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Abstract

Quantum dots in photonic nanostructures has long been known to be a very pow-
erful and versatile solid-state platform for conducting quantum optics experiments.
The present PhD thesis describes experimental demonstrations of single-photon
generation and subsequent manipulation all realized on a gallium arsenide plat-
form. This platform offers near-unity coupling between embedded single-photon
emitters and a photonic mode, as well as the ability to suppress decoherence mech-
anisms, making it highly suited for quantum information applications.
In this thesis we show how a single-photon router can be realized on a chip with
embedded quantum dots. This allows for on-chip generation and manipulation of
single photons. The router consists of an on-chip interferometer where the phase
difference between the arms of the interferometer is controlled electrically. The
response time of the device is experimentally shown to be in the sub-microsecond
range.
The performance of the device is limited by the reflections from the out-coupling
gratings used, and we thus developed a new type of out-coupler that reduces reflec-
tions as well as increases the coupling efficiency to the fiber. The grating design is
inspired by a well-known design from silicon photonics and is adopted for quantum
dot emission wavelengths. The new gratings offer a fivefold increase in efficiency
compared to the gratings used previously. These results are found from simulations
as well as transmission measurements and have recently been confirmed in single-
photon experiments.
Lastly, an examination of some of the possible applications of quantum dots ef-
ficiently coupled to the propagating mode of a photonic crystal waveguide is pre-
sented. Specifically, we describe how we can realize propagation-direction-dependent
light-matter interactions in engineered nanostructures, and how we can utilize a well
coupled quantum dot to realize giant nonlinearities at the single-photon level.
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Resumé

Man har længe vidst at kvantepunkter i fotoniske nanostrukturer udgør en vigtig og
alsidig platform for udførelsen af kvanteoptiske eksperimenter. Denne PhD afhan-
dling beskriver eksperimentelle demonstrationer af enkelt-foton udsendelse og efter-
følgende manipulation, altsammen realiseret i en gallium arsenid platform. Det er
muligt at koble enkelte fotoner udsendt fra indlejrede kvantepunkter, til en fotonisk
modus med næsten 100% effektivitet. Yderligere muliggør denne platform at un-
dertrykke dekoheræns processer, hvilket gør den specialt attraktiv i forbindelse med
processering af kvante information.
I denne afhandling vil vi vise hvordan en enkelt-foton router kan fremstilles på en
chip med indlejrede kvantepunkter. Dette muliggør udsendelse og manipulation af
enkelte fotoner på én og samme chip. Routeren besår af et interferometer hvor
fase-forskellen mellem de to arme kan kontrolleres vha. spænding. Eksperimenter
viser at routerens respons-tid er mindre end et micro-sekund.
Reflektioner fra de cirkulære udkoblere begrænser routerens ydeevne, og derfor ud-
vikler vi en ny type udkobler der reducerer reflektioner og øger koblingseffektiviteten
til en optisk fiber. Designet er kendt fra silicium fotonik, og er tilpasset den bøl-
gelænge kvantepunkter typisk udsender ved. Den nye type udkobler er fem gange
så effektiv som de cirkulære udkoblere brugt tidligere. Dette er vist i transmissions
målinger og er for nylig blevet bekræftet i eksperimenter med enkelte fotoner.
Slutteligt har vi undersøgt mulige anvendelser af kvantepunkter koblet til en fo-
tonisk krystal bølgeleder. Vi beskriver hvordan vi kan realisere propagations-
retnings-afhængige vekselvirkninger mellem lys og stof i specielt designede krys-
tal bølgeledere og hvordan vi, ved hjælp af et vel-koblet kvantepunkt, kan opnå
ikke-lineariteter på enkelt-foton niveau i en fotonisk krystal bølgeleder.

v





List of Publications

The work performed during this Ph.D.-project has resulted in the following publi-
cations:

Journal Publications

• I. Söllner, S. Mahmoodian, S. Lindskov Hansen, L. Midolo, A. Javadi, G.
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Chapter 1

Introduction

The emergence of quantum mechanics in the first part of the last century, forced us
to drastically revise our understanding of nature. The development was largely initi-
ated by Max Planck’s suggestion of quantized radiation, leading to a wave-particle
duality of light [1]. The formulation of both the photoelectric effect in 1905 [2],
and the atomic model from 1913 [3] relies heavily on the notion of quantization.
De Broglie generalized the wave-particle duality to matter itself [4], Heisenberg [5]
and Schrödinger [6] came up with mathematical formulations of quantum mechan-
ics, while the probabilistic interpretation was first described by Born, who intro-
duced the idea of probability amplitudes. The new theory had profound philosoph-
ical implications for our understanding of physical reality, exemplified in particular
in the acclaimed discussions between Niels Bohr and Albert Einstein [7, 8]. Aside
from the philosophical discussions spurred by this new understanding of nature,
the theory of quantum mechanics has provided the insight necessary to develop the
fields of solid-state physics and quantum optics.
Quantum optics is the study of the nature of light treated as quantized entities
known as photons. Over the last twenty years, four Nobel prizes have been awarded
for work in quantum optics1, signifying the outstanding contributions made within
this field.
Since the burgeoning of the field of solid-state physics in the middle of the 20th
century, it has experienced a tremendous technological revolution. The discovery
of the transistor in the late 1940s [9], led to a miniaturization of integrated circuits,
and subsequently we have experienced an exponential increase in the density of
transistors in integrated circuits as predicted by Moore’s law [10]. The ultimate

1In 2012: Serge Haroche and David J. Wineland. In 2005: Theodor W. Häsch, Roy J. Glauber
and John L. Hall. In 2001: Wolfgang Ketterle, Eric A. Cornell and Carl Wieman, and in 1997:
Steve Chu, Claude Cohen-Tannoudji and William D. Phillips.
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Introduction

limit is to have a single two-level system, e.g., the spin-states of an electron or
energy states of an atom, act as a transistor. In this case we have entered the
realm of quantum computing, where the internal state of the bit is no longer re-
stricted to be either 0 or 1, but can exist in a superposition of the two allowed
states: Ψ = α |0〉+β |1〉. These quantum mechanical bits are known as qubits, and
the generation and manipulation of these, is at the heart of quantum information
science, which holds great promise for increasing the efficiency of certain computa-
tional tasks such as factoring large numbers [11] and searching large data-bases [12].
Using quantum key distribution, communication may become unconditionally se-
cure [13], and quantum metrology utilizes quantum mechanics to reduce statistical
errors in measurements [14, 15]. Finally, quantum systems may be used in simula-
tions as proposed by Richard Feynman in the early 80’s [16].
The great advantage lies in the unique features of quantum mechanics, namely
superposition and entanglement. In order to harvest this advantage we must be
able to generate qubits as well as realize quantum gates and efficient detection
schemes. To this end, several systems have been proposed. The use of photons
as qubits is a promising candidate for encoding and transmitting quantum infor-
mation. The advantage of using photons is their low decoherence and high-speed
transmission making them suited for transmission over long distances. A major
disadvantage of this system is the weak photon-photon interactions, making any
two-qubit gate very demanding [17, 18]. Strong interactions may be realized in
trapped electrons making this system suited for information processing. However,
this system is prone to decoherence and the achievable interactions have limited
spatial range [19]. An interface that offers the best of both worlds is expected to
find a wide range of applications in quantum information processing [20]. Such an
interface can be found at the intersection between solid-state physics and quantum
optics. The field of quantum photonics investigates the quantum interactions be-
tween light and semiconductor materials, and offers a platform for a highly-efficient
light-matter interface.

In chapter 2 we present a theoretical background, introducing the electronic
and optical properties of self-assembled Gallium Arsenide (GaAs) quantum dots. A
brief introduction to single-photon routing is presented including an overview of a
selection of available tuning-strategies. Lastly a summary of out-coupling strategies
is presented.
In chapter 3 we present an experimental demonstration of a reconfigurable beam
splitter, based on the electro-optic effect in GaAs. Simulations of the device reveal
what limits the performance, and points towards the importance of implementing
a different out-coupling strategy that reduces back-reflections into the structure.
Chapter 4 presents the development of a new type of grating-coupler, specifically
designed to reduce back-reflections and increase fiber-coupling at ∼ 930 nm. We
start with numerical simulations to optimize the design, and finally test the design

2
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experimentally.
In chapter 5, we present two experiments that highlight the rich physics associated
with quantum dots coupled to photonic crystal waveguides. The first part of the
chapter presents a chiral light-matter interface, and point to a possible application
that necessitates a reconfigurable beam splitter such as the one presented in chap. 3.
The second part of the chapter gives an introduction to single-photon nonlinearities,
and demonstrates how photon-photon interactions can be mediated by matter in a
1D atom.
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Chapter 2

Theoretical background

The number of proposals for a platform for quantum information processing [21, 22,
23, 24] is a testament to the applicability as well as the intriguing and challenging
physics underlying it.
Here we present one such platform based on III-V semiconductor materials, more
explicitly InAs quantum dots embedded in circuits defined on GaAs. The mature
fabrication technologies combined with the optical and electrical properties of the
material, makes this platform suited for the development of quantum information
processing.

2.1 Quantum dots as single-photon sources

A quantum dot is a 0-dimensional system that confines charge carriers to a point1.
Confinement in all three spatial directions leads to discretized energy levels in the
quantum dot. By analogy with atoms, quantum dots can be excited and will
subsequently decay radiatively emitting a single quantum of light, a photon.

2.1.1 Self-assembled quantum dots

One way of realizing quantum dots is to embed InAs into bulk GaAs. This can
be achieved by means of molecular-beam epitaxy, which is a thin-film deposition
method. Due to the 7% larger lattice constant of InAs compared to GaAs, the ac-
cumulated strain in the InAs is released by spontaneous nucleation after deposition
of some monolayers of InAs on the GaAs substrate. This growth method is known

1We talk about quantum confinement when the diameter of confinement is comparable to the
de Broglie wavelength ∆x ≤ λdeB [25]
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Figure 2.1: Self-assembled quantum dot: (a): Top: Schematic of a self
assembled quantum dot, where InAs (yellow) is encapsulated in GaAs (blue).
Bottom; a transmission electron microscopy (TEM) image of InAs quantum
dots grown on a GaAs substrate (Institute for Microstructural Sciences, NRC,
Cananda) (b): Sketch of the energy band diagram of a quantum dot. The solid
circle in the conduction band (CB) represents an electron, and the open circle in
the valence band (VB) represents a hole. Figure reproduced from Ref. [29]

as the Stranski-Krastanov method [26] and quantum dots grown in this way are
schematically illustrated in fig. 2.1(a). The spontaneously formed islands of InAs,
are capped by GaAs, resulting in confinement in all three directions. The quantum
dots form in random positions, and have varying sizes resulting in different emission
energies. The typical in-plane size of the dots is 15-30 nm, and the height in the
growth direction is usually around 3-5 nm [27, 28]. The few monolayers deposited
before the formation of the InAs quantum dots act as a quantum well, and is called
the wetting layer (WL). The energy of a quantum dot can be represented in a band
diagram, which is a real-space projection of the band edge energies. Figure 2.1(b)
shows the band diagram of a self assembled quantum dot along the growth direction
z. By analogy with the single atom, the quantum dot has discrete energy levels,
and may thus be used as a source of single photons. An electron (solid circle in
fig. 2.1(b)) may be promoted from the valence band to the conduction band, leaving
behind a hole. The two attract each other via the Coulomb interaction and form a
bound state called an exciton, which upon recombination emits a photon [30].

2.1.2 Excitons in quantum dots

The electron and hole are fermions of half-integer total angular momentum, j = l+s,
where l is the orbital angular momentum, and s is the spin. The spin structure of
the electrons and holes confined in the quantum dot are inherited from the bulk
semiconductor. The total angular momentum of an electron in the conduction
band j, and its projection along the growth direction mj is: |j = 1/2,mj = ±1/2〉.
The heavy-holes in the valence band have |j = 3/2,mj = ±3/2〉. This leads to

6



Theoretical background 2.1. Quantum dots as single-photon sources

four possible spin-state combinations where ∆j = ±1 or ∆j = ±2. Only the re-
combinations where ∆j = ±1 are allowed as photons carry angular momentum ±1,
and this exciton doublet is called bright, while the ∆j = ±2 doublet is called dark.
The electron-hole exchange interaction is responsible for lifting the degeneracy be-
tween the bright and dark states, as well as altering the polarization of the emitted
photons from the bright states from circular to linear, X and Y . The fine structure
splitting between the X and Y states are on the order of few tens of µeV, while the
energy splitting between the bright and dark states is on the order of few hundred
µeV [31, 32]. The resulting level-scheme is illustrated in fig. 2.2(a). The bright
excitons are; |Xb〉 = 1/

√
2(|⇑↓〉 − |⇓↑〉) and |Yb〉 = 1/

√
2(|⇑↓〉+ |⇓↑〉), where ⇑ and

⇓ denotes hole spin states, while ↑ and ↓ denotes electron spin states. The dark
excitons are: |Xd〉 = 1/

√
2(|⇑↑〉 − |⇓↓〉) and |Yd〉 = 1/

√
2(|⇑↑〉+ |⇓↓〉). The bright

excitons may decay to the ground state, |0〉, radiatively at a rate γrad, accompanied
by the emission of a single photon. This is illustrated by the red dashed line in
fig. 2.2(a). All the transitions may decay non-radiatively at rates γnrad, and spin
flip processes couples the bright and dark excitons at a rate γsf. We neglect double
or higher order spin flip-processes as they are strongly inhibited in quantum dots
as compared to bulk or quantum wells [33].
When the exciton is in the bright state (fig. 2.2(d)), it may decay directly. If it is in
the dark state (fig. 2.2(e)), it may only decay by first undergoing a spin-flip. This
leads to a bi-exponential decay of the exciton population

ρ(t) = Af · exp(−γft) +As · exp(−γst), (2.1)

where the fast rate is the sum of the radiative and non-radiative decay rates, γf =
γrad+γnrad, the slow rate is the sum of the non-radiative and the spin-flip rate γs =
γnrad + γsf, and Af(s) are the corresponding amplitudes. Fitting experimental decay
curves to bi-exponential model of eq. (2.1) allows us to extract information about
the radiative, non-radiative and spin-flip rates. These rates can then be used to gain
information about the local light-matter interaction. Figure 2.2(b) illustrates Pauli
filling of the lowest energy level, with two electrons and two holes forming a bi-
exciton. The bi-exciton decays to one of the neutral exciton states, before decaying
to the ground state. Another example of multiexcitonic states is that of trions.
Trions consist of two antisymmetric identical carriers, and one carrier of the opposite
charge, i.e., two holes and an electron (X+) or two electrons and a hole (X−). The
decay of a trion to a single electron or hole is accompanied by a circularly polarized
photon, where the orientation depends on the spin of the additional carrier, which
can be prepared in an eigenstate, making trions particularly interesting for spin-
physics [34]. Figure 2.2(c) shows the negative trion where the additional electron
is in the |↑〉 or |↓〉 state. The grey lines indicate the "forbidden" transitions, arising
as a result of the in-plane magnetic field from the nuclear spins inside the quantum
dot [35]. A magnetic field in the growth direction of the quantum dots leads to an
energy-splitting between the two states.
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Figure 2.2: Decay dynamics of quantum dots: (a): Level scheme of a
quantum dot where the bright states, |Xb〉 and |Yb〉, can decay radiatively at a
rate γrad. The bright states are coupled to the dark states, |Xd〉 and |Yd〉, via spin-
flip processes that occur at a rate of γsf. The degeneracy between the X and Y
components of the bright and dark states is lifted due to the exchange interaction.
The bright and dark states can both decay non-radiatively at a rate γnrad. (b):
Four-level scheme depicting the bi-exciton level, the two bright exciton levels and
the ground state. The bi-exciton will decay through a cascade process. (c):
Negative trions in the presence of an out-of-plane magnetic field. The emitted
photons are circularly polarized with the orientation depending on the spin of the
additional carrier. (d)-(h): Possible excitonic complexes in a quantum dot: The
bright exciton |Xb〉, the dark exciton |Xd〉, the bi-exciton |XX〉, the positively
charged trion |X+〉, and the negatively charged trion |X−〉.
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2.2. Single-photon routing

2.1.3 Quantum dots in nanophotonic waveguides

Quantum dots in nanophotonic waveguides serve as a powerful platform for dra-
matically enhancing light-matter interactions. It was recently demonstrated that
a quantum dot in a photonic crystal waveguide emits more than 98% of the emit-
ted photons into the propagating mode of the waveguide as quantified by the β-
factor [36]. Furthermore, quantum dots in bulk have been experimentally shown to
emit transform-limited single photons [37]. Quantum dots sitting in a nanobeam
waveguide have also been demonstrated to emit single photons with a very high
degree of indistinguishability [38, 39], which is a key ingredient in quantum infor-
mation processing [40]. The main source of decoherence, is coupling to phonons [41]
and jittering introduced in the relaxation process in non-resonant excitation [42].
Low loss waveguiding have been reported in rib- [43] and ridge-waveguides [44].
When integrated with quantum dots, the rib- and ridge-type waveguides are not
suited as the emission leaks into the substrate, necessitating fully suspended waveg-
uides. Suspended nanobeam waveguides offer good mode confinement and β-factors
up to 95% are achievable [45].
The fabrication of suspended waveguides involves patterning of the waveguides on
a 550 nm-thick ZEP520 electron beam resist layer spin-coated on the GaAs mem-
brane surface at 2000 rotations per minute (rpm), and baked for 5 minutes on a
hot plate. The pattern is defined using a 100 kV electron-beam lithography tool
(Elionix ELS-7000G) and developed for 1 minute at 22°C in n-amylacetate. Subse-
quently the structure is etched in a reactive ion etching (RIE) tool (Plasmalab 100)
from Oxford Instruments that has an inductively coupled plasma source. When the
pattern is defined on the membrane, the sample is bathed in hydrofluoric acid for
45 seconds to remove the sacrificial layer consisting of an AlxGa1−xAs(x = 0.75)
layer below the GaAs membrane. This leaves suspended structures that can be
used to guide light from embedded quantum dots. More information on the fabri-
cation of GaAs nanomembranes can be found in Ref. [46]. The planar technology
of suspended nanobeam waveguides allows for integration of single-photon sources
with in-plane photonic circuits.

2.2 Single-photon routing

It is a tremendous achievement that the decoherence processes can be overcome
to the extent that near-unity indistinguishability between photons emitted from
the same quantum dot is obtainable [38, 39]. However, the photons are emitted
one after the other, and the next step is convert this string of photons into a de-
multiplexed state with many identical photons in individual modes as illustrated
in fig. 2.3.

9



2.2. Single-photon routing

Figure 2.3: A single-photon demultiplexing scheme using on-chip routers:
A quantum dot in a photonic crystal waveguide emits photons into the propa-
gating mode of the waveguide with an efficiency β of 98%. These photons are
emitted at a frequency determined by the pumping laser. Electrically controlled
switches route the photons to paths with different delay lines, ensuring a state
with N (in this case 4) indistinguishable photons emerging from the fibers. This
figure is a courtesy of Dr. L. Midolo.

2.2.1 Efficiency requirement

The realization of a de-multiplexed (N×1)-photon state, withN spatially separated
identical photons, is a key ingredient in quantum information processing, quantum
simulation or boson sampling [47, 48]. Integration of single-photon sources, waveg-
uides and passive beam splitters has been demonstrated [49, 50]. However, in
order to boost the efficiency of the circuits, the networks must be dynamically re-
configurable and therefore reconfigurable networks are sought after, and are being
developed in various ways on different platforms [51, 52, 53, 54, 55]. Many quan-
tum information algorithms require an (N × 1)-photon state, and we thus need
a dynamically tunable optical switch that can be implemented on the same plat-
form as the photon generation. With such a device one could route subsequently
emitted photons into paths with different delays resulting in an (N × 1)-photon
state. This is illustrated in fig. 2.3, where a quantum dot emits single indistin-
guishable photons at a repetition rate set be the driving laser. These photons are
then routed into different spatial modes by electrically controlled switches resulting
in an (N × 1)-photon state. The performance of such a device relies heavily on the
efficiency with which photons are routed from the source to one of the N outputs.
An (N × 1)-photon state requires (N − 1) switches, and each photon will have to
be switched log2N times, where N = 2n, n being an integer. Assuming that all
the paths have the same transmission efficiency from the source to the fiber: η,
then the probability of successfully generating an (N × 1)-photon state scales as
ηN , where η = κlog2N . Here κ is the efficiency of the individual switch, defined
as the probability with which it routes an incoming photon to the desired output
port. The probability of successfully generating an (N × 1)-photon state can be
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calculated as
P(N×1)(κ) = η(κ)N = (κlog2N )N . (2.2)

Consequently, the rate at which an (N×1)-photon state is generated is given by [56]

R(N×1)(κ) = Rp × ηN

N
, (2.3)

where Rp is the repetition rate of the laser. As an example; if the switch-efficiency
of each switch is 75%, then we can generate an (8×1)-photon state with probability
of 0.1%. If we use a laser with a repetition-rate of 80MHz, then we generate the
(8× 1)-photon state at a rate of ∼ 10 kHz.

P
N
x
1

Switch Efficiency

Switch Efficiency

Figure 2.4: De-multiplexing efficiency as a function of switch efficiency:
The inset shows a zoom-in of the high-κ region. The horizontal dotted line
indicates 50% success probability. The vertical dotted line indicates the required
switch efficiency to achieve a 50% success probability to generate a 64-photon
state.

P(N×1)(κ) for five different values of N is shown in fig. 2.4. This graph ignores any
other loss channels associated with the circuit, and only considers the effect of the
efficiency of the switches.
The inset illustrates that switch-efficiencies above 99.8% are required to generate
a 64-photon state with more than 50% probability. For switch efficiencies below
80% the probability to generate even an N = 4 photon state is less than 20%.
Aside from the efficiency requirement, the switching platform will also have to be
scalable. The realization of a highly efficient and scalable switching device is thus
a daunting task, and many switching methods have been proposed.

2.2.2 Switching methods

Some switching methods involve active phase-tuning, whereas others involve me-
chanical tuning. Two important figures of merit related to switches is the product
of the switching voltage, i.e., the voltage required to realize a π-phase shift, and the
length of the device: VπL, and the response time of the switch. In the following,
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a brief overview of the available methods is presented along with an evaluation of
their applicability in the experiments described in this thesis.

Thermo-optic tuning
When the temperature of a material is changed, the crystal structure tends to shrink
or expand, which imparts a change of the refractive index, n, of the material. This
phenomenon is known as the thermo-optic effect. In semiconductors, dn/dT values
are usually on the order of ∼ 10−4K−1 [57].
The thermo-optic effect can be used to dynamically change the refractive index in
a Mach-Zehnder-Interferometer (MZI), and can thus be used as a means to route
light between two outputs [58, 59]. The effect is fast, and switching speeds in the
µs range have been demonstrated in silicon [60, 61]. The thermal control may be
realized by tightly focusing a high-power laser to the sample [62, 63], or by having
micro-heaters built into the circuit [60, 61, 64].
Thermo-optic tuning offer large tuning ranges at low power [61]. However, the
thermal expansion coefficient is negligible at cryogenic temperatures [65], making
this approach unsuited for experiments involving quantum dots, as the elevated
temperatures will lead to excessive noise in the quantum dot spectra.

Free-carrier injection
A temporary change of the refractive index may also be realized by injecting free
carriers in a semiconductor [66]. The introduction of free carriers causes a bandgap
shrinkage, bandfilling and free-carrier absorption. Below the bandgap of the ma-
terial, the free-carrier absorption is dominant and leads to a negative shift of the
refractive index. The carriers may be injected through doped layers or optically
with light pulses. For moderate concentrations of the injected carriers, the resulting
change in refractive index is proportional to the concentration [67]. This approach is
potentially very fast, only limited by the carrier recombination time as was demon-
strated in a GaAs/AlGaAs microring resonator [68] and a GaAs cavity [69].
Free carrier injection offers fast operation and compact devices, however this ap-
proach is not compatible with integrated quantum dots as the generated carriers
may recombine in the quantum dots [70].

Mechanical tuning
A promising alternative for phase tuning is the physical displacement of of micro-
or nano-mechanical structures, where the displacement is realized via electrical
actuation such as capacitive forces. These systems, known as micro/nano-electro-
mehanical systems (MEMS/NEMS), have gained a lot of attention recently, as they
offer a compact platform for controlling light propagation, and thus offer a way of
realizing on-chip photonic switches.
Recently, a 64×64 silicon photonic switch was realized employing MEMS-actuated
vertical couplers [52]. The coupling ratio of a directional-coupler may be tuned by
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electro-mechanically changing the distance between the two suspended waveguides,
which provides a way of routing light between two outputs. The coupling of opti-
cal, electrical and mechanical degrees of freedom in nanoscale devices is a rapidly
developing field, and more information about these Nano-Opto-Electro-Mechanical
systems (NOEMS) may be found in Ref. [71].
Mechanical tuning offers very compact devices with low actuation voltages, i.e., low
VπL. It can be used at cryogenic temperatures and does not adversely affect em-
bedded quantum dots. The drawback of these mechanical systems is the maximally
attainable frequency which is expected to be in the MHz range [72].

Electro-optic tuning
Another option is to change the refractive index by means of an applied electric
field. In anisotropic materials, the change in the refractive index is proportional to
the applied field. This effect is known as the linear electro-optic or Pockels effect.
The electro-optic effect is potentially very fast, and offers low switching voltages
and compact devices. Values of VπL as low as 0.21Vcm have been demonstrated
in GaAs in the past [73].
The electro-optic effect is potentially fast, the switches may be very compact and
the switching voltage required is low. Finally the effect is present at cryogenic
temperatures in GaAs [74] and is thus suited for experiments involving switching
of single-photons from integrated quantum dots. However, the Pockels effect is not
the only effect of applying an electric field across a GaAs membrane with integrated
quantum dots. The presence of an electric field causes a change in the optical ab-
sorption close to the band edge of the material due to a distortion of the electron
and hole wavefunctions. This effect was first observed in 1958 by W. Franz and L.
Keldysh, and is known as the Franz-Keldysh effect [75, 76, 77].
Applying an external electric field across a quantum dot in the growth direction
will cause the emission energy to tune proportional to the applied field strength as
the bands are tilted and the overlap-integral between the electron- and hole wave-
functions is reduced. This effect is known as the quantum confined Stark effect [78].
Lastly, an applied electric field has the advantageous effect of minimizing spectral
wandering of the quantum dot by stabilizing the charge environment of the emit-
ter [79, 80, 81].

Electrically controlled routing of photons from an InAs/GaAs self-assembled
quantum dot has been demonstrated [55]. The architecture presented in Ref. [55]
offers low-power and high-speed operation, however it is not suited for multiplex-
ing schemes as the functionality relies on the tuning of the quantum dot, rather
than a change in the refractive index. In chapter 3 we present an experimental
demonstration of on-chip electro-optic routing, where the emission-energy of the
quantum dots is independent of the electric field used to realize the phase-tuning.
We achieve a VπL = 0.1Vcm, and sub-microsecond response time.
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2.3 Chip-to-fiber coupling

The challenge of coupling single photons off chip can be dealt with in numerous
ways. One strategy is to employ a system where the photons are emitted directly
upwards such as in micropillar structures illustrated in fig. 2.5(a) [82, 83]. The
drawback of this approach is that it does not immediately allow for on-chip manip-
ulation of the emitted photons.
The feasibility of on-chip manipulation combined with emitter-waveguide coupling
exceeding 98% [36], a high degree of indistinguishability (∼ 86%) and single pho-
ton purity (> 99.4%) of photons emitted from quantum dots sitting in suspended
nanobeam waveguides [38], makes the planar technology very attractive for photonic
quantum information processing. A main challenge is the efficient out-coupling of
photons from the planar structure and into an optical fiber. This is because of the
mode-mismatch between the mode of the fiber and the sub-wavelength mode of
the nanobeam waveguides. One strategy is to use end-fire coupling from a tapered
waveguide to a lensed fiber as illustrated in fig. 2.5(b) [86, 84]. The mode matching
condition is met by adiabatically tapering the waveguide along the propagation
direction. This method has a theoretical efficiency of ∼ 80%, but has the draw-
back, that it restricts the structures to the edge of the phonic chips and it requires
very long tapers to fulfil the adiabatic condition . Another option, illustrated in
fig. 2.5(c), is to use evanescent coupling of the light field from a tapered nanobeam
waveguide to a dimpled fiber. This approach has been demonstrated to offer a
chip-to-fiber coupling efficiency exceeding 80% [85]. This method of out-coupling
is not restricted to the edge of the sample, but the setup is complex, and requires
specially fabricated dimpled fibers.
Yet another option is to use surface grating couplers that scatters the light trav-
elling in the plane upwards due to diffraction. An example of a surface grating
coupler is the second order Bragg grating [63]. These gratings have efficiencies of
∼ 7% [87] due to poor mode-matching to the optical fiber mode. Furthermore this
type of gratings reflect light back into the structure leading to unwanted Fabry-
Perot resonances, that may have detrimental effects on the performance of the on-
chip devices. Chapter 4 presents a description of the design and characterization
of a shallow-etched grating coupler that outperforms the second order bragg grat-
ings in terms of increased chip-to-fiber coupling, and reduced backscattering into
the waveguide. An SEM image is shown in fig. 2.5(d). The design is well known
from silicon photonics where simulations predict coupling efficiencies between 80
and 95% [88]. The design is adapted to the suspended membrane architecture, and
for a working wavelength of 930 nm, which is the emission wavelength of the InAs
quantum dots used in this work.
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w = 65nm w = 165nm w = 350nm

(a) (b) (c) (d)

Lensed fiber

Figure 2.5: Out-coupling strategies: (a): Single quantum dot in a vertical
micropillar cavity. The extraction efficience is experimentally determined to be
∼ 65%. The figure is reproduced from Ref. [82]. (b): End-fire coupling from
a 7 µm long tapered waveguide to a lensed fiber. The figure is reproduced from
Ref. [84]. (c): Evanescent coupling from a tapered out-coupler to a dimpled
optical fiber. The electric field is coupled from the fiber-mode to the waveguide-
mode as the width of the waveguide is increased. The figure is reproduced from
Ref. [85]. (d): SEM of a shallow-etched grating fabricated on a suspended
GaAs membrane. The trenches around the grating ensures a full undercut of the
membrane.
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Chapter 3

On-chip electro-optic routing

3.1 Introduction

This chapter describes the experimental realization of electro-optic routing in a
photonic circuit with integrated quantum dots. The routing is actuated electri-
cally without tuning the emitters, making the approach suitable for multiplexing
schemes. Part of the results presented here have been submitted for publication in
a peer-reviewed journal [89].

3.2 Device principles

3.2.1 The electro-optic effect in gallium arsenide

The derivation presented here follows that of Refs. [25, 90].
Applying an electric field to an anisotropic material will result in a dependence
of the polarization on the direction of the field relative to the crystal axes. This
can be included in the description of the relation between the polarization and the
field, by replacing the dielectric susceptibility, χ, in P = ε0χE by the a dielectric
susceptibility tensor, [χ], and we can write the relation between the polarization
and the field including the direction dependence as

Px

Py

Pz

 = ε0


χxx χxy χxz

χyx χyy χyz

χzx χzy χzz




Ex

Ey

Ez

 . (3.1)
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From [χ] we may define a tensor for the dielectric constant: [ε] = ε0{1 + [χ]},
and the relative dielectric constant: [εr] = {1 + [χ]}. From the principle of energy
conservation it can be shown that the dielectric tensor must be symmetric, i.e.,
εij = εji.
A consequence of the direction dependent polarization is that the phase velocity of
waves propagating in an anisotropic material, will also depend on the orientation of
the electric field vector relative to the crystal axes. A geometrical interpretation of
propagation in an anisotropic material is given by the index ellipsoid. We start by
considering the energy density associated to an electromagnetic wave: U = 1

2E ·D,
where D = ε0[n2]E. From this we can write the energy density as

2U = D2
xx

ε0n2
xx

+
D2
yy

ε0n2
yy

+ D2
zz

ε0n2
zz

+ 2DxDy

ε0n2
xy

+ 2DyDz

ε0n2
yz

+ 2DzDx

ε0n2
zx

, (3.2)

where we have used the symmetry of the dielectric tensor to combine terms. This
can be rewritten by introducing the substitution, D2

xx
2ε0n2

xxU
= x2 and so on, yielding

x2

εrxx
+ y2

εryy
+ z2

εrzz
+ 2xy
εrxy

+ 2yz
εryz

+ 2zx
εrzx

= 1 (3.3)

This equation describes an ellipsoid whose orientation in space is given by the off
diagonal elements. In the case where the off-diagonal terms are zero, eq. (3.3)
reduces to

x2

εrxx
+ y2

εryy
+ z2

εrzz
= 1, (3.4)

and the ellipsoid is now oriented along the coordinate axes, and the semi-major-axes
are given by the refractive index: √εrii = ni. In a uniaxial crystal the refractive
index along two axes are equal, and the index ellipsoid becomes an ellipsoid of
revolution, whose symmetry axis is called the optic axis.
The intersection between the ellipsoid and a plane, through the origin, normal to
the propagation vector k, is an ellipse from which the effective indices can be read
off. The full ellipsoid is depicted in fig. 3.1, and the ellipse is shown in fig. 3.2(a).
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k

directions of D

Direction of 
propagation

k-

Figure 3.1: Index Ellipsoid: Illustration of an index ellipsoid or indica-
trix. In this case the off diagonal terms in eq. (3.3) are zero, and the ori-
entation of the ellipse is along the coordinate axis. Figure from: http :
//nicadd.niu.edu/piot/phys630/Lesson14.pdf

We define an electro-optic coefficient tensor rij whose components determine the
change in the refractive index when a field is applied

∆
( 1
n2

)
i

≈
3∑
j=1

rijEj . (3.5)

Due to symmetry, only the r41 term survives in the case of GaAs. We can write
∆
(

1
n2

)
= −2∆n

n3 ≈ r41E, which can be rearranged

|∆n|≈ 1
2r41n

3
0E, (3.6)

where n0 is the index in the absence of a field E.
When a field is applied in the [001]-direction, the index along [110] and [11̄0] is
changed as follows

n[11̄0] = n0 −
1
2n

3
0r41E = n0 −∆n

n[110] = n0 + 1
2n

3
0r41E = n0 + ∆n, (3.7)

The field thus induces birefringence. By applying a field in the [001]-direction, the
refractive index along the [11̄0]-axis gets smaller by ∆n, whereas the refractive in-
dex along [110] increases by ∆n as indicated by the dashed line in fig 3.2(a).
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Figure 3.2: Ellipse and layer structure: (a): Index ellipse illustrating the
effect of an electric field applied in the growth ([001])-direction. the solid line
corresponds to zero applied field, while the dashed line shows the effect of an
applied field; the refractive index is increased in the [110]-direction, while it is
decreased in the [11̄0]-direction. (b): Layer structure of the wafer on which the
device is fabricated.

The layer structure of the wafer is illustrated in fig. 3.2(b). The wafer was grown
at Ruhr University Bochum in Germany by Rüdiger Schott. The wafer consists of
a GaAs layer with embedded quantum dots surrounded by AlGaAs layers with an
aluminum content of 30%. The AlGaAs layers form a barrier that prevents charge
tunnelling from the doped layers when applying a forward bias [91]. The diode
is formed by capping the intrinsic layer by a p- and an n-doped layer, forming a
p-i-n junction with a depletion layer width of approximately 70 nm. The built-in
voltage Vbi ≈ −1.4V gives rise to an electric field of ≈ 20MVm−1. This field can
be reduced or increased by applying a forward or reverse bias, and the magnitude
of the total electric field across the intrinsic layer is given by

E = Vbi − V
d

, (3.8)

where V is the applied voltage and d is the thickness of the intrinsic layer.

3.2.2 Device design

In order to utilize the electro-optic effect to route photons between two possible
output ports, an on chip Mach-Zehnder interferometer (MZI) is designed.
A MZI routes photons to one of two outputs depending on the relative phase (φ)
between the two arms.

By designing a MZI where the two arms of the interferometer are defined
along the [110] and [11̄0] directions of GaAs as illustrated in fig. 3.3, and allowing
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Figure 3.3: Schematic outline of the device: The interferometer consist of
an initial power splitter followed by two arms aligned along the [110] and [11̄0]
directions of the crystal respectively. The two arms are then combined on an
MMI with two output ports. A field applied in the growth direction leads to a
phase difference between the light propagating in the two arms, which results in
an anti-correlated output at the two output ports.

for the application of an electric field in the [001]-direction, we can change the
phase of the light propagating along the two arms and thus the interference at the
two outputs. This can be understood by considering the photon propagation along
the device. The effect of the initial power splitter is that of a 50:50 beam splitter.
After propagation along the interferometer-arms, the photon will acquire a phase
that depends on the path traversed. This can be written as

1√
2

(
eiφ |1〉 |0〉+ e−iφ |0〉 |1〉

)
(3.9)

where the phase φ depends on the change in the refractive index, the free-space
wave number and the length of the path traversed; φ = |∆n|kL. The state (3.9) is
incident on the MMI that is similar to a 50:50 beam splitter. Hence

|1〉 |0〉 MMI−−→ 1√
2

(
|1〉 |0〉+ i |0〉 |1〉

)
|0〉 |1〉 MMI−−→ 1√

2

(
|0〉 |1〉+ i |1〉 |0〉

)
(3.10)

Combining eqs. 3.9 and 3.10 yields a final state that can be written as

1
2

[
eiφ(|1〉 |0〉+ i |0〉 |1〉) + e−iφ(|0〉 |1〉+ i |1〉 |0〉)

]
. (3.11)

From this we see that the probability of the photon leaving from port 1 and 2
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respectively, is given by

P1 = 1
2(1 + sin(2φ))

P2 = 1
2(1− sin(2φ)), (3.12)

Hence the probability of the photon exiting the device from port 1 and 2 oscillate
out of phase, and we can thus route the light to either of the outputs by changing the
phase difference between the light propagating along the arms of the interferometer.
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Figure 3.4: Behavior of the device: (a): The black curve shows the expected
voltage needed to achieve a full π-switch as a function of the length of the arms
of the interferometer. The blue curve shows the calculated propagation loss as a
function of the length of the device. (b): Ideal behavior of the device. Light can
be routed between the two outputs by changing the voltage across the arms of
the device.

The phase difference between light propagating along the [110]- and [11̄0]-
directions is given by 2φ = 2|∆n|kL. It follows that the voltage required to achieve
a full π-phase difference between the two arms is given by

Vπ = dπ

kLn3r41
. (3.13)

The longer the arms of the interferometer, the smaller the Vπ, however, longer arms
lead to an increase in propagation loss, which is mainly caused by the free-carrier
absorption in the doped layers. This is explained in greater detail in section 3.3.4.
This absorption is calculated from Finite Element (FE) simulations, and the opti-
mum length of the interferometer arms is found considering the trade-off between
loss and Vπ. Figure 3.4(a) shows how Vπ reduces with an increased length of the
interferometer arms (black line), while the losses increase with the length (blue
line). We find that for a length of 400 µm, we can switch the light between the two
outputs by applying approximately 2.5 V, while keeping propagation loss under 3
dB. The expected behavior for a device of this size is shown in fig. 3.4(b), where the
red and blue curves correspond to the output from the two ports shown in fig. 3.3.
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Figure 3.5: Numerical analysis of the components of the circuit: (a):
FE simulation of the y-component of the electric field distribution in the power-
splitter at a wavelength of 904 nm. Equal power and phase at the two outputs
is ensured by the mirror symmetry. (b): Simulated total transmission efficiency
(black squares) and reflectivity (red circles) of the power-splitter. The dashed
vertical line indicates the wavelength of the quantum dot used in this experiment
(904 nm). (c): Simulated electric field distribution in the MMI combiner, when
launching the same amount of power in the two ports but π/2 out of phase. (d):
Simulated total transmission (black squares) and reflection (red circles) in the
MMI. The transmission level is the sum of both outputs T1 and T2 indicated in
(c). The simulations are done by Dr. L. Midolo.

3.2.3 Sample simulations and fabrication

The individual components of the device, i.e., the power splitter and the MMI, are
simulated in order to assess their performance as a function of wavelength. The
power-splitter [92] consists of a single-mode waveguide, that is tapered out to a
cross-sectional width of 500 nm and then split into two 240 nm wide single-mode
waveguides. The MMI is a 2× 2 3-dB coupler based on two-fold imaging [93]. Fig-
ure 3.5(a) shows the FE simulation of the y-component of the electric field along
the power-splitter. Figure 3.5(b) shows that for a broad range of wavelengths, the
transmission efficiency (black squares) is close to unity, while the reflectivity (red
circles) of the device is low. The MMI is simulated as well, and fig. 3.5(c) shows the
y-component of the electric field, when the two input ports are excited with equal
power, but π/2 out of phase. The simulated total transmission (black squares) and
reflection (red circles) as a function of wavelength is shown in fig. 3.5(d). These
simulations suggest that the device will show good performance at a wavelength
of 904 nm. The reflections introduced by the power-splitter and MMI respectively
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are low enough that we neglect them in the further simulation (see sec. 3.3.4). The
performance of the power-splitter depends weakly on the wavelength in the con-
sidered range, whereas the MMI shows significant oscillations in transmission and
reflection with wavelength with a transmission maximum and reflection minimum
around 904 nm as desired for the experiment considered here. It is thus concluded
that the imperfections of these constituent components will not have a detrimental
effect on the performance of the device.

The device is fabricated on a wafer, the structure of which is illustrated in fig. 3.2(b).

20μm  

[110]

-[110]

(a) (b)

(c)

Contact protection

Tethers

Figure 3.6: Scanning electron microscope (SEM) image of the device: (a):
SEM image of the full device. The wavy pattern is contact protection on the
p-contact. (b): Zoom-in on the multi-mode interferometer (MMI). (c): Zoom-
in of the power-splitter. The trenches ensure electrical isolation between the
switching-region containing the interferometer, and the source-region containing
the quantum dots. The SEM images are taken by Dr. L. Midolo.

Figure 3.6(a) shows a SEM image of the full device. The light propagates
from the input port in the bottom left corner of the SEM, to the initial power split-
ter shown in fig. 3.6(c). It then propagates along the arms of the interferometer,
experiencing a phase change depending on the applied bias and the propagation
direction. The light from the two arms is then recombined on a 3 dB MMI com-
biner shown in fig. 3.6(b). The light is coupled out from the chip using circular
gratings [63].
The suspended waveguides are supported by 100-nm-wide tethers. Aside from sup-
porting the waveguides, the tethers serve the purpose of electrically connecting the
bulk and the waveguide, meaning that the electric field applied between the p- and
n- contacts is transported to the waveguide region. The presence of an electric field
in the waveguide is crucial for the operation of this device. A trench is defined
between the input-waveguide and the power-splitter as can be seen in fig. 3.6(c).
The purpose of the trench is to allow us to change the bias across the arms, and
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thus route the light between the two outputs, without tuning the quantum dots in
the source region of the device. If the dots tune with the applied field, this would
result in the dots exiting the device from one output port having a different energy
than the dots exiting the device from the other output port, and the device would
not be applicable in any algorithm requiring indistinguishable photons to be routed
between two outputs.

3.3 Device characterization

3.3.1 Experimental setup

The sample is mounted on a chip-carrier, and wire-bonded to a printed circuit
board (PCB). The PCB is placed on a cold-finger in a Microstat HiRes II (Oxford
Instruments) flow cryostat with coaxial feedthroughs (see fig. 3.7). The cold-finger
is cooled with liquid helium, and the temperature is measured by a sensor with ±
12mK accuracy and controlled by a 50 W thermofoil heater anchored on the cold-
finger [29]. The temperature is kept at 10K throughout the measurements in order
to avoid thermal depopulation of the quantum dots. The sample can be moved in
the xy-plane, by controlling the translation stages.
The excitation laser used for the quantum dot measurements in this experiment

is a Ti:sapphire laser (Coherent Mira 900) operated in continuous wave mode.
For transmission measurements, we use a continuously tunable laser (CTL) from
Toptica. The laser is coupled to a polarization maintaining (PM) fiber and sent
to the cryostat table. Here the excitation laser is sent through a half-waveplate
(λ/2) followed by a polarizing beam splitter (PBS) which allows controlling the
power sent to the sample. Subsequently, the beam is sent through a 50:50 beam
splitter to monitor the power sent to the sample. Another half-waveplate ensures
control over the polarization of the laser light going to the sample. The beam then
goes through an optical microscope setup (Olympus BXFM) where a 50:50 beam
splitter guides the light to an objective (Nikon CFI Plan Flour ELWD 40xC) with
a numerical aperture of 0.6.
The sample is imaged by flipping in and out mirrors so that white light rather
than laser light is sent to the sample, and the reflection is sent to the CCD camera
rather than to the detection path. An example of the image of a structure is shown
in fig. 3.7 on the PC-screen. The high resolution combined with the fine step-size
of the translational stages allows for very precise alignment of ≈ ±100 nm. To go
from imaging mode to measurement mode, the two flip mirrors are switched back,
and the sample is now illuminated by the laser, and the luminescence is sent to
a spectrometer through a PM fiber. The fiber serves as a pinhole for spatially
selecting the area from which to collect the photo-luminescence. The luminescence
from the sample is sent to a spectrometer (McPHERSON 207), that decomposes
the light into its wavelength components with a resolution of 50 pm, and detects it
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Figure 3.7: Experimental setup: Sketch of the optical setup used to carry
out electrical and optical characterization of the sample. The sample can be
excited with a Ti:Sapph laser or a continuously tunable laser (CTL). The laser is
coupled to a fiber and sent to the cryo-table where a half-wave plate and a PBS
ensures power control, and a subsequent half-wave plate provides control over
the polarization. The sample may be illuminated with white light or laser light,
and the photoluminescence from the sample may be sent to the CCD camera for
direct imaging of the sample, or to the spectrometer for further analysis.

on a CCD camera (Princeton instruments TEA/CCD )
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3.3.2 Electrical characterization

As mentioned in sec. 3.2.3, the device consists of two regions separated by an isola-
tion trench allowing to set the voltage in the two regions independently. We refer
to these regions as the source region and the switching region in the following.
Figure 3.8(a) shows a model of the electrical circuit. The two diodes can be con-
trolled individually, but are connected by the waveguide running across the trench.
This connection is modelled as a resistance in the n- and p-layer respectively. When
there is a voltage drop between the two diodes, electrical power may be dissipated
in the waveguide causing it to heat up, which may in extreme cases lead to sublima-
tion of the material. This happened at the early stage of the experiment, as can be
seen in fig. 3.8(b), after which special care was taken by connecting the n-contacts
to the same ground. The sheet resistance of the p-layer is ≈ 20 times larger than
the n-layer due to the lower carrier mobility, therefore the current will mainly flow
in the n-layer. Due to this potential heat dissipation, we are limited to work in a
restricted voltage range in the switching region, as the voltage in the source region
must be kept constant. However, the Vπ of the device is as small as 2.5 V, allowing
us to fully switch emission without damaging the sample.
Figure 3.8(c) and (d) indicate that there is some cross-talk between the two re-
gions, mediated by the waveguide connecting the two. This is seen as a shift in
the inflection point given by the voltage applied in the other region. In order to
assess whether this cross talk between the two regions has a significant effect on the
emission from the quantum dots in the source region, spectra of dots located in the
source region are recorded while changing the voltage across the switching region.
Figure 3.9 shows the intensity of quantum dots in the source region as a function
of the voltage across the switching region. It shows that the quantum dots do not
tune significantly when the voltage is changed across the other diode.
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Figure 3.8: Circuit and IV-curves: (a): Model of the electrical circuit of the
device. The two sources are grounded together ensuring a common n contact.
When the two regions/diodes are biased differently, there will be a current run-
ning in the p-layer. The waveguide connecting the two regions is indicated as a
resistance in both the n and the p-layer. (b): SEM image of a broken sample.
(c): IV curve of the switching-region for different constant voltages across the
source region as indicated in the inset. The graphs show the absolute value plot-
ted on log scale (d): IV curve of the source-region for different constant voltages
across the switching region as indicated in the inset.
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Figure 3.9: Tuning-test: Photoluminescence intensity of the quantum dots in
the source region as a function of the voltage applied across the switching region.
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3.3.3 Transmission measurements

Initial optical characterization is done at 10K by focussing the CTL laser (see
fig. 3.7) at the input port (see fig. 3.3) of the device, and analysing the intensity
at the two outputs. The intensity is evaluated from the image on the CCD as a
function of applied voltage in the switching region and wavelength of the CTL. The
voltage is scanned between −1.5V and 1.5V in steps of 0.1V, and the wavelength
is swept from 911 nm to 920 nm in steps of 0.1 nm. The analysis is done by defining
two regions of interest on the image, and integrating the intensity in that region
by summing the pixels. Figure 3.10 shows the intensity of output 2 (a) and output
1 (b). In order to correct for any power fluctuations of the laser, the data from
each wavelength has been normalised using a gray-scale normalisation. The plots
in fig. 3.10 clearly show an anti-correlated behavior of the two outputs as a func-
tion of the voltage in a broad wavelength range. The maximum emission from port
1 (fig. 3.10(b)) occurs at a positive voltage, while the emission from this port is
minimized at −1V. The maximum emission from port 2 (fig. 3.10(a)) occurs at a
negative voltage and is minimized at 1V.
The maximum emission from port 2 shifts slightly to lower voltages for longer wave-
lengths. The fact that the maximum emission from port 2 is not exactly matched
with the minimum emission from port 1 can be explained by electroabsorption and
is investigated further in sec. 3.3.4.
We repeat the measurements using a single quantum dot as a light source. The
measurement is performed at 10 K, and the dots are excited above the GaAs band
using the Ti:Sapph laser in cw at 808 nm. A constant bias of 1.15V is applied to
the source region throughout the measurement. An ensemble of quantum dots is
probed by exciting and collecting at the input port (see fig. 3.11(a)). To probe
only the dots that couple to the propagating mode of the waveguide, we keep the
excitation at the input port but move the collection to the output port. In the
device in question, only one dot at 904 nm couples efficiently to the propagating
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Figure 3.10: Transmission measurements: The intensity evaluated from im-
ages on the CCD camera at the two outputs as a function of wavelength and
voltage. Subfigure a (b) shows the intensity from output 2(1).
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Figure 3.11: Quantum dot spectra: (a): Ensemble of QDs excited and col-
lected at the input port. (b): Emission from a QD excited at the input and
collected at the output.

mode and can thus be collected from either of the output ports depending on the
voltage applied in the switching region cf. fig. 3.10.

While exciting the quantum dot at the input port, we change the voltage in the
switching region and monitor the intensity of the quantum dot line at the two
output ports.
Figures 3.12(a) and (b) show the dot emission collected from port 1 at applied
voltages of -0.4 V and +1.2 V respectively. In figs. 3.12(c) and (d) emission from
the same dot is collected at the same voltages, but collected from port 2. The
total integrated intensity of the dot emission as a function of the voltage applied
across the switching region is shown in fig. 3.12(e). These data show an anti-
correlation in the emission intensity between the two output ports for a voltage
range spanning from -1 V to +1.2 V. We notice that the maximum emission from
port 2 (red) does not coincide with the minimum emission from port 1 (blue). In
fact the intensity of the signal from both ports decreases with the field strength in
reverse bias. One initial concern could be that the lack of total isolation between
the two diodes causes the quantum dot to quench when the field is too strong in
the switching region. However, as we see the same behavior when using an external
laser source, (fig. 3.10), we can rule out this effect. The experimental data show
agreement with the predicted behavior of the device (see fig. 3.4(b)), and shows an
anti-correlation in the output as a function of the applied voltage. The fact that
the transmission measurements performed using the external laser source mimics
the measurements performed using the quantum dot as a light source, confirms
that the switching is in fact caused by a phase difference accumulated over the
two arms. The deviations between the observed data (fig. 3.12(e)) and the ideal
behavior (fig. 3.4(b)) are analyzed and by including contributions from other effects
such as propagation loss, electroabsorption and reflections, we devise a model that
mimics the experimentally observed behavior.
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Figure 3.12: Routing of single quantum dot emission: (a): Spectrum ob-
tained from output 1 at -0.4V. (b): Spectrum obtained from output 1 at +1.2V.
(c): Spectrum obtained from output 2 at -0.4V. (d): Spectrum obtained from
output 2 at 1.2V. (e): The integrated peak intensity of the quantum dot emission
as a function of the voltage. The blue (red) dots show the intensity collected at
port 1(2).
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3.3.4 Simulations

In this section, a theoretical model is proposed to explain the experimentally ob-
served behavior of the device. Starting from the ideal case and gradually including
contributions from other effects, we end up with a model that mimics the experi-
mentally observed behavior of the device.
The device consists of many components; namely in- and out couplers, a power-
splitter, waveguides and an MMI. Each component is initially considered individ-
ually, yielding an S-matrix for that component. These have then been combined
using a cascading method [94], resulting in a transmission model of the full device.
First the S-matrices for the power-splitter (abbreviated Y-splitter) and the waveg-
uides are identified.

Sy−splitter =


0 0 β

0 0 β

β β 0

 , (3.14)

where β = 1√
2 .

The two waveguides can be described by a 4× 4 matrix of the form

Swg =


0 0 ζ1 0
0 0 0 ζ2

ζ1 0 0 0
0 ζ2 0 0

 , (3.15)

where ζ = eiknl. Here k = 2π
λ , l is the length of the arms, and n is the wavelength-

and voltage-dependent effective refractive index of the waveguide, given by

n(λ, V ) = n0(λ)± 1
2n0(λ)3r41

V

d
, (3.16)

where d is the distance between the contacts, and V is the applied voltage. The
built-in voltage is taken into account in the simulations.
In the matrix (3.15), ζ1 and ζ2 corresponds to light travelling in the two arms of
the interferometer, and thus to the positive and negative solutions of eq. (3.16).
The 2× 2 MMI, can be described by

SMMI =


0 0 β iβ

0 0 iβ β

β iβ 0 0
iβ β 0 0

 . (3.17)
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Figure 3.13: Finite element simulations: (a): Geometry of model used to
predict the effective refractive index in the waveguides. (b): FE simulation of
the transverse electric mode. The overlap between the electric field and the
various layers defines the effective electro-optic coefficient and the magnitude of
the absorption.

These three matrices are cascaded, yielding a transmission model for the device
assuming perfect in and out-coupling

Stot =


0 β2ζ1 + iβ2ζ2 iβ2ζ1 + β2ζ2

β2ζ1 + iβ2ζ2 0 0
iβ2ζ1 + β2ζ2 0 0

 , (3.18)

which can be simplified to

Stot =


0 1

2(ζ1 + iζ2) 1
2(iζ1 + ζ2)

1
2(ζ1 + iζ2) 0 0
1
2(iζ1 + ζ2) 0 0

 . (3.19)

A FE simulation of the structure gives us the real and imaginary part of the effective
refractive index as a function of the wavelength of the light propagating in the
structure and the voltage applied. Figure 3.13(a) shows the model as it is built in
the FE software COMSOL. All the different layers of the wafer have been included in
the model. Figure 3.13(b) shows the electric field distribution inside the waveguide.
The simulation is run for both the case of a positive and a negative change of
refractive index, and ζ1 and ζ2 can thus be calculated.
The intensity at the two outputs is found from I1(2) = |12(iζ1(2) + ζ2(1))|2. The
doped layers give rise to increased free-carrier absorption, i.e., the promotion of a
carrier from one excited state to another excited state by means of energy from
an absorbed photon. To see this we start by including the imaginary part of the
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refractive index

ζ = ei
2π
λ
nl

= ei
2π
λ

(nr+ini)l

= ei
2π
λ
nrl︸ ︷︷ ︸

A

· e−
2π
λ
nil︸ ︷︷ ︸

B

. (3.20)

We see from the term marked B in eq. (3.20) that the imaginary part of the refractive
index is responsible for attenuation of the wave as it propagates in the medium.
The real part of n determines the phase velocity of the wavefronts. Since the optical
intensity of light is proportional to the square of the electric field, we can define a
decay constant of

α = 4πni
λ

. (3.21)

The decay constant, α, is related to the free-carrier density, N , in the doped layers,
and we deduce how they are related in the following. First, we look at the free
electron model, and then modify it to describe the case of a doped semiconductor.
The electric displacement D is given by

D = εrε0E = ε0E + P, (3.22)

where ε0 is the vacuum permittivity and εr is the relative dielectric constant. E
is the electric field, and P is the polarization, i.e., the net dipole moment per unit
volume. Here we are interested in εr as it contains information about how light
propagates through the material.
We can treat the free electrons in our doped semiconductor as a plasma, and apply
the free electron model to our system. The equation of motion for a free electron
in an electric field E(t), is given by

ẍ+ γẋ = qE0
m0

e−iωt, (3.23)

where ω is the angular frequency of the driving field, E0 is the field amplitude,
q is the charge of the electron and γ is the damping. Hence the electron will
oscillate with some damping. The solution to this is found by expressing the time
dependence of x; x = x0e

iωt, and solving for x. This yields

x = qE0e
−iωt

m0(ω2 + iγω) . (3.24)

Since the polarization P can be written as qNx, where N is the number of electrons
per unit volume, we can express the displacement field as

D = ε0εrE = ε0E + Nq2E0e
−iωt

m0(ω2 + iγω) , (3.25)
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and thus we have an expression for the relative dielectric constant εr, namely

εr(ω) = 1 + Nq2

ε0m0

1
(ω2 + iγω) = 1 +

ω2
p

(ω2 + iγω) , (3.26)

where ωp is the plasma frequency, which is a characteristic oscillation frequency of
the electron in a material when exposed to a small charge separation.
In order to adapt this model to describe a doped semiconductor, we must take
into account the effective masses of the electrons and holes. This is done merely
by replacing the m0 in eq. (3.26) by m∗. Additionally, we must account for the
polarizability of the undoped material. This is taken into account by rewriting
eq. (3.25) as

D = εbε0E + Nq2E0e
−iωt

m∗(ω2 + iγω) , (3.27)

where εb is added to account for the polarization of the undoped material. In
this equation, N denotes the density of free carriers caused by the doping. From
this we can now rewrite the relative dielectric constant for the case of a doped
semiconductor

εr(ω) = εb + Nq2

m∗ε0

1
(ω + iγω) = εb

(
1 +

ω2
p

(ω + iγω)

)
, (3.28)

where the plasma frequency now takes the form: ω2
p = Nq2

εbε0m∗
, and is thus also

affected by the introduction of dopants.
The imaginary part of the relative dielectric constant is given by εi = εbω

2
pτ

ω(1−ω2τ2) ,
and can be related to the imaginary part of the refractive index by ni = εi

2n . From
eq. (3.21), we can now define a free-carrier absorption as

αfc = Nq2

m∗ε0ncτ

1
ω2 . (3.29)

Here we have used the substitution τ = 1/γ, and τ thus denotes the characteristic
damping time scale of the system. The absorption scales with the carrier density in
the doped layers, and since we have a relatively high degree of doping, we include
absorption in our model, by including the imaginary part of the refractive index
in the four doped layers [95] (see fig. 3.13(a)). This diminishes the signal as can
be seen from fig. 3.14, and explains the relatively long integration times needed to
get a good signal-to-noise ratio, but it neither explains the asymmetrical shape of
the signal we observe, nor the low extinction ratio defined as the ratio between the
optical power generated when the ports are on and off.
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Figure 3.14: Including propagation loss: By adding absorption in the doped
layers of the wafer the model predicts an attenuation of signal by almost a factor
of 2 (dashed line) compared to the ideal case of no absorption (solid lines).

In order to account for the fact that the signal from both arms decreases at large
negative applied voltages in the switching region, we included electroabsorption in
the model according to the phenomenological work by Stillman et. al. [96]. This
work presents theoretical calculations of the Franz-Keldysh effect based on the
theory developed in Refs. [97, 98], along with experimental work, and shows good
agreement between the model and the experimental results.
The Franz-Keldysh effect is a change in the optical absorption in a semiconductor in
the presence on an electric field. Applying a static electric field to a semiconductor
changes the optical absorption profoundly. The potential will no longer retain the
periodicity of the lattice, and therefore the Bloch wavefunctions will no longer
represent the stationary states of the crystal. The semiconductor may now absorb
photons with energy less than the band-gap energy; ~ω < Eg [77]. It is a result of
the electron and hole wavefunctions acquiring tails that extend into the bandgap,
and as a consequence, the overlap between the wavefunctions is increased leading
to an increase in the optical absorption. The field- and wavelength dependent
Franz-Keldysh electroabsorption coefficient for GaAs can be calculated from [96]

α(ω,E) = 1.0 · 104

n
E1/3 ∑

j=1,2

(
1 + m

mvj

)(2µj
m

)4/3

·
[∣∣∣∣(dAi(z)

dz

)
βj

∣∣∣∣2 − βj |Ai(βj)|2
]
, (3.30)

where
βj = 1.1 · 105(Eg(x, T )− ~ω)(2µj/m)1/3E−2/3. (3.31)

Here Ai is the Airy function and the sum is over the light- and heavy-hole valence
bands. The parameters used for the numerical calculations are: refractive index
n = 3.5, effective mass of the light hole; mv1/m = 0.087, reduced mass of the
electron and light hole; µ1/m = 0.0377, effective mass of the heavy hole; mv2/m =
0.450 and the reduced mass of the electron and heavy hole; µ2/m = 0.0579. The
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temperature dependent band-gap of AlGaAs, Eg(x, T ), can be calculated from1

Eg(x, T ) = 1.519 + 1.155x+ 0.37x2 − 5.41 · 104 ∗ T 2/(T + 204), (3.32)

where x is the aluminum (Al) content.
From eq. (3.30); the behavior of the absorption coefficient is thus governed by
Airy functions. For small fields, E → 0 the absorption drops quickly to zero at
~ω = Eg. In the presence of an electric field, α(ω,E) shows oscillations above the
band-gap, and more importantly, acquires a tail extending into the band-gap. This
is illustrated in fig. A.1 in the appendix.
Figure 3.15 shows the absorption coefficient α(cm−1) for GaAs at 10K (a), GaAs
at 300K (b), and AlGaAs at 10K (c) evaluated at different applied voltages. The
built-in field of −1.4V is included in the model, and therefore the absorption is
minimized for an applied field of 1.5V, and maximized for −2.0V.
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Figure 3.15: Absorption coefficient as a function of wavelength for dif-
ferent applied voltages: (a): Absorption coefficient for GaAs at 10K. The
dashed line indicates the emission wavelength of the quantum dot investigated.
(b): Absorption coefficient for GaAs at 300K. (c): Absorption coefficient for
AlGaAs at 10K. Note the different wavelength axes

Figure 3.15 shows the absorption coefficient as a function of wavelength for differ-
ent applied voltages. It is clear that at Vapplied = 1.5V (dark-red line), the applied
voltage counteracts the built-in voltage and the absorption coefficient drops rapidly
at ~ω = ~2πc/λ = Eg. When going in reverse bias, the applied and built in field
add up, and the effective field causes the absorption to extent into the band-gap. It
is evident that the device only works at cryogenic temperatures, as the absorption
coefficient in the wavelength range of quantum dot emission (∼ 900 nm) exceeds
1000 cm−1 when applying a reverse bias at 300K (fig. 3.15(b)). This is because
the increase in temperature causes the band-gap to shift to longer wavelengths as
given by eq. (3.32) and evidenced by comparing figs. 3.15(a) and (b). Figure 3.15(c)
shows that the absorption in the AlGaAs does not influence the propagation signif-
icantly at the targeted wavelengths as the band-gap energy is much higher than the
quantum dot emission energy. For this reason we only include the Franz-Keldysh

1http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/bandstr.html
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effect in the GaAs layer situated between the p- and n-contacts of the waveguide
(see fig. 3.13).
By including this effect in the FE simulations of the device, we see a clear reduc-
tion in the signal at large negative voltages (see fig. 3.16(a)) as well as a wavelength
dependence. Light with longer wavelengths, i.e., further from the GaAs band-edge
(1.52 eV), experience a smaller degree of electro-absorption. Since the dot that cou-
ples efficiently to the propagating mode of the device emits at 904 nm (1.37 eV),
where the large field increases the absorption significantly, we observe a decrease
in the signal from both ports when applying a large negative voltage. We stress
that the reason why this effect is not symmetric in applied voltage is that the built-
in field is negative, therefore applying a positive voltage effectively diminishes the
field in the waveguide, while applying a negative voltage adds to the field already
present in the waveguide.
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Figure 3.16: The Franz-Keldysh effect: (a): Transmission from the two
outputs as a function of voltage and wavelength. The model includes propagation
loss and the Franz-Keldysh effect. (b): The signal evaluated at 904 nm when
including absorption and the Franz-Keldysh effect (dashed lines) compared to the
ideal case (solid lines).

Figure 3.16(b) shows the effect of the Franz-Keldysh effect at 904 nm. Here
the effect is evident, and clearly shows that the transmission will be reduced signif-
icantly at large negative applied voltages. However, the Franz-Keldysh effect does
not account for the low extinction ratio we see in our data, as the signal can still
be switched completely off even in the presence of the included electroabsorption.
Thus, we must look for an explanation for the reduced extinction ratio elsewhere.
The gratings terminating the device have finite reflectivity of ∼ 30%, and therefore
standing waves form in the structure. In order to investigate the effect of the reflec-
tivity at the couplers, they are included in the numerical model. The effect of the
finite reflectivity is visible from fig. 3.17. The anti-correlated output from the two
ports is still present, but the resonances caused by the reflections add intensity fluc-
tuations as a function of wavelength and reduce the extinction ratio of the switching
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signal (fig. 3.17(a) and (b)). Figures 3.17(c) show the signal evaluated at 904 nm.
The dashed lines represent the result of the numerical model including propagation
loss, electroabsorption and reflectivity from the gratings, and should be compared
to the ideal case represented by the solid lines. The gratings introduce Fabry-Pérot
resonances in the structure which has a detrimental effect on the extinction ratio
of the signal. This becomes evident when comparing to fig. 3.17(d) that show the
same numerical simulation with a reflectivity of 3%. The extinction ratio of the
signal in this case is ∼ 26 which should be compared to the extinction ratio of ∼ 3.3
extracted from the data from fig. 3.17(c), where we have used a reflectivity of 30%.

0
-2

920
0

0.5

910

2 900

1

T
ra

ns
m

is
si

on

T
ra

ns
m

is
si

on

Voltage (V)

Voltage (V)
Wavelength (nm)

Wavelength (nm)

(a) (b)

Voltage (V)

T
ra

ns
m

is
si

on

Voltage (V)

T
ra

ns
m

is
si

on

(c) (d)
λ = 904 nm, R = 30 % λ = 904 nm, R = 3 %

Figure 3.17: The effect of the finite reflectivity from the gratings: The
output from port 2(a) and 1(b) as a function of applied voltage and wavelength as
calculated from the transmission model including propagation loss, electroabsorp-
tion and reflections from the gratings. (c): Comparison between the simulation
evaluated at 904 nm in the ideal case (solid lines) and the case where propagation
loss, electroabsorption and reflections are included (dashed lines). (d): Same as
(c) but evaluated at 904 nm for a reflectivity of 3%.

The full transmission model including propagation loss, electroabsorption and
grating induced reflectivity shows good agreement with the experimental data. Fig-
ure 3.18 shows the experimental data from the quantum dot measurements (dots)
and the result of the full transmission model evaluated at the emission energy of
the quantum dot (solid lines). In both cases the data is normalized to the sum of
the two output intensities. The model is fit to the data using only one free param-
eter, namely the crossing point of the two curves (at V = 0.3 V). The reason for
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Figure 3.18: Comparing model and quantum dot experiment: The exper-
imental data (dots) and the model (solid lines) including propagation loss, the
Franz-Keldysh effect and the gratings. The model has been fitted to the data
using only one free parameter, namely the crossing point of the two curves at
V = 0.3V.

this shift in crossing-voltage is the built-in field and unavoidable asymmetry in the
device caused by fabrication imperfections. Given the good agreement between the
data and the prediction of the transmission model, it is reasonable to argue that the
effects taken into account in the model are responsible for the observed behavior.
Hence, we conclude that the anti-correlation in the output intensities is a direct
result of the index modulation caused by the applied voltage. The fact that the
signal from both ports decreases at large fields is attributed to, and well explained
by the Franz-Keldysh effect, and finally we can account for the low extinction ratio
of the signal by including the reflections from the gratings. The deviations between
the model and the experimental data at large negative voltages may be attributed
to a stronger electroabsorption than the model predicts at this field strength. In
fact, the signal from port 1 almost goes to zero at -1 V (see fig. 3.12(e)). This is
not reproduced accurately in the model accounting for the discrepancy between the
model and the experimental data in fig. 3.18.
Figure 3.18 only shows the comparison between model and experimental data for
one wavelength, namely the emission wavelength of the quantum dot (904 nm).
The model is also compared to the data obtained in the wavelength-dependent
transmission measurements performed using the external laser.

Figures 3.19(a) and (b) shows the data from the transmission measurements per-
formed using the CTL laser. The data for each wavelength is normalized using
gray-scale normalization. Figure 3.19(c) and (d) show the behavior predicted by
the model for the same wavelength- and voltage-range as the experimental data.
The data from the model has been normalized in the same way as the experimental
data in order to allow for direct comparison. The model reproduces the behavior
of the experimental results well. The decrease in intensity at large reverse bias is
successfully accounted for by including the Franz-Keldysh effect in the model, and
the low extinction ratio is a result of the reflectivity of the gratings.
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Figure 3.19: Comparing model and transmission experiment: The exper-
imental data from the transmission measurements ((a)and (b)) and the model
((c)and (d)) that includes, propagation loss, the Franz-Keldysh effect and the
reflections from the gratings. (e): Data from a single wavelength (918.7nm)
normalised to the sum of the two outputs (dots) compared to the model evalu-
ated at the same wavelength (solid lines). The model has been fitted to the data
using only one free parameter, namely the crossing point of the two curves at
0.35V.
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In the range from −0.5V to −1.0V there is a discrepancy between the model
and the data obtained from both the quantum dot experiment (fig. 3.18) and the
transmission experiment (fig. 3.19(e)). The experimental data suggest that light is
routed to port 2 (red data points) to a larger extent than predicted by the model.
The discrepancy between model and experimental data using the laser is less pro-
nounced but similar to the discrepancy witnessed in fig. 3.18 comparing the model
to the quantum dot data. Hence, we estimate that the deviations do not stem from
an effect of the electric field on the quantum dots, and is most likely due to the fact
that the model assumes perfect 50:50 splitting ratios of the power-splitter and the
MMI. As the deviations between the model and the experimental data are small,
we conclude that the actual splitting ratios do not differ significantly from the ideal
case.

3.3.5 Switching speed

An essential figure of merit for re-configurable photonic devices is the response
time. In the case of switches, we are interested in the time it takes to change the
output from port 1 to port 2. The time scales required depend on the desired
application. Some applications require switching-times on the order of the spin
coherence of the quantum dot which may be up to 1 µs [99, 100, 101]. Genera-
tion of an (N × 1)-indistinguishable-photon state requires the switch to respond
well within the coherence-time of the emitter. It has recently been demonstrated
that indistinguishability between two photons separated in time by 14.7 µs exceeds
90% [102].
In order to experimentally assess the switching speed of the device presented here,
we perform confocal photoluminescence measurements from a quantum dot located
in the switching region of the device while driving it with a periodic square-wave
signal as depicted in fig. 3.20(a). The change in the integrated intensity as a func-
tion of the modulation frequency is recorded, and in this way we measure the time
constant of the circuit: τ = RC, where R is the resistance arising from the contacts
as well as the doped layers, and C is the capacitance of the p-i-n junction. The
time constant tells us about the time it takes to charge the capacitor through the
resistor to 63% of the final value.
The switching speed of the device is limited by the time-constant, i.e., how fast
the device responds to a change in applied voltage. We measure the time constant
by using the fact that the intensity of the dot depends on the applied voltage as
the voltage sets the tunnelling rate of the carriers. This allows us to define a volt-
age Voff = 0.32V where the emission from the dot is completely switched off (see
fig. 3.20(c)) and another voltage Von = 0.58V, where the dot emission is maximized
(see fig. 3.20(b)). The intensity scales linearly with voltage between these values.
The square-wave signal with variable frequency is applied to the switching region of

42



3.3. Device characterization

Wavelength (nm)

In
te

ns
ity

 (
cp

s)

(a)

(b) (c)

(d)

T = 1/f

In
te

gr
at

ed
 P

ea
k 

In
te

ns
ity

 (
cp

s)

Modulation Frequency (Hz)

Wavelength (nm)

Vmax

Vavg

Vmin

Figure 3.20: Switching speed of the device: (a): A square-wave volt-
age is applied to the sample, where Vmax and Vmin are chosen so that the
quantum dot emission is maximized at Vmax and completely turned off at
Vavg = Vmax + Vmin

2 . The red dash-dotted (blue dashed) line indicates the
system response below (above) cut-off. (b): Emission from the QD when the
frequency of the driving field is low. (c): Emission from the QD when the fre-
quency of the driving field is high. (d): Integrated intensity as a function of the
frequency of the driving field.
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the sample and adjusted so that the maximum voltage corresponds to Von and the
average voltage corresponds to Voff (see fig. 3.20(a)). Expecting that the circuit
can be modelled as a low-pass-filter, the junction voltage averages to Voff when
the applied modulation frequency is above cut-off, thus we do not see any emission
from the dot under this condition (see fig. 3.20(c)). Below cut-off the dot emits
50% of the time, and since the spectra are recorded with much longer integration
time than the period of the modulation frequency, we observe emission under this
condition (see fig. 3.20(b)).
Figure 3.20(d) shows the integrated intensity as a function of the modulation fre-
quency, showing a clear low-pass characteristic. A 3 dB cut-off is extracted for
approximately 2 MHz. The measurement was repeated by exciting the wetting
layer in one af the arms of the interferometer. In this case a time constant of
RC = 55± 8 ns is extracted, corresponding to a 3 dB cut-off at 2.8± 0.5 MHz (see
fig. A.2).

3.4 Conclusion and Outlook

In conclusion, we have demonstrated a compact device that deterministically routes
photons between two output ports. Switching between the two ports is realized with
a switching voltage -length product, VπL, as low as 0.1Vcm. This allows for a sig-
nificant reduction of the footprint compared to mm long electro-optic modulators
previously fabricated on GaAs [103]. Moreover, the reconfiguration time of this
device is measured to be in the sub-microsecond range.
The drawbacks of this device is the high degree of propagation loss and the low
extinction ratio. The propagation loss in this work stems from the free-carrier ab-
sorption in the doped layers, but is increased further as the emission energy of the
quantum dot is very close to the band edge of GaAs at 10 K, meaning that the
Franz-Keldysh effect influences the propagation loss in the device.
The low extinction ratio is caused by the finite reflectivity of the gratings intro-
ducing unwanted Fabry-Perot resonances in the structure. Numerical simulations
of these gratings show that the reflection back into the waveguide is around 30%
resulting in a cavity forming inside the device, with resonances interfering with the
desired behavior of the device, and causing a significant reduction in the achievable
extinction ratio. The achievable extinction ratio of ∼ 3 reported in this work means
that, if we neglect other sources of loss, we can successfully generate a 4-photon state

with a probability calculated from eq. (2.2): P(4×1)(3/4) =
(

(3/4)log24
)4
≈ 10%.

For comparison, using passive 50:50 beam splitters would yield a probability of

P(4×1)(1/2) =
(

(1/2)log24
)4
≈ 0.4%.

The mentioned limitations have severe consequences for the performance of the
device, but as the cause is well known, they can be overcome in future routing

44



3.4. Conclusion and Outlook

experiments. The propagation loss may be reduced by doping the material more
lightly, and by finding a quantum emitter with emission energy further from the
band gap of the host material, reducing the electroabsorption.
Battling the reflections from the gratings takes more effort as it includes designing
and fabricating a new type of gratings [88] that do not reflect light back into the
structure to the same extend as the circular gratings used in this work.
From simulations it should be possible to increase the extinction ratio from the
current ∼ 3.3 to ∼ 74 by using gratings with a reflectivity of 1%. If we envision a
fully integrated device where the generation, manipulation, and detection [104] all
take place on a single chip, the extinction ratio would not be limited by reflections.
However, such a chip is yet to be realized and for now we must look into ways of
coupling light from the chip with minimal back-reflections into the circuit.
The next chapter describes how such gratings have been designed, optimized and
experimentally characterized.
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Chapter 4

Shallow-etched gratings

4.1 Introduction

By adding one more step in the fabrication process of out-couplers we achieve a five-
fold increase in the chip-to-fiber coupling-efficiency as well as a significant reduction
in back-reflections into the structure. The design is robust against fabrication im-
perfections, and the yield of working devices is close to 100%.
This chapter describes the design and characterization of a shallow-etched grating-
coupler that outperforms the second order bragg gratings previously used, in terms
of increased chip-to-fiber coupling, and reduced backscattering into the waveguide.
The new design is well known from silicon photonics where simulations predict cou-
pling efficiencies between 80 and 95% [88]. The design is adapted for a working
wavelength of 930 nm, which is the emission wavelength of the InAs quantum dots
used in this work. Based on numerical simulations, the design is tested in order
to assess the sensitivity of the design to fabrication imperfections and the band-
width of the grating. Additionally the performance of the shallow-etched gratings is
compared to second order Bragg gratings (referred to as circular gratings) used up
until now in the group, and the achievable advantage is calculated as the increase in
chip-to-fiber efficiency when replacing circular gratings with shallow-etched grat-
ings. Lastly, an attempt to separate the in- and out-coupling efficiencies from
the experimental data is presented. This is done by comparing transmission mea-
surements of waveguides terminated by different types of gratings. This work is
complicated by the fact that the structures are fabricated on a wafer with a sub-
strate thickness optimized for the shallow-etched gratings, and a direct comparison
between the two types of gratings is thus biased, as the performance of the circular
gratings is sub-optimum at this substrate-thickness. For this reason a comparison
to simulated data is presented as well.
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4.2 Theory

There are several advantages in using surface couplers for off-chip coupling, however
it also poses a major challenge in that the light has to make a dramatic change in
direction from the on-chip propagation in the waveguide to the objective. Grating
couplers offer a solution to this challenge [88]. They consist of a periodic modu-
lation of the refractive index, realized by periodically etching away small grooves
as illustrated in fig. 4.1(a). These grooves and teeth then act as scatterers, and
the scattered contributions interfere constructively in the vertical direction as can
be understood from the Huygens-Fresnel principle. More specifically, when light
with a given wavelength propagates from left to right, as illustrated in fig. 4.1(a),
a certain combination of the period of the grating Λ, the off-chip angle θ and the
wavelength of the light λ will cause the the scattered light to be in phase, forming
a coherent phase-front radiating away from the chip [105]. This is known as the
Bragg condition and is fulfilled whenever the phase delay between two consecutive
teeth is exactly n·2π, where n is an integer. Figure 4.1(b) illustrates the operational
principle in k-space. The diffraction grating has its own momentum K = 2π/Λ,
which is transferred to the light propagating in the waveguide with waveguide prop-
agation constant β = 2πneff

λ0
. Here, neff is the effective index in the waveguide,

and λ0 is the free-space wavelength of the light. From conservation of momentum
in the x-direction, we get from fig. 4.1(b) that

β − kx = mK, (4.1)

where m is the diffraction order. The momentum of the diffracted light projected
onto the x-direction can be written as kx = k sin(θm), and we arrive at an expression
for the Bragg condition for the mth order diffraction in terms of the grating period,
Λ, the emission angle θ, the effective index of the grating neff , and the wavelength
of the light, λ0

neff · Λ− n0 sin(θm) · Λ = m · λ0 (4.2)

Here n0 is the refractive index of the surrounding medium.
If we choose to design the grating such that the light is emitted directly up, i.e.,
θ1 = 0°, then it follows from eq. (4.1) that β = K. This type of grating is called a
second order grating because there is also a solution for m = 2 where the grating
can now reflect light back into the waveguide. This leads to unwanted Fabry-Perot
resonances in the structure. For this reason, the grating couplers are designed to
have off-vertical emission restricting the solution to only the case where m = 1 and
eq. (4.2) can be simplified to

neff − n0 sin(θ) = λ0
Λ . (4.3)

The task is to design the grating such that the effective index neff , which can
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Figure 4.1: Working principle of a shallow-etched grating: (a): Light from
a waveguide enters the shallow-etched grating from the left. The grating has
a pitch of Λ, a fill factor w

Λ , and an etch depth, ed. Light from the grating is
scattered at an angle θ in order to minimize reflections back into the waveguide.
The distance to the substrate must be chosen such that the interference between
light scattered from the grating, and light reflected from the substrate interfere
constructively in the direction of emission. (b): Operating condition for a grating
coupler in k-space. The light is emitted at an angle given by arcsin(kx/k). The
grating has its own momentum K which is transferred to the light travelling in
the waveguide with propagation constant β.

be calculated as the weighted average of the etched and un-etched regions [106],
matches the targeted wavelength, emission angle and grating period. This can be
modulated by changing the geometry of the grooves and teeth, hence, by changing
the etch depth (ed) and the fill factor (ff = w/Λ). From eq. (4.3), we see that for
a fixed geometrical design, i.e., a fixed neff and Λ, a change in the wavelength of
the light will cause a change in the emission angle.
Extending the grating into the 3rd dimension with straight grooves poses a problem
in that the sub-micron waveguide mode has to be matched to the mode of the light
accepted into a fiber. Hence, a tapering section is needed as illustrated in fig. 4.2(a).
This tapering section will have to be very long (≈ 100µm) in order to maintain a
high conversion efficiency, which compromises the compactness of the circuits. For
this reason it is desirable to use confocal gratings [107], where the grooves and teeth
are curved elliptically with a common focal point as illustrated in fig. 4.2(b).
The grating-ellipses are defined from

Semi major axis =

√√√√qλn0 sin(θ) + q2λ2

n2
eff − n2

0 sin2(θ) ,

Semi minor axis =

√√√√ q2λ2

n2
eff − n2

0 sin2(θ) , (4.4)

where q is an integer number for each grating line, θ is the emission angle, n0 is
the index of the surrounding material (air in our case), neff is the effective index
of the grating and λ is the targeted wavelength for optimum operation. In order to
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(a) 

(b) 

Figure 4.2: Tapering solutions for shallow-etched gratings: (a): Shallow-
etched grating coupler with linear tapering section. (b): Focused shallow-etched
grating, where the grooves are confocal ellipses.

ensure a common focal point of the ellipses, they are translated in the horizontal
direction by

x0 = qλn0 sin(θ)
n2
eff − n2

0 sin2(θ) . (4.5)

Figure 4.3 shows the ellipses defined from eq. (4.4), where the left focal point of all
the ellipses has been overlapped using eq. (4.5).

Figure 4.3: Ellipse design: Ellipses are defined according to eqs. (4.4) and (4.5).
The overlapping foci are matched to the point where the tapering section of the
grating starts.
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4.3 Finite element model

In order to optimize the design of the grating couplers, they are simulated in the
finite element (FE) software COMSOL using the RF module. A 2D model is ini-
tially employed in order to find the optimum parameters (Λ, ff, ed, distance to
substrate). The optimum parameters are then used to set up a model in 3D. The
data from the 3D model is analysed, and the transmission is evaluated as an overlap
with a symmetric gaussian mode, as we are ultimately interested in coupling the
light from the gratings into a fiber and thus matching the mode from the grating
to the mode of the fiber. The fabrication robustness is tested by running tolerance
tests in 3D. Furthermore, the bandwidth of the device is tested using the 3D model.

4.3.1 2D model

From the grating equation (4.3) and the design parameters used to define single-
moded suspended waveguides (slab thickness = 160 nm, waveguide width = 300 nm)
we can give initial guesses for the values of the pitch, fill factor and etch depth that
ensures constructive interference in the desired direction θ at the desired wavelength
λ = 930 nm. In order to validate these initial guesses and test the tolerance of the
design, a 2D model is set up in COMSOL. The model is shown in fig. 4.4(a). The
leftmost boundary is set as a port, i.e., a boundary at which the electric field is
initially calculated in a boundary mode analysis. This gives us the fundamental
mode of the structure. The pre-calculated mode is now used to excite the input
port, and the field distribution is calculated using the finite element method, which
is a numerical method for the solution of the partial differential equations governing
the evolution of the electric field. The computational domain is discretised using
a free triangular mesh. The size of the mesh is chosen so that a full period of the
wave is evaluated at minimum four distinct points. Hence the size of the mesh is
given by δ = λ

4n , where n is the refractive index of the material. The size of mesh is
therefore approximately 3.5 times finer in the GaAs region than it is in the regions
containing air as can be seen in the inset in fig. 4.4(a). The power transmitted
upwards is evaluated over the boundary indicated with blue in the figure. The
boundary is meshed with the same mesh size as the GaAs waveguide. The power
reflected back into the waveguide is evaluated in the software using the S11 matrix-
element of the transfer matrix. Figure 4.4(b) shows the absolute value of the field
|Ez(x, y)|=

√
E2
R,z(x, y) + E2

I,z(x, y). This figure shows the amplitude of the field,
and we see how it is predominantly scattered upwards at an angle off-vertical in
order to avoid backscattering as mentioned in the previous section. Figure 4.4(c)
shows the real part of the z-component of the field Ez(x, y), and thus contain the
phase information ER = |E|· cosφ .
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Figure 4.4: 2D COMSOL model: (a): An illustration of the 2 dimensional
model used in the simulations. The leftmost boundary is defined as a port, and the
transmission is evaluated through the top boundary. The computational domain
is surrounded by phase matched layers (PMLs) except at the port boundary. The
size of the mesh elements is chosen so that a full period of the wave is evaluated
at 4 distinct points, making the mesh-size in the high index GaAs regions much
smaller than in the air domains. (b): Electric field distribution of |Ez(x, y)|.(c):
Electric field distribution of ER,z(x, y). In both cases the wavelength is 930 nm.

Initially the distance to the substrate is varied while keeping the remaining
variables fixed: λ = 930nm, Λ = 0.365 µm, ff=0.5 and ed= 50 nm. It is found that
a substrate distance of 1.15 µm maximises the upward emission due to constructive
interference.
Keeping the substrate distance fixed at this value, the wavelength is swept for dif-
ferent values of the pitch (Λ), etch depth (ed) and fill factor, and the transmission
upwards as well as the reflections back into the structure is calculated.
An initial guess for the pitch is calculated from considerations of the target wave-
length (930nm) and emission angle (15°) and yields a value of 0.365 µm. We keep
the etch depth fixed at 50 nm, and use a constant fill factor of 0.5, and then change
the pitch while sweeping the wavelength.
As seen from eq. (4.3), changing the grating pitch changes the wavelength for which
the grating is optimized, so we expect to see a shift of the grating spectrum towards
longer wavelengths when the pitch is increased.

Figure 4.5(a) shows wavelength sweeps for five different values of the pitch.
The yellow curve is the initial guess for the pitch of 0.365 µm and it shows max-
imised transmission between 900 nm and 950 nm as desired. Increasing the pitch
by 20 nm (purple curve) has the expected effect of shifting the maximum transmis-
sion to longer wavelengths, while decreasing the pitch by 20 nm (red curve) shifts
the maximum transmission to shorter wavelengths. The blue curve corresponds to
a pitch 40 nm smaller than the initial guess. In this case it is difficult to deter-
mine the wavelength range with the highest transmission, but looking at the sharp
transmission dip, it is evident that the decrease in pitch shifted this to shorter wave-
lengths. The green curve corresponds to a 40nm increase in the pitch, leading to a
significant shift towards longer wavelengths, but also an overall decrease in perfor-
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Figure 4.5: Effect of Λ on upward transmission and reflection: (a) Trans-
mission through the top boundary indicated in fig. 4.4(a). (b). Reflections back
into the waveguide. Both evaluated as a function of wavelength for different
values of the pitch.

mance of the grating. Figure 4.5(b) shows the reflections back into the waveguide
as a function of wavelength for the five different values of the pitch. Here we see
that a decrease in the pitch of 20nm (red curve), shifts the maximum reflection to
shorter wavelengths, while increasing the pitch by 20 nm (purple curve) shifts the
maximum reflection to longer wavelengths. From these curves we can estimate a
so called tuning coefficient for the gratings. This coefficient tells us how much a
change in the pitch shifts a given feature in the transmission/reflection spectrum;
dλ
dΛ . In this case, the tuning coefficient is estimated from the transmission dips in
fig. 4.5(a) and the reflection peaks in fig. 4.5(b), and is approximately 2. Hence a
change in the pitch of 1 nm, causes a shift in transmission dip/reflection peak of
2 nm.
Changing the etch depth changes the effective index of refraction. As the etch
depth is increased the index in the etched areas decreases, meaning that the overall
effective index decreases. As the central wavelength of the grating is proportional to
the effective index, we assume the central wavelength of the grating to be inversely
proportional to the etch depth. We keep the pitch and fill factor fixed at 0.365 µm
and 0.5 respectively, and sweep the wavelength for different etch depths. From
fig. 4.6(a) we see that an etch depth of 50 nm (yellow curve) gives a high trans-
mission between 900 and 950. As expected, an increase in the etch depth causes
a shift in the central wavelength towards shorter wavelengths. Reducing the etch
depth to 30 nm (red curve) not only shifts the central wavelength to longer wave-
length, it also reduces the efficiency of the grating. This is even more pronounced
for the case of the etch depth of 10 nm (blue curve). This is because the index
contrast between the waveguide and the grating section is so small, that the light
is only weakly guided upwards. This also affects the reflections as can be seen from
fig. 4.6(b). A very shallow etch depth will cause very weak reflections back into the
structure. When the etch depth is 50 nm (yellow curve), we see pronounced reflec-
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Figure 4.6: Effect of etch depth on upward transmission and reflection:
(a): Transmission upwards through the top boundary and (b): reflections back
into the waveguide as a function of wavelength for different values of the etch
depth. As expected the spectrum blue-shifts when the etch depth is increased.
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Figure 4.7: Effect of Fill Factor on upward transmission and reflections:
(a): Upward transmission and (b): reflections back into the waveguide as a func-
tion of wavelength for seven different values of the fill factor. As we expect from
the grating equation, the spectrum blue-shifts when the fill factor is increased.

tions at wavelengths much longer than the wavelengths we are interested in. This
reflection peak shifts towards shorter wavelengths when the etch depth is increased.
Hence the optimum etch depth to achieve high transmission and low reflections at
930±20 nm is 50 nm. A tuning coefficient for the etch depth was evaluated from
the transmission dips and the reflections peaks, and is yields: dλ

ded = −1.25.
Finally we investigate the effect of the fill factor on the transmission and reflec-
tion of the grating. The fill factor affects the grating performance by affecting the
effective refractive index. When the fill factor defined as ff = w

Λ (see fig. 4.1(a))
increases, the effective index increases, shifting the grating spectrum towards longer
wavelengths as can be seen from eq. (4.3). The behavior seen in figs. 4.7(a) and (b)
correspond to the expectations based on the grating equation (eq. 4.3). The curve
corresponding to a fill factor of 0.5 (purple curve in fig. 4.7(a)), has a broad plateau
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in transmission between 900 nm and 950 nm. When the fill factor is increased
(decreased) this plateau shifts to longer (shorter) wavelengths, and the maximum
transmission decreases. The same trend is seen in the reflections (fig. 4.7(b)), where
the spectral features shift with the fill factor. A tuning coefficient of δλ

δw = 0.33 is
calculated for the fill factor.
In order to achieve high transmission and low reflections in the wavelength range
around 930 nm, we use a target fill factor of 0.5 in the further simulations.
We now have a set of parameters to use as a starting point for the 3D simulations.
The pitch is set to 0.365 µm, the etch depth is 50 nm and the fill factor is 0.5.
These values are optimum for maximized transmission and minimized reflections
in the wavelength range from 900 to 950 nm. From the tuning coefficients we can
get an estimate of the effects of the unavoidable fabrication imperfections. The
uncertainties in the pitch are negligible1, however there are uncertainties related
to the etch depth and the fill-factor. These two are connected as an increase in
the fill-factor, caused by over-etching, will be accompanied by a slightly larger etch
depth. As the tuning coefficients for the fill factor and etch depth have opposite
signs, this means that a slight over- or underetching will not affect the spectrum
significantly. The uncertainties related to the fill factor and etch depth are esti-
mated to be within 10%, which means that we can reach an accuracy of ±5 nm for
the etch depth. From the tuning coefficient we estimate that this would result in a
shift of the spectrum of ±6 nm. A 10% uncertainty in the fill factor means that we
can fabricate the target w ± 18nm. From the tuning coefficient of the fill factor,
we predict a corresponding shift of ±6nm.

4.3.2 3D model

Now that we have a set of values to use for the initial design of the gratings, we
go on to set up a 3D model for further numerical simulations. The grating is built
up according to the model depicted in fig. 4.2(b). Due to symmetry considerations
we only have to model half of the structure as shown in fig. 4.8. The overlapping
foci of the ellipses (see fig. 4.3) are overlapped with the point where the tapering
section starts. The shallow-etched regions are defined from eqs. (4.4), where the
central wavelength of the grating is chosen to be 930 nm, as the quantum dots in our
samples are targeted to have a central wavelength of 930 nm. The first groove of the
grating corresponds to q = 11, followed by another 11 grooves. See fig. B.1 in the
appendix for the results of sweeping q and the number of grooves. The angle of the
tapering section is chosen so that the emission from the grating is as symmetric as
possible, maximizing the coupling into a fiber. Figure 4.8 shows the model used for
the numerical simulations. The zoomed region shows the shallow-etched regions.

1The uncertainties are estimated by Irina Kulkova from Sparrow Quantum, who also fabricated
the samples used in the experimental characterization
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φ

Figure 4.8: 3D model of the grating: The grating is simulated using the FE-
analysis software COMSOL. Due to symmetry in the structure, only half of the
grating need to be simulated. The half-angle of the tapering region is φ = 20◦,
and the first groove of the grating corresponds to q = 11. The zoomed region
shows the shallow-etched regions defined according to eq. (4.4). The grating is
optimized for a wavelength of λ = 930 nm, and emission angle of θ = 9◦.

The procedure is similar to that employed for the 2D simulations; an input port
is defined and a preliminary boundary mode analysis calculates the fundamental
mode of the port, and subsequently uses this to excite the structure. The meshing
is done in the same way as in the 2D simulations.
The GaAs substrate is neglected in these simulations due to the fact that it increases
the degrees of freedom of the computation significantly as this region must be
meshed with high resolution due to the large refractive index of the material. The
effect of the substrate is to reflect the light that is emitted downwards, and by
choosing the right distance to the substrate, we can make sure that the light emitted
upwards interferes constructively with the light reflected from the substrate. A
substrate-distance sweep for λ = 930nm confirms the result from the 2D simulation
and yields an optimum substrate distance of 1.15 µm as is shown in fig. B.2. The
overall behavior of the gratings is assumed to be independent of the presence of
a substrate, and the effect is included as a scaling factor in the final results. A
selected number of simulations are done with and without substrate in order to
quantify the effect of the substrate, and determine the scaling factor (see fig. B.2).
Figure 4.9(a) is a top view of the grating when exciting the input port with 930
nm. It shows the y-component of the normalized electric field as it propagates in
the plane of the grating. The wavefronts of the field are almost perfectly aligned
with the grooves of the grating. The fact that they do not match exactly, is a
result of the emission angle θ, as can be seen from eq. (4.3). Figure 4.9(b) is a side
view of the field emitted from the grating. The field is predominantly scattered
upwards at an angle as dictated by the design parameters. Figure 4.9(c) shows the
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Figure 4.9: Field distribution: (a): The normalized field in the xy-plane eval-
uated at the grating (z=0). The wavelength of the light is 930 nm, i.e., the
target wavelength for the grating design. The wavefronts of the field follow the
grooves of the grating. (b): The normalized field projected onto the xz-plane
at y=0. The field is predominantly scattered upwards at an off-vertical angle.
The fringes indicate that there is some interference due to reflections from the
port boundary. (c): An illustration of the horizontal planes at which the field is
fitted to a Gaussian in order to evaluate the position of the beam as well as the
divergence angle, which can be found from the width of the beam.

beam propagation evaluated at seven distinct planes in the z-direction. In order to
evaluate the emission angle, a horizontal plane was moved upwards and the field is
fitted to a Gaussian at each plane, and from the fits we determine the propagation
direction. We now define a plane normal to the emission, and evaluate the overlap
with a Gaussian in the xy-plane of the new tilted coordinate system. The Gaussian
overlap is evaluated from the following integral [108]

O = |
∫∫
E(x, y)e−iφ(x,y) ∗ e−(x−x0)2/2σ2

x−(y−y0)2/2σ2
ydxdy|2∫∫

|e−(x−x0)2/2σ2
x−(y−y0)2/2σ2

y |2dxdy
∫∫
|E(x, y)e−iφ(x,y)|2dxdy

. (4.6)

Hence O calculates the overlap between the electric field, E(x, y)e−iφ(x,y), evaluated
in the xy-plane (in the tilted coordinate system), and a 2-dimensional Gaussian
with center in (x0, y0), and widths given by σx and σy. In the data analysis, we
force the Gaussian to be symmetric, i.e., σx = σy, and evaluate the overlap with
this symmetric Gaussian. This is because we eventually want to couple the mode
emitted from the grating to a fiber with a symmetric Gaussian mode.
Figure 4.10(a) illustrates an angled plane over which the overlap in eq. (4.6) is
evaluated, and the grating efficiency may now be calculated as the power emitted
up through the top-plane (in analogy with the 2 dimensional case. See fig. 4.4)
multiplied by, the overlap between the field projected onto the tilted plane and the
fitted Gaussian, squared.
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Figure 4.10: Overlapping with a Gaussian: (a): A plane normal to the beam
is defined and the overlap is evaluated between the field projected onto this plane
and a symmetric Gaussian. The plane is positioned sufficiently far from the
grating to assure that the overlap is evaluated in the far field (> 2 ·λ). (b) Field
distribution of the absolute value of the y-component of the field projected onto
the tilted plane. (c): The grey shaded area is the Gaussian that is fitted to the
y-component of the field. The red line is the absolute value of the y-component
of the field.

The reason for this way of evaluating the efficiency of the gratings rather than using
the built-in far-field analysis in the software, is that this version of the software2 can-
not calculate the far field from inhomogeneous media with multiple scatterers [109].
For this reason the above mentioned strategy was employed, where a careful anal-
ysis of the convergence was performed with respect to the distance from the slab
to the plane over which the overlap was evaluated (see fig. B.3). Figure 4.10(b)
shows the y-component of the electric field projected onto the tilted plane indicated
in fig. 4.10(a). Subfigure (c) shows the absolute value of the y-component of the
field evaluated at y=0 in the computational domain (red curve) overlapped with
the Gaussian (solid grey area). Some initial tolerance tests of the pitch (Λ), etch
depth (ed) and fill factor (ff) were performed yielding the same optimized values
as the 2D-model. Using these geometrical parameters the structure is excited with
different wavelengths and the efficiency of the gratings is evaluated as mentioned
in the previous.

Figure 4.11 shows the wavelength sweep of the chip-to-fiber coupling efficiency
of the grating. The dots correspond to the output of the simulations, where only
the red dots have been fitted to a Gaussian in order to assess the bandwidth of
the grating. The dashed black line indicates the reflections back into the structure.
From the Gaussian fit, we get a central wavelength of 926.2 ±0.8 nm, a maximum
efficiency of 55.3 ±1.8%, and a full width half max (FWHM) value of 51.8 ± 2.0 nm.
This is comparable to the bandwidths stated in the literature [110, 111] of 45nm
and ∼ 75 nm respectively. The reflections back into the structure are below 5% up
until 940 nm (2.6% at 930 nm). These results show that at the target wavelength,

2COMSOL 4.3b
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Figure 4.11: Wavelength sweep and tolerance test: (a): The dots show the
calculated efficiency of the gratings evaluated as described in the main text. The
red dots are fitted to a Gaussian. The black dashed line shows the reflections back
into the structure. (b): The foci of the ellipses is shifted in the x-direction, and
the efficiency of the grating is evaluated using the above mentioned procedure.
(c): The efficiency of the gratings as a function of the displacement of the foci in
the y-direction. The shaded area indicated the waveguide width in the y-direction.
In both plots, the black dashed lines show the reflections back into the structure.
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the gratings have an efficiency of approximately 55%, while reflections are kept
below 5%.
These results stem from simulations initially done without a substrate in order to
increase the computational efficiency. However, the presence of the substrate will
cause an increase in the efficiency due to the constructive interference of the light
transmitted upwards, and the light reflected from the substrate. This has been
taken into account by multiplying by a substrate/no substrate ratio that has been
calculated from simulations done at the target wavelength of 930 nm (see fig. B.2).
As the interference-effects are naturally wavelength dependent, this method is not
perfectly accurate at wavelengths far detuned from the target wavelength.

The main challenge in the fabrication of the gratings is aligning the sample
before the final etching step. In this last etching step, the grooves of the gratings
are etched into the suspended triangular slab. The effect of misalignment in this
fabrication step is evaluated, by moving the foci of the ellipses in the x- and y-
directions respectively. The aim is to overlap the foci of the ellipses with the center
of the wavelength at the point where the tapering section starts. The uncertainty
in the position in this last etching step is estimated to be approximately 50 nm.
Figure 4.11(b) shows how the efficiency depends on the position of the foci in the
x-direction. Displacing the foci by 100 nm in either direction on the x-axis causes
a decrease of approximately 14%. If the displacement is kept within 40 nm, the
decrease is limited to around 4%. In the y-direction we see a decrease in efficiency
of 2% when the focal points of the ellipses are shifted by 50 nm (fig. 4.11(c)). These
results indicate that the gratings are robust against realistic misalignment in the
last fabrication step and we expect a high achievable yield of the fabrication.

Comparing to circular gratings

The gratings described in the previous sections require two etching steps in
the fabrication process. We are interested in comparing their performance to the
gratings that were previously used, that only require one etching step and are thus
less demanding in terms of fabrication. These gratings, which we will call circular
gratings in the following, are second order Bragg gratings described in [63]. They
consist of a λ/(2n) pitch circular grating that causes destructive interference in the
forward propagation direction and scatters the light vertically. The model used in
the simulations can be seen in fig. 4.12(a). We have used the mirror symmetry in
the xz-plane to reduce the computational domain to half the structure. The circular
gratings are simulated in the same way as the shallow-etched gratings, only in these
simulations the substrate is included, as the performance of these gratings depends
sensitively of the interference between the light transmitted upwards, and the light
reflected from the substrate. This is because of the symmetry in the z-direction,
which has been broken in the case of the shallow-etched gratings. Moreover, the
computational domain/degrees of freedom in this model is significantly smaller
than the case of the shallow-etched gratings allowing us to include the substrate,
without a significant increase in computation time. When comparing the two types
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Figure 4.12: Circular grating: (a): The model used in numerical simulations
of the circular gratings. The air-gaps are λ/2 wide, while the bridge is λ/(2 ∗n),
where n is the refractive index of the material (GaAs in this case). The target
wavelength is 930 nm. (b): Normalized field projected onto the xz-plane. The
field is emitted in the vertical direction. (c): Normalized field projected onto the
xy-plane at z=3.0µm.

of gratings, this is taken into account.
From fig. 4.12(b) we see that unlike the case of the shallow-etched gratings, the
circular gratings emit in the field vertically. While this might make the collection
of the light into an objective more efficient, it inadvertently introduces significant
reflections back into the waveguide as explained in section 4.2. Figure 4.12(c) shows
the emitted field projected onto the xy-plane evaluated 3 µm above the grating. It
is evident that the emitted field is not Gaussian, making mode matching to a fiber
inefficient. The evaluation of the coupling efficiency of these gratings is done in the
same way as the shallow-etched gratings, only this time, the plane over which the
overlap integral is evaluated is horizontal.

Figure 4.13 shows the result of the numerical simulations evaluated at differ-
ent wavelengths. The Gaussian fit yields a maximum achievable efficiency of 20% at
a central wavelength of 975.1 ± 3.4 nm. The bandwidth is calculated as the FWHM
and is 122.7 ± 8.3 nm. The central wavelength is thus red-shifted compared to the
targeted central wavelength of 930 nm. This is due to the fact that the distance
to the substrate in these simulations is the same as substrate-distance used for
the shallow-etched gratings, i.e., 1.15 µm, which was found to be optimum for the
shallow-etched gratings. The optimum substrate-distance for the circular gratings
is 1.40 µm, and the effect of the sub-optimum substrate-distance is a red-shift of
the grating spectrum. This can to some extent be compensated by changing the
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Figure 4.13: Wavelength sweep for the circular grating: The efficiency of the
circular gratings is evaluated as a function of the wavelength. The dots show the
result of the numerical simulations, while the solid red line shows a Gaussian fit
to the data. The black dashed line shows the reflections back into the waveguide.

geometry of the circular gratings as illustrated in fig. B.4 in the appendix.
We thus compare the shallow-etched gratings with a substrate-distance of 1.15 µm
to the circular gratings with a substrate-distance of 1.40 µm. However, in the exper-
iment, a common substrate-distance of 1.15 µm is used for both types of gratings.

Shallow-etched: Circular: Circular:
Dist. = 1.15 µm Dist. = 1.40 µm Dist. = 1.15 µm

λcentral 926.2 nm 930.0 nm 975.1 nm
Eff. @ λcentral 55% 21% 20%
Eff. @ 930 nm 54% 21% 16%
Ref. @ λcentral 2% 26% 12%
Ref. @ 930 nm 3% 26% 33%
Bandwidth 51.8 nm 122.7 nm 76.4nm

Table 4.1: Results of simulations: Overview of the results of the simulations
of the shallow-etched gratings with a distance to the substrate of 1.15 µm, as
well as the circular gratings with a substrate distance of 1.40 µm, and the circular
gratings with a substrate distance of 1.15 µm.

Table 4.1 shows some of the results of the simulations in the case of the shallow-
etched gratings, the circular gratings with a substrate distance of 1.40 µm and the
circular gratings with a substrate distance of 1.15 µm. From the two last columns
we see that changing the distance to the substrate from 1.40 µm to 1.15 µm causes
a decrease in the efficiency at the target wavelength of 930 nm of 5 p.p., and an in-
crease in the reflections at 930 nm of 7 p.p.. By comparing columns one and two, we
estimate an increase in transmission efficiency of 33p.p. and a decrease in reflections
of 23 p.p. at 930 nm. However, the experimental comparison will be between the
structures represented by columns one and three, and comparing those we estimate
an increase in transmission of 38 p.p. and a decrease in reflections of 30 p.p.. Both
cases indicate that despite the added processing step in the fabrication, the increase
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in performance makes the shallow-etched gratings very attractive for chip-to-fiber
coupling.

4.4 Experimental results

The simulations suggest that the shallow-etched gratings offer a significant advan-
tage over the circular gratings in terms of both transmission efficiency and reducing
back-reflections. In order to experimentally verify the findings from the simulations,
a sample with both circular and shallow-etched gratings is fabricated on the same
wafer, and their performance is evaluated from transmission measurements. The
sample is placed in a flow cryostat, and illuminated with the continuously tunable
laser (CTL) (see fig. 3.7 for an illustration of the experimental setup). The struc-
tures consist of 20 µm long, 300 nm wide and 160 nm high nanobeam waveguides
terminated with either shallow-etched gratings or circular gratings. The distance
to the substrate is 1.15 µm, and thus optimized for the performance of the shallow-
etched gratings. Some structures are terminated by a shallow-etched grating at one
end, and a circular grating at the other end.

1μm

(a)

1μm

(b)

Figure 4.14: Images of the gratings: (a): SEM image of a shallow-etched
grating. The square hole after the grating section ensures a full undercut of the
gratings. (b): SEM image of the circular gratings. Note the difference in scales.

Figure 4.14(a) and (b) show SEM images of the shallow-etched and circular
gratings respectively.

4.4.1 Transmission measurements

Transmission measurements are performed by focusing the CTL at one of the grat-
ings and collecting the light from the other grating. The collected light is coupled
into a fiber and sent onto a spectrometer (see fig. 3.7). The analysis of the data is
done by comparing the intensity of the transmitted light to the specular reflection
of the surface of the sample. The intensity is calculated as the area under the peak
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evaluated from the central pixel ±5 pixels minus the background as illustrated in
fig. 4.15.
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Figure 4.15: Spectrum: An example of a reference spectrum. The intensity
is calculated as the area under the peak. The background is calculated as the
intensity averaged over 10 pixels, 25 pixels away from the center of the peak.

The fraction of reflected power from a surface is given by the Fresnel equations.

Rref =
(
n1 cos(θ1)− n2 cos(θ2)
n1 cos(θ1) + n2 cos(θ2)

)2
(4.7)

In our case we have normal incidence, i.e., θ1 = θ2 = 0, and we can calculate
the reflected power from just the indices of the two media; n1 = nair = 1 and
n2 = nGaAs(λ, T ) which is temperature and wavelength dependent, and thus calcu-
lated for the appropriate parameters in each analysis. The intensity of the specular
reflection spectrum, refItotal is used as a reference to which the light transmit-
ted through the structure, Itotal is compared, and we define the total transmission
as Ttotal = Itotal

refItotal
. The corrected single-grating-transmission efficiency is calcu-

lated as Tcorr =
√
Ttotal ∗Rref , where Rref is the specular reflection as defined in

eq. (4.7), and we assume equal in-coupling and out-coupling efficiencies. We thus
arrive at an estimated value of the single-grating efficiency.
The wavelength of the CTL is swept from 915 nm to 980 nm, and the structures ter-
minated with shallow-etched gratings at both ends are compared to the structures
terminated by circular gratings at both ends. The first evidence of the superiority
of the shallow-etched gratings is visible when looking at the image on the CCD
camera. Figure 4.16(b) shows transmission through a waveguide terminated by
circular gratings in both ends, whereas fig. 4.16(c) shows the transmission through
a waveguide terminated by shallow-etched gratings. In both images the excitation
spot is to the left. Aside from transmitting more light than the circular gratings,
the field transmitted from the shallow-etched grating is more symmetric than the
field transmitted from the circular gratings and is therefore more likely to match
the mode of a fiber. Simulations showing the symmetry of the fields emitted from
the shallow-etched and circular gratings respectively can be found in fig. B.5 in the
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Figure 4.16: Comparing model and experiment: (a): Experimental data
showing the single-grating efficiency of the shallow-etched gratings (red bullets)
and the circular gratings (blue bullets) plotted together with the Gaussian fit
to the simulated data (solid lines). The dotted lines are Gaussian fits to the
experimental data. The measurements are done at room temperature, and the
data from the simulations have been shifted accordingly (see fig. B.6). (b):
Transmission through a structure terminated by circular gratings. The light is
launched into the leftmost grating. The wavelength of the laser is 960 nm and
the power on the sample is 50 nW. (c): Same as (b) with shallow-etched gratings
rather than circular gratings.

Figure 4.16(a) clearly indicates that the shallow-etched gratings (red) out-
perform the circular gratings (blue). The dots show the experimentally obtained
values, while the solid line is the result of the simulations described in section 4.3.2.
The maximally achievable single-grating efficiency, evaluated from the Gaussian fit
to the experimental data (dotted lines in fig. 4.16), of the circular gratings is 13
± 1%, whereas the maximally achievable single-grating efficiency, evaluated in the
same way, of the shallow-etched gratings is 62 ±2%. The uncertainty stems from
the 95% confidence bounds from the Gaussian fits. Comparing the two datasets
indicates that the shallow-etched gratings offer an increase of 49 p.p. in chip-to-fiber
coupling efficiency compared to circular gratings.
The fit to the experimental data from the shallow-etched gratings yields a central
wavelength of 943 ± 1 nm, and the central wavelength of the simulated data is 945
± 1 nm. As the experiment is done at room temperature, the data from the simu-
lations have been shifted to longer wavelengths in accordance with a temperature-
tuning-coefficient calculated from two sets of simulated data (fig. B.6). In the case
of the circular gratings, the central wavelength estimated from the experimental
data is 969 ± 12 nm, where the data from the simulations suggest a central wave-
length of 993 ± 3 nm. Hence the simulations of the shallow-etched gratings show
better agreement with the experimental data in terms of central wavelength than
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the circular gratings.
Table 4.2 gives an overview of the data obtained from the simulations as well as
experiments.

Central λ Max. efficiency Bandwidth
Sim. Shallow 944.8 ± 1 nm 55.3 ± 2% 51.8 ± 2 nm
Exp. 1 940.2 ± 2 nm 52.9 ± 3% 54.4 ± 8 nm
Exp. 2 948.0 ± 2 nm 53.7 ± 4% 55.2 ± 7 nm
Exp. 3 942.8 ± 1 nm 61.9 ± 3% 50.1 ± 3 nm
Exp. Average 943.7 ± 2 nm 56.2 ± 3% 53.2 ± 6 nm
Sim. Circular 993.1 ± 3 nm 19.5 ± 1% 122.7 ± 8 nm
Exp. 1 959.1 ± 20 nm 6.0 ± 1% 94.2 ± 61 nm
Exp. 2 968.7 ± 12 nm 13.3 ± 1% 102.1 ± 27nm
Exp. Average 963.9 ± 16 nm 9.7 ± 1% 98.2 ± 44 nm

Table 4.2: Results: An overview of the result obtained from simulations as
well as experiment. The average values from the experimental data from the
shallow-etched gratings match the simulated results well, whereas the data from
the circular gratings differ significantly from the simulated data.

The simulations of the shallow-etched gratings slightly underestimate the
maximally achievable efficiency (55% from simulations vs. 56.2% averaged from
three repetitions of the experiment), while the simulations of the circular gratings
overestimate the performance (19% from simulations vs. 9.7% from experiments).
The only difference in the way the analysis of the simulations is done is the tilt
of the plane over which the overlap integral, eq. (4.6) is evaluated in the case of
the shallow-etched gratings. If this is not perfectly normal to the emission, then
the electric field projected onto the plane will be underestimated. Another possible
explanation for the discrepancy between the two cases, is that the circular gratings
are more sensitive to the excitation angle than the shallow-etched gratings. In these
experiments the collection is aligned to the output grating, and the excitation beam
is walked to the input grating. Despite the fact that we use two mirrors in order
to compensate for the angle introduced in this way, there could be small devia-
tions from perfectly vertical excitation, that may inadvertently affect the coupling
efficiency to the circular gratings. In the case of the shallow-etched gratings, the
optimum excitation angle is ≈ 9◦. We optimized the in-coupling using two mir-
rors, but found that the in-coupling to these gratings was much less sensitive to
the position and angle of the incoming beam than the circular gratings. This may
be the reason for the discrepancy between the deviations from the the simulated
performance in the two cases.

In the previous data analysis it is assumed that the in-coupling and out-
coupling efficiencies are equal. In order to separate the two, measurements on
structures terminated by a shallow-etched grating at one end, and a circular grating
at the other end are performed. By comparing the total transmission obtained when
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coupling into a circular (shallow-etched) grating and out from a shallow-etched
(circular) grating to the total transmission obtained when coupling in and out from
circular gratings we get an estimate of the achievable improvement in out-coupling
(in-coupling) when replacing circular- with shallow-etched gratings.
Referring to the in-coupling efficiency of the shallow-etched and circular gratings as
SEGin(λ) and CGin(λ) respectively, and the out-coupling efficiencies as SEGout(λ)
and CGout(λ), we can calculate the in-coupling- and out-coupling-efficiency ratio
between the shallow-etched and circular gratings

SEGin(λ)
CGin(λ) = SEGin(λ) · CGout(λ)

CGin(λ) · CGout(λ) ,

SEGout(λ)
CGout(λ) = CGin(λ) · SEGout(λ)

CGin(λ) · CGout(λ) . (4.8)

Here we have neglected propagation loss, which is reasonable as has been shown in
Ref. [112].
Figures 4.17(a) and (b) show the results of the measurements where we couple in
and out from shallow-etched- and circular gratings respectively, as indicated by the
cartoon models above the figures.
The data is filtered using a moving-average filter that slides a window of length
α along the data and computes the average value of the data points within the
window. Hence the vector x containing the raw data points, can be filtered to yield
a new vector y with entries

y(n) = 1
α

[
x(n) + x(n− 1) + ...+ x(n− (α− 1))

]
. (4.9)

This is a way of smoothing noisy data, and the filtered data is shown in the figures
as the dashed-dotted lines. The window size used is α = 3. The red data points in
figs. 4.17(a) and (b) correspond to CGin · SEGout and SEGin · CGout respectively.
The blue data points in both figures represent CGin · CGout.
The ratios are calculated from the filtered data and plotted in fig. 4.17(c). It shows
that the shallow-etched gratings offer an advantages over the circular gratings in
the whole wavelength range spanning from 914 nm to 975 nm. The advantage is
most pronounced in the short wavelength range, which is expected as the central
wavelength of the shallow-etched gratings (943 nm) is lower than the central wave-
length of the circular gratings (968 nm). For this reason we expect that the ratio
calculated here is slightly overestimated in the short wavelength range, while it is
slightly underestimated in the long-wavelength range. At approximately 955 nm,
the curve representing the in-coupling-ratio goes up while the curve representing
the out-coupling ratio goes down. This behavior stems from the CGin ·SEGout and
SEGin · CGout data, where it is clear that the increase in out-coupling efficiency is
more pronounced at short wavelengths whereas the increase in in-coupling efficiency
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Figure 4.17: Separating in- and out-coupling: (a): Coupling in through a
circular grating and collecting from a shallow-etched grating: CGin · SEGout, (red
data points) and coupling in and out from circular gratings: CGin·CGout (blue data
points). The dotted lines are the filtered values found using the moving average
method. (b): Coupling in through a shallow-etched grating and collecting from
a circular grating: SEGin · CGout, (red data points) and coupling in and out
from circular gratings: CGin · CGout, (blue data points). (c): The dashed line
shows the ratio between the interpolated values of the curves in (a), and thus
gives the ratio between the out-coupling efficiency of the shallow-etched gratings
(SEG) and the circular gratings (CG). The dotted line is the ratio between the
in-coupling efficiencies of the shallow-etched and circular gratings.
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is maximized at long wavelengths.
The advantage of the shallow-etched gratings is significant, and we see an average
increase in the performance of a factor of 3.8 in the in-coupling and 4.8 in the
out-coupling evaluated over the whole wavelength range.
The experiments described in this section compares shallow-etched and circular
gratings fabricated on the same wafer with a substrate distance that was opti-
mized for the shallow-etched gratings. The direct comparison between the two
types of gratings can thus be argued to be unfair, and the data representing
CGin · SEGout and SEGin · CGout are therefore compared to simulated data rep-
resenting CGin ·CGout, where the substrate distance in the simulation is optimized
for the circular gratings.

4.4.2 Comparison with simulated circular gratings

As evidenced by the above data analysis, the central wavelength of the circular grat-
ings is shifted to longer wavelengths compared to the target wavelength of 948 nm
(at 300K). This is because of the sub-optimum distance to the substrate. This dis-
tance was chosen as it is optimum for the shallow-etched gratings, and the circular
gratings were fabricated on the same wafer in order to make the above mentioned
comparative analysis.
It can be argued that the experimental comparison is not fair, as the circular grat-
ings were sub-optimum, however, it is not practically feasible to grow a wafer with
two different thicknesses of the sacrificial layer, and for this reason we cannot fab-
ricate shallow-etched gratings and circular gratings on the same wafer, ensuring
optimal designs for both. For this reason, the data analysis of the data presented
in fig. 4.17(a) and (b) has been repeated using simulated data of circular gratings
with the optimal substrate distance of 1.4 µm.
The ratios are calculated using the experimentally obtained data for CGin · SEGout

and SEGin ·CGout and the simulated data for CGin ·CGout. The experimental data
thus still contain a contribution from the sub optimum circular gratings and the re-
sult of this analysis yields a lower bound on the achievable increase in performance.
The result of the analysis is shown in fig. 4.18. As expected, the advantage of
the shallow-etched gratings over the circular gratings is slightly less pronounced in
the short wavelength range than suggested in fig. 4.17(c). However, we still see an
average factor of 5.3 increase in the out-coupling efficiency and an average factor
of 4.0 increase in the in-coupling efficiency when comparing the shallow-etched-
to the circular gratings evaluated over the whole wavelength region. The average
advantage calculated in this way is greater than the advantage indicated by the
purely experimental data, yet the advantage is more evenly distributed over the
wavelength-range in this case. This is most likely due to the fact that the central
wavelength of the two data sets in this analysis overlap, whereas they were shifted
with respect to each other in the purely experimental case, due to the common
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Figure 4.18: Separating in- and out-coupling: Comparing the experimentally
obtained data: (a): CGin · SEGout and (b): SEGin ·CGout (red points) to simula-
tions of CGin ·CGout (blue points). (c): The dashed line shows the ratio between
the interpolated values of the curves in (a), and thus give the ratio between
the out-coupling efficiency of the shallow-etched gratings (SEG) and the circular
gratings (CG). The dotted line is the ratio between the in-coupling efficiencies of
the shallow-etched and circular gratings extracted from (b).

substrate-thickness.
The reason for the smaller advantage in the in-coupling is most likely the mentioned
issue that we misalign the excitation beam slightly in order to excite and collect at
two distinct positions, and the small angle introduced in this way is tilted opposite
of the angle introduced in the grating design.
We are ultimately interested in the out-coupling efficiency of the gratings as we

wish to excite quantum dots in the chip, and couple the light from these out for
subsequent analysis. Previous work done in this group involving a quantum dot
in a photonic crystal waveguide terminated by a nanobeam waveguide with a cir-
cular grating [87] has shown that the grating throughput of the circular grating
fabricated on a wafer with a substrate distance of 1.4 µm, i.e., optimum for the
circular gratings, is as low as ηg =7.2%. Furthermore, it was estimated that the
efficiency into a single-mode fiber was ηfc =31% (see table 4.3). The low coupling
efficiency to the fiber is most likely due to the non-Gaussian far field of the circu-
lar gratings. This means that the total efficiency of the gratings in this work is:
ηg · ηfc = 0.072 · 0.31 = 2.2%. If we assume that we can replace this efficiency with
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Measured efficiency Definition
ηpr = 100% Preparation eff. of QD transition
β ≥ 97.5% β-factor
ηqd ≥ 97.5% Efficiency of SP generation
ηsw = 71.0± 0.4% Throughput of slow PCW
ηfw = 93.6± 9% Throughput of fast PCW
ηdw ∼ 100% Throughput of DW
ηs−d = 88± 1% slow-fast-dielectric transition
ηg = 7.2± 0.6% Grating throughput
ηl = 4.2± 0.4% Coupling efficiency into first lens
ηobj = 87± 2% Objective throughput
ηfc = 31± 2% Collection into SM fiber
ηsf = 53± 3% Throughout of coarse filter
ηapd = 26± 2% APD efficiency
ηs = 3.7± 0.4% Setup efficiency
ηtot = 0.15± 0.02% Total efficiency

Table 4.3: Efficiency table from [87]: A carefull analysis of the loss mecha-
nisms was carried out by Marta Arcari et. al. They carried out an experiment
involving a quantum dot situated in the slow-light section of a waveguide. They
followed the photons path from emitter to APD, and evaluated the transmission
efficiency off the individual components. The values that would be affected by
replacing the circular gratings with shallow-etched gratings are highlighted.

the average single grating efficiency (56%) we measured, this would mean an in-
crease in the overall efficiency of the whole setup from 0.15% to 3.8%. This assumes
that all the light in the gaussian mode is coupled to the single-mode fiber with unit
efficiency. This is unlikely which is why this number is an optimistic upper bound
to the achievable total efficiency in a similar experiment. A more conservative way
of estimating the overall gain in efficiency is to use the ratio found from figs. 4.17
and 4.18. Keeping in mind that the ratios were calculated at room temperature
we estimate that the shallow-etched gratings offer a fivefold increase in efficiency in
the quantum dot emission wavelength-range. This would yield a fivefold increase
in the overall efficiency of the above mentioned experiment, i.e., 0.75%. This is a
lower bound on the achievable increase in efficiency due to the above mentioned
considerations.
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4.5 Conclusion and outlook

We demonstrate how a new type of out-coupling gratings will yield a fivefold in-
crease in the chip-to-fiber coupling efficiency, as well as a significant reduction in
back-reflections into the waveguides.
We have presented a simulation-based optimization of a shallow-etched grating de-
sign. The design is inspired by a well-known design in silicon photonics, and is
adopted for the typical emission wavelength of InAs quantum dots. This design is
implementable with planar technologies and allows for high chip-to-fiber coupling
efficiencies without putting constraints on the position of the structure on the wafer,
or requiring complex fiber-based out-coupling schemes. From simulations the chip-
to-fiber coupling efficiency is predicted to be ∼ 55%, while the average experimental
chip-to-fiber efficiency is found to be ∼ 56%. The robustness to fabrication imper-
fections is evaluated from the simulations and indicates that within the achievable
fabrication accuracy of 10%, the effect of the deviation from the targeted value is
a shift in the grating spectrum which, due to the large bandwidth of the gratings,
doesn’t imply a significant decrease in efficiency. When comparing the performance
of the shallow-etched gratings to the circular gratings used previously, experiments
indicate an increase in chip-to-fiber efficiency of 49p.p. at the target wavelength
of 930 nm. An attempt to separate the in-from out-coupling efficiencies is pre-
sented, and yields an approximate fivefold increase in both in- and out-coupling
when comparing the shallow-etched- to the circular gratings. This indicates that,
despite the added complexity in the fabrication caused by an additional etching
step, the achievable improvement is significant. The improvement stems mainly
from the emitted field being mode-matched to a symmetric Gaussian. Aside from
the increase in coupling efficiency, a major advantage of the shallow-etched gratings
is the reduced back-scattering. Simulations show that the back-scattering can be
reduced from ∼ 26% to ∼ 3% when replacing circular gratings with shallow-etched
gratings. It was shown in chap. 3 that the reflections lead to unwanted Fabry-Pérot
modes that are detrimental to the performance of the routing device.
It has been suggested that the improvement in coupling efficiency might be even
more pronounced by apodizing the first grooves in the grating [110]. The purpose
of the apodization is to shape the output beam and make it more Gaussian along
the propagation direction. This is done by tailoring the so called leakage factor
α defined from P (x) = P0e

−2αx, where P (x) is the power evaluated at x along
the grating, P0 is the power immediately before the grating, and x is the prop-
agation direction. By tailoring the leakage factor such that 2α(x) = G2(x)

1−
∫ x

0 G2(t)dt
where G(x) is a normalised Gaussian profile, the overlap with the optical fiber is
improved. The x-dependence of α is achieved by varying the fill factor or etch
depth along the propagation direction. According to [110], this will increase the
maximum theoretical efficiency by 15%. For our gratings, this would result in a
theoretical efficiency of 63% rather than the current 55%. This approach was not
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investigated further in this work, but is currently being examined by Irina Kulkova
from Sparrow Quantum.
To sum up, we have demonstrated that by adding another etching step in the fabri-
cation process of grating out-couplers we can improve the grating throughput by a
factor of ∼ 5. This is in itself a significant increase that can be pushed even further
by introducing an apodization in the first grooves of the grating.
Recently the shallow-etched gratings have been tested on a sample containing quan-
tum dots and the expected five-fold increase in single-photon count-rates on the
APD is confirmed.
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Chapter 5
Chiral quantum optics and
single-photon nonlinearities

This chapter describes two experiments that illuminate the rich physics associated
with the platform consisting of a single quantum dot coupled to a photonic-crystal
waveguide.
The first part of the chapter presents an introduction to nanophotonics and pro-
vides the basis on which the described experiments are developed.
The first experiment described is a demonstration of how engineering of the crystal
geometry leads to propagation-direction-dependent, or chiral, light-matter inter-
action with applications ranging from spin-readout, to quantum non-demolition
measurement of single photons, and deterministic cNOT gates.
Subsequently we describe how a quantum dot strongly coupled to the propagat-
ing mode of a standard W1 waveguide will exhibit strong nonlinear behavior at the
single-photon level. This means that a single-photon state interacts differently with
the emitter than a two- or more-photon state, which can find applications within
quantum information [113, 114]. The articles on which this chapter is based are

• I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė,
T. Pregnolato, H. El.Ella, E. H. Lee, J. D. Song, S. Stobbe and P. Lodahl.
"Deterministic phton-emitter coupling in chiral photonic circuits". Nat. Nan-
otechnology, vol. 10, p. 775 (2015) [115]

• A. Javadi, I. Söllner, M. Arcari. S. L. Hansen, L. Midolo, S. Mahmoodian,
G. Kiršanskė, T Pregnolato, E. H. Lee, J. D. Song, S. Stobbe and P. Lodahl.
"Single-photon nonlinear optics with a quantum dot in a waveguide". Nat.
Communications, vol. 6, p. 8655 (2015) [116]
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The Chiral experiment is based on a proposal developed by Immo Söllner and
Sahand Mahmoodian. The analysis of the data was predominantly carried out by
Immo Söllner. I contributed to the acquisition of the data included in the article,
as well as discussions of the results. For the sake of cohesion, the following is a
description of all the work leading up to the publication including the theoretical
background, experimental procedure, data analysis, and an example of a practical
application.
The nonlinearity experiment was driven forth by Alisa Javadi who acquired the
final dataset and carried out the data analysis. My contribution to this work
involves preliminary transmission measurements as well as continuous discussions
in the process. This chapter presents an outline of the experiment, including theory,
experimental procedure and application.

5.1 Theoretical background

5.1.1 Photonic nanostructures

The optical properties of quantum emitters may be modified strongly by tailoring
the dielectric environment around the emitter. The number of optical modes per
unit volume and frequency bandwidth available to an emitter at position r0 and
frequency ω0, is quantified through the local density of optical states (LDOS) [34],
ρ(r0, ω0, êd), where êd is a unit vector oriented along the transition dipole moment.
The LDOS is a central quantity in the local light-matter interaction as it affects
the radiative decay-rate of quantum dots through

γrad(r, ω, êd) = πω

~ε
|p|2ρ(r, ω, êd), (5.1)

where |p| is the magnitude of the transition dipole moment. Equation (5.1) assumes
that the LDOS varies slowly over the linewidth of the emitter. This approximation,
known as the Wigner-Weisskopf approximation, is valid in the structures examined
in this thesis. Employing this approximation, the decay dynamics of the emitter
may be altered by either engineering the LDOS via the local environment, or by
changing magnitude of the dipole moment in order to reach the weak-confinement
regime. In Ref. [34] it was shown that controlling the magnitude of the dipole
moment is not straight forward and we will henceforth focus on the manipulation
of the LDOS.

5.1.2 Photonic crystals

A photonic crystal is a structure where the dielectric permitivity is spatially pe-
riodic. It can be realized by etching airholes into a high-index material such as
GaAs. In this work we consider a quasi-two-dimensional photonic crystal where
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Figure 5.1: Photonic crystal: (a): Scanning electron microscope image of
a photonic crystal realized by defining air holes arranged in a triangular lattice
(top). The crystal is defined on a suspended membrane (bottom). The scale
bar in both images is 1 µm. (b): Dispersion relation for wave-vectors along the
high symmetry directions in the first Brillouin zone. Figures reproduced from
Refs. [119] and [29].

the airholes are arranged as a triangular lattice defined on a 160 nm thick sus-
pended membrane. The details of the fabrication process may be found in [46].
A scanning electron microscope (SEM) image of a photonic crystal is depicted in
fig. 5.1(a). The periodicity of the holes leads to the formation of a photonic band
gap, i.e., a range of frequencies where no optical modes are allowed to propagate,
which is why a photonic crystal can be considered as the optical analogue of a semi-
conductor [117]. The position of the band gap is fully determined from the hole
radius (r) and the lattice constant (a) at a fixed membrane thickness. The finite
thickness of the membrane confines light in the slab via total internal reflection.
The radiation modes above the light line defined by ω = kxc, are not confined to
the membrane by total internal reflection (see fig. 5.1(b)).
Within the band gap of the photonic crystal, spontaneous emission is strongly sup-
pressed as there are no available states into which the emitter may decay. Experi-
ments have demonstrated inhibition factors of up to 70 in photonic crystals [118].

5.1.3 Nanophotonic waveguides

Introducing a line-defect into the photonic crystal lattice by omitting a row of air
holes, opens up allowed modes within the bandgap. This is known as a W1 waveg-
uide and is illustrated in fig. 5.2(a). Three guided modes are supported by the
line-defect and are allowed to propagate within the bandgap in the dispersion dia-
gram seen in fig. 5.2(b). The in-plane confinement is provided by Bragg-reflections,
and the out-of-plane confinement is provided by total internal reflection. The slab
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modes are extended into the membrane.
The waveguide-modes propagate with a group velocity given by the slope of the
mode in the dispersion relation, i.e., vg = ∂ω/∂k. In the following we only consider
the fundamental mode, M0. From the dispersion of this mode, we see that close to
the band edge, the group velocity goes to zero, and from theory we would expect
the group index ng = c/vg to go to infinity and exhibit a Van Hove Singularity.
In experiments the unavoidable fabrication imperfections induce random scatter-
ing resulting in localized modes. Previous work suggests that group indices on the
order of ng ∼ 60 is attainable close to the band edge in photonic crystal waveg-
uides [120]. The low group velocity in W1 waveguide enhances the light-matter
interaction through the LDOS

ρwg(ω, r, êd) = a

πvg

f(r)
ε(r)Veff

|ê∗k(r)êd|2, (5.2)

where ω is the frequency of the emitter, r is the position of the dipole, êd is a
unit vector pointing in the direction of the transition dipole moment, e∗k(r) is the
orientation of the polarization of the light in the waveguide, and Veff is the effective
mode volume of the unit cell. The function f(r) quantifies the spatial mismatch
between the emitter and maximum of the field inside the waveguide, while the term
|ê∗k(r)êd| quantifies the alignment of the dipole moment of the quantum dot and
the polarization of the waveguide mode. The influence of the group velocity on the
light-matter interaction is evident from eq. (5.2). Close to the band edge, where
the group velocity goes to zero we expect a very high density of optical states,
and thus an enhanced coupling between the emitter and the propagating mode
of the waveguide. The degree of enhancement is quantified via the Purcell factor
FP (ω) = γrad(ω)/γhomrad (ω), that compares the decay rate of the considered emitter
to that of an identical emitter placed in a homogeneous medium [121]. A quantum
dot sitting spatially and spectrally at an optimum position in the waveguide, will
emit photons predominantly into the propagating mode of the waveguide. The
coupling between the emitter and the waveguide mode is quantified through the
β-factor, comparing the decay rate into the waveguide mode γwg to the total decay
rate of the emitter including the decay rate to the waveguide mode, the decay rate
to non-guided modes γng, and the non-radiative decay rate γnrad

β = γwg
γwg + γng + γnrad

. (5.3)

The remarkable feat of the photonic crystal waveguide is that it enhances the
coupling to the waveguide mode, while inhibiting the coupling to non-guided and
non-radiative modes, thus ensuring very high β-factors. It has been experimentally
demonstrated that β-factors up to 98.4% can be achieved for InAs quantum dots
embedded in a W1 waveguide [36]. This near unity coupling efficiency between the
emitter and the propagating mode constitute an ideal platform for the development
of deterministic single-photon sources. Furthermore, the realization of quantum
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information protocols that involve interaction between a propagating mode and an
emitter, such as the chiral-interactions and single-photon nonlinearity, described in
this chapter, depend upon a high β-factor.
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Figure 5.2: Photonic crystal waveguide: (a) Photonic crystal defined on a
suspended membrane. The W1 waveguide is realized by omitting a row of holes.
A single layer of self-assembled quantum dots are embedded in the center of the
slab. (b): Dispersion relation of the W1 waveguide. Three waveguide modes are
supported within the otherwise forbidden band gap of the photonic crystal. The
waveguide is designed such that the slow section of the M0 mode is overlapped
with the typical quantum dot emission. Reproduced from Refs. [34] and [122]
respectively.

The slow-down of light in a W1 waveguide has the adverse effect of increas-
ing the sensitivity to fabrication imperfections leading to unwanted coupling to
Anderson-localized modes [123].
Another disadvantage of the slow light is that it is not readily coupled out from the
in-plane propagating mode, and must therefore be translated through a so-called
fast section before it can efficiently be coupled out from the chip. The fast section
is realized by stretching the lattice constant by 7% in the propagation direction.
This translates the waveguide mode towards lower frequencies, and thus converts
light at a certain frequency to propagate with a higher group velocity as illustrated
in fig. C.1 in the appendix. For this reason, the photonic crystal waveguides are
often composed of an interaction- or slow-light section, where the slow-light re-
gion is overlapped with the typical emission frequency of the quantum dots, and a
fast-light section, where the light travels with a higher group velocity. Finally, the
light is efficiently (88% [84]) coupled to a suspended nanobeam waveguide, before
out-coupling through a diffraction grating [63].
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5.2 Chiral quantum optics

The word chirality comes from the Greek word χεiρ meaning hand, and denotes
objects or systems that has the property that they are non-superimposable on their
own mirror images. In quantum optics the word denotes a light-matter interac-
tion that is propagation-direction-dependent [124]. Chiral quantum optics offer
many new and interesting functionalities with applications in quantum information
processing [125].

5.2.1 Theory

In regular W1 waveguides such as the one depicted in fig. 5.3(a), a quantum emit-
ter will interact with photons independent of their propagation direction along the
waveguide.
The mirror symmetry around y = 0 in a regular W1 waveguide restricts the sym-
metry of the propagating modes so that the x-projection of the electric field has
odd symmetry while the y-projection has even symmetry [117]. From fig. 5.3(b),
(c) and (d) we see that the right propagating mode is linearly polarized at the field
maximum. Figures 5.3(e) and (f) show the same mode projected onto the right- and
left-hand circular basis, and we see that both of the circular polarizations are present
at the field maximum. In order to overlap the field maximum with pure circular
polarization components, the symmetry about the y = 0 plane is broken leading to
the eigenstates no longer being purely odd or even, but rather a linear combination
of the odd and even eigenstates. If the phase difference between the odd and even
eigenstates is π/2, the resulting mode will have in-plane circular polarization. A
Glide Plane Waveguide (GPW) is designed by shifting the lattice on one side of the
waveguide by a/2 and changing the hole-to-hole center width of the waveguide to
0.8a
√

3 , as depicted in fig. 5.3(g). This breaking of the up-dowm symmetry has
the desired consequence of ensuring a predominantly circular polarization at the
field maximum as can be seen in figs. 5.3(i),(j),(k) and (l). The left-propagating
mode can be found by complex conjugating the right-propagating mode.

A quantum dot with a circularly polarized transition dipole, sitting at a po-
sition where the mode is predominantly circularly polarized, will emit into one
propagation direction, while the orthogonal dipole will emit into the opposite prop-
agation direction. This is illustrated in fig. 5.4 where the quantum dot transitions,
in the presence of a magnetic field, are shown in (a), and the corresponding prop-
agation directions are shown in (b). The directionality is quantified by calculating
a directionality factor Fdir which is the ratio between photons emitted into the de-
sired direction, Γdir, and the photons emitted into both propagating modes of the
waveguide, ΓL + ΓR = Γwg. The directional β-factor, i.e., the probability that a
photon from the emitter, is channelled to the correct propagation direction, can now
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Figure 5.3: Symmetry and right-propagating-field projections: (a): SEM
image of a regular W1 waveguide, which exhibits up-down symmetry about y = 0.
(b): Intensity of the total electric field for a W1 waveguide, |E|2. (c) and
(d): The intensities of the x and y components of the electric field of the W1
waveguide respectively. (e) and (f): The intensities of the right- and left-hand
circular polarized components of the field in the W1 waveguide. (g): SEM image
of a GPW, where the up-down symmetry is broken. (h): Total field intensity
for the GPW, |E|2. (i) and (j): Intensities of the x and y components of the
electric field in a GPW. (k) and (l): Right- and left-hand circular polarization
components of the electric field of the GPW. Reproduced from supplementary
information of Ref. [115].
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Figure 5.4: Operational principle: (a): Quantum dot level scheme in the
presence of a magnetic field in the growth direction that splits the otherwise
degenerate circularly polarised transitions σ± where the splitting is controlled by
the magnetic field. (b): Modelled directional emission patterns of the σ+ and
σ− transitions in the GPW. The emitter is positioned at the point where Fdir
and βdir are maximized as indicated by the crosses in (c) and (d). The spatial
dependence of the directionality factor and the directional β-factor are shown in
(c) and (d) respectively. Figure from Ref. [115].

be calculate as the product of the radiative β-factor (eq. 5.3) and the directionality
factor

βdir = βFdir. (5.4)

Figures 5.4(c) and (d) show the spatial dependence of Fdir and βdir within a unit
cell of the GPW. From simulations, the maximally achievable βdir = 98% which
corresponds to the spatial position indicated by the green cross in fig. 5.4(c) and
(d). From these figures we see that the coupling is highly directional in a large
section of the unit cell which means that there is a high probability of finding a
quantum dot in the desired spatial position. The spectral dependence evaluated at
the cross in fig. 5.4(c) and (d) is depicted in fig. C.2 in the appendix and shows
that as we approach the band edge of the structure, the β-factor increases as the
slope of the mode decreases. However, the directionality drops as we approach the
band edge as a result of the waveguide no longer being single-moded [126].

5.2.2 Experiment

The sample is fabricated with a GPW section, adiabatically transitioned to two
standard W1 waveguide sections as indicated in the zoomed sections of fig. 5.5(b).
The standard W1 waveguide serves as out-coupling waveguides and have been de-
signed specifically to have a mode with a low group index (ng) at the frequency
of operation of the GPW (a/λ = 0.26). The W1 waveguides are terminated by
suspended nanobeam waveguides with circular grating couplers. The orientation
of the two grating couplers is orthogonal allowing for the subsequent separation of
light collected from the two ends by means of a half-wave-plate and a polarizing
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beam splitter as shown in fig. 5.5(a).
The sample is placed in an Attocube attoLIQUID1000 helium bath cryostat and
cooled to 4.2K. The excitation spot is aligned to the center of the sample con-
taining the GPW section (green spot in fig. 5.5(b)) and two independent collection
paths are aligned to the two circular couplers (red and blue spots in fig. 5.5(b)).
The light from the two out-couplers is sent to two independent spectrometers and
the emission lines in the collected spectra are fitted with Lorentzians. The sam-
ple is sitting in the center of a superconducting solenoid 9Tmagnet, allowing us
to change the magnetic field and observe the effect on the spectra collected from
the two ends of the sample. From the spectrometers the light can be sent to two
avalanche photo diodes (APD) for time-resolved measurements from which we ex-
tract the decay rates of the quantum dots, as well as the single-photon purity of
the emission.
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Figure 5.5: Sample and experimental setup: (a): The sample is cooled to
4.2K in a liquid Helium bath cryostat. The microscope objective has an NA
= 0.65. A 90:10 beam splitter directs 10% of the excitation laser (green) to
the sample, while transmitting 90% of the emission from the sample. The red
and blue areas and lines indicate the emission collected from the two ends of the
waveguide, which can be separated using a λ/2-plate and a PBS as they have
orthogonal polarizations due to the orientation of the out-couplers. The emission
from the two ends is coupled into polarization maintaining (PM) fibers and sent
to two independent spectrometer setups. A single wavelength component can
be sent to an Avalanche Photo Diode (APD). Second order correlation measure-
ments are performed using the signal from the two APDs sent to a time-tagger
comprising a HBT-setup. (b): The GPW is gradually transitioned to a standard
W1 waveguide and coupled to a nanobeam waveguide terminated by a circular
grating. A quantum dot in the GPW section is excited above the bandgap with
a Ti:Sapph laser. Part of this figure is reproduced from Ref. [115].
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5.2.3 Results

In the absence of a magnetic field, the spectra recorded from the two ends of the
GPW are practically identical as shown in fig. 5.6(a). When a magnetic field is
applied, the quantum dot lines split into pairs corresponding to the two circular
transitions indicated in fig. 5.4(a). Figure 5.6(b) shows the spectra recorded at
a magnetic field of 3.1T. The magentic field lifts the degeneracy of the σ+ and
σ− transitions, and we see that the σ+ transition is predominantly collected from
the left out-coupler, while the σ− transition is mainly collected from the right out-
coupler. Changing the polarity of the magnetic field swaps the spectral position
of the transitions, but the directionality is preserved. This illustrates that the
directionality is in fact related to the helicity of the dipole transition.
The directionality factor is extracted from the spectra like the ones presented in

fig. 5.6(a)-(c). The integrated count rates are calculated and used to evaluate the
directionality for photons coupled out from the left (L) or right (R) of the GPW.

Fdir,L/R =
I+,L/−,R

I−,L/R + I+,L/R
, (5.5)

where I−,R/L and I+,R/L denote the count rates for the σ− and σ+ transitions
into the right (R) or left (L) propagating modes. Figure 5.6(d) displays Fdir =
(Fdir,L +Fdir,R)/2 extracted from both quantum dots A and B as a function of the
applied magnetic field. The values at magnetic fields below 1T should be ignored
as the directionality cannot be extracted reliably at these fields. This is due to the
resolution of the spectrum used to extract the directionality, but could also result
from the fact that neutral excitons have linear dipole moments at low magnetic
fields. The dipole moments only become circular at elevated field strengths. At
∼ 1T the directionality levels off and we extract Fdir = 90±1.3% for quantum dot
B. The lower directionality of quantum dot A is attributed to the spatial variation
of the directionality within a unit cell of the GPW as depicted in fig. 5.4(c). The
directional β-factor is evaluated from

βdir = max[ΓR,ΓL]
γwg + γng + γnrad

, (5.6)

where ΓR and ΓL are the decay rates into right- and left propagating modes,
Γwg = ΓL + ΓR. The rates γng and γnrad represent the coupling to non-guided
and non-radiative modes. βdir thus quantifies the fraction of emission into the
waveguide mode propagating in a single direction to all other optical modes.
The single-photon purity is extracted from second order correlation measurements.
When splitting the signal from either quantum dot A or B, using a beam split-
ter and plotting the coincidence counts as a function of time delay, we see a clear
anti-bunching at 0 time delay, indicating a very high degree of single-photon pu-
rity. When cross-correlating signals from quantum dot A and B, we observe no
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Figure 5.6: Directional emission: (a): Spectra recorded from the left (red
spectrum) and right (blue spectrum) out-couplers. Two quantum dot lines, de-
noted A and B, are visible at 0T. (b): Applying 3.1T in the growth direction
breaks the degeneracy of the σ+ and σ− transitions, and the σ+ transition emits
predominantly into the left-propagating mode, whereas the σ− transition emits
into the opposite direction of propagation. (c): At −3.2T the exciton lines have
swapped spectral position, but the directionality is the same as observed at pos-
itive magnetic field. (d): Directionality of the two quantum dots as a function
of applied magnetic field. An average directionality factor Fdir = 90 ± 1.3% is
extracted from the spectra of quantum dot B above 1T. (e): Second order cor-
relation measurements: AA and BB denotes correlation measurements obtained
when coupling emission from quantum dot A (B) out from both ends of the
GPW. AB denotes the second order correlation between quantum dot A and B.
Reproduced from Ref. [115].
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correlation between the two signals meaning that the peaks originate from two
independent quantum dots.

5.2.4 Applications

By integrating the GPW into a Mach-Zehnder interferometer (MZI) as illustrated
in fig. 5.7(d), a number of intriguing applications, such as non-demolition measure-
ments and photon sorters can be realized, as is meticulously explained in Ref. [125].
This section will focus on the implementation of a controlled not (cNOT) gate re-
quiring a chiral interaction region, provided by the GPW, and reconfigurable beam
splitters.
A cNOT gate is an essential component in quantum computing, as a cNOT gate
combined with single qubit rotations constitute a universal set of gates [127]. A
cNOT gate flips the target qubit depending on the state of the control qubit, and
transforms the state

a |0c0t〉+ b |0c1t〉+ c |1c0t〉+ d |1c1t〉 (5.7)

into the state
a |0c0t〉+ b |0c1t〉+ c |1c1t〉+ d |1c0t〉 (5.8)

The applicability of the GPW for the realization of a cNOT-gate stems from the
high degree of directionality as quantified by βdir combined with the π phase shift
imparted on the transmitted photon (for more details see Ref. [125]). In the follow-
ing we assume βdir → 1, and utilize the level structure of a singly charged exciton (a
trion) placed in an external magnetic field, as depicted in fig. 5.7(c). The branching
ratio indicated by the diagonal lines can be suppressed to 1:1000 by the presence of
an external magnetic field, Bext, on the order of 300mT [128, 129]. For Bext > 2T
the spin relaxation time starts to decrease as B−5

ext [130] limiting the range of exter-
nal magnetic fields for the suggested application. An in-plane oscillating magnetic
field, Bµw, allows for the preparation of an arbitrary superposition of the single-spin
ground states [115, 131].
A controlled not gate can be realized as follows:
The trion is initialized in the spin up state [129], and the reconfigurable beam split-
ter is set to 100:0. A π/2 microwave pulse prepares an equal superposition of the
spin-up and spin-down state

|↑〉 π/2−−→ 1√
2

(|↑〉+ |↓〉). (5.9)

A control photon on resonance with the σ−-transition (kr) is sent in right to left,
in either of the two control arms 1’ or 2’ in fig. 5.7(d),

1√
2

(|↑〉+ |↓〉) kr−→ 1√
2

(|↑, kr〉+ tk |↓, kr〉), (5.10)
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where the transmission coefficient; tk = ±1 depending on whether the photon
passed in the interaction region (-1) or not (+1). The photon-matter state is
separable, and we can thus write the state as a product of the photon state |kr〉
and the coherent superposition of the spin ground states. Applying a second π/2
microwave pulse yields

1√
2

(|↑〉+ tk |↓〉) |kr〉
π/2−−→ 1

2

(
(|↑〉+ |↓〉) + tk(|↓〉 − |↑〉)

)
|kr〉 (5.11)

= 1
2

(
(1− tk) |↑〉+ (1 + tk) |↓〉

)
|kr〉 (5.12)

Hence, if the control photon kr is sent through arm 2’, then the transmission co-
efficient tk = −1 and the final spin state is mapped to |↑〉, whereas the final spin
state is |↓〉 is the control photon entered arm 1’.
Now the reconfigurable beams splitters are set to 50:50, and the target photon is
sent into arm 1 (left to right). Depending on the spin state of the trion in the
GPW, i.e., depending on the path traversed by the control photon, the target pho-
ton entering arm 1(2) will exit through arm 4(3) or 3(4) as derived in sec. C.1, and
hence the action on the target photon depends on the state of the control photon
as dictated by the cNOT gate and depicted in fig. 5.7(a).
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(a)

(b)

(d)

(c)

Bμw

Bext

Reconfigurable beam-splitters

Figure 5.7: cNOT gate using a GPW: (a): Illustration of how the cNOT
gate works. The interaction section χ is placed in one arm of the MZI, but
can also be traversed by the control photon if this is in the state |1〉c. In this
case the target photon is swapped from |0〉t to |1〉t or the other way around. If
the control photon is in the state |0〉c, nothing happens to the target photon.
(b): Schematic of a GPW with the emitter sitting at the point where βdir is max-
imised. (c): Level structure of the trion in the presence of an external magnetic
field. (d): Schematic of the MZI with the GPW in one of the arms. The beam
splitters are reconfigurable and are to be used in the 100:0 or 50:50 mode in this
application. Figure reproduced from Ref. [132]
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5.2.5 Conclusion

A novel type of chiral light-matter interaction has been demonstrated using a pho-
tonic crystal waveguide with broken symmetry in the up-down direction. This type
of interface is expected to find widespread applications in quantum information
processing, and has been proposed for on-chip spin readout, single-photon tran-
sistor, quantum non-demolition measurements and a cNOT gate [125, 115]. The
functionality of the device presented here depends on the position of the emitter
in the waveguide which at present is random and relies on chance. Deterministic
positioning of quantum dots [133] will boost the yield of structures applicable for
the mentioned functionalities.
The principle of engineering chiral interactions can be extended to platforms be-
yond the one considered here, and may be implemented in suspended nanobeam
waveguides (NWG) that exhibit larger areas of chiral behavior [134].
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5.3 Single-photon nonlinearity

The fact that photons rarely interact with each other, makes them suited for com-
municating information over long distances. However, if one is to optically process
the information, this requires some form of interaction between signals, and this
interaction can be enabled by nonlinear optical processes [18]. A two-level emitter
deterministically coupled to a one-dimensional propagating mode can mediate such
an interaction, as each photon will inevitably interact with the emitter. Hence, such
a system constitutes a platform for the realization of a giant nonlinearity sensitive
at the single-photon level [135]. In order for the single-photon nonlinear interaction
to be fully deterministic, the mode overlap between the propagating mode, and the
emission profile of the emitter must be perfect, leading to a β-factor of unity. Such
a system is referred to as a 1D atom.

We know that is it possible to achieve near-unity coupling between an emitter
and the propagating mode of a photonic crystal waveguide (PCW) [36], making this
platform highly suited for the investigation of nonlinearities at the single-photon
level. Furthermore, it can be naturally incorporated in integrated photonic cir-
cuits, making this approach particularly attractive. Other approaches to explore
the nonlinear response of a quantum emitter include the use of atoms [136], single
molecules [137] or ions [138]. A few-photon nonlinearity in the reflection spectrum
of a quantum dot strongly coupled to a cavity was demonstrated in Ref. [139].
Here we demonstrate a single-photon nonlinearity induced by a quantum dot in a
PCW, by measuring the transmission spectrum of the PCW around the resonance
frequency of a well-coupled quantum dot.

5.3.1 Theory

Classically, an optical nonlinearity refers to the case where a sufficiently intense
light beam alters the materials refractive index, making light propagation power-
dependent. The quantum analogy is when one photon and two photons interact
differently with an optical system, and is an important ingredient in quantum in-
formation processing [140].
A quantum dot coupled to a PCW is a suited platform to investigate nonlinearities
at the single photon level, due to the high achievable β-factor. A photon propagat-
ing in the waveguide will, with near unity probability, interact with the quantum
dot.
The input state is that of a nearly single-frequency laser and is well described as a
coherent state

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 (5.13)

where |α|2 is the average photon number of the state. At low excitation powers,
i.e., |α|2� 1, the system is in the coherent scattering regime, referred to as the
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Figure 5.8: Single-photon nonlinearity: (a): Coherent scattering off the quan-
tum dot. At low excitation-power the there will be destructive interference be-
tween the photon scattered in the forward-propagating direction and the incident
photon leading to an ideally vanishing transmission probability. (b): The multi-
photon states have a higher transmission probability leading to bunching in the
second order correlation. Figure from Ref. [122].

Heitler regime [141, 142] where the scattering is dominated by elastic scattering
processes. In this regime, the coherence properties of the driving field is preserved,
and there is therefore a fixed phase relationship between the driving field and the
field scattered off the emitter and thus a high mutual coherence [143]. A photon
scattered in the forward direction will interfere destructively with photons from
the driving field, and in the ideal case the transmission probability goes to zero.
Higher photon-number states saturate the emitter, and are thus transmitted with
a higher probability. This is illustrated in fig. 5.8. Hence, the manifestation of a
nonlinearity is found in the transmission spectrum and the photon statistics of the
transmitted field.
We start by investigating the transmission spectrum of the transmitted field. A
meticulous investigation of the dynamic can be found in Refs. [144, 145, 146]. When
the power of the driving field is low, we can assume |α|2� 1. In this case the
transmission amplitude is given by [125]

t =
(ω − Ω) + iγ2

(ω − Ω) + i(Γ
2 + γ

2 )
, (5.14)

where ω is the frequency of the driving field, Ω = Ege/~ is the transition frequency
of the emitter, and hence the the detuning can be expressed as δ = ω − Ω. The
decay rate into loss modes is denoted γ, and the decay rate into the waveguide
mode is Γ. The β-factor in terms of γ and Γ is β = Γ

Γ+γ . The transmission as
a function of the detuning, in units of Γ is shown in fig. 5.9(a) for three different
β-factors. From this figure it is clear that the transmission dip depends on the
coupling between the emitter and the waveguide-mode. Figure 5.9(b) shows how
the dip at δ = 0 depends on the β-factor. So far we have only considered the case
of weak driving fields and we have ignored pure dephasing. The effect of dehapsing
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Figure 5.9: Predicted transmission: (a): The transmission probability pre-
dicted by eq. (5.14) as a function of detuning (δ = ω − Ω), in units of Γ, for
three different β-factors. (b): Transmission probability at δ = 0 as a function
of the β-factor predicted from eq. (5.14). Here we have neglected dephasing,
and assumed a weak driving field (nτ < nc). (c): Transmission probability as a
function of the mean photon flux in the input field per lifetime of the emitter,
nτ , for β = 1 and γ0 = 0.1Γ in eq. (5.15).

and the driving field strength can be extracted from [122]

t(δ = 0) = 1− Γβ
(Γ + 2γ0β)(1 + nτ/nc)

(5.15)

where γ0 is the pure dephasing rate, nτ is the mean photon flux in the input field
per lifetime of the emitter, and nc is the critical photon number required to saturate
the emitter. Figure 5.9(c) shows the transmission at δ = 0 as a function of nτ . The
pure dephasing (γ0 = 0.1Γ) manifests itself as the curves failure to go to 0 even for
very low driving field strength (nτ ≈ 0).
Hence, the signature of the nonlinearity, namely the transmission dip at δ = 0
depends on the β-factor, the pure dephasing γ0 and the number of photons in the
input field nτ .

Another signature of the nonlinearity is found in the photon statistics of the trans-
mitted field [147]. The second order correlation function of the field transmitted
through a 1D atom is comparable to the case of a bad-cavity as investigated in [135],
if we make the substitution

2C = β

1− β , (5.16)

where C is the cooperativity of the cavity denoting the interaction-to-decay ratio,
C = g2

κcγc
. Here g is the coupling constant, and κc and γc are the atomic and cavity

damping rates respectively. The derivation and comparison is explained in greater
detail in Ref. [120].
In the bad-cavity limit, assuming a weak driving field, the second order correlation
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Figure 5.10: Second order correlation of the transmitted field: The second
order correlation as predicted by eq. (5.18) for four different values of β. The
driving field is assumed to be weak, we have neglected pure dephasing, and Γ = 1.

function is given by
g(2)(τ ′) = (1− 4C2e−τ

′/2)2, (5.17)

where τ ′ is the dimensionless time τ ′ = γc(1 + 2C)τ .
Making the substitution suggested in eq. (5.16), allows us to write the second order
correlation for the right going field in a 1D atom in the case of zero detuning and
a low driving field

g
(2)
1D(τ) = e−Γτ

((
β

1− β

)2
− eΓτ/2

)2
. (5.18)

This is plotted as a function of the delay-time τ in fig. 5.10 for four different values of
β. In the limit of very poor coupling between the emitter and the waveguide-mode
(β = 0.1), the field is unaffected by the presence of the emitter, and we observe
the expected behavior for a coherent input field. At moderate coupling (β = 0.5)
we observe anti-bunching at zero time delay. This situation is not to be compared
to the situation where detection of the first photon sets a time-origin when the
emitter is in the ground state and cannot fluoresce. The situation investigated here
is different, and thus the interpretation of anti-bunching is also different [135]. The
detection of a photon in this case does not signify that the emitter has returned to
the ground state, as we are looking at the superposition of the forward re-radiated
field from the emitter with the weak coherent driving field. For high, but realistic
values of β (> 0.7), there is a clear bunching at zero time delay, meaning that
there is a high probability to detect a second photon, conditioned on the detection
of a first photon at τ = 0. This is a signature of a weak coherent state, where the
single-photon component has been removed. The subsequent anti-bunching takes

place at τa = 2ln
(

β2

(1− β)2

)
. Understanding of the anti-bunching can be gained by

inspecting the state prepared by the first photo-detection. This was done for the
case of a bad-cavity in Ref. [135], and the interpretation they offer is the following.
The mean field amplitude will experience a phase change of π as the quantum state
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is reduced (the reduced quantum state is prepared by the detection of the first
photon), and during relaxation back to the steady state, there will be a time, when
the mean field exactly cancels the driving field. At this time, τa, no second photon
can be detected. For β = 0.5 → τa = 0 explaining the anti-bunching at zero time
delay in fig. 5.10 (red curve). The full derivation as presented in Ref. [120] can be
found in the appendix; section C.2 and C.3.
The effect of pure dephasing, and driving field strength has been examined in detail
elsewhere [122, 119], and only a brief summary of the findings is presented here:
Dephasing has the expected effect of degrading the coherence of the system, and for
a pure dephasing rate of γ0 = 2Γ the statistics of the light in the transmitted field
is unaffected by the emitter, and the g(2)(τ) resembles that of a coherent field [119].
The dependence on the driving field strength can be predicted from fig. 5.9(c) where
we see that for large nτ i.e., strong driving field, the transmission dip vanishes as
the emitter saturates, and thus the g(2)(τ) is that of the coherent input field [122].
To sum up; the nonlinearity at the single-photon level is revealed as a dip at δ = 0
in the transmission spectrum and as a bunching at τ = 0 in the second order
correlation of the transmitted field. The observation of these features requires a
large coupling strength between the emitter and the waveguide mode quantified by
the β-factor, relatively low dephasing and a weak driving field; nτ < nc.

5.3.2 Experiment

The sample used to demonstrate the single-photon nonlinearity consists of a pho-
tonic crystal waveguide with a slow-light section in the middle, indicated by the
yellow waveguide section in fig. 5.11(b) and (c). In this section the slow-down factor
is ng ≈ 30, and we can reach β-factors close to unity. The quantum dot is placed in
the slow section as indicated in fig. 5.11(a). The slow light is translated to fast light
(ng ≈ 5) in the red waveguide sections indicated in fig. 5.11(b) and (c) in order to
achieve maximum out-coupling from the gratings.
The green spot in the center of the slow section indicates the presence of a re-pump
laser used to stabilize and initiate the emitter before the scattering process. The red
spots indicate the excitation and collection areas. The gratings are oriented at 90°
in order to separate the input light from the output light by polarization-filtering.
The sample is mounted in the flow cryostat (see fig. 3.7), and cooled to 10K. For
the second-order correlation measurements, the emission is sent to a HBT-setup,
like the one illustrated in fig. 5.5(a).
The light from a toptica DLPro 940 laser is launched into the structure from one
of the gratings, and the transmission is collected from the other grating (red circles
in fig. 5.11(b)). A Ti:Sapph laser operated at 850 nm in CW is used as a re-pump
laser. The purpose of the re-pump is to initialize the system in the ground state and
minimize spectral wandering, which is a broadening mechanism that stems from the
fluctuating charge environment. The effect of this type of broadening is explained
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Figure 5.11: Operational principle: (a): Illustration of the operational princi-
ple, where the single-photon components of the driving field are reflected, whereas
the the two- and higher-photon states are transmitted past the two level system.
(b) Model and (c) SEM image of the device consisting of a slow-light section
(yellow) terminated by fast-light sections (red), suspended nanobeam waveguides
and circular gratings. The central green spot in (b) indicates the illumination re-
gion of the repump laser. The red areas indicate the excitation and collection
spots respectively. Figure reproduced from Ref. [116]
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in great detail in Ref. [122]. The intensity of the re-pump can be modulated using
a chopper-wheel with adjustable rotation frequency.

5.3.3 Results

We choose a quantum dot located in the slow light section emitting at ∼ 914 nm.
The single-photon nature of the emission from the dot is verified through a second
order correlation measurement performed by exctiting the dot above band, below-
but close to saturation-power and sending the emission to a HBT setup, (fig. 5.5(a)).
Figure 5.12(a) shows the result of the measurement under pulsed excitation.
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Figure 5.12: Second order correlation measurement and transmission: (a):
Result of second-order correlation measurement under pulsed wetting-layer excita-
tion. (b): Transmission spectrum as a function of detuning recorded by scanning
the weak (∼ 50pW on the sample) DLPro laser across the quantum dot transi-
tion. Figure from Ref. [116]

The antibunching at zero time delay is a clear signature of the single-photon emis-
sion from the quantum dot. Figure 5.12(b) shows the transmission through the
waveguide as a function of the detuning between the quantum dot and the weak
coherent laser. Reflections from the ends of the waveguide causes weak Fabry-Pérot
resonances to form, leading to a Fano resonance [148] manifested by the asymmet-
rical shape of the transmission dip.
Next we investigate the behavior of the transmission spectrum as a function of the
excitation power quantified by nτ . From theory we expect the transmission dip to
vanish for large nτ due to saturation of the emitter, (fig. 5.9(c)). This is verified
experimentally as witnessed in figs. 5.13(a) and (b) where fig. 5.13(a) corresponds
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to the situation where nτ ∼ 0.11 and fig. 5.13(b) shows the behavior at nτ ∼ 1.3.
Figure 5.13(c) shows the transmission at zero detuning as a function of nτ . The
results are fitted with a model, based on eq. (5.15) that also includes the effect of
blinking (Appendix C in Ref. [122]) and where the spectral wandering is included
in the model as a random jittering in the transition frequency of the quantum dot,
ωsw = ω+ δ0, where ω is the quantum dot transition frequency and δ0 is a random
variable with a Gaussian probability distribution. From fig. 5.13(c) we recognise
three different regimes. At low input-power, the value of the transmission dip is
independent of the power. This regime is called the coherent scattering regime as
the mutual coherence of the driving field and the field scattered off the emitter
is preserved. At intermediate input-power, the transmission dip depends on the
input power and the transmitted field now contain a contribution from the incoher-
ent scattering, and this regime is therefore referred to as the incoherent scattering
regime. At high input power, the emitter saturates and the transmission shows
no dependence on the detuning. These results indicate that the transmission dip
depends on the input power as suggested by theory, and we thus conclude that the
transmission dip stems from the nonlinear interaction between the coherent driving
field and the field scattered off the emitter.
From the fit, a critical average number of photons of nc = 0.81 is extracted, mean-
ing that the nonlinearity is in fact operating at the single-photon level.
Additionally, the power dependence of the photon statistics is experimentally in-
vestigated. From theory we expect to see a bunching at zero time-delay as depicted
in fig. 5.10. The bunching in the second order correlation being a signature of a
weak coherent field with the single-photon component removed. The experiments
are performed at nτ ∼ 0.11 and nτ ∼ 1.3 depicted in figs. 5.13(d) and (e) re-
spectively. As expected, the data show a bunching behavior at zero time delay.
Moreover, this behavior is power-dependent, as the bunching is less pronounced for
the larger nτ (fig. 5.13(e)). Figure 5.13(f) shows the peak value at zero time-delay
as a function of nτ , and shows that the nonlinearity signature is diminished for
large values of nτ leaving a constant g(2)(τ) ≈ 1 corresponding to the Poissonian
statistics expected for a coherent field.
The degree of bunching is limited by the driving field, the β-factor of the system,
the dephasing and spectral wandering of the emitter.
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Figure 5.13: Single-photon nonlinearity: (a): Transmission as a function
of detuning at nτ = 0.11, and (b) nτ = 1.3. (c): Power dependence of the
transmission dip. The critical photon flux is indicated by the red line. (d): and
(e): Second order correlation histograms of the transmitted field for nτ = 0.11
and nτ = 1.3 respectively. (f): Power dependence of the bunching at g(2)(0).
The critical photon flux is indicated by the red line. The black lines are fits to the
data, that takes into a account spectral wandering and blinking (see eq. (5.26)
in Ref. [122] where the figure is taken from).

5.3.4 Conclusion

In conclusion, we have experimentally demonstrated that a single quantum dot
modulates the transmission of a waveguide and alters the photon statistics of the
transmitted field. We observe a maximum of 30% contrast in the transmission
dip (see fig. 5.12(b)), and an 8% bunching at zero time-delay (see fig. 5.13(d))
indicating that the interaction with the quantum dot generates correlated multi-
photon states in the transmitted field.
The factors that influence the performance of the device are the β-factor, pumping
power, dephasing and spectral wandering. The data presented here was modelled
(see Ref. [122] and supplementary information in Ref. [116]) and yields a β-factor
of 85%, broadening by spectral wandering of σ/Γ = 3.6, blinking probability of
α = 0.43, and a pure dephasing rate describing the broadening of the zero-phonon
line of γ0/Γ = 0.79. The decay rate of the emitter is measured to be Γ = 2.5ns−1.
More recent experiments by Henri Thyrrestrup, Gabija Kiršanskė, Hanna le Jeannic
and Alisa Javadi, with a gated sample show a significant increase in the contrast
of the transmission dip. They report a transmission dip of approximately 60%.
This improvement is attributed to the fact that the applied electric field stabilizes
the electrostatic environment reducing the temporal fluctuations leading to spectral
wandering.
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The experiment described in this section has paved the way towards realizing fully
deterministic nonlinearities at the single-photon level in a solid-state platform. This
allows for the development of on-chip single-photon switches [149], transistors [113]
and photon-sorters [114, 150].
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Chapter 6

Conclusion and outlook

In this thesis we have presented an experimental demonstration of a photon router
in a photonic circuit with integrated single-photon sources. The integration of
single-photon emitters and optical routers constitutes a fundamental step towards
developing scalable quantum photonic devices for quantum information processing.
In the device presented in this work, the photons emitted by single self-assembled
quantum dots can be routed actively into one of two outputs. The VπL of the
device is as small as 0.1Vcm which is a significant reduction in the footprint com-
pared to the cm-long electro-optic modulators known from literature [103]. The
sub-microsecond response time of the device makes this platform feasible for the
implementation of protocols where two photons interact with an emitter at different
times, but still within the coherence time of the emitter.
From modelling we found that the performance of the device was adversely affected
by the cavity modes formed by the out-coupling gratings used for chip-to-fiber
coupling. For this reason we set out to develop an alternative out-coupler with re-
duced back-scattering and with the added advantage of a much higher chip-to-fiber
coupling efficiency. We adopted the shallow-etched grating design from silicon pho-
tonics and optimized it for a working wavelength of 930 nm. From simulations and
experiments we found that this type of grating offers a five-fold increase in chip-
to-fiber coupling efficiency while significantly reducing the reflections back into the
waveguide.
Finally, two experiments are presented that underline the rich physics associated
with quantum dots in photonic crystal waveguides. Firstly, a demonstration of
how engineered nanostructures can lead to propagation-direction-dependent light-
matter interactions known as chiral interactions. The presented platform offers
a high degree of directionality, and this light-matter interface is expected to find
applications within quantum information processing. Secondly, we present an ex-
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perimental demonstration of a single-photon nonlinearity realized in a photonic
crystal waveguide. The presented experimental data exhibits a transmission mod-
ulation of ∼ 30%, which has recently been pushed further by introducing gates
on the sample to stabilize the charge environment. The single-photon nonlinearity
finds numerous applications in quantum information processing [149, 113, 114, 150].
The diversity of the work presented in this thesis is a testament to the versatility
of the field of quantum nanophotonics as well as the material platform used in this
work. The work presented here is based on the expertise developed in the com-
munity over the last years, and while writing up this thesis the work continues in
the lab. The work on single-photon routing is continued by Leonardo Midolo and
Camille Papon, and they strive to reduce the VπL even further in a mechanically
actuated system. The out-couplers have been experimentally verified to offer a five-
fold increase in count-rates in single-photon experiments, and are now implemented
on many new samples.
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Appendix A

Electro-optic routing
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Figure A.1: The Franz-Keldysh effect: Absorption coefficient α as a function

of wavelength
(

2πc
ω

)
, where the band-gap energy is given by ~ωBG. At ∼ 0

field, the absorption coefficient drops to zero at the band-gap, but the presence of
a field extends α into the band-gap and causes oscillations above the band-gap.
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Figure A.2: Switching speed evaluated from the wetting layer emission
from the waveguide. From [89]: (a): A square-wave voltage is applied to
the sample, where Vmax and Vmin are chosen so that the wetting layer emission
is maximized at Vmax and completely turned off at Vavg = Vmax + Vmin

2 . The
red dash-dotted (blue dashed) line indicates the system response below (above)
cut-off. (b): Integrated intensity from the wetting layer as a function on the
applied bias.
(c): Emission spectrum recorded at 10 kHz. (d): Emission spectrum recorded
at 10MHz. (e): Integrated intensity of the wetting layer as a function of the
modulation frequency of the square wave voltage (dots). The solid black line is
the simulated response. The 3 dB cut-off is ∼ 2.8MHz.
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Appendix B

Out-coupling
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Figure B.1: Sweeping initial groove and number of grooves: (a): Effect of
changing the first groove from q = 6 to q = 16 (see eqs. 4.4). At q = 11 the
efficiency is maximized, and there’s no advantage in starting the grating at q > 11.
For all the simulations, the number of grooves is kept fixed (Ngrooves = 11).
(b): The first groove corresponds to q = 11, and the number of grooves is
swept from 5 to 25. The reflections are minimized and the chip-to-fiber efficiency
saturates when the last groove corresponds to q = 21, and this value is used in
the fabricated samples.
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Out-coupling
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Figure B.2: Sweeping the substrate distance: For λ = 930nm, the distance
is swept from 0.9 µm to 1.4 µm in steps of 0.1 µm. The Gaussian overlap is
evaluated and the efficiency into a symmetric Gaussian mode is plotted versus
the distance to the substrate. The fit yields an optimum distance to the substrate
of 1.17 µm. The wafer on which the experimentally tested gratings are defined
has a targeted substrate distance of 1.15 µm. The efficiency at this value is
54%. Comparing this to the value obtained from the simulations run without a
substrate (dashed line: 35%) we calculate a substrate factor of ∼ 54

35 = 1.54.
This factor is used to scale the data from the simulations run without a substrate
to the experimental data obtained with a substrate.
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Figure B.3: Convergence test: By evaluating the Gaussian overlap at different
heights above the gratings slab, we find that at 2 µm above the slab, the value
has converged and we thus evaluate all the overlaps at this distance from the
slab. As the plane is tilted we choose the lowest point on the plane to be 2 µm
above the grating. The inset shows the absolute value of the field evaluated 2 µm
above the slab.
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Figure B.4: Simulations of the circular gratings: (a): Using a target wave-
length of 930nm and a distance to the substrate of 1.40 µm (b): Using a target
wavelength of 930nm and changing the distance to the substrate to 1.15 µm
(c): Keeping the distance to the substrate of 1.15 µm and changing the target
wavelength to 890 nm (d): Using a target wavelength of 850 nm and a substrate
distance of 1.15 µm. The substrate distance of 1.15 µm must be used to op-
timize the performance of the shallow-etched gratings, however this causes the
central wavelength of the spectrum for the circular gratings to shift to longer
wavelengths as witnessed by comparing (a) and (b). For this reason it is advis-
able to change the design of the circular gratings if they are to be fabricated on
a wafer with a substrate distance of 1.15 µm rather than 1.40 µm. From figures
(c) and (d) we see that the effect of changing the target wavelength to shorter
wavelengths is to shift the spectrum to shorter wavelengths, but we pay the price
of lower chip-to-fiber coupling efficiency. However, it seems that the reflections
back into the waveguide (black dashed lines) are smaller at the quantum dot
emission wavelength than in the case of the optimum design (fig. (a))
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Figure B.5: Symmetry of the emitted field: (a): Absolute value of the y-
component of the emitted electric field from a shallow-etched grating. The field
is projected onto a plain tilted by 9°. (b): Absolute value of the y-component
of the emitted electric field from a circular grating. The field is projected onto a
horizontal plain. Note the different scales.

121



Out-coupling

Wavelength (nm)
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Figure B.6: Temperature shift: The effect of changing the temperature from
10K to 300K in the simulations. The red data-points correspond to simulations
done with a temperature of 10K, and the red solid line is a Gaussian fit to the
data. The blue points correspond to simulations done using a temperature of
300K, and the solid blue line as the Gaussian fit to the data. From the fits
we calculate a temperature shift coefficient of 0.064nm/ K. This coefficient
has been used to compare the simulated data done at the target temperature of
10K to the experimental data collected at 300K. The reason for the shift is the
temperature dependent refractive index calculated from [151].
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Appendix C
Chiral quantum optics and

nonlinearities
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Figure C.1: Illustration of the dispersion relation for the two waveguide-sections.
The green shaded area corresponds to the frequencies that can propagate in both
sections.
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C.1. Derivation of output from MZI with GPW
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Figure C.2: Spectral dependence: (a): Frequency sweep of β, Fdir and βdir
at the position of the cross in fig. 5.4 (c) and (d). (b): Band diagram of a W1
waveguide (top) and a GPW (bottom). The gray region indicates the frequency
range investigated in (a). Figure from [125].

C.1 Derivation of output from MZI with GPW

In the following the output states are calculated for the two different input states:
|0〉 |1〉 and |1〉 |0〉 sent into a circuit like the one in fig. 5.7 (d) in the main text. The
following derivation assumes a variable phase shifter in the lower arm.
First we consider the case on the input state |1〉 |0〉:
The effect of the first beam splitter is to create a superposition with an imparted
π-phase shift on the reflected photon

|1〉 |0〉 BS1−−−→ 1√
2

(
|1〉 |0〉+ i |0〉 |1〉

)
, (C.1)

The interaction with the quantum dot in the GPW imparts a π-phase shift depend-
ing on the spin-state of the quantum dot. Meanwhile, the phase-shifter in the other
path imparts a φ-phase shift on the transmitted photon

1√
2

(
|1〉 |0〉+ i |0〉 |1〉

)
QD,φ−−−→ 1√

2

(
eiφ |1〉 |0〉+ itk |0〉 |1〉

)
(C.2)

Now the effect of the second beam splitter can be written

1√
2

(
eiφ |1〉 |0〉+itk |0〉 |1〉

)
BS2−−−→ 1√

2

[
eiφ
( 1√

2
(|1〉 |0〉+i |0〉 |1〉)

)
+itk

( 1√
2

(|0〉 |1〉+i |1〉 |0〉)
)]

(C.3)
This last state can be rewritten as:

1
2(eiφ − tk) |1〉 |0〉+ i

2(eiφ + tk) |0〉 |1〉 (C.4)

Going through the same calculations for the other input state yields
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|0〉 |1〉 BS1−−−→ 1√
2

(
i |1〉 |0〉+ |0〉 |1〉

)
, (C.5)

The interaction with the quantum dot in the GPW imparts a π-phase shift depend-
ing on the spin-state of the quantum dot. Meanwhile, the phase-shifter in the other
path imparts a φ-phase shift on the transmitted photon

1√
2

(
i |1〉 |0〉+ |0〉 |1〉

)
QD,φ−−−→ 1√

2

(
ieiφ |1〉 |0〉+ tk |0〉 |1〉

)
(C.6)

Now the effect of the second beam splitter can be written

1√
2

(
ieiφ |1〉 |0〉+tk |0〉 |1〉

)
BS2−−−→ 1√

2

[
ieiφ

( 1√
2

(|1〉 |0〉+i |0〉 |1〉)
)

+tk
( 1√

2
(|0〉 |1〉+i |1〉 |0〉)

)]
(C.7)

In this case the last state can be rewritten as

i

2(eiφ + tk) |1〉 |0〉+ 1
2(−eiφ + tk) |0〉 |1〉 (C.8)

The probability of an output state is given by the absolute-square value of the pre-
factor in eqs. (C.4) and (C.8). We call the input states |0〉 |1〉 and |1〉 |0〉, 1 and 2
respectively. The output states are referred to as 3 (|0〉 |1〉) and 4 (|1〉 |0〉).
The probability of the photon leaving port 4, given that it entered port 1 is thus
given by

Prob.31 =
∣∣∣∣12(ieiφ + itk)

∣∣∣∣2 = 1
4(ieiφ + itk)(−ie−iφ − itk)

= 1
4(1 + tke

iφ + tke
−iφ + t2k)

= 1
2(1 + tk cosφ) (C.9)

Similarly

Prob.41 = 1
2(1− tk cosφ)

Prob.32 = 1
2(1 + tk cosφ)

Prob.42 = 1
2(1− tk cosφ)

(C.10)

The value tk = ±1 depending on whether or not the control photon interacted with
the quantum dot. Balancing the interferometer so that φ = 2nπ, we can write the
probabilities of the two outputs in the case of the two inputs as
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in \out 3 4
1 1

2(1− tk) 1
2(1 + tk)

2 1
2(1 + tk) 1

2(1− tk)

Hence, if we know the in- and output states of the system, we can deduce the
spin-state of the emitter.

C.2 Photon statistics in the Bad-Cavity limit

The following is taken from Ref. [120] and follows the derivation presented in
Ref. [135].

We are interested in the dynamics of a two-level system interacting with the
electromagnetic radiation confined in a cavity.
The ideal case of a two-level system interacting with a cavity field is described by the
Jaynes-Cummings model [152] where the interaction is given by the Hamiltonian

ĤI = −d̂ · Ê = A(σ̂+ + σ̂−)(â+ â†), (C.11)

where d̂ is the dipole moment operator of the emitter associated with the transition
from the ground state to the excited state; σ̂+ = |e〉 〈g| and the transition from the
excited state to the ground state; σ̂− = |g〉 〈e|. Ê is the field associated with cre-
ation operator â† and annihilation operator â, and A denotes the coupling strength
between field and emitter.
The non-energy conserving terms σ+a

† and σ−a corresponding to the non-physical
situations of; creating a photon in the field while the atom undergoes a transition
from the ground to the excited state, or the other way around can be discarded
yielding

ĤI = A(σ̂+â+ σ̂−â
†). (C.12)

This model is only valid in the case where we neglect the systems interaction with
the environment. A more realistic model can be achieved by allowing the environ-
ment to influence the evolution of the system.
In the following we will consider a two-level emitter with a number of decay chan-
nels, other than the one into the cavity mode, in a lossy cavity, thus allowing
dissipation of both the emitter and the cavity. Furthermore, we will add a coherent
driving field on resonance with the emitter and the cavity. In this case the behavior
of the system can be explained in term of the driving field amplitude ε, the coupling
constant g, the atomic damping rate γ and the cavity damping rate; κ. From these,
a saturation parameter can be defined as

ns = γ2

8g2 = γ

8Cκ, (C.13)
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where
C = g2

κγ
, (C.14)

is the cooperativity that denotes an interaction-to-decay ratio. Another usefull
parameter turns out to be

Y = ε

κ
√
ns

(C.15)

i.e., a measure of the relation between the coherent driving field strength and the
cavity decay rate.
As we are interested in a system that inevitably interacts with the environment,
but not explicitly in the evolution of the environment, we use a density operator
formalism suited for treating a system composed of two subsystems of which only
one is of interest [153].
Given that the total system can be in a number of quantum states |ψi〉 with prob-
ability pi, then the density operator is given by

ρ̂ =
∑
i

pi |ψi〉 〈ψi| . (C.16)

As we are only interested in the subsystem comprised of the atom and the cavity,
we trace out the environment, thus obtaining the reduced density operator for the
atom-cavity system as influenced by the environment

ρ̂S = TrE [ρ̂]. (C.17)

It is this interaction with the environment that gives rise to the dissipative behavior
of the system.
The evolution of the total system is governed by the Hamiltonian Ĥ = ĤS +
ĤE + ĤSE , where ĤS is the system Hamiltonian; ĤE is the Hamiltonian for the
environment, and ĤSE governs the interaction between system and environment.
The evolution of the emitter-cavity system is given by

˙̂ρS = TrE [ ˙̂ρ]. (C.18)

The time evolution of the system is given by

˙̂ρ = i

~
[Ĥ, ρ̂]. (C.19)

This yields
˙̂ρS = i

~

[
[ĤS , ρ̂S ] + TrE [ĤE , ρ̂S ] + TrE [ĤSE , ρ̂]

]
. (C.20)

In our case of a subsystem consisting of a two-l evel emitter in a cavity, the
first term in eq. (C.20) describes the free evolution of the emitter and the field as
well as the interaction between the emitter and the field, the second term is zero, and
the last term describes the system-environment interaction and consequently the
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dissipation of the emitter and cavity respectively. The system under investigation
can be described by the master equation

˙̂ρS = ε[â† − â, ρ̂] + g[â†σ̂− − âσ̂+, ρ̂]

+ γ

2 (2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) + κ(2â†ρ̂â− â†âρ̂− ρ̂â†â) (C.21)

The second term is the Jaynes Cummings-interaction, and the last two damping
terms are written in Lindblad form [154].
From this the time-dependent expectation values for operators acting in the Hilbert
space of the system can be found. Specifically for the atomic operators we have

〈 ˙̂σ−〉 = ˙̂ρge, (C.22a)
〈 ˙̂σ+〉 = ˙̂ρeg, (C.22b)
〈 ˙̂σz〉 = ˙̂ρee − ˙̂ρgg, (C.22c)

where ˙̂ρij = 〈i| ˙̂ρ |j〉. This yields;

〈 ˙̂σ−〉 = 2g〈σ̂zâ〉 − (γ/2)〈σ̂−〉, (C.23a)
〈 ˙̂σ+〉 = 2g〈â†σ̂z〉 − (γ/2)〈σ̂+〉, (C.23b)
〈 ˙̂σz〉 = −g(〈â†σ̂−〉+ 〈σ̂+â〉)− γ(〈σ̂+〉+ 1/2). (C.23c)

In order to adiabatically eliminate the field from eq. (C.23c) we consider the Heisen-
berg equation of motion for the field: ˙̂a = i

~ [Ĥs, â] and include the decay of the
cavity field (κâ) and a Langevin force operator ξ̂. The Langevin force is added to
ensure that the commutator doesn’t decay exponentially

˙̂a = gσ̂− + ε− κâ+ ξ̂ (C.24)

In the bad-cavity limit, we can adiabatically eliminate the cavity field by assuming
˙̂a = 0. The bad-cavity limit can be defined by letting

κ

γ
→∞, ns → 0, ε

κ
→ 0 (C.25)

with C and Y constant. Hence, in this limit the decay rate of the cavity, κ, is large
compared to the decay rate of the emitter,γ; the saturation parameter,ns, that is;
the number of photons in the cavity mode required to saturate the emitter, goes to
zero and the driving field amplitude is relatively small.

In this limit we can find an expression for â in terms of κ, ε, g and σ̂−.
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Namely

â = gσ̂−
κ

+ ε

κ
+ ξ̂

κ
. (C.26)

In terms of the parameters introduced earlier the cavity operator may be
written

â(t) = √ns[Y + 2
√

2Cσ̂−(t)] + ξ̂

κ
. (C.27)

Using the commutation relations for the atomic operators and the fact that
a Langevin force acting on a reservoir vacuum state is zero, we can express the
equations of motion for the atomic operator expectation values, also known as the
optical Bloch equations

〈 ˙̂σ−〉 = γY√
2
〈σ̂z〉 −

γ

2 (1 + 2C)〈σ̂−〉, (C.28a)

〈 ˙̂σ+〉 = γY√
2
〈σ̂z〉 −

γ

2 (1 + 2C)〈σ̂+〉, (C.28b)

〈 ˙̂σz〉 = − γY

2
√

2
(〈σ̂+〉+ 〈σ̂−〉)− γ(1 + 2C)(〈σ̂z〉+ 1/2). (C.28c)

By comparing these to the optical Bloch equations for single atom resonance fluo-
rescence [154], we see that the effect of the cavity is to increase the emission rate
by a factor of (1+2C).
The statistics of the transmitted light differs from the case of resonance fluores-
cence, and thus the effect of the cavity on the photon statistics in the transmitted
field can be investigated through analysis of the second-order correlation function.

C.3 Second-order correlation function

The second order correlation function carries information about the photon number
distribution in a given field and essentially quantifies the probability of detecting a
photon at time t+ τ given that a photon was detected at time t.
Generally the normalized second order correlation function is given by

g(2)(τ) = 〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉
〈Ê(−)(t)Ê(+)(t)〉〈Ê(−)(t+ τ)Ê(+)(t+ τ)

, (C.29)

where Ê(±) is the positive and negative frequency part of the field. In the case of
a standing wave field in a cavity we have

Ê(+)(z, t) = ie
( ~ω0
ε0AL

)1/2
sin
(
ω0z

c

)
e−iω0tâ(t), (C.30)

where â is the anihilation operator, ω0 is the frequency of the driving field (that
is on resonance with the cavity mode and the two level system in our case), e is a
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polarization vector, and L and A are length and transverse area of the cavity mode
respectively. In this case of a single mode field g(2)(τ) reduces to

g(2)(τ) = 〈â
†(0)â†(τ)â(τ)â(0)〉

(〈â†â〉ss)2 . (C.31)

In order to evaluate this expression we need to calculate normally ordered,
time ordered averages. When the field operator can be written as in eq. (C.27), we
get

〈â†(t1)â†(t2)Σ̂â(t2)â(t1)〉
= n2

s〈[Y + 2
√

2Cσ̂+(t1)][Y + 2
√

2Cσ̂+(t2)]
× Σ̂[Y + 2

√
2Cσ̂−(t2)][Y + 2

√
2Cσ̂−(t1)]〉 (C.32)

where Σ̂ is an arbitrary atomic operator.
This expression along with the optical Bloch equations (C.28c), gives an expression
for the normalized second order correlation function [135]

g(2)
ss (τ) = 1 +

(
ns
〈â†â〉

)2
8C2 ·

{
4Y 2〈: ∆σ̂1(0)∆σ̂1(τ) :〉ss

+ 2
√

2CY [〈∆σ̂+(0)∆σ̂+(τ)(∆σ̂−(τ) + ∆σ̂−(0))〉ss + h.c.]

+ 8C2[〈∆σ̂+(0)∆σ̂+(τ)∆σ̂−(τ)∆σ̂−(0)〉ss − (〈∆σ̂−∆σ̂−〉ss)2]
}

(C.33)

where ∆σ̂1 = 1
2(∆σ̂− + ∆σ̂+), and ∆σ̂± = σ̂± − 〈σ̂±〉ss.

From this we see that we need the steady state solutions to the Bloch equa-
tions (C.28c), evaluated from 〈 ˙̂σ±,z〉 = 0

〈σ̂±〉ss = − 1√
2

Y (1 + 2C)
(1 + 2C)2 + Y 2 , and 〈σ̂z〉ss = −1

2
(1 + 2C)2

(1 + 2C)2 + Y 2 (C.34)

Moreover, we need to evaluate the expectation values of the atomic operators. This
can be done by first writing the Bloch equations in a more general form

˙̂σi = Mij σ̂j + λi (C.35)

Where in our case the matrix M is given by

M = γ


−1+2C

2
Y√

2 0
−Y
2
√

2 −(1 + 2C) −Y
2
√

2
0 Y√

2 −1+2C
2
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and

λ = γ


0

1
2(1 + 2C)

0


Moreover, the quantum regression theorem allows us to calculate multiple-time
operator correlation functions from the knowledge of of single time expectation val-
ues [155].

d
dt〈σ̂i(t)σ̂k(0)〉 = Mij〈σ̂j(t)σ̂k(0)〉+ λi〈σ̂k(0)〉, (C.36a)

d
dt〈σ̂k(0)σ̂i(t)σ̂m(0)〉 = Mij〈σ̂k(0)σ̂j(t)σ̂m(0)〉+ λi〈σ̂k(0)σ̂m(0)〉, (C.36b)

Rice and Carmichael [135] showed, that the atomic correlation functions ap-
pearing in eq. (C.33) can be evaluated from the quantum regression theorem (C.36b),
the Bloch equations (C.28c) and steady state solutions (C.34)

g(2)
ss (τ ′) = 1 +

( 2
√

2C
1 + Y 2

)2
e−(3/4)τ ′ ·

{
(Y 2 + 2C2 − 1) cosh(Ωτ ′)+

(4Ω)−1[Y 2 5− 2C
1 + 2C − 1− 2C2] sinh(Ωτ ′)

}
, (C.37)

where

τ ′ = γ(1 + 2C)τ and Ω = 1
4

[
1− 8Y 2

(1 + 2C)2

]1/2
(C.38)

When Y � 1 corresponding to a very weak driving field, we see that Ω = 1
4 and

the expression for g(2)
ss (τ ′) can be written

g(2)
ss (τ ′) = (1− 4C2e−τ

′/2)2, (C.39)
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Figure C.3: Normalized Second order correlation versus delay τ ′ for a weak
driving field: Y = 0.001, and small emitter damping rate: γ = 0.01ns−1

In fig. C.3 eq. (C.39) has been plotted as a function of the dimenesionless
time τ ′, for different values of the cavity damping rate κ, where κ is related to the
Q-factor through; κ = ωc/Q. This shows the probability for a second photon to be
detected in the transmitted field, conditioned on the detection of a first photon at
τ = 0.
For κ ≤ 115, the plots clearly show bunching at zero time delay, followed by anti-
bunching at a later time τ ′a = 2ln(4C2).
According to the usual definition of anti-bunching, namely

g(2)
ss (0) < 1, g(2)′

ss (0) = 0 and g(2)′′
ss (0) > 0, (C.40)

the photon statistics in the case of κ ≤ 115 ns−1 is not non-classical as the value at
zero time delay is greater than one. However, the fact that the value subsequently
drops to zero is nonclassical.
According to the Schwarz inequality

|〈I(τ)I(0)〉ss ≤ 〈I2〉|, (C.41)

which yields
g(2)(τ) ≤ g(2)(0). (C.42)

This inequality is not violated, yet it can be shown that the vanishing of g(2)
ss (τ ′a)

as given by (C.39) is not allowed for a classical field when g(2)
ss (0) < 2 [135].

By expressing the intensity as a mean value plus the deviation from the mean
I = 〈I〉ss+∆I, we get an expression for the normalized intensity correlation function

g(2)
ss (τ) = 1 + 〈∆I(τ)∆I(0)〉ss

(〈I〉ss)2 . (C.43)
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Applying the Schwartz inequality to this expression we get

|〈∆I(τ)∆I(0)〉ss| ≤ 〈(∆I)2〉ss, (C.44)

where equality is obtained when τ = 0.
From this we can establish the inequality

|g(2)
ss (τ)− 1| ≤ |g(2)

ss (0)− 1|, (C.45)

and from this we can see, that if g(2)
ss (0) < 2 then the RHS is smaller than 1, and

hence g(2)
ss (τ) cannot vanish. Hence, when g(2)

ss (0) < 2 the subsequent antibunching
at τ ′a is non-classical as it violates the inequality given by eq. (C.45). This anti-
bunching behavior differs from the one familiar from resonance fluorescence, where
detection of the first photon indicates that the two-level system is in its ground
state, and thus cannot fluoresce. This naturally leads to g(2)(0) = 0. By adding
a cavity to the system, the interpretation is not as straight forward. Detecting a
photon in the transmitted field does not mean that the two-level system is now in
its ground state, as the transmitted field is a superposition of the forward reradia-
tion from the dipole with the coherent driving field.
Understanding of the behavior of the second order correlation function can be
gained by investigating the reduced quantum state, i.e., the state of the emitter
prepared by the first photodetection. In the following this reduction upon pho-
todetection will be termed "jump".

tr(ρ̄(0)σ̂±) = − 1√
2

Y

1 + Y 2 (C.46a)

tr(ρ̄(0)σ̂z) = −1
2

1
1 + Y 2 (C.46b)

where ρ̄(0) denotes the reduced state prepared by the jump. Comparing this to
the general expression for the steady state values of the atomic operators (C.34) ,
we can see that after the first photodetection the cavity enhancement, as expressed
through the factor (1 + 2C) in (C.34) is temporarily turned off. Hence, for all C,
the jump will cause an increase in the absolute value of the atomic operators 〈σ̂±〉
as σ̂±,jump > 〈σ̂±〉ss.

The same can be observed when comparing the mean field amplitude inside
the cavity after state reduction

tr(ρ̄(0)â) = √ns
[
Y − 2C Y

1 + Y 2

]
(C.47)

to the steady state value as obtained from eq. (C.27) and 〈σ−〉 given by eq. (C.34)

〈â〉ss = √ns
[
Y − 2C Y (1 + 2C)

(1 + 2C)2 + Y 2

]
, (C.48)

133



C.3. Second-order correlation function

For weak driving fields, the steady state solution reduces to

〈â〉ss = √ns
[
Y − 2CY

(1 + 2C)

]
, (C.49)

and the first term, i.e., the in-phase part dominates, where after photodetection
and in the case of C > 0.5, the out of phase part of the field is greater than the
driving field amplitude. Thus for C > 0.5, the amplitude of the field experiences a
π phase-shift due to the detection of the first photon.
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Figure C.4: Evolution of mean cavity field amplitude. The ’jump’ takes place
at τ ′ = 0 and the state subsequently evolves back to the steady state

Figure C.4 shows how the mean field amplitude evolves. After the jump,
relaxation back to the steady-state will pass through zero at time τ ′a, causing the
antibunching seen in fig. C.3 for κ < 200 corresponding to C > 0.43.
The correlation function is proportional to the probability density for a second
transmitted photon to be detected, and thus takes on the value of the modulus
square of the field and the antibunching in the second order correlation function
stems from the passing through zero as field relaxes back to the steady-state value
after the jump.
Physically this corresponds to destructive interference between the driving field and
the driven atomic dipole leading to a zero probability of detecting a second photon.

For C > 0.5 we see an increase in the probability to detect a second photon
immediately after the jump. From fig. (C.3) we can see that the "degree" of bunching
at τ ′ = 0 depends on the damping rate of the cavity; κ. To see how the behavior
of the second order correlation function immediately after the jump depends on
κ, fig. C.5 shows g(2)

ss (0) versus κ, where the value of the second order correlation
function at τ = 0, is obtained from eq. (C.39) and yields

g(2)
ss (0) = (1− 4C2)2. (C.50)

Here the cooperativity depends on the emitter and cavity decay rates as: C = g2

κγ .

134



C.3. Second-order correlation function

0 100 200 300 400 500
0

1

2

3

4

5

6

7

κ[ns−1]

g
2 ss
(0
)

 

 

γ = 0.005ns−1

γ = 0.01ns−1

γ = 0.02ns−1

γ = 0.04ns−1

Figure C.5: The value of g2
ss at τ = 0 versus cavity decay rate κ for different

values of the emitter damping rate; γ and g2 =
√

3/2.

From eq. (C.50) we see that the value of g(2)
ss (0) will drop to zero when C = 0.5,

and therefore; depending on the decay rate of the emitter (γ), the value of the sec-
ond order correlation function at τ = 0, goes to zero for different values of the
cavity decay rate (κ) and constant emitter-field coupling constant, g.
For relatively small values of the cavity damping rate (κ) the probability of detect-
ing a second photon at τ ′ = 0 goes to infinity as the cooperativity (C = g2

κγ ) is
inversely proportional to κ, and the mean cavity field amplitude will be dominated
by the second term of eq. (C.47). As κ grows, this probability drops to zero cor-
responding to the situation where the driving field and the field scattered off the
emitter interfere destructively. For even larger values of κ, g(2)

ss (0) approaches 1 as
the coherent driving field becomes the dominant term in eq. (C.47).
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