic wave equation 

 

Acoustic wave equation is usually used to decrease the computational burden of 

the problem. In this thesis, we use acoustic wave equation to model the forward 

problem. Acoustic wave equation considers pressure waves traveling in a fluid 

media. The linear wave equation for a particle in motion is (Leandro Di Bartolo 

et al 2012): 

 

 

 

Where v and p are velocity and acoustic pressure correspondingly. t and r are 

time and position vector,  is density and f is the density external force. This 

equation can be re-written as following: 

 

 

 

And k is the medium’s compression modules and iv is representing the source. 

Equation 3.3 and 3.4 can be simplified to the following equation  

 

 

 

Finite difference method is one of the most famous schemes for solving partial 

differential equations in wave propagation problem in full waveform modeling.  

There are many different examples of using finite difference method for solving 

          ρ(r) + ▽p(r, t) = f(r, t)          
∂v(r, t)

∂t

          + ▽. v(r, t) =           
1

k(r)
∂p(r, t)

∂t

∂ (r, t)iv

∂t

          p(r, t) − = −s(r, t)          ▽2 1
(r)c2

p(r, t)∂2

∂t2



 59 

elastic or acoustic wave equation in time or frequency domain (Alford et al 1974, 

Marfurt 1984, Levander 1988,  Kelly et al 1976). Staggered grid or partially 

staggered grid approach were also introduced and applied in geophysical 

problems by different researchers (Madariaga 1976, Magnier et al  1994, Saenger 

et al 2000). In this work we use a Matlab toolkit that uses central finite difference 

strategy to estimate partial derivatives of acoustic wave equation (Carrie et al 

1999). 

 
Finite difference modelling of acoustic waves 

 
In case of small density variations central difference approach is known to be 

simple and popular. We have the scalar wave equation in 2D (Carrie et al, 

1999): 

 

 

Where the Laplacian is:  

 

 

 

Using central difference operators there will be two types of approximations 

(second order and fourth order). The second order approximation to the Laplacian 

operator results in: 

 

 

n and j are x coordinate and z coordinate grid correspondingly. And fourth order 

approximation is shown as: 

          = (x, z) ϕ(x, z, t)          
ϕ(x, z, t)∂2

∂t2 ν2 ∇2

          ϕ = +           ∇2 ϕ∂2
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If we assume that the grid spacing is similar in to directions and ∆x=∆z, then the 

stability requirement for second order approximation is: 

 

 

 

And for fourth order approximation we have : 

 

 

 

Using second order finite difference approach for wavefield at time t +Δt we will 

have: 

 

 

 

Knowing the seismic waveform at t and t-∆t we are able to calculate it at t+∆t 

and generate snapshots showing it at different discrete times. The procedure of 

the finite difference algorithm is shown in figure 3.1 (Carrie et al, 1999). 
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Finite difference algorithm procedure (Carrie et al, 1999) 
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A) The marmousi velocity model. B) A snapshotof the wavefield at 0.5 s C) A 
snapshot of the wavefield at 1 s D) The shot record of the velocity model 

(Carrie et al. 1999) 
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S U M M A R Y
Any search or sampling algorithm for solution of inverse problems needs guidance to be
efficient. Many algorithms collect and apply information about the problem on the fly, and
much improvement has been made in this way. However, as a consequence of the No-Free-
Lunch Theorem, the only way we can ensure a significantly better performance of search
and sampling algorithms is to build in as much external information about the problem as
possible. In the special case of Markov Chain Monte Carlo (MCMC) sampling we review
how this is done through the choice of proposal distribution, and we show how this way of
adding more information about the problem can be made particularly efficient when based on
an approximate physics model of the problem. A highly non-linear inverse scattering problem
with a high-dimensional model space serves as an illustration of the gain of efficiency through
this approach.

Key words: Inverse theory; Statistical methods; Waveform inversion; Computational seis-
mology.

1 I N T RO D U C T I O N

Since its introduction in the late 1900s (Metropolis et al. 1953;
Hastings 1970; Kirkpatrick et al. 1983; Duane et al. 1987; Marinari
& Parisi 1992), Markov Chain Monte Carlo (MCMC) methods have
been established as a main tool for providing solutions and uncer-
tainty estimates for small- to intermediate-scale, highly non-linear
inverse problems. This development is closely connected to the dra-
matic increase in computational speed over the last few decades.
However, there has also been an increasing demand for solving
inverse problems on a larger scale, with more time-consuming for-
ward calculations (e.g. Dettmer et al. 2011; Fichtner et al. 2018),
and more complex a priori information (e.g. Grana 1999; Khan
et al. 2007; Lange et al. 2012; Cordua et al. 2015; Zunino et al.
2015; Hunziker et al. 2017; Laloy et al. 2018), some of which do not
even rely on smoothness of the problem. In this connection it has be-
come clear that straightforward use of standard MCMC algorithms
is unfeasible, and recent years have seen a surge of improved sam-
plers with more and more sophisticated sampling strategies (Tierney
1999; Liu 2002; MacKay 2003; Haario et al. 2006; Brooks et al.
2011; Vrugt 2016; Ying et al. 2020). Most of the methods developed
for improved efficiency use gradients of the posterior density (or its
logarithm) in their proposal mechanism (Roberts & Tweedie 1996;
Dosso 2002; Girolami & Calderhead 2011; Neal 2011; Dosso et al.
2014) raising the problem that gradients are generally computa-
tionally expensive, except in cases where special, problem-specific

∗ Now at: Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5,
8092 Zrich, Switzerland

properties of the posterior density can be utilized (Fichtner et al.
2018).

Despite all these improvements, there is a growing impression
amongst applicants that MCMC strategies are fundamentally slow
(Raj et al. 2014; Yogatama et al. 2014; Andersen et al. 2018),
and that alternatives should be found. This experience has indeed
led to improvements where quite efficient solutions, all tailored to
the problem at hand through a priori constraints and/or well-chosen
simplifying assumptions, have shown promising results. Notable ex-
amples are scalable Monte Carlo algorithms which aim at improved
computational efficiency through parallelization or subsampling the
data (Neiswanger et al. 2014; Rabinovich et al. 2015; Scott et al.
2016; Minsker et al. 2017; Nemeth & Sherlock 2018; Srivastava
et al. 2018). They work for problems where samples can be drawn
from a partial posterior that is conditioned on a limited subset of
data. For this category of algorithms the challenge is to merge the
many partial posterior samples to create a reasonable approxima-
tion to the full posterior. For the general non-linear problem, this
may be difficult to accomplish with sufficient accuracy (Nemeth &
Fearnhead 2020).

Another recent development is an attempt to perform often time-
consuming likelihood calculations with neural networks, trained on
a very large number of model-data pairs sampled from an a prior
probability distribution (Andrieu et al. 2003; Hunziker et al. 2017;
Laloy et al. 2017, 2018; Scheidt et al. 2018; Nawaz & Curtis 2019;
Holm-Jensen & Hansen 2020).

The ‘race of Monte Carlo ideas’ has been accompanied by in-
tense discussions in the research community about the efficiency of
algorithms. Not only have intuitive ideas been held up against each
other, but arguments for and against methodologies have also been

C© The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For
permissions, please e-mail: journals.permissions@oup.com 1239
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accompanied by numerical experiments to support the conclusions.
This approach rests apparently on a sound basis, but if we take a
closer look at the way algorithm comparisons are typically carried
out, we discover a common deficiency: In very few cases algorithms
are compared by solving exactly the same problem. At the surface,
test problems look similar, but a closer look reveals that the infor-
mation available to algorithms in the same test differs significantly.
All too often, the total number of numerical operations (forward
calculations for an inverse problem) is not used as a measure of
computational workload when evaluating the efficiencies. This can
be a problem when presenting the results from machine learning, if
the computational workload of ‘training’ is not included when the
efficiency is evaluated. Another example may be in presentation of
gradient-based algorithms where efficiency is evaluated as ‘number
of iterations to convergence’, without counting numerical opera-
tions needed to compute the gradients. As a result, comparisons
often become meaningless, but there is one thing that seems clear
from most comparative studies: The more additional information
about the posterior probability density of the inverse problem we
build into the code of an algorithm, the better is our chance to create
an efficient the algorithm.

The purpose of this paper is to explore how additional informa-
tion in MCMC sampling may significantly reduce the computational
workload. We will first discuss the reasons for the often excessive
time-consumption of simple MCMC strategies. We will then turn
to the problem of finding and applying supplementary information
to speed up calculations, not in the form of a priori information
about possible solutions, but from the approximations to the phys-
ical problem (the forward relation). Our aim will be to apply this
information in a way that will not bias the sampling asymptoti-
cally. We shall explore and support our findings through numerical
experiments and by comparing with other methods.

Our test example will be the acoustic inverse scattering problem
for a vertical plane wave hitting a horizontally stratified medium
with varying acoustic impedance (product of wave speed and mass
density). This problem is highly non-linear due to internal multiple
scattering (echoes) and attenuation in the medium. Since our aim is
to evaluate solutions and their uncertainties, we use MCMC for the
analysis. We compare an MCMC sampling approach with a simple
proposal distribution with one where the proposal mechanism is
designed from an approximation to the forward relation. The result
is a significant improvement in the algorithm’s efficiency.

2 M C M C A N D T H E P RO P O S A L
P RO B L E M

2.1 Proposal distributions

The basic idea behind any implementation of MCMC is an interplay
between proposals and rejections. In each iteration, sampling from
a probability density f (x) over a space X proceeds from a current
value x by first randomly proposing a new value x ′ according to
the so-called proposal distribution q(x ′|x), followed by a random
decision where x ′ is accepted, with probability (Metropolis et al.
1953; Hastings 1970):

P x→x ′
acc = min

(
f (x ′)q(x|x ′)
f (x)q(x ′|x)

, 1
)

. (1)

This acceptance probability ensures that, once an equilibrium
sampling distribution is established, it will be maintained through
detailed balance, because the probability P x→x ′

acc q(x ′|x) f (x) of a

transition from x to x ′ equals the probability of the reverse transi-
tion, P x ′→x

acc q(x|x ′) f (x ′) (Mosegaard & Sambridge 2002). At this
point it is important to note that the proposal distribution has no
influence on the distribution to which the sampling converges, it
only influences the speed of convergence.

The two most common types of proposal distributions are:

(i) Local proposal distributions q, where q(x ′|x) depends on the
starting point x. A frequent assumption is translation invariance
where q(x ′|x) = q(x ′ − a|x − a) for any shift a in the parame-
ter space. Another common assumption is symmetry : q(x ′|x) =
q(x|x ′), and in this case we get a simpler expression for the accep-
tance probability (1):

P x→x ′
acc = min

(
f (x ′)
f (x)

, 1
)

. (2)

(ii) Global proposal distributions q that are independent of the start-
ing point x. This means that q(x|x ′) = h(x) where h(x) is fixed
during the sampling process. If h(x) is in some sense close to the
target distribution f (x), h is often called a ‘surrogate’ (for f).

An MCMC sampler is only efficient if large enough steps (con-
necting any two areas of high values of f (x) in a few steps) are
frequently proposed and accepted. This ability critically depends
on q(x ′|x), and requires that q(x ′|x) is (at least locally) similar to
f (x ′). This is revealed by a close look at the expression for the
transition probability from x to x ′:

P(x ′|x) = q(x ′|x) · min
(

f (x ′)q(x|x ′)
f (x)q(x ′|x)

, 1
)

, (3)

showing that the probability of the transition x → x ′ is high if

(i) q(x ′|x) is large and
(ii) f (x ′) ≈ C · q(x ′|x) where C is a constant.

We will now see how implementations of local and global pro-
posals may address these questions.

2.2 Local proposals

The use of local proposals is an attempt to satisfy the above two
conditions:

(i) This condition is obviously locally true (close to x) for a local
proposal (per definition).
(ii) This condition is usually met by assuming that f is smooth and
by choosing a smooth, sufficiently narrow q(x ′|x). In this way the
condition applies in most of q’s support.

Local proposals are widely used, but they have at least two serious
drawbacks. First, if they are too narrow, the proposed steps will
be so small that the algorithm needs many iterations to traverse
the parameters space. As a result, many iterations are required to
produce sufficiently many independent samples from the space.
Secondly, condition (ii) may not be easy/possible to satisfy (or
insufficient) in practice. Either because f is not smooth, or if f
is smooth, but a ’sufficiently narrow’ q only allows unacceptably
small steps.

To exemplify and quantify the possible problems with local pro-
posals in high-dimensional spaces, let us consider the case where
the target distribution of x is Gaussian with covariance matrix C and
mean x0: f (x) = Nx (x0, C). Assume for illustration that our pro-
posal distribution is an isotropic Gaussian q(x|xq ) = Nx (xq , Cq )
with mean xq and covariance matrix Cq , and that we, in the sam-
pling process, have been fortunate to arrive at point with a high value
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of f (x), say, for simplicity, at its maximum point x0. We can now
calculate the expected acceptance probability P x0→x proposed in
the next step by the algorithm:

E(P x0→x ) =
∫

X

f (x)
f (x0)

q(x|x0)dx

=
∫

X

Nx (x0, C)
Nx0 (x0, C)

Nx (x0, Cq )dx

= Nx0 (x0, C + Cq )
Nx0 (x0, C)

∫

X
Nx (x1, C1)dx, (4)

where

x1 = (C−1 + C−1
q )−1(C−1x0 + C−1

q x0) = x0 (5)

and

C1 = (C−1 + C−1
q )−1 . (6)

Since the last integral in (4) is 1, we have the following expression
for the expected acceptance probability:

E(P x0→x ) = Nx0 (x0, C + Cq )
Nx0 (x0, C)

=
(

det(2πC)
det(2π (C + Cq ))

)1/2

. (7)

Both Cq = σ 2
q I (with σ 2

q > 0) and C are diagonal in the frame
spanned by C’s eigenvectors, and if we assume that the eigenvalues
of C are σ 2

1 ≥ · · · ≥ σ 2
N > 0, where N is the dimension of X , the

eigenvalues of C + Cq are (σ 2
1 + σ 2

q ), . . . , (σ 2
N + σ 2

q ). From this we
have

E(P x0→x ) =
N∏

n=1

(
σ 2

n

σ 2
n + σ 2

q

)1/2

. (8)

From (8) we see that for any non-zero values of σ n and σ q we have

E(P x0→x ) → 0 for N → ∞ . (9)

If the proposed steps are kept very short (σ q is small compared
to all σ n), the decrease of E(P x0→x ) with N is slow. But this
situation is of no practical value, because adequate sampling by
the algorithm requires that it can traverse high-probability areas of
f (x) within a reasonable amount of time. For non-negligible step
lengths, the situation is radically different. Indeed, if there exists
an integer K and a real constant k such that σ q > kσ n for all n >

K, then E(P x0→x ) decreases more that exponentially with N. In
other words, if the distribution f (x) is ’elongated’ compared to the
proposal q, that is, if it is broader than q in only a fixed number K
< N of directions/dimensions, the mean number of accepted moves
will decrease at least exponentially with the number of dimensions.

As an example, let us consider the case where σ 2
q = 1, and σ 2

n =
1/n. For N = 2 this gives an expected acceptance probability of
0.4082, corresponding to a mean waiting time of about 0.4082−1 ≈
2.5 iterations between accepted moves. For N = 10 the expectation is
1.5828 × 10−4, and if we could compute N = 100 it would decrease
to 1.03 × 10−80, giving a waiting time of about 3.0 × 1062 yr for
1 Billion iterations per second.

The above analysis is carried out under the favorable assumption
that the maximum of f (x) has been located by the algorithm, and
does not even consider the serious difficulties faced by the sampling
algorithm in the initial search for points with high values of f (x) (the
burn-in phase). Hence, it is clear that the proposal mechanism, as
defined by q, is the Achilles heel of the standard MCMC approach.

2.3 Global proposals

A global proposal q(x ′|x) is independent of x and hence it can
be written q(x ′|x) = h(x ′). The use of global proposals seeks to
meet the requirements of (i) and (ii) by choosing h(x ′) ≈ f (x ′).
In fact, from (3) it is easily seen that global proposals are ideal if
they closely resemble the target distribution. In the ideal case where
h(x ′) = f (x ′), the transition probability is equal to f (x ′), and the
sampler has no rejected moves. Arbitrarily large steps in the sample
space are allowed, and therefore all sample points are statistically
independent.

However, the problem with global proposals is to find them in the
first place. There are, in principle, two approaches:

(i) Using, as proposal, an approximation h(x) to f (x), esti-
mated/interpolated from already visited sample points in the neigh-
bourhood of x (Christen 2005; Ying et al. 2020). This proposal may
be consistent with (similar to) f in the neighbourhood of existing
sample points.
(ii) Using a global approximation h(x) derived from external infor-
mation about f (x), that is, not derived from already visited sample
points. This proposal should be consistent (similar to) f even far
away from existing sample points. One way to do this is to perform
a simplified inversion based on simplified physics, and to use the
calculated, approximate posterior as h(x). We shall see an example
of this later. Another approach that is sometimes possible is to use
external physical knowledge to perform a coordinate transformation
(x1, x2, . . . , xM) → (y1, y2, . . . , yM) in the parameter space such that
the transformed distributions hy( y) and fy( y) are approximately
equal (except for a normalization factor) along several coordinate
directions in the new system. In this case we call hy( y) a partial
approximation to fy( y). We will see later how the concept of partial
approximations is successfully applied in Hamiltonian Monte Carlo
(HMC) inversion.

In the following we will take a closer look at methods for finding
global proposals for inverse problems. However, before we proceed,
we shall first understand the fundamental advantage of (ii) over (i).
To this aim, we shall look into an important theorem, proven in the
late 1990s, namely the No-Free-Lunch (NFL) Theorem (Wolpert &
Macready 1997; Mosegaard 2012).

3 N O - F R E E - LU N C H T H E O R E M S A N D
T H E I M P O RTA N C E O F I N F O R M AT I O N

We will now make an important distinction between blind algo-
rithms and informed algorithms. We use the following definitions:

(i) A blind algorithm is an algorithm whose search or sampling is
performed only via an oracle. An oracle is a function that, when
called by the algorithm, is able to evaluate the target distribution f at
a given point x. The oracle is used by the algorithm as a black box:
No other properties of f than the corresponding inputs and outputs
are used. In computer science, blind algorithms are often called
heuristics. For inversion, there are many well-known examples of
blind algorithms in use: Regular MCMC, Simulated Annealing,
Genetic Algorithms, Neural Networks, etc.
(ii) An informed algorithm is an algorithm that, in addition to an
oracle, uses known, external properties of f to guide/improve the
search or sampling. By external properties we mean any information
about f that is not given by samples from f. Examples of informed
algorithms used in geophysical inversion are HMC (Duane et al.
1987; Neal 2011), exploiting that for seismic wave fields adjoint
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methods can be used to efficiently compute misfit gradients (Ficht-
ner et al. 2018) and Discriminative Variational Bayesian inversion
exploiting knowledge about the statistics of the unknown model in
case it is a Markov Random Field (Nawaz & Curtis 2019).

Based on the No-Free-Lunch Theorem (Wolpert & Macready
1997), Mosegaard (2012) considered limits for the performance of
algorithms designed for solution of inverse problems. The conclu-
sion was that all blind inversion algorithms in finite-dimensional
spaces (optimization-based as well as sampling-based) have exactly
the same performance when averaged over all conceivable inverse
problems. Only an algorithm that take into account more character-
istics of the ‘forward model’ than given by the oracle can ensure
performance that is superior to blind inversion algorithms.

We can draw the conclusion that efficient inversion algorithms
are the ones that operate in accordance with specific properties of
the problem it is aiming to solve. If the problem is linear with known
Gaussian noise statistics and a given Gaussian prior, it can be solved
in ‘one iteration’ (applying a closed-form solution formula). If the
problem is mildly non-linear with, for example Gaussian noise and
Gaussian prior, our knowledge that the posterior probability distri-
bution is unimodal will render the problem solvable in relatively
few iterations. For a highly non-linear problem, the situation is, in
principle, the same, except that the term ‘highly non-linear’ usually
signals a lack of knowledge of the shape of the posterior. The pos-
terior may be highly multimodal and possess other pathologies, but
we may still have some sparse knowledge about it, for instance that
it is smooth, so we can compute gradients. Irrespective of what we
know about the target posterior distribution, we have the option of
building this information into the algorithm. If we have plenty of
information, we can create an efficient algorithm. If we have sparse
information, our algorithm will need more computation time.

Countless methods use interpolation methods to construct local or
global approximations to the posterior and to use them as proposals
in the sampling process (Christen 2005; Ginting et al. 2011; Jin
2011; Stuart et al. 2019; Ying et al. 2020). These methods are
useful and may improve performance, but they still suffer from the
limitations set by the NFL Theorem, because they do not bring in
additional, external information.

In the following we will suggest an approach that allows us to
design more efficient inversion algorithms through incorporation
of additional, external information about the target distribution.
The approach is general and can be used in deterministic as well
as in sampling approaches. In this exposition we will focus on
MCMC sampling, and our approach will be to replace a traditional,
blind proposal mechanism with one built from external physical
information, providing a reasonable global approximation to the
posterior.

4 M C M C W I T H P RO B L E M - D E P E N D E N T
P RO P O S A L S

The complete, probabilistic solution to an inverse problem—the
posterior probability density—contains a certain, finite amount of
information. In addition to the posterior, we may have additional,
external information about properties of the posterior (e.g. smooth-
ness, maximum value, principal axes at selected points). If the exter-
nal information can be used to guide the sampling process, we gain
efficiency, measured as number of numerical operations needed to
collect a given number of independent samples. The more external
information about the the ’structure’ of the posterior we can build
into the algorithm, the more efficient our inversion algorithm can

be. Following the NFL Theorem, these statements must be true for
any inversion algorithm, whether it is optimization-based (‘deter-
ministic’) or sampling-based (Monte Carlo). Here we will focus on
sampling-based algorithms, in particular MCMC.

As stated above, there are basically two ways of obtaining more
information about the target (posterior) distribution:

(i) To collect information while sampling. This can for instance
be done via calculation of gradients (e.g. used to derive principal
axes proposals). These approaches are ‘blind’, in the sense that, to
operate, they do not require the use of external information about the
structure of the target distribution. They try to discover properties
of the target distribution on the fly, and are therefore limited by
the (finite) amount of information expressed therein. This category
of algorithms is not the theme of this paper. ‘Blind’ algorithms are
subject to the NFL Theorem, stating that the performance of all these
algorithms is, when averaged over all conceivable problems, exactly
the same. In other words, if an algorithm based on, for example
principal axes proposals is good at solving certain problems, it must
be poor in other cases (to maintain the general average).
(ii) The second way to obtain more information about the target
distribution is to use external information about the structure of
the posterior. Such information will make exploration of the poste-
rior more easy, providing knowledge about the posterior that would
otherwise have been difficult (time-consuming) to obtain from sam-
ples. This is the subject of our paper. By augmenting an existing
blind sampler with a proposal, built from external information, we
turn the sampler into a specialized algorithm directed towards sam-
pling our concrete target distribution. In this way we obtain a ‘single
purpose’ algorithm that will probably perform well in our case, but
most likely will fail in other cases.

4.1 Constructing an MCMC algorithm with an informed
proposal

Let us now try to create an MCMC algorithm augmented with
external knowledge about the structure (properties) of the posterior
to speed up the sampling process. Since our goal is only to improve
efficiency of the algorithm (and not to modify the posterior), we
want to leave the usual ‘prior’ and ‘likelihood’ untouched. To this
aim, we want the external information (e.g. a physical model with
simplified mathematics) to enter the Metropolis–Hastings algorithm
via the proposal distribution, leaving the posterior asymptotically
unbiased. Furthermore, we can allow even oversimplified external
information without distorting the result. In the worst case it will
only slow down the algorithm.

Let us assume that this information comes from a proposal in the
form of an approximation to the posterior probability distribution
σ̃ (m) ≈ σ (m). Then, our proposal will not only be close to σ in the
neighbourhood of points already visited by the algorithm, it is also
expected to work well far away from current samples. We will now
see how approximate posteriors can be constructed for linear and
non-linear problems.

4.2 Linear, Gaussian problems

Sampling of solutions to a linear Gaussian problem through MCMC
sampling is straightforward. Since we have an explicit expression
for the Gaussian posterior, the distribution itself can be used as
an optimal proposal. Samples e from an N-dimensional standard
(isotropic) Gaussian (mean 0 and covariance I) can be generated
with, for example the Box–Müller method, and the desired samples
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m from a N-dimensional multivariate Gaussian with mean m0 and
covariance C can be calculated as m = m0 + Ae, where AAT = C.
The matrix A can be found by, for instance, Cholesky decomposi-
tion.

4.3 Non-linear problems

For non-linear problems there are several ways to proceed, and the
method will depend on the external information available about the
true posterior. In the following, we will take a look at two important
cases, namely (1) when external information about derivatives of
the misfit is available and (2) when external information in the form
of an approximate relation between model parameters and data is
used. The latter case will investigated in a numerical example in
Section (5).

4.3.1 Using information about derivatives of the misfit

Any inverse problem with a smooth posterior can be sampled with
fewer rejections if partial derivatives of the misfit function are avail-
able (Roberts & Tweedie 1996; Dosso 2002; Girolami & Calderhead
2011; Neal 2011; Dosso et al. 2014). However, if derivatives have to
be calculated from internal information (that is, directly from sam-
ples of the posterior itself), the gained efficiency may be lost due to
the many extra sample points required to estimate the derivatives. If,
however, external information about the mathematical structure of
the problem allows us to compute derivatives directly at each point
in model space, as for instance when using the method of adjoints
in seismic inversion, it allows us to devise efficient proposals. In
general, the higher order derivatives we can get, the more accurate
the Taylor approximation to the misfit or the posterior around any
point in the model space will be (Girolami & Calderhead 2011).
And using this approximation to build a global proposal will lead
to high acceptance rates and large step lengths.

To see how gradient information can be used, consider an inverse
problem with M model parameters and an everywhere smooth misfit
function S(m) = − log(σ (m)), where σ (m) is the posterior proba-
bility density. Assume that the gradient ∇S(m) is available for any
given m, and that we have an approximate solution to the problem
m̃. Assume further that in a subset of the parameter space con-
taining m̃ we can define an invertible mapping x = f (m) between
the original model parameters and new, orthogonal curvilinear co-
ordinates x, such that, for any m, the first transformed coordinate
is x1 = S(m), the first local base vector in the new x-coordinate
system is b1 = ∇S(m), and the remaining base vectors b2 . . . bM

are orthonormal. b2 . . . bM span a subspace in which S(m) is lo-
cally constant around m, and this means that local sampling near
m along all the sampling directions b1 . . . bM is simple: The step
length in the b1-direction must be tuned according to the size of
|∇S(m)|, but local steps in the remaining M − 1 directions can be
taken without rejections. This advantage of knowing the gradients
is further increased when we observe that we can use the gradi-
ents (and indeed higher-order derivatives, if available) to iteratively
move in directions of constant S(m). This process will, in general,
require updated base vectors b2 . . . bM , but it will allow large steps
without rejections, and this is what we strive for when designing an
efficient MCMC algorithm. When using this sampling strategy we
should remember that we sample the posterior σ (x) in transformed
coordinates x, and that the desired posterior σ (m) is computed
from σ (x) by multiplication with the absolute value of the Jacobian

determinant of the transformation f:

σ (m) = σ (x)

∣∣∣∣
∂(x1, . . . , xM )
∂(m1, . . . , xm)

∣∣∣∣ . (10)

Since our coordinate transformation f locally can be viewed (ap-
proximately) as a pure rotation with Jacobian determinant 1, fol-
lowed by a stretching/compression along the gradient with a factor
|∇S(m)|−1, the Jacobian determinant for f becomes:

∂(x1, . . . , xM )
∂(m1, . . . , xm)

∝ |∇S(m)| . (11)

This procedure is an important example of how to apply knowl-
edge about gradients everywhere in the model space to define a
coordinate transformation m → x where a good, partial approx-
imation σ (x) to the posterior can be defined in the new frame.
The resulting proposal is approximately proportional to σ (x) (in
fact, constant) in all coordinate directions, except one (the gradient
direction). The result is a significant gain in sampling efficiency.

A example of using the above method of derivatives is the ap-
plication of Hamiltonian Monte Carlo (HMC) (Neal 2011) to full-
waveform seismic inversion (Fichtner et al. 2018; Gebraad et al.
2020), in which waveform-misfit gradients are computed using the
method of adjoints. Using an analogy from analytical mechanics,
this method works in an augmented space where half of the pa-
rameters are the usual model parameters m (viewed as generalized
space coordinates), and the other half are ‘generalized momentum
parameters’ p. The posterior distribution in the augmented space
σ̂ is the product of the posterior distributions over m and p, re-
spectively: σ̂ (m, p) = σ (m)σ ( p) where σ ( p) is usually set to be
Gaussian. Defining the joint misfit as Ŝ(m, p) = − log(σ̂ (m, p)),
the HMC sampler—knowing the derivatives—is now able to alter-
nate between sampling along contours of constant Ŝ, and jumping
between contours of different Ŝ. Stepping in directions of constant
Ŝ is accomplished by identifying Ŝ with the ‘the total energy’,
and calculating the orbit of constant energy through integration of
Hamilton’s equations. According to Liouville’s theorem in Hamil-
tonian mechanics (Tolman 2016), this approach will automatically
include the Jacobian transformation (10). HMC gives an efficient
sampling of the joint posterior, and the marginal posterior σ (m) over
the (real) model space is trivially obtained by simply discarding the
artificial momentum variables.

The Hamiltonian dynamics used by this method is irrelevant for
our discussion, but it is important to understand that the efficiency
of this method originates from the knowledge of gradients in the
joint space. These gradients carry important information about the
(possibly strongly non-Gaussian) posterior, allowing the algorithm
to take large steps without risking frequent rejections. The resulting
proposal distribution is a partial approximation to the joint posterior
in a large subset of the joint space, resulting in efficient sampling
of the joint posterior, and hence its marginal in the m-subspace.

4.3.2 Using information derived from an approximate forward
relation

Let us consider the general expression for the joint posterior prob-
ability in the formulation of Tarantola & Valette (1982):

σ (d, m) = ρ(d, m)θ (d, m)
µ(d, m)

(12)

where d is data, m is the model parameters, ρ(d, m) is the prior
probability density, and µ(d, m) is the homogeneous probability
density (assigning equal probabilities to equal volumes) in the joint
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(d, m)-space. The density θ (d, m) expresses the ‘uncertainty of the
forward relation’ between m and d. For simplicity, let us assume
that the homogeneous probability density µ(d, m), as well as the
marginal prior in the model space ρm(m) is constant, which leads
us to the following expression for the joint posterior:

σ (d, m) = k · ρ(d)θ (d, m) . (13)

where k is a normalization constant. Under the further assumption
that the observational data uncertainties are small, compared to the
modelization errors (remembering that it is at small data uncer-
tainties that MCMC algorithms show a critical slowing-down), we
arrive at the following approximation to the posterior in the model
space:

σm(m) ∝ σ (dobs, m) ≈ θ (dobs, m) (14)

This is a very rough approximation, but it should be remembered
that we will not replace the accurate posterior by this expression. The
approximation will only be used as a global proposal distribution to
speed up the search/sampling from the correct posterior.

The basic idea will typically be to first solve the inverse problem
with simplified physics, obtaining an approximate solution m̃. The
deviation of this from the true solution is what we call the (true)
modelization error δmtrue, and if we can estimate this error, we can
use it to build a a rough modelization error distribution θ (dobs, m).

Since we do not know the true solution for a real-data inverse
problem, we cannot calculate the error δmtrue after having solved
the problem. δmtrue would have been the difference between the true
model vector mtrue and the calculated model vector m̃, but we do
not know mtrue. Our solution to this is to create an artificial inverse
problem that is ‘close’ to the original problem, the difference being
that the true model of the new problem is m̃. The data for this
problem can be calculated as g(m̃). We can now solve this problem
and compute the modelization error δmapprox . Since the artificial
inverse problem is ‘close’ to the original problem, we expect that
δmapprox is close to δmtrue. In the following section (5) we will
adopt the following simple procedure:

(i) Choose a simplified forward function g̃(m) expressing much of
the essential physics, and at the same time allowing an efficient (but
probably inaccurate) inversion. This step can be skipped if a direct
way to the following step (without a formal inversion) is available.
(ii) Find a solution m̃ = h(dobs) to the simplified problem with an
acceptable datafit. The ‘pseudo-inverse’ h must give a unique an-
swer, for instance through application of a regularization procedure.
(iii) Estimate the modelization error introduced by using g̃(m) in-
stead of the accurate forward function g(m). This error is quantified
by the distribution θ (dobs, m), which is also our rough approxima-
tion to the posterior σm(m). The procedure is:

(a) The ‘true’ modelization error is

δmtrue = m̃ − mtrue,

but since mtrue is unknown, we compute instead an approximate
modelization error

δmapprox = h(g(m̃)) − m̃.

The above formula estimates what the modelization would have
been if m̃ had been the true model. In case m̃ is close to mtrue, we
expect that δmapprox will be close to δmtrue.
(b) Use δmapprox to construct a reasonable approximation to the
modelization error distribution θ (dobs, m), centred at m̃. This can
be done by assuming a functional form for θ (dobs, m) and by using

the components of δmapprox to obtain the parameters of θ (dobs, m).
An example of this can be found in the following section.

(iv) Use the approximate modelization error distribution as proposal
distribution:

q(m′|m) = θ (dobs, m′) (15)

5 N U M E R I C A L E X A M P L E

To illustrate the gain of computational efficiency obtained by using
even a rough approximation to a high-dimensional target posterior as
proposal, we shall look at a 1-D inverse scattering problem (Fig. 1).
The unknown model is a horizontally stratified medium with 1000
homogeneous layers. Fig. 1(b) shows the acoustic impedance as a
function of distance from the surface. A plane-wave seismic pulse
(modelled as a Ricker wavelet) is injected perpendicularly into
the medium at the surface, and the data (backscattered waves from
the medium) are recorded at the surface (Fig. 1a left-hand side). The
data are synthetic 1-D full-waveform seismic signals generated by
the propagator matrix method, containing all multiple reflections,
transmission losses and damping effects, so the inverse problem of
recovering the model from the data is highly non-linear. For com-
parison, an approximate seismogram, computed by convolution of
the reflectivity with the Ricker wavelet, is shown in Fig. 1(a) (mid-
dle), together with its error (deviation from the correct seismogram)
to the right. Fig. 1(c) shows an approximate solution to the inverse
scattering problem in the absence of noise, computed by deconvo-
lution, and converted to impedance through trace integration and
addition of the slowly varying trend from Fig. 1(b). The approxi-
mate solution requires very little computation time (of the order of
one forward calculation), but is clearly inaccurate (compare to the
‘true’ model in Fig. 1b). The purpose of the study is to show how
the approximate result can be used to efficiently produce a more
accurate solution with uncertainty estimates using Markov Chain
Monte Carlo (MCMC).

Our aim is to produce enough samples from the posterior proba-
bility distribution in reasonable time, and this raises a well-known
problem, namely that the traditional MCMC approach in unfeasi-
ble for problems with more than a couple of hundred parameters.
Our way of speeding up the sampling is to construct a global pro-
posal distribution for the MCMC sampling using the approximate
solution m̃. First, we compute the estimated modelization error
vector δmapprox using the method described in the previous section.
Fig. 1(e) shows the envelope of the components of this vector, and
for comparison, the true modelization error (known in this synthetic
data case) is shown in Fig. 1(d). The modelization error distribution
is then built as a Gaussian with mean m̃ and a diagonal covari-
ance matrix Cθ whose diagonal is the squared components of the
envelope function, and used as a proposal distribution.

We now consider the solution of this 1000-parameter problem is
four different ways.

5.1 Informed proposal Monte Carlo (IPMC)

Fig. 2 (lower curve) shows the convergence of the IPMC algorithm
driven by our proposal derived above. A computational overhead of
less that 3 forward calculations (deconvolution and calculation of
error envelopes) is required to start the sampling process, and we
see convergence to equilibrium after about 2000 iterations.
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Figure 1. (a) Left-hand side: accurate seismogram from (b); Centre: seismogram computed by convolution; Right-hand side: error of the convolution
seismogram. (b) True acoustic impedance, (c) acoustic impedance computed by deconvolution (impedance trend from b is added). (d) Envelope of true
modelization error (deconvolution impedance minus true impedance). (e) Envelope of estimated modelization error. (f) A sample model from the informed
proposal Monte Carlo inversion. (g) Median of 10 000 sample models.

5.2 MCMC algorithm with an isotropic, local proposal

We solved the problem without an informed proposal, using a simple
MCMC algorithm. We chose an isotropic, local proposal, changing
one parameter at a time using a local Gaussian distribution. The step
length (standard deviation of the Gaussian) was adjusted to obtain an
acceptance rate of approximately 50 per cent. No additional forward
calculations were needed to start (initialize) the sampling process.
Fig. 2 (upper curve) shows the slow convergence for this algorithm,
being far from equilibration after 2000 iterations. A rough estimate
showed that the simple MCMC algorithm equilibrated between 103

and 104 times slower than the IPMC implementation.

5.3 MCMC using a principal axes proposal

An MCMC implementation with a principal axes proposal was
considered for solution of the problem. This (blind) method re-
quires an additional computational overhead connected to find-
ing a reasonable initial model, and computation of the Jacobian
in this model (and later recompute it after a few hundred iter-
ations). In our test problem we have 4096 data and 1001 un-
knowns, so a Jacobian requires calculation of more than 4 mill.
gradients (at least a few thousand forward calculations). Since the
IPMC implementation converges only after about 2000 iterations,

we did not further pursue a solution through the principal axes
approach.

5.4 Hamiltonian Monte Carlo

We could also have solved our problem with a Hamiltonian Monte
Carlo (HMC) approach. As explained above, HMC for seismic
inversion is another example of the IPMC strategy using special
properties of the posterior density that are not directly available
from samples. The method of adjoints can be used to calculate
gradients using only 1 forward and 1 adjoint calculation, at the
computational cost of approximately 2 forward simulations, and
the gradients allow us to define a proposal that is a partial ap-
proximation (similar in most directions) to the target distribution
in the joint model/momentum space. However, HMC for seismic
inversion is well-described elsewhere (Fichtner et al. 2018; Ge-
braad et al. 2020), so we have not included this type of solution
here.

6 D I S C U S S I O N

It is important to realize that the significantly improved efficiency
provided by the physical proposal in this study is not resulting from
prior constraints on the model parameters. Priors generally assign
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Figure 2. The lower curve shows convergence towards equilibrium of our Informed Proposal Monte Carlo (IPMC) method, which was guided by linearized
inversion. The upper curve shows the convergence of a simple MCMC algorithm with a Gaussian proposal, perturbing one parameter at a time, and tuned to
an acceptance rate of around 50 per cent. Each iteration of IPMC and simple MCMC required one forward calculation, and involved about 3 and 0 forward
calculations for initialization, respectively. The convergence of the simple MCMC was more than 103 times slower than that of the IPMC algorithm. A
gradient-based algorithm was also considered, but would have required calculation of far more than 2000 derivatives (each with 1 forward calculation) to
initialize the sampling procedure.

different probabilities to different solutions, but this is not the case
with a proposal. A proposal only influences the frequency by which
models are presented to the acceptance/rejection algorithm. The
bias of the proposal will, asymptotically, be neutralized because
it is compensated for in the acceptance probability. In this way it
will only influence the efficiency of the sampler, not the asymptotic
result. It should, however, be remembered that the most serious
problem in non-linear inversion is that the number of models we
can practically test is limited. And considering that highly non-linear
problems are often so complex that they can only be safely solved
with a high number of approximately independent samples from the
posterior, it is clear that using an efficient proposal will not only be an
improvement in speed, but also a potential improvement in quality
of solutions. Simply speaking, we can expect to discover more
significantly different solutions (peaks of the target distribution)
within the allowed computer resources than with an arbitrary local
proposal.

We have illustrated how important it is for the proposal to mimic
the posterior in MCMC sampling of solutions to inverse problems.
However, the idea of using the physics of the problem to build a
posterior-like proposal is not restricted to Monte Carlo sampling.
Any method depending on a search for sample solutions or good
data fits can potentially benefit from this strategy. In an interest-
ing recent paper on variational full-waveform inversion (Zhang &
Curtis 2020), it is shown how variational methods may be used to
modify samples from the prior into samples of the posterior in the
solution of large-scale inverse problems. It is likely that this class of
methods may, in the future, be further improved through application
of informed proposal mechanisms.

In this paper, we have chosen to explain the basic ideas of the
IPMC strategy and to support them with a strongly non-linear,
synthetic test example in a high-dimensional model space. The test

example was synthetic to ensure that we know the true solution and
in this way have full control over the behavior of the algorithm.
However, to give the reader an idea of how the algorithm could be
applied to real data cases and real problems, we give two possible
data inversion scenarios.

6.1 Elastic full-waveform inversion of pre-stack seismic
reflection data

From seismic reflection data we wish to compute realizations of
elastic properties of the upper few kilometres of the subsurface.
The computationally demanding elastic wave simulations, com-
bined with the strong non-linearity of the problem, is a serious
challenge to MCMC methods. For this problem, an approximate
solution can be found using classical data-processing and interpre-
tation techniques. An interpreted, depth-migrated profile (volume),
combined with optimized migration velocities, can be used to build
a rough, approximate model of the subsurface under study. The ap-
proximate model and its (accurately computed) synthetic data will
now be used in an artificial inverse problem to estimate modelization
errors, and the proposal can be built. In a simple implementation,
the approximate model will be the ‘centrr of the global proposal,
and the modelization errors will provide the ‘shape’ (dispersion) of
the proposal.

6.2 Inversion of flow data from a geothermal reservoir

In this problem we wish to compute realizations of the permeability
field of a geothermal reservoir from water injection and water pro-
duction in a large number of wells. Accurate reservoir simulations
are computationally expensive, and the problem is highly non-linear.
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Assume that we know that five discrete geological facies with ap-
proximately known permeabilities are present in the subsurface, and
that we wish to build the model by assigning a facies, and a perme-
ability value at each grid point. Each facies has its own prior proba-
bility, and its own prior probability distribution for the permeability.
Due to the discrete facies parameters, the problem is not smooth.
For this problem, an approximate flow simulation can be carried out
by a so-called streamline simulator. This simulator estimates the
pressure field in the reservoir, followed by flow-line tracing. The
algorithm is extremely effective compared to accurate simulators,
but its results are imprecise. We first fit a (smooth) least-squares
permeability field to the flow data, using the streamline simulator in
an iterative linearized inversion. Using our geological knowledge,
we then assign facies to each grid point, using the computed perme-
ability field. We now have a (very) rough approximate model. The
approximate model and its (accurately computed) synthetic flow
data together form an artificial inverse problem from which we can
estimate modelization errors. The proposal can now be built, and
in a simple implementation we will use the approximate model as
the ‘centrr of the global proposal, and the modelization errors as
‘dispersion’.

7 C O N C LU S I O N

We have analysed the impact of proposal distributions on the perfor-
mance of MCMC sampling methods when applied to the solution
of inverse problems. We concluded that the ‘small step’ strategies
used in traditional implementations are relatively efficient because
they impose a local consistency between the proposal distribution
and the target (posterior) distribution: the target probabilities tend
to be large where the proposal probabilities are large. Nevertheless,
we showed by a simple analytical example that even local consis-
tency may be difficult to obtain when local ‘small-step’ proposals
are arbitrary. Furthermore, a main problem with local proposals is
the limited step length, which is strongly hampering the exploration
of vast, high-dimensional spaces. The volumes of high-probability
areas are negligible in such spaces, so burn-in times, and the times
needed to pass from one maximum to another can be prohibitive for
small-step algorithms.

Our solution to these problems is to use global proposals built
from external information about the target distribution. We propose
ways of using physical knowledge of the problem to ensure global
consistency between the proposal and the target distribution. The
efficiency of this ‘informed proposal’ approach is highly problem-
dependent and strongly conditioned on the choice of the external
proposal, but we successfully carried out a test on a 1000-parameter,
highly non-linear inverse scattering problem. The performance of
an MCMC algorithm, augmented with an informed proposal, com-
pared favorably with the three other algorithms considered in this
study.
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SUMMARY

Markov Chain Monte Carlo (MCMC) sampling of solutions to large-scale inverse prob-

lems is, by many, regarded as being unfeasible due to the large number of model param-

eters. This statement, however, is only true if arbitrary, local proposal distributions are

used. If we instead use a global proposal, informed by the physics of the problem, we can

dramatically improve the performance of MCMC and even solve highly nonlinear inverse

problems with vast model spaces. This is illustrated by a seismic full-waveform inverse

problem in the acoustic approximation, involving close to 106 parameters.

INTRODUCTION

Full-waveform inversion (FWI) is emerging as a promising method for computing subsurface proper-

ties and high-resolution images from seismic data. However, since its introduction in the late 1980s

through the theoretical work of Lailly (1983) and Tarantola (1984, 1986, 1988) and subsequent nu-

merical tests (Gauthier et al., 1986; Igel et al., 1996). it has been known that inference about the

low-wavenumber components of the Earth model (the background velocity field) is a highly nonlinear

problem. Early attempts to solve this problem using Markov-Chain Monte Carlo (MCMC) techniques

(see, e.g., Koren et al., 1991) ran into serious problems, not only because of the shortcomings of com-

putational resources at the time, but also because large-scale inverse problems have vast parameter

spaces.
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Later improvements (Bunks et al., 1995; Pratt, 1990; Pratt, 1999; Virieux and Operto, 2009),

of which the frequency-domain approaches (Pratt et al., 1998; Pratt, 1999; Pratt et al., 1999) were

amongst the most important, gave further momentum to the development of more efficient algorithms,

but there were still some way to go before a probabilistic full-waveform inversion could be attempted.

Characterizing the full posterior probability distribution, either through a sample of solutions, or in a

parameterized form, is a formidable problem, far exceeding the calculation of of best-fitting solutions.

Only recently, improved methods for many-parameter highly nonlinear seismic inversion have

come to light, of which inversion based on Hamiltonian Monte Carlo (HMC) (Fichtner et al., 2018;

Gebraad et al., 2020) and Variational Full-Waveform Inversion (VFWI) (Zhang & Curtis, 2020) are

notable examples. HMC is an MCMC with improved sampling efficiency using gradient information

of the misfit function - information that can be computed relatively fast for seismic inverse problems

through the method of adjoints. VFWI is a non-sampling method seeking a continuous mapping over

the parameter space that transforms samples from the prior probability density into approximate sam-

ples from the posterior.

A close look at all methods (deterministic and stochastic) used for solution of inverse problems

(linear, weakly nonlinear and strongly nonlinear) reveals that efficiency always requires specific prop-

erties/assumptions about the problem built into the algorithm: In regular MCMC, good performance

depends heavily on smoothness information obtained through initial experimentation with step lenghts

of the algorithm. In HMC, efficient computation of misfit gradients through adjoints, which is a spe-

cific property of the wave equation, is built into the algorithm. VFWI assumes a predefined family of

posterior distributions among which it seeks a solution. The role of information in defining the effi-

ciency of an inversion algorithm is further explored in (Khoshkholgh et al., 2020) where it is shown

that goal-directed use of specific information, characteristic of the problem, can dramatically improve

performance.

In this study we propose a MCMC methodology for large-scale full-waveform inversion, based on

the Informed Proposal Monte Carlo (IPMC) technique described by Khoshkholgh et al. (2020). Our

approach in this paper is pragmatic, in that we use approximate information acquired through classical

seismic processing and subsequent interpretation to build a proposal strategy for the MCMC sampler.

IMPC ensures that errors and inaccuracies in the proposal information does not pollute the final sam-

pling result. Only the speed by which statistically independent samples are collected is influenced:

The closer the proposal is to the posterior, the faster is the sampling.

First we provide a brief overview of the Informed Proposal Monte Carlo method, and then we

apply the method to a synthetic 2D test example and compare the results with those obtained by a

regular MCMC method.
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METHODS

Probabilistic Inversion

Probabilistic inverse theory is based on the assumption that any state of information about a param-

eterized system can be described by a probability density function. In the two most widely used for-

mulations, the Bayesian approach (Bayes, 1764; Jackson & Matsu’ura, 1985) and the approach of

Tarantola and Valette (1982), the outcome of the inversion is a so-called posterior probability distribu-

tion �(m) over the model parameter space. In both formulations, �(m) is expressed as a product of

two distributions

�(m) = ⇢(m)L(m) (1)

where ⇢(m) quantifies our (uncertain) prior information about m, and L contains information about

m from uncertain, observed data and from physical law. Since a probabilistic inversion produces, not

only one particular solution, but a probability distribution over the entire model space, we are left with

the problem of characterizing this distribution. One choice is to look for a parametric description of

the posterior (as is done in variational methods (Zhang & Curtis, 2020)), but another approach is to

create a non-parametric description of the posterior. This method, which is essentially equivalent to

forming a multi-dimensional histogram of the posterior, is the one used by MCMC- and other sampling

methods.

Markov-Chain Monte Carlo

The goal of an MCMC sampler is to produce a collection of models with a sampling density pro-

portional to a given target distribution. Each step of the sampling from a probability density �(m)

proceeds from a current m by first randomly proposing a new model m0 according to a so-called

proposal distribution q(m0|m), followed by accepting m0 only with probability

Pm!m0
acc = min

✓
�(m0)q(m|m0)

�(m)q(m0|m)
, 1

◆
. (2)

This acceptance probability guarantees that, in the limit where the number of models N ! 1, the

distribution �(m) will be correctly sampled. There is great freedom in the choice of the proposal

distribution q(m0|m), as long as equation (2) is well defined for all m0. It is, however, clear from (2)

that if we could choose q(m0|m) = �(m0) we would have an algorithm with maximum efficiency: It

would be allowed to move freely between models of non-zero values of the target probability density,

and all moves would be accepted. It is, however, also clear that this choice of q would require that we

already had full knowledge of the structure of � and hence that the solution would be known from the

beginning!
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In practice, the situation is quite the opposite. We usually have very little information about � or,

to simplify implementation of our algorithm, we ignore this information. A commonly used, minimum

information about � used in an MCMC implementation is about the smoothness of �, and it is normally

found by experimentation. The smoothness tells us how far away from the current point m in the model

space we can go without changing the value of � significantly, and this allows us to build the proposal

q so narrow that any new proposed model have a good chance of being accepted. The advantage of

a narrow q is that it is quite similar (near-proportional) to � in a small neighborhood around m. For

this reason it gives a high acceptance probability, but the disadvantage is that the resulting moves

away from m are so small that successive, accepted models become highly correlated. Consequently,

it takes many moves to produce new, uncorrelated models.

It is the above-mentioned experience with information-deficient, narrow proposals that leads many

to conclude that MCMC is inherently inefficient. We view the situation quite differently: MCMC is an

algorithm that allows (possibly slow) sampling of a distribution �, even in cases where the approximate

smoothness is the only thing known about �. If, on the other hand, we have more comprehensive

information about �, this can be built into the proposal q, and the algorithm can be made much more

efficient. The purpose of this study is to demonstrate that the latter approach is very efficient. We use

a semi-realistic, synthetic, seismic inversion example where inference about ⇡ 106 model parameters

is sought.

Using a Proposal, Informed by Approximate Physics

Following the formulation of Tarantola and Valette (1982), a general expression for the joint posterior

probability can be written

�(d,m) =
⇢(d,m)✓(d,m)

µ(d,m)
(3)

where d is data, m is the model parameters, ⇢(d,m) is the prior and µ(d,m) is the homoge-

neous probability density in the joint (d,m)-space. The density ✓(d,m) is the distribution of er-

rors/uncertainties of the relation between m and d, including data uncertainties and possible, physical

modelization errors. In this study we will, without loss of generality, assume that µ is constant over

the model space, and that ⇢(d,m) = ⇢(d)⇢(m) (prior information about d and m are independent).

This leads to (ignoring the normalization constant):

�(d,m) = ⇢(m)⇢(d)✓(d,m) (4)

Following (Khoshkholgh et al., 2020), we now build our proposal distribution as a rough approxi-

mation �̃m(m) to the marginal posterior in the model space. �̃m will be based on simplified physics

where the modelization errors overwhelm the observational data uncertainties, hence (ignoring nor-
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malizations):

�̃m(m) ⇡ �(dobs,m) ⇡ ⇢(m)✓(dobs,m) . (5)

expressing the approximate posterior as a product of the prior and the approximate likelihood ✓(dobs,m).

In the following we will use q(m0|m) = �̃m(m0) as a global proposal distribution to speed up the

MCMC algorithm. Even if q is only a poor approximation to the likelihood L, it will not bias the final

sampling result. Only the efficiency of the algorithm will be influenced.

In this study we obtain q(m0|m) through traditional processing and interpretation of the seismic data

d. This procedure is in the following formally denoted h, a pseudo-inverse operator mapping from

data space into the model space: m̃ = h(d). For real data this may include muting, velocity analysis,

normal moveout correction, stacking, deconvolution, migration, and subsequent interpretation. In our

illustrative synthetic example we simplify this procedure.

Constructing the Approximate Likelihood

In our study, we take a simple approach and construct ✓(dobs,m) as follows:

(i) Using a simplified approach, we construct an approximate solution m̃ to the inverse problem.

(ii) The ”true” modelization error is �mtrue = m̃�mtrue but since mtrue is unknown, we instead

compute an approximation to the modelization error:

�mapprox = h(g(m̃))� m̃,

where g is the forward function used to compute synthetic data. Since h(g(m̃)) is an approximate

solution to the inverse problem with g(m̃) as data, the above formula estimates what the modelization

error would have been if m̃ had been the true model. In case m̃ is close to mtrue, we expect that

�mapprox will be close to �mtrue.

(iii) We now define now ✓(dobs,m) as a Gaussian with mean m̃ and a diagonal covariance matrix

where the n’th standard deviation is equal to the n’th component of �mapprox.

Informed Proposal Sampling

Given that S(m) is the (accurately computed) misfit function for the problem, we can now use an

MCMC algorithm to sample the posterior, using ⇢(m) as the prior, L(m) = exp (�S(m)) as the

accurately computed likelihood, and q(m0|m) = ⇢(m0)✓(dobs,m0) as the proposal. We assume here

that values of the prior can be computed explicitly, so our proposal is now fully defined.

Each step of the algorithm now runs as follows:
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(i) Perturb the current model m ! m0 using the proposal q(m0|m).

(ii) Accept/reject the perturbed model m0 with probability

P ⇢
acc = min

✓
⇢(m0)L(m0)q(m|m0)

⇢(m)L(m)q(m0|m)
, 1

◆
= min

✓
L(m0)✓(dobs,m)

L(m)✓(dobs,m0)
, 1

◆
. (6)

If m0 is rejected, the current model m will be repeated.

In practice, the rate of accepted models found by the above algorithm can be improved if we introduce

a burn-in period (say, within the first NB iterations) in the sampling procedure where we replace the

approximate model ✓(dobs,m) with better-fitting models discovered in the process. We will see an

example of this in the numerical example below.

RESULTS

Model Parameters and Data

The above-mentioned method was applied to acoustic full waveform inversion of synthetic reflection

data from a subset of the Marmousi velocity model (Versteeg, 1994) giving P-wave velocities in a

755 x 1255 Cartesian grid (= 947525 parameters) with a grid size of 1.5 m in vertical and horizontal

directions (see Figure (1)). Two shot records were generated by a finite difference algorithm to solve

the constant-density, variable-velocity acoustic wave equation in two dimensions (CREWES Library:

Youzwishen, 1999, and Margrave, 2000). The algorithm uses second-order finite-difference operators

for the time derivative and the Laplacian operator and applies simple, absorbing boundary conditions.

Figure (2) shows one of the two shot records used as observed data in our study. The dominant fre-

quency of the Ricker wavelet related to the source term is 40 Hz. The seismic sources were located

at x = 375 m and x = 1500 m, and receivers were located at the surface, equally distributed with

distances of 7.5 meters.

The Likelihood Function

Assuming Gaussian white noise on the data, we use the likelihood function

L(m) = exp
�
�||d� g(m)||/�2)

�

where g is the forward function calculating synthetic data from a model m, and � is the standard

deviation of the noise. � was chosen to give a signal-to-noise ratio S/N ⇡ 2.0. Synthetic noise was

not added to the data.
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The Prior Distribution

In our study, we use a prior probability density assigning non-zero probability only to piecewise con-

stant velocity models that can be derived from:

(i) Smooth, continuous 1-1 deformations (’warpings’) of the approximate model. A warping is

defined by a random, smooth displacement field u with |@ui/@xi| < 1 where xi (i = 1, 2) are

the image location coordinates. Warping takes place in a randomly centered square window with a

predefined dimension (here 250⇥250), a cosine variation of displacement coordinates in both vertical

and horizontal direction, and with zero displacement at the boundary. Any such warping will result in

a new, piecewise constant velocity model.

(ii) Choosing new velocities in each layer within given fixed intervals.

All models that can be generated according to the above rules are assumed a priori equally likely. Fig-

ure 3 shows four sample models from the prior. It is seen that the prior allows considerable variations

in the model, but retains its basic ’topology’.

Building the Proposal Distribution

Our proposal distribution is a rough approximation to the posterior, which in turn is a product of the

prior and a Gaussian, approximate likelihood. The approximate likelihood is centered at the approxi-

mate solution to the problem and with standard deviations proportional to the modelization errors of

each model parameter. Hence, our proposal sampler is based on four components:

(i) A rough approximation to the posterior. To find this, we assume that we have a 2D seismic

reflection profile across the area, from which we will derive a rough subsurface model through classi-

cal processing and interpretation. To simulate this situation, we generate zero offset seismic data using

the exploding reflector model (Loewenthal et al., 1976). The first step in our data processing is a depth

migration using a rough background velocity model derived from the true velocity model through

Gaussian smoothing (Figure 4), followed by computing an approximate reflectivity profile through

frequency domain spiking deconvolution (Figure 5). Then we simulate seismic interpretation by iden-

tifying clearly visible reflectors, and after combining this interpreted image with the long-wavelength

migration velocity field, we arrive at an approximate, homogeneous-layer velocity model for the area

(Figure 6). This velocity model is a rough solution m̃ to the full-waveform inverse problem.

(ii) Standard deviations of the approximate likelihood. The difference between the exact like-

lihood and the approximate likelihood is obtained by generating synthetic reflection data from the

approximate model, and then performing a rough inversion of this data through processing and inter-

pretation to obtain a second (and even less accurate) approximate model. Subtracting this from the
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(first) approximation allows estimation of the modeling error, providing standard deviations of our

Gaussian, approximate likelihood. The spatial envelope of the velocity differences at each pixel in the

model, computed through a Hilbert transform, is shown in Figure 7 and reveals regions of large and

small modelization errors.

(iii) A warping scheme that allows deformation of a model into a new model with nonzero

prior probability. Our warping consists of a series of deformations, each in a quadratic window cen-

tered at the point chosen for maximum perturbation. The size of the maximum displacement is random

and is adjusted such that, in that point, the change will be no larger than the estimated modelization

error at that point. The displacement field in each window is smooth and has random directions, and at

the boundary of each window the displacement is zero. We chose 100 quadratic windows of size 1/16

of the model size for random warping.

(iv) A simple velocity perturbation scheme that allows a random change of velocity within

one layer, within given bounds (here ±5%). The size of the velocity perturbation is adjusted such

that, in any point, the change will be limited by the estimated modelization error.

This composition of the proposal algorithm ensures that the sampling is guided by (1) information

about the approximate solution and its errors, and (2) information about the structure of the solution

(piecewise constant).

Producing Samples from the Posterior Distribution:

We use the approximate model derived from processing and interpretation as the starting model from

our sampling. In 30 percent of the perturbations the velocity of a random layer is perturbed and the

layer boundaries are kept constant. In the rest of the perturbations we perturb the layer boundaries.

During the first 300 iterations we replaced the approximate model m̃ (which is the center of the pro-

posal distribution) with the best-fitting model found so far by the algorithm, and adjusted the modeling

error accordingly. In this way we have deliberately introduced a burn-in sequence of 300 iterations in

order to improve the acceptance rate of the sampler.

Figures 8 shows four realizations from the posterior probability density produced after 200, 400,

600 and 800 iterations of the IPMC algorithm. Figure 9 compares the convergence of IPMC with a

regular Extended Metropolis Algorithm (EMA) (Mosegaard and Tarantola, 1995). The EMA starts in a

random realization from the prior, and its proposal distribution uses the same prior as the IPMC. How-

ever, as is customary for the EMA, the proposal establishes a random walk with a limited steplength:

q(m0|m) = ⇢(m0)u(m0|m) (7)
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where u(m0|m) is a uniformly sampling random walk. Note that, in contrast to the IPMC, the EMA

proposal does not use the approximate likelihood ✓(dobs,m0).

Looking at the log-likelihood curves of the two methods (Figure 9) we see a significant difference

between their convergence properties. The IPMC algorithm starts advantageously at a reasonable ap-

proximation to the solution with a relatively high value of the log-likelihood. From there it proceeds

towards equilibrium, which is attained after around 100 iterations. The log-likelihood curve for the

MCMC is, however, showing long-term correlations throughout the 3000 iterations. Even the models

sampled after 3000 iterations (not shown) show no similarity to the true model, but rather resembles

white noise. The proposed IPMC method shows a remarkable improvement in efficiency as compared

to the regular MCMC algorithm.

DISCUSSION

It is often claimed that Markov-Chain Monte Carlo methods are highly inefficient for solution of large-

scale inverse problems. This statement is only true if simple, local proposal mechanisms are used. In

this study we show that a global proposal, incorporating substantial external information about the

problem (from approximate physics, and from knowledge about the character of the solution), dra-

matically changes the situation and allows MCMC to equilibrate much faster. In our case with ⇠ 106

model parameters, the Informed Proposal Monte Carlo converged to equilibrium within ⇠ 100 iter-

ations whereas the classical local-proposal MCMC was unable to approach any close-to-equilibrium

sampling within this time frame.

As always, when comparing algorithms, or differently tuned versions of the same algorithm, one

has to be critical about the conditions under which the comparison was carried out. Here, it is easy to

see what the difference between IPMC and MCMC is. The IPMC algorithm suggested in this paper is

a specialized MCMC algorithm using much more external information about feasible solutions than

the regular MCMC implementation. Knowing in this case that the solution is near-piecewise constant

is one important piece of information, and knowing that classical processing and interpretation will

produce a reasonable solution is another. Since our approximate likelihood enters only via our pro-

posal and assigns nonzero probability to all models, it does not asymptotically bias our solution and is

therefore risk-free to use (it does not exclude any models). It can only, in the best case, speed up the

sampling. On the other hand, our prior has the special property that it excludes (assigns zero proba-

bility) to all non-piecewise-constant models. For this reason it actually biases the solution. However,

this is desirable (and intentional), because we want the prior information to have an imprint on the

solutions.

When interpreting our numerical results, one should remember the following:
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(i) The convergence speeds of both the IPMC and the regular MCMC depend on the noise variance

of the data. The lower the variance, the slower the convergence.

(ii) Our data consist only of two shot records. For this reason the solution is not strongly constrained

by the data. This is apparent on the four realizations from the posterior probability density shown in

Figure 8. More data would make the solution more well-determined and would probably slow down

the sampling process.

(iii) The proposed IPMC uses a global proposal, and for this reason can generate independent

samples quite fast. In our numerical example we could produce uncorrelated samples separated by

⇠ 200 iterations. This, however, does not mean that a complete description of the posterior can be

obtained within short time. More that 106 samples may be required to completely describe a posterior

defined in a 106-dimensional model space, and this is independent of the sampling algorithm used.

CONCLUSIONS

In this study we have investigated how external physical information can be used to establish a pro-

posal distribution for efficient MCMC sampling of solutions to an inverse problem. Our test problem

was an acoustic full-waveform inverse problem where earth models consistent with data from two

seismic shots we produced. Our aim have been to simulate a practical situation where a prelimi-

nary, approximate subsurface model created from processing and interpretation of reflection data was

available. The preliminary model was used in two different, independent ways: (1) To define a prior

distribution assigning nonzero probability only to models consisting of a stack of homogeneous lay-

ers intersected by a major fault, and (2) to quantify the modelization error of combined processing

and interpretation and to use this information to build a global proposal distribution centered at the

preliminary model and with a dispersion proportional to the modelization error. Our study showed

how informed proposal distributions can have significant impact on the computational speed of Monte

Carlo sampling of solutions to inverse problems.
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Figure 1. True velocity model
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Figure 2. Synthetic shot record generated from true velocity model

Figure 3. Four realizations from the prior
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Figure 4. Migration Velocities

Figure 5. Approximate Reflectivity
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Figure 6. Approximate velocity from interpretation

Figure 7. Error envelope obtained from approximation error
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Figure 8. Four realizations from the posterior

Figure 9. Likelihood vs number of iterations for IPMC compared to a regular MCMC
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Abstract 

When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and 
risk assessment is essential. An integration of information from geological knowledge, geological 
modelling, well log data, and geophysical data provides the basis for this analysis. Modelling the time 
development of stress/strain changes in the overburden provides prior knowledge about fault and 
fracture probability in the reservoir, which in turn is used in seismic inversion to constrain models of 
faulting and fracturing. One main problem in solving large scale seismic inverse problems is high 
computational cost and inefficiency. We use a newly introduced methodology - Informed-proposal 
Monte Carlo (IPMC) - to deal with this problem, and to carry out a conceptual study based on real data 
from the Danish North Sea. The result outlines a methodology for evaluating the risk of having sub-
seismic faulting in the overburden that potentially compromises the CO2 storage of the reservoir. 

Introduction 

Sequestration of CO2 in former oil and gas reservoirs can contribute to amelioration of the global 
increase in CO2 emissions, and it is already in use in a limited number of sites worldwide (Bachu, 2008; 
Michael et al., 2010; Ringrose et al., 2017). Injection of CO2 for enhanced oil recovery has already been 
utilised by the oil industry for decades, particularly in onshore North America (Gozalpour et al., 2005). 
CO2 is currently stored offshore Norway, in Sleipner and Snøhvit, with ~ 1.5∙ 10! tonnes annually (Eiken 
et al., 2011). Pilot-projects have been carried out in Germany (Kempka & Kühn, 2013; Bergmann et al., 
2016), Spain (Vilamajó et al., 2013; Ogaya et al., 2013) and Texas (Daley et al., 2008; Doughty et al., 
2008), and this has greatly increased our understanding of CO2 migration, monitoring and injection 
strategies in geological reservoirs.  

Injection of CO2, or any other fluid, into subsurface reservoirs might increase the risk of caprock 
failure and migration of fluid along faults, fracture corridors, and other pre-existing weak zones (Ogata 
et al., 2014a). Understanding the detection thresholds of such structures calls for careful mechanical 
modelling of the reservoir stress- and strain field, careful inversion of available seismic data, combined 
with geological knowledge from well data and outcrop data. In this way it may be possible to quantify 



 3 

the probability of significant CO2 migration through the caprock, laying the ground for a meaningful risk 
evaluation.  

During the last couple of decades considerable progress has been made in geophysical and 
geostatistical data analysis methods to correctly estimate model uncertainties and thereby to evaluate 
fault detection thresholds (zee, e.g., Zunino et al., 2015). The goal of this pilot project is to propose a 
way of exploiting these methods for risk assessment in connection with CO2 storage. Conceptual models 
are developed to model the time evolution of the subsurface, giving information about current and 
future stress fields resulting from geological processes, such as sediment deposition for example. This 
analysis provides the prior information to a subsequent probabilistic inversion of seismic data. Monte 
Carlo methods are used to simulate the noise in the data, and the noise is back-propagated through the 
geophysical (e.g., seismic) equations into the geophysical model, generating a model variability, and 
reflecting the uncertainty of the reservoir structure. Combining this approach with prior information 
about the mechanical properties of the reservoir, we evaluate the probability of fault migration 
scenarios. In this pilot project, we carry out a concrete, highly simplified numerical study of the sub-
problem of estimating the density of sub-seismic faults in the overburden of an existing North Sea 
hydrocarbon reservoir, and established a simple probability model for releases through existing faults. 
The study is a starting point for developing a full-scale risk analysis system based on the principles 
outlined above. 

Well data 

Since the overburden provides the reservoir seal and hosts significant part of the infrastructure, it is 
important to have sufficient data of good quality in order to analyse its integrity and/or strength. One 
very important parameter is the fracture pressure of the seal – if the pressures at the top of the 
reservoir exceeds the fracture pressure of the seal a breach will occur and the reservoir fluid (CO2 or 
hydrocarbons) will escape. 
 
Data (petrophysical logs and well reports) for the following wells: Fasan-1, Deep Adda, South East Adda 
and E1-X (Figure 1), were provided by DHRTC (Danish Hydrocarbon Research and Technology Centre). 
The wells are located in the Tyra field, in the Danish sector of the Central Graben, approximately 200 km 
west from the city of Esbjerg. 
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Figure 1. Location of the wells used in the analysis. 

 
 

Figure 2 and 3 show the lithology columns and, respectively, the depth coverage of the sonic and density 
logs acquired in the four above mentioned wells. The figures illustrate very well the challenges related 
to the availability of log data in the overburden. In all four wells, no sonic (or density) data were 
acquired in the shallow section from sea bed to approximately 500 m depth. In the well E-1X, both sonic 
and density logs were acquired only in the reservoir (chalk) section, while in South East Adda, density 
data are available only below the Chalk group, in the deepest section of the well. This probably is due to 
the fact that the purpose of the South East Adda well was to investigate the hydrocarbon potential of 
the Cromer Knoll Group (Lower Cretaceous). 
 

 
 
Figure 2. Overview of the sonic compressional logs (us/ft), acquired in the four wells. From left to right: 

Deep Adda, South East Adda, E-1X and Fasan-1. The depth reference is Rotary Table (RT, i.e. the rig 
floor). 
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Figure 3. Overview of the density logs (g/cc), acquired in the four wells. From left to right: Deep Adda, 
South East Adda, E1X and Fasan-1. The depth reference is Rotary Table (RT, i.e. the rig floor). 

Modelling of the the Post-Chalk overburden in the Tyra Field 

The hydrocarbon field Tyra is situated in the Danish sector of the Central Graben in the North Sea. The 
hydrocarbon accumulation in this field is mainly concentrated in the Chalk Formations Ekofisk (Danian), 
Tor and Hod (both Upper Cretaceous). 
 
The present-day stress-strain state of the subsurface is the result of complex geological and planetary 
processes, taking place over millions of years, such as plate tectonic movements, sedimentary 
deposition, climate changes, erosion, uplifting etc. 
 
The most dominating geological process in the Post-Chalk period, i.e. the last 61 Million Years (MY) from 
Mid Paleocene (Selandian) to Present, was the filling in of the North Sea Basin with sediments 
originating from Fennoscandia and Scotland (Konradi, 2005, Schiøler et al., 2007, Gibbard and Lewin, 
2016). The most intensive sedimentary flux into the North Sea occurred during the Late Pliocene-
Pleistocene (Gibbard and Lewin, 2016 ). These sediments, deposited in offshore environment (Schiøler 
et al., 2007), form the present day overburden above the chalk reservoirs in the North Sea.   
 
Several phases of inversion and compression in the North Sea during the Paleocene (Nielsen et al., 2005; 
Japsen et al., 2014)  and in the Early Miocene (Rasmussen, 2004) have been suggested. However, it is 
believed that the magnitude of these events, especially the Miocene one, did not affect significantly the 
depositional process in the Central Graben. 
 
Thus, the present-day stress-strain state of the Post-Chalk overburden in the North Sea is mainly the 
result of the sedimentary deposition. In addition, the weight of the thick overburden affects also the 
stress-strain field of the underlying strata. 
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As mentioned above, the overburden provides the reservoir seal, and its integrity is a crucial parameter 
to consider when evaluating the risk of leakage of reservoir fluid (CO2 or hydrocarbons).  
 
Reservoir depletion, caused by hydrocarbon production, leads to stress and strain changes both in the 
reservoir and the overburden as well, among the examples are the subsidence experienced in the Tyra 
(Plischke, 1994; Schutjens et al., 2019) and the Ekofisk (Sulak and Danielsen, 1989)  fields. 
 
In the Tyra field,  the Post-Chalk overburden is approximately 2000 m thick and is represented by three 
main groups: the thick Nordland and Hordaland Groups, composed mainly of  smectite-rich shales 
(Nielsen and Rasmussen, 2015), and the much tinner Rogaland Group (Figure 2 and 3).  
 
The well reports of the four wells (Jensen, 2004; Rong et al., 1985; Kleist et al., 1977), used in this study, 
hold additional useful information about the lithological composition of the overburden. The upper 
(most shallow 0-500 m depth) part of the Nordland Group consist of predominantly Quaternary sand 
sand/clay mixtures, while the lower part consist predominantly of claystone with occasional thin 
limestone layers (Jensen, 2004). The Hordaland Group consists predominantly of clay-rich (shale) 
formations, in some interval interbedded with thin limestone layers (Jensen, 2004). The Rogaland Group 
is situated at the top of the Chalk Group and thus represents the seal for the uppermost Chalk reservoirs 
(Danian age, Lower Paleocene). The thickness of Rogaland varies across the field, as illustrated by the 
well lithology columns in Figure 2 and 3. The upper part of the Rogaland Group (the Balder formation) is 
characterized by tuffaceous claystone, while the lower part (Sele, Lista, Vaale) is predominantly 
claystone with stringers of marl (Jensen, 2004). 
 
The Rogaland Group, which is overlaying the Danian Chalk sequences, spans the period from Selandian 
(Mid Paleocene) to Ypresian (Early Eocene), approximately from 61 to 53 million years ago (Ma); the 
Hordaland Group spans the period from Lutetian (Mid Eocene) to Tortonian (Mid/Late Miocene), from 
53 to around 7 Ma; and the Nordland Group spans the period from Messinian (Late Miocene) to Present 
Day, roughly the last 7 million years. (Lithostratigraphic Chart of the Central North Sea, 2014, 
https://www.npd.no). 
 

Numerical representation of the Post-Chalk Deposition in the Tyra Field 

A 2D subsurface geometry in the Tyra Field was derived from seismic interpretation of the main 
reflective horizons down to (approximately) 2500 m depth below sea bed. 
 
These main reflective horizons and the corresponding stratigraphic units are shown in Figure 4. The 
bottom of the domain was set to 2500 m below sea. The lateral (horizontal) extension is approximately 
2000 m. It was assumed that the horizons correspond roughly to the stratigraphic groups/formations 
and the geological age given in the Table 1. The overburden section is composed by the strata above the 
Chalk Group (given in blue on Fig.4, bottom right).The steep sections of the horizons representing the 
tops of the Jurassic and the Lower Cretaceous sections probably indicate the presence of faults.  
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Figure 4. Sketch of the location of the considered seismic profile, the seismic data, and the main 
reflective horizons, derived from seismic interpretation and the corresponding stratigraphic units and 
geological age. The steep sections of the horizons representing the tops of the Jurassic and the Lower 

Cretaceous sections probably indicate the presence of faults. 
 
 
In the present model, the overburden was deposited upon a pre-existing domain (called also 
underburden), composed by the strata from Top Jurassic to Top Danian, Fig. 4. Thus the pre-existing 
domain is composed by the units (Fig. 4) Tyne (grey), Cromer Knoll (green) and Chalk (blue). 
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The horizons from Top Ypressian to Top Quaternary (Fig.4, Table 1) , were used to define the 
depositional stages in the time evolution of the Post-Chalk period.  
 
 

Horizons, from Fig. 4 Stratigraphic Group / Formation Numerical Age (Ma) 
Sea Bed / Top Quaternary Top Nordlang Gp    0.00 
Top Pliocene    Mid Nordland Gp    2.60 
Top Miocene    Lower Nordland Gp    5.30 
Top Oligocene Upper Hordaland Gp /Mid Lark Fm  23.00 
Top Eocene Lower Hordaland Gp/ Top Horda Fm  33.90 
Top Ypresian (Mid Eocene) Top Rogaland Gp   47.80 
Top Danian (Early Eocene) Top Chalk / Top Ekofisk Fm  61.60 
Top Upper Cretaceous Top Shetland Gp  / Top Tor Fm  66.00 
Top Lower Cretaceous Top Cromer Knoll Gp  100.0 
Top Jurassic Top Tyne Gp 145.0 

 
Table 1. Tentative assignment of the reflective horizons to stratigraphic groups an geological age. 
 
The post-Chalk deposition was modelled using the approach, recently presented by Orozova-Bekkevold 
et al. (2021). Each stage is defined by specific duration in millions of years and a prescribed number of 
discrete depositional layers, composing the respective section. The duration in time and the number of 
discrete layers used for  each depositional stage are summarized in Table 2. 
 
Since the focus of this study was the Post-Chalk overburden, the geological evolution of the Jurassic and 
the Cretaceous sections pre-existing base (sedimentary deposition, tectonic events, erosion, uplifting, 
etc.) was not modelled in details at this stage. In addition we lacked data related to material properties 
and timing of past tectonic events for these sections.   
 

Stage Geological Period Duration [MY] Nr of layers 
1: Pre-existing base       Upper Jurassic   0.1 - Settling under gravity   1 
2: No detailed modelling L. Cretaceous   1.0 - Settling under gravity   1 
3: No detailed modelling U. Cretaceous – Danian    1.0 - Settling under gravity   1 
4: Ypresian (L. Eocene)   8.0   4 
5:  Mid to Late Eocene 19.3   5 
6: Oligocene 10.7   5 
7: Miocene 17.7   5 
8: Pliocene   2.7   2 
9: Quaternary   2.6   2 
10:  Post-depo settling Projected 0.5 MY after present  Not used 

 
Table 2. Main deposition stages with duration (in Million Years, MY) and present day thickness. 
 
The layers were deposited one-by-one on the top of the underlaying ones until the height of the 
respective horizon (Fig. 4) was reached. At the end, after the deposition of the last layer, a ‘settling’ 
period of the duration of 0.5 MY was introduced to simulate conditions of relaxation with no deposition. 
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The Jurassic and Cretaceous sections were modelled as “deposited” in one chunk and were “allowed” to 
settle under gravity, before the onset of the Post-Chalk deposition. The material, composing the Upper 
Jurassic (stage 1 in Tab. 2) is assumed to be  consolidated shale, while the Low Cretaceous to Top Danian 
(stage 2) is assumed to be composed by consolidated sandstones.  
 
The stratum between Top Lower Cretaceous and Top Danian can be seen as a proxy for a reservoir. 
 
It is assumed that the deposited material composing the Post-Chalk overburden is  unconsolidated clay 
and all materials are considered to be 

• isotropic and homogeneous;  
• fully saturated with water; 
• and at any given time the sediments are at their maximum burial depth.  
 

Clay diagenesis and other chemical and temperature effects are not modelled at the current stage. 
 

Finite elements modelling of the Post-Chalk deposition in the Tyra Field  

The evolution in geological time is modelled in the terms of a finite element method, using the software 
Elfen (ELFEN, Rockfield Software Ltd.). The framework and the theory behind the software are given in 
details in Crook et al. (2003), Peric and Crook (2004), (Crook et al. (2006a, 2006b), Thornton and Crook 
(2014). 
 
The non-consolidated clay material composing the overburden is represented as a poro-elasto-plastic 
material, fully saturated with water. The mechanical field (the solid part) is solved explicitly, while the 
seepage field is solved by implicit time integration schemes and the two fields are coupled at given time 
intervals (Thornton and Crook, 2014). 
 
The mechanical properties of the water-saturated medium, were expressed as: 
 

$%v((’)+[(1−	φ)0!+	φP"](3−4!)=0	. (1) 
 
The fluid (water only) flow over geological time is represented with a transient equilibrium equation:  
 

$%v[	
!(#)
%	 	∇P"−0"(3−4!)]=	[φ/9"+(:−	φ)/9!]

'()
'* 	+	:

'+,
'*   (2) 

 
 
where:  
 
s’ = (−:P  is the effective stress; rs and rf are the solid and the fluid density, respectively;  
g is the Earth’s gravitational acceleration, as is the acceleration of the solid phase, P"	is	the	fluid	
pressure,	φ is the porosity, k(j) is the porosity-dependent permeability, Kf is the fluid bulk modulus, Kfr 
is the frame bulk modulus, a is the Biot’s coefficient and  ev is the volumetric strain. 
 
The bulk modulus of the non-consolidated clay is expressed as a function of the mean effective stress P’ 
(Thornton and Crook, 2014): 
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* HIJ K
+!$+

,(#$+!)(#$+)
L +

%∗.’
*(#$+)  (3) 

 
where  
jo is the initial porosity, Ko is the initial bulk modulus and Pco is the initial pre-consolidation pressure,  
A is a weighting factor, k and l are material constants. 
 
The vertical stress, Sv, resulting by the weight of the overlaying sediments is assumed to be the 
maximum stress. The horizontal stresses is assumed to be isotropic, and in the absence of tectonic 
forces, it is derived from the vertical stress: 
 
       Sh = Keff*Sv        (4)                                                                                                                                      
 
where   Keff is the so-called effective stress ratio (Matthews and Kelly, 1967). Finally, the mean effective 
stress is obtained as 
 

     s’ = !!"#$∗!&' " – aPp     =	#	– aPp                               (5) 

                                                                                             
 
Where is Pp  the pore pressure and a is the Biot’s coefficient. Density and porosity are derived by well 
data (sonic and density logs), following the procedure presented in Orozova-Bekkevold et al. (2021). 
 
The evolution of these properties in time is driven by the rate of deposition and subsequent burial of 
fully saturated material, as described in Orozova-Bekkevold et al. (2021), Crook et al. (2003), Peric and 
Crook (2004), Crook et al. (2006a, 2006b), Thornton and Crook (2014).    
 
Initial and boundary conditions: The main force acting upon the domain is the gravity. The gravitational 
load originates at the top of the sediments and acts downwards. This setup is considered representative 
for the Cenozoic Period in the North Sea basin, where no major tectonic events (uplift, erosion, collision, 
subduction etc.) occurred, and thus the maximum stress is caused only by the weight of the deposited 
material and acts in the vertical direction. Uniaxial compaction (i.e. plain strain conditions) is assumed.  
 
The domain below the overburden (Jurassic to Danian, stage 1-3 in Tab. 2) is not allowed to deform at 
the bottom, along the top and across the sides.  
 
As mentioned above, the deposited material is modelled as a fully water saturated porous medium. The 
formation water can flow both vertically and horizontally within the domain, but there is no fluid flow 
from outside sources. The water does not flow through the bottom and no capillary and temperature 
effect are taken into account at this stage. 
 
Meshing: The finite element mesh is generated by an advancing front algorithm, adding new elements 
as the geometry expands, following the deposition of new layers of material (Crook et al. (2003), Peric 
and Crook (2004), Crook et al. (2006a, 2006b)). The elements are triangular, with initial size of 100m. 
The size of the elements is rescaled during the simulation, depending on the estimated plastic strain at a 
given step: plastic strain exceeding 2 results in diminished element size. 
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At the beginning of the simulation, before start of the deposition, the finite elements mesh consist of 
around 120 triangular elements, all with size 100. At the end of the simulation, the mesh consists of 
around 6750 elements with size ranging from 50 to 100. The model geometry and the finite element 
mesh at the beginning and the end of the deposition is summarized in Figure 5. 
 
 

A: Geometry at end Danian (appr. 61 Ma)                                                  Finite Elements Mesh 

 
    
 B: Geometry at end deposition                                                                       Finite Elements Mesh 

 
 
 

Figure 5. Model Geometry and the finite elements mesh in time. The depth is given meters [m] below 
sea bed at present. From top to bottom: a) Pre-existing domain (underburden) at time appr. 61 Ma (end 
Danian) before the onset of the overburden deposition; b) The final stage at present time after appr. 61 

MY of deposition. 
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 Results: Evolution of the stress and strain state in the Tyra Field during the Cenozoic Deposition 

The estimated changes in time in the subsurface stress-strain fields as result of the overburden 
deposition in the last 61 MY are reported in this section. 
 
If the shear (differential) stress exceeds the strength of the material, it might result in fracturing of the 
formation. Figure 6 shows the evolution of the shear stress during the deposition of the overburden. 
The plot in the centre of the top row (labelled “Top Chalk – 61 Ma”) corresponds to the stage just before 
the onset of the Cenozoic deposition, approximately 61 Million years Ago (Ma). As the figure shows, the 
largest shear stress was estimated along the very steep shoulders of the deepest horizon, which 
corresponds to the boundary between the Upper Jurassic and the Lower Cretaceous. Relatively high 
stress magnitudes were also estimated in the lowest strata, roughly corresponding to the Chalk 
reservoirs, while the shear stress estimated in the overburden was low. It is interesting to observe that 
in the 0.5 MY after the end of deposition, the projection suggests that the subsurface continues to react 
and a re-distribution of the shear stress might occur, especially in the deepest layers (right bottom 
corner of the plot). 
 
 
 

 
 

Figure 6. Evolution of the Shear Stress [MPa] during the deposition of the overburden. Depth is in 
meters, below sea bed. The horizons are at their present day-depth. Shear Stress is given in MPa 
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The zones with large shear stress might be considered being at higher risk of fracturing. The largest 
shear stress magnitude are estimated at present time where the overburden build-up is completed. If no 
further deposition is going to occur in the next 0.5 MY, the medium relaxes and the magnitude of the 
shear stress could decrease. 
 
Figure 7 shows the evolution in the effective strain during the burial process. This could also be 
interpreted as a kind of deformation accumulated during the Post-Chalk sedimentation. The maximum 
values were estimated in the overburden, along the Danian-Ypressian boundary, in the strata which 
forms the top seal of the Upper Chalk reservoirs. The strain continues to increase also in the projected 
post-deposition period (the right bottom plot in Fig. 7). 
 

 
 

Figure 7. Evolution of the effective strain as result of the deposition of the Post-Chalk sediments. 

Seismic Study of the fault Detection Limit 

Seismic reflection data is used extensively in the oil and gas sector for imaging and characterizing the 
subsurface. Reflected energy and arrival time of reflected waves provides information on elastic 
properties in specified locations and allows us to map geological formations on large and smaller scales, 
only limited by the resolution of the data. 

Seismic resolution implies the capability of distinguishing between different geological micro-structures. 
Some geological features such as small faults and fractures are below the seismic resolution threshold. 
Recognition of small-scale structures helps us to study thin layers and minor fractures and faults in 
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reservoirs for future exploration or risk analysis (Ashraf, 2020). When conducting risk assessment in the 
area, the fault detection threshold in the model, or the smallest fault size that can be detected by seismic 
data, as well as prior knowledge of the mechanical properties of the rock, such as the stress and strain 
condition of the overburden, must be taken into account. 

Using probabilistic models for evaluating the fault density in a certain area, we can assess the likelihood 
of CO2 migration in the reservoir. One of the first investigations of possible leakage risks and safety of 
CO2 underground injection was conducted by Holloway (1997), and probabilistic methods for risk 
assessment of such problems has become more and more popular during years (Kopp et al., 2010; Smith 
et al., 2011; Zunino et al., 2015 ). 

In this study we use a simplified probabilistic approach to locate areas of increased risk of fracturing in 
the cap rock. We use a Monte Carlo method to generate small subseismic faults escaping the resolution 
limit of the data, but at the same time having a fault density proportional to a prior probability density 
derived from the differential stresses presented in the previous section.  

Markov Chain Monte Carlo algorithms are commonly used for solving nonlinear inverse problems and 
sampling posterior probability density where the aim is integrating independent sources of information 
such as geological information and prior knowledge, geophysical data and data from nearby well logs. In 
stochastic approaches such as the Monte Carlo method, the size of the model space and high calculation 
cost associated with forward modelling could be challenging. Khoshkholgh et al., 2021 proposed a new 
methodology known as Informed Proposal Monte Carlo (IPMC), for MCMC sampling method that uses 
external information obtained from simplified physics  to form a global proposal distribution that guides 
the sampling procedure. An example of solving a probabilistic Full-waveform inversion by IPMC for a near 
surface velocity model in large scale can be found in Khoshkholgh et al., 2021. 

In this study we use Informed Proposal Monte Carlo in order to integrate (1)  prior knowledge about strain 
and stress fields and fault and fracture probability models in the reservoir, and (2) information from 
observed seismic data, to provide uncertainty analysis and to assess the probability of CO2 migration. The 
aim is to contribute to probabilistic models that could appraise possible CO2 leakage through faults in the 
overburden. 

Seismic Inversion 

In our inversion approach, our aim is to produce subsurface models  presenting relevant physical 
characteristics of the caprock in the chosen area. If M denotes the model parameters (in our case acoustic 
impedance), N the data and O stands for the forward operator (represented by the wave propagation 
algorithm), the forward problem can be expressed as: 
 

N	 = 	O(M). 
 
The inverse problem, in its widest sense, can be described as a problem of integrating measurable data 
information, prior information and theoretical connections between models and data (Tarantola et al. 
1982). As mentioned by Tarantola and Valette (1982) the solution of the inverse problem is then defined 
as a posterior probability density which is obtained as a product of the prior probability density 0 , 
providing the probability of models based on non-seismic information, and the likelihood function P, 
measuring the degree of fit between the observed data, and synthetic data calculated from the elastic 
reservoir model:  
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Q(M) = 	R	0(M)	P(M). 

R is the normalization constant and Q(M) denotes the posterior probability density that is considered as 
the solution of inverse problem. In our case, 0(M)  is derived from a simple hypothesis about 
proportionality of fracture risk and shear (differential) stress, and P(M) is given by 

P(S) = C	exp V−
1

2
(N)01 − 	O(M))2X3

$#(N)01 − 	O(M))Y 

where N)01 are the (noisy) observed data, and X3 is the covariance matrix of the noise. In this study we 
assume that X3 = Q3

4Z, where Q3is the standard deviation of the seismic noise.  

When the posterior probability density cannot be calculated analytically, Monte Carlo sampling is required 
(Mosegaard, 2006). The posterior distribution can be described by an ensemble of realizations 
implemented by Markov-Chain Monte Carlo (MCMC) algorithms, and their variability expresses the 
uncertainty of subsurface structures (Hastings 1970; Metropolis et al. 1963; Mosegaard and Tarantola 
1995; Tarantola, 2005). This requires the ability of calculating likelihood P at each point, as well as an 
algorithm that can sample the prior 0 . When the prior model is complex, as in this study, sampling through 
numerical operations is often the only way to incorporate this information (Mosegaard 1998; Zunino et 
al. 2015). In this study our geological prior information comes from two main sources: (1) the shear stress 
analysis presented in the previous section, providing a fault risk map, and (2) the simplifying assumption 
that the reservoir zone consists of a stack of (non-horizontal) homogeneous layers whose properties are 
calibrated to well information in the area (the wells E-1X and Deep Adda).   

There are several studies looking at the properties of fault and fractures zones in relation to hydrocarbon 
investigation or CO2 storage (Aydin, 2000 ; Rotevatn et al., 2011; Shipton et al., 2004; Dockrill et al., 2010). 
A fault displacement causes two damage zones on both sides, which could be categorized into three 
different groups: along fault, around tip and cross fault (Choi et al., 2015). The thickness of the damage 
zone is influenced by the size of the fault displacement. In our prior model generator, fault models in a 
specific angle range have been proposed in overburden and the fault density is proportional to the shear 
stress.  

Khoshkholgh et al., 2021 proposed a warping strategy for generating prior models that works by warping 
and deforming the subsurface image and perturbing the velocity value at each layer. This is done by 
finding a random window inside the model and allowing deformations such that they are maximum in the 
center and gradually fade away and become zero at the boundaries.  The velocity perturbation within one 
layer is adjusted by an estimated modelization error (Khoshkholgh et al., 2021). In this study, the same 
technique is applied in such a way that fault planes are randomly (according to the prior) introduced in 
overburden during perturbation and the displacement vector directions on either side of the fault line are 
opposite.   
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We use the seismic convolutional model as the forward model, which produces the seismic data by 
convolving the reflectivity series with a wavelet. The reflectivity is computed from the seismic impedance, 
which is a product of density and velocity. We assume here that the density is roughly proportional to the 
velocity (Liner, 1999).  In order to simulate the residual, horizontal smearing left in the data after (an 
unavoidable imperfect) migration, we use a 2D wavelet (see Figure 8): 

Figure 8. 2D wavelet used in this study 

where the variation in time is a zero phase Ricker wavelet. The following is the formula for  convolutional 
modeling of the seimic profile: 

[(I, \) 	∗ 	^(I, \) + 	_(I, \) 	= 	`(I, \) 

Where [(I, \)  is the 2D reflectivity, ^(\)  is the 2D seismic wavelet and _(I, \)  is the added noise 
(Partyka, 1999). For the sake of simplicity, we will assume in this study that the wavelet is constant 
everywhere in the depth domain, and hence the modeling can be carried out with \ replaced by depth a. 

To carry out the inversion we us a Markov Chain Monte Carlo algorithm which proceeds as follows: 

• From current starting model M, propose Mʹ using the proposal distribution b(M′	|M)  
• Accept Mʹ with probability:  

J5((
(#)

= e%_ V
0(M′)b(M	|M′)

0(M)b(M′	|M)
, 1Y 

where 0(M) is the prior probability density. 

• If Mʹ is accepted, perform another test, where it is accepted with probability 

 	

J5((
(4)

= e%_ V
P(M′)

P(M)
, 1Y	

where	P(M)	is the likelihood function. 

• If Mʹ is rejected by both of the above tests, repeat M. 
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In order to construct an MCMC algorithm with an informed proposal, we first assume that data 
uncertainties are very small in comparison to the modelization error (Khoshkholgh et al. 2021). This results 
in the following formula:                          

Q6(M) ∝ 	Q	(N789,M) ≈ 	i(N789,M) 

where Q	(N,M) is the posterior distribution in the joint data-model parameter space ` ×k, and 
i(N,M) is the distribution in ` ×k that describes the correlation between model parameters and data 
(allowing an uncertain forward relation). Since the true modelization error  lM:;<= is unknown, we 
build an approximate modelization error distribution i(N789,M) by considering a simplified inverse 
problem that is similar to the original problem: First we solve the problem using a simplified pseudo-
inverse ℎ which gives us the rough estimate Sn = 	ℎ(o>?@). We now compute synthetic data from the 
estimate, using the correct forward O: o1AB: = O(Sn), and invert this result again using ℎ: Sn4 =
	ℎ(o1AB:). If M:;<= and  Sn   are close in the model space, this back-and-forth process approximately 
reveals the modelization error, which can now be estimated as lM5CC;)D = Sn4 −Sn   (Khoshkholgh et 
al. 2021). A simple modelization error distribution i(N789,M) can now be constructed as an isotropic 
Gaussian with mean Sn  and with the components of lM5CC;)D  as standard deviations. This 
approximate modelization error distribution is used as a global proposal b(Mʹ|M). In this way, our 
external knowledge and information about the target distribution can be injected into the problem 
through the proposal. Using the global proposal will not bias the problem or distort the result, but just 
accelerate the sampling process and leads to a more efficient algorithm (Khoshkholgh et al., 2021).  

Results: Seismic Inversion 

A 2D seismic profile is chosen from the Tyra field in the Danish part of North see. There are two well logs 
located in the chosen area. By simple interpretation and from the well information, a velocity function 
was generated. This velocity model was considered as the center of the informed proposal distribution, 
modelization error distribution was calculated from it. The following steps were taken to create the 
informed proposal distribution: 
 

a) Synthetics were computed from the reflectivity obtained from the center velocity model. 
b) Synthetics were inverted with a simple linear inversion (deconvolution) and a second reflectivity 

model is obtained. 
c) Modelization error for the layer boundaries were calculated by finding the difference between 

the first and the second reflectivity model. The modelization error was then turned into a  
modelization error envelope.  

d) The center velocity model and the error envelope were used for the global proposal strategy in 
the IPMC method. 

 
 
As previously explained, our strategy for generating prior models is inspired from Khoshkholgh et al. 
2021, except for the fact that in this study fault lines are introduced into the model during perturbation. 
The probability of having fault structures in each point is obtained from the differential stress field and 
used in the sampling procedure. The prior probability is non-zero for piece-wise constant velocity 
models (Khoshkholgh et al.,2021). Overall, perturbing the prior model is a combination of warping or 
deforming the layer boundary shape, perturbing and changing the velocity value in each layer and 
introducing fault lines with regard to the fault and fracture probability. 
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Figure 9 shows a 2D seismic profile from the Tyra field that was used in this study. Figure 10 shows the 
center velocity model obtained by simple interpretation. The reflectivity modelization error estimation is 
shown in figure 11 and the modelization envelope is shown in figure 12. In figure 13 the prior fracture 
probability model, obtained from the stress field, is shown. 
 
To start sampling the posterior probability density the center velocity model is chosen as the starting 
model. The maximum velocity perturbation is chosen as 1 percent of the maximum velocity and the 
maximum displacement in warping is chosen as 5 pixels. Warping happens in a square window centered 
at a randomly selected point. The size of the window is 200 by 200. The maximum and minimum fault 
angles are 12 degrees and 36 degrees respectively. 
 
Figure 14 shows two different realizations from posterior. Using a global, informed proposal containing 
external information about the posterior sped up the sampling process, and made the sampling possible 
for the full model with more than 10! parameters.  
 
The posterior fault/fracture density is shown in figure 15 and suggests that the  bottom of our 2D 
selected area, which is located under the reservoir, has a very low probability of having a fault or a 
fracture zone.  
 

 

 
 

Figure 9. 2D observed seismic profile from the Tyra field. 
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Figure 10. The center velocity model obtained by simple interpretation. 

 
Figure 11. The reflectivity modelization error estimation. 
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Figure 12. Reflectivity modelization error envelope. 

 
 

Figure 13. Prior fracture probability model obtained from the stress field. 
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Figure 14. Two realizations from the posterior probability density. 
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Figure 15. Posterior Fault and fracture density. 
 
 

Conclusions and Discussions 

A forward conceptual model was used to simulate the evolution in time of the stress and strain fields in 
the Tyra field as result of the deposition of the approximately 2000m thick clay-rich Post-Chalk 
overburden in the last 61 Million years.  
 
The main purpose was to study possible risks, in terms of probability of fracturing or fault re-activation, 
related to seal integrity. 
 
Since the resolution of even the best quality seismic data does not allow to detect small fractures and 
faults, the forward conceptual model allowed us to identify areas of stress-strain concentration, which 
possibly can be at increased risk of fracturing and probable fault re-activation, especially in the cap rock 
(immediate overburden). 
 
The simulation showed that the deposition of thick clay-rich Cenozoic Overburden in the last 61 MY on 
the top of a pre-existing structure could have produced significant shear stress in the strata below the 
Overburden, i.e. the Upper Jurassic, the Lower Cretaceous and the Chalk Group. The largest values of 
the shear stress were estimated along the very steep sections at Top Jurassic, which might corresponds 
to fault zones. The areas of high shear stress could be at higher risk for fracturing.  
 
The largest effective strain (deformation) was estimated in the section above Top Chalk, which forms 
the seal of the Chalk reservoir. 
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The very intensive sedimentation in last 5.3 MY seems to lead to significant increase and re-distribution 
in both the shear stress of the deepest strata and the strain accumulated in the overburden. 
 
The projection in time after end deposition showed that the strain-stress field continues to evolve even 
if no new sedimentation is occurring. 
 
The stress-strain field, estimated with the present model is believed to correspond to natural state of 
the subsurface, i.e. the state before any kind of human intervention. 
 
It should be kept in mind that the forward model of the evolution of the subsurface presented here is 
conceptual and was used mainly to illustrate the importance of the Cenozoic deposition for the present-
day subsurface stress-strain field. The model can be improved by including further details.  
 
A simplified probabilistic analysis of a seismic 2D profile across the Tyra reservoir, intersecting the E1-X 
and Deep Adda well sites was carried out. The focus was on the detection limit of the data, and the 
result was a map of faulting and fracturing probabilities across the area. The result is a combination of 
seismic information with information about stress fields, derived from the subsurface evolution model.  
 
Based on this study, we currently cannot make very detailed conclusions about the actual conditions at 
specific locations in the Tyra field. Both the subsurface evolution model and the seismic analysis were 
oversimplified and important processes, among others, anisotropy in stress and rock properties, the pre-
Cenozoic geological and tectonic history, the effect of temperature and capilliary phenomena were not 
included in the current study. A notable weakness in the seismic analysis is the lack of accurate data 
modelling (the wavelet estimation and the wave simulation), and we have also not included an obvious 
source of information, namely anisotropy of rock properties, which may be derived from full waveform 
data or AVO/AVA data. An investigation of anisotropy may contain valuable information about rock 
fracturing, and should be taken up in future studies.  
 
The outcome of the study is, however, encouraging. We have proposed a new way of analysing caprock 
integrity of reservoirs for CO2 storages. Our subsurface evolution model potentially allows us to predict 
current and future changes in a reservoir, and our probabilistic approach to seismic data analysis allows 
our numerical model of the stress field to be integrated with seismic information, producing 
fault/fracture probability maps that are ready to be included in a quantitative risk analysis.  
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Introduction 

 

Sequestration of CO2 in former oil and gas reservoirs can contribute to amelioration of the global 

increase in CO2 emissions, and it is already in use in a limited number of sites worldwide (Bachu, 2008; 

Michael et al., 2010; Ringrose et al., 2017). Injection of CO2 for enhanced oil recovery has already been 

been utilised by the oil industry for decades, particularly in onshore North America (Gozalpour et al., 

2005). CO2 is currently stored offshore Norway, in Sleipner and Snøhvit, with ~ 1.5∙ 106  tonnes annually 

(Eiken et al., 2011). Pilot-projects have been carried out in Germany (Kempka & Kühn, 2013; Bergmann 

et al., 2016), Spain (Vilamajó et al., 2013; Ogaya et al., 2013) and Texas (Daley et al., 2008; Doughty et 

al., 2008), and this has greatly increased our understanding of CO2 migration, monitoring and injection 

strategies in geological reservoirs.  

Injection of CO2, or any other fluid, into subsurface reservoirs increases the risk of caprock failure and 

migration of fluid along faults, fracture corridors, and other pre-existing weak zones (Ogata et al., 

2014a). Understanding the detection thresholds of such structures calls for careful mechanical modeling 

of the reservoir stress- and strain field, careful inversion of available seismic data, combined with 

geological knowledge from well data and outcrop data. In this way it may be possible to quantify the 

probability of significant CO2 migration through the caprock, laying the ground for a meaningful risk 

evaluation.  

During the last couple of decades considerable progress has been made in geophysical and 

geostatistical data analysis methods to correctly estimate model uncertainties and thereby to evaluate 

fault detection thresholds (zee, e.g., Zunino et al., 2015). The goal of this pilot project is to propose a 

way of exploiting these methods for risk assessment in connection with CO2 storage. Conceptual models 



are developed to model the time evolution of the subsurface, giving information about current and 

future stress fields. This analysis provides the prior information to a subsequent probabilistic inversion 

of seismic data. Monte Carlo methods are used to simulate the noise in the data, and the noise is back-

propagated through the geophysical (e.g., seismic) equations into the geophysical model, generating a 

model variability, and reflecting the uncertainty of the reservoir structure. Combining this approach with 

prior information about the mechanical properties of the reservoir, we evaluate the probability of fault 

migration scenarios. In this pilot project, we carry out a concrete, highly simplified numerical study of 

the sub-problem of estimating the density of sub-seismic faults in the overburden of an existing North 

Sea hydrocarbon reservoir, and established a simple probability model for releases through existing 

faults. The study is a starting point for developing a full-scale risk analysis system based on the principles 

outlined above. 

Well data 

 

Data (petrophysical logs and well reports) for the following wells: Fasan-1, Deep Adda, South East Adda 

and E1-X (Figure 1), were provided by DHRTC. The wells are located in the Tyra field, Danish sector of 

the Central Graben, approximately 200 km west of Esbjerg. 

 

 

 
 

Figure 1. Location of the wells used in the analysis. 
 
 

Figure 2 and 3 show the lithology columns and, respectively, the depth coverage of the sonic and density 

logs acquired in the four above mentioned wells. The figures illustrate very well the challenges related 

to the availability of log data in the overburden. In all four wells, no sonic (or density) data were 

acquired in the shallow section from sea bed to approximately 500 m depth. In the well E-1X, both sonic 

and density logs were acquired only in the reservoir (chalk) section, while in South East Adda, density 

data are available only below the Chalk group, in the deepest section of the well. This probably is due to 

the fact that the purpose of the South East Adda well was to investigate the hydrocarbon potential of 

the Crome Knoll Group. 



 

Since the overburden provides the reservoir seal, it is important to have sufficient data of good quality 

in order to analyze its integrity and/or strength. One very important parameter is the fracture pressure 

of the seal – if the pressures at the top of the reservoir exceeds the fracture pressure of the seal a 

breach will occur and the reservoir fluid (CO2 or hydrocarbons) will escape.  

 

 

 
 
Figure 2. Overview of the sonic compressional logs (us/ft), acquired in the four wells. From left to right: 

Deep Adda, South East Adda, E-1X and Fasan-1. The depth reference is Rotary Table (RT, i.e. the rig 

floor). 
 



 
 
Figure 3. Overview of the density logs (g/cc), acquired in the four wells. From left to right: Deep Adda, 

South East Adda, E1X and Fasan-1. The depth reference is Rotary Table (RT, i.e. the rig floor). 
 

Conceptual modeling - Tyra: Future evolution of the overburden 

 

As mentioned above, the overburden provides the reservoir seal, and its integrity is a crucial parameter 

to consider when evaluating the risk of reservoir fluid (CO2 or hydrocarbons) escape. The present-day 

stress and strain state of the Post-Chalk overburden in the North Sea is the result of the sedimentary 

deposition and geological evolution which took place in the last 56 MY. During production, the stress 

and strain changes due to reservoir depletion affect the overburden as well, among the examples are 

the subsidence experienced in the Tyra and the Ekofisk fields. 

 

The overburden of the Chalk reservoirs in the Danish sector of the Central Graben consist of a thick (up 

to 2000-2200 m) pack of Cenozoic sediments: the Nordland, the Hordaland and the Rogaland Groups 

(Figure 2 and 3). The well reports of the four wells (Jensen, 2004; Rong et al., 1985; Kleist et al., 1977), 

used in this study, hold useful information about the lithological composition of the overburden. The 

upper (most shallow 0-500 m depth) part of the Nordland Group consist of predominantly Quaternary 

sand sand/clay mixtures, while the lower part consist predominantly of claystone with occasional thin 

limestone layers (Jensen, 2004). The Hordaland Group consists predominantly of clay-rich (shale) 

formations, in some interval interbedded with thin limestone layers (Jensen, 2004). The Rogaland Group 

is situated at the top of the Chalk Group and thus represents the seal for the uppermost Chalk reservoirs 

(Danian age, Lower Paleocene). The thickness of Rogaland varies across the field, as illustrated by the 

well lithology columns in Figure 2 and 3. The upper part of the Rogaland Group (the Balder formation) is 

characterized by tuffaceous claystone, while the lower part (Sele, Lista, Vaale) is predominantly 

claystone with stringers of marl (Jensen, 2004). 

 



 

Conceptual modeling - Tyra: Forward finite elements method 

 

The evolution in geological time is modelled in the terms of a finite element method, using the software 

Elfen (ELFEN, Rockfield Software Ltd.). The framework and the theory behind the software are given in 

details in Crook et al. (2003), Peric and Crook (2004), (Crook et al. (2006a, 2006b), Thornton and Crook 

(2014). 

 

The medium composing the overburden is represented as a fully saturated poro-elasto-plastic material. 

The mechanical field (the solid part) is solved explicitly, while the seepage field is solved by implicit time 

integration schemes and the two fields are coupled at given time intervals (Thornton and Crook, 2014). 

The mechanical properties of the water-saturated medium, is expressed as: 

 

𝑑𝑖v(𝛔’)+[(1− φ)𝜌𝑠+ φP𝑓](𝐠−𝒂𝑠)=0 . (1) 

 

The fluid (water only) flow over geological time is represented with a transient equilibrium equation:  

 

𝑑𝑖v[ k(φ)
μ 

 ∇P𝑓−𝜌𝑓(𝐠−𝒂𝑠)]= [φ/𝐾𝑓+(𝛼− φ)/𝐾𝑠]
∂Pf
∂t

 + 𝛼∂εv
∂t

  
(2) 

 
 
where:  

 

V’ = 𝛔−𝛼P  is the effective stress;  

P𝑓 is the fluid pressure;  
Us and Uf are the solid and the fluid density, respectively;  

φ is the porosity;  

k(M) is the porosity-dependent permeability;  

g is the Earth’s gravitational acceleration;  

as is the acceleration of the solid phase;  

Kf is the fluid bulk modulus;  

Kfr is the frame bulk modulus;  

D is the Biot’s coefficient and   
Hv is the volumetric strain. 
 

The bulk modulus is expressed as a function of the mean effective stress P’ (Thornton and Crook, 2014): 
 

𝐾 = 𝐾𝑜 + (1−𝐴)𝑃𝑐𝑜
𝜅

𝑒𝑥𝑝 [ 𝜑𝑜−𝜑
𝜆(1−𝜑𝑜)(1−𝜑)] + 𝐴∗σ’

𝜅(1−𝜑)
  (3) 

 

where  

Mo is the initial porosity,  

Ko is the initial bulk modulus,  

Pco is the initial pre-consolidation pressure,  

A is a weighting factor, N and O are material constants. 

 



The mean effective stress is derived by the vertical and horizontal stresses and the pore pressure. The 

vertical stress resulting by the weight of the overlaying sediments is calculated as:  

 

      Sv = g * 6 Ui D i     (4)                                                                                                                  

 

where Ui and D i are the density and the thickness of the i-th sediment layer. In the present study, we 

assume that the horizontal stresses are isotropic, i.e. the minimum and the maximum horizontal 

stresses are equal, and that the vertical stress and horizontal stresses are related through: 

 

       Sh = Keff*Sv        (5)                                                                                                                                      

 

where   Keff is the so-called effective stress ratio (Matthews and Kelly, 1967). Finally, the mean effective 

stress is obtained as 

 

     V’ = [Sv+2∗Sh
3

] – DPp     = 𝜎 – DPp                               (6) 

                                                                                             

 

where D is the Biot’s coefficient. Density and porosity are derived by well data (sonic and density logs).  

 

In the cases where only a compressional sonic log from well data is available, the bulk density can be 

estimated by the empirical relationship, proposed by Gardner et al. (1974): 

 

      Ubulk = 0.23*𝑉𝑝
0.25,                                                                          (7) 

 

where Vp is the p-wave velocity. The porosity can be calculated from the bulk density and grain density 

as follows:  

 

𝜑 =  𝜌𝑔𝑟− 𝜌𝑏𝑢𝑙𝑘

𝜌𝑔𝑟− 𝜌𝑤𝑎𝑡𝑒𝑟
                                                                                                                            (8) 

 

where Ugr (=2700 kg/m3) and Uwater (=1035 kg/m3) are the grain density and the water density, 

respectively. 

 

The evolution of these properties in time is driven by the rate of deposition and subsequent burial of 

fully saturated material, as described by Orozova-Bekkevold et al. (2021). 

 

 

Conceptual Model 1 - Tyra: Past evolution of the deposition of the Cenozoic overburden 

 

The post-Chalk Cenozoic deposition in the Tyra field is represented by three main stages: Paleogene 

(Eocene-Oligocene), Neogene and Quaternary with the approximate duration of 33, 21 and 1.6 MY, 

respectively. 

 



The geometry of the 2D model (Fig 4) is simplified as follows: a pre-existing domain with a top surface of 

generic anticline shape (might be imagined as a Top Chalk reservoir) upon which the three main units of 

the overburden were deposited. For simplicity, it is assumed that all three overburden units are 

composed by shale, while the pre-existing domain is composed by limestone. Since the studied area was 

covered by sea at all times, a water depth of appr. 100 m is assumed at each stage. At the end of the 

deposition, the domain is allowed to settle for 1.5 MY under gravity with no additional sedimentation. 

 

 

 

Figure 4. Sketch of the model geometry 

 

The sedimentation process is modelled as deposition of discrete layers, each with approximately 50 m 

thickness, over the time duration of the respective stage. The duration in time and the present thickness 

of the respective stages are summarized in Table 1. A simplified mean sedimentation rate is derived by 

dividing the present-day thickness by the stage duration. 

 

Stage Duration 
[MY] 

Thickness 
[m] 

Mean sedimentation rate  
[m/1MY] 

Nr of layers 

Paleogene  

(Eocene-Oligocene) 

 

    33.0 

   880  

(above crest) 

 

    27 

 

     18 

Neogene     21.0   1250     60      25 

Quaternary       1.6     300   187        6  

Post-depo settling       0.5     N/A      N/A      N/A 

 
Table 1. Main deposition stages with duration (in Million Years, MY) and present day thickness. 

 

It is assumed that the material, composing the different units, is fully saturated with water, isotropic and 

homogeneous and at any stage the sediments are at their maximum burial depth. Clay diagenesis and 

other chemical and temperature effects are not modelled at the current stage. 

 

Finite elements model: The forward numerical modelling of the build-up of the overburden in time is 

performed with the finite element software Elfen. The equations used in the finite elements modelling 

are given in the text above.  

 

Initial and boundary conditions: The main force acting upon the domain is the gravity. The gravitational 

force originates at the top of the sediments and acts downwards. This setup is considered 

representative for the Cenozoic Period in the North Sea basin, where no major tectonic events (uplift, 



erosion, collision, subduction etc.) occurred, and thus the maximum stress is caused only by the weight 

of the deposited material. The pre-existing domain is not allowed to deform at the bottom and across 

the sides, while the material can deform inside and along the top of the domain. Uniaxial compaction 

i.e. plain strain conditions is assumed. As mentioned above, the deposited material is modelled as a fully 

water saturated porous medium. The formation water can flow both vertically and horizontally within 

the domain, but there is no fluid flow from outside sources. The water does not flow through the 

bottom and no capillary and temperature effect are taken into account at this stage. 

 

Meshing: The finite element mesh is generated by an advancing front algorithm, adding new elements 

as the geometry expands, following the deposition of new layers of material. The elements are 

triangular, with initial size of 400. The size of the elements is rescaled depending on the estimated 

plastic strain at a given step: plastic strain exceeding 2 results in diminished element size. 

At the beginning of the simulation (time 0), before start of the deposition, the finite elements mesh 

consist of 138 triangular elements, all with size 400. At the end of the simulation, the mesh consists of 

6760 elements with size ranging from 50 to 400.  

 

The finite element mesh at the beginning and the end of the simulation is summarized in Figure 5. 

 

 

 

Figure 5. Model Geometry in time, and the finite elements mesh. From top to bottom: a) Pre-existing 

domain (reservoir) at time 0 (56 Ma) before the onset of the Cenozoic deposition; b) The final stage at 

present time after appr. 56 MY of deposition; c) final elements mesh at the final stage. 



Results: Conceptual Model 1: stress state at the pre-production stage 

If the shear (differential) stress exceeds the strength of the material, it might result in fracturing of the 

formation. Figure 6 shows the evolution of the shear stress during the deposition of the overburden. As 

the figure shows, the largest shear stress is found in the reservoir, along the flanks of the anticline 

structure, close to its top. These zones might be considered being at higher risk of fracturing. The largest 

shear stress magnitude are estimated to appear at present time where the overburden build-up is 

completed. If no further deposition is going to occur in the next 0.5 MY, the medium relaxes and the 

magnitude of the shear stress could decrease. 

 

 

 

Figure 6. Evolution of shear stress during the deposition of the overburden 

 

Figure 7 shows the evolution in the consolidation and compaction (accumulated displacement in the 

vertical plane) of freshly deposited clay-rich sediments during the burial process. This could also be 

interpreted as a kind of deformation accumulated during the Cenozoic sedimentation. The maximum 

concentration is in the overburden, along the Paleogene-Neogene boundary, roughly above the flanks of 

the anticline structure. Negative values denote displacement downwards. The white areas in the pre-

existing domain (the reservoir) on the right side of the anticline, denote an very small (max. 8 m) 

upwards displacement. 

 

 

 

Figure 7. Accumulated vertical displacement [m]: Negative values denote downwards movement  

(opposite to the axis direction). The white areas denote very small (max. 8 m) upwards displacement. 

 



 

The evolution of horizontal displacement during  the deposition of the overburden is displayed in Figure 

8.  

 

 

Figure 8. Accumulated horizontal displacement [m]: Negative values, given in red, denote displacement 

against the axis direction; positive values (blue) denote displacement along the axis direction. 

 

 

Negative values, given in red, denote displacement against the axis direction; positive values (blue) 

denote displacement along the axis direction. As it can be seen on the Figure, horizontal displacement is 

concentrated in the immediate overburden (the cap rock) on the sides of the anticline. It developed 

already during the 1st sedimentation stage, Paleogene, and the pattern was preserved in all following 

stages. The displacement on the sides of the anticline could be interpreted as material sliding away from 

the top of the structure along the slope.  

 

Comparing Figure 7 and Figure 8, one can see that the blue area on Figure 8 corresponds roughly to the 

white area in Figure 7. One possible interpretation could be that the horizontal displacement along the 

steepest side of the anticline is “dragging” material towards the depression to the right, thus 
“alleviating” the load on the anticline shoulder. 

Conceptual Model 2 - Tyra: Future subsurface evolution after abandonment 

The geological evolution of the entire subsurface (both overburden and reservoir) continues also after 

abandonment. The development and exploitation of the hydrocarbon reservoir(s) induced man-made 

changes in the local stress regime, which resulted in disturbing the natural stress balance in the area. 

After abandonment, the entire subsurface medium, both reservoir and overburden, will continue to 

react to these changes until a new state of stress equilibrium is reached.  

 

Modelling of the subsurface reaction in time after abandonment of a hydrocarbon field is especially 

interesting in the view of the possibility to use such reservoirs as a possible CO2 storage location. One of 



the crucial issues in CO2 storage is the integrity of the cap rock. If the seal is compromised, the CO2 

might escape from the reservoir and migrate to surface/sea bed. 

 

Here, we apply again forward finite elements modelling to investigate the risk for fault re-activation as 

consequence of reservoir compaction in an abandoned hydrocarbon field. The model is based on data 

from the Tyra field. The filed is not yet abandoned, but it experienced significant reservoir compaction, 

which lead to sea bed subsidence. 

 

It must be emphasized that the geometry of the 2D model presented here is only a very simple sketch of 

the actual subsurface system in the Tyra field. 

 

The geometry of the 2D model is represented in Figure 9. The length of the domain is 5000 m, the 

thickness – approximately 3000m. The bottom section represents a limestone reservoir with assumed 

thickness from 370 to 485m, overlaid by 4 overburden shale units. The initial thicknesses incorporate 

expected consolidation and compaction of the material under gravity. 

 

In order to investigate the risk of seal failure, represented by sub-seismic fractures (i.e. fractures that 

cannot be seen in the seismic data), a couple of arbitrary pre-existing faults are incorporated: one 

crossing from the reservoir into the seal, two only in the reservoir and two only in the cap rock. Note 

that the fractures might not be representative for the actual fault system in the Tyra field.  

 

The evolution in time is modelled as two stages:  

Stage 1: settling under gravity with the duration 0.5 MY; 

Stage 2: reservoir compaction over 0.1 MY modeled as vertical displacement of Top Reservoir reaching 

150 m at the end of the stage. The values of stage duration and vertical displacement are arbitrary. 

 
 

Figure 9. Model geometry: A limestone (reservoir) unit, overlaid by thick clay-rich  

overburden. The geometry and location of the fault lines are arbitrary. 

 

 

Finite elements model: The forward numerical modelling is performed with the same finite element 

software Elfen. In this simulation, we investigate only the mechanical field (the solid part of the porous 

medium) and do not model fluid flow. 

 



Initial and boundary conditions: As before, the main force acting upon the domain is the gravity force; it 

originates at the top of the sediments and acts downwards. Since gravity is a global force, it is active in 

all stages, also during compaction. 

 

Deformation is not allowed at the bottom and across the sides, while the material can deform inside and 

along the top boundary. Uniaxial compaction i.e. plain strain conditions are assumed.  

 

Meshing: The finite element mesh is composed by 3230 triangular elements with size 100.  

 

Results: Conceptual Model 2:  Reservoir compaction – slip on fault 

This section reports the results of the conceptual simulation of reservoir compaction after the 

abandonment of a depleted hydrocarbon field. 

 

The time evolution is modeled in two stages. Stage 1: Gravitational settlement of the system (roughly 

corresponding to the pre-production state) with duration of 0.5 model time units (for example, million 

years) and Stage 2: A 150 m vertical downwards displacement of the top of the reservoir (compaction) 

occurring over 0.1 model time units. 

 

Figure 10 shows the evolution of the shear stress in time. Negative values denote compressive stress, 

positive – tensile. As it can be seen on the figure, shear stress starts to build up in the reservoir itself at 

the onset of compaction (time 0.51), reaching maximum values at the end of compaction (time 0.6). 

There is no significant shear stress in the cap rock and the rest of the overburden. 

 

F  

Figure 10. Shear stress [Mpa]: - compressive; + tensile. The lines denote pre-existing faults. 

 

 

Figure 11 shows the possibility of fault re-activation, expressed in terms of slip-on-fault. A value of 1 

indicates that slip may occur; a value of 0 denotes no slip. 

 

As it can be seen on the figure, some slip on all faults is possible during the gravitational settling of the 

system (time 0.01 to 0.5). At the onset of compaction (time 0.51) the possibility for fault slip is very high, 



especially in the faults in the overburden. At the end of compaction (time 0.6) there is still possibility for 

slip on the faults in the reservoir, while the faults in the overburden are quiet. 

 

 

 

Figure 11. Slip on fault: 1 – yes; 0 – no. Time 0.5 (End of Stage 1) correspond to pre-production state. 

Time 0.51 corresponds on the 1st onset of compaction. Time 0.6 corresponds to the end of compaction. 

 

  



Seismic Study of the Fault Detection Limit 

A NE-SW striking 2D seismic profile (selected from a 3D seismic volume) from the Tyra field, connecting 

the wells E-1X and Deep Adda-1, was selected for this pilot study. The geographical location of the 

selected profile is shown in Figure 12. The subset of the seismic profile used in the numerical study is 

shown in Figure 13.  

 

 

 

Figure 12. Location of the 2D data set used in this study (yellow line) 

 

 

 

Figure 13. The 2D seismic data used in our analysis (depth section) 



Assuming that the reflectivity is approximately a white noise series, a zero phase statistical wavelet was 

estimated from data from the reservoir overburden around the Deep-Adda wellsite (Figure 14). 

  

 

 
Figure 14. Top: Estimated wavelet at the Deep-Adda wellsite.  

Bottom (for comparison): Data from the Rogaland Group, close to the wellsite 

 

The effective noise variance of the data was estimated as the variance of the data residual (the 

difference between the observed data and the synthetic data computed from the wavelet) at the well 

site. Synthetic data were computed from the reservoir model by first generating zero offset seismic data 

using the exploding reflector model (Loewenthal et al., 1976), followed by a depth migration using a 

rough background velocity model derived from well data and a simple interpretation of data (Figure 15). 

The rock density 𝜌 is everywhere calculated from the approximate formula 𝜌 [𝑔/𝑐𝑚3] =  260 𝑣 [𝑓𝑡/𝜇𝑠].   
 

 
 

Figure 15. Seismic Background Velocity Model interpolated between wells, guided by interpretation. 

 

Our synthetic data simulate in this way the processing (stacking, deconvolution and migration) of the 

data used in this study (Figure 13), including the horizontal smoothing due to imperfections in the 

processing, especially the data migration.  

 
Figure 16. Left: A minor fault with a vertical displacement of 3m.  

Right: A simulated seismic profile across the fault. 

 

The objective of the seismic study was to carry out a simplified inversion study aimed at estimating the 

detection limit of small-scale faults. A simple illustration of the problem is given in Figure 16 showing a 

Location [m] 



minor fault with a near-vertical displacement of 3 m, and its seismic response on a stacked and migrated 

seismic section. In this example, the fault is so small that it is indistinguishable from a small flexure in 

the layering. Only faults above a certain size (depending on the noise level and the impedance of the 

surrounding rocks) can be detected by the seismic data. Our aim was to detect possible locations of such 

faults, and to calculate the likelihood of sub-resolution faults and fractures everywhere in the reservoir 

overburden.  

 

Above the seismic resolution, the seismic data provide most of the information needed to estimate 

fault/fracture probability. The limiting factor here is the noise level in the data. Below the seismic 

resolution, fault/fracture probability is derived from our study of the mechanical evolution of the 

reservoir.  Our final output is a cross-section of fault/fracture probability in the overburden. Only if the 

reservoir is separated from the sea bottom with a connected zone of near-zero fault/fracture 

probability, the overburden is deemed uncompromised. 

 

Seismic inversion 

Our basic method is a Monte Carlo procedure to randomly perturb layer velocities and layer boundaries 

in such a way that the resulting synthetic data fit the observed data within the error bars, and the 

resulting reservoir model is consistent with the prior information. Our layer boundary perturbations 

include generation of faults. 

 

The general solution to inverse problems in a probabilistic formulation was given by Tarantola and 

Valette 1982 as the posterior probability density: 

 

𝜎(𝐦) = L(𝐦)ρ(𝐦) 
 

where ρ(𝐦) and L(𝐦) is the prior probability density and the likelihood function, respectively. The prior 

carries information that is independent of the observed data (in our case information from the initial 

study of the mechanical evolution of the reservoir, including the current shear stresses), and the 

likelihood function measures the degree of fit between the calculated and the measured data (in our 

case the seismic data). The objective of our calculations is to characterize 𝜎(𝐦) by a sample of models 

𝐦. This sample will, if sufficiently large, contain all information, in a probabilistic form, about the 

solution to the problem.  

 

We use the algorithm proposed by Mosegaard and Tarantola (1995) to sample 𝜎(𝐦), given a numerical 

procedure for generating faults with the prior probability (see above), and a routine for performing the 

forward modeling (producing stacked and migrated profile from a given reservoir model).  

 

Our algorithm performs importance sampling where the density of sampled models in the model 

parameter space is proportional to the posterior 𝜎(𝐦). This allows us to calculate any kind of 

probabilistic information related to the solution. 

Results: Seismic Inversion 

Fundamental to our study is the prior information about the subsurface stress field provided by our 

numerical study of the mechanical evolution of the reservoir. From this information, we can, in principle, 

derive the faulting/fracturing probability that goes into our calculations. The seismic data is able to 



constrain information about major faults, and hence also (indirectly) minor faulting and fracturing. This 

is illustrated in Figure 17 from Choi et al. (2016) showing the modern picture of fault zone architecture. 

A real fault plane is, an extended zone (the 'core' shown in the figure), surrounded by a damage zone 

whose width is related to the fault displacement. The larger the fault displacement, the broader the 

damage zone (see Figure 17 Right). When we calculate 'fault density' in our study, it includes the entire 

damage zone of each fault. 

 

        
 

Figure 17.   Left: Fault Zone Architecture.   Right: Field data observations of the relation  

between the total damage zone width and fault displacement.  (From Choi et al., 2016) 

 

We assume a simple linear relationship between fault/fracture probability and shear stress in 

overburden (see Figure 7): 

𝑃𝑓𝑟𝑎𝑐 = 0.1 + 0.08 ∙ 𝜎𝑠ℎ𝑒𝑎𝑟  

 

assigning larger probabilities to areas with high shear stress. The above relation is reasonable, but 

arbitrary, and further study is needed to establish a reliable relationship. The prior model generator in 

our Monte Carlo algorithm pseudo-randomly proposes faults in the overburden according to the above 

rule, with fault orientations between given angles, derived from regional studies of the area. The results 

shown are based on fault angles between 24° and 36° from vertical. 

 

 
Figure 18. Sample output of the reservoir with fault locations after 3000 iterations. The  

correlation between fault/fracture density and the slopes of the deep layer boundaries is seen. 

 

Figure 18 shows a sample output reservoir/fault location model produced after 3000 iterations of the 

algorithm. The black, oblique lines in the overburden are not fault planes, but lines centered at the 

Chalk Reservoir 

Overburden 



location of maximum fault displacement, indicating the fault direction. Using the last 2000 models (after 

an initial equilibration period of 1000 iterations) allows us to estimate the fault/fracture probability in 

the overburden (see Figure 19). 

 

 
Figure 19. Posterior fault/fracture probability inferred 

from estimated shear stress fields and seismic data 

 

The results indicate that the reservoir is separated from the sea bottom by a connected, low 

fault/fracture probability zone, meaning that the likelihood of having a tight reservoir is high. 

Conclusions and Discussions 

Two forward conceptual models were developed to model the evolution in time of the subsurface. The 

first model investigated the evolution of the stress and strain fields as result of the deposition of the 

2000-2500m thick clay-rich Post-Chalk overburden in the last 56 Million years. The second model 

simulated the effect of possible post-abandonment reservoir compaction. The main purpose of both 

models was to study possible risks, in terms of probability of fracturing or fault re-activation, related to 

seal integrity. 

 

Since the resolution of even the best quality seismic data does not allow to detect small fractures and 

faults, the forward conceptual models allowed us to identify areas of possible fracturing and probable 

fault re-activation due to reservoir compaction, especially in the cap rock (immediate overburden). 

 

Conceptual model 1 showed that the deposition of thick clay-rich Cenozoic Overburden in the last 56 MY 

on the top of an anticline limestone (reservoir) structure could have produced significant shear stress 

and vertical and horizontal displacement along the shoulders of the anticline. There areas could be at 

higher risk for fracturing. 

 

Conceptual model 2 showed that the reservoir compaction of depleted fields can result in fault slip after 

abandonment, both on faults inside the reservoir and in the cap rock. The slip is most likely to occur at 

the onset of compaction and its likelihood decreases in time. 

 



It should be kept in mind that the forward models of the evolution of the subsurface presented here are 

conceptual and were used to illustrate two important processes in the evolution of the subsurface. They 

can be improved by including further details.  

 

A simplified probabilistic analysis of a seismic 2D profile across the Tyra reservoir, intersecting the E1-X 

and Deep Adda wellsites were carried out. The focus was on the detection limit of the data, and the 

result was a map of faulting and fracturing probabilities across the area. The result is a combination of 

seismic information with information about stress fields, derived from the subsurface evolution model.  

 

Based on this study, we currently cannot make any conclusions about the actual conditions in the Tyra 

overburden. The subsurface evolution model was not specifically calibrated to the Tyra structure, and 

the seismic analysis was oversimplified and did not take advantage of all available data and all state-of-

the-art methods available. A notable weakness in the seismic analysis is the lack of accurate data 

modeling (the wavelet estimation and the wave simulation), and we have also not included an obvious 

source of information, namely anisotropy of rock properties, which may be derived from full waveform 

data or AVO/AVA data. An investigation of anisotropy may contain valuable information about rock 

fracturing, and should be taken up in future studies.  

 

The outcome of the study is, however, encouraging. We have proposed a new avenue in the analysis of 

caprock integrity of reservoirs for CO2 storage. Our subsurface evolution model potentially allows us to 

predict current and future changes in a reservoir, our probabilistic approach to seismic data analysis 

allows our numerical model of the stress field to be incorporated in the final result, and our 

fault/fracture probability maps are ready to be included in a quantitative risk analysis.  
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Coupled multi-scale well and surface seismic data inversion using 
wavelet decomposition 

Sarouyeh Khoshkholgh, Andrea Zunino, Thomas Mejer Hansen, Klaus Mosegaard 
 
The resolution of well data is usually much higher than that achievable from 
inversion of seismic data, and in conventional methods, the lower and higher 
frequencies from wells are treated independently from the intermediate 
frequencies obtained from seismic data.  

By a multi-resolution analysis method, such as wavelet transform, signals can be 
analyzed at different scales. Through wavelet transform, a signal can be 
decomposed into coefficients representing different frequency bands: one low 
frequency “approximation” and other sub-bands controlling the details at 
different frequencies. Wavelet coefficients can then be back transformed to the 
original domain without any loss of information. Thus, through wavelet 
decomposition the earth can be represented at different scales by means of 
appropriate coefficients. 
In this preliminary study, we perform   wavelet decomposition of an image from 
a chalk cliff. The decomposition will provide us an approximation array which is 
a smooth version of the original image and some   directional detail contained in 
other arrays of coefficients. Each decomposition level produces one 
approximation and three directional sub-bands and the approximation can be 
further decomposed to another approximation and some other sub-bands. The 
total number of wavelet coefficients is the same as the number of elements in the 
original image.  

The wavelet coefficients in the approximation matrix can constrained by 
geophysical data.  For instance, data from well logs can be used to constrain the 
wavelet coefficients at different levels of resolution and be used for conditioning 
the details provided by the sub-bands.  By considering the coefficients of a 
wavelet transform as model parameters, a multi-scale inversion of seismic data 
can be set up, where information at different resolutions and with different 
directionality is taken into account. In this framework, prior information from 
well logs and other sources, containing both short and long wavelengths, are 
naturally coupled, allowing us to handle data sets with different resolutions in an 
integrated approach. 
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