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Abstract

The thesis at hand deals with quantum phase transitions in hy-
brid semiconductor-superconductor nanowires. After review-

ing some concepts of superconductivity, it introduces Majorana
zero modes in condensed matter and their realization in hybrid
semiconductor-superconductor nanowires.

We begin the experimental part by showing that the effective
g factor of Andreev bound states in half-shell wires is a steplike
function of gate voltage, that tunes the charge carrier density and
improves the hard induced gap. We observe the closing and reopen-
ing of the superconducting gap in the subgap spectrum coincident
with the appearance of a zero-bias conductance peak.

The following chapter demonstrates a novelmeans of creatingMa-
jorana zeromodes in full-shell wires by usingmagnetic-flux. Around
one applied flux, tunneling spectroscopy reveals a gapped region
with a discrete zero-energy state, whereas Coulomb peak spacing
shows exponentially decreasing deviation from 1e periodicity with
device length.

We continue with a study of magnetic-flux driven reentrant quan-
tum phase transitions between superconducting and metallic phases
in full-shell wires. By tuning axial and transverse magnetic fields
we control the crossover between the conventional and destructive
Little-Parks regimes bridged by an anomalous metal phase.

vii



viii

The thesis is concluded with a presentation of selective area
grown hybrid wires as a basis for topological networks. The novel
scalable system displays a hard induced gap, unpoisoned 2e-periodic
Coulomb blockade, strong spin-orbit coupling and coherence length
of several microns.
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1Superconductivity

Due to its intriguing quantum-mechanical nature and diverse
potential applications, superconductivity continues to be a

fascinating and growing field of research, long after its discovery [1].
This chapter introduces the basic properties of superconductivity
and some of the related phenomena.

1.1 Normal State

In the Landau-Fermi liquid model [2], the ground state of a normal
conductor is constructed by filling all the available energy states

with electrons up to the characteristic Fermi energy, EF. In the
momentum space, this can be illustrated by a filled sphere with a
radius kF, which defines the Fermi surface [Fig. 1.1(a)]. Adding or
removing electrons excites the system to a higher energy state. More
specifically, removing an electron with momentum kv below the
Fermi surface, creates a hole excitationwith oppositemomentum−kv.
Similarly, adding an electron with momentum ku above the Fermi
surface, creates a particle excitation with the same momentum ku.

Close to the Fermi surface, the so-called quasi-particle excitations
behave effectively as free electrons, hence their electronic wave
functions can be described by plane waves

1



2 Superconductivity
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Fig. 1.1: (a) Momentum space representation of the normal ground state.
Electrons fill the states below the characteristic Fermi wave-vector,
kF, defining the Fermi surface. The hole excitations (white circle)
below the Fermi surface are created by removing an electron (black
circle) with an opposite momentum, whereas the particle-like
excitations (red circle) are obtained by adding an electron above the
Fermi surface. (b) Single quasi-particle spectrum given by Eq. (1.4),
with ~2/m � 2 and µ � 1.

(
uk(r)
vk(r)

)
� e i kr

(
u0
v0

)
(1.1)

where u0 and v0 are the wave amplitudes for the particle and hole
excitations, respectively. The single quasi-particle spectrum can be
obtained by solving the Schrödinger equation

(
H(r) 0

0 −H(r)

) (
uk(r)
vk(r)

)
� E

(
uk(r)
vk(r)

)
(1.2)
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with the single quasi-particle Hamiltonian defined as

H(r) � − ~
2

2m
∂r

2 − µ (1.3)

where ~ is the reduced Planck constant, m is the effective mass, ∂r is
the partial derivative with respect to the spatial coordinate r and µ
is the chemical potential, which at zero temperature equals EF. The
corresponding energy eigenvalues, given by

E � ±
(
~2k2

2m
− µ

)
(1.4)

are illustrated in Fig. 1.1(b).

1.2 Microscopic BCS Theory

In the early 1950s, inspired by experimental observations [3, 4],
John Bardeen argued in his seminal work [5] that superconductiv-

ity is mediated via electron-phonon interactions. In a semi-classical
picture, this can be illustrated by an electron propagating through
a metal attracting neighboring positive lattice ions, which in turn
attract other electrons, effectively creating electron-electron bound
pairs. These were indeed stimulating ideas, however, suffering from
mathematical limitations they failed to properly describe supercon-
ductivity.

While studying superconductivity, in 1956, Leon N. Cooper
considered two interacting electrons with opposite momenta (and
spins) above the Fermi surface (Fig. 1.2 and Ref. [6]). He found
that in case of attractive interactions, the two electrons form an
energy-lowering bound state. Cooper theorized that such pairs are
responsible for superconductivity, but the complete proof was still
lacking.

Early in the following year, J. Robert Schrieffer realized that a
collection of the so-called Cooper pairs in a superconductor can be
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described with one single wave function, which combined with the
ideas of Bardeen and Cooper gave rise to the microscopic theory of
superconductivity [7], usually referred to as the BCS theory.

1.3 Superconducting State

For the excitation close to the Fermi surface, the annihilation
of a hole with momentum −kv is, in a sense, equivalent to

the creation of a particle with an opposite momentum ku that is
approximately equal to kv [Fig. 1.2(a)]. As a result, the ground state
of the superconductor can be considered as a linear superposition of
states with occupied and unoccupied Cooper pairs. This coupling
between the particles and holes modifies the single quasi-particle
spectrum considerably.

To describe the hybridization between the different excitations
one can introduce a pairing potential ∆(r) into the normal state
particle and hole Eq. (1.2). The resulting Bogoliubov-de Gennes
equations, as they are called, are given by [8](

H(r) ∆(r)
∆∗(r) −H(r)

) (
uk(r)
vk(r)

)
� E

(
uk(r)
vk(r)

)
(1.5)

In general, ∆(r)—referred to as the order parameter or simply as
the superconducting energy gap—can fluctuate in space. Roughly
speaking, the length scale over which the superconducting gap can
vary is given by the distance between two electrons forming a Cooper
pair called the coherence length, ξ [9]. For typical superconductors,
ξ is of the order micrometers. Therefore, for a homogeneous,
macroscopic scale superconductors, the order parameter can be
assumed to be constant in space, in which case it is given by

∆ � |∆|e iϕ (1.6)

where |∆| is the magnitude of the superconducting gap and ϕ is the
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0
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0-2 -1 1 2
k

2μ 2∆

Fig. 1.2: (a) Illustration of the Cooper problem: in the single particle picture,
an excitation in a superconductor can be composed out of two
particle-like excitations with opposite momenta ku and −ku, just
above the Fermi surface. For the excitations close to the Fermi
surface, annihilation of a hole with momentum −kv resembles the
creation of a particle with a nearly equal, but opposite momentum
ku ∼ kv. (b) Single particle dispersion relation with superconduct-
ing pairing potential ∆, described by Eq. (1.7), with ~2/m � 2, µ � 1
and ∆ � 0.5 (solid lines), and ~2/m � 2, µ � 1 and ∆ � 0 [dashed
lines, same as Fig. 1.1(b)]. The line-shading illustrates the particle
(red) and hole (gray) weights.

global phase of the superconductor wave function [10].
Keeping this in mind, the Bogoliubov-de Gennes Eqs. (1.5) to-

gether with the plane-wave solution [Eq. (1.1)] yield energy eigen-
values of the form

E � ±
√
εk 2 + |∆|2 (1.7)

where εk � ~2k2/2m − µ is the single particle energy relative to the
Fermi level. The energy spectrum displays a gapped dispersion rela-
tionwith the lowest single particle excitation energy±|∆| [Fig. 1.2(b)].
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(a) (b)

v0
2

0

1

0

1

2

ρ s
 /ρ

n

0-∆ ∆
εk

0-∆ ∆
E

u0
2

Fig. 1.3: (a) The BCS wave-function probabilities for the particle (u 2
0 ) and

hole (v0 2) components [given by Eqs. (1.8)] as a function of the
single-particle energy relative to the Fermi energy, εk � ~2k2/2m−µ.
Bothoccupation fractions arenon-zero at zero energy illustrating the
mixing between particle and hole excitation in the superconducting
state. (b) The single quasi-particle density of states, ρs, in the
superconducting state as a function of energy, E, where ρn is the
density of states in the normal state.

For a better intuition, it is informative to look at the single quasi-
particle weights of the superconducting excitation. The normaliza-
tion condition u 2

0 + v 2
0 � 1 together with Eqs. (1.5) and (1.7) yield

the probabilities for the superconducting excitation to be particle- or
hole-like [8, 10]

u 2
0 �

1
2

(
1 +

√
E2 − |∆|2

E

)
and v 2

0 � 1 − u 2
0 (1.8)

which are illustrated in Fig. 1.3(a). Contrary to the normal state
(∆ � 0), both u 2

0 and v 2
0 are finite within approximately ±|∆| around

the Fermi energy (εk � 0).

Finally, the single quasi-particle superconducting density of states
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[Fig. 1.3(b)] can be deduced using Eq. (1.7)

ρs �
dN
dE

�
dN
dεk

dεk
dE

� ρn
E√

E2 − |∆|2
(1.9)

with the normal density of states ρn � dN/dεk and the number of
occupied states below the Fermi energy N .

1.4 Macroscopic Ginzburg-Landau Theory

It is important to note that pair formation is not sufficient to
compose a superconducting ground state. The rigidity of the

superconducting state arises from the bosonic nature of the Cooper
pairs (integer effective spin) allowing them to condense into a single
coherent quantum state with a global phase. In certain situations,
however, spatial inhomogeneity can give rise to new phenomena,
where the fully microscopic treatment becomes rather complicated.
In such cases, it is advantageous to invoke a more macroscopic
description of superconductivity.

In 1950, Vitaly Ginzburg and Lev D. Landau developed a phe-
nomenological theory of superconductivity that accounted for spatial
variation of both the magnetic field and the order parameter [11]. In
1959, after the BCS theory was published, Lev P. Gor’kov showed
that the Ginzburg-Landau theory is derivable as a limiting case of
the microscopic theory [12].

The macroscopic superconductor wave function is defined as

ψ(r, t) � |ψ(r, t)|e iϕ(r,t) (1.10)

where |ψ(r, t)|2 is the electric-charge density of the Cooper pairs.
Note that in some literature |ψ(r, t)|2 is defined as the particle density.
For the purpose of this work, the macroscopic wave function can be
thought of as a generalization of Eq. (1.6), accounting for the spatial
and time dependence of both the superconducting gap and phase.
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1.5 London Equations

1.5.1 Supercurrent Density

Global phase coherence has far-reaching consequences for the
superconductor nature in electric (E) and magnetic (B) fields.

Many of these characteristics can be derived by solving the time-
dependent Schrödinger equation for a charged particle in an electro-
magnetic field. With the appropriate Hamiltonian, the equation is
given by

i~∂tψ(r, t) �
1

2m
(
−i~∂r − qA

)2
ψ(r, t) − µψ(r, t) (1.11)

Here ∂t is the partial derivative with respect to time, A is the vector
potential and q is the charge of the particle, which for Cooper-pairs
equals 2e. Substituting ψ(r, t) with Eq. (1.10) and abbreviating
|ψ(r, t)| � |ψ | as well as ϕ(r, t) � ϕ, the real part of Eq. (1.11) (after
some algebraic acrobatics) can be written as [13]

−~|ψ | ∂tϕ � − ~2π

[
∂2
r −

(
∂rϕ +

2e
~
A
)2

]
|ψ | − µ|ψ | (1.12)

The imaginary part, multiplied by |ψ |, can be massaged into the
form of the continuity equation

∂tρs + ∂rjs �

∂t |ψ |2 + ∂r
[
~

m
|ψ |2

(
∂rϕ −

2e
~
A
)]

� 0
(1.13)

with the aforementioned charge density ρs � |ψ |2 and the electric
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current density

js �
~

m
|ψ |2

(
∂rϕ −

2e
~
A
)

(1.14)

1.5.2 Hallmarks of Superconductivity

For a homogeneous, bulk superconductor with a constant density
and constant phase, Eq. (1.14) simplifies to

js � −
2e
m
|ψ |2A (1.15)

The time derivative of the supercurrent density (known as the first
London equation [14])

∂t js �
2e
m
|ψ |2E (1.16)

implies that the supercurrent is non-dissipative, explaining the
perfect conductivity—the first hallmark of superconductivity [1].

The curl of the supercurrent density

∂r × js � −
2e
m
|ψ |2B (1.17)

is known as the second London equation [14]. Together with Am-
pere’s law and Gauss’s law for magnetism

∂r × B � µ0js & ∂rB � 0 (1.18)

Eq. (1.17) yields

∂2
rB � −

2eµ0

m
|ψ |2B � − 1

λ2B (1.19)

with the magnetic constant µ0 and the London penetration depth λ.
The second-order differential Eq. (1.19) indicates that the amplitude
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of the magnetic field decays exponentially inside the superconductor
and otherwise is expelled from its interior. The so-called Meissner
effect [15] explains the perfect diamagnetism—the second hallmark
of superconductivity.

1.6 Fluxoid Quantization

In superconductors that enclose a non-superconducting region (for
example rings or cylinders), due to the single-valuedness of the

wave function, the superconducting phase can change only by integer
multiples of 2π, while winding around the non-superconducting
region. The number of the phase windings around a hole is called
fluxoid quantum [16]. Mathematically, the fluxoid can be defined as
the phase that ψ(r, t) acquires along a closed contour, which [using
Eq. (1.14)] is given by [10]

~

2e

∮
∂rϕ dr �

∮ (
λ2µ0js +A

)
dr (1.20)

For a contour c that encloses a surface s with a surface element ds
the second term on the right hand side of Eq. (1.20) (using Stokes’
theorem) becomes∮

c
A dr �

∫
s
(∂r ×A) ds �

∫
s
B ds � Φc (1.21)

where Φc is the magnetic flux that threads the surface s enclosed by
the contour c.

Due to the single valuedness of the wave function, the left hand
side of Eq. (1.20) has to vanish for any contour c0 that does not
enclose a hole. Differently put, the fluxoid equals zero for every
contour that can be retracted to a point [Fig. 1.4(a)]. On the other
hand, if a contour c1 encircles a hole it can only be shrunk to the
outline of the hole [Fig. 1.4(b)]. In this case the fluxoid does not have
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(a) (b)

c1c0

Fig. 1.4: (a) The fluxoid—given by Eq. (1.20)—is ill-defined for any contour
c0 in a superconductor (sphere) that does not enclose any holes.
(b) For any contour c1 around a given hole (cylinder), the fluxoid
equals Φ0n—integral multiples of the flux quantum.

to vanish. In general, the fluxoid can be expressed by

~

2e

∮
∂rϕ dr � ~2e

2πn � Φ0n (1.22)

where Φ0 � h/2e is the flux quantum and n is an integer correspond-
ing to the number of phase windings around the hole.

It is interesting to note, that the supercurrent density is zero
[jS � 0 in Eq. (1.20)] in the bulk of a superconductor with dimensions
much larger than the London penetration depth, λ. As a result, the
fluxoid is equal to the magnetic flux; in the bulk limit they are both
quantized.

1.7 Little-Parks Effect

Consider a thin-walled (< λ) superconducting ring with radius R,
in an external magnetic field through the ring of a magnitude B.

The flux associatedwith the field,Φ � πR2 B, induces a supercurrent
with kinetic energy, which reduces the relative free energy of the
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0
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1

v s
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0
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v s
2  (

a.
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0-1-2 1 2
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Fig. 1.5: (a) Induced supercurrent velocity vs and (b) kinetic energy pro-
portional to v 2

s as a function of normalized flux Φ/Φ0 threading a
superconducting ring. The red curves indicate the ground state,
whereas the black dashed lines show the possible excited states.

superconducting state. Since Cooper pairs are all condensed in
the same state, the supercurrent velocity equals the ratio of the
supercurrent density and the charge density of the Cooper pairs [8]

vs � js/|ψ |2 (1.23)

which together with Eqs. (1.20)–(1.22) leads to

vs �
~

mR

(
n − Φ
Φ0

)
(1.24)

For a fixedΦ there are infinitelymany discrete values that vs can take;
due to energy minimization, however, the superconducting ring will
favour the integer n for which vs is minimal, corresponding to the
ground state. As a result, vs is a periodic function of Φ/Φ0 as shown
in Fig. 1.5(a). The kinetic energy of the supercurrent is proportional
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Fig. 1.6: (a) Schematic representation of the superconducting ring (black)
with radius R and the evolution of the macroscopic wave function
(red) ψ(r) � |ψ |e iϕ(r) at a fixed time along the ring at n � 0 fluxoid
quanta. (b) Polar representation of the complex wave function at
four points on the ring marked in (a). (c) and (d) as well as (e) and
(f) are similar to (a) and (b) but for n � 1 and n � 2, respectively.
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to v 2
s [Fig. 1.5(b)]. The oscillatory kinetic energy competes with

the superconducting condensation energy, resulting in the Little-
Parks effect—periodic modulation of the order parameter, ∆, and
the superconducting transition temperature, TC, with flux.

Tomaximize the relative free energy of the superconducting state,
the fluxoid quantum number n changes around odd half-integer
multiple of Φ0 as the flux is varied. In turn, the number of the phase
windings in the macroscopic wave function changes, as illustrated
in Fig. 1.6. For n � 0, the superconducting phase, ϕ, is constant
around the superconducting ring; without loss of generality ψ(r, t)
can be chosen to be real. For n � 1, ψ(r, t) winds once around the
circumference of the ring; the azimuthal angle and ϕ are in phase.
For n � 2, there are two twists in ψ(r, t) around the ring.

1.8 Andreev Reflection

The proximity effect at the interface between the normal and super-
conducting phases allows the superconducting wave function

to leak into the normal side of the interface. The induced supercon-
ducting order parameter in the normal phase decays on a length
scale of the coherence length, ξ. At the heart of the proximity effect
is the Andreev reflection—a quantum-mechanical scattering process
that is responsible for converting single-particle states from a normal
metal to Cooper pairs in the superconducting condensate.

First suggested by Alexander F. Andreev in 1964 [18], the unusual
scattering considers an incident particle at the normal side of the
interface between the two phases [Fig. 1.7(a)]. Because of the energy
gap, ∆, in the superconductor, the transfer of single particles with
an energy below the gap, E < ∆, is forbidden. However, in the
absence of conventional scattering, which is often the case for a very
pristine interface, the incoming electron has to be transferred into the
superconductor. This is only possible if the electron pairs up with a
second electron at the interface forming a Cooper pair. The charge
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Fig. 1.7: (a) Schematic representation of the Andreev reflection at the inter-
face between the normal (left) and superconducting (right) regions.
An incident particle (black) enters the superconductor as a Cooper
pair (red) by pairing up with a second electron and retro-reflecting
a hole (white) at the interface. (b) and (c) Trajectory of a par-
ticle undergoing an Andreev retro-reflection in (b) and normal
specular reflection in (c) at the interface between the normal and
superconducting phases.

and momentum of this process are conserved by retro-reflecting a
hole back into the normal region [Fig. 1.7(b)].

It is interesting to note, that a sequence of Andreev reflections,
for example in a normal conductor sandwiched between two su-
perconductors, can lead to standing, single-particle waves termed
Andreev bound states (ABS).

1.9 BTK Model

1.9.1 Interfacial Scattering

In case of a clean normal-superconductor contact and low energy
(E < ∆) incident particles, the only scattering process allowed is

Andreev reflection. This is, however, not a general scenario. For a
less-transparent interface, normal specular reflection can also take
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place [Fig. 1.7(c)]. Furthermore, the probability of Andreev reflection
decreases for particles with higher incident energy, as the single-
particle channel opens up at E > ∆. A detailed study of the electrical
transport across a normal-superconductor interface as a function of
its transparency and incident particle energy was first put forward
in 1982 by Greg Blonder, Michael Tinkham, and Teun Klapwĳk [19].

The BTK model, as it is called, considers an effectively one-
dimensional normal-superconductor junction with a repulsive po-
tential V(x) � ~vFZδ(x), that accounts for any essential scattering
at the interface, where Z is a dimensionless parameter character-
izing the height of the potential. The system is described by the
Bogoliubov-de Gennes Eqs. (1.5) with

H(x) � − ~
2

2m
∂x − µ + V(x) (1.25)

and ∆(x) � 0 for x < 0, ∆(x) � ∆ for x > 0.
The direction of a quasi-particle propagation is determined by the

group velocity vi � dEi/d~ki, where i � {N, S} denote the energy
eigenvalues (Ei) and momenta (ki) on either the normal (N) or the
superconducting (S) side of the barrier.

Consider an incident normal particle with a positive group
velocity vN ∼ vF and a plane wave solution

ψin(x) �
(
1
0

)
e ikFx (1.26)

see Fig. 1.8. The reflected (negative vN) and transmitted (positive vS)
excitations can be described by

ψr(x) � a
(
0
1

)
e ikFx

+ b
(
1
0

)
e−ikFx (1.27)

ψt(x) � c
(
u0
v0

)
e ikFx

+ d
(
v0
u0

)
e−ikFx (1.28)
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Fig. 1.8: Schematic representation of dispersion relations at normal-
superconducting interface. An incoming normal particle (1) can be
reflected back as a hole (A) or a particle (B), as well as transmitted
through as a particle-like (C) or hole-like (D) excitation. The arrows
indicate the direction of the group velocity. For E < ∆, no single
particle solutions exist in superconductor hence C � D � 0. The
spectra were computed using Eqs. (1.4) and (1.7) with ~2/m � 2,
µ � 1 and ∆ � 0.2 for the superconducting side. The line-shading
illustrates the particle (red) and hole (gray) weights.

with the BCS coherence factors u0 and v0 given by Eq. (1.8). The
energy-dependent scattering probabilities A � a∗a of Andreev and
B � b∗b of normal reflections, as well as C � c∗c(u2

0 − v2
0) of particle-

like and D � d∗d(u2
0 − v2

0) of hole-like transmissions (Fig. 1.8) can
be calculated by applying the boundary conditions at x � 0 [20].
Note that for the transmission probabilities an additional factor of
(u2

0 − v2
0) arises due to the different group velocities in the normal

and superconducting phases [19]. Imposing the conservation of
probabilities, A + B + C + D � 1, the probability solutions are
summarized in Table 1 as a function of incident particle energy E,
barrier height Z and superconducting gap ∆.
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E < ∆ E > ∆

A ∆2

E2+(∆2−E2)(1+2Z2)2
∆2

Γ2

B 1 − A 4 Z2 (1+Z2) (E2−∆2)
Γ2

C 0 2 (1+Z2)
√

E2−∆2 (E+
√

E2−∆2)
Γ2

D 0 2 Z2
√

E2−∆2 (E−
√

E2−∆2)
Γ2

Table 1: Scattering probabilities for an incoming normal particle at the
normal-superconducting boundary. A and B are the probabilities
of Andreev and normal reflections back to the normal region,
whereas C and D are the probabilities of transmissions into the su-
perconductor as particle-like and hole-like excitations, respectively.
Γ2 � (E + (1 + 2 Z2)

√
E2 − ∆2)2.

1.9.2 Measuring Density of States

According to the Landauer formula [21] a voltage V across a
channel generates a current [22]

I �
G0
e

∫
T(E)

[
f0(E − eV) − f0(E)

]
dE (1.29)

where G0 is the conductance quantum, e is the elementary charge,
T(E) is the transmission probability and f0(E) is the Fermi function.
For a scattering-free normal region T(E) is unity. At the normal-
superconducting interface A(E) effectively increases the transmission
probability, whereas B(E) reduces it. Furthermore, at low tempera-
tures, the difference Fermi-functions reduces to δ(E−eV). As a result,
voltage-derivative of Eq. (1.29), that is the differential conductance,



BTK Model 19

G
 /G

N

2

0
10-2 10-1 101 102100

Z

0

2
G

 /G
N

(a)

-3

0

3

eV
/Δ

(b)

4

2

0

G
 /G

N

0-3 3
eV/Δ

0-3 3
eV/Δ

0-3 3
eV/Δ

(c) (d) (e) Z = 10

V = 0

Z = 0.02 Z = 0.8

a

c d e

Fig. 1.9: (a) Differential conductance, G, normalized to the normal-state
value, GN, as a function of the dimensionless barrier height Z
computed at zero voltage, V � 0. (b) Conductance as a function of
V across the normal-superconducting interface and Z, constructed
using Eq. (1.30) (c)–(e) Conductance cuts from (b) showing the
evolution of G(V) from open (low Z) to tunneling (high Z) regime.
For high barriers G(V) ∝ ρs(eV).
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can be expressed as

G(V) ≡ dI
dV

� G0 [1 + A(eV) − B(eV)] (1.30)

which for eV � ∆ corresponds to the normal state conductance
GN � G0/(1 + Z2). The evolution of GNS(V) with Z is illustrated in
Fig. 1.9.

Finally, for a strong barrier (Z � 1), Eq. (1.30) together with the
reflection probabilities from Table 1 and superconducting density of
states [Eq. (1.9)] simplifies to the celebrated BTK expression

G(V) � GN
E√

E2 − ∆2
�

GN
ρn

ρs(eV) (1.31)

implying that the differential tunneling conductance between the
normal and superconducting contacts is a direct measure of the
superconducting density of states.
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As condensed matter analogs of Majorana fermions—particles
that are their own antiparticles [23]—Majorana bound states are

predicted to exhibit non-abelian braiding statistics [24,26], providing
naturally fault-tolerant qubits [25, 27]. This chapter introduces some
of the Majorana mode phenomenology and a proposal for their
physical realization.

2.1 From Fermions to Non-Abelian Anyons

2.1.1 Fundamental Particles

Electrons are particles with charge, hence their description re-
quires complex wave functions. With this in mind, in 1928,

Paul A. M. Dirac correctly predicted the existence of positrons [28],
the antiparticles of electrons [29], and laid the foundation for the
concept of antimatter. An ingenious idea put forward by Ettore
Majorana in 1937 demonstrated that real wave functions can describe
charge-neutral fermions, that are their own antiparticles [23]. A few
fundamental particles have been suggested as candidates to satisfy
this condition, however, due to the lack of decisive experimental
evidence the pursuit of Majorana fermions in high-energy physics
remains a subject of ongoing research [30].

21
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2.1.2 Majorana Zero Modes

In condensed matter, on the other hand, certain systems can host
exotic quasi-particle excitations that are analogs to the Majorana

fermions—they are their own quasi-holes. In the normal state,
particles and holes do not fit the description as they are oppositely
charged (see Section 1.1). Excitons—particle-hole bound states—have
zero net charge and are their own antiparticles; however, they also
have integer spin and therefore are effectively bosonic excitations.

The picture is different in the superconducting state: the clear dis-
tinction between particles and holes is smeared out by the supercon-
ducting condensate (see Section 1.3). Here, the elementary-particle
excitations above the ground state are neutral fermions described
by a superposition of particle- and hole-like excitations [31]. Strictly
speaking, the weights for the particle (u0) and hole (v0) components
are in general different [Eq. (1.8)] and therefore such excitations
are not Majorana modes either. Nevertheless, the conditions for
u0 � v0 can be engineered by careful consideration. For instance,
Majorana-like excitations can be trapped in certain types of super-
conducting vertices [30, 32]. Due to the particle-hole symmetry in
superconductors, Majorana modes have zero energy.

2.1.3 Exotic Exchange

Majorana zero modes (MZMs), as they are called, are known
to emerge at the boundaries of one- and two-dimensional

superconductors with effectively spinless (p-wave) pairing [33],
contrary to the conventional (s-wave) pairing discussed in Section 1.3.
Mathematically, two MZMs combine into a single quasi-particle
excitation. The resulting fermionic state is two-fold degenerate in
energy and can be either occupied or empty. This has peculiar
implications on the interchange of two MZMs [34].

In two spatial dimensions, quasiparticles—not restricted to follow
fermionic or bosonic statistics—are termed anyons [35]. In the
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simplest case, upon exchanging two indistinguishable abelian anyons,
the corresponding two-particle wave function acquires a complex
phase prefactor e iθ, that can vary between −1 and 1 (θ � π for
fermions and θ � 2π for bosons) [36]. Majorana modes, that
comprise a single, non-local fermionic excitation, are the so-called
non-abelian anyons, which follow rather exotic exchange statistics: a
swap of two MZMs not only develops a phase for the two-particle
wave function but can rotate it within the ground-state manifold
while maintaining the same particle configuration [37]. Due to these
properties, Majorana excitations in condensed matter are thought to
be useful for fault-tolerant quantum computing [38, 39].

2.2 Hybrid Nanowires

Quantum Hall states with even-denominator fractional filling
were the first theorized realization of MZMs proposed in the

early 1990s [40]; the experimental verification, however, has proven
itself to be rather elusive [41]. The search of MZMs got a boost, when,
in 2008, Liang Fu and Charles L. Kane showed that the surface of a
topological insulator coupled to an ordinary s-wave superconductor
mimics the properties of a p+ip superconductor [42]. After several
simplifying suggestions [43], a recipe for realization of MZMs in
one-dimensional wires with p-wave pairing was put forward in
two back-to-back publications by Roman Lutchyn et al. [44] and
Yuval Oreg et al. [45].

2.2.1 Blueprint

The idea behind the proposed recipe is to design a system whose
Hamiltonian would resemble that of a p-wave superconductor. It

is, in a sense, natural to take electrons with s-wave pairing and force
their spins to align into an effectively spinless channel. To localize
the Majorana modes, one spatial dimension is favored, leading to
the natural choice of nanowire systems.
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With this in mind, consider a one-dimensional, semiconducting
nanowire with strong spin-orbit interaction, proximity coupled to
an s-wave superconductor and placed in an external magnetic field
[Fig. 2.1(a)]. The coordinate system is chosen such that the wire
lays along the y-axis, parallel to the particle momentum p � ~k.
The superconductor covers the top half of the wire, such that the
electrostatic field, E, points along the z-axis. The resulting Rashba
spin-orbit field, Bso ∝ E × k (arising from the relativistic spin-orbit
interaction and asymmetry of the crystal potential [46]) is antiparallel
the x-axis [Fig. 2.1(b)]. The proximity induced gap is assumed to be
homogeneous and equal to the parent superconducting gap, ∆. The
external magnetic field B is oriented along the wire, that is the y-axis.
The effective, single-particle Hamiltonian describing the wire reads

H �

(
~2k2

2m
− µ

)
τz + αk σxτz + EZ σy + ∆ τx (2.1)

where τi and σi are the Pauli matrices acting in particle-hole and spin
spaces, respectively; α is the spin-orbit strength; EZ � gµB B/2 is the
Zeeman energy, with the effective g factor, Bohr magneton µB and
the amplitude of the external magnetic field B. The corresponding
eigenenergies, given by

E2
� ε 2

k + (αk)2 + E 2
Z + ∆2 ± 2

√
(αk)2ε 2

k + E 2
Z∆

2 + E 2
Zε

2
k (2.2)

with εk � ~2k2/2m − µ, are illustrated in Fig. 2.1, by introducing
one term after the other. The spin orientations are illustrated semi-
classically by a total magnetic field Bso + B. The weights of the
particle- and hole-like excitations are illustratively shaded in red and
gray, respectively.

The first term in Eq. (2.1) describes the kinetic energy of the
electrons in the wire and is discussed in Section 1.1. The chemical
potential in the semiconductor can be tuned by electrostatic gates
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Fig. 2.1: (a) Schematic of a semiconducting (green) nanowire in proximity to
a superconducting (gray) shell. (b) Orientation of particle momen-
tum k � k ŷ, electric field E � E ẑ, spin-orbit field Bso � −Bso x̂ and
external magnetic field B � B ŷ. Single particle dispersion relations
given by Eq. (2.2) (with µ � 0, m/~2 � 2 and the spin orientation
indicated by black arrows): (c) For B � 0, the normal-state particle
spectrum (dashed) is spin-split due to the spin-orbit coupling along
k, depending on the particle spin orientation. The excitation energy
is lowered by Eso � mα2/2. (d) Applying axial B hybridizes the
spins and opens a Zeeman gap, EZ , at k � 0. (e) Inducing the
superconductivity at B � 0 couples the spin-split particle and hole
excitation bands (dashed), opening the superconducting gap ∆. (f)
For a finite ∆ < EZ the system is in the topological regime, with the
zero-momentum gap given by 2 (EZ − ∆).
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placed in the vicinity (capacitive coupling) of the wire. Consider, for
now, the case with µ � 0.

Introducing spin-orbit coupling to the systemboosts themomenta
of the particles depending on their spin orientation. The disper-
sion relation consists of two parabola shifted with respect to zero
momentum by kso � ±mα and reduced in energy by Eso � mα2/2
[Fig. 2.1(c)]. Note that spin-orbit coupling does not break time-
reversal symmetry; consequently, the two different spin species are
present for all the eigenenergies.

Applying an axialmagnetic field hybridizes the spins around zero
momentum, opening a gap equal to 2 EZ [Fig. 2.1(d)]. In addition,
the combination of spin-orbit and Zeeman fields gives rise to a non-
trivial spin texture in momentum space. Within the Zeeman gap,
only the lowest energy band is occupied; the spin components along
B (and k) of the left- and right-moving particles are parallel—the
system is effectively spinless.

It is interesting to note that any magnetic field applied perpendic-
ular to the spin-orbit field lifts the degeneracy at k � 0; in practice,
however, the superconducting shell has the highest superconducting
critical field along the wire. Furthermore, the Zeeman field paral-
lel to the spin-orbit field does not couple opposite spins and the
effectively spinless condition cannot be achieved.

Inducing superconductivity at zero magnetic field couples the
spin-split particles and holes and opens a superconducting gap in
the quasi-particle excitation spectrum [Fig. 2.1(e)], similar to the
spin-degenerate case discussed in Section 1.3. The spin degeneracy
is preserved in this case—the wire remains in a topologically trivial
regime.

With a finite order parameter, the Zeeman field hybridizes and
splits the opposite-spin bands, which again produces a non-trivial
spin texture [Fig. 2.1(f)]. In this case, the induced superconductivity
is a mixture of s-wave and p-wave components [47]. For EZ > ∆ the
system is in a topological regime.
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Fig. 2.2: (a) Dispersion relation of a hybrid nanowire computed using
Eq. (2.2) evaluated at the critical Zeeman field given by Eq. (2.4).
The other parameters are the same as in Fig. 2.1(f). (b) Schematic
representation of a hybrid nanowire in a topological regime (EZ > ∆,
µ � 0) with two Majorana modes (γ1 and γ2) localized at the wire
ends. (c) Qualitative simulations of the density of states (dos) in
the bulk of a hybrid nanowire as a function of the quasi-particle
energy, E, and Zeeman energy, EZ. The data in (a) and (c) were
computed using ~2/m � 2.

2.2.2 Topological Phase Transition

Realistically the particle-hole pairing amplitude, as well as the
spin-orbit interaction strength, are (predominantly) fixed by

the choice of the semiconductor and superconductor materials;
therefore the external magnetic field is the parameter that drives
the topological quantum phase transition by closing and reopening
the gap at zero momentum. The gap at k � 0 with respect to the
chemical potential can be deduced from Eq. (2.2) as

EG0 �

����EZ −
√
∆2 + µ2

���� (2.3)
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For B ∼ 0, the wire is in a trivial regime. As the Zeeman field is
applied, EG0 decreases linearly and closes at the critical value

EZ,C �

√
∆2 + µ2 (2.4)

which is the onset of the topological phase [Fig. 2.2(a)]. The gap
re-opens for an even higher Zeeman field, pushing the system into
the topological regime with an effectively inverted superconducting
gap.

For a finite length nanowire, both ∆ and µ change abruptly at
its ends. This results in a spatial transition from a topological to a
trivial phase, with the Majorana zero modes bound to the end of
the wire [Fig. 2.2(b) and Ref. [45]]. This results in a zero-energy
peak in the density of states, which can be detected experimentally
by measuring tunneling conductance at the end of the nanowire
(see Section 1.9). For simplicity, this chapter considers only the bulk
properties of the wire.

A heuristic representation of a continuous trivial-topological
phase transition can be constructed by evaluating Eq. (2.2) at different
k values with a constant step size, and then counting the number
of states within a small, constant energy interval, which gives a
qualitative measure of the density of states in the bulk of the wire.
An example diagram of the computed density of states (dos) as a
function of the quasi-particle energy, E, and EZ is shown in Fig. 2.2(c).

2.2.3 Spin-Orbit Coupling

Without the spin-orbit interaction, the Zeeman field closes the
trivial gap, after which the system remains gapless due to

the presence of finite momentum excitations at E � 0. The effect
of the spin-orbit coupling strength on the trivial-topological phase
transition is illustrated in Fig. 2.3 for two different values of α. The
features of the main-gap closing and reopening—corresponding to
the near-zero momentum excitations—are qualitatively the same for
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Fig. 2.3: (a) Qualitative simulations of the density of states (dos) in the bulk of a
hybrid nanowire as a function of the quasi-particle energy, E, and Zeeman
energy, EZ. The data was computed using Eq. (2.2) with α � 0.5, µ � 0,
~2/m � 2 and ∆ � 0.5, and applying the heuristic technique described in
the text. (b) The dispersion relation that was used to compute the data
in (a) at EZ/∆ � 0.05 (trivial regime). (c) Same as (b) but evaluated at
EZ/∆ � 2 (topological regime). The dashed lines in (b) and (c) correspond
to the dispersion relation at EZ/∆ � 1. The arrows indicate the motion of
the bands with EZ. (d)–(f) Same as (a)–(c) but computed with α � 2.

both values of α. In contrast, the appearance of the higher-energy
states—arising from the finite momentum excitations—changes con-
siderably with α. If the spin-orbit coupling is weak, the topological
gap is small, because the splitting of states is dominated by B. For a
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strong spin-orbit coupling the excitations at higher momenta experi-
ence larger Bso; as a result, they depend less on the external magnetic
field and the topological gap is nearly equal to the initial gap, ∆.

2.2.4 Chemical Potential and Orbital Effects

So far, the chemical potential was kept at zero, however, at a
sufficiently large EZ, the topological phase transition can also be

driven by varying µ. As Eq. (2.4) suggests, the value of EZ at which
the onset of the topological phase is observed increases as µ deviates
from zero. This can be verified numerically by computing the density
of states at a given EZ using the aforedescribed heuristic technique to
extract the minimal superconducting gap, EG. Figure 2.4(a) displays
EG multiplied by the topological index Q � sign(

√
µ2 + ∆2 − EZ) as

a function of µ and EZ. Q � 1 for trivial and Q � −1 for topological
gap. While the critical field EZ,C [dashed line in Fig. 2.4(a)] is
symmetric around µ � 0 the finite-energy spectra differ notably
[compare Fig. 2.4(b) and 2.4(c)].

Taking the orbital effects into account amplifies the contrast be-
tween the positive and negative µ. Experimental wires are not strictly
one-dimensional; instead, they have a finite diameter. Charged parti-
cles moving in an external field experience Lorentz force. As a result,
the particles can have a finite angular momentum, that modifies their
energy eigenvalues [48]. Roughly speaking, the orbital contribution
to the particle kinetic energy can be considered as an effective shift
of the chemical potential proportional to the squared magnetic flux
threading the wire cross-section [49]. Expressed in terms of EZ the
chemical potential modifies as

µ→ µ − βE 2
Z (2.5)

where β is a parameter proportional to the squared cross-sectional
wire area, that characterizes the strength of the orbital effects. Sub-
stituting Eq. (2.5) into Eq. (2.2) yields two solutions for the critical
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logical index, Q � sign(

√
µ2 + ∆2 − EZ), as a function of chemical

potential, µ, and Zeeman energy, EZ showing a topological phase
diagram, symmetric around µ � 0. The dashed curve is Eq. (2.4).
Q � 1 for trivial and Q � −1 for trivial gap. The data was computed
using Eq. (2.2) with α � 0.5, µ � 0, ~2/m � 2 and ∆ � 0.5, and ap-
plying the heuristic technique described in the text. (b) Qualitative
simulations of the density of states (dos) in the bulk of a hybrid
nanowire, that was used to compute the data in (a) at µ � ∆. (c)
Same as (b) but evaluated at µ � −∆. (d)–(f) Same as (a)–(c) but
computed by taking the orbital effects into account using Eq. (2.5)
with β � 0.5.
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Zeeman field, where the topological phase takes place

E 2
Z,C �

1 + 2µβ ±
√

1 + 4µβ − 4∆2β2

2β2 (2.6)

suggesting that the topological phase transition occurs twice as a
function of EZ. The modified phase diagrams are illustrated in
Figs. 2.4(d)–2.4(f). The chemical potential effectively decreases as the
Zeeman field grows. At the same time, the size of the topological
regime (in EZ) shrinks. For a sufficiently negative µ, the system is in
a trivial regime for all EZ [Fig. 2.4(f)].

2.2.5 Full-Shell Nanowires

Inspired by the data presented in Chapter 4, a theoretical study
was put forward, demonstrating that semiconducting wires fully

coated with a superconducting shell [Fig. 2.5(a)] can also host Ma-
jorana excitations [50]. The study shows that for a certain range of
parameters, the quantized phase windings, n, in the superconduct-
ing full-shell (see Section 1.6) can lead to a topological phase, similar
to the one in the conventional half-shell wires [44, 45] introduced in
Subsection 2.2.1. The topological phase transition in the full-shell
nanowires is driven by flux and not the Zeeman field like in the
wires with partial shell coverage.

Because of the shell symmetry, the electric field, E, at the
superconductor-semiconductor interface is pointing along the ra-
dial direction [Fig. 2.5(b)]. The resulting Rashba spin-orbit field,
Bso, at the boundary is along the azimuthal direction. An inherent
rotational symmetry together with the single valuedness of the su-
perconducting wave function restricts the total angular momentum
quantum number, mJ, to half-integers if n is even or integers if n is
odd.

With this in mind, consider the semiconductor-superconductor
interface at a radius R. The effective Hamiltonian of a cylindrical
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Fig. 2.5: (a) Schematic of a semiconducting (green) nanowire coated with
a superconducting (gray) full-shell. (b) Orientation of particle
momentum k � k ŷ, electric field E � E r̂, spin-orbit field Bso �

−Bso ϕ̂ and external magnetic field B � B ŷ. The wire radius R
is indicated by an arrow. (c) Calculated minimal-energy gap, EG,
multiplied by the the topological index, Qφ � sign(

√
µ 2

mJ + ∆
2 −

EZ,φ), as a function of axial flux threading the wire φ � Φ/Φ0 and
R, showing sizable topological phase. The dashed line indicates
EG � 0. The data were computed using Eq. (2.7) with α � 1.5,
µ � 2, ~2/m � 2 and ∆ � 0.5, and applying the heuristic technique
described in the text. (d) Same as (c) but as a function of chemical
potential, µ, and spin-orbit coupling, α, computed with φ � 0.5
and R � 0.7.
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full-shell wire can be cast into [50]

H �

(
~2k2

2m
− µmJ

)
τz + αk σxτz + EZ,φ σy + ∆ τx

+ AmJ + CmJ σyτz

(2.7)

with the effective chemical potential, µmJ , and effective Zeeman
energy, EZ,φ, as well as the couplings of the angular momentum to
the magnetic field, AmJ , and to the particle spin, CmJ , given by

µmJ � µ −
~2

8mR2

[
4m 2

J + 1 +
(
n − φ

)2
]
− α

2R
(2.8a)

EZ,φ �

[
~2

4mR2 +
α

2R

] (
n − φ

)
(2.8b)

AmJ � −mJ
~2

2mR2
(
n − φ

)
(2.8c)

CmJ � −mJ

[
~2

2mR2 +
α
R

]
(2.8d)

where φ � Φ/Φ0. Due to the particle-hole symmetry, the states with
the opposite mJ are symmetric around zero energy, indicating that
mJ � 0 is a special case.

For simplicity, take only the n � 1 and mJ � 0 state, in which
case AmJ � CmJ � 0 and Eq. (2.7) can be mapped onto Eq. (2.1).
The corresponding φ–R and µ–α phase diagrams exhibit a sizable
topological phase [Fig. 2.5(c) and 2.5(d)]. The results imply that the
hybrid full-shell wires can support MZMs.

The arguments above were made considering only the semicon-
ductor-superconductor interface and mJ � 0 states. Taking the whole
wire as well as the other mJ states into account might alter the shape
of the topological phase, but in principle, it should remain finite [50].



3Effective g Factor in
Majorana Wires

In this chapter, we use the effective g factor ofAndreev subgap states
in an axial magnetic field to investigate how the superconducting

density of states is distributed between the semiconductor core and
the superconducting shell in hybrid nanowires. We find a steplike
reduction of the Andreev g factor and improved hard gap with
reduced carrier density in the nanowire, controlled by gate voltage.
These observations are relevant for Majorana devices, which require
tunable carrier density and a g factor exceeding that of the parent
superconductor. Additionally, we observe the closing and reopening
of a gap in the subgap spectrum coincident with the appearance of a
zero-bias conductance peak.

3.1 g Factor in InAs

The electronic properties of a semiconductor nanowire can be
altered dramatically by contacting it to a superconductor. If

the nanowire has strong spin-orbit coupling, the application of a

This chapter is adapted from Ref. [51]. The experiment was conducted in
collaboration with Mingtang Deng under the supervision of Charles Marcus. The
nanowire materials were developed by Jesper Nygård and Peter Krogstrup.
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magnetic field can induce a transition from trivial to topological
superconductivity, with Majorana zero modes localized at the ends
of the nanowire (Chapter 2 and Refs. [44, 45]). The Majorana bound
states (MBSs) are predicted to exhibit non-abelian statistics, and can
serve as a basis for topological quantum computing [25, 38, 52, 53].
Following concrete theoretical proposals to generate MBSs in these
systems, several experiments have reported zero-bias conductance
peaks [54–56] consistent with theoretical expectation in a number of
ways. More recently, the development of epitaxial hybrid nanowires
[57] has improved the superconducting gap [58], making evident the
coalescence of Andreev bound states (ABSs) to form the zero-bias
conductance peak [59, 60].

The rate of linear decrease of the subgap ABSs towards zero
energy as a function of magnetic field defines an effective g fac-
tor, denoted g∗. Inducing the topological phase using an applied
field requires g∗ to exceed the g factor of the proximitizing s-wave
superconductor, otherwise the field will drive the whole system
normal. Studies on hybrid InAs/Al nanowires found |g∗ | ranging
from 4 to 50 [55,59,61], substantially different from the bulk value,
gInAs ∼ −15 [62, 63]. Gate dependence measurements of g∗ have
been reported in an InAs/InP core/shell quantum dot coupled to a
superconductor [64], where repulsion effect from superconducting
continuum suppressed g∗ of the spin-down branch, while g∗ of the
spin-up branch remained around −6. The effective g factor of a quan-
tum dot electronic states has also been studied in non-proximitized,
bare InAs nanowires. A g factor fluctuating between −2 and −18
has been observed in a single-dot geometry [65]. Electric and mag-
netic field tunable g factor has been demonstrated in a double-dot
geometry [66]. Some suppression of g∗ can be attributed to spatial
confinement [67, 68] as shown experimentally in Ref. [69], while
enhancement of g∗ can result from a combination of Zeeman and
orbital contributions in higher subbands [70].
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Fig. 3.1: (a) False-color electron micrograph of device g1, showing InAs nanowire
(green), three-facet Al shell (light gray), Ti/Au contacts (yellow) and
bottom-gates (dark gray). (b) Schematic device cross section, showing
orientation of applied magnetic field, B, and Al shell relative to the bottom-
gate. (c) Magnitude of effective g factor,

��g∗��, of the lowest subgap state
showing a steplike dependence on bottom-gate voltage, VG. Error bars
are root-mean-square difference between upper (electron) and lower (hole)
branches. (d) Differential conductance, G, as a function of source-drain bias,
V , at gate voltage VG � 0.0 V. Dashed lines correspond to

��g∗�� � 34. (e)–
(g) Similar to (d) but taken at gate voltage (e) VG � −2.0 V, (f) VG � −4.0 V
and (g) VG � −7.5 V, giving (e)

��g∗�� � 27, (f)
��g∗�� � 6.6 and (g)

��g∗�� � 4.3.
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Here, we show that the effective g factor of ABSs depends sensi-
tively on the carrier density in the wire, controlled by electrostatic
gate voltages. We interpret this observation as revealing how the
superconducting density of states is distributed throughout the cross
section of the hybrid system. The semiconducting InAs nanowire
has large spin-orbit coupling and large negative g factor, whereas the
superconducting Al shell, which induces the proximity effect, has
small spin-orbit coupling, and gAl ∼ 2. At high carrier density in the
wire, subgap states predominantly reside in the nanowire, reflecting
the properties of the semiconductor; as carriers in the nanowire are
depleted, the remaining portion of the states are confined against
the InAs/Al interface, with relatively small g∗ and strong proximity
effect.

3.2 Half-Shell Devices

Five devices, denoted g1 to g5, were investigated. All were ∼ 2 µm
long, made from MBE-grown [0001] wurtzite InAs nanowires

with hexagonal cross-section [57]. Two devices (g2 and g3) had
epitaxial Al on two facets, the rest (g1, g4 and g5) had epitaxial
Al on three facets [Figs. 3.1(b), 3.2(b) and Table 2]. To form a
tunnel probe, the Al shell was removed by wet-etching at one
end, leaving a ∼ 100 nm segment of bare InAs next to one of the
normal-metal leads. The tunneling rate was controlled with the

Device g1 g2 g3 g4 g5

Batch 418 173 578 418 418

Al facets 3 2 2 3 3

Table 2: Measured device number, corresponding nanowire growth batch
number and number of Al facets covering the hexagonal InAs core.
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cutter-gate voltage, VC. The nanowire density in devices g1 and g4
was controlled with bottom-gates at voltage VG [Figs. 3.1(a)]. Device
g2 used a conducting substrate at voltage VBG [Fig. 3.2(a)]. Device
g3 used top-gates at voltage VTG [Fig. 3.3(a)]. Device g5 used only
side-gates at voltage VSG. For all devices, gates were positioned on
the side of the nanowire opposite to the Al shell. The magnetic
field was oriented along the nanowire axis using a three-axis vector
magnet. Standard ac lock-in techniques were used in a dilution
refrigerator with a base temperature of ∼ 20 mK. For a more detailed
description of thewire growth, device fabrication andmeasurements
see Appendix A.

3.3 Steplike Decrease

The Zeeman splitting of ABSs can be extracted from the differential
conductance, G � dI/dV , measured as a function of applied

source-drain bias, V , and magnetic field, B, along the wire. To avoid
the gate-dependent level repulsion effect [64], the absolute value of
the effective g factor,

��g∗��, was measured using the lowest-energy
subgap state as it moved toward zero energy with B. Figure 3.1(c)
shows

��g∗�� of the lowest energy state as a function of bottom-gate
voltage VG for device g1, displaying a characteristic steplike behavior
as a function of gate voltage. A B-sweep at VG � 0.0 V displays a
quasi-continuous band of ABSswith

��g∗�� � 34, as shown in Fig. 3.1(d).
The hard superconducting gap collapses at roughly B � 0.2 T, leaving
a soft gap behind. At higher fields, the evolution of levels cannot
be easily tracked. The main large gap at V � 240 µeV—presumably
arising from superconductivity among electrons that predominantly
reside in the Al shell—remains visible throughout the measured
range. WhenVG is changed from−2 V to−4 V,

��g∗�� abruptly decreases
from 27 to 6.6 [Figs. 3.1(e) and 3.1(f)]. The effective g factor saturates
at

��g∗�� ∼ 5 for more negative values of VG. In contrast to the behavior
at VG ∼ 0 V where the continuum of states moved toward zero
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energy, evolution of single, discrete ABS can be clearly followed at
VG � −7.5 V [Fig. 3.1(e)]. In this case, the ABS with

��g∗�� � 4.3 reaches
zero energy at B � 1.5 T, with hard gaps on both sides of the state
throughout the sweep.

Qualitatively similar behavior was seen in multiple devices. For
device g2 at back-gate voltages in the range of 4 V to 6 V,

��g∗�� was
∼ 20 [Fig. 3.2(c)]. A B-sweep taken at VBG � 4.9 V shows a quasi-
continuous band of subgap-states with

��g∗�� � 19 crossing zero-bias
at B � 0.4 T, to become a quasi-continuum throughout the subgap
region at higher field. For VBG in the range −2 V to −8 V,

��g∗��
remained roughly constant at ∼ 5. At VBG � −2.4 V, a single sharp
ABS was observed, with

��g∗�� � 4.1 coalescing at B � 1 T and sticking
to zero energy for higher fields. The narrow zero-bias conductance
peak remained insensitive to magnetic field from 1 to 2 T. Data
from the top-gated device g3 showing a similar steplike decrease
in

��g∗�� as well as gate-voltage dependence of the effective induced
superconducting gap, ∆∗ is summarized in Fig. 3.3.

We propose two contributing factors to the steplike evolution
of

��g∗�� as carriers are depleted by the gate voltage. The first is the
reduction of the orbital contribution to

��g∗�� as the wire is depleted
across most of its cross section [67, 68, 70]. The second is that the
remaining density in the nanowire is predominately against the
interface with the Al shell, strongly coupled to the superconductor
[71–73].

3.4 Gap Closing & Reopening

Aclearer view of excited states above the lowest energy ABS,
including the closing and reopening of a gap coincident with the

appearance of a zero-bias conductance peak, can be seen for device g4
in Fig. 3.4. Due to the gate dependent g factor, it is natural to describe
the robustness of the zero-bias state in the energy scale corresponding
to Zeeman splitting. A B-sweep at VG � −5.0 V reveals a quasi-
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(d) Line-cuts taken from (c) show the emergence of a symmetric
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continuous band of ABSs with a
��g∗�� � 10 [Figs. 3.4(a) and 3.4(b)]. At

low field, the gap is hard on the low-energy side of the ABS edge,
yielding small values of G; at higher fields, G is nonzero throughout
the subgap region. Around B � 0.9 T an excited subgap-state
[indicated by the dot-dashed line in Fig. 3.4(a)] becomes visible. It
increases in energy and merges with the higher-energy ABSs around
B � 1.1 T. The lowest energy state evolves into a zero-bias peak at
roughly B � 1.0 T. The zero-mode can be followed up to ∼ 1.7 T,
whereafter it merges with the high subgap density. Extrapolating the��g∗�� slope of the lowest energy state [see the dashed line in Fig. 3.4(a)]
infers that the zero-bias peak extends for ∼ 225 µeV—comparable to
the size of the main large gap.

Lowering the gate voltage changes the picture qualitatively.
The tunneling spectrum dependence on magnetic field, taken at
VG � −9.0 V displays a discrete, low-energy ABS with

��g∗�� � 5.7
[Fig. 3.4(c)]. The ABS merge at B � 1.0 T to form a well-defined
zero-bias peak, clearly visible up to B � 1.8 T, corresponding to
Zeeman splitting of ∼ 125 µeV. The feature of gap closing-reopening
is absent in this case. The subgap conductance is low throughout
the sweep [Fig. 3.4(d)], suggesting a low-density ABS regime.

The tunneling spectrum for device g5 further illustrates the
reopening of the gap (Fig. 3.5). Evolution of the subgap states can
be followed rather clearly: a quasi-continuous band of ABSs with��g∗�� � 10 emerges from above the gap at B � 0.3 T; Around B � 1.0 T
an excited subgap-state (indicated by the dot-dashed line) starts to
gain energy with increasing field; The lowest energy state forms a
zero-bias state that ranges from B � 1.1 T to 1.7 T, corresponding to
Zeeman splitting of ∼ 175 µeV (white arrow).

The evolution of V spectra with B in Figs. 3.4(a) and 3.5(a) show
a gap to the lowest excited state that nearly closes then reopens at
almost the same value of B where the zero-bias peak appears. This
can be interpreted as a characteristic feature of a topological phase
transition [74–76]. The residual gap at the phase transition in both
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Fig. 3.5: (a) Conductance as a function of V and B for device g5 at
VSG � −5.1 V shows subgap-states with

��g∗�� � 10 coalescing
at B ∼ 1.1 T, while an excited state increases in energy. (b) Line-cuts
taken from (a) illustrate the formation of zero-bias peak at high
field. A pair of low-conductance excited states resembling gap
closing-reopening are visible around B � 1.0 T.

devices is finite, but less than half the energy of the main large gap—
consistent with the length quantization of the wire [77]. It has been
argued theoretically [78, 79] and observed experimentally [64, 80]
that a zero-bias conductance anomaly can be rendered by (partially)
localized ABSs/ strongly interacting MBSs. However, numerical
simulations indicate, that a topological phase transition is composed
of both emergent zero-bias peak and gap closing-reopening feature
[78, 79]. At more negative gate voltages, that is at lower electron
density, the number of occupied subbands is expected to decrease.
The corresponding magnetic field sweep in Fig. 3.4(c) shows a single
ABS coalescing into a zero-bias peak, however, the gap closing-
reopening feature is not visible in tunneling conductance. This is
presumably due to the change in nanowire parameters, such as
Rashba spin-orbit coupling, as the electric field generated by the
gate voltage is increased [77,81].
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3.5 Conclusion

In summary, we have measured the effective g factor of subgap
states in InAs nanowires with epitaxial Al as a function of density

of carriers in the wire, controlled by gate voltages, in a number of
device geometries. In addition, robust zero-bias peaks—ranging for
Zeeman energy comparable to the superconducting gap—have been
observed at different charge carrier densities. We provide a quali-
tative interpretation of the data. The observations are reproduced
with multiple devices. In order to understand the experimental
findings in more detail, a refined electrostatic modeling considering
both Zeeman and orbital contributions is desired.



4Majorana Modes in
Full-Shell Wires

This chapter demonstrates a novel means of creating Majorana
zero modes using magnetic flux applied to a full superconduct-

ing shell surrounding a semiconducting nanowire core, unifying
approaches based on proximitized nanowires and vortices in topo-
logical superconductors. In the destructive Little-Parks regime,
reentrant regions of superconductivity are associated with integer
number of phase windings in the shell. Tunneling into the core
reveals a hard induced gap near zero applied flux, corresponding to
zero phasewinding, and a gapped regionwith a discrete zero-energy
state for flux around Φ0 � h/2e, corresponding to 2π phase winding.
Coulomb peak spacing in full-shell islands around one applied flux
shows exponentially decreasing deviation from 1e periodicity with
device length, consistent with the picture of Majorana modes located
at the ends of the wire.

This chapter is adapted from Ref. [82], that reports experimental findings, which
was later merged with the supporting theory [50] and published as Ref. [83]. The
experiment was conducted under the supervision of Charles Marcus. Mingtang Deng
assisted with the experiments and data analysis. The nanowires were grown by Peter
Krogstrup.
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4.1 Wire-Vortex Analogy

Majorana zero modes (MZMs) at the ends of one-dimensional
topological superconductors are expected to exhibit non-trivial

braiding statistics [24, 38], opening a path toward topologically pro-
tected quantum computing [25, 27]. Among the proposals to realize
MZMs, one approach [44, 45] based on semiconductor nanowires
with strong spin-orbit coupling subject to a Zeeman field and super-
conducting proximity effect has received particular attention, yield-
ing numerous compelling experimental signatures [54, 59–61, 84].
An alternative route to MZMs aims to create vortices in spinless
superconductors, by variousmeans, for instance by coupling a vortex
in a conventional superconductor to a topological insulator [42,85],
using doped topological insulators [86,87], or using vortices in exotic
quantum Hall analogs of spinless superconductors [88].

The conceptually new approach demonstrated in this chapter,
based on superconducting phase winding in an Al shell surrounding
an InAs nanowire core, contains elements of both the proximitized-
wire scheme [44, 45] and vortex-based schemes [42] for creating
MZMs. In the destructive Little-Parks regime [17,89], themodulation
of critical current and temperature with flux applied along the
hybrid nanowire results in reentrant superconductivity [90,91]where
each region is associated with a quantized number of twists of the
superconducting phase [10]. The result is a series of topologically
locked boundary conditions for the proximity effect of the core,
where the number of phase twists in the Al shell corresponds to the
number of phase vortices in the nanowire core. Note that it is the
fluxoid that is quantized, not the flux itself [10].

We observe that tunneling into the core in the zeroth supercon-
ducting lobe, around zero flux, yields a hard proximity-induced gap
with no subgap features. In the superconducting regions around one
quantum of applied flux, corresponding to phase twists of±2π in the
shell, tunneling spectra into the core shows stable zero-bias peaks,
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indicating a discrete subgap state fixed at zero energy, consistent
with the Majorana picture.

Further evidence that MZMs reside at the ends of the wire is
obtained by investigating Coulomb blockade conductance peaks
in full-shell wire islands of various lengths. We find that in the
zeroth lobe, Coulomb blockade conductance peaks show 2e spacing,
indicating Cooper-pair tunneling and an induced gap exceeding
the island charging energy. In the first lobe, peak spacings are
roughly 1e-periodic, with slight even-odd alternation that vanishes
exponentially with island length, suggesting overlapping Majorana
modes at the two ends of the Coulomb island, as investigated
previously [61,92]. These experimental observations are consistent
with the recent theory [50] showing that a radial Rashba field
arising from the band bending at the semiconductor-superconductor
interface [72,73], along with an odd multiple of 2π phase twists in
the boundary condition, can induce a topological state with MZMs.
Further support for possible topological phase in full-shell nanowires
is given in Ref. [93].

Phase winding in the full-shell geometry represents the contin-
uum limit of discrete boundarieswith differing phases. Phase control
of Andreev bound states was investigated experimentally for two
superconductors as a function of phase difference in Refs. [94–96]. In
the context of topological states, Altland and Zirnbauer considered
two superconducting boundaries with phase difference of π in their
original study of symmetry classes of Andreev billiards [97]. Phase
difference between superconducting boundaries was shown theo-
retically to influence the topological transition and the appearance
of MZMs in long Josephson junctions [98, 99] as well as nanowire
models [100–102]. Control of topological states by multiple phase
differences was investigated in Refs. [103, 104]. A unique feature
of the continuous superconducting shell is the rigidity of phase
winding by fluxoid quantization [10]. In this case, a topologically
constrained boundary condition locks the topological phase within.
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4.2 Full-Shell Devices

InAs nanowires with wurtzite crystal structure (growth batch 439)
were grown along the [0001] direction by the vapor-liquid-solid

method using molecular beam epitaxy (MBE). The nanowires have
a hexagonal cross section with maximum diameter d � 130 nm. A
30 nm epitaxial Al layer was grown while rotating the sample [57],
yielding a fully enclosing shell [Fig. 4.1(a)]. Wires were placed on
a doped Si substrate capped with thermal oxide. The Al shell was
lithographically patterned and selectively etched. Ti/Au ohmic
contacts were patterned and deposited following Ar-ion milling. For
some devices, Ti/Au gate electrodes were patterned in a subsequent
lithographic step [Fig. 4.5(a)]. Standard ac lock-in measurements
were carried out in a dilution refrigerator with a base temperature
of 20 mK. Magnetic field was applied parallel to the nanowire using
three-axis vector magnet. Two device geometries, measured in three
devices each, showed similar results. Data from two devices are
presented: device f1 was used for 4-probe measurements of the shell
[Fig. 4.1(b)] and tunneling spectroscopyof the core [Fig. 4.2(a)]; device
f2 comprised six Coulomb islands of different lengths fabricated on
a single nanowire, each with separate ohmic contacts, two side gates
to trim tunnel barriers, and a plunger gate to change occupancy
[Fig. 4.5(a)]. For a more detailed description of the wire growth,
device fabrication and measurements see Appendix A.

Differential resistance of the shell, Rs � dVs/dIs, measured for
device f1 as a function of bias current, Is, and axial magnetic field,
B, showed a lobe pattern characteristic of the destructive regime
[Fig. 4.1(c)] with maximum switching current of 70 µA at B � 0,
the center of the zeroth lobe. Between the zeroth and first lobes,
supercurrent vanished at |B | � 45 mT, re-emerged at 70 mT, and
had a maximum near the center of the first lobe, at |B | � 110 mT.
A second lobe with smaller critical current was also observed, but
no third lobe.
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Fig. 4.1: (a) Colorized material-sensitive electron micrograph of InAs-Al hy-
brid nanowire. Hexagonal InAs core (maximum diameter 130 nm)
with 30 nm full-shell epitaxial Al. (b) Micrograph of device f1,
colorized to highlight 4-probe measurement setup. (c) Differential
resistance of the Al shell, Rs, as a function of current bias, Is, and
axial magnetic field, B, measured at 20 mK. Top axis shows flux,
BAwire, in units of the flux quantum Φ0 � h/2e. Superconducting
lobes are separated by destructive regions near odd half-integer
flux quanta. (d) Temperature evolution of Rs as a function of B
measured around Is � 0. Note that Rs equals the normal-state
resistance in all destructive regimes.
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Temperature dependence of Rs around zero bias yielded a reen-
trant phase diagram with superconducting regions separated by
destructive regions with temperature-independent normal-state re-
sistance R(N)s � 1.3 Ω [Fig. 4.1(d)]. R(N)s and shell dimensions from
Fig. 4.1(a) yield a Drude mean free path of l � 19 nm. The dirty-limit
shell coherence length [10, 105]

ξs �

√
π~vFl

24kBTC
(4.1)

can then be found using the zero-field critical temperature TC � 1.2 K
from Fig. 4.1(d) and Fermi velocity of Al, vF � 2×106 m/s [106], with
Planck constant ~ and Boltzmann constant kB, yielding ξs � 180 nm.
The same values for ξS is found using the onset of the first destructive
regime [107].

4.3 Tunneling Spectroscopy

Differential conductance, G � dI/dV , as a function of source-
drain voltage, V , measured in the tunneling regime as a probe

of the local density of states at the end of the nanowire is shown
in Figs. 4.2 and 4.3. The Al shell was removed at the end of the
wire and the tunnel barrier was controlled by the global back-gate at
voltage VBG. At zero field, a hard superconducting gapwas observed
throughout the zeroth superconducting lobe [Figs. 4.2(b) and 4.2(c)].
Similar to the supercurrent measurements presented above, the
superconducting gap in the core closed at |B | � 45 mT and reopened
at 70 mT, separated by a gapless destructive regime. Upon reopening,
a narrow zero-bias conductance peak was observed throughout the
first gapped lobe [Figs. 4.2(b) and 4.2(d)]. Several flux-dependent
subgap states are also visible, separated from the zero-bias peak in
the first lobe. These nonzero subgap states are analogs of Caroli-de
Gennes-Matricon bound states [108], in this case confined at the
metal-semiconductor interface rather than around a vortex core.
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Fig. 4.2: (a) Micrograph of device f1 colorized to highlight tunneling spec-
troscopy set-up. (b) Differential conductance, G, as a function of
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shows a hard superconducting gap, the first lobes show zero-bias
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indicate the position of line-cuts shown in Fig. 4.2(c) and 4.2(d).

The first lobe persist to ±150 mT, above which a second gapless
destructive regime was observed. A second gapped lobe centered at
|B | ∼ 220 mT then appeared, containing several subgap states away
from zero energy [4.4]. The second lobe closes at 250 mT, above
which only normal-state behavior was observed.

The dependence of tunneling spectra on back-gate voltage in the
zeroth lobe is shown in Fig. 4.3(a). In weak tunneling regime, for
VBG < −1 V a hard gap was observed, with ∆ � 180 µeV [see the
line-cut in Fig. 4.2(c)]. As the device is opened, for VBG ∼ −0.8 V
subgap conductance is enhanced due to Andreev processes. The
increase in conductance at VBG ∼ −1.2 V is likely due to a resonance
in the barrier. In the first lobe, at B � 110 mT, the sweep of
VBG showed a zero-energy state throughout the tunneling regime
[Fig. 4.3(b)]. The cut displayed in Fig. 4.2(d) shows a discrete zero-
bias peak well separated from other states. As the tunnel barrier is
opened, the zero-bias peak gradually evolves into a zero-bias dip at
strong coupling, in qualitative agreement with theory supporting
MZMs [109]. Several switches in data occurred at the same gate
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voltages in Figs. 4.3(a), 4.3(b) and 4.4(a), presumably due to gate-
dependent charge motion in the barrier.

4.4 Coulomb Spectroscopy

Hybridization of MZMs can be measured in Coulomb islands of
finite length from the spacing of Coulomb blockade conduc-

tance peaks [61, 92, 110, 111]. In particular, the exponential length
dependence of hybridization energy supports the Majorana interpre-
tation and further indicates that the MZMs are located close to the
ends of the wire, and not in the middle [78, 112]. We investigated
full-shell islands over a range of device lengths from 210 nm to
970 nm, fabricated on a single nanowire, as shown in Fig. 4.5(a).

Zero-bias conductance as a function of plunger-gate voltage,
VG, and B for device f2 yielded series of Coulomb blockade peaks
for each segment, examples of which are shown in Fig. 4.5(b).
The corresponding average peak spacings, δV , for even and odd
Coulomb valleys as a function of B are shown in Fig. 4.5(c). Around
zero field, Coulomb-blockade peaks with 2e periodicity were found.
These peaks split at ∼40 mT toward the high-field end of the zeroth
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state, even (e) and odd (o) valleys of different sizes, and alternating
excited state structure.

superconducting lobe, as the superconducting gap decreased bellow
the charging energy of the island. The peaks then became 1e-periodic
(within experimental sensitivity) around 55 mT and throughout the
first destructive regime (see Fig. 4.1 for the onset of destructive
regime). When superconductivity reappeared in the first lobe, the
Coulomb peaks did not become spaced by 2e again, but instead
showed nearly 1e spacing with even-odd modulation. The 210 nm
island showed a qualitatively similar even-odd also in the second
lobe. Unlike device f1 described in Fig. 4.2, the shortest island in
device f2 also showed a third superconducting lobe, which can be
identified from the peak height contrast in Fig. 4.5(b). Coulomb
blockade peaks were 1e-periodic within experimental sensitivity
throughout the third lobe.

Tunneling spectra at finite source-drain bias showed 2e Coulomb
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diamonds around zero field [Fig. 4.6(a)] and nearly 1e diamonds at
B � 110 mT, near the middle of the first lobe [Fig. 4.6(b)]. The zero-
field diamonds are indistinguishable from each other, showing a
region of negative differential conductance associated with the onset
of quasi-particle transport [113–115]. In the first lobe [Fig. 4.6(b)],
Coulomb diamonds alternate in size and symmetry, with degeneracy
points showing sharp, gapped structure, indicating that the near-
zero-energy state is discrete. Additional resonances at finite bias
reflect excited discrete subgap states away from zero energy.

All islands showed 2e-periodic Coulomb peaks in the zeroth
lobe and nearly 1e spacing in the first lobe. Examining the 420 nm
and 810 nm data in Fig. 4.7 already reveals that the mean difference
between even and odd peak spacings in the first lobe decreased with
increasing island length. To address this question quantitatively, we
determine the lever arm, η, for each island independently in order to
convert plunger gate voltages to chemical potentials on the islands,
using the slopes of the Coulomb diamonds [61, 116]. This allows the
peak spacing differences [Fig. 4.7(b) and 4.7(e)] to be converted to
island-energy differences, A(L), between even and odd occupations,
as a function of device length, L. The measured lever arms and even-
odd peak spacing difference as well as the resulting hybridization
amplitudes for all six islands are summarized in Appendix B.1. A
detailed, exemplar peak spacing analysis is presented in Apendix B.2.

Within a Majorana picture, the energy scale A(L) reflects the
length dependent hybridization energy of MZMs. Values for A(L)
at B � 110 mT, in the middle of the first lobe, spanning over two
orders of magnitude are shown in Fig. 4.8. A fit to an exponential
A � A0 e−L/ξ yields fit parameters A0 � 105 µeV and ξ � 180 nm.
The data arewell described by an exponential length dependence, im-
plying that the low-energy modes are located at the ends of the wire,
not bound to impurities or local potential fluctuations as expected
for overlapping Majorana modes. Along with length dependent
even-odd peak spacing difference, we observe even-odd modulation
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in peak heights [Fig. 4.7(c) and 4.7(f)]. Possible explanation of these
phenomena was proposed in Ref. [117]. Additionally, we find a
complex alternating peak-height structure depending on magnetic
field within the first lobe. Peak height modulation accompanying
peak spacing modulation was observed previously [61, 110, 111].

4.5 Sanity Check

To investigate how coherence length ξ, extracted from the expo-
nential decrease of even-odd peak spacing with length, depends

on the superconducting gap, ∆, we examine peak spacing near
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device f2 at B � 140 mT as a function of island length, L. The best
fit to the exponential A � A0e−L/ξ (gray) yields A0 � 80 µeV and
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from the electron micrograph.

the high-field edge of the first lobe, B � 140 mT, where the gap is
reduced to ∆140 � 40 µeV, and shows no subgap features besides
the zero-bias peak [Fig. 4.9(b)]. At this reduced gap we again find
an exponential dependence on length, and incompatibility with a
power law, now with ξ � 230 nm [Fig. 4.9(c)]. We observe that
ξ140/ξ110 � 230 nm/180 nm ∼ 1.3 is consistent with simple scaling,
ξ ∝ ∆−1 (not accounting for a field-dependent velocity). FromFig. 4.9,
δ110/∆140 � 50 µeV/40 µeV ∼ 1.2, where δ110 is the lowest non-zero



62 Majorana Modes in Full-Shell Wires

subgap state, and δ140 � ∆140. We also note that both ξ110 and ξ140
are slightly smaller than the coherence length in the superconduct-
ing shell at corresponding B field values: ξS(110 mT) ∼ 190 nm
and ξS(140 mT) ∼ 250 nm, extracted from data in Fig. 4.1(d) using
Eq. (4.1) and the corresponding values of TC(B). This discrepancy
may be interpreted as resulting from the velocity renormalization in
the semiconductor in the strong coupling limit [118–120].

4.6 Discussion

In summary, we have demonstrated that that threading magnetic
flux through a semiconductor nanowire fully covered by a super-

conducting shell can induce a topological phase with Majorana zero
modes at the nanowire ends. While being of similar simplicity and
practical feasibility [57] as the original nanowire proposals with a
partial shell coverage [44, 45], full-shell nanowires may provide key
advantages. First, the topological transition in a full-shell wire is
driven by the field-induced winding of the superconducting order
parameter, rather than by the Zeeman effect so that, as demonstrated
in the reported measurements, the required magnetic fields can be
very low (∼ 0.1 T). Therefore, the present proposal is compatible with
conventional superconducting electronics and removes the need for
a large g factor semiconductor, potentially expanding the landscape
of candidate materials. Moreover, the full shell naturally protects the
semiconductor from impurities and random surface doping, thus
enabling a reproducible way of growing many wires with essentially
identical electrostatic environments. The modest magnetic field
requirements, protection of the semiconductor core from surface
defects, and locked phase winding in discrete lobes together suggest
a new and relatively easy route to creating and controlling Majorana
zero modes in hybrid materials. Our findings open a possibility
to study an interplay of mesoscopic and topological physics in this
novel system.



5Anomalous Phase in
Destructive Superconductors

The Little-Parks effect—a flux-dependent modulation of the tran-
sition temperature in multiply connected superconductors—

results from the quantization of fluxoid through holes in super-
conductors. In hollow superconducting cylinders with diameter
smaller than the superconducting coherence length, flux-induced
supercurrents can give rise to the destructive Little-Parks effect,
characterized by repeated reentrant quantum phase transitions be-
tween superconducting and metallic phases. Here, we use axial
and transverse magnetic fields to control the crossover between the
conventional and destructive Little-Parks regimes in nanowires with
an epitaxial Al shell fully surrounding InAs core. The observed
dependence on flux, transverse field, temperature, and current bias
is in excellent agreement with theory. Near the crossover between
the conventional and destructive regimes, an anomalousmetal phase
is found. The anomalous metallic phase is characterized by a field-
controllable, temperature-independent resistivity between adjacent
superconducting lobes.

This chapter is adapted from Ref. [121]. The experiment was conducted under
the supervision of Charles Marcus. The nanowires were grown by Peter Krogstrup.
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5.1 Small Cylindrical Shells

Quantum phase transitions (QPT) [122, 123] in conventional su-
perconductors serve as prototypes for related effects in more

complex, strongly-correlated systems [124], including heavy-fermion
materials [125] and high-temperature superconductors [126]. While
low-temperature superconductors are well understood in bulk, new
phenomena can arise in mesoscopic samples and reduced dimen-
sionality [10,127]. For instance, in two-dimensional films, electrons
theoretically condense into either a superconductor or insulator in
the low-temperature limit [128]. Yet, in many instances, an anoma-
lous metallic state with finite temperature-independent resistance is
found at low temperatures [129]. In one-dimensional wires, incoher-
ent phase slips can destroy superconductivity [130] or give rise to
an anomalous metallic state [131], while coherent quantum phase
slips can lead to superposition of quantum states enclosing different
numbers of flux quanta [132], potentially useful as a qubit [133].

Multiply connected superconductors provide an even richer
platform for investigating phase transitions. Fluxoid quantization
in units of Φ0 � h/2e [134, 135], reveals not only electron pairing
but a complex macroscopic order parameter, ∆e iϕ [10, 136]. The
same physical mechanism underlies the Little-Parks effect, a periodic
modulation of the transition temperature, TC, of a superconducting
cylinderwithmagnetic flux periodΦ0 [17]. For hollow superconduct-
ing cylinders with diameter, d, smaller than the coherence length, the
modulation amplitude can exceed zero-field transition temperature,
TC0, leading to a reentrant destruction of superconductivity near
odd half-integer multiples of Φ0 [89, 107, 137].

Early experimental investigation of the destructive Little-Parks
effect reported reentrant superconductivity interrupted by an anoma-
lous-resistance phase around applied flux Φ0/2 [90]. Subsequent
experiments showed a low-temperature phase with normal-state
resistance, RN, around Φ0/2, but did not display fully recovered
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superconductivity at higher flux [91]. Several theoretical models
were proposed to interpret these different scenarios [138–140], but
no consensus emerged.

In this chapter we report a study of the Little-Parks effect in InAs
nanowires with a thin epitaxial cylindrical Al shell, demonstrating
the relation between destructive superconductivity and various ex-
perimentally controllable parameters. Excellent agreement with
Ginzburg-Landau mean field theory is found as a function of flux,
temperature, and current bias, using independently measured ma-
terial and device parameters. We then investigate a field-tunable
crossover from non-destructive to destructive regime. At the bound-
ary, an anomalous metal phase is identified, characterized by a
temperature-independent resistance that can be tuned over a broad
range using perpendicular magnetic field, B⊥. We interpret these
results in terms of tunneling between two adjacent fluxoid states
with different phase winding numbers giving rise to an anomalous
metallic phase. However, as noted previously [139], the appear-
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1 μm
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tS

(a) (b)

V

VG

Ti/Au InAsAl B┴BⅡ

Fig. 5.1: (a) Colorized material-sensitive scanning electron micrograph of
InAs-Al hybrid nanowire cross-section. The full wire diameter dF,
core diameter dC and shell thickness tS are indicated by dashed
arrows. (b) Representative color-enhanced micrograph of a device
(wire d2) consisting of an InAs core (green) with Al shell (grey),
contacted with Ti/Au leads (yellow). The device can be operated
in voltage (V) and current (IS) bias measurement set-ups.
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ance of a field-tunable temperature-independent resistance does not
emerge naturally from simple generic models.

The devices we investigated were made using InAs nanowire
grown by the vapor-liquid-solid (VLS) method using molecular
beam epitaxy (MBE). Following wire growth, an epitaxial Al layer
was grown within the MBE chamber while rotating the sample stage,
resulting in a full cylindrical Al shell coating the wire [57], as shown
in Fig. 5.1(a). Subsequent fabrication used standard electron-beam
lithography, deposition, etching, and liftoff, as described in Ap-
pendix A. Devices were operated in two configurations [Fig. 5.1(b)]:
In the first configuration, four Au contacts were made to the Al shell
allowing four-wire resistance measurements; in the second, an addi-
tional tunneling contact to the InAs core at the end of the wire was
used as a tunnel probe, giving local density of states, as discussed
in Chapter 4. We investigated wires from three growth batches,
denoted d1 (batch 638), d2 (batch 439), and d3 (batch 564), with
different core diameters, dC, and shell thicknesses, tS (Appendix C.1).
Transport measurements were carried out in a dilution refrigerator
with a three-axis vector magnet and base temperature of 20 mK.

5.2 Pair-Breaking with Temperature & Flux

Carrier density in the InAs core is predominantly at theAl interface
due to band bending [72,73]. Moreover, the density of carriers

in Al is orders of magnitude higher than in InAs. We may therefore
consider current to be carried by a hollow cylinder which is threaded
by flux in an axial applied magnetic field. Induced circumferential
supercurrents from the applied flux lead to Cooper pair breaking,
characterized by the parameter α, which controls the transition
temperature TC(α), as described by Abrikosov-Gorkov expression,

ln
(

TC(α)
TC0

)
� Ψ

(
1
2

)
−Ψ

(
1
2 +

α

2πTC(α)

)
(5.1)
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Fig. 5.2: (a) Shell resistance, RS, measured for wire d1 with shell thickness
tS � 7 nm as a function of axial magnetic field, B‖ , and temperature,
T. The superconducting transition temperature of the shell is
periodically modulated by B‖ . The sample is superconducting for
temperatures below 1 K throughout the whole measured B‖ range.
The dashed theory curve is Eq. (5.1) evaluatedwith α‖ fromEq. (5.2)
and the corresponding fit parameters measured for the wire d1. (b)
Same as (a), but measured for wire d2 with shell thickness around
tS � 25 nm, showing the destructive regimes around ±Φ0/2 and
±3Φ0/2 of the applied flux quantum.
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whereΨ is the digamma function [141]. Following Refs. [91,107,138],
the pair-breaking parameter for a hollow cylinderwithwall thickness
tS in a parallel magnetic field B‖ is given by

α‖ �
4 ξS

2TC0
AF

[(
n − Φ
Φ0

)2

+
tS

2

dF2

(
Φ2

Φ02 +
n2

3

)]
(5.2)

where ξS is the zero-field superconducting coherence length, AF is
the area of the cylinder cross section, the integer n is the fluxoid
quantum number, Φ is the applied flux, and dF is the diameter
of the cylinder [Fig. 5.1(a)]. Taking the dirty-limit expression for
ξS �

√
π~vFle/24kBTC0 with the Fermi velocity vF and mean free

path le, we note that all parameters can either be measured directly
from the micrograph of the device or from independent transport
measurements, see Appendix C.1.

Differential shell resistances, RS � dVS/dIS, for wires d1 and d2
are shown in Fig. 5.2 as a function of B‖ and temperature, T. Wires d1
and d2 have similar core diameters, dC ∼ 135 nm, but different shell
thicknesses. For wire d1, with tS � 7 nm, TC is finite throughout
the measured range, and varies periodically with applied axial flux
with amplitude ∼ 0.4 K with no clear envelope reduction up to
B‖ � 0.4 T. Normal-state resistance of the wire yields a coherence
length ξS � 70 nm, smaller than dC (Appendix C.1). In contrast, wire
d2, with tS � 25 nm, has ξS � 180 nm > dC, and shows destructive
regimes around ±Φ0/2 and ±3Φ0/2. Resistances in these destructive
regimes remain equal to the normal state resistance, RS � RN, to the
lowest measured temperatures.

The absence (presence) of the destructive regime in wire d1 (d2)
is consistent with the criterion of the superconducting coherence
length being smaller (larger) than the wire diameter [89]. To be
more quantitative, we plot in Fig. 5.2 theoretical curves marking
the superconductor-metal transition based on Eqs. (5.1) and (5.2)
with independently measured wire parameters, using either the
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Fig. 5.3: (a) Shell resistance, RS, measured for wire d1 with shell thickness
tS � 7 nm as a function of axial magnetic field, B‖ , and current
bias, IS. Both switching and re-trapping currents are periodically
modulated by B‖ up to B‖ ,C � 2.3 T, whereafter the supercurrent is
suppressed. The dashed theory curve is Eq. (5.3) evaluated with
α‖ from Eq. (5.2) and the corresponding fit parameters measured
for wire d1. (b) Same as (a), but measured for wire d2 with shell
thickness around tS � 25 nm.
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measured zero-field critical temperature, TC0 or, equivalently, the
spectroscopically measured zero-field superconducting gap, ∆0,
(Fig.C.1 inAppendixC.2), whichwas consistentwith theBCS relation
∆0 � 1.76 kBTC0 [10]. Figure 5.2 demonstrates the remarkably good
agreement found between experiment and theory. The observed
increase of TC with decreasing tS is consistent with enhanced energy
gaps for thin Al films [142].

5.3 Current-Driven Phase Transitions

Similar to the effects of flux-induced circumferential supercurrent,
a dc current, IS, applied along the wire can also drive the shell

normal. The field-dependent critical current IC(α) can be related to
the corresponding critical temperature, TC(α),

IC(α) � IC0

(
TC(α)
TC0

)3/2
(5.3)

where IC0 is the zero-field critical current [143].
Base-temperature IS–B‖ phase diagrams for wires d1 and d2 are

shown in Fig. 5.3. The data are taken sweeping from negative to
positive bias, so show re-trapping currents for IS < 0 and switching
current for IS > 0, both of which are proportional to the critical cur-
rent, IC [10]. Similar to the transition temperature, IC was observed
to be Φ0-periodic in flux for both wires as expected from Eq. (5.3).
For wire d1, a bigger range of B‖ [Fig. 5.3(a)] shows that the thin
shell remains non-destructive up to ∼ 2 T, corresponding to ∼ 13Φ0,
then enters the destructive regime twice around 14Φ0 and finally
turns fully normal around B‖ ,C � 2.3 T.

Figure 5.3 shows theoretical curves based on Eqs. (5.1)–(5.3) su-
perimposed on experimental data for both wire types. The zero-field
switching and re-trapping currents were taken as input parameters,
with other parameters measured independently. Again, excellent
agreement between experiment and theory for both thin (wire d1)
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and thick (wire d2) shells was found.

5.4 Perpendicular Magnetic Field

We next consider the effects of an applied transverse magnetic
field, B⊥, which can be used to control a crossover between

conventional and destructive Little-Parks regimes. We investigate
the combined effects of B‖ and B⊥ in wire d3, with dC � 240 nm and
tS � 40 nm. The larger diameter reduces the field value B‖ � Φ0/AF
and the thicker shell ensures a long ξS, such that initially the wire
is nearly destructive. The transition of the wire d3 from being non-
destructive at B⊥ � 0 to destructive at B⊥ � 13 mT is depicted by
IS–B‖ phase diagrams in Figs. 5.4(a)–5.4(c).

Theoretically, the effect of B⊥ on the superconducting transition
can be accounted for by introducing an additional pair-breaking
term [124],

α⊥ �
4 ξS

2TC0
AF

Φ⊥2

Φ02 (5.4)

where Φ⊥ � B⊥AF. Figures 5.4 and 5.5 show the theoretical transi-
tions based on Eqs. (5.1)–(5.4) using α � α‖ +α⊥ [144] superimposed
on experimental data.

Near the conventional-destructive crossover [Fig. 5.4(b)], a re-
sistive state with RS smaller than RN was observed around ±Φ0/2
and IS � 0. Figures 5.6 and 5.7 examine this resistive state close to
the crossover, around B⊥ ∼ 12 mT, along with superimposed theory
curves based on Eqs. (5.1)–(5.4). Note that unlike the situation far
from the crossover [Fig. 5.6(a)], where theory and experiment agree
well, in the vicinity of the crossover [Fig. 5.6(b) and 5.6(c)] mean-field
theory predicted TC deviates from the temperatures where the shell
displays RN.

Temperature dependence of RS around −Φ0/2 for several val-
ues B⊥ near the conventional-destructive crossover are shown in
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Fig. 5.4: (a) Base-temperature shell resistance, RS, measured for wire d3 as a
function of current bias, IS, and parallel magnetic field, B‖ , at zero
perpendicular magnetic field, B⊥ � 0. The wire is non-destructive
throughout the whole measured B‖ range. (b) Same as (a), but
at B⊥ � 12 mT. Around Φ0/2 and Is � 0, an anomalous phase
develops with a finite, but smaller than normal state resistance. (c)
Same as (a), but measured at B⊥ � 13 mT. Around Φ0/2 quantum
RS remains at normal state value even at IS � 0. The theory curves
in (a)–(c) are Eq. (5.3) evaluated with α � α‖ + α⊥.
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Fig. 5.7(a). Throughout this regime, RS was found to saturate to a
temperature independent value, which can be tuned over two orders
of magnitude with small changes in B⊥. In contrast, a RS-T trace
taken close to the second destructive regime, not near a crossover
(B⊥ � 12 mT and B‖ � 52 mT) remains temperature dependence
down to the base temperature (Fig. C.2 in Appendix C.3). Qual-
itatively similar anomalous RS saturation was also observed for
different B‖ values at a fixed B⊥, see Fig. C.3 in Appendix C.4. At
base temperature the evolution of RS as a function of B⊥ shows
a steplike increase, that is mostly pronounced around ±Φ0/2, see
Fig. 5.7(b).

A possible explanation for the saturation of RS in terms of
disorder-inducedvariations of∆, separating the shell into normal and
superconducting segments [138] was tested by examining saturation
effects in three segments of the same wire (Fig. C.4 in Appendix C.5).
It was found that all segments behaved the same, arguing against
long-range variation in ∆ on the scale of the separation of contacts.
We also note that the anomalous resistance develops predominantly
above the theoretical TC, where the sample is expected to be in the
normal state (Fig. C.5 in Appendix C.6).

The steplike increase of RS with B⊥ shown in Fig. 5.7(b) is
reminiscent of phase slips, similar to the ones observed in Refs. [130,
144], except here they are activated by the perpendicular field rather
than temperature. This suggests a picture in which anomalous
saturating resistance results from quantum fluctuations not captured
by the mean-field theory. In general, the probability of a transverse
phase slip across a weak link is proportional to exp

(
−RQ/RN

)
, with

the resistance quantum RQ, and therefore is exponentially small
for wire d3 [145]. However, near one-half flux quantum, states
with consecutive phase windings around the shell are degenerate,
allowing quantum fluctuations to play a role.

Finally, it might be worth noting that for wire d3, λ2 . dFtS/2
within the error, where λ is the effective penetration depth. In this
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limit, QPT is expected to be of the first order, allowing a metastable
states [136,138]. How this would affect expectations is not known.

5.5 Summary

The measured superconducting-normal phase diagrams for small
epitaxial Al cylinders grown on InAs nanowires are well de-

scribed by the phenomenological Ginzburg-Landau mean-field the-
ory. Depending on the wire diameter and the shell thickness a
sample can display both non-destructive and destructive Little-Parks
regimes. A moderate perpendicular magnetic field can tune a
non-destructive sample into an anomalous state with a saturating
half-flux quantum resistance, resembling a quantum fluctuations
induced tunneling of the system between two adjacent ground states
characterized by different phase windings. The resulting superposi-
tion of quantum states with different numbers of flux quanta could
potentially be useful as a qubit.
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6Selective Area Grown
Hybrids

In this chapter we introduce selective area grown hybrid InAs/Al
nanowires based on molecular beam epitaxy, allowing arbitrary

semiconductor-superconductor networks containing loops and bran-
ches. Transport reveals a hard induced gap and unpoisoned 2e-
periodic Coulomb blockade, with temperature dependent 1e fea-
tures in agreement with theory. Coulomb peak spacing in parallel
magnetic field displays overshoot, indicating an oscillating discrete
near-zero subgap state consistent with device length. Finally, we
investigate a loop network, finding strong spin-orbit coupling and a
coherence length of several microns. These results demonstrate the
potential of this platform for scalable topological networks among
other applications.

6.1 Loops & Branches

Majorana zero modes (MZMs) at the ends of one-dimensional
topological superconductors are expected to exhibit non-abelian

This chapter is adapted from Ref. [146]. The experiment was conducted under
the supervision of Charles Marcus. Alexander Whiticar, Mingtang Deng and Lu-
cas Casparis assisted with the fabrication, measurements and data analysis. The TEM
micrograph was taken by Sara Marti-Sanchez and Jordi Arbiol. The selective-area-
grown materials were developed by Filip Krizek, Joachim Sestoft, Chris Palmstrøm,
and Peter Krogstrup.
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braiding statistics [24, 38], providing naturally fault-tolerant qubits
[25,27]. Proposed realizations of braiding [52,53], interference-based
topological qubits [147–149] and topological quantum computing
architectures [39] require scalable nanowire networks. While rela-
tively simple branched or looped wires can be realized by special-
ized growth methods [57, 150] or by etch- and gate-confined two-
dimensional hybrid heterostructures [151–154], selective area growth
[155] enables deterministic patterning of arbitrarily complex struc-
tures. This allows complex continuous patterns of superconductor-
semiconductor hybrids and topological networks.

Following initial theoretical proposals [44, 45], a number of
experiments have reported signatures of Majorana zero modes
(MZMs) in hybrid semiconductor-superconductor nanowires [57],
including zero-bias conductance peaks [54–56,59, 153, 154, 156–158]
and Coulomb blockade peak spacing oscillations [61, 159]. To
date, experiments have used individual vapor-liquid-solid (VLS)
nanowires [54–56, 59, 156, 157] or gate-confined two-dimensional
heterostructures [153,154]. Within these approaches, constructing
complex topological devices and networks containing branches and
loops [39, 52, 53, 147–149] is a challenge. Recently, branched and
looped VLS growth has been developed toward this goal [150, 160].

In this chapter, we investigate a novel approach to the growth of
semiconductor-superconductor hybrids that allows deterministic on-
chip patterning of topological superconducting networks based on
SAG. We characterize key physical properties required for building
Majorana networks, including a hard superconducting gap, induced
in the semiconductor, phase-coherence length of several microns,
strong spin-orbit coupling, and Coulomb blockade peak motion
compatible with interacting Majoranas. Overall, these properties
show great promise for SAG-based topological networks.
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Fig. 6.1: (a) Scanning electronmicrographof a SAGhybridnetwork. (b) False-
colored annular dark field scanning transmission electron micro-
graph of a nanowire cross-section displaying InP substrate, InAs
(green) nanowire, Al (gray) shell and SiO2 (purple) mask. (c)
Measurement set-up for device s1 showing the gate voltages and
orientations of magnetic fields used in the measurements. (d)
False-colored electron micrograph of device s1. (e) Differential
conductance, G, as a function of source-drain bias, V , in linear
(black) and logarithmic (red) scales shows a hard superconducting
gap.
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6.2 Electron Distribution in SAG Wires

Selective area growth (batch 660) was realized on a semi-insulating
(001) InP substrate. PECVD grown SiOx was patterned using elec-

tron beam lithography and wet etching. InAs wires with triangular
cross-sections were grown bymolecular beam epitaxy (MBE). The Al
was grown in-situ MBE using angled deposition covering one of the
facets. The excess Al was removed bywet etching [Figs. 6.1(a)–6.1(c)].
The details of the semiconductor growth are given in Ref. [155],
while it is superconductor-semiconductor proximity effects that are
emphasized in the present study. Data from four devices, denoted s1
to s4, are presented. Device s1 [Fig. 6.1(d)] consists of a single barrier
at the end of a 4 µm wire, defined by a lithographically patterned
gate adjacent to a Ti/Au contact where the Al has been removed by
wet etching. This device allowed density of states measurement at
the end of the wire by means of bias spectroscopy, to investigate the
superconducting proximity effect in the InAs. Evolution of Coulomb
blockade in temperature and magnetic field was studied in device s2
[Fig. 6.3(b)]—a hybrid quantum dot with length of 1.1 µm defined by
two Ti/Au gates adjacent to etched-Al regions. The barrier voltages
VB were used to create tunneling barriers. The chemical-potential
in the wires was tuned with gate voltage VG. Device s3—top-gated
nanowirewithout Al (Fig. 6.5)—was used to extract the charge carrier
mobility. Device s4 was a micron-size square loop [Fig. 6.6(a)] with
fully removed Al, which was used to extract phase coherence lengths
from weak antilocalization (WAL) and Aharonov-Bohm (AB) oscil-
lations. The nanowires in devices s1, s2 and s3 are parallel to [100]
direction, whereas the arms of device s4 are oriented along [100]
and [010] directions. Standard ac lock-in measurements were carried
out in a dilution refrigerator with a three-axis vector magnet. See
Appendix A for more detailed description of the sample preparation
and measurements.

Differential conductance, G, in the tunneling regime, as a function
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Fig. 6.2: (a) Differential conductance, G, of device s1 [Fig. 6.1(d) and 6.1(c)]
as a function of source-drain bias, V , and gate voltage, VG. (b) Line-
cuts taken from (a) displayAdreev reflection enhanced conductance
(black) measured at VG � −7.10 V evolve into superconducting gap
(red) measured at VG � −7.35 V.

of source-drain bias, V , for device s1 [Fig. 6.1(e)] at VG � −9.2 V
reveals a gapped density of states with two peaks at V � 110 µeV and
280 µeV. We tentatively identify the two peaks with two populations
of carriers in the semiconductor, the one with a larger gap residing
at the InAs-Al interface and with a smaller at the InAs-InP. The
magnitude of the larger superconducting gap is consistent with
enhanced energygaps of 290 µeV for 7 nmAlfilm [142]. The zero-bias
conductance is ∼ 400 times lower than the above-gap conductance, a
ratio exceeding VLS nanowire [58, 150, 161] and 2DEG devices [152],
indicating a hard induced gap. We note, however, that co-tunneling
through a quantum-dot or multichannel tunneling can enhance this
ratio [162].

The spectrum evolution with VG from enhanced to suppressed
conductance around zero bias is shown in Fig. 6.2(a). Conductance
enhancement in the range of VSD � −0.1 mV to 0.1 mV is measured
at VG � −7.10 V [Fig. 6.2(b)]. At more negative gate voltage VG �

−7.35 V the conductance gets suppressed in the same range of VSD.
We interpret these features to arise due to a different tunnel

barrier strengths tuned by the capacitively cross-coupled VG: at more
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positive VG, the tunneling barrier is more transparent, resulting in
Andreev reflection enhanced conductance; at more negative VG, the
transport is dominated by the single electron tunneling, reflecting the
local density of states at the end of the wire [19]. At VG � −7.10 V the
zero-bias conductance is enhanced beyond the factor of 2 compared
to high bias [Fig. 6.2(b)]. We speculate that this is caused by an
interfering transport mediated via multiple channels or a quantum
dot [162]. A similar study of VC dependence was not possible
presumably due to a too high concentration of disorder in the
junction.

6.3 Thermodynamics of Coulomb Blockade

Transport through a Coulomb island geometry (Fig. 6.3) at low
temperatures shows 2e-periodic peak spacing as a function of

VG. Coulomb diamonds at finite bias yield a charging energy
EC � 60 µeV (see Fig. D.1 in Appendix D), smaller than the induced
gap, ∆∗ ∼ 100 µeV, as seen in Fig. 6.1(e). The zero-bias Coulomb
blockade spacing evolves to even-odd and finally to 1e-periodic
peaks with increasing temperature, T. The 2e to 1e transition in tem-
perature does not result from the destruction of superconductivity,
but rather arises due to the thermal excitation of quasiparticles on
the island, as investigated previously in metallic islands [163, 164]
and semiconductor-superconductor VLS nanowires [115].

A thermodynamic analysis of Coulomb blockade peak spacings
is based on the difference in free energies, F � FO− FE, between even
and odd occupied states. We consider a simple model that assumes
a single induced gap ∆∗, not accounting for the double-peaked
density of states in Fig. 6.1(e). At low temperatures (T � EC ,∆∗), F
approaches ∆∗. Above a characteristic poisoning temperature, Tp,
quasiparticles become thermally activated and F decreases rapidly
to zero. For F(T) > EC, Coulomb peaks are 2e periodic with even
peak spacings, SE ∝ EC, independent of T. For F(T) < EC, odd
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Fig. 6.3: (a) Conductance, G, of device s2 as a function of applied gate voltage,
VG, and temperature, T. A characteristic 2e to 1e transition occurs
around 200 mK. The color scale was adjusted for better visibility.
(b) False-colored electron micrograph of device s2. (c) Normalized
even-odd peak spacing difference, (SE − SO)/(SE + SO), from the
measurements shown in (a) as a function of T. The error-bars
were estimated using standard deviation of the peak spacing. The
theoretical fit corresponds to an induced superconducting gap
∆∗ � 190 µeV. Inset: Energy, E, of the device as a function of
normalized gate voltage, N. Black (colour) parabolas correspond
to even (odd)-parity ground state. Transport occurs at the charge
degeneracy points indicated by filled circles.
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states become occupied, and the difference in peak spacing, SE − SO,
decreases with F. A full analysis following Ref. [115] yields the peak
spacing difference

SE − SO �
2
ηe

min (EC , F)

� (SE + SO)min (1, F/EC)
(6.1)

where η is the dimensionless gate lever armmeasured fromCoulomb
diamonds (see Appendix D).

Figure 6.3(c) shows the measured even-odd difference in peak
spacing, (SE − SO)/(SE + SO), averaged over 4 peaks in device s2,
along with Eq. (6.1). Thermodynamic analysis shows an excellent
agreement with the peak spacing data across the full range of
temperatures. The fit uses the independently measured EC, with
the induced gap as a single fit parameter, yielding ∆∗ � 190 µeV, a
reasonable value that lies between the two density of states features
in Fig. 6.1(e). The island remains unpoisoned below Tp ∼ 250 mK.

6.4 Coulomb Peak Motion in Field

The evolution of Coulomb blockade peaks with parallel magnetic
field, B‖ , is shown in Fig. 6.4(a). In this data set, peaks show

even-odd periodicity at zero field due to a gate-dependent gap or
a bound state at energy E0 less than EC. A subgap state results in
even-state spacing proportional to EC + E0 and odd-state spacing
EC − E0 (see Appendix D), giving [61]

SE,O �
1
ηe
[EC ±min (EC , E0)]

�
SE + SO

2 [1 ±min (1, E0/EC)]
(6.2)
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were estimated using the standard deviation of the peak position.
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Figure 6.4(b) shows the B‖ dependence of even and odd peak
spacings, SE,O/(SE + SO), extracted from the data in Fig. 6.4(a),
giving an effective g factor of ∼ 13. Even and odd peak spacings
become equal at B‖ � 150 mT, then overshoot at higher fields with a
maximum amplitude corresponding to (7 ± 1) µeV. At more positive
gate voltages [Fig. 6.4(c)], where the carrier density is higher, peaks
are 2e-periodic at zero field, then transition through even-odd to 1e-
periodic Coulomb blockade without an overshoot, with an effective
g factor of ∼ 31.

Overshoot of peak spacing, with SO exceeding SE, indicates
a discrete subgap state crossing zero energy [61, 165], consistent
with interacting Majorana modes. The overshoot observed at more
negative VG is quantitatively in agreement with the overshoot seen
in VLSwires of comparable length [61]. The absence of the overshoot
and the increase of the g factor at positive VG is consistent with the
gate-tunable carrier density in VLS wires [51].

6.5 Field Effect Mobility

Conductance of a nanowire channel as a function of gate voltage
is given by

G �
µC
l2 (VG − VT) , (6.3)

where µ is the mobility, C is the capacitance between the gate
electrode and the wire, l is the length of the channel, VG is the
gate voltage and VT is the threshold voltage [166]. By introducing
transconductance, dG/dVG, the mobility can be expressed by

µ �
l2

C
dG

dVG
. (6.4)

Conductance, GDC � I/V , of device s3 (Fig. 6.5, inset) measured
at ∼ 4 K and VDC � 5 mV as a function of top-gate voltage, VG, is
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Fig. 6.5: Conductance, GDC, (left axis) and transconductance, dGDC/dVG,
(right axis) of device s3 as a function of gate voltage, VG. The
steepest slope extracted from the transconductance—indicated by
the black line—yields field effect mobility µ � 700 cm2/(V s). Inset:
False-colored electron micrograph of device s3 overlaid with the
measurement setup.

shown in Fig. 6.5. The transconductance peaks to∼ 100 µS/V around
VG � −1.5 V, corresponding to the highest change in conductance
indicated by the black line. The nanowire length l � 1 µm is set by
the distance between the contacts. The capacitance C � 1.5 fF was
estimated using finite element method simulation. Using Eq. (6.4)
results in µ � 700 cm2/(V s).

Measurements on a similar, chemical beam epitaxy grown SAG
Hall bar with comparable mobility result in charge carrier density of
n ∼ 9 × 1017 cm−3 [167]. The corresponding mean free path is

le �
~µ

e
(
3π2n

)1/3 ∼ 15 nm, (6.5)

where ~ is the reduced Planck constant and e is the elementary
charge.
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6.6 Minimal Network

To demonstrate fabrication and operation of a simple SAG net-
work, we investigate the coherence of electron transport in the

loop structure (device s4) shown in Fig. 6.6(a), with the Al layer
completely removed by wet etching. Conductance as a function
of perpendicular magnetic field, B⊥, shows a peak around zero
magnetic field, characteristic of WAL [Fig. 6.6(b)]. A fit to a theoreti-
cal model for disordered quasi one-dimensional wires with strong
spin-orbit coupling [168] yields electron phase-coherence length
lWAL
φ ∼ 1.2 µm, and spin-orbit length lSO ∼ 0.4 µm. We note that
electrons propagating along [100] and [010] directions experience
both Rashba and linear-Dresselhaus spin-orbit fields [169]. The
magnitude of each field can be deduced from a combination of
in-plane magnetic field angle and magnitude dependence of the
conductance correction due to the weak (anti-) localization. Such
study, however, is out of scope of this work.

Upon suppressing WAL with a large perpendicular field peri-
odic conductance oscillations are observed [Fig. 6.6(c)] with period
∆ B⊥ � 2.5 mT corresponding to h/e AB oscillations with area of
1.7 µm2, matching the lithographic area of the loop. The oscillation
amplitude, Ah/e , measured from the power spectral band around
h/e [Fig. 6.6(d), inset] was observed to decrease with increasing
temperature as seen in Fig. 6.6(d).

The size of Ah/e is dictated by two characteristic lengths—thermal
length, LT, andphase-coherence length, lAB

φ [168]. The thermal length
is related to the energy averaging of conduction channels due to the
finite electron temperature and is given by

LT (T) �
√
~D/kBT (6.6)

where D is the diffusion constant and kB is the Boltzmann constant.
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The diffusion constant is given by

D �
1
3 vFle (6.7)

where vF � ~kF/m∗ is the Fermi velocity, with the Fermi wave vector
kF � (3π2n)1/3 and the effective electron mass in InAs m∗ � 0.026me,
yielding D � 0.006 m2/s, consistent with the values measured in
vapor-liquid-solid (VLS) nanowires [170]. The resulting thermal
length LT (20 mK) � 1.5 µm is comparable to the loop circumfer-
ence L � 5.2 µm in device s4 [Fig. 6.6(a)]. As a result, energy
averaging is expected to have finite contribution to the size of the
conductance oscillations [168]. Taking Ah/e ∝ LT (T) exp[−L/lAB

φ (T)]
with LT ∝ T−1/2 and lAB

φ ∝ T−1/2 for a diffusive ring [171], a fit
of the logarithmic amplitude log(Ah/e) � log(A0) − 1

2 log T − aT1/2

yields log(A0) ∼ −1.5 and a ∼ 6.7 K−1/2 [Fig. 6.6(d)], giving a base-
temperature phase-coherence length lAB

φ (20 mK) ∼ 5.5 µm.
The discrepancy between the extracted lWAL

φ and lAB
φ has pre-

viously been observed in an experiment on GaAs/AlGaAs-based
arrays of micron-sized loops [172]. It has been argued theoretically
that WAL and AB interference processes are governed by different
dephasingmechanisms [171]. As a result, lWAL

φ and lAB
φ have different

temperature dependences.

6.7 Summary

Our results show that selective area grown hybrid nanowires are
a promising platform for scalable Majorana networks exhibiting

a strong proximity effect. The hard induced superconducting gap
and 2e-periodic Coulomb oscillations imply strongly suppressed
quasiparticle poisoning. The overshoot of Coulomb peak spacing
in a parallel magnetic field indicates the presence of a discrete
low-energy state. Despite the relatively low charge carrier mobility,
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the measured SAG-based network exhibits strong spin-orbit cou-
pling and phase-coherent transport. Furthermore, the ability to
design hybrid wire planar structures containing many branches and
loops—a requirement for realizing topological quantum information
processing—is readily achievable in SAG. Future work on SAG-based
hybrid networks will focus on spectroscopy, correlations, interfer-
ometry, and manipulation of MZMs combining the ideas from both
this and the preceding chapters.
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AMaterials & Methods

A.1 Nanowire Growth

Hybrid nanowires used in this work were grown by molecular
beam epitaxy on InAs (111)B substrate at 420 ◦C. The growth of

both half- and full-shell wires was catalyzed by Au via the vapor-
liquid-solid method. The nanowire growth was initiated with an
axial growth of InAs along the [0001] direction with wurtzite crystal
structure, using an In flux corresponding to a planar InAs growth
rate of 0.5 µm/hr and a calibrated As4/In flux ratio of 14. The InAs
nanowires were grown to a length of ∼10 µm. The core diameter was
tuned by changing the Au seed particle size. Subsequently, an Al
shell was grown at −30 ◦C. The two- or three-facet shell was grown
by properly aligning the growth substrate with respect to the Al
source and keeping it fixed during the growth; the full-shell was
grown on all six facets by continuously rotating the growth substrate
with respect to the metal source. The shell thickness was controlled
by the Al growth time. The resulting superconducting shell had an
epitaxial, oxide-free interface with the semiconducting core [57].
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A.2 Full-Shell Device Fabrication

Fabrication processes for both half-shell (Chapter 3) and full-shell
(Chapters 4 and 5) devices were analogous. Without loss of

generality, we describe the process for the full-shell wires.
The devices were fabricated on a degenerately n-doped Si sub-

strate capped with a 200 nm thermal oxide. Prior to the wire
deposition, the fabrication substrate was pre-fabricated with a set
of alignment marks as well as bonding pads. Ti/Au (5/15 nm)
bottom-gates for the devices discussed in Chapter 3 were fabricated
using a single layer of A2 PMMA resists and capped with 10 nm
atomic-layer-deposited HfO2. Individual hybrid nanowires were
transferred from the growth substrate onto the fabrication substrate
using a manipulator station with a tungsten needle. Standard elec-
tron beam lithography techniques were used to pattern etching
windows, contacts and gates.

The quality of the Al etching was found to improve when using
a thin layer of AR 300-80 (new) adhesion promoter. Double layer
of EL6 copolymer resists was used to define the etching windows.
The Al was then selectively removed by submerging the fabrication
substrate for ∼70 s into MF-321 photoresist developer.

As the native InAs and Al oxides have different work functions,
different cleaning processes had to be applied before contacting the
wires. To contact the Al shell a stack of A4 and A6 PMMA resists
was used. Normal Ti/Al (5/210 nm) ohmic contacts to Al shell were
deposited after in-situ Ar-ion milling (RF ion source, 25 W, 18 mTorr,
9 min). To contact the InAs core, a single layer of A6 PMMA resist
was used. A gentler Ar-ion milling (RF ion source, 15 W, 18 mTorr,
6.5 min) was used to clean the InAs core followed by metalization of
the normal Ti/Al (5/180 nm) ohmic contacts to InAs core.

A single layer of A6 PMMA resist was used to form normal Ti/Al
(5/150 nm) side-gate and top-gate electrodes, separated from the
wire by ∼8 nm layer of atomic layer deposited dielectric HfO2.
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A.3 Selective Area Grown Sample Preparation

InAs nanowires with triangular cross-sections were selectively
grown by MBE along the [100] and [010] directions on a semi-

insulating (001) InP substrate with a pre-patterned (15 nm) SiOx
mask [155]. A thin (7 nm) layer of Al was grown in-situ at low
temperatures on one facet by angled deposition, forming an epitaxial
interface with InAs. For the fabrication of the devices, Al was
selectively removed using electron-beam lithography and wet etch
(Transene Al Etchant D, 50 ◦C, 10 s). Normal Ti/Al (5/120 nm) ohmic
contacts were deposited after in-situ Ar milling (RF ion source, 15 W,
18 mTorr, 5 min). A film of HfO2 (7 nm) was applied via atomic
layer deposition at 90 ◦C before depositing Ti/Au (5/100 nm) gate
electrodes.

A.4 Measurement Setup
The measurements were carried out with a lock-in amplifier at
frequencies fac < 200 Hz in a dilution refrigerator with a base
temperature of Tbase ∼ 20 mK. Each of the dc lines used to measure
andgate thedeviceswas equippedwith rf and rc filters (QDevil [173]),
adding a line resistance RLine � 6.7 kΩ. For voltage-bias differential
conductance measurements, an ac signal with an amplitude of 0.1 V
was applied to a sample through a homebuilt resistive voltage-
divider (1 : 17.700), resulting in VAC ∼ 5 µV excitation; the dc signal
was enhanced by a factor of roughly (1 : 350). The current-bias
differential resistance measurements were carried out using an ac
excitation of Iac ∼ 200 nA for the full-shell wire measurements in
Chapters 4 and 5, and Iac ∼ 2 nA for the selective-area-grown loop
measurements in Chapter 6. The different Iac excitations were chosen
to account for different normal-state resistance of the samples.



98



BCoulomb Spectroscopy

B.1 Hybridization Amplitude

Coulomb peak spacing is dictated by the lowest energy state at
energy E0, may it be a subgap state or the superconducting

gap itself. The periodicity of the Coulomb peaks is determined by
the ratio between E0 and the charging energy, EC. The Coulomb
blockade is 2e periodic for E0 > EC; it becomes even-odd once E0 is
less than EC; and it is 1e periodic in case E0 � 0. Non-interacting
Majorana modes have zero energy, hence a Coulomb island hosting
Majoranas can be charged in portions of single electrons. If the
wavefunctions of the opposingMajorana modes have a finite overlap,
for example because of the finite island length, the energy of the
corresponding modes will deviate from zero [61, 92].

In the even-odd Coulomb blockade regime, the Coulomb-peak
spacing, δV , is proportional to EC + E0 for even diamonds and
EC − E0 for odd diamonds, which implies that δVE − δVO ∝ E0
(see Appendix D.2 and Refs. [61, 115]). This makes the Coulomb
spectroscopy a powerful tool to study the interaction of Majorana
modes in hybrid superconducting islands with finite size.

Device s2 discussed in Chapter 4 consists of six hybrid islands
with lengths L ranging from 210 nmup to 970 nm. Figures 4.5 and 4.6
(Chapter 4) present measurements for the shortest island. The same
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L (nm) η (meV/V) ∆δV110 (mV) A (µeV)

210 4.9 9.3 45

300 6.1 2.5 15

420 11 0.91 10

620 17 0.17 3

810 17 0.08 1.4

970 15 0.04 0.6

Table 3: Parameters for device f2 discussed in Chapter 4: L is the length
of the island; η is the average lever arm extracted from slopes of
the Coulomb diamonds measured at 110 mT; ∆(δV110) are the
differences of even and odd peak spacings measured at 110 mT;
A � η × ∆δV110 is the corresponding amplitude in energy.

measurement routine was carried out for all six islands at several
different gate configurations to gather more statistics. The average
lever arm, η, the difference of average even and odd peak spacings
∆δV110 as well as the corresponding amplitude A � η × ∆δV110—all
measured at 110 mT, in the middle of the first lobe—are given in
Table 3.

B.2 Peak Spacing Analysis

An exemplar routine of the peak spacing analysis is illustrated in
Figs. B.1 and B.2 for data from device f2 [Fig. 4.5(a), Chapter 4]

measured on the 810 nm Coulomb island. The peak positions and
spacings are deduced from amulti-Lorentzian fit to the data. A sharp
distinction between the destructive regime and the first lobe is found:
while the peak spacing evolution with the plunger-gate voltage
is featureless at 55 mT [Fig. B.1(a), blue line], a clear zigzag-like
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alternating pattern between the adjacent spacings emerges at 110 mT
[Fig. B.1(b), green line]. The destructive regime, where the Coulomb
blockade is 1e periodic, provides a useful tool for calibrating the
analysis and determining the experimental noise floor.

Conductance line shape of the Coulomb oscillations in the regime
Γ (tunneling rate to the leads) < kBT (electron temperature) < δ (level
spacing) < EC (charging energy) is given by [174]

F � A cosh−2 [
(p − VG)/2w

]
(B.1)

where A is the amplitude of the peak, p is the peak position and w is
the peak width parameter that is related to the electron temperature
by w � kBT/η, with the lever arm η. The full width at half maximum
(FWHM) of the peak is given by 3.5 w.

Figure B.1(c) shows three Coulomb peaks measured at 110 mT
and fit to a linear combination of Eq. (B.1) with the parameter
estimates and their standard errors given in Table 4. The average
peak width w � (0.203 ± 0.002) mV together with the lever arm
η � (17 ± 1)meV/V, deduced form the Coulomb diamonds shown
in Fig. B.2(b), yield electron temperature T � (40 ± 1)mK. Note that
the effective electron temperature wη/kB is two orders of magnitude
higher than the standard fit error of the peak-position estimate.

i 1 2 3

pi (mV) −115.524 ± 0.001 −105.931 ± 0.002 −96.397 ± 0.001

wi (mV) 0.204 ± 0.001 0.198 ± 0.001 0.206 ± 0.001

Table 4: Peak index i, position pi, and width parameter wi, extracted by
fitting Eq. (B.1) to the three-peaks data shown in Fig. B.1(c)
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Fig. B.1: (a) Zero-bias conductance as a function of plunger gate voltage, VG, for
device f2 [Fig. 4.5(a), Chapter 4], measured on the 810 nm Coulomb island,
over 20 Coulomb peaks in the destructive regime at B � 55 mT (black dots,
left axis). The position of each peak is deduced from multi-Lorentzian
fit (red line, left axis). The corresponding individual peak spacings (blue
line, right axis) do not show any clear pattern—the peaks are 1e periodic.
(b) Similar to (a) measured in the first lobe at B � 110 mT. Here, the
peak spacings display a zigzag-like alternating patter indicating even-odd
periodicity. Note that the right-axes in (a) and (b) have the same scale. (c)
Zoom-in on three peaks from (b), each consisting of ∼25 data points over
FWHM. The fit is described by Eq. (B.1), with the peak positions pi and
width parameters wi given in Table 4. The FWHM of each peak given by
3.5 w.
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corresponding to the data in Figs. B.1(a) and B.1(b). The error bars
illustrate the standard error of the mean given by σ/

√
N, where

σ is the standard deviation of the spacings. Using N � 10 gives
∆δV55 � (0.004 ± 0.005) mV, which sets the experimental noise
floor, and ∆δV110 � (0.082± 0.008)mV. (b) Tunneling conductance
as a function of source-drain bias voltage, V , and gate voltage,
VG, measured at B � 110 mT, reveals nearly 1e-periodic Coulomb
diamonds with even (e) and odd (o) valleys and discrete zero-bias
peaks at the degeneracy points. The black, dashed lines illustrate
the fits to the resonant energy levels used to infer the average
lever arm, η � (17 ± 1) meV/V, yielding electron temperature
T � (40 ± 1)mK and ∆δV110 � (1.4 ± 0.2) µeV for this data set.
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CAnomalous Phase

C.1 Full-Shell Wire Parameters

Full-shell wire parameters, including the ones use to compute the
theory curves in Chapter 5, are summarized in Tables 5, 6 and 7.

Note that the devices f1 and f2 (Chapter 4) are comprised ofwire-type
d2. The full-wire diameter, dF, and the core diameter, dC, [Fig. 5.1(a)]
as well as the distance between the voltage probes, L, for each wire
weremeasured from individual micrographs. For all thewires the Al
oxide was assumed to be tOx � 2 nm. Using simple trigonometrical
considerations one can deduce the full cross-sectional area AF �

3
√

3(dF − 2tOx)2/8, the shell thickness tS �
√

3 (dF − dC) /4 − tOx and
the mean wire diameter dM � (dF − 2tOx + dC)/2. The normal state
resistance RN and the zero-field transition temperature TC0 were
measured while cooling down the sample. Zero-field switching IS0
and re-trapping IR0 currents were measured at the base temperature.
The period of the Little-Park oscillations in magnetic field can be
calculated using ∆B � Φ0/AM � 8Φ0/3

√
3 d2

M. The shell resistivity
is given by ρ � RN(AF − AC)/L, where AC � 3

√
3d2

C/2 is the core
cross-sectional area. The Drude mean free path for electrons in the
shell is determined using le � mevF/e2nρ, with electron mass me,
electron Fermi velocity in Al vF � 2.03 × 106 m/s [106], electron
charge e and charge carrier density n � k3

F/3π2, where kF is the
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Wire dF (nm) dM (nm) dC (nm) tS (nm) L (nm)

d1 157±5 146±4 137±5 7±3 945±5
d2 195±5 163±4 135±5 24±3 945±5
d3 340±5 288±4 240±5 41±3 920±5

Table 5: Wire dimensions measured from micrographs. Full-wire diameter
dF, mean diameter dM, core diameter dC, shell thickness tS, and
distance between the voltage probes L.

Wire RN (Ω) TC0 (K) ∆0 (µeV) IS0 (µA) IR0 (µA)
d1 34.3±0.1 1.45±0.01 220±7 24±1 14±1
d2 1.6±0.1 1.22±0.01 183±3 62±2 46±2
d3 0.35±0.01 1.17±0.01 177±3 61±2 60±2

Table 6: Wire characteristics extracted from transport measurements.
Normal-state resistance RN, zero-field critical temperature TC0,
superconducting gap ∆0, zero-field switching current IS0 and re-
trapping current IR0.

Wire ∆B (mT) ρ (Ω nm) le (nm) ξS (nm) λ (nm)

d1 150±7 110±40 4±1 71±8 200±60
d2 120±5 20±3 20 ±3 180±10 100±20
d3 38.4±0.9 14±1 29±2 224±8 89±7

Table 7: Calculated wire quantities. Flux period in magnetic field ∆B �

Φ0/AM, resistivity ρ, mean free path le, zero-field superconducting
coherence length ξS and Ginzburg-Landau penetration depth λ.
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Fermi wave vector. The dirty-limit superconducting coherence
length is given by [10] ξS �

√
π~vFle/24kBTC0, where ~ is the

reduced Planck constant and kB is the Boltzmann constant. For
a dirty superconductor, the Ginzburg-Landau penetration depth
is [10] λ(T) � λL(T)

√
ξ0/1.33le, with the London penetration depth

λL(T) � λL(0)/
√

2(1 − T/TC0), and the coherence length is ξS(T) �
0.855

√
ξ0le/(1 − T/TC0). This gives λ � λLξS/1.39le, with the zero-

temperature London penetration depth λL � 16 nm [106].

C.2 Density of States

Some of the measured full-shell wires are equipped with tunneling
probes at ends [see Figs. 4.2(a) and 5.1(b)]. Applying voltage to the

back-gate, VBG, creates a tunnel barrier in the bare-semiconducting
(InAs) segment, seperating the normal-metal (Ti/Au) contact and the
wire (Al/InAs). In the tunneling regime, the change in the current
through the junction with the applied voltage bias corresponds to
the local density of states (see Section 1.9). Differential tunnelling
conductance, G, measured for all threewires (discussed in Chapter 5)
as a function of source-drain voltage, V , is shown in Fig. C.1. For
wire d1, with the thinnest shell, the measured superconducting gap
is ∆0 � 220 µeV, whereas both wires d2 and d3 show a gap of around
∆0 � 180 µeV. All three gaps agree (within the experimental error)
with the BCS theory predicted value ∆0 � 1.764kBTC0. Wires d1 and
d2 display additional peaks in density of states at the energies below
the main superconducting gap. We identify these with the proximity
induced gaps inside the semiconducting cores.

C.3 Non-Saturating Resistance

Low-temperature saturation of the half-flux quantum RS might
rise a question whether it is not an artifact of a deficient cooling.

In other words, if the electron temperature upon cooling would
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Fig. C.1: Differential conductance, G, as a function of source-drain voltage
bias, V , measured for (a) wire d1, (b) wire d2, and (c) wire d3,
discussed in Chapter 5.

saturate at some elevated temperature, so would the shell resistance.
To rule out such an explanation for wire d3 (Chapter 5) we record



Non-Saturating Resistance 109

0

0.4

0.8

T 
(K

)

40 6020
BⅡ (mT)

(a) Φ0/2 3Φ0/2Φ0

B┴ = 12 mT
wire d3

B┴ = 12 mT
wire d3

theory

0

0.3

R
S  (Ω

)
R

S (
Ω

)

0.4
0.3

0.2

0.1

(b)

0.10.050.02 0.2
T (K)

BⅡ (mT)

52
21

Fig. C.2: (a)Differential shell resistance, RS, as a functionof parallelmagnetic
field, B‖ , and temperature, T, measured for wire d3 at perpen-
dicular magnetic field B⊥ � 12 mT. The theory curve is Eq. (5.1)
(Chapter 5) computedwith α � α‖+α⊥ fromEqs (5.2) and (5.4). (b)
RS-T traces measured at B⊥ � 12 mT. At B‖ � 21 mT, close to Φ0/2
applied flux, RS saturates at low temperatures. At B⊥ � 52 mT,
before the wire enter the destructive regime around 3Φ0/2, RS
shows temperature dependence even at the base temperature.

two RS-T traces at B⊥ � 12 mT (Fig. C.2): one at B‖ � 21 mT, close to
Φ0/2 applied flux quantum, displaying the anomalous RS saturation;
another at B‖ � 52 mT, before the destructive regime around 3Φ0/2,
with a T-dependent RS down to the base temperature. Furthermore,
the data in Fig. 5.7(a) (Chapter 5) shows that the RS starts to saturate
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Fig. C.3: Differential shell resistance, RS as a function of T measured at
fixed B⊥ � 12 mT for wire d3 at different B‖ values. Around
B‖ � 0, as T is lowered, the sample displays a conventional
normal-superconducting phase transition. As the field is tuned to
B‖ � −14 mT the shell resistance starts to saturate at low T to a
finite, B‖-dependent value.

at different temperatures for different B⊥. Finally, it is unlikely for
a poor electron cooling to cause the observed broadening of the
anomalous phase in flux, see the main-text Fig. 5.6(b) and 5.6(c)
(Chapter 5), as well as Fig. C.2(a).

C.4 Flux-Dependent Resistance Saturation

The data shown in Figs. 5.6 and 5.7 (Chapter 5) demonstrate that
at a fixed B‖ � −19 mT (around −Φ0/2 of the applied flux) RS for

wire d3 saturates at low T to a B⊥-dependent value. We observe a
qualitatively similar B‖-dependent anomalous saturation of RS at a
fixed B⊥ � 12 mT (Fig. C.3).
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Fig. C.4: (a) Micrograph of wire d3 with the highlighted three-terminal setups for
the outer segments shell resistance measurements. (b) Differential shell
resistance in the left-most wire d3 segment, R12 � dV12/dIS (with the
subtracted contact resistance R0

12) measured as a function of temperature
T at B‖ � −19 mT and different B⊥ values. (c) Similar to (b) but measured
for the right-most segment. The contact resistances R0

12 and R0
34 were

measured around the base temperature at B⊥ � 0 and B‖ � −19 mT.
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presumably due to thermal fluctuations.



Anomalous Phase vs. Mean-Field Theory 113

C.5 Outer Segments

To demonstrate that the anomalous resistance saturation shown
in Fig. 5.7(a) (Chapter 5) is not due to a local disorder in the

middle-wire segment, we investigate the outer two wire segments of
wire d3 using three-terminal setup, see Fig. C.4(a). Differential shell
resistances R12 � dV12/dIS and R34 � dV34/dIS with the subtracted
corresponding contact resistancesmeasured as a function ofT at B‖ �
−19 mT and different B⊥ values are shown in Figs. C.4(b) and C.4(c).
The contacts resistances R0

12 and R0
34 were measured around the base

temperature atB⊥ � 0 andB‖ � −19mT.TheobservedB⊥-dependent,
low-temperature anomalous shell resistances are qualitatively similar
to the RS of themiddle segment. The small quantitative discrepancies
between the segments might arise due to the uncertainty in the
applied B⊥ or a small wire tapering.

C.6 Anomalous Phase vs. Mean-Field Theory

Figure C.5 shows the same data as in Figs. 5.6(a)–5.6(c) (Chapter 5),
but plotted in a logarithmic color scale to highlight the low-

resistance features. It appears that the anomalous resistance phase at
lowT developspredominantly above themean-field theorypredicted
TC, close to the ±Φ0/2 of the applied flux. At elevated T, the wire
shows finite, but reduced RS around 0 and ±Φ0 of the applied flux,
presumably arising due to thermal fluctuations.
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D.1 Free Energy Model

Theoretical fit in Fig. 6.3(c) (Chapter 6) is based on a free energy
model given by Eq. (6.1), where the difference in free energy

between odd and even occupied states is given by

F(T) � kBT ln

[ (
1 + e−∆

∗/kBT )Neff
+

(
1 − e−∆

∗/kBT )Neff(
1 + e−∆∗/kBT

)Neff −
(
1 − e−∆∗/kBT

)Neff

]
(D.1)

with the effectivenumberof continuumstatesNeff � 2VAlρAl
√

2∆∗kBT,
where VAl is the volume of the island and ρAl is the density of
states at the Fermi energy [163]. The fit was obtained by using
VAl � 2.2 × 10−6 nm3, consistent with Fig. 6.3(b) (Chapter 6), elec-
tron density of states ρAl � 23 eV−1 nm−3 [163] and EC � 60 meV,
measured from Coulomb diamonds (Fig. D.1), with ∆∗ as the single
fit parameter.
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Fig. D.1: Differential conductance, G, of device s2 (Chapter 6) as a function
of source-drain bias, V , and gate voltage, VG at zero magnetic field,
showing a Coulomb diamond with 2EC � 120 µeV.

D.2 Device Energy

Energy, E, of a Coulomb blockaded device with electron occupancy,
n, as a function of normalized gate voltage, N , can be defined as

E(N) � EC(n − N)2 + FN0 (D.2)

where EC is the charging energy, F is the relative free energy and
N0 � 0 (1) for even (odd) parity of the device, see Fig. 6.3(c), inset
(Chapter 6). Charge degeneracy points can be extracted using
Eq. (D.2), from which we can deduce the normalized even and odd
peak spacings in units of charge, e, as

NE,O � 1 ± F/EC (D.3)
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The even and odd peak spacing difference in gate voltage is given by

SE − SO �
EC
eη
(NE − NO), (D.4)

with the dimensionless lever arm η � EC/eS.
Note that in the limit of zero temperature, F is defined by the

size of the induced gap, ∆∗, or, if present, by the energy of a subgap
state, E0.
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