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A B S T R A C T

Using spinor formalism, we investigate the profound connection between gravity theory and

gauge theory in this thesis. We concentrate on the Weyl double copy prescription. Given that

higher spin massless free-field spinors can be constructed from spin-1/2 spinors (Dirac-Weyl

spinors) and scalars, we introduce a map between Weyl fields and Dirac-Weyl fields and

determine the corresponding Dirac-Weyl spinors in a given empty spacetime. Specifically for

non-twisting vacuum Petrov type N and type D solutions, our findings elucidate a number

of fundamental properties that were previously unknown. We systematically reconstruct

the Weyl double copy for these solutions and demonstrate the significance of the zeroth

copy in connecting gravity fields with a single copy and degenerate Maxwell fields with

the Dirac-Weyl fields in curved spacetime. Moreover, we investigate the Weyl double copy

relation for vacuum solutions of the Einstein equations with a cosmological constant using

our new approach in which Dirac-Weyl fields are considered fundamental units. Our research

demonstrates that the single and zeroth copies satisfy conformally invariant field equations

in conformally flat spacetime and that the zeroth copy retains its importance in connecting

gravity fields with a single copy and Dirac-Weyl fields with degenerate electromagnetic fields

in curved spacetime. In addition, we find that the zeroth copy plays an important role in

time-dependent radiation solutions, especially for Robinson-Trautman gravitational waves.

In the limit of weak fields, the zeroth copy carries additional information indicating whether
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the sources of gravitational waves are time-like, null, or space-like. Finally, we present an

overview of our ongoing work and future research directions.



R E S U M É

Ved hjælp af spinorformalisme undersøger vi den dybe forbindelse mellem gravitationsteori

og gaugeteori i denne afhandling. Vi fokuserer på Weyl-dobbeltkopiforskriften. Da højere

spindriftløse fri-feltspinorer kan konstrueres fra spin-1/2 spinorer (Dirac-Weyl spinorer) og

skalare, introducerer vi et kort mellem Weyl-felter og Dirac-Weyl felter og bestemmer de

tilsvarende Dirac-Weyl spinorer i et givet tomt rumtid. Specifikt for ikke-vridende vakuum

Petrov type N og type D-løsninger belyser vores resultater en række grundlæggende egensk-

aber, der tidligere var ukendte. Vi genopbygger systematisk Weyl-dobbeltkopien for disse

løsninger og demonstrerer betydningen af nulte kopien i at forbinde gravitationsfelter med en

enkelt kopi og degenererede Maxwell-felter med Dirac-Weyl-felter i krummet rumtid. Desu-

den undersøger vi Weyl-dobbeltkopirelationen for vakuumløsninger af Einsteins ligninger

med en kosmologisk konstant ved hjælp af vores nye tilgang, hvor Dirac-Weyl-felter betragtes

som fundamentale enheder. Vores forskning viser, at den enkelte og nulte kopier opfylder

konformt invariante feltligninger i konformt fladt rumtid, og at nulte kopien bevarer sin

betydning ved at forbinde gravitationsfelter med en enkelt kopi og Dirac-Weyl-felter med

degenererede elektromagnetiske felter i krummet rumtid. Derudover finder vi, at nulte kopien

spiller en vigtig rolle i tidsafhængige strålingsløsninger, især for Robinson-Trautman gravita-

tionsbølger. I svage feltgrænser bærer nulte kopien yderligere information, der indikerer, om

kilderne til gravitationsbølger er tidslignende, nul eller rumlignende. Til sidst præsenterer vi

en oversigt over vores igangværende arbejde og fremtidige forskningsretninger.
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Part I

I N T R O D U C T I O N



1

B A C K G R O U N D A N D C U R R E N T U N D E R S TA N D I N G

Is there a beautiful fundamental law, a theory of everything, governing the rule of how

our nature operates? To my best knowledge, we did find two promising theories—gravity

theory and the Standard Model, which have explained and predicted most phenomena in our

universe. They demonstrate that there are four fundamental interactions (forces) in nature:

electromagnetic interaction, weak interaction, strong interaction, and gravity.

However, they are not yet beautiful enough. The Standard Model constructed from quantum

field theory unifies only three of the four fundamental forces[1–4], except for gravity which

is described by Einstein’s theory of General Relativity. Due to its long-range interaction of

gravity and its substantial dependence on the masses of the objects involved, gravity plays a

dominant role at large length scales, such as the scales of planets and all the way to the scale

of the entire universe. At small length scales—the scale of subatomic particles, the other

three fundamental forces play a much more important role than gravity and are described by

the Standard Model. However, at an even smaller scale—the Planck scale, gravity becomes

as important as the other fundamental forces. Neglecting any of them may lead to incomplete

or incorrect descriptions of physical phenomena. Unfortunately, the current formulation of

quantum field theory breaks down when including gravity.

2



B AC K G RO U N D A N D C U R R E N T U N D E R S TA N D I N G 3

For gravity theory, it states that spacetime is curved by matter following the general

relativity theory proposed by Albert Einstein[5, 6]. While on the other hand, quantum field

theory is formulated on a fixed background, typically the Minkowski spacetime, and is based

on the principles of quantum mechanics and special relativity. In other words, quantum field

theory has not fully taken into account the effects of general relativity. No self-consistent

approach has been found to extend quantum field theory to a dynamic background to date.

Suppose one naively applies a similar process to gravity as we do, for example, for spin-1

massless fields in quantum field theory. The results turn out to be non-renormalizable, which

deviates from a physically realistic outcome. Besides, although general relativity predicts the

existence of black holes, the singularity at the center of black holes leads to infinite curvature

and thus the breakdown of general relativity theory.

Overall, our understanding of the natural world remains incomplete due to the limitations

of current theories. This gives rise to a pivotal goal for theoretical physicists around the

world: the unification of the Standard Model and gravity theory, or more ambitiously, the

development of a comprehensive Theory of Everything.

Currently, a promising candidate to unify gravity theory and quantum mechanics is string

theory. Instead of treating 0-dimensional particles as elementary objects, string theory regards

1-dimensional strings as elementary objects in nature. Particles, including photons, quarks,

gravitons, and others, are all represented by different vibrational modes of strings. Although

there is to date no direct experimental evidence to verify it (largely due to our inability to

achieve super high-energy experiments), string theory does offer a framework that potentially

unifies all known fundamental forces, and it generates numerous insights and developments

both in physics and mathematics.



2

D O U B L E C O P Y A N D R E S E A R C H F I N D I N G S

One of the intriguing topics emerging from string theory is the double copy. It can be traced

back to the discovery of the relationships between the amplitudes of closed and open strings in

1986, now known as the KLT relations[7], which shows that any closed string tree amplitude

can be expressed as a sum of the products, consisting of corresponding open string tree

amplitudes. As we know, in the low-energy limit, closed string theory gives rise to massless

particles called gravitons, which mediate gravitational interactions; while open string theory

gives rise to massless particles associated with gauge fields, which mediate the fundamental

forces in Standard Model. Therefore, inspired by KLT relations, a new relationship between

gravity and gauge tree amplitudes was noticed about two decades later—BCJ duality[8–10].

It demonstrates that tree-level gravity amplitudes can be obtained using double copies of

gauge-theory diagram numerators. Shortly after, this finding was extended to the loop level,

and at that point, the “double copy” concept was formally proposed.

Let’s take the case of tree-level as an example. The general massless m-point tree-level

gauge theory amplitude can be represented by

A(tree)
m = gm−2 ∑

i

nici

∏αi
p2

αi

, (1)

4



D O U B L E C O P Y A N D R E S E A R C H F I N D I N G S 5

where the sum is over all distinct diagrams with cubic vertices, the product runs over all

propagators 1/p2
αi

of each diagram, and αi refers to the αi-th internal line in the i-th diagram.

The numerators ni are called the kinematic numerators, which are dependent on the particle

momenta and polarisation vectors and can be deformed by a so-called gauge transformation.

The ci are the color factors obtained by dressing each triple vertex with structure constants.

Interestingly, the BCJ duality states that as long as there exist a set of kinematic numerators

ni such that they obey the same Jacobi-like identities as the color factors ci, one is able to

write directly the tree-level gravity amplitudes by replacing the color factors with another

kinematic numerator ñi from the tree-level gauge theory amplitudes Eq.(1),

M(tree)
m = (

κ

2
)m−2 ∑

i

niñi

∏αi
p2

αi

, (2)

where the coupling constant g is replaced with the gravitational counterpart κ.

In recent years, a significant amount of research has been dedicated to understanding this

duality relation [11–39]. In the meantime, due to its potential implications in gravitational

wave astronomy, cosmology, and particle physics, much attention has been devoted to

investigating exact classical solutions related to the double copy[40–70]. Two main types of

classical double copy prescriptions have been extensively studied. One is the Kerr-Schild

double copy prescription, which is based on a special metric known as Kerr-Schild spacetime.

This metric allows the Einstein equation to be linearized, leading to a double copy relation

between solutions of linearized gravity equations and associated gauge field solutions. The

other one is the Weyl double copy prescription, which demonstrates a gravity and gauge

duality in a wider range of 4-dimensional spacetimes, such as non-twisting vacuum Petrov

type N spacetime and Petrov type D spacetime. We will provide a more detailed introduction

to these two types of classical double copy in the next part, then we will pay full attention to

the research on Weyl double copy throughout this thesis.



3

T H E S I S O U T L I N E

The structure of this thesis is as follows. Chapter. 4 and Chapter. 5 review two main types

of classical double copy prescriptions —the Kerr-Schild double copy and the Weyl double

copy. Chapter. 6 and Chapter. 7 are two publications related to the Weyl double copy

relations. In Chapter. 6, we proposed a new approach to systematically rebuild the Weyl

double copy relation for Petrov type N and D solutions in 2-spinor formalism, and we also

extended the discussion to Petrov type III cases. Using this new method, we examine the

Weyl double copy relation for vacuum solutions of the Einstein equations with a cosmological

constant in Chapter. 7. Then, Chapter. 8 introduces some of the research findings from

our current work on Weyl double copy. We investigate the Weyl double copy relation for

the Robinson-Trautman solution with a special metric, aiming to contribute to the field of

gravitational wave astronomy. A summary and discussions are contained in Chapter. 9.

In this thesis, I adopt the convention that Greek indices (µ, ν, ρ, ...) denote spacetime coor-

dinates (0, 1, 2, 3) and Latin indices (i, j, k, ...) represent space coordinates (1, 2, 3). Unless

otherwise specified, we assume the use of natural units, where the speed of light (c) and the

reduced Planck constant (h̄) are set to 1, i.e., c = 1 and h̄ = 1.

6



Part II

C L A S S I C A L D O U B L E C O P I E S



4

K E R R - S C H I L D D O U B L E C O P Y

In this part, we will review two main types of classical double copy relations— Kerr-Schild

double copy and Weyl double copy. Firstly, we will focus on the Kerr-Schild double copy.

The Weyl double copy will be discussed in the next chapter.

Inspired by the BCJ duality, Monteiro, O’Connell, and White examined the double copy

relation in classical exact solution for the first time[41]. It is now known as Kerr-Schild

double copy since it is based on the Kerr-Schild metric. This section will provide a review to

introduce more details about the Kerr-Schild double copy.

The Kerr-Schild metric was first proposed by Trautman in 1962 as a simple solution to

study gravitational waves[71]. The metric is of the form:

gµν = ḡµν + φkµkν, (3)

where ḡ is a background metric, kµ is a null vector with respect to the background, and φ is a

general scalar function. It is easy to observe that

gµν = ḡµν − φkµkν. (4)

Namely, both the covariant and contravariant components of the metric depend linearly on

the structure-function φ. When one tries to show that gravitational wave is able to propagate

8



K E R R - S C H I L D D O U B L E C O P Y 9

information, this special form avoids the difficulty that the contravariant form of the metric

tensor normally turns out to be complicated even though we have a simple covariant metric

form. In 1965, Kerr and Schild systematically investigated this class of vacuum solutions

with ḡ being Minkowski metric ηµν[72]. Some important features are revealed, such as:

(a). Kerr-Schild metrics include the Schwarzchild solution and the Kerr solution.

(b). If kµ is null with respect to ηµν, then it is also null with gµν, vice versa. One thus

observes that gµνkµkν = ηµνkµkν=0.

(c). All Kerr-Schild vacuum solutions are algebraically special. In other words, the null

vector kµ is not only geodesic but also shear-free[73].

For Kerr-Schild metric gµν = ηµν + φkµkν = ηµν + hµν, we think of φkµkν as graviton

hµν. Motivated by BCJ duality, we are prompted to put forth a daring hypothesis: can this

gravity field be acquired through the double copy of a gauge field? Essentially, could there

be a connection between the field kµ and a gauge field? Monteiro, O’Connell, and White

investigated this conjecture and demonstrated that a duality relation does indeed exist between

gravity and Abelian gauge theory.

Given a Kerr-Schild metric, the Ricci tensor is given by

Rµ
ν = gµρRρν =

1
2

(
∂µ∂α (φkαkν) + ∂ν∂α (φkαkµ)− ∂2 (φkµkν)

)
, (5)

where we have defined ∂µ = ηµν∂ν. Since kαkβ = gαγkγkβ = ηαγkγkβ, it is easy to see

that right side of Eq.(5) can be regarded as an expression linearized in the scalar function φ

on the Minkovski background.

Considering the stationary case where null vector kµ and scalar function φ are independent

of the time, and fixing a coordinate gauge condition such that k0 = 1, one transfers the

vacuum Einstein equations Rµν = 0 into simple formulas,

R0
0 =

1
2

∂i∂
iφ, (6)
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Ri
0 = −1

2
∂j

[
∂i
(

φkj
)
− ∂j

(
φki
)]

, (7)

and

Ri
j =

1
2

∂l

[
∂i
(

φklk j

)
+ ∂j

(
φklki

)
− ∂l

(
φkik j

)]
. (8)

An intriguing outcome will surface. By defining a vector field Aµ = φkµ, Eq.(6) and Eq.(7)

can be recast as a set of Maxwell equations on Minkowski spacetime,

0 = ∂µFµ0 = ∂i∂
iφ, (9)

0 = ∂µFµi = ∂j

[
∂i
(

φkj
)
− ∂j

(
φki
)]

, (10)

where Fµν is nothing but an Abelian field strength Fµν = ∂µ Aν − ∂ν Aµ. Furthermore, if

we take kµ away from the vector Aµ, the scalar function φ satisfies the equation of motion

according to Eq.(6). It is believed to play an important role as the propagator in the quantum

field theory[41]. The scalar function φ is referred to as the zeroth copy, and naturally, the

gauge field Aµ is called the single copy since it is just the zeroth copy multiplied by a single

copy of a factor kµ. More interestingly, the gravity field hµν is obtained by multiplying two

copies of the factor kµ. This inspiring relationship between the gauge and gravity fields is

now known as Kerr-Schild double copy. One can go even further. By defining

Aa
µ = caφkµ, (11)

one obtains a more general class of the fields that satisfy the Abelian Yang-Mills equations,

where ca are arbitrary constants. This is reminiscent of the BCJ duality, we directly get a

gravity field by replacing a color factor ca with a “kinematic” factor kµ.

As we have demonstrated, the Kerr-Schild double copy prescription reveals a close con-

nection between gauge theory and gravity. Then one may ask how well the two theories’

classical solutions match up.
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To show this, one of the interesting examples of the Kerr-Schild double copy is the case of

Schwarzchild black holes. As the simplest model of black holes—a massive, non-rotating,

spherically symmetric black hole, Schwarzschild metric has only a mass parameter M,

originating from the energy-momentum tensor,

Tµν = Mvµvνδ(3)(x), (12)

where vµ = (1, 0, 0, 0) is a vector. In the Kerr-Schild coordinates system the metric is

represented by

gµν = ηµν +
2M

r
kµkν. (13)

The structure-function φ reads

φ =
2M

r
, (14)

and the null vector is given by

kµ = (1,
~x
r
) (15)

where r2 = xixi. Following the Kerr-Schild double copy relation, the single copy should be

given by

Aµ =
Q
r

kµ, (16)

where we let Q = 2M. Grasping its physical significance directly may not be straightforward.

While it is not hard to verify that

∂µFµν = Jν, (17)

where the current Jν = −Qvνδ3(x), which refers to a static source. Thus, we obtain an

Abelian Maxwell field. Then, without changing the electromagnetic strength, one can perform

a gauge transformation

Aµ(x)→ A′µ = Aµ(x) + ∂µα(x) (18)
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with a certain scalar function α such that

∂µα(x) = −Q
r
(0,

~x
r
). (19)

Under this gauge condition, one shall find that the solution we obtained is nothing but a

Coulomb solution

A′µ =
Q
r
(1, 0, 0, 0). (20)

Therefore, up to a particular gauge transformation, we illustrate a direct connection between

Schwarzchild solutions and Coulomb solutions. It is easy to extend the situation to the

general case Aa
µ, and the charge, in this case, will be the superposition of static color charge.

This extension can even be applied to higher dimensions, with a derivation similar to that of

the 4-dimensional case. For further details, one may refer to the original work [41].

Overall, Kerr-Schild double copy has been studied in wider ranges of spacetime, such as

Kerr black holes, Black branes, pp-waves, Taub-NUT spacetime[42], Lifshitz spacetime[74],

etc. the Kerr-Schild double copy provides an intriguing possibility to understand how gauge

and gravity theories are related. Based on it, one can streamline computations and create

new, precise solutions to General Relativity and other theories of gravity by using gauge

theory’s proven solutions. It also provides a potent tool for exploring the characteristics of

gravitational systems, which may reveal hitherto undiscovered phenomena.

While the Kerr-Schild double copy marks substantial progress in uncovering the connection

between gravity and gauge theories, numerous challenges remain to be addressed. Firstly,

most research on Kerr-Schild double copy concentrates on stationary solutions; the time-

dependent Kerr-Schild double copy has not been extensively studied. Developing a better

understanding of time-dependent Kerr-Schild double copies could potentially provide new

insights into the relationship between classical gauge and gravity solutions, as well as uncover

new properties of the double copy correspondence in more general settings. Secondly, the
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research on Kerr-Schild double copy in (A)dS spacetime shows that the single and zeroth

copies satisfy different equations for time-dependent and time-independent solutions[53].

The physical significance of single and zeroth copies appears to be non-intuitive in this case.

In fact, this is also one of the motivations why we study the Weyl double copy in (A)dS

spacetime. This problem will not arise in that framework, which will be shown in Chapter. 5.

Thirdly, due to its dependence on the Kerr-Schild coordinate system, Kerr-Schild double copy

only applies to a special class of spacetime, which does not even cover the whole vacuum

Petrov type D spacetime. Last but not least, it is also worth extending research to general

non-Abelian cases. Overall, there are still many intricate details to be discovered in the

relationship between gauge theory and gravity.



5

W E Y L D O U B L E C O P Y

Unlike the Kerr-Schild double copy, which is subject to the condition that the Kerr-Schild

metric linearizes the Einstein equations, the Weyl double copy prescription draws a wider

correspondence between exact solutions of gauge and gravity theories. It has been shown to

hold for all vacuum Petrov type D solutions and non-twisting vacuum type N solutions[75].

The asymptotic behaviors of algebraically general spacetime and the cases in Einstein-

Maxwell theory have also been discussed[62–64, 68]. Additionally, a related strategy known

as the Cotton double copy has recently been put forth[69, 76], which expands the use of

double copy prescriptions to 3-dimensional spacetimes for massive theories. This discovery

broadens our comprehension of the relationships between gauge and gravity theories, opening

the door for further research in the area. Now, let’s delve into the concept of the Weyl double

copy. We shall give a short review of the spinor formalism here, one may refer to Chapter. 6

for more details about the mathematical framework.

Considering an arbitrary vector V = (V0, V1, V2, V3), one may write it in a 2 × 2

Hermitian matrix form

H = V0σ0 + Viσi =

 V0 + V3 V1 + iV2

V1 − iV2 V0 −V3

 , (21)

14
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with the aid of a 2 by 2 unit matrix σ0 and Pauli matrices σi. It can be further written as

a product of a 2× 1 complex matrix (a 2-dimensional complex vector) and its complex

conjugate,

H =

 ξ

η

 (ξ̄ η̄) =

 ξξ̄ ξη̄

ηξ̄ ηη̄

 . (22)

By combining the right sides of Eq.(21) and Eq.(22), one can easily find such a type of vector.

Further more, performing a non-singular complex linear transformation A,

(
ξ η

)
→ A

(
ξ η

)
, (23)

the Hermitian matrix H that represents the vector V will transform as

H → Ĥ = AHA†. (24)

If we restrict that the determinate of the matrix A is equal to 1, namely det A = 1, one

observes that det Ĥ = 1 as well. That is to say, the norm of the vector V is invariant

under this transformation. Since all such matrices A form the group SL(2, C), one may

realize that the group SL(2, C) defines a restricted Lorentz transformation. Besides, since

the group SL(2, C) is isomorphic to the symplectic group Sp(2, C), it is natural to introduce

a 2-dimensional symplectic vector space (spin-space) S over C and its dual space S′.

By choosing a normalized spin basis (o, ι) for S with a skew-symmetrical structure [, ], so

that their inner product is unity

[o, ι] = 1. (25)

Introducing Penrose’s abstract index notation, the above condition can be represented by

[o, o] = εABoAoB = [ι, ι] = εABιAιB = 0, [o, ι] = εABoAιB = 1, (26)
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where εAB is a Levi-Civita symbol, which plays a similar role as the metric tensor in the

tensor world. It is easy to verify

εAB = oAιB − ιAoB. (27)

For an arbitrary spinor ξB, we have

ξB = εABξA = ξAεAB. (28)

We do the same for the dual space, such as

εA′B′ = ōA′ ῑB′ − ῑA′ ōB′ , (29)

where the bar refers to the operation of complex conjugation. By convention, we omit the bar

of the ε̄ in the dual space. Then a hermitian spinor h, for which h̄ = h, can be expressed as

hAA′ = h0ōAA′ + h1ιA ῑA′ + h2oA ῑA′ + h3ιAōA′ (30)

on bases (o, ι) and (ō, ῑ). It is not hard to see that the set of spinors h forms a real 4-

dimensional vector space. If we regard the components of hAA′ as hµ, the most easiest way

to connect a spinor and a tensor is relabelling AA′ → a. The world-vector components

then are bilinear in the spin-vector components and in the complex conjugate spin-vector

components. In general, the counterpart of an arbitrary tensor with abstract indices T c...d
a...b

is conventionally denoted by T CC′...DD′
AA′...BB′ . For example, the Maxwell field strength is

given by Fab = FABA′B′ . Due to its anti-symmetric property, its spinor form can be further

written as[77]

FAA′BB′ = ΦABεA′B′ + εABΦ̄A′B′ , (31)

where ΦAB is a totally symmetric spinor. Clearly, the Maxwell field in spinor formalism is

represented by the spinor ΦAB (and its complex conjugate). Analogously, one may show that

the Weyl tensor is represented by the totally symmetric Weyl spinor ΨABCD.
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Let’s turn our attention back to the Weyl double copy relation, it is formulated as

ΨABCD =
1
S

Φ(ABΦCD), (32)

where the Weyl spinor ΨABCD encodes the curvature of vacuum spacetime, the single copy

ΦAB corresponds to the Abelian gauge electromagnetic fields in Minkowski space, and the

zeroth copy S is a scalar field that satisfies the Klein–Gordon equation in Minkowski space.

As shown above, the Weyl double copy effectively establishes a connection between spin-2,

spin-1, and spin-0 massless free fields.

In fact, an early version of this idea originated from the study of geodesic equations of

charged test particles: In 1970, the work by Walker and Penrose, and another work by the

same authors with Hughston and Sommers in 1972, found a special set of test electromagnetic

field solutions in vacuum type D spacetime. This relation was formulated as

ΦAB = ψ2/3o(AιB), (33)

where oA and ιA constitute a basis in spinor space, ψ is a dyad component of the Weyl spinor

ΨABCD = ψo(AoBιCιD). As we can see, this equation provides a direct connection between

gravity fields and the Maxwell fields living on it.

As the method applied to validate Eq.(33) is fundamental to the whole thesis, it merits a

more in-depth examination.

Let’s recall the Bianchi identities in 2-spinor formalism first:

∇AA′ΨABCD = 0. (34)

For the vacuum field equations, the curvature of spacetime is characterized by the Weyl

spinor following the above equations. On the other hand, the Maxwell field is represented by

the Maxwell spinor ΦAB = φo(AιB), which satisfies the sauce free field equation

∇AA′ΦAB = 0. (35)
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For Petrov type D spacetime, how do the dyad components of Bianchi identities look?

Substituting ΨABCD = ψo(AoBιCιD) into Eq.(34), due to the totally symmetric property of

ΨABCD one can see that there are only four possible combinations to contract with Eq.(34):

oBoCoD, oBoCιD, oBιCιD, ιBιCιD. For instance,

0 =oBoCoD∇AA′ΨABCD

=oBoCoD
{

o(AoBιCιD)∇AA′ψ + 2ψo(AιBιC∇AA′oD) + 2ψo(AoBιC∇AA′ ιD)

}
=

1
6

ψoAoB∇AA′oB.

(36)

From the second line to the third line, one needs to use the fundamental identities in 2-spinor

formalism

oAoA = ιAιA = 0, oAιA = −oAιA = 1. (37)

Notably, Petrov type D solutions admit two principal null vectors, associated with oA and

ιA, which are geodesic and shear-free. In 2-spinor formalism, they are equivalent to the

identities oAoB∇AA′oB = 0 and ιAιB∇AA′ ιB = 0. Therefore, Eq.(36) is a trivial equation.

Similarly, one can show that ιBιCιD∇AA′ΨABCD = 0 is also trivial. Then, what about the

case of “oBoCιD”? The result is shown below,

0 =oBoCιD∇AA′ΨABCD

=oBoCιD∇AA′ [ψo(AoBιCιD)]

=oBoCιD
{

o(AoBιCιD)∇AA′ψ + 2ψo(AιBιC∇AA′oD) + 2ψo(AoBιC∇AA′ ιD)

}
=oBoCιD

{
4

24
oAoBιCιD∇AA′ψ +

2
24

ψ
(

2oAιBιC∇AA′oD + 2oDιAιB∇AA′oC

+2oDιAιC∇AA′oB + 2oDιBιC∇AA′oA

)
+

2
24

ψ[2oAoDιB∇AA′ ιC + 2oAoDιc∇AA′ ιB]

}
=

1
6

oA∇AA′ψ +
1
6

ψoAιB∇AA′oB −
2
6

ψιAoB∇AA′oB +
1
6

ψ∇AA′oA −
2
6

ψoAoB∇AA′ ιB

=
1
6

(
oA∇AA′ψ− 2ψιAoB∇AA′oB + ψ∇AA′oA − ψoAιB∇AA′oB

)
=

1
6

(
oA∇AA′ψ− 3ψιAoB∇AA′oB

)
, (38)
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where one needs to use the identity oAιB − ιAoB = ε B
A in the last step. Analogously, one

may obtain

0 =oBιCιD∇AA′ΨABCD

=
1
6

(
ιA∇AA′ψ + 3ψoAιB∇AA′ ιB

)
. (39)

So, two non-trivial dyad components of Bianchi identities are listed here

oA∇AA′ log ψ− 3ιAoB∇AA′oB = 0, (40)

ιA∇AA′ log ψ + 3oAιB∇AA′ ιB = 0. (41)

Additionally, by expanding the vacuum Maxwell equation ∇AA′ΦAB = 0, where the

Maxwell spinor ΦAB is set to be of the form ΦAB = φo(AιB), one arrives at

oA∇AA′ log φ− 2ιAoB∇AA′oB = 0, (42)

ιA∇AA′ log φ + 2oAιB∇AA′ ιB = 0. (43)

Combining the above two sets of equations, one may find that, choosing φ = ψ2/3 one

will get a test Maxwell field ΦAB = ψ2/3o(AιB) in the curved spacetime characterized

by the Weyl spinor ΨABCD. This was proposed by Walker and Penrose for the first time.

However, there indeed exists a closer relationship between gravity fields and electromagnetic

fields in flat spacetime that was not realized until 2019 by Luna, Monteiro, Nicholson, and

O’Connell[75]. It is now known as Weyl double copy relation, and it is also the topic of this

thesis. In the following chapters, I will present my findings and delve into their potential

implications within this field of study.
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W E Y L D O U B E C O P Y A N D M A S S L E S S F R E E - F I E L D S I N

C U R V E D S PA C E T I M E S

The work presented in this chapter is based on a paper that has been published as: ‘Weyl

doube copy and massless free-fields in curved spacetimes’ in the journal Classical and

Quantum Gravity.

A B S T R AC T

In spinor formalism, since any massless free-field spinor with spin higher than 1/2 can be

constructed with spin-1/2 spinors (Dirac-Weyl spinors) and scalars, we introduce a map

between Weyl fields and Dirac-Weyl fields. We determine the corresponding Dirac-Weyl

spinors in a given empty spacetime. Regarding them as basic units, other higher spin massless

free-field spinors are then identified. Along this way, we find some hidden fundamental

features related to these fields. In particular, for non-twisting vacuum Petrov type N solutions,

we show that all higher spin massless free-field spinors can be constructed with one type of

Dirac-Weyl spinor and the zeroth copy. Furthermore, we systematically rebuild the Weyl

double copy for non-twisting vacuum type N and vacuum type D solutions. Moreover, we

21
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show that the zeroth copy not only connects the gravity fields with a single copy but also

connects the degenerate Maxwell fields with the Dirac-Weyl fields in the curved spacetime,

both for type N and type D cases. Besides, we extend the study to non-twisting vacuum type

III solutions. We find a particular Dirac-Weyl scalar independent of the proposed map and

whose square is proportional to the Weyl scalar. A degenerate Maxwell field and an auxiliary

scalar field are then identified. Both of them play similar roles as the Weyl double copy. The

result further inspires us that there is a deep connection between gravity theory and gauge

theory.

6.1 I N T RO D U C T I O N

In recent years, the attempt to look for the connection between gravity theory and quantum

theory has been actively investigated. As is known, Yang-Mills gauge theory is by far the

most successful theory to describe the micro world. On the other hand, given the experimental

confirmation of gravitational waves [78, 79], Einstein’s gravity theory is further confirmed as

the most promising theory to describe the macro-scale universe. Therefore, it is significant

to explore the relationship between these two theories. Much work has been devoted to this

study. One such attempt is the double copy. It started from the research of perturbative

scattering amplitudes [7–10]; with the help of exact gravity solutions, the study was extended

into the classical context [41]. There are two classes of double copies: Kerr-Schild double

copy [41–43, 45, 50–53, 56, 57, 59, 80, 81] and Weyl double copy [60–64, 75, 82–84]. The

latter covers a broader range of spacetimes so we will focus on the Weyl double copy in this

paper.



6.1 I N T RO D U C T I O N 23

In spinor formalism, the Weyl double copy is written as

ΨABCD =
Φ(ABΦCD)

S
, (44)

which maps a Weyl spinor ΨABCD (a vacuum gravity field) into a single copy ΦAB (a

Maxwell field which satisfies the Maxwell equation in Minkowski spacetime) and a zeroth

copy S (a scalar field which satisfies the wave equation in Minkowski spacetime).

Decades ago, some works [85, 86] had already given us the prediction about the Weyl

double copy. In Ref. [85], given a Weyl spinor of a vacuum type D solution on a dyad (oA, ιA),

ΨABCD = ψo(AoBιCιD), Walker and Penrose showed that there exists a Killing spinor of

valence two χBC = ψ−1/3o(BιC), which satisfies the twistor equation ∇A′
(AχBC) = 0. Based

on this, the same authors, together with Hughston and Sommers, proposed [86] that in any

vacuum type D spacetime with a Weyl spinor ΨABCD, one can construct a test electromagnetic

field, such that ΦAB = ψ2/3o(AιB)
1. This work discovered an intriguing relation between

gravity and Maxwell fields in curved spacetimes. Combined with the fact that the Maxwell

field is the simplest solution of the gauge theory — the case of the group U(1), the Weyl

double copy relation appears to be more essential between gravity theory and gauge theory.

It was proposed for the first time for vacuum type D solutions [75]. Then the Weyl double

copy was proven to work also for non-twisting vacuum type N solutions [82]. For the type III

case, using the twistor theory, the study only showed it holds at the linearised level [61, 83].

On the other hand, the asymptotic behaviours of the Weyl double copy have been discussed

in recent works [62, 63], which state that the Weyl double copy holds asymptotically for the

algebraically general solutions by using the peeling property of the Weyl scalars [87, 88].

More recently, Ref. [64] studied the Weyl double copy for general type D spacetimes with

1 It might be more enlightening if we write it in form of Eq.(44), the difference is the background that the

Maxwell and scalar fields are living in is a curved spacetime instead of a Minkowski spacetime.
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external sources but without a cosmological constant and introduced an extended Weyl double

copy. However, Weyl double copy for a general spacetime, even for vacuum spacetime with

a cosmological constant, is still unknown. More generally speaking, our understanding of

the connection between gravity theory and gauge theory remains to be improved. Hopefully,

there are many exciting and promising roads awaiting us. In particular, although the Weyl

double copy prescription does not capture the current double copy interpretation of twisting

type N solution, which might require a more general and complicated prescription, the curved

double copy indeed holds in this case. This fact leads us to consider that it might be helpful

to study first the map between a gravity field and a test Maxwell field in the curved spacetime.

Or, it might be worth exploring first the features of spin-n/2 (n = 0, 1, 2, 3) massless free

fields that live in the curved spacetime. Then the curvature information will be reflected by

these lower spin fields. By probing the features of these fields, it would be easier to look

for those curvature-independent fields, such as pure Maxwell field2. In this paper, regarding

spin-1/2 massless free-field spinors— Dirac-Weyl (DW) spinors, as basic units, we not only

identify the DW spinors but also construct higher massless free-field spinors following the

proposed map. Then, one will see that the relations between gravity fields and Maxwell

fields in curved spacetime found in [82, 86] are a particular case in the present work; more

fundamental properties of these fields are revealed. Especially, a natural map similar to the

Weyl double copy from gravity fields to pure Maxwell fields in type III spacetime is proposed

with the aid of a scalar field.

The structure of our paper is as follows. In section 6.2, we give a brief review of spinor

algebra and the massless free-field spinors. Section 6.3 identifies the DW spinors in vacuum

type N, type D, and type III spacetimes, respectively. Regarding them as basic units, we

2 Where ”pure Maxwell fields” means that the Maxwell fields are living in Minkowski spacetime as the special

solutions of gauge theory, so they are totally independent of the gravity theory.



6.2 M A S S L E S S F R E E - F I E L D S I N S P I N O R F O R M A L I S M 25

analize the properties of different spin massless free-fields, especially the DW and Maxwell

fields. Then we systematically reconstruct the Weyl double copy for non-twisting vacuum

type N and vacuum type D spacetimes. A new property of the zeroth copy is discovered

after that. Following this way, a degenerate electromagnetic field that lives in Minkowski

spacetime and an associated scalar field are obtained from the vacuum type III solutions. The

discussion and conclusions are given in section 6.4.

6.2 M A S S L E S S F R E E - F I E L D S I N S P I N O R F O R M A L I S M

Since massless free-field equations have a simple form in spinor formalism, before going on,

we shall give a short introduction to spinor algebra; for more details, one may refer to Refs.

[77, 89].

First, let us consider an arbitrary vector V on the basis ei,

V = V0e0 + V1e1 + V2e2 + V3e3. (45)

We transfer it to a 2× 2 Hermitian matrix

H = Vaσa = V0σ0 + V jσj =

V0 + V3 V1 + iV2

V1 − iV2 V0 −V3

 , (46)

where σ0 is a 2× 2 unit matrix, and σj (j = 1, 2, 3) are Pauli spin matrices. By introducing a

pair of complex numbers (ξ, η) as follows,

V0 = 1√
2
(ξξ̄ + ηη̄), V1 = 1√

2
(ξη̄ + ηξ̄),

V2 = 1
i
√

2
(ξη̄ − ηξ̄), V3 = 1√

2
(ξξ̄ − ηη̄),

(47)
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where the bar denotes the operation of complex conjugation, Eq.(46) can be translated into a

new form

1√
2

V0 + V3 V1 + iV2

V1 − iV2 V0 −V3

 =

 ξξ̄ ξη̄

ηξ̄ ηη̄

 =

 ξ

η

( ξ̄ η̄

)
. (48)

On the other hand, there is a complex linear transformation of pair (ξ, η)T: ξ̂

η̂

 =

 α β

γ δ


 ξ

η

 = A

 ξ

η

 , (49)

where the hat denotes the new quantity after the transformation. If we impose the condition

det A = 1, it corresponds to the spin transformation, all of such matrices form the group

SL(2, C). When a spin transformation is applied, Eq.(48) becomesV0 + V3 V1 + iV2

V1 − iV2 V0 −V3

→ A

V0 + V3 V1 + iV2

V1 − iV2 V0 −V3

 A† =

 V̂0 + V̂3 V̂1 + iV̂2

V̂1 − iV̂2 V̂0 − V̂3

 = Ĥ,

(50)

where the dagger denotes the operation of conjugate transpose. It is worth noting that due to

the condition det A = 1, the determinant of the Hermitian matrix remains invariant,

det Ĥ = det H = (V0)2 − (V1)2 − (V2)2 − (V3)2. (51)

In other words, the norm of vector V is invariant under the transformation. Therefore every

matrix element A of the group SL(2, C) defines a restricted Lorentz transformation. As

is known, SL(2, C) is homomorphic to Lorentz group3. Furthermore, since SL(2, C) is

isomorphic to the symplectic group Sp(2, C), it is natural to introduce the 2-dimensional

symplectic vector space (spin-space) over C. A tensor is defined in spinor form such that

3 Note SO(3, 1) is not isomorphic to SL(2, C), not all spinors have a tensor courterpart. In general, tensors can

be regarded as special cases of spinors.
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T c...d
a...b = T CC′...DD′

AA′...BB′ with abstract index notation. In practice, tensors commute with

associated spinors through the Infeld-van der Waerden symbols

ΣAA′
a =

1√
2

σ
(AA′)
a , a = 0, 1, 2, 3, A = 0, 1 (52)

under the component transformation relation

T d... f
a...c = T DD′...FF′

AA′...CC′ Σ AA′
a ...Σ CC′

c Σd
DD′ ...Σ

f
FF′ , (53)

where matrices σa are conventionally chosen as Pauli matrices, small bold latin letters

denote the indices of tensor components, capital bold latin letters denote the indices of

spinor components and the prime marks the indices on complex conjugate space4, e.g.

TA = T̄A′ . Note that, in general, the Infeld-van der Waerden symbols are used in the specific

transformation calculation between a tensor and a spinor, they will not appear in this paper.

One can refer to the last part of 3.1 of Ref. [89] for more details about this symbol.

Now, let us focus on spin-space. Any vectors ξA can be expanded on a spinor dyad (o, ι),

ξ A = ξ0oA + ξ1ιA ⇔ ξ A =

 ξ0

ξ1

 , (54)

where oA can be any non-zero vector, and another vector ιA is imposed to satisfy {o, ι} = 1.

Then one may find

oA =

 1

0

 , ιA =

 0

1

 . (55)

In addition, the symplectic structure implies that the inner product of two arbitrary vectors

satisfies

{ξ, η} = εABξ AηB = −{η, ξ}, (56)

where εAB plays a role analogous to the metric tensor; nevertheless, it is anti-symmetric

εAB = −εBA. (57)

4 In spinor algebra, the complex conjugate space is anti-isomorphic with the spin-space.
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Then normalization condition reads

{o, ι} = εABoAιB = −{ι, o} = −εABιAoB = 1,

{o, o} = εABoAoB = 0, {ι, ι} = εABιAιB = 0,

(58)

where it is easy to see

εAB = εAB =

 0 1

−1 0

 , (59)

and

εAB = 2o[AιB], εAB = 2o[AιB]. (60)

The rule of raising and lowering indices is as follows

εABξB = ξ A, ξ AεAB = ξB. (61)

The relations above also hold in the complex conjugate space.

In addition, the null tetrad can be written in terms of the spinor bases

`a = oAōA′ , na = ιA ῑA′ , ma = oA ῑA′ , m̄a = ιAōA′ ,

`a = oAōA′ , na = ιA ῑA′ , ma = oA ῑA′ , m̄a = ιAōA′ ,
(62)

where real null vectors ` and n satisfy `2 = n2 = 0, ` · n = 1, complex null vectors m and

m̄ satisfy m2 = m̄2 = 0, m · m̄ = −1, furthermore, ` ·m = n ·m = ` · m̄ = n · m̄ = 0.

The definitions of spin coefficients in this paper are consistent with Appendix B of Ref. [89]

and Ref. [73]. They are listed as follows

κ∗ = ma`b∇b`a, π∗ = na`b∇bm̄a, ε∗ =
1
2
(na`b∇b`a + ma`b∇bm̄a),

τ∗ = manb∇b`a, ν∗ = nanb∇bm̄a, γ∗ =
1
2
(nanb∇b`a + manb∇bm̄a),

σ∗ = mamb∇b`a, µ∗ = namb∇bm̄a, β∗ =
1
2
(namb∇b`a + mamb∇bm̄a),

ρ∗ = mam̄b∇b`a, λ∗ = nam̄b∇bm̄a, α∗ =
1
2
(nam̄b∇b`a + mam̄b∇bm̄a).

(63)

To distinguish from other symbols, we use the star to mark the spin coefficients.
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We have given a short introduction to spinor algebra. Now, let us turn to massless free-

fields (source-free). We shall list the corresponding spinors without proof, one may refer to

sections 5.7 of Ref. [77] for more details.

Given a symmetric spinor with n indexes SA1 A2...An , spin-n/2 massless free-field equa-

tions are translated into a simple form

∇A1 A′1SA1 A2...An = 0. (64)

When n = 4, the spinor S refers to a Weyl spinor ΨABCD translated from the Weyl tensor5

Cabcd = CAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD. (65)

Following the vacuum Einstein’s field equation, Eq.(211) in this case represents the Bianchi

identity (with or without a cosmological constant)

∇AA′ΨABCD = 0. (66)

According to Petrov classification, there are five different types of solutions:

I : ΨABCD ∼ α̃(A β̃Bγ̃C δ̃D),

I I : ΨABCD ∼ α̃(Aα̃Bγ̃C δ̃D),

I I I : ΨABCD ∼ α̃(Aα̃Bα̃C δ̃D),

D : ΨABCD ∼ α̃(Aα̃Bδ̃C δ̃D),

N : ΨABCD ∼ α̃(Aα̃Bα̃Cα̃D),

(67)

where α̃, β̃, γ̃ and δ̃ are four different non-proportional and non-vanishing spinors. The

tilde is used to distinguish them from the spin coefficients. In addition, with the help of

5 As an exception, ε̄A′B′ is usually abbreviated as εA′B′ , that is also applied for raised index version. In addition,

one may realize that the first identity of Eq.(212) is a general tensor-spinor identity with abstract indices, we do

not need to use the Infeld-van der Waerden symbols here.
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Newman-Penrose formalism, the Weyl tensor is reduced to five independent complex scalars,

ψ0 = Cabcd`
amb`cmd = ΨABCDoAoBoCoD,

ψ1 = Cabcd`
amb`cnd = ΨABCDoAoBoCιD,

ψ2 = Cabcd`
ambm̄cnd = ΨABCDoAoBιCιD,

ψ3 = Cabcd`
anbm̄cnd = ΨABCDoAιBιCιD,

ψ4 = Cabcdm̄anbm̄cnd = ΨABCDιAιBιCιD.

(68)

The second set of equalities is obtained from Eq.(215) and Eq.(212). Then the Weyl spinor

can be expanded in a general form

ΨABCD = ψ0ιAιBιCιD − 4ψ1o(AιBιCιD) + 6ψ2o(AoBιCιD)

− 4ψ3o(AoBoCιD) + ψ4oAoBoCoD.

(69)

When n = 2, the spinor S refers to an electromagnetic spinor ΦAB translated from the

Maxwell tensor

Fab = FAA′BB′ = ΦABεA′B′ + Φ̄A′B′εAB. (70)

Eq.(211) in this case represents the source-free Maxwell equation

∇AA′ΦAB = 0. (71)

In analogy to the Weyl spinor, there are two different types of Maxwell spinors:

I : ΦAB ∼ α̃(Aδ̃B),

N : ΦAB ∼ α̃Aα̃B,

(72)

where α̃A and δ̃A are two non-proportional spinors. We also call Type N Maxwell spinor

as degenerate Maxwell spinor. Because the corresponding electric fields E and magnetic

fields B are of the same magnitude and they are perpendicular; namely, |B|2 − |E|2 = 0,
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B · E = 0. In addition, for later convenience, we define three typical Maxwell spinors as

follows,

Type I:

Φ(1)
AB = φ1o(AιB), (73)

Type N:

Φ(0)
AB = φ0ιAιB, (74)

Φ(2)
AB = φ2oAoB, (75)

where the coefficients φ1, φ0 and φ2 are called Maxwell scalars. They are expanded in three

different ways in the spin space. Substituting Eq.(73) into Eq.(71), then multiplying oB and

ιB on Eq.(71), respectively, we obtain two dyad components of the field equation,

oA∇AA′ log φ1 − 2ιAoB∇AA′oB = 0, (76)

ιA∇AA′ log φ1 + 2oAιB∇AA′ ιB = 0. (77)

Analogously, from Eq.(74) and Eq.(75) we arrive at

ιA∇AA′ log φ0 − 2ιAoB∇AA′ ιB + oAιB∇AA′ ιB = 0, (78)

oA∇AA′ log φ2 + 2oAιB∇AA′oB − ιAoB∇AA′oB = 0. (79)

Recalling Eq.(70), the tensor forms of the above three Maxwell spinors read

F(0)
ab = 2φ0m̄[anb] + 2φ̄0m[anb], (80)

F(1)
ab = 2φ1

(
`[anb] + m̄[amb]

)
+ 2φ̄1

(
`[anb] + m[am̄b]

)
, (81)

F(2)
ab = 2φ2`[amb] + 2φ̄2`[am̄b]. (82)

When n = 1, the spinor S refers to a DW spinor ξA translated from the DW tensor

Pab = ξAξBεA′B′ . (83)
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Eq.(211) in this case represents the DW equation

∇AA′ξA = 0. (84)

The tensor form is given by

Pab∇dPd
c + Pad∇cPd

b = 0. (85)

On the spinor dyad (o, ι), clearly, there are only two types of DW spinors:

ξA = ξoA, (86a)

ηA = ηιA, (86b)

where ξ and η are called DW scalars. Substitution of the above equations into Eq.(221) yields

oA∇AA′ log ξ + oAιB∇AA′oB − ιAoB∇AA′oB = 0, (87)

ιA∇AA′ log η − ιAoB∇AA′ ιB + oAιB∇AA′ ιB = 0. (88)

Throughout this paper, one will find that Eq.(76)-Eq.(79), Eq.(87)-Eq.(88), and the given

Bianchi identities are the basic equations for our calculation.

It is worthwhile to mention that Dirac’s equation is just a pair of coupled DW equations

with a source

∇A
A′ξA = µη̄A′

∇A′
A η̄A′ = µξA,

 (89)

where µ is a real constant related to the mass of the spinor. The tensor version is written as

Pab∇dPd
c + Pad∇cPd

b = −2µPabCc,

Qab∇dQd
c + Qad∇cQd

b = −2µQabCc,

 (90)

where Ca = ξAη̄A′ , and the field Qab written in terms of another spin-1/2 spinor η reads

Qab = ηAηBεA′B′ . (91)



6.3 F RO M G R AV I T Y F I E L D S T O L O W E R S P I N M A S S L E S S F R E E - F I E L D S 33

Although we will not use Dirac’s equation in this paper, the above formulas might be useful

for studying the double copy in non-vacuum spacetimes in the future.

For spin-3/2 massless free-fields equation, the field equation is given by

∇AA′ΩABC = 0. (92)

One may refer to section 5.8 of Ref. [77] for more details about ΩABC, and we will instead

pay more attention to the other three massless free-fields in the following.

6.3 F RO M G R AV I T Y F I E L D S T O L O W E R S P I N M A S S L E S S F R E E - F I E L D S

Inspired by the Weyl double copy relation Eq.(44), with the fact that any massless free-

field spinor with spin higher than 1
2 can be constructed by scalar fields and DW spinors,

we introduce a general map between vacuum gravity fields and DW fields6 in the curved

spacetime.

ΨABCD =
ξ(AηBζCχD)

S14
. (93)

Notably, the above four DW spinors could be identical depending on which type of spacetime

we are considering, and Sij is a scalar field connecting spin-i/2 spinors with spin-j/2 spinors

e.g. i = 1, j = 4 here. Then, with Eq.(66) and Eq.(221), it is easy to identify what kind of

DW fields can exist for a specific curved spacetime. Furthermore, if we regard DW spinors

as basic units, other higher spin massless free fields in the curved spacetime are able to be

constructed as well. For example, we have

ΦAB =
ξ(AηB)

S12
(94)

6 All of the lower spin massless free-field (i = 1, 2, 3) considered in this paper is assumed to be a test field,

which will not curve the spacetime.
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and ΩABC =
ξ(AηBζC)

S13
. Especially, with respect to three Maxwell spinors Φ(0)

AB, Φ(1)
AB, and

Φ(2)
AB, we define the associated scalars S12 as follows

Φ(0)
AB =

ηAηB

S(0)
12

, Φ(1)
AB =

ξ(AηB)

S(1)
12

, Φ(2)
AB =

ξAξB

S(2)
12

, (95)

where ξA = ξoA, ηA = ηιA. Based on Eq.(93) and Eq.(94), it is natural to lead to a map

connecting gravity fields with Maxwell fields in the curved spacetime

ΨABCD =
Φ(ABΘCD)

S24
, (96)

where ΘCD is also a Maxwell spinor ΘCD =
ζ(CχD)

S′12
with another scalar field S′12, as long as

S24 =
S14

S12S′12
. (97)

Notably, Eq.(96) admits a similar form to the Weyl double copy Eq.(44). In fact, the

curved double copy for type N spacetimes and the specific relation, ΦAB = ψ2/3o(AιB) we

mentioned in Section 7.1, are just particular cases of the present work. Along the above

method, one may ask about other situations. Is there a special relationship between different

auxiliary scalar fields Sij? What kind of spin-i/2 massless free-fields can exist in a specific

spacetime? Can we directly map a gravity field to a DW field that is living in flat space? What

about mapping to Maxwell fields for type III spacetimes? We shall answer these questions in

the following.

6.3.1 Vacuum type N solutions

For a vacuum type N spacetime, the Weyl tensor has only one no-vanishing component ψ4.

Combining with Eq.(218), the Weyl spinor reads ΨABCD = Ψ4oAoBoCoD with Ψ4 = ψ4.

According to Eq.(93), there is only one type of DW spinor ξA along the basis o in the



6.3 F RO M G R AV I T Y F I E L D S T O L O W E R S P I N M A S S L E S S F R E E - F I E L D S 35

spacetime, which follows Eq.(86a). In other words, one can always find a special DW spinor,

such that

ΨABCD =
ξ(AξBξCξD)

S14
. (98)

In this case, due to the symmetry property of ΨABCD, the Bianchi identity Eq.(66) are

expanded into two non-trivial dyad components

oA∇AA′ log Ψ4 + 4oAιB∇AA′oB − ιAoB∇AA′oB = 0, (99)

oAoB∇AA′oB = 0. (100)

Based on the Goldberg-Sachs theorem [90], the congruence formed by the principal null-

direction ` for algebraically specially spacetime (e.g. type N spacetime here) must be

geodesic κ∗ = 0 and shear-free σ∗ = 0, the second equation should hold automatically.

Thus, only Eq.(99) is left. Making use of Eq.(87), Eq.(98) and Eq.(99), it is not hard to

identify the DW spinor ξA
7. Before doing that, let us first pay attention to constructing the

Maxwell spinor; then, the problem will be resolved automatically.

Since there is only one type of DW spinor ξA in the spacetime, the unique formula of the

Maxwell spinor is given by

Φ(2)
AB =

ξ2

S(2)
12

oAoB = φ2oAoB ⇔ φ2 =
ξ2

S(2)
12

. (101)

According to Eq.(79), one can see that there is only one independent dyad component of

the field equation. Substituting Eq.(101) into Eq.(79), one observes that the scalar field S(2)
12

satisfies

oA∇AA′ log S(2)
12 − ιAoB∇AA′oB = 0. (102)

7 It is worthwhile pointing out here that Eq.(87) exactly verifies the statement of Ref. [82]—the coefficient of the

middle term of the left side of the equation is the rank of the corresponding spinor.
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It can be identified by solving equations

` · ∇ log S(2)
12 − ρ∗ = 0, m · ∇ log S(2)

12 − τ∗ = 0. (103)

This is an interesting result, since the scalar S(2)
12 shares the same equation with the scalar

S24
8 discovered by Ref. [82]. Further more, assuming spin-3/2 massless free-field spinor

are constructed by DW spinor as follows

ΩABC =
ξAξBξC

S13
= ωoAoBoC. (104)

Setting S13 = (S(2)
12 )2 (it will be soon clear why we do this), combining Eq.(221) and Eq.(92),

one will get Eq.(102) again. Therefore, for vacuum type N spacetimes, the connection

between Weyl spinors and other lower spin massless free-field spinors can be summarized as

follows

Ψ4 =
ξ4

(S(2)
12 )3

, ω =
ξ3

(S(2)
12 )2

, φ2 =
ξ2

(S(2)
12 )

. (105)

Clearly, the curved double copy is covered by the above relations. In addition, according to

Eq.(83), the DW tensor on the null tetrad reads

Pab = 2ξ2`[amb] = 2S(2)
12

√
Ψ4S(2)

12 `[amb]. (106)

Using Eq.(85), it is easy to verify whether the DW fields depend on the curvature or not.

Next, we shall show several specific investigations on exact vacuum type N solutions.

6.3.1.1 Kundt solutions

Firstly, let us focus on non-diverging solutions (ρ∗ = 0), usually, called Kundt solutions [91].

There are two classes of Kundt solutions. One of them is plane-fronted wave with parallel

propagation, called pp waves, the metric reads

ds2 = 2du(dv + Hdu)− 2dzdz̄, (107)

8 Different from the original work, to keep consistent with the notion of this paper, here we use S24 to denote the

harmonic scalar field of the curved double copy, instead of S.
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where H(u, z, z̄) = f (u, z) + f̄ (u, z̄) with a general function f . Choosing a null tetrad

` = ∂v, n = ∂µ − H∂v, m = ∂z, (108)

one can find τ∗ = 0, and Ψ4 = −∂2
z̄ f̄ (u, z̄). Solving Eq.(226) we have S(2)

12 = G(u, z̄),

which is an arbitrary function of u and z̄. Therefore, from Eq.(105) the DW scalar is solved

by

ξ2 =
√
−∂2

z̄ f̄ (u, z̄)G3(u, z̄). (109)

Clearly, due to the appearance of G(u, z̄), ξ(u, z̄) can be any function of u and z̄. Moreover,

turning to tensor version, one observes

2`[amb] =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


, (110)

the only non-vanishing components of Pab are Puz̄ = −Pz̄u = −ξ2(u, z̄). Particularly, it is

simple to check that this satisfies the DW equation not only in curved spacetime but also in

Minkowski spacetime where we just need to set H = f = 0 in the metric.

The degenerate Maxwell scalar is then given by

φ2 =
√
−∂2

z̄ f̄ (u, z̄)G(u, z̄); (111)

this is nothing but the result of Ref. [82], which admits the Weyl double copy.

Another class is given by

ds2 = 2du(dv + Wdz + W̄dz̄ + Hdu)− 2dzdz̄,

W(v, z, z̄) =
−2v

(z + z̄)
, H(u, v, z, z̄) =

[
f (u, z) + f̄ (u, z̄)

]
(z + z̄)− v2

(z + z̄)2 ,
(112)

where f (u, z) is an arbitrary function . A null tetrad is chosen as follows

` = ∂v, n = ∂u − (H + WW̄)∂v + W̄∂z + W∂z̄, m = ∂z. (113)
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Then one obtains

τ∗ = − 1
z + z̄

, Ψ4 = −(z + z̄)∂2
z̄ f̄ , S12 =

ζ(u, z̄)
z + z̄

, (114)

where ζ(u, z̄) is an arbitrary function. So, DW scalar is given by

ξ2 =

√
−∂2

z̄ f̄ (u, z̄)ζ3(u, z̄)

(z + z̄)
. (115)

In this case

2`[amb] =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


, (116)

it is easy to check that the corresponding DW equation also holds in Minkowski spacetime.

As we can see from Eq.(115) and Eq.(116); the DW field is curvature-independnet. More

importantly, the degenerate Maxwell spinor is given by

φ2 =
√
−ζ(u, z̄)∂2

z̄ f̄ , (117)

which is consistent with the result of Ref. [82] and will lead to the double copy.

6.3.1.2 Robinson-Trautman solutions

The solutions of general vacuum type N spacetimes admitting a geodesic, shear-free, non-

twisting but diverging null congruence are given by Robinson and Trautman [91, 92]

ds2 = Hdu2 + 2dudr− 2r2

P2 dzdz̄,

H(u, r, z, z̄) = k− 2r∂u log P, (k = 0,±1)

k = 2P2∂z∂z̄ log P(u, z, z̄).

(118)

Choosing a null tetrad as follows

` = ∂r, n = ∂u −
1
2

H∂r, m = −P
r

∂z, (119)



6.3 F RO M G R AV I T Y F I E L D S T O L O W E R S P I N M A S S L E S S F R E E - F I E L D S 39

one obtains ρ∗ = −1/r, τ∗ = 0, and

Ψ4 =
P2

r
∂u

(
∂2

z̄P
P

)
, S12 =

R(u, z̄)
r

, (120)

whereR(u, z̄) is an arbitrary function. Since

2P`[amb] =



0 0 0 r

0 0 0 0

0 0 0 0

−r 0 0 0


, (121)

which is the same as the Kundt cases; there is only one independent component. The DW

spinor is represented by

ξ2 =
P
r2

√
R3(u, z̄)∂u

(
∂2

z̄P
P

)
. (122)

The information of the structure function P(u, z, z̄) cannot be canceled by the function

R(u, z̄). and it is easy to check that the DW field does not satisfy its field equation in

Minkowski spacetime. While for the degenerate Maxwell scalar

φ2 =
P
r

√
R(u, z̄)∂u

(
∂2

z̄P
P

)
, (123)

as expected, it is consistent with the result of Ref. [82] and leads to the double copy relation.

In summary, we rebuild the Weyl double copy with the help of DW field for non-twisting

type N solutions. In addition, we find that only for the Kundt class, we can obtain a DW field

such that it satisfies its field equation in Minkowski spacetime.
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6.3.2 Vacuum type D solutions

For vacuum type D spacetimes, according to Eq.(218), the Weyl tensor has only one non-

vanishing component ψ2. In this case, the Weyl spinor is reduced to

ΨABCD = Ψ2o(AoBιCιD), (124)

where we let Ψ2 = 6ψ2. The map Eq.(93) is choosen as

ΨABCD =
ξ(AξBηCηD)

S14
, (125)

where the Weyl spinor is constructed by two mutually orthogonal DW spinors given by

Eq.(86) with the condition ξ = η. Expanding the above equation on the spin bases, we obtain

a scalar identity

Ψ2 =
ξ4

S14
. (126)

Following the Goldberg-Sachs theorem, the congruences are formed by two principal

null-directions for type D spacetimes, namely, ` and n, and they should be geodesic and

shear-free, i.e. κ∗ = σ∗ = ν∗ = λ∗ = 0. So, non-trivial dyad components of the Bianchi

identity Eq.(66) are given by

oA∇AA′ log(Ψ2)− 3ιAoB∇AA′oB = 0, (127)

ιA∇AA′ log(Ψ2) + 3oAιB∇AA′ ιB = 0. (128)

In analogy to the case of type N, combining Eq.(87), Eq.(126) and Eq.(127) we have

oA∇AA′ log S14 + 4oAιB∇AA′oA − ιAoB∇AA′oB = 0. (129)

Similarly, from Eq.(88), Eq.(126) and Eq.(128) we have

ιA∇AA′ log S14 − 4ιAoB∇AA′ ιB + oAιB∇AA′ ιB = 0. (130)
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Multiplying ōA′ and ῑA′ on the above equations, respectively, S14 is solved by

` · ∇ log S14 + 4ε∗ − ρ∗ = 0, m · ∇ log S14 + 4β∗ − τ∗ = 0,

m̄ · ∇ log S14 − 4α∗ + π∗ = 0, n · ∇ log S14 − 4γ∗ + µ∗ = 0.

(131)

This is an overdetermined system since there is only one unknown quantity, and one will

soon see that S14 satisfies its integrability condition, so we can always find its solution. Once

S14 is solved, the DW scalars will then be identified. Different from the case of type N, since

there are two types of DW spinors for vacuum type D spacetime, we can find two types of

Maxwell fields in the curved spacetime. One is degenerate, the simplest forms are

Φ(0)
AB =

ξ2

S(0)
12

ιAιB = φ0ιAιB ⇔ φ0 =
ξ2

S(0)
12

, (132)

Φ(2)
AB =

ξ2

S(2)
12

oAoB = φ2oAoB ⇔ φ2 =
ξ2

S(2)
12

. (133)

The other one is non-degenerate, the simplest form reads

Φ(1)
AB =

ξ2

S(1)
12

o(AιB) = φ1o(AιB) ⇔ φ1 =
ξ2

S(1)
12

. (134)

Correspondingly, we can build two different maps between gravity fields and Maxwell fields

in the curved spacetime starting from the relation Eq.(126)

Ψ2 =

ξ2

S(0)
12

ξ2

S(2)
12

S(0,2)
24

=
φ0φ2

S(0,2)
24

⇔ ΨABCD =
Φ(0)

(ABΦ(2)
CD)

S(0,2)
24

, (135)

Ψ2 =

( ξ2

S(1)
12

)2

S(1,1)
24

=
(φ1)

2

S(1,1)
24

⇔ ΨABCD =
Φ(1)

(ABΦ(1)
CD)

S(1,1)
24

, (136)

where upper index (i, j) refers to the case of mixed Maxwell scalars φiφj. One can see that the

first case involves two degenerate Maxwell spinors which might lead to mixed double copy;

while for the second case, it corresponds to the classical Weyl double copy [75], for which

S(1,1)
24 = (φ1)

1/2 = (Ψ2)
1/3 . We will restudy this along a new way with the help of DW



6.3 F RO M G R AV I T Y F I E L D S T O L O W E R S P I N M A S S L E S S F R E E - F I E L D S 42

spinors. And we will also check whether the mixed double copy of the first case hold or not

in Minkowski spacetime. The main point, in the following, is looking for source-independent

Maxwell fields.

Firstly, let us focus on degenerate Maxwell spinors. Clearly, once DW spinors are identified,

to obtain the Maxwell spinor, the only work left for us is to identify S12. Combining Eq.(78)

and Eq.(132), S(0)
12 can be solved by

m̄ · ∇ log S(0)
12 + π∗ = 0, n · ∇ log S(0)

12 + µ∗ = 0. (137)

Analogously, S(2)
12 can be solved as well; the corresponding equations have been shown in

Eq.(102) for the type N case. Since the equation of S(2)
12 is independent of the Petrov type of

spacetime. To avoid redundancy, we will not show this equation again.

For the second case, substitution of Eq.(87) and Eq.(134) into Eq.(76) yields

oA∇ log S(1)
12 + 2oAιB∇AA′oB = 0. (138)

Similarly, substitution of Eq.(88) and Eq.(134) into Eq.(77) yields

ιA∇AA′ log S(1)
12 − 2ιAoB∇AA′ ιB = 0. (139)

Multiplying ōA′ , ῑA′ respectively, S(1)
12 is solved by

` · ∇ log S(1)
12 + 2ε∗ = 0, m · ∇ log S(1)

12 + 2β∗ = 0,

m̄ · ∇ log S(1)
12 − 2α∗ = 0, n · ∇ log S(1)

12 − 2γ∗ = 0.

(140)

This is also an overdetermined system, it is easy to check that the integrability condition

holds in this case, and the solution can always be solved.

Therefore, once S14 is fixed, we can identify the DW fields; the Maxwell fields’ property

then will be revealed by S12. If one is instead interested in spin-3/2 massless free-fields, S13

then will be the key point. Thus, it is a good starting point to identify first the DW fields when
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investigating the higher spin massless free-fields. Then, the rest information of the target

fields will be encoded in the associated scalar fields. Once DW fields and the associated

scalar fields are identified, the property of the target fields should be clear. Using this method

we can now look for source-independent electromagnetic fields for vacuum type D solutions.

More illustration on verifying the Weyl double copy relation will be given with the help of

the modified Plebański–Demiański metric.

6.3.2.1 Modified vacuum Plebański-Demiański metric

The Plebański-Demiański metric gives a complete family of type D spacetimes [93, 94], the

original line element reads

ds2 =
1

(1− p̂r̂)2

[
Q
(
dτ̂ − p̂2dσ̂

)2

r̂2 + p̂2 −
P
(
dτ̂ + r̂2dσ̂

)2

r̂2 + p̂2 − r̂2 + p̂2

P dp̂2 − r̂2 + p̂2

Q dr̂2

]
,

(141)

where

P = k′ + 2N′ p̂− ε′ p̂2 + 2M′ p̂3 −
(

k′ + e′2 + g′2 + Λ/3
)

p̂4

Q =
(

k′ + e′2 + g′2
)
− 2M′r̂ + ε′r̂2 − 2N′r̂3 − (k′ + Λ/3)r̂4.

(142)

It includes seven free real parameters, M′, N′, e′, g′, ε′, k′, and Λ. Besides the cosmological

constant Λ, M′ is the mass parameter, N′ is related to the NUT parameter, e′ and g′ are

the electric and magnetic charges, and ε′ and k′ are related to the angular momentum per

unit mass and the acceleration. Considering this metric cannot give an obvious physical

interpretation; for example, it is not apparent that this line element does include the well-

known Kerr metric, the NUT solution or C-metric, etc., we rescale the coordinates

p̂ =
√

αωp, r̂ =
√

α

ω
r, σ̂ =

√
ω

α3 σ, τ̂ =

√
ω

α
τ, (143)

and the parameters

M′ + iN′ =
( α

ω

)3/2
(M + iN), ε′ =

α

ω
ε, k′ = α2k. (144)
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A modified metric then is given by [94, 95]

ds2 =
1

(1− αpr)2

[
Q

r2 + ω2p2

(
dτ −ωp2dσ

)2

− P
r2 + ω2p2

(
ωdτ + r2dσ

)2
− r2 + ω2p2

P
dp2 − r2 + ω2p2

Q
dr2
]

,

(145)

where

P = P(p) = k + 2ω−1Np− εp2 + 2αMp3 − α2ω2kp4,

Q = Q(r) = ω2k− 2Mr + εr2 − 2αω−1Nr3 − α2kr4.

(146)

Since we only consider vacuum type D solutions, e′, g′ and Λ are set to be vanishing here.

In addition, it is worthwhile to mention here that this modified metric does not include a

non-singular NUT solution. In practice, to get a metric to cover all of the cases, we still need

to do a coordinate transformation: p = b
ω + a

ω p̃, τ = t− (l+a)2

a φ, and σ = −ω
a φ where

new parameters a and b usually correspond to a rotation parameter and a NUT parameter,

respectively. However, considering the modified metric has a simple form and already covers

the accelerating and rotating black hole solutions with the NUT parameter, we will use it as

an example to investigate the double copy in this paper. Choosing a null tetrad

`µ =
(1− αpr)√

2 (r2 + ω2p2)

[
1√
Q

(
r2∂τ −ω∂σ

)
−
√

Q∂r

]
,

nµ =
(1− αpr)√

2 (r2 + ω2p2)

[
1√
Q

(
r2∂τ −ω∂σ

)
+
√

Q∂r

]
,

mµ =
(1− αpr)√

2 (r2 + ω2p2)

[
− 1√

P

(
ωp2∂τ + ∂σ

)
+ i
√

P∂p

]
,

(147)

we have

ρ∗ = µ∗ =
1 + iαωp2
√

2(r + iωp)

√
Q(r)

r2 + ω2p2 ,

τ∗ = π∗ =
ω− iαr2
√

2(r + iωp)

√
P(p)

r2 + ω2p2 ,

ε∗ = γ∗ =
1

4
√

2

[
2(1− αpr)

r + iωp
− 2αp− (1− αpr)

Q′

Q

]√
Q(r)

r2 + ω2p2

α∗ = β∗ =
1

4
√

2

[
2ω(1− αpr)

r + iωp
+ 2iαr + i(1− αpr)

P′

P

]√
P(p)

r2 + ω2p2 .

(148)
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The Weyl scalar is given by

Ψ2 = 6ψ2 =
6(M + iN)(1− αpr)3

(r + iωp)3 , (149)

which, as we can see, is independent of coordinates τ and σ. Plugging Eq.(147) and Eq.(148)

into Eq.(131) we have

Lc + Lτ∂τ log S14 + Lσ∂σ log S14 + Lr∂r log S14 = 0,

Mc + Mτ∂τ log S14 + Mσ∂σ log S14 + Mp∂p log S14 = 0,

−Mc + Mτ∂τ log S14 + Mσ∂σ log S14 −Mp∂p log S14 = 0,

−Lc + Lτ∂τ log S14 + Lσ∂σ log S14 − Lr∂r log S14 = 0,

(150)

where

Lc =
Q(r)[−i + αp(−3ωp + i4r)] + (ωp− ir)(αpr− 1)Q′(r)

(ωp− ir)
√

2Q(ω2p2 + r2)
,

Lτ =
r2(1− αpr)√
2Q(ω2p2 + r2)

,

Lσ = − ω(1− αpr)√
2Q(ω2p2 + r2)

,

Lr = −
√

Q(1− αpr)√
2(ω2p2 + r2)

,

Mc =
P[3αr2 + iω(4αpr− 1)]− i(ωp− ir)(αpr− 1)P′(p)

(ωp− ir)
√

2P(ω2p2 + r2)
,

Mτ = − ωp2(1− αpr)√
2P(ω2p2 + r2)

,

Mσ = − (1− αpr)√
2P(ω2p2 + r2)

,

Mp =
i
√

P(1− αpr)√
2(ω2p2 + r2)

.

(151)

From Eq.(150), one can find that S14 is independent of the coordinates τ and σ, which is the

same as the Weyl scalar Ψ2. The integrability condition of the above equations is then given

by

∂r

(
Mc

Mp

)
= ∂p

(
Lc

Lr

)
. (152)
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One can check that this condition does hold and we arrive at

log S14 = i arctan
ωp
r
− log

P(p)Q(r)
C1(1− αpr)3

√
r2 + ω2p2

, (153)

where C1 is an arbitrary constant of integration. Using the identity

arctan(z) = − i
2

log(
i− z
i + z

) z ∈ C, (154)

we obtain

S14 = C1
(1− αpr)3(r + iωp)

P(p)Q(r)
. (155)

The square of the coefficient of the DW spinor ξA reads

ξ2 =
√

S14Ψ2 =

√
6C1(M + iN)

P(p)Q(r)
(1− αpr)3

(r + iωp)
, (156)

which is the coefficient of the Maxwell spinor as well as the DW tensor Eq.(106). It is simple

to check that the DW equation in the curved spacetime indeed holds in this case. Moreover,

one can see that the pre-factor (M + iN) related to the source can be absorbed by C1, so

we may pay attention to the rest term. Here, P(p)Q(r) in the denominator is the only term

related to the source, thus it is a crutial point when we look for a source-independent Maxwell

field.

On the one hand, the degenerate Maxwell Spinor Φ(0)
AB can now be identified once scalar

field S(0)
12 is fixed. Following Eq.(137), we arrive at

S(0)
12 = C2

1− αpr
r + iwp

∼ 1− αpr
r + iωp

, (157)

where C2 is an arbitrary constant of integration. Analogously, the scalar field S(2)
12 is shown

as

S(2)
12 = S(0)

12 , (158)

up to a constant. Notably, they are independent of the source, so P(p)Q(r) term of ξ2 will

stay when mapped to the Maxwell field scalar, it is simple to verify that we cannot get a
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source-independent degenerate Maxwell field. In addition, according to Eq.(97), the scalar

S(0,2)
24 is given by

S(0,2)
24 ∼ (1− αpr)(r + iωp)3

P(p)Q(r)
, (159)

one can see that it is not equal to S(0)
12 .

On the other hand, for non-degenerate Maxwell spinor Φ(1)
AB, similar to the case of S14,

from Eq.(140) one can find that S(1)
12 is independent of the coordinates τ and σ, and the

integrability condition holds. With the aid of Eq.(154), we then have

S(1)
12 = C3

(1− αpr)(r + iωp)√
P(p)Q(r)

, (160)

as one can see, which depends on the source because of the appearance of the term P(p)Q(r).

Furthermore, one can see that the P(p)Q(r) term of ξ2 in Eq.(156) will be cancelled out

by S(1)
12 when mapped to φ1 of Eq.(134). Therefore, we will get a source-independent

non-degenerate Maxwell field9. Besides, S(1,1)
24 is given by

S(1,1)
24 =

S14

(S(1)
12 )2

=
C1

(C3)2
1− αpr
r + iωp

∼ 1− αpr
r + iωp

. (161)

Interestingly, this scalar satisfies the wave equation even in Minkowski spacetime (M =

N = 0). So we discover a map from a vacuum gravity field to a source-independent Maxwell

field. This means that the background of the Maxwell field can be flat. One may already

realize that this is nothing but the Weyl double copy.

So far, all auxiliary scalar fields connecting Weyl, Maxwell and DW fields are identified.

The maps among different spin massless-free fields are summarized as follows

Ψ2 =
ξ4

(S(2)
12 )2S(0,2)

24

=
ξ4

(S(1)
12 )2S(1,1)

24

,

S(0)
12 = S(2)

12 = S(1,1)
24 = (φ1)

1/2 = (Ψ2)
1/3.

(162)

9 It is easy to check that l[anb] + m̄[amb] and l[anb] + m[am̄b] are all independent of the source, from the tensor

form Eq.(81) one can see that the Maxwell scalar φ1 is the only physical quantity that could be affected by the

source.
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Compared with the case of vacuum type N solutions Eq.(105), S24 is not equal to S12 anymore

regarding the above two cases of the first line of Eq.(162). While, unexpectedly, one can

see that S(0)
12 and S(2)

12 are equal to S(1,1)
24 up to a constant. That means, the zeroth copy

not only connects the vacuum gravity fields with single copy but also connects degenerate

electromagnetic fields with DW fields in the curved spacetime for non-twisting vacuum type

N solutions and vacuum type D solutions. The success of mapping gravity fields to the single

and zeroth copies by using the DW spinors encourages us to extend the study to non-twisting

vacuum type III solutions.

6.3.3 Vacuum type III solutions

For vacuum type III solutions, ψ0 = ψ1 = ψ2 = 0. By making a null rotation about null

vector ` [73],

`→ `, n→ n + A∗m + Am̄ + AA∗`, m→ m + A`, m̄→ m̄ + A∗`, (163)

where A∗ is the complex conjugate of a complex number A, then the Weyl scalars transform

like

ψ0 → ψ0, ψ1 → ψ1 + A∗ψ0, ψ2 → ψ2 + 2A∗ψ1 + (A∗)2ψ0,

ψ3 → ψ3 + 3A∗ψ2 + 3(A∗)2ψ1 + (A∗)3ψ0,

ψ4 → ψ4 + 4A∗ψ3 + 6(A∗)2ψ2 + 4(A∗)3ψ1 + (A∗)4ψ0.

(164)

Clearly, we can let ψ4 vanish without changing other three Weyl scalars by requiring

A∗ = − ψ4

4ψ3
, (165)

and ψ3 will be only non-vanishing Weyl scalar. The spinor form thus reduces to

ΨABCD = Ψ3o(AoBoCιD), (166)
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where we set Ψ3 = −4ψ3. Based on this, Eq.(93) can be written in the form

ΨABCD =
ξ(AξBξCηD)

S14
, (167)

where ξA = ξoA and ηA = ηιA, or in scalar from

Ψ3 =
ξ3η

S14
. (168)

According to Eq.(66), two independent dyad components of the Bianchi identity read

oA∇AA′ log Ψ3 + 2∇AA′oA = 0, (169)

ιA∇AA′ log Ψ3 + 4oAιB∇AA′ ιB + 2ιAoB∇AA′ ιB = 0. (170)

Since

oAιB∇AA′oB − ιAoB∇AA′oB = (oAιB − ιAoB)∇AA′oB

= ε B
A∇AA′oB

= ∇AA′(ε B
A oB)

= ∇AA′oA,

(171)

Eq.(87) can be rewritten as

oA∇AA′ log ξ +∇AA′oA = 0. (172)

Combining Eq.(169) and Eq.(172), we have

Ψ3 = Cξ2, (173)

where C is a non-vanishing constant of integration. This result is even independent of our

assumption Eq.(167). In order to keep the total spin invariant for the above equation10, the

constant C here should correspond to a field with a total spin of 1. However, we need to point

10 We thank Ricardo Monteiro for bringing this up.
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out that it is not necessary to require it to be a source-free Maxwell scalar. This point can

also be verified from Eq.(167) or Eq.(168), then one observes

C = ξη

S14
; (174)

this is nothing but a constraint equation about spinor ξA and spinor ηA. Furthermore, one

can see that C indeed corresponds to a field with a total spin of 1 in view of the right side of

Eq.(174). Yet there is no reason to require S14 = S12, C does not have to be a source-free

Maxwell scalar. We will come back to talk more about this in the discussions. Regarding

spinor ξA, according to Eq.(95), we can construct a degenerate Maxwell spinor Φ(2)
AB with

it. Repeating the same calculation as the case of type N, S(2)
12 can be solved, and then the

Maxwell field will be identified.

As for another DW spinor ηA = ηιA, the equation of motion is given by

ιA∇AA′ log(
Ψ3

η
) + 3oAιB∇AA′ ιB + 3ιAoB∇AA′ ιB = 0 (175)

following Eq.(88) and Eq.(170). The tensor version then reads

m̄ · ∇ log
(

Ψ3

η

)
+ 3π∗ + 3α∗ = 0, n · ∇ log

(
Ψ3

η

)
+ 3µ∗ + 3γ∗ = 0. (176)

Recalling the type N and type D cases, the DW scalars mapped from the gravity fields all

depend on the same coordinates as the Weyl scalars, we expect η also behaves like that

and we are in fact only interested in this case in the present work. However, one will see

that its solution is also related to the other coordinates unless we impose an extra condition.

Therefore, generally, there is no trivial relationship between the Weyl scalar Ψ3 and the DW

scalar η, we thus shall pay more attention to the DW tensor ξA in this section.

Further investigation on exact non-twisting vacuum type III solutions is given in the

following.
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6.3.3.1 Kundt solutions

There are two kinds of Kundt solutions for the type III case, the metric in general is given by

[91]

ds2 = 2du(Hdu + dv + Wdz + W̄dz̄)− 2dzdz̄, (177)

with a real function H and a complex function W.

For the case of W,v = 0,

W = W(u, z̄), H =
1
2
(W,z̄ + W̄,z) v + H0,

H0
,zz̄ −Re

[
W2

,z̄ + WW,zz̄ + W,uz̄

]
= 0.

(178)

We choose a null tetrad

` = ∂v, n = ∂u − (H + WW̄)∂v + W̄∂z + W∂z̄, m = ∂z̄. (179)

The Weyl scalars in this case are given by

ψ′3 = − 1
2

∂2
z̄W(u, z̄), ψ′4 = − W̄(u, z)∂2

z̄W(u, z̄) − 1
2

v∂3
z̄W(u, z̄) − ∂2

z̄ H0(u, z, z̄).

(180)

Note ∂2
z̄W(u, z̄) 6= 0 here, otherwise the metic reduces to type N solution. By making a null

rotation with the help of Eq.(165), the only non-vanishing Weyl scalar left is [96]

Ψ3 = −4ψ3 = 2∂2
z̄W(u, z̄). (181)

From Eq.(173), one of the corresponding Dirac-Weyl fields is given by

ξ2=
2
C ∂2

z̄W(u, z̄). (182)
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In addition, some spin coefficients are given by

ρ∗ = τ∗ = α∗ = 0,

µ∗ =
[∂3

z̄W(2W∂2
zW̄ + v∂3

zW̄ + 2∂2
z̄ H0) + 8∂2

zW̄(∂z̄W∂2
z̄W − ∂z∂2

z̄ H0)]

16∂2
z̄W∂2

zW̄
,

π∗ = − ∂3
z̄W

4∂2
z̄W

,

γ∗ =
1
2

∂z̄W.

(183)

solving Eq.(226) we have ∂vS(2)
12 = ∂zS(2)

12 = 0. S(2)
12 is independent of v and z, namely, it

can be an arbitrary function of u and z̄,

S(2)
12 = S(2)

12 (u, z̄). (184)

And, it is easy to check that S(2)
12 satisfies the wave equation even in the flat spacetime. Then

the degenerate Maxwell scalar is given by

φ2 =
ξ2

S(2)
12

=
2
C

∂2
z̄W(u, z̄)

S(2)
12 (u, z̄)

. (185)

Combining the fact

2`[amb] =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


and 2`[am̄b] =



0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0


, (186)

one can find that this degenerate Maxwell field also satisfies the field equation in Minkowski

spacetime, for which we may let W = H0 = 0 in the metric. Recalling the relationship

Eq.(173), the Weyl scalar can be written as

Ψ3 = CS(2)
12 φ2. (187)
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Besides, we also probe another DW spinor’s form. Keeping consistent with the Weyl scalar

Ψ3, we are only interested in the solution that η is independent of the coordinates v and z. In

this case, by solving Eq.(176) we obtain

∂u log(
Ψ3

η
) =M, ∂z̄ log(

Ψ3

η
) = N , (188)

where

M = −3(4∂z̄W∂2
z̄W + W∂3

z̄W − 2∂z∂2
z̄ H0)

4∂2
z̄W

,

N =
3∂3

z̄W
4∂2

z̄W
.

(189)

The integrability condition is given by ∂z̄M = ∂uN . Clearly, to have a solution we have to

impose one more condition, ∂2
z∂2

z̄ H0 = 0. In general, however, there is no solution which

depends on the same coordinates as the Weyl scalar, and there is no trivial relation between

DW scalar ηA and Weyl scalar Ψ3. In the following, we will focus on the DW tensor ξA.

For the case of W,v 6= 0,

W =W0(u, z)− 2v
z + z̄

, H = H0 + v
W0 + W̄0

z + z̄
− v2

(z + z̄)2 ,(
H0 + W0W̄0

z + z̄

)
,zz̄

=
W0

,zW̄0
,z̄

z + z̄
.

(190)

We choose a null tetrad

` = ∂v, n = ∂u − (H + WW̄)∂v + W̄∂z + W∂z̄, m = ∂z̄. (191)

By doing a null rotation with Eq.(165), the Weyl scalar is given by [96]

Ψ3 = −4ψ3 = 4
∂z̄W̄0(u, z̄)

z + z̄
. (192)

Correspondingly, we arrive at

ξ2 =
1
CΨ3 =

4
C

∂z̄W̄0(u, z̄)
z + z̄

. (193)

The spin coefficients ρ∗ and τ∗ are given by

ρ∗ = 0, τ∗ = − 1
z + z̄

. (194)
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Following Eq.(226), the auxiliary scalar field is solved by

S(2)
12 =

V(u, z̄)
z + z̄

, (195)

where function V(u, z̄) is arbitrary. One can check that S(2)
12 satisfies the wave equation even

in the flat spaceitme. Moreover, we have

φ2=
4
C

∂z̄W̄0(u, z̄)
V(u, z̄)

. (196)

Since

2`[amb] =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


, 2`[am̄b] =



0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0


, (197)

similar to the case of W,v = 0, one can show that the Maxwell field also satisfies its field

equation in Minkowski space. The Weyl scalar is written as

Ψ3 = CS(2)
12 φ2. (198)

6.3.3.2 Robinson-Trautman solutions

The vacuum solution of diverging non-twisting type III case is given by [91, 92],

ds2 = du(Hdu + 2dr)− 2r2

P2(u, z, z̄)
dzdz̄,

∆ log P = K = −3
[

f (u, z) + f̄ (u, z̄)
]

, f,z 6= 0,

H = ∆ log P− 2r∂u log P, ∆ ≡ 2P2∂z∂z̄.

(199)

where the structure function f(u,z) is complex.

Choosing a null tetrad

` = ∂r, n = ∂u −
H
2

∂r, m = −P
r

∂z, (200)
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the non-vanishing Weyl scalars read

ψ′3=
3P∂z̄ f̄

2r2 ,

ψ′4 =
3P2∂2

z̄ f̄−2r∂2
z̄P∂uP+2P(3∂z̄P∂z̄ f̄ + r∂u∂2

z̄P)
2r2 .

(201)

Same to the case of Kundt class of the last section, by doing a null rotation with Eq.(165),

the only non-vanishing Weyl scalar reads

Ψ3 = −4ψ3 = −4ψ′3 = −6P∂z̄ f̄
r2 (202)

In the new null tetrad, according to Eq.(173), one of the DW fields mapping from the gravity

side is given by

ξ2 = − 6
C

P∂z̄ f̄
r2 . (203)

The spin coefficients ρ∗ and τ∗ are solved by

ρ∗ = −1
r

,

τ∗ =
3P2∂2

z f − 2r∂uP∂2
z̄P + 2P(3∂z f ∂z̄P + r∂u∂2

z̄P)
12Pr∂z f

.
(204)

Making use of Eq.(226), we find S(2)
12 has to satisfy

1
r
+

∂rS(2)
12

S(2)
12

= 0, ∂zS(2)
12 = 0. (205)

Therefore, we arrive at a general solution

S(2)
12 =

X (u, z̄)
r

, (206)

where X (u, z̄) is an arbitrary function. From Eq.(133) the degenerate Maxwell scalar reads

φ2 =
ξ2

S(2)
12

= − 6
C

P∂z̄ f̄ (u, z̄)
rX (u, z̄)

. (207)

Going to the tensor version Eq.(82), we have

2
P
r
`[amb] =



0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0


, 2

P
r
`[am̄b] =



0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0


. (208)
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Clearly, only the [uz] and [uz̄] components are non-vanishing. Similar to the case of type

N, it is easy to show that this field satisfies the field equation in Minkowski spacetime. In

addition, combining Eq.(173) and Eq.(207), we have

Ψ3 = CS(2)
12 φ2, (209)

where the scalar field S(2)
12 satisfies the wave equation not only in this curved spacetime but

also in Minkowski spacetime.

Therefore, with the help of the DW spinors, we have successfully proved that there indeed

exists a natural map between pure Maxwell fields and gravity fields for non-twisting vacuum

type III spacetimes. Moreover, we found that the auxiliary scalar field, connecting the DW

field with the degenerate electromagnetic field in the curved spacetime, plays a similar role

to the zeroth copy.

6.4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, based on the fact that any massless free-field spinors with spin higher than

1/2 can be constructed with DW spinors (spin-1/2) and scalar fields, we introduced a map

between vacuum gravity fields and DW fields in spin-space. The form of associated DW

spinors are identified. Regarding these DW spinors as basic units, we investigated the other

higher spin massless-free fields, especially the Maxwell fields, and showed some hidden

fundamental features among these fields.

In particular, for Petrov type N solutions, inspired by the work [82], we found that only

one type of DW spinor exists in the curved spacetime; combining with the zeroth copy, the

DW spinor can construct any other higher spin massless free-fields. Following this, we

studied the Petrov type D solutions. In this situation, there are two types of DW spinors in
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the curved spacetime. Unlike the case of type N, we found that S24 (a scalar field connecting

a Maxwell field with a gravity field) is not equal to S12 (a scalar field connecting a DW

field with a Maxwell field) anymore for each case. While, there remains an interesting

relation, S(0)
12 = S(2)

12 = S(1,1)
24 , the scalar fields connecting the DW fields with the degenerate

electromagnetic fields are equal to the zeroth copy up to a constant. In general, by using

the DW spinors and the auxiliary scalar fields, we systematically rebuilt the Weyl double

copy for non-twisting vacuum type N and vacuum type D solutions in this paper. Our results

are consistent with previous work [75, 82]. Moreover, we showed that the zeroth copy not

only connects the gravity fields with the single copy but also connects DW fields with those

degenerate electromagnetic fields living in the curved spacetime.

We also investigated the case of non-twisting vacuum type III solutions. Independent of the

proposed map, we found that the square of a DW scalar is just proportional to the Weyl scalar

Ψ3. Such an interesting result produces a natural relationship between the gravity fields and

the Maxwell fields in the flat spacetime, which is summarized as Ψ3 = CS(2)
12 φ2, where S(2)

12

and φ2 correspond to a scalar field and a degenerate Maxwell field, respectively. Interestingly,

both of them not only satisfy their field equation in curved spacetime but also in Minkowski

spacetime. As an auxiliary scalar field associated with the degenerate electromagnetic field,

it is not surprising that S(2)
12 plays a role similar to the zeroth copy considering our discovery

in the cases of type N and type D solutions. However, why this scalar can play such an

important role in connecting gravity theory with gauge theory is still unclear. On the whole,

with the help of the chosen DW spinors, we systematically show that there indeed exists

a deep connection between gravity theory and gauge theory by investigating non-twisting

vacuum type N, III and vacuum type D solutions. The Weyl double copy proposed before is

covered in the present work.
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Next, it would be fascinating to study the case in non-vacuum spacetime using Dirac

equation Eq.(89) instead of Dirac-Weyl equation Eq.(221). The situation could be viewed

as turning from a DW equation to DW equations with a source. In addition, so far, all of

the works related to the Weyl double copy only focus on classical gravity solutions without

a cosmological constant. Along the road of this work, it would be interesting to show a

specific situation about the Weyl double copy for asymptotically (anti-)de Sitter spacetimes.

In fact, we found that the Weyl double copy, in general, satisfies conformally invariant field

equations even in conformally flat spacetimes, which is consistent with the result of twistorial

version of Weyl double copy[61]. Progress on this has been shown in another work [97].

In the end, we have to point out that although we have shown a natural map for type III

cases between gravity fields and the Maxwell fields living in Minkowski spacetime, we did

not prove if type III spacetime admits the classical Weyl double copy prescription. In terms

of Kundt class with W,v = 0, we only shown that the DW scalar η does not depends on the

same coordinates as the Weyl scalar, unless we impose one more condition — H0
,zzz̄z̄ = 0. If

the Weyl double copy prescription does exist for vacuum type III solutions, the possible way

to show it may start from regarding S(2)
12 as the zeroth copy. Then, it would be interesting to

probe the physical meaning of the constant C, since it corresponds to a field with a total spin

of 1. Alternatively, we may need to extend the Weyl double copy to a more general form

to cover even the twisting case. All in all, to get full knowledge about the relation between

gravity theory and gauge theory, there is still a long way to go. We hope this paper provides

new insights for a better understanding of double copy and the connection between gravity

theory and gauge theory.



7

T H E W E Y L D O U B L E C O P Y I N VA C U U M S PA C E T I M E S W I T H A

C O S M O L O G I C A L C O N S TA N T

The work presented in this chapter is based on a paper that has been published as: ‘The Weyl

double copy in vacuum spacetimes with a cosmological constant’ in the Journal of High

Energy Physics.

A B S T R AC T

We examine the Weyl double copy relation for vacuum solutions of the Einstein equations

with a cosmological constant using the approach we previously described, in which the

spin-1/2 massless free-field spinors (Dirac-Weyl fields) are regarded as basic units. Based

on the exact non-twisting vacuum type N and vacuum type D solutions, the finding explicitly

shows that the single and zeroth copies fulfill conformally invariant field equations in con-

formally flat spacetime. In addition, irrespective of the presence of a cosmological constant,

we demonstrate that the zeroth copy connects Dirac-Weyl fields with the degenerate elec-

tromagnetic fields in the curved spacetime in addition to connecting gravity fields with the

single copy in conformally flat spacetime. Moreover, the study also demonstrates the critical

59
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significance the zeroth copy plays in time-dependent radiation solutions. In particular, for

Robinson-Trautman (Λ) gravitational waves, unlike the single copy, we find that the zeroth

copy carries additional information to specify whether the sources of associated gravitational

waves are time-like, null, or space-like, at least in the weak field limit.

7.1 I N T RO D U C T I O N

The double copy originates from the study of perturbative scattering amplitudes[8–10], which

brings forth a fascinating connection between gauge amplitudes and gravity amplitudes.

Moreover, this idea has been extended to the classical context. In Kerr-Schild coordinate

system, a map between gravity theory and gauge theory was proposed, called Kerr-Schild

double copy [41]. A wide array of such classes of spacetimes has been studied []. Inspired by

this, a new type of double copy relation called Weyl double copy is drawing more attention

[60–64, 75, 82–84]. This prescription is represented by

ΨABCD =
Φ(ABΦCD)

S
, (210)

where ΨABCD is a Weyl spinor describing vacuum gravity fields, ΦAB is an electromagnetic

spinor referring to a Maxwell field in Minkowski spacetime—the simplest solution of the

gauge theory, and S is an auxiliary scalar field satisfying the wave equation in Minkowski

spacetime. The last two fields are called single copy and zeroth copy, respectively. Starting

from the gravity fields, the Weyl double copy relation leads to a gauge field that is completely

independent of the gravity theory. As a result, it is thought that, the Weyl double copy relation

could serve as a link between gravity theory and gauge theory.

Luna et al. proposed for the first time the Weyl double copy relation for the case of vacuum

type D solutions [75]. Then, in spinor language, this relation was extended to non-twisting
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vacuum type N solutions by Godazgar et al. [82]. Making use of the peeling property

[87, 88] of the Weyl tensor, they further showed that the Weyl double copy relation also

holds asymptotically for algebraically general solutions [63]. In addition, at the linearised

lever, the Weyl double copy relation was shown to hold for arbitrary Petrov type solutions

using the twistor formalism [61, 83]. An extended Weyl double copy prescription was also

proposed recently for non-vacuum solutions, whose Weyl spinor is decomposed into a sum of

source terms [64]. Very recently, regarding the Dirac-Weyl (DW) spinors (spin-1/2 massless

free-field spinors) as the basic units of other higher spin massless free-field spinors, we

systematically revisited the Weyl double copy relation for non-twisting vacuum type N and

vacuum type D solutions [98]. We further found a map similar to the Weyl double copy

prescription for non-twisting vacuum type III spacetimes.

However, the Weyl double copy relation for the exact vacuum solutions with a cosmological

constant has not yet been investigated. This is the primary objective of the current effort. In

fact, since 1998, by the observations of supernovae of Ia type [99, 100], studies have shown

that the expansion of our universe is accelerating, which strongly supports the condition

that the cosmological constant Λ is nonzero and positive. On the other hand, although

Anti-de Sitter (AdS) spacetime does not appear to have direct cosmological applications, it

plays a crucial role in AdS/CFT correspondence. Therefore, investigating the Weyl double

copy relation in the presence of a cosmological constant would be of interest. Currently,

there are two possible research directions: one is to interpret the cosmological constant as

a source of the single and zeroth copies in the flat spacetime; the other is to consider the

(A)dS spacetime to be the background of the single and zeroth copies. The former idea

was proposed for the first time in Kerr-Schild double copy in Taub-NUT spacetime [42]

and it would be natural in the direct investigation of the relationship between gravity theory



7.2 M A S S L E S S F R E E - F I E L D S I N S P I N O R F O R M A L I S M 62

and gauge theory. On the other hand, the latter can be viewed as a precursor to the former.

Moreover, it is also advantageous for extending the remit of the Weyl double copy, including

cosmological applications and perturbation theory. This has been done in Ref. [53] for

Kerr-Schild(Λ) double copy, which shows that the single and zeroth copies satisfy different

equations for time-dependent and time-independent solutions. These outcomes encourage us

to study whether or not the Weyl double copy relation shares this property. In this paper, we

shall give an explicit demonstration to show that, different from the Kerr-Schild(Λ) double

copy, the single and zeroth copies in the Weyl double copy prescription all satisfy conformal

invariant field equations in conformally flat spacetime, both for time-independent solutions

and time-dependent solutions. Our finding coincides with the statement of Ref. [61] in

the twistorial version. Some interesting relations between the zeroth copy and gravitational

waves will also be discussed.

The structure of this paper is as follows. In Sec. 7.2, we will briefly review how to

construct electromagnetic spinors in vacuum type N and type D spacetimes by regarding

DW spinors as the basic units . Then, we will study the Weyl double copy for exact vacuum

solutions with a cosmological constant in Sec. 7.3. The interpretations of the single copy and

the zeroth copy will also be included. Discussion and conclusions are given in Sec. 7.4. The

notation of this paper follows the conventions of Ref. [98].

7.2 M A S S L E S S F R E E - F I E L D S I N S P I N O R F O R M A L I S M

In this section, we will briefly review how to construct electromagnetic spinors in order to

verify the Weyl double copy relation using the methodology of the previous work [98].
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In spinor formalism, spin-k/2 massless free-field equations have a simple form [77]

∇A1 A′1SA1 A2...Ak = 0, (211)

where the spinor SA1 A2...Ak is totally symmetric.

For spin-2 massless free-fields, the spinor S refers to the Weyl spinor ΨABCD translated

from the Weyl tensor Cabcd

Cabcd = CAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD. (212)

It is easy to find that the Weyl spinor ΨABCD plays the same role as the Weyl tensor Cabcd.

For a vacuum spacetime (with or without a cosmological constant Λ), the Einstein field

equation is absorbed into the Bianchi identity, which reads

∇AA′ΨABCD = 0. (213)

This is nothing but a spin-2 massless free-field equation. Notably, the fact that this field

equation remains the same regardless of the presence or absence of a cosmological constant

motivates us to generalize the original Weyl double copy to the case with a cosmological

constant. As is well known, ten independent real components of the Weyl tensor can be

reduced to 5 independent complex scalars with the aid of a null tetrad, as defined in Ref.[101].

Using the totally symmetric property of the Weyl spinor, we can define them as follows,

ψ0 = ΨABCDoAoBoCoD = Cabcd`
amb`cmd,

ψ1 = ΨABCDoAoBoCιD = Cabcd`
amb`cnd,

ψ2 = ΨABCDoAoBιCιD = Cabcd`
ambm̄cnd,

ψ3 = ΨABCDoAιBιCιD = Cabcd`
anbm̄cnd,

ψ4 = ΨABCDιAιBιCιD = Cabcdm̄anbm̄cnd,

(214)
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where the second equations hold based on the definition of the null tetrad in the spinor bases

`a = oAōA′ , na = ιA ῑA′ , ma = oA ῑA′ , m̄a = ιAōA′ ,

`a = oAōA′ , na = ιA ῑA′ , ma = oA ῑA′ , m̄a = ιAōA′ .
(215)

It is easy to check that the above correspondence indeed defines a null tetrad such that

`2 = n2 = m2 = m̄2 = 0,

` · n = 1, m · m̄ = −1, ` ·m = n ·m = ` · m̄ = n · m̄ = 0.

(216)

The spin coefficients are defined the same as in the preceding work [98],

κ∗ = ma`b∇b`a, π∗ = na`b∇bm̄a, ε∗ =
1
2
(na`b∇b`a + ma`b∇bm̄a),

τ∗ = manb∇b`a, ν∗ = nanb∇bm̄a, γ∗ =
1
2
(nanb∇b`a + manb∇bm̄a),

σ∗ = mamb∇b`a, µ∗ = namb∇bm̄a, β∗ =
1
2
(namb∇b`a + mamb∇bm̄a),

ρ∗ = mam̄b∇b`a, λ∗ = nam̄b∇bm̄a, α∗ =
1
2
(nam̄b∇b`a + mam̄b∇bm̄a).

(217)

For more details, one may refer to Ref. [101, 102]. To distinguish from other symbols in

this paper, we use ∗ to mark these spin coefficients in the following, such as κ∗, α∗, β∗, etc.

Expanding out the Weyl spinor, the general form reads

ΨABCD = ψ0ιAιBιCιD − 4ψ1o(AιBιCιD) + 6ψ2o(AoBιCιD)

− 4ψ3o(AoBoCιD) + ψ4oAoBoCoD.

(218)

For vacuum type N and type D solutions, the Weyl spinors are reduced to

type N : ΨABCD = ψ4oAoBoCoD, (219)

type D : ΨABCD = 6ψ2o(AoBιCιD). (220)

For spin-1/2 massless free-fields, the spinor S refers to a DW spinor ξA. Eq.(211) in this

case represents the DW field equation

∇AA′ξA = 0. (221)
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With the map proposed in the preceding work [98]

ΨABCD =
ξ(AηBζCχD)

S14
, (222)

where the four DW spinors on the right side can be chosen to be the same (depending on which

type of spacetime we are focusing on), we are now able to derive the DW spinors in a certain

vacuum spacetime with a cosmological constant. Correspondingly, the electromagnetic

spinors in curved spacetime will be formulated.

Specifically, for vacuum type N solutions, the map Eq.(222) reduces to

ΨABCD =
ξ(AξBξCξD)

S14
=

ξ(AξBξCξD)

(S12)3 . (223)

From Eq.(219) one can see that ξA = ξoA. According to Ref. [98], we know that S12 =

S24 = S1/3
14 , where Sij is an auxiliary scalar connecting a spin-i/2 massless free-field spinor

with a spin-j/2 massless free-field spinor. The independent dyad components of the Weyl

field equation Eq.(213) then read

oA∇AA′ log Ψ4 + 4oAιB∇AA′oB − ιAoB∇AA′oB = 0, (224)

where we define the Weyl scalar Ψ4 = ψ4. On the other hand, the dyad component of the

DW field equation Eq.(221) is given by

oA∇AA′ log ξ + oAιB∇AA′oA − ιAoB∇AA′oB = 0. (225)

Combining Eq.(223), Eq.(224) and Eq.(225), the auxiliary scalar S12 and the DW scalar ξ

will be identified by solving

` · ∇ log S12 − ρ∗ = 0, m · ∇ log S12 − τ∗ = 0. (226)

Since there is only one type of DW spinor ξA = ξoA, correspondingly, only one type of

electromagnetic spinor can exist—the degenerate electromagnetic spinor

ΦAB =
ξAξB

S12
=

ξ2

S12
oAoB = φ2oAoB. (227)
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Furthermore, the electromagnetic tensor Fab = FAA′BB′ = ΦABεA′B′ + Φ̄A′B′εAB, where

εAB = 2o[AιB], in the null tetrad we have

Fab = 2φ2`[amb] + 2φ̄2`[am̄b]. (228)

For vacuum type D solutions, many of spacetimes that we are familiar with belong to

this class, such as Kerr (A)dS black holes, Reissner–Nordström (A)dS black holes, NUT

solutions, C-metric, etc. In this case, the map Eq.(222) reduces to

ΨABCD =
ξ(AξBηCηD)

S14
, (229)

where we choose two DW spinors with the same coefficient, in other words,

ξA = ξoA, ηA = ξιA. (230)

The dyad components of gravity field equation Eq.(213) are then given by

oA∇AA′ log(Ψ2)− 3ιAoB∇AA′oB = 0, (231)

ιA∇AA′ log(Ψ2) + 3oAιB∇AA′ ιB = 0, (232)

where we let the Weyl scalar Ψ2 = 6ψ2. Two dyad components of the DW field equations

read

oA∇AA′ log ξ − ιAoB∇AA′oB + oAιB∇AA′oB = 0, (233)

ιA∇AA′ log ξ + oAιB∇AA′ ιB − ιAoB∇AA′ ιB = 0. (234)

By making use of the map Eq.(229), the auxiliary scalar S14 and the DW scalar will be

identified by solving

` · ∇ log S14 + 4ε∗ − ρ∗ = 0, m · ∇ log S14 + 4β∗ − τ∗ = 0,

m̄ · ∇ log S14 − 4α∗ + π∗ = 0, n · ∇ log S14 − 4γ∗ + µ∗ = 0.

(235)
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Different from the type N case, since there are two different types of DW spinors, we thereby

have two different types of electromagnetic spinors. Apart from the degenerate electromag-

netic spinor we discussed above, the other type is a non-degenerate electromagnetic spinor,

Φ(1)
AB = φ1o(AιB) =

ξ2o(AιB)

S(1)
12

. (236)

In order to distinguish two different types of electromagnetic spinors, we use a upper index (1)

to refer to non-degenerate ones and (0), (2) to refer to degenerate ones Φ(0)
AB = φ0ιAιB and

Φ(2)
AB = φ2oAoB, repectively1. The dyad components of the non-degenerate electromagnetic

field equation are given by

oA∇AA′ log φ1 − 2ιAoB∇AA′oB = 0, (237)

ιA∇AA′ log φ1 + 2oAιB∇AA′ ιB = 0. (238)

Substitution of the map Eq.(236) into the above equations and multiplying ōA′ and ῑA′

respectively yield

` · ∇ log S(1)
12 + 2ε∗ = 0, m · ∇ log S(1)

12 + 2β∗ = 0,

m̄ · ∇ log S(1)
12 − 2α∗ = 0, n · ∇ log S(1)

12 − 2γ∗ = 0.

(239)

Solving the above equations, we are able to obtain the auxiliary scalar field S(1)
12 . The

electromagnetic scalar φ1 will then be determined from Eq.(236). In analogy to Eq.(228), the

non-degenerate electromagnetic tensor in the null tetrad reads

Fab = 2φ1

(
`[anb] + m̄[amb]

)
+ 2φ̄1

(
`[anb] + m[am̄b]

)
. (240)

1 The complete expression of the degenerate electromagnetic spinors in Eq.(227) should be Φ(2)
AB, since there is

only one type of the field in the type N case, for simplicity, we omit the superscript (2) there.
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Correspondingly, the auxiliary scalar field connecting the Weyl field and the non-degenerate

electromagnetic field is denoted by S(1,1)
24 , which satisfies

Ψ2 =
(φ1)

2

S(1,1)
24

, (241)

where superscript (1, 1) corresponds to the product of two electromagnetic scalars φ1.

In general, both for type N solutions and type D solutions, once DW spinors are identified,

all electromagnetic fields (or other higher spin massless free-fields) in the curved spacetime

principally can be formulated with the aid of an auxiliary scalar field. To verify the Weyl

double copy relation, it is only necessary to locate a specific set of electromagnetic fields,

which are independent of the source parameters or structure functions that determine how the

spacetime deviates from the (A)dS background. If such electromagnetic fields do exist, they

will also satisfy the field equation in (A)dS spacetime. These fields are nothing but the single

copy, and the associated auxiliary scalar fields are the zeroth copy.

7.3 T H E W E Y L D O U B L E C O P Y I N C U RV E D S PAC E T I M E S

Regarding DW spinors as basic units, electromagnetic spinors living in a certain curved

spacetime are constructed according to the maps Eq.(227) and Eq.(236). Then, they are

converted to tensor form and expanded in terms of the products of the null tetrad bases,

such as Eq.(228) and Eq.(240). As we will see later, except for the electromagnetic scalars,

the products of the null tetrad bases of the degenerate electromagnetic tensors in non-

twisting vacuum type N spacetimes are independent of the structure functions and source

parameters. The same is true for non-degenerate electromagnetic tensors in vacuum type

D spacetimes. For the sake of brevity, structure functions and source parameters will be

referred to as deviation-information in the following. Once we have demonstrated that the
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electromagnetic scalars are independent of deviation-information, the same will be true of

electromagnetic fields. Therefore, they should satisfy the field equations in conformally

flat spacetime. Surprisingly, one will find that the associated scalar fields automatically

satisfy their conformally invariant field equations in conformally flat spacetime. An explicit

demonstration of the Weyl double copy for non-twisting vacuum type N and vacuum type

D solutions is given in the following. The signature of the spacetime metric is chosen as

(+,−,−,−) in this work.

7.3.1 The case of non-twisting vacuum type N solutions

As the solutions of gravitational waves, non-twisting vacuum type N solutions (Λ) are

composed of two classes [103, 104], one is the non-expanding Kundt(Λ) class, and the other

is the expanding Robinson-Trautman(Λ) class.

7.3.1.1 The Kundt(Λ) class

The metric in this case reads

ds2 = −Fdu2 + 2
q2

p2 dudv− 2
1
p2 dzdz̄, (242)

with

p = 1 +
Λ
6

zz̄, q =

(
1− Λ

6
zz̄
)

α + β̄z + βz̄,

F = κ
q2

p2 v2 − (q2),u

p2 v− q
p

H, κ =
Λ
3

α2 + 2ββ̄,

H = H(u, z, z̄) =
(

f,z + f̄,z̄
)
− Λ

3p
(
z̄ f + z f̄

)
.

(243)

where f is an arbitrary complex function of u and z, analytic in z. Further more, α and β are

two arbitrary real and complex functions of u, respectively. In fact, according to Ref. [103],

one can see that the parameter κ is sign invariant. For the case Λ = 0, there are two classes
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of solutions—generalised pp-waves (κ = 0) and generalised Kundt waves (κ > 0). If our

universe admits a positive cosmological constant, namely Λ > 0, there is no limit on α and

β, and there is only one kind of solution—generalised Kundt waves. For the case Λ < 0, the

values of parameters α and β classify the metric into three types of solutions—generalised

Kundt waves (κ > 0), generalised Siklos waves (κ = 0), and generalised pp-waves (κ < 0).

We will soon see that the zeroth copy inherits this property to classify the gravity solutions.

Choosing the null tetrad

` = du, n = −F
2

du +
q2

p2 dv, m =
1
p

dz̄, (244)

we have

ρ∗ = 0, τ∗ = − 2Λz̄α + Λz̄2β− 6β̄

(6−Λzz̄)α + 6(zβ̄ + z̄β)
, (245)

Ψ4 =
1

72
(Λzz̄ + 6)

[
(Λzz̄− 6)α− 6(z̄β + zβ̄)

]
∂3

z̄ f̄ . (246)

Recalling Eq.(228), it is easy to check

2`[amb] =



0 0 0 I

0 0 0 0

0 0 0 0

−I 0 0 0


and 2`[am̄b] =



0 0 I 0

0 0 0 0

−I 0 0 0

0 0 0 0


, (247)

where I = 6
6+Λzz̄ . Both matrices do not depend on the deviation-information, so the

electromagnetic scalar will decide whether this kind of electromagnetic field is dependent of

the deviation-information or not. From Eq.(226), the auxiliary scalar S12 is solved by

S12 = C(u, z̄)
Λzz̄ + 6

(Λzz̄− 6) α− 6
(
zβ̄ + z̄β

) , (248)
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where C(u, z̄) is an arbitrary function of u and z̄. Clearly S12 itself is independent of

the deviation-information. According to Eq.(223) and Eq.(227), the DW scalar ξ and the

electromagnetic scalar φ2 are solved by

ξ4 =
(6 + Λzz̄)4C(u, z̄)3∂3

z̄ f̄

72
[
(Λzz̄− 6)α− 6(z̄β + zβ̄)

]2 , (249)

φ2 =
(6 + Λzz̄)

6
√

2

√
C(u, z̄)∂3

z̄ f̄ . (250)

The structure function f̄ , which measures the value of Ψ4, is absorbed by an arbitrary function

C(u, z̄). The electromagnetic scalar thus does not depend on ∂3
z̄ f̄ (u, z̄). So we obtain a

particular degenerate electromagnetic field which is independent of the deviation-information.

It is easy to check that this type of electromagnetic field satisfies its field equation even for

the case ∂3
z̄ f̄ = 0. Namely,

∇̃aFab = 0, (251)

where the symbol tilde denotes that the background is (A)dS spacetimes—conformally

flat spacetimes—where we just need to let f = 1 in the original metric. In fact, there

is a freedom to choose a polynomial function f = c0(u) + c1(u)z̄ + c2(u)z̄2 as long as

∂3
z̄ f̄ (u, z̄) = 0, where ci(u) are expanding parameters of z̄. Furthermore, with the fact that

the Ricci scalar R = −4Λ, it is easy to verify that the auxiliary scalar field S24(= S12)

satisfies the conformally invariant scalar field equation not only in the curved spacetime but

also in conformally flat spacetime. So we have

∇̃a∇̃aS24 −
1
6

R̃S24 = 0. (252)

When Λ→ 0, the result reduces to the Kundt (Λ = 0) class, the single copy and the zeroth

copy satisfy their field equations in Minkowski spacetime.

More interestingly, one can find that the single copy only confines the structure function.

For example, it does not depend on the parameters α, β, and Λ; the function f in Maxwell



7.3 T H E W E Y L D O U B L E C O P Y I N C U RV E D S PAC E T I M E S 72

scalar only needs to be a function of coordinates u and z, and there are no other restrictions. In

contrast, the zeroth copy is closely associated with α, β, and Λ. With a negative cosmological

constant and in conjunction with the introduction in the first paragraph of this section, one

can see that for different κ, it is the zeroth copy that specifies the sort of curved spacetimes

they map.

7.3.1.2 The Robinson-Trautman(Λ) class

One of the familiar form of the metric for Robinson-Trautman (Λ) solutions is given by

Garcı́a Dı́az and Plebański [103, 105]

ds2 = −2(AĀ + ψB)du2 − 2ψdudv− 2vĀdudz− 2vAdudz̄− 2v2dzdz̄,

A = εz− v f , B = −ε +
v
2
( f,z + f̄,z̄) +

Λ
6

v2ψ, ψ = 1 + εzz̄,

(253)

where ε = +1, 0,−1 corresponds to the source of the transverse gravitational waves being

time-like, null, or space-like, respectively, at least in the weak field limit. This is consistent

with the case that Λ = 0 [106]. One can also refer to Ref. [107] for more details on the

interpretation of the Robinson-Trautman solutions. In addition, this metric only depends

linearly on an arbitrary structure function f (u, z), which will help facilitate the following

discussions.

Choosing the null tetrad

` = du, n = −(AĀ + ψB)du− ψdv− Āvdz− vAdz̄, m = vdz̄, (254)

we have

ρ∗ =
1

v(1 + εzz̄)
, τ∗ =

f̄
1 + εzz̄

, (255)

Ψ4 =
(1 + εzz̄)∂3

z̄ f̄
2v

. (256)
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In this case, the Weyl scalar does not even depend on the cosmological constant. Recalling

Eq.(228), one observes

2`[amb] =



0 0 0 v

0 0 0 0

0 0 0 0

−v 0 0 0


and 2`[am̄b] =



0 0 v 0

0 0 0 0

−v 0 0 0

0 0 0 0


, (257)

both terms are independent of the structure function f (u, ξ). Solving Eq.(226), the auxiliary

scalar field S12 is given by

S12 =
C(u, z̄)

v(1 + εzz̄)
, (258)

where the function C(u, z̄) is arbitrary. Following Eq.(223) and Eq.(227), the DW scalar and

the electromagnetic scalar are solved by

ξ4 =
C(u, z̄)3∂3

z̄ f̄
2v4(1 + εzz̄)2 , (259)

φ2 =

√
C(u, z̄)∂3

z̄ f̄
2

1
v

. (260)

Clearly, the function C(u, z̄) lets φ2 be independent of the structure function f . Thus, the

electromagnetic field also satisfies the field equation in conformally flat spacetime. We can

further check that the auxiliary scalar filed S24(= S12) satisfies Eq.(252) both in the curved

spacetime and in conformally flat spacetime.

It is worth noting that the single copy does not depend on the parameter ε. It is the zero

copy that decides what kind of sources of gravitational waves they are mapping, at least in

the weak field limit. For example, given the same electromagnetic field in conformally flat

spacetime, following the map Eq.(210) the scalar field S12 with ε = 1 will lead to a class of

transverse gravitational waves whose source is time-like. On the other hand, a scalar field S12

with ε = 0 will lead to another class of transverse gravitational waves whose source is null.
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So far, we only consider the time-dependent vacuum solutions. Next, we will investigate

time-independent vacuum solutions by focusing on type D spacetimes. More interpretations

about the single copy and the zeroth copy will be discussed later.

7.3.2 The case of vacuum type D solutions

7.3.2.1 Kerr-(A)dS black holes

As we know, rotating black holes are believed to be the most typical astrophysical black

holes in the universe. It is necessary to take the case of Kerr-(A)dS black holes as a specific

example to study the double copy relation before going to the most general vacuum type D

solutions.

The metric of Kerr-(A)dS black holes in the Boyer-Lindquist coordinates reads [108–110]

ds2 =
R
ρ2 (dt− a

Σ
sin2 θdφ)2 − ρ2

Rdr2 − ρ2

Θ
dθ2 (261)

− Θ
ρ2 sin2 θ(adt− r2 + a2

Σ
dφ)2, (262)

where

R = (r2 + a2)(1 +
r2

l2 )− 2Mr, Θ = 1− a2

l2 cos2 θ, (263)

Σ = 1− a2

l2 , ρ2 = r2 + a2 cos2 θ, l2 = − 3
Λ

, (264)

with mass M/Σ2 and angular momentum J = aM/Σ2. Clearly, M and a can be regarded as

mass parameter and angular momentum parameter, respectively.
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Since the metric has already been written in the orthogonal tetrad {ei} (i = 1, 2, 3, 4) such

that ds2 = (e1)2 − (e2)2 − (e3)2 − (e4)2, the null tetrad {e′i} then is easily given under the

transformation

e′1 =
1√
2
(e1 + e2), e′2 =

1√
2
(e1 − e2),

e′3 =
1√
2
(e3 + ie4), e′4 =

1√
2
(e3 − ie4).

(265)

Thus we have

e′1 = ` =
1√
2

(√
R
ρ2 dt +

√
ρ2

Rdr−
√
R
ρ2

a
Σ

dφ

)
, (266)

e′2 = n =
1√
2

(√
R
ρ2 dt +

√
ρ2

Rdr−
√
R
ρ2

a
Σ

dφ

)
, (267)

e′3 = m =
1√
2

(√
Θ
ρ2 a sin θdt + i

√
ρ2

Θ
dθ −

√
Θ
ρ2

(r2 + a2)

Σ
sin θdφ

)
, (268)

e′4 = m̄ =
1√
2

(√
Θ
ρ2 a sin θdt− i

√
ρ2

Θ
dθ −

√
Θ
ρ2

(r2 + a2)

Σ
sin θdφ

)
. (269)

We obtain the Weyl scalar

Ψ2 = 6ψ2 =
6M

(r + ia cos θ)3 , (270)

and the spin coefficients

ρ∗ = µ∗ = − i√
2(a cos θ − ir)

√
R
ρ2 ,

τ∗ = π∗ = − ia sin θ√
2(a cos θ − ir)

√
Θ
ρ2 ,

ε∗ = γ∗ = − a cos θ[l2(r−M) + r(a2 + 2r2)] + i(a2l2 − r4 − l2Mr)
2
√

2l2(a cos θ − ir)
1√
ρ2R

,

α∗ = β∗ =
r cos θ(a2 cos 2θ − l2) + ia(a2 cos4 θ − l2)

2
√

2l2 sin θ(a cos θ − ir)
1√
ρ2Θ

.

(271)

According to Eq.(229), to identify the DW scalar we need to solve the auxiliary scalar field

S14. Using Eq.(235) and the identity

arctan(z) = − i
2

log(
i− z
i + z

) z ∈ C, (272)
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it is not hard to obtain that

S14 = K1
csc2 θ(r + ia cos θ)

l4RΘ
, (273)

where all of the constant coefficients have been absorbed by a constant of integration K1.

The DW scalar can then be solved by

ξ2 =
√

Ψ2S14 =

√
6K1M csc θ

(r + ia cos θ)l2
√
RΘ

. (274)

Note this is also the coefficient of DW tensor in the null tetrad [98]. We are not going to talk

about DW tensor in more detail in this paper, the only reason we show this is to construct

an electromagnetic scalar. With the help of the auxiliary scalar S(1)
12 , which is solved from

Eq.(239)

S(1)
12 = K2

csc θ(r + ia cos θ)

l2
√
RΘ

, (275)

we obtain

φ1 =
ξ2

S(1)
12

=

√
6K1M
K2

1
(r + ia cos θ)2 ∼

1
(r + ia cos θ)2 , (276)

where K2, similar to K1, is an arbitrary constant of integration. One can observe that the

mass parameter M is absorbed by a constant of integration. So φ1 actually does not depend

on the source. In addition, it is easy to verify that (l[anb] + m̄[amb]) and (l[anb] + m[am̄b])

are all independent of the mass parameter M. Hence, from Eq.(240), we conclude that the

non-degenerate electromagnetic field we construct is independent of the source. It even

satisfies the conformally invariant field equation in conformally flat spacetime, where we just

need to let M = 0 in the metric. What about the auxiliary scalar field S(1,1)
24 associated to

this electromagnetic field? Using the formula Eq.(210), one observes that

S(1,1)
24 =

(φ1)
2

Ψ2
=
K1

(K2)2
1

(r + ia cos θ)
∼ 1

r + ia cos θ
. (277)

As we expect, this satisfies the conformally invariant scalar field equation

∇̃a∇̃aS(1,1)
24 − 1

6
R̃S(1,1)

24 = 0. (278)
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When Λ → 0, it describes the wave equation on Minkowski background. Thus, we have

shown that the single copy and the zeroth copy of Kerr-AdS spacetimes satisfy their confor-

mally invariant field equations in conformally flat spacetime.

Moreover, in analogy to Eq.(226) of the type N case, the auxiliary scalars associated with

the degenerate electromagnetic fields are given by

S(2)
12 = S(0)

12 ∼
1

r + ia cos θ
. (279)

Combining with Eq.(277), one can see that S(2)
12 and S(0)

12 are equivalent to S(1,1)
24 up to

a constant. Therefore, the zeroth copy connects not only gravity fields with the single

copy living in the conformally flat spacetime, but also DW fields with those degenerate

electromagnetic fields residing in the curved spacetime. This property is consistent with the

discovery of the preceding work [98] in the absence of the cosmological constant Λ.

7.3.2.2 The most general vacuum type D solutions

Now, we shall investigate the Weyl double copy relation for the most general vacuum type

D solutions with a cosmological constant. The metric has been given by Plebanski and

Demianski2 [111],

ds2 =
1

(p + q)2

(
−1 + (pq)2

P dp2 − P
1 + (pq)2 (dσ + q2dτ)2− (280)

1 + (pq)2

L dq2 +
L

1 + (pq)2 (−p2dσ + dτ)2
)

, (281)

where the structure functions read

P = (−Λ
6
+ γ) + 2np− εp2 + 2mp3 + (−Λ

6
− γ)p4, (282)

L = (−Λ
6
− γ) + 2nq + εq2 + 2mq3 + (−Λ

6
+ γ)q4, (283)

2 By doing a coordinate transformation q→ −1/q and some rescalings following in eq. (3) of Ref. [94], we will

go back to the modified form of the metric applied in the preceding work [98].
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m and n are dynamical parameters measuring the curvature, ε and γ are called kinematical

parameters which will affect the properties of the solutions.

By choosing null tetrad

` =
1√

2(p + q)

(√
1 + (pq)2

L dq− p2

√
L

1 + (pq)2 dσ +

√
L

1 + (pq)2 dτ

)
, (284)

n =
1√

2(p + q)

(
−
√

1 + (pq)2

L dq− p2

√
L

1 + (pq)2 dσ +

√
L

1 + (pq)2 dτ

)
, (285)

m =
1√

2(p + q)

(√
1 + (pq)2

P dp + i

√
P

1 + (pq)2 dσ + iq2

√
P

1 + (pq)2 dτ

)
, (286)

m̄ =
1√

2(p + q)

(√
1 + (pq)2

P dp− i

√
P

1 + (pq)2 dσ− iq2

√
P

1 + (pq)2 dτ

)
, (287)

we obtain

Ψ2 = 6ψ2 = 6(m + in)
(

p + q
1− ipq

)3

. (288)

Obviously, the cosmological constant does not affect the Weyl scalar according to the above

result. Some spin coefficients are given by

ρ∗ = µ∗ =
(p2 − i)

√
L(q)√

2(pq + i)
√

1 + p2q2
,

τ∗ = −π∗ =
(q2 − i)

√
P(p)√

2(pq + i)
√

1 + p2q2
,

ε∗ = γ∗ =
2(p2 + 2pq + i)L(q)− (p + q)(pq + i)L′(q)

4
√

2(pq + i)
√

1 + p2q2
√
L(q)

,

β∗ = −α∗ =
2(q2 + 2pq + i)P(p)− (p + q)(pq + i)P ′(q)

4
√

2(pq + i)
√
(1 + p2q2)P(p)

.

(289)

Solving Eq.(235) with the help of Eq.(272), the auxiliary scalar field S14 is given by

S14 = D1
(p + q)3(1− ipq)
P(p)L(q) , (290)

where D1 is a constant of integration. Then from Eq.(229) we have

ξ2 =

√
6D1(m + in)√
P(p)L(q)

(p + q)3

1− ipq
. (291)
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Recalling Eq.(240), one observes that

2
(
`[anb] + m̄[amb]

)
=



0 0 iA ip2A

0 0 q2A −A

−iA q2A 0 0

−ip2A A 0 0


, (292)

and

2
(
`[anb] + m̄[amb]

)
=



0 0 −iA −ip2A

0 0 q2A −A

iA q2A 0 0

ip2A A 0 0


, (293)

where A = (p+q)2

1+p2q2 . Clearly, they are independent of the dynamical parameters. Consequently,

if the electromagnetic scalar is independent of the deviation-information, the electromagnetic

field we construct will be independent of the deviation-information as well and the field

equation will hold even in conformally flat spacetime. From Eq.(239), one obtains

S(1)
12 = D2

(p + q)(1− ipq)√
P(p)L(q)

, (294)

where D2 is a constant of integration. Following Eq.(236), the non-degenerate electromag-

netic scalar φ1 is given by

φ1 =

√
6D1(m + in)

D2

(p + q)2

(1− ipq)2 ∼
(p + q)2

(1− ipq)2 . (295)

One can see that the dynamical parameters which measure the curvature are absorbed by

the constants of integration, so φ1 is independent of the dynamical parameters. Thus, we

have discovered a particular non-degenerate electromagnetic field which is independent of

the deviation-information. Correspondingly, the auxiliary scalar field S(1,1)
24 is given by

S(1,1)
24 =

(φ1)
2

Ψ2
=
D1

(D2)2
p + q

1− ipq
∼ p + q

1− ipq
. (296)
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It is easy to check that S(1,1)
24 satisfies the conformal invariant field equation Eq.(252) in

conformally flat spacetime, where we just need to set m = n = 0.

Therefore, for vacuum type D solutions with a cosmological constant, the single copy

and the zeroth copies satisfy their conformal invariant field equations in conformally flat

spacetime. When Λ → 0, the background goes back to Minkowski spacetime and the

situation is consistent with the previous result [75].

In addition, similar to the case of Kerr-AdS spacetime, for the general vacuum type D

solutions with or without a cosmological constant, we find that

S(0)
12 = S(2)

12 ∼
p + q

1− ipq
∼ S(1,1)

24 . (297)

Thus, not only does the zeroth copy connect gravity fields to the single copy, but it also

links DW fields to degenerate electromagnetic fields living in curved spacetime. Recalling

the previous section, it is evident that this property also applies to non-twisting type N

solutions. While, distinct from the type N cases, the zeroth copy now does not possess

any extra information about the source. This is mirrored clearly by the double copy scalar

relation (Ψ2)
1/3 = (φ2)

1/2 = S(1,1)
24 . Therefore, we find that only for the time-dependent

solutions, the zeroth copy carries extra information about the source. This provides support

for constructing other exact time-dependent radiation solutions in future work.

7.4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, using DW spinors (massless spin-1/2 spinors) as basic units, we constructed a

particular set of electromagnetic fields in 4-dimensional non-twisting vacuum type N and

vacuum type D spacetimes in the presence of a cosmological constant Λ. These electromag-

netic fields are independent of the deviation-information for a given curved metric. Thus they
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also satisfy the field equation in conformally flat spacetime. Regarding these electromagnetic

fields as the single copies in the curved (A)dS spacetime, we verified the Weyl double copy

prescription. We found that the single and zeroth copies satisfy the conformally invariant

field equations in conformally flat spacetime both for the time-dependent solutions (type N

cases) and time-independent solutions (type D cases). When Λ→ 0, the result reduces to

the original case. Namely, they satisfy the field equations in Minkowski spacetime. This is

an intriguing outcome. For Kerr-Schild (Λ) double copy prescription [53], the single and

zeroth copies satisfy different equations for time-independent solutions and time-dependent

solutions. Specifically, in time-independent cases, the zeroth and single copies satisfy the con-

formally invariant field equations in conformally flat spacetime; whereas, in time-dependent

cases, the zeroth copy satisfies the wave equation and does not admit good conformal trans-

formation properties anymore. Moreover, the single copy does not satisfy the conformally

invariant Maxwell’s field equation because of an extra term proportional to the Ricci scalar

appearing in the equation of motion. Therefore, from this point of view, the Weyl double

copy prescription appears as a more fundamental map between gravity theory and gauge

theory. This is also consistent with the fact that the Kerr-Schild double copy prescription is

linear, whereas the Weyl double copy prescription is essentially more general.

Apart from the above results, we found that the preceding finding [98] also holds in the

presence of Λ. Not only does the zeroth copy connect gravity fields with the single copy in the

conformally flat spacetime, but it also connects DW fields with degenerate electromagnetic

fields in the curved spacetime, both for non-twisting vacuum type N solutions and vacuum

type D solutions. More interestingly, we found that the zeroth copy plays a more important

role than expected for time-dependent radiation solutions (type N cases). Unlike the single

copy, which only restricts the form of the structure function, the zeroth copy carries additional
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information characterizing the curved spacetimes it is mapping. Specifially for the Robinson-

Trautman (Λ) class, we discovered that it is the zeroth copy that determines whether the

sources of associated gravitational waves are time-like, null, or space-like, at least in the

weak field limit. This result is reminiscent of previous research on the fluid/gravity duality

[60], which showed that all of the information about the fluid is encoded in the zeroth copy

for the type N case. Their work further supports our result that the zeroth copy can indeed

carry additional information compared with the single copy. We hope this discovery will

contribute to constructing other exact time-dependent radiation solutions.

All in all, we have shown explicitly that the single copy and the zeroth copy satisfy

conformally invariant equations in conformally flat spacetime by concentrating on non-

twisting vacuum type N and vacuum type D solutions. Several novel interpretations of

the Weyl double copy prescription are provided, particularly with regard to the zeroth

copy. Next, it would be intriguing to check whether the generalized Weyl double copy

holds asymptotically for the algebraically general case with a cosmological constant. It is

also significant to investigate the applications of the Weyl double copy on astrophysical

observations, such as the specific correspondence between the source of gravitational waves

and the Weyl double copy. In addition, a natural progression of this work is to analyse the

classical Weyl double copy in the flat spacetime instead of the (A)dS background. That

would be essential for establishing a bridge between gravity theory and gauge theory. The

cosmological constant, in this case, should be considered as the source of the single and

zeroth copies. Further studies which treat the Minkovski spacetime as the background of the

Weyl double copy prescription in the presence of a cosmological constant will need to be

undertaken in the future. Since all of the discussion in this paper is limited to 4-dimensional

spacetimes, it would also be worthwhile to extend the study to high-dimensional spacetimes.



8

R O B I N S O N - T R A U T M A N S O L U T I O N S A N D T H E W E Y L

D O U B L E C O P Y

In this chapter, I will introduce my ongoing research that builds upon the findings presented

in the Chapters. 6 and 7, highlighting some promising preliminary results and exploring the

ramifications of those discoveries.

8.1 I N T RO D U C T I O N

In the last chapter, the results show that the zeroth copy carries additional information

characterizing the associated curved spacetime. In particular, for the Robinson-Trautman

(RT) (Λ) class, I found that it is the zeroth copy that determines whether the sources of

associated gravitational waves are time-like, null, or space-like, at least in the weak field

limit. This work makes it possible to develop exact gravitational wave solutions in the future.

In fact, over the years, research on gravitational waves based on RT spacetime background

has been ongoing, such as Ref.[112–114]. Inspired by this, I restudy the RT solution in an

unfamiliar metric, which is linear in a function q, in the hope of finding a new interpretation

of the Weyl double copy and potential applications on gravitational wave astronomy.
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Conventionally, most researchers prefer focusing on the RT metric with a vanishing

parameter q, which is made zero by coordinate transformation. However, as discussed by

Robinson and Trautman in section (v) of their work Ref. [92], the curvature tensor and metric

will be linear in parameter q if we keep it non-vanishing. This provides a new possible way

to extend the Weyl double copy prescription to perturbative theory and gravitational wave

astronomy research.

8.2 R E V I E W O F RO B I N S O N T R AU T M A N S O L U T I O N S

8.2.1 General Robinson Trautman spacetime

Robinson Trautman solutions describe a class of spacetime admitting a shear-free, diverging

and hypersurface-orthogonal null vector field σk, which satisfies Rikσiσk = 0. The metric is

given by

ds2 = − ρ2

p2 [(ξ − adσ)2 + (dη − bdσ)2] + 2dρdσ + cdσ2, ∂p/∂ρ = 0. (298)

One can rewrite it as

ds2 = 2dσ

[
dρ +

(
c− ρ2

p2 (a2 + b2)

)
dσ +

aρ2

p2 ξ +
bρ2

p2 dη

]
− ρ2

p2 (ξ
2 + dη2) (299)

Introducing a complex variable
√

2ζ = (ξ + iη), or ξ =
√

2
2 (ζ + ζ̄) and η = −

√
2i

2 (ζ −

ζ̄), the metric is transferred to

ds2 =2dρdσ +

(
c− ρ2

p2 (a2 + b2)

)
dσ2 +

√
2ρ2

p2

(
(a− ib)dσdζ + (a + ib)dσdζ̄

)
− 2ρ2

p2 dζdζ̄.

(300)
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We list some useful identities in the following

∂ξ =
1√
2
(∂ζ + ∂ζ̄), ∂η =

i√
2
(∂ζ − ∂ζ̄), (301)

a + ib = i
√

2∂ζq, a− ib = −i
√

2∂ζ̄q, (302)

a2 + b2 = 2∂ζq∂ζ̄q. (303)

By doing a co-ordinate transformation,

ζ = ψ(ζ̃, σ̃), ρ =
ρ̃

γ′(σ̃)
, σ = γ(σ̃), (304)

the metric keeps the same form as Eq.(299), as shown below

ds2 =2dρ̃dσ̃ +

[
cγ′

2 − 2ρ̃γ′′

γ′
− ρ̃2

p2γ′2

(
(a2 + b2)γ′

2
+ 2∂σ̃ψ̄∂σ̃ψ−

√
2γ′((a + ib)∂σ̃ψ̄

+(a− ib)∂σ̃ψ))]dσ̃2 +

√
2ρ̃2∂ζ̃ψ

p2γ′2

(
(a− ib)γ′ −

√
2∂σ̃ψ̄

)
dσ̃dζ̃

+

√
2ρ2∂ζ̄ ψ̄

p2γ′2

(
(a + ib)γ′ −

√
2∂σψ

)
dσdζ̄ −

2ρ̃2∂ζ̃ψ∂ ¯̃ζ ψ̄

p2γ′2
dζ̃ ¯̃ζ.

(305)

Comparing Eq.(300) with Eq.(305), one arrives at

p′2 =
p2γ′2

∂ζ̃ψ∂ ¯̃ζ
¯̃ψ

,

a′ + ib′ =
(a + ib)γ′ −

√
2∂σ̃ψ

∂ζ̃ψ
,

c′ = cγ′
2 − 2ρ̃γ′′

γ′
.

(306)

Choosing a null tetrad,

` = dσ,

n = dρ +
1
2

(
c− ρ2

p2 (a2 + b2)

)
dσ +

√
2ρ2

2p2 (a− ib)dζ +

√
2ρ2

2p2 (a + ib)dζ̄,

m =
ρ

p
dζ,

m̄ =
ρ

p
dζ̄,

(307)
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the equation `ambRab = 0 reduces to

∂ρ(a + ib) = 0. (308)

The equation mambRab = 0 reduces to

∂ζ̄(a + ib) = 0. (309)

Therefore, (a + ib) is a function independent of ρ and ζ̄. Based on the above two equations,

it is easy to find that we can eliminate a and b by transformation Eq.(304). However, one

should bear in mind that the form of p might be intricate in this case. We could get the

formula of p simpler if we keep a and b non-vanishing. Additionally, from the above two

equations, one can see that there exists an analytic function q of σ, ξ, and η, such that,

a =
∂q
∂η

, b =
∂q
∂ξ

, and ∆q = p2(∂2
ξ + ∂2

η)q = 0. (310)

Note, in ζ, ζ̄ coordinates system,

(∂2
ξ + ∂2

η) = 2∂ζ∂ζ̄ (311)

Substituting the formulas of a and b into the metric Eq.(298) and choosing a null tetrad with

two complex null bases,

l = dσ,

n = dρ +
1
2

(
c− ρ2

p2

(
(∂ξq)2 + (∂ηq)2

))
dσ +

ρ2∂ηq
p2 dξ +

ρ2∂ξq
p2 dη,

m =
ρ√
2p

dξ +
iρ√
2p

dη,

(312)

one obtains 7 independent Einstein field equations. lalbRab = 0, lambRab = 0, and

mambRab = 0 are already satisfied. mam̄bRab = 0 leads us to

c = −2M
ρ

+ K− 2Hρ, (313)
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where

H(σ, ξ, η) = p−1 ∂p
∂σ
− ∂2q

∂ξ∂η
+ p−1 ∂p

∂ξ

∂q
∂η

+ p−1 ∂p
∂η

∂q
∂ξ

, (314)

K(σ, ξ, η) = ∆ ln p, (315)

and M is an integral function independent of the variable ρ. The above formulas are consistent

with the convention of the original work by Robinson and Trautman. Notably, we correct a

typo of H in eq. (17) of their work; instead of a plus sign, there should be a minus sign in the

second term of H. Then lanbRab = 0 is satisfied automatically. Furthermore, nambRab = 0

leads us to

∂ξ M = 0, ∂η M = 0. (316)

Namely, M is a function of σ alone. Based on the previous six equations, the last one

ρ2nanbRab = 0 turns out to be

1
2

∆K + 2(3H − ∂

∂σ
)M = 0. (317)

Therefore, the Einstein field equations are reduced to two equations: Eq.(310) and Eq.(317).

We list them together shown below

(∂2
ξ + ∂2

η)q = 0,
1
2

∆K + 2(3H − ∂

∂σ
)M = 0. (318)

So the spacetime information is characterized by three functions

q(σ, ξ, η), p(σ, ξ, η), M(σ). (319)
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8.2.2 Robinson Trautman vacuum type N spacetime

To get a vacuum type N solution in terms of a function q, we need to find an appropriate coor-

dinate transformation. Firstly, we need to know how variables change with the transformation.

We list some important results,

p′2 =
p2γ′2

∂ζψ∂ ¯̃ζ
¯̃ψ

, (320)

a′ + ib′ =
(a + ib)γ′ −

√
2∂σ̃ψ

∂ζ̃ψ
, (321)

c′ = cγ′
2 − 2ρ̃γ′′

γ′
, (322)

M′ = γ′
2M, (323)

K′ = γ′
2K, (324)

H′ = γ′H + γ′′/γ′. (325)

According to RT’s work, under a specific coordinate transformation by which q is vanishing,

vacuum type N solutions correspond to

M = 0,
∂K
∂ζ

= 0,
1
ρ2

∂

∂ζ

(
p2 ∂H

∂ζ

)
6= 0. (326)

Instead of eliminating function q by the coordinate transformation, we are going to do another

transformation so that the function p is reduced to

p = 1 +
1
2

Kζζ̄ = 1 +
1
4

K(ξ2 + η2). (327)

There is no way to ensure that q (or, a and b) is vanishing at the same time under the

coordinate transformation. Therefore, the field equation left is

∆q = 0. (328)
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Since K in this case only depends on σ, it is easy to reduce it to −1, 0 or 1 by doing one more

simple coordinate transformation, such that

γ′
2
=

1
|K| . (329)

In the end, one will be able to obtain the vacuum RT type N solutions by solving Laplace’s

Equation Eq.(328).

8.3 W E Y L D O U B L E C O P Y R E L AT I O N

Based on the method proposed in the previous two chapters, we calculate the Weyl spinor in

the coordinates system Eq.(300). The Weyl scalar is given by

ψ4 = −i
(1 + 1

2 Kζζ̄)2

2ρ
∂4

ζq(σ, ζ, ζ̄). (330)

Solving Eq.(328), the function q is divided into two distinct parts,

q(σ, ζ, ζ̄) = L(σ, ζ) +R(σ, ζ̄), (331)

where L and R are two arbitrary functions. Then, we further reduce the Weyl scale to the

form

ψ4 = −i
(1 + 1

2 Kζζ̄)2

2ρ
∂4

ζL(σ, ζ). (332)

The zeroth copy and Maxwell scale are identified, respectively,

S =
W(σ, ζ)

ρ
, (333)

φ2 =
(1 + 1

2 Kζζ̄)

2ρ
X(σ, ζ), (334)

where W and X are two arbitrary functions of σ and ζ. It’s easy to verify that both the zeroth

copy and the single copy satisfy respective equations of motion on flat spacetime. It is worth
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pointing out that the single copy here carries the factor K, instead of the zeroth copy. This is

different from the result of the last chapter.

8.4 D I S C U S S I O N S A N D C O N C L U S I O N S

This chapter concludes by presenting ongoing research and preliminary findings that build

upon the work presented in the Chapters. 6 and 7. These preliminary findings provide

promising insights into the Weyl double copy and have the potential to substantially advance

our understanding of the topic. For example, we show that the single copy carries the factor

K, which characterizes the curved spacetimes. This differs from the case discussed in the

last chapter, in which we found that the zeroth copy carries the factor to determine whether

the sources of associated gravitational waves are time-like, null, or space-like in the weak

field limit. From this point of view, the zeroth copy and single copy may both be able to

inherit information from the gravitational field. On the other hand, it also reflects that the

Weyl double copy does not provide a one-to-one correspondence between gravity solutions

and gauge solutions, so we obtain different types of zeroth and single copies on the different

coordinate systems. Regarding this non-uniqueness property, further research is still needed.

It is worth pointing out that, in this chapter, we didn’t discuss whether the case p =

1 + 1/2Kζζ̄ can represent all the solutions of the Robinson Trautman vacuum type N

solutions. We temporarily assume that we can always find a coordinated transformation to

make it. Based on the associated research, such as Ref. [112] and Ref. [115], we will proceed

to further examine this matter in order to ascertain its validity. While some restrictions and

difficulties still exist, resolving them will open the door for more development in this area.

The results of this research and those from the published publications will be combined in
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the following chapter, together with their broader implications, limits, and suggested future

research trajectories.



Part IV

D I S C U S S I O N S A N D C O N C L U S I O N S
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D I S C U S S I O N S A N D C O N C L U S I O N S

Based on the property of spinors that any massless free-field spinors with spin higher than

1/2 can be constructed with DW spinors (spin-1/2) and scalar fields (spin-0), I proposed a

new approach to study the Weyl double copy prescription. Specifically, by investigating

non-twisting vacuum type N and vacuum type D solutions, this thesis has systematically

explored the Weyl double copy relation between gravity theory and gauge theory. The case

of vacuum type III solutions has also been discussed. In addition, I discovered that the zeroth

copy plays a crucial role in connecting not only the gravity fields to the single copy but also

the DW fields to degenerate electromagnetic fields in curved spacetime.

Additionally, in the presence of the cosmological constant, I constructed a particular

set of electromagnetic fields and scalar fields that satisfy the conformally invariant field

equation in conformally flat spacetime for non-twisting vacuum type N and vacuum type D

spacetimes. In curved (A)dS spacetime, these electromagnetic fields serve as single copies,

scalar fields serve as zeroth copies, and we validated the Weyl double copy prescription.

Compared to the Kerr-Schild double copy prescription, I have shown that the Weyl double

copy prescription appears to be a more fundamental map between gravity theory and gauge

theory. In addition, the function of the zeroth copy, which carries additional information
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describing the curved spacetimes it is mapping, has been emphasized further, specifically for

the Robinson-Trautman gravitational wave solutions.

In the last chapter of this thesis, I introduced the ongoing research about the Weyl double

on a linearized Robinson-Trautman gravitational wave solution. The result shows that not

only the zeroth copy, but the single copy may also be able to inherit spacetime information

from the gravity field. This point may reflect the fact that the Weyl double copy does not

have a one-to-one correspondence between gravity solutions and gauge solutions. To gain

a deeper comprehension of the complexities of these theories and their interrelationships,

additional study is still ongoing.

Overall, our research has shed light on the significance of the spin-1/2 massless free-fields

and scalar fields in building other high spin massless free fields and provided a comprehensive

analysis of the connections between gravity theory and gauge theory. We hope that these

discoveries will lead to the development of additional precise time-dependent radiation

solutions and inspire additional research into the compelling relationships between these

fundamental theories.

Next, it would be fascinating to determine whether the generalized Weyl double copy

holds asymptotically for the algebraically general case containing a cosmological constant.

It is also important to investigate the implications of the Weyl double copy to astrophysical

observations, such as the specific correspondence between the gravitational wave source

and the Weyl double copy. In addition, it is a natural progression of this work to analyze

the classical Weyl double copy in the flat spacetime background as opposed to the (A)dS

background. This would be crucial for bridging the gap between gravity theory and gauge

theory. In this instance, the cosmological constant should be considered the origin of

the single and zeroth copies. Future research will be required to consider the Minkowski
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spacetime as the background of the Weyl double copy prescription in the presence of a

cosmological constant. In addition, since all of the discussion in this paper is restricted

to four-dimensional spacetimes, it would be beneficial to extend the research to higher-

dimensional spacetimes. Lastly, as a final note, further investigation of RT spacetime could

potentially uncover connections between cosmic strings and the Weyl double copy, paving

the way for new insights in this field.
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[105] A. Garcı́a Dı́az and J. F. Plebański. “All nontwisting N’s with cosmological constant”.

In: Journal of Mathematical Physics 22.11 (1981), pp. 2655–2658. DOI: 10.1063/

1.524843. eprint: https://doi.org/10.1063/1.524843. URL: https:

//doi.org/10.1063/1.524843.

[106] Ivor Robinson and A. Trautman. “Spherical Gravitational Waves”. In: Phys. Rev. Lett.

4 (1960), pp. 431–432. DOI: 10.1103/PhysRevLett.4.431.

[107] J. B. Griffiths, Jiri Podolsky, and P. Docherty. “An Interpretation of Robinson-

Trautman type N solutions”. In: Class. Quant. Grav. 19 (2002), pp. 4649–4662. DOI:

10.1088/0264-9381/19/18/302. arXiv: gr-qc/0208022.

[108] B. Carter. “A new family of einstein spaces”. In: Physics Letters A 26.9 (1968),

pp. 399–400. ISSN: 0375-9601. DOI: https://doi.org/10.1016/0375-

https://doi.org/10.1017/CBO9780511608179
https://doi.org/10.1063/1.532981
https://doi.org/10.1063/1.532981
https://arxiv.org/abs/gr-qc/9907048
https://doi.org/10.1063/1.532982
https://doi.org/10.1063/1.532982
https://arxiv.org/abs/gr-qc/9907049
https://doi.org/10.1063/1.524843
https://doi.org/10.1063/1.524843
https://doi.org/10.1063/1.524843
https://doi.org/10.1063/1.524843
https://doi.org/10.1063/1.524843
https://doi.org/10.1103/PhysRevLett.4.431
https://doi.org/10.1088/0264-9381/19/18/302
https://arxiv.org/abs/gr-qc/0208022
https://doi.org/https://doi.org/10.1016/0375-9601(68)90240-5
https://doi.org/https://doi.org/10.1016/0375-9601(68)90240-5
https://doi.org/https://doi.org/10.1016/0375-9601(68)90240-5


B I B L I O G R A P H Y 111

9601(68)90240-5. URL: https://www.sciencedirect.com/science/

article/pii/0375960168902405.

[109] Yuichi Sekiwa. “Thermodynamics of de Sitter black holes: Thermal cosmological

constant”. In: Phys. Rev. D 73 (2006), p. 084009. DOI: 10.1103/PhysRevD.73.

084009. arXiv: hep-th/0602269.

[110] Vitor Cardoso, Oscar J. C. Dias, and Shijun Yoshida. “Classical instability of Kerr-

AdS black holes and the issue of final state”. In: Phys. Rev. D 74 (2006), p. 044008.

DOI: 10.1103/PhysRevD.74.044008. arXiv: hep-th/0607162.

[111] J. F. Plebanski and M. Demianski. “Rotating, charged, and uniformly accelerating

mass in general relativity”. In: Annals Phys. 98 (1976), pp. 98–127. DOI: 10.1016/

0003-4916(76)90240-2.

[112] P. A. Hogan. “A spherical impulse gravity wave”. In: Phys. Rev. Lett. 70 (2 Jan.

1993), pp. 117–118. DOI: 10.1103/PhysRevLett.70.117. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.70.117.

[113] Luciano Rezzolla, Rodrigo P. Macedo, and José Luis Jaramillo. “Understanding
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