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A B S T R A C T

This thesis presents measurements on Majorana islands:
semiconductor-superconductor hybrid nanowire quantum dots
in the trivial and the topological superconducting phase.

We fabricate Majorana island devices based on indium arsenide
nanowires with an epitaxially matched aluminum half-shell. Mea-
suring quasiparticle transport, we observe a gate voltage dependent
even-odd Coulomb blockade pattern, associated with quasiparticle
occupation of bound states, for which we demonstrate state parity
lifetimes exceeding 10 milliseconds.

Using Coulomb-blockade spectroscopy and varying the magnetic
field, we measure oscillating energy splittings of near-zero energy
states, consistent with theoretical predictions for hybridized Majo-
rana modes. We present a length study of Majorana islands and
demonstrate the exponential suppression of energy splitting with in-
creasing island length, as expected for Majorana modes, with a char-
acteristic length of 260 nm. For long devices exceeding one micron,
transport at high magnetic fields shows discrete zero-energy states,
with an energy gap to a higher-energy continuum, and evenly spaced
Coulomb-blockade conductance peaks, a signature of teleportation
via Majorana modes. A preliminary analysis shows that Coulomb
peaks also feature an alternating magnetic field dependent skew, the
subject of future work.

We additionally observe novel transport signatures of quasiparti-
cle poisoning in a Majorana island strongly coupled to normal metal
leads. Numerical simulations show good agreement with measure-
ments and allow us to extract a time for poisoning of the island’s
ground state from the leads of 3 microseconds.
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1
I N T R O D U C T I O N

The steady miniaturization of electronic components has led to an
exponential increase in computing power, with transistor counts dou-
bling every two years over the last four decades. As feature sizes
approach their fundamental atomic limit, this exponential growth,
described by Moore’s law, is expected to slow, and new computing
paradigms are needed to sustain increases in processing capacity. A
means to this end is the rapidly growing field of quantum computing,
in which classical logical elements like bits and gates are replaced by
quantum analogues. The principles of quantum computing were in-
troduced in the 1980s, when it was realized by Richard Feynman that
an accurate simulation of physical systems, based on the underlying
laws of quantum physics, cannot be done efficiently by a classical
computer [1]. The proposed solution was to use engineered quantum
systems to simulate other quantum systems, and to exploit the pe-
culiarities of quantum physics, such as entanglement and quantum
superpositions, for computational gain.

Theoretical research in the following decades led to the discov-
ery of a multitude of quantum algorithms, some of which offer
super-polynomial speed-up for problems like integer-factorization
and discrete-logarithms [2], or polynomial speed-up for database
search [3]. Integer-factorization and discrete-logarithms are perhaps
the two applications driving the most investment in quantum com-
puting research. They are intrinsically difficult for classical comput-
ers to solve, requiring unfeasibly long computation times for practi-
cally attainable key lengths (on the order of the age of the universe,
or longer), and as such form the basis of most modern forms of
cryptography. Their efficient execution on a sufficiently large scale
fault-tolerant quantum computer could render most current forms of
encryption vulnerable, which is the reason why military and intel-
ligence agencies are among the major financial contributors to quan-
tum computing research. The potential threat of a quantum computer
for the secure transmission of information in civilian and military con-
texts has, conversely, led to the formation of the research field of post-
quantum cryptography, secure against quantum computers, which is,
ironically, also backed by military and intelligence agencies. Other,
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2 introduction

motivations for quantum computing research are the potential impact
of quantum simulation, which could lead to breakthroughs in fields
such as biology or medicine [4], or quantum annealing [5], which
could offer speed-ups in optimization problems commonly found in
the field of artificial intelligence [6, 7].

The fundamental building block of a quantum computer, the qubit,
is a two-level quantum system that can exist in a coherent super-
position of states 0 and 1, described mathematically by a state vec-
tor |ψ〉 = cos θ

2 |0〉+ eiφ sin θ
2 |1〉. Implementations of qubits are real or

approximate two-level systems made from physical components as
diverse as atoms [8, 9], photons [10], nuclei [11], superconducting
circuits [12–14], quantum dots [15], and non-abelian anyons [16, 17],
among many others.

Quantum information stored in physical systems is intrinsically
fragile and cannot be duplicated [18], making error correction dif-
ficult. Decades of experimental research have, as of 2016, increased
coherence times and quantum gate fidelities so that that several hun-
dred qubit operations can be performed before the quantum informa-
tion is lost to decoherence [19]. This is of interest, because if single-
and two-qubit gate operations become reliable enough, quantum er-
ror correction schemes [20] can come into play and extend coherence
long enough to run fault-tolerant quantum computations. Quantum
error correction, however, requires a large number of physical qubits
to encode one logical qubit, with estimates of 103 to 104 physical
qubits per logical qubit to achieve fault-tolerance for surface code
architectures [21].

An alternative approach that attempts to build fault-tolerance right
into the qubit hardware is to use non-abelian anyons [16]. Computa-
tions are performed by moving anyons around one another, which
is known as braiding [16, 17]. A predicted realization of non-abelian
anyons are Majorana modes in one-dimensional topological supercon-
ductors. As Majorana modes always come in pairs that form a sin-
gle fermionic state with fixed quasiparticle parity |0〉 or |1〉, a log-
ical qubit with fixed total parity can be created by combining two
fermionic Majorana states such that |ψ〉 = cos θ

2 |00〉+ eiφ sin θ
2 |11〉

[17]. Due to the non-local nature of the fermionic state formed by two
Majorana modes - they exist on opposite ends of the one-dimensional
structure - this qubit would be protected from decoherence resulting
from local perturbations [22]. The degree of non-locality and thus
the protection of a Majorana qubit is given by the underlying wave
function overlap of the constituent Majorana modes present on each
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side, which is expected to decrease exponentially with the length L
of the system according to ∝ e−L/ξ , with Majorana coherence length
ξ [22, 23]. Despite these encouraging results, Majorana qubits are not
protected from quasiparticle poisoning events that change the parity
of individual Majorana states, which thus constitute a fundamental
limit to their coherence [24]. If Majorana qubits are to be the means
towards building a fault-tolerant quantum computer, exponential pro-
tection of Majorana modes needs to be demonstrated and quasiparti-
cle poisoning rates need to be quantified.

The experimental work presented in this thesis is at the intersec-
tion between the mature research area of quantum dots [25] and the
novel field of superconductor-semiconductor hybrids [26]. Chapters
2 and 3 introduce the physics of Majorana islands, semiconductor-
superconductor nanowire hybrid quantum dots that can be brought
into a topological superconducting phase at high magnetic fields,
while Chapter 4 gives details on their fabrication. Based on measure-
ments on Majorana islands, Chapter 6 reports the first observation
of exponentially protected Majorana modes and extracts a coherence
length ξ = 260 nm, implying that sufficient protection is possible at
experimentally feasible device lengths in the micrometer range.

The main other source of decoherence in proposed Majorana qubits,
quasiparticle poisoning, is explored for internal and external sources
of quasiparticles. In this regard, Chapter 5 estimates a lower bound
on the state parity lifetime of ∼ 10 ms for poisoning from the prox-
imitizing superconductor, potentially long enough to allow for many
braiding operations. Poisoning from the Majorana island’s normal
metal leads is investigated in Chapter 7, with an extracted poisoning
time of ∼ 3 µs.

As no Majorana qubit has been demonstrated yet, it is unclear what
its coherence will be, and whether the reality of topological quan-
tum computation will live up to the expectations. While the complex-
ity of the task is formidable, recent theoretical proposals for fusion
rules [27], Majorana braiding [28], and topological quantum computa-
tion [29] schemes based on Majorana islands provide a clear roadmap
for experimentalists to follow. On the way, they will characterize an
exciting new class of quasiparticle, governed by non-Abelian statis-
tics so far unobserved in nature. Their potential discovery carries a
significance for physics on par with the impact of Majorana-based
topological quantum computers. Hopefully it will be in a Majorana
island.
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T H E O RY A N D FA B R I C AT I O N





2
M A J O R A N A M O D E S

This chapter will introduce Majorana modes and their emergence in
quantum wires with proximity-induced superconductivity. It gives
an overview of their fundamental properties, in particular those that
are experimentally accessible by tunneling spectroscopy in Majorana
island geometries. Much has been written about Majorana fermions,
and for a more structured introduction into topological superconduc-
tivity, the reader is referred to the canonical review articles [30, 31].

2.1 historical background

Majorana fermions were originally proposed by Italian physicist Et-
tore Majorana in 1937 as particles that are their own antiparticles [32].
They are one flavor of three kinds of fermions, the other being Weyl
fermions [33] and the more commonly encountered Dirac fermions.
Most of the fermions in the standard model of particle physics are
Dirac fermions. This includes the six quark flavors up, down, strange,
charm, top and bottom in addition to the three leptons electron, muon
and tauon, and their respective antiparticles. The remaining three lep-
tons, the neutrinos, are the electron neutrino, the muon neutrino and
the tauon neutrino. It is currently not clear whether they belong to the
Dirac fermion class, or whether they are Majorana fermions. As it has
been hypothesized by Majorana himself that a neutrino and its anti-
neutrino are actually the same particle, albeit with a flipped spin [34].
If neutrinos are indeed Majorana fermions, they would be the only
elementary particle that have these properties.

Universally considered a genius, Majorana grew increasingly more
reclusive and strange towards the end of his life [34]. He emptied
his bank account and took the night boat from Naples to Palermo on
March 23rd, 1938 [35]. In Palermo, he sent several dramatic letters to
friends, hinting at a sudden disappearance and apologizing for his
future actions. Two days later, on March 25th 1938, however, he took
the night boat back to Naples, where he would never arrive. While
there are anecdotal stories of him becoming a beggar in Naples or re-
treating into a monastery, the most widely held theory is that he com-
mitted suicide by jumping off the boat into the Mediterranean Sea.

7



8 majorana modes

In his 2009 review of Majorana physics [34], Frank Wilczek quotes
Enrico Fermi as saying: “Majorana had greater gifts than anyone else
in the world. Unfortunately he lacked one quality which other men
generally have: plain common sense.”

More than 50 years after Majorana’s disappearance, it was realized
that Majorana fermions can appear as excitations in topological su-
perconductors [22, 23, 36], and are of interest for topological quan-
tum computation due to their predicted non-Abelian exchange statis-
tics [16,17]. Subsequent theoretical proposals suggested semiconduct-
ing nanowires in proximity to a superconductor as a potential plat-
form to realize a topological superconductor [37, 38]. This generated
much experimental interest and led to a flurry of experiments report-
ing signatures of Majorana modes in nanowires [39–42], followed by
the experimental discovery of Majorana physics in atomic chains [43].

2.2 mathematical description

Without much mathematical rigor, we will briefly introduce the math-
ematical description of Majorana fermions and demonstrate some of
their properties [30]. We formally define the Majorana operators γ1

and γ2 by decomposing the fermionic annihilation and creation oper-
ators c and c† into their real and imaginary parts

c =
1
2
(γ1 + iγ2) (2.1)

c† =
1
2
(γ1 − iγ2) . (2.2)

This definition implies that Majorana fermions can only come in
pairs, with two Majorana fermions forming one fermionic state. This
nomenclature is quite confusing, and we will do our best to distin-
guish whether we are referring to a single Majorana fermion or the
fermionic Majorana state in the following discussion. Before we fill
this with more physical meaning, it is instructive to see a few mathe-
matical consequences resulting from the definition in Equations (2.1)
and (2.2). By eliminating γ1 or γ2, respectively, we obtain

γ1 = c + c† = γ†
1 (2.3)

and

γ2 = i
(

c† − c
)
= γ†

2 (2.4)
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and conclude that since their creation operator is equal to the annihi-
lation operator, a Majorana fermion is its own antiparticle.

Following the definition in Equations (2.1) and (2.2), any fermionic
state is formed by two Majorana fermions, but in most cases they
are not spatially separated [30]. As most of the interesting physics
arises when we create a fermionic state from two spatially separated
Majorana operators, we will approach this next.

2.3 the kitaev chain

Some of the central properties of Majorana modes can be understood
using a simple toy model. Following Kitaev [22], we consider a 1D
tight-binding chain of N spinless electrons that act under a super-
conducting p-wave pairing. The corresponding Hamiltonian is given
by

Hkit =
N

∑
j=1

[
− t
(

c†
j cj+1 + c†

j+1cj

)
+ ∆pcjcj+1 + ∆∗pc†

j c†
j+1

− µ

(
nj −

1
2

) ]
,

(2.5)

where nj = c†
j cj is the number operator on site j, µ is the chemical

potential, ∆p = |∆p|eiθ is the p-wave pairing gap, and t is the hopping
amplitude between sites j and j + 1.

We can safely disregard the phase dependence of the pairing gap
by defining Majorana operators [22]

γ2j−1 = ei θ
2 cj + e−i Θ

2 c†
j

γ2j = −iei θ
2 cj + ie−i Θ

2 c†
j

(2.6)

that fulfill the relationship γ = γ†.
Solving for cj, c†

j and inserting into Equation (2.5) yields

Hkit =
i
2

N

∑
j=1

[
− µγ2j−1γ2j +

(
|∆p|+ t

)
γ2jγ2j+1

+
(
|∆p| − t

)
γ2j−1γ2j+2

]
.

(2.7)

We will examine two cases of this Hamiltonian next. If we pick pa-
rameters t = ∆p = 0 and µ < 0, Equation (2.7) reduces to

Hkit = −µ
i
2

N

∑
j=1

(
γ2j−1γ2j

)
= −µ

N

∑
j=1

(
c†

j cj −
1
2

)
. (2.8)
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Figure 2.1: Trivial and topological pairing in the Kitaev chain. a, In the
trivial regime, ∆p = t = 0, Majorana operators (red) from the
same site form a fermion (light blue) with associated operator cj.
b, In the topological regime, such as for 0 < |∆p| = t, Majorana
operators from adjacent sites form a fermion with operator c̃j,
leaving two unpaired Majorana operators at the chain ends that
can be parameterized as a new fermion c̃M (green) at zero energy.

This describes the trivial case of N non-interacting fermions on a
chain, as shown in Figure 2.1a.

For the topological case |∆p| = t and µ = 0, however, the Kitaev
model finds [22]

Hkit = it
N

∑
j=1

γ2jγ2j+1 (2.9)

If we now construct new fermion operators,

c̃j =
1
2
(γ2j + iγ2j+1) (2.10)

and

c̃†
j =

1
2
(γ2j − iγ2j+1), (2.11)

that couple sites 2j and 2j + 1, we can write Equation (2.9) as

Hkit = 2t
N−1

∑
j=1

(
c̃†

j c̃j −
1
2

)
. (2.12)

The system of N fermions with associated creation operators cj can,
in this regime, therefore equivalently be described by N− 1 fermions
with associated operators c̃j that pair Majorana operators on sites 2j
and 2j + 1, shown in light blue in Figure 2.1b, in addition to a highly
delocalized fermion associated with annihilation operator

c̃M =
1
2
(γ1 + iγ2N) (2.13)
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Figure 2.2: Nanowire in proximity to a superconductor. A magnetic field,
B, can be applied along the nanowire axis.

and creation operator

c̃†
M =

1
2
(γ1 − iγ2N) . (2.14)

This peculiar pairing of the outermost Majorana operators is indi-
cated schematically in green in Figure 2.1b.

We take note of a few interesting properties of the peculiar fermion
described by c̃M: It is composed of two Majorana operators, one at
either end of the chain. It constitutes a zero-energy excitation of the
system, as it does not appear in the Hamiltonian in Equation (2.12).
Lastly, its emergence is independent of the chain length, as long as
the system parameters stay constant along the chain.

2.4 nanowire in proximity to a superconductor

In the previous treatment we have assumed that superconducting p-
wave pairing had already been introduced in the chain. It was real-
ized by several proposals [37,38] that similar physics can be obtained
for semiconducting nanowires with high g-factors and strong spin-
orbit coupling, as is the case for InAs [40, 42] or InSb [39, 41], in prox-
imity to an s-wave superconductor like aluminum [40,42] or niobium
titanium nitride [39, 44].

We sketch the derivation in the proposals [37, 38] by considering
a single-mode nanowire of length L with proximity induced s-wave
superconducting pairing of strength ∆ in an external magnetic field
B, shown in Figure 2.2. We assume that the nanowire is pointing in
the y-direction, that the magnetic field B is pointing in the x-direction,
and that spin-orbit interaction is present in the nanowire and directed
along the z-axis. The results of the following derivation are, however,
valid as long as the magnetic field is orthogonal to the direction of
spin-orbit coupling.
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In Bogoliubov-de Gennes (BdG) notation, the Hamiltonian of this
nanowire is given by [37, 38]

Ĥ =

L∫
0

Ψ†(y)HΨ(y)dy (2.15)

with

H =

(
p2

2m
− µ(y)

)
τz +

αR

h̄
pσzτz + gµB

B(y)
2

σx + ∆(y)τx, (2.16)

spinor Ψ† =
(

ψ†
↑, ψ†
↓, ψ↑,−ψ↑

)
, and Pauli matrices τ and σ operat-

ing in particle-hole space and spin space respectively. Here, µ is the
chemical potential, µB is the Bohr magneton, h̄ is the reduced Planck
constant, p is the momentum operator, g is the g-factor, m is the elec-
tron mass, and αR is the strength of Rashba-type spin-orbit coupling.

Assuming constant µ, αR, ∆ and B along the nanowire, the eigen-
values can be easily calculated by squaring H twice [38], yielding

E2
± = E2

Z +∆2 + ξ2
p +

(αR

h̄
p
)2
± 2
√

E2
Z∆2 + E2

Zξ2
p + (

αR

h̄
p)2ξ2

p (2.17)

with Zeeman-energy EZ = gµB
B
2 and ξp = p2

2m − µ.
We will first assume the absence of superconductivity (∆ = 0), no

magnetic field (B = EZ = 0) and set µ = 0 for simplicity. The disper-
sion relation reduces to

E±
(
ky
)
=

h̄2k2
y

2m
± αRky, (2.18)

where we have made use of p = h̄ky. This describes two parabolic
bands, shifted by ±kSO = ±mαR

h̄2 due to spin-orbit coupling, as shown
in Figure 2.3a. The associated energy scale is the spin-orbit energy
ESO =

mα2
R

2h̄2 .
Applying a magnetic field will lead to a finite Zeeman term in

Equation (2.17) and cause the opening of an energy gap of 2EZ at ky =

0, shown in Figure 2.3b. If the chemical potential is in the gap, as it
is the case for µ = 0, spin and momentum are locked. For sufficiently
small fields EZ < ESO, spins for states with opposite wave-vector will
be nearly anti-parallel (spin-← for ky > 0, spin-→ for ky < 0) and the
wire is in a helical state (Figure 2.3b). Increasing the magnetic field
will push the lower band down, such that for EZ � ESO and µ = 0
spins will be nearly parallel (Figure 2.3c).

Next, we introduce a superconducting pairing by setting ∆ > 0
and, for simplicity, examine the special case that µ = 0. Introducing
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Figure 2.3: Nanowire band structure. a, Spin-split bands due to spin-orbit
coupling in the non-superconducting regime. b, An applied mag-
netic field opens up a gap with magnitude 2EZ at ky = 0. For a
chemical potential in the gap, states with ±ky have nearly anti-
parallel spins. The nanowire is in a helical state. c, For a higher
magnetic field so that EZ � ESO, and a chemical potential in
the gap, spins at ±ky are nearly parallel. d, BdG spectrum in
the topologically trivial superconducting phase. e, For EZ = ∆,
the gap closes and a topological phase transition takes place. f,
At higher magnetic fields the gap at ky = 0 reopens and the
nanowire is in the topological superconducting phase.

superconducting pairing will double the bands due to electron-hole
symmetry and, for EZ = 0, open a gap of ±EG = ∆ around the
Fermi energy. For a finite magnetic field EZ < ∆, this gap is said
to be pairing dominated, but reduced by the Zeeman term accord-
ing to ±EG = ∆− EZ, shown in Figure 2.3d. The wire is still in the
topologically trivial phase. For higher magnetic fields so that EZ = ∆,
shown in Figure 2.3e, we find that EG = 0 and the gap closes, which
leads to an inversion of energy bands and a phase transition towards
a topologically superconducting phase. As vacuum is topologically
trivial, a band inversion has to take place at the system boundary,
leading to the formation of near-zero energy Majorana states at the
wire ends. For EZ > ∆, the gap is said to be Zeeman dominated with
±EG = EZ − ∆ at ky = 0 the dominant energy gap at low fields. For
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higher fields, however, the gap at ky = ±kSO will be dominant due to
the steadily increasing Zeeman gap at ky = 0.

While the band structures in Figure 2.3(d-f) have been calculated
for the special case of µ = 0, the requirement for the emergence of
topological superconductivity in the general case is EZ >

√
∆2 + µ2.

2.5 mode hybridization for finite systems

We saw that in the Kitaev model [22] the Majorana state is described
by the operator c̃M = 1

2 (γ1 + iγ2N) and we have motivated the emer-
gence of Majorana states at the wire ends in the full treatment of the
Hamiltonian in Equation (2.16). A complete analysis reveals that the
individual Majorana wave functions for the left and right Majorana
extend into the center of the nanowire on a characteristic length scale
ξ. Calculating the exact spatial extent of a Majorana wave function is
rather involved, making use of Green’s functions and theoretical ap-
proaches beyond the scope of this thesis [45]. The results, insofar as
they are relevant for an understanding of the presented physics, will
be briefly summarized here, along with a sketch of the derivation.

For a nanowire with length L and endpoints at y = 0 and y = L we
find for the wave function of the left Majorana [45]

Ψl(y) ∝ e−
y
ξ e±ikF,effy. (2.19)

One can further show that the right Majorana is described by

Ψr(y) = σzΨl(L− y) (2.20)

and thus

Ψr(y) ∝ e−
(L−y)

ξ e∓ikF,effy. (2.21)

We note that the spatial dependence of the Majorana wave function is
given by a periodic oscillation at the Fermi wavelength λF = 2π

kF
and

an envelope that decays exponentially with distance from the end of
the topological region. As Majoranas always come in pairs to form a
single fermionic state, we can describe the fermionic state by

ΨM(y) = clΨl(y) + crΨr(y) (2.22)



2.6 state-continuum anti-crossing 15

with normalization requirement |cl |2 + |cr|2 = 1. Its energy is calcu-
lated [45] according to

∆E =

∫
Ψ†

M(y)ĤΨM(y)dy∫
Ψ†

M(y)ΨM(y)dy

≈ h̄2kF,eff
e−

L
ξ

mξ
cos (kF,effL)

= ∆Emax cos (kF,effL) .

(2.23)

Due to the e−
L
ξ term we expect a finite splitting for short nanowires

with L ∼ ξ, while for longer wires the amplitude of the energy split-
ting ∆Emax will vanish exponentially with L. The cos (kF,effL) factor
will lead to oscillations of ∆E when varying B or µ due to their effect
on kF,eff. For the device geometries presented in this thesis, the device
length L is fixed and it is easier to vary magnetic field than chemical
potential. According to BCS theory, the superconducting coherence
length ξ = h̄vF

π∆ decreases with the inverse of the gap [46]. Since the
magnetic field dependence of the induced gap can be approximated
by

∆(B) = ∆0

√
1−

(
B

BC

)2

, (2.24)

where ∆0 is the induced gap at B = 0, and BC is the critical field
of the superconductor, we expect the oscillatory amplitude ∆Emax to
increase as a function of magnetic field. This behavior is shown for a
length of L = 2, 1, and 0.4 µm in the numerical simulations in Figure
2.4, taken from Stanescu et al. [47].

2.6 state-continuum anti-crossing

The proposal to realize Majorana physics in semiconducting
nanowires proximitized by a superconductor, outlined in Chapter
2.4, requires strong spin-orbit coupling, high g-factors, and induced
superconductivity with high critical fields. In Chapter 2.5, it was
motivated that the Majorana state obtains a finite energy ∆E =

∆Emax cos (kF,effL) after the topological phase transition, with mag-
netic field dependent oscillations due to the cosine factor.

Numerical simulations show a closing and reopening of the gap
when crossing the topological phase transition, although local den-
sity of states arguments suggest that this is not necessarily visible in
transport [48]. In the case of strong Majorana overlap and a finite en-
ergy splitting, simulations show that the magnetic field evolution of
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Figure 2.4: Majorana mode hybridization. Majorana state energies oscillate
in an applied magnetic field. The amplitude of energy oscillation
decreases for longer wire lengths Lx. The shortest wire length
Lx = 200 nm on the order of the spin-orbit length lSO ∼ 150 nm,
shows state crossings associated with an effective quenching of
spin-orbit coupling. Figure adapted from Stanescu et al. [47].

the Majorana state is characterized by an anti-crossing between the
hybridized Majorana mode and the next higher energy state at or
near the turnaround point ∆E = Emax [47, 49]. This is shown in the
simulations in Figure 2.4 for the L = 2, 1, and 0.4 µm devices.

Of particular interest is the regime in which the device length
becomes comparable to the spin-orbit length in the semiconductor.
The simulations in Figure 2.4 are based on a spin-orbit length of
lSO ∼ 150 nm. For L = 0.2 µm, spin-orbit coupling is effectively
quenched, resulting in unprotected state crossings at finite energies
after the zero-energy transition, which can be seen at EZ ∼ 0.3 meV
in the bottom right panel in Figure 2.4. The effective absence of spin-
orbit coupling additionally leads to a linear dependence of the state
energy on the Zeeman field, as opposed to the non-linear dependence
given by Equation (2.17) and evident for the other device lengths. Al-
though it is highly overlapping and topologically unprotected, the
finite-energy state for L = 0.2 µm in the regime EZ ∼ 0.1− 0.3 meV is
adiabatically connected to the Majorana modes arising for longer de-
vice lengths, see reference [47] for further information on this. It can
therefore be seen as a Majorana-precursor state. In this regard, the ex-
perimental observation of a crossover between the different regimes
in Figure 2.4, going from state crossings to state-anticrossings as the
length is increased, is a strong indication of Majorana behavior.
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2.7 wave function at the topological phase transition

For the Coulomb-blockaded geometries in this thesis, a magnetic field
is used to drive the nanowire into the topological regime. In the fol-
lowing section we will therefore analyze the transition into the topo-
logical phase as a function of magnetic field.

According to Equation (2.22), the topological regime of the
nanowire is characterized by a highly non-local fermionic ground
state with large weight at the ends of the topological region and
an exponentially decaying tail [22, 23]. Due to the difficulty of spa-
tially resolved probes at cryogenic temperatures, no experimental
data that directly maps the wave functions of Majorana states exists
for nanowire systems yet. Spatial probes on atomic chains, where en-
ergy scales are larger, have, however, impressively demonstrated mid-
gap excitations localized at the chain ends, which were identified as
Majorana modes [43].

Theoretical simulations for nanowires with strong spin-orbit cou-
pling show that for certain system parameters Andreev bound states
can be localized at the wire ends even in the topologically trivial
phase [48, 50]. This seems counter-intuitive, as the delocalized nature
of Majorana modes is heralded as one of their defining characteristics.
The wave function peaks at the end can, however, be understood by
examining the BdG spectrum as a function of different values of the
chemical potential.

The insets of Figure 2.5 shows the calculated BdG spectrum in the
trivial (red, B = 0.9BT) and topological (yellow, B = 1.1BT) regime
for two values of chemical potential µ in an L = 4.5 µm nanowire.
Here, BT denotes the magnetic field at which the topological phase
transition takes place. The main panels shows the spatial extent of
the wave function belonging to the lowest lying state. In the case of
the topological regime (yellow) this is the Majorana state at E = 0. In
the trivial regime (red), on the contrary, the ground state is the lowest
lying state in the energy band.

We first turn our attention to the calculation for µ = 2∆, shown in
Figure 2.5a. To our initial surprise, the ground state in both the topo-
logical (yellow) and the trivial (red) regime has strong wave function
weight at the wire ends, with both curves looking very similar at first
glance.

We compare this to a simulation for µ = ∆/2 in Figure 2.5b. For this
value of chemical potential, the Majorana state (yellow) is localized
at the wire ends, while the lowest energy mode in the trivial regime
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a

b

Figure 2.5: Ground state wave functions. Calculated |Ψ|2 of the lowest en-
ergy BdG states in the trivial (red, B = 0.9BT) and the topological
(yellow, B = 1.1BT) state, as a function of position x along the
nanowire, for two values of the chemical potential µ. BT is the
magnetic field at which the topological phase transition takes
place. Inset shows the calculated BdG spectrum. a, For µ = 2∆,
the simulations show that even in the topologically trivial case
(red), the ground state can be localized at the wire ends and look
superficially similar to the Majorana wave function (yellow). This
is associated with the band minimum at finite k that leads to a lo-
calization at the wire ends (inset, red curve). b, For µ = ∆/2, the
Majorana state (yellow) is characterized by large wave function
weight at the ends of the wire. The trivial ground state (red) is
given by a delocalized bulk mode, which can be associated with
the band minimum at k ∼ 0 (inset, red curve). Figure adapted
from Stanescu et al. [48].

(red) is now delocalized with an anti-node in the center of the wire
and nodes at both ends, reminiscent of the first mode of a particle in
a one-dimensional box [51].

The reason for this striking behavior can be found in the BdG spec-
trum shown in the insets of both panels. For µ = 2∆ the minimum
of the BdG spectrum in the trivial regime is at finite wave-vector k,
resulting in a ground state with a small wavelength and a localized
wave function. On the contrary, the trivial regime for µ = ∆/2 is char-
acterized by a minimum of the energy band at k = 0, resulting in a
long-wavelength mode with λ ∼ 2L.
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Understanding this behavior is of fundamental importance to the
interpretation of transport experiments that probe Majorana states us-
ing tunneling spectroscopy. Here, a sudden increase in state-lead cou-
pling could be indicative of a phase transition of the type shown in
Figure 2.5a [42], whereas the absence of a drastic change in observed
coupling could suggest the type shown in Figure 2.5b.

Finally, we note that despite the similarity of the two wave func-
tions for µ = 2∆, the trivial wave function is not characterized by
the exponential decay towards the inside of the nanowire given by
Equation (2.22).

2.8 conclusion

From a historical perspective, the first experiments reporting sig-
natures of Majorana modes in nanowires have used single-ended
tunneling spectroscopy [39, 40] to probe Majorana states. For single-
ended geometries, in which the superconductor is grounded, trans-
port through a Majorana state at E = 0 manifests itself in a zero-bias
conductance peak that appears at a finite magnetic field correspond-
ing to the topological phase transition inside the nanowire.

The experiments in this thesis differ from previous studies on Ma-
jorana wires, as they are based on a geometry in which the supercon-
ducting region is of mesoscopic size, and electrically isolated from
source and drain contacts by two tunnel barriers. Based on our knowl-
edge of Majorana fermions, we will examine the physics of such sys-
tems in the next chapter.





3
Q U A N T U M D O T S A N D T U N N E L I N G
S P E C T R O S C O P Y

Quantum dots are artificial structures in which electrons can be con-
fined. The confinement potential causes a discretization of their elec-
tronic spectrum, which is why they are colloquially referred to as arti-
ficial atoms. The ability to engineer their spectra has led to the devel-
opment of quantum dot based LEDs [52–54] in quantum dot displays,
quantum dot lasers [55,56], sensors [57–59], solar cells [60,61], or field
effect transistors [62, 63], among others. In addition, quantum dots
have many applications in quantum information science, where they
can be used as qubits [15, 64, 65]. They can be composed from a wide
variety of host materials and geometries, such as two-dimensional
electron gases [15, 66–68], carbon nanotubes [69], graphene [59], and
nanowires [42, 70–72].

This chapter will focus on the transport properties of quantum
dots, and introduce the theoretical basics of Coulomb-blockade spec-
troscopy, a highly useful technique to measure subgap state energies
in Majorana islands.

3.1 transport through quantum dots

In this thesis, nanowire superconductor-semiconductor hybrid quan-
tum dots connected to normal-metal leads are probed by measuring
electron transport in the Coulomb blockade regime, with weak dot-
lead conductance g � e2

h , where e2/h is the conductance quantum.
Coulomb blockade implies that EC � kBT, with quantum dot charg-
ing energy EC = e2/CΣ, and total quantum dot capacitance CΣ, so
that the total charge on the dot, N, is a good quantum number.

Electron transport in Coulomb blockade is a useful tool to mea-
sure the spectrum of electronic states inside the dot, as it allows to
infer ground state energies based on the spacing and movement of
Coulomb peaks, that occur at degeneracies of charge states [25, 73].
As this is one of the main spectroscopic techniques of the work in
this thesis, the relevant theory will be sketched in the following sec-
tion.

21
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We consider a quantum dot connected to metallic source and drain
electrodes, with chemical potentials µS and µD, respectively. The
quantum dot is capacitatively coupled to a gate with applied voltage
VG, and gate capacitance CG. The ground state energy of the quantum
dot occupied by N electrons is then given by [67]

E(N) = ∑
n

εn +
(−e(N − N0) + CGVG)

2

2CΣ
, (3.1)

with single-particle energy levels εn due to quantum confinement,
total dot capacitance including contributions from source and drain
CΣ = CG + CS + CD, and assuming N0 electrons on the quantum dot
at VG = 0.

We define the quantum dot’s electrochemical potential for an oc-
cupation of N as the energy required to add the N-th electron if the
quantum dot is already occupied by N − 1 electrons [74], that is

µN = E(N)− E(N− 1) = εN +
e2(N − N0 − 1/2)

CΣ
− eCGVG

CΣ
. (3.2)

For small bias voltages in the linear regime, sequential through the
quantum dot, by successively filling and removing the N-th electron,
occurs at a gate voltage VN

G chosen so that µS = µD = µN = 0. We
make use of Equation (3.2) to obtain

VN
G = η−1

(
εN +

e2(N − N0 − 1/2)
CΣ

)
, (3.3)

where we have defined the gate lever arm η = eCG/CΣ. The spacing
between two subsequent peaks is given by [75]

S = VN
G −VN−1

G = η−1
(

εN − εN−1 +
e2

CΣ

)
= η−1 (∆EN + EC) ,

(3.4)

where ∆EN is the energy spacing between the (N − 1)th and Nth
energy level. For semiconducting quantum dots, ∆EN > 0 for all N,
as we are subsequently filling states that are increasingly higher in
energy. As will be shown in Chapter 3.3, this does not hold anymore
for superconductor-semiconductor hybrid quantum dots, where ∆E
can be negative due to the presence of a superconducting condensate.

From Equation (3.4) we deduce that a variation in ∆E for subse-
quent charge states leads to variations in the Coulomb blockade peak
spacing S. The conceptually easiest example of this is the filling of
spin-degenerate energy levels in a carbon nanotube quantum dot [69].
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a

b

Figure 3.1: Shell filling in a carbon nanotube quantum dot. a, Differential
conductance, G, as a function of gate voltage, Vg, showing a se-
ries of Coulomb peaks. b, The peak spacing, ∆Vg, as a function
of peak index exhibits an alternating pattern. (right panel) The
histrogram of peak spacings shows a bi-modal distribution, sug-
gesting that the larger spacings are due to the additional energy
cost of adding an electron into a new shell, whereas for lower
spacings an electron with different spin direction is added to an
already occupied shell. Figure adapted from Cobden et al. [69].

As shown conceptually in Figure 3.1, each spin-degenerate level can
take exactly one spin-↑ and one spin-↓ electron. For an even N, lev-
els are spaced by ∆E = εN+1 − εN , with single-level energies εn. For
the transition from odd N to even N, we are instead filling a spin-
↑ electron into the level already occupied by a spin-↓ electron, and
consequently only have to pay the charging energy.

The Coulomb peak spacing in gate voltage is then given according
to S = η−1 (EC + pN (εN+1 − εN)) with pN = 1 (pN = 0) if N is even
(odd). This leads to a Coulomb blockade pattern in which every even
Coulomb valley is larger than the odd, as shown in Figure 3.1, and in
which the spacing is directly related to the energy of the states in the
quantum dot.

3.2 bias spectroscopy of n-s interfaces

We derived in the previous section that the ground state of quantum
dots can be spectroscopically probed using the position of Coulomb
peaks. By peak movement alone, however, we cannot infer the energy
of excited states of the quantum dot. This necessitates techniques such
as bias spectroscopy, which we will briefly introduce.
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In a landmark paper, Blonder, Tinkham and Klawijk studied trans-
port at interfaces between a normal metal and a superconductor [75],
in the following referred to as an N-S interface. As charge carriers
in the superconductor are Cooper pairs at the Fermi energy, and a
continuum of higher energy quasiparticles, while the normal metal
has electrons, they were interested in the conversion from normal to
supercurrent as a function of the barrier strength Z at the N-S inter-
face. They found that for very opaque barriers (Z2 � 1) the current
through the N-S junction at applied bias VSD is given by

INS (VSD) =
1

eRN

∞∫
−∞

[
f0 (E− eVSD)− f0 (E)

]
DS(E)dE, (3.5)

where f0(E) is the Fermi distribution function for electrons at energy
E, RN is the normal state resistance, and DS(E) is the density of states
of the superconductor at energy E. Setting µ = 0, the differential
conductance at bias voltage VSD consequently reduces to

g(VSD) =
dI

dVSD

=
1

eRN

∞∫
−∞

d f0 (E− eVSD)

dVSD
DS(E)dE.

(3.6)

We use that in the zero temperature limit the Fermi function becomes
the Heaviside step function f0(E) = Θ(−E), and that

dΘ(x)/dx = δ(x). (3.7)

Inserting into Equation (3.6) yields

g(VSD)
T→0
=

1
eRN

∞∫
−∞

dΘ (eVSD − E)
dVSD

DS(E)dE

=
1

eRN

∞∫
−∞

δ (eVSD − E) DS(E)dE

=
1

eRN
DS(eVSD),

(3.8)

from which we conclude that the differential conductance at VSD in
the zero-temperature limit is proportional to the density of states of
the superconductor at E = eVSD. We can thus spectroscopically probe
states in the superconductor by measuring differential conductance
as a function of bias voltage, which is known as bias spectroscopy.
While we sketched the result for N-S interfaces, the analogous calcu-
lation for an N-S-N double-junction, or even a superconducting quan-
tum dot, is more involved and analytically unexplored for Majorana
islands.
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Figure 3.2: Majorana island device. a, The InAs nanowire (green) with epi-
taxial Al island (light blue) of length L is contacted by normal
metal (Ti/Au) Ohmic contacts (yellow). A bias voltage, VSD, can
be applied across the device, with measured current I indicated.
b, Electron micrograph (false colored) of a fabricated device.

3.3 density of states of a majorana island

With Coulomb-blockade spectroscopy and bias spectroscopy, we have
two powerful tools at hand to probe states inside the Majorana island.
We will examine the expected density of states of Majorana islands
next.

The type of Majorana island which is discussed in this thesis is an
indium arsenide nanowire coated with an epitaxial aluminum island
of length L, schematically shown in Figure 3.2, and coupled to nor-
mal metal (titanium/gold) Ohmic contacts (for fabrication details see
section 4.4) through a semiconducting wire segment. The bare InAs
region allows to tune the coupling to the leads by changing the den-
sity in the semiconductor using electrostatic cutter gates, while the
chemical potential of the device is controlled by applying a voltage
VG to a plunger gate.

The epitaxial coupling between the superconducting Al and the
semiconducting InAs causes the semiconductor to inherit the super-
conducting properties of the Al [76]. This proximity effect can be mod-
eled for Majorana wires in different ways, which we will briefly re-
view. An effective superconducting pairing can be either introduced
“by hand” [37,38] (such as for the Hamiltonian in Equation (2.16), and
in Figure 3.3a, taken from Chevallier et al. [50]), or by explicitly mod-
eling the tunnel coupling between the semiconductor and the super-
conductor [48, 50, 77, 78], schematically shown in Figure 3.3b. The lat-
ter has the advantage that the calculated density of states accurately
reflects the finite level spacing inside the semiconducting nanowire
due to longitudinal quantization along the nanowire axis. At ener-
gies larger than the superconducting gap, ∆, the density of states
is continuous, as expected for a superconductor. For energies below
the superconducting energy gap, however, multiple Andreev bound
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Figure 3.3: Superconducting proximity effect. Local density of states
(LDOS) in a nanowire in proximitiy to a superconductor as a
function of energy Ω, normalized to the energy gap of the prox-
imitizing superconductor ∆. a, Superconducting pairing intro-
duced “by hand”. b, Proximity effect modeled using a hopping
term between the superconductor and the semiconductor, show-
ing the emergence of Andreev bound states at energies smaller
than the gap. Figure adapted from Chevallier et al. [50].

states (ABS) appear in the spectrum. Their energy spacing ∝ 1/L re-
flects the quantization along the nanowire axis [50], where L is the
nanowire length. The number of Andreev levels with 0 < E < ∆ is
given roughly by the ratio between level spacing and ∆. The energy of
the lowest subgap state and consequently the quality of the proximity
effect is determined by the coupling between the semiconductor and
the superconductor, with stronger coupling resulting in higher state
energies up until the gap-edge [78, 79].

The numerical results shown in Figure 3.3b were modeled for a sys-
tem with level spacing significantly smaller than the superconducting
gap. For level spacings comparable to the gap, which was experimen-
tally found to apply for shorter devices with L < 1 µm [42, 72], only
a single ABS contributes to the density of states at energies E < ∆.
The complete density of states of the hybrid system, in this approxi-
mation, is consequently given by the sum of the BCS density of states
ρBCS, and that of the Andreev state, ρ0, according to [72]

D(E) = ρBCS(E) + ρ0(E). (3.9)

The BCS density of states can be approximated as [46]

ρBCS(E) =
ρAlV|E|√
E2 − ∆(B)2

θ (|E| − ∆(B)) , (3.10)
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with normal-state density of states per volume in the aluminum, ρAl,
aluminum volume V, and the magnetic field dependent supercon-
ducting energy gap

∆(B) = ∆0

√
1−

(
B

BC

)2

, (3.11)

with zero-field gap ∆0 ∼ 180− 200 µeV for aluminum.
As the Andreev state is spinful, its energy E±0 for each spin direc-

tion is given by

E±0 (B) =
∆(B)

∆0
E0(B = 0)± 1

2
gµBB, (3.12)

where the first term takes into account the lowering of the state en-
ergy due to the magnetic field-induced suppression of the supercon-
ducting gap, and the second term is the Zeeman energy EZ.

The density of states contribution for each spin direction ρ±0 is
taken to be a Lorentzian level with broadening γ. Due to electron
hole symmetry D(E) = D(−E) we should include positive and nega-
tive energies for each spin direction according to

ρ±0 (E) =
γ/2π

(E− E±0 )2 + (γ/2)2
+

γ/2π

(E + E±0 )2 + (γ/2)2
, (3.13)

yielding for the total density of states contribution of the Andreev
state

ρ0(E) =
1
2
(
ρ+0 (E) + ρ−0 (E)

)
. (3.14)

The prefactor of 1
2 is necessary because we artificially doubled the

states in Equation (3.13). In this formalism the normalization of each

Lorentzian in Equation (3.13) implies that
+∞∫
−∞

ρ±0 (E)dE = 2, but the

state corresponding to the two terms can not be occupied simultane-
ously, which we need to correct for.

Inserting Equations (3.10) and (3.14) into Equation (3.9) we arrive
at

D(E) =
ρAlV|E|√
E2 − ∆(B)2

θ (|E| − ∆(B)) +
1
2
(
ρ+0 (E) + ρ−0 (E)

)
,

(3.15)

the total density of states of a Majorana island in the large level spac-
ing regime. This is sketched and compared to a measurement in Fig-
ure 3.4.
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Figure 3.4: Density of states of a Majorana island. a, For a large level spac-
ing, the density of states can be approximated as a Bardeen-
Cooper-Schrieffer continuum at energies larger than the super-
conducting energy gap ∆ in addition to a single subgap state at
energy E0. b, Tunneling spectroscopy in a Majorana island with
L = 310 nm shows transport through a single subgap state and
a higher energy continuum [72].

3.4 coulomb-blockade spectroscopy of majorana is-
lands

In Chapter 3.1 we learned how peak spacings in quantum dots
relate to state energies, which we explored in Chapter 3.3 for
semiconductor-superconductor hybrid nanowires. Combining the
two, we will now proceed to apply the theory of Coulomb blockade
to Majorana islands. The interesting property of this hybrid system
is that while a single quasiparticle must occupy the subgap state at
E = E0, superconductivity provides an even-N ground state in which
all quasiparticles pair up into Cooper pairs at E = 0. This will give
rise to an even-odd effect that is qualitatively different from the sub-
sequent filling of spin-degenerate shells [80].

Following Equation (3.1), the energy of the quantum dot with N
electrons can be written as

EN =
EC

2
(NG − N)2 + pNE0 (3.16)

with pN = 0 for even and pN = 1 for odd N. This describes a series
of parabolas, which is shown in Figure 3.5 for three state energies
E0. Transport through the device can occur at degeneracies of charge
states, indicated by solid circles.

The dominant transport process through the Majorana island de-
pends critically on the ratio of charging energy and subgap state en-
ergy. In the first regime, E0 > EC/2, there is an even-N ground state
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Figure 3.5: Energy of a Majorana island. a, For a subgap state energy
E0 > EC/2 at B = 0, Coulomb peaks occur at degeneracies of
charge states differing by 2e, indicated by solid black circles,
and feature an even spacing ∆Ne (see text). b, In an applied
magnetic field, E0 is lowered by the Zeeman energy EZ. For
E0 (B > 0) < EC/2, an odd ground state emerges around inte-
ger values of NG. Coulomb peaks can now occur at degenera-
cies of charge states differing by 1e, indicated by solid orange
circles, and feature even and odd spacings of ∆Ne and ∆No. c,
For E0 (B) = 0, i.e. EZ = E0 (B = 0), degeneracies occur at half-
integer values of NG, leading to evenly spaced Coulomb peaks
with ∆Ne = ∆No.



30 quantum dots and tunneling spectroscopy

for any value of NG. This leads to degeneracies of even-N states at
odd-integer values of NG, indicated by black solid circles in Figure
3.5a. Coulomb peaks, occurring at degeneracies of charge states, are
thus regularly spaced and 2e periodic. As N and N + 2 states differ
by a charge of 2e, the device is subsequently charged with Cooper
pairs, with Andreev reflection between the leads and the supercon-
ducting island as the dominant transport process at the degeneracy
points. A measurement that shows this effect for a Majorana island
with L = 790 nm [42] is shown in Figure 3.6a.

In the second regime, E0 < EC/2, diagrammed in Figure 3.5b, an
odd ground state becomes available around integer values of NG. This
regime can be achieved by engineering the device parameters for a
large charging energy, or, as indicated in Figure 3.5b, by lowering E0

by the Zeeman energy EZ in an applied magnetic field B.
Coulomb peaks can now occur at degeneracies of states that differ

by one charge, resulting in quasiparticle tunneling as the dominant
transport process. Assuming N is even, the peak position in gate-
induced charge on the higher gate voltage side, NG,oe, of an odd valley
can be calculated by setting EN−1 = EN , i.e.

EC

2
(NG,oe − (N − 1))2 + E0 =

EC

2
(NG,oe − N)2 (3.17)

and therefore

NG,oe = N − 1
2
− E0

EC
. (3.18)

Correspondingly, for the peak on the higher gate voltage side, NG,eo,
of the subsequent even valley we find

NG,eo = N +
1
2
+

E0

EC
. (3.19)

The spacings for even and odd Coulomb valleys, ∆Ne and ∆No which
are indicated in Figure 3.5b, are thus given by

∆Ne = NG,eo − NG,oe

= 1 + 2
E0

EC

(3.20)

and

∆No = 2− ∆Ne = 1− 2
E0

EC
. (3.21)

We can convert into a spacing in gate voltage using the lever arm
and the charging energy, according to Se,o = η−1EC∆Ne,o, see section
3, and derive an even Coulomb valley spacing

Se = η−1 (EC + 2E0) (3.22)
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Figure 3.6: Transport regimes of a Majorana island. Differential conduc-
tance g as a function of gate voltage VG, and source-drain bias
VSD, for different magnitudes of the applied parallel magnetic
field B|| in an L = 790 nm Majorana island [42]. a, For B = 0,
Coulomb diamonds are 2e periodic and evenly spaced with
width Se at VSD = 0. Conductance at high bias VSD ∼ 0.2 mV
is 1e periodic. b, For B|| = 100 mT, Se decreases and an odd dia-
mond with width So emerges. c, At B|| = 220 mT, even and odd
Coulomb diamonds are 1e periodic and uniformly spaced, with
Se = So. A uniform Coulomb blockade spacing with transport
through discrete resonances, energetically isolated from a higher-
energy continuum, suggests the presence of a state at E0 = 0.

and an odd Coulomb valley spacing

So = η−1 (EC − 2E0) . (3.23)

This behavior can be seen in the measurement in Figure 3.6b, where
the state energy E0 has been lowered in an applied magnetic field of
B|| = 100 mT, and an odd Coulomb diamond with width So has
emerged, while the even diamond’s width Se has shrunk commensu-
rately.

Equations (3.22) and (3.23) imply that the energy of the subgap
state can be easily inferred from the spacing according to

E0 =
η

4
(Se − So) . (3.24)

In particular, we find that E0 = 0 implies Se = So, and the Coulomb
blockade pattern is uniform and 1e periodic, as shown in the en-
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ergy diagram in Figure 3.5c and the corresponding measurement of
Coulomb-diamonds for B|| = 220 mT in Figure 3.6c.

3.5 bias spectroscopy in majorana islands

In order to directly infer the energy of the quantum state, bias spec-
troscopy needs to be performed at fixed chemical potential. It is con-
venient to pick a gate voltage VG corresponding to a half-integer value
of NG, schematically shown in Figure 3.7. We will examine why this
is useful in the following section.

Assuming that N is even, the closest degeneracy point to NG =

N + 1/2 is between the EN and EN+1. Their energy difference at this
gate voltage is consequently

EN+1 − EN =
EC

2

(
N +

1
2
− (N + 1)

)2

+ E0

− EC

2

(
N +

1
2
− N

)2

= E0.

(3.25)

As two tunneling processes are required to transfer a charge across
the island, for NG = N + 1/2 an onset of current I at VSD is thus
indicative of a state, or states, at E = eVSD/2. In particular, a discrete
state at E0 = 0 with an excitation gap to a continuum should be
characterized by an even spacing Se = So and a peak at VSD = 0 at
half-integer gate induced charge.

Away from half-integer values of gate induced charge NG, a con-
ductance peak at VSD cannot be interpreted as indicative of density of
states at E = eVSD

2 anymore.

3.6 discussion

Coulomb-blockade spectroscopy is a useful tool to probe the ground
state energies of quantum dots and has been employed in the past
to measure the discrete electronic spectrum of few-electron quantum
dots [66, 73, 81–83], to explore the role and magnitude of deviations
from the constant interaction model [82,83], and to demonstrate spin-
selection rules [73] when subsequent electrons are added.

In contrast to bias spectroscopy, that allows to probe excited states
of the system, Coulomb-blockade spectroscopy probes the ground
state of the system. Nonetheless, Coulomb-blockade spectroscopy
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Figure 3.7: Gate voltage and induced charge. a, Differential conductance
g as a function of gate voltage VG, and bias voltage VSD for an
L = 310 nm Majorana island [72]. The gate voltage correspond-
ing to half-integer gate-induced charge, NG = N + 1/2, is indi-
cated by a dashed white line. Energy level schematics at positions
indicated by × and ◦ are shown in b. b, (left panel) Source and
drain chemical potential are in the middle of the energy gap and
no current can flow through the device. (right panel) At higher
bias, the subgap state is in resonance with the chemical potentials
of source and drain electrodes, leading to quasiparticle transport.
c, Measurement of an even-odd Coulomb blockade pattern with
gate voltages corresponding to NG = N + 1/2 indicated.

of Andreev bound states has several advantages. In a Coulomb-
blockaded geometry, bias spectroscopy is inherently difficult as it
needs to be performed at a fixed chemical potential to accurately
measure state energies. Especially when it is of interest to explore
the magnetic field evolution of a quantum state, bias spectroscopy re-
quires that there is no field-dependent common mode peak motion.
Common mode peak motion can be caused, for example, by a nearby
field-dependent charge trap that effectively gates the quantum dot
as the magnetic field is varied, and shifts all peaks systematically
in a single gate-direction, see for example Figure 3.8. As Coulomb
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Figure 3.8: Common mode peak motion. a, for an L = 1.5 µm Majorana
island in a parallel magnetic field B||. b, for an L = 400 nm
Majorana island in a perpendicular magnetic field B⊥.

blockade peak spacings Se,o measure differences in chemical poten-
tial, Coulomb-blockade spectroscopy is insensitive to this effect. Us-
ing Coulomb-blockade spectroscopy, it is also possible to probe the
spatial location of the quantum dot by examining capacitative cou-
pling to different gates.

Another advantage that Coulomb-blockade spectroscopy has over
bias spectroscopy is its ability to unambiguously measure negative
bound state energies E0 < 0. We define negative energies here
as negative with respect to the BCS-condensate. This corresponds
to a situation in which it is energetically more favorable for the
superconductor-semiconductor hybrid system to have an odd num-
ber of quasiparticles. Inserting E0 < 0 into Equation (3.24), we find
So > Se and conclude that the odd diamond will be wider than the
even diamond for negative state energies. This is shown for measure-
ments taken at four magnetic fields, B|| = 0, 300, 600, 700 mT, in
Figure 3.9. Here, the device is barely in the regime where E0 < EC/2
at B = 0, leading to a tiny odd Coulomb diamond. For increasing
fields the odd diamond grows, until it is bigger than its adjacent even
diamond at B|| = 700 mT, clearly indicating an energy E0 < 0. This
is in contrast to bias spectroscopy, where a negative state energy is
indistinguishable from a positive state energy due to electron-hole
symmetry.
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Figure 3.9: Negative state energies. Coulomb blockade patterns in an L =

400 nm Majorana island. a, For B|| = 0 there is a strong even-
odd parity effect, implying that E0 is just below EC/2, leading
to an almost vanishing odd diamond. b, For B|| = 300 mT the
odd diamond has grown as E0 is lowered by the Zeeman en-
ergy. c, Near-zero-energy state at B|| = 600 mT, shortly before
the state energy E0 changes sign. d, For B|| = 700 mT, the odd
diamond has grown so that So > Se. This is indicative of a state
energy E0 < 0 as the Majorana island is driven into the topologi-
cal regime.

3.7 conclusion

In Chapter 2 we have gained an understanding of the physics of Ma-
jorana modes, and in Chapter 3 we learned about their experimental
signatures in Majorana islands. Advances in fabrication procedures
only recently allowed for the epitaxial coupling of semiconductors
and superconductors in nanowire geometries that made Majorana is-
lands possible [84]. This has also been found to be a key ingredient
towards obtaining the hard superconducting gaps [79, 85] required
for topologically protected Majorana states. We will turn our atten-
tion towards the fabrication of Majorana islands in the next chapter.





4
D E V I C E FA B R I C AT I O N

This chapter provides information on the nanofabrication procedures
used to make Majorana island devices based on InAs nanowires with
epitaxial Al shell. It summarizes the entire process, from chip blanks
to a finished device, while giving an overview of nanowire selection
criteria and other useful information for a succesful fab.

4.1 chip blanks

A chip blank is a pre-fabricated piece of wafer that already includes
structures that are useful for further fabrication steps and can be fab-
ricated in larger numbers easily. The chip blanks used in this thesis
were fabricated from 4′′ degenerately doped silicon wafers purchased
from University Wafers. Wafer specifications are shown in Table 4.2.
The blanks are based on a previous design [76], which was modified
to account for changes in the process that was developed over the
course of this thesis.

The lithographic patterns pre-fabricated on the chip blanks are
shown in Figure 4.1a. They consist of three sets of alignment marks, in
addition to lines and bondpads. The lines were originally patterned
as meanders using UV-photolithography (parameters shown in Table
4.3) in order to increase their total resistance and make them useful as
a filter. This, however, was deemed unnecessary in the better filtered
QDev fridges. They were replaced by straight lines in later iterations
of the design. Alignment marks consist of a large set used for rough
alignment, patterned using UV-photolithography, a set of small align-
ment marks outside the write field area, and a 50 µm× 50 µm grid
of small alignment marks in the write field area, that is used to de-
termine the position of nanowires. The set of small alignment marks
was patterned using electron beam lithography (EBL), in order to use
it for lithography with < 50 nm precision.

A sample chip with lithographic contacts to a nanowire, bonded
onto a chip carrier, is shown with a size reference in Figure 4.1b.

37
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5 mm
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a writefield

Figure 4.1: Chip blanks and bonded sample. a, CAD design for a chip
blank showing four quadrants with 40 bond pads respectively.
Each quadrant features a 600 µm × 600 µm write field for
nanowire deposition and electron beam lithography steps in the
center, indicated by a red rectangle for the bottom right quad-
rant. b, Magnification of a sample bonded to a ceramic chip car-
rier, with a Danish 1-kr piece for size reference. Electric contacts
to nanowires have been lithographically patterned in the lower
right quadrant. Bond wires connect the bond pads to the chip
carrier.
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3 nm

InAs Al

Figure 4.2: Epitaxial interface between Al and InAs. The TEM image shows
the atomically precise interface between the semiconductor and
the superconductor. Figure adapted from Krogstrup et al. [84].

4.2 nanowire growth

The InAs nanowires with epitaxial Al used for the work in this thesis
were grown using molecular beam epitaxy (MBE) [84]. The growth
consists of a two step process using the vapour-liquid-solid method.
In the first step, the InAs core of the nanowire is grown at 420

◦C with
Au as a catalyst. Afterwards, the system is cooled down to -30

◦C,
whereupon the two-facet Al shell is grown in situ in the MBE chamber.
As the nanowires remain in ultra-high vacuum during the growth
process, the interface between Al and InAs is epitaxially matched,
see Figure 4.2, leading to a good superconducting proximity effect
and a hard induced gap in the semiconductor [79, 84].

At the end of the growth, the nanowires are standing upright with
inter-wire distances of ∼ 2 µm, shown in the scanning electron micro-
graph in Figure 4.3. With typical growth regions of 1 cm× 1 cm, this
leads to tens of millions of wires on a growth chip.

4.3 nanowire deposition

After growth, the nanowires need to be transferred onto chip blanks
in order to fabricate nanowire devices. The three favored methods for
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1 μm

Figure 4.3: Nanowire forest on a substrate. The Au catalyst can be iden-
tified as a small droplet on the top of the nanowires. The lat-
tice mismatch between Al and InAs induces a strain, causing
the nanowires to bend towards the side with deposited Al half-
shell, which is the same for all nanowires. Image courtesy of P.
Krogstrup.

50 μm

wet deposition

50 μm

dry depositiona b

Figure 4.4: Wet and dry deposition of nanowires. a, Dry deposition tends
to form aggregates of nanowire fragments that are unevenly dis-
tributed across the chip surface. b, Wet deposition leads to a
more even distribution of nanowires, with little visible fragmen-
tation.

nanowire transfer are dry deposition using cleanroom wipes, wet de-
position, and single-wire micromanipulator aided dry deposition. For
the purpose of the work presented in this thesis only dry deposition
using cleanroom wipes and wet deposition techniques were used.
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4.3.1 Dry deposition

In order to deposit nanowires on the chip blank, a new and pristine
piece of cleanroom wipe is cut into a triangular shape using ordinary
scissors. The section of the cleanroom wipe from which the triangular
piece is taken should at this point not have been touched by gloves,
or generally anything else except for other pieces of cleanroom wipes.
The triangular piece can then be taken up using pointy tweezers in
a way that leaves a tip of about 2-3 mm of loose cleanroom wipe
extending from the end of the tweezers, with the tip of the tweezers
pointing in the fiber direction of the cleanroom wipe. This piece of
cleanroom wipe can then be dipped on a suitable area on the growth
substrate. For the chip blanks used in this thesis, this was the center of
one or more of the quadrants shown in Figure 4.1a. Afterwards it can
be tapped or swiped multiple times on the area where the deposition
has to take place, depending on the concentration of wires on the
growth substrate. Usually, after three to four taps no more nanowires
will stick to the chip and the cleanroom wipe should be disposed of.
It is recommended to check the concentration of deposited wires after
every piece of cleanroom wipe is discarded, in order to get a feeling
for the required number of taps. This can vary widely, depending
on the concentration, the types of wires, and the experimentalist’s
perception of how hard a tap should be. As not as many nanowires
are dragged across the chip surface, taps are gentler than swipes, but
it is more difficult to cover a large area with wires with this method.
For the work in this thesis a combination of dragging and swiping
was used, with multiple checks on an optical microscope in between
to determine the concentration.

Due to the brutal nature of dry deposition, in which large quanti-
ties of nanowires are picked up, dragged across the substrate chip
and then dragged across the chip blank, it leads to an aggrega-
tion of nanowires in large chunks of hundreds of wires, in addi-
tion to a large number of wire fragments on the chip surface. This
can be clearly seen in the optical micrograph, shown in Figure 4.4a.
The nanowire fragmentation can make drawing the lithographic pat-
tern significantly more time consuming, as it is necessary to avoid
shorts between adjacent lines due to bridging nanowires. This will
almost certainly impede the scalability of multi-wire devices based
on nanowires that were deposited this way. The chunks of nanowires
can be problematic when spinning resist, which is why care should
be taken to get the concentration of nanowires just right.
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4.3.2 Wet deposition

For wet deposition, a small wafer piece of the growth substrate of
around 2 mm × 2 mm is sonicated in a small beaker filled with
methanol. It’s recommended that the beaker should be as small as
possible while still allowing for removal of the chip using tweez-
ers. The chip should be less than 5 mm below the surface of the
methanol in order to increase the concentration of nanowires in the
solution. The exact time of sonication until a suitable concentration
of nanowires is reached depends sensitively on the growth substrate,
which is why no precise estimate can be given. For the work in this
thesis, these times ranged between 10 s and 20 s. Afterwards small
drops of methanol-nanowire solution were pipetted onto the chip sur-
face and dried using a nitrogen gun. When successful, wet deposition
can lead to a significantly more even distribution of nanowires, with
few short wire fragments (Figure 4.4b). It is however more difficult
to control the concentration this way, with many pipetting steps re-
quired to achieve an adequate concentration. For the presented work,
the piece of growth substrate was disposed of after deposition, as it
was unclear how damaging repeated sonication is to the nanowires.
This makes wet deposition the most wasteful technique for nanowire
deposition.

4.3.3 Micromanipulator deposition

Deposition using a micromanipulator was not done for the presented
work, but its advantages and drawbacks are nonetheless discussed
briefly. The method involves using a micron size tip with microme-
ter precision to pick single nanowires from a growth substrate under
a microscope. The wires are picked up at the stem and stick to the
tip due to van der Waals forces. Afterwards, the tip is brought into
proximity with the chip blank until the nanowires stick to the sur-
face. The orientation of the nanowire can be changed by using the tip
to push it around the chip surface. Additionally, several nanowires
can be placed in close proximity to each other by placing the second
nanowire several microns away and then pushing it closer, which al-
lows to place parallel nanowires with sub-micron inter-wire spacing.
It is not recommended to place the second nanowire too close to the
first one, as they tend to stick to each other when deposited this way.
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This method has many advantages, as it allows to place nanowires
in deterministic positions and orientations on the chip surface and
makes multi-wire devices possible. Due to the selection of single
wires it is also extremely conserving of nanowires. The process is,
however, extremely time consuming, as it can take even an experi-
enced user twelve hours to place five parallel nanowire pairs on the
chip surface. Assuming no loss of wires during the deposition process
and a substrate with one million wires, it would take an experienced
user about 140 years of consecutive uninterrupted work to run out of
wires from one growth substrate.

Another issue with micromanipulator aided deposition is that its
effect on the structural integrity of the nanowires and the epitaxial
interface between InAs and Al is currently unclear. While there have
been no systematic studies on this, published results demonstrating
consistently good proximity effect are at present still pending. Due
to the cumbersome deposition process it is also not possible to post-
select the best nanowires from a large pool of deposited nanowires,
for example after an electron microscopy step.

4.3.4 Comparison

The main advantages of dry depositing nanowires using cleanroom
wipes and wet deposition are that both methods are fast and pro-
duce reliable results. It is currently unclear to what extent any of the
three deposition methods can induce cracks in the Al-shell or disloca-
tions in the epitaxial matching between Al and InAs. The fabrication
done for this thesis relied on a large number of nanowires that were
transferred onto the chip blank, and were subsequently imaged. This
made it possible to fabricate devices only on the most visually pris-
tine nanowires that show no visible defects sustained during growth
or depositon. Although no systematic study of this was undertaken,
no difference in switching frequency or quality of observed proxim-
ity effect was observed between wet or dry-deposited wires. Micro-
manipulator deposition has, however, as this point not led to devices
showing the same quality data as was obtained with the other two
methods.

Micromanipulator aided deposition should be used when wires are
scarce, a precise control of wire orientation is needed, or multi-wire
devices are required. As it is not possible to post-select for untapered
wires when depositing using the micromanipulator, the device fail-
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Method Advantages Disadvantages

Dry deposition fast
post-selection of wires
proven to work

moderately wasteful
lots of debris
hard to control
non-deterministic

Wet deposition moderately fast
post-selection of wires
even distribution
little debris
proven to work

very wasteful
hard to control
non-deterministic

Micro-
manipulator

deterministic
close positioning
conserves wires

very slow
no post-selection
could damage wires

Table 4.1: Different nanowire deposition methods.

ure rate should expected to be significantly higher compared to the
other two methods (see section 4.4). This needs to be considered in
the case of experiments requiring hard superconducting gaps to con-
serve Majorana state parities, such as fusion rules [27] and Majorana
braiding [28, 86, 87].

The advantages and disadvantages of the different techniques are
summarized in Table 4.1.

4.4 making majorana islands

The primary geometry that is analyzed in this thesis consists of an
isolated Coulomb island in an InAs nanowire with epitaxial Al half
shell contacted by normal (Ti/Au) leads, shown in Figure 3.2. The
steps to fabricate these devices upon deposition of the nanowires will
be outlined in the following sections.

4.4.1 Wire localization and aluminum etch

The nanowires are localized on the chip surface using an optical mi-
croscope and dark-field micrographs at a magnification correspond-
ing to several cells of alignment marks are taken. For the chip blanks
used in this thesis this could be done using six images that in total
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covered the whole area write field area of 600 µm × 600 µm. After-
wards, these micrographs were imported in a CAD program (Design-
CAD) and stitched together and aligned to the chip design file using
the alignment marks of the chip blanks, shown in Figure 4.5a. It is
important to image the whole chip and not only the areas with suit-
able nanowires, to account for possible nanowire debris or nanowire
aggregations in later lithography steps.

Using the CAD program, etch windows are placed on both ends
of the nanowire. The etch can run up to 100 nm on both sides of the
nanowire, leading to a smaller length of the exposed Al shell. This
should be considered when placing the etch windows. With a diame-
ter of ∼ 100 nm, the used nanowires are far below the diffraction limit
of the optical microscope and no substructure can be identified. It is,
however, possible to determine whether they are of sufficient length,
and relatively straight. Due to the mismatch of lattice constants be-
tween InAs and Al, the Al induces a strain, causing the nanowires
to bend towards the Al side, which makes it possible to identify the
orientation of the Al shell from an optical image. This makes it more
likely that the wire is lying on the chip surface in a way in which
the two facets with the Al shell are perpendicular to the chip surface.
A suitable nanowire is straight or slightly bent, and not immediately
surrounded by other nanowires or nanowire debris. If a nanowire
looks thicker on an optical micrograph, this suggests that two wires
have stuck together, and they should be avoided. A nanowire that is
bent towards one side is fine, although too large of a bend can re-
sult in a significantly reduced critical field in the case of long devices.
Any S-shaped nanowires or nanowires with multiple bends should
not be fabricated on, as this points towards damage sustained during
transfer.

As only wet deposition and dry deposition techniques were used,
there were usually a large number (30-50) of visually good nanowires
on the chip surface after deposition. In order to increase the yield,
etch windows were patterned using electron beam lithography on
all of these nanowires. The details of the used resist stack based on
polymethyl methacrylate (PMMA) are shown in Table 4.4.

After patterning of etch windows in the PMMA resist, the chip
is developed in a solution of Methyl isobutyl ketone (MIBK) in Iso-
propyl alcohol (IPA) (ratio 1:3) for 90 s. Afterwards, the chip is briefly
rinsed in IPA. In order to remove surplus resist that could interfere
with the etch, this is followed by an oxygen plasma cleaning (ashing)
step of 30 s in a converted microwave oven. Next, the Transene Al
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a b

Figure 4.5: CAD design of a Majorana island. Lithographic patterns for
contacts, two cutter-type gates, and one plunger gate outlined in
orange, etch windows outlined in red. a, Overview with optical
image (dark) in the background, and electron micrograph over-
lay (gray) aligned to the alignment marks in the foreground. b,
Magnification of dashed area in a.

etchant D is filled into a small acid resistant beaker (with a lid) and
pre-heated to a temperature of 55

◦C in a water bath for at least 30

minutes. Two beakers of distilled water are prepared and placed in
close proximity to the water bath. Shortly before the etch, one of the
beakers is placed in the water bath next to the beaker with Al etchant.
This makes it faster to dip the chip into the distilled water after it is re-
moved from the etchant and leads to a more controlled etch. The chip
is picked up using pointy, acid resistant tweezers and dipped into the
etchant for 10 s. It is recommended to pick it up from one side, with
one tip of the tweezers on the front and one of the backside of the
chip. This prevents air bubbles to form between the tweezers and the
chip, which could potentially ruin the time-sensitive etch. After 10 s
of exposure to the Al etchant, the chip is removed and immediately
dropped into the adjacent beaker with distilled water for at least 30

s. Subsequently, it is rinsed in the second beaker with distilled water
and can be dropped into acetone to remove the resist.

The parameters of the etch are summarized in Table 4.5.

4.4.2 Fabrication of Ohmic contacts and gates

In order to fabricate Ohmic contacts and electrostatic gates, it is first
necessary to determine the quality of the Al etch and the precise po-
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sition of the nanowires. For this, the chip with etched nanowires is
stripped of resist and imaged using a scanning electron microscope
(SEM). When taking images it is important that for each nanowire at
least one alignment mark is imaged in the same micrograph. The
present chip blanks feature 50 µm separation between alignment
marks on the write field, and nanowires with length < 8 µm. Con-
sequently, this translates to a required image size of 40 µm. As a pre-
cise (< 60 nm) positioning of gates is required, distortions of the SEM
image need to be avoided as much as possible. This can be achieved
by performing a thorough write field alignment and focus correction
immediately prior to imaging. Translations of the micrograph up to
several micrometer can be corrected for using the imaged alignment
mark, but a correctly scaled undistorted image is absolutely neces-
sary. In order to image a large number of nanowires in this way, an
SEM with a CAD overlay feature and a piezo-controlled laser stage
is strongly recommended. If possible, it is advisable to correct for the
inevitable chip rotation before taking the image, to avoid having to
do this in batch processing (slow) or the CAD program (slower) later.

Next, the images are imported into the CAD program and placed
on the chip design. For the present work this was done using a python
script that created an automatic DesignCAD macro to place the im-
ages with correct scaling at the correct position in the CAD file. This
is possible because the SEM software supplies an additional file de-
tailing the location and the image dimensions for each taken SEM
image, another reason why CAD overlay is so useful.

Using the SEM and the corresponding write field alignment proce-
dures, this typically results in an accuracy on the order of 100 nm for
placing the images. Using the alignment marks in the pictures this
can be reduced further down to the spatial resolution at which the
images were taken, or the distortions inherent in the SEM image.

Untapered, straight, and visually defect free wires are identified
and marked as candidates for fabrication. The percentage of useful
wires ranged within 10-30 %. On a typical chip with about 30-50 de-
posited wires, this usually left around 5 very good wires. The thresh-
old at which wires are unusable for measurements has not been
systematically studied, but the presence of optically visible defects
strongly suggests that the more sensitive electronic properties are af-
fected by potential steps associated with lattice dislocations, defects
or impurities. Despite the low statistics, it was observed that any opti-
cal defects correlated with switchy devices, or a bad proximity effect.
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Tapered wires were avoided in the fabrication process at all costs in
order to avoid changes in sub-band spacing and occupation.

As the etch has a tendency of running along the nanowire, the
length of the exposed Al shell needs to be determined from the mi-
crograph and the extent of the normal metal contacts can be varied
accordingly. For the quantum dots in this thesis the bare InAs junc-
tions were designed to be∼ 70− 100 nm in length. Gates and contacts
are drawn using the CAD software, as shown in Figure 4.5b.

The resist stack used for the second lithography step, that fabricates
contacts and gates, is double layer PMMA A4. This creates only a mi-
nor undercut and allows for precise lithographic features and small
gates. The pattern is written using the EBL machine and the resist
is developed for 90 s in MIBK:IPA. In order to fabricate good Ohmic
contacts, the surface oxide on the InAs wire was removed using either
ion milling or sulfur passivation [88]. Ion milling resulted in signifi-
cantly more stable (less switchy) devices, was faster and less prone
to fabrication errors such as a damage to the Al half-shell, which is
why it should be the preferred method. The chips were milled using
using a Kaufman & Robinson KDC 40 4-CM DC Ion Source with an
acceleration voltage of 120 V. The ion beam current density at the
sample surface is estimated to be 0.5 mA/cm2. Milling times ranged
from 85− 110 s. Sulfur passivation of the bare InAs nanowire surface
consisted of dipping the chip in a solution of (NH4)2S in de-ionized
water with 0.15 M dissolved elemental sulphur at 40

◦C for 20 min. In
this case the milling step was omitted before the evaporation of the
normal metal leads.

The evaporation step involved depositing a 5 nm sticking layer of
titanium followed by the deposition of 70-100 nm of gold. The tita-
nium wets the surface of the nanowire and prevents gold droplets to
form by self assembly. Although titanium is a superconductor, the re-
verse proximity effect of the thick gold layer kills superconductivity
in the thin titanium film completely.

The resist parameters and milling and evaporation parameters for
making electrostatic gates and Ohmic contacts are summarized in
Tables 4.6 and 4.7.
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Vendor University Wafer

Wafer diameter [′′] 4

Wafer thickness [µm] 500± 25

Resistivity [Ωcm] 0.001− 0.005

Dopant Boron

Oxide thickness [nm] 100

Table 4.2: Wafer specifications for the chip blanks.

Resist Shipley 1813

Spin speed [rpm] 4000

Acceleration [rpm/s] 1000

Spin duration [s] 45

Baking time [s] 120

Baking temperature [◦C] 115

Table 4.3: Resist stack parameters of the UV-lithography step for making the
chip blanks.

Resist stack PMMA A6 single layer

Spin speed [rpm] 4000

Acceleration [rpm/s] 1000

Spin duration [s] 45

Baking time [s] 120

Baking temperature [◦C] 185

Beam current [pA] 500

Dose [µC/cm2] 1500

Developer MIBK:IPA 1:3

Table 4.4: Resist parameters for making the etch windows.
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Etchant Al Etchant D

Vendor Transene

Composition [Wt %] Sodium-M-Nitrobenzene Sulfonate 5-10

Phosphoric Acid 55-65

Acetic Acid 1-5
Distilled Water 20-39

Temperature [◦C] 55

Etching time [s] 10

Etch-Stop Distilled Water

Table 4.5: Parameters of the Al etch.

Resist stack PMMA A4 double layer

Spin speed [rpm] 4000

Acceleration [rpm/s] 1000

Spin duration [s] 45

Baking time [s] 120

Baking temperature [◦C] 185

Beam current [pA] 500

Dose [µC/cm2] 1050-1200

Developer MIBK:IPA 1:3

Table 4.6: Resist parameters for the electrostatic gates and Ohmic contacts.

Ion source Kaufman & Robinson
KDC 40 4-CM DC

Acceleration voltage [V] 120

Ion beam current density [mA/cm2] 0.5

Milling time [s] 85− 110

Deposited metals Ti/Au

Thickness [nm] 5/70− 100

Table 4.7: Milling and evaporation parameters for the electrostatic gates and
Ohmic contacts.
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Parity lifetime of bound states

in a proximitized semiconductor nanowire
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Nature Physics 11, 1017–1021 (2015)

It presents the measurement of an even-odd parity effect in InAs-Al
nanowire hybrid quantum dots. All devices were fabricated by Sven
Marian Albrecht based on nanowires grown by Peter Krogstrup. Mea-
surements and data analysis were done by Sven Marian Albrecht and
Andrew Higginbotham under the supervision of Charles Marcus. The
theoretical models were developed by Gediminas Kiršanskas, Karsten
Flensberg and Andrew Higginbotham. The nanowire materials were
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Nygård contributed to interpreting the data and gave valuable input.
The manuscript was written by Sven Marian Albrecht and Andrew
Higginbotham.
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5.1 introduction

Quasiparticle excitations can compromise the performance of su-
perconducting devices, causing high frequency dissipation, decoher-
ence in Josephson qubits [89–94], and braiding errors in proposed
Majorana-based topological quantum computers [24, 95, 96]. Quasi-
particle dynamics have been studied in detail in metallic supercon-
ductors [97–101] but remain relatively unexplored in semiconductor-
superconductor structures, which are now being intensely pursued
in the context of topological superconductivity. To this end, we intro-
duce a new physical system comprising a gate-confined semiconduc-
tor nanowire with an epitaxially grown superconductor layer, yield-
ing an isolated, proximitized nanowire segment. We identify bound
states in the semiconductor via bias spectroscopy, determine the char-
acteristic temperatures and magnetic fields for quasiparticle excita-
tions, and extract a parity lifetime (poisoning time) of the bound state
in the semiconductor exceeding 10 ms.

5.2 device geometry

Semiconductor-superconductor hybrids have been investigated for
many years [26, 102–105], but have received renewed interest as plat-
forms for emergent topological superconductors with Majorana end
modes. Such modes are expected to show nonabelian statistics, al-
lowing, in principle, topological encoding of quantum information
[37, 38, 106] among other interesting effects [107, 108].

Transport experiments on semiconductor nanowires proximitized
by a grounded superconductor have recently revealed characteris-
tic signatures of Majorana modes [39, 40]. Semiconductor quantum
dots with superconducting leads have also been explored experimen-
tally [71, 109–111], and have been proposed as a basis for Majorana
chains [112–114]. Here, we expand these geometries by creating an
isolated semiconductor-superconductor hybrid quantum dot (HQD)
connected to normal leads. The device forms the basis of an isolated,
mesoscopic Majorana system with protected total parity [115, 116].

The measured device consists of a hexagonal InAs nanowire with
epitaxial superconducting Al on two facets [79,84], and Au ohmic con-
tacts (Figs. 5.1a,b), forming a normal metal-superconductor-normal
metal (NSN) device. Four devices showing similar behavior have
been measured. Differential conductance, g, was measured in a di-
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Figure 5.1: Nanowire-based hybrid quantum dot. a, Scanning electron mi-
crograph of the reported device, consisting of an InAs nanowire
(gray) with segment of epitaxial Al on two facets (blue) and
Ti/Au contacts and side gates (yellow) on a doped silicon sub-
strate. b, Device schematic and measurement setup, showing ori-
entation of magnetic field, B. c, Differential conductance, g, as a
function of effective gate voltage, VG, and source-drain voltage,
VSD, at B = 0. Even (e) and odd (o) occupied Coulomb valleys
labeled.

lution refrigerator (T ∼ 50 mK) using standard lock-in techniques.
Local side gates and a global back gate were adjusted to form an Al-
InAs HQD in the Coulomb blockade regime. The lower right gate,
VR, was used to tune the occupation of the dot, with a linear com-
pensation from the lower left gate, VL, to keep tunneling to the leads
symmetric. We parameterize this with a single effective gate voltage,
VG (see Supplement).

5.3 parity effect

Differential conductance as a function of VG and source-drain bias,
VSD, reveals a series of Coulomb diamonds, corresponding to incre-
mental single-charge states of the HQD (Figure 5.1c). While conduc-
tance features at high bias are essentially identical in each diamond,
at low bias, VSD < 0.2 mV, a repeating even-odd pattern of left- and
right-facing conductance features is observed. This results in an even-
odd alternation of Coulomb blockade peak spacings at zero bias,
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similar to metallic superconductors [117, 118]. However, the parity-
dependent reversing pattern of subgap features at nonzero bias has
not been reported before, to our knowledge. The repeating even-odd
pattern indicates that a parity-sensitive bound state is being repeat-
edly filled and emptied as electrons are added to the HQD.

Measured charging energy, EC = 1.1 meV, and superconducting
gap, ∆ = 180 µeV, satisfy the condition (∆ < EC) for single electron
charging [46,119]. Differential conductance at low bias occurs in a se-
ries of narrow features symmetric about zero bias, suggesting trans-
port through a bound state, with negative differential conductance
(NDC) observed at the border of odd diamonds. NDC arises from
slow quasiparticle escape, similar to current-blocking seen in metallic
superconducting islands in the opposite regime, ∆ > EC [120, 121].

5.4 model

We present a simple model of transport through a single bound state
in the InAs plus a Bardeen-Cooper-Schrieffer (BCS) continuum in
the Al. The model makes several simplifying assumptions: a fixed-
energy bound state, motivated by the repetitive pattern observed in
the Coulomb diamonds, and symmetric coupling of both the bound
state and continuum to the leads, motivated by the observed symme-
try in VSD of the Coulomb diamonds. Transition rates were calculated
from Fermi’s golden rule and a steady-state Pauli master equation
was solved for state occupancies. Conductance was then calculated
from occupancies and transition rates (see Supplement).

Measured and model conductances are compared in Figs. 5.2a,b.
The coupling of the bound state to each lead, noting the near-
symmetry of the diamonds, was estimated to be Γ0 = 0.5 GHz,
based on zero-bias conductance (Figure 5.2d). The energy of the state,
E0 = 58 µeV at zero magnetic field, was measured using finite bias
spectroscopy (Figure 5.2e). The normal-state conductance from each
lead to the continuum, gAl = 0.15 e2/h, was estimated by compar-
ing Coulomb blockaded transport features in the high bias regime
(VSD = 0.4 mV). The superconducting gap, ∆ = 180 µeV, was found
from the onset of NDC at eVSD = ∆− E0 (Figure 5.2f). While the rate
model shows good agreement with experimental data, some features
are not captured, including broadening at high bias, with greater
broadening correlated with weaker NDC, and peak-to-peak fluctu-
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Figure 5.2: Subgap bias spectroscopy, experiment and model. a, Experi-
mental differential conductance, g, as a function of gate voltage
VG and source-drain VSD, shows characteristic pattern including
negative differential conductivity (NDC). b, Transport model of
a. vG = αVG up to an offset, where α is the gate lever arm. Axis
units are ∆/e = 180 µV, where ∆ is the superconducting gap. See
text for model parameters. c, Source and drain (gold) chemical
potentials align with the middle of the gap in the HQD density of
states. No transport occurs due to the presence of superconduc-
tivity. d, Discrete state in resonance with the leads at zero bias.
Transport occurs through single quasiparticle states. e, Discrete
state in resonance with the leads at high bias. Transport occurs
through single and double (particle-hole) quasiparticle states. f,
Discrete state and BCS continuum in the bias window. Transport
is blocked when a quasiparticle is in the continuum, resulting in
NDC.

ations in the slope of the NDC feature. These features may be related
to heating or cotunneling, not accounted for by the model.

The observation of negative differential conductance places a
bound on the relaxation rate of a single quasiparticle in the HQD
from the continuum (in the Al) to the bound state (in the InAs
nanowire). NDC arises when an electron tunnels into the weakly
coupled BCS continuum, blockading transport until it exits via the
lead. The blocking condition is shown for a hole-like excitation in Fig-
ure 5.2f. Unblocking occurs when the quasiparticle relaxes into the
bound state, followed by a fast escape to the leads. NDC thus indi-
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Figure 5.3: Even-odd Coulomb peak spacings. a, Measured zero-bias con-
ductance, g, versus gate voltage, VG, at temperature T ∼ 50 mK,
and magnetic field B = 0. b, Peak spacing, S, versus gate volt-
age. Black points show spacings from a calculated using the peak
centroid (first moment), red points T = 350 mK and B = 0, pur-
ple points B = 150 mT and T ∼ 50 mK. c, Right-most peaks
in a. Peak maxima (4) and centroids (�) are marked. d, Free
energy, F, at T = 0 versus gate-induced charge, N, for different
HQD occupations, where N = CVG/e up to an offset and C is
the gate capacitance. Parabola intersection points are indicated
by circles, corresponding to Coulomb peaks. BCS continuum
(shaded), shown for odd occupancy. Odd Coulomb diamonds
carry an energy offset E0 for quasiparticle occupation of the sub
gap state, resulting in a difference in spacing for even and odd
diamonds.

cates a long quasiparticle relaxation time, τqp, from the continuum
to the bound state. Using independently determined parameters, the
observed NDC is only compatible with the model when τqp > 0.1 µs
(see Supplement), which is used below to constrain the poisoning
time for the bound state.

Turning our attention to the even-odd structure at zero-bias, we
observed consistent large-small peak spacings (Figs. 5.3(a,b)), asso-
ciating larger spacings with even occupation, as expected theoret-
ically [46, 119]. Parity reversals were observed on the timescale of
hours, similar to observations in metallic devices [101]. Peak spacing
alternation disappears at higher magnetic fields, B, consistent with
the superconducting-to-normal transition, and also disappears at ele-
vated temperature, T > 0.4 K, significantly below the superconduct-
ing critical temperature, Tc ∼ 1 K. The temperature dependence is
similar to metallic structures [117,118], and can be understood as the



5.4 model 59

4 V0 (B=0)

‹S e
-S

o 
 (m

V
)

0.50.20.10.05

T** T* (B=0)

T (K)

104

103

102

1

0

n
qp  (µm

   )

 highest g
 center of mass
 model (  = 0)
 model (  = 50 neV)

4V0 (150 mT)

4V0 (100 mT)

4V0 (80 mT)

4V0 (40 mT)

0.05 0.1 0.4

T* (40 mT)T* (100 mT)

T (K)

10

0

‹S e
-S

o 
 (m

V
)

20

0g 
(1

0-3
 e

2 /h
)

0.40.3
VG (V)

‹

‹

SoSe

0

10

-3

10-1

Figure 5.4: Temperature and magnetic field dependence of the even-odd
peak spacings. Average even-odd spacing difference, 〈Se − So〉,
versus temperature, T. Spacing between peak maxima (triangle)
and centroids (square) are shown, with error bars from standard
deviation of peak maxima. Spacing expected from lower Zeeman-
split bound state, 4V0(B) = 4E0(B)/(αe) indicated. Quasiparticle
activation temperature, T∗, and crossover temperature, T∗∗, indi-
cated on top axis. Right axis shows calculated aluminum quasi-
particle density, nqp (see text). Solid curve is Equation (5.1) with
a HQD density of states measured from Figure 5.2 (∆ = 180 µeV,
E0 = 58 µeV, α = 0.013), and the fitted aluminum volume,
VAl = 7.4× 104 nm3. Dotted curve includes a discrete state broad-
ening, γ = 50 neV, fit to the centroid data. Left inset: Same as
main, but at B = 40, 80, 100, 150 mT, from top to bottom and 4V0

appearing on the right-hand axis. Curves are fit to two shared
parameters: g-factor, g = 6, and superconducting critical field,
Bc = 120 mT, with other parameters fixed from main figure.
Right inset: Representative Coulomb peaks showing even (Se) and
odd (So) spacings.

result of thermal activation of quasiparticles within the HQD with
fixed total charge.

As seen in Figure 5.3c, individual Coulomb peaks are asymmetric
in shape, with their centroids (first moments) on the even sides of
the peak maxima. The asymmetric shape is most pronounced at low
temperature, T < 0.15 K, and decreases with increasing magnetic
field. The degree of asymmetry is not predicted by the rate model,
even taking into account the known small asymmetry due to spin
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degeneracy [122]. In the analysis below, we consider peak positions
defined both by peak maxima and centroids.

A model of even-odd Coulomb peak spacing that includes thermal
quasiparticle excitations follows earlier treatments [46, 117, 118], in-
cluding a discrete subgap state as well as the BCS continuum [118]
(Figure 5.3d). Even-odd peak spacing difference, Se− So, depends on
the difference of free energies,

Se − So =
4
αe

(Fo − Fe) , (5.1)

where α is the (dimensionless) gate lever arm. The free energy differ-
ence, written in terms of the ratio of partition functions,

Fo − Fe = −kBT ln
(

Zo

Ze

)
, (5.2)

depends on D(E), the density of states of the HQD,

Zo

Ze
=
∫ ∞

0
dE D(E) ln coth[E/(2kBT)], (5.3)

where D(E) consists of one subgap state and the continuum. For ∆�
kBT, this can be written

Fo − Fe ≈ −kBT ln(Neffe−∆/kBT + 2e−E0/kBT), (5.4)

where Neff = ρAlVAl
√

2πkBT∆ is the effective number of continuum
states for Al with volume VAl and electron density of states ρAl [117,
118].

Within the thermodynamic model, one can identify a characteris-
tic temperature, T∗ ∼ ∆/[kB ln(Neff)], less than the gap and inde-
pendent of E0, above which even-odd peak spacing alternation is
expected to disappear. A second (lower) characteristic temperature,
T∗∗ ∼ (∆ − E0)/[kB ln(Neff/2)], is where the even-odd alternation
is affected by the bound state, leading to saturation at low temper-
ature [117, 118]. For a zero-energy (E0 = 0) bound state - the case
for Majorana modes - these characteristic temperatures coincide and
even-odd structure vanishes, as pointed out in Ref. [115]. For E0 = ∆
the saturation temperature vanishes, T∗∗ = 0, and the metallic result
is recovered [117, 118].

Experimentally, the average even-odd peak spacing difference,
〈Se − So〉, was determined by averaging over a set of 24 consecutive
Coulomb peak spacings, including those shown in Figure 5.3. Figure
5.4 shows even-odd peak spacing difference appearing abruptly at
Tonset ∼ 0.4 K, and saturating at Tsat ∼ 0.2 K, with a saturation ampli-
tude near the value expected from the measured bound state energy,
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4V0 = 4E0/(αe). Figure 5.4 shows good agreement between experi-
ment and the model, Equation (5.1), using a density of states deter-
mined independently from data in Figure 5.2, with V = 7.4× 104 nm3

as a fit parameter, consistent with the micrograph (Figure 5.1a), and
ρAl = 23 eV−1nm−3 [101].

The asymmetric peak shape amounts to larger peak tails on the
even valley side, causing the centroids to be more regularly spaced
than the maxima. This is evident in Figure 5.4, where the centroid
method shows a decreasing peak spacing difference at low tempera-
ture, while with the maximum method the spacing remains flat. The
thermal model of Se− So can also show a decrease at low temperature
if broadening of the bound state is included. We do not understand
at present if this effect explains the difference between centroids and
maxima, however, it is worth noting that the fit gives a broadening
γ = 50 neV, reasonably close to the value estimated from the lead
couplings, (hΓ0)2/∆ = 20 neV.

Applied magnetic field (direction shown in Figure 5.1b) reduces
the characteristic temperatures Tonset, Tsat, and saturation amplitudes.
Field dependence is modeled by including Zeeman splitting of the
bound state and orbital reduction of the gap. The fit g-factor, g = 6,
lies within the typical range for InAs nanowires [70, 123], supporting
our interpretation that the bound state resides in the InAs.

Agreement with the thermodynamic model suggests that ensem-
ble averages of even-odd spacing, Se − So, provide a measure of the
equilibrium quasiparticle density, nqp. Figure 5.4 (right axis) gives the
value nqp(T) = V−1

Al N2
effe
−2∆/kBT, an expression valid for large charg-

ing energy [124] (see Supplemental Material, Sec. 5). Below Tsat ∼
0.2 K, even-odd spacing saturates at the bound-state value 4V0, mak-
ing it difficult to infer a quasiparticle density in this low-temperature
range. Instead, we conservatively take nqp(Tsat) ∼ 0.1 µm−3 as an
upper bound for the quasiparticle density at low temperature. This
value is within the range from the recent literature, 0.03− 30 µm−3

[91–94, 100]. Because the volume of Al is small, the upper bound
on the number of quasiparticles, nqpVAl < 10−5, is, correspondingly,
quite small.

5.5 conclusion

Finally, we determine a lower bound on the poisoning time, τp, of
the bound state. The physical mechanism for this poisoning is relax-
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ation of a quasiparticle into the InAs from the Al, which preserves
the overall parity of the HQD but changes the parity of the bound
state. This process is expected to set the fundamental limit on par-
ity lifetime [24]. The poisoning rate, 1/τp, is given by the product of
the relaxation rate of a single quasiparticle from the Al, 1/τqp, and
the number of quasiparticles in the Al [24], which, from above, is
bounded by nqpVAl < 10−5. Quantitative analysis of the strength of
negative differential conductance at finite bias - which vanishes for
fast quasiparticle relaxation - provides a lower bound on the quasi-
particle relaxation time, τqp > 0.1 µs (Supplement Sec. 2). Together,
these values give a conservative lower bound on the poisoning time
of the bound state, τp = τqp/(nqpVAl) > 10 ms.

Quasiparticle density depends sensitively on device geometry, fil-
tering, and shielding, resulting in a wide range of experimental val-
ues (0.03− 30 µm−3) [91–94], and thus poisoning times. We note that
recent work in transmon qubits [100] found nqp = 0.04 µm−3, cor-
responding to state-poisoning times well above 10 ms. We also note
that the Coulomb blockade geometry effectively enforces quasiparti-
cles from the Al shell to be created only in pairs, which is different
from non-charging device geometries.

Based on previous work, τqp, hence τp, is expected to depend
weakly on the bound-state energy for low-energy bound states
[98,125,126], including zero-energy Majorana modes with E0 = 0. The
long poisoning time found here, τp > 10 ms, is auspicious for appli-
cation of this system to topological quantum computing, suggesting
that a large number of braiding operations of Majorana modes could
be performed before the parity of the bound state is poisoned by the
proximitizing Al. Future work will examine Majorana modes in this
geometry.

5.6 methods

5.6.1 Sample preparation

InAs nanowires were grown without stacking faults in the [001] di-
rection with wurzite crystal structure with Al epitaxially matched to
[111] on two of the six {11̄00} sidefacets [79, 84]. They were then de-
posited randomly onto a doped silicon substrate with 100 nm of ther-
mal oxide. Electron-beam lithographically patterned wet etch of the
epitaxial Al shell (Transene Al Etchant D, 55 C, 10 s) resulted in a sub-
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micron Al segment (310 nm, Figure 5.1a). Ti/Au (5/100 nm) ohmic
contacts were deposited on the ends following in situ Ar milling (1
mTorr, 300 V, 75 s), with side gates deposited in the same step. For
the device presented here, the end of the upper left gate broke off
during processing. However, the device could be tuned well without
it.

5.6.2 Master equations

The master equations (used for Figure 5.2b) consider states with fixed
total parity, composed of the combined parity of quasiparticles in the
thermalized continuum and the 0, 1, or 2 quasiparticles in the bound
state (see Supplement).

5.6.3 Free energy model

Even and odd partition functions in Equation (5.2), Fo − Fe =

−kBT ln(Zo/Ze), can be written as sums of Boltzmann factors over re-
spectively odd and even occupancies of the isolated island. For even-
occupancy,

Ze = 1 + ∑
i 6=j

e−Ei/kBTe−Ej/kBT + ..., (5.5)

where the first term stands for zero quasiparticles, the second for
two (at energies Ei and Ej), and additional terms for four, six, etc.
Zo similarly runs over odd occupied states. Rewriting these sums as
integrals over positive energies yields

Fo − Fe = −kBT ln tanh
∫ ∞

0
dE D(E) ln coth(E/2kBT), (5.6)

where D(E) is the density of states of the HQD,

D(E) = ρBCS(E) +
1
2

ρ+0 (E) +
1
2

ρ−0 (E). (5.7)

We take ρBCS(E) to be a standard BCS density of states,

ρBCS(E) =
ρAlVE√

E2 − ∆(B)2
θ(E− ∆) (5.8)

(θ is the step function), and ρ0 to be a pair of Lorentzian-broadened
spinful levels symmetric about zero,

ρ±0 (E) =
γ/2π

(E− E±0 )2 + (γ/2)2
+

γ/2π

(E + E±0 )2 + (γ/2)2
. (5.9)
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Zeeman splitting of the bound state and pair-breaking by the external
magnetic field are modeled with the equations

E±0 (B) =
∆(B)

∆
E0 ±

1
2

gµBB, (5.10)

∆(B) = ∆

√
1−

(
B
Bc

)2

, (5.11)

where E0 is the zero-field state energy and ∆ is the zero field super-
conducting gap. In the event that a bound state goes above the con-
tinuum, E+

s > ∆(B), we no longer include the state in the free energy.
Equation (5.6) was integrated numerically to obtain theory curves in
Figure 5.4.

Equations (5.10) and (5.11) are reasonable provided the lower spin-
split state remains at positive energy, E−0 > 0. For sufficiently large
Bc, the bound state will reach zero energy, resulting in topological
superconductivity and Majorana modes, the subject of future work.
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6.1 introduction

Majorana zero modes are quasiparticle excitations in condensed
matter systems that have been proposed as building blocks of
fault-tolerant quantum computers [16]. They are expected to ex-
hibit non-Abelian particle statistics, in contrast to the usual statis-
tics of fermions and bosons, enabling quantum operations to be per-
formed by braiding isolated modes around one another [16,17]. Quan-
tum braiding operations are topologically protected insofar as these
modes are pinned near zero energy, and the pinning is predicted
to be exponential as the modes become spatially separated [22, 23].
Following theoretical proposals [37, 38], several experiments have
identified signatures of Majorana modes in proximitized nanowires
[39–41, 127, 128] and atomic chains [43], with small mode-splitting
potentially explained by hybridization of Majoranas [45,47,49]. Here,
we use Coulomb-blockade spectroscopy in an InAs nanowire segment
with epitaxial aluminum, which forms a proximity-induced supercon-
ducting Coulomb island (a “Majorana island”) that is isolated from
normal-metal leads by tunnel barriers, to measure the splitting of
near-zero-energy Majorana modes. We observe exponential suppres-
sion of energy splitting with increasing wire length. For short de-
vices of a few hundred nanometers, sub-gap state energies oscillate
as the magnetic field is varied, as is expected for hybridized Majorana
modes. Splitting decreases by a factor of about ten for each half a mi-
crometer of increased wire length. For devices longer than about one
micrometer, transport in strong magnetic fields occurs through a zero-
energy state that is energetically isolated from a continuum, yielding
uniformly spaced Coulomb-blockade conductance peaks, consistent
with teleportation via Majorana modes [115, 116]. Our results help to
explain the trivial-to-topological transition in finite systems and to
quantify the scaling of topological protection with end-mode separa-
tion.

6.2 the majorana island

The set of structures we investigate consist of InAs nanowires grown
by molecular beam epitaxy in the [0001] wurtzite direction with an
epitaxial Al shell on two facets of the hexagonal cross section [84].
The Al shell was removed except in a small segment of length L
and isolated from normal metal (Ti/Au) leads by electrostatic gate-
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Figure 6.1: Majorana island device. a, Electron micrograph (false color) of
a device that is lithographically similar to the measured devices.
Gold contacts (yellow), InAs nanowire (green), and two-facet Al
shell of length L (light blue). Applied voltage bias, VSD, and
gate voltage, VG, indicated. b, Cross section of hexagonal InAs
nanowire, showing orientation of Al shell and field directions B||
and B⊥. c, Differential conductance, g, as a function of gate volt-
age, VG, and source-drain bias, VSD, for parallel magnetic fields,
B|| = 0, 80, 220 mT, showing a series of Coulomb diamonds. For
B|| = 0 the Coulomb diamonds are evenly spaced. An odd di-
amond has appeared for B|| = 80 mT. For B|| = 220 mT the
Coulomb diamonds feature evenly spaced discrete states while
the period in gate voltage has halved. Horizontal white lines
indicate cuts in (d). d, (upper panel) Energy EN of the device
with electron occupancy N, as a function of normalized gate
voltage NG. Ground-state energies for even (odd) N shown in
black (color). Odd-N energies are raised by the single-particle-
state energy, E0 compared to even-N energies. The even-N-only
regime, E0 > EC/2 (light blue), and the even-and-odd-N regime,
E0 < EC/2 (green) are indicated. The Majorana case, E0 = 0,
is in red. Transport can occur at the intersections of parabolas,
indicated by circles. (lower panel) Differential conductance, g,
versus gate voltage VG at zero bias from measurements in (c)
for magnetic fields B|| = 0, 80, 220 mT. The splitting of the 2e-
periodic peak (light blue line) reflects a transition from Cooper
pair tunneling to single-quasiparticle charging of the quantum
dot. Evenly spaced, 1e periodic Coulomb peaks are characteristic
of a zero-energy state.
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controlled barriers (Figure 6.1a). Charging energy, EC, of the device
ranges from greater than to less than the superconducting gap of
Al (∼ 0.2 meV). The thin Al shell (8− 10 nm thickness on the two
facets) gives a large critical field, Bc, before superconductivity is de-
stroyed: for fields along the wire axis, Bc,|| ∼ 1 T; out of the plane of
the substrate but roughly in the plane of the two Al-covered facets,
Bc,⊥ ∼ 700 mT (Figure 6.1b). The very high achieved critical fields
make these wires a suitable platform for investigating topological su-
perconductivity [84].

Five devices over a range of Al shell lengths L ∼ 0.3 − 1.5 µm
were measured (see Methods for device layouts). Charge occupation
and tunnel coupling to the leads were tuned via electrostatic gates.
Differential conductance, g, in the Coulomb blockade regime (high-
resistance barriers) was measured using standard ac lock-in tech-
niques in a dilution refrigerator (electron temperature ∼ 50 mK).

Figure 6.1c shows g as a function of gate voltage, VG, and source-
drain bias, VSD. For the L = 790 nm device, the zero-field data (top
panel) show a series of evenly spaced Coulomb diamonds with a char-
acteristic negative-differential conductance (NDC) region at higher
bias. NDC is known from metallic superconductor islands [120, 121]
and has recently been reported in a proximitized semiconductor de-
vice similar to those investigated here [72]. The zero-magnetic-field di-
amonds reflect transport via Cooper pairs, with gate voltage period
proportional to 2e, the charge of a Cooper pair. At moderate mag-
netic fields (Figure 6.1c, middle panel), the large diamonds shrink
and a second set of diamonds appears, yielding even-odd spacing of
Coulomb blockade zero-bias conductance peaks [129], as seen in the
cuts in Figure 6.1d. At larger magnetic fields (Figure 6.1c, lower panel)
Coulomb diamonds are again periodic, now with precisely half the
spacing of the zero-field diamonds, corresponding to 1e periodicity.
NDC is absent, and resonant structure is visible within each diamond,
indicating transport through discrete resonances at low bias and a
continuum at high bias (see magnification in Figure 6.1c). Coulomb
blockade conductance peaks at high magnetic field (see Figure 6.1d
for zero bias cuts) with regular 1e periodicity (half the zero-field
spacing) accompanied by a discrete subgap spectrum is a proposed
signature of electron teleportation by Majorana end states [115, 116].
We designate as a ‘Majorana island’ (MI) the ungrounded tunneling
device in this high-field regime, where a subgap state near zero en-
ergy, energetically isolated from a continuum, leads to 1e-periodic
Coulomb blockade conductance peaks.
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Figure 6.2: Peak splitting in magnetic field. a, Zero-bias conductance, g, as
a function of gate voltage, VG, and parallel magnetic field, B||,
for L ∼ 0.9 µm device, showing a series of 2e-periodic Coulomb
peaks below ∼ 100 mT and 1e nearly-periodic peaks above ∼ 100

mT. b, (inset) High-resolution measurement for L = 0.9 µm (a)
with overlay of peak center. Even and odd peak spacings, Se,o,
are indicated by arrows. (main panel) Average peak spacing for
even and odd Coulomb valleys, 〈Se,o〉, from measurement in (a)
as a function of magnetic field, B||. The Coulomb peaks become
evenly spaced at B|| = 110 mT; afterwards their spacing oscillates
around 〈Se〉 = 〈So〉. Right axis shows energy scale ηS− EC ∝ E0

in 1e-regime (η is gate lever arm, see text). c, Same as in (b) but
for a longer wire, L = 1.5 µm. d, Oscillatory amplitude, A, plot-
ted against the shell length, L, for 5 devices from 330 nm to
1.5 µm (black dots) and exponential fit to A = A0 exp(−L/ξ)

with A0 = 300 µeV and ξ = 260 nm. Error bars indicate un-
certainties propagated from lever arm measurements and fits to
peak maxima.
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Zero-bias conductance can be qualitatively understood within a
simple zero-temperature model where the energy of the supercon-
ducting island—with or without subgap states (Figure 6.1d)—is given
by a series of shifted parabolas, EN(NG) = EC/2(NG − N)2 + pNE0,
where NG = CVG/e is the gate-induced charge (electron charge e and
gate capacitance C) [117,118,120,121,124,129]. E0 is the energy of the
lowest quasiparticle state, which is filled for odd parity (pN = 1, odd
N), and empty for even parity (pN = 0, even N) [72]. Transport oc-
curs when the ground state has a charge degeneracy, i.e., when the
EN parabolas intersect. For E0 > EC/2, the ground state always has
even parity; transport in this regime occurs via tunneling of Cooper
pairs at degeneracies of the even-N parabolas. This is the regime of
the 2e-periodic Coulomb blockade peaks seen at low magnetic fields
(Figure 6.1d, blue). The odd charge state is spinful and can be lowered
by Zeeman energy when a magnetic field is applied. For sufficiently
large field, such that E0 < EC/2, an odd-N ground state emerges. This
transition from 2e charging to 1e charging is seen experimentally as
the splitting of the 2e-periodic Coulomb diamonds into the even-odd
double-diamond pattern in Figure 6.1d (green trace). In this regime
the Coulomb peak spacing is proportional to EC + 2E0 for even dia-
monds and EC − 2E0 for odd diamonds [117, 118]. For the particular
case of a zero-energy Majorana state, E0 = 0, peak spacing is regular
and 1e-periodic. This regime is observed at higher fields (Figure 6.1d,
red), though not sufficiently high to destroy superconductivity.

6.3 exponential protection

Coulomb peak spacings are measured as a function of magnetic
field, allowing the state energy, E0(B), to be extracted. An example,
showing 10 consecutive peaks for the L = 0.9 µm device, is shown
in Figure 6.2a. The peaks are 2e-periodic at B = 0, start splitting
around ∼ 95 mT, and become 1e-periodic at ∼ 110 mT, well below
the spectroscopically observed closing of the superconducting gap at
Bc ∼ 600 mT (see Methods). This points towards the presence of a
state close to zero energy within the superconducting regime over a
range of ∼ 500 mT.

Separately averaging even and odd Coulomb peak spacings, 〈Se,o〉,
over an ensemble of adjacent peaks reveals oscillations around the
1e-periodic value as a function of applied magnetic field. This is con-
sistent with an oscillating state energy E0 due to hybridized Majo-
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rana modes [45, 47, 49]. For the L = 0.9 µm device (Figure 6.2b),
peak spacing oscillations yield an energy oscillation amplitude A =

7.0± 1.5 µeV, converted from gate voltage to energy using the gate
lever arm, η, extracted independently from the slope of the Coulomb
diamonds. For the L = 1.5 µm device (Figure 6.2c) average Coulomb
peak spacing oscillations based on 22 consecutive peaks yield a barely
resolvable amplitude, A = 1.2± 0.5 µeV.

Oscillation amplitudes for the five measured devices (see Meth-
ods for device details), are shown in Figure 6.2d along with a two-
parameter fit to an exponential function, A = A0e−L/ξ , giving A0 =

300 µeV and ξ = 260 nm as fit parameters. The data fits well to the
predicted exponential form that characterizes the topological protec-
tion of Majorana modes [22, 23, 45].

6.4 excitation spectrum and bias spectroscopy

Excited states of the MI are probed using finite-bias transport spec-
troscopy. This technique requires a fixed gate voltage, chosen such
that at zero bias the electrochemical potential of the leads aligns with
the middle of the spectroscopic gap of the MI. With this choice, the
conductance at source-drain bias VSD is due to states at energy eVSD/2.
A conductance peak at zero bias corresponds to a zero-energy state.
In the case shown in Figs. 6.3(a,b), the gate voltage is tuned using
the characteristic finite-bias conductance spectra for a short InAs/Al
island, investigated previously in Ref. [72]. Ground-state energies de-
termined by finite-bias spectroscopy match those extracted from zero-
bias peak spacings (see Extended Data Figure 6.11).

Bias spectroscopy shows discrete zero-energy states emerging at
sufficient applied field over a range of device lengths. In a short
device (Figure 6.3c), the discrete state moves linearly in magnetic
field, passing through zero and merging with a continuum at VSD ∼
100 µeV. This merging is expected for Majorana systems in the short-
length limit, where quenching of spin-orbit coupling results in un-
protected parity crossings and state intersections at high energy [47].
Rather than passing directly through zero, the first zero crossing ex-
tends for 40 mT, which is not understood. Medium-length devices
show the subgap state bending back toward zero after zero crossings
(Figure 6.3d), in agreement with theoretical predictions for the emer-
gence of Majorana behavior with increasing system length [47,49]. For
a long device (L = 1.5 µm), bias spectroscopy shows a zero-energy
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Figure 6.3: Bias spectroscopy. a, Conductance, g, versus bias voltage, VSD,
and gate voltage, VG. Black lines indicate conductance due to
bound state, red marker is at eVSD = 2E0. b, Quantum dot and
lead density of states at the voltage configuration indicated by
red marker in (a). Changing voltage bias moves along the white
line in (a). c, Conductance versus source-drain bias and mag-
netic field, B||, for L = 330 nm device with gate voltage fixed
to position indicated by white line in a. d, Conductance versus
source-drain bias and magnetic field, B⊥, for L = 400 nm device.
e, Conductance versus source-drain bias and magnetic field, B||,
for L = 1.5 µm device.

state separated from a continuum at higher bias (Figure 6.3e). The
zero-energy state is present over a field range of 120 mT, with an
associated energy gap (30 µeV)/kB = 0.35 K.

The evolution from unprotected parity crossings, to energetically
isolated oscillating states, and then to a fixed zero-energy state, with
increasing device length is consistent with the expected crossover
from a strongly overlapping precursor of split Majoranas to a topo-
logically protected Majorana state locked at zero energy [47,49]. Note
that in the data in Figure 6.3e, the signal from the discrete state dis-
appears above B|| = 320 mT. This is not expected within a simple
Majorana picture. Even though the zero-bias peak disappears, the
peak spacing remains 1e-periodic (see Methods).

The observed effective g-factors, g ∼ 20− 50, extracted from the ad-
dition spectrum and bias spectroscopy (see Methods), are large com-
pared to previous studies on InAs nanowires [40, 70, 130], perhaps
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resulting from field focusing from the Al shell. The measured gap to
the continuum at zero magnetic field is consistent with the gap of
aluminum ∆Al ∼ 180 µeV, and is roughly the same in all devices. The
discrete subgap states (Figure 6.3c-e) have zero-field energy less than
but comparable to the gap, ranging from E0 (B = 0) ∼ 50− 160 µeV,
consistent with expectations for half-shell geometries [78]. The mea-
sured gap between the near-zero-energy state and the continuum
in the high-field (topological) regime, ∆T ∼ 30 µeV, along with the
coherence length extracted from the exponential fit to the length-
dependent splitting (Figure 6.2d), ξ ∼ 260 nm, are consistent with
topological superconductivity. Within this picture, at low magnetic
fields, the gap and coherence length are related to the strength of
spin-orbit coupling, yielding a value αSO ∼ ξ · ∆T = 8× 10−2 eV ·
that is consistent with previously reported values in InAs nanowires
[40, 131]. For a single subband picture, this implies a Fermi veloc-
ity vF = αSO/h̄ = 1× 104 m/s that is lower than expected, suggesting
that more than one subband is occupied under the Al shell, though
we are not able to extract the number of modes directly.

6.5 signatures of electron teleportation

Finally, we consider the magnetic field dependence of Coulomb block-
ade peak heights (as opposed to spacings), as seen in Figure 6.4. We
found in most devices that below the field B∗ where 2e-periodic
peaks split, all peaks were uniformly high amplitude. Above B∗,
peak heights were rapidly suppressed and remained low up to a sec-
ond characteristic field, B∗∗, coincident with 1e periodicity (i.e., the
field where even-odd spacing differences vanished). Above B∗∗, peak
heights recovered. In the longer wires, peaks were nearly absent be-
tween B∗ and B∗∗, as seen in Figure 6.4c.

We interpret these observations as follows: In the present lead-wire-
lead geometry, transport above B∗ involves single electrons entering
one end of the wire and leaving from the other. The onset of uni-
form spacing with the reappearance of high peaks above B∗∗ indi-
cates the emergence of a state (or states) at zero energy with strong
wave function support at both ends of the wire. This is consistent
with teleportation of electrons from one end of the wire to the other
via a Majorana mode [115, 116], though not necessarily a unique sig-
nature [132]. Thus while the simultaneous brightening of peaks with
their becoming uniformly spaced at B∗∗ suggests a subgap/Majorana
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Figure 6.4: Length dependence of Coulomb peak heights. a-c, Conduc-
tance as a function of magnetic field and gate voltage for device
lengths L = 400 nm, 790 nm, 1.5 µm. Coulomb peaks become
dim at field B∗ and brighten at field B∗∗, particularly for the
L = 1.5 µm device, consistent with teleportation at fields above
above B∗∗.

mode moving to the ends of the wire as it moves to zero energy, we
cannot rule out other forms of end-localized zero-energy states that
could appear above a critical field.

6.6 conclusion

In summary, we have studied Majorana islands composed of InAs
nanowires covered on two facets with epitaxial Al, for a range of de-
vice lengths. Zero-energy states are observed for wires of all lengths
away from zero field. Oscillating energy splittings, measured using
Coulomb blockade spectroscopy, are exponentially suppressed with
wire length, with a characteristic length ξ = 260 nm. This constitutes
an explicit demonstration of exponential protection of zero-energy
modes. Finite-bias measurements show transport through a discrete
zero-energy state, with a measured topological gap ∆T = 30 µeV for
long devices. The extracted ∆T and ξ are consistent with known pa-
rameters for InAs nanowires and the emergence of topological super-
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conductivity. Brightening of Coulomb peaks at the field where spac-
ing becomes uniform for longer devices suggests the presence of a
robust delocalized state connecting the leads, and provides experi-
mental support for electron teleportation via Majorana modes.

6.7 extended data

6.7.1 Sample preparation

The InAs nanowires with epitaxial Al shell were grown via a two-
step process by molecular beam epitaxy. First, the InAs nanowires
were grown using the vapor-liquid-solid method with Au as a cata-
lyst at 420◦C. Second, after cooling the system to −30◦C the Al was
grown on two facets of the hexagonal cross section [84]. Afterwards
the nanowires were deposited on degenerately doped Si substrates
with 100-500 nm thick thermal oxides using either wet or dry depo-
sition techniques. Wet deposition involves sonicating a growth sub-
strate of nanowires in methanol for a few seconds, then putting sev-
eral drops of the nanowire-methanol solution onto the chip surface
using a pipette. Dry deposition was done by bringing a small piece of
cleanroom wipe in touch with the growth substrate, then afterwards
swiping it onto the chip surface. We find that while wet deposition re-
sults in a more uniform dispersion of nanowires on the chip surface,
dry deposition is faster and less wasteful with nanowires. Selective
removal of the Al shell was done by patterning etch windows us-
ing electron beam lithography on both sides of the nanowire, plasma
cleaning the surface of the nanowire using oxygen, then etching the
Al using a Transene Al Etchant D with an etching time of 10 seconds
at 50◦C. Depending on the device, ohmic contacts to the InAs core
were fabricated using either ion milling or sulfur passivation to re-
move surface oxides. Ion milling was done for times ranging from
85 s to 110 s using a Kaufman & Robinson KDC 40 4-CM DC Ion
Source with an acceleration voltage of 120V and an ion beam current
density of 0.5 mA/cm2 at the chip surface. Sulfur passivation was
done using a 2.1% solution of (NH4)2S in DI water with 0.15 M dis-
solved elemental sulfur at 40◦C for 20 minutes. This was followed by
the deposition of 5 nm of Ti as a sticking layer and 70− 100 nm of
Au for the ohmic contact. We found that ion milling resulted in more
stable devices. Side and plunger gates were lithographically defined
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Figure 6.5: Device Layouts. Gate pattern for the five measured devices
showing applied voltage bias, VSD, and gate voltage, VG.

in the same fabrication step as the ohmic contacts in order to increase
device yield. PMMA was used as resist in all lithography steps.

6.7.2 Device geometries

Gate patterns of the five measured devices are shown in ED Figure
6.5. With the exception of the L = 0.9 µm device, all measurements
involving gate dependence are tuned through resonances using the
plunger gate on either the Al side or the uncoated InAs side. For the
L = 0.9 µm device, the lower left side gate is used to tune through
resonances of the quantum dot, because the central plunger gate was
not bonded during the cool down.

6.7.3 Measurements

Transport measurements were carried out in an Oxford Triton dilu-
tion refrigerator with a base electron temperature of T ∼ 50 mK and
a 6-1-1 T vector magnet. Differential conductance, g = dI/dVSD, was
measured using the AC-lockin technique with an excitation voltage
in the range 2-6 µV.

6.7.4 Peak spacing data summary

The exponential curve in Figure 6.2d (main text) is derived from even-
odd peak spacing measurements in the high critical field directions,
B|| and B⊥, summarized in ED Figure 6.6. Suppression of spacing
fluctuations with increased device length is clearly visible. The mea-
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Figure 6.6: Even-odd peak spacing summary. a-i, Peak spacings for even
and odd valleys, Se,o, versus applied magnetic field, similar to
Figure 6.2b, for different device lengths. Left axis shows peak
spacings, right axis shows corresponding energy scales, convert-
ing from gate voltage to energy by the lever arm, η, measured
independently from Coulomb blockade diamonds. Inset shows
a magnification of the first energy splitting with an arrow indi-
cating where A is measured. j, Cross section of the nanowire,
showing the applied field directions B||, B⊥ and Btr.
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L [nm] EC [meV] η [eV/V] A [µeV]

330 1.6 0.048 106

400 0.40 0.012 60

790 0.14 0.008 14

950 0.054 0.0016 7

1540 0.022 0.002 1.2

Table 6.1: Device length, L, charging energy, EC, lever arm, η, and charac-
teristic amplitude, A, for the five measured devices.

sured A is indicated by black arrows in the inset, and the values are
recorded in ED Table 6.1 for each device length, along with charging
energies and lever arms.

For L = 330 nm, Coulomb peak fluctuations became uncorrelated
after several peaks. To obtain a large statistical ensemble, fluctuations
were averaged over five sets of Coulomb peaks taken in different de-
vice tunings. ED Figure 6.6a shows data from a single set of peaks,
and ED Table 6.1 reports the full ensemble average.

In a transverse magnetic field applied in the low critical field direc-
tion, Btr, shown in ED Figure 6.6f-i, the oscillations are absent, with
the exception of an initial overshoot for L = 0.9 µm at Btr = 55 mT
(ED Figure 6.6i), before the system is driven into the normal state at
Btr ∼ 65 mT.

6.7.5 Magnetic field orientation

The direction of the nanowire on the chip was found by orienting the
magnetic field from a vector magnet in the chip plane and spectro-
scopically measuring the anisotropy of the critical magnetic field. By
comparing to the wire-direction based on optical and electron micro-
graphs, we estimate an angular precision of ± 3 degrees.

6.7.6 Critical field measurements

The observed 2e-1e splitting at B|| ∼ 95 mT is compared to the closing
of the superconducting gap at a considerably higher critical field, Bc,||,
in ED Figure 6.7. Bias spectroscopy in ED Figure 6.7b shows a closing
of the superconducting gap at Bc,|| ∼ 600 mT, more than 500 mT after
the onset of evenly spaced 1e-periodic Coulomb peaks. The change
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Figure 6.8: Oscillating 1e-periodic peak spacings. a, Zero-bias conductance,
g, versus gate voltage, VG, and parallel magnetic field, B||, at zero
bias showing the 2e-1e peak splitting for L = 0.9 µm. The fit peak
position is indicated by a red line, even and odd peak spacings,
Se,o, indicated by white arrows. b, Peak spacing, Se,o, for even
and odd valleys as a function of B||. The plot shows the average
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Figure 6.9: Angle dependence of state-continuum anti-crossing. a-f, Differ-
ential conductance, g, as a function of source-drain bias, VSD, and
magnetic field Bα for different angles, α = 22.5− 157.5◦, in the
plane perpendicular to the nanowire direction. Measurements
are from the L = 400 nm device.

from 2e to 1e-periodicity at B|| ∼ 100 mT in ED Figure 6.7a coincides
with a reduction in the measured Coulomb gap in ED Figure 6.7b,
reflecting the transition from Cooper pair charging (energy penalty
2EC) to single-electron charging (energy penalty EC). The measure-
ment in ED Figure 6.7b was taken in a Coulomb valley at the gate
voltage VG = −14.92 V.

6.7.7 Averaging of peak spacings

In Figure 6.2b of the main text, we show the extracted average peak
spacing for several even and odd Coulomb valleys. A high resolution
measurement of the 2e-1e splitting is shown in ED Figure 6.8a. The
individual even and odd valleys, Se,o in ED Figure 6.8b, exhibit the
same oscillating behavior but show a small deviation from the aver-
age between 100− 125 mT, which might be attributable to g-factor
fluctuations for successive charge occupations of the quantum dot.
Below 100 mT the fluctuations are very small, giving an indication of
instrumental noise in the measurement.
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Figure 6.10: Gate positions. a, Differential conductance, g, as a function of
gate voltage, VG, and parallel magnetic field, B||, for L = 330 nm.
Three different gate positions are indicated by colored horizon-
tal lines. b-d, Differential conductance as function of bias volt-
age, VSD, and B|| for the three gate voltages in (a).

6.7.8 Angle dependence

Angle dependence of the anti-crossing of the state with the contin-
uum for L = 400 nm is shown in ED Figure 6.9. We focus on magnetic
fields, Bα, with angles, α, in the plane perpendicular to the nanowire
direction. The measurements show a pronounced anti-crossing be-
tween the sub-gap state and an excitation continuum (α = 112.5◦ and
α = 135◦) that is significantly reduced for α = 67.5◦. Interpreting
angle dependence is complicated by the anisotropy of g-factor and
critical field. The critical field is maximized for α = 120◦, and is re-
duced drastically for near-perpendicular field alignment (α = 22.5◦).
The observed g-factors are highly dependent on field orientation and
device tuning. For the L = 400 nm device shown in ED Figure 6.9, we
found an approximately sinusoidal variation in g-factor by a factor of
2, with maximum g-factor occurring near α = 90◦.
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B⊥. b, Differential conductance, g, as a function of source-drain
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6.7.9 Choice of gate voltage for bias spectroscopy

For bias spectroscopy, the gate voltage is fixed either by interpreting
Coulomb diamonds, as discussed in the main text, or from even-odd
peak spacings. While details of the bias spectroscopy, such as loca-
tions of zero-crossing, depend on the choice of gate voltage, general
features such as slopes, typical fluctuation amplitude, and the pres-
ence of a robust excitation gap are not strongly affected by the choice
of gate voltage (ED Figure 6.10).

6.7.10 Comparison of addition energies and finite bias spectroscopy

Peak spacings are used to measure the energy of the lowest-lying
state. The same information is present in the bias spectroscopy, and
gives consistent results, as shown in ED Figure 6.11.

6.7.11 Bias spectroscopy of long device

Common-mode fluctuations in Coulomb peak position were ob-
served in the longest (L = 1.5 µm) device, as shown in ED Figure
6.12a. The fluctuations evidently correspond to a shift in the electro-
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Figure 6.12: Common-mode peak motion removal. a, Differential conduc-
tance, g, versus gate voltage, VG and applied magnetic field B||,
for L = 1.5 µm device. b, Same as (a), but with effective gate
voltage, VG,eff, defined to remove common-mode peak motion.
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chemical potential of the dot, likely due to a nearby, field-dependent
charge trap. The fluctuations are small compared to charging energy,
but complicate the application of bias spectroscopy which needs to
be performed at fixed electrochemical potential. To correct for the
fluctuations, we introduce an effective gate voltage,

VG,eff(B) = VG + δV(B), (6.1)

that removes the common-mode peak motion. The offset voltage is
zero at low field, when Coulomb peaks are 2e periodic (δV(B) = 0
for B ≤ 175 mT). At high field, δV(B) is chosen so that the reference
Coulomb peak (labeled in ED Figure 6.12b) occurs at constant VG,eff.
All nonzero δV(B) are listed in ED Table 6.2.

As shown in ED Figure 6.12b, this procedure removes the common-
mode peak motion. In the case of the 1.5 µm device, bias spectroscopy
is performed at fixed VG,eff, which allows us to infer the energy of the
sub-gap state at fixed electrochemical potential.

6.7.12 Zero-energy state at successive Coulomb peaks

The zero-energy state is robust over many successive Coulomb peaks,
as shown in ED Figure 6.13. The full bias spectroscopy as a function
of field is also reproducible over several peaks, as shown in ED Figure
6.14.
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B (mT) δV (mV)

180 0.25

230 0.25

235 0.25

240 0.25

245 0.25

250 0.25

255 0.25

260 0.5

265 0.5

270 0.5

275 0.5

280 0.75

300 0.25

305 0.75

310 1.25

315 1.5

320 1.75

325 1.75

330 1.75

335 1.75

340 1.75

345 1.75

350 1.75

355 1.75

360 1.75

365 1.75

370 1.75

375 1.75

380 1.75

385 1.75

390 1.75

395 1.75

400 1.75

Table 6.2: All nonzero offset voltage values, δV(B), for L = 1.5 µm device.
Offset is defined for B = 0, 5, 10, ..., 400 mT.
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Figure 6.13: Zero-energy state. a, Differential conductance, g, as a function
of bias voltage, VSD, and gate voltage, VG, for L = 1.5 µm and
B|| = 270 mT, showing an evenly spaced Coulomb diamond
pattern and the associated gapped zero-energy state. b, Differ-
ential conductance versus VSD, at the gate voltages indicated
by colored ticks in (a). At these VG values, the presence of a
zero-energy state is indicated by a zero bias peak.

6.7.13 Measured g-factors

As can be seen in ED Figure 6.15 the state energy does not move
linearly in magnetic field. A non-linear behavior with magnetic field
is expected in the presence of strong spin-orbit coupling and a finite
critical field.

If the behavior was strictly linear one would expect

B∗∗ =
E0

E0 − EC/2
B∗, (6.2)

because the peak splitting at B∗ occurs when E0(B = 0)− EZ = EC/2
and the state is at zero energy at B∗∗ when EZ = E0(B = 0) (see Figure
6.4 in the main text for reference). The non-linear behavior of E0(B)
at higher magnetic fields approaching B∗∗ renders this unsuitable for
an accurate measurement of the state energy at zero field.

In the low field regime where the state energy is approximately
linear with magnetic field we calculate an effective g-factor. Using this
slope it is possible to give a rough estimate of the state energy E0(B =

0) assuming linear behavior and extrapolating the state energy to zero
magnetic field.
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Figure 6.14: Bias-spectroscopy at successive Coulomb peaks. a, Differen-
tial conductance, g, versus VG,eff and applied magnetic field
B||. VG,eff is defined to remove common-mode peak motion, see
Methods Section ‘Bias spectroscopy of long device.’ b, Differ-
ential conductance versus source-drain bias, VSD, and applied
magnetic field, B||, at fixed VG,eff indicated on right axis of (a).

For bias spectroscopy it should be noted that for gate voltages in
the middle of the spectroscopic gap (see main text) transport through
a state at VSD = V0 indicates a state energy E0 = eV0/2. An example
for L = 330 nm is shown in ED Figure 6.15a.

Using the addition spectrum, the state energy can be calculated
from the peak spacing S according to E0 = (ηS− EC) /2. Examples
of extracted effective g-factors in the linear range are shown in ED
Figure 6.15b,c.
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This chapter will be published as:

Transport signatures of quasiparticle poisoning

in a Majorana island

All devices were fabricated by Sven Marian Albrecht based on
nanowires grown by Peter Krogstrup. Measurements were done by
Sven Marian Albrecht and Andrew Higginbotham under the super-
vision of Charles Marcus. The data analysis was done by Sven Mar-
ian Albrecht. Thomas Jespersen, Ferdinand Kuemmeth, and Jesper
Nygård contributed to interpreting the data and gave valuable in-
put. The theoretical model was developed by Esben Bork Hansen,
Sven Marian Albrecht, Jeroen Danon, and Karsten Flensberg. The
manuscript was written by Sven Marian Albrecht with input from
all authors.
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7.1 abstract

We investigate the effects of quasiparticle poisoning in a Majorana
island with normal-metal leads. For strong island-lead couplings, an
additional set of weak “shadow”-Coulomb diamonds shifted by 1e
in gate voltage is observed, consistent with transport through the
Majorana island in an excited (poisoned) state. At high magnetic
fields, corresponding to 1e periodic Coulomb peaks, main-peaks and
“shadow”-peaks merge, fully explainable using a simple model. Nu-
merical simulations show good agreement with the experiment, al-
lowing us give an estimate for the quasiparticle poisoning time of
the Majorana island for strong coupling (∼ 3 µs) and establish a
lower bound for weak coupling (> 10 µs). Increasing the magnetic
field beyond the 1e periodic regime, we observe peak spacing oscil-
lations that indicate transport through a hybridized near-zero-energy
Majorana mode, with Majorana hybridization energy quantitatively
consistent with earlier measurements.

7.2 introduction

Due to their capacity to host Majorana end modes [37, 38],
superconductor-semiconductor hybrid nanowire devices have been
the subject of intense research interest in recent years [39–42,127,128].
Of particular relevance to Majorana fusion rule-, braiding-, and
Majorana-based quantum computation-schemes [27–29,87] is the Ma-
jorana island geometry, in which the topological hybrid nanowire
acquires a charging energy that lifts the degeneracy between occu-
pied and empty Majorana states [42, 115, 116, 133, 134], allowing for
charge readout of the state parity. A fundamental bound to the co-
herence of Majorana based qubits is the quasiparticle poisoning time
of the Majorana state [24, 27, 96]. Studies on metallic superconduc-
tors have explored associated quasiparticle poisoning rates in de-
tail [90, 91, 94, 97–101, 135, 136], while experiments on semiconductor-
superconductor hybrids have only established bounds on poisoning
from the proximitizing superconductor [72], with quantitative esti-
mates for poisoning from the leads still pending.

In this Letter, we use Coulomb blockade spectroscopy to quantify
the quasiparticle poisoning time of a Majorana island. We find that
the Majorana island gets excited to a state with one extra quasiparticle
in the BCS continuum on a timescale of ∼ 3 µs in strongly coupled
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Figure 7.1: (a) Upper panel: Electron micrograph of a lithographically iden-
tical Majorana island device with applied bias voltage VSD, gate
voltage VG, and measured current I. Lower panel: Top-down
schematic of the InAs nanowire (green) with epitaxial Al shell
(light blue) showing the direction of applied magnetic fields, B⊥
and Btr. (b) Charge state energies E(Ncp,N∆ ,N0) of the Majorana
island as a function of gate induced charge NG = CGVG/e. For
odd occupation the two lowest avaible energy states are a quasi-
particle in the subgap state (red) or the BCS continuum (blue),
respectively. For even occupation the two lowest energy states
are the BCS condensate (black) and the occupation of both the
subgap state and the BCS continuum (green). Transport can oc-
cur at degeneracies of charge states, with dominant transitions
between ground states indicated by red circles and between ex-
cited states by green squares. Coulomb-peak spacings Se and So

are indicated by arrows. (c) Schematic of transport processes for
degeneracies indicated in (b). Left panel: At values of NG indi-
cated by red circles, current can flow by successive filling and
emptying of the subgap state. Right panel: At degeneracies indi-
cated by green squares, current can flow by successive emptying
and filling of the subgap state while another quasiparticle is oc-
cupying a continuum state.

regimes, and that it is bounded from below by ∼ 10 µs in the less
strongly coupled regimes investiged in Ref. [42]. Our results demon-
strate transport signatures of quasiparticle poisoning in Majorana is-
lands up to the topological phase transition and place constraints on
a relevant timescale for topological quantum computation and Majo-
rana braiding schemes.

The devices we investigate consist of an InAs nanowire with epi-
taxial Al half-shell [Figure 7.1(a)]. Upon deposition of the nanowire,
the half-shell is removed on both ends using a chemical etch, leaving
an Al island of length L = 400 nm in the center. The uncovered InAs
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segments on both sides are electrically contacted using normal-metal
(Ti/Au) ohmic contacts and brought into the tunneling regime us-
ing electrostatic gates that were patterned in the same lithography
step and control the carrier density in the exposed InAs junction
of length ∼ 50 nm. Magnetic fields applied out of the chip plane,
perpendicular to the nanowire, are denoted as B⊥, and transversal
to the nanowire, in the chip plane, are denoted Btr [Figure 7.1(a)
lower panel]. Due to the thin (∼ 10 nm) Al shell on the side of the
nanowire, superconductivity in the device is preserved up to high crit-
ical fields, Bc,⊥ ∼ 0.7 T, in the more favorable perpendicular direction
and considerably lower critical fields, Bc,tr ∼ 0.2 T, in the transver-
sal direction [42, 84]. The emergence of near-zero energy Majorana
modes in these nanowires for high parallel and perpendicular fields
was reported previously [42]. A bias voltage, VSD, is applied across
the device and the chemical potential of the Majorana island can be
controlled by applying a voltage to a plunger-gate, VG. The density
of states of superconducting hybrid Coulomb islands conforms well
to a model of a single subgap state at energy E0 in addition to a
Bardeen-Cooper-Schrieffer (BCS) continuum above energy ∆ [42, 72],
the hard superconducting gap that is induced in the nanowire due to
the epitaxial interface between the superconductor and the semicon-
ductor [79, 84].

7.3 energetics and transport

The total number of charges on the island is N = 2Ncp + N∆ + N0,
where Ncp denotes the number of Cooper pairs, and N0 and N∆ de-
note the number of quasiparticles in the subgap state and in the BCS
continuum, respectively. In the case of high charging energy EC, N is
a good quantum number, and the available charge states in the Ma-
jorana island can be parameterized by their associated charge occu-
pation numbers

(
Ncp, N∆, N0

)
, with corresponding zero-temperature

energies

E(Ncp,N∆,N0) =
EC

2
(NG − N)2 + N∆∆ + N0E0 (7.1)

This is shown schematically in Figure 7.1(b) as a function of gate-
induced charge, NG = CGVG/e, where e is the electron charge and
an even offset charge has been subtracted. For odd N, the lowest two
available charge states are the occupation of the subgap state, its en-
ergy E(Ncp,0,1) shown in red in Figure 7.1(b), followed by the occupa-
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tion of the BCS continuum [E(Ncp,1,0), blue]. For even N, the relevant
states contributing to transport are the BCS condensate [E(Ncp,0,0),
black], in addition to an occupation of both the subgap state and
the BCS continuum [E(Ncp,1,1), green].

We discuss possible transport processes in the Majorana island.
While current can flow at any degeneracies of charge states shown
in Figure 7.1(b), only some contribute significantly to the total cur-
rent. In the case of a strongly coupled subgap state, a strong con-
ductance resonance is expected at degeneracies between the BCS con-
densate and the singly occupied subgap level, which constitute two
ground states of the Majorana island. This occurs symmetric around
half-integer values of gate-induced charge, NG [red circles in Figure
1(b)], leading to a Coulomb peak pattern with even and odd peak
spacings, Se = η−1 (EC + 2E0) and So = η−1 (EC − 2E0), with gate
lever arm η, that has been reported previously [42, 72]. The transport
cycle is(

Ncp, 0, 0
) −→
←−
(

Ncp, 0, 1
)

, (7.2)

at the degeneracy point just below odd NG, where the subgap state is
successively emptied and filled, and(

Ncp, 0, 1
) −→
←−
(

Ncp + 1, 0, 0
)

, (7.3)

at the degeneracy point just above odd NG, where the state is emptied
by recombination with another quasiparticle into a Cooper pair. In
both cases this constitutes the sucessive emptying and filling of the
sub gap state with the BCS continuum unoccupied [Figure 7.1(c), left
panel].

Next, we turn our attention towards degeneracies between excited
states of the Majorana island. A degeneracy between a charge state
with one quasiparticle in the BCS continuum [E(Ncp,1,0), blue], and a
charge state with one quasiparticle in the BCS continuum and one
in the subgap state [E(Ncp,1,1), green], occurs symmetrically around
even values of NG [green squares in Figure 7.1(b)]. If these states are
populated, for example by quasiparticle poisoning, and if relaxation
times are long, this will lead to the transport cycle(

Ncp, 1, 0
) −→
←−
(

Ncp, 1, 1
)

(7.4)

at the degeneracy point below even NG, and(
Ncp, 1, 1

) −→
←−
(

Ncp + 1, 1, 0
)

, (7.5)
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at the degeneracy point above even NG. The excited-state transport
processes in Equations (7.4) and (7.5) are similar to those between
the ground states in Equations (7.2) and (7.3), but the excited states
differ by the presence of one long-lived quasiparticle in the BCS con-
tinuum. This is schematically shown in the right panel of Figure
7.1(c). Occupation of the charge states

(
Ncp, 1, 0

)
or
(

Ncp, 1, 1
)

states
can either occur by quasiparticle tunneling from the leads, leading
to transitions

(
Ncp, 0, 0

)
→
(

Ncp, 1, 0
)
, or by Cooper pair breaking,(

Ncp + 1, 0, 0
)
→
(

Ncp, 1, 1
)
.

The relaxation time from continuum to subgap state has been
previously quantified as τqp ∼ 0.1 µs [72], implying that for suf-
ficiently strong coupling of the subgap state to the left and right
leads, Γl,r � τ−1

qp , τ−1
rec , where τrec is the Cooper pair recombination

time, many transport cycles can take place before relaxation into the
ground state occurs. Notably, Coulomb peaks for this transition are
expected to occur at the same peak spacing as in the unpoisoned state,
Se,o, but now shifted by 1e in gate voltage [green squares in Figure
7.1(b,c)].

7.4 measurements

We investigate possible transport signatures between excited (poi-
soned) states in a Majorana island strongly coupled to normal metal
leads. Measured differential conductance, g = dI/dVSD, as a function
of VSD and VG at zero magnetic field [Figure 7.2(a)], exhibits a high-
conductance Coulomb diamond pattern with large even-occupancy
diamonds, small odd-occupancy diamonds, and negative differential
conductance (NDC) features at finite bias. This has been reported
for Majorana islands previously [42, 72]. The nearly vanishing width
of the odd diamond implies a subgap state energy E0 . EC/2, the
energy below which single quasiparticle charging of the device is ex-
pected to set in [42, 72, 117, 118].

In addition to the “main"-diamonds with average peak zero-bias
conductances of gm ∼ 0.5 e2/h, a second much weaker set of
“shadow"-diamonds with peak conductances gs ∼ 0.03 e2/h is vis-
ible inside the center of the even diamond. NDC is also observed
for the shadow-diamonds and they appear identical to the main di-
amonds, except significantly lower in conductance and shifted by a
gate voltage corresponding to 1e gate-induced charge, similar to zero-
bias signatures of quasiparticle poisoning that have been reported for
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Figure 7.2: (a) Experimental differential conductance g = dI/dVSD, on a log-
arithmic scale as a function of bias voltage VSD and gate voltage
VG, showing a series of Coulomb diamonds at zero magnetic
field. A second set of weaker “shadow"-diamonds is visible in
the center of the even Coulomb diamond. (b) Transport model of
(a) showing calculated differential conductance g as a function
of gate-induced charge NG and source-drain bias. See main text
for model parameters.

metallic superconductor islands [121]. The similarity between main
and shadow-diamonds, their equal spacing, the 1e shift, and the ab-
sence of competing mechanisms that would produce this signature,
strongly suggest that the weak shadow-transitions can be identified
with the transport cycles in Equations (7.4) and (7.5) [Figure 7.1(b)
right panel, Figure 7.1(b) green squares].

From the Coulomb blockade pattern we extract a charging en-
ergy EC = 208 µeV, gate lever arm η = 2EC/ (〈Se〉+ 〈So〉) =

6.2× 10−3 eV/V, and subgap state energy E0 = 75 µeV. The width
and magnitude of the zero-bias conductance resonance taken at a
finite field, where peak-overlap is minimal, suggest asymmetric cou-
pling of the subgap state to the left and right leads which we fit as
Γl ∼ 1 GHz and Γr ∼ 6 GHz, significantly stronger than couplings in
previous treatments [72].

The relative magnitude of the shadow-peak is expected to be de-
pendent on the rate, τ−1

p , with which quasiparticle tunneling events
into the poisoned state occur. In order to get a quantitative estimate
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of τp, we simulate transport using a rate equation model similar to
previous treatments [72]. We base our simulation on the extracted
values for EC, η, E0, and Γl,r. Additional required parameters are the
lead-continuum conductance gAl ∼ 0.7 e2/h, estimated from high-
bias measurements, the induced superconducting gap, ∆ = 140 µeV,
chosen to match the onset of NDC, and the relaxation rate of quasi-
particles from the continuum to the subgap state τqp = 0.1 µs, quan-
tified in previous measurements [72]. We include excitations for even
and odd ground states that add a quasiparticle into the BCS contin-
uum,

(
Ncp, 0, 0

)
→
(

Ncp, 1, 0
)

and
(

Ncp, 0, 1
)
→
(

Ncp, 1, 1
)
, with rate

τ−1
p , but neglect excitations to the subgap state in our treatment, as

they will tunnel out again on timescales set by the larger state-lead
coupling, Γ−1

r � τp, and not contribute significantly to the current.
We also neglect excitations that break a Cooper pair, as we only ob-
serve shadow-peaks in tunings where the Majorana island is strongly
coupled to the normal metal leads. As Cooper pair breaking would
give rise to transitions irrespective of Coupling to the leads, this sug-
gests that quasiparticle tunneling is the dominant source of poisoning
events.

The simulated conductance, g, as a function of VSD and NG captures
all qualitative features of the observed conductance [Figure 7.2(b)].
The poisoning time τp = 2.6 µs gives best agreement with the ob-
served ratio of main and shadow-peak conductance (see below).

7.5 magnetic field dependence

Experimental zero-bias differential conductance as a function of VG

and perpendicular magnetic field, B⊥, is shown in Figure 7.3(a).
Odd Coulomb valley spacings, So, increase in splitting up to a field
B⊥ = 0.16 T at which average peak spacings are equal, 〈Se〉 = 〈So〉,
indicative of a zero-energy state, E0 = 0. For higher fields, the peak
spacings oscillate as a function of magnetic field, consistent with the-
oretically predicted [45,47,115] and experimentally reported [42,134]
signatures of the topological phase transition towards strongly hy-
bridized Majorana modes in Majorana islands. From the near-linear
dependence of the peak spacings on B⊥ at lower fields and the condi-
tion for evenly spaced peaks E0 (B⊥) = E0(B⊥ = 0)− EZ = 0, where
EZ is the Zeeman energy, we extract an effective g-factor of 16, large
for InAs [70,123], but consistent with previous measurements on InAs
nanowire Coulomb islands [42, 134].
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Figure 7.3: (a) Experimental zero-bias differential conductance g, as a func-
tion of perpendicular magnetic field B⊥, and gate voltage VG,
showing a series of strong even-odd Coulomb peaks with fainter
shadow peaks in the even Coulomb valley. Both sets of peaks
split with increasing magnetic field and merge at B⊥ ∼ 0.16 T.
White line indicates cut in (c). (b) Simulated differential conduc-
tance g, as a function of Zeeman energy EZ, and gate induced
charge NG. (c) Differential conductance g, versus gate voltage
VG from measurement in (a) at B⊥ = 50 mT. Odd peak spac-
ing, So, for main and shadow transitions indicated by arrows.
Average height of the main and shadow peaks indicated by
gm and gs respectively. (d) Simulated differential conductance
g, as a function of gate-induced charge NG for poisoning times
τp = (13 µs, 2.6 µs, 0.5 µs). Simulations show an increase in gs

and decrease in gm for decreasing τp.
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The magnetic field dependence of the weak shadow-peaks mirrors
that of the main peaks, but shifted by a gate voltage corresponding
to 1e gate-induced charge, up to the field B⊥ = 0.16 T at which both
peaks merge. This field dependence of the shadow peaks is fully con-
sistent with the zero-bias transport model, which predicts that for
the special case of Se = So, i.e. E0 = 0, both poisoned and unpoi-
soned transitions are expected to occur at the same gate voltage [Fig-
ure 7.1(b), overlap of green squares and red circles]. At higher fields,
B⊥ > 0.16 T, the two sets of peaks cannot be experimentally distin-
guished anymore.

We extend our model to include the effects of the Zeeman effect by
assuming a subgap state energy linearly dependent on magnetic field,
E0 = 75 µeV− EZ, for EZ ≤ 75 µeV. To take into account the topolog-
ical phase transition towards a Majorana mode at EZ = E0 (EZ = 0),
which is not directly captured by the rate model, we set E0 = 0 for
EZ > 75 µeV and neglect Majorana mode hybridization [42, 45, 47].

The simulated zero-bias conductance, g, as a function of gate in-
duced charge, NG, and Zeeman energy, EZ, is shown in Figure 7.3(b).
Using the same poisoning time τp = 2.6 µs as for the simula-
tion in Figure 7.2(b), it captures the observed splitting of the main
and shadow peaks for increasing EZ, as well as their merging at
EZ = 75 µeV. A cut of measured g versus VG, taken at the field
B⊥ = 50 mT, where overlap between adjacent peaks is minimal, is
shown in Figure 7.3(c). We define gm and gs as the average main and
shadow-peak conductance in the presented gate range and determine
the ratio gm/gs ∼ 18.

The simulated differential conductance as a function of NG at a
Zeeman energy EZ = 25 µeV, corresponding to B⊥ = 50 mT, is cal-
culated for three poisoning times τp = (13 µs, 2.6 µs, 0.5 µs) [Figure
7.3(d)]. The simulations reveal a simultaneous increase in gs and de-
crease in gm for decreasing τp. The decrease in gm, de-emphasized
by the logarithmic scale in Figure 7.3(d), matches the increase in gs,
reflecting that the Majorana island is either in a poisoned or in an
unpoisoned state. For our device-specific parameters, the simulations
exhibit a near-linear dependence of poisoning times on peak ratios.

As the shadow peak is expected to grow with decreasing poisoning
time, the presented data is not a best-case scenario for the long poison-
ing times desirable for Majorana qubits. By estimating the maximum
ratio gm/gs from the noise-floor in weakly coupled device tunings,
where no shadow-diamonds are observed [42], we place a conserva-
tive estimate on the poisoning time of τp > 10 µs.
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Figure 7.4: Upper panels: Differential conductance g, as a function of gate
voltage VG and magnetic fields perpendicular (B⊥, left) and
transversal (Btr, right) to the nanowire. The fit peak positions are
overlaid by dashed white lines. Lower panels: Extracted average
peak spacing for even and odd Coulomb valleys, 〈Se,o〉, as a func-
tion of B⊥ (left panel) and Btr (right panel). The left axis gives
the peak spacing in units of gate voltage, the right axis shows
the associated energy scale ηS − EC ∝ E0. For a perpendicular
field of B⊥ = 0.16 T, peaks reach the even spacing 〈Se〉 = 〈So〉.
For higher fields peak spacings oscillate with maximum energy
amplitude A = 59 µeV. For transversal fields, 〈Se〉 = 〈So〉 at
Btr = 0.22 T, with no observed high field oscillations in the peak
spacing.

Finally, we investigate the behavior of shadow-peaks and main-
peaks in different magnetic field directions. The magnetic-field de-
pendent splitting is compared for directions B⊥ and Btr in Figure 7.4.
In both cases, the estimated peak center, indicated by a dashed white
line in the upper panels of Figure 7.4, is used to calculated average
Coulomb peak spacings for the two even and the three odd valleys of
the main set of Coulomb peaks, denoted 〈Se〉 and 〈So〉. This is shown
in the lower panels of Figure 7.4, where the right axis indicates the
energy scale for the lowest subgap state ηS− EC ∝ E0. The shadow-
peak is not used in this analysis as it cannot be distinguished from
the main peak for higher fields.

For increasing perpendicular fields, B⊥, even and odd valley spac-
ings increase and become uniformly spaced 〈Se〉 = 〈So〉 at B⊥ =

0.16 T, indicating the emergence of a state at E0 = 0, and subse-
quently oscillate in magnetic field. The energy oscillation amplitude
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of the peak spacing, A = 59 µeV, is close to the expected value for
hybridized Majorana modes in a device with L = 400 nm, A =

A0e−L/ξ = 64 µeV, based on previous fits of constants A0 = 300 µeV
and ξ = 260 nm [42]. We stress that data from the same device show-
ing A = 60 µeV, but measured in a different tuning without shadow-
peaks, which were not fully understood at the time, was included in
the original analysis to determine A0 and ξ [42].

For increasing transversal fields, Btr, shadow peaks split similar to
the main peaks, and the spacing becomes 1e periodic at Btr = 0.22 T,
with no oscillations visible for higher fields [Fig 7.4, right panels].
Independent measurements show a closing of the superconducting
gap for this device at Bc,tr = 0.25 T, suggesting that the transition
towards 1e periodic peak spacings for transversal magnetic fields is
dominated by a quenching of E0 as superconductivity is destroyed.
This interpretation is supported by the different curvatures of 〈Se,o〉
as they approach the field when 〈Se〉 = 〈So〉, with 〈Se,o〉 bending
outwards for B⊥ and inwards for Btr. Since η〈Se〉 − EC ∝ E0 and
η〈So〉 − EC ∝ −E0, the outwards bending behavior for B⊥ is in line
with theoretical models for subgap states approaching the topological
phase transition towards a Majorana mode [45,47,49]. In contrast, the
two curves bending inwards for increasing Btr is consistent in a sim-
ple picture that approximates the lowest state energy as proportional
to the quadratically closing induced superconducting gap.

7.6 conclusion

In conclusion, we have measured and modeled transport signatures
of quasiparticle poisoning in a Majorana island. Zero-field measure-
ments reveal an even-odd Coulomb diamond pattern in addition to a
second set of weaker shadow-diamonds, associated with quasiparti-
cle poisoning of the Majorana island. The field-dependence exhibits a
merging of main and shadow-peaks, an effect that to our best knowl-
edge has so far not been reported in the scientific literature. The good
agreement between experiment and model suggests poisoning times
τp = 2.6 µs for the presented device and τp > 10 µs for devices
in which this effect is absent. High field measurements indicate a
transition to the topological phase, with extracted Majorana mode
hybridization energies consistent with previous measurements.
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A N A LY S I S O F P E A K S K E W S I N A M A J O R A N A
I S L A N D

Published results based on measurements in Majorana islands [72],
reported in Chapter 5, observed that Coulomb peak centroids were
not identical with Coulomb peak maxima. Moreover, it was found
that Coulomb peaks were systematically skewed towards the even
Coulomb valley for an L = 310 nm device, as shown in Figure 5.3c.

Subsequent theoretical work proposed an explanation for this ef-
fect [133], based on elastic cotunneling via a virtual state in the Ma-
jorana island. This prompted a more thorough analysis of earlier
datasets with respect to the presence of peak skews and their system-
atic dependence on magnetic field and subgap state energy, which is
presented in this chapter. Although the results are still inconclusive,
and in some cases opposite to the findings in Chapter 5, they might
contribute to an understanding of this effect.

8.1 definition

Our treatment attempts to present a simple, intuitive, and model-
blind analysis of peak skews. For the sake of simplicity, we will not
be resorting to statistical measures of skewness, such as Pearson’s
moment coefficient. This could, however, be implemented in more
elaborate investigations of peak skews in future work.

We define the integrated conductance on the right and left side of
a Coulomb peak as

Gr =

Vpeak+δ∫
Vpeak

g (VG)dVG, Gl =

Vpeak∫
Vpeak−δ

g (VG)dVG (8.1)

where Vpeak is the peak position in gate voltage and δ is the gate inter-
val on the left and right side of the peak that is integrated over. This is
shown for a sample peak in Figure 8.1. For the following analysis we
will pick δ = 2〈FWHM〉, where 〈FWHM〉 is the average full width
at half maximum for all the peaks in a single measurement of g as
a function of VG at zero-bias and fixed magnetic field. We stress that
this is an arbitrary, but useful, choice that captures most of the peak
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Figure 8.1: Calculation of peak skews. Schematic showing differential con-
ductance g as a function of gate voltage VG for a single peak.
The conductance is integrated over a region of ±δ around the
peak maximum to determine Gl (light gray) and Gr (dark gray).
Skews are calculated according to R = (Gr − Gl) / (Gr + Gl). For
the analysis, δ has been chosen as twice the average full width at
half maximum of all the peaks in a single gate trace (not shown
to scale in figure).

area, including its skew, and little of the conductance background in
the adjacent Coulomb valley.

Next, we define the normalized peak skew, R, as

R =
Gr − Gl

Gr + Gl
. (8.2)

It is a measure of how much a peak is skewed towards the right,
higher gate voltage side, with positive R indicating a skew to the
right, and negative R indicating a skew to the left. We further separate
the set of Coulomb peaks into those on the left side of an odd valley,
which we will refer to as e→o peaks, and those on the right side of
an odd valley, which we denote o→e peaks (see below).

8.2 magnetic field dependence

A measurement of Coulomb peaks taken at a magnetic field of
B|| = 140 mT for an L = 790 nm Majorana island device is shown
in Figure 8.2a. The measurement shows a clear alternation of low-
conductance e→o and high-conductance o→e Coulomb peaks, an ef-
fect that is currently not understood. In addition to the alternating
conductance intensities, the normalized peak skew R, shown in Fig-
ure 8.2b, alternates between more and less right-skewed peaks, with
Re→o,N > Ro→e,N for nearly all N, where N is the index of the odd
valley that is framed by the e→o and the o→e peak. We note that
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Figure 8.2: Peak skews for B|| = 140 mT. a, Differential conductance g, as
a function of gate voltage VG, for the L = 790 nm device. Even
and odd valleys are indicated by red and blue labels, extracted
peak positions for e→o and o→e peaks are indicated by orange
and green circles, respectively. b, Calculated peak skew, R, for
e→o and o→e peaks as a function of VG, showing an alternating
pattern of high Re→o and low Ro→e.

there is a single outlier at VG ∼ −0.47 mV, that does not change the
parity of the whole measurement. We also observe that most R > 0,
which implies that all Coulomb peaks are systematically skewed to
the right side. We suspect that this is a measurement artifact, either
caused by measuring too fast on our lockin amplifier, or because the
applied bias voltage was not perfectly zero during the measurement.
We will substantiate this interpretation below.

As at this particular magnetic field odd valleys are smaller than
even valleys, owing to a state energy 0 < E0 < EC/2, potential ar-
tifacts could be introduced in the extraction of the peak skew if the
analysis would take into account a peak overlap in the center of the
odd valley. We explicitly verify that this is not the case by plotting the
Vpeak ± δ area used in the analysis as a gray box in Figure 8.2a and
determine that none of the peaks overlap in the area of integration.

The individual Coulomb peaks, normalized to their respective max-
imum gmax, belonging to the e→o and o→e sets for B|| = 140 mT are
shown in Figure 8.3. The average (black overlay) shows a tendency
of the e→o peaks to bend towards the odd (right) valley, as expected
from the consistently higher values of Re→o in Figure 8.2b.
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Figure 8.3: Peak shapes for B|| = 140 mT. Differential conductance g, for
each individual peak as a function of gate voltage centered
around the peak maximum VG − Vpeak, for the L = 790 nm
device. Left panel shows individual e→o peaks (orange), right
panel shows individual o→e peaks (green). The average is shown
in black.
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Figure 8.4: Peak skews for B|| = 170 mT. a, Coulomb peaks. b, Peak skew,
R, featuring an alternating pattern of low Re→o and high Ro→e,
opposite to the pattern observed for B|| = 140 mT.
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Figure 8.5: Peak shapes for B|| = 170 mT.

We compare this to the identical analysis for a cut at B|| = 170 mT,
shown in Figure 8.4a, which was measured on the same set of
Coulomb peaks. Coulomb peak intensities vary again, with low o→e
peak conductance and high e→o peak conductance, as was the case
for the B|| = 140 mT measurement. The calculated normalized peak
skew, R, for B|| = 170 mT (Figure 8.4b) exhibits an alternating pattern
that looks superficially similar to the B|| = 140 mT measurement. We
note, however, that in this case e→o transitions have lower R than
their neighboring o→e transitions, Re→o,N < Ro→e,N , with the excep-
tion of two outliers at VG = −0.55, −0.4 V. This constitutes a phase
slip, compared to B|| = 140 mT, where Re→o,N > Ro→e,N . Individ-
ual and average peak shapes for B|| = 170 mT, shown in Figure 8.5
exhibit a clear tail of the o→e peaks towards the even (right) valley,
as expected from Figure 8.4b. Moreover, we note that while the skew
direction for e→o and o→e peaks changed as we increased the mag-
netic field, the relative height of conductance peaks did not (e→o
peaks are lower for both fields). This suggests that these two effects
are not related.

We find yet another phase slip at a higher field, B|| = 235 mT,
shown in Figure 8.6b, where Re→o,N > Ro→e,N for all N, except for the
last two Coulomb valleys. Both sets of peaks have a tendency to skew
more towards the odd side, which is confirmed by the individual
peak shapes shown in Figure 8.7.

We turn our attention to the full two-dimensional dataset of the
L = 790 nm Majorana island from which the cuts in Figures 8.2a-
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Figure 8.6: Peak skews for B|| = 235 mT. a, Coulomb peaks. b, Peak skew,
R, featuring an alternating pattern of high Re→o and low Ro→e,
opposite to the pattern observed for B|| = 170 mT.
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Figure 8.7: Peak shapes for B|| = 235 mT.

8.7a were extracted. The measured differential conductance at zero
bias is shown as a function of VG and B|| in Figure 8.8a. It shows 2e
periodic Coulomb peaks at B = 0, that split in an applied magnetic
field, as reported before for Majorana islands [42], see Chapter 6. The
extracted average peak spacing for even and odd Coulomb diamonds,
〈Se〉 and 〈So〉 shown in 8.8b, reveals oscillations around the value
〈Se〉 = 〈So〉, as expected for hybridized Majorana modes.



8.2 magnetic field dependence 113

15

20

S
(m

V
)

〈Se〉
〈So〉

0

0.2

R

〈Re→o〉
〈Ro→e〉

0.2 0.4
B|| (T)

0

0.5

1
F o

Re→o,N > Ro→e,N

0 0.2 0.4
B|| (T)

-0.7

-0.6

-0.5

-0.4

-0.3
V

G
(V

)

0 0.4 0.8
g (e2/h)

a b

c

d

Figure 8.8: Peak skews in parallel magnetic field. a, Differential conduc-
tance g, as a function of gate voltage VG, and parallel magnetic
field B||. White lines show fit peak positions. b, Calculated aver-
age peak spacings 〈Se,o〉 for even and odd Coulomb valleys as
a function of B||. c, Calculated average normalized peak skew
for e→o and o→e peaks, 〈Re→o〉 and 〈Ro→e〉, showing oscil-
lations as a function of B||. Standard deviation is plotted as
shaded area behind the data. d, Fraction of e→o peaks that have
Re→o,N > Ro→e,N , where N is the Coulomb valley framed by
both peaks.

Extending our skew analysis to the magnetic field range 140 −
500 mT in Figure 8.8a, the average extracted peak skew for e→o
and o→e peaks, 〈Re→o〉 and 〈Ro→e〉, plotted against magnetic field
B|| in Figure 8.8c, shows three peak skew phase slips, where
〈Re→o〉 − 〈Ro→e〉 changes sign. Interestingly, a comparison with Fig-
ure 8.8b suggests that phase slips in skew are occurring at “kinks” in
the peak spacings, i.e. at magnetic fields where d2S

dB2
||
6= 0.

We plot the calculated statistical error on the mean as the shaded
region behind the line in Figure 8.8c. Due to the large spread in Re→o
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and Ro→e in a single measurement (see Figures 8.2b, 8.4b, 8.6b), this
error is not a good estimate of how well R preserves its alternating
up-down or down-up pattern between e→o and o→e peaks. Even
for a perfectly alternating pattern, a steady increase in individual R
values will significantly increase the error on the mean. To get a bet-
ter estimate, we calculate the fraction Fo of odd Coulomb valleys for
which the surrounding peaks feature a skew Re→o,N > Ro→e,N . For a
completely random distribution we would therefore expect Fo = 0.5,
whereas in the case of Re→o,N > Ro→e,N for all Coulomb valleys
Fo = 1. The quantity Fo is therefore a measure of how good R pre-
serves its up-down alternating parity. The calculated fraction, shown
in Figure 8.8d, shows oscillations, with Fo ∼ 1 at B|| = 140, 235 mT
and Fo ∼ 0 for B|| = 170, 300 mT.

We compare these results to an identical analysis for the same set
of Coulomb peaks, but measured as a function of a magnetic field
pointing in the low-critical field transversal direction Btr, which is
shown in Figure 8.9a. Peak spacings (Figure 8.9b) approach their
even spacing 〈Se〉 = 〈So〉 at Btr,c ∼ 120 mT, with no further os-
cillations at higher magnetic fields. This is consistent with the clos-
ing of the energy gap as superconductivity is destroyed in the de-
vice. The calculated average peak skew, shown in Figure 8.9c, shows
〈Re→o〉 > 〈Ro→e〉 for fields below the superconducting-to-normal
transition and 〈Re→o〉 = 〈Ro→e〉 for Btr > Btr,c when the device is
in the metallic state. Likewise, Fo is statistically distributed around
the value Fo ∼ 0.5 for for Btr > Btr,c, as seen in Figure 8.9d.

8.3 conclusion

The absence of peak skew differences between e→o and o→e peaks,
i.e. 〈Re→o〉 = 〈Ro→e〉, as superconductivity is destroyed supports our
assumption that R values do not scatter symmetrically around R = 0,
due to a systematic error resulting from the measurement. The ab-
sence of oscillations in the peak skew for the non-superconducting
regime, whereas oscillations are clearly present for B||, also implies
that a causal relationship between peak skew and subgap state en-
ergetics exists. Moreover, in an applied parallel magnetic field phase
slips in the skew direction correlate with changes in the subgap state
energy. This effect is currently not understood, but will be the subject
of future work.
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Figure 8.9: Peak skews in transversal magnetic field. a, Coulomb peaks
split in a transversal magentic field. b, No oscillations in peak
spacings S are visible as the device is driven into the normal state
at Btr,c ∼ 120 mT. c, Peaks feature an alternating skew pattern
at low fields, but no oscillations in skew are distinguishable af-
ter the superconducting to normal transition. d, While the calcu-
lated peak skew is nearly perfectly alternating for most measure-
ments below the transition to the normal state, it is statistically
distributed around the value Fo ∼ 0.5 after superconductivity is
destroyed.
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nescence from single monolayers of nanocrystals in molecular
organic devices,” Nature, vol. 420, no. 6917, pp. 800–803, Dec.
2002.

[53] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović,
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