
by Sho Tamaki

Optomechanical Crystals with Gallium
Phosphide

This thesis has been submitted to the PhD School of The Faculty of Science,
University of Copenhagen



Academic Supervisor: Prof. Albert Schliesser

External Referees: Dr. Paul Seidler
Prof. Simon Gröblacher

Internal Referee: Assoc. Prof. Leonardo Midolo

Submission Date: 03 October 2024



i



Abstract
Faithful quantum state transfer between telecom photons and microwave
frequency mechanical oscillations necessitate a fast conversion rate and low
thermal noise. Gallium Phosphide (GaP) is a promising material thanks to its
large electronic bandgap of 2.26 eV, which suppresses two-photon absorption,
and to its high refractive index n = 3.05 at the telecom C-band, leading to
a high-Q optical mode.

In this thesis, we propose 2 designs of optomechanical crystals (OMCs)
made of GaP. The first design is two-dimensional OMC which enables suffi-
ciently high mechanical frequency (1-10 GHz). This places our device in the
resolved-sideband regime, a prerequisite for many quantum protocols. It can
also support higher thermal conductance than 1D structures, mitigating the
parasitic laser absorption heating. The other design is a Su–Schrieffer–Heeger
(SSH) based topological nanobeam. The topologically protected optical and
mechanical modes are expected to be robust against geometrical impurity
and to have consistent eigenfrequencies. This will make those modes indistin-
guishable and thus suitable for quantum communication and computations.

We fabricate and characterise the 2D OMC made of GaP. We realise a
high optical Q-factor of 7.9×104, corresponding to a linewidth κ/2π = 2.5
GHz at the telecom frequency 195.6 THz. This optical mode couples to sev-
eral mechanical modes, whose frequencies all exceed the optical linewidth.
The most strongly coupled mode oscillates at 7.7 GHz, more than 3 times
the optical linewidth, while achieving a substantial vacuum optomechanical
coupling rate g0/2π = 450 kHz. This makes the platform a promising candi-
date for a long-lived, deterministic quantum memory for telecom photons at
low temperatures.
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Resumé
Trofast kvantetilstandsoverførsel mellem telekommunikationsfotoner og mekaniske
svingninger i mikrobølgefrekvenser nødvendiggør en hurtig konverteringshastighed
og lav termisk støj. Gallium phosphid (GaP) er et lovende materiale takket
være dets store elektroniske båndgab på 2.26 eV, som undertrykker to-fotonsabsorption,
og til sit høje brydningsindeks n = 3.05 ved telekommunikations C-båndet,
hvilket fører til en optisk tilstand med høj Q-faktor.

I denne afhandling foreslår vi 2 designs af optomekaniske krystaller (OMC’er)
lavet af GaP. Det første design er todimensionel OMC, som muliggør tilstrække-
lig høj mekanisk frekvens (1-10 GHz). Dette placerer vores enhed i regimet
med opløst sidebånd, en forudsætning for mange kvanteprotokoller. Det
kan også understøtte højere termisk ledningsevne end 1D-strukturer, hvilket
mindsker den parasitære opvarmning fra laserabsorption. Det andet design
er en Su–Schrieffer–Heeger (SSH) baseret topologisk nanostråle. De topol-
ogisk beskyttede optiske og mekaniske tilstande forventes at være robuste
over for geometriske urenheder og at have ensartede egenfrekvenser. Dette
vil gøre disse tilstande ens og dermed egnede til kvantekommunikation og
beregninger.

Vi fremstiller og karakteriserer 2D OMC lavet af GaP. Vi realiserer en høj
optisk Q-faktor på 7.9×104, svarende til en linjebredde κ/2π = 2.5 GHz ved
telefrekvensen 195.6 THz. Denne optiske tilstand kobles til flere mekaniske
tilstande, hvis frekvenser alle overstiger resonatorens linjebredde. Den stærk-
est koblede tilstand oscillerer ved 7.7 GHz, mere end 3 gange den optiske
linjebredde, samtidig med at den opnår en betydelig optomekanisk vaku-
umkoblingshastighed g0/2π = 450 kHz. Dette gør platformen til en lovende
kandidat til en langvarig, deterministisk kvantehukommelse til telekommu-
nikationsfotoner ved lave temperaturer.
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Chapter 1

Introduction

Since the invention of the laser [1] and the following optical tweezer tech-
nique [2], the coherent electromagnetic field has been an excellent tool to
access the degree of freedom of mechanical motion. The application ranges
from controlling the motion of atoms to micro- or nano-objects. Cavity op-
tomechanics has emerged where the light field is confined in an optical cavity
effectively enhancing the radiation pressure onto the objects. This hybrid sys-
tem has enabled us not only to access mechanical motion but also to study
the interplay between optical and mechanical oscillators with completely dif-
ferent frequencies.

After witnessing milestones such as ground state cooling [3], strong cou-
pling [4], and measurement below the standard quantum limit [5], this field
has entered a new era where those techniques are to be implemented to
quantum technologies. One of the particularly interesting applications is
the mechanical quantum memory [6], a device that can store information of
a single photon, then it can be read out after a desired time. Such a de-
vice is a key component of the quantum repeater protocol [7], a method to
send quantum information over long distances. The first demonstration of
quantum memory [8] and repeater [9] were realised by using atomic gases.
Cavity optomechanical systems have gained significant attention in recent re-
searches [6,10,11], driven by the growing demand for telecom-band quantum
memories, which remain challenging to achieve with atomic systems.

However, despite decades of rapid and intense progress, the optical heat-
ing of mechanical motion caused by incoherent absorption has remained.
This degrades the mechanical coherence time with an increase of the ther-
mal bath temperature [12, 13]. In the case of quantum memory, this limits
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Chapter 1 | Introduction

the storage time and information conversion efficiency. Since mechanical co-
herence plays an important role in various applications, this is a common
problem to overcome for better performance.

A possible solution is to find a material that absorbs less light and still
shows decent optical and mechanical performance. One of the dominant ori-
gins of heat is the two-photon absorption by electrons, which is determined
by the band gap (note that surface roughness and impurity also cause laser
heating together with the bulk properties). When a single-photon energy
of the driving laser exceeds half of the bandgap energy, this nonlinear phe-
nomenon occurs according to the laser intensity. For that, a wide electron
bandgap is a prerequisite to suppress temperature increases.

Considering the above background, we propose gallium phosphide (GaP)
optomechanical systems. Recent studies [14, 15] have suggested GaP as a
favourable choice among many material candidates thanks to several prop-
erties. First, it has a large electronic bandgap of 2.26 eV exceeding the
energy of two telecom photons (∼1.6 eV), which can suppress the two-
photon-absorption-induced heating. Second, its relatively high refractive
index n = 3.05 enables a high-Q optical mode and good vacuum optome-
chanical coupling rate g0, requiring less driving laser power. On top of that,
GaP inherently possesses sufficient piezoelectricity. This enables mechanical-
microwave coupling [16,17] without the need to deposit additional piezoelec-
tric materials, such as an AlN layer on top of the silicon medium [18]. There-
fore, there will be less risk of degrading the mechanical and optical properties
and less fabrication complexity.

In this thesis, we explore the GaP platform for developing optomechan-
ical crystals (OMCs) [19]. Among a wide variety of cavity optomechanical
systems, the OMCs exceptionally stand out thanks to their high degrees of
freedom in structural design as well as their relatively strong optomechanical
coupling rate. Therefore, many efforts have enriched the field by provid-
ing unique structural concepts such as two-dimensional [20, 21], topologi-
cal [22,23], and clamped [24] structures. OMCs are also known as promising
platforms to connect cavity optomechanics to microwave photons with the
help of their high mechanical frequencies ∼GHz. In this thesis, we propose
two different classes of OMC designs; a two-dimensional design based on the
snowflake holes [21], and a one-dimensional topological structure inspired by
the Su–Schrieffer–Heeger (SSH) topological chain model [25].

Our 2D structure is motivated by the need for an even more robust device
to release the laser heating problem. Recent studies [13, 22] have suggested

2
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that 2D OMCs, compared to conventional 1D OMCs, are advantageous for
solving the heating problem. That is because the geometries allow the ther-
mal phonons to dissipate faster than other structures, suppressing tempera-
ture increase. They can also achieve higher mechanical frequencies than 1D
structures making thermal occupation lower at the same temperature and
the sideband-resolved regime easier.

The other work on SSH topological design is encouraged by the demand
for consistent performance on optical/mechanical frequencies over many fab-
ricated devices. This is due to the fact that their implementation in quantum
operations, such as the generation of entangled states [26] or the occurrence
of Hong-Ou-Mandel interference [27], necessitates indistinguishable modes.
The topologically protected mode will enable fabricated devices to possess
reduced eigenfrequency deviation, thus leading to indistinguishable modes.
We especially, employ an edge mode of SSH topological design consisting of
periodical dimers in 1D nanobeam.

This thesis begins with basic knowledge of cavity optomechanics in chap-
ter 2 covering the historical discovery of radiation pressure and theoretical
treatment of more modern cavity optomechanical systems. Then, in chap-
ter 3, we provide the working principle and recent progress of OMCs. The
optomechanical coupling mechanisms, namely the moving boundary and pho-
toelastic contributions are explained. This chapter also provides a broad map
of material differences. Next, in chapter 4, we move on to the device geome-
try, presenting our 2D design and simulation results. The design procedure
starts with unit cell simulation and then induces the line defect followed by
the 2D defect. In the same chapter, we also see our evanescent fibre coupling
strategy. Chapter 5 presents simulated results of another SSH-based design,
where correspondence to the polyacetylene molecules is also discussed. Chap-
ter 6 shows details of device fabrication including fibre etching. With the
resulting device, we carry out the characterisation experiments in chapter 7.
The optical and mechanical spectrum is analysed including the dynamical
backaction effect on the mechanical frequency and linewidth. The vacuum
optomechanical coupling rate is estimated using the calibration method. The
thesis is then concluded in chapter 8.
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Chapter 2

Cavity Optomechanics

This chapter introduces the basic concept and theoretical background of cav-
ity optomechanics. We start with the historical discovery of optical radiation
and then move on to the principle of cavity optomechanics considering the
Fabry-Pérot cavity example. The corresponding Hamiltonian and the time
evolution derived from the quantum Langevin equations are explained. Fur-
thermore, we see how the system behaves differently according to the laser
detuning, by introducing an approximation method called linearisation.

2.1 Radiation Pressure
The nature of light has been at the centre of enormous interest for millen-
niums as it has strongly been related to our eyesight, on which we rely on
a lot of information we receive. However, it was not until the 17th cen-
tury that Johannes Kepler postulated for the first time that light may exert
force on objects [28], now called radiation pressure or optical force (actually,
a comet has several tails due to the existence of solar wind as well as the
radiation. This combined effect creates several tails made of different ma-
terials, gasses or debris). The discovery was deduced from the observation
fact that a comet’s tails always point in the opposite direction to the sun.
Surprisingly, ancient Chinese astronomers left detailed records on comet tails
in 7th-century BCE [29] in which they already pointed out that the direction
is opposite to the sun.

With classical electromagnetism, the radiation pressure on comet tails is
well understood as the result of energy transportation from electromagnetic

5



Chapter 2 | Cavity Optomechanics

(EM) waves to the object. This is due to the energy flux (energy transport
per time and space) of the EM wave given by the Poyinting vector S:

S = E×H, (2.1)

where E and H are the electric field and magnetic field strength. Objects
receive force when the EM energy is converted to its kinetic energy. On
the other hand, from the particle picture of quantum mechanics, the force is
described as the momentum transport from photons to the object through
reflection, deflection, and absorption. The energy of a particle from the
special relativity is given as:

E2 = (m0c
2)2 + (cp)2, (2.2)

where we define the relativistic energy of a particle E, invariant mass m0,
the speed of light in vacuum c, and momentum p. For a photon, m0 = 0,
the absolute value of the momentum becomes p = E/c. When a photon
impinges on and is perfectly reflected by an object, the object obtains 2p of
momentum as a result of the conservation of momentum and thus feels force.

However, it was only after the invention of the laser [1] that researchers
began to control/manipulate objects through radiation pressure since the
pressure by natural light or light bulbs is extremely tiny and non-directional.
One of the first milestones was the optical tweezers [2, 30] demonstrated by
Ashkin et al., where a laser is used to trap a micro-particle with its radiation
pressure. In those experiments, the laser beam is focused with a lens to create
a strong intensity gradient with which tiny particles feel a so-called gradient
force. Note that the gradient force is based on the wave behaviour of light,
which is essentially a wave behaviour different from the particle behaviour
of the momentum transfer from photons to objects. This optical tweezer
technique is now widely implemented ranging from single-molecule studies
to cell biology [31].

Despite these significant achievements, radiation pressure can occasion-
ally impair certain applications. Researchers have revealed the sensitivity of
gravitational detectors (more generally, the precision of measured displace-
ment of any objects) is affected by laser noise through radiation pressure also
known as quantum backaction. This originates from the quantum fluctuation
in the number of photons by a laser (namely, intensity fluctuation), which
works as a noise to the mirror displacement [32], and thus it increases as
laser power. In the weak laser intensity regime, the phase fluctuation also
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Figure 2.1: Schematic image of a Fabry-Pérot type optome-
chanical system. An optical cavity mode a with eigenfre-
quency ωo is coupled to a movable mirror b with mechanical
frequency Ωm through the change in cavity length.

induces imprecision noise which inversely scales with laser power. With the
combination of these noises, the limitation known as the standard quantum
limit (SQL) [33] emerges, establishing a lower bound of the measurement
precision.

2.2 Principle of Optomechanics
With technological progress in micro- and nano-device fabrication in the
21st century, combined with laser optics, there came a fairly new and active
research field called ’Cavity Optomechanics’ [34]. There, the interaction
between the optical resonator and mechanical vibrations is investigated with
the aim of enhancing measurement sensitivity and exploring its potential as a
novel tool for quantum technology. The interaction between the optical and
mechanical modes is often explained through a Fabry-Pérot optical cavity
with a moving end mirror attached to a spring as drawn in Fig. 2.1. The
Hamiltonian of this closed system Ĥ0 is given as:

Ĥ0

~
= ωoâ

†â+ Ωmb̂
†b̂− g0â

†â
(
b̂† + b̂

)
, (2.3)

7



Chapter 2 | Cavity Optomechanics

where we define bosonic annihilation operator of cavity photon â and me-
chanical vibration b̂, eigenfrequency of the optical mode ωo and mechanical
mode Ωm, and the vacuum optomechanical coupling rate g0. The origin of
this Hamiltonian can be understood as follows: the mechanical displacement
x̂ := b̂† + b̂ shifts the optical eigenfrequency by −g0x̂ since it depends on
the cavity length. Note that in this situation, the actual displacement of
the moving mirror X is given as X = xzpf 〈x̂〉, where xzpf =

√
~/meffΩm

is the zero-point fluctuation of the mechanical vibration and meff is the ef-
fective mass of the vibration (mass of the mirror in this case). However,
generally speaking, X is not always a suitable value to be considered. This
is because many systems, such as toroidal micro-cavities or optomechanical
crystals, have a multi-dimensional distribution of mechanical displacement.
And the actual displacement becomes position-dependent X(r) and it is hard
to choose at which point X should be defined. Therefore, the unitless dis-
placement operator x̂ or the annihilation operator b̂ is a more fundamental
quantity.

A considerable amount of rich physics can take place when introducing
output optical fields e.g., the driving laser or single-photons. Here we consider
the driving laser Hamiltonian ĤL,

ĤL

~
= i

√
κexsine

−iωLtâ† + h.c., (2.4)

we define the external cavity loss rate (refers to the coupling between the
optical cavity and the external input field) κex and the amplitude of input
photon flux sin in the unit of 1/

√
s. For the sake of simplicity, we take the

rotation frame with respect to the laser frequency by applying:

Û = exp(iωLâ
†ât), (2.5)

Ĥ → ÛĤÛ † − i~Û
∂

∂t
Û †, (2.6)

to the total Hamiltonian Ĥ = Ĥ0 + ĤL. This corresponds to the shift in the
optical frequency by −ωL. The resulting total Hamiltonian becomes

Ĥ = −∆â†â+ Ωmb̂
†b̂− g0â

†â(b̂† + b̂) +
√
κex(isinâ

† + h.c.), (2.7)

where ∆ = ωL − ωo is the laser detuning. Then the quantum Langevin

8
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equations of motion become,

d

dt
â =

(
i∆− κ0 + κex

2

)
â+ ig0â(b̂

† + b̂) +
√
κexsin, (2.8)

d

dt
b̂ =

(
−iΩm − Γm

2

)
b̂+ ig0â

†â+
√

Γmf̂m, (2.9)

where we define intrinsic decay rate of the optical mode κ0 and mechanical
mode Γm, and mechanical thermal noise f̂m.

An often-used treatment for these equations of motion is so-called lin-
earization. We split the optical annihilation operator into classical mean
amplitude and quantum fluctuation parts:

â = ᾱ + δâ, (2.10)

where ᾱ = 〈â〉, and δâ is the quantum fluctuation with zero mean value. The
mean number of cavity photons is given as ncav = |ᾱ|2. Inserting eq.(2.10)
into eq.(2.3) and assuming |ᾱ|2 � 〈δâ2〉, we have

Ĥ0

~
≈ −∆δâ†δâ+ Ωmb̂

†b̂− g0(ᾱδâ
† + ᾱ∗δâ)(b̂† + b̂). (2.11)

Here we ignore constant terms, −g0δâ
†δâ(b̂†+ b̂) since it is sufficiently smaller

than the remaining terms. Also −g0|ᾱ|2(b̂† + b̂) is neglected as it only shifts
the mirror position and does not contribute to the dynamics. By rewriting
δâ as â and assuming ᾱ to be real without loss of generality, we have

Ĥ0

~
≈ −∆â†â+ Ωmb̂

†b̂− (gâ† + g∗â)(b̂† + b̂), (2.12)

where g = g0ᾱ = g0
√
ncav is the photon-enhanced optomechanical coupling

rate. For the specific case known as sideband-resolved regime κ = κ0+κex �
Ωm, the interaction term in eq.(2.12) behaves differently with detuning due
to the fast- and slow-rotating terms.

(i) At ∆ = −Ωm, from the Langevin equation of motion eq.(2.8),(2.9)
both â and b̂ time-evolve with phase e−iΩmt. By keeping the resonant terms
(or in other words, by taking the rotating wave approximation ignoring the
terms with e±iΩmt), the interaction Hamiltonian leads to

−(gâ†b̂+ g∗âb̂†). (2.13)

9
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This interaction is called the beam-splitter interaction and is used for state
swapping between optical and mechanical modes. The transition rate g is
controllable as it scales with the cavity photon number ncav. The optome-
chanical state swap can also work as the laser cooling of mechanical motion,
given that the thermal occupation of optical photons at 200 THz is consid-
erably small ∼ 0.006 even at room temperature, and optical modes typically
have faster decay rates compared to that of mechanical modes. The first
demonstration of ground-state cooling with this method was achieved in an
optomechanical crystal system [3]. This interaction is also the key part of an
optomechanical memory protocol [11].

(ii) At ∆ = Ωm blue-detuning, following the similar process before, the
interaction term leads to

−(gâ†b̂† + g∗âb̂). (2.14)

This is called the two-mode squeezing Hamiltonian since it gives rise to the
time evolution operator

Ŝg
AB(t) = exp

[
i
(
gâ†b̂† + g∗âb̂

)
t
]
, (2.15)

which is the same as the generator of the two-mode squeezed states [35].
Here A and B stand for the optical and mechanical modes, respectively.
This interaction creates photon-phonon pairs in entangled states as [35]

Ŝg
AB(t) |0〉AB = sech(|gt|)

∞∑
n=0

[
−ei arg(−igt) tanh(|gt|)

]n |n〉A |n〉B , (2.16)

where we only consider the vacuum two-mode squeezed state. The state in
eq.(2.16) is clearly seen as a superposition of cavity photons and phonons
with the same excitation number (therefore the total excitation is always an
even number). However, for some applications, only the first excited state
|1〉A |1〉B is necessary and the rest of the superposition states may cause
unwanted effects, e.g. low teleportation fidelity [36]. Therefore, a protocol
called DLCZ (Duan-Lukin-Cirac-Zoller) [37] is often utilised to selectively
create |1〉A |1〉B state. In the protocol, interaction time t is set sufficiently
short so that the higher-order entangled states are negligible. And then
the non-excited state |0〉A |0〉B is filtered out, thus we get the desired state
probabilistically.

10
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As we have mentioned already, in order to obtain those different Hamil-
tonians separately, we require the resolved-sideband regime κ � Ωm. This is
the case where the mechanical sidebands ωo ± Ωm exist outside the optical
lineshape. In such a situation, we can selectively drive one of the sidebands
because the other sideband is barely driven. While non-resolved-sideband
regime, both the red- and blue-detuned Hamiltonians occur simultaneously.

Within the sideband-resolved regime, the red- and blue-detuned Hamilto-
nian stated above in eq. (2.13) and eq. (2.14) can be selectively driven, since
only one of the mechanical sideband ωo ± Ωm exists within the optical line-
shape. This is not the case for a non-sideband-resolved regime where both
sidebands exist within the lineshape and thus both red- and blue-detuned
Hamiltonian occur simultaneously.
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Chapter 3

Optomechanical Crystals

Optomechanical crystal [19] is one of the most actively studied platforms in
the field of cavity optomechanics. The basic idea is to design a periodic pat-
tern that simultaneously opens bandgaps for optical and mechanical modes
(this is possible as both follow wave equations). Since those devices are
essentially photonic crystals as well, they can be fabricated with the same
technique as is used for nanophotonics devices. It can achieve relatively high
mechanical frequencies (typically Ωm/2π = 1 ∼ 10 GHz), and the coupling
strength (g0/2π = 102 ∼ 103 kHz). Therefore, it is considered a strong
tool for fast photon-phonon conversion and/or an interface between flying
photons and superconducting qubits through GHz mechanical modes.

This chapter provides the background and basic knowledge of optome-
chanical crystals, one of the optomechanical platforms. We explain the prin-
ciple of the optomechanical coupling mechanism, i.e. the moving boundary
and photoelastic contributions, and their calculation method. Advantages
and disadvantages of different materials, including diamond, silicon and some
III-V semiconductors, are described. Recent studies on different structural
designs are also shown.

3.1 Coupling Principles
One of the most crucial parts of the OMC design is how well we confine those
modes so that they have strong mode overlap since the optomechanical cou-
pling strength depends on the product of the electric and mechanical field
(displacement or strain). Understanding the coupling principle will help us
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Figure 3.1: Schematic image of a 1D nanobeam optomechan-
ical crystal.

to come up with better structures. Here, we explain the origins of the op-
tomechanical coupling, namely the moving boundary (MB) and photoelastic
(PE) contributions in the following.

3.1.1 Moving Boundary Contribution
The optomechanical coupling derives from an effect that the geometry defor-
mation of the photonic crystal shifts its optical resonance. This is because
the displacement changes the local dielectric tensor ε(r) at position r. From
the perturbation theory for the Maxwell equations with the shifted boundary
of material [38], the frequency shift (therefore the coupling strength g0) can
be calculated within the first order of perturbation,

g0 =
dω

dᾱ
= −ωo

2

〈E| dε(r)
dᾱ

|E〉
〈E| ε(r) |E〉

, (3.1)

where we define the unperturbed optical resonance frequency ωo and electric
field |E〉, the generalized displacement amplitude ᾱ. Note that the denom-
inator of eq.(3.1) is simply the energy density of the electric field. It is
sometimes more useful by denoting with ᾱ rather than the actual displace-
ment vector u(r), shown in Fig. 3.2, as it reduces the problem from complex
3D vibrational mode to a canonical 1D harmonic oscillator with an effective
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Figure 3.2: Schematic image of the mechanical displacement
u(r) in a 1D OMC.

mass of meff . Here, the conversions are given as [39]

ᾱ = max(|u(r)|), (3.2)

meff =

∫
ρ(r)|u(r)|2dV

ᾱ2
, (3.3)

where ρ(r) is a local mass density of the device. For the MB contribution to
optomechanical coupling gmb

0 is then obtained as [38, 40],

gmb
0 = −ωo

2

∫
(Q · n̂)

(
∆εE2

‖ −∆ε−1D2
⊥

)
dS

〈E| ε(r) |E〉
, (3.4)

where we define the normalized displacement vector Q = u(r)/ᾱ, the unit
vector normal to the surface n̂(r), tangential (normal) component of electric
(electric displacement) field at the surface E (D), ∆ε = εmedium − εair, and
∆ε−1 = ε−1

medium − ε−1
air . It should be noted that eq.(3.4) depends on the

surface integral over the medium-air boundary. These naively result in the
orientation of device design which is that the more the surface is the stronger
the gMB

0 becomes. Recently proposed so-called ”C” shape design in 2D OMC
[12] is based on this guideline to enhance the MB contribution.

3.1.2 Photoelastic Contribution
The other contribution derives from the photoelastic effect where the strain
of the medium changes the refractive index. A component of the strain tensor
S is given as [41]:

Sij =
1

2

(
∂ui

∂i
+

∂uj

∂j

)
, for i, j = x, y, z. (3.5)
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As Sij = Sji, only 6 of the 9 matrix components of S are independent.
Therefore we can convert the 3× 3 matrix to a 6× 1 vector

S →


S1

S2

S3

S4

S5

S6

 :=


Sxx

Syy

Szz

2Syz

2Szx

2Sxy

 . (3.6)

Additionally, we define the relative dielectric tensor in 3× 3 matrix εr(r) as

E =
1

ε0
(εr)

−1D, (3.7)

and the relative dielectric impermeability tensor [41] as

B := (εr)
−1 =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 . (3.8)

For optically isotropic materials, εr and thus B is diagonal (off-diagonal
components are zero). Here we use the abbreviation notation to express the
relative permeability tensor in 6× 1 similar to the strain tensor,

B →


B1

B2

B3

B4

B5

B6

 :=


B11

B22

B33

B23

B13

B12

 . (3.9)

The shift in B due to the strain is given as [41]

∆B = pS, (3.10)

where p is the photoelastic tensor of the material. For materials with crys-
tallographic point groups of 4̄3m, 432 and m3m of the cubic crystal system,
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this becomes [42],

p =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

 . (3.11)

Note that p44 = (p11 − p12)/2 for isotropic materials, and p11 = p12, p44 = 0
for liquid. From eq.(3.10) and (3.11) we have

∆B1 = p11Sxx + p12(Syy + Szz),

∆B2 = p11Syy + p12(Szz + Sxx),

∆B3 = p11Szz + p12(Sxx + Syy),

∆B4 = 2p44Syz,

∆B5 = 2p44Szx,

∆B6 = 2p44Sxy.

(3.12)

Now we come back to the 6× 6 expression for B. The shift in the inverse of
the relative permittivity is

εr +∆εr = (B +∆B)−1 . (3.13)

We the shift is small that is, |∆Bi| is much smaller than the diagonal com-
ponents of B (note here again that the unperturbed B and εr are diagonal
matrices). Then we have

εr +∆εr = (B +∆B)−1

= B−1(1+∆BB−1)−1

' B−1(1−∆BB−1)

= B−1 −∆BB−2

, (3.14)

therefore

∆εr = −∆BB−2. (3.15)
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In eq.(3.14), we used (1 + x)−1 ' 1 − x for |x| � 1. We consider optically
isotropic material,

B =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 =
1

n2

 1 0 0
0 1 0
0 0 1

 , (3.16)

where n is the refractive index of the material. Then we have

∆εr = −∆BB−2 = −n4∆B (3.17)

From eq.(3.12),(3.17) and assume ε0∆εr ' dε/dᾱ, we have the photoelastic
contribution to the vacuum coupling rate

gpe0 = −ωo

2

〈E| dε(r)
dᾱ

|E〉
〈E| ε(r) |E〉

, (3.18)

where

〈E| dε(r)
dᾱ

|E〉 (3.19)

' −ε0n
4 〈E|∆B |E〉 , (3.20)

= −ε0n
4

∫
(Ex, Ey, Ez)

×

 p11Sxx + p12(Syy + Szz) 2p44Sxy 2p44Szx

2p44Sxy p11Syy + p12(Szz + Sxx) 2p44Syz

2p44Szx 2p44Syz p11Szz + p12(Sxx + Syy)


×

 E∗
x

E∗
y

E∗
z

 dV.

(3.21)

Therefore, the total vacuum optomechanical coupling rate gtot0 reads,

gtot0 = gmb
0 + gpe0 . (3.22)

Note that each contribution, therefore the total coupling rate too, can be
negative but only its absolute value plays a role in many cases. Especially in
the linearised case detailed in chapter2, the effective coupling rate g = g0α
depends on the phase of the driving laser as well.
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3.2 Material Choice

3.2.1 Silicon
As the base technology for OMC device fabrications is quite similar to that of
conventional nanophotonics such as photonic crystals, there are quite diverse
material options according to the purposes. The first OMC has been realised
with silicon platform [19], which is still one of the most commonly used mate-
rials in the field of OMC. One can precisely make the OMC structure with a
well-established and sophisticated fabrication process. It is advantageous in
terms of both optical and mechanical properties. Also, silicon is currently at
the very heart of the complementary metal–oxide–semiconductor (CMOS)
technology which makes silicon OMC strongly advantageous for industrial
applications.

Its refractive index n = 3.48 at 1550 nm is one of the highest among
commonly used materials. Also, silicon is a relatively hard material (Young’s
modulus of 130-188 GPa depending on its crystalline axis [43]) thanks to the
diamond cubic structure, and the mechanical frequency tends to be high
(typically ∼ 5 GHz for 1D structure [44] and ∼ 10 GHz for 2D [12, 13])
compared to that of other materials e.g., III-V semiconductors.

3.2.2 Diamond
Diamonds are well known as the hardest natural material found on the
earth. Therefore, OMCs made of the diamond show even higher mechan-
ical frequencies than silicon, as high as 9.5 GHz for 1D has been realised [45]
for 1D nanobeam. Additionally, diamond is a really good thermal conduc-
tor; the pure type-IIa natural diamond has a thermal conductance of ∼ 20
W/cmK [46] at 300 K. Remarkably, this value is even higher than that of
silver ∼4 W/cmK, the most thermally conductive metal. Therefore, it is
assumed that heat can dissipate through diamonds quickly thus reducing
the thermal noise. Moreover, current developments in colour centres in di-
amond [47], have attained even more attention together with the above-
mentioned advantages. The defects in a diamond crystal, usually nitrogen,
silicon or germanium atomic defects, have spin states that are well decou-
pled from the almost spinless carbon lattice, leading to a long spin coher-
ence time. A nitrogen-vacancy (NV), silicon-vacancy (SiV), and germanium-
vacancy (GeV) centres each has achieved spin coherence time T2 of >1 s [48],
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>10 ms [49], and >100 ns [50], respectively. For that, many efforts have tried
to couple the mechanics to the colour centre for advanced quantum commu-
nication or processing [51–55]. However, the refractive index of a diamond
is not among the highest (typically ∼2.4 for 1550 nm), which may result in
a relatively small vacuum optomechanical coupling rate. Indeed, a reported
coupling rate g0/2π ∼220 kHz in a 1D diamond OMC [45] is a factor of 4-5
lower than that typically achievable in 1D silicon OMCs [6, 44].

3.2.3 Gallium Arsenide
Another promising material is gallium arsenide (GaAs). This III-V semi-
conductor has quite a large refractive index n=3.37 at 1550 nm, just below
that of silicon, enabling a large g0/2π ∼ 1 MHz [56,57] in a nanobeam OMC
making it comparable to that of silicon platforms. The crystal is not as stiff
as diamond or silicon, resulting in relatively low mechanical frequencies (∼
2.4 GHz fo 1D OMC). One of the particularly attractive material properties
of GaAs is their sufficiently high piezoelectricity. That enables us to access
the mechanical motion electrically and to achieve optics-to-microwave con-
version [57, 58]. A possible direction of development with this material will
be to combine it with the quantum dots (QDs) [59]. GaAs is one of the most
common platforms for the QD-based single-photon source [60] which is now
considered a key component for quantum networking.

3.2.4 Gallium Phosphide
Gallium phosphide is also a III-V semiconductor and has recently been stud-
ied intensely thanks to some advantageous features favorable to quantum
optomechanics; (i) a sufficiently large refractive index n = 3.05 at 1550 nm
beneficial to high optical quality factor and vacuum optomechanical coupling,
(ii) a large electronic bandgap 2.26 eV which is larger than the two-photon
energy at 1550 nm (1.6 eV) suppressing the two-photon-absorption-induced
thermalization, (iii) it is a piezo material that can directly couple the me-
chanical signal to electrical signals [16,17]. Although the material has already
been employed in microdisk optomechanics [61], it was not until 2019 when
the first GaP OMC was reported with 1D structure at room temperature [14]
and cryogenic environment [15]. The mechanical frequency of 1D GaP OMC
is typically ∼3 GHz [14–17] and reported optomechanical coupling rate g0/2π
rages around 200-800 kHz.
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Figure 3.3: Schematic image of a 2D optomechanical crystal
with snowflake holes.

3.3 Structural Variations

The first OMC has a 1D nanobeam structure with rectangle holes [19], then
soon later an optimized design with ellipse holes has been proposed [40].
For 1D OMCs, the ellipse-based design has now become a more popular
structure. In either case, the mechanical mode that couples to the light most
strongly is the so-called ’breathing mode’ whose in-plane displacement is
roughly perpendicular to the nanobeam (most of the displacement is confined
around the edge of the nanobeam). Another type of motion e.g., a flexural
mode is also often utilized [23, 62]. As well as the single-nanobeam design,
there are also dual-nanobeam structures [63], which mainly utilize flexural
and out-of-plane motion.

Beyond the 1D structures, 2D design has also been proposed and re-
alised [20, 21]. The basic concept is to design the holes with a complex
’snowflake’ shape having more degrees of freedom to engineer both mechan-
ical and optical modes. A schematic is shown in Fig. 3.3. A typical strategy
for 2D OMC structural engineering is to (i) design a unit cell so that target
mechanical/optical frequencies are placed within the bandgaps, (ii) introduce
a line defect to break a symmetry along an axis resulting in 1D confinement,
(iii) finally vary the unit cell size to realise 2D confinement. There are some
variations regarding the line defect. Originally realised device [21] has a
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row of removed snowflakes while recently developed devices [12, 13, 64] have
C-shaped holes in the middle of the line. The C-shaped holes enable more
surface area in the OMC giving rise to more MB contribution to the coupling
rate. This is especially beneficial to materials with relatively small photoe-
lastic constants like silicon (note that MB is given by surface integral while
PE is by volume integral).

Generally, 2D breathing modes can achieve a factor of 2 times higher
mechanical frequency compared to 1Ds [12,44] making it favourable in terms
of quantum optomechanics due to its lower thermal occupation. The di-
mensional difference in OMC design gives rise to distinct optical/mechanical
features. One of the most motivating advantages of 2D designs is higher
resilience to laser-absorption-induced heating compared to 1D structures
thanks to the higher thermal conductance. Thermal phonons in a 2D OMC
can dissipate two-dimensionally and thus are expected to dissipate faster than
that of 1D in which phonons dissipate only along the nanobeam. This re-
sults in a suppressed temperature increase in the OMC. The laser-absorption-
induced thermal phonons in both designs have been measured and compared
in silicon devices [12, 13], and the advantage has been strongly supported.
However, 2D structures usually have larger mechanical linewidth because
the mechanical mode also dissipates faster.

3.4 Overview of the Field
Compared to other optomechanical systems, OMCs place themselves in a
unique position due to their high degree of freedom in the structural design
and integrity. The variety of the design enables different parameter regimes
on both optics and mechanics. The high mechanical frequencies allow them to
achieve the ground state relatively easily and to operate in quantum regimes.
Indeed, a silicon OMC was the first optomechanical device that achieved
mechanical ground state by laser cooling [3].

OMCs are also considered one of the promising platforms bridging dif-
ferent quantum systems to the telecom photons e.g., microwave photons of
the superconducting circuit. On top of that, recent studies have made use
of the piezoelectric feature of some materials such as GaP [17]. This al-
lows the mechanical oscillation to be converted into voltage directly through
the piezoelectric effect. This can be one of the electric-mechanical couplings
which is a key to achieving telecom-microwave transduction. The high in-
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tegrity of OMCs has enabled piezoelectric-based transduction even for silicon
platforms that are inherently not piezoelectric. This is done by depositing an-
other piezo material such as aluminium nitride on top of a silicon device [18].
What is especially unique to OMCs is that those conversions can be done on
one integrated chip that has all the necessary components [13, 17, 18]. This
is useful for scaling up the devices for quantum communication. Those high
degrees of freedom will attract even more amount of attention.

While the promising feature for quantum communication, OMCs tend
to have slightly limited mechanical coherence time. This is due to its high
mechanical frequency which acts as a double-edged sword. Recently, 130 µs
of mechanical coherence time has been reported on silicon OMC [44], while
140 ms has been reported on the soft-clamped membrane [65]. This may
imply that such devices are better suited for communications rather than
sensing.
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Chapter 4

2D Snowflake Optomechanical
Crystal

This chapter shows the details of our 2D GaP OMC design. We begin with
a unit cell snowflake design in a hexagonal pattern. The unit cell simulation
of both mechanical and optical modes shows band gaps at desired frequency
ranges. Next, we introduce the line defect which is the removal of a row of
snowflakes forming a waveguide-like confinement. Finally, we arrive at the
2D defect design which is based on a gradient change of snowflake hole size
and achieves gentle confinement. We show simulated mode profiles and the
vacuum optomechanical coupling rates.

Numerical simulations for the fibre-waveguide couplings are also shown.
The simulated travelling electromagnetic field reveals how the light mode
exists in the waveguide and becomes hybridized with the fibre.

4.1 Unit Cell Design

We employ the snowflake holes [20, 21] whose geometry is shown in Fig.
4.1(a). Our design comprises 3 rotated rectangles with width w which form
a 6-folded symmetric design. To make the geometry feasible, we smooth
the corners by adding additional circles and fillets. We add circles with
diameter w at the outer spike of the snowflake and fillets with diameter r at
the inner corners. For the band diagram, we simulate the mechanical and
optical modes by sweeping the wavenumber. The sweep is carried out along
the edge of the yellow-highlighted area in Fig . 4.1(b). The hexagon is the
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Figure 4.1: (a) Geography of a unit cell. (b) The 1st Brillouin
zone of the reciprocal space.

1st Brillouin zone of the reciprocal space where Γ−M distance is π/d. We
use the finite element solver COMSOL [66] in which the Floquet periodicity
condition is applied on the boundaries in Fig. 4.1(a).

We set the geometrical parameters (a, w, r, d) = (370, 120, 80, 577) nm
and the thickness of 260 nm. The r-parameter, the fillet diameter of an
inner corner of the snowflake, requires special consideration as the limit of
large fillet r � d the snowflake shape eventually coincides with a hexagon,
and loses its degree of freedom. The minimum value of the fillet diameter r
is fabrication dependent, namely, the precision of the electron beam writer,
etching process, and all the following processes must be considered. For our
fabrication technique specifically, r = 80 nm is quite feasible.

For a cubic crystal lattice, e.g. GaP or GaAs, the mechanical property is
determined by an anisotropic elastic tensor

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 , (4.1)

where the elastic tensor components are (C11, C12, C44) = (140.5, 62.0, 70.3)
GPa for GaP [67]. Fig. 4.2(a) is the simulated band diagram of the me-
chanical modes. The mechanical modes with yz-symmetry at the Γ point

26



Chapter 4 | 2D Snowflake Optomechanical Crystal

Figure 4.2: (a) Mechanical band structure of the unit cell
shown in Fig. 4.1. The parameters of the design are (a, w, r, d)
= (370, 120, 80, 577) nm and the thickness is set to 260 nm.
The relevant bands are emphasized with orange lines. (b)
Optical band diagram of the unit cell. yz-symmetric modes
are indicated by the blue curves. The area beyond the light
cone is filled with light blue. For both band diagrams, the
band gaps of the relevant modes are shaded in yellow.

are indicated by orange lines in Fig. 4.2(a), which is a prerequisite for the
mechanical mode to possess a sufficient optomechanical coupling rate to a
TE optical mode. A large mechanical bandgap of relevant modes > 3 GHz is
achieved around the frequency of ∼ 6.5 GHz, shaded in yellow, together with
a full bandgap > 1 GHz. It well separates confined mechanical modes from
the continuous leaky modes. Fig. 4.2(b) is the simulated optical band struc-
ture. Relevant modes with yz-symmetric electromagnetic field are shown in
blue. The area filled by yellow is the pseudo bandgap around the telecom
C-band between 181-238 THz. Note that this is not a complete bandgap
which may result in a leaky optical mode although the detail is not studied
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Figure 4.3: Schematic of the 1-dimensional unit structure
with the line defect. ∆gap determines the separation gap dis-
tance.

in this thesis. The area filled in blue is beyond the light cone

Optical frequency >
ck0
2π

, (4.2)

where c is the speed of light in a vacuum and k0 is the absolute value of the
wave vector in a vacuum. Any optical mode beyond the cone must have a
refractive index below unity n < 1, which is ignored in our analysis.

4.2 Line Defect
As a first step to realise 2D confinement, we need to break the y-symmetry.
For that, we remove a row of snowflakes along the x-axis and modify the
gap distance ∆gap between the two regions. This creates a line defect which
confines those modes along the x-axis resulting in a waveguide-like mode.
This is an often used method for photonic crystal waveguides through which
light propagates with very small loss or slowed down [68]. For our full device,
the line defect eventually end-couples to the travelling waveguide for opti-
cal access. The line defect design enables the optical mode to spread along
the x-axis (namely along the line defect) whose distribution tail can reach
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Figure 4.4: Band diagrams for the line defect unit cell. (a)
Mechanical band diagram. Orange curves are the modes with
yz-symmetry. (b) Optical band diagram. The shaded area is
above the light cone. Modes with yz-symmetry are indicated
by blue curves.

the access waveguide and couples to the travelling modes. For some designs
without line defects and perfectly 2D confined modes, one can either place a
photonic crystal waveguide by the defect region and make them evanescently
couple each other [69, 70], or directly approach it with a coupling fibre from
above [71,72]. The gap size ∆gap not only determines the confinement mode
profile, mode volume etc., but also changes optical and mechanical frequen-
cies. Therefore, it is an important parameter to tailor the frequency for the
requirement, especially to make the optical frequency around the telecom
C-band.

Fig. 4.4 shows the band diagrams of mechanical and optical modes with
a line defect for ∆gap = 600 nm. For both plots, the indicated curves have
yz-symmetry and therefore have the potential to achieve sufficient optome-
chanical coupling for the full structure. The blue-shaded area in the optical
diagram is the light cone eq. (4.2). The optical mode at around 200 THz
eventually becomes the relevant optical cavity mode when 2D confinement
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is introduced.

4.3 Full Device Design

Figure 4.5: (a) SEM image of the whole structure (b)
Schematic description of the full structure design. The
quadratic variation of the a-parameter is shown.

We can now design a full device structure to confine the modes two-
dimensionally (rigorously speaking, they are already confined along z-axis
due to the finite thickness of the slab) to form optical and mechanical cavities
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for which we need another defect that breaks xy-symmetry. In the context
of photonic crystals, some variations in structural engineering have been
proposed to realise the defect [69]. One of the most commonly used methods
is to gradually change geometrical parameters (e.g., lattice constant, hole
size, etc.) around the cavity so that the device confines the optical mode
gently. This gentle defect gives rise to a less lossy cavity mode compared
to a steep defect. Here we employ the gradual variation in the snowflake
size, more specifically the a parameter in Fig. 4.1(a), over a certain area.
Fig. 4.5(a) is an SEM image of a fabricated device, where the blue-shaded
area indicates the defect region. It spans over 8 snowflakes along the x-axis
making it a hexagon-like defect region. The detail of the variation is depicted
in Fig. 4.5(b). The a-parameter of the geometry quadratically changes within
the defect region with a minimum value of 3% smaller than that of the mirror
region. The cavity mode confinement is strongly affected by how much the
defect region varies the snowflake size from the mirror region. The larger size
difference shifts the mode frequency larger, while it makes the confinement
less gentle leading to leaky modes. Additionally, the fabrication precision
limits the possible minimum value of a-difference.

Fig. 4.6 is the profiles of absolute mechanical displacement of the three
relevant modes. As a prerequisite, those mechanical modes need to have
xyz-symmetry so that their parities match that of the TE optical mode of
concern. This can be understood by considering eq. (3.4) and eq. (3.19),
where the overlap of optical and mechanical modes gives rise to the optome-
chanical coupling. In the case of an anti-symmetric mechanical mode, one
contribution is cancelled by another contribution from the opposite side of
the structure.

Fig. 4.7 shows the optical mode profile (Ey) of the TE-like cavity mode
in the xy-plane located at the centre of the device thickness. It has eigen-
frequency of ωo/2π = 192.7 THz and is symmetric along the yz-axis. An
isotropic refractive index n = 3.05 is used for this simulation.

For both mechanical and optical simulations, we limit the number of
snowflakes to make it computable. We set 8 snowflakes along the y-axis and
17 along the x-axis but some of them are cleaved in half at the edge shown
in Fig. 4.7. This is enough number to simulate the actual device considering
both modes are well confined within the area simulated. See the appendix
A.1.3 for more details.
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Figure 4.6: (a,b,c) Simulated mechanical displacement of
modes labelled 1-3 from top to bottom. They have eigen-
frequencies Ωm/2π = 5.75, 6.57 and 7.85 GHz respectively.

4.4 Optomechanical Coupling

The vacuum optomechanical coupling rate is calculated with COMSOL by
taking the spatial integral of the electromagnetic and mechanical displace-
ment field (see appendix for more details). The actual expressions are eq. (3.4)
for the MB and eq. (3.19) for the PE contribution. Fig. 4.8 shows the sim-
ulated vacuum optomechanical coupling rates for some mechanical eigen-
modes ranging from 5.5 to 8.0 GHz. For the three dominant modes, we find
(g0, g

MB
0 , gPE0 )/2π = (-718, -305, -414) kHz for mode 1, (-256, -156, -101) kHz

for mode 2, and (-983, -755, -228) kHz for mode 3. Note that only the abso-
lute value of the total coupling rate |g0| is directly measurable in our device
and characterisation technique in this thesis. For the mechanical modes to

32



Chapter 4 | 2D Snowflake Optomechanical Crystal

Figure 4.7: Simulated Ey of the TE-like cavity mode. The
cavity region is surrounded by the black line.

couple to a TE optical mode, they must not be anti-symmetric along all the
xyz-axis, and the modes 1-3 satisfy this condition. The relative sign of the
MB and PE contribution can be different depending on the structural design,
the mechanical mode profile, and so on.

Our device is designed so that both MB and PE effects contribute com-
parably strongly to the total coupling rate. This is enabled by the suffi-
ciently strong photoelastic coefficients of GaP (p11, p12, p44) = (-0.23, -0.13,
-0.10) [73], which are a factor of 2 larger than that of silicon (p11, p12, p44) =
(-0.094, 0.017,-0.051) [74]. Considering each contribution’s origin naively, the
greater surface area may result in a stronger MB contribution, while more
bulk strain may lead to a larger PE contribution. The concept of the C-shape
design in silicon devices [12,13] is to increase the gMB

0 , while our design is to
have both contributions comparably.

4.5 Waveguide and Fiber Coupling
Here we present the details of another important component of the device;
the waveguide. It is crucial to be a single-mode waveguide so the relevant
mode transmits without loss or unwanted back-reflection. Fig. 4.9 shows the
simulated absolute value of electric field |E| of a mode frequency of 193.4 THz
in the cross-section of the waveguide. For all the simulations, the thickness of
the GaP waveguide is set to 260 nm. In simulations for widths of 600 and 550
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Figure 4.8: Simulated total vacuum coupling rate g0/2π (top),
the MB contribution gMB

0 /2π (middle), and the PE contribu-
tion gPE0 /2π (bottom). The modes of concern are indicated
by the lines.

nm, there exists not only the fundamental mode but another irrelevant mode
since the imaginary part of the effective mode index neff is negligible. Since
both are TE modes, they can unintentionally couple each other resulting in
unexpected back reflection or energy loss. For widths of 500 and 450 nm, the
neff have a non-negligible imaginary part making the irrelevant mode lossy,
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Figure 4.9: Simulated |E| of waveguide cross-section with var-
ious widths. The thickness is set to 260 nm.

and thus enabling a single-mode waveguide. We employ 500 nm width for
our devices.

We employ the fibre evanescent coupling to the access waveguide [75,76]
expecting its potential for high coupling efficiency (97% has been reported
[75]) and for the ability to reduce vibrational noise from the fibre at cryogenic
experiments. The principle of the coupling method is shown in Fig. 4.10.
Both optical fibre and waveguide are tapered and touched around the tip.
The input optical field gradually shifts from the low-loss travelling mode
to the lossy evanescent mode through the optical fibre. The fibre evanes-
cent mode is then coupled to that of the waveguide and eventually becomes
waveguide travelling mode. It is necessary to precisely position the fibre onto
the waveguide to maximise the coupling efficiency. This configuration is ex-
pected to reduce the vibrational noise of the fibre as it mechanically touches
the device. It is also compatible with the cryogenic packaging of the whole
device [77, 78] for more simplified and accessible cryogenic experiments.

We examine how the evanescent couplings occur with optical simulations.
Fig. 4.11 shows the simulated |E| with a mode frequency of 193.4 THz in the
cross-section with different fibre radii and waveguide widths. The refractive
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Figure 4.10: Schematic image of the fibre-waveguide coupling
configuration. Both fibre and waveguide are tapered forming
the hybridized travelling mode.

index of the fibre is set to n = 1.452 in the simulation. In the limit of full
waveguide width and small fibre radius (width = 500 nm, radius = 200 nm),
most of the electric field is confined within the waveguide. This becomes the
opposite in the case of a narrow waveguide and large fibre radius (width = 200
nm, radius = 500 nm); the electric field mostly exists in the fibre. However,
in other situations where both fibre and waveguide can not confine the mode
completely, there is a hybridized mode which interfaces the optical modes
between them. The simulation also reveals that, for an effective transfer,
the width of the waveguide tip needs to be at least narrower than 200 nm,
otherwise the electric energy does not travel between the waveguide and the
fibre.
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Figure 4.11: Simulated |E| of waveguide-fibre cross-section
with various waveguide width and fibre radius. The mode
analysis frequency is 193.4 THz.
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Chapter 5

SSH Topological
Optomechanical Crystal

In this chapter, we provide a different class of OMC design based on the
Su–Schrieffer–Heeger (SSH) topological model. The SSH model is one of
the one-dimensional topological insulators, and the corresponding mode is
topologically protected. We apply this concept to an OMC device expecting
robust mechanical and optical modes. Our design comprises a periodical
ellipse dimer whose alternating gap distances correspond to the single- and
double-bonds in polyacetylene molecules. We design several configurations
that connect two topologically different SSH chains to discuss how the edge
mode appears.

5.1 Structural Design

The SSH model is a 1-dimensional lattice made of dimers, now classified as a
type of 1D topological insulators [79]. It was originally proposed theoretically
to explain the electric energy of a long chain of polyacetylene (CH)x [25], and
later experimentally verified [80]. In those molecules, the methylidynes (CH)
are bonded together by alternating single- and double-bonds (Fig. 5.1(a)),
which forms effective dimers. The chain Fig. 5.1(a) has a degenerated con-
figuration with interchange single- and double-bonds, and they are topolog-
ically different. The SSH model for polyacetylene consists of tight-bounded
π-electrons which can hop to neighbouring CH sites. The Hamiltonian is

39



Chapter 5 | SSH Topological Optomechanical Crystal

Figure 5.1: (a) Chemical structure of a polyacetylene
molecule. (b) Unit cell design of an SSH topological optome-
chanical crystal.

given as [25, 80]

H = −(t+∆hop)
∑

n∈odd

(
c†n+1cn + h.c.

)
− (t−∆hop)

∑
n∈even

(
c†n+1cn + h.c.

)
(5.1)

, where cn is the fermionic annihilation operator of π-electron at the n-th
site. t is the average hopping energy and 2∆hop is the hopping imbalance
between the single- and double-bonds. By connecting those chains results in
the topological soliton which is considered a stable state.

Inspired by the electrons in polyacetylene, researchers have developed
SSH-based photonic platforms [81,82] for more stable and efficient light prop-
agation. Here, we propose an SSH-based optomechanical platform where the
optical and mechanical modes are expected to be topologically protected and
robust against disorders such as fabrication errors or dust particles.

Our unit cell design Fig. 5.1(b) resembles a polyacetylene molecule, where
methylidynes (CHs) are replaced by ellipse holes on a nanobeam and the
chemical bonds are interpreted as the gap between ellipses. In the figure,
dtopo corresponds to the double-bond and a− dtopo to the single-bond. Note
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Figure 5.2: Mechanical band diagram of the trivial and non-
trivial structure. dtopo = a/2 for trivia and dtopo=295 nm for
non-trivial. The insets show the mechanical mode profile for
the upper and lower modes of the non-trivial case. The thick
(thin) lines in the schematic images represent large (small)
gap distances between ellipses.

that if dtopo = a/2, the structure is simply a periodical ellipse with a lattice
constant of a/2. A basic idea to realise topologically protected modes is to
connect two chains, namely a chain with dtopo > a and dtopo < a jus like the
soliton in a polyacetylene molecule.

5.2 Numerical Simulation

First, we simulate the band structures of the unit cell. We choose GaP for
the nanobeam expecting the suppressed laser heating at the telecom C-band.
As the geometrical parameters, we set (a, ra, rb, w) = (550, 150, 350, 500) nm
and a thickness of 260 nm, also assuming the [100] crystalline axis is parallel
to the nanobeam. Fig. 5.2 shows the band diagram of the mechanical modes
for trivial (non-trivial) cases where dtopo = a/2 = 275 nm (= 295 nm). It can
be seen that the trivial design has two degenerated modes at 4.14 GHz which
is opened for the trivial case resulting in a lower (upper) frequency of 4.03
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Figure 5.3: Optical band diagram of the trivial and non-trivial
structure. The insets show the Ey of the upper and lower
modes of the non-trivial case.

(4.25) GHz. This can be understood by looking at the mode profiles shown
in the same figure. Both upper and lower bands have breathing-like modes
whose displacement is localised at the gap between ellipses. The mechanical
eigenfrequencies split due to the difference in the gap distance, which is
originally degenerated in the trivial case where the gap distance is equal for
all the ellipses. In our design, the longer gap distance gives rise to a higher
mechanical frequency, while the shorter gap shows a lower frequency. Note
that there are multiple mechanical modes which also show similar frequency
splitting although we only consider the breathing mode expecting sufficiently
strong optomechanical coupling. The corresponding energy splitting can be
seen in the electrons in polyacetylene as well [25].

Together with the mechanical modes, the optical mode also shows the
same energy splitting shown in Fig. 5.3. Opposite to the mechanics, the
optical mode confined in the shorter gap has higher eigenfrequency. This is
probably because the optical mode requires more energy to be confined in a
smaller region. We find that the trivial structure has a degenerated frequency
at 193.1 THz while the non-trivial structure has a lower (upper) frequency
of 190.0 (196.7) THz.

Now we try to create the edge mode by connecting two SSH chains with
different topological phases [83]. In our dimer model, the order of short and
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Figure 5.4: Designs of connection for SSH chains. The thick
(narrow) bars correspond to large (small) gaps between el-
lipses. The number 0 is the centre ellipse(s) where these SSH
chains are connected.

Figure 5.5: Simulated full optical modes for SSH topological
nanobeams with different connections.

long gap distances between ellipses creates different topological phases, i.e.
the short-long-short configuration is topologically different from the long-
short-long configuration. Unlike polyacetylene molecules, we can arbitrarily
design how to connect these chains and create the edge mode. We especially
think of four configurations shown in Fig. 5.4. They are labeled as Long or
Short, and Odd or Even. The Long (Short) configurations are two chains
connected by large (small) gap distances. The Odd (Even) configuration
has an odd (even) total ellipse number with one (two) central ellipse(s).
Especially, the Odd configuration can be seen in the polyacetylene molecules
[80].

We simulate the optical mode for those designs. Fig. 5.5 shows simulated
Ey. The simulated geometry has 25 dimer unit cells on each side and the
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Figure 5.6: Simulated g0 for SSH topological nanobeams with
various connection configurations.

central ellipse(s). The mode profiles are different for each design. The Odd
configurations have the optical mode whose energy is confined within the
ellipse holes. The mode is confined to the odd-numbered holes in the Long-
Odd design, while it is confined to the even-numbered holes in the Short-Odd
design. On the other hand, the optical mode mostly exists in the ellipse gaps
for the Even configurations. Similar to the Odd case, the high intensity exists
either even (for Long-Even) or odd (for Short-Even) numbered-gap. These
mode profiles with high intensity at alternating sites are quite similar to the
electron probability distribution in polyacetylene [25, 80]. This suggests the
optical mode originates from the topological feature.

Fig. 5.6 shows the simulated optomechanical coupling rate in those config-
urations. Among these, (a) Long-Odd and (d) Short-Even connections have a
distinct mechanical mode with sufficient coupling strength, while others have
several modes coupled to the optical mode. Some potential applications such
as quantum memory require only one coupled mechanical mode, otherwise,
the photon is transduced to one of many mechanical modes randomly and
hard to retrieve it again. The Long-Odd has a slightly higher coupling rate
g0/2π = 264 kHz than that of the Short-Even g0/2π = 229 kHz.
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Figure 5.7: Simulated mechanical modes with the highest op-
tomechanical coupling rate for each configuration.

Fig. 5 shows the simulated mechanical modes with the highest coupling
rate for each configuration. (a) Long-Odd has the most strongly confined
mode while the others have broader distributions. In terms of mechanical
quality, we expect (a) Long-Odd configuration will have the highest quality
factor when fabricated although it is difficult to estimate it with simulations.
Considering optical and mechanical simulations as well as the coupling rate,
(a) Long-Odd configuration shows the most favourable result.

Unlike the optical mode, the mechanical mode profile is more complex
probably due to its mechanical anisotropy. This makes it difficult to optimise
the geometry so that it possesses both a well-confined mode and a sufficient
coupling rate. One of the straightforward solutions for further improvement is
to modify the connection design. We have only examined the long and short
gap distance at the connection which in principle can be arbitrary. More
optimisation by sweeping the connection gap distance will increase the mode
confinement. Another possible solution is to change the structural design
itself. One example is a ring-shaped resonator with the same periodical
dimers [84] rather than a nanobeam. Fig. 5.8 shows schematic images for the
ring design idea with the SSH chain. These structures have no actual ’edge’
of the device, therefore, the topological edge mode is expected to exist only
at the connection region.
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Figure 5.8: Schematic of ring-shaped SSH chain for future de-
sign. (a,b) Connections with Long-Odd and Short-Odd con-
figurations respectively.
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Chapter 6

Device Preparation

This chapter details how actual devices are fabricated and prepared for mea-
surement. The etching process that creates the OMC pattern in the GaP
layer is explained. Also, we show our effort in optimising the design suitable
for the evanescent fibre coupling. For that, we show samples from the early
stage of the work and discuss how it does not work. Finally, the fabrication
technique of tapered fibre tips is explained.

Théo Martel and Rémy Braive at C2N, Paris-Saclay contribute to the
fabrication process.

6.1 GaP Device Fabrication
OMC designs generally require quite high fabrication precision to achieve
their ∼nm scale design. This is especially strict when realising the snowflake
shapes due to its complex geometry compared to conventional ellipses. Our
devices are fabricated with processes depicted in Fig. 6.1. As the first step,
a chip, made of a GaP device layer on top of a GaAs substrate, is prepared.
A 260 nm thick layer of GaP is epitaxially grown on the substrate. Then
we deposit a thin (∼5 nm thick) silicon dioxide (SiO2) layer on top with
a chemical vapour deposition (CVD) reactor, making the following e-beam
resist adhere to GaP. We make a 300 nm thick hydrogen silsesquioxane (HSQ)
e-beam resist layer composed of a mixture of FOx-15 flowable oxide and
methyl isobutyl ketone (MIBK) by spin-coating and soft baking. The chip is
then installed in an electron beam (e-beam) writer and the OMC structure
is drawn with a dose range of ∼4000 µC/cm2 (Fig. 6.1(a)). The e-beam
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Figure 6.1: Device fabrication process. (a) Electron beam
writing to draw the OMC pattern. (b) Development and
plasma etching. (c) Removal of the resist and SiO2 layer.
(d) Chemical etching to undercut the device.

creates crosslinks between HSQ molecules and hardens them in the exposed
area thus working as a negative resist.

After the development with buffered potassium hydroxide (KOH) based
developer AZ® 400K, an inductively coupled plasma (ICP) reactive ion etcher
creates the OMC pattern on the GaP layer (Fig. 6.1(b)). We use a gas
mixture of HBr, O2 and He for the etching. The remaining SiO2 and HSQ
are removed by submerging the chip in a buffered hydrofluoric acid (HF)
solution (Fig. 6.1(c)). At this time the chip needs to be diced into 3 to 4
pieces according to a device arrangement. To do this, we cover the entire
chip with a 10 µm thick AZ® 10XT resist to protect it from damage during
the dicing process. Then the chip is precisely diced by a spinning diamond
blade from its top side. The protection is cleaned with acetone and then
with an isopropanol solution.

Further chemical etch process is required since our optical and mechanical
modes are designed only for a free-standing device layer which is one of the
current standards (although there are quite recent studies on non-suspended
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Figure 6.2: Scanning electron microscope images of early-
stage devices. (a,b) Devices with survived and broken waveg-
uide tips respectively.

OMCs, e.g. a clamped structure [24, 85], or bound-state in the continuum
design [86, 87]). For this, we use a chemical solution composed of H2SO4,
H2O2 and H2O that selectively etches the GaAs substrate to release the GaP
OMC.

6.2 Device Optimisation
Devices are not perfect from the beginning, rather they are required to be
optimised for our measurements. Especially, we have tried a lot of device
designs for better optical coupling. At the early stage of this work, we em-
ployed the butt-coupling with a lensed fibre which allows us fast alignment.
Fig. 6.2 shows fabricated samples from that stage. OMCs are located on
the edge of the chip which is cleaved in the dicing process mentioned above.
They have ∼10 µm free-standing access waveguides attached to the OMCs.
One of the key points here is the distance between the waveguide tip and the
edge of the chip. It limits the closest distance a lensed fibre can approach
to the waveguide and thus determines the optical coupling efficiency. We
can control this by changing the position of the diamond dicing blade, and
successful devices can have gap distances of ≤ 5 µm. However, as shown in
Fig. 6.2(b), the waveguide tip can be easily damaged if they are cleaved too
close.

The resulting chip is mounted on an aluminium plate shown in Fig. 6.3.
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Figure 6.3: Sample holder for the earl-stage sample. A chip
is mounted very close to the edge of an aluminium holder and
glued with a silver adhesive.

The chip is positioned on the edge of (or slightly exceeds the edge) the holder
so that a lensed fibre can approach it. Here OMCs are fabricated on the edge
side. We use thermal conductive adhesive with silver to fix the chip position.
This glue can diffuse the heat quickly and is expected to work in future
cryogenic experiments.

As the next step, we have changed the optical coupling method from
butt-coupling to more efficient fibre evanescent coupling [75]. Originally we
tried to access the early-stage design with a tapered fibre. However, we
have found it difficult to precisely position the fibre onto such a short free-
standing waveguide. Therefore, we have redesigned the longer waveguide
shown in Fig. 6.4. The total length is more than 30 µm and the waveguide
is supported in the middle and on the tip by clamps. Also, the waveguide
is bent by 45◦ in the middle to prevent the approaching fibre from touching
the OMC structure directly which may damage the OMC. We have tested
different support widths to find out the narrowest possible width as too wide
supports may disturb the travelling optical mode. Fig. 6.4(a-c) shows 3
designs with 120, 80, and 40 nm support widths respectively. We have found
the 40 nm width is too narrow to suspend the waveguide, and because of that,
we have concluded at least 80 nm width of support is necessary. Note that
this test is only for the feasibility of device fabrication not to ensure their
resilience against the tapered fibre. Therefore, we employ a rather wider
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Figure 6.4: Test fabrication with different clamp widths.
(a,b,c) The waveguide is supported by 120, 80 and 40 nm
width of clamps on the side and end. 40 nm of width is not
strong enough and the waveguide is detached.

Figure 6.5: (a) An optical microscope image of failed fibre
alignment. (b) Schematic to illustrate the fibre configuration
for the unstable alignment.

width of 120 nm for further experiments.
With the devices in Fig. 6.4, we have tested the tapered fibre coupling,

and unfortunately, it has ended in a quite disappointing result. Fig. 6.5(a)
shows a typical failure of the fibre alignment with those devices where the
tapered fibre lands far from the waveguide and is stuck in a gap below the
GaP layer. We observed there are mainly 2 reasons to make it difficult. One
is the waveguide is so narrow (500 nm) that the fibre slips away even when it
touches. This happens because the waveguide is almost exposed and nothing
prevents the fibre from slipping. The other reason is the fibre landing area is
too small. Fig. 6.5(b) illustrates this issue. Even though the fibre tip touches
the GaP device, the rest of the fibre still moves due to its flexibility makes
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Figure 6.6: Scanning electron microscope images of a 2D GaP
OMC device. (a) The overall view of the entire device. (b,c)
Close-up image of a waveguide support and a tapered tip of
the waveguide.

it unstable.

6.3 Final Design
To solve those alignment problems we have finally come to the final design
shown in Fig. 6.6. The basic design is similar to the previous design but
the waveguide is now surrounded by a bulk GaP layer which prevents the
fibre from slipping away. The access waveguide has two clamps as shown
in Fig. 6.6(b) to support the waveguide beam. To reduce the effect of the
support, which often causes back-reflection or additional loss of the travelling
field, a part of the waveguide is widened to 900 nm from the original 500 nm.
Those supports touch the waveguide with a 120 nm width. The tip of the
waveguide is then tapered and clamped to a part of the bulk (Fig. 6.6(c)).
The tip width is set to 120 nm which is also expected to be narrow enough
for the evanescent coupling to a fibre according to the simulation results from
the previous chapter. To reduce the fibre motion, which caused fibre drifts,
we enlarge the fibre landing area to ∼1 mm so that the fibre touches its
long part. The landing area does not degrade the coupling efficiency as the
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Figure 6.7: (a) An optical microscope image of successful fibre
alignment. (b) Schematic to illustrate the fibre configuration
for the stable alignment.

Figure 6.8: (a) Tilted SEM image for the side view of a device.
(b) A cleaved sidewall of an OMC.

evanescent field only exists around the tip of the tapered fibre which is far
enough from that area.

Finally, we examine the sidewall of the device. Fig. 6.8(a) is an SEM
image of an angled view of a structure. This confirms that the OMC region
is suspended well thanks to the chemical etching and detached from the
substrate thanks to the chemical etch process. We further cleave one of the
chips along the OMC with a manual diamond chip cleaver. From an SEM
image of the cleaved cross-section Fig. 6.8(b), we find the side walls of our
device have slight curves possibly originating from the ICP etching process.
This curved side wall itself, however, does not seem to degrade the device
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performance, e.g. g0, but differences in the curve profile from one position
to another might limit the performance (see appendix for further detail).

6.4 Tapered Fibre Fabrication
Optical coupling to the OMC devices is viewed as an essential part that
determines if single-photon operations are possible. For our tapered fibre
coupling method, a very sharp tip (<1 µm) is necessary due to the narrow
access waveguide of 500 nm width and to hold the evanescent field around
it. Those micro- and nano-fibre have been intensely utilised in various fields
ranging from nanophotonics [71,72,75] to atomic physics [88], both of which
employ the strong evanescent filed around the fibre.

Two of the commonly used techniques to fabricate such fibres are the con-
ventional heat-and-pull (HaP) [89–92] and relatively recent chemical etching
methods [76]. The HaP method uses a heat source, either a flame torch or
a CO2 laser, that softens the fibre and then pulls it at both ends. The fibre
gets elongated and the result is one connected tapered fibre if the process
is stopped before the fibre gets split. When the fibre is pulled very quickly
after some elongation, it becomes two split fibres with sharp tapered tips.
This method is, at least for preparing fibre tips, not as reproducible as the
chemical etching due to the randomness when the quick pulling motion splits
it. Also, only two fibres can be fabricated in one process.

On the other hand, we employ the chemical etching scheme due to its
high controllability, reproducibility, and capability to produce many fibres in
one process. Fig. 6.8(a) shows our fibre etching setup in a cleanroom. ∼16
of single-mode (SM) fibres are stripped at the end and mounted to a fibre
holder which is placed on a digitally controllable motorised stage. Then the
fibres are submerged in a 40% HF etching solution for roughly 4 cm. The
motorised stage pulls up the fibres at a constant speed ∼7 µm/s resulting
in cone shape tips. The stage speed and concentration of the HF solution
determine the angle of the cone shape. Fig. 6.8(b) shows a schematic image
of the solution and the fibre during the process. The stripped bare SM fibres
are immersed in the solution. The surface of the solution is covered by a
o-Xylene liquid layer which prevents the HF from evaporating during the
process. At the end of the process, those fibres are slowly submerged in an
isopropanol solution for a couple of minutes for cleaning.
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Figure 6.9: (a) Fibre etching setup in a cleanroom. (b)
Schematic of the etching process. (c) Optical microscope im-
age of an etched fibre tip.
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Chapter 7

Device Characterisation

In this chapter, we characterise our device fabricated in the previous chap-
ter. The first section provides optical properties and our setup for the fibre-
waveguide coupling to the OMC. The next section shows the mechanical
features of the device. We find three mechanical modes as predicted from
the numerical simulation. We analyse the dynamical backaction effect for
more detailed mechanical properties. Finally, we measure the vacuum op-
tomechanical coupling rate g0 with the calibration tone method.

7.1 Optical Mode
Here we characterise the optical properties of our device, e.g. eigenfrequency
and linewidth. Fig. 7.1 is a schematic of the experimental setup. Throughout
the experiments, we use a TLB-6728 tunable diode laser whose output wave-
length ranges from 1520 to 1570 nm. An optical isolator right after the laser
blocks undesired reflection from coming back to the laser. The laser inten-
sity is attenuated by a variable optical attenuator (VOA) which a Redpitaya
digitally controls. This is necessary to avoid the unwanted thermo-optical
nonlinearity [93] but yet to sustain sufficient signal-to-noise ratio of the me-
chanical signal in later experiments. The thermo-optical nonlinearity shifts
the optical resonance toward a lower frequency as the laser power increases.
Polarisation of the field is manually controlled by a fibre polarisation con-
troller so that it matches the relevant optical mode of the travelling waveguide
and OMC modes. An optical circulator delivers the input field into a device
path. A bare fibre coupler (BFC) connects the fibre patch cable to a bare
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Figure 7.1: Schematic of the measurement setup for optical
characterisation. RP: Redpitaya, PD: photodetector, BFC:
bare fibre coupler, and DUT: device under test.

fibre whose other end is tapered in the etching process. Then the tapered
fibre tip couples to a waveguide of a device under test (DUT). Reflection is
sent to a photodetector (PD) and another RP analyses its photocurrent.

The evanescent fibre coupling method requires precise alignment such
that the fibre tip touches the 500 nm wide waveguide. Fig. 7.2(a) is our fibre
alignment setup. The input fibre is mounted on a v-groove fibre holder whose
position is controlled by manual translational stages. The fibre angle is also
manually controllable. Our device chip is glued on a copper device holder
with silver conductive adhesive. The holder is placed on digitally controlled
piezo motorised stages. First, the fibre is roughly placed above the desired
OMC structure with the manual translational stages. Then the piezo motors
precisely move the sample position by monitoring the reflection intensity with
the PD and RP. Polarisation of the input field is also controlled during the
process.

Fig. 7.2(b) depicts the image of the fibre-waveguide coupling configu-
ration. We monitor the rough fibre position with a long working distance
microscope while positioning the fibre.

We estimate the evanescent fibre coupling efficiency by comparing the
input and output power from the device. The input is measured right after
the BFC with another cable patch fibre and a power meter, while the output
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Figure 7.2: (a) Image of the fibre coupling setup. (b)
Schematic of the coupling configuration.

from the OMC is measured at the output port of the optical isolator. The
wavelength of the laser is set to far enough from the optical resonance of
the OMC so that we get strong reflection during the estimation. We adjust
the polarisation to maximise the reflection. By taking the additional losses
from BFC, isolator and other fibre connectors into account, we estimate the
coupling efficiency achieves ∼60%. This can be further improved by adjusting
the waveguide geometry and the angle of the cone tip. Typically, a sharper
fibre tip angle extends the range of the evanescent field. This contributes to
more efficient coupling as the light transfers from the fibre to the waveguide
more gradually. However, this requires a longer contact distance where the
fibre and waveguide must be aligned. Also, the evanescent field may diffuse
through the substrate if the fibre is too sharp resulting in additional loss.

The optical spectrum is obtained by sweeping the laser wavelength while
measuring the reflection intensity with the PD. A broad wavelength sweep
results in Fig. 7.3(a) that shows a narrow dip at λ0 = 1533.1 nm corresponds
to the optical resonance of our OMC. The sinusoidal background seems to be
some interference effect possibly due to back reflection from the waveguide
or fibre. Theoretical analysis reveals that this parasitic back reflection may
affect measurements on optomechanical coupling rate g0 (see appendix).

Another fine scanning Fig. 7.3(b) shows the detail of the optical reso-
nance. Laser detuning ∆/2π ranging ∼ ±40 GHz shows optical resonance
ω0/2π = 195.55 THz and a loaded linewidth κ/2π = 2.47 GHz (quality factor
Qo = 79,200). The Fano fit curve for the reflection R(∆)

R(∆) = h− A
(1− q2)κ/2− q∆

κ2/4 + ∆2
, (7.1)
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Figure 7.3: (a) Broad scan of the optical spectrum. A narrow
optical resonance is found at 1533.1 nm. (b) Finer scan of
the optical spectrum with different detuning ∆ around the
optical resonance ω0/2π = 195.55 THz.

describes our optical resonance. Here we define the offset h, amplitude pa-
rameter A, and Fano parameter q. This suggests that parasitic interferences
exist possibly due to the back reflection from the waveguide or tapered fibre
(see appendix A.3).

7.2 Mechanical Mode

Now we characterise the mechanical motion of the OMC. The simulation from
the previous chapter predicts there must be mechanical resonances around
5-8 GHz. Mechanical spectra can be obtained by measuring the intensity
modulation of output light. This is because mechanical displacement shifts
the phase of the incoming optical field thus resulting in phase modulation
at the mechanical frequency. In the case of a cavity optomechanical system,
where the mechanics interact with cavity photons, the phase modulation
is transferred into intensity modulation due to the quadrature rotation of
light by the optical cavity. Fig. 7.4 is the measurement setup for mechanical
properties. A difference from the optical measurement setup is that the
reflection light from DUT is now split into two paths with a 1:99 ratio. Most
of the light is further amplified by an erbium-doped fibre amplifier (EDFA)
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Figure 7.4: Schematic of the measurement setup for mechan-
ical characterisation.

so the fast PD can detect small signals. Our fast PD can acquire signals from
DC to 10 GHz frequency components. The photocurrent from the fast PD
is analysed by a spectrum analyser which shows the mechanical spectrum.

First, we measure the mechanical frequencies. To do so, we take a broad
frequency scan with the spectrum analyser shown in Fig. 7.5. We find three
narrow peaks in the power spectral density (PSD) at around Ωm/2π = 5.7,
6.5, 7.7 GHz, as predicted from the simulation. We label them as mode 1-3
and the corresponding simulated mechanical mode profiles are shown in the
insets. We find that the mechanical frequencies of those modes exceed the
optical linewidth, placing them in the resolved-sideband regime κ < Ωm. This
is a prerequisite for some quantum applications as we can selectively realise
either the beam-splitter or two-mode squeezing Hamiltonian according to
the detuning. In the unresolved-sideband regime κ ≮ Ωm, both of the above
Hamiltonians inevitably exist simultaneously.

The mechanical motion is always influenced by the optical cavity mode
called the dynamical backaction [34], therefore the mechanical frequency and
linewidth can change depending on the intensity and detuning of the input
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Figure 7.5: Broad scan of the mechanical power spectrum
density. Insets show the simulated mechanical displacement
for each mode.

laser. In order to obtain the intrinsic mechanical parameters, we analyse
the mechanical spectra with different laser detuning at a fixed input power.
1% of reflection is monitored by a PD and an RP which is then used for a
feedback control to lock the wavelength to a desired detuning.

Fig. 7.6 shows the detail of how to obtain detunings during the character-
isation. The optical spectrum is measured before and after the mechanical
measurement to compensate for the drifts of the optical spectrum due to
e.g. fibre or polarisation drift. When we take the mechanical spectrum, a
DC component of the reflection power is also monitored so we compare the
reflected power to the fitted optical curve. This gives us detunings for locked
points. In our setup, the locking range is limited to roughly within the opti-
cal linewidth (|∆| . κ) because the feedback relies on the slope of the optical
spectrum and the slope is too flat at |∆| & κ. For the same reason, it can
not lock the wavelength exactly in the vicinity of the optical resonance.

Fig. 7.7 shows measured shifts in the mechanical frequency and linewidth
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Figure 7.6: A typical optical spectrum for determining laser
detuning. Spectra are taken before and after the mechanical
measurement cycles. The monitored DC powers are compared
to the mean value of those fitted curves.

with various detuning for modes 1 and 3. The error bar of each data point is
the standard deviation of the Lorentz curve fitting the individual mechanical
spectra. For the shifts, we use the fitting curves

Ωeff = Ωm + δΩm, (7.2)

δΩm = g20
κex

∆2 + (κ/2)2
P

~ωL

(
∆− Ωm

κ2/4 + (∆− Ωm)
2 +

∆+Ωm

κ2/4 + (∆ + Ωm)
2

)
,

(7.3)
Γeff = Γm + δΓm, (7.4)

δΓm = g20
κex

∆2 + (κ/2)2
P

~ωL

(
κ

κ2/4 + (∆ + Ωm)
2 − κ

κ2/4 + (∆− Ωm)
2

)
,

(7.5)
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Figure 7.7: Dynamical back-action measurement results.
(a,b) Shifts in the frequency and linewidth for modes 1 and
3, respectively. Laser power is set to constant while the wave-
length is locked to some detunings.

where we define intrinsic frequency Ωm, linewidth Γm, input power to the
optical cavity P , and external cavity loss κex. The detuning ∆ is estimated
by comparing optical reflection power to the Lorentzian shape of the cav-
ity mode. From the fitting, we estimate (Ωm,Γm)/2π = (5.71±0.01 GHz,
4.57±0.03 MHz) for mode 1 and (7.65±0.01 GHz, 4.91±0.03 MHz) for mode
3, respectively. This corresponds to mechanical quality factors Qm := Ωm/Γm

= 1.25×103 for mode 1 and 1.56×103 for mode 3. We ignore mode 2 because
of the relatively small mechanical signal due to the small coupling rate g0.

It can be seen that the dynamical backaction effect above is rather small
and it is not really clear, especially for the mechanical linewidths. This
is because all of the modes are sideband-resolved quite well and the laser
detunings are only within the optical linewidth. One can expect a larger
effect when the detuning is set to one of the sideband ∆±Ωm. However, in our
measurement setup, the slope locking only allows us to lock the wavelength
within the optical linewidth.
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Figure 7.8: Schematic of the measurement setup to determine
g0 with the calibration method.

7.3 Optomechanical Coupling
Furthermore, we estimate one of the most important parameters, the vac-
uum optomechanical coupling rate g0. Among several methods such as taking
mechanical broadening [40] or sideband assymetry [15], we employ the cali-
bration method [94]. This method does not require the knowledge of intra
cavity photon numbers.

To do so, we use the measurement setup shown in Fig.7.8. A difference
from the mechanical measurement setup is that now we phase-modulate the
input field with an electro-optic modulator (EOM). With a radio frequency
drive at Ωc, the EOM creates two calibration tones to the carrier frequency
as

E0e
−iωLt → E0e

−iωLt

(
1 +

φ0

2
e−iΩct − φ0

2
eiΩct

)
, (7.6)

where we define the laser amplitude E0, carrier frequency ωL, modulation
depth φ0 as well as calibration frequency Ωc. Our measurement is insensitive
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Figure 7.9: Typical power spectral density for the calibration
method.

to the phase modulation eq.(7.6). However, according to the detuning, the
optical cavity transduces the phase modulation to intensity modulation with
the quadrature rotation. Assuming the quadrature rotation occurs equally to
both the mechanical signal and calibration tone, the vacuum optomechanical
coupling rate g0 is estimated by comparing the areas below the two peaks.
The exact expression is given as [94]:

g0 ≈

√
φ2
0Ω

2
c

4 〈nth〉
Smeas
II (Ωm) Γm/4

Smeas
II (Ωc) fENBW

, (7.7)

where fENBW is the effective noise bandwidth (ENBW) of the spectrum
analyser in linear frequency, Smeas

II (Ω) the symmetrised noise power spec-
tral density at Ω, and thermal occupation of the mechanical motion〈nth〉 ≈
kBT/~Ωm. Here we simply multiply the peak heights by their linewidths
and compare them, instead of comparing the area directly. The modulation
depth φ0 is given as

φ0 =
πV

Vπ

, (7.8)

where V is the driving voltage of the RF signal generator and Vπ = 6.5 V in
our EOM.

A typical power spectral density for the calibration method looks Fig. 7.9.
Mechanical frequency and linewidth are extracted by fitting the mechanical
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Figure 7.10: (a,b) Measured vacuum optomechanical coupling
rate g0 for mode 1 and 3.

peak with a Lorentz shape. On the other hand, the calibration tone is so
narrow and the spectrum analyser can not resolve it. Instead, the width
of the calibration tone depends on the bandwidth of the spectrum analyser
called ENBW, which can be digitally changed, thus resulting in a Gaussian
distribution. For all the characterisations, the calibration frequency is set
to no farther than 40 MHz from the mechanical frequency to let the mea-
surement setup respond equally to both signals. Also note that eq.(7.7) only
gives the absolute value of the coupling rate. However, it does not make a
significant difference as, in this work, the sign is out of our scope.

The results of the calibration method are shown in Fig. 7.10 for modes
1 and 3. By taking a mean value over the detuning, we obtain g0/2π =
231±13 (452±32) kHz for mode 1 (3). Compared to the simulated results,
the measured values are a factor of 2-3 small. Previous studies on 1D GaP
optomechanical crystals at room temperatures have also reported a similar
order of reduction [14, 17]. As discussed in those works, one possible expla-
nation relates to our imperfect knowledge of the material properties of GaP,
particularly its photoelasticity. Our simulations use the photoelastic con-
stants at 632.8 nm because, to the best of our knowledge, sufficient research
has not been conducted at 1550 nm yet. Another also possible origin of this
reduction is the fabrication imperfection which causes random disorder in
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Mode Measured parameters
Ωm/2π [GHz] Γm/2π [MHz] Ωm/κ g0/2π [kHz] C0 = 4g20/Γmκ

This work
Mode 1 5.71 ± 0.01 4.57 ± 0.04 2.31 231 ± 13 1.89× 10−5

Mode 2 6.50 ± 0.01 3.93 ± 0.41 2.63
Mode 3 7.65 ± 0.01 4.91 ± 0.03 3.10 452 ± 32 6.74× 10−5

Schneider et al. [14] 2.90 3.13 0.92 370-680 5.55-18.8× 10−5

Hönl et al. [17]
Mode A 3.28 2.55 1.12 191 1.96× 10−5

Mode B 3.31 2.81 1.13 283 3.90× 10−5

Mode C 3.33 2.56 1.14 293 4.59× 10−5

Stockill et al. [15] 2.91 0.014 (@ 7 mK) 0.56 845 4.03 × 10−2

Table 7.1: Comparison of measured parameters from different
GaP OMCs.

the OMC design. We have seen the sidewalls are slightly rounded in the pre-
vious chapter, which may disturb the optical and mechanical confinement.
We discuss this part with numerical simulation in an appendix.

Theoretically, the calibration method works at any detuning giving a
constant value. However, actual devices may show distorted results due to
dynamical backaction or imperfect optical lineshape originating from unex-
pected back-reflection.

Comparison of our device with other relevant devices reveals significant
advantages to our 2D design. Table 7.1 compares our results with 3 other
works on GaP OMC by Schneider et al. [14], Hönl et al. [17], and Stockill
et al. [15]. Our device shows by far the highest mechanical frequencies;
they are 2-3 times higher than those of the 1D devices thanks to the 2D
geometry. This is reasonably expected considering studies on 1D and 2D
silicon OMCs [21,40]. This allows our device to have the highest Ωm/κ ratio
(Ωm/κ=3.1 for mode 3 while other 1D designs have typically Ωm/κ ∼1);
thus placing it in the resolved-sideband regime easily. Given that, our device
will be a favourable candidate for the optomechanical state conversion as
we can selectively turn on the beam-splitter Hamiltonian at red detuning
while suppressing the two-mode squeezing Hamiltonian. Our device possesses
one of the highest vacuum optomechanical coupling rates g0 and mechanical
quality factor Qm among the room temperature experiments.

With the measured g0, as well as previous mechanical and optical char-
acterisation, we can estimate the single-photon cooperativity C0 = 4g20/Γmκ,
a figure of merit to assess how favourable the device is for quantum opera-
tions. The value can be understood as the optomechanical cooperativity per
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cavity photon. We achieve C0 = 6.74 × 10−5 for mode 3 being one of the
highest among the room temperature GaP OMCs studied so far. For cryo-
genic and quantum operations, one of the most important figures of merit is
the quantum cooperativity Cq = ncavC0/nth. In the situation where Cq > 1,
optomechanical state conversions take place faster than the mechanical de-
coherence, allowing us to realise quantum mechanical memories. For that
application, one needs a large cavity photon number ncav while suppressing
mechanical thermal occupation nth which also can be heated by the cavity
photons [12, 13]. Naively assuming C0 is unchanged from room to cryogenic
temperature and a condition nth ≤ 1, rather large amount of cavity photons
ncav = 104 − 105 is required. However, comparing 1D GaP OMC at room
temperature [14] with the one at low temperature [15], C0 increases by three
orders of magnitude. If this is also applied to our 2D structure, we require
a much smaller number of photons ncav = 10− 100, and would be less laser
heating.
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Conclusions

8.1 Summary of the Results
In this thesis, we have explored the OMC designs made of GaP. This is
motivated by the large electron gap of GaP which is expected to suppress the
two-photon absorption at telecom frequency. We present two OMC designs,
the two-dimensional and SSH topological ones based on FEM simulations.
The characterisation experiment reveals the 2D design achieves the resolved
sideband regime with Ωm/κ = 3.10, the highest among previously reported
GaP OMCs. The measured vacuum optomechanical coupling rate g0/2π =
452 kHz and the single-photon cooperativity C0 = 6.74 × 10−5 are both one
of the highest compared to similar devices. Considering the characterisation
results and the optical properties of GaP, our device will be a promising
candidate for quantum memories of light.

We also develop the fibre optical coupling method. The best result we
obtain is 60% of coupling efficiency which we can improve even more. We
believe this method will enable a package of the device and access fibre which
will be cryogenic compatible.

8.2 Outlook
This PhD has started in the context of collaboration work in the Hy-Q re-
search center at the Niels Bohr Institute with a strong motivation to control
single photons with an optomechanical system. At the early stage of the
project, we concluded that an OMC was probably the most suitable platform
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which was completely new to us. Therefore, this PhD work has encountered
a lot of difficulties due to the lack of experience.

Although we managed to obtain sufficient outcomes in the end, three and
a half years was not enough for the author to complete this ambitious project.
Therefore, the author believes it is worth providing an outlook of future work,
given the considerable time and effort spent on planning. Here, we provide
how we will move on to the cryogenic experiments and the protocol for the
single-photon memory.

8.2.1 Improving Fibre Coupling

Figure 8.1: Microscope images of the preliminary waveguide.
The total length is roughly 150 µm. The tip of the waveguide
is a simply narrowed rectangle with width of 120 nm.

The first problem we need to solve is the fibre-waveguide coupling ef-
ficiency since the 60% of coupling may not be enough for effective photon
storage. One of the most promising methods for improving the coupling is to
optimise the waveguide shape. This is because the fibre tip shape is not pre-
cisely controllable although we can roughly change the tip angle by changing
the pulling speed at the chemical etching. On the other hand, the waveguide
is drawn by the e-beam writer and can be precisely controlled in an nm scale.

More precisely, the coupling efficiency is limited by the difficulty of the
alignment. The efficiency is extremely sensitive to where the fibre contacts
the waveguide, which can not be perfectly controlled in our setup. Therefore,
a promising solution will be to redesign the waveguide so that it is easier
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to align the fibre and less sensitive to the fibre position. Fig. 8.1 shows
microscopic images of a preliminary waveguide design. They are more than
5 times longer than that shown in this thesis. We expect this design to enable
longer fibre-waveguide contact which will make the alignment easier. Also,
the waveguide has a simply narrowed tip rather than a tapered one. This will
allow the evanescent field to exist longer range also reducing the sensitivity
to the fibre position.

8.2.2 Cryogenic Packaging of a Device

Figure 8.2: Optical image of a glued fibre tip. The device
chip is mounted on a copper holder with silver adhesive. The
tapered fibre is glued with a UV epoxy drop.

To conduct experiments at low temperatures, we employ the cryogenic
packaging method [77, 78, 95] that can significantly simplify the optical cou-
pling to a device in a dilution refrigerator. Those methods require fixing the
fibre position to a certain place with an adhesive such as UV epoxy. We es-
pecially follow the same method previously achieved on a diamond photonic
crystal cavity [78]. In that study, a tapered fibre is placed on the coupling
waveguide and then glued to the mounting plate with droplets of UV epoxy.
The study has reported the fibre stays in contact even after several cycles of
cooling process down to 77 K.

We have also tried this method and Fig. 8.2 shows our trial. We mount
the device chip on a recessed region of a copper plate with a silver adhesive
(Agar Silver Paint G302). First, some droplets of UV epoxy (Norland Optical
Adhesive 88) are placed on the copper plate in front of the chip, then the
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fibre is aligned to the waveguide. The circle slits on the plate are to prevent
the droplets from flowing and spreading. During the fibre alignment, the
fibre is always immersed in a droplet. Once the alignment is completed, we
shine UV light to cure the droplet and fix the fibre position.

However, at the time of submitting this thesis, our trial has not yet
succeeded. This is because the fibre drifts slightly during the UV curing and
the tip appears detached from the waveguide. We believe the volume of the
UV adhesive changes when it coagulates. We can try other adhesives with
different viscosity or durability. Also, we expect the previously mentioned
longer waveguide design will be more tolerant to the drift thanks to the longer
contact distance.

8.2.3 Quantum Memory with OMC

Figure 8.3: Schematic of an optomechanical memory protocol
for single-photons.

Lastly, we discuss the protocol of the single-photon quantum memory
with an OMC which represents the ultimate objective of this work. We
assume a situation where a photon is emitted by a GaAs-based quantum
dot (QD) single-photon source [60]. QD is currently considered one of the
most common and reliable single-photon sources thanks to its high efficiency
and emission rate. Fig. 8.3 shows a schematic of the storage scheme. The
coming single-photon has an exponentially decaying temporal waveform due

74



Chapter 8 | Conclusions

to the spontaneous emission. The linewidth of the photon ∼200 MHz has
been reported [96] at around 950 nm wavelength which can be converted
into that of telecom C-band [97] so it resonates with the optical mode of
the OMC. Here, the linewidth of the emitted photon is an important factor
that determines the storage efficiency. An optomechanical system must have
the optomechanical conversion rate Γopt = 4ncavg

2
0/κ matched to the single-

photon’s linewidth. It should be noted that, in reality, we can not arbitrarily
enhance Γopt by increasing the laser power due to the added noise originating
from the laser heating.

During the ”write” process of the OMC quantum memory, a red-detuned
driving pulse is injected together with the single-photon. The pulse medi-
ates the beam-splitter Hamiltonian which converts the single-photon to a
mechanical excitation. The intensity must be sufficiently strong for efficient
conversions. Once the photon is stored in the mechanical mode, the driv-
ing laser is turned off which preserves the information for its coherent time.
We aim at ∼100 µs of mechanical coherence time at cryogenic temperature.
Then we inject another red-detuned pulse when the information needs to be
read out which converts the mechanical excitation to photon emission. It is
important to note that the temporal waveform of the read-out photon de-
pends on the pulse intensity. By lowering the intensity, for example, we make
the OMC emit the photon slowly. This results in a longer waveform than
that of the original single-photon and, therefore narrower linewidth. This
also suggests another interesting possibility that is the arbitrary waveform
generator with an optomechanical system. We can, in principle, engineer the
waveform in the desired shape such as exponentially increasing function by
controlling the intensity of the red-detuned pulse. A theoretical treatment
for the protocol is given in the appendix.
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Appendix A

Appendices

A.1 FEM Simulations with COMSOL

A.1.1 Full Geometry

Figure A.1: Simulated geometries. (a) A tilted view of the
entire geometry. (b) A top image of the geometry.

COMSOL [66] is one of the most used FEM solver software in various
fields of science and engineering. It is a power tool to simulate multiple
physics e.g., electromagnetism and solid mechanics of the same structure.
However, because of the high functionality, even a small difference in the set-
ting parameter can cause totally different simulation results. This appendix
presents the details of the COMSOL simulation we use for the simulation re-
sults in the main chapters. We take the 2D OMC simulation as an example
here.
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Figure A.2: (a) Fixed boundary condition for the solid me-
chanics. (b) Scattering boundary condition for the electro-
magnetic wave, frequency domain.

Fig. A.1 shows the entire simulated geometry consisting of the GaP device
slab and an air box surrounding it. The height of the air box is set to large
enough 3×1,550 nm = 4,650 nm so that the optical cavity mode is well held
inside. The depth (size in the y-axis) of the air box (and therefore the GaP
slab too), is set to 3.5

√
3d + ∆gap which is the exact size to hold a total of

8 rows of snowflakes including the waveguide gap ∆gap. The depth seems
reasonable considering the strong confinement of the optical and mechanical
modes shown in the main text. The width (size in the x-axis) spans 17d
which hold 17 snowflakes. Since it is an odd number, the snowflakes on the
edge are cut in half, which is also the case for the fabricated device. We
apply the Solid Mechanics module to the GaP slab and the Electromagnetic
Wave (Frequency Domain) module to the whole geometry.

A.1.2 Physics Setting
In FEM simulations, the boundary condition is one of the crucial parts which
significantly affects the simulation results. We require somewhat different
conditions for mechanics and optics. The mechanical motion needs to be
fixed on the edges as the real device is clamped as well, and the optical mode
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requires no scattering from the boundary. Fig. A.2 depicts the boundary
conditions for those physics modules. The boundary condition for the solid
mechanics is relevantly straight forward, where we set the fixed constraint
boundary on the edge of the GaP slab, as shown in (a). Now mechanical
displacement is not allowed on this condition (u = 0 at the boundary). This
is quite reasonable considering the actual device is clamped on those edges
(see Fig. 6.6).

The optics part is more complex because there are some options to reduce
the back reflection. In principle, one should add the perfectly matched layer
(PML) so that the electric field only dissipates and does not get reflected
by the surface. PML is the additional domain whose permittivity and per-
meability have imaginary parts, decaying the transmitting electromagnetic
field. However, due to the limitations of our computer, PML is computa-
tionally expensive. We then apply the scattering boundary condition (SBC)
to all the boundaries. To understand the SBC, we restrict ourselves to a 2D

Figure A.3: Schematic of a 2D modelling region for the scat-
tering boundary condition.

plane shown in Fig. A.3. Here, we only consider the electric field with the
out-of-plane component scattered from the modelling region to the outside.
The 1st order SBC is given as [66]

n · (∇Ez) + ik0Ez = 0, (A.1)

where we define the unit normal vector to the surface of the modelling region:
n, the out-of-plane scattered electric field: Ez, and the wavenumber: k0.
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Also, the 2nd order SBC is given as

n · (∇Ez) + ik0Ez −
i

2k0
∇2

tEz = 0, (A.2)

where ∇2
t is the second tangential derivative along the boundary. In the

software version we use (5.6 and 6.2), the 2nd order SBC is automatically
applied to the selected boundaries.

Now we move on to the setting for the solid mechanics module. GaP is
a mechanically anisotropic material, so we need to include it in the setting.
This can be done at ”Solid Mechanics” > ”Linear Elastic Material” > ”Ma-
terial symmetry” and then by choosing ”Anisotropic”, shown in Fig. A.4.
In the same setting, we need to input the anisotropic elastic tensor of the

Figure A.4: A screenshot of the setting for the mechanical
anisotropy.

simulated material. In the case of GaP or other cubic crystals, the tensor
is given as eq.(4.1). This setting makes the x-axis of the geometry the [100]
crystalline axis of the device, therefore we may need to align those axes ac-
cording to the OMC structure. For that, one can either physically rotate the
geometry or redefine the coordinate system in ”Definitions” > ”Base Vector
Systems” and then apply it to the solid mechanics module.

A.1.3 Optomechanical Coupling
The vacuum optomechanical coupling rate is one of the most important pa-
rameters of the device’s performance. It can also be calculated using the
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same software. First of all, we need to normalise the mechanical displace-
ment and the electric energy stored as they are in principle arbitrary values.
The mechanical motion can be normalised by taking the absolute value of the
maximum displacement over the geometry. This can be obtained in ”Results”
> ”Derived Values” > ”Volume Maximum” and by typing,

Maximum Displacement [m]: sqrt(abs(u)^2+abs(v)^2+abs(w)^2)

which gives us the maximum displacement in the unit of length ([m] by
default). For the rest of the analysis, the mechanical displacement u(r) is
divided by this value. With this, we can obtain the effective mass of the
motion meff . In ”Volume Integral”, it is calculated by

Effective mass [kg*m^2]: solid.rho*( abs(u)^2 + abs(v)^2 +
abs(w)^2 )

and by normalising it with max(u(r)).
Similar to solid mechanics, we can calculate the electric energy stored

in the geometry which is used to normalise the electric field. In ”Volume
Integral”, we can use

Stored electric energy [J]: epsilon0_const*epsilon_GaP*(
abs(Ex)^2 + abs(Ey)^2 + abs(Ez)^2 )

where we define the relative permittivity of GaP, epsilon_GaP=9.3262. We
can define parameters in ”Results” > ”Parameters”. The stored electric en-
ergy is exactly the integral that appears in the denominator of eq. (3.4) and
eq. (3.19). Now we get the energy shift due to the photoelastic and moving
boundary contributions. They can be calculated in ”Volume Integral” as

Photoelastic energy [J]: real(-epsilon0_const*(n_GaP^4)*(
2*real(conj(Ex)*Ey)*p44*solid.eXY +
2*real(conj(Ex)*Ez)*p44*solid.eXZ +
2*real(conj(Ey)*Ez)*p44*solid.eYZ + (abs(Ex)^2)*(
p11*solid.eXX+p12*(solid.eYY+solid.eZZ) ) + (abs(Ey)^2)*(
p11*solid.eYY + p12*(solid.eXX+solid.eZZ) ) + (abs(Ez)^2)*(
p11*solid.eZZ + p12*(solid.eXX+solid.eYY) ) ) )

Moving boundary energy [J]: real(u*nX+v*nY+w*nZ)*(
epsilon0_const*(epsilon_GaP-1)*(
abs(ewfd.tEx)^2+abs(ewfd.tEy)^2+abs(ewfd.tEz)^2 ) -
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(1/epsilon0_const)*((1/epsilon_GaP)-1)*( (abs(nX*ewfd.Dx))^2
+ (abs(nY*ewfd.Dy))^2 + (abs(nZ*ewfd.Dz))^2 ) ).

Here we define the refractive index of GaP n_GaP, and the photoelastic tensor
components p11, p22, and p44. Note that they correspond to the spacial
integrals that appear in the numerator of eq. (3.19) and eq. (3.4).

We finally arrive at the coupling rate g0 with those simulated values. We
have

meff =
Effective mass

Maximum Displasement2
(A.3)

xzpf =

√
~

2meffΩm

(A.4)

gPE0 = −ωo

2

xzpf × Photoelestic energy
Max Displacement×Stored electric energy

(A.5)

gMB
0 = −ωo

2

xzpf × Moving boundary energy
Max Displacement×Stored electric energy

. (A.6)
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A.2 Effect from the curved sidewall
In the fabrication chapter of the main text, we have seen the sidewalls of our
OMC device are not perfectly straight but rather rounded. This is possibly
due to the proximity effect during the e-beam process or lack of optimisation
of the gas mixture during the plasma etching, and so on. It is important
to understand how vulnerable our device is to such fabrication imperfection
although it is usually difficult to reproduce those effects in simulations. In

Figure A.5: (a,b) SEM image of a cleaved GaP OMC from dif-
ferent angles. (c) Simulation model for quadratically curved
sidewall.

this appendix section, we consider a very simplified model shown in Fig. A.5
trying to give a somewhat qualitative explanation for the huge difference in
measured and simulated g0. As we can see in Fig. A.5(a,b) the upper half
of the slab looks quite straight while the bottom half is rounded. Based on
those images, we think of a model structure Fig. A.5(c) with a quadratic
curve only on the bottom half of the snowflakes. The widest part of the
snowflake hole is set to 5% wider than that of the straight part. We simulate
this structure assuming the widened ratio is constant in the whole device.
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Figure A.6: Simulated |g0| for straight- and curved-sidewall
devices.

By following the same simulation method already discussed in chapter
4, we obtained the cavity optical and mechanical modes and calculated the
vacuum optomechanical coupling rates. Fig. A.6 shows the absolute value
of the total coupling rate |g0| for each mechanical eigenmode in the case of
straight- and curved-sidewall. First of all, the curved wall slightly shifts both
mechanical and optical frequencies. We find mechanical frequency changes
from (5.754, 6.570, 7.850) GHz to (5.743, 6.504, 7.883) GHz for modes 1 to
3, respectively, and optical frequency from 192.7 THz to 195.1 THz. We also
find g0 changes slightly although they are too small compared to the huge
decline we have observed in the experiments.

We can conclude that our design is not really susceptible to the sidewall
itself because such a small curve will not change the mechanical and optical
mode profiles significantly. However, we can still speculate that, if the curve
appears randomly from one point to another then device performances could
be degraded. This is quite reasonable by recalling our cavity design; the
cavity region has only 3% smaller snowflakes than that of bulk.

Another possible explanation for the big degradation, other than our
imperfect knowledge of the photoelasticity of GaP, is the surface roughness of
devices. There could have existed any type of thin oxide layer on the surface
or a non-smooth surface which might degrade the optical mode. Since we
have not seen any degradation over time, such surface impurity might have
originated from our fabrication process itself.
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A.3 Residual Back-Reflection Effect

Figure A.7: Comparison of vacuum optomechanical measure-
ments in different polarisation conditions. (a,b) Optical spec-
trum and resulting g0 in matched polarisation. (c,d) Results
in mismatched polarisation.

The calibration tone method to characterise g0 can be easily degraded by
the polarisation mismatch of the input field from the waveguide mode. This
is due to the parasitic back reflection at the fiber-waveguide section which
creates a sinusoidal optical spectrum background. For a polarisation con-
dition, where the optical spectrum is symmetric Fig.A.7(a), the calibration
presents consistent g0 over detuning Fig.A.7(b). Here, the yellow dots repre-
sent the locked laser detuning. However, under the polarisation mismatched
condition Fig.A.7(c) where optical lineshape is not perfectly symmetric, es-
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timated g0 deviates from the intrinsic value as in Fig.A.7(d), even without
dynamical back-action. This condition significantly depends on fibre position
relative to the waveguide.

Figure A.8: Schematic image of the model

Here we consider the origin of the deviation that appears in the calibration
tone method to determine g0. We assume there is a residual back reflection
from the fiber-waveguide coupling. We consider a model composed of a beam
splitter (BS) and a mirror as well as our optomechanical crystal (OMC)
explained in Fig. A.8.

The phase-modulated input field is expressed as:

sin =
(
s0 + sce

−iΩct − sce
+iΩct

)
e−iωLt, (A.7)

where we define the laser frequency ωL and modulation frequency Ωc. Here
we assume the amplitude of each frequency component to be real s0, sc ∈ R.
The Langevin equation of motion for the optical annihilation operator a is

d

dt
a = −

(
iωo +

κ

2

)
a+ ig0a

(
b† + b

)
+
√
κexsin, (A.8)

where b is the annihilation operator of the mechanical mode. Here, we take
a Fourier-like expansion of optical and mechanical operators [?, 100],

a =
(
a0 + a−e

−iωt + a+e
iωt

)
e−iωLt, (A.9)

b† + b = x = x0 + xme
−iΩmt + x∗

me
iΩmt. (A.10)

where x = b† + b is a unitless mechanical displacement. We explicitly as-
sume that the mechanical motion has only a frequency component at Ωm
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by postulating there is no overlap between mechanical and calibration tone
(|Ωm−Ωc| � Γm). Inserting the above expression into the equation of motion
and solving for the steady states, we get

ā0 =
√
κexs0χ(0), (A.11)

ā−(ω) =

{√
κexscχ(Ωc) for ω = Ωc

i
√
κexg0xms0χ(0)χ(Ωm) for ω = Ωm

, (A.12)

ā+(ω) =

{
−√

κexscχ(−Ωc) for ω = Ωc

i
√
κexg0x

∗
ms0χ(0)χ(−Ωm) for ω = Ωm

, (A.13)

where we define the optical susceptibility

χ(ω) :=
1

κ/2− i(∆ + ω)
. (A.14)

Here we used the displaced detuning ∆′ := ∆+ g0x0 from the bare detuning
∆ := ωL−ωo to account for the constant optical frequency shift, then redefine
the detuning as ∆′ → ∆. Now we introduce the two paths; one leads to
a mirror which corresponds to residual back reflection from the imperfect
fiber-waveguide coupling or waveguide itself, and the other to our OMC.
The output field from the mirror path s

(1)
out becomes

s
(1)
out = rrme

iθe2ikL1
(
s0 + sce

−i(Ωct−2φ1(Ωc)) − sce
i(Ωct−2φ1(Ωc))

)
e−iωLt, (A.15)

where we define

φj(Ω) :=
nLj

c
Ω for i = 1, 2, (A.16)

k :=
nωL

c
(A.17)

and refractive index n, phase shift by the mirror θ, reflectance of the mirror
rm, path length of each path Lj=1,2.

On the other hand, the fields impinging on the OMC obtain phase shifts
in addition to those of eq.(A.7), by travelling the distance L2. These phase
shifts amount to:

s0e
−iωLt → s0e

−iωLteikL2 , (A.18)
sce

−i(ωL+Ωc)t → sce
−i(ωL+Ωc)tei(kL2+φ2(Ωc)), (A.19)

−sce
−i(ωL−Ωc)t → −sce

−i(ωL−Ωc)tei(kL2−φ2(Ωc)). (A.20)
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Therefore, the phase-shifted input field at the OMC, s′
in, is given by

s
′

in = teikL2
(
s0 + sce

iφ2(Ωc)e−iΩct − sce
−iφ2(Ωc)e+iΩct

)
e−iωLt, (A.21)

These modify the steady-state optical fields to:

ā0 → t
√
κexχ(0)s0e

ikL2 , (A.22)

ā−(ω) →

{
t
√
κexscχ(Ωc)e

i(kL2+φ2(Ωc)) for ω = Ωc

it
√
κexg0xms0χ(0)χ(Ωm)e

ikL2 for ω = Ωm

, (A.23)

ā+(ω) →

{
−t

√
κexscχ(−Ωc)e

i(kL2−φ2(Ωc)) for ω = Ωc

it
√
κexg0x

∗
ms0χ(0)χ(−Ωm)e

ikL2 for ω = Ωm

. (A.24)

From the input-output theory and taking the transmission of the beamsplit-
ter into account, the output field right after the OMC s

(2′)
out is,

s
(2′)
out (ω) = s′in −

√
κexa(ω), (A.25)

where t =
√
1− r2. Therefore, we can calculate the calibration tone compo-

nent of the output field from the OMC just before the beam splitter,

s
(2)
out(Ωc) = tsce

i(−ωLt+2kL2)
[{

1− κexχ(Ωc)
}
e−i(Ωct−2φ2(Ωc))

−
{
1− κexχ(−Ωc)

}
ei(Ωct−2φ2(Ωc))

]
,

(A.26)

and the mechanical component,

s
(2)
out(Ωm) = −itκexg0χ(0)s0e

i(−ωLt+2kL2)
[
xmχ(Ωm)e

−i(Ωmt−φ2(Ωm))

+ x∗
mχ(−Ωm)e

i(Ωmt−φ2(Ωm))
]
,

(A.27)

and finally the carrier frequency component,

s
(2)
out(0) = tei(−ωLt+2kL2)

{
1− κexχ(0)

}
s0. (A.28)

The total output field we measure is the combined field after the beam splitter
which is,

sout = rs
(1)
out + ts

(2)
out. (A.29)
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From the above expressions for s
(1)
out and s

(2)
out, we have the total output field

for each frequency component as,

ei(ωLt−2kL2)sout(0) =
[
r2rme

i(θ+2k∆L) + t2
{
1− κexχ(0)

}]
s0 =: A, (A.30)

ei(ωLt−2kL2)sout(Ωc) =
[
r2rme

i(θ+2k∆L+2φ1(Ωc)) + t2
{
1− κexχ(Ωc)

}
e2iφ2(Ωc)

]
sce

−iΩct

−
[
r2rme

i(θ+2k∆L−2φ1(Ωc)) + t2
{
1− κexχ(−Ωc)

}
e−2iφ2(Ωc)

]
sce

iΩct

=: Bce
−iΩct + Cce

iΩct,

(A.31)

ei(ωLt−2kL2)sout(Ωm) = −it2κexg0χ(0)sc

{
xmχ(Ωm)e

−i(Ωmt−φ2((Ωm))

+ x∗
mχ(−Ωm)e

i(Ωmt−φ2((Ωm))
} (A.32)

=: Bme
−iΩmt + Cme

iΩmt. (A.33)

where we define ∆L := L1 −L2. The calibration frequency Ωc component of
intensity modulation of the output field is

|sout|2 (Ωc) = sout(0)s
∗
out(Ωc) + h.c. (A.34)

= (A∗Bc + AC∗
c ) e

−iΩct + h.c. (A.35)

Applying the same procedure for the mechanical frequency component, we
have

|sout|2 (Ωm) = sout(0)s
∗
out(Ωm) + h.c. (A.36)

= (A∗Bm + AC∗
m) e

−iΩmt + h.c. (A.37)

To estimate the impact on g0, we define the mechanics/calibration power
ratio ηg(∆):

ηg(∆) :=

∣∣∣∣A∗Bm + AC∗
m

A∗Bc + AC∗
c

∣∣∣∣2 , (A.38)

which is proportional to the measured g0. We assume that the dynamical
backaction is small enough so the mechanical linewidth and mechanical peak
height are unchanged over detuning.

Fig. A.9 shows plots of |A(∆)|2 and ηg(∆) with parameters of ωo/2π =
195.55 THz, n = 3.05, ∆L = -140 µm, κ0/2π = 1.5 GHz, κex/2π = 1 GHz,
Ωm/2π = 7.65 GHz, and Ωc/2π = 7.65 GHz. Fig. A.9(a) corresponds to the
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Figure A.9: (a)Reflection coefficient and (b) Mechanical/-
calibration ratio ηg over detuning. Used parameters are
ωo/2π = 195.55 THz, n = 3.05, ∆L = -140 µm, κ0/2π
= 1.5 GHz, κex/2π = 1 GHz, Ωm/2π = 7.65 GHz, and
Ωc/2π = 7.65 GHz. For curves 1 to 5, θ − 2nωL∆L/c
= 0, 0.77π,−0.77π, 0.4π,−0.4π respectively. Dashed black
curves are references with r = 0.

optical spectra in polarisation-matched (unmatched) conditions for curve 1
(curve 2-5). (b) plots the ηg(∆) for each condition which is proportional to
the measured g0 [94]. As it shows, the measured g0 depends on laser detuning
if the optical spectrum is in polarisation unmatched condition regardless of
dynamical backaction. Here we skip the points where the denominator of
eq.(A.38) is small corresponding to the calibration tone being too small to
detect. With the realistic parameters of our OMC device, we find the mea-
sured g0 can change roughly 4% over ± 4 GHz of detuning depending hugely
on the phase θ. This deviation is still smaller than what we have obtained
from the measurements. A possible reason is that our model is oversimpli-
fied and other mechanisms give larger phase differences in the mechanical
and calibration components. In the actual device, we may speculate the re-
flectance r of the BS is frequency-dependent or that there are multiple BSs,
which may show more complex behaviour. Still, this result strongly suggests
that the parasitic back reflection in the waveguide affects the measurement
on g0. Further optimization of the fibre-waveguide coupling will suppress the
back reflection of propagating light.
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In addition to the g0 deviation, this model predicts the Fano-like reflection
spectrum observed in Fig. A.7(c). To this end, we write |sout|2, disregarding
the calibration tone and mechanical sidebands, i.e. retaining only

|A|2 = |s0|2|r2rmei(θ+2k∆L) + t2 (1− κexχ(0)) |2 (A.39)

= |s0|2
((

|r2rm|+ |t|2 cos(θ + 2k∆L)
)2 (A.40)

− 2|t|4κ(ηc − η2c )

κ
2

(
1 + r2rm

|t|2(1−ηc)
cos(θ + 2k∆L)

)
+∆ r2rm

|t|2(1−ηc)
sin(θ + 2k∆L)(

κ
2

)2
+∆2

)
.

(A.41)

Now, eq. (7.1) in the main text follows from eq. (A.39) by identifying

h = |s0|2
(
|r2rm|+ |t|2 cos(θ + 2k∆L)

)2
, (A.42)

A = 2|s0|2|t|4κ(ηc − η2c ), (A.43)

q =
r2rm

|t|2(1− ηc)
sin(θ + 2k∆L) (A.44)

by requiring cos(θ+2k∆L) = − sin(θ+2k∆L)2. As is shown in Fig. A.9(a),
eq. (A.39) exhibit similar Fano-like reflection spectra for a range of interfer-
ometer phases θ. In practice, we further approximate h ≈ const. by restricting
our fitting region to the vicinity of the cavity resonance.
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A.4 Output pulse shape from optomechanical
systems

This appendix will theoretically explore the potential usage of an optome-
chanical system as a quantum memory and optical arbitrary wave genera-
tor(AWG) [101, 102]. In various fields of quantum optics, temporal wave-
forms of photons are of great importance as well as their quantum states.
This is because they determine the efficiency of photon absorption by quan-
tum systems such as atoms or qubits. Especially, exponentially increasing
temporal waveforms of photons are considered a promising form which is ef-
fectively absorbed by other systems because these waveforms are the exact
time-reversal of that of emitted photons (exponentially decaying function).
We will explore the possible implementation of optomechanical systems and
theoretically consider what operation we need to store and shape the photons.

A.4.1 Write Process of Memory
Here, we consider the write process of the memory protocol. The goal is to
obtain the dynamic of the mechanical excitation when the single-photon and
the red-detuned pulse are injected. As a possible state of the single-photon,
we consider a Fock state [103]

|1ξ〉 =
∫

dt ξ(t)â†in(t) |0〉 , (A.45)

where ξ(t) is the temporal wave-packet of the input photon and is normalised∫
dt|ξ(t)|2 = 1. As for single-photons emitted from atoms or quantum dots,

it is an exponentially decaying function. Notice that
âin(t) |1ξ〉 = ξ(t) |0〉 , (A.46)
〈1ξ| â†in(t)âin(t) |1ξ〉 = |ξ(t)|2, (A.47)

where we use the commutation relation [âin(t), â
†
in(t

′)] = δ(t − t′). Starting
from the Langevin equation for the time-dependent red-detuned Hamiltonian
by keeping the input photon term,

d

dt
â =

(
−iΩm − κ

2

)
â+ ig(t)b̂+

√
κexâin(t), (A.48)

d

dt
b̂ =

(
−iΩm − Γm

2

)
b̂+ ig(t)â. (A.49)
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By assuming the linewidth of the photon is narrow enough so that the me-
chanical mode can follow the dynamics, and the optical mode decays faster
than other modes, one can take the adiabatic approximation for the optical
mode:

d

dt
â = 0 (A.50)

â =
1

iΩm + κ/2

(
ig(t)b̂(t) +

√
κexâin(t)

)
. (A.51)

This is actually a strong assumption that; usually the linewidth of single-
photons from quantum dots is roughly 200MHz [96] or more (although a
sub-megaherz linewidth has been achieved in a rubidium atom [104]).

The equation of motion of the mechanical mode then becomes
d

dt
b̂(t) = −

(
Γeff(t)

2
+ iΩeff(t)

)
b̂(t) + h(t)âin(t), (A.52)

where h(t) := i
√
κexg(t)/(κ/2 + iΩm) and

Γeff(t) := Γm +
g2(t)κ

Ω2
m + κ2/4

(A.53)

Ωeff(t) := Ωm − g2(t)Ωm

Ω2
m + κ2/4

. (A.54)

By solving this equation under the initial condition b̂(t0) = 0, we get

b̂(t) =

∫ t

t0

dt′′ h(t′′)âin(t
′′) exp

[∫ t′′

t0

dt′
(
iΩeff(t

′) +
Γopt(t

′)

2

)]

× exp

[
−
∫ t

t0

dt′
(
iΩeff(t

′) +
Γeff(t

′)

2

)]
=e−P (t)−iQ(t)

∫ t

t0

dt′′ eP (t′′)+iQ(t′′)h(t′′)âin(t
′′),

(A.55)

where we define P (t) :=
∫ t

t0

Γeff(t
′)

2
dt′ and Q(t) :=

∫ t

t0
Ωeff(t

′)dt′. Note that the
temporal wave function of photon appears when one takes the mean value
e.g., 〈1ξ| â†in(t)âin(t) |1ξ〉 = |ξ(t)|2. The number of phonons is given as

〈b̂†(t)b̂(t)〉 = e−2P (t)

∣∣∣∣∫ t

t0

dt′eP (t′)+iQ(t′)h(t′)ξ(t′)

∣∣∣∣2 . (A.56)

Since in the input is a single-photon, eq.(A.56) should be as close as unity.
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A.4.2 Read Process of Memory
The output field, on the other hand, is obtained from the input-output the-
orem as,

âout(t) =âin(t)−
√
κexâ(t)

=âin(t)−
√
κex

iΩm + κ/2

{
ig(t)b̂(t) +

√
κexâin(t)

}
=
iΩm + (κ/2− κex)

iΩm + κ/2
âin(t)− h(t)b̂(t)

=r(−Ωm)âin(t)

− h(t)e−P (t)−iQ(t)

∫ t

t0

dt′′ eP (t′′)+iQ(t′′)h(t′′)âin(t
′′),

(A.57)

where we define the reflection coefficient from the optical resonator as:

r(∆) :=
−i∆+ (κ/2− κex)

−i∆+ κ/2
. (A.58)

The output photon flux becomes

〈â†out(t)âout(t)〉
=|r(−Ωm)|2|ξ(t)|2

+ |h(t)|2e−2P (t)

∣∣∣∣∫ t

t0

dt′eP (t′)+iQ(t′)h(t′)ξ(t′)

∣∣∣∣2
+ 2Re

[
r(−Ωm)

∗h(t)e−P (t)−iQ(t)ξ∗(t)

×
∫ t

t0

dt′′ eP (t′′)+iQ(t′′)h(t′′)ξ(t′′)

]
(A.59)

Combining eq.(A.56) and eq.(A.59) the whole dynamics of both photon mode
and the mechanical excitation are obtained.

A.4.3 AWG with an Optomechanical System
Here we think more simplified situation where the mechanical mode is al-
ready prepared in a single-phonon state. Then we discuss how to control the
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temporal mode of the output photon in the read-out process. We start with
the linearised red-detuned Hamiltonian:

Ĥ/~ = Ωmâ
†â+ Ωmb̂

†b̂− g(t)(âb̂† + â†b̂), (A.60)

where g(t) = g0
√
ncav(t). We assume we can control the effective optome-

chanical coupling rate g(t) by arbitrarily changing the power of the driving
laser at detuning ∆ = Ωm thus the cavity photons ncav(t) over time. A key to
the optomechanical AWG is that the photon emission rate scales with g(t).

From this Hamiltonian, the Langevin equation leads,

d

dt
â =

(
−iΩm − κ

2

)
â+ ig(t)b̂+

√
κexâin(t), (A.61)

d

dt
b̂ =

(
−iΩm − Γm

2

)
b̂+ ig(t)â+

√
Γmf̂m. (A.62)

Now we assume that the time scale of the optical mode is much shorter
than that of any other mode. Taking the adiabatic approximation and ig-
noring the noise terms,

d

dt
â = 0 (A.63)

â =
ig(t)

iΩm + κ/2
b̂ (A.64)

Then the differential equation of the mechanical mode leads,

d

dt
b̂(t) = −(iΩm + κ/2)b̂− g2(t)

iΩm + κ/2
b̂

= −
{(

Γm

2
+

g2(t)κ/2

Ω2
m + κ2/4

)
+ i

(
Ωm − Ωmg

2(t)

Ω2
m + κ2/4

)}
b̂(t)

:= −
(
Γeff(t)

2
+ iΩeff(t)

)
b̂(t).

(A.65)

The solution of this differential equation is

b̂(t) = b̂(t0) exp

[
−
∫ t

t0

dt′
(
Γeff(t)

2
+ iΩeff(t)

)]
. (A.66)
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Note that the quantum feature of the mechanical mode doesn’t really change
over time as it’s already determined by its initial state b̂(t0). From the input-
output theory, the output field âout is given as

âout(t) = âin(t)−
√
κexâ(t)

= âin(t)− i

√
κexg(t)

iΩm + κ/2
b̂(t).

(A.67)

Let’s think about a specific case where the mechanical mode is already
excited and there is no input âin(t) = 0. The output photon flux is

〈â†out(t)âout(t)〉 =
κex|g(t)|2

Ω2
m + κ2/4

exp

(
−
∫ t

t0

dt′ Γeff(t)

)
〈b̂†(t0)b̂(t0)〉 . (A.68)

Here we define a unitless temporal function F (t) as,

F (t) :=
κ

Ω2
m + κ2/4

∫ t

t0

dt g2(t). (A.69)

Then the photon flux becomes

〈â†out(t)âout(t)〉 = ηḞ (t)e−F (t) 〈b̂†(t0)b̂(t0)〉 , (A.70)

where η = κex/κ. If the desired temporal pulse shape is expressed as S(t),
then one can solve the differential equation below for F (t):

Ḟ (t)e−F (t) = S(t), (A.71)

S(t) =
〈â†out(t)âout(t)〉
η 〈b̂†(t0)b̂(t0)〉

(A.72)

As an example of F (t) = γt with a positive constant γ, it results in
S(t) ∝ e−γt which is a canonical decaying output signal.

One of the most desired functions is exponentially increasing functions
S(t) = α

(
eγ(t−t0) − 1

)
, where α is a positive constant and t0 is an initial

time. This waveform will be suitable for the writing process of quantum
memories thanks to its potentially high conversion efficiency. By solving the
differential equation below,

Ḟ (t)e−F (t) = α
(
eγ(t−t0) − 1

)
, (A.73)
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where α is a constant with unit of 1/t, the temporal function becomes

F (t) = −log

[
C + αt− α

γ
eγ(t−t0)

]
. (A.74)

Imposing the initial condition F (t0) = 0, we have

F (t) = −log

[
1 + α(t− t0) +

α

γ

(
1− eγ(t−t0)

)]
. (A.75)

Therefore, the required optomechanical coupling to achieve this increasing
exponential is

g(t) = g20ncav(t) ∝Ḟ (t) (A.76)

=−
α
{
1− eγ(t−t0)

}
1 + α(t− t0) +

α
γ
{1− eγ(t−t0)}

. (A.77)

It should be noted that F (t) and the denominator of eq.(A.76) diverges at
the time tcutoff given as

tcutoff = t0 −
1

α
− 1

γ
− W0[−e(1+γ/α)]

γ
, (A.78)

where W0 is the principal branch of the Lambert W function. This can be
understood that we can not arbitrarily amplify the output photon, which is
a quite reasonable result. With homodyne measurements, one can measure
the quadrature of the output field â†in(t)± âin(t). From (A.67) and âin(t) = 0,

â†out(t)± âout(t)

=
i
√
κexg(t)

Ω2
m + κ2/4

{
iΩm

(
b̂†(t)± b̂(t)

)
+

κ

2

(
b̂†(t)∓ b̂(t)

)}
, (A.79)

where g(t) is given by eq.(A.76).
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