
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

PhD thesis

Selection of PTF Sources Based on
Light-curve Variability
Sofie Helene Bruun

Supervisors: Jens Hjorth and Adriano Agnello

Submitted: May 31, 2023

Dissertation submitted for the degree of Philosophiæ Doctor to the PhD School of The Faculty of Sci-

ence, University of Copenhagen



Sofie Helene Bruun, DARK, Niels Bohr Institute, Faculty of SCIENCE, University of

Copenhagen

Jagtvej 128, 2200 Copenhagen N, Denmark

©May 31, 2023

Front-page illustration created using the Sloan Digital Sky Survey Image List,

https://skyserver.sdss.org/dr17/VisualTools/list

https://skyserver.sdss.org/dr17/VisualTools/list


Publications related to
this thesis

This thesis contains the following first author publications:

• VarIabiLity seLection of AstrophysIcal sources iN PTF (VILLAIN) I. Structure func-

tion fits to 71 million objects

Sofie Helene Bruun, Adriano Agnello and Jens Hjorth

In press at Astronomy & Astrophysics; accepted on 11/04/2023. arXiv: 2304.09903

• VarIabiLity seLection of AstrophysIcal sources iN PTF (VILLAIN) II. Supervised

classification of variable sources

Sofie Helene Bruun, Jens Hjorth and Adriano Agnello

In review atAstronomy&Astrophysics; submitted on 11/04/2023. arXiv: 2304.09905

3

https://arxiv.org/abs/2304.09903
https://arxiv.org/abs/2304.09905




Abstract

The Universe is a vast and diverse place. Fortunately for our exploration of the world

around us, we have access to a wide array of tools for astronomy and data analysis. For

the efficient study of astrophysical objects, it is important to choose the right tools. In

this context, the easiest and cheapest source of information is light. The light we gather

tells us, for example, the brightness and colours of objects. Over time, we can analyse

the variability of brightness. With this, we can select specific types of light sources to

study them and their connection to the rest of the Universe. For large surveys, such as

the Vera C. Rubin Observatory Legacy Survey of Space and Time, selection must be done

automatically. This is possible through new methods in statistics and machine learning.

We aim to characterise and identify astrophysical sources using variability and colours.

In Chapter 4, we study the properties of quasars, stars and galaxies in the Palomar Tran-

sient Factory (PTF). We do so by selecting objects for these three classes using simple

criteria, and then we study the differences in variability and colours. In Chapter 5, we

create a machine learning model for efficient classification, and we compare the roles of

variability and colours.

To quantify variability, we predict how much an object will change in magnitude

depending on the difference in time between observations. For this, we use a simple

power law model to extract two variability parameters. With 71 million fits to PTF light

curves, and matches to optical and infrared colours in Pan-STARRS1 and the Wide-field

Infrared Survey Explorer for most of them, this provides a large data set for determin-

ing the common properties of different object types. We select objects for each class

using colour and variability to study their photometric properties and identify inconsis-

tencies with spectroscopic classifications ("labels") by the Sloan Digital Sky Survey. For
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automatic classification, we use a histogram-based gradient boosting classification tree,

which learns decision boundaries to separate the classes in a high-dimensional parame-

ter space. We implement efficient model selection using random search with successive

halving and combine input parameters for more efficient learning. For example, we sub-

tract magnitudes in different bands to create colours.

We find the automatic classification model to perform well with a quasar complete-

ness of 92.49 % and a purity of 95.64 %. It is fast to train, easy to implement, automatically

handles missing values and does not need scaling of inputs or calibration of outputs. We

create a catalogue of the 71million objects including their predicted classes, the probabil-

ities of belonging to each class, structure function parameters and magnitudes. Selecting

subsets of the data reveals a similar performance down to 100 000 labeled samples, which

we recommend for similar, future studies, although the algorithm is well suited to large

data sets. With both manual and automatic selection techniques, we find that selec-

tion by 7 band colour information performs better than by monochromatic variability

in both completeness and purity for PTF sources. Fitting structure functions is cheaper

than taking spectroscopy, and in the future, structure function fitting might be priori-

tised for the most relevant sources depending on the resources available. Experiments

with different feature engineering and data might reveal further performance improve-

ments. For large, future datasets, it is key to optimise computational resources, and in

that context we recommend using histogram-based gradient boosting for astrophysical

object classification.
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Dansk resumé

Universet er et stort og forskelligartet sted. For at udforske verden omkring os har vi

heldigvis adgang til et bredt udvalg af astronomiske og dataanalytiske værktøjer. For at

kunne studere astrofysiske objekter effektivt er det vigtigt at vælge de rigtige værktøjer.

I denne sammenhæng er lys den nemmeste og billigste informationskilde at bruge. Lyset

vi indsamler fortæller os for eksempel om lysstyrken og farverne af objekter. Over tid

kan vi analysere variabiliteten af lysstyrke. Med dette kan vi udvælge specifikke typer af

lyskilder for at studere dem og deres forbindelse til resten af Universet. For store under-

søgelser af himlen såsom Vera C. Rubin Observatory Legacy Survey of Space and Time

må udvælgelsen ske automatisk, hvilket er muligt via nye metoder inden for statistik og

maskinlæring.

Vi ønsker at karakterisere og identificere astrofysiske kilder ved hjælp af variabilitet

og farver. I Kapitel 4 undersøger vi egenskaber for kvasarer, stjerner og galakser i

Palomar Transient Factory (PTF). Vi gør dette ved at udvælge objekter for disse tre

klasser gennem simple kriterier, og derefter studerer vi forskellene i variabilitet og farver.

I Kapitel 5 skaber vi en maskinlæringsmodel for at klassificere effektivt, og vi sammen-

ligner betydningen af variabilitet og farver.

For at kvantificere variabilitet forudsiger vi hvor meget et objekts lysstyrke vil æn-

dre sig afhængigt af tidsforskellen mellem observationer. Til dette bruger vi en simpel

potenslovsmodel til at udvinde to variabilitetsparametre. Med 71 millioner fits af PTF-

lyskurver – og matches til optiske og infrarøde farver i Pan-STARRS1 og Wide-field In-

frared Survey Explorer for de fleste af dem – udgør dette et stort datasæt, der kan bruges

til at bestemme de mest almindelige egenskaber for forskellige objekttyper. Vi udvæl-

ger objekter for hver klasse via farve og variabilitet for at studere deres fotometriske
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egenskaber og identificere uoverensstemmelser med spektroskopiske klassifikationer

("mærkater") fra Sloan Digital Sky Survey. Til automatisk klassifikation bruger vi et

histogrambaseret gradientboostningsklassifikationstræ, som lærer beslutningsgrænser

for at adskille klasserne i et højdimentionelt parameterrum. Vi implementerer effektiv

modeludvælgelse gennem tilfældig søgen med successiv halvering og kombinerer in-

putparametre for mere effektiv læring. For eksempel trækker vi magnituder i forskellige

bånd fra hinanden for at skabe farver.

Vi konstaterer, at den automatiske klassifikationsmodel præsterer godtmed en kvasar-

sensitivitet på 92.49 % og kvasarrenhed på 95.64 %. Den er hurtig at træne, nem at

implementere, håndterer automatisk manglende værdier og behøver ikke skalering af

inputs eller kalibrering af outputs. Vi danner et katalog med de 71 millioner objekter

inklusiv deres forudsagte klasser, sandsynlighederne for at tilhøre hver klasse, struk-

turfunktionsparametre og magnituder. Udvælgelse af delmængder af dataen viser en

tilsvarende præstationsevne for ned til 100 000 objekter med kendte mærkater, hvilket vi

anbefaler til lignende, fremtidige studier, selvom algoritmen er velegnet til store datasæt.

Med både manuelle og automatiske udvælgelsesteknikker finder vi, at udvælgelse ved

farveinformation i syv bånd præsterer bedre end ved monokromatisk variabilitet i både

sensitivitet og renhed for PTF-kilder. At fitte strukturfunktioner er billigere end at tage

spektroskopi, og i fremtiden bliver strukturfunktionsfitning måske prioriteret til de mest

relevante kilder afhængigt af de tilgængelige ressourcer. Eksperimenter med anderledes

inputkonstruktion og data vil måske give yderligere præstrationsforbedringer. For store,

fremtidige datasæt er det vigtigt at optimere komputationelle ressourcer, og i den sam-

menhæng anbefaler vi at bruge histogrambaseret gradientboostning til klassifikation af

astrofysiske objekter.
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Introduction

Motivation

W
hen we humans look to the sky, we may wonder about the nature of the light

sources. Some are bright; some are fainter. Some appear white, and some red or

blue. Observing by eye in the city, a bright red source is likely Mars, and a periodically

variable source is likely an aeroplane. Looking a bit deeper in a remote place, we might

notice galaxies as extended sources. With deep sky surveys, we can use variability and

colour to identify stars, galaxies and the bright, accreting centres of galaxies known

as quasars. Humankind’s main source of information for understanding the Universe

beyond the Earth is light, and so, understanding and identifying sources of light will

help us explore it.

Astrophysical sources vary in multiple ways. Brightness can vary periodically or

non-periodically on different timescales. Predicting the change in brightness after wait-

ing a specific time interval provides one way of measuring variability. With the develop-

ment of new algorithms in machine learning, astronomers have access to an increasing

palette of tools for understanding the connection between astrophysical sources and

their observational characteristics. Optimal identification of sources requires careful

data processing and algorithm selection, but even with relatively simple rules and struc-

tures, we can create complex, powerful models. Efficient machine learning gives us the

opportunity to automatise manually-demanding tasks and gain new insights.

The astrophysical community is collecting and managing data sets of increasing

scale. Brightness is often included in the form of magnitudes. This is a measure with

roots in observations by eye in ancient Greece. Since the human eye perceives bright-
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ness logarithmically, magnitudes scale logarithmically with brightness, and for histor-

ical reasons, a lower value indicates a brighter object. The Vera C. Rubin Observatory

Legacy Survey of Space and Time (LSST) will obtain 10 year light curves of 800 epochs

in the ugrizy bands down to r band magnitudes of ∼ 24.5 for single visits. The ob-

jects include about 20 billion galaxies and 20 billion stars over 18 000 deg
2
. They will

also observe "deep drilling fields" of known areas down to ugri ∼ 28.5, creating high-

cadence light curves useful for studying variability of active galactic nuclei (AGN) (De

Cicco et al. 2021). Combined with Euclid and the Nancy Grace Roman Space Telescope,

LSST will discover tens of quasars at z > 7.5 (Ivezić et al. 2019), ∼ 2 million quasars at

z < 2, at least 6.2 million AGN (De Cicco et al. 2021) and at least 50 million variable stars

(Sesar et al. 2007). Combined with data from the Sloan Digital Sky Survey (SDSS), Pan-

STARRS1 (PS1) and the Zwicky Transient Facility (ZTF), some light curves will span 35

years and allow us to better constrain the behaviour of variable objects and to classify

them. Oguri & Marshall (2010) estimate that the LSST will find ∼8000 lensed quasars

and ∼ 130 lensed supernovae. They also create a mock catalogue of lensed quasars.

Taak & Treu (2023) use this mock catalogue to estimate that∼1000 of the lensed quasars

will have variability that is observable by the LSST.

Classification is important to understand the observed objects and use them to ex-

tract information about the Universe. Quasars are extremely bright objects at the centres

of some galaxies, and they can probe the distant, old Universe. We can use them as trac-

ers of structure formation (Turner 1991; Song et al. 2016) and constrain baryon acoustic

oscillations (BAO) signals, which depend on cosmological parameters (Alam et al. 2021;

Blomqvist et al. 2019). Secrest et al. (2021) test the cosmological principle by measuring

a cosmic dipole in the distribution of quasars. We can even directly measure cosmic ac-

celeration with redshift-drift tests, such as by measuring the change in redshift of the

Lyα forest in quasar spectra (Sandage 1962; Kim et al. 2015; Alves et al. 2019; Loeb 1998).

With time-delay cosmography of lensed quasars, we can estimate cosmological param-

eters using the time difference between multiple images of the same quasar. Greater

samples of quasars, especially at high redshifts, will benefit these efforts.

Other variable sources, such as Cepheid variables and RR Lyrae, can be used as

standard candles for distance estimation. Greater and fainter sets of non-variable stars

will also be useful for calibration of future surveys at the Vera C. Rubin Observatory,

Extremely Large Telescope (ELT), Thirty Meter Telescope (TMT) and Giant Magellan

Telescope (GMT).
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The variability of quasars and AGN is useful for selecting them, although the origin

of variability is still debated. Variability modelling of large quasar samples will enable

better constraints of the physics of quasars and their characteristic variability behaviour.

Variability has been quantified in a multitude of ways; from "blinking" by van den Bergh

et al. (1973) to ensemble structure functions (SFs) (Simonetti et al. 1985) and high order

continuous autoregressive–moving-average (CARMA) models (Moreno et al. 2019). SFs

describe how an object changes in magnitude over different time scales. The best model

of this behaviour and a possible characteristic dampening timescale is unclear. Many

have used damped random walk (DRW) models, but these are currently unconstrained

even on 20 year timescales. Single power laws provide a simple SF model; at least on

short time scales. This is sufficient for selection of variable sources.

Classification needs to be accurate and performed with increasing speed in the face

of larger surveys. Manual selections are reliable but difficult to scale. Automatic classifi-

cation can pick up subtle characteristics that might go unnoticed by humans, and it can

quantify its confidence in class predictions. Data mining with machine learning enables

new discoveries in existing databases, which is important in case of expensive astronom-

ical data. The objects of astrophysical databases are described by a varying number of

parameters. For example, some have been observed in the infrared – and some have not.

We need classification models to extract as much information from the available data as

possible and handle when some values are missing.

SF variability parameters can be extracted automatically using Markov Chain Monte

Carlo (MCMC). But how useful is this information compared to colours? The answer

might depend on the survey and the variability model.

Several approaches have been applied for automatic classification of astrophysical

sources. For example, Palanque-Delabrouille et al. (2011) use neural networks, De Cicco

et al. (2021) use random forests, Cunha & Humphrey (2022) use gradient boosted trees

and Logan & Fotopoulou (2020) use Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN). In the literature, colour and variability are both

informative and include different biases as selection tools – so the best performance is

achieved using both. Some find that variability performs best and some achieve better

performance with colours. It is common to create models that output the probability of

each object being a quasar, allowing the identification of ambiguous objects and confi-

dent quasar candidates. However, most research is based on data sets that are not fully

representative of a full survey. Most also do not handle missing values, the data sets can
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be small and there might be problems of biased evaluation of performance.

Both Schmidt et al. (2010) and Butler & Bloom (2011) create linear criteria or "cuts" in

variability parameters for the selection of quasars. The quasars are distinguished from

stars, including variable stars, but the data sets are not representative of all sources in a

survey. Linear criteria are simple and easy to apply, but machine learning can potentially

create more accurate selection regions using nonlinear criteria.

We aim to demonstrate an effective solution for automatic classification of quasars,

stars and galaxies. We will classify a large survey as accurately as possible while be-

ing mindful of biases. We choose the Palomar Transient Factory (PTF) survey with 600

million light curves in the R band (71 million after data cleaning) taken over almost six

years, and match to optical and near-infrared colours in the Wide-field Infrared Sur-

vey Explorer (WISE) and PS1. We will explore the distributions of colours and Bayesian

power law SF variability in the objects and in subsets – and then use the distributions for

selection of quasars, stars and galaxies. The properties of the photometric selections are

analysed and compared to spectroscopic classifications by the SDSS. Then, we aim to

construct and optimise an efficient machine learning model for prediction of the spec-

troscopic classifications based on the photometric data. We will choose a model that

handles missing values and include colours created by all combinations of the matched

filters. We separately assess the importance of variability and colours for classification

of PTF objects as quasars, stars and galaxies. We aim to analyse the performance of the

model for different data set sizes and consider possible modifications for other surveys.

We will create a catalogue for the resulting classifications and fitted variability param-

eters for use in future projects. This thesis builds on the preliminary studies of Bruun

(2020).

Thesis outline

I
n this introductory chapter, we have discussed the motivation behind the thesis. We

will now outline the structure of the rest of the thesis.

In Part I, we describe the theoretical background. Chapter 1 presents current knowl-

edge of variable objects. We discuss properties of stars, galaxies and quasars, and the

possible mechanisms behind variability. This includes different types of variable stars

and AGN. Finally, we introduce systems for expressing positions and time stamps of as-
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tronomical observations. In Chapter 2, we explain the statistical background of the the-

sis. This includes how to sample posterior probability distributions with Markov Chain

Monte Carlo, and efficiently cross-match large databaseswith k-d trees. We present com-

mon methods for quantifying light-curve variability in the literature and some examples

of machine learning techniques for classification of variable objects.

Part II focuses on the details of the data analysis and presents the results. This part

is based on Bruun et al. (2023a) and Bruun et al. (2023b). In Chapter 3, we present an

outline of the data processing pipeline for variability selection and classification of the

PTF survey. In Chapter 4, we fit power laws to the SFs of 71 million objects in the

PTF survey to describe their variability. We then plot the variability along with colours

from WISE and PS1. We discuss differences between quasars, stars and galaxies with

SDSS spectroscopic classifications. To study distributions of photometrically selected

sub-populations, we define selection criteria in variability and colours. In Chapter 5,

we build a machine learning model for optimal classification of the PTF objects. We

assign each object a class (quasar, star or galaxy) and a probability of belonging to each

of the three classes. We discuss important aspects of the model and how to apply similar

models to different data sets.

Part III concludes the thesis. Chapter 6 expands on part of the data analysis, and

we discuss alternative approaches that might be relevant in future projects. Alternative

approaches involve different machine learning methods, data and data processing. In

Chapter 7, we summarise the thesis and connect the findings in preparation of future

research.
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Chapter 1

Variability in astrophysics

I
n this chapter, we discuss the role of light-curve variability on human timescales in

the field of astrophysics. Humans have mapped the sky with the tools available since

ancient times. An example is Hipparchos estimating the positions and brightness of stars

at ∼140–120 BC. He also might have used the geared Antikythera mechanism for pre-

dicting the positions of objects in the Solar System (Freeth et al. 2008). Analogously, this

thesis will map the variability of astrophysical objects and create a model for predicting

changes in brightness.

In recent times, we are creating catalogues of astrophysical sources using, for exam-

ple, imaging, photometry, spectroscopy, polarimetry, neutrinos and even gravitational

waves. With photometry, we study of the brightness of objects such as by measuring

magnitudes. The system of magnitudes can be traced all the way back to Hipparchos.

Measuring multiple magnitudes in the same band, but at different times, will give us a

light curve. Light curves show us that some sources vary measurably in brightness over

time.

Colours can be estimated from photometry, but for detailed colour information, we

use spectroscopy. By taking spectra with high wavelength resolution, we also get the

precise properties of emission and absorption lines in a spectrum. We can use these,
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along with the overall shape of the spectrum, to classify and describe properties of the

light source. This includes redshift, chemical composition, temperature, chemical abun-

dances, pressure, magnetic fields and motion (Ashworth 2012).

Light is redshiftedwhen the emitting source ismoving relative to the observer (Doppler

shift), when theUniverse is expanding (cosmological redshift) andwhen itmoves through

a gradient in the curvature of spacetime (gravitational redshift). On distance scales of

more than ∼ 5Mpc, cosmological redshift dominates (Davis & Peebles 1983).

While spectroscopy is useful for studying astronomical objects, the spectral resolu-

tion requires long exposure times, and so it is expensive. When spectroscopic data is not

available, redshifts can be estimated photometrically. Photometric redshifts are less pre-

cise and rely on broader spectral features that can be detected though a few bands (Baum

1962; Koo 1985; Tanaka 2015). Classification of sources is also easier by spectroscopy, but

photometry is cheaper and available for more objects. However, light-curve variability

can sometimes identify spectroscopic misclassifications, as we will see in Chapter 4.

The origin of light-curve variability can be extrinsic or intrinsic to an observed as-

trophysical object. Extrinsic variability could be from measurement errors, rotation or

other objects, dust or gas within the line of sight from Earth. Intrinsically variable ob-

jects can be transients such as supernovae and kilonovae. Wewill focus on the long-term

intrinsic variability (or the lack thereof) of objects. The three main object types we will

select in Part II are stars, galaxies and quasars. Below, we review how and why their

light curves may show variability.

1.1 Stars

S
tars are luminous objects of plasma and are either generating energy by nuclear

fusion of hydrogen or have done so previously. Stars can spend billions of years in

themain sequence in which they fuse hydrogen into helium in their cores. Main sequence

stars generally show very little variability (Sesar et al. 2007). They stay the same size

by being in hydrostatic equilibrium with the inward force of gravity being balanced by

pressure. This creates a stable star that is neither exploding or imploding (this also

applies to stars outside the main sequence). The maximum luminosity an object can

have and still be in hydrostatic equilibrium is called the Eddington limit.
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1.1.1 Variable stars

Jetsu et al. (2013) argues that variable stars have been recorded since 1271–1163 B.C. in

the Cairo Calender which includes the period of Algol. In 1596, stellar variability was

first recorded in modern, Western history, for the star now known as Mira. Some stars

have little variability – and without detectable variability they are useful as photometric

standards. Some stars are pulsating with regular patterns in variability we can use to

infer physical properties. If variability periods are correlated with absolute magnitudes,

the stars can work as standard candles for distance estimation. If we know the appar-

ent magnitude m of an object, and the absolute magnitude M we would measure at a

distance of 10 pc, we can relate the two. The difference is called the distance modulus:

m−M = 5 · log10
(

dL
[pc]

)
− 5. (1.1)

With the distance modulus, we can use an object with known absolute magnitude to get

its luminosity distance dL.

Fig. 1.1 shows imaging of spectroscopically confirmed stars from SDSS. All of them

are in themain sequence. They differ in colour, which also shows in the spectra in Fig. 1.2

for six of the same objects (sorted left to right and then top to bottom). In Fig. 1.3, we

show light curves for the first nine of them. Most of them show few signs of variability.

The light curves are created from R band PTF data and cleaned according to Sect. 4.2.5

including the selection of outliers using a weighted moving median.

In Fig. 1.4, we show light curves for variable stars, although they are not as common.

They have been selected as variable using Set of Identifications, Measurements and Bib-

liography for Astronomical Data (SIMBAD) main type registrations. Comparing with

Fig. 1.3, there is visibly more variability and more data points are selected as outliers.

A myriad of variable stellar types and subtypes exits – we will now explore some

of the mechanisms behind stellar variability. See Eyer & Mowlavi (2008) for a deeper

overview of variable stars including typical periods and amplitudes of different types.

Cepheids is a group of stars used as standard candles, for testing stellar evolution

models and for modelling the Milky Way disk (Riess et al. 2019; Dinnbier et al. 2022;

Skowron et al. 2019). They are pulsating variables, due to a connection between opac-

ity and temperature known as the κ-mechanism (Zhevakin 1959; Montalban & Miglio

2008). When the stars are warm, they ionise He i, creating He ii which is more opaque.
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Figure 1.1: Imaging of spectroscopically confirmed stars in SDSS. They appear as point

sources and are most common near the Milky Way disk. Images are selected using SDSS

Image List, https://skyserver.sdss.org/dr17/VisualTools/list.
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Figure 1.2: Example spectra of spectroscopically confirmed stars in SDSS.

They are all in the main sequence. In SDSS they are registered with

SpecObjID 346860762074998784, 2131503125465425920, 2624579398258419712,

8193227061621708800, 2338575809775691776 and 2136969072997328896 (SDSS-IV DR17,

CC-BY license, skyserver.sdss.org/dr17/VisualTools/explore/
summary).
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Figure 1.3: R-band PTF light curves of spectroscopically confirmed stars in SDSS. The

light curves are constructed according to Sects. 3.2 and 3.3 and the outliers marked in

red are selected according to Sect. 4.2.5. Some are more variable than others. For each

source, we show the A and γ variability parameters fitted in Chapter 4. The variability

amplitudeA is extremely low and consistent with zero for most of the stars shown here.
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Figure 1.4: R-band PTF light curves of objects registered as variable stars in SIMBAD.

The top row shows Cepheid variables, the centre row has RR Lyrae and the bottom row

shows one long-period variable (left), one eclipsing binary (centre) and oneMira variable

(right).
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This means the helium absorbs more of the radiation, increasing radiation pressure and

therefore the volume of the star. An increased volume decreases the temperature, al-

lowing the helium to absorb electrons and become He i again. The He i is less opaque,

lowering the radiation pressure, and so gravity compresses the star into a lower volume

again (Cox 1963). Cepheids typically vary over days to months (Kraft 1960).

RR Lyrae were once thought to be Cepheids and can also be used as standard candles

and for tracing stellar evolution. They too are pulsating due to the κ-mechanism of

helium ions, but they are fainter than Cepheids and generally old and metal-poor. They

can therefore be used for tracing old objects. However, metal-rich RR Lyrae can be

produced through binary interactions (Bobrick et al. 2022). The variability amplitudes

are similar to Cepheids but their periods are just a few hours to a day (Cabral et al. 2020).

An example of a variable star with longer-period pulsations is Mira variables. They

are red giants that are brightest in the infrared but with variations of>2.5 magnitudes in

the optical over >150 days and varying regularity. Their mass ejections play an impor-

tant role in the metal enrichment of the interstellar medium (Mattei 1997; Iwanek et al.

2021).

Another type of variable source is cataclysmic variables. They have short, intense

bursts in luminosity. Cataclysmic variables are close, binary systems with a late-type

donor star that transfersmass to awhite dwarf, usually through an accretion disk (Szkody

2021). When the white dwarf is warm enough, the hydrogen in the outer layer is ignited

and fused into helium. After a burst of fusion and mass ejection, the white dwarf be-

comes stable again, and produces energy by accretion. As the transfered mass loses

potential energy, part of that energy is converted to X-rays. X-rays are also emitted as

Brehmsstrahlung when the accreted material reaches the surface of the white dwarf.

Cataclysmic variables can be a source of lower energy photons depending mainly on

magnetisation but also the boundary between the disk and thewhite dwarf (Mukai 2017).

Finally, stars can appear variable if they are eclipsing in a binary system or have

large exoplanets. If they are rotating with spots of different brightness, that can also

cause extrinsic variability.
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1.2 Galaxies

G
alaxies are large structures of stars, gas, dust and dark matter. They mostly appear

as extended sources on the sky at low redshifts and depending on the telescope –

example galaxies are shown with SDSS imaging in Fig. 1.5.

In Fig. 1.6 are examples of galaxy spectra. The spectra of galaxies depend on the spec-

tra of their constituent stars and possibly AGN. Wewill get back to AGN in Sect. 1.3. Star

forming galaxies have more young stars and therefore more blue radiation and stronger

emission lines from ionised gas. As with stars, we can use the spectral lines of galaxies

to estimate their redshifts. The lines of stars are broadened and shortened due to the

spread in Doppler shift as the stars orbit the galaxy centre (Sparke & Gallagher 2007).

The light curves of nine galaxies are shown in Fig. 1.7. Most of them show little

variability, although, for example, a starburst galaxy will slowly dim over timescales

of millions and billions of years as it runs out of gas and the largest stars die (Sparke &

Gallagher 2007). Salvato et al. (2009) explore the variability of galaxies using light curves

from PTF. Galaxies in the Virgo cluster have higher variability close to the centre of the

cluster, possibly due to higher gas contents fuelling AGN. Galaxies without AGN are not

expected to be variable on human timescales.

1.3 Quasars and AGN

We know that many large galaxies contain a supermassive black hole. Most galaxies

with a bulge have a supermassive black hole in the centre, but supermassive black holes

can also exist without a bulge (Kormendy & Ho 2013). Some of the central black holes

are accreting gas, which loses potential energy that is in part converted to radiation. Up

to 10 % of the rest mass is converted, and so the objects can be extremely bright. These

luminous objects are known as active galactic nuclei (AGN) and the brightest are called

quasars (Sparke & Gallagher 2007).

As mentioned in the motivation, we can use quasars to trace structure formation

and estimate cosmological parameters via studies of BAO signals and redshift-drift tests.

Estimating the Hubble constant using quasar magnitudes at high redshifts has been at-

tempted (Risaliti & Lusso 2019), but the accuracy is questionable (Velten & Gomes 2020).

Fig. 1.8 shows SDSS imaging of quasars. Examples of their spectra are given in Fig. 1.9
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Figure 1.5: Imaging of spectroscopically confirmed galaxies in SDSS. Many of them

can be recognised by appearing extended. Images are selected using SDSS Image List,

https://skyserver.sdss.org/dr17/VisualTools/list.
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Figure 1.6: Spectra of spectroscopically confirmed galaxies in SDSS. The

galaxies of the centre row and the lower right diagram are labeled as star

forming. They are registered with SDSS SpecObjID 5342507581884880896,

6785815058729687040, 608069820943984640, 675630967565608960, 832171739952736256

and 558606915844728832 (SDSS-IV DR17, CC-BY license, skyserver.sdss.org/
dr17/VisualTools/explore/summary).
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Figure 1.7: R-band PTF light curves of spectroscopically confirmed galaxies in SDSS.

The light-curve construction is described in Sects. 3.2 and 3.3 and the outlier removal

in Sect. 4.2.5. We see very little variability. However, photometric noise is present, and

galaxies may include an AGN without being labeled as a quasar by SDSS.
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Figure 1.8: Imaging of spectroscopically confirmed quasars in SDSS. They are observed

as point sources and many of them are blue. Images are selected using SDSS Image List,

https://skyserver.sdss.org/dr17/VisualTools/list.

in the same order (left to right, then top to bottom). The sources are relatively blue and

show broad emission lines in their spectra. We will come back to this in Sect. 1.3.2.

Fig. 1.10 shows light curves of nine of the objects, which show more variability than the

typical galaxy (see Fig. 1.7). We discuss quasar and AGN variability in Sect. 1.3.3 and

how to quantify it in Sect. 2.4.

1.3.1 AGN structure

An AGN has the structure of Fig. 1.11. Close to the black hole, we find the accretion disk.

The infallingmatter is heated and becomes hotter closer to the black hole. Thismakes the

disk emit thermal continuum radiation. Strong magnetic fields can produce relativistic
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Figure 1.9: Spectra of spectroscopically confirmed quasars in SDSS. The characteristic

broad lines are visible. In SDSS, they are registeredwith SpecObjID 897429125139032064,

888358705291094016, 564142686156646400, 7644876143380944896, 520320270372726784

and 8214632358990862336 (SDSS-IVDR17, CC-BY license,skyserver.sdss.org/
dr17/VisualTools/explore/summary).
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Figure 1.10: R-band PTF light curves of spectroscopically confirmed quasars in SDSS.

Quasars are generally highly variable, which shows in theA and γ variability parameters

(see Chapter 4). Only one of the shown sources (bottom centre) has anA value less than

two σA,− from zero.
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Figure 1.11: Diagram of the structure of an AGN with a jet (created by the author).

jets close to the centre. As plasma moves in the jets, it produces non-thermal polarised

synchrotron radiation from the acceleration of spiralling charged particles (mainly at

radio wavelengths) (Sparke & Gallagher 2007; Freedman et al. 2014). At the end of the

collimated jets, the plasma has lost energy and we find radio lobes of material with radio

emission. Some photons from the accretion disk, and sometimes the jet, are upscattered

on charged particles through inverse Compton scattering. These effects produce contin-

uum emission, including X-rays (La Mura et al. 2017).

Futher out, we have the broad line region and the narrow line region. The broad line

region consists of dense clouds that absorb and re-emit radiation. The gas clouds are

in close orbit around the black hole at high velocities, giving a Doppler-broadening in

re-emissions. This broadens the emission lines. The narrow line region is further away

from the black hole and has a density low enough for "forbidden" emission lines that are

otherwise highly unlikely. In the plane of the accretion disk, the disk is surrounded by

a dusty accretion torus that absorbs some of the emitted light – especially low energy

X-rays.
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1.3.2 AGN types

If the AGN has a jet that produces radio emission it is radio-loud. Other AGN are radio-

quiet. AGN look different depending on viewing angle. Seyfert galaxies, which are radio

quiet, are classified depending on the ratio of broad and narrow emission lines as Seyfert

1, Seyfert 2 or with a number in between. In Seyfert 2 galaxies, we observe the AGN in

the plane of the toruswhich blocks the broad line region. Thus, we only see broad lines in

Seyfert 1 galaxies – unless the emission has been scattered outside the torus (Antonucci

1993; Urry & Padovani 1995; Du et al. 2017). However, the appearance as type 1 or type

2 can also depend on properties of the accretion tori such as width, clumps and optical

depth (Ramos Almeida et al. 2011). Seyfert galaxies are mostly spiral galaxies (Sparke &

Gallagher 2007). Other AGN can also be classified as type 1 or type 2. Some quasars have

high variability of broad lines and continuum emission in the optical and UV, changing

their appearance between type 1 and type 1.9 (MacLeod et al. 2019).

If the jet of an AGN points directly towards us, it can be observed as a blazar. Blazars

are radio loud, extremely bright and highly variable even on scales of days and hours.

They can be categorised into two groups: BL Lacertae objects (or BL Lac), and Optically

Violent Variables (OVVs) (or flat-spectrum radio quasars (FSRQ)), depending on the

strength of emission lines (stronger in OVVs). The spectra are generally close to fea-

tureless for BL Lac, which makes spectroscopic redshift estimation difficult (Ajello et al.

2014; Sparke & Gallagher 2007).

Radio galaxies are elliptical galaxies with stronger radio emission of ∼ 108L⊙ com-

pared to Seyfert galaxies with ∼ 106L⊙. This is emitted in the jets and large radio lobes

of the AGN (Sparke & Gallagher 2007).

In the 1950’s, several objects were discovered that appeared as point sources but at

high redshifts and with strong radio emission. These objects become known as quasi-

stellar radio sources, or quasars for short. However, quasar can also stand for quasi-

stellar objects, and >90 % of quasars are radio quiet (Sparke & Gallagher 2007). The

word quasar is now used for both object types. They are extremely bright active nuclei

that can outshine their entire host galaxy. Shen (2021) has used a luminosity threshold of

Lbol > 1045erg/s. Extreme luminosities allows them to be observed even at redshifts of

z > 7. The most distant confirmed quasar at time of writing is J0313–1806 at z = 7.642

(Wang et al. 2021). Recently, a James Webb Space Telescope spectrum of GN-z11 at

z = 10.6 showed that the object is likely an AGN (Maiolino et al. 2023).
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1.3.3 AGN variability

Over time, quasars and AGN are known to vary stocastically across the electromagnetic

spectrum. Sesar et al. (2007) found that at least 90 % of all spectroscopically confirmed

quasars by SDSS show variability. They generally do so over timescales of weeks to

decades and can also change in colour. Some quasars may change on even shorter time

scales (Schmidt et al. 2012). We will get back to why later in this section.

The physical properties of the central black hole have been correlated with parame-

ters describing variability. Magnitude and direction of the correlations remain unclear,

however, and correlations are affected by the limitations of current variability models

and baselines (Kozłowski 2017b). Suberlak et al. (2021) and De Cicco et al. (2022) review

predictions from theoretical models and empirical results in the literature. The results

are inconsistent. De Cicco et al. (2022) only finds an anti correlation between amplitude

and both the Eddington ratio, λE , and the bolometric luminosity, Lbol, but not with the

mass of the black hole.

We show examples of quasar light curves in Fig. 1.10. Modelling and recognising the

variability characteristics of AGN would be one way of classifying them. Many models

have been used in the literature, as we will explore in Sect. 2.4.

One use of AGN variability depends on the distance between the inner accretion

disk and the broad line region. When the emission of the accretion disk varies, the

light scattered by the broad line region varies as well, but with a time delay of a few

weeks. This allows us to measure the distance by reverberation mapping. The measured

light curve of the continuum is mapped to the expected light curve of the broad line

region and then compared to the measured light curve in the broad line region to find

the time difference. The size of the broad line region is related to luminosity by the

radius-luminosity relationship (Bentz et al. 2013)

R ∝ Lα, α = 0.533+0.035
−0.033, (1.2)

and with luminosity estimates, we can use AGN as standard candles. Combined with

redshifts, they can be used for studying cosmology even at high redshifts (Watson et al.

2011; Bruun 2017). Reverberation mapping is also used for estimating the mass of the

black hole (Peterson et al. 2004).

The origin of variability in quasars and AGN is unclear. Multiple possible explana-
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tions exist such as:

• Accretion disk instabilities (Rees 1984). Changes in accretion or thermal properties

change the produced emission. There are many possible explanations for these

instabilities.

– Magnetorotational instability can destabilise the disk and cause turbulence

(Mushotzky et al. 2011). Magnetic torque in the inner part of the accretion

disk can also create cooling and heating fronts (Ross et al. 2018).

– If the disk is not aligned with the spin of the black hole, it can be broken into

rings. This causes variability with high amplitudes and short timescales that

can be quasi-periodic (Raj & Nixon 2021).

– The torus can drive in clumps of gas and the changes in mass accretion rate

changes the luminosity (Hopkins et al. 2012).

• Reprocessing of X-rays and UV in the inner disk can cause variability. Changes

in emission at the centre of the disk will cause changes in re-emitted light as the

light interacts with the disk (Shappee et al. 2014).

• Changes in obscuration of emitted light. For example, clumps in the torus can

change the obscuration on time scales of months to years (Hopkins et al. 2012).

• Jets can cause variability on time scales of hours (Kelly et al. 2009).

• Gravitational lensing (Chang & Refsdal 1979). More on this in Sect. 1.3.4.

Other factors might affect variability timescales without causing variability them-

selves. For example, strong magnetic fields can increase the thickness of the accretion

disk which shortens inflow times (Dexter & Begelman 2019).

1.3.4 Lensed qasars

Gravitational lensing occurs when massive objects change the curvature of spacetime.

This bends light around the object, causing a lensing effect in much the same way as a

convex lens of glass. To an outside observer, objects behind the lens can be amplified.

They can also appear in different and even multiple positions on the sky. The lensing
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allows us to gather more information about both the lens and the lensed object, which

is used for detection of exoplanets (Griest & Safizadeh 1998), for example.

Gravitational lensing can make a point source quasar appear in multiple positions

on the sky, and if it is unresolved this can make the point source appear extended.

Kochanek et al. (2006) suggests selecting lensed quasars as apparently extended and

variable sources.

Lensed quasars can be used for time-delay cosmography. By studying the lensing

effect, we can estimate distances, and these are tied to cosmological parameters. When

the light of a quasar passes the lensing object, multiple paths can be directed towards the

same observer and thus multiple images will appear. They show the quasar at different

times depending on the difference in length of the paths and the gravitational potential

of the lens. The time delay between images thus reveals a time delay distance. This can

be related to the positions of the images and the lensing object (Refsdal 1964; Treu &

Marshall 2016).

Understanding the mass and mass distributions of lensing objects allows us to study

dark matter and the mass evolution of galaxies. However, lensing galaxies are not rep-

resentative of all galaxies. 80 % of lenses are elliptical galaxies according to Möller et al.

(2007).

1.4 Coordinates and time

P
ositions of the astronomical sources can be specified in multiple coordinate sys-

tems. For easy coordinate conversion, one can use a tools such as those by the Space

Science Data Center
1
.

We will mainly use the equitorial coordinate system. Using cartesian coordinates in

this system, we can describe any position using right ascension (RA) and declination

(Dec). RA is the angular distance along the plane of the Earth’s equator from the position

of the Sun during vernal equinox. It increases towards East. Dec is the angular distance

perpendicular to the equator. RA has values from 0 to 360, and Dec is in the range from

−90
◦
to +90

◦
with north being positive. In the J2000 frame, the equinox and equator are

defined at 12:00 January 2000.

RA and Dec can also be specified in sideral time, as the rotation of the Earth connects

1
Italian Space Agency, tools.ssdc.asi.it/conversionTools
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time and angle. Each hour marks a change of 15
◦
in RA, and each minute is 1/4 ◦

.

Small angles can be measured in arcminutes (1/60 ◦
) or arcseconds (1/3600 ◦

), not to be

confused with minutes and seconds of sideral time. Milliarcseconds are written "mas".

An alternative system is the Galactic coordinate system. Coordinates are Galactic

latitude and longitude with respect to the Galactic plane, with the Galactic centre as the

zero point. Galactic latitude increases to the north of the Galactic plane, and Galactic

latitude increases towards the Galactic east.

The time stamps of observations (epochs) are typically given as Modified Julian Date

(MJD). Thismeasure counts the number of days since 00:00 17November 1858 inUniversal

Time (UT). It is a modified version of Julian Date (JD), where MJD=JD−2400000.5. JD

is zero at 12:00 1 January 4713 BC.

SELECTION OF PTF SOURCES BASED ON LIGHT-CURVE VARIABILITY 47





Chapter 2

Statistical methods

A
stronomy presents particular challenges in data science. The size of the data sets

may vary, uncertainties need to be handled, tabular data may be sparse and time

series data have irregular sampling (as shown in e.g. Fig. 1.3). For optimal data pro-

cessing, we consider several statistical techniques. Statistics and machine learning will

provide essential tools for astronomical analysis. By carefully choosing and applying

the methods, we can optimise computational efficiency, minimise bias and extract new

information. This requires philosophical considerations about what we are truly trying

to estimate and the subtle causes of overfitting.

First, we consider what we mean by probability and how to treat it under a Bayesian

interpretation. This will lead us to the optimisation of likelihoods for parameter estima-

tion and how to do this in practice with the chains of MCMC. The goal of this thesis is

to analyse variability, and so, we will discuss various ways of quantifying it and their

application in the literature. To cross match large astronomical databases, we define k-d

trees. Mathematical tree structures are also a common method in machine learning for

the classification of variable sources. We discuss the use of machine learning in astron-

omy, the fascinating prospects and the pitfalls, and provide examples of how it is used

in the context of classifying variable objects.
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2.1 Bayes and likelihoods

P
robability can be interpreted through two major paradigms: frequentism and

Bayesianism. In the frequentist paradigm, a probability describes the frequency by

which something happens. The chance of rolling a 6 with a fair 6-sided dice is 1/6, be-

cause it happens 1/6th of the time (as a limit for an infinite number of rolls). In this view,

one cannot state that the probability of the Universe having some constant property is

17 %, because either it does or it does not. It must be possible to measure multiple times

and get multiple different outcomes to estimate the probability of each as a frequency.

Alternatively, probability can be interpreted as an objective property of the object in

question, but this would still not allow us to say a hypothesis has a probability of 17 %

(Barlow 1989).

In the Bayesian view, probability is no longer a property of a dice or the Universe, but

it quantifies a subjective degree of belief about them. In a case of two mutually exclusive

theories about the Universe and no prior knowledge of which is true, we would guess

that each of them have a 50 % chance of being correct. There is no reason to prefer one

over the other. When we take measurements, we update the estimate to e.g. 70 % and

30 %. In Bayesianism, when we evaluate hypotheses, we update a prior probability to

get a posterior probability (Barlow 1989).

Bayes theorem, named after Thomas Bayes, was published for a special case in 1763

(Bayes & Price 1763). It explains how to update the conditional probability of an event

A given another event B, P (A|B):

P (A|B) =
P (A)P (B|A)

P (B)
. (2.1)

The prior probability of A is P (A). P (A|B) is the posterior probability. P (B|A) is the
conditional probability ofB givenA, or the likelihood. P (B) is the marginal probability,

or evidence. The more likely A is in general, the more likely it is after observing that

B is true. If the probability of B is high given A is true, then A is also more probable

whenB is true. However, the more likelyB is to be true in general, the less information

it gives us about the probability of A.

When P (B) is unknown, it can be computed as P (A)P (B|A)+P (¬A)P (B|¬A), if
we know probability ofB being true in the cases ofA being true or not true. For multiple
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values of Ai, estimation of P (B) with a sum or integral can be complicated. Sometimes,

it is enough to consider P (A|B) ∝ P (A)P (B|A). For hypothesis testing, the evidence
P (B) is constant during comparison of a hypothesis Ai with Aj .

A common challenge is the estimation of a continuous variable θ based on data

x consisting of measurements x1, x2, ...xn. To find the maximum a posteriori prob-

ability (MAP) and thereby the most probable value of θ given the data, we optimise

P (θ)P (x|θ). For P (x|θ), we need the total probability of observing all data points xi

given θ. Assuming xi are independent measurements, the probability of observing all of

them is the product of observing each one.

θ̂MAP = argmaxθP (θ)P (x|θ) = argmaxθP (θ)
∏
i

P (xi|θ) (2.2)

If the prior is uniform or negligible compared to the evidence, we simply find the

maximum likelihood, P (x|θ). That is, we identify the θ value that would be most likely

to produce the observed data though maximum likelihood estimation (MLE) (Barlow

1989).

θ̂MLE = argmaxθP (x|θ) = argmaxθ

∏
i

P (xi|θ) (2.3)

For easier computation, it is common to optimise the log likelihood using sums in-

stead of products. This can sometimes be done analytically by differentiating lnP (x|θ)
and setting it equal to zero.

The prior can be known from previous estimations of the posterior, or it can be esti-

mated from background information. Without prior information, we want to choose an

uninformative prior – i.e. a prior that gives equal weight to all possible outcomes when

there is no reason to choose one over the other. Often, an uninformative prior would be

a uniform prior, which corresponds to not using a prior. However, a uniform prior in log

space would be a logarithmic prior. For variables which must be positive, the prior could

be uniform for all positive values and zero for negative values. To estimate the prior of

events with different multiplicities, the prior can be based on entropy or the information

in each event. A common choice which is invariant under coordinate transformations

(after applying a Jacobian) is Jeffreys prior (Jeffreys 1946). Jeffreys prior is based on

information in all possible θ values, which can be computed from the likelihood.
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2.2 Markov Chain Monte Carlo

W
e now have twomethods for estimation of a parameter θ based on data x (Eqs. 2.2

and 2.3). Both methods depend on optimisation of the likelihood. However, it

is not always possible to find an analytical solution. How do we then estimate θ̂MAP or

θ̂MLE in Eqs. 2.2–2.3?

One way is to use a Monte Carlo method. Monte Carlo methods are numerical meth-

ods that rely on generating random data. We can use this to simulate events and their

probabilities. For example, we can draw random samples θi, compute P (x|θi) for each
and thereby we have sampled the probability density function (PDF) of the likelihood.

This allows us to estimate the distribution of likelihoods and infer both the "best" θ̂MLE

and its uncertainties even if they are asymmetric. By using a prior as well, we estimate

θ̂MAP.

We will specifically use a Markov Chain Monte Carlo (MCMC) method. These are

widely used in astronomy (Sharma 2017). We create a walker to explore the parameter

space of θ by suggesting values θ′. In a Markov Chain, this happens in steps, where

the value θi+1 of step i + 1 depends on the previous one, θi. The next step should only

depend on the current step and be independent of the past – this is called the Markovian

property. If the suggested θ′ is accepted, it becomes θi+1. If θ
′
is rejected, a new value is

suggested based on θi.

For a walker in equilibrium, there is no overall drift in the accepted values. Each

step draws one random sample from a PDF of θ. We can plot them in a histogram or

apply metrics to study the distribution. The starting value θ0 is chosen manually. If it is

far from the "true" θ we are trying to estimate, it will take some steps before the walker

finds a probable parameter region and reaches an equilibrium. Therefore, the first steps

are discarded as "burn-in".

In Fig. 2.1 we see the chains of multiple walkers exploring a two dimensional pa-

rameter space. The burn-in phase is visible during the first ∼ 100 steps. Fig. 2.2 shows

histograms of the generated parameter values after discarding the first 200 steps, and

how the histograms reveal the shape of the PDF for each parameter. The choice of how

long to run the MCMC depends on the trade off between computing resources and how

well the PDF should be estimated.
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Figure 2.1: Chains of multiple walkers in a MCMC method to estimate the posteriors of

two variables: A and γ. The parameters describe the SF of a light curve (see Sect. 2.4.1).

The path of each walker is traced in black, and the median is marked in red. The results

may vary between multiple runs of the algorithm if it falls into a local minimum. The

chains above fit the SF of a spectroscopically confirmed quasar at RA=70.586255, Dec=-

0.26717 with PTF object ID (OID) 1000682110001035.
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Figure 2.2: Histograms of the MCMC chains of Fig. 2.1 after burn in. They sample the

PDF of the fit parameters A (top) and γ (bottom). We have marked the median and 16th

and 84th percentiles.

54 SOFIE HELENE BRUUN



CHAPTER 2. STATISTICAL METHODS 2.3. k-D TREES

2.2.1 Sampling algorithm

Multiple algorithms exist for the suggestion and acceptance of new steps. A common one

is the Metropolis-Hastings algorithm, in which the probability of acceptance depends on

the ratio of the posteriors of the current and the suggested step, α = P (θ′)P (x|θ′)
P (θi)P (x|θi) (Chib &

Greenberg 1995).

Formultivariate sampling of parameters θ and ϕ, sampling the joint distribution from

P (ϕ, θ|x) can be difficult. Instead, we can use their conditional probabilities. We can

sample θi+1 from P (θ|ϕi, x) and then ϕi+1 from P (ϕ|θi+1, x). This is called Gibbs sam-

pling (Geman & Geman 1984) and is an alternative to Metropolis-Hastings. We sample

along one dimension at a time to choose the coordinates of the next step in the parameter

space of θ and ϕ.

SomeMCMC algorithms runmultiple walkers for each step of the chain. Thewalkers

can interact through different moves, i.e. ways of suggesting new steps. In the emcee
package (Foreman-Mackey et al. 2013), which is used in this thesis, the default is the

stretch move (Goodman & Weare 2010). In a stretch move, a walker suggests a step di-

rectly in the direction of, or away from, the position of another walker. The package

only uses affine invariant moves to improve sampling of anisotropic PDFs Affine trans-

formation invariance includes invariance under reflection, rotation, scaling, translation

and shearing, but parallel lines stay parallel. The affine invariant sampler is unaffected

by linear transformations that could transform the posterior into a space where it is

isotropic. This is relevant for multivariate sampling of covariant parameters, and helps

the walkers explore the parameter space by suggesting steps that are more likely to be

accepted during Gibbs sampling.

2.3 k-d trees

T
o cross-match astrophysical objects, we search the coordinates for their nearest

neighbours in other surveys. As the surveys are large, this needs to be done effi-

ciently, so we divide the data into partitions using a data partitioning algorithm. This

way, we can access one partition at a time, and we will not need to compare the coordi-

nates of all objects in one survey to the coordinates of all objects in another survey.

The coordinates are two dimensional, so for efficient matching, we create two di-

mensional tree structures. A tree is a structure consisting of nodes that are connected
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hierarchically. Each node can have multiple child nodes but only one parent node. In a

binary tree, each parent node has a maximum of two children. The end nodes (with no

children) are called leaf nodes, and the rest are internal nodes. The node with no parents

is called the root node. This is illustrated in Fig. 2.3.

root node (and internal node)

internal node

leaf node internal node

leaf node leaf node

internal node

leaf node

Figure 2.3: Diagram of a tree structure. Parent nodes are shown above and connected to

their children with a line. This tree is binary, since no parent node has more than two

child nodes.

By creating a binary tree that connects all coordinates in a survey, we can speed up

the process of searching for them. A k-d tree is a binary tree in k dimensions (Bentley

1975). It consists of nodes that each represent a k dimensional hyper-rectangle. We call

each rectangle a cell. All internal nodes split a cell into sub-cells and are associated with

a splitting hyperplane. The hyperplane is described by an axis and a value along the

axis.

While searching the k-d tree for the neighbours to a set of coordinates, we start at

the root node. Then, we follow the splits to arrive at the leaf node representing the

cell that would include the queried coordinates. We then search the objects in the cell

represented by the leaf to find close matches. If other cells are closer to the queried

coordinates than the closest matched object so far, those cells can be searched as well.

This might be unnecessary if the search is simply for the approximate nearest neighbor

within (1 + ϵ)d of the distance d to the true closest match, for a specified ϵ.

To create the cells, we start with a cell including all data, represented by the root node.

We then choose a hyperplane and use it to split the cell into two sub-cells. We choose

new hyperplanes for those cells etc. until a set maximum leaf size is reached for all leaf

nodes. Several splitting methods exist. The standard splitting method (Friedman et al.

1976) uses the median of the positions of the objects. For clustered data, this method has
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Figure 2.4: Illustration of how the slidingmidpointmethodwould split a two dimensional

space into cells depending on the positions of data points. Hyperplanes split cells into

subcells starting from a cell including all data.

a tendency to produce highly elongated cells, which slow down the querying process.

The midpoint method split hyper-rectangles in the middle, but this can produce empty

cells. Empty cells means the tree is larger than necessary and that also slows querying.

Arya & Mount (1998) created a method with a bounded aspect ratio for cells and no

empty cells: the sliding midpoint method. This method is illustrated in Fig. 2.4. Cells

are split based on their midpoint, but if this would result in an empty cell, the splitting

hyperplane "slides" to the position of the nearest object. A detailed comparison is found

inManeewongvatana&Mount (1999). Wewill use the slidingmidpointmethod in Part II.

2.4 Measuring variability

A
s we have seen in Chapter 1, many types of objects show variability and for many

different reasons. To identify variable sources, understand the physical mecha-

nisms behind variability and use them in other astrophysical contexts, we need ways of

quantifying variability.

Quasars have long been selected by variability. For example, van den Bergh et al.

(1973) used variability to avoid a bias against highly redshifted quasars in colour selec-

tion. They measured variability as differences between at least two photographic plates.

They did so using visual inspection with a blink comparator that could quickly "blink"
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between images.

A few years later, Usher (1978) selected objects in colour (U − V ) and optical vari-

ability with a quasar purity of 70 %. Variability was measured using 3 statistics: χ2
of the

null hypothesis that the source is non-variable, signal-to-noise ratio of all pairs of points

in a light curve, and the difference between the magnitudes and the weighted average

magnitudes.

Another example is Butler & Bloom (2011) using variability for 99 % complete quasar

selection and selecting new ones in SDSS Stripe 82. They study the variability of quasars

in general and classify individual objects based on howwell they fit the ensemble model.

Quasars have correlated variability on longer timescales than most stars, so they can be

recognised by studying timescales of variability. Variability is especially relevant for

quasars with redshifts of 2.5 < z < 3, where it is more difficult to use colours. Quasars

are often selected by "UV excess" using u − g, but at 2.5 < z < 3 the values similar to

those of stars.

AGN in low mass galaxies are also easier to miss by emission line ratios, and so Bal-

dassare et al. (2020) selected low mass AGN in PTF using a DRW model of variability.

Ward et al. (2021) also selected AGN in dwarf galaxies using several variability mea-

sures. They used the Pearson correlation coefficient between binned fluxes in g and r

(normalising the covariance Cg,r between the bands),

r =
Cg,r

σgσr

, (2.4)

where σg and σr represent the standard deviation of each band (or the root mean square

(RMS) of the scatter). So σg is

σg =

√
1

N − 1

∑
i

(gi − ⟨g⟩)2, (2.5)

including Bessel’s correction of −1 to get an unbiased estimator when the mean is esti-

mated from the sample (Barlow 1989). Ward et al. (2021) also quantified variability with

the reduced χ2
comparing g and r to the mean of each band,

χ2/N =
1

N

N∑
i

(mi − ⟨m⟩)2

σ2
i

, (2.6)
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the reduced χ2
compared to the ensemble SF of Butler & Bloom (2011), and the excess

variance σ2
rms. The excess variance relates the magnitudes to the light-curve mean after

subtracting photometric uncertainties:

σ2
rms =

1

N⟨m⟩

N∑
i

(mi − ⟨m⟩)2 − σ2
i . (2.7)

They found that the best selection of AGN was achieved with the Pearson correlation

coefficient and χ2/N compared to the mean magnitude.

Sesar et al. (2007) also used the standard deviation and reduced χ2
of the mean in

each SDSS band (ugriz). In addition, they used the minimum and maximum magnitude,

light-curve skewness, median magnitudes and colours. This allowed them to select RR

Lyrae (see Sect. 1.1.1) with 95 % completeness and 70 % purity (see Eq. 4.8 for definitions

of purity and completeness).

The choice of informative variability measures plays a special role in source classifi-

cation with machine learning. We will get back to this in Sect. 2.5.

2.4.1 Structure functions

Simonetti et al. (1985) introduced the structure function (SF) in astronomy. They are

well suited for studying stocastic time series and allow for unevenly spaced data. The

idea is to predict how much the magnitude of an object changes given the time between

observations. We compare changes in magnitude (∆mij) with changes in time scale

(∆tij) between two data points i and j.

An empirical SF can be found without assuming a specific model of variability. The

data point pairs are binned in time ∆tij and the measurement uncertainties subtracted

to estimate the average intrinsic variability with

SFemp(∆t) =

√
1

N

∑
ij

∆m2
ij − σ2

i − σ2
j , |∆tij| ∼ ∆t and i < j. (2.8)

When SFs are used on ensembles, the variability is studied for those objects in gen-

eral (Simonetti et al. 1985). Only two points are needed per source, and so, more objects

can be included. Li et al. (2018) include quasars measured with DECaLS and SDSS for
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combined baselines of up to 15 years. However, ensemble SFs ignore the significant dif-

ferences between individual quasars (MacLeod et al. 2010). The ratio of Type I to Type

II AGN affects the shape of the SF, and Type I AGN are easier to detect with optical vari-

ability, as the accretion disk is directly observed. Long baselines are especially important

for detection of type II AGN (De Cicco et al. 2022).

SFs of the light curves of individual quasars can also be modelled. To preserve as

much information as possible for sparsely sampled objects, this can be done without

binning. (Schmidt et al. 2010) use a power-law model

SF = A

(
|∆tij|
t0

)γ

. (2.9)

with amplitude A over a timescale t0 (one year) and a power-law index γ. We describe

this simple, well-studied process in more detail in Sect. 4.3.1.

At large timescales, SFemp can reach a turning point where it stops behaving as a

power law, as the variability would be too large. Instead, SFemp becomes flat and might

behave as a DRWmodel in Sect. 2.4.3.4. Kozłowski (2016b) describe this with a turnover

timescale τ , which they find to be one year. MacLeod et al. (2010) estimate it as 500 days,

and Stone et al. (2022) as 750 days and unconstrained. γ decreases until it is zero, and

this means long light curves can introduce a bias towards low γ. Very short timescales

can also bias γ estimation depending on the noise subtraction. Kozłowski (2016b) warns

of several ways the noise has been incorrectly subtracted in the literature, and they fit a

single power law for 4 < ∆t < 365 days. Bauer et al. (2009) and De Cicco et al. (2022)

argue that the turnover could be an artefact of irregular sampling.

2.4.2 PSD

The power of a light curve may depend on frequency (ν). This is measured as the power

spectral density (PSD), describing the power per unit frequency as a function of fre-

quency. The PSD of aperiodic signals follow PSD(ν) ∝ να
. Different values of α cor-

respond to different "colours" of noise. White noise is defined by a mean of 0, a finite

variance and being uncorrelated, and so the PSD is flat (Scargle 1981). Pink noise falls of

as ν−1
, red noise as ν−2

, blue noise is proportional to ν and violet noise to ν2
. Red noise

is also known as random walk noise or Brownian noise. The index α is related to γ in

Eq. 2.9 by α = −4γ (Kozłowski 2016b).
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Kelly et al. (2011) is an example of fitting AGN light curves with a PSD (of DRW

mixtures, see Sect. 2.4.3.4). Kozłowski (2016b) shows how an AGN PSD might look,

but they also note that PSDs are more difficult to work with than SFs and sensitive to

irregular sampling.

2.4.3 CARMA

Kelly et al. (2009) describe quasar variability by a DRW. Such a process is similar to a

random walk butmean-reverting – the further the flux is from the mean, the greater the

tendency of returning to the mean. To understand the DRW model and more advanced

models, we will first inspect some related processes and terms.

In an autoregressive process (AR) model, the process remembers previous output

steps of the time series, and base a new step on themwith added noise. In a moving aver-

age (MA)model, the process remembers previous input noise terms and knows how they

influence the next step. This is generalised as autoregressive–moving-average (ARMA)

models, or CARMA in continuous time.

2.4.3.1 AR

In an AR model, values in a time series depend linearly on past values and a random

term. This is written

Xt =
∑
k

BkXt−k +Rt (2.10)

for a fluxX at step twith white noiseR. Bk are constants describing howwell the model

"remembers" the past (Scargle 1981).

2.4.3.2 MA

A MA model describes time series data with a series of random pulses with a determin-

istic influence of future values. A MA process is described by

Xt =
∑
k

CkRt−k, (2.11)
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whereR is white noise and Ck are constants. The constants work as a filter determining

the influence of previous pulses of white noise on the currentXt. To ensure that current

pulses do not influence Xt at infinity, Ci follow the stability condition

∑∞
−∞ C2

i < ∞
(Scargle 1981). The MAmodel is not to be confused with computing the moving average

of a time series similar to the moving median of Sect. 4.2.5.

2.4.3.3 ARMA

AR andMAmodels can be converted and expressed as the other – but this can turn finite

order models into infinite-order models. They can also be generalised as ARMA models

that depend on both the input noise and the output steps to avoid pure AR or MA of

infinite order.

Xt =

p∑
k

BkXt−k +Rt +

q∑
k

CkRt−k, (2.12)

is an ARMA model of order (p,q) (Scargle 1981).

2.4.3.4 DRW

MA, AR and ARMA models can be generalised for continuous time. A continuous

version of AR is known as a continuous autoregressive process (CAR). Equivalently,

CARMA is the continuous version of ARMA. The DRW is based on a first order CAR

(the Ornstein–Uhlenbeck process). This can be expressed as a differential equation

dX

dt
= −1

τ
X(t) + σR(t), (2.13)

where τ and σ are positive constants. The first term represents the mean-reverting prop-

erty depending on the current step X and second term represents the noise (Gillespie

1996).

Kelly et al. (2009) describe a quasar DRW by

dX(t)

dt
= −1

τ
X(t) + σ

√
dtϵ(t) + bdt (2.14)

where τ is the dampening timescale, σ describes variability at short timescales, ϵ(t) is

white noise with zero mean and unit variance, and b is related to the mean flux by b =
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⟨X(t)⟩
τ

.

The SF of a DRW model can be related to the autocorrelation function (ACF) of the

light curve. The ACF is the correlation of the light curve with itself shifted in time as a

function of the time lag. Kozłowski (2017a) models the ACF with a power exponential

ACF(∆t) = exp

(
−
(
|∆t|
τ

)β
)
. (2.15)

SFemp and its value at infinite ∆t (SF∞) are related to the ACF by (ignoring photo-

metric noise; Hughes et al. 1992; Li et al. 2018; Kozłowski 2016b) :

SFemp(∆t) =
√
2σ
√

1− ACF(∆t) (2.16)

= SF∞
√
1− ACF(∆t). (2.17)

When |∆t| ≪ τ , SFemp can be approximated as a single power law (using the Taylor

approximation ex ≈ 1 + x for small x)

SFemp(∆t) = SF∞

√√√√1− exp

(
−
(
|∆t|
τ

)β
)

(2.18)

≈ SF∞

(
|∆t|
τ

)β/2

. (2.19)

Kawaguchi et al. (1998) discuss how β depends on physical models of variability (see

Sect. 1.3.3). With β = 1, the model is a DRW (Kelly et al. 2009; Li et al. 2018):

SFDRW(∆t) = SF∞

√
|∆t|
τ

. (2.20)

This is similar to the SF in Eq. 2.9 for γ = 0.5, since β = 2γ. The DRW can be fit to

SFemp for estimation of τ and SF∞ (Ivezić & MacLeod 2014; Li et al. 2018).

On longer timescales than the dampening timescale τ , the magnitudes become (ap-

proximately) uncorrelated, SFDRW approaches SF∞ and the light curve will be dominated

by white noise. At shorter timescales, the PSD falls of as ν−2
and the DRW behaves as

red noise (Kelly et al. 2009; MacLeod et al. 2010).

The DRW model has its limitations. For example, it may fit light curves well even if
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β ̸= 1 (Kozłowski 2016a), and this would affect the estimated τ and SFemp. Sánchez-Sáez

et al. (2018) found that γ in SF models are often not 0.5, and then DRW models are not

appropriate.

For DRW processes, unbiased estimates of τ and SFemp also require baselines ten

times longer than the "true" τ (Kozłowski 2017b). Suberlak et al. (2021) decreased the

scatter in correlations of DRW parameters with physical AGN parameters by combining

light curves from SDSS and PS1 for 15 year baselines for 9248 quasars. They argue that

longer light curves would further improve the fits. Stone et al. (2022) fit DRW models

to 190 quasars, and find that τ is unconstrained and continues to increase with baseline

for a median τ of 750 days, even with a baseline of 20 years. This indicates that either

longer baselines or more complex models are needed, such as higher order CARMA

models (Moreno et al. 2019) or combinations of multiple DRWs (Kelly et al. 2011). Stone

et al. (2022) also find a divergence from the expected DRW PSD on scales shorter than

one month.

2.5 Machine learning

M
achine learning plays an increasingly important role in astrophysics. With larger

datasets, manual data analysis becomes impractical and less efficient. A machine

can automatically detect patterns even in high-dimensional data and optimise the anal-

ysis of it. An example of such a task is the creation of decision boundaries between

classes. Each object is described by a number of "features", and a model will use these to

learn where in feature space one can find different types of objects.

Ball & Brunner (2010) describe four paradigms of science: Theory, observation, sim-

ulation and data mining. Machine learning is efficient for data mining of existing as-

tronomical databases for new insights. Djorgovski et al. (2022) discuss how machine

learning is used in many branches of astronomy. Supervised machine learning models

can efficiently classify sources, while unsupervised learning can detect sub-populations

and rare objects in large data sets. Baron (2019) summarises important machine learning

techniques for astronomy such as neural networks, random forests, support vector ma-

chines and some unsupervised algorithms for clustering, dimensionality reduction and

outlier detection. Tree-based methods create decision boundaries using tree structures,

similarly to the k-d trees of Sect. 2.3. We explain this in more detail in Sect. 5.2.3. Smith &
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Geach (2022) discuss the use of neural networks in astronomy in particular. They predict

and recommend the creation of a general, open-source "foundation" model requiring less

specialist knowledge. They also point out that large, astronomical datasets can benefit

the field of machine learning, as other large data sets are often proprietary.

Recently, natural language models have achieved the capacity to produce academic

writing of a quality that is difficult to distinguish from humans, apart from a tendency to

produce generic texts and the extent of confident misinformation. Although no language

models have aided the production of this thesis, it may very soon be considered another

standard machine learning tool in astronomy (Nature Astronomy editorial 2023). The

abstract of Smith & Geach (2022) was generated automatically. Ciucă & Ting (2023) have

developed a language model specifically for "chatting" with the astronomical literature.

It can distil papers while preserving their meaning and references, give short summaries,

compare papers and even generate ideas for new research.

2.5.1 Model selection

The best machine learning model depends on the type of data and task. This may be time

series, images, spectral cubes, text etc. Domain knowledge is important to the choice of

model and prepossessing strategies. The best model is selected based on performance

evaluated using chosen metrics. For unbiased evaluation with the purpose of choosing

the best model for unknown data, performance of a supervised classifier must be esti-

mated from a hold out data set. This test set is separate from the training set using during

model selection. Ideally, the test set has not influenced model selection at all (including

preprocessing). It should not be used or even inspected before the final evaluation. Even

if the test set is inspected and no prior decisions are changed, it will be biased – because

it could have had other, possibly extreme, values that would have led a human to change

the model. This way, some information from the test set can leak into the model, and

it will no longer be independent. We discuss this in detail in Chapter 5, especially in

Sect. 5.2.2.

Interpretability of the final model depends on the chosen algorithm and may even

be prioritised over performance. The linear criteria of a single decision tree are easier to

interpret than the complicated decisions of a deep neural network, which may appear

as a black box. There are ongoing efforts to develop methods for explainable AI, which

interprets machine learning models. For example, we might analyse which features are
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most important to a model (Lundberg & Lee 2017).

Models may also be chosen based on speed, memory or climate impact. In many

cases, model complexity can be increased indefinitely with diminishing returns. For ex-

ample, one may train deep neural networks taking up more resources than a tree based

model with similar or even better performance (Grinsztajn et al. 2022). Schwartz et al.

(2019) argue that efficiency should be an evaluation metric in large models as cheaper

models will benefit both the climate and inclusion. Plotting performance as a function

of, for example, the size of the training set may improve efficiency and cost of future

research. Model selection can also be optimised by trying random hyperparameter com-

binations instead of creating a grid of all combinations (see Sect. 5.2.3.2).

2.5.2 Classification of variable sources

To classify the variability of astronomical sources, it is possible to simply input the full

light curve in a machine learning model without preprocessing. However, this would

mean the input space is extremely large, and we would suffer the curse of dimensional-

ity (Altman & Krzywinski 2018). This requires more effort to learn from than a smaller

feature space. Wewant preprocessing to preserve asmuch information in as few features

as possible – but sacrificing a little information for simplicity can improve performance.

Below, we describe some machine learning strategies for classification of variable ob-

jects.

Belokurov et al. (2003) use neural networks for detecting microlensing events and

distinguishing them from other types of variability. They discuss the importance of

domain knowledge and use this to select 5 light-curve features especially relevant to

microlensing events. This model can directly output the probability of each object being

microlensed.

Palanque-Delabrouille et al. (2011) also uses a neural network for distinguishing

quasars from stars based on variability. They input χ2
(Eq. 2.6) for each SDSS band

(ugriz) and power law SF parameters A and γ (Eq. 2.9, with separate A for the g, r and

i bands). The output yNN quantifies quasar-like probability. For quasars, it increases up

to about 40 epochs, and also performs better for bright quasars (g ∼ 18.5). A tight cut

in yNN leads to worse performance for quasars at high redshifts where the model is less

confident. They analyse a (non-representative) subset of SDSS to reduce the required

resources of time and memory. Some objects would otherwise have been rejected as
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quasar candidates by colours.

Jamal & Bloom (2020) discuss the efficiency of various neural network architectures

for time-series classification and test them on variable stars. They input the entire light

curves and use encoder modules to create representations of them. These representations

showed clustering at values common for different types of variable stars, which is useful

for subtype classification.

Peters et al. (2015) select quasars in SDSS using nonparametric Bayesian Classifica-

tion Kernel Density Estimation from a set of 916 587 objects. They form a data set of

objects that have been spectroscopically confirmed as quasars and objects that have not.

They conclude that a combination of colours and variability gives the best performance,

judging by spectroscopically confirmed quasars. Colour alone performs a bit better than

variability alone. Variability is described with power law SFs for light curves with at

least 10 epochs, to show the sufficiency of this simple model for variability selection of

sources. However, their "test" and "training" sets did not represent the same population

of objects, and in practise, they tested and trained only on the training set. This would be

fine using cross-validation (see Sect. 5.2.2.1) if it was not used for deciding on an optimal

model, but it is, and so, this process leads to a classifier with unknown performance for

new, unbiased data.

Sánchez-Sáez et al. (2019) and De Cicco et al. (2021) use a random forest algorithm to

select optically variable AGN using colours and variability. De Cicco et al. (2021) do so

for the COSMOS fieldwith the VLT Survey Telescope. They include colours (u−B,B−r,

r− i, i− z and z− y) and 29 variability features for 20 670 sources over∼3.3 years with

at least 27 epochs. Unlike Sánchez-Sáez et al. (2019), they do not preselect by variability,

to ensure the sample is more representative of the sky. They do require that all sources

have data in uBrizy andmatches to the COSMOSACS catalog formorphology (stellarity

index by a neural network in SExtractor, Bertin & Arnouts 1996). By training the model

with and without colours, they find variability (in combination with stellarity) to be

more powerful for classification than colour. Purity is especially high for Type I AGN

– compared to spectroscopically confirmed objects, they achieve a purity of 91 % and

a completeness of 69 %. This is for a binary classifier selecting AGN and non-AGN.

Sánchez-Sáez et al. (2019) studied the QUEST-La Silla AGN variability survey (Cartier

et al. 2015) and included a model only trained on variability features

Cunha & Humphrey (2022) do not include variability features, but they use another

powerful tree-based method, namely gradient boosted trees (for 3 497 864 sources). We
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explain this algorithm in detail in Sect. 5.2.3. They use an ensemble of three variants –

XGBoost, LightGBMandCatBoost – and combine the outputs by voting for better perfor-

mance than the random forest of Clarke et al. (2020). They emphasise the importance of

combining data to create colours and photometric redshifts (feature engineering). They

perform multi-class classification of SDSS spectroscopically confirmed stars, galaxies

and quasars. They include RA and Dec for taking into account the relative density of

each class at different galactic latitudes.

Logan & Fotopoulou (2020) take another approach, and choose unsupervised learn-

ing with HDBSCAN (McInnes et al. 2017) on a representative set of 49 181 sources. They

use magnitudes and all colour combinations (no variability). HDBSCAN selects clusters

in parameter space by density. They then compare the clusters with spectroscopic labels

when available for an overall semi-supervised method.
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Chapter 3

Data processing

D
ata processing takes in place in multiple parts. The goal is to select and classify

sources based on variability and colours – but first we must gather and process

this information. We start by querying the raw PTF data. We then use it to assemble

light curves and match them to objects in WISE and PS1. A model is then fit to the SF

of each light curve. Finally we match to SDSS data. This all needs efficient processing

to be completed in a reasonable time frame. In the following sections, we detail how we

have optimised the processing.

3.1 High performance computing

For increased computing power and to improve the total run time, we run multiple pro-

cesses in parallel using the High Performance Computing Centre (HPC) at the University

of Copenhagen. This is managed by the SCIENCE HPC Center and includes a partition

for DARK. The HPC is a computer cluster that can run long scripts in parallel and with

large amounts of memory and storage space. We will use it to run python 3.6 scripts.

70 computing nodes (and 5 frontend nodes) are available in the DARK partition of the

cluster. The nodes have two Intel Gold 6130 each with a total of 32 cores and 64 threads.
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The nodes have access to 3 GB memory per thread except two nodes with 12 GB per

thread. The scripts are scheduled and controlled via the Slurm Workload Manager (Yoo

et al. 2003) using batch scripts. We create job scripts with instructions and requirements

for computing jobs as batch scripts. Upon completion of a job script, Slurm will generate

an output file containing the python outputs and potentially error messages. The HPC

allows job scripts to run for up to 14 days.

3.2 Querying PTF

F
irst, we need to query data from the PTF light-curve database. As the database

contains 598 975 024 objects, this cannot be done with a single all-sky query. We

divide the sky into 10◦×10◦ patches and query each with a Table Access Protocol (TAP)
1

query to the NASA/IPAC Infrared Science Archive (IRSA) Catalog Search Tool
2
. The

resulting tables can be large, so we use the asynchronous TAP operation mode, which

generates a link to obtain the results when the query has finished. In query number 32

of the patch at 10
◦
< RA < 20

◦
and +50

◦
< Dec < +60

◦
, we apply the following constraints:

• fid=2 (we use the R band),

• ngoodobs>=20 (at least 20 observations that have not been flagged or masked),

• oid>0 (a valid object ID has been assigned),

• mag_autocorr>12 (R is larger than 12),

• mag_autocorr<22 (R is less than 22),

• limitmag>0 (the limiting magnitude is valid),

• ra>=10.0,

• ra<20.0,

• dec>=50.0, and

• dec<60.0.
1
International Virtual Observatory Alliance, http://www.ivoa.net/documents/TAP/

2
PTF team, DOI: 10.26131/IRSA156, url: https://irsa.ipac.caltech.edu/Missions/ptf.html, IPAC
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We apply further data cleaning later in the process (see Sect. 4.2.5). Below is an

example query for patch number 32 with the output saved as ptf_32_10p0_20p0
_50p0_60p0.csv:

curl -v -o /storage/dark/shbruun/output_all/ptf_32_10
p0_20p0_50p0_60p0.csv "https://irsa.ipac.caltech.edu/TA
P/async?QUERY=SELECT+LC.ra,+LC.dec,+LC.obsmjd,+LC.mag_a
utocorr,+LC.magerr_auto,+LC.oid,+LC.bestMedianMag+FROM+
ptf_lightcurves+AS+LC+WHERE+LC.ra>=10.0+AND+LC.ra<20.0+
AND+LC.dec>=50.0+AND+LC.dec<60.0+AND+LC.fid>1+AND+LC.ng
oodobs>=20+AND+LC.oid>0+AND+LC.limitmag>0+AND+LC.mag_au
tocorr>12+AND+LC.mag_autocorr<22+ORDER+BY+LC.oid&FORMAT
=CSV&PHASE=RUN"

We create and run a python script (Generate_script_query.py) for the
generation of 648 queries (one for each patch), distributed on 21 job scripts with up to 32

queries in each. For each job script, slurm gives an output file with the TAP links to the

results. We create another python script (check_queries.py) to check all query

links in a slurm output file and download the results if they are ready. The script also

saves lists of queries that have been completed, are being executed or failed and need to

be restarted.

3.3 Assembling and matching light curves

A
row in a table of query results from the PTF light-curve database each describe a

single data point in a light curve. We will assemble light curves and match them

to data in WISE and PS1. We do this with a script (Classfication_PartI.py).
First, we load a table of query results. Each row contains a value of RA, Dec, MJD,

R, σR, OID and median R. We now group the data points of the patch. We identify

unique OIDs and how many data points are associated with each. We then search the

list of OIDs to get the indices to the data points of each light curve. Objects can be split

at the edge of a query patch, but this is unlikely. The mean RA and Dec are saved as the

coordinates to each astrophysical object.

For querying WISE and PS1, we make a shorter list of PTF coordinates in the patch
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after rounding to the nearest arcsecond. This rounding speeds up the process with-

out affecting the results much, since we match within five arcseconds. First, we query

to get a list of all nearby data points in another survey (WISE or PS1). We use As-

troquery (Ginsburg et al. 2019) to access the CDS X-Match Service (Boch et al. 2012)

for ’vizier:II/328/allwise’ and ’vizier:II/349/ps1’(Cutri et al. 2021; Chambers et al. 2016;

Ochsenbein et al. 2000). We then group the data points by OID and compute the mean

coordinates, like for PTF, if a source has been observed multiple times. We cross match

the full list of mean PTF coordinates in the patch to the list of mean coordinates to objects

in another survey using a k-d tree (see Sect. 2.3).

The number of data points per patch vary across the sky. This results in some

empty query files and some that will take longer than 14 days to process. This is es-

pecially important during the fitting of Sect. 3.4, which is slower than the work of this

section. Therefore, we split 310 large query files into 6340 files with a python script

(Split_files.py). They are split based on size and actual processing time to avoid

reaching the 14 day limit per job script. Each file represents a computing task for the

HPC. In Fig. 3.1, we show the number of tasks per patch. We keep data points with the

same OID in the same query file (unless it was split across different patches to begin

with). We generate 50 job scripts for light-curve assembly and matching with max 128

tasks per file (plus an extra job script to rerun failed tasks).

3.4 Fitting

W
e will now perform the fitting detailed in Sect. 4.3.2 with a python script Cla
ssification_PartII.py. This loads the light curves from one task in

Sect. 3.3 and fits their SFs with MCMC. But first, we must clean the light curves. We

check again that 12 < R < 22 and remove outliers, as we will get back to in Sect. 4.2.5.

If the light curve still has > 20 data points and the time span is still > 365 days, we fit

the object.

We initiate the MCMC sampler with emcee (Foreman-Mackey et al. 2013) and de-

fine the log likelihood function. We will get back to this in Sect. 4.3.2. Fitting with the

MCMC is the slowest part of the data processing. The sampler needs to evaluate the log

likelihood for every suggested step (see Sect. 2.2), so we simplify the computations as

much as possible. We do this by pre-computing some expressions for data points i and
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Figure 3.1: A map of the number of fitting tasks per patch.

j, where i ̸= j and i > j. We define ∆tij , ∆mij , ∆m2/2, σ2
m,i + σ2

m,j and |∆tij/t0|.
Due to the long computing times, the 6340 tasks must be distributed more carefully

to job scripts than in Sect. 3.3. We sort the sizes of files containing the light curves and

generate 473 job scripts processing a similar amount of data. Note that this is not an

ideal way of estimating processing time, since e.g. the number of data points per light

curve has not been taken into account. The first script has 90 tasks and the last only

7. However, patch number 153 (80
◦
< RA < 90

◦
, 0

◦
< Dec < +10

◦
) has especially well

sampled light curves, so we separate most of the 217 tasks processing this patch and

dedicate a job script to each. Some light curves have over 5000 epochs. We also split

most job scripts with more than two tasks processing patch 31 (10
◦
< RA < 20

◦
, +40

◦
<

Dec < +50
◦
) as we find them to be slow. Memory is not an issue – we only need 128 MB

per thread.

To automatically start new job scripts when the previous ended, we create 14 tracks

of job scripts with identical names and use the slurm dependency=singleton
option. Processing the PTF footprint takes approximately six months. To keep track of

the progress, we create a python script, Classification_ProcessPlots.p
y. This estimates the remaining processing time and creates plots to visualise progress.

At the end, the estimated total fitting time for each patch is illustrated in Fig. 3.2. It is
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Figure 3.2: A map of estimated fit processing time in each patch. The slowest patch

would take over 200 days to process if we did not split it into smaller tasks that can be

processed in parallel.

clear from the map that patch 153 and 31 are among the slowest to process. We also

use the script to keep track of which tasks are complete and to automatically read and

identify errors in the slurm output files. This allows us to quickly check the error types

and create job scripts for rerunning failed tasks. For the fitting process, we need 62 extra

job scripts for failed tasks.

3.5 Combining and cross matching with SDSS

R
esults of the fitting and matching are now spread across thousands of files. To

combine them, we create a python script (Classification_Combine.py)
and a single job script using 2990MB per CPU.With this, we load each type of output file

for all patches (and all tasks in each), combine them and save them. When we have all

data in a few files, we can load it to make selections. For example, sources with specific

fit parameter values or colours.

To cross match with SDSS objects, we generate files of data for all spectroscopic

quasars, stars and galaxies in SDSS PhotoObj and SpecObj DR17 (Abdurro’uf et al. 2022).
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We use CasJobs on SciServer (Taghizadeh-Popp et al. 2020) to query – the script below

shows the quasar query:

SELECT ALL
p.ra,p.dec,p.objID,s.z,s.zErr

INTO mydb.QSO_table_DR17
FROM PhotoObj AS p

JOIN SpecObj AS s ON s.bestobjid = p.objid
WHERE

s.class=’QSO’
For each class, we compare the SDSS coordinates to the PTF coordinates using a k-d

tree with a maximum distance of two arcseconds. The data is now ready for selection

and classification.
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Abstract

Context. Light-curve variability is well-suited to characterising objects in surveys with

high cadence and a long baseline. This is especially relevant in view of the large datasets

to be produced by the Vera C. Rubin Observatory Legacy Survey of Space and Time

(LSST).

Aims. We aim to determine variability parameters for objects in the Palomar Transient

Factory (PTF) and explore differences between quasars (QSOs), stars, and galaxies. We

relate variability and colour information in preparation for future surveys.

Methods. We fit joint likelihoods to structure functions (SFs) of 71 million PTF light

curves with a Markov Chain Monte Carlo method. For each object, we assume a power-

law SF and extract two parameters: the amplitude on timescales of one year, A, and a

power-law index, γ. With these parameters and colours in the optical (Pan-STARRS1)

and mid-infrared (WISE), we identify regions of parameter space dominated by differ-

ent types of spectroscopically confirmed objects from SDSS. Candidate QSOs, stars, and

galaxies are selected to show their parameter distributions.

Results. QSOs show high-amplitude variations in the R band, and the highest γ values.

Galaxies have a broader range of amplitudes and their variability shows relatively little

dependency on timescale. With variability and colours, we achieve a photometric se-

lection purity of 99.3% for QSOs. Even though hard cuts in monochromatic variability

alone are not as effective as seven-band magnitude cuts, variability is useful in charac-

terising object subclasses. Through variability, we also find QSOs that were erroneously

classified as stars in the SDSS. We discuss perspectives and computational solutions in

view of the upcoming LSST.

4.1 Introduction

L
arge, wide-field surveys allow us to identify rare objects, study parameter distribu-

tions of different object classes, and select sources for further examination. Spec-

troscopy can produce high-quality classifications, but often only photometry is available.

With the prospect of deep, ten-year light curves from the Vera C. Rubin Observatory

Legacy Survey of Space and Time (LSST; Ivezić et al. 2019), it is important to explore

photometric selection based on light-curve variability as a function of timescale for a
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large dataset.

This method is particularly suitable for analysing certain types of objects with dis-

tinctive variability parameters; for example for distinguishing quasars (QSO) from stars

(van den Bergh et al. 1973; Schmidt et al. 2010; Ulrich et al. 1997; Myers et al. 2015).

Variability can also be used to advance our understanding of the physical nature of the

objects, as the mechanisms behind variability operate on different timescales (Schmidt

et al. 2012); such as QSO accretion-disk instabilities (Rees 1984) or changes in obscura-

tion (Hopkins et al. 2012).

With identification of distant QSOs, we can study structure formation in the early

Universe and the cosmological parameters determining its expansion, for example through

measurements of baryon acoustic oscillations (BAO) in the Lyα forest (Alam et al. 2021;

duMas des Bourboux et al. 2020; Turner 1991; Song et al. 2016; Secrest et al. 2021). Myers

et al. (2015) selected a fraction of the SDSS eBOSS QSO targets for BAO based on vari-

ability in light curves from the Palomar Transient Factory (PTF; Law et al. 2009; Rau et al.

2009). QSOs are also useful for redshift-drift tests of cosmic acceleration (Sandage 1962;

Kim et al. 2015; Alves et al. 2019; Loeb 1998). Lensed QSOs are particularly interesting

because they can be used for time-delay cosmography, which works better with highly

variable sources (Refsdal 1964; Treu & Marshall 2016). Lensed QSOs can be discovered

as extended objects with high variability (Kochanek et al. 2006).

Faint photometric standards are also of special interest. Large future observatories

such as the Vera C. Rubin Observatory, the Extremely Large Telescope (Tamai et al.

2016), the Thirty Meter Telescope (Skidmore et al. 2015), and the Giant Magellan Tele-

scope (Johns et al. 2012) can be used to observe objects of greater magnitude than those

of typical standard stars. These latter have magnitudes of 11.5 < V < 16 in the Landolt

(1992) sample, which has, along with the Stetson database of secondary standards (Stet-

son 2000; Stetson et al. 2019), since been expanded and curated as described in Pancino

et al. (2022). The combined sample mainly includes sources with 13 < V < 21. How-

ever, the distribution on the sky is not uniform, and being able to distinguish variable

from non-variable sources is useful for calibration even at lower magnitudes, such as the

20.6 R-band limit of the PTF.

There are several ways of characterising variability, and these can be even more

useful than colours for selection of AGN (De Cicco et al. 2021). Baldassare et al. (2020)

demonstrated the potential of PTF variability for selection of AGN in low-mass galaxies

by fitting 50,000 light curves with a damped random walk (DRW) model. Ward et al.
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(2021) found variable AGN in the Zwicky Transient Facility (ZTF; Bellm et al. 2019)

using a combination of variability measures.

In this paper, we apply structure functions (SFs) to explore the variability of objects.

This is a well-known technique first applied in astronomy by Simonetti et al. (1985),

which is computationally efficient for large sets of data with gaps (Moreno et al. 2019).

SF models describe the difference in magnitude ∆m across a time interval ∆t. As in

Hook et al. (1994) for example, we specifically consider a power-law model, which is

often applied for AGN and QSOs. Both single power law models and DRW models pose

challenges; even 20 year baselines cannot constrain DRW models completely (Suberlak

et al. 2021; Stone et al. 2022).

Sánchez et al. (2017) found the Bayesian SF defined by Schmidt et al. (2010) to be the

best and most stable SF for noisy light curves with irregular sampling. Schmidt et al.

(2010) applied power-law SFs to light curves from The Sloan Digital Sky Survey (SDSS)

and defined a variability parameter region for selection of QSO candidates with criteria

chosen by eye. This gave relatively complete and pure candidate sets for SDSS S82 light

curves, but with poorer performance for light curves from Pan-STARRS1 (PS1; Chambers

et al. 2016). Schmidt et al. (2010) used sets of known QSOs, F/G stars, and RR Lyrae, with

stars outnumbering QSOs by a factor of 30.

In this paper, we aim to analyse the results and performance of a similar method but

applied to the entire PTF survey. We show where variability is most effective in break-

ing degeneracies and which forms of variability are common among different types of

objects. Specifically, matching with spectroscopic SDSS classifications of QSOs, stars,

and galaxies, which we assume as ground truth, we can evaluate new variability selec-

tion criteria and compare with those of Schmidt et al. (2010)
1
. By including as many

objects from the PTF survey as possible, the properties of the total light-curve sample

are more representative of PTF sources than if we only included specific stellar subtypes,

for example.

Another approach to photometric selections is based on colours. We examine colour–

colour and colour–magnitude diagrams of a spectroscopically confirmed sample bymatch-

ingmagnitudes inmid-infrared (IR) from theWide-field Infrared Survey Explorer (WISE;

Wright et al. 2010) and in the optical from PS1. This will allow us to examine simple se-

lection criteria based on these.

1
This analysis expands the first queries and parameter exploration presented by Bruun (2020), MSc

thesis (unpublished).
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Wedescribe the datasets (and the data-cleaning process) used in this work in Sect. 4.2.

We introduce the methodology in Sect. 4.3. In Sect. 4.3.1, we define models of the PTF

light-curve SFs, and we fit them in Sect. 4.3.2. The metrics used for evaluation of the

selection of objects are defined in Sect. 4.3.3. The results of the SF fitting are plotted

and described in Sect. 4.4. Based on the variability parameters and matched colour

information, we choose photometric selection criteria and examine the properties of

selected objects in Sect. 4.5. We discuss these properties in Sect. 4.6 and summarise our

findings in Sect. 4.7.

4.2 Data

4.2.1 PTF

T
he Palomar Transient Factory was a project with the Palomar 48 Schmidt telescope

at PalomarObservatory in California. This includes imaging inDR1, DR2, andDR3
2

from 1 March 2009 to 28 January 2015 covering 20 000 deg
2
(Law et al. 2009; Rau et al.

2009)
3
. The PTF light-curve database is based on a subset of these images with data from

598 975 024 objects in R and g.

As most data points are in R, these are chosen for the analysis of this paper (as

mag_autocorr and magerr_auto). The R band is adapted from the 658 nm

Mould-R filter described in Cuillandre et al. (2000), has a limiting magnitude of 20.6,

and photometry is in the AB magnitude system (Law et al. 2009). From this database, we

also consider the timestamps, PTF object ID, RA, Dec and median R, all queried in 648

patches of 10◦×10◦ via the IRSA Catalog Search Tool
4
. We split 310 large patch files into

6340 files, keeping data points with the same object ID together. File by file, we group

data points by ID to assemble light curves. These are cleaned and fitted in Sects. 4.2.5

and 4.3.1 in parallel using 14 computing nodes for six months.

2
as the Intermediate Palomar Transient Factory for DR3

3
www.ptf.caltech.edu/iptf

4
PTF team, DOI: 10.26131/IRSA156, url: https://irsa.ipac.caltech.edu/Missions/ptf.html, IPAC
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4.2.2 SDSS

The Sloan Digital Sky Survey DR17 (Blanton et al. 2017; Abdurro’uf et al. 2022) includes

5 789 200 spectra (Smee et al. 2013; Wilson et al. 2019; Drory et al. 2015) from the Apache

Point Observatory in NewMexico, USA (Gunn et al. 2006). Based onDR17 from February

2021 (with data both in PhotoObj and SpecObj) 866 338 QSOs, 962 162 stars, and 2 790 253

galaxies are spectroscopically confirmed. Their coordinates, redshifts, and spectroscopic

classes are queried via CasJobs on SciServer (Taghizadeh-Popp et al. 2020). We cross-

match by creating a k-d tree (Maneewongvatana & Mount 1999) of the PTF coordinates.

We then query the tree to find the nearest SDSS object within two arcseconds, if it exists.

By inspecting SDSS images
5
, we find that this radius best avoids spurious matches.

4.2.3 WISE

The Wide-field Infrared Survey Explorer is a space telescope observing in the mid-IR

(Wright et al. 2010). It had a cryogenic phase from December 14 2009 to February 2011

and a post-cryogenic phase has been ongoing since 2013 (NEOWISE).With the latest up-

date from February 2021, the combined AllWISE program (Cutri et al. 2021) data release

II/328 contains 748 million objects.

We query WISE objects with the CDS X-Match Service (Boch et al. 2012) within five

arcseconds of themean PTF coordinates to each object. FromWISE (‘vizier:II/328/allwise’;

Cutri et al. 2021; Ochsenbein et al. 2000), we getW1 (3.4 µm),W2 (4.6 µm), their errors,

and coordinates. W3 and W4 are not included, as they are not deep enough to include

most of the PTF sources. WISE magnitudes are in the Vega magnitude system (Wright

et al. 2010). For each PTF object, only the closest WISE source is selected via a k-d tree,

as described in Sect. 4.2.2. If this source contains multiple data points, we choose the

lowest magnitude, as this is the brightest detection, and save the mean RA and Dec.

4.2.4 PS1

The Panoramic Survey Telescope and Rapid Response System includes two telescopes

in Hawaii: Pan-STARRS1 and Pan-STARRS2. We use the g (481 nm), r (617 nm), and z

(866 nm) bands (Tonry et al. 2012) from the Pan-STARRS1 survey DR1 with 1.92 billion

5
using the Image List tool at skyserver.sdss.org/dr17/VisualTools/list
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objects (‘vizier:II/349/ps1’; Chambers et al. 2016; Ochsenbein et al. 2000). This covers the

sky at J2000.0 declination > −30
◦
, including the PTF footprint. The PS1 magnitudes are

in the AB system. As in WISE, in PS1 we query within five arcseconds of PTF objects

and select one set of magnitudes, magnitude errors, and coordinates per source.

4.2.5 Data cleaning

Data cleaning is needed for reliable fitting results. For PTF, extreme magnitudes outside

the range of 12 < R < 22 are removed. If a light curve contains too few data points, fit

parameters are difficult to constrain, and if the time span is too short, we cannot detect

variability over long timescales. Therefore, we require that each light curvemust contain

at least 20 data points and span at least one year. At 80
◦
< RA < 90

◦
and 0

◦
< Dec < +10

◦
,

light curves are so well sampled that in order to speed up the analysis in Sect. 4.3.2 we

select a maximum of 1500 random data points for some sources.

Magnitude outliers affect variability fits, and so we want to remove them while pre-

serving the real variability. A moving weighted median (MWM) is computed for each

data point i in each light curve. This is based on the magnitudes Rclose,i of the seven

closest neighbouring data points in time within a window of five days (2.5 days to each

side). Data points more than three standard deviations away from the MWM are re-

moved, taking into account both the error of the data point and of the weighted median.

A data point with magnitude R and error σR is removed if

|R−MWM|√
σ2
R +MAD

2
> 3, (4.1)

where MAD is the median absolute deviation. We compute the MAD of every part of

the MWM as the weighted median of the absolute distances of the data points used in

the computation of the MWM. That is, the MAD of a specific value of MWM is based on

the up to seven data points within the time window of data point i:

MAD = weighted median (|Rclose,i −MWM|) . (4.2)

If fewer than seven data points are close enough to i in time, they are still used, and the

data point i itself has a relatively higher weight compared to those few data points, lead-

ing to a higher probability of acceptance. This is desirable, as we have less information
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Table 4.1: Sample sizes.

Sample Counts

Full PTF light curve database 598 975 024

Cleaned PTF R-band sample 70 920 904

Matched

SDSS spectra 1 748 047

WISE 57 007 069

PS1 70 891 378

WISE & PS1 56 991 591

All surveys 1 613 916

Notes. Sample sizes before and after selecting and cleaning PTF light curves and

matching with sources in SDSS, WISE, and PS1.

to base rejection on.

After data cleaning, the remaining light curves are distributed on the sky according

to Fig. 4.5, mostly covering the northern hemisphere and avoiding lowGalactic latitudes.

Table 4.1 contains sample statistics including objects matched in SDSS, WISE, and PS1.

70 920 904 objects are analysed, spanning 365−2147 days and containing 20−5579 data

points.

4.3 Methodology

W
e describe the variability of each object by defining power-law models of their

structure functions. The models are fit to structure functions of individual ob-

jects to extract variability descriptors as fit parameters. These are used for exploring

relations in the data and photometric selection of object classes in Sects. 4.4–4.5; but

first, we define metrics for evaluation of selection quality in Sect. 4.3.3.

4.3.1 Structure functions

For each object, we analyse variability by comparing every pair of data points in its light

curve. For each pair of data points i and j, we have a difference in magnitude∆mij and

in time∆tij . By comparing all pairs, we find the timescale dependence of differences in

magnitude with a SF (Simonetti et al. 1985), and model this variability.
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The total effective variability Veff of each object consists of intrinsic variability, which

we describe with a structure function SF, and noise, σm. Assuming the model describes

the data well, Veff,ij is close to the observed ∆mij . For SF, we choose a power law fol-

lowing the notation of Schmidt et al. (2010):

V 2
eff,ij = SF

2
ij + σ2

m,i + σ2
m,j ≈ (∆mij)

2, (4.3)

SFij = A

(
|∆tij|
t0

)γ

, A ≥ 0. (4.4)

Equation 4.4 has two free parameters, A and γ; the former quantifies the amplitude of

the variations, in units of magnitude, on the timescale t0, and the power-law index γ

describes how the amplitudes depend on timescale. We choose t0 = 1 year (observed

frame). One could correct for the factor of 1 + z to find rest frame ∆tij , but redshift

information is limited, and SDSS redshifts are not independent of the spectroscopic labels

we use for comparison.

We expect most objects to have 0 < γ < 1. Here, γ > 0 shows that variability

increases with timescale, and for γ > 1 this is accelerating, which we would mostly ex-

pect to see for short light curves with highly uncertain γ. This could be objects with an

overall positive or negative trend. γ < 0 means most variability is found to be on short

timescales, for example in transient tails, but we do not expect to include these objects

due to the minimum observed time span of one year. Only A consistently shows corre-

lation with physical black-hole parameters in the literature, namely an anti-correlation

with the bolometric luminosity, Lbol, and the Eddington ratio, λE (De Cicco et al. 2022).

4.3.2 Fitting

Structure function models are fitted to data using the emcee Python package (Foreman-

Mackey et al. 2013) for affine-invariant samplingwithMarkovChainMonte Carlo (MCMC;

Goodman &Weare 2010). As the walkers of the MCMC jump to differentA and γ values,

they evaluate the likelihood of observing the light curve given the variability parameters.

This likelihood is

Lij =
1√

2πV 2
eff,ij

exp

(
−(∆mij)

2

2V 2
eff,ij

)
(4.5)
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for each pair of data points, assuming a Gaussian distribution of∆mij . For the total log

posterior (LP) of the light curve, we use the same prior ln(p) as in Schmidt et al. (2010):

ln(p) = ln

(
1

1 + γ2

)
+ ln

(
1

A

)
, (4.6)

LP =
∑
i,j

ln(Lij) + ln(p). (4.7)

The MCMC runs with eight walkers for 500 steps where the first 200 are discarded as

burn-in. We find these values to balance accuracy and speed. From each fit, we retain

the median values of A and γ and their 16th and 84th percentiles as 1σ uncertainties.

4.3.3 Evaluation metrics

To study parameter distributions of different object types, we photometrically select

QSOs, stars, and galaxies. The quality of selection criteria is evaluated on purity and

completeness, which are estimated using the spectroscopically confirmed subset. We

compute these with the number of true positives (TPs), false negatives (FNs), and false

positives (FPs):

Completeness =
TP

TP + FN
, Purity =

TP

TP + FP
. (4.8)

4.4 Variability and colour distributions

W
e present plots and statistics for two datasets: all fitted objects and those with

spectroscopic classifications. In Sect. 4.5, we also assemble photometric selec-

tions. The datasets allow us to compare distributions of three classes: QSOs, stars, and

galaxies. The plots include variability parameters (A and γ) and colour diagrams ofW2

versusW1−W2 and g− r versus z −W1. We know stars, galaxies, and QSOs to have

good separation in optical versus IR colours (Maddox & Hewett 2006; Lang et al. 2016).

W1 − W2 was also used by Wright et al. (2010), and Assef et al. (2013) combined W2

and W1−W2 for selecting AGN.

We query and fit the data in batches as described in Sect. 4.2.1. For 6340 files with

approximately 1 million light-curve data points per file, the batch processing time is
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about 1 hour on a computing node with 32 cores. The maximum time is 11 days for one

file.

4.4.1 Full Palomar Transient Factory sample

In Fig. 4.1, we show parameter distributions for the full PTF sample. The top left panel is

a 2D histogram ofA and γ values, illustrating the variability of the 70 920 904 fitted light

curves. We see two large clusters, at logA ∼ −0.8 and logA ∼ −5 (base 10). Variations

of just 10−5
magnitudes over timescales of one year indicate that the values of the latter

cluster are spurious.

The top right and bottom panels of Fig. 4.1 display a colour–colour and a colour–

magnitude diagram. As these are based on parameters in WISE and PS1, they show

distributions for the 80 % (56 991 591) of the PTF objects with matches in both of these

surveys (see Table 4.1). Matches in the two surveys are found for 93 % of QSOs, 75 % of

stars, and 98 % of galaxies.

4.4.2 Spectroscopically confirmed sample

Figure 4.2 contains similar plots to Fig. 4.1, but only for data with spectroscopic SDSS

classes. In the variability parameter plot, this is 2.5 % of the fitted sources (1 748 047), and

the colour diagrams show the 2.276 % (1 613 916) with matches in SDSS, WISE, and PS1.

The colours denote different classes: red for QSOs, green for stars, and blue for galaxies.

These are scaled based on relative density, with full saturation for areas of parameter

space with one class and maximum relative density, white for areas without data and

black or grey for areas with high relative densities of multiple classes. We note that this

means a space that is more green than blue can still have more galaxies than stars. The

full dataset includes more galaxies than stars and QSOs combined (see Sect. 4.2.2).

In the top left panel of Fig. 4.1, we notice the two clusters of A-γ space. The one at

log(A) ∼ −0.8 has high relative densities of all classes, but they are spread out along

different axes in the A-γ plane; more galaxies have log(A) < −1 and more QSOs have

γ > 0.1. Stars are mostly in the same areas as galaxies, but with more spread in γ

and higher relative density at log(A) < −3. In the top right panel, the stellar locus is

immediately recognisable, as are the main distributions of QSOs and galaxies (Ansari

et al. 2021; Lang et al. 2016). The latter two include an overlap most apparent at g− r ∼
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0.4 and z − W1 > 0.3. The bottom panel shows that the three classes have different

distributions in W1 − W2 versus W2 as well, but with a large overlap between stars

and galaxies atW2 > 15.

4.5 Photometric selection

W
e next explore how variability relates to broad-band colours through photomet-

ric selections using colours, variability, or both. Simple photometric selections

of QSOs, stars, and galaxies allow us to inspect differences between parameter distri-

butions of photometrically and spectroscopically selected objects. Based on the distri-

butions of Fig. 4.2, we define regions of parameter space dominated by QSOs, stars, or

galaxies. Schmidt et al. (2010) used a similar approach inA and γ. For reliable selections,

we focus on purity and accept a low completeness. We avoid areas of high degeneracy

between classes and achieve separate selection criteria for variability parameters and

for colours. All criteria are listed in Table 4.2. While these are simple, linear criteria in

parameter space that can be used to study relations between colour and variability, more

advanced techniques exist and have been deployed for example by Ansari et al. (2021)

in colour space. A study of this kind is presented in a companion paper (Bruun et al.

2023b).

We also examine the properties of the QSO selection criteria in Schmidt et al. (2010)

for sources with large fit parameters compared to their uncertainties:

A

σA,−
> 2,

γ

σγ,−
> 2. (4.9)

4.5.1 Selection properties

The selection criteria of Table 4.2 are based on purity and completeness of the labelled

objects in Fig. 4.2 and are then applied to the larger, unlabelled datasets of Fig. 4.1. The

criteria are illustrated in Fig. 4.7 with those of Schmidt et al. (2010) for comparison.

Table 4.3 lists sample statistics of candidates selected within these parameter space

regions of variability, colour, or both. The Schmidt criteria are included for comparison.

To estimate completeness, colour-based selections are given as percentages of the total

90 SOFIE HELENE BRUUN



CHAPTER 4. STRUCTURE FUNCTION FITS 4.5. PHOTOMETRIC SELECTION

Figure 4.1: Heat maps of variability parameters (top left), g − r vs. z −W1 (top right)

and W2 vs. W1 − W2 (bottom). These are the full parameter distributions of objects

with light curves in PTF after cleaning and matching with other surveys as necessary.

Two large clusters are observed in A-γ-space. Selection criteria are applied to this data

for analysis of candidate QSOs, stars and galaxies. log(A) is in base 10 and based on A
units of in magnitudes.
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Figure 4.2: All spectroscopically confirmed stars (green), QSOs (red) and galaxies (blue)

from SDSS plotted in variability fit parameters (top left) and colours: g − r vs. z −W1
(top right) and W2 vs. W1 − W2 (bottom). Marker colours show the object class and

blend to grey or black when multiple classes occupy the same parameter region. A heat

map of all spectroscopically confirmed objects is found in Fig. 4.7 for comparison with

Fig. 4.1.
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Table 4.2: Selection criteria.

Parameter QSO candidates Star candidates Galaxy candidates

γ > 0.13 . . . < 0.1
log10(A) > 0.11 > 0.01 < 0.1 ∧ > 0.01
g − r < 0.2 . . . > 1
z −W1 > 2.8 < 2 ∨ < 1 + 1.25(g − r) > 2.3 + 1.25(g − r)
W1−W2 > 0.75 < −0.05 > 0.25 ∧ < 0.35
W2 . . . < 15 < 15

Notes. Criteria for selection of candidate QSOs, stars, and galaxies. These are based

on the SDSS distributions of Fig. 4.2 and the parameter regions are plotted in Fig. 4.7.

set of objects with colour matches in WISE and PS1. Using both colour and variability

criteria, the selections have low completeness and are very pure. However, selection

bias in the spectroscopic sample affects purity estimates (see Sect. 4.6.3). If we disregard

the bias, a naive purity estimate for colour-selected QSO candidates is 98.7 %, assuming

15.5 % of all PTF light curves with colour matches are QSOs. We obtain a purity of

99.3 % for colour- and variability-selected QSOs, and of 59.3 % with just variability

criteria (assuming 15.3 % QSOs in the latter case because WISE and PS1 matches are

not required). Most candidates selected with colour and variability are registered with

the same label as main type in SIMBAD; Fig. 4.13 shows statistics for each class for

comparison.

Gaia DR3 (Gaia Collaboration et al. 2016, 2022) sources within one arcsecond of PTF

sources have lower proper motions for QSO candidates. This is especially clear when

colour information is included in QSO selection, as shown in Fig. 4.14. Objects with

stellar colours and variability have the highest proper motions, as expected. Assuming a

maximum of oneGaiamatch per source, only 3.7% of SDSS galaxies have amatch inGaia

with a measured proper motion, and the fraction decreases to 0.5% for galaxy candidates

selected by colour and variability. Further details are given in Appendix 4.8.5.

If instead we use the Schmidt criteria and require the sources to haveA and γ signif-

icantly different from zero (Eq. 4.9), we find the most common SDSS class to be QSOs.

However, these criteria lead to more contamination from stars and galaxies than the

QSO criteria of Table 4.2.
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4.5.1.1 Colour selection

Figure 4.3 shows distributions of colour-based selections from the large dataset of fitted

sources in Fig. 4.1. The overall pattern is the same as in Fig. 4.2, but the stars are more

spread out. More of them have very low A or high γ, and relatively few are found at

log(A) ∼ −0.8 and γ ∼ 0. According to Table 4.3, the colour-selected candidates have

similarly high purities of 98.6 %−99.7 % for all classes, but with varying completeness,

of namely 6.82 % for galaxies, 7.92 % for stars, and 38.3 % for QSOs.

4.5.1.2 Variability selection

We plot the variability-selected sources in Fig. 4.4. Relying solely on A and γ is chal-

lenging according to the SDSS labels. For example, while the variability criteria for stars

catch 53.4 % of stars and 19.8 % of galaxies, they select more galaxies due to different

population sizes. Naturally, criteria based on overlapping classes in A-γ-space lead to

overlapping selections in colour space.

4.5.2 Ambiguous sources

Given the purity of the photometric selections in Table 4.3, the contaminating sources are

expected to have a high rate of misclassification by SDSS. Checking the most confident

photometric predictions with differing spectroscopic classifications, we find examples of

spectra that appear to be more typical of the photometric candidate class. We inspect the

spectra of the 32 photometric QSO candidates with stellar spectroscopic classifications,

and judge ∼ 20 % to be QSOs and ∼ 50 % to be possible QSOs. Of these objects, 16

are in SIMBAD, and are registered as 8 QSOs, 4 BL Lacertae objects, 1 blazar, and just

3 stars. For example, SDSS J120429.34+495814.4, with the spectrum of Fig. 4.8, has the

characteristic broad lines of a QSO. This object is part of the Data Release 12 Quasar

Catalog from SDSS (Paris et al. 2017), but is spectroscopically confirmed as a star in

SDSSDR17. Thismisclassification analysis shows the power of the photometric selection

criteria of this work, although we do not expect high rates of misclassification in the full

SDSS spectroscopically confirmed sample.

Variable galaxies in the Table 4.2 QSO region of A and γ have higher redshifts,W2,

and z − W1 than other galaxies (typically redshift 0.5 vs. 0.1; see Figs. 4.9 and 4.10)

. In SIMBAD, variable galaxies are more often registered as the brightest galaxy in a

94 SOFIE HELENE BRUUN



CHAPTER 4. STRUCTURE FUNCTION FITS 4.6. DISCUSSION

Figure 4.3: Variability of objects of Fig. 4.1 selected by the colour criteria from Table 4.2.

These are based on the colour distributions of Fig. 4.2.

cluster than other galaxies are. The fraction increases from 9% to 15 %. There is also a

low but relatively much higher fraction of radio sources, which goes from 1.6% to 3.7 %.

SDSS QSOs have similar redshifts independently of variability, except more non-QSO-

like variability at z < 0.3 (see Fig. 4.9).

Spectroscopic QSOs variability-selected as stars or galaxies are more often found

at W1 − W2 < 0.75 and W2 < 14 than other QSOs. However, this difference in

WISE colours is smaller than for spectroscopic galaxies and stars in different photometric

classes, as illustrated in Figs. 4.10 – 4.12.

4.6 Discussion

Q
uasars, stars, and galaxies are distributed differently in A and γ and in colours,

but with overlaps limiting the quality of simple selections. We see this in differ-

ences between the SDSS class distributions of Fig. 4.2 and the corresponding candidate

class plots in Figs. 4.3 and 4.4 based on colour and variability, respectively. The overall

patterns can still be recognised. Class information in the SF variability parameters is es-

pecially interesting for objects without spectroscopy and limited colour measurements.

Variability alone does not give candidates that are as reliable as those from colour se-

lection, but colour and variability combined can break degeneracies and select classes
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Table 4.3: Selection statistics.

Selection QSOs Stars Galaxies All

All 268 230 389 317 1 090 500 70 920 904

Relative frequency in full sample 0.3782 % 0.5489 % 1.538 % . . .

Relative frequency in spec sample 15.34 % 22.27 % 62.38 % . . .

Colour and variability QSO candidate 31 404 32 191 70 503

Completeness 12.53 % 0.011 % 0.018 % 0.1237 %

Purity 99.3 % 0.10 % 0.60 % . . .

Colour and variability star candidate 15 21 129 194 2 995 546

Completeness 0.006 % 7.24 % 0.018 % 5.256 %

Purity 0.07 % 99 % 0.91 % . . .

Colour and variability galaxy candidate 28 25 28 076 107 227

Completeness 0.011 % 0.009 % 2.62 % 0.1881 %

Purity 0.10 % 0.09 % 99.8 % . . .

Variability QSO candidate 75 690 12 704 39 284 3 390 617

Completeness 28.2 % 3.26 % 3.60 % 4.781 %

Purity 59.3 % 9.95 % 30.8 % . . .

Variability star candidate 14 005 207 701 216 312 22 854 151

Completeness 5.22 % 53.4 % 19.84 % 32.225 %

Purity 3.20 % 47.4 % 49.4 % . . .

Variability galaxy candidate 12 470 44 170 228 634 9 140 797

Completeness 4.65 % 11.35 % 20.97 % 12.889 %

Purity 4.37 % 15.48 % 80.1 % . . .

Colour QSO candidate 96 050 237 1 045 277 394

Completeness 38.3 % 0.081 % 0.098 % 0.4867 %

Purity 98.7 % 0.24 % 1.07 % . . .

Colour star candidate 17 23 111 319 3 495 123

Completeness 0.007 % 7.92 % 0.030 % 6.133 %

Purity 0.07 % 98.6 % 1.36 % . . .

Colour galaxy candidate 152 73 73 112 322 126

Completeness 0.061 % 0.025 % 6.82 % 5.65 %

Purity 0.21 % 0.10 % 99.7 % . . .

Schmidt region 85 012 24 576 79 279 5 484 750

Completeness 31.7 % 6.31 % 7.27 % 7.734 %

Purity 45.0 % 13.01 % 42.0 % . . .

Notes. Sample statistics of selections in variability and colour, including counts,

completeness, and purity (see Eq. 4.8). In row 1 (All), we compare spectroscopically

classified objects to the full fitted source count and to the full set with spectroscopic

classes to get relative frequencies in each set. In rows 5-7 and 11, for computing

purity and completeness, selection counts are compared to the total spectroscopic

counts. In rows 2-4 and 8-10, comparisons also require matches in WISE and PS1,

because colours are used.
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Figure 4.4: Colour distributions of variability-selected objects from Fig. 4.1. These fulfil

the variability criteria of Table 4.2 based on the upper diagram in Fig. 4.2.

better than each of them separately.

4.6.1 A-γ clusters

In A-γ space, we see two large clusters. One of them is likely an artefact from objects

with undetectable variability, leading the MCMC to suggest arbitrarily small A and a

large range of γ values. There is only one clear cluster at higher A (log(A) ∼ −0.8), but

the QSOs and galaxies are spread along different axes. This is most apparent in Fig. 4.2.

The galaxies cover a broad range ofA, but their variability is rarely timescale dependent,

at least not on most relevant scales. This is shown by the low γ values. In contrast, QSOs

are even more variable (high A) with a clearer timescale dependence. Stars are spread

out more evenly in A and γ, limiting selection purity and reflecting the diverse nature

of stellar variability.

4.6.2 Comparison with SDSS light-curve analysis

The selection criteria of Table 4.2 are simple and focus on purity. For QSOs, they differ

from those by Schmidt et al. (2010). Table 4.3 shows a purer QSO set with slightly lower

completeness, than if we apply the Schmidt criteria. This may be due to slightly different

fitting and outlier removal or differences in noise and measurements between PTF and

SDSS. The dataset presented in this paper is more representative of all observed object
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types, as it includes all sources from the PTF survey that pass through the data cleaning

of Sect. 4.2.5, whereas Schmidt et al. (2010) introduced specific types of contaminants

and in specific ratios.

4.6.3 Spectroscopic selection bias

With only 2.5 % of sources having spectroscopic classifications, there is a need for other

methods for identification. It also allows for significant selection bias in sources with

SDSS spectra compared to sources with long PTF light curves. This affects purity esti-

mates, and the choice and evaluation of selection regions.

There are differences in the distributions of sources with and without spectroscopic

classes. This is especially clear if we compare Fig. 4.1 to Fig. 4.7. For example, SDSS is

missing spectra for objects at low W2, including a band of sources at low W1 − W2.

At 10 < W2 < 12 and −0.5 < W2−W1 < −0.25, we have a very mixed group, with

sources typically marked as stars (21 %) or binary star systems in SIMBAD.

SDSS also has a bias in favour of sources with z−W1 > 3. This is part of the reason

why in Fig. 4.4, QSOs and galaxies are relatively infrequent at those values compared

to Fig. 4.2. If more objects are included in star-dominated areas, they also include a

larger fraction of the galaxies and QSOs. However, many of these are actually stars

incorrectly selected according to variability. Variable stars late in the main sequence

can be especially difficult to distinguish from QSOs and galaxies; the parameter region

at 2.1 < z − W1 < 2.6 and 1.1 < g − r < 1.4 is dominated by stars for all three

variability selections. Variability-selected star candidates in the area are at least 86 %

stars judging by the most common stellar classifications registered in SIMBAD (‘Star’,

‘low-mass*’, and ‘PM*’). Galaxy and QSO candidates are at least 79 % and 72 % stars,

respectively, showing a small difference in the nature of these objects. For spectroscopic

stars, those with QSO- or galaxy-like variability are more spread out in z − W1 and

found at higher values ofW1−W2. This is illustrated in Fig. 4.12. The variability does

indicate a physical difference in these cases.

In W2 versus W1 − W2, the spectroscopic classes overlap at W2 > 15, and the

variability selections overlap even more. Objects at −0.25 < W2 −W1 < 0 and 10 <

W2 < 12 are mostly registered as stars in SIMBAD, and SDSS does not classify any of

them as QSOs, although many have QSO-like variability.

SDSS-matched sources have relatively long time spans and more epochs per light
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curve, as shown in Fig. 4.6. Hence, variability estimation of the full sample might be less

accurate, spreading out sources in A-γ space. Therefore, removing the most sparsely

sampled sources is important. To both include large datasets and be confident in the

results, the balance of data cleaning will also be important in future surveys such as the

LSST. Even for sources with >100 epochs over >5 years, the spectroscopic classes still

have an overlap at logA ∼ −0.8 and γ ∼ 0, but it is about 50 % smaller in both logA and

γ. Longer timescales may change the selected populations, for example by increasing

the fraction of type II to type I AGN (De Cicco et al. 2015, 2019).

4.6.4 Photometric selection bias

We select pure sets of each class, but with low completeness and a bias for sources with

specific parameters. With variability, we only select stars with low A;we know variable

stars exist, but they are difficult to isolate, and so reduce completeness for stars and

purity for galaxies and QSOs. Type I and Type II AGN differ in colour and SF, and so

are not best selected by one simple set of criteria either (De Cicco et al. 2022). The most

densely populated variability region, at logA ∼ −0.8 and γ ∼ 0, is not covered by the

criteria at all. The same goes for the dense colour diagram area at high W2. In Fig. 4.2,

galaxies dominate a triangular area of g− r versus z−W1 with two large clusters. The

criteria only cover one of them. In SIMBAD, the cluster at high g − r has more galaxies

labelled as being part of a cluster, and especially as the brightest galaxy in a cluster. A

more advanced selection method could solve these issues (Bruun et al. 2023b).

The surveys are not completely representative of the sky, which is not observed uni-

formly (see Fig. 4.5). We include fewer stars at low Galactic latitudes, where Galactic

extinction has a greater affect on colours and there is a higher risk of mismatches with

nearby sources. Stars have the fewest colourmatches, indicating an under-representation

in WISE or PS1. A change in ratios of object types and stellar subtypes affects purity.

The reason is that the number of true or false positives depends on the selection of ob-

jects that are not equally difficult to distinguish from or as stars. For example, including

more variable stars could lower the QSO selection purity, which is due to both the over-

lap with QSO variability and the increased prior probability of a classified object being

a star. However, including more data would also mean there is more data to learn from.

The balance of object-type frequencies is relevant if we apply Table 4.2 criteria to other

datasets, and in evaluation of criteria of Schmidt et al. (2010) on PTF data. Completeness
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is computed independently for each class, but could also be affected by a change in the

fractions of subtypes.

4.6.5 Perspectives

If we were to base selection criteria on distributions from SDSS-confirmed objects and

evaluate on the same set, we would be overfitting. However, here the goal is only to esti-

mate class distributions and relations between variability and colour. Machine learning

could automatically classify all objects based on the SDSS-labelled subset. This would

allow us to select more sources and examine probabilities of belonging to each class. It

would also quantify how variability breaks degeneracies and improves selections based

on colour and magnitude. This will be performed in paper II of VILLAIN (Bruun et al.

2023b), including a table of all variability parameters and classifications. Accurate pho-

tometric selections can identify new QSO candidates and prepare us for analysis of large

surveys like the LSST. The optical variability of galaxies, including in the PTF R-band, is

also known be useful for identifying AGN missed by other techniques (Baldassare et al.

2020). It would be interesting to study subtypes in terms of variability and redshift differ-

ences of type I and II AGN, as in De Cicco et al. (2022). Intermediate-redshift QSOs can

have colours comparable to those of stars, and so variability could be more valuable for

those (Yang et al. 2017). Another prospect is selecting non-variable stars for photometric

calibration or for a homogeneous study of variability across stellar subtypes.

In the present study, we assume that the objects show simple power-law variability,

but this is not necessarily a good model for all sources or on all timescales. One could fit

for example exponential or DRW models instead and analyse the differences; although

we expect the overall selections and challenges to be similar. Advanced models can

capture more variability information but require more resources (Moreno et al. 2019).

More parameters could be used for selection, such as proper motions or photometric

redshifts.

4.7 Conclusion

W
e devised a procedure for the homogeneous analysis of 71 million PTF light

curves. We fitted them with joint-likelihood SF models and studied regions in

both variability and colour space. Structure function power-law variability is most use-
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ful outside the log(A) ∼ −0.8 and γ ∼ 0 region. We select photometric sets of 99.3 %

spectroscopic purity for QSOs, 99 % for stars, and 99.8 % for galaxies. However, the spec-

troscopic classifications are incorrect for 20 %–50 % of objects photometrically identified

as QSOs but spectroscopically as stars. The large PTF sample allows us to discover these

rare cases and assemble a set of 31 404 QSO candidates according to colour and variabil-

ity. With only variability, spectroscopic purity drops to 59.3 % and with only colour, it

is 98.7 %.

Using SF joint likelihoods on the entire PTF survey, we show how variability might

be used on future large datasets including the LSST. When newmeasurements are added

to a light curve, complete reprocessing can be avoided, as likelihood information on the

previous segment of the light curve is already stored in A and γ. In a survey with a

foreseen depth similar to that of the LSST, a colour-plus-variability method can provide

a large sample of faint astrometric standards for the internal calibration of extremely

large telescopes, which require objects beyond the depth of Gaia.

In each survey, and depending on computational resources, one must balance sample

size and fitting accuracy via data cleaning and selectionmethods. The value of variability

and colours depends on the survey and sources, but in general for PTF, cross-matching

colours should be prioritised.

Considering simple cuts in both variability and colour, the completeness is at 12.5 %,

and so a machine learning method that balances purity and completeness has the poten-

tial to create larger QSO samples for studying cosmology, for example. This is examined

in the companion VILLAIN paper (Bruun et al. 2023b), where we also release a table

of classifications and parameters for all fitted PTF sources. Such a large dataset would

allow a complementary selection of rare objects, for example, such as lensed QSOs.
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4.8 Appendices

4.8.1 Appendix A: Sky maps

The sources with PTF light curves are mainly from the northern hemisphere. These are

distributed according to the top diagram of Fig. 4.5 after the data cleaning of Sect. 4.2.5.

When we also match to SDSS spectroscopic classifications, the sources in the bottom

diagram are left. The differences indicate a bias in photometry between the surveys, as

mentioned in Sect. 4.6.4.
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Figure 4.5: Sky distributions of fitted and accepted PTF light curves (top) and of those also

matched to spectroscopic classifications in SDSS (bottom). The coordinates are equato-

rial, with RA increasing to the right. In grey areas, no data exist or remain after the data

cleaning of Sect. 4.2.5.
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4.8.2 Appendix B: SDSS matched data

Of the fitted PTF sources, 2.5 % are matched to spectroscopic classifications in SDSS.

This subset has different parameter distributions from the full PTF sample. On average,

the time spans are longer and the number of epochs is higher, as shown in Fig. 4.6. The

distributions of variability parameters A and γ, and colours in the optical and mid-IR

are shown in Fig. 4.7 for SDSS matched data for comparison with the full sample in Fig.

4.1. The differences are discussed in Sect. 4.6.3. Figure 4.7 also illustrates the selection

criteria for stars, galaxies, and QSOs in Table 4.2 and the criteria of Schmidt et al. (2010):

γ > 0.055 (4.10)

γ > 0.5 log10A+ 0.5 (4.11)

γ > −2 log10A− 2.25. (4.12)

These criteria can point to potential misclassifications in SDSS, as discussed in Sect. 4.5.2,

and an example of this is SDSS J120429.34+495814.4. This object is registered as a star

in SDSS, but the selection criteria of this paper point to it being a QSO. The spectrum in

Fig. 4.8 has the broad emission lines characteristic of QSOs.
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Figure 4.6: Histograms of all PTF sources and sources matched to spectroscopic classifi-

cations in SDSS. The differences in time span and number of epochs show two ways in

which the SDSS matched data are not representative of the entire PTF sample.
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Figure 4.7: Heat maps of all data with spectroscopic classifications in SDSS. Compar-

ing this with Fig. 4.1, we see SDSS has spectroscopic data focused on specific parts of

the parameter space. Strict criteria for pure selection of stars (green), QSOs (red), and

galaxies (blue) are overplotted. These are listed in Table 4.2. The fit-parameter panel

also includes a black line showing the Schmidt et al. (2010) QSO selection.
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Figure 4.8: Spectrum of SDSS J120429.34+495814.4 from the BOSS spectrograph. The

source is classified as a star in SDSS-IV DR17, but it has the variability and colour

parameters of a QSO candidate. The broad emission lines support the latter classifi-

cation. This is one of 32 objects selected as a QSO candidate and whose SDSS spec-

tra were classified as stars, of which 20% – 50 % are QSOs based on visual inspection

of the spectra. (SDSS-IV DR17, CC-BY license, skyserver.sdss.org/dr17/
VisualTools/explore/summary?objId=1237658613058109587.)
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4.8.3 Appendix C: Variability selected objects

The photometric selections are performed based on either the variability criteria, the

colour criteria, or both of Table 4.2. Some spectroscopically confirmed objects have con-

flicting photometric parameters, as discussed in 4.5.2. In Fig. 4.9 the redshifts for spec-

troscopic galaxies are typically higher for variability-selected galaxy candidates than for

star candidates. QSOs have similar variability except at z < 0.3 where more appear like

stars or galaxies in A and γ.

Figures 4.10–4.12 show colour diagrams for all combinations of spectroscopic and

variability selected classes. This illustrates how the variability selection criteria are pick-

ing objects with different colour distributions, even when the objects are spectroscopi-

cally confirmed to belong to the same class. This is discussed further in Sects. 4.5.2 and

4.6.3.
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Figure 4.9: Redshift distributions of galaxies (top) and QSOs (bottom) that appear as

candidates of different classes based on variability criteria. The galaxies with QSO-like

high variability are typically found at high redshifts of ∼ 0.5, and those with star-like

low variability have lower redshifts than other galaxies. SDSS QSOs are dominated by

QSO-like variability except at z < 0.3. The bins of each diagram are normalised with

respect to the total samples of spectroscopic SDSS galaxies and QSOs, respectively.
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Figure 4.10: Galaxies with variability parameters typical of different types of sources. We

see that the more variable galaxies (with QSO variability) have highW2 and z −W1.

Figure 4.11: Quasars with different variability parameters are still mostly found in the

same regions of the colour diagrams.
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Figure 4.12: Stars are in the stellar locus of the upper panel, but with more spread for

those with variability that is more typical of QSOs and galaxies. Galaxy-like variability

is also found at higher W1 − W2 than for most stars. Based on inspection of SDSS

imaging, the 73 SDSS stars with galaxy-like colours mostly resemble galaxies or a star–

galaxy chance alignment. SDSS stars with 0.2 < W1−W2 > 0.3 andW2 < 13 are also
often not isolated. We do not see this for random subsets of all of the 12 470 SDSS stars

with galaxy-like variability.
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4.8.4 Appendix D: SIMBAD statistics

Candidate stars, QSOs, and galaxies are selected based on the criteria in Table 4.2. To

understand the physical nature of the objects, we looked up the statistics of their ‘main

type’ in SIMBAD. Most photometrically selected objects were registered with the an

expected label in SIMBAD, as shown in Fig. 4.13.
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Figure 4.13: SIMBAD ‘main type’ statistics for candidates by colour and variability. This

shows the subtypes and contaminating sources for QSO (upper panel), star (middle), and

galaxy (lower) candidates.
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4.8.5 Appendix E: Gaia proper motions

We cross match with Gaia DR3 (Gaia Collaboration et al. 2016, 2022) proper motions

using the CDS X-Match Service (Boch et al. 2012). This is done for all sources within

one arcsecond of the PTF coordinates. For those selected through variability, we limit

the search to 1 million random sources of each class. In Fig. 4.14 we show histograms of

the sources with measured proper motions. As expected, these are generally lower for

QSOs and higher for stars. The differences are smaller for variability-selected objects

and they follow the distribution of spectroscopically confirmed stars almost perfectly,

indicating that most of the objects with non-zero proper motions are stars. However,

the objects with QSO-like variability have a higher spectroscopic purity (59.3 %) in the

SDSS. Sources selected by both colour and variability have distributions closer to those

of the spectroscopically confirmed classes, especially for QSOs. We note that the sample

sizes are also different, as not all sources have a match in Gaia and multiple Gaia sources

can be detected per PTF source. For variability-selected objects, the Gaia sets are 60.6 %,

92.0 %, and 72.0 % of the sizes of the QSO, star, and galaxy sets, respectively. For sources

selected based on variability and colour, these numbers are 84.7 %, 99.6 %, and 0.5 %,

and for spectroscopically confirmed sources, they are 82.3 %, 95.9 % and 3.7 %. Gaia

has proper motions for almost all stars and very few galaxies, as its design is optimised

for detecting stars and the limit for proper-motion measurements is not as faint as the

PTF or Pan-STARRS source-detection depth. As is shown by the comparison of SDSS

and Gaia purity of the variability-selected QSOs, atypical proper motions may indicate

misclassifications and mismatches between surveys, or interesting subclasses or flaring

objects. The sum of the residuals between histograms of variability-selected QSOs and

variability-selected stars (-0.01 for stars to calibrate the curves at high proper motions),

when the total area under the curve is normalised to 1, is 0.29. This gives a lower bound

on the QSO purity, in addition to the higher spectroscopic purity, as it does not take into

account differences in how many objects are matched, chance alignments of stars, and

so on. (Even SDSS QSOs usually have a proper motion measured nearby in Gaia.)

SELECTION OF PTF SOURCES BASED ON LIGHT-CURVE VARIABILITY 115



4.8. APPENDICES CHAPTER 4. STRUCTURE FUNCTION FITS

0 2 4 6 8 10 12 14
Gaia proper motion [mas/yr]

0.00

0.01

0.02

0.03

0.04

0.05

fre
qu

en
cy

var GAL
var STAR
var QSO

0 2 4 6 8 10 12 14
Gaia proper motion [mas/yr]

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

var color GAL
var color STAR
var color QSO

0 2 4 6 8 10 12 14
Gaia proper motion [mas/yr]

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

SDSS GAL
SDSS STAR
SDSS QSO

Figure 4.14: Gaia proper motions for sources selected according to variability (top left),

colour and variability (top right), and spectroscopy (bottom). The histograms are nor-

malised individually. All variability-selected sources approximately follow the distribu-

tion of SDSS stars, but when we also select by colour, the results are generally close to

those of the spectroscopically confirmed objects. A high-purity and high-completeness

cut at ≲ 2 mas/y, justified by the bottom panel, would yield ≈ 50% purity in a sample

of QSO candidates selected based on variability only.
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Chapter 5

Supervised classification
of variable sources

This chapter is based on the following article:

VarIabiLity seLection of AstrophysIcal sources iN PTF (VILLAIN)

II. Supervised classification of variable sources

Authors: Sofie Helene Bruun, Jens Hjorth and Adriano Agnello

In review at Astronomy & Astrophysics; submitted on 11/04/2023. arXiv: 2304.09905

Author contributions

SB led the project, performed the data analysis and chose the methodology of this chap-

ter. SB wrote and revised the manuscript which has benefited from multiple rounds of

comments and suggestions from all authors. The main idea of classifying sources with

variability and colours was proposed by AA and JH. SB was the corresponding author

with support from AA and JH.
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Abstract

Context. Large, high-dimensional astronomical surveys require efficient data analysis.

Automatic fitting of light-curve variability and machine learning may assist in identifi-

cation of sources including candidate quasars.

Aims. We aim to classify sources from the Palomar Transient Factory (PTF) as quasars,

stars or galaxies, and to examine model performance using variability and colours. We

determine the added value of variability information as well as quantifying the perfor-

mance when colours are not available.

Methods. We use supervised learning in the form of a histogram-based gradient boosting

classifier to predict spectroscopic SDSS classes using photometry. For comparison, we

create models with structure function variability parameters only, magnitudes only and

using all parameters.

Results. We achieve highly accurate predictions for 71 million sources with light curves

in PTF. The full model correctly identifies 92.49 % of spectroscopically confirmed quasars

from the SDSS with a purity of 95.64 %. With only variability, the completeness is 34.97 %

and the purity is 58.71 % for quasars. The predictions and probabilities of PTF objects

belonging to each class are made available in a catalogue, VILLAIN-Cat, including mag-

nitudes and variability parameters.

Conclusions. We have developed a method for automatic and effective classification of

PTF sources using magnitudes and variability. For similar supervised models, we recom-

mend using at least 100 000 labeled objects, and we show how performance scales with

data volume.

5.1 Introduction

M
achine learning has gained increasing importance in astronomy (Smith & Geach

2022; Ball & Brunner 2010; Djorgovski et al. 2022). In the era of large astronomical

surveys, automatic classification is necessary for fast and reliable processing of sources,

and for detecting patterns in high-dimensional data. Detailed observations including

spectroscopy are expensive for large datasets, so high-quality photometric classification

is needed for future surveys such as the Vera C. Rubin Observatory Legacy Survey of

Space and Time (LSST; Ivezić et al. 2019).
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Quasars and active galactic nuclei (AGN) can be identified based on their variability.

Variability is especially important for classification of AGN in lowmass galaxies, as they

are often missed using emission line ratios. This is due to low metallicities (weakening

the [N ii] line), different AGN fuellingmechanisms or "star formation dilution" – dilution

of the optical emission line signature of AGN by H ii region emission lines in galaxies

with high star formation rates (Baldassare et al. 2020; Trump et al. 2015; Groves et al.

2006). Treiber et al. (2022) selected candidate AGN using optical variability of 142 061

light curves from the Transiting Exoplanet Survey Satellite (Ricker et al. 2014) using

parameter cuts and visual inspections. Out of the 29 AGN candidates, 8 are in low mass

galaxies, but the method would be impractical for larger datasets.

Various machine learning models have been applied to photometric data in search of

quasars and AGN candidates. De Cicco et al. (2021) selected optically variable AGN can-

didates with a Random Forest algorithm (Breiman 2001) on measures that will available

with the LSST: light curves and colours in the optical and near-infrared. Palanque-

Delabrouille et al. (2011) used neural networks to distinguish high-redshift quasars and

stars in Stripe 82 from the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009) and in

simulated Palomar Transient Factory (PTF; Law et al. 2009; Rau et al. 2009) data. Incorpo-

rating variability parameters improved the selection purity for quasars at high redshifts

and quasars with broad absorption lines.

Cunha & Humphrey (2022) applied gradient boosting algorithms for SDSS class pre-

diction on SDSS andWISE photometry. The model performed much better using combi-

nations of magnitudes to create colours and photo-z predictions than without the com-

binations. The photo-z model was trained to predict spectroscopic redshifts from SDSS.

In this paper, we aim to create a large catalogue of candidate quasars, stars and galax-

ies, and to analyse the importance of monochromatic light-curve variability compared

to the importance of optical and infrared magnitudes and colours using a machine learn-

ing model. We use the full set of light curves from PTF fitted with power-law variability

models by Bruun et al. (2023a); paper I of the VILLAIN project.

In Sect. 5.2 we define the machine learning models, how they are selected and the

training strategy. The section includes definitions of model inputs, preprocessing to

create colours from magnitudes etc., and we define the metrics for model evaluation. An

overview of the results including model performances is presented in Sect. 5.3. In Sect.

5.4, we discuss the results, biases and perspectives for the use of the model predictions

and adaptions of the method for different contexts.
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5.2 Method

T
o define a model that can classify objects, we need a set of objects to learn from. In

the present paper, we assume spectroscopically confirmed classifications in SDSS

to be the ground truth. Each object is classified by SDSS as either a quasar, star or

galaxy, which are the "labels" of the model. To learn how to reproduce the labels with-

out spectroscopy, we build a model to guess the labels using data from PTF, Wide-field

Infrared Survey Explorer (WISE; Wright et al. 2010) and Pan-STARRS1 (PS1; Chambers

et al. 2016). We use a set of 70 920 904 PTF sources with power law fits of their structure

functions. The PTF sources have been cross-matched to sources in the WISE, PS1 and

SDSS, as described by paper I.

We refer to each object in the dataset – and all parameters associated with it – as a

"sample", and each sample corresponds to a PTF object. A sample is described by a num-

ber of properties called "features" which are used as inputs for the machine learning

model, e.g. magnitudes. We can split the set of samples into a labeled set and an unla-

beled set. 2.5 % of PTF sources have matches in SDSS PhotoObj and SpecObj, resulting

in a labeled set of 1 747 471 sources.

A supervised machine learning algorithm takes input featuresX and predicts labels

Ypred after learning on "true" labels Ytrue. The input "true" labels are spectroscopic classi-

fications from SDSS. The model only learns from the labeled subset, but is able to predict

labels for every source. While fitting (also called "training") themodel to data, model per-

formance is quantified by a loss function, which measures dissimilarity between the true

labels and predicted labels. The loss is minimised to improve classification.

It is possible to learn from the unlabled subset as well. An unsupervised machine

learning model would learn patterns inX and could group sources with similar param-

eters into "clusters". To learn from both unlabeled data and the labels, when they are

available, semisupervised learning is preferable. One form of semisupervised learning

is self training which iteratively learns from the labeled samples and assigns probable

pseudo-labels to unlabeled samples. Due to the large dataset of this project, self train-

ing did not improve performance (F1 scores as described in Sect. 5.3.1). We therefore

proceed with supervised learning.
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5.2.1 Models

Machine learning models learn parameters from the input data, but they also have hy-

perparameters to control the learning process. To choose an algorithm and its hyperpa-

rameters, testing multiple models is beneficial. To compare the performance of models

with and without variability and magnitude information, we also create multiple final

models for different datasets using different features. The datasets include samples with

missing values in WISE and PS1, so for fair evaluation of the importance of colours, we

create different models for the full dataset and for the "matched" dataset. The six models

use:

1. AllA:All features andAll data (only PTF light-curve variability and SDSS matches

are required)

2. AllM: All features and only data with Matches in WISE and PS1 (so their magni-

tudes are always included)

3. VarA: Only Variability features and All data

4. VarM: Only Variability features and only data with Matches in WISE and PS1

5. MagA: OnlyMagnitude features and All data

6. MagM: OnlyMagnitude features and only data withMatches in WISE and PS1

We create additional models for AllA using random subsets of varying size to analyse

the importance of data volume.

5.2.2 Data splitting

The goal is to create amodel that can reliably classify data it has not seen before. It should

give predictions based on general trends in the data and avoid overfitting to random

patterns in a specific dataset even if it can perfectly replicate SDSS labels in data it was

trained on. To get an unbiased measure of model performance, we set aside part of the

labeled data as a test set for evaluation. The model is only tested on the test set once, and

we do not examine its properties prior to this test, except size and number of matches

in WISE and PS1, to avoid any leakage of information from the test set into the model.
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During model optimisation, we train the model multiple times and determine when

it is ready to run on the test set. We evaluate performance on the training set, but

this is prone to overfitting. For a less biased estimate, we use a validation set. While

trying different models and tuning hyperparameters, we evaluate on the validation set.

Generally, the performance will seem best on the training set and worst on the test set.

Using the test set multiple times would likely give seemingly better scores as well, but it

would be a biased estimate of performance on new data. For further discussion of best

practices in machine learning, see Lones (2021) and Kapoor & Narayanan (2022).

Before testing, we could combine the training and validation sets to train one last

time on more data. We choose not to combine them, because the new model randomly

could be worse (and we would not know without a separate validation set) and because

some models are sensitive to the size of the dataset. For small datasets, the advantage of

learning from more data would outweigh this concern.

We shuffle the data and use a 60-20-20 split for creating a training set, a validation

set and a test set. This is done both for the full dataset and the matched subset. We make

sure that the training set for the matched subset, is also a subset of the training set for

the full dataset, and likewise for validation and test sets.

5.2.2.1 Cross-validation

An alternative splitting technique for training and validation is cross-validation (Stone

1974), which allows the use of all data for both purposes. In n-fold cross validation,

the data is split into n folds. Alternately, n − 1 folds are used for training and one

for validation. The average score of the validation folds is then used for evaluation –

a process which reduces variance compared to a single validation set. We use cross-

validation within the training set for less overfitting, but still keep extra validation and

test sets, since we run the cross-validationmultiple times for adjusting hyperparameters.

The balance of class frequencies (fraction of samples of each class) in the dataset will

affect the model. During cross-validation, we ensure all folds are representative of the

full dataset by using stratified folds, meaning that the class balance of the full set is

preserved in each fold.
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5.2.2.2 Early stopping

Reducing overfitting on the training set will likely lead to better performance on the

test set, because when the model mistakenly thinks it perfectly understands the training

data, it will stop learning. We use several methods to avoid overfitting. One of them

involves data splitting, namely early stopping.

To stop the algorithm before it overfits, we take out part of the training set as a

validation set for evaluating performance after every step. If performance does not im-

prove by more than a predefined tolerance, training is stopped. We implement the early

stopping and cross-validation in Sect. 5.2.3.2.

5.2.3 Classification algorithm

Astronomical datasets often include objects with missing measurements of some prop-

erties. To analyse a dataset with missing feature values, one could drop objects with

missing features or drop features that are not available for all objects. Another option

is to guess the missing features (imputation). To learn from all data without dropping

or guessing information, we use a model that by construction accepts and learns from

missing values (Josse et al. 2019; Twala et al. 2008).

For fast classification with low memory usage and including non-linear patterns,

we choose HistGradientBoostingClassifier, which is a tree based model

from scikit-learn (Pedregosa et al. 2011). Tree based models classify data using hierar-

chical tree-structures. A decision tree places "nodes" which split the feature space, and

the nodes are used one by one to decide which class a sample belongs to. The final

nodes, which are not split further, are called leaf nodes, while the internal nodes are

called branch nodes. Sources are classified based on which leaf they belong to.

A single decision tree is simple and easy to interpret, however, ensemble tree models

will usually perform better. Oneway to improve the outputs of a tree fi, is to add another

tree hi+1 that predicts how the first one could be improved, and create a new ensemble

model fi+1. Gradient Boosting Machines sequentially add trees in this manner. The loss

functionL is minimised to improve classification, using the gradientsG = ∇L(Y, f(X))

and hessians H = ∇2L(Y, f(X)) of L with respect to the model f(X). First, constant

initial predictions C are chosen. Then, a tree h1(X) fits the gradients of the constant

model f0 = C , thereby predicting a correction that can be added to the initial predictions.
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The next tree h2 predicts gradients of the updated model f1 and so forth. This continues

formax_iter boosting iterations with the final predictions F (x) including all correcting

trees multiplied by the learning rate, η (Friedman 2001):

F (X) = C + η

max_iter∑
i

hi(X). (5.1)

The learning rate is a regularisation parameter that prevents overfitting by preventing

the model from learning too much from a single tree.

5.2.3.1 Histogram-based Gradient Boosting Classification Tree

HistGradientBoostingClassifier is a scikit-learn implementation of gra-

dient boosting similar to LightGBM (Ke et al. 2017). In this tree-based ensemble method,

each sample is processed by a series of trees. In each tree, the sample is assigned to a leaf

which has a leaf weight. The leaf weights can then be summed for prediction of the class

of the sample. To convert the sum to a class for multi-class prediction, a tree is created

for each class during each iteration. The values can then be compared following a one

versus rest (OvR) approach in which every class is compared against all other classes.

Softmax normalisation converts the values to probabilities.

The trees are estimating corrections to previous trees, so the leaf weights depend on

gradients and hessians of the loss function of a tree i:

wi = − Gi

Hi + λ
. (5.2)

Here λ is a regularisation parameter used for penalising complex models to avoid over-

fitting, similarly to η. It is also part of the loss function. For multiclass classification,

we define the loss function L as the categorical crossentropy between a tree model f

and "true" labels Y plus a regularisation term Ω for each tree hj . L is computed for N

samples as:

L(Y, f(X)) = − 1

N

∑
i

∑
k

Yi,k ln(fi,k(Xi)) +
∑
j

Ω(hj), (5.3)

Ω(hj) =
1

2
λ||wj||2, (5.4)
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where fi,k is the predicted probability for a sample i of belonging to class k, and Yi,k is

the "true" one-hot-encoded value (0 or 1) we are trying to predict. For regularisation, λ

penalises trees with high ||wj||2 to avoid large contributions from individual trees (Chen

& Guestrin 2016).

When the model decides where to split the data (creating nodes) for each tree, His
tGradientBoostingClassifier speeds up the process by binning the feature

space instead of sorting all feature values. The algorithm creates histograms ofG andH

for all samples in the feature bins, and uses the histograms to decide at which bin edge

to split. A split optimises the gain of the left and right nodes,

Gain =
1

2

(
G2

left

Hleft + λ
+

G2
right

Hright + λ
−

(Gleft +Gright)
2

Hleft +Hright + λ

)
. (5.5)

To include samples with missing values, one bin is dedicated to this, which is a "miss-

ingness incorporated in attributes" strategy (Twala et al. 2008). At every split, the model

learns which nodes to assign sources with missing values to. This strategy takes into

account the information on whether data is missing or not, and allows a model trained

on all features of Sect. 5.2.4 to classify sources even if they have no colour information.

5.2.3.2 Hyperparameter tuning

For fast hyperparameter tuning, we use successive halving iterations (Jamieson & Tal-

walkar 2016; Li et al. 2016). The HalvingRandomSearchCV class in scikit-learn

randomly chooses hyperparameter values in specified ranges and examines performances

using 5-fold cross-validation. The model is evaluated with a low number of samples at

first. Then the best performing hyperparameters are selected, and they are evaluated

with a higher number of samples until the best hyperparameter combination is deter-

mined. Performance in HalvingRandomSearchCV() is evaluated with the macro

averaged F1 score as defined in Sect. 5.3.1.

We use HistGradientBoostingClassifier with early stopping, which

sets aside 10 % of the data for validation, and stops the fitting if the last 30 models did

not improve the loss function bymore than 10−7
. Withmax_iter at 200, we test learning

rates from 0.01 to 0.3, maximum number of leaf nodes from 11 to 81, minimum samples

per leaf from 5 to 200 and l2 regularisation parameters (λ in Eq. 5.4) from 0 to 5.
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5.2.4 Preprocessing

The SDSS labels are quasar, star and galaxy, and we choose to encode them as 0, 1 and 2,

respectively, in the Ytrue vector. The model converts Ytrue to Yi,k of Eq. 5.3. We choose

input features that are suitable for class prediction by being measured independently

of the spectroscopic classes (unlike e.g. spectroscopic redshift). We include variability

parameters A and γ, W1 and W2 from WISE, g, r, i, z and y from PS1 and median R

from PTF. In tree based models, scaling the features would also scale the positions of tree

nodes in feature space. This does not affect performance, so the models are insensitive

to monotonic feature transformations, and the features will not need scaling.

5.2.4.1 Feature engineering

Features may interact in ways that are useful for classification. To make it easier for a

model to learn such interactions, we construct additional features by combining existing

ones. We create colour features and features based on the selection criteria of paper I

and Schmidt et al. (2010).

In paper I, manually chosen selection criteria are effective in selecting pure sets of

each class. The criteria are applied in log(A) vs. γ, z − W1 vs. g − r and W2 vs.

W1 − W2. Here log(A) is in base 10. The criteria are linear in said parameter spaces.

For easier separation of classes, we construct four features z−W1− 1.25(g− r),W1−
W2− 0.017W2, γ + 0.5 log(A) and γ − 2 log(A). We also combine all eight magnitude

features for 28 colour features and thereby use a total of 42 features. For non-linear

feature construction, the features could be combined by multiplication as well, but this

did not give an improvement compared to models with only linear constructed features.

5.2.5 Performance evaluation

To measure multiple qualities of the predicted outputs, the model performance is evalu-

ated with multiple metrics. Mean accuracy (the fraction of correct predictions) is simple,

but highly dependent on class ratios. The macro-averaged scores are the unweighted

means of the scores for each class and assume equal importance of each class.
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5.2.5.1 F1 score

F1 is the harmonic mean of completeness and purity (Dice 1945; Sørensen 1948), which

are assumed equally important. They are computed from the number of true positives

(TP), false negatives (FN), and false positives (FN):

Completeness =
TP

TP + FN
, (5.6)

Purity =
TP

TP + FP
, (5.7)

F1 = 2
Completeness× Purity

Completeness + Purity
. (5.8)

5.2.5.2 ROC AUC

ROC AUC is the Area Under the Curve (AUC) for the Receiver Operating Characteristic

(ROC; Fawcett 2006). A ROC curve evaluates the trade-off between a high true positive

rate (TPR, completeness) and low false positive rate for a binary classifier. The false

positive rate, FPR, is

FPR =
FP

FP + TN
, (5.9)

where TN are the true negatives. The classifier of this project is multinomial, so we

compute the ROC AUC for each class with an OvR approach.

For the average ROC AUC, to avoid the influence of class imbalances, the macro

average is taken following a one versus one approach (OvO; Hand & Till 2001):

M =
2

c(c− 1)

∑
i<j

Â(i, j), (5.10)

where c is the number of classes and Â is a measure on i and j – in this case Â is ROC

AUC. This takes into account that each class can have better separation from one class

than the other.
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Table 5.1: Classifier hyperparameters.

Model features Variability Colours All features

Samples All Matched All Matched All Matched

λ 0.918 2.38 3.06 2.41 4.03 2.63

η 0.0462 0.0215 0.0498 0.0415 0.142 0.0653

Max leaf nodes 11 23 45 63 58 61

Min samples per leaf 41 37 7 19 6 19

Notes. Hyperparameters of the histogram-based gradient boosting classifier are se-

lected as described in Sect. 5.2.3. Here "colours" include all magnitudes and colours.

5.3 Results

W
e tune the models in Sect. 5.2.1 to the training set and validate on the validation

set with the chosen hyperparameters listed in Table 5.1. Afterwards, we run

them once on the test set for each final model. This is to test performance, classify all

samples and predict probabilities of being a quasar, star or galaxy.

5.3.1 Performance

In Table 5.2, the models are listed along with several test statistics described in Sect.

5.2.5. Performance is measured on the test set and is slightly lower than on the training

and validation sets due to overfitting, as expected. The "matched" samples are matched

in both PS1 and WISE, so some "unmatched" samples do have colours and magnitudes.

Fig. 5.1 shows test set ROC curves for each class in two models using all samples.

The model using all features (AllA) shows almost perfect performance, while the model

with just variability (VarA) has a greater trade off between a high TPR and low FPR. This

is also reflected in the macro averaged ROC AUC scores of 0.9945 for AllA and 0.7671

for VarA. Both models are much better than random guessing, since the ROC AUC are

larger than 0.5 for all classes in Table 5.2.

5.3.1.1 Baseline

In Table 5.2 we include a baseline model that randomly assigns labels in a uniform man-

ner. Random labels result in completenesses of 0.33 and purities equal to the frequencies

of each class (but sensitive to differences between the training and test sets). The macro
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Table 5.2: Performance statistics on the test set.

Model features Variability Colours All features Uniform baseline

Samples All Matched All Matched All Matched All Matched

ROC AUC

OvO macro avg 0.7671 0.7995 0.9945 0.9962 0.9945 0.9962 0.50 0.50

Quasars 0.8182 0.8251 0.9932 0.9951 0.9931 0.9951 0.50 0.50

Stars 0.7274 0.7864 0.9969 0.9976 0.9969 0.9976 0.50 0.50

Galaxies 0.6997 0.7268 0.9954 0.9956 0.9953 0.9957 0.50 0.50

F1

macro avg 0.5431 0.5693 0.9624 0.9733 0.9639 0.9738 0.3039 0.2966

Quasars 0.4383 0.4462 0.9379 0.9570 0.9404 0.9580 0.2094 0.2086

Stars 0.4195 0.4596 0.9642 0.9755 0.9656 0.9758 0.2679 0.2361

Galaxies 0.7714 0.8022 0.9853 0.9875 0.9857 0.9878 0.4345 0.4423

Completeness

Quasars 0.3497 0.3515 0.9220 0.9505 0.9249 0.9511 0.33 0.33

Stars 0.3308 0.3864 0.9702 0.9722 0.9716 0.9725 0.33 0.34

Galaxies 0.8682 0.8769 0.9871 0.9900 0.9875 0.9903 0.33 0.33

Purity

Quasars 0.5871 0.6107 0.9543 0.9636 0.9564 0.9650 0.1527 0.1528

Stars 0.5732 0.5671 0.9582 0.9788 0.9597 0.9790 0.2240 0.1822

Galaxies 0.6940 0.7392 0.9834 0.9850 0.9839 0.9852 0.6232 0.6613

Mean accuracy 0.6687 0.7064 0.9734 0.9806 0.9744 0.9810 0.33 0.33

Notes. Classification performance of on the test set including all samples or only

those matched in WISE and PS1. Performance improves with more input features,

especially "colours" including magnitudes. The baseline is described in Sect. 5.3.1.1.
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Figure 5.1: ROC curves for the model with all features and the model with just variability

("var" in the legend) on all data. Including colours makes it possible to achieve both very

high true positive rates and low false positive rates for both quasars (QSO), stars (STAR)

and galaxies (GAL). The dotted line shows the performance of random guessing which

is worse than for all trained models.
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Figure 5.2: The macro averaged F1 score rises with the number of labeled samples for

the validation and test sets. We see a clear increase up to ∼100 000 labeled samples, and

gap between performance on training and test data continues to narrow until we reach

best model on the full labeled dataset of 1.7 million samples.

averaged F1 score is 0.30, which is much lower than for all trained models.

Another baseline could be labelling everything as the most frequent class: galaxies.

Completeness is then 0 for quasars and stars, and 1 for galaxies. Galaxy purity is 0.62

(their frequency), and this gives an F1 score of 0.77 for galaxies. We get undefined purities

and F1 scores for quasars and stars, but if we set the undefined F1-scores to 0, the macro

averaged F1 score is 0.26 using all data.

All models perform better than the baseline models. For some metrics of some

classes, VarA only matches the baselines – but it simultaneously performs better for

other classes with the same metrics.

5.3.1.2 Number of samples

To evaluate howmany samples are needed in future surveys, we create newmodels using

all features on random subsets of the full dataset. We estimate performance using macro

averaged F1 scores. We still use a 60-20-20 split and choose random samples within the
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original training, validation and test sets.

In Fig. 5.2, we see how a larger training set leads to better performance. For less

than 104 labeled samples, the training set (<6 000 samples) is completely overfitted with

a perfect F1 score of 1. For larger samples, F1 decreases for the training set and increases

for the validation and test sets, except for a few cases due to randomness inwhich sources

are included. Randomness also leads to much better scores on the test set than on the

validation set for 316 and 1000 samples. For 316 samples, the main difference is that

test set includes stars that are easier for the model to classify. With 1 000 samples, the

model performed better on both the galaxies and stars in the test set and it contained

fewer quasars. Larger partitions for validation and test could reduce the uncertainty

at the cost of less training data. Very similar scores on the validation and test set for

the full model indicates that the amount of overfitting is similar. It indicates that the

validation set could have been used more during model selection and hyperparameter

tuning without becoming too biased.

The greatest improvements are for seen up to∼ 105 labeled samples. Even with just

316 labeled samples, the F1 score on the test set is 0.93. We created a model with 100

labeled samples as well, but it only predicted galaxies although the training set included

all classes.

5.3.2 Calibration

Fig. 5.3 shows residuals of the calibration curves for each class for the models using all

features or only variability on the full dataset with SDSS labels (models AllA and VarA

in Sect. 5.2.1). The probabilities of belonging to each class sum to one for every object,

as the classes are mutually exclusive. Well calibrated classifiers result in probabilities

close to the dotted line where a predicted probability of e.g. 60 % of being a quasar

means that 60 % of sources with that probability prediction are actually labeled quasars

by SDSS. The bins contain 5 % of the samples each and are not of equal width. The

largest residual shows predicted stellar probabilities of ∼50 % being just 1.5 percentage

points too low. As the models are well-calibrated, we do not apply further calibration.

The other models predict probabilities of similar quality to AllA and VarA.

For model AllA, the predicted probabilities of being a quasar are in the range 0.00003

−99.994 % (over both the train, val and test set). They are 0.0007−99.987 % for stars and

0.007− 99.9993 % for galaxies. With just variability, the VarA model is not as confident,
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Figure 5.3: Calibration plot for the model using all features and all data. As the predic-

tions are very well calibrated, the y axis shows the residuals after subtracting fractions

of a perfect model. With only variability, the model is less confident so the predicted

probabilities are closer to 50 % than for models including colours.

predicting quasar probabilities of 3−80 %, 5−90 % for stars and 13−90 % for galaxies.

5.3.3 Predicted parameter distribution

In Fig. 5.4, the final predictions of AllA are colour-coded with saturation based on the

relative density of each class in the shown parameter space. The plots include the full

dataset of 70 920 904 samples. The classifier of Sect. 5.2.3 selects sources using positions

in parameter space in a manner similar to that of paper I – but optimised automatically

to include even the samples with parameters that are not typical of a single class which

are therefore difficult to classify (found in grey areas of Fig. 5.4).

5.3.3.1 Variability classification

Classifying with just the variability parameters A and γ (and features combining them)

allows us to plot the complete feature space of a model. Fig. 5.5 shows log(A) vs. γ

and how VarA separates the classes. Most of the feature space is predicted to contain

galaxies. The regions assigned to each class can be compared to those of paper I – but
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Figure 5.4: Predicted classes of all samples using all features, projected in three different

parts of the input feature space. With the variability parameters A and γ (top left) an

area at log10(A) ∼ −0.8 and γ ∼ 0 has high degeneracy, while especially stars and

quasars are easier to distinguish in other areas. In g − r vs z −W1 (top right) and W2
vs. W1−W2 (bottom), the model shows greater separation of the classes. These plots

include both training, validation and test data.

134 SOFIE HELENE BRUUN



CHAPTER 5. SUPERVISED CLASSIFICATION 5.3. RESULTS

Figure 5.5: The model on all samples using only variability predicts classes as illustrated

by the diagram above. Themodel only usesA and γ plus combinations of them described

in Sect. 5.2.4, so the diagram illustrates how the full input feature space maps to model

outputs. In most of the feature space, the model predicts the objects to be galaxies, which

is also the most frequent class of the dataset.

now, they must cover the entire feature space. The regions are still relatively simple

due to regularisation and they approximately match the selection regions of paper I

apart from the higher prioritisation of galaxies in sparsely populated regions (−4.6 <

log(A) < −2 and log(A) > 0). Areas of low relative frequency of predicted galaxies

touch areas of high relative frequencies of predicted stars and quasars, due to the higher

total frequency of galaxies in the labeled dataset.

5.3.4 Output table

Information on outliers, time spans etc. are saved in the final output table as described

in Table 5.3, along with the resulting predictions and probabilities of each class. The

results are produced by model AllA and are published as VILLAIN-Cat in CDS. We also

select nonvariable sources from two criteria:

• A close to 0: A+ 3σA,+ < 0.01, and

• A consistent with 0: A/σA,− < 3.
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5.3.5 Feature importance

We measure the contribution of features by dropping some features in models 3 – 6 of

Sect. 5.2.1 and with permutation importance. With permutation importance, each fea-

ture is evaluated by randomly permuting its values andmeasuring themacro averaged F1

loss. This measure has a bias towards correlated features (Strobl et al. 2007; Nicodemus

et al. 2010), so important but highly correlated features will likely all get low rankings. It

is, however, less resource intensive than computing Shapley values (Shapley 1951) which

can be implemented in ways that minimise the bias (Mase et al. 2021; Amoukou et al.

2021).

The top 20 permutation importances of AllA are listed in Table 5.4. The top 13 fea-

tures are all engineered, including two based on selections in paper I. The highest rank-

ing variability feature is γ − 2 log(A) in the 16th place. The sum of the losses is much

smaller than the total F1 score of 0.9639, showing that most information lies in highly

correlated features. R− r might be ranked high because it can be used for estimation of

stellarity since the image quality of PTF and PS1 is different.

5.4 Discussion and conclusions

U
sing PTF variability, magnitudes from PTF, WISE and PS1 and their combina-

tions, we have created a model (AllA in Sect. 5.2.1) that identifies 1 330 412 quasar,

48 618 737 star and 20 971 755 galaxy candidates with amacro averaged F1 score of 0.9639

on spectroscopically classified sources from SDSS. The model detects 92.49 % of SDSS

quasars and has an overlap with SDSS quasars of 95.64 %. We are able to assess the

quality of the classifications using predicted probabilities, which are highly accurate, as

described in Sect. 5.3.2, and allow for accurate discrimination of true and false positives,

as described in Sect. 5.2.5.2.

5.4.1 Model comparison

According to Table 5.2, performance is slightly improved by including variability, espe-

cially for quasars. The quasar F1 score improves from 0.9570 to 0.9580 on the matched

samples (MagM vs. AllM). The importance of colour is much greater, shown by the

lower performance of variability-only models, giving a quasar F1 score of 0.4462 on the

136 SOFIE HELENE BRUUN



Table 5.3: Catalogue parameters.

Parameter Description

PTF_RA Mean J2000 RA in PTF [deg]

PTF_Dec Mean J2000 Dec in PTF [deg]

PTF_ID Object ID in PTF

A Structure function amplitude of variations on time scales of one year [mag]

dA_m Lower error on A [mag]

dA_p Upper error on A [mag]

gamma Power law index

dgamma_m Lower error on γ
dgamma_p Upper error on γ
Nepochs Number of R band epochs in PTF after outlier removal

t_span Time span in the R band from PTF after outlier removal [days]

median_R Median R magnitude from PTF [mag]

outlier_fraction Fraction of R band detections classified as outliers

max_magdiff Maximum magnitude difference from the R band moving median [mag]

mean_magdiff Mean magnitude difference from the R band moving median [mag]

W1 WISEW1 band [mag]

dW1 Error onW1 [mag]

W2 WISEW2 band [mag]

dW2 Error onW2 [mag]

g PS1 g band [mag]

dg Error on g [mag]

r PS1 r band [mag]

dr Error on r [mag]

i PS1 i band [mag]

di Error on i [mag]

z PS1 z band [mag]

dz Error on z [mag]

y PS1 y band [mag]

dy Error on y [mag]

SDSS_RA J2000 RA to SDSS match [deg]

SDSS_Dec J2000 RA to SDSS match [deg]

redshift Spectroscopic SDSS redshift

redshiftErr Redshift error

SDSS_class Spectroscopic classification from SDSS

nonvariable 1 if A is low and consistent with zero (see Sect. 5.3.4)

P_QSO Probability of being a quasar

P_GAL Probability of being a galaxy

P_STAR Probability of being a star

pred Predicted class

Notes. Parameters of the output catalogue published as VILLAIN-Cat. For

SDSS_class and pred, quasars are labeled 0, stars 1 and galaxies 2. Unknown val-

ues are included as NaN.
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Table 5.4: Feature importance.

Feature Loss

R− r 0.045
z −W1 0.032
z −W1− 1.25(g − r) 0.029
r − i 0.013
i− z 0.010
R−W2 0.008
z −W2 0.007
R− i 0.004
R− g 0.004
y −W1 0.002
W1−W2− 0.017W2 0.002
r − z 0.002
y −W2 0.002
W2 0.001
i 0.001
γ − 2 log(A) 0.001
γ + 0.5 log(A) 0.001
γ 0.001
g 0.001
z 0.001

Notes. Permutation importance of the top 20 features. Importance is evaluated with

the model using all features and all data, on the test set. All uncertainties are smaller

than 0.0005. The losses are highly biased due to feature correlations, but indicate

that engineered features are important. R− r could work as a measure of stellarity.
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matched samples (VarM). This is still better than the baseline for random guessing of

0.33. Using all features and data (AllA), we are able to give confident predictions of up

to 99.994 % as quasar probability – which is also much better than the 80 % with only

variability (VarA). By including variability in models, however, we identify more candi-

dates, as more samples can be used. Fig. 5.5 shows how classification is performed with

only variability.

For objects with variability parameters, one could always include a feature with the

average magnitude in the light curve to improve performance with e.g. a variability +R

model. This would likely identify more bright objects as stars.

This study is on PTF sources with measured variability. If variability was not re-

quired, including colourswould also enable the classification ofmore sources, i.e. sources

without variability information. Although the presented models are classifying all sam-

ples, we still see higher purities, completenesses and clearer visible separation of classes

in Fig. 5.4 than with the limited manual selections in Figs. 2–3 of paper I.

5.4.2 SDSS comparison

The candidate parameter distributions of Fig. 5.4 are close to the distributions in SDSS

labeled objects in Fig. 2 of paper I, but with different total distributions as the sources

only have to be found in PTF (Fig. 1 in paper I). We find relatively more galaxies at

W1−W2 > 0.5 andW2 > 15 and a more unified cluster of galaxies in g−r vs. z−W1

compared to SDSS. The small structures at γ > 0.5 and logA > −0.2 in Fig. 1 of paper

I are mostly classified as stars. We judge the structure at g − r = 0 to be an artefact.

5.4.3 Biases

Each survey has selection effects, affecting ratios of the object types and their parame-

ters. Performance is better for sourcesmatched in PS1 andWISE, indicating thatmatched

sources are generally easier to classify. Variability might perform differently compared

to colours, if we change the outlier removal and constraints on e.g. light-curve length

by paper I.

We also have a bias from the manual exploration of the same dataset in paper I,

including the test set of this paper. The models are therefore not created entirely inde-

pendently of the test set, but they have only been tested on it once.
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Each PTF light curve is constructed in paper I by grouping data points with the

same PTF ID. All light curves have different PTF ID’s, so all samples should correspond

to independent astrophysical objects. However, some PTF objects have near-identical

coordinates. For these ID’s, PTF light curves are therefore correlated, and the objects

are likely matched to the same object in WISE and PS1. This gives a small bias, since

correlated feature values appear across the training and test set. For labeled data, all

SDSS matches are unique, but 0.02 % (268) of the sources have a duplicate match in

WISE and 0.004 % (70) have a duplicate in PS1. 22 % (25 329 144) of PTF objects have a

neighbour within two arcseconds, but only 0.01 % (158) within the labeled set.

5.4.4 Perspectives

The catalogue described in Sect. 5.3.4 includes predictions and probabilities of 70 920 904

PTF objects. It greatly expands on the set of 4 618 756 DR17 SDSS spectroscopic classi-

fications out of which the labels are from 1 747 471. The catalogue includes confident

quasar candidates (high P_QSO) and standard star candidates (flagged nonvariable) for

use in future research. Subsets could be interesting to observe and analyse further, such

as quasar candidates or variable galaxies. Using the included probabilities, one can ex-

tract a set of e.g. quasar candidates of a chosenminimum P_QSO for a preferred trade-off

between completeness and purity.

Monochromatic variability is not enough for confident classification of most sources

into the three macro-classes. However, it does add information within each class and

could be used for selection of rare subtypes or distinction of e.g. type I and type II AGN

(De Cicco et al. 2022). It is also useful in cases where colours are not available. For simple

variability selection without machine learning, we suggest selecting by regions similar

to those of Fig. 5.5.

For machine learning tasks on similar data, we suggest datasets of at least ∼100 000

labeled samples for an expected macro averaged F1 score of 0.9610 for new data. The re-

quired survey size for a given score can be estimated from Fig. 5.2. For small datasets, we

suggest adjusting class ratios by oversampling (copying or generating synthetic samples)

or more advanced techniques combining oversampling and undersampling (removing

samples) such as SMOTETomek or SMOTEENN (Batista et al. 2004) on the training set

(not on the test set). We also suggest combining the training and validation sets before

testing on small sets and using cross-validation. Stratification can ensure that even small
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folds are representative of all classes. HistGradientBoostingClassifier is

only faster than GradientBoostingClassifier from scikit-learn for datasets

of ≥10 000 samples, so alternative algorithms may be considered for speed. For large

numbers of classes, both algorithms are inefficient since they create a tree for each class

during each boosting iteration. If a large unlabeled set is available, semi-supervised

learning can be applied to learn from it. In that case, the unlabeled samples can all be

added to the training set.

In areas of parameter space with few SDSS labels, performance can be improved

using active learning (Settles 2009). By identifying where in feature space new labels

would be most useful, and expanding the labeled set accordingly, fewer labeled samples

are needed. This is especially relevant in areas with higher relative population densities

in PTF than SDSS or, in the future, in the LSST. Performance would of course also be

improved by adding additional information or well-designed feature engineering such as

more bands, photometric redshifts, proper motions, stellarity etc. The joint survey pro-

cessing of LSST, Euclid (Laureijs et al. 2011) and the Nancy Grace Roman Space Telescope

(Akeson et al. 2019) will include deep, multi-band information in the optical and near-

infrared, which can be used similarly to the WISE and PS1 bands in this project (Chary

et al. 2020). Another approach to automatic classification with variability is using time-

series layers in neural networks. More information can be captured by the model by

directly using the full light curves instead of, or in addition to, manually selected sum-

marising features like A and γ (Jamal & Bloom 2020).

We used a histogram based gradient boosting classification tree, which is fast, per-

formswell, learns frommissing values, produces probabilities, detects nonlinear patterns

and is easy to implement with scikit-learn. Feature engineering further improves per-

formance. No other astronomical papers in the SAO/NASA Astrophysics Data System

(ADS)
1
mention this implementation to date, but we recommend further use in astron-

omy as an alternative to XGBoost and LightGBM.Withmodels like the ones of this paper,

future sources can quickly and automatically be classified.

1
https://ui.adsabs.harvard.edu
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Chapter 6

Perspectives

W
e have analysed distributions of variable objects and created a machine learning

model for their classification in the previous chapters. Wewill now expand parts

of this analysis with extra diagrams of their parameter distributions and light curves. We

will also go into more depth on the issue of objects split by the PTF. Then, we discuss

some alternativemachine learning techniques, including how the raw datamight be used

for the creation of different model input features. In addition to changing the method

of extracting information from the data, we could have included different data. We end

this chapter on the discussion of alternative or additional astronomical data for future

models.

6.1 Expanded analysis

6.1.1 Predicted classes

In Fig. 6.1, we show the distributions of predicted classes from a model using only vari-

ability (VarA from Sect. 5.2.1). The distributions of each class are also shown in Fig. 5.5 of

the previous chapter, but in Fig. 6.1 the logarithmic colour mapping allows us to inspect
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the more sparsely populated areas and see clearer boundaries between classification re-

gions. Sources in most of the A-γ space are classified as galaxies. Quasars are mostly in

γ > 0.1 and −1.3 < log(A) < 0 and stars generally have log(A) < 4.5, but sources in a

few areas at log(A) ∼ 0 are also classified as stars.

In Fig. 6.2, we show the colour distributions of VarA predictions. Comparing the

colour distributions of variability classified sources in Fig. 6.2 to the sources selected

with manual variability criteria in Fig. 4.4, the classes have poor separation in both cases.

However, VarA maintains a similar separation while including all sources compared to

the 50 % of fitted PTF sources being selected in Fig. 4.4.

For easier comparison, especially for the colour blind, Figs. 6.3 – 6.4 re-illustrate

the distributions of Figs. 4.2 and 5.4 with one class per plot. In Figs. 6.3 – 6.4, AllA must

predict classes in parts of the feature spaces that are not covered by the SDSS labels. This

domain shift of distributions between the labeled and unlabeled set makes the model less

confident.

For example, in Fig. 6.4 some sources in the stellar main sequence of z −W1 versus

g− r are predicted to be quasars even though sources with these values are not present

in the SDSS labeled quasar set. The predicted quasars with main sequence colours could

be sources with extreme values in other features or based on overfitting in AllA. The

overfitting could stem from sources misclassified by SDSS or sources with erroneous

parameters.

Examples of light curves of predicted quasars, stars and galaxies are shown in Figs. 6.6−6.8.

We still observe clearer variability in quasars than in most of the included stars or galax-

ies. Interestingly, the star in the upper right corner of Fig. 6.7 appears to include pow-

erful eruptions – however, the two distinct magnitude "modes" could also be a sign of

mixing of the light curves of two different objects. This object has a neighbour about 5

arcseconds away as shown in Fig. 6.9, and so, PTF has likely assigned the same OID to

both. The combination of light curves frommultiple astrophysical objects can artificially

increase variability parameters. It also obscures which object a classification refers to.

Compared to split light curves, it is more challenging to establish how common the prob-

lem of combined light curves is. However, it only decreases the performance of models

without increasing overfitting, meaning the performance metrics can be trusted.
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Figure 6.1: PredictedA-γ regions from VarA.A and γ cover the full decision space of the

variability model, and so, we can observe the full decision boundaries in two dimensions.

The top left diagram shows predicted quasars, the top right shows stars and the bottom

diagram is for galaxies. The rules of the model predict objects in most of the parameter

space to be galaxies.
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Figure 6.2: Colours of objects classified by VarA. We see little seperation, similar to

Fig. 4.4, but including the whole data set of light curves.

6.1.2 Variable galaxies

A subset of the galaxies in Fig. 6.3 are variable. To further analyse these, we check

SIMBAD registrations for spectroscopically confirmed galaxies in general and for spec-

troscopic galaxies selected as quasars by the manual variability criteria in Chapter 4.

Fig. 6.10 shows histograms of the SIMBAD registrations. Most are simply registered as

galaxies and relatively few as AGN or similar in both data sets. Cartier et al. (2015) also

analyse structure functions and find some objects otherwise classified as "normal" galax-

ies to include some variable objects which are likely to be low-luminosity AGN. Their

emission lines could be diluted by the host galaxies, preventing spectroscopic classifica-

tion as AGN. They find broad line AGN to have A ∼ 0.1 and γ ∼ 0.025.

6.1.3 Split objects

I
n Sect. 5.4.3, we discussed the bias split PTF objects. This is mainly an issue in the

full dataset, and can be ignored in the subset with SDSS matches. For future analysis

of a larger labeled set or for unsupervised learning, identifying split objects could both

improve accuracy and reduce bias of the results. Combining light curves of the same

physical object would improve variability estimates and fewer duplicates could reduce

overfitting during classification.

We identify close neighbours using a k-d tree (see Sect. 2.3). Fig. 6.11 shows that
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Figure 6.3: Variability distributions of classified sources from AllA (left) and SDSS spec-

troscopy (right). The top panels show quasars, the middle row stars, and galaxies are

in the bottom row. The differences between AllA and SDSS classifications are affected

by the classifiers and the full PTF data set covering a broader range of sources than the

SDSS labeled subset.
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Figure 6.4: Distributions of g−r versus z−W1 for sources classified with AllA (left) and

SDSS spectroscopy (right) for quasars (top), stars (middle) and galaxies (bottom). The

full PTF data set covers a broader range of colours than SDSS spectroscopic classes.
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Figure 6.5: W2 versus W1 − W2 of sources classified by AllA (left) and SDSS (right)

for quasars (top), stars (middle) and galaxies (bottom). The distributions are generally

similar across the two columns, but again we see that AllA classifications cover more

colour and magnitude values.
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Figure 6.6: Light curves of predicted quasars from AllA. They all have A significantly

different from 0, with a larger spread in γ values.
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Figure 6.7: Light curves of predicted stars from AllA. The model has included both stars

that do show power law variably and some that do not. The diagram in the top right

appears to combine the light curves of two different objects given the same OID in PTF.
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Figure 6.8: Light curves of predicted galaxies from AllA. Some show variability, perhaps

due to AGN.
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Figure 6.9: PS1 imaging of a star with a light curve that has likely been combined with a

close neighbour. The full image is 32.5×32.5 square arcseconds. The image is accessed

using Aladin sky atlas, developed at CDS, Strasbourg Observatory, France (Bonnarel

et al. 2000).

PTF neighbours are typically either closer than an arcsecond or further away than five

arcseconds. 22 % of the fitted PTF sources have at least one neighbour within two arc-

seconds, and one even has eight. Before data cleaning, it had 14. Most sources have zero

or one neighbour as illustrated in Fig. 6.12. The neighbours of the source with eight

neighbours are 0.9 – 1.9 arcseconds away from the queried coordinates at RA 83.769474

and Dec −4.898451. They are located in the Orion molecular clouds (Tsujimoto et al.

2003), and there are no close sources visible to PS1 in the area, as shown in Fig. 6.13.

It has been observed during a time frame of a few days with 15.7 < R < 18.0, and

then twice in following years. Other PTF sources have much closer neighbours such as

the one at RA 241.258777 and Dec 22.479685 with six neighbours 0.02 – 0.09 arcseconds

away. Fig. 6.13 shows that they are all located in a bright star with g ∼14.9 (WISEA

J160502.10+222846.7). De Cicco et al. (2021) also matched their data set with itself to

avoid analysing blended sources, leading them to exclude 4.7 % of the sources.

Instead of only relying on PTF OIDs, better clustering of nearby points could be

achieved with unsupervised learning. Algorithms such as HDBSCAN can identify clus-

ters using differences in density while not including points it identifies as noise (McInnes
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Figure 6.10: SIMBAD registrations of the spectroscopically confirmed galaxies. The up-

per diagram includes all galaxies and the lower diagram only includes those fulfilling

the variability criteria of Chapter 4.
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Figure 6.11: Histogram of the distance of PTF neighbours within 10 arcseconds of an-

other PTF source. Most neighbours are closer than an arcsecond and likely represent the

same physical object.

Figure 6.12: Histogram of the number of fitted neighbours to PTF sources within two

arcseconds. It indicates that assigning multiple PTF OIDs to the same source is common.

Only 0.01 % of PTF sources in the labeled set have a close neighbour that is also in the

labeled set.
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Figure 6.13: Two images showing 32.52×32.52 square arcseconds each from PS1 centred

on PTF sourceswithmultiple fitted PTF sourceswithin two arcseconds. The source to the

left (83.769474,−4.898451) has eight neighbours and the source to the right (241.258777,

+22.479685) has six. The right source is also centred onWISEA J160502.10+222846.7. The

images are accessed using Aladin sky atlas, developed at CDS, Strasbourg Observatory,

France (Bonnarel et al. 2000).
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et al. 2017). Unlike with Density-Based Spatial Clustering of Applications with Noise

(DBSCAN), HDBSCAN clusters can have variable densities. Similarly to Schmidt et al.

(2010), a simple solution could be to select all points within a certain distance. Fig. 6.11

suggests that this distance should be between 1 and 4 arcseconds.

6.2 Alternative machine learning models

A
s discussed in Sect. 2.5, a wide array of machine learning models have been ap-

plied to variable astrophysical objects. The chosen model of Chapter 5 performs

well, but it is likely that other models would do the same. With different techniques and

depending on the data set, performance could even be improved. Undersampling, over-

sampling or a combination could improve class balance and make the model focus less

on galaxy prediction. Different hyperparameter selection methods could also be tested

for model optimisation, although HalvingRandomSearchCV is already effective.

FLAML (Wang et al. 2019) is an example of a library for computationally efficient hy-

perparameter tuning.

6.2.1 Semi-supervised learning

Especially on smaller datasets, learning overall distributions from the unlabeled data

can be useful. It is possible to learn from both the labeled and unlabeled data via semi-

supervised learning. We test semi-supervised learning in the form of SelfTrainin
gClassifier by sci-kit learn (Pedregosa et al. 2011). This uses a supervised model

as its base estimator to predict pseudolabels for the unlabeled set in an iterative manner.

The semi-supervised model, however, never gave better performance than its base esti-

mator (the supervised model), even for a wide range of hyperparameters. With semisu-

pervised learning, we include all unlabeled data in the training set and validate using

labeled data only, because labels are needed for performance evaluation. Setting aside

unlabeled data would not help during validation or testing, but it can improve model

training.

We tested semi-supervised learning with HistGradientBoostingClassif
ier, but also withLogisticRegression implemented by sci-kit learn (Pedregosa

et al. 2011). Logistic regression is a fast machine learning model, but its decision bound-

aries are linear. To identify non-linear patterns, we include nonlinear combinations of
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featureswithPolynomialFeatures. As the decisions of logistic regression depend
on scale, we standardise the data with RobustScaler, which subtracts the median

and scales based on the first and third quartiles, making the standardisation robust to

outliers. This pre-processing is based on the training set to avoid overfitting. To capture

patterns on similar feature scales, we also use logA (in base 10) instead of simply A as

the input for RobustScaler.
In SelfTrainingClassifier, it is important that the base model is well cal-

ibrated, meaning that the predicted probabilities of belonging to each class correspond

to the actual frequencies of the classes in the data. Unlike the outputs of HistGradi
entBoostingClassifier in Fig. 5.3, the LogisticRegressionmodel was

not well calibrated. Therefore, we applied a calibration model to learn how to adjust the

probabilities. We used CalibratedClassifierCV, which learns via cross valida-
tion (see Sect. 5.2.2.1). However, the outputs of SelfTrainingClassifier are

not well-calibrated either. Therefore, CalibratedClassifierCV is used again

after applying the model. In both cases, we optimise it with a OvR approach. This re-

sults in a model with nested cross validation, which is most suitable to large datasets

where splitting will not affect performance too much. Stratification helps for small data

sets.

The full model becomes CalibratedClassifierCV(SelfTrainingCl
assifier(CalibratedClassifierCV(LogisticRegression(Robu
stScaler(X,Y))))). This is all possible in sci-kit learn (Pedregosa et al. 2011),

but more complicated to implement and optimise than HistGradientBoosting
Classifier, and we achieve poorer performance and a slower model. Therefore,

we recommend just using HistGradientBoostingClassifier for data sets

similar to the one of this thesis.

6.2.2 Features

In the machine learning models of Chapter 5, we have created features according to

Sect. 5.2.4.1. It could be interesting study how performance is affected by creating dif-

ferent features from the same data. We might also be interested in adjusting existing

features. For example:

• Photometric redshifts could be modelled similar to Cunha & Humphrey (2022).
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• If photometric redshifts are used, the observed-frame can be corrected to the rest-

frame by ∆t = ∆tobs/(1 + z) like by Kozłowski (2016b).

• A and γ could be computed with different outlier removal to compare classifica-

tion results and find the most informative measure (separation of classes). For

example, Schmidt et al. (2010) used a looser outlier criterion by removing all data

points more than 0.25 mag from a moving median. We generally remove very few

outliers – up to about 1 % in a source. Most objects contain data points with an

absolute distance from the moving median of more than 0.25 mag, especially those

we predict to be quasars or galaxies.

• If quasar and AGN SFs include characteristic time scale after which they no longer

follow a power law, it can be beneficial not to fit the full SFwith a power lawmodel.

If the simple power law model is still used, one could limit the fitted range to a

maximum∆t depending on the expected turnover timescale, similar to Kozłowski

(2016b).

• Especially in linear models, including polynomial features can improve perfor-

mance by making it easier for the model to detect patterns.

• There are alternatives to creating new features manually. they can be selected

automatically through Deep Feature Synthesis (Kanter & Veeramachaneni 2015)

or Genetic Feature Generation (Mamontov et al. 2022). Another option is to let an

encoder model learn representations of the light curves similar to the method of

Jamal & Bloom (2020).

• Different variability measures from Sect. 2.4 could be included. These might detect

different types of variability and have different computational costs.

• Imputation could be used for sources with missing values in some features. Hist
GradientBoostingClassifier handles missing values, but well imple-

mented imputation such as with NeuMiss (Le Morvan et al. 2020) might perform

even better.
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6.2.2.1 Feature evaluation

In AllA and AllM, we use 42 features, and we might get a simpler model with similar or

even better performance by removing some features. Evaluation of feature importance

is also important for model interpretability. We use permutation importance which is

biased for correlated features – and many of the features are highly correlated. A highly

correlated feature gets a low permutation importance because the information it shares

with other features is not permuted in them. Permutation will also often place samples

outside the feature space regions of the training set, leaving the model to extrapolate

patterns to unknown regions. As an example, a permutation of the feature "W1−W2"

will make its value different from the difference between the features "W1" and "W2".

This is not something the model has seen before, and it is therefore difficult to interpret.

Furthermore, for highly correlated features there is little permutation loss from removing

one of them as the information is still included in other features, so they will be low-

ranking despite the importance of not removing all.

Alternatively, we suggest using Shapley values (Lundberg & Lee 2017; Shapley 1951)

with modifications for handling correlated features (Mase et al. 2021; Amoukou et al.

2021). This has a high computational cost. See Table B.1 of Ansari et al. (2022) for an

example of how processing time scales with data set size.

Another approach is to re-run the model once per feature in a leave-one-out scheme

(Lei et al. 2016). This is also computationally heavy. We apply a similar method by

training a model with variability parameters only and colours only to evaluate changes

in performance.

Tree-based models offer feature importance evaluation with Mean Decrease in Ím-

purity (MDI) (Louppe et al. 2013). This measure is based on the positions of tree nodes

which use the feature – features that are used closer to the root node will be used for

classification of more sources. Features used closer to the leaf nodes are perhaps only

used for a small subset of all leaves. Removing the splitting node using the evaluated

feature would decrease the purity. However, the MDI is evaluated on the training set

and gives higher scores to features with many unique values. It is also not currently

supported by HistGradientBoostingClassifier.
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6.3 Different data

I
n the previous section, we have looked into alternative classification models. An-

other another way of improving classification is to supply a model with additional or

different information to learn from. Some options are:

• An alternative to AllWISE is the unWISE Catalog (Meisner et al. 2017) with better

depth (0.7 mag fainter) and modelling of sources with close neighbours. It can be

queried as II/363 in VizieR (Ochsenbein et al. 2000).

• Gaia proper motions and parallaxes wouldmake it easier to distinguish the classes.

The proper motions of each class are shown in Fig. 4.14, and we see that the dis-

tributions are different.

• Additional colours could be included. Some can be extracted via the catalogues

used in this thesis. W3 andW4were useful for classification of spectroscopic SDSS

classes by Cunha & Humphrey (2022), although not as much asW1 andW2. One

could also include fewer colours for better comparison with other surveys, such

as the LSST.

• Variability measurements from other studies could be included when available,

such as A and γ computed from SDSS light curves (Pâris et al. 2017).

• Stellarity is useful for identifying galaxies as extended objects, but other informa-

tion is necessary to distinguish quasars from stars.

• Light curves from different surveys can be combined to create longer light curves

with more epochs. This comes at the cost of possible artefacts of photometric

transformation to the same filter, unless the combined surveys already have very

similar filters. Suberlak et al. (2021) combined PS1 and SDSS light curves and

suggest adding data from ZTF and LSST in the future. They do not include PTF,

ZTF and the Catalina Real-time Transient Survey (CRTS) due to lower limiting

magnitudes (and a broad filter for CRTS), but they have calculated the photometric

offsets for their inclusion. Fig. 2 of Suberlak et al. (2021) illustrates the limiting

magnitudes, baselines and sky coverage of each survey. Another example is Stone

et al. (2022) combining light curves from PS1, SDSS, the Dark Energy Survey and

follow-up monitoring with Blanco 4m/DECam.
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• Labels can be extracted from other surveys than SDSS. This would avoid the selec-

tion biases of SDSS (see Sect. 4.6.3) and enable learning from fainter sources. One

could use different labels than quasars, stars and galaxies or include labels for sub-

types. This could be different types of variable stars, Type I and II AGN or lensed

quasars. For large numbers of classes, HistGradientBoostingClassif
ier will be less effective. Ideally, labels from multiple surveys would be included

for robustness. It is worth noting that SDSS is biased in favour of including quasars

that are in the variability selection region of Table 4.2, since their target selection

process includes a set of PTF light curves with γ > 0 and γ > −30A+1.5 (Myers

et al. 2015).

Instead of adding labels, we could use one less by grouping stars and galaxies as

"non-quasars". This would result in a machine learning model focusing more on

the classification of quasars instead of also separating stars and galaxies.

• To include more stars, one could change the constraint of R > 12. Bright stars

are, however, more easily distinguished from quasars. Regarding standard stars,

we are mostly interested in the faint candidates. It could be interesting to compare

performance on bright and faint sources.

• On the other hand, one could place stricter constraints to fit only the sources that

are otherwise difficult to classify to reduce computational costs. Perhaps, the con-

straints could be inmagnitude, colour or simple variability measures (see Sect. 2.4).

• Light curves could be constructed differently to avoid splitting light curves of the

same source or combing light curves of different sources, as discussed in Sects. 6.1.1

and 5.2.2. In other surveys than PTF, the importance of this could be different

depending on how OIDs are assigned. Instead of combining by OID, Schmidt et al.

(2010) queried all points within 0.5 arcseconds. Based on Fig. 6.11, this seems to be

on the low side for PTF. Alternatively, a clustering algorithm such as HDBSCAN

could be applied.
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Chapter 7

Conclusions

I
n this thesis, we have explored variability and colours of quasars, stars and galaxies.

We have demonstrated methods of analysing the properties of these objects, and how

to select them in a large astronomical survey. Belowwe connect the findings of each part

of the thesis.

7.1 Part I

In Chapter 1, we explored the astrophysics of variable objects. The main focus is quasars

and AGN, which vary non-periodically over a wide range of time scales. Themainmech-

anism behind the variability is unknown, but many explanations of the literature focus

on accretion disk instabilities. Most galaxies are not expected to be variable, and so,

light-curve variability on human time scales is one way of identifying quasars and AGN

in their centres. Stars are more diverse in their variability properties, and many do not

have detectable variability at all.

In Chapter 2, we discussed relevant statistical measures. In order to estimate the

best fit parameter values, we use MCMC to sample the PDFs of the parameter likeli-

hoods. That is, the parameter values that would make observation of the given data
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most probable. This is combined with parameter priors in accordance with Bayes the-

orem. To search large astronomical data bases, we define mathematical tree structures

for efficient querying. We discuss different methods for quantifying variability including

simple power law SFs and advanced CARMA models. Neither can fully explain obser-

vations in the literature, but they are sufficient for selecting variable sources. Sources

can be classified automatically through a wealth of machine learning algorithms. We

stress the importance of selecting, training and testing models in an unbiased way to get

reliable estimates of performance. Then, we discuss some machine learning techniques

applied to variable objects in the literature.

7.2 Part II

C
hapter 3 addresses the practical challenges of the data processing to obtain the

variability and colour information of this thesis. The large data set requires high

performance computing facilities, especially during MCMC fitting, which took about six

months. Some parts of the sky took 6−7 orders of magnitude more computational re-

sources to process than others, so we split the data into 6340 files for parallel processing.

Chapter 4 is based on Bruun et al. (2023a) in which we fit power laws to the SFs

of 71 million sources in PTF. We apply data cleaning to ensure more reliable variabil-

ity parameters. This includes removing outliers and using light curves with at least 20

epochs. We analyse the parameters of this data set as a whole for the analysis to be as

representative of the survey as possible. This gives us the parameter distributions of

Fig. 4.1. Then, we inspect the variability and colours of objects selected as quasar, star

and galaxy candidates. The selection criteria are based on distributions of spectroscopi-

cally classified sources in SDSS. We find quasars to show the most power law variability

(highest values of A and γ). Seven band colour information in the optical and infrared

is more effective than monochromatic variability in selecting quasars, but with both we

select them with a purity of 99.3 % for a completeness of 12.53 %. Colour and variability

also enables the identification of spectroscopic misclassifications.

To optimise the selections with a balance of purity and completeness, we create a

machine learning model in Chapter 5. This chapter is based on Bruun et al. (2023b).

The model classifies the sources using the same variability and colour information as

Chapter 4, but uses the information more effectively. The choice of HistGradien
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tBoostingClassifier, which is an implementation of histogram based gradi-

ent boosting, enables fast model selection and training, and the resulting classifications

are well performing and well calibrated. We found no other astronomical papers using

this implementation to date in the SAO/NASA Astrophysics Data System, although for

example Cunha & Humphrey (2022) used similar models. The model handles missing

values, enabling us to classify the whole data set including objects without colour infor-

mation. We achieve a purity of 95.64 % and a completeness of 92.49 % for quasars with

this photometric model compared to the spectroscopic classifications by SDSS. The trade

off between purity and completeness can be adjusted using the predicted probabilities of

objects belonging to each class. The trade off will then change as illustrated in Fig. 5.1.

The probabilities and predictions are included in a catalogue along with variability pa-

rameters, colours, positions etc. Models that only include variability or colours do not

achieve the same performance, especially models based only on monochromatic vari-

ability. We also analyse how performance depends on the number of labeled samples

(objects with known classes to learn from), and this is shown in Fig. 5.2. We find that the

performance is relatively stable for more than 100 000 labeled samples. We recommend

the use of HistGradientBoostingClassifier and the inclusion of at least

100 000 labeled samples for optimal performance in future, similar projects.

7.3 Part III

I
n this final part of the thesis, we use Chapter 6 to inspect the parameter distributions

of photometrically classified sources in more detail. A model can only be as good as

the data you train it on. We find that although it is rare to find objects in the labeled data

set with different PTF OIDs that correspond to the same physical object (0.01 % within

two arcseconds), objects in the full set of fitted objects have up to eight neighbours

within two arcseconds. This is a problem that not only decreases performance, as the

parameters are fitted using fewer epochs – it also complicates performance evaluation

because a model can accidentally be tested on the same astrophysical sources that it was

trained on. This makes it too optimistic when we estimate how well the model would

perform on unknown data. The bias is negligible in this thesis, but it would be important

to account for in future studies with larger labeled sets. We also see signs of blended

sources where PTF assigns the same OID to multiple objects. It might help to exclude
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sources with close neighbours or create light curves using unsupervised learning. In

PTF, we find most objects (fullfilling the criteria of the data cleaning) to be either within

1 arcsecond or further away than 4 arcseconds of another source.

We also discuss the use of different machine learningmodels. Semi-supervised learn-

ing might improve performance for smaller data sets. We experimented with Logist
icRegression, but this resulted in a slower model with poorer performance. It was

also more complicated to implement in a way that identified non-linear patterns and

gave calibrated probabilities.

Regarding input features, there are many possible changes to test in future research.

We provide a list of suggestions in Sect. 6.2.2 including the prediction of photometric

redshifts, changes to the computation of variability parameters and automatic feature

engineering. With a large number of features, feature reduction could be important to

avoid the curse of dimensionality. Different evaluation of feature importance with less

bias for correlated features would also be interesting.

Finally, studies can be performed on different data with different potential for dis-

tinguishing variable objects. Observing fainter objects will influence class balance and

using different colours or multi-colour light curves changes the relative importance of

variability and colour features. Different types of information could be added such as

proper motions and stellarity. A combination of low proper motion and high stellar-

ity would increase the probability of being a quasar, for example. The combination of

light curves from multiple surveys is especially interesting for the application of ad-

vanced variability models. Fitting the characteristic timescale of DRW models requires

long baselines. Depending on the purpose of the study, using more labels could create

a model with the ability to classify interesting subclasses. Using labels from multiple

surveys or methods would make the model more robust to the biases of each one. One

might be able to detect low luminosity AGN as predicted galaxies with high A and γ in

the created catalogue, which could be tested using a set of known AGN.

In large future surveys such as the LSST, it is important to optimise computational

resources. The most resource intensive part of this thesis is the MCMC fitting of power

law structure functions. This is, however, still cheap compared to taking spectroscopy.

Fitting 71 million light curves took 6 months, so by a naive estimate, fitting 40 billion

LSST sources would require 563 times as many resources. That is, ∼ 300 years with

the same setup or ∼ 50 years using all HPC nodes available at DARK; leaving none for

other research. However, the light curves would also contain more epochs. To limit an

170 SOFIE HELENE BRUUN



CHAPTER 7. CONCLUSIONS 7.3. PART III

increase in run time from longer light curves, and perhaps achieve more reliable power

law SF parameters, an upper limit could be placed on |∆tij| during fitting. One could

also limit the science by stricter data cleaning constraints to only estimate the variability

of sources where this is expected to be most useful. We would recommend testing dif-

ferent variability measures to compare and evaluate the trade off between performance

and resources. Different fitting techniques also could lead to faster parameter estimation

of sufficient quality. The 10-year, 800-epoch LSST light curves will provide high qual-

ity variability information – we just need to consider how to best extract and use the

information given the size of the data set. The machine learning model of this thesis is

already highly efficient and suitable for large surveys.
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Appendix: Illustration

To compare parameter distributions of three classes in a single plot, we create 2D his-

tograms for each class, scaled according to the maximum value in parameter space (see

for example Fig. 4.2). The output values are used as inputs to an RGB matrix with the

density matrix of each class corresponding to a colour channel. The values in each chan-

nel are then rescaled to span from 0 to 1 for the maximum value in the density matrix.

We could stop here by rescaling to 0 to 255, but this would leave the blue channel dif-

ficult to distinguish from the black background. Inverting the colours is easy, but then

the yellow is difficult to distinguish from white. So for each pixel, we convert the back-

ground from black to white. We do this using the colormath package in Python
1
.

We first convert the RGB colours to CMYK colours. We want to increase the saturation

of CMY in CMYK to keep K (black) separate. So we invert the colours and increase the

saturation with

cnew = log10(c+ 0.1)− log10(1.1) ∗ cold − 1.027 (7.1)

where c is the colour channel. We convert back to RGB and multiply by 255. Increas-

ing the saturation makes it easier to spot colour differences in areas with low relative

frequencies of all classes.

Using primary colours makes interpretation easier, as we use a large colour space,

unless one is colour blind. One way to check the colour accessibility is to upload the

diagrams to a website dedicated to this purpose. We recommend Coblis
2
.

1
Taylor, Gregory, 2014, python-colormath.readthedocs.org/

2
Wickline, Matthew, and the Human-Computer Interaction Resource Network, 2000, www.

color-blindness.com/coblis-color-blindness-simulator/
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