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Abstract

Qubits protected against noise have long coherence times and can be used as basic components in
quantum computers. This thesis studies two distinct superconductor-based qubit platforms that
realize noise-protection in different ways.

The first part of the thesis is concerned with Majorana zero modes that are non-Abelian anyons
predicted to exist at the boundary of certain topological superconductors. Symmetries of the
topological superconductor protect Majorana zero modes from decoherence and allow for non-
local encoding of quantum information which is insensitive to local noise. We study a Majorana
system where single electron charge-transfer between external quantum dots and the Majorana
system realizes a universal gate set. We study non-idealities of the charge-transfer operations and
propose a minimal experiment that can demonstrate Majorana non-Abelian properties.

The second part of the thesis is concerned with superconducting qubits based on conven-
tional superconductors. These qubits are micrometer-sized superconducting circuits that are
sensitive to the electromagnetic environment. Despite inherent noise sensitivity, superconducting
qubits are promising as a platform to realize large-scale quantum computers. We study two ways
superconducting qubits can be engineered to reduce noise sensitivity.

First, we consider a flux qubit that is protected against relaxation by separating its quantum
states in different potential wells. We devise a universal gate scheme that momentarily reduces the
level of protection to partially hybridize the qubit states, enabling direct-drive microwave gates.
We also consider a readout scheme that preserves protection by reading out via an auxiliary qubit
mode.

Second, we consider protection against flux noise which can be achieved using superinductors.
We consider a junction array superinductor comprised of quartons that exhibits a quartic energy-
phase relation, effectively increasing the inductance. We study non-idealities in the quarton array
and compare it to conventional junction array superinductors. We use the quarton array superin-
ductor as the inductive elements in the 0−π qubit, the bifluxon qubit, and the Blochnium qubit
and numerically evaluate dephasing times due to flux noise. Finally, we discuss the experimental
requirements needed to achieve protection against flux noise in superconducting qubits based on
quarton array superinductors.



Sammenfatning

Kvantebits beskyttet mod støj har lange kohærenstider og kan blive brugt som elementære kompo-
nenter i kvantecomputere. Denne afhandling studerer to distinkte superlederbaserede kvantebitp-
latforme, som realiserer støjbeskyttelse på to forskellige måder.

Den første del af afhandlingen omhandler Majoranatilstande, som er ikke-Abelske anyoner,
forudsagt til at eksistere på randen af særlige topologiske superledere. Symmetrier i den topologiske
superleder beskytter Majoranatilstandene fra dekohærens og tillader en ikke-lokal indkodning af
kvanteinformation, der er insensitiv til lokal støj. Vi studerer et Majoranasystem, hvor ladningsud-
veksling af enkelte elektroner mellem kvanteprikker og Majoranasystemet realiserer et universelt
sæt af kvantelogik. Vi studerer ikke-ideelle faktorer i ladningsudvekslingsprocesserne og foreslår et
minimalt eksperiment, der kan eftervise ikke-Abelske egenskaber af Majoranatilstande.

Den anden del af afhandlingen omhandler superledende kvantebits baseret på konventionelle
superledere. Disse kvantebits er superledende kredsløb i mikrometerstørrelse, som er sensitive til
det elektromagnetiske miljø. Trods intrinsisk støjsensitivitet er superledende kvantebits lovende
som platform til at realisere kvantecomputere på stor skala. Vi studerer to måder, hvorpå superle-
dende kvantebits kan designes til at reducere støjsensitivitet.

Først betragter vi en fluxkvantebit, som er beskyttet mod henfald ved at separere dets kvantetil-
stande i forskellige kvantebrønde. Vi udtænker en fremgangsmåde for et universelt sæt af kvantelo-
gik, der momentant reducerer graden af beskyttelse for delvist at hybridisere kvantebittilstandene
hvorved mikrobølgekvantleogik, der drives direkte, muliggøres. Vi overvejer også en fremgangsmå-
de til udlæsning, der bevarer beskyttelse ved at læse ud gennem en hjælpe-kvantebittilstand.

Dernæst overvejer vi beskyttelse mod fluxstøj, som kan opnås ved at bruge superinduktorer. Vi
overvejer en superinduktor bestående af en kvartonrække, der fremviser en kvartisk energi-fase
relation og som effektivt øger induktansen. Vi studerer ikke-ideelle faktorer i kvartonrækken og sam-
menligner med konventionelle superinduktorer bestående af en række af Josephson-forbindelser.
Vi bruger superinduktoren bestående af kvartonrækker som de induktive elementer i 0−π kvante-
bitten, bifluxon-kvantebitten og Blochnium-kvantebitten og evaluerer numerisk affasningstiden
fra fluxstøj. Til slut diskuterer vi de nødvendige eksperimentelle krav for at opnå beskyttelse mod
fluxstøj i superledende kvantebits baseret på superinduktorer bestående af kvartonrækker.
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Preface

Theoretical modeling, physical discoveries and technological developments are intimately linked.
Today, it can sometimes be taken for granted that theoretical findings can motivate and predict
experimental results. Then, once a physical mechanism or effect is adequately tested, a technology
can be developed and commercialized. Yet, earlier in scientific history, this reasoning was reversed.
Technological advancements urged theories to be created.

The first commercialization (or invention1) of the steam engine is due to Thomas Savory
and Thomas Newcomen who in 1698 and 1712 each introduced an industrially viable steam
engine [7]. Later, during the second half of the 18th century, James Watt improved the steam
engine design extensively, leading to the widespread transition to mechanical power during the
Industrial Revolution [8]. The successes of the steam engine inspired, among others, Sadi Carnot
to study the efficiency of thermodynamic processes and his contemplations birthed the important
concept of a “Carnot cycle”2 in 1824 [9]. Thermodynamics was later put on a solid theoretical
foundation by Rudolf Clausius and William Thomson3 during the middle of the 19th century
through the introduction of concepts such as entropy and the second law of thermodynamics
[9]. This leaves about a 100 year gap between the commercialization of the steam engine and
our modern theoretical description of its underpinning physics. Nevertheless, theoretical physics
quickly caught up.

The end of the 19th century also saw its major technological invention. Thomas Edison fa-
mously commercialized the incandescent light bulb in the early 1880s and electricity slowly took
over as an energy resource [10, 11]. In this case, however, the development of the light bulb was
essentially parallel to the study of the theory of electrodynamics. Incandescence from a wire
heated by electric current was first demonstrated as early as 1761 by Ebenezer Kinnersley [12]
and was under intense development starting in the early 19th hundred with experiments inspired
by Humphry Davy in 1802 [10]. Simultaneously, famous experiments by Coulomb (1787), Ørsted
(1820), Ampère (1820) and Faraday4 (1821/31) settled empirical laws of electromagnetism: the
force law of electrical charges and the correspondence between magnetic fields and currents [9].
Within a decade of Edison’s light bulb, these efforts culminated in 1873 with James Clerk Maxwell’s

1It is hard to pinpoint the exact invention of the steam engine as numerous attempts to use steam as a mechanical
resource has appeared throughout history. A rudimentary steam engine, “aelopile”, was described by the ancient Greek
mathematician and engineer Heron of Alexandria in the 1st century.

2The Carnot cycle is the thermodynamic cycle with the theoretically highest efficiency.
3Whom you never know if you should refer to as Lord Kelvin or not.
4Incidentally, Faraday started his career by getting hired as an assistant by Humphry Davy. He was a replacement for an

assistant who got into a fistfight and was subsequently dismissed.
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PREFACE

comprehensive work “A Treatise on Electricity and Magnetism” which unified the classical theory
of electrodynamics [13].

A more recent scientific breakthrough is the light-emitting diode (LED). Commonplace in
today’s households, white LEDs emitting light across the entire visible spectrum were only commer-
cialized after the fabrication advancements made by Shuji Nakamura, Hiroshi Amano and Isamu
Akasaki, enabling efficient blue LEDs5 [14–16]. The band-gap engineering of semiconductors,
relevant to achieve the emission of blue light [15, 16], can be understood from theories developed
fifty years before the commercialization of white LEDs. Felix Bloch was one of the first to study
“band states” and his 1929 theorem is a crucial tool for understanding the formation of bands
in crystalline solids [17–19]. In the following period, the study of band structure emerged as a
rapidly developing field [18–20]. Among the successes in the description of the band structure in
semiconductors is the powerful k ·p perturbation theory associated with the work of Evan Kane,
Joaquin Luttinger and Walther Kohn around 1955 [20–23]. In the 20th century, the elementary
theories of physics had at large overtaken the ever-improving technologies.

Scientific shifts, as remarkable as the one taking place during the previous centuries, are
certainly gradual and a few examples might not be representative of all of physics and technology.
However, if a specific point in time can be assigned to the turn-over from “observations first” to
“calculations first”, 1832 is arguably the year. Here, William Rowan Hamilton likely provided the
first prediction of an unknown physical phenomenon based on mathematical inference [24]. The
effect he described is relatively obscure6, but marks a profound change in the relationship between
theory and experiment in the evolution of science.

In light of the incredible successes of theories, experiments and technologies, we may think
about which phenomena in Nature that are described by theory but not yet promoted into tech-
nological application. While such considerations may be lengthy, let us dwell on one particular
property in the century-old theory of quantum mechanics; quantum coherence. Quantum co-
herence is the ability of a system to remain “quantum-mechanical”, despite the influence of its
surroundings. In such a coherent system, the quantum properties of superposition and entan-
glement can potentially be a useful resource [25]. The earliest proposal in this direction is due to
Richard Feynman who conjectured7 in 1982 that a well-controlled coherent quantum system might
be able to efficiently simulate another quantum system of interest [27].8 More generally, coherent
quantum properties can be used in universal quantum information processing, expanding the
realm of computing [29]. Here, (the physical representation of) information is deliberately manipu-
lated according to the principles of quantum mechanics. How, when and why such a scheme might
be useful as a technology is currently under fundamental exploration [29, 30]. This thesis aims to
provide a conceptual introduction and study of some of the relevant questions regarding quantum
coherence in its application to quantum computation.

5Awarding them the 2014 Nobel Prize in physics.
6Hamiltons phenomenon is known as “conical refraction” and occurs when an incident beam of light refracts along

one of the optical axes of a biaxial crystal [24].
7In 1996, Feynman’s conjecture was proved correct by Seth Lloyd [26].
8Interestingly, quantum systems were first considered as a mean to perform classical computation, see Paul Benioffs

seminal 1980 work [28] on the possibility of encoding a Turing machine in a quantum system.
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Outline

This thesis is concerned with several topics related to protection and operations of coherent
quantum systems. The thesis introduces relevant concepts before discussing the research results
included in this work.

• Chapter 1 introduces basic concepts in quantum computing.

• Chapter 2 introduces Majorana zero modes.

• Chapter 3 introduces superconducting qubits.

• Chapter 4 introduces Project A [P1].

• Chapter 5 introduces Project B [P2].

• Chapter 6 introduces Project C [P3].

Publications and author contributions

This thesis is based on the work leading to the papers listed below. Before each paper, a summary
and discussion is given that introduces the work.

A Demonstrating Majorana non-abelian exchange using fast adiabatic charge-transfer
Svend Krøjer, Rubén Seoane Souto and Karsten Flensberg
Physical Review B, Vol. 105, No. 4 (January 2022) p. 045425, Ref. [P1].
I was the primary contributor to scientific investigation, image preparation, and paper writ-
ing.

B Fast universal control of a flux qubit via exponentially tunable wave-function overlap
Svend Krøjer, Anders Enevold Dahl, Kasper Sangild Christensen, Morten Kjaergaard and
Karsten Flensberg
ArXiv, arXiv:2303.01102 [quant-ph] (March 2023), Ref. [P2].
I contributed substantially to the scientific investigation, numerical results, and paper writ-
ing.

C Towards deep protection of qubits using realistic quarton array superinductors
Svend Krøjer, Alexandre Blais, Morten Kjaergaard and Karsten Flensberg
In preparation, Ref. [P3]
I was the primary contributor to scientific investigation, image preparation, and paper
writing.
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Physical Review B, Vol. 107, No. 12 (March 2023) p. L121401, Ref. [P4].
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1. COHERENT QUANTUM SYSTEMS

This chapter motivates the study of highly coherent quantum systems in the context of quantum
computing. We will see how elementary notions in quantum mechanics naturally lead to concepts
such as qubits and universal gate sets. While this introduction is based on several classic textbooks
[29, 31–33], we try to provide a more conceptual perspective on the well-established field of
quantum computing which we do not claim to be exhaustive. We assume the reader has some
knowledge of quantum mechanics, linear algebra and group theory.

For the purpose of this introduction, we decide that we want to control all relevant aspects of
a physical quantum system. After all, being able to change, rearrange and manipulate objects in
the classical world can be quite useful. Initially, several relevant questions concerning this effort
are likely to surface: What is a coherent quantum system? How can a coherent quantum system
be controlled? What is being manipulated when a quantum system is operated? When do we
achieve complete or “universal” control of a quantum system? Answering such questions requires
an understanding of how quantum systems are described in the first place. We therefore begin this
section with a brief introduction to basic concepts in quantum mechanics.

Quantum systems

In much the same way your position in space can be described by a vector of coordinates, a physical
quantum system is mathematically characterized by quantum states. Like the position vector, a
quantum state also lives in a vector space called the Hilbert space. The quantum states represent
the energy levels of the system and these are often discrete, or as the terminology goes, “quantized”.
When the total energy in the system is low, the low-energy states of the system are occupied.
Exciting the system from a low-energy state to a high-energy state typically results in the system
returning to a low-energy configuration by relaxing the high-energy state to a lower-energy state.
The quantum system is unavoidably coupled to its surroundings and it can shed the excess energy
to this environment. The characteristic time of such a relaxation process is one way of quantifying
the coherence of the quantum system. Thus, systems with short relaxation times are not very
coherent. Ordinarily, the higher the energy of an excitation, the faster it relaxes. For this reason, it
appears to be reasonable to consider systems with only a few energy levels, or at least to consider
only the low-energy states of a larger system. As we discuss later, small quantum systems combine
very efficiently such that the size of the Hilbert space (the number of total quantum states) quickly
gets large. It is therefore not restrictive to start by considering small quantum systems.

Introducing the two-level system

The two-level system (TLS) is the smallest quantum system we can consider. We denote its two
energy states by |0〉 and |1〉 such that the energy of |0〉 is assumed smaller than the energy of |1〉. At
a given point in time, a general state

∣∣ψ〉
(i.e. configuration) of a TLS is a superposition of |0〉 and

|1〉 and can be parameterized by real numbers (a,b,λ,φ),∣∣ψ〉= e iλ
(
a |0〉+b e iφ |1〉

)
. (1.1)

For a TLS on its own, the global phaseλ, does not carry any physical meaning. Further, the quantum
state needs to be normalized, meaning that its inner product equals unity

〈
ψ

∣∣ψ〉 = a2 +b2 = 1,

and this condition relates the weights b =
p

1−a2. The number of free parameters describing the
state of the TLS is therefore two: one parameter quantifies the phase between |0〉 and |1〉, and

4
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x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

Fig. 1.1: The Bloch sphere representation of a quantum state. The parameterization in Eq. (1.2)
traces out a sphere such that every point on the sphere correspond to a quantum state. Adapted
from “How to Draw a Bloch Sphere?” .

one parameter quantifies the distribution of weight on |0〉 and |1〉. We wish to emphasize that
the superposition of quantum states is a feature not found in classical physics and it is one of the
essential resources in coherent quantum systems.

The weights a,b and the relative phaseφ are also relevant in the description of decoherence. The
relaxation of a higher-energy state |1〉 to a lower-energy state |0〉 can be thought of as changing the
state

∣∣ψ〉
by reducing the weight b and increasing a. Another decoherence channel is dephasing,

which acts to randomly offset φ by a small amount. While this description of decoherence is
superficial, it can sometimes be useful to picture decoherence as a process that unpredictably
changes the quantum state. We discuss decoherence in more precise terms in chapter 3 and we
will for now assume that our quantum systems remain perfectly coherent.

Operating the two-level system

The quantum state
∣∣ψ〉

can also be visualized as a point on the sphere, see Fig. 1.1. The unit “length”
of a quantum state can be thought of as the radius of the sphere and its two free parameters are
equivalent to longitude (φ) and latitude (θ) coordinates. This representation is known as the Bloch
sphere representation of a quantum state and it recasts Eq. (1.1) to∣∣ψ〉= cos(θ/2) |0〉+e iφ sin(θ/2) |1〉 . (1.2)

The Bloch sphere is especially useful when considering transformations of states. An operation that
changes the state

∣∣ψ〉
to another state

∣∣ψ′〉 corresponds to a rotation of
∣∣ψ〉

on the Bloch sphere.
Said differently, all possible operations that can change the configuration of a TLS are described by
all possible rotations on the Bloch sphere. Using this mathematical formulation of how to operate
TLSs, we can connect it to the quantum dynamics which we hope to be able to control.

In the Schrödinger picture of quantum mechanics, the time-evolution of a quantum state is
given by a unitary operator U , updating the state U

∣∣ψ〉= ∣∣ψ′〉. Since we are considering states living
in a two-dimensional Hilbert space where global phases do not carry meaning, we are interested in

5
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1. COHERENT QUANTUM SYSTEMS

special unitary matrices of dimension two, U ∈ SU(2).1 These matrices are essentially equivalent to
rotations on the Bloch sphere.2 To better understand how unitaries relate to rotations on the Bloch
sphere, we consider the generators of SU(2)-matrices, the Pauli matrices,

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.3)

In this basis, we may identify |0〉 = (1,0)T and |1〉 = (0,1)T . A rotation on the Bloch sphere around a
unit vector n = (nx ,ny ,nz ) by angle α, can be realized via a unitary transformation,

U = e−iα (n·σ)/2 = cos(α/2)− i (n ·σ)sin(α/2), (1.4)

where σ = (σx ,σy ,σz )T is a vector of Pauli matrices. In this way, the Pauli matrices can help
parameterize, or “generate”, the SU(2)-matrices. As a simple example, a transformation that flips
the states according to |0〉→ |1〉 , |1〉→ |0〉 can be accomplished by U = e iπσx /2 and corresponds to
a rotation around the x-axis by angle π.3

The prescription in Eq. (1.4) can be compared to the direct expression of the time-evolution
operator due to the Schrödinger equation,

U = e−i H t , (1.5)

here assuming the Hamiltonian H to be time-independent for simplicity. The Hamiltonian is a
Hermitian matrix describing the energy of a quantum system and as Eq. (1.5) shows, it is also
responsible for the time-evolution of the system. For our TLS, the Hamiltonian is two-dimensional
and it turns out that all 2×2 (traceless4) Hermitian matrices are spanned by the Pauli matrices via

H = gxσx + g yσy + gzσz , (1.6)

where gi are real parameters that we collect in a vector g = (gx , g y , gz ). By comparing Eqs. (1.5)-(1.6)
to Eq. (1.4), we identify the following relations,

n = g/|g|, (1.7)

α= 2|g|t . (1.8)

Thus, normalizing the g-vector gives the rotation axis of the Bloch sphere and its length multiplied
by the time t gives the rotation angle α. Importantly, interacting with the TLS by varying the
parameters g is a coherent process that preserves the quantum mechanical behavior of the TLS.

The considerations leading to Eqs. (1.7)-(1.8) provide a direct way of relating the energy of the
system, encoded in the Hamiltonian, to the change of a quantum state. While the Hamiltonian
description is useful, we still need to connect it to physical systems to see how turning experimental
knobs changes quantum states. In chapter 3, we consider superconducting circuits as qubits and
show how the Hamiltonian can be derived in such systems.

1Some unitaries are “special” in the sense that their determinant equals one.
2To fully appreciate this correspondence, the interested reader is encouraged to look into the group theory of SU(2) and

the three-dimensional rotation group SO(3), see for example [33].
3Up to a global phase factor.
4When adding the identity 1 to the Pauli matrices, the Hermitian matrices with non-zero trace are spanned. However,

the trace of the Hamiltonian in Eq. (1.5) only gives rise to a global phase and is equivalent to a constant shift of the energy.
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Simplifying operations

We may consider whether all matrices in SU(2) are needed to completely control the TLS. It turns
out that a subset of SU(2) is sufficient to move any state

∣∣ψ〉
on the Bloch sphere to any other

state
∣∣ψ′〉. For example, a rotation on the Bloch sphere around the z-axis can be decomposed as

rotations around the x- and y-axes,

e−iασz /2 = e−iπσx /4e−iασy /2e iπσx /4, (1.9)

by virtue of the anti-commutation properties of the Pauli-matrices, [σx ,σy ] = 2iσz . In general, any
rotation on the Bloch sphere can indeed be decomposed as rotations around two fixed axes. While
significantly reducing the number of basic operations needed to achieve complete control, it still
leaves a continuum of rotation angles. Remarkably, it turns out that the entirety of SU(2) can be
covered by just a few elements. Or rephrased; despite the continuum of possible rotations on the
Bloch sphere, a small set of rotations with fixed axes and angles are sufficient to transform any
state to any other. This is the content of the Solovay-Kitaev theorem. It roughly states that if you
are clever about picking rotation axes and angles, as few as two specific rotations are needed.5 The
small caveat, however, is that an arbitrary rotation can not be exactly decomposed. The way the
Solovay-Kitaev theorem works is to approximate any rotation U by a sequence of fixed rotations.
The utility of the theorem lies in the fact that even very good approximations can be accomplished
by relatively short sequences of rotations.6 While the time t in Eq. (1.8) is a good resource for getting
any rotation angle, some quantum systems are restricted in the way they can be interacted with,
resulting in few ways the states can be rotated.7 Under such circumstances, the Solovay-Kitaev
theorem becomes extremely useful.

Qubit intermezzo

When talking about performing operations on TLSs, the common language is often to instead talk
about applying gates on qubits (quantum bits). Using this terminology naturally gives associations
to computing or information theory. To align with the literature, we will also adopt this language
moving forward. The exact meaning of “qubit”,8 however, can depend on context; sometimes
referring to a unit of quantum information, the abstract representation of a quantum system (i.e. a
TLS) or the physical quantum system itself. It is up to the reader to decide whether the quantum
computing connotations are read into the word “qubit” as we continue.

To familiarize the reader with the vocabulary, we provide a quick summary of the preceding
sections using this terminology: If we want to perform any kind of logic on a qubit, we need a
sufficient number of gates, a so-called universal gate set.9 Single-qubit gates are elements in SU(2)
and can be related to the dynamics of the qubit via the qubit Hamiltonian. Applying a single-qubit
gate can be pictured as rotating the qubit state on the Bloch sphere. A universal set of single

5A common set is the Hadamard gate H = 1p
2

(
1 1
1 −1

)
and “magic” gate T =

(
1 0
0 eiπ/4

)
. The phase gate S = T 2 is

often included but not strictly necessary, see Ref. [29] for further details.
6For a rigorous definition and expanded discussion, see Ref. [29].
7For example, this is true for Majorana zero modes as we discuss in later sections.
8Interestingly, despite the different ways “bit” and “qubit” are used, they both originated in the context of (quantum)

information theory [34, 35] some years after the ideas of (quantum) computers were conceived.
9Strictly speaking, a gate set is only universal when a two-qubit gate is included, as we elaborate in the upcoming

section.
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1. COHERENT QUANTUM SYSTEMS

qubit gates can either be a continuous subset of SU(2) or be finite, by virtue of the Solovay-Kitaev
theorem.

Combining two qubits with entanglement

Performing universal gates on a single qubit is certainly an achievement but the goal is to control a
quantum system of any size. For this purpose, we imagine having two qubits at our disposal. Left
disconnected, we may count the number of states and free parameters describing this two-qubit
system: There are 2×2 = 4 qubit states10 and 2+2 = 4 free parameters to describe the states. Had
we started with a true 4-level system, we would have counted the number of free parameters to be
2×4−2 = 6; one complex parameter (equaling two real parameters) for each level minus the global
phase parameter and the normalization condition. The two non-interacting qubits are missing
two degrees of freedom and do therefore not constitute a general 4-level system.

The missing parameters correspond to states in the Hilbert space: The states formed by uncou-
pled qubits are referred to as product states and they form a subset of all the states in the Hilbert
space. The remaining states are referred to as entangled states which can only be realized if the
qubits are entangled. Entanglement is the quantum property that allows collections of qubits to
emulate larger quantum systems and it requires the qubits to interact. We can also think about
entanglement as a form of superposition. Where superposition often refers to superposition within
a single qubit as in Eq. (1.1), superposition between qubits gives rise to entanglement. As an ex-
ample, we consider the superposition of two different product states, 1

2 (|0〉± |1〉) (|0〉± |1〉), whose
superposition results in

1p
2

[
1

2
(|0〉+ |1〉) (|0〉+ |1〉)− 1

2
(|0〉− |1〉) (|0〉− |1〉)

]
= 1p

2
[|01〉+ |10〉] , (1.10)

which is indeed an entangled state.11 Along with superposition, entanglement is the key resource
in coherent quantum systems.

In the language of gates and transformations, gates on non-interacting qubits are simply single-
qubit gates acting on each of the qubits, U1 ⊗U2 ∈ SU(2)⊗SU(2). These are non-universal as they
can not transform any two-qubit state to any other two-qubit state (never a product state to an
entangled state). Instead, proper two-qubit gates living in SU(4) ⊃ SU(2)⊗SU(2) are required for
universality in the two-qubit setup.

As for the single-qubit gates in SU(2), it is natural to consider the smallest subset of SU(4) that
provides gate universality in the two-qubit system. In addition to the single-qubit gates, it turns
out that a single entangling two-qubit gate is enough.12 In this way, the two-qubit gate takes care
of the generation of entanglement (or superposition between qubits) and the single-qubit gates
transform the entangled state as desired.

10Labelling the qubits i = 1,2 and using the notation
∣∣ψ〉

1 ⊗
∣∣φ〉

2 = ∣∣ψφ〉
, the states are |00〉 , |01〉 , |10〉 , |11〉.

11Here is a trick to check if a state is entangled or not: For a state a |00〉+b |01〉+ c |10〉+d |11〉, if ad = bc, then it is a
product state. The proof is left as an exercise.

12This is the most common way of reaching universality. It is also possible to only use a two-qubit gate with three
parameters, the Barenco gate, to achieve universality.
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Large qubit systems

Combining two qubits worked well, what about combining N qubits to describe large quantum
systems with 2N states? What additional 3-qubit gates, 4-qubit gates or N -qubit gates do we need
for universality in SU(2N )? Perhaps surprisingly, no additional resources are required. As long as
the qubits are well-connected13, a basic result in linear algebra shows that single and two-qubit
gates are sufficient to decompose any gate in SU(2N ). This is maybe not so odd considering the
following setup:

Suppose two qubits a,c are connected to a third qubit b. Then, any entangled relationship
between qubits a and b, and b and c can be established by universal single- and two-qubit gates.
Conceivably, this can be done in a manner where qubit b mediates the interaction between qubits
a and c . For example, imagine qubits a and b in a balanced superposition (|01〉ab +|10ab〉)/

p
2 and

qubits b and c are in a similar superposition of (|10〉bc +|01bc〉)
p

2. Disregarding the mediating
qubit b, we see that the state is an entangled state of qubits a and c: (|00〉ac +|11〉ac )/

p
2.

Being able to perform universal operations on qubit systems almost achieves our initial goal
of being able to completely control arbitrary quantum systems. As we uncover next, two subtle
details remain before we claim full command of quantum systems.

The final steps

Universal gates are certainly necessary, however, if the initial qubit state is unknown, gates are of
little use. Therefore, some method of initializing the qubits is required. It is not important what
the initial state resulting from an initialization procedure is as long as we know what it is. Then,
single-qubit gates can be applied to achieve whichever state we desire.

After initialization, we can in principle calculate the behavior of the quantum system as we
manipulate it by multiplying unitary matrices. The point of controlling a physical quantum system,
however, is that we do not have to do these mathematical gymnastics. The quantum system is
“computing” all these details for us. To access the final result of this process, we need a way of
extracting information from the quantum system, i.e. measuring the qubits. This is necessarily an
incoherent process that translates quantum information to classical information. Measurements
of the final qubit states are the last element we need to finally achieve full control of quantum
systems.

Criteria for quantum computing

Our entire discussion of the different aspects of manipulating quantum systems is quite general and
does not pertain to any particular physical realization of qubits. It turns out that such a universal
description of quantum computation can be highly useful as guiding principles in designing
physical quantum computers. In the year 2000, David DiVincenzo collected similar considerations
in the so-called DiVincenzo criteria which succinctly describes the requirements for realizing
quantum computers [36]:

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

13In the sense that any qubit is connected to all qubits via other qubits.
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1. COHERENT QUANTUM SYSTEMS

3. Long relevant decoherence times, much longer than the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

These criteria also take into account challenges regarding the physical realization of quantum
computers, extending the theoretical considerations presented here. A few details are noteworthy:
Criterion (1) refers both to entanglement as a resource for scaling quantum systems, and also to
the practical difficulties in combining many qubits in the same device. Additionally, it adds the
sound requirement of being able to experimentally characterize the physical qubits. Criterion (3)
does not assume perfect coherence in the qubits and instead requires the coherence time should
be longer than the total run-time needed in a quantum computation. Criteria (2), (4), (5) are much
the same as in our discussion.

Following this introduction to concepts in quantum computing, we consider two different
qubit platforms: In Chapter 2, we introduce Majorana zero modes which can be used as a basis for
topological quantum computers. In Chapter 3, we introduce superconducting qubits and discuss
decoherence in this platform.
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2. MAJORANA QUBITS

This chapter introduces Majorana zero modes (MZMs) and some of their exotic properties.
MZMs are protected against noise and they enable certain gate operations that are also noise-
protected. For these reasons, qubits based on MZMs appear to be a natural choice, however,
experimental challenges prohibit reliable realization and manipulation of Majorana zero modes.
This chapter is based on review articles found in Refs. [37–48].

Majorana operators

From an algebraic perspective, Majorana zero modes are described by Majorana operators in
the same way Fermions are described by Fermionic creation and annihilation operators. In fact,
Majorana operators are derived from Fermionic operators as we see below. First, we introduce
Fermionic creation and annihilation operators which are operators that create and remove qubit
excitations. We denote the creation operator of qubit i by d †

i such that d †
i |0〉i = |1〉i . The Fermionic

operators respect canonical anticommutation relations given by

{d †
i ,d j } = δi j , (2.1)

where all other anticommutators with the Fermionic operators are zero. The Fermionic operators
can, for example, describe a quantum dot that can be occupied by a single electron. In this scenario,
the number operator defined by ni = d †

i di measures whether an electron occupies the quantum
dot ni |1〉i = |1〉i or not ni |0〉i = 0.

To introduce Majorana operators, we make the following consideration: Fermionic operators
are complex operators which we can formally write in terms of their “real” and “imaginary” parts,

di = (γ2i−1 + iγ2i )/2, (2.2)

d †
i = (γ2i−1 − iγ2i )/2, (2.3)

where the Majorana operators are denoted by γ j . The Majorana operators are “real” in the sense
that γ† = γ is always satisfied. Moving forward, we will refer to Majorana operators and MZMs
colloquially as Majoranas. Since the parent Fermionic operators satisfy canonical anticommutation
relations, the associated Majoranas obey

{γi ,γ j } = 2δi j . (2.4)

Pairs of Majoranas can be used to measure the parity of a Fermion, also known as fusing the
Majorana pair. Since ni = (1+ iγ2i−1γ2i ), the occupancy of a state ni = 0,1 corresponds to reading
out the parity of the Majoranas pair iγ2i−1γ2i = ±1. It turns out that it is possible to perform
gate-equivalent operations by fusing different Majoranas pairs in a certain order. This procedure of
achieving gate operations is known as fusion-based or “measurement only”. We refer the reader to
Refs. [49–59] for literature on fusion-based operations in Majorana systems. Instead, we focus on
another curious way that gate operations can be performed on Majorana qubits.

Formulating Fermionic operators in terms of Majoranas makes it possible to perform uncon-
ventional basis changes by fusing different pairs of Majoranas. As an example, we consider four
Majoranas γ1, . . . , γ4 which we can group into two qubits as qubit 1 (γ1,γ2) and qubit 2 (γ3,γ4) or
as qubit 1̃ (γ2,γ3) and qubit 2̃ (γ1,γ4). The corresponding annihilation operators of these qubits are

d1 = (γ1 + iγ2)/2, d2 = (γ3 + iγ4)/2, (2.5)

d̃1 = (γ2 + iγ3)/2, d̃2 = (γ1 + iγ4)/2, (2.6)
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which corresponds to a basis change of Fermionic operators given by

d1 = 1

2
(d̃2 + d̃ †

2 )+ i

2
(d̃1 + d̃ †

1 ), (2.7)

d2 = 1

2
(d̃2 − d̃ †

2 )− i

2
(d̃1 − d̃ †

1 ). (2.8)

This basis change of operators results in a change of basis of qubit states which is given by1

|00〉 = 1p
2

(∣∣0̃0
〉+ i

∣∣1̃1
〉)

, (2.9)

|01〉 = 1p
2

(∣∣0̃1
〉+ i

∣∣1̃0
〉)

, (2.10)

|10〉 = 1p
2

(∣∣0̃1
〉− i

∣∣1̃0
〉)

, (2.11)

|11〉 = 1p
2

(∣∣0̃0
〉− i

∣∣1̃1
〉)

. (2.12)

Here, states on the left-hand side denote the qubit states of qubit 1 and 2, and the states on the
right-hand side denote the qubit states of qubits 1̃ and 2̃. As we discuss later, Majorana systems
conserve the total parity and we can therefore focus our attention on, for example, the even parity
sector containing the states |00〉 and |11〉. In this way, the four Majoranas only encode a single qubit
due to parity selection. While this is not the most efficient way of encoding qubits in a collection of
Majoranas, it presents a straightforward method of performing single qubit gates as we show in the
next section.

Phase-based operations

The change of basis in Eqs. (2.9)-(2.12) makes it possible to execute gates by only controlling the
relative phase between states. By defining |00〉 = |0〉q and |11〉 = |1〉q as qubit states, the relative
phase can be changed by a z-axis rotation Uz = e−iφσz /2 as can be seen by letting Uz act on a
generic state

∣∣ψ〉= cos(θ/2) |0〉q + sin(θ/2) |1〉q ,

Uz
∣∣ψ〉= e−iφ/2 cos(θ/2) |0〉q +e iφ/2 sin(θ/2) |1〉q . (2.13)

The phase gate can be achieved in different ways that often rely on manipulating the geometric
phase of qubit states as we discuss more in Chapter 4 and below. We can also consider performing
a phase gate in the tilde basis formed by states

∣∣0̃0
〉

and
∣∣1̃1

〉
. The corresponding phase gate is

given by Ũz = e−iφσ̃z /2 where σ̃z is the Pauli Z operator in the tilde basis. Acting with Ũz on the
state

∣∣ψ〉
results in

Ũz
∣∣ψ〉= cos

(
θ+φ

2

)
|0〉q + sin

(
θ+φ

2

)
|1〉q (2.14)

=Uy
∣∣ψ〉

. (2.15)

1A derivation of this simple result can be found in my Masters thesis, see Ref. [P6].
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2. MAJORANA QUBITS

γ1

γ2

=

−γ1

γ2

γ1 γ2

−γ1 γ2
t

a) b)

Fig. 2.1: Adapted from [P6]. a) The exchange of two Majoranas gives a sign to one of the Majorana
operators. Exchange is also known as a half-braid. (b) A diagram of the half-braid where the
time-axis is indicated.

Evidently, the phase gate in the tilde basis corresponds to a y-axis rotation in the qubit basis
Ũz =Uy = e−iφσy /2. If it is possible to arbitrarily choose the rotation angle φ, it is therefore possible
to perform any rotation on the Bloch sphere with these phase gates. As a result, the continuous set
of phase gates {Uz ,Ũz } can produce any single qubit gate. It turns out that exchanging Majoranas,
so-called braiding, results in phase gates with a specific rotation as we describe in the next section.

Non-Abelian anyons

Being a constituent of a Fermionic operator, it is relevant to consider what exchange statistics
Majoranas obey. The answer is that Majoranas are so-called non-Abelian anyons, a class of particles
outside of ordinary Fermions or Bosons. When particles are confined in two dimensions they can
circumvent the spin-statistics theorem and can achieve any phase upon exchange [60–63]. The
spin-statistics theorem states that all particles in three dimensions are either Fermions (half-integer
spin) or Bosons (integer spin). Upon exchange of Fermions, their combined wave function changes
sign which is not the case for Bosons whose wave function remains unchanged. When anyons are
exchanged, the wave function can acquire any phase e iφ that can also be matrix-valued as is the
case for non-Abelian anyons. Successive exchanges of different non-Abelian anyons constitute
non-commuting operations. As an example, the exchange of two Majoranas (γ1,γ2) results in
γ1 → γ2 and γ2 →−γ1 [64], see Fig. 2.1. This operation is equivalent to the unitary U12 = e

π
4 γ2γ1

which can be rewritten as

U12 = e−i π4 (d1d †
1−d †

1 d1) (2.16)

= e−i π4 σz (2.17)

where the second equality holds when the operator acts on the |0〉q and |1〉q states defined in the
previous section. Similarly, it follows that the exchange of Majoranas (γ2,γ3) results in a unitary
U23 = e−iπσy /4 when acting on |0〉q and |1〉q .

Compared to the discussion in Sec. 2, we see that exchange operations exactly correspond
to phase gates with fixed rotation angle φ/2 = π/4 and that the two exchange operations do
not commute [U12,U23] = γ1γ3 as expected from non-Abelian anyons. As a result, the exchange
operations only give rise to a non-universal set of single qubit gates. In the context of the Solovay-
Kitaev theorem, the exchange operations lack the magic gate T = e−i π8 σz before the gate set is
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· · ·
γ1 γ2 γ3 γ4 γ2L−1 γ2L

b)

Fig. 2.2: Adapted from [P6]. A schematic of the Kitaev chain where dashed lines indicate on-
site couplings µ and solid lines indicate hopping t between neighboring cells. When the on-site
coupling is small, Majoranas on the edge are approximately decoupled from the rest of the chain.

universal.2 Depending on how qubits are encoded in a collection of Majoranas, two-qubit gates
can either be realized via exchange operations or in a fusion-based approach, see Refs. [46, 48–
51, 56, 57, 65] for further details. To achieve a universal gate set using Majoranas, it is therefore
necessary to perform an operation that is not based on braiding or measurements. In Chapter 4,
we study such a universal gate scheme that goes beyond real space braiding. In the next section,
we consider how localized Majoranas can appear in physical systems.

The Kitaev chain

Fermionic operators can describe the presence of an electron on a single site or in a given orbital.
In this setting, the Majorana description of Fermionic operators is not physically motivated and
it does not make sense to treat Majoranas as individual entities. We therefore seek to physically
separate Majoranas to address them individually. To do so, we consider a long chain of L sites
where each site can host a single electron described by a Fermionic operator d †

i = (γ2i−1 − iγ2i )/2,
see Fig. 2.2. We can decouple and separate Majoranas at the ends of the chain by coupling adjacent
Majoranas γ2i and γ2i+1 as indicated with black lines in Fig. 2.2. The chain physically separate
Majoranas γ1 and γ2L at its ends but this feature appears to be sensitive to additional couplings.
To address this potential issue, we introduce small couplings between Majoranas γ2i−1 and γ2i as
indicated by dashed lines in Fig. 2.2. We analyze the influence of the small coupling by considering
the system Hamiltonian given by

H =−i
µ

2

L∑
j
γ2 j−1γ2 j + i t

L−1∑
j
γ2 jγ2 j+1, (2.18)

where µ is the small on-site coupling and t is the tunnel coupling between neighboring sites3.
For µ= 0, the boundary Majoranas γ1 and γ2L decouple from the Hamiltonian

[
γ1/2L , H

]= 0 and
together they form a non-local electronic state described by d † = (γ1 − iγ2L)/2.

In the presence of small, non-zeroµ, we can attempt to find approximately decoupled Majorana
modes γa and γb that commute with the Hamiltonian and reduce to γa/b → γ1/2L in the limit µ= 0.
To construct these decoupled modes, we consider commutators between Majoranas and the

2The Hadamard gate can be decomposed as H =U12U23U12.
3Majorana coupling terms require a factor of i to ensure Hermiticity of the Hamiltonian
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2. MAJORANA QUBITS

γa γb

Fig. 2.3: Schematic of exponentially localized Majoranas at the ends of a Kitaev chain. The small
overlap of the wave functions around the middle of the chain gives rise to an exponentially small
splitting of the energy of the Fermion formed by the γa and γb .

Hamiltonian, [
γ1, H

]=−iµγ2, (2.19)[
γ3, H

]=−i 2tγ2 − iµγ4, (2.20)[
γ2 j−1, H

]=−i 2tγ2 j−2 − iµγ2 j , (2.21)[
γ2 j+1, H

]=−i 2tγ2 j − iµγ2 j+2. (2.22)

Here, we observe that an appropriate linear combination of γ2 j−1 and γ2 j+1 can cancel the γ2 j

contribution in the commutator. For example,[
γ1 − µ

2t
γ3, H

]
= iµ2

2t
γ4, (2.23)

cancels the γ2 contribution and leaves a γ4 contribution that is smaller by a factor µ/2t compared
to Eq. (2.19). We can keep canceling such terms in the commutator until we run out of Majoranas
in the chain. The resulting Majorana operator is

γa =
L∑
j

(−µ
2t

) j−1
γ2 j−1, (2.24)

where [
γa , H

]=−2i t
(−µ

2t

)L
γ2L . (2.25)

We have successfully identified a Majorana operator4 γ†
a = γa whose commutator with the Hamil-

tonian is exponentially close to zero when the chain is long L ≫ 1 and the on-site coupling is small
µ< 2t . As can be seen from Eq. (2.24), the Majorana mode γa is also exponentially localized near
the left end of the chain, see Fig. 2.3 for an illustration. At the right end of the chain, an analogous

Majorana operator can be found γb = ∑1
j=L

(−µ
2t

)L− j
γ2 j that anticommutes with the Majorana

at the left end
{
γa ,γb

} = 0. Together, this Majorana pair forms a non-local Fermionic operator
b† = (γa − iγb)/2 whose constituent Majoranas are physically separated and can be addressed
individually as desired.

By rewriting the Hamiltonian in Eq, (2.18) using the Fermionic operators d †
i , we obtain a model

that is easier to interpret,

H =−µ
L∑
j

(d †
j d j −1/2)− t

L−1∑
j

(d †
j d j+1 +H.c.)+∆

L−1∑
j

(d j d j+1 +H.c.). (2.26)

4The Majorana operator can be normalized to satisfy γ̃2
a = 1 via γ̃a =√

1−µ/2t ·γa .
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x
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∆

µ2t

Fig. 2.4: Adapted from [P6]. The energy dispersion of the Kitaev chain is represented as a vector

v = (
µ+2t cos(k),∆sin(k)

)T where the momentum k runs from −π to π. When |µ| < 2t , the trace
of the vector (blue) winds around the origin, resulting in a winding number of +1. When |µ| < 2t ,
the trace (orange) does not wind around the origin and the winding number is zero. The two cases
correspond to two distinct topological phases which are separated by a topological phase transition
at |µ| = 2t where the trace crosses the origin.

This model is known as the Kitaev chain [66] and it generalizes the example in Eq. (2.18). In
Eq. (2.26), we identify µ as the on-site energy, t as the strength of tunnel coupling between neigh-
boring sites and ∆ as a superconducting pairing strength. In our example, we considered the
special case where the superconducting gap equals the tunneling strength ∆= t .5 The Kitaev chain
describes a one-dimensional, spinless p-wave superconductor in a tight-binding model. “Spinless”
refers to the fact that spin is not involved. The electrons described by the Fermionic operators
do carry spin but if a large magnetic field is applied, there will be a large energy cost involved
in flipping a spin. For this reason, the Kitaev chain can be thought of as describing low-energy
electrons constrained by a large magnetic field such that their spins are fixed. In this way, the
magnetic field breaks time reversal symmetry which turns out to be an important ingredient to the
formation of Majoranas as we discuss further below. A “p-wave” superconductor is a superconduc-
tor where Cooper pairs are formed between electrons with the same spin orientation as opposed to
conventional s-wave superconductors which pairs spins of opposite orientation.6

The superconducting pairing ∆ results in a symmetry between particles and holes such that a
hole state with energy −E has a mirrored particle state with energy E . Since Majoranas ”are their
own antiparticles´´ in the sense that γ† = γ, it forces Majoranas to always have zero energy. Particle-
hole symmetry also conserves parity and leads to a degeneracy between even and odd parity sectors.
Together with the breaking of time-reversal symmetry, these symmetry properties have profound
consequences for the Kitaev chain. It turns out that the emergence of Majoranas in the Kitaev
chain is a ”topological´´ feature that is determined by the symmetries (or lack thereof) [44, 68]. As
we saw in our proto-Kitaev chain example, exponentially localized Majoranas are present at the
end of the chain when µ< 2t . It turns out that a topological phase transition occurs at the point
µ= 2t that separates the topologically trivial phase (µ> 2t ) from the topological phase (µ< 2t ). In
a topological phase transition, a gap closes and reopens, changing a so-called topological invariant
that can be associated with each phase. Focusing on the Kitaev chain, its energy dispersion can be

5The general situation ∆ ̸= t gives rise to a coupling term i (∆− t)/2
∑L−1

j γ2 j−1γ2 j+2 in Eq. (2.18) and replaces t →
(∆+ t )/2 in the other coupling term.

6For this reason, p-wave superconductors are said to have a triplet pairing. Further, the orbital angular momentum of
a p-wave type Cooper pair has eigenvalue m = 1 [67].
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2. MAJORANA QUBITS

found by Fourier transforming to k-space, resulting in

E(k) =±
√[

µ+2t cos(k)
]2 +∆2 sin2(k). (2.27)

At k = 0, π, the energy gap closes at exactly µ=±2t and the system undergoes a topological phase

transition. The energy can be described as a vector E (k) =±|v(k)|where v = (
µ+2t cos(k),∆sin(k)

)T

to uncover the topological invariant associated with the topological phase. In Fig. 2.4, we show
traces of the vector v when k runs from −π to π. The trace of the vector forms an ellipse which
encloses the origin in the topological regime |µ| < 2t . In this case, the vector winds around the
origin corresponding to a topological invariant that is the winding number, taking the value +1
(blue ellipse). The trivial phase corresponds to a situation where the ellipse (orange) does not
enclose the origin and its winding number is therefore zero. An important property of localized
Majoranas in this regard is that they are formed in the topological phase transition. As long as
the Kitaev chain is in its topological regime, two Majoranas are well-separated and pinned to zero
energy. Additionally, since the Fermion they form is non-local, any local perturbation is unable
to change its parity. For these reasons, it is expected that qubits based on Majoranas can have
exceptionally long coherence times.

The topological properties of the Kitaev chain are generic to systems that share the same
symmetry properties (particle-hole symmetry and breaking of time-reversal). More generally,
topological systems can be described by Altland-Zirnbauer symmetry classes [68–70] which is a
framework that relates symmetries and the number of spatial dimensions to topological invariants
and edge modes. This means that as long as a one-dimensional system exhibits the same symme-
tries as the Kitaev chain, Majoranas appear at the ends of this system in its topological phase. This
is an instance of the so-called bulk-boundary correspondence that relates the topological phase
in the bulk to localized modes on the edge. It turns out that no materials found in Nature exhibit
p-wave superconductivity in the way described by the Kitaev chain. Instead, superconducting-
semiconducting heterostructures can in principle be engineered to possess the same symmetry
properties and be tuned to its topological phase to produce Majorana edge modes. In the next
section, we present a brief discussion about experimental results in such systems that attempt to
realize topological phases and Majoranas.

Experiments

Super-semi heterostructures are flexible systems that provide the necessary ingredients to realize
Majoranas. A one-dimensional semiconducting wire (e.g. InSb, InAs) can be electrostatically gated
to control its chemical potential. As discussed in previous sections, the ability to control the on-site
energy in the Kitaev chain is necessary to tune into the topological regime. Further, by (partially)
covering the semiconducting wire with a superconductor (e.g. Al, NbTiN), superconductivity can
be induced in the wire via the proximity effect. The superconducting gap, however, is reduced
when a large magnetic field is introduced to polarize the spin direction and break time reversal.
Another challenge is that the superconducting pairing appears to be required to be p-wave. As
realized by Lutchyn et al. [71] and Oreg et al. [72] in 2010, this issue can be reconciled by spin-orbit
interaction in the semiconducting wire. Spin-orbit interaction can arise from asymmetry in the
device (Rashba type) or from asymmetry in the crystal lattice (Dresselhaus type) [73] and gives
rise to a spin-chirality of electrons propagating in different directions along the wire. When the
spin-orbit coupling is perpendicular to the external magnetic field, it allows for conventional
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singlet pairing s-wave superconductivity to coexist with a relatively large magnetic field. In this
way, superconductivity can be induced in a semiconducting wire while subject to a spin-polarizing
magnetic field, effectively realizing a Kitaev chain. By appropriately tuning the chemical potential
of the semiconducting wire the resulting super-semi heterostructure can in principle be tuned
to the topological regime where Majoranas can be experimentally investigated. There exist other
proposals for realizing Majoranas that utilize two-dimensional topological insulators [74, 75],
magnetic insulators [76, 77], half-metals [78, 79], magnetic impurities [80], two-dimensional
electron gases [81] and superconducting phase control [82]. Among the numerous proposals, the
proximitized semiconductor nanowire is the most studied experimentally.

Several experiments show results that are in agreement with the realization of Majoranas.
Among these results are the measurement of zero-bias peaks [83–88], the fractional Josephson
effect [89], long parity lifetimes [90] and separation of bound states [91, 92]. Despite the immense
effort and many experimental signatures of Majoranas, there have been no experiments that
provide direct evidence for the topological nature of Majoranas that is based on fusion or braiding.
Conclusive experiments that show Majorana physics are challenging to perform since disorder
plays an important role in mesoscopic devices. One of the challenges in disordered wires is that
disorder can break up the topological phase in segments, necessitating nanowires to not be too
long in experiments (e.g. longer than a ∼ 1µm [91]). This is problematic as short wires partially fuse
Majoranas and split the degeneracy. An arguably more profound aspect of disorder is that disorder-
induced subgap states of non-topological origin (e.g. Andreev bound states) can mimic Majorana
behavior [93, 94]. In principle, conspiring Andreev bound states can reproduce Majorana signatures
that can be challenging to completely rule out in experiments. To address this issue, a topological
gap protocol has been developed [95] which is comprised of different conductance measurements
that together can provide a strong signature of Majoranas. Recently, an experiment [96] claims to
have succeeded in satisfying the topological gap protocol, showing promising signatures before
fusion or braiding-based experiments develop.
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3. SUPERCONDUCTING QUBITS

In this chapter, we introduce superconducting circuits as described in the framework of circuit
quantum electrodynamics (cQED).1 Several excellent resources cover this topic thoroughly [97–105]
and we do not attempt to provide an exhaustive review of this field. Instead, we focus on selected
parts relevant to the pertinent thesis and contextualize aspects related to circuit quantization,
decoherence and noise protection. We base this chapter on the mentioned literature in Refs. [97–
105].

From device to Hamiltonian

Superconducting qubits are microscale superconducting circuits that typically consist of capacitors,
inductors and Josephson junctions. Similar to classical circuit theory, these components are
modeled as lumped elements with given capacitances, inductances and Josephson energies. The
Josephson junction is an element that is unique to superconducting circuits and is formed when
the superconducting wire (e.g. Al, Ta) is interrupted by a non-superconducting material. Josephson
junctions are most commonly fabricated as superconductor-insulator-superconductor junctions
where the insulating layer is an oxide formed at the interface of the superconductors. As predicted
by Brian Josephson in 1962 [106], such superconducting junctions exhibit interesting current-phase
and energy-phase relations. When the superconducting phase difference across the junction is φ,
the corresponding energy-phase relation is E J (1−cos

(
φ

)
), where E J is referred to as the Josephson

energy. It turns out that this simple relation has profound consequences for the ability to control
qubits based on superconducting circuits. In this chapter, we uncover some of the interesting
features of Josephson junctions.

When faced with a superconducting qubit in practice, the goal in cQED, or more specifically
circuit quantization, is to obtain a quantum Hamiltonian description of the qubit. Below, we
present a short overview of the standard recipe in circuit quantization. The starting point is the
lumped-element circuit diagram of the superconducting device, see Fig. 3.1. The components
(capacitors, inductors, junctions) connect superconducting islands which are represented by nodes
in the diagram. Curiously, the starting point is a classical rather than a quantum mechanical
description of the lumped-element model. While conventional superconductors can be described
by a microscopic quantum theory, i.e. BCS theory, the emergence of a coherent superconducting
state leads to a good macroscopic description of the superconducting islands in terms of the super-
conducting phase φ and the number of Cooper pairs n. By initially treating the phase and charge
variables as classical degrees of freedom, a Lagrangian description of the superconducting circuit
can be obtained where each of the circuit elements contributes with energy terms in the Lagrangian.
Then, via a Legendre transformation, the Hamiltonian can be constructed from the Lagrangian
as is well-known from analytical mechanics. The variables φ and n can finally be promoted to
quantum operators with a canonical commutator relation. This recipe is incredibly useful as a
method for going from a physical device to a quantum Hamiltonian description. Considering the
discussion in Chapter 1, the Hamiltonian can further be related to the notions of qubits and gates.
In practice, when employing the recipe presented here, several subtleties can arise. In the following
part, we develop the circuit quantization recipe as we introduce different superconducting circuits.
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3.1. Circuit quantization

L Cφ

φ1

φ2
(a)

E J C

φ1

φ2

φ

(b)

E J2 CE J1 ϕext

φ1

φ2
(c)

Fig. 3.1: Example circuit diagrams consisting of capacitors (C ), inductors (L) and Josephson junc-
tions (E J ). (a) The LC -oscillator with phase differenceφ=φ2−φ1 between the two superconducting
islands (nodes). (b) Same as (a) but with the inductor replaced by a Josephson junction to realize
an anharmonic oscillator. (c) Same as (a) and (b) but the inductive element is replaced by a SQUID.
The SQUID is threaded by a (reduced) flux ϕext = 2πΦ/Φ0 which tunes the effective Josephson
energy of the SQUID.

3.1 Circuit quantization

The LC -oscillator

We may start with a simple example from classical electrodynamics, the LC -oscillator as shown
in Fig. 3.1(a). Using the circuit quantization recipe, we are required to write down the Lagrangian.
To construct the Lagrangian, we are interested in the energy stored in the capacitor (C ) and the
inductor (L),

UC = Q2

2C
= 1

2
CV 2, (3.1)

UL = 1

2
LI 2 = Φ2

2L
. (3.2)

The energy in the capacitor can equally well be expressed in terms of the displaced charge Q or
the voltage drop V across the capacitor. Similarly, the energy in the inductor can be written either
using the current I through the inductor or the magnetic fluxΦ induced by the current. The current
is related to the displaced charge via I = Q̇ and the voltage is related to the flux via Faraday’s law
V =−Φ̇. It is therefore possible to give two equivalent formulations of the Lagrangian,

L(Q,Q̇) = 1

2
LQ̇2 − Q2

2C
, (3.3)

L(Φ,Φ̇) = 1

2
C Φ̇2 − Φ2

2L
. (3.4)

In the two descriptions of the Lagrangian, the capacitive and inductive energy interchange role
as kinetic and potential energy. Sometimes, students of superconducting circuits have a better
intuition of charges and currents than fluxes and voltages. Nevertheless, it is customary to use
the flux description2 despite potentially leading to confusion. This choice is made since it is more

1Sometimes referred to as (circuit-based) cavity quantum electrodynamics [97, 98].
2See Ref. [107] for the dual description in terms of charges.
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3. SUPERCONDUCTING QUBITS

convenient to let the Josephson energy-phase relation correspond to potential energy rather than
kinetic energy.

Having picked the flux formulation of the Lagrangian, we may perform a Legendre transforma-
tion to uncover the Hamiltonian. First, we identify the conjugate variable to Φ,

∂L(Φ,Φ̇)

∂Φ̇
=C Φ̇=Q. (3.5)

It turns out that the conjugate variable is simply the charge Q. This result should not be too
surprising when considering the symmetry between Eqs. (3.3) and (3.4). We complete the Legendre
transformation and obtain the Hamiltonian,

H(Φ,Q) = Φ̇Q −L= Q2

2C
+ Φ2

2L
. (3.6)

This is the familiar Hamiltonian of a harmonic oscillator using variables Q and Φ in place of
momentum and position. For a more general circuit, the conjugate charges are not necessarily
as simple as the one found in Eq. (3.5). In this case, the capacitive term can be expressed as
UC =ΦT CΦ/2 whereΦ is a vector of fluxes and C is the capacitance matrix. By diagonalizing the
capacitance matrix, the conjugate charges are straightforward to compute.

We continue by quantizing the coordinates Q → Q̂ and Φ→ Φ̂ according to the canonical
commutator relation, [Φ̂,Q̂] = iℏ. It is customary to work in reduced variables and we therefore
define the Cooper pair number operator n̂ = Q̂/2e and the reduced flux φ̂= 2πΦ/Φ0 such that their
commutator becomes [φ̂, n̂] = i . The reduced flux is also referred to as a phase and Φ0 = h/2e is
the magnetic flux quantum with h being Planck’s constant and e the electron charge. Using the
reduced operators, the Hamiltonian becomes

H(φ,n) = 4EC n̂2 + 1

2
ELφ̂

2. (3.7)

In this formulation of the Hamiltonian, we introduce the charging energy EC = e2/2C and the
inductive energy EL = (Φ0/2π)2/L.

Having derived the Hamiltonian, we consider the energy levels of the system and discuss its
utility as a qubit. The energy levels of the harmonic LC -oscillator are given by En = ℏω(n +1/2)
where ω = p

8EC EL/ℏ is the oscillating frequency. The energy difference between neighboring
levels is the same for all levels, En+1 −En = ℏω. It is therefore not possible to single out two levels
that can act as qubit states since we need something that is not purely harmonic to separate the
transition energies. Josephson junctions provide the necessary anharmonicity to the system and
also introduce other curious features as we elaborated in the next section.

Before moving on, it is important to mention that it is possible to encode a qubit in a harmonic
oscillator by other means. In a Bosonic code, the qubit states are carefully constructed from a
superposition of Fock states. In this way, quantum information is redundantly encoded in several
energy levels. The redundancy is cleverly used to effectively increase the coherence of the resulting
qubit through error correction. The fascinating topic of Bosonic codes is outside the scope of this
thesis and we refer the reader to Refs. [105, 108–111] instead.

The junction-based oscillator

To introduce anharmonicity, we can replace the inductor in the LC -oscillator with a Josephson
junction and derive the corresponding Hamiltonian in an analogous fashion, see Fig. 3.1(b). While
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3.1. Circuit quantization

doing so, we develop the circuit quantization recipe a little further and shed light on the important
physics exhibited by Josephson junctions.

Using the flux description, we begin by labeling the nodes of the circuit (the superconducting
islands) by j = 1,2 and assign node fluxes Φ j to each of the nodes. This is the starting point of
the “method of nodes” as this recipe is called. We now have two flux variables, but the system
only has one degree of freedom. This can be seen by considering the sum of node fluxes in the
system ΦΣ = Φ1 +Φ2: The node flux is related to the node charge through Φ j = LI j = LQ̇ j , so
for the summed quantities, ΦΣ ∝ Q̇Σ = 0, we find that the sum ΦΣ is non-dynamical due to the
conservation of charge. We are therefore left with a single degree of freedom, Φ=Φ1 −Φ2.

In general, the method of nodes introduces one flux variable more than the degrees of freedom
in the system. If no node in the system is grounded, then the sum of node fluxes will be zero due to
charge conservation as described above. If one or more nodes are grounded, the associated voltage
on the grounded nodes is zero. According to Faraday’s law, zero voltage implies Φ̇ground = 0. Thus,
the node flux on the grounded node is non-dynamical and its constant value may be taken to be
zero too, Φground = 0. In this way, the method of nodes handily finds the degrees of freedom in the
system. As previously mentioned, in more general circuits it is desirable to find the eigenmodes of
the capacitance matrix and this is also a practical way of determining the degrees of freedom.

Moving on with the capacitor-junction circuit, we may write down the Lagrangian using the
junction energy-phase relation E J

[
1−cos

(
φ

)]
, perform the Legendre transformation, quantize the

variables and arrive at the quantum Hamiltonian [112],

H = 4EC n̂2 +E J
(
1−cos

(
φ̂

))
, (3.8)

= 4EC
∑
n

n2 |n〉〈n|+E J

(
1− 1

2

∑
n
|n〉〈n +1|+ |n +1〉〈n|

)
. (3.9)

In the second line, we write the Hamiltonian in Dirac notation using the charge states |n〉. Important
to this example is that the Josephson junction only admits for tunneling of single Cooper pairs.3

Consequently, the eigenvalues of the charge operator are discrete n = . . . ,−1,0,1, . . .. Comparing
expressions for the Hamiltonians in Eqs. (3.8) and (3.9), we notice that the transfer of single Cooper
pairs is related to the periodicity of the phase φ. The periodicity of the Hamiltonian implies that we
can not quantize the charge and flux variables according to [φ̂, n̂] = i . Instead, we must respect the
periodicity and work with operators exp

(±i φ̂
)
. The analogous commutator relation for the periodic

variable is given by
[
exp

(−i φ̂
)
, n̂

]= exp
(−i φ̂

)
. The slight reformulation of the commutator rarely

plays an important role when working with the operators. However, getting the right periodicity of
φ̂ and the true discretization of n̂ can be tricky. For example, it is not immediately obvious how the
charge value n relates to the node charges on the superconducting islands n j . By considering the
transfer of a single Cooper pair from island 1 to island 2, we see that the corresponding charges
n j changes according to n1 → n1 −1 and n2 → n2 +1, implying n = (n1 −n2)/2 such that n → n −1
when a single Cooper pair tunnels. We can also verify this result by evaluating the commutator,[

e−i (φ̂1−φ̂2),
n̂1 − n̂2

2

]
= e−i (φ̂1−φ̂2) (3.10)

and see that it agrees with the canonical commutator relation only when the factor of 1/2 is included
in the charge operator. In general, care should be taken when changing the basis by rotating or

3In practice, small higher-order tunneling processes slightly augments the energy-phase relation [113], see Ref. [114]
for a recent experimental investigation of this phenomena.
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3. SUPERCONDUCTING QUBITS

scaling the phase and charge operators to ensure that the commutator relation and the charge
discretization imposed by the Josephson junctions are satisfied.

Offset charges

There is an additional consideration relevant to the junction-based oscillator. A discrete charge
system is sensitive to the local electric potential Venv. The energy due to the presence of a local
electric field is 2en̂Venv and can be included in the Hamiltonian in Eq. (3.8) by completing the
square with 4EC n̂2. The result is to simply make the substitution n̂ → n̂ −noffset which leads to

H = 4EC (n̂ −noffset)
2 +E J

(
1−cos

(
φ̂

))
, (3.11)

where the charge offset is given by noffset =−VenvC /2e. This situation can be compared to the LC -
oscillator, where the charge operator can always take a continuous value n such that the charging
energy 4EC (n−noffset) is minimized. The continuous charge can therefore absorb the offset charge,
n̂cont → n̂cont −noffset = n̂′

cont. The same trick can not be used in a discrete charge system and it is
therefore sensitive to fluctuations in the electric potential produced by the environment.

To better understand the effect of fluctuations in the offset charge, we consider two standard
limits of the system. The first scenario is EC > E J which we refer to as the light regime. Associating
the charge operator n̂ with momentum, the capacitance plays the role of a mass of the φ-mode. In
the small capacitance/mass regime EC > E J , the φ-mode becomes light. In this regime, the physics
of the device is determined mostly by the charging energy and the charge number becomes a good
quantum number. The system also becomes sensitive to offset charges as it directly determines
the energy associated with a given charge state. Such a device is called a Cooper-pair box and
despite its sensitivity to offset charges, it functions well as a qubit due to its large anharmonicity:
the Cooper pair box energy levels are approximately given by En ≈ 4EC (n−noffset)

2, showing a large
degree of anharmonicity as defined by α= (E1 −E0)− (E2 −E1) ≈−8EC . The choice E J /EC < 1 is
therefore also referred to as the Cooper-pair box regime. In 1999, the Cooper-pair box was the
first superconducting qubit device to exhibit coherent Rabi oscillations [115]. The coherence time
of the qubit was relatively short, being on the nanosecond scale, but demonstrated the exciting
possibility of controlling coherent superconducting devices based on Josephson junctions.

Next, we consider the limit E J ≫ EC , referred to as the heavy mode regime or the transmon
limit. In this regime, the states spread across several charge numbers, 〈n̂2〉∝√

E J /EC ≫ 1, and
are less sensitive to fluctuations in the charge offset as a result. In fact, the sensitivity to noffset

is exponentially suppressed in
√

E J /EC . The trade-off, however, is the decreased anharmonicity
between the ground and excited state. As the charge delocalizes, the conjugate phase localizes,
〈φ̂2〉∝√

EC /E J ≪ 1, to the minimum of the cosine potential. Here, the cosine potential is approxi-
mately quadratic and the dynamics are approximately described by a harmonic oscillator. However,
the anharmonicity only decreases linearly in

√
EC /E J and it becomes advantageous to choose

E J /EC ∼ 50 which is the typical operating regime. In this limit, the qubit is referred to as a transmon.
The transmon was first proposed in Ref. [112] and was soon after realized experimentally [116].
The coherence time of the transmon was found to be above one microsecond, about three orders
of magnitude improvements compared to the original Cooper-pair box experiment [115]. Subse-
quently, the transmon has been the superconducting qubit of choice in many applications and
today’s state-of-the-art transmons show coherence times close to the millisecond scale [117–119].
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3.1. Circuit quantization

External fluxes

To achieve more control over the transmon, the single Josephson junction is sometimes replaced
by an asymmetric SQUID (superconducting quantum interference device), realizing a “tunable
transmon” [112], see Fig. 3.1(c). The SQUID consists of two junctions (E J1,E J2) in parallel and
forms a loop where magnetic flux can be threaded through. By adjusting the B-field in this
loop, the effective Josephson energy of the SQUID can be controlled. This design introduces a
sensitivity to flux noise, leading to decoherence of the qubit. In Chapter 6, we study other qubits
that are exponentially insensitive to flux noise, analogous to the way the transmon is exponentially
insensitive to charge noise.

The presence of an external flux brings up the question of how to include this parameter in
a circuit Hamiltonian. In classical circuits, Kirchoff’s voltage law takes care of (time-dependent)
external B-fields and we may use the same here. In the language of phases, Kirchoff’s voltage
law states that the sum of phase differences around a loop and the reduced external flux φext =
2πΦext/Φ0 should sum to zero, ∑

loop
φdiff,i +ϕext = 0. (3.12)

Considering the SQUID, we see that the phase drop across the two junctions can not beφ and −φ as
they sum to zero. Instead, the phase drops should account for the external magnetic field. We can
allocate the external flux in either of the two junctions or split it in some ratio, φ→φ− (1+a)ϕext/2
and −φ→−φ− (1−a)ϕext/2, such that they sum to −ϕext. In general, a spanning tree can be used
to allocate the flux as discussed in Ref. [100].

Having allocated the flux, we can implement the SQUID in a tunable transmon whose corre-
sponding Hamiltonian becomes

H = 4EC (n̂ −noffset)
2 +E J1 cos

(
φ̂− (1+a)ϕext

)−E J2 cos
(
φ̂+ (1−a)ϕext/2

)
, (3.13)

= 4EC (n̂ −noffset)
2 −E J ,eff(ϕext)cos

(
φ̂−φ0 −aϕext/2

)
, (3.14)

where we define the flux-tunable effective Josephson energy

E J ,ext = (E J1 +E J2)cos
(
ϕext/2

)√
1+ tan2φ0 (3.15)

and the phase shift tanφ0 = E J2−E J1
E J2+E J1

tan
(
ϕext/2

)
. The flux allocation can always be chosen through

the parameter a such that the minimum of the cosine potential is at φ= 0. This is a reasonable
choice as it reflects that the current across the SQUID I = IC sin

(
φ

)
is zero without additional flux

bias.
Since the tunable transmon is a superconducting circuit with only junctions as inductive

elements, we need to respect the periodicity of the phase. In this setting, Kirchoff’s voltage law gets
translated to the “fluxoid quantization condition” [120, 121] which implies that the sum of phases
and external flux in Eq. (3.12) instead equates to zero modulo 2π. With these final considerations,
we may summarize the circuit quantization recipe:

1. Assign (reduced) fluxes to all N nodes of the circuit

2. Assign zero flux to the ground node or the sum of all nodes

3. Allocate external flux according to Kirchoff’s law/fluxoid quantization
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3. SUPERCONDUCTING QUBITS

4. Write up the Lagrangian, preferably in terms of the eigenmodes of the capacitance matrix

5. Compute the Hamiltonian via a Legendre transformation

6. Quantize the variables, taking into account phase periodicity

7. Include offset charges if charges are discrete

This recipe works well under most circumstances4 and can be used to derive the Hamiltonian
of other superconducting qubits. We mention other relevant superconducting qubits (persistent
current flux qubit, C -shunt flux qubit, fluxonium, the 0−π qubit, bifluxon and Blochnium) in
Chapters 5 and 6. In the next section, we take a short detour that investigates the relationship
between discrete and continuous charge in superconducting circuits.

Going from discrete to continuous charge

As discussed, phase periodicity and charge discretization lead to qualitatively different behavior
in the transmon compared to the LC -oscillator. There is not a universally correct description
of charge and phase in the sense that it is not more or less “natural” for the phase/charge to be
periodic/discrete than to be non-compact/continuous. We discuss in more detail how the two
phase/charge regimes can be connected in this section and refer the interested reader to Ref. [99]
for further discussion.

We can understand the relationship between discrete/continuous charge and compact/non-
compact phase through the following example: By constructing an inductor from a chain of N
Josephson junctions, we can interpolate between discrete and continuous charge, see Fig. 3.2.
It turns out that junction arrays are a very useful way of fabricating large inductors in practice
[124, 125] as we discuss in Chapter 6. In this example, each junction has Josephson energy E J and
charging energy EC . Before we start, we focus on a single junction labeled by i and make some
general considerations. First, we denote the phase drop across this junction byφi . When E J /EC ≫ 1,
the φ̂i -mode is heavy and localized near the minimum of the cosine potential φi ≈ 0 and we do not
need to consider phase-slips where φi jumps by 2π since the tunneling amplitude is exponentially
suppressed in

√
E J /EC . Additionally, the energy of exciting the φ̂i -mode, ωi = √

8E J EC /ℏ, is
required to be large such that the array of Josephson junctions acts like a true inductor in a low-
energy description. In agreement with these requirements, we later take the limit E J , N →∞ while
keeping EC fixed such that E J /EC →∞ and ωi →∞.

We can now consider the junction array in the phase basis to see how the phase becomes
non-compact. Consider the energy of the array,

V =∑
i

E J
(
1−cos

(
φ̂i

))
. (3.16)

Since we are working in the semi-classical regime E J /EC ≫ 1, we may use an energy minimization
argument or Kirchoff’s current law to find that the total phase drop φ=∑

i φi is distributed evenly
between the N identical junctions, φi = φ/N . We refer to the substitution φ̂i → φ̂/N as the

4Some situations require further attention when going from a classical to a quantum description as studied in Refs. [122,
123].
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3.1. Circuit quantization

E J E J E J

φ2φ1

φi

Fig. 3.2: A Josephson junction array that mimics an inductor. The phase drop across the array
φ=φ2 −φ1 can be distributed to the N junctions such that the phase drop across each junction is
φi =φ/N .

“distributed phase approximation” (DPA) and applying it to Eq. (3.16) while expanding in φ̂/N
results in

V = N E J

(
1

2
(φ̂/N )2 − 1

24
(φ̂/N )4 + . . .

)
. (3.17)

By taking the limit E J , N →∞ while keeping E J /N = EL fixed, we get

V = 1

2
ELφ̂

2. (3.18)

This is exactly the energy of an inductor with inductive energy EL = (Φ0/2π)2/L. We also see that
the domain of the phase φ̂ has extended to (−∞,∞). It appears that a mathematical trick, the
distributed phase approximation, is responsible for this result, but the DPA has a sound physical
interpretation: Once the phase drop across the array is above 2π, it is energetically favorable for one
of the junctions to slip by 2π. However, the probability for one of the junctions to tunnel from the
minima at φi = 0 to φi = 2π is exponentially suppressed in the large ratio

√
E J /EC →∞. Despite

the prospect of minimizing energy, the tunneling event is forbidden by the semi-classical limit
E J /EC →∞ and the array can support large fluctuations in φ̂.

We can also see how the charge operator becomes continuous by transforming to the charge
basis. Instead of expanding Eq. (3.17) in φ̂/N , we rewrite the cosine term in Dirac notation using

cos
(
φ̂/N

)= ∫ Nπ

−Nπ
dφ cos

(
φ/N

)∣∣φ〉〈
φ

∣∣ , (3.19)

giving the potential energy of the array,

V = N E J

(
1−

∫ Nπ

−Nπ
dφ cos

(
φ/N

)∣∣φ〉〈
φ

∣∣) . (3.20)

At the moment, we do not know exactly what the charge basis states |n〉 are. We only know that
they form a complete set of basis states and are related to the phase basis states

∣∣φ〉
via

〈
n

∣∣φ〉= 1p
2π

e−i nφ. (3.21)

Using this relation while inserting identities
∑

n |n〉〈n| in Eq. (3.20), we obtain the energy of the
array in charge basis,

V = N E J

[
1−

( ∑
n,m

1

2
δn−m, 1

N
|n〉〈m|+H.c.

)]
. (3.22)
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3. SUPERCONDUCTING QUBITS

The Kronecker δ tells us that the charge can jump in fractional steps 1/N across the junction
array. In the limit N →∞, the step-size is infinitesimal and the charge value becomes continuous.
Rewriting Eq. (3.22) and taking the limit E J , N →∞, we arrive at

V = 1

2
EL

∑
n
|n〉 〈n +1/N |−2〈n|+〈n −1/N |

−1/N 2 −→ 1

2
EL

∫
dn |n〉 i 2 ∂2

∂n2
〈n| . (3.23)

Comparing this result to Eq. (3.18), we identify φ= i∂/∂n as expected from conjugate variables.
In light of these calculations, we directly see the relationship between compact/discrete and
non-compact/continuous phase/charge and how the continuous charge can be seen as a limit
of tunneling of fractionalized charges. This interpretation is not completely physical and is not
the same as the notion of fractional charges in topologically non-trivial systems. Instead, the
continuous charge should be thought of as the displacement of electrons relative to the ion lattice.

Having obtained a basic understanding of superconducting qubits, we discuss their decoher-
ence properties next. Moving forward to the next part, we drop the hat on operators to ease the
notation.

3.2 Decoherence and noise-protection

We introduced decoherence (relaxation and dephasing) on a conceptual level in Chapter 1 and we
now turn to a more quantitative description of noise in superconducting qubits. We also discuss
strategies to minimize the impact of noise on the qubit states which leads to the notion of noise
protection. Decoherence and noise protection play an important role in the work contained in this
thesis as detailed in Chapters 5 and 6. This part collects some of the results found in Refs. [102, 112,
126–131] and we begin by considering various relevant sources of noise.

Noise

Noise in superconducting qubits are random fluctuations in quantities that couple to the qubit.5

Examples of noise sources λ(t ) are the offset charge noffset or the external flux ϕext. Any parameter
that enters in the Hamiltonian is a potential source of noise that can lead to qubit decoherence.
The noisy parameter can be expressed as the sum of its mean value λ0 and its fluctuating part δλ(t ),
λ(t ) =λ0 +δλ(t ). The noise source can further be characterized by its power spectral density (PSD)

S(ω) =
∫ ∞

−∞
dt 〈λ(t )λ(0)〉e−iωt , (3.24)

which describes the amplitude of noise at a given frequency ω and is computed as the Fourier
transform of the autocorrelation function 〈λ(t )λ(0)〉.6 Most noise sources have a quasi-universal
noise spectrum that is encoded in the PSD. Since the noise background is somewhat expected,
it is possible to engineer qubits that are insensitive to the most dominant sources of noise. As
already mentioned, the transmon is an example of this approach to increase qubit coherence and
we discuss general ways qubits can be made insensitive to noise in Secs. 3.2 and 3.2.

Flux and charge noise are common sources of noise in superconducting qubits. The origin of
charge noise is typically assigned to fluctuating charges present in material interfaces or in the

5Specifically, we talk about stochastic noise as opposed to systematic noise.
6This result is known as the Wiener-Khinchin theorem.
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3.2. Decoherence and noise-protection

substrate. Similarly, flux noise is often assigned to fluctuating spins that reside in the thin oxide
covering the superconducting circuit. These noise sources are often well-described by 1/ f -type
noise, meaning that the noise amplitude scales with the inverse frequency. The PSD of 1/ f noise is

S(ω) = A2
λ

2πHz

|ω| , (3.25)

where Aλ is the general noise amplitude of the noise source λ. The experimentally found flux and
charge noise amplitudes are typically around

AΦ ∼ 10−5 −10−6Φ0/
p

Hz, (3.26)

AQ ∼ 10−3 −10−4 e/
p

Hz. (3.27)

In experiments, charge noise is the dominating noise source compared to flux noise as seen by its
relatively large noise amplitude. This fact also explains part of the success of the transmon: The
qubit’s sensitivity to the limiting noise source is exponentially suppressed. Only after reducing the
sensitivity to charge noise, flux noise becomes a limiting noise channel.

Some mechanisms of decoherence due to charge noise are described by Ohmic noise rather
than 1/ f noise. Ohmic noise depends linearly on the frequency as can be seen from the associated
PSD,

S(ω) = B 2
Q

|ω|
2πGHz

(3.28)

where the noise amplitude BQ depends on the experimental realization to a larger degree than the
1/ f noise amplitudes Aλ. In Ref. [126], the Ohmic charge noise amplitude is found to be around
BQ ∼ 5 ·10−9 e/

p
GHz. Ohmic charge noise can also be modeled as bulk dielectric loss, see for

example Refs. [128, 131, 132]

There exist other relevant sources of noise worth mentioning [130]. Quasiparticles in the
superconductor can tunnel across Josephson junctions and this mechanism can lead to relaxation
and dephasing. Especially, in certain parameter regimes for the fluxonium qubit, relaxation due to
quasiparticles is a limiting decoherence channel [131]. Ohmic flux noise, also modeled as inductive
loss, is analogous to Ohmic charge noise/dielectric loss. This noise source is believed to be less
significant compared to dielectric loss but it can be hard to distinguish between the two since
they share the same PSD [126]. Fluctuations in the tunneling region of Josephson junctions can
effectively be modeled as fluctuations in the Josephson energy. This source of noise is referred to as
1/ f critical current noise and due to its low noise amplitude AI ∼ 10−7 2πE J /Φ0

p
Hz, it is typically

not a limiting coherence channel [127]. Additional sources of noise are also introduced when a
qubit is coupled to a readout resonator: The qubit dissipates energy into the readout resonator
which leads to (Purcell enhanced) relaxation [102]. Further, if there are residual photons in the
resonator, temporal fluctuations in the photon number induce dephasing of the qubit [127, 133].
In addition to randomly fluctuating TLSs, the presence of coherent TLSs can also lead to relaxation,
especially when the qubit frequency is tuned and accidentally becomes resonant with a coherent
TLS [130]. On much longer time scales ∼ 10s, high-energy cosmic rays are believed to create
“catastrophic” events where correlated errors involving several qubits across a chip occur [134].
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Relaxation

Relaxation is the process where a quantum system loses energy to the environment and thereby
changes its quantum state.7 Relaxation is necessarily incoherent as energy is transferred to the
environment where it can not be retrieved to reverse the process. The rate at which a quantum
system, described by a Hamiltonian H , relaxes due to a noise source λ is given by Fermi’s golden
rule,

Γ1 = 1

ℏ2

∣∣∣∣〈0

∣∣∣∣∂H

∂λ

∣∣∣∣1

〉∣∣∣∣2

S(ωq ), (3.29)

where the relaxation time is given by T1 = 1/Γ1. The relaxation rate can be interpreted in the
following way: The matrix element 〈0|∂H/∂λ |1〉 describes the qubit’s sensitivity to the noise source
λ by quantifying how strongly the noise source couples the qubit states. On the other hand, the
PSD describes the noise environment by quantifying the frequency distribution of noise. The PSD
is evaluated at the qubit frequency ωq since noise at the qubit frequency induces a transition from
the excited state to the ground state. Typically, the qubit frequency is larger than the temperature
ℏωq ≫ kB T such that the reverse process where the qubit absorbs energy from the environment is
suppressed.8

Since qubits are only sensitive to noise near their qubit frequency, it is possible to engineer
qubits such that their frequencies lie in a range where the noise is small amplitude. One strategy
is to engineer the qubit frequency such that it lies in the cross-over regime between 1/ f and
Ohmic noise as investigated in Ref. [126]. In experiments, however, a qubit’s frequency is restricted
by several practical considerations, limiting the range of reasonable qubit frequencies. Some of
these relevant considerations include: the frequency of readout resonators with the possibility of
multiplexing readout, frequency matching in two-qubit gates, frequency crowding, cross-talk and
compatibility with high-frequency drive lines. Except for near-degenerate qubits, qubit frequencies
often lie in the 1−5GHz range given the experimental constraints.

Another strategy for suppressing relaxation is to consider the matrix element 〈0|∂H/∂λ |1〉
which can, in principle, be made arbitrarily small [135]. For qubit wave functions with disjoint
support, the matrix element 〈0|∂H/∂λ |1〉 vanishes for common noise sources. The support of a
wave function

〈
φ

∣∣Ψ〉
of a state |Ψ〉 is the range of φwhere the value of the wave function is nonzero.

Disjoint support of the qubit states implies that the product of the qubit wave functions
〈

0
∣∣φ〉〈

φ
∣∣1〉

is zero for all values of φ. The product of the disjoint wave functions remains at zero when an
operator φk or nk is inserted between them,〈

0

∣∣∣∣∂H

∂λ

∣∣∣∣1

〉
=

∫
dφ

〈
0
∣∣φ〉 ∂H(n,φ)

∂λ

〈
φ

∣∣1〉= 0 (3.30)

for ∂H/∂λ∝φk ,nk .9 The relevant noise sources usually take the form ∂H/∂λ∝φ,n.
In qubits, disjoint support of the wave functions is not exact due to the evanescent part of

the wave functions. Localized wave functions feature exponential tails which are determined
by the confining potential. Qubit wave functions that are separated in different quantum wells

7This notion of relaxation is also referred to as longitudinal relaxation [102, 130] or depolarization [127]. Relaxation and
dephasing together is sometimes referred to as transverse relaxation but more often the term decoherence is used.

8Superconducting qubits are placed in cryostats which can cool to around T ∼ 15mK = 0.3125hk−1
B GHz[102].

9In principle, a noise source that shifts the qubit wave functions by a large amount can circumvent this general
approach to reduce relaxation. For example, if ∂H/∂λ∝ e−i nφ0 , one of the wave functions can be displaced by an amount
φ0 to make it overlap with the other wave function, however, none of the common noise sources take this form.
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3.2. Decoherence and noise-protection

only overlap at these tails. This overlap, and consequently the matrix element 〈0|∂H/∂λ |1〉, is
exponentially suppressed in the height and the width of the barrier separating the two wells.
With this approach, experiments using (heavy) fluxonium and the 0−π qubit have demonstrated
relaxation times beyond 1ms [132, 136–138]. In other proof-of-principle experiments with a
cos

(
2φ

)
qubit [139] and a bifluxon qubit [140], the level of protection against relaxation can be

controlled, showing an order of magnitude increase in relaxation time when operating in the
protected regime.

An inevitable trade-off when making a qubit insensitive to noise is that it also becomes more
insensitive to deliberate manipulation. Drive lines interact with the qubit in much the same way as
noise does, for example, a microwave drive can control the offset charge which can be used to excite
the qubit from the ground to the excited state. This direct way of performing gates is, however,
not optional for a qubit where the matrix element between the qubit states is near zero. In the
protected regime, states outside of the qubit subspace can be used as a resource to perform gates. If
a higher-lying state |n〉 couples to both of the qubit states, 〈0|∂H/∂λ |n〉 | ̸= 0 and 〈1|∂H/∂λ |n〉 ̸= 0,
then a transition between the qubit states can be achieved by first going to the higher-lying state.
This method is occasionally referred to as “multi-level excursion” and several states are sometimes
required to perform gates as is the case for the 0−π qubit, see for example Refs. [138, 141, 142]. In
Chapter 5, we study another way of making gates on a qubit that has a tunable level of protection as
an alternative to using high-energy states. When attempting to engineer qubits with long relaxation
times, it is important to also take into account what the expected gate times will be. The ratio of the
decoherence time and the gate time is therefore a good measure of the quality of a qubit system.

A long relaxation time is only one aspect of highly coherent qubits. In the next section, we
discuss dephasing which plays an equally important role in qubit decoherence.

Dephasing

Dephasing of a qubit is the result of noise that leads to fluctuations in the qubit frequency. The
time-dependent qubit frequency can, in the presence of noise, be described as ω(t ) =ωq +δω(t )
where ωq is the qubit frequency without noise and δω(t ) is noise-induced random fluctuations. To
better understand dephasing as a mechanism of decoherence, we consider a time-evolving qubit
state in the frame that rotates with the qubit frequency. Our example state is

|Ψ(t )〉 = 1p
2

(|0〉+e i
∫ t

0 dτδω(τ) |1〉). (3.31)

As time goes and δω(t) fluctuates, the relative phase between the qubit states changes in a way
that is reminiscent of a random walk in one dimension. In a random walk, the average distance
traveled away from the origin increases at a certain rate. In the same way, we may ask at what

rate does the average of e i
∫ t

0 dτδω(τ) dephase the qubit? This question can be posed in terms of the
noisy parameter λ(t) = λ0 +δλ(t) by relating it to fluctuations in the qubit frequency. First, the
Hamiltonian is expanded around the mean value λ0 of the noisy parameter,

H(λ(t ))−H(λ0) = ∂H

∂λ
δλ(t )+ . . . . (3.32)

The resulting fluctuations of the qubit frequency is given by

δω(t ) = δλ(t )

ℏ

[〈
1

∣∣∣∣∂H

∂λ

∣∣∣∣1

〉
−

〈
0

∣∣∣∣∂H

∂λ

∣∣∣∣0

〉]
= δλ(t )

∂ωq

∂λ
, (3.33)
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to first order in the noise δλ(t) and where the derivatives are evaluated at λ0. The relative phase
between the qubit states in Eq. (3.31) can now be expressed in terms of the noisy parameter,

e i∂ω/∂λ
∫ τ

0 dτδλ(τ). The corresponding dephasing rate due to the average of this phase depends on
the PSD of the noise. Most noise sources that induce dephasing (i.e. charge and flux noise) are
described by 1/ f -noise in which case the dephasing rate takes the form10

Γϕ =
√

2A2
λ

(
∂ω

∂λ

)2

| ln(ωirt0)|+2A4
λ

(
∂2ω

∂λ2

)2 [
ln2(ωirt0)+ ln2(ωuv/ωir)

]
, (3.34)

where the second-order contribution in δλ(t) is also included. Using this expression for the
dephasing rate, the dephasing time Tϕ = 1/Γϕ can be computed. The PSD of 1/ f noise gives rise
to logarithmic divergences which necessitates the introduction of infrared and ultraviolet cutoffs
ωir/uv and the time of the experiment t0. The dephasing rate depends very weakly on these values
and estimates suffice. We can estimate the experiment time t0 as the expected coherence time of
the qubit. Low-frequency noise with a frequency much lower than the coherence time of the qubit
can be considered systematic noise during an experiment and the infrared cutoff can be estimated
according to ωir ≪ 1/t0. The ultraviolet cutoff can, for example, be estimated as the frequency
where the dominant noise source crosses over from 1/ f noise to Ohmic noise. The cross-over
frequency is in the range 1−10GHz but depends on the experiment, see for example Ref. [126].

There exist two main strategies to reduce dephasing. The first is to operate the qubit at a
so-called “sweet spot” where the first derivative of the qubit frequency vanishes ∂ω/∂λ= 0. This
approach cancels the leading order contribution in Eq. (3.34) and increases the dephasing time of
the qubit significantly. Using this strategy, an early experiment by Vion et al.[144] increased the
dephasing time of the Cooper pair box by almost three orders of magnitude, reaching close to 1µs.

It is also possible to exponentially suppress ∂ω/∂λ for all λ, reaching what is sometimes referred
to as the “sweet-spot-everywhere” regime. As before, we will refer to exponential insensitivity of
this kind as protection. As previously mentioned, the transmon achieves protection against charge
noise in the limit E J /EC ≫ 1 where the qubit states are localized near the minimum of the cosine
potential. In this regime, tunneling between wells where the phase slips by 2π is exponentially
suppressed. These tunneling events can be related to charge noise dephasing by performing a
unitary transform of the Hamiltonian in Eq. (3.11) with unitary U = e i noffsetφ. This transformation
effectively removes the offset charge noffset from the Hamiltonian and attaches it to the qubit state∣∣ψ̃〉= e i noffsetφ

∣∣ψ〉
. Thus, when a tunneling event occurs, the state acquires a phase e i 2πnoffset that

leads to dephasing in the presence of fluctuating offset charges. Exponential suppression of the
tunneling rate thereby leads to an exponential insensitivity to random fluctuations in noffset. As we
explore in Chapter 6, the sensitivity to flux noise can be achieved in the opposite regime E J ∼ EC ,
EL ≪ EC , where charge is localized and phase fluctuations are large.

Using the expressions for the relaxation rate in Eq. (3.29) and the dephasing rate in Eq. (3.34),
we can evaluate the decoherence time

T2 =
(
Γ1

2
+Γϕ

)−1

, (3.35)

which quantifies the total decoherence experienced by a qubit. The decoherence time can be
computed by numerically evaluating the energy spectrum and matrix elements, for example, using

10A derivation of this result can be found in Ref. [127]. See also Ref. [143] for an alternative treatment.
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dedicated packages such as those found in Refs. [145–147]. The computation of decoherence
times is very useful to characterize superconducting qubits in experiments and to design novel
qubits where coherence properties are engineered. The work discussed in Chapters 5 and 6 heavily
relies on numerical evaluation of decoherence times and tests aspects of noise-protected qubits as
covered in this chapter.
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Introduction to Project A

Parts of this chapter have been published in S. Krøjer, R. Seoane Souto, and K. Flensberg. “Demonstrating

Majorana non-Abelian properties using fast adiabatic charge transfer”. In: Phys. Rev. B 105 (4 Jan. 2022),

p. 045425. DOI: 10.1103/PhysRevB.105.045425. URL: https://link.aps.org/doi/10.1103/
PhysRevB.105.045425 and been included in my Master’s thesis S. Krøjer. Demonstrating the Non-Abelian

Nature of Majoranas. 2020.
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4. INTRODUCTION TO PROJECT A

Overview

This chapter introduces the work in Project A [P2] which is co-authored with Rubén Seoane Souto
and Karsten Flensberg. The majority of the work leading to the main results in Project A was carried
out during my Master’s thesis [P6]. I gathered these results, prepared the corresponding figures
and wrote the manuscript during the PhD in collaboration with the co-authors.

The study contained in Project A is concerned with charge-transfer operations between a
quantum dot and a pair of Majoranas. This process can be used to demonstrate Majorana non-
Abelian properties as proposed in Ref.[148]. Such charge-transfer operations rely on adiabatically
manipulating the energy level of the quantum dot to shuttle a charge between the Majorana pair
and the dot. It turns out that charge-transfer operations change the state of the Majorana pair in
much the same way as an exchange in real space. Charge-transfer operations are therefore referred
to as parameter space braiding and can be used in place of real-space braiding operations to show
non-Abelian Majorana properties. Relatively few electrostatic gates are required to control charge-
transfer operations compared to proposals that rely on real space exchange of Majoranas [41, 149],
implying that a charge-transfer protocol is potentially simpler to execute in experiments. Since
the Majoranas are coupled to a quantum dot, they are not topologically pinned to zero energy and
become sensitive to fluctuations in the energy splitting. The interaction between Majoranas and
the dot, however, also results in the charge-transfer operations comprising a universal set of single
qubit gates. Despite the promising outlook of providing non-Abelian evidence for the realization of
Majoranas, experimental challenges have prohibited the realization of charge-transfer operations
[43, 150].

Non-ideal charge-transfer

Project A includes several non-ideal factors in the description of charge-transfer operations that
are generally present in experiments. Specifically, we consider systematic offsets in gates and
external fluxes, see Fig. 4.1 for a device schematic. Here, a quantum dot (green, labeled D1) is
tunnel coupled to two MZMs (red, labeled M1, M2 and described by operators γ1,γ2) with coupling
strengths w1 and w2. The tunnel couplings and the energy level of the dot (denoted by ε1) are
controlled by electrostatic gates. The relative phase between the tunnel couplings w1, w2 can
effectively be controlled by the external flux denoted by Φ1. The quantum dot is assumed to be
spin-polarized by a large external magnetic field that is unrelated to Φ1 such that the dot can be
described by a single electronic state. A gate is used to adjust the energy level ε1 of the dot such
that a single charge occupies the dot for ε1 →−∞. When the energy level is adiabatically tuned to
ε1 →∞, the charge is expelled from the dot and tunnels to the Majorana system, occupying the
zero energy state formed by Majoranas M1 and M2 [148, 151]. In the ideal case, the external flux
equals an integer multiple of the flux quantum resulting in a degeneracy between the even and
odd parity sectors of the combined dot/Majorana system. Under these circumstances, a charge-
transfer between the dot and the Majorana system can be effectively described as an operation
U = cos(θ)γ1 + sin(θ)γ2 that acts on the Majorana system [148]. The rotation angle θ is given by
tan(θ) = |w2/w1| and can be controlled by adjusting the tunnel couplings via electrostatic gates.

Outside of the ideal regime, the charge-transfer operation will be affected by offsets in external
flux and electrostatic gates as studied in Project A. Here, we find that offsets in tunnel couplings do
not play a significant role, however, offsets in the external flux qualitatively changes the effect of
charge-transfer operations. To describe charge-transfer operations away from the flux degeneracy
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Fig. 4.1: A simple charge-transfer device adapted from [P1]. A quantum dot (green) is coupled
to two Majoranas (red) via tunnel couplings w1, w2. The energy level ε1 of the quantum dot
can be controlled by an electrostatic gate (orange). Majoranas appear at the ends of topological
superconductors (light blue) which are connected via a (conventional) superconducting backbone
(dark blue). A magnetic flux Φ1 threads the loop formed by the superconducting arms and the
quantum dot.

points, we consider the relative geometric and dynamical phases acquired for the even/odd parity
during charge-transfer. As introduced in Chapter 2, operations on Majorana systems can be
determined by the relative phase between states of different parity. Via this identification, we can
describe charge-transfer operations in the non-degenerate case as an effective operation acting on
the Majorana system,

U = cos

(
θG +θD

2

)
γ1 + sin

(
θG +θD

2

)
γ2. (4.1)

The geometric and dynamical phases are denoted by θG and θD where we find

tan
(
θG )= cos

(
φ/2

)
tan(2θ) (4.2)

withφ being the reduced flux given byφ= 2πΦ1/Φ0. The geometric phase is only slightly perturbed
when the external flux is close to the flux degeneracy points cos

(
φ

)≈±1. The dynamical phase,
however, can lead to a substantial contribution even when the flux is very close to the degeneracy
points. In the adiabatic limit, the operation time T of the charge-transfer is formally infinite and
the dynamical phase also diverges in this limit (unless the flux is tuned to the degeneracy point
with artificial accuracy). To mitigate the large effect due to the dynamical phase, we develop two
ideas: (1) we propose a flux echo protocol that cancels dynamical phases and (2) we increase the
speed of the charge-transfer process by optimizing the adiabatic trajectory. Concerning point (1),
we propose a minimal protocol that demonstrates the non-Abelian nature of Majoranas using three
consecutive charge-transfer operations. The non-Abelian signal corresponds to a parity measure-
ment of a Majorana pair where the order of charge-transfer operations changes the outcome of
the final measurement. If the external flux is changed by one flux quantum midway through the
protocol, the dynamical phases of these operations cancel. If the echo is not perfectly executed,
the residual dynamical phase can still be problematic as it reduces the visibility of the non-Abelian
signal in the protocol.
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Optimizing the adiabatic trajectory

Point (2) attempts to reduce the impact of the residual dynamical phase inspired by the work
in Ref. [152]. There, an adiabatic perturbation theory (APT) is developed for non-degenerate
quantum systems. APT aims to quantify non-adiabatic corrections that appear when the time
T of the evolution is finite, using the inverse time 1/T as the perturbative expansion parameter.
Specializing to the charge-transfer system, we use APT to find the optimal trajectory of the energy
level ε1 by minimizing the leading order non-adiabatic contribution. In our case, it turns out that it
is not sufficient to minimize the leading order contribution as APT does not guarantee that higher
order terms are smaller. This can be traced back to the perturbative expansion parameter 1/T not
being dimensionless. We find the appropriate conditions to ensure that higher-order terms are
always decreasing in magnitude and can derive the optimal trajectory of ε1 on this basis.

Discussion

To test our analytical results, we simulate the dynamics of the charge-transfer process by numer-
ically evaluating the time evolution due to the Schrödinger equation. For realistic parameters,
we find that the charge-transfer process can be achieved in ∼ 10ns using the optimal trajectory
without introducing significant non-adiabatic errors. Depending on parameters, the optimal
trajectory reduces the operation time by one to two orders of magnitude compared to a naive
approach where the dot level energy is increased proportional to time. Regarding the visibility of
the non-Abelian signal in our proposed protocol, we find that the theoretical predictions agree well
with the numerical results. Further, the numerical results show that the flux echo protocol shows
a clear non-Abelian signal for an appreciable range of parameters. We therefore conclude that
demonstration of Majorana non-Abelian properties can be performed based on charge-transfer
operations if fabrication and materials improve sufficiently in Majorana devices.

It is always relevant to consider whether subgap states of non-topological origin, e.g. Andreev
bounds states, can mimic the behavior of Majoranas in a given experiment. In our proposal, we
believe that it is unlikely that ABSs can reproduce the non-Abelian signal. It is possible that ABSs
can show a non-Abelian signal at highly fine-tuned points, however, our flux echo protocol shows
that the non-Abelian signal due to Majoranas extend over a wide range of parameters. Additionally,
the flux-echo is 4π-periodic and this property is unlikely mimicked by ABSs while also showing
strong non-Abelian signatures. Ultimately, the experiment signal-to-noise ratio determines how
confidently a non-Abelian signal can be attributed to the presence of Majoranas and it should be
supported by a thorough analysis of the ABS scenario and relevant disorder models.

Our results show that charge-transfer operations are robust against systematic offsets in ex-
perimental parameters, however, several other factors can reduce the visibility of the non-Abelian
signature. For example, a non-zero temperature and electric fluctuations in gates can reduce the
non-Abelian signal, if they are not much smaller than the tunnel couplings. Poisoning from quasi-
particles will also interfere with the non-Abelian signal and it is typically required that the timescale
of the experiment is shorter than the timescale of quasiparticle poisoning. Another benefit of the
optimal adiabatic trajectory is that the effect of these non-ideal processes is diminished when the
experiment time is reduced. Further work that elucidates the role played by temperature, gate
fluctuations, etc. will provide interesting insights into the requirements that a potential experiment
would need to fulfill. Another perspective is to consider shortcuts to adiabaticity as a way of further
reducing the experiment time, see for example Refs. [153, 154].
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A recent experiment [155] shows a promising direction for non-Abelian signatures based on
charge-transfer. The experiment realizes a minimal two-site Kitaev chain that can be tuned to
a sweet spot where “poor man’s” Majoranas appear [155–157]. These sweet-spot Majoranas are
not topologically protected but can in principle show the same non-Abelian effects as topological
Majoranas. It is an exciting possibility that charge-transfer operations, or other braiding-like
protocols, can be used to test the non-Abelian properties of poor man’s Majoranas in minimal
Kitaev chains or other suitable devices [157, 158].
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Parts of this chapter have been submitted in S. Krøjer et al. Fast universal control of a flux qubit via exponen-

tially tunable wave-function overlap. 2023. arXiv: 2303.01102 [quant-ph].

43

https://arxiv.org/abs/2303.01102


5. INTRODUCTION TO PROJECT B

Overview

This chapter introduces the work in Project B [P2] which is co-authored with Anders Enevold Dahl,
Kasper Sangild Christensen, Morten Kjaergaard and Karsten Flensberg. I contributed to all parts of
this work and led the simulations of the single and two-qubit gates. I wrote the introduction and
sections concerning single and two-qubit gates with input and comments from the co-authors. I
provided inputs to the remaining parts of the manuscript.

The study contained in Project B is concerned with a T1-protected flux qubit variation and
discusses its coherence properties, readout and single and two-qubit gates. The flux qubit is a
type of superconducting qubit where the qubit mode is a heavy flux mode. Often, flux qubits are
realized in the regime E J > EC , EL > EC [103, 104, 159]. The persistent current flux qubit (PCFQ)
is the first flux qubit design and consists of three large junctions connected in a loop [160, 161].
The qubit states of the PCFQ correspond to counter-propagating circulating currents that are
induced when the qubit is biased near half flux quantum. The circulating current states, referred
to as fluxon states, have opposite magnetic dipole moments, making their energy sensitive to
fluctuations in the external magnetic field. A later notable variation of the flux qubit attempts
to reduce the sensitivity to flux noise: the capacitively shunted flux qubit (CSFQ) operates in a
slightly different parameter regime where the qubit states are the ground and excited state of a
plasma mode [126]. The relative flux noise insensitivity of the CSFQ combined with significant
advancements in fabrication increased this flux qubit’s coherence time to T1 ∼ 50µs.

As discussed in Chapter 3, qubits that are protected against relaxation can be challenging
to perform gates on. For this reason, higher-lying states outside of the computational subspace
are sometimes used during gate operations. An issue with this approach is that the higher-lying
states can be significantly less coherent and thus limit the gate fidelity. That being said, recent
experiments with fluxonium qubits show that the second excited state in this qubit is highly
coherent [132] and can be used to assist two-qubit gates with exceptionally high fidelity F ≈ 99.9%
[162]. In other qubits, for example the 0−π qubit, states beyond the second excited state are
required to perform single and two-qubit gates [138, 141, 163]. For such qubits, it is relevant to
consider alternative gate schemes that do not involve short-lived high-energy states.

The double-shunted flux qubit

In Project A, we study a flux qubit variation which we refer to as the double-shunted flux qubit
(DSFQ), see Fig. 5.1(a) for a device schematic. This flux qubit design is similar to the PCFQ, however,
instead of using large Josephson junctions to reach a large ratio of E J /EC , we make use of smaller
junctions and two large capacitive shunts. This choice enables more design flexibility as the size
of the junction and the corresponding Josephson energy does not determine the E J /EC ratio.
The DSFQ suffers from the same flux noise sensitivity as the PCFQ but enjoys protection against
relaxation when E J /EC ≫ 1, see Fig. 5.1(b, c). We use the design flexibility to add a feature to the
DSFQ that complements its T1-protection: one of the Josephson junctions is a nanowire junction.
The Josephson energy of a nanowire junction can be controlled by electrostatic gates and has been
demonstrated in experiments with gatemons and cos

(
2φ

)
qubits [139, 164–168]. In the DSFQ, the

Josephson energy of the nanowire junction directly controls the potential barrier separating the
fluxon states, see Fig. 5.1(c). This means that the hybridization between the qubit states can be
directly adjusted via the gated nanowire junction.
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Fig. 5.1: Adapted from [P2]. (a) The DSFQ coupled to a readout resonator. The top junction is
a nanowire junction whose Josephson energy αE J can be controlled via a gate voltage Vα. (b)
Potential landscape of the DSFQ where φ=φ1 −φ2 and θ =φ1 +φ2. The ground state (red) and
excited state (blue) are separated in respective wells. (c) Cut of the potential along θ = 0. The
potential barrier separating the two wells can be decreased by decreasing α. The flux bias is
Φext = 0.997×Φ0/2.

Gates

The DSFQ is a relatively simple qubit platform where a novel gate scheme can be studied experi-
mentally: To perform gates, we propose to momentarily decrease the potential barrier to hybridize
the fluxon states, allowing for conventional direct-drive microwave gates. For gates based on
multi-level excursions, it can be challenging to simultaneously engineer the properties of several
high-energy states to improve the gate fidelity. In the gate scheme presented in Project B, the
nanowire junction provides in situ control of the states that participate in gate operations, leading
to more flexibility when optimizing gates.

Our numerical results show that proof-of-principle single qubit gates can be performed in this
gate scheme and are compatible with standard IQ-mixing. Despite requiring a near-adiabatic
control of the nanowire Josephson energy to lower the potential barrier, coherent errors are small
and the gates are relatively fast. Including the near-adiabatic control, we find that single qubit gates
can be performed in ∼ 25ns with a T1-limited fidelity of ∼ 99%. The coherent errors are around one
order of magnitude less than errors due to relaxation during the gate.

We also propose to lower the potential barrier in order to execute two-qubit gates on capacitively
coupled DSFQs. In this gate scheme, we only lower the potential barrier and do not apply a
microwave drive. When the frequencies of coupled qubits are similar (∆ω∼ 1GHz), lowering the
barrier can induce a swap of excitations between the qubits. In this case, the control of the potential
barrier is near-adiabatic for all transitions except |01〉↔ |10〉. This interaction results in a

p
iSWAP

gate which can be executed in ∼ 32ns with a T1-limited fidelity of ∼ 99.7%. Again, the coherent
errors are found to be about one order of magnitude less than the errors due to relaxation during
the gate. It is a surprising result that the two-qubit gate fidelity is greater than the single qubit gate
fidelity. It suggests that single qubit gates can be significantly optimized by reducing the time spent
where the barrier is lowered.
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5. INTRODUCTION TO PROJECT B

Readout

The DSFQ consists of two modes: a φ mode, describing the qubit states as counter-propagating
currents, and an auxiliary plasma mode that is in its ground state, see Fig. 5.1(b). We denote the
auxiliary mode by θ. To measure the state of the DSFQ, we capacitively couple a readout resonator
to the θ mode and read out in the dispersive regime, see Fig. 5.1(a). When the flux bias is near half
flux quantum, the θ mode does not contain information about the qubit state. To read out the
qubit, the flux is adjusted away from a half flux quantum. In this case, the transition frequencies
of the θ mode are shifted by a small amount that depends on the state of the qubit. When the
frequency of the readout resonator is close to a transition frequency of the θ mode, the resonator
frequency is shifted via the dispersive interaction. Since the transition frequency of the θ mode
depends on the qubit state, the dispersive shift of the readout resonator also depends on the qubit
state. In this way, the auxiliary θ mode can be used to mediate the interaction between the qubit
mode φ and the readout resonator.

There are several benefits of reading out through the θ mode rather than the φmode. The qubit
can not decay into the readout resonator since the θ mode is in its ground state regardless of the
qubit state. Said differently, the matrix element with the charge operator 〈1|nθ |0〉 vanishes due to
even/odd selection rules of the θ mode. Additionally, the qubit remains in the protected regime
throughout the readout process, resulting in long relaxation times. Assuming a measurement time
of 1µs, we find the T1-limited readout fidelity to be ∼ 99.8%.

Discussion

The DSFQ is a platform where several interesting features can be experimentally explored. These
features, variable-protection gates and readout via an auxiliary mode can potentially be relevant
for other qubit designs which future work can elucidate. While variable-protection gates are only
relevant for protected qubits, the idea of reading out through an auxiliary mode to prevent qubit
relaxation can potentially be applied to a wider range of qubit designs.

State-of-the-art large-scale qubit systems are a highly competitive area where the transmon has
paved the way for several remarkable experiments that demonstrate the capabilities of quantum
computers [169–173]. The emergence of fluxonium as a flexible and capable qubit platform has
further increased the competition [128, 131, 132, 136, 137, 162, 174, 175]. In this context, the
DSFQ struggles with sensitivity to flux noise and a comparatively high dephasing rate through this
channel. An additional concern regarding the DSFQ is the potential challenges in using nanowire
junctions, for example, increased fabrication complexity and loss mechanisms in the mesoscopic
junction. On the other hand, basing the DSFQ on a nanowire junction gives the opportunity to
better characterize and improve this technology.
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Introduction to Project C

Parts of this chapter is contained in the unpublished work S. Krøjer et al. “Towards deep protection of qubits

using realistic quarton array superinductors”. In: preparation (Nov. 2023).
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6. INTRODUCTION TO PROJECT C

Overview

This chapter introduces the work in Project C [P3] which is co-authored with Alexandre Blais,
Morten Kjaergaard and Karsten Flensberg. I led the scientific investigation, contributed substan-
tially to the preparation of figures and wrote the manuscript with guidance, inputs and comments
from the co-authors. This project was planned to be completed and submitted before the thesis
deadline, however, we realized shortly before the deadline that one of the derivations in Project C
ought to be revisited. Due to time constraints, these changes have not been included in the version
of Project C that is part of this thesis. Below, we discuss what relevant changes should be made and
how they change the main results presented in Project C.

The study contained in Project C is concerned with large superinductors and their role in
protecting qubits against dephasing from flux noise. As introduced in Chapter 3, a large ratio
E J /EC can be used to exponentially reduce sensitivity to charge noise. In this regime, quantum
fluctuations in the charge mode are large and as a result, the qubit frequency becomes insensitive
to small fluctuations in the offset charge. Superconducting qubits can be made insensitive to flux
noise in an analogous fashion [127, 129, 140, 141, 159, 176–179]. In the limit of small inductive
energy and large charging energy, EL ≪ EC , quantum fluctuations in phase are large and the
qubit becomes insensitive to flux noise. Since the charge operator can take continuous values in
circuits with inductors, the superinductor is a very useful element that helps suppress sensitivity
to both flux and charge noise. Satisfying the requirement EL ≪ EC in practice, however, poses a
fundamental experimental challenge since the self-impedance of inductive elements is limited by
self-capacitance or parasitic capacitances to ground [124, 125, 180]. Superinductors are commonly
based on Josephson junction arrays [124, 128, 132, 136, 137, 162, 174, 175] as described in Chapter 3.
Here, conventional fabrication methods give rise to parasitic capacitances to ground that limit the
number of junctions in the array to be around ∼ 300, resulting in EL > 0.1GHz [137]. While the
experimentally realized inductive energies are small, they still need to be reduced by one to two
orders of magnitude to fully protect superconducting qubits against flux noise [127, 129, 138, 140,
141]

Quarton array superinductors

To improve superinductors based on junction arrays, we consider an array of quartons. In this
context, the quarton can be described as an asymmetric interference device similar to the SQUID.
The SQUID and the quarton, however, differ in one important aspect: one of the interferometer
arms in the quarton consists of an array of junctions rather than a single junction [126, 181], see
Fig. 6.1(a). To avoid confusion with the array of quartons, we refer to the array of junctions within
the quarton as the subarray. The subarray plays an important role since its energy-phase relation is
different from that of a single junction. If there are Ns junctions with Josephson energy γNs E J A in
the subarray, the energy-phase relation is approximately given by

Vsubarray =−γN 2
s E J A cos

(
φi /Ns

)
. (6.1)

where φi is the phase drop across the i th quarton in the quarton array whose total phase drop
is

∑
i φi =φ. The subarray energy-phase relation can be compared to the single junction energy-

phase relation −E J A cos
(
φi

)
. The difference between the two energy-phase relations means that

interference effects can be used to cancel select energy terms. Specifically, when a quarton is
biased by a half flux quantum ϕext =π while γ= 1, we cancel the leading order energy term which
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Fig. 6.1: Adapted from [P3]. (a) A quarton array superinductor with Ns = 2 junctions in the quarton
subarrays. (b) Circuit diagram of Blochnium, bifluxon and the 0−π qubit. The empty dashed boxes
indicate where large inductive elements are placed. In the main text, we consider using quarton
array superinductors as the inductive elements in the three qubits.

is quadratic in phase,

Vquarton =−E J A cos
(
φi −ϕext

)−γN 2
s E J A cos

(
φi /Ns

)
(6.2)

ϕext=π−→ (γ−1)
E J A

2
φ2

i +
(
1− γ

N 2
s

)
E J A

24
φ4

i + . . . (6.3)

Using the quarton energy-phase relation, we can obtain the energy-phase relation of the quarton
array superinductor (QASI): When identical quartons are connected in series, the distributed phase
approximation can be used across the QASI as described in Chapter 3. We denote the number of
quartons by Nq and sum the energy contributions from all quartons. The resulting energy-phase
relation of the QASI is,

VQASI = (γ−1)
E J A

2Nq
φ2 +

(
1− γ

N 2
s

)
E J A

24N 3
q
φ4 (6.4)

where we identify the inductive energy as EL = (γ− 1)E J A/Nq . Canceling the quadratic term
by choosing the value γ = 1, i.e. reducing EL , effectively increases the inductance of the array.
The cancellation of energy terms in Eq. (6.2) is not unique to the quarton and can be realized in
any superconducting interferometer where the interferometer arms have different energy-phase
relations [182]. The idea of tuning the non-linearity in junction arrays was first explored in Ref. [183]
and has recently been considered as a way of increasing the anharmonicity of the Blochnium
qubit [184]. In Project C, we use the QASI as inductive elements in the 0−π qubit [127, 129, 138,
141, 176, 177], the bifluxon qubit [140] and the Blochnium qubit [159, 178], see Fig. 6.1(b). We study
the decoherence properties of the mentioned qubits and assess the experimental requirements in
realizing superinductor-based protection against flux noise.
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Fig. 6.2: The quarton energy-phase relation in the ideal case ϵi = 0 (blue, dashed line) and the
disordered case ϵi = 0.05π (red, solid line).

Disorder

When fabricating QASIs, variations in Josephson energies, area of the quarton loops, etc. will
impact the energy-phase relation of individual quartons and the array as a whole. We refer to these
variations as disorder. In project C, we consider disorder in loop areas and Josephson junctions
but focus on disorder in the quarton loop areas here. As we show, variations in loop areas lead to
asymmetries in the quarton energy-phase relation which was not taken into account in Project C.

When disordered quartons are biased by a uniform magnetic field variations in loop areas
result in variations in flux biases of individual quartons. We therefore consider the generic example
where the quartons are biased by a flux that is slightly offset from half flux quantum ϕext =π−ϵi .
Specializing to the case Ns = 2, γ= 1, the quarton energy-phase relation in Eq. (6.2) becomes

Vquarton

E J A
=−ϵi φi + 1

32
φ4

i (6.5)

to leading order in ϵ and φi . This expression for the quarton energy-phase relation is a simplified
version of the energy-phase relation presented in Project C. We will use this simple example to
discuss challenges that arise when disorder is taken into account. In project C, we sum the contri-
butions in Eq. (6.5) from all Nq quartons in the array and use the distributed phase approximation
φi =φ/Nq to arrive at an expression for the QASI energy-phase relation,

VQASI

E J A
=−

∑
i ϵi

Nq
φ+ 1

32N 3
q
φ4. (6.6)

However, the distributed phase approximation relies on all quartons to be identical which is not
the case when we introduce disorder. Below, we discuss how to properly take disorder into account
and compare this new result to Eq. (6.6).

In Fig. 6.2, we show the energy-phase relation of a disordered quarton in Eq. (6.5) when ϵi = 0
(blue, dashed line) and ϵi = 0.05π (red, solid line). The flux offset ϵi = 0.05π is about an order of
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magnitude larger than what is expected from variations in loop areas [185, 186] and is chosen to
make it easier to see the effect of area variation in Fig. 6.2. In the disordered case, we observe two
important effects due to area variation: (1) the potential minimum shifts away from φi = 0 and (2)
the potential is asymmetric around the minimum. Neither of these effects are taken into account
when the distributed phase approximation is made to obtain Eq. (6.6) in Project C.

We start by considering point (1): the minimum of the quarton potential shifts relatively far
away from φi = 0, by an amount σi which we find to be

σi = sign(ϵi ) ·2|ϵi |1/3. (6.7)

Even for small offsets ϵi , the shift of the minimum is significant due to the small exponent of
1/3. This shift can not be physically observed since it depends on the choice of flux allocation
in Eq. (6.2), see the discussion in Chapter 3 concerning the tunable transmon below Eq. (3.13).
As a consequence, the linear term in the QASI energy-phase relation given in Eq. (6.6) is also not
observable (e.g. as a non-zero current when φ= 0). To better describe the quarton, we therefore
expand its potential around the minimum σi . We define φ̃i =φi −σi and rewrite Eq. (6.5),

Vquarton

E J A
=−ϵiσi +

3σ2
i

16
φ̃2

i +
σi

8
φ̃3

i +
1

32
φ̃4

i . (6.8)

Using this energy-phase relation, we can sum the contributions from all quartons in the array and
consider if the distributed phase approximation is reasonable. This brings us to point (2): each
quarton experiences a different shift σi which leads to different asymmetries encoded in the cubic
term in Eq. (6.8). Considering that the distributed phase approximation is a way of minimizing the
classical energy in arrays with identical elements, it is not obvious that this approximation holds
for disordered quartons that show a large degree of asymmetry.

To explore when the DPA is a good approximation, we consider a simplified model of disorder
where area variations result in Nq /2 quartons that are biased by ϕext = π− ϵ and Nq /2 quartons
that are biased by ϕext =π+ϵ. We refer to these quartons as (∓) respectively. We may now consider
three different applications of the DPA: (I) Apply the DPA directly to Eq. (6.5). This approach is
equivalent to Project C and does not take the shift σ or the asymmetry into account. (II) Take
into account the shift of the minima and apply the DPA to Eq. (6.8) (not taking into account the
asymmetry). (III) Pair up all (−) quartons with a (+) quarton and minimize the classical energy of a
single pair. Then apply the DPA across all pairs. Approach (III) effectively minimizes the classical
energy across the array since all pairs of (∓) quartons are identical in the simplified model of
disorder. The energy-phase relation of the QASI is straightforward to write down using approaches
(I) and (II) while (III) is detailed below. The results are

(I) :
V (I )

QASI

E J A
= 1

32N 3
q
φ4, (6.9)

(II) :
V (I I )

QASI

E J A
= −ϵσNq + 3σ2

16Nq
φ2 + 1

32N 3
q
φ4, (6.10)

(III) :
V (I I I )

QASI

E J A
= −ϵσNq + 1

2

∑
∓

3σ2

16Nq
(φ∓η)2 ± σ

8N 2
q

(φ∓η)3 + 1

32N 3
q

(φ∓η)4, (6.11)
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Fig. 6.3: The QASI energy-relation for the three approaches in Eqs. (6.9)-(6.11). The parameters
used are E J A = 40h GHz, Nq = 30, ϵ= 0.005π.

where η is an internal mode that can be determined by minimizing the energy ∂V (I I I )
QASI /∂η = 0,

giving the result

η= Nqσ+2|φ|sinh

1

3
log


√

(Nqσ)6 +4φ6 − (Nqσ)3

2|φ|3


 (6.12)

To derive the result from approach (III), we consider a pair of (∓) quartons where the total phase
drop across the two quartons are 2φ/Nq following the DPA. We assume the phase drop across the
(∓) quarton is φ/Nq ∓η/Nq where η is the internal mode that can be found by minimizing the
classical energy. Summing the energy contributions from the quarton pairs, we recover Eq. (6.11).

In Fig. 6.3, we show the QASI energy-phase relation for the three approaches resulting in
Eqs. (6.9)-(6.11). We use values consistent with Project C, E J A = 40h GHz, Nq = 30, ϵ = 0.005π.
Interestingly, we observe that approaches (I) and (II) agree with (III) in different limits. When
φ ≈ 0, approach (II) agrees with (III) since the quadratic term in φ dominates over the cubic
term such that the asymmetry between (∓) quartons is small in this regime. For large φ, the
quartic term in φ dominates and the (∓) quartons are not affected by the asymmetry near the
potential minima and as a result approach (I) agrees with (III). In the intermediate regime, only
approach (III) gives a faithful representation of the QASI energy-phase relation since it minimizes
the classical energy with respect to the internal modes of the array. Since approach (I) cancels the
quadratic contribution in φ, it overestimates the inductance of the QASI compared to (III). Ideally,
approach (III) should be developed further and implemented in Project C to properly account for
disordered quartons. In its place, the simple approach (II) can be used as an approximation that
underestimates the inductance. In practice, approach (II) is likely more fruitful to use due to its
relative simplicity.
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Flux noise

In project C, we study dephasing due to noise in the flux that threads the quarton loops. In light of
the results of the previous section, we here discuss how to best treat this flux noise.

When considering flux noise in general, the so-called irrotational basis should be used [122,
187]. The irrotational basis corresponds to the choice of flux allocation that ensures that the time-
dependent external flux ϕ̇ext is not present in the Hamiltonian. For a single quarton where γ= 1
and Ns = 2, the proper choice of flux allocation following Ref. [122] results in

Vquarton =−E J A cos
(
φir

i −ϕext/2
)−4E J A cos

(
φir

i /2+ϕext/4
)
, (6.13)

assuming the Josephson capacitances are C J and γNsC J for the single and subarray junctions
respectively. The flux allocation leading to the irrotational basis can be related to the basis used in
Eq. (6.2) via φir

i =φi −ϕext/2. We assume the external flux is ϕext =π−ϵi −δϵi (t ) where δϵi (t ) are
time-dependent fluctuations in the flux. Using Eq. (6.13), we can compute the leading order noise
term due to fluctuations in the flux,

∂Vquarton

∂δϵi (t )
δϵi (t ) =−4E J A sin

(
φi /4

)
cos3(φi /4)δϵi (t ) (6.14)

≈−E J Aφi δϵi (t ). (6.15)

Here, shifted back after the differentiation wrt. δϵ(t) to the basis used in the previous section φi

. Following approach (I), the result in Eq. (6.15) is summed across all quartons and the DPA is
applied, giving the result

δV (I )
QASI

E J A
=−

∑
i δϵi (t )

Nq
φ. (6.16)

Assuming the local flux fluctuations δϵi (t ) to be independently and identically distributed, we can
replace the sum by

∑
i δεi (t ) =√

Nq δϵ(t ). This is done in Project C to compute the dephasing rate
due to local flux noise in the array as described in Chapter 3 and following Ref. [127].

Concerning approaches (II) and (III), we need to consider if the internal modes of the quarton
array are fast enough to adapt to flux fluctuations. If the internal modes are slow compared to
fluctuations in δϵ(t), then the shifts of the minima σi and the internal mode η can be assumed
to be fixed in time. In this case, Eq. (6.15) can be used to compute flux noise dephasing times
in approaches (II) and (III). However, flux fluctuations are small and typically follow a 1/ f -type
noise spectrum where low frequencies dominate. At the same time, the internal modes are high-
frequency modes ∼ 10GHz, implying that it is reasonable to assume that the internal modes can
instantaneously accommodate flux fluctuations. Fast internal modes can in this case significantly
modify the QASI’s response to local flux noise. In an ultra-simplified noise model where all (∓)
quartons in approach (II) and (III) experience the same noise ϕext = π∓ ϵ∓δϵ(t), the flux noise
simply updates the shift σ and the internal mode η through ϵ→ ϵ+δϵ(t ), see Eqs. (6.7) and (6.12).
The effect of flux noise in this simple model is to “wiggle” existing parameters, maintaining the
symmetry of the energy-phase relation. In a more realistic noise model, it is possible that δϵ(t)
couples to new terms that introduce an asymmetry in the energy-phase relations in Eqs. (6.10)-
(6.11). This could, for example, be a term proportional to δϵ(t )φ3 in Eq. (6.10). Importantly, a term
proportional to δϵ(t )φ can never appear as approach (II) and (III) ensure that the minimum of the
energy-phase relation is atφ= 0. Compared to approach (I), where flux noise enters as δϵ(t )φ, there
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6. INTRODUCTION TO PROJECT C

is a qualitative difference in how flux noise couples to phase depending on whether the internal
modes of the array are fast or slow compared to the flux noise. While the energy minimization in
approaches (II) and (III) is complicated by flux noise and its effect on the shifts of the minima and
the internal modes, it is relevant to continue to develop this approach to apply it in Project C. In
the next section, we discuss how the main results in Project C change in light of the considerations
of this chapter.

Discussion

In Project C, we study dephasing due to 1/ f flux noise in the 0−π qubit, bifluxon and Blochnium
where their inductive elements are QASIs. In addition to flux noise in the quarton array, there is
also flux noise in the qubit loops which is typically a significant dephasing channel. Common to
the three qubits, however, we find that sensitivity to flux noise in the quarton array is typically
increased by two to three orders of magnitude compared to flux noise in the qubit loop. Since
approach (III) suggests that the inductance is smaller than quoted in Project C, the qubits are likely
more sensitive to flux noise in the qubit loop, reducing dephasing times due to this noise source.

On the other hand, the sensitivity to local flux noise in the quarton array is likely to be reduced
since fast internal modes in the quarton array can adapt to fluctuations in flux. The leading order
noise term in Eq. (6.16), δϵ(t)φ/

√
Nq , is a relatively large term compared to the energy-phase

relations in Eqs. (6.9)-(6.11) since it is only reduced by a factor 1/
√

Nq . This is in part responsible
for the large sensitivity to flux noise in the quarton array quoted in Project C. When flux noise
couples to higher powers of phase as in approaches (II) and (III), the terms are reduced by equally
higher powers of 1/Nq . For example, if flux noise couples to a cubic phase term, the noise term will

presumably be proportional to
[√

Nq δϵ(t )
] ·[φ3/N 3

q

]
in the simplest case. While speculative, it is

therefore possible that fast internal modes in the array have a significant impact that substantially
reduces the sensitivity to flux noise in the quarton array. As a consequence, we believe that a more
accurate description of the QASI following approaches (II) and (III) will decrease the sensitivity to
the limiting noise channel in Project C. For this reason, the experimental requirements to reach
protection against flux noise can potentially be relaxed somewhat.

As a penultimate remark, we mention that we also consider photon shot-noise dephasing due
to the spurious ζ mode in the QASI-based 0−π qubit. We study an interaction between the ζ mode
and the qubit mode φ that is due to the quartic term in the QASI energy-phase relation obtained
from approach (I). In Project C, we find that dephasing due to shot-noise is about as detrimental as
flux noise in the quarton array. Turning to approach (III), it is hard to assess what the ζ-φ interaction
will be given the non-trivial energy-phase relation in Eq. (6.11). Provided that approach (II) is a
good approximation, it is relatively straightforward to treat the interaction between the ζ and φ
mode. Since the energy-phase relation in Eq. (6.10) is approximately quadratic in phase, it follows
that the ζ-φ interaction is similar to the dispersive interaction found in the conventional 0−π
qubit [127, 141]. Shot-noise dephasing in the conventional 0−π qubit is a second-order process of
the dispersive interaction while the interaction considered in Project C contributes at first order. It
is therefore possible that the ζ-φ interaction obtained from approach (II) is less significant than
the one obtained from (I) in Project C. We therefore speculate that shot-noise dephasing due to
the spurious ζ mode is overestimated in Project C and that approach (II) gives a more accurate
result that also relaxes the experimental requirements to protect the 0−π qubit against shot-noise
dephasing.
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To conclude, we consider the results found in Project C in the light of the considerations
presented in this chapter. Flux noise protected superconducting qubits based on QASIs can achieve
significantly higher ratios of EC /EL due to the cancellation of the quadratic phase term. In principle,
this mechanism lowers the experimental requirement to realize the protected regime EC /EL ≫ 1.
However, QASIs also introduce flux noise in the array that results in dephasing times which are
orders of magnitude shorter compared to existing decoherence channels. Despite this significant
drawback, Project C finds that the increased inductance of the QASI outweighs the high sensitivity
to flux noise in the array when compared to conventional junction array superinductors. Given
the new results provided in this chapter, it appears that the approximations used to describe
the disordered QASI in Project C are not sufficiently accurate. We speculate that using a better
description of the disordered QASI leads to a decreased sensitivity to array flux noise since internal
modes of the array can accommodate the randomly fluctuating fluxes. For these reasons, the
QASI is an interesting platform for realizing very large inductance elements that may lower the
experimental requirements to realize flux noise protected superconducting qubits.
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Demonstration of Majorana non-Abelian properties is a major challenge in the field of topological super-
conductivity. In this work, we propose a minimal device and protocol for testing non-Abelian properties using
charge-transfer operations between a quantum dot and two Majorana bound states combined with reading the
parity state using a second dot. We use an adiabatic perturbation theory to find fast adiabatic paths to perform
operations and to account for nonadiabatic errors. We find the ideal parameter sweep and a region in parameter
space that reduces the charge-transfer operation time 1–2 orders of magnitude with respect to constant velocity
driving. Using realistic parameters, we estimate that the lower bound for the timescale can be reduced to ∼10 ns.
Deviations from the ideal parameters lead to the accumulation of an undesired dynamical phase, affecting the
outcome of the proposed protocol. We furthermore suggest to reduce the influence from the dynamical phase
using a flux echo. The echo protocol is based on the 4π periodicity of the topological state, absent for trivial
bound states.

DOI: 10.1103/PhysRevB.105.045425

I. INTRODUCTION

The realization and verification of Majorana bound states
(MBSs) have received a substantial amount of attention in the
past decade [1–7]. MBSs are exotic zero-energy quasiparticle
states appearing at the ends of one-dimensional topologi-
cal superconductors (TSs) or in vortices of two-dimensional
TSs [8–10]. MBSs exhibit non-Abelian exchange properties
contrary to topologically trivial subgap states. Experimental
demonstration of MBSs non-Abelian properties is one of
the key goals in the field as it will probe their topological
origin, distinguishing them from trivial states. An additional
promising feature of MBSs is their ability to store quantum
information in nonlocal fermionic degrees of freedom, be-
coming robust to local perturbations [3]. In this way, MBSs
can encode quantum information in the degenerate ground-
state manifold. Braiding operations (exchange of MBSs) can
perform Clifford gates, thus implementing (nonuniversal)
topological quantum computing [1].

To experimentally realize MBSs, a number of structures
and devices have been proposed [13]. Hybrid semiconductor-
superconductor heterostructures are widely used platforms
in the attempt to realize one-dimensional spin-polarized p-
wave superconductors hosting MBSs at its ends [9,10].
Recent progress on fabrication techniques has made it pos-
sible to measure signatures consistent with MBSs. Early
observations include the measurement of a robust zero-bias

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

conductance peak [14,15]. Later experiments indicated the
2e2/h-quantization of the zero-bias peak [16]. Measurements
have shown coherent transport through a Majorana island
[17], exponential scaling of energy separation with length
[18,19], and hybridization characteristics with quantum dot
states [15,20]. Despite the mounting signatures consistent
with MBSs, direct observation of their non-Abelian exchange
properties remains a challenge in the field. Such demonstra-
tion could provide smoking-gun evidence for the topological
origin of MBSs, while having the outlook of being a first step
in implementing protected gates in Majorana qubit devices.

In practice, showing non-Abelian exchange properties
through real space braiding of MBSs in T or Y junctions is
expected to be a great experimental challenge as it is dif-
ficult to tune in and out of the topological regime [7,21].
For this reason, this paper instead focuses on implement-
ing braiding-like operations of MBSs in parameter space.
Following Refs. [11,12], we consider manipulating the oc-
cupation of MBSs through charge-transfer processes with a
nearby quantum dot in the Coulomb-blockaded regime, see
Fig. 1 for a device schematic similar to Ref. [11]. In a suc-
cessful charge-transfer process, an electron is adiabatically
exchanged between the gate-controlled quantum dot and the
MBSs, changing the Majorana parity. An advantage of this
parameter space operation is that it generalizes the real space
braiding to rotations through a continuum of angles, extending
the space of possible operations through braiding operations
alone. The immediate downside, however, is that charge-
transfer operations are not topologically protected and require
accurate tuning of the parameters to achieve high fidelity.

Noncommutativity of braiding-like operations can provide
evidence for the non-Abelian nature of MBSs. Concretely,
we search for protocols where interchanging two charge-
transfer operations influence the measured parity of the
Majorana state. A protocol consists of two sequences with

2469-9950/2022/105(4)/045425(16) 045425-1 Published by the American Physical Society

A. DEMONSTRATING MAJORANA NON-ABELIAN PROPERTIES USING FAST ADIABATIC CHARGE

TRANSFER

78



KRØJER, SEOANE SOUTO, AND FLENSBERG PHYSICAL REVIEW B 105, 045425 (2022)

Φ1 Φ2

M1

D1

M2

D2

M3

M4M5M6

w1 w2 w3 w4

ε2

ε1

FIG. 1. Schematic of the proposed device for demonstrating
MBSs non-Abelian properties. Three long TS nanowires (light blue)
extend from a trivial superconducting backbone (blue). MBSs (red)
form at the ends of the TSs. M1, M2, and M3 are tunnel coupled to
quantum dots (green) D1 and D2 with coupling strengths wi. The dot
energies εi are controlled with nearby gates (orange). In our proto-
cols, D1 is used for initialization and read out of the M1/M2 pair
using a charge sensor (purple). D2 is used for charge-transfer pro-
cesses involving the M2/M3 pair [11,12]. Magnetic fluxes �1, �2

control the splitting between the even and odd parity states. The
remaining MBSs (M4, M5, and M6) are separated from M1, M2,
and M3 and do not contribute to the system dynamics.

charge-transfer operations applied in different order, testing
the noncommutativity of the operations [11]. In the device
shown in Fig. 1, the principal source of error is due to split-
ting of the ground state degeneracy with imperfect tuning
of the parameters. This leads to a relative dynamical phase
between the split states, reducing the visibility of the ge-
ometric phase originated from non-Abelian charge-transfer
operations. As the charge-transfer process is meant to operate
on long, adiabatic timescales, even a small energy splitting can
lead to a substantial relative phase error, overwhelming the
non-Abelian signal. This presents a trade-off between driving
the system slowly enough to remain in the ground state and
fast enough to avoid the effects of the splitting.

In this study, we propose an experiment for testing the
non-Abelian properties of MBSs. We simplify the device and
reduce the number of operations needed with respect to the
original proposal in Ref. [11]. We improve the visibility of
the MBSs non-Abelian signature by optimizing the adiabatic
charge-transfer processes. We also design a 4π -periodic flux
echo protocol that cancels the undesired dynamical phase of
subsequent operations.

Specifically, our device and protocol proposals are minimal
as they require controlling a single quantum dot (D2) and one
tunneling amplitude (w4), see Fig. 1. A second quantum dot,
D1, is used to measure the parity of the nonlocal fermion
formed by M1 and M2 [22–27]. We propose two variants
of the protocol: with and without the echo mechanism. Both
protocols, depicted in Fig. 2, require using one dot and three
adiabatic charge-transfer processes. In the flux echo protocol,

Sequence A

Sequence B

Sequence A+B

E
n
er
g
y

t

|w3|
|w4|

γ2 U UInitialize Read-out

E
n
er
g
y

t

|w3|
|w4|

U γ2 UInitialize Read-out

F
lu
x

t

Φ2

Φecho
2

E
n
er
gy

t

ε2

FIG. 2. Diagram of the two sequences (top and middle panels),
consisting of three charge-transfer processes. In each diagram, both
the protocols with and without the echo effect are depicted. (Top)
Sequence A. Here, |w4| is initially set to zero during the first charge-
transfer process. For the two subsequent charge-transfer processes,
it is ideally set to |w4| = |w3|. As indicated, the echo protocol is
achieved by adjusting the magnetic field before the third charge-
transfer process. (Middle) Sequence B. Here, |w4| is instead set to
zero during the second charge-transfer process, reversing the order
of the first two operations. (Bottom) Level energy of D2 for both
sequences.

the dynamical phase is canceled by flipping the sign of the
energy splitting in between charge-transfer operations. This
is accomplished by tuning the magnetic field �2 to induce
an additional superconducting (SC) phase difference, flipping
the sign of the energy splitting between the even and odd
parity ground states. We find that the echo protocol is robust to
drifts in the SC phase difference and that the deviations in the
additional SC phase can be as large as ∼10% from the ideal
value, 2π . As the flux echo relies on the 4π periodicity of
Majorana parity states, it also makes it possible to distinguish
from 2π -periodic trivial states.

To mitigate nonadiabatic and phase errors, we formulate
a consistent theoretical framework for finding fast, adiabatic
paths based on adiabatic perturbation theory (APT) developed
in Ref. [28]. Within the framework, we find how to optimally
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control the level energy of the quantum dot to minimize
the dynamical phase without introducing nonadiabatic errors
such as transitions to excited states. Compared to driving the
system with constant (Landau-Zener) velocity, we find an adi-
abatic path that is one to two orders of magnitude faster than
a linear sweep of D2 energy, as used in Ref. [12]. We provide
numerical calculations supporting these results. Finding fast
adiabatic paths is crucial for adiabatic quantum computing
as discussed by previous attempts [29–32]. Specifically in
the context of Majorana-based systems, the velocity of real
space exchange and operations using varying tunnel couplings
between MBSs has been considered [33–45]. In this work,
we instead consider the nonadiabatic effects that occur when
MBSs are coupled to a driven quantum dot.

II. THEORY

We begin by reviewing the charge-transfer process follow-
ing Ref. [11] and formulate the non-Abelian operations in
terms of the relative geometric phase between the even and the
odd parity ground states. This enables us to identify the non-
Abelian operations resulting from charge-transfer processes
where the ground states energy split.

Then, we review the adiabatic perturbation theory follow-
ing Ref. [28] and formulate a framework for studying fast
adiabatic processes, resulting in predictions for the optimal
charge control.

A. Charge-transfer process

To describe the charge-transfer process between the quan-
tum dot D2 and the MBSs M2 and M3 (see Fig. 1), we
consider the low-energy Hamiltonian [11],

H = ε2d†
2 d2 + (w∗

3d†
2 − w3d2)γ2 + (w∗

4d†
2 − w4d2)γ3. (1)

The first term describes D2 with ε2 being its time-dependent
energy and d2 its electron annihilation operator. The second
and third terms in Eq. (1) describe the tunnel coupling to M2
and M3, with w3 and w4 being the tunneling amplitudes. Here,
γ2 and γ3 are the self-adjoint Majorana operators.

Our proposed protocol is based on operating on the state of
M23 using D2. The annihilation operator of the M23 fermion
is defined by f23 = 1/2(γ2 + iγ3), giving a Hilbert space
of dimension four. Due to the total parity conservation, the
Hamiltonian matrix corresponding to Eq. (1) is block diagonal
with even and odd parity blocks given by

Hρ =
(

0 wρ

(wρ )∗ ε2

)
, (2)

where wρ = w3 − ρ i w4. We use the even basis (ρ =
+) {|0〉D2 |0〉M23 , |1〉D2 |1〉M23} and odd basis (ρ = −)
{|0〉D2 |1〉M23 , |1〉D2 |0〉M23}, with 0(1) referring to the occu-
pation of D2 and M23.

We parametrize the tunnel couplings as w3 = w eiφ/2 cos θ

and w4 = w sin θ where the magnetic flux �2 controls the
SC phase difference φ = �2/(h/(2e)). Here, θ controls the
asymmetry on the tunnel coupling strength. The eigenenergies
of the Hamiltonian matrix in Eq. (2) are

Eρ
± = ε2/2 ±

√
(ε2/2)2 + w2(1 − ρ sin(2θ ) sin(φ/2)), (3)

with the corresponding eigenstates

ψ
ρ
± = 1√

(Eρ
±)2 + |wρ |2

(
wρ

Eρ
±

)
. (4)

The energy spectrum of the system is 4π -periodic, and the
even and the odd parity sectors are degenerate at integer values
of φ/(2π ).

In a successful charge-transfer process, an electron is trans-
ferred between D2 and the fermion formed by M23. This is
accomplished by inverting the energy on D2 from ε0 to −ε0,
allowing the exchange of a charge. The initial and final level
energies are not required to be equal in magnitude but they
should be much larger than the coupling strength to D2. We
assume ε0 > 0 in what follows and disregard the effect from
the continuum of states by taking the limit 
SC > ε0 � w.
The effect of the continuum of states above the supercon-
ducting gap 
SC has been discussed in Ref. [12]. We further
assume that the time T of the charge-transfer process is shorter
than the quasiparticle poisoning timescale, yet long enough
for the process to be adiabatic.

To understand the nonideal charge-transfer operations, it is
helpful to consider the geometric phase acquired by the even
parity ground state relative to the odd parity ground state.
Since the charge-transfer process is not a loop in parameter
space, the calculation of the geometric phase is slightly subtle
and can be found in Appendix A. The accrued relative geo-
metric phase between the even and odd parity ground states
during a process where the dot is filled (ε2 : ε0 → −ε0, ε0 >

0) is

θG = arctan[tan(2θ ) cos(φ/2)], (5)

with corrections of order (w/ε0)2. The corresponding opera-
tion on the MBSs is

U G = eiθG/2 f †
23 + e−iθG/2 f23

= cos(θG/2)γ2 + sin(θG/2)γ3. (6)

When the dot is filled, an electron tunnels from the super-
conductor to the dot. In the odd parity sector, the electron
jumps from the occupied M23 fermionic state (d†

2 f23). In the
even sector, the M23 fermion state is vacant. In this case, a
Cooper pair splits with one electron occupying the M23 state
while the other tunnels to the dot (d†

2 f †
23). Isolating the part

acting on the M23 fermion and inserting the relative geometric
phase, we arrive at Eq. (6). For the reverse process, the sign
of the geometric phase and the roles of even and odd sectors
with regards to the tunneling are both interchanged. For this
reason, Eq. (6) also holds when emptying the dot. In the ideal
situation, integer φ/(2π ) and adiabatic dot energy sweep, our
result simplifies to U G = cos θ γ2 + sin θ γ3, agreeing with
the original result found in Ref. [11].

It is straightforward to relate the relative phase between
the even and odd ground states to a parity measurement of
the fermion formed by the M12 pair using the dot D1. In
the measurement basis, we define f12 = 1/2(γ1 + iγ2) and
f34 = 1/2(γ3 + iγ4) with even {|0〉M12 |0〉M34 , |1〉M12 |1〉M34}
and odd {|0〉M12 |1〉M34 , |1〉M12 |0〉M34} occupation states. We
take as an example the ideal situation where θG/2 =
θ . Our proposed device can only initialize the fermion
M12 so we consider the initial state |0〉M12 |ψ〉M34 where
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|ψ〉M34 = α |0〉M34 + β |1〉M34 is a ground state. The final state
after the charge-transfer operation is found by applying U G to
the initial state,

U G |0〉M12 |ψ〉M34 = i cos θ |1〉M12 |ψ〉M34

+ sin θ |0〉M12 |ψ ′〉M34 , (7)

where |ψ ′〉M34 = α |1〉M34 + β |0〉M34. Using the dot D1 to
measure the occupation of the M12 fermion gives the result
f †
12 f12 = 0(1) with probability sin2 θ (cos2 θ ), which does not

depend on the initial state of the M34 pair. In this way, the
relative phase between the even and odd ground states could
be experimentally inferred from statistics.

Away from the degeneracy point, integer φ/(2π ), the even-
and odd-parity ground-states also acquire a relative dynamical
phase, θD, affecting the outcome of the final measurement. In
Sec. II D, we compute the relative dynamical phase for the
charge-transfer process we consider, see Eq. (51). The relative
dynamical phase, unlike its geometric counterpart, does not
switch sign when reversing the charge-transfer process and
its contribution accumulates with successive processes. This
makes a difference in the operations on the MBSs when filling
or emptying the dot. Including the relative dynamical phase to
Eq. (6), the operation depends on whether the dot is emptied
(−) or filled (+),

U = ei(θG∓θD )/2 f †
23 + e−i(θG∓θD )/2 f23

= cos

(
θG ∓ θD

2

)
γ2 + sin

(
θG ∓ θD

2

)
γ3. (8)

This is the full operator acting on the ground state of the sys-
tem after a charge-transfer process away from the degeneracy
point. The relative geometric and dynamical phases θG and θD

are given in Eqs. (5) and (51).

B. Protocol

A charge-transfer operation changes the parity of the su-
perconductor regardless of whether it is in its trivial or
topological phase. It is therefore insufficient to perform only
a single operation to distinguish between topologically triv-
ial and nontrivial subgap states. To probe the non-Abelian
properties associated with topologically nontrivial states, we
instead test the noncommutativity of operations executed on
the degenerate Majorana subspace. In our proposed exper-
iment, we compare the resulting states after executing two
sequences of operations. These sequences consist of the same
set of operations ordered in different ways, see Fig. 2. The dot
D1 is used to initialize and measure the occupation of the M12
Majorana pair. Applying the two sequences on the initial state
|0〉M12 |ψ〉M34 give the following final states,

Sequence A:

U U γ2 |0〉M12 |ψ〉M34 = i cos θD |1〉M12 |ψ〉M34

+ sin θD |0〉M12 |ψ ′〉M34 . (9)

Sequence B:

U γ2 U |0〉M12 |ψ〉M34 = i cos(θG + θD) |1〉M12 |ψ〉M34

+ sin(θG + θD) |0〉M12 |ψ ′〉M34 .

(10)

Here, we assume that the energy sweeps during the charge-
transfer processes are adiabatic. We also take the parameters
θ and φ to be the same for the operations U . The operation
γ2 performs a charge-transfer process where w4 is turned
off (corresponding to θ = 0), without inducing any relative
phase between the even and odd parity sectors. The order
of the first two operations in Eqs. (9) and (10) is switched
between sequence A and B. Due to the noncommutativity
of γ2 and U , each sequence has a different geometric phase.
This difference can be sampled statistically by measuring the
occupation of the M12 Majorana pair using the dot D1 [22].
In the final measurement, the probability of measuring the
state |0〉M12 is sin2(θD) and sin2(θG + θD) for the sequences
A and B. In the ideal situation, integer φ/(2π ), the relative
phases simplify to θD = 0 and θG = 2θ . The two sequences
are maximally distinguishable for θ = π/4, corresponding to
symmetric coupling w3 = w4. For these finely tuned values,
the final state is |1〉M12 and |0〉M12 for the sequences A and B.

The dynamical phase, θD, acquired during the operations
described in Eqs. (9) and (10) can overwhelm the Majorana
signature, coming from θG. This effect of θD can be mitigated
using a mechanism similar to the spin-echo used in spin qubits
[46]. In Majorana devices, parity echo or flux echo have been
proposed to increase the fidelity of certain operations [47,48].
We consider implementing a flux echo based on the following
observation: the relative dynamical phase in Eq. (51) depends
on the SC phase difference as θD ∝ sin(φ/2). Due to the 4π

periodicity, changing φ → φ + 2π , the sign of θD changes. In
this way, the dynamical phase contributions from subsequent
operations cancel out. Concretely, we propose to adjust the
SC phase difference by tuning the magnetic flux �2 and set
its value to φ when performing the first two charge-transfer
process in Fig. 2. Ideally, φ/(2π ) is integer, but presumably it
is difficult to assess its value in experiment and it may drift.
Then, for the last operation, the SC phase difference is tuned
φ → φ + 2π . Optimally, this cancels the dynamical phase in
the two U operations in sequences A and B. This is contrasted
by trivial states whose 2π -periodic spectrum will not see the
effect of the flux echo.

An advantage of this flux echo is that the required change
in the SC phase difference is independent of the (unknown)
value of φ. This is in contrast to proposals such as φ → −φ

which also flips the sign of the relative dynamical phase [48].
A byproduct of the change φ → φ + 2π is that the sign of
the relative geometric phase also changes, see Eq. (5). We
therefore define primed charge-transfer operators U ′ which
are equal to the original operators introduced in Eq. (8), re-
placing φ by φ + 2π , which leads to a sign flip of θG and
θD with respect to U . Including the flux echo as described in
sequence A and B gives the following.

Sequence A′,

U ′ U γ2 |0〉M12 |ψ〉M34 = i cos θG |1〉M12 |ψ〉M34

+ sin θG |0〉M12 |ψ ′〉M34 . (11)

Sequence B′,

U ′γ2U |0〉M12 |ψ〉M34 = i |1〉M12 |ψ〉M34 . (12)

Because of the 4π periodicity of the spectrum, we can design a
flux echo, equivalent to flipping the system parity. It increases
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the regime with maximal visibility due to the cancellation of
the dynamical phase. Also, the outcome becomes insensitive
to the operation timescale. In sequences A′ and B′, the final
state is |0〉M12 with probability sin2 θG and 0 respectively.
Maximal visibility thus occurs for θG = π/2.

To make a measure of the discernibility of the outcome of
the two sequences, we introduce the sequence visibility .
We define  as the difference in probability of measuring
the state |0〉M12 after the two sequences where unit visibility
corresponds to the ideal situation. Thus the sequence visibility
for sequences A and B is

 = sin2(θG + θD) − sin2(θD). (13)

For sequences A′ and B′, the visibility would simply be

′ = sin2(θG), (14)

due to the cancellation of dynamical phase. The sequence
visibility quantifies the degree to which the orders of oper-
ations can be distinguished to show the MBS non-Abelian
properties.

In a realistic experiment, tuning the additional SC phase
contribution for the flux echo is presumably simpler than
tuning φ to the degeneracy point, integer φ/(2π ). However,
inaccuracies and phase fluctuations can play a role, leading
to a nonzero dynamical phase. An additional complication is
that the relative dynamical phase is dependent on the exact
dynamics of the adiabatic transport. In the next section, we
approach the problem of minimizing the dynamical phase
contribution using APT to study fast adiabatic processes.

C. Deriving adiabatic perturbation theory

The adiabatic theorem predicts that a system initialized in
an eigenstate |n(t = 0)〉 of the initial Hamiltonian H (t = 0)
will follow the instantaneous eigenstate |n(t )〉 of the slowly
varying time-dependent Hamiltonian H (t ). The instantaneous
eigenstates fulfill the instantaneous Schrödinger equation,

H (t ) |n(t )〉 = En(t ) |n(t )〉 . (15)

Typically, the adiabatic approximation is valid for∣∣ 〈m(t )〉 dn(t )
dt

∣∣
|Em(t ) − En(t )| =

∣∣ 〈m(t )| dH (t )
dt |n(t )〉 ∣∣

(Em(t ) − En(t ))2
� 1, n �= m.

(16)
However, this is not always a sufficient condition to en-
sure adiabaticity [49]. Adiabatic perturbation theory (APT)
[28] attempts to determine the validity of the adiabatic ap-
proximation, describing nonadiabatic corrections. APT has
previously been used in a variety of situations, including
quench dynamics through a quantum critical point [50],
quasiadiabatic Monte Carlo algorithm [51], as well as correc-
tions to non-Abelian processes involving Majorana exchange
[33]. Additionally, APT has also inspired Floquet adiabatic
perturbation theory [52–54].

APT is based on a perturbative expansion in the small
parameter 1/T where T is the relevant timescale of the system
[28]. In our case, T is the time of a single charge-transfer oper-
ation. The APT expansion parameter 1/T is not dimensionless
as required by perturbation theories and should be compared
to a relevant energy scale. In our system, we have two energy

scales ε0 and w whose ratio x0 = ε0/(2w) we take to be large.
It is therefore not obvious how to a priori choose the proper
dimensionless expansion parameter.

In our study of APT, we simultaneously address this issue
and find fast adiabatic energy sweeps of the dot energy to
perform efficient charge-transfer operations. While our results
are specific to the charge-transfer processes, the framework
we use is completely general and may be applied to any
nondegenerate quantum system. Further work can presumably
extend the framework to degenerate systems as well [55]. We
begin our treatment by giving a brief overview of APT as
presented in Ref. [28]. Then, we apply it to the charge-transfer
process, addressing the issues due to the dimensionful expan-
sion parameter 1/T , and studying fast adiabatic paths.

For a nondegenerate N-level quantum system, APT is
based on the following ansatz for the time-evolved state [28]:

|�(s)〉 =
∞∑
p

1

T p

N−1∑
n,m=0

e−iT ωm (s)eiξm (s)b(p)
nm(s)|n(s)〉, (17)

which is given in terms of the dimensionless time s = t/T .
The quantities ωm(s) and ξm(s) are the dynamical and geo-
metric phases of the instantaneous state |m(s)〉,

ωm(s) =
∫ s

0
Em(s) ds′, (18)

ξm(s) = i
∫ s

0
〈m(s′)〉 dm(s′)

ds′ ds′. (19)

The expansion in Eq. (17) introduces complex, time-
dependent coefficients b(p)

nm(s) to be determined. Due to the
dimensionful expansion parameter 1/T , the coefficients also
carry dimensions such that b(p)

nm(s)/T p is dimensionless. The
ansatz in Eq. (17) recasts the problem of solving the time-
dependent Schrödinger equation,

i

T

d

ds
|�(s)〉 = H (s) |�(s)〉 , (20)

into computing the coefficients b(p)
nm(s) from linear, recursive

equations. The initial conditions for the coefficients are deter-
mined by the initial state. In the expansion, the zeroth-order
terms correspond to the adiabatic approximation at all times,

b(0)
nm(s) = 0, n �= m. (21)

It further implies that the initial state is described by the
adiabatic approximation, giving the initial constraint on the
p � 1 order coefficients:∑

m

b(p)
nm(0) = 0, p � 1. (22)

By inserting the ansatz in Eq. (17) into the time-dependent
Schrödinger equation (20) and taking the inner product with
〈m(s)| , we get

i
nm(s)b(p+1)
nm (s) + ḃ(p)

nm(s) + Wnm(s)b(p)
nm(s)

+
∑
k �=n

Mnk (s)b(p)
km (s) = 0. (23)
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The following quantities have been defined,


nm(s) = En(s) − Em(s), (24)

Mnm(s) = 〈n(s)〉 ṁ(s) = 〈n(s)| Ḣ (s) |m(s)〉

mn(s)

, (25)

Wnm(s) = Mnn(s) − Mmm(s), (26)

where the dot denotes time differentiation, d/ds. Equa-
tion (23) is the main result of Ref. [28] from which the
coefficients of order p + 1 can be recursively computed from
the p-order coefficients.

For illustration purposes, we compute the first-order cor-
rection in a two-level system initialized in the ground state.
Using the initial condition b(0)

00 (0) = 1, the first-order coeffi-
cients are

b(1)
01 (s) = 0, (27)

b(1)
10 (s) = iM10(s)


10(s)
, (28)

b(1)
00 (s) = i

∫ s

0

|M10(s′)|2

10(s′)

ds′, (29)

b(1)
11 (s) = − iM10(0)


10(0)
. (30)

These first-order coefficients will be the starting point of the
next section where we apply APT to the charge-transfer pro-
cess. We find the optimal adiabatic path and investigate what
conditions must be satisfied to be consistent with the adiabatic
approximation.

D. Applying adiabatic perturbation theory

We continue our study by applying APT to the two-level
system given in Eq. (2), which describes two MBSs coupled
to a quantum dot. We use Eqs. (24)–(26) to compute the rele-
vant quantities in the expansion 
10(s) = −
01(s), M10(s) =
−(M01(s))∗,W10(s) = −W01(s). At the degeneracy point
sin(2θ ) sin(φ/2) � 1, we find


10(s) = 2w
√

x(s)2 + 1, (31)

M10(s) = ẋ(s)

2(x(s)2 + 1)
, (32)

W10(s) = 0. (33)

We have expressed the above quantities in terms of the dimen-
sionless level energy x(s) = ε2(s)/(2w). Notice that M10(s) is
dimensionless and 
10(s) has dimension of energy.

To find fast adiabatic paths, we minimize the first-order
coefficient b(1)

00 (s), describing the leading correction to the
adiabatic evolution. That is, we minimize the integral

I (s) = 1

T

∫ s

0

|M10(s′)|2

10(s′)

ds′, (34)

= 1

8T w

∫ s

0

ẋ(s′)2

(x(s′)2 + 1)5/2
ds′. (35)

We choose to minimize this coefficient as it describes the
nonadiabatic corrections accumulated during the operation.
We could also have considered b(1)

10 (s) or b(1)
11 (s) which depend

on the instantaneous configuration. Before APT, a condition
corresponding to b(1)

10 (s) and Eq. (16) was heuristically chosen
to find the so-called local adiabatic evolution [29–31]. By
minimizing Eq. (35), we find the optimal adiabatic energy
sweep xopt(s). Later, we check whether the found adiabatic
path is consistent with APT, i.e., the magnitude of the coeffi-
cients decrease with the order p and do not grow with x0 � 1.

The integral in Eq. (35) is straightforward to minimize by
standard methods. Using the Beltrami identity, we find that
the optimal path fulfills

ẋopt(s) = ±�η[xopt(s)2 + 1]η/2 ∝ [
10(s)]η, (36)

where the ± sign in front corresponds to emptying or filling
the dot and �η > 0 is a constant dependent on the initial
conditions. The minimization of Eq. (35) leads to η = 5/2 as
the ideal adiabatic path. The further analysis below, however,
shows that η = 5/2 is not optimal as higher-order coefficients
are significant for this η value. In the following of the section,
we find the optimal η value in Eq. (36) consistent with APT
constraints. Eq. (36) is the simplest parametrization which
can be physically motivated: the speed of the dot level sweep
is proportional to the energy gap between the ground and
excited state raised to a power. The energy sweep and the
energy gap for η = 0, 1, 2 is displayed in the right panel of
Fig. 3. The case η = 0 corresponds to a linear energy sweep
of the quantum dot, independent from the gap to the excited
state. η > 0 describes an increasing energy speed of the dot
with the gap between the ground and the excited states. APT
also allows to describe more general ansatzes than the one in
Eq. (36).

The solution to Eq. (36) can be given in terms of the Gaus-
sian hypergeometric function 2F1(a, b; c; z), see Appendix B.
This enables us to compute the scaling of �η to leading order
in 1/x0 for x0 � 1,

�η ≈

⎧⎪⎪⎨
⎪⎪⎩

√
π�( η−1

2 )
�( η

2 ) for η > 1,

2 sinh[−1](x0) for η = 1,

2
1−η

x1−η

0 for η < 1.

(37)

We provide the complete analytic expressions in Appendix B.
Importantly, �η scales with x0 for η � 1. It can be problematic
for APT when evaluating Eq. (35) at s = 1 in the limit x0 � 1.
Using xopt(s) from Eq. (36),

I (1) = �η

8T w

√
π�

( 4−η

2

)
�

( 5−η

2

) , for η < 4. (38)

A necessary (but insufficient) condition for APT to hold
is I (1) � 1, or equivalently, T w � �η. It means that for
η < 1, T w � x1−η

0 , which thus requires very slow processes
to achieve adiabaticity. For η = 1, �η scales logarithmically
with x0. For η > 4, Eq. (35) scales as xη−4

0 . This analysis tells
us that for 1 < η < 4, we need T w � 1 to satisfy I (1) � 1.
Outside this range, T scales with x0, meaning that the total
time for to complete the operation is sensitive to the large
energy ε0. We may also check that the other first-order cor-
rections are small,

M10(s)

T 
10(s)
= �η

4T w
(xopt(s)2 + 1)

η−3
2 � 1, (39)
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FIG. 3. Characteristics of a single charge-transfer process at the degeneracy point (integer φ/(2π )) for different values of η and x0 = 100.
(Left) Operation timescale T (relative to w) as a function of η for fixed dimensionless expansion parameter �η/(T w) = 0.5, see Eqs. (49) and
(B4). The panel shows an optimal region for 1 < η � 2 with an optimal point η = 2, where the adiabatic timescale is the minimal. Colored
markers at η = 0, 1, 2 are reference for the middle and right panels. (Middle) Dot occupation 〈d†

2 d2〉 = ∂E−/∂ε2 as a function of dimensionless
time s = t/T . For the optimal path (η = 2), charge is smoothly transferred during the entire process. For the linear sweep (η = 0), charge is
transferred only near the half-way point of the process (s ≈ 1/2), necessitating a longer operation time to ensure adiabatic charge-transfer.
(Right) Energy sweeps ε2(s) (solid lines) and excitation energies 
10(s) (dashed lines). For the optimal path (η = 2), most of the operation
time is spend where the gap is smallest to avoid nonadiabatic errors. For the linear sweep (η = 0), most of the operation time is spend where
the gap is large, leading to a large timescale of the process.

which decreases with x0 for η < 3 and grows as xη−3
0 for

η > 3, introducing a further restriction to APT validity: η < 3.
In summary, this preliminary analysis suggests that the first-
order corrections are small for T w � 1 when 1 < η < 3. If
η is chosen outside this range, T grows with x0 � 1. In the
following, we show that it is insufficient to demand that the
first-order corrections are small for APT to be applicable. This
was not mentioned in Ref. [28], but the sufficient conditions
are nevertheless contained in APT. Like in the above analy-
sis, we find that T w � 1 is sufficient but only in the range
1 < η � 2. Outside of this range, large x0 values can make
higher-order contributions more significant than the lowest
ones in the expansion in Eq. (17). As exemplified in Eqs. (38)
and (39), this is due to the w and ε0 dependence of the dimen-
sionful coefficients resulting from the dimensionful expansion
coefficient. To resolve this, we express the coefficients in (17)
of order p + 1 in terms of p-order coefficients,

b(p+1)
nm (s) = i


nm(s)

d

ds
b(p)

nm(s) (n �= m)

+
∑
k �=n

iMnk (s)


nm(s)
b(p)

km (s), (40)

b(p+1)
nn (s) =

∑
k �=n

∫ s

0

iMnk (s′)

nk (s′)

d

ds′ b
(p)
kn (s′) ds′ (n = m)

+
∑
k �=n
l �=k

∫ s

0

iMnk (s′)Mkl (s′)

nk (s′)

b(p)
ln (s′) ds′

−
∑
k �=n

b(p+1)
nk (0). (41)

We demand that the sum of the magnitude of the coefficients
of order p + 1 should be smaller than the corresponding sum

of order p,

∑
n

∑
m

∣∣b(p+1)
nm (s)

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm(s)

∣∣
T p

. (42)

In Appendix C, we insert Eqs. (40) and (41) into Eq. (42) and
get the following adiabatic convergence criteria:

�η(xopt(s)2 + 1)
η−1

2

T 
10(s)
� 1, (43)

|M10(s)|
T 
10(s)

� 1, (44)∫ s

0
�η(xopt(s

′)2 + 1)
η−1

2
|M10(s′)|
T 
10(s′)

ds′ � 1, (45)∫ s

0

|M10(s)|2
T 
10(s)

ds′ � 1. (46)

Notice that Eq. (44) is identical to the usual adiabatic condi-
tion in Eq. (16). Furthermore, Eqs. (44) and (46) correspond to
the conditions found in the first-order coefficients in Eqs. (38)
and (39). Our extended analysis in Appendix C have thus
provided two additional conditions to satisfy adiabaticity,
Eqs. (43) and (45). The additional conditions come from terms
in Eqs. (40) and (41) which do not appear when computing
the first-order coefficients but become relevant in higher-order
ones.

In the regime |xopt(s)| ∼ 1, the conditions (43)–(46) result
in �η/(T w) � 1, which gives the lower bound η > 1 as
discussed above. For large |xopt(s)|, the convergence of the
integral in Eq. (45) gives the upper bound η < 3 which was
the same as in the conditions (39) and (44). Importantly, the
first condition (43) gives a further restriction for large |xopt(s)|,

�η

T w
xη−2

0 � 1. (47)

This is the final restriction on η and gets us the bound for
optimal operation time T w � 1,

1 < η � 2. (48)
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We note that both the linear energy sweep (η = 0) and the
best adiabatic path (η = 5/2) predicted by the first-order cor-
rection in Eq. (35) lie outside the optimal range.

To make an unified statement about the proper dimension-
less expansion parameter, we define a quantity closely related
to �η, including the scaling for η > 2,

�η =
{
�ηxη−2

0 for η > 2,

�η for η � 2.
(49)

We thus propose �η/(T w) as the proper dimensionless ex-
pansion parameter, fulfilling �η/(T w) � 1 for APT to hold.
This expansion parameter depends in a nontrivial way on w

and ε0 and the chosen path parametrized by η.
APT predicts that the fastest adiabatic path is the solution

to Eq. (36) for η = 2, which minimizes the dimensionless
expansion parameter �η=2/(T w) = π/(T w), see left panel
of Fig. 3. For η = 2, the solution to Eq. (36) has a particularly
simple expression given by

xopt(s) = ± tan[arctan(x0)(2s − 1)]. (50)

This result realizes the so-called local adiabatic evolution of
the system [29–31]. In Fig. 3, the optimal sweep (η = 2) is
compared to a linear sweep (η = 0). The ratio �η=0/�η=2 ≈
2x0/π quantifies how much faster the optimal sweep of xopt(s)
can be with respect to a linear one. This means that, for the
same parameters, the ideal sweep is ≈64 times faster than
the linear one for x0 = 100. The intuition is that the charge
is exchanged at a nearly constant rate for η = 2, see middle
panel of Fig. 3. However, the system spends most of the
time in a region where no charge is transferred for η = 0.
Finally, using Eq. (36), we compute the relative dynamical
phase considered in Sec. II A to first order in sin(2θ ) sin(φ/2)
and in the limit x0 � 1,

θD = −T
∫ 1

0
(E+

− (s) − E−
− (s))ds,

= − sin(2θ ) sin(φ/2)

√
π�

(
η

2

)
�

(
η+1

2

) T w

�η

. (51)

This equation describes a decreasing undesired dynamical
phase when η increases. This further motivates the choice
η = 2 for the charge-transfer process.

We conclude this section by outlining the presented frame-
work for finding fast adiabatic paths while checking adiabatic
conditions. The method can be broken down into the follow-
ing five steps:

(1) Write down the first-order corrections using APT,
Eqs. (27)–(30).

(2) From the first-order coefficients, choose a relevant
functional, Eqs. (34) and (35), and minimize it.

(3) Extend the family of considered paths by parametrizing
the minimizing differential equation, Eq. (36).

(4) Check the adiabatic conditions, constraining the param-
eters, Eqs. (37) and (40)–(48).

(5) Choose the set of parameters that minimizes the
proper dimensionless expansion parameter, Eq. (49). The path
obtained through this procedure, Eq. (50), is the optimal adia-
batic one for the family considered in step 3.

This procedure thus provides an optimal adiabatic path,
taking into account nonadiabatic corrections. The framework
is general and may be used to find fast adiabatic paths in other
systems. Future efforts may also expand the framework to
include degenerate quantum systems [55].

In general, higher time-derivatives of the Hamiltonian at
s = 0 and s = 1 can lead to additional nonadiabatic contri-
butions not captured by APT. We have not considered these
effects as they appear to play a minor role due to the large
initial and final energy gaps between the ground and excited
states. In the case where these gaps are comparable to other
energy scales in the system, the contributions from the higher
time derivatives of the Hamiltonian can have some influence
in the result. In this case, boundary cancellation techniques
can be used to reduce such contributions [56]. Finally, we
would like to mention the existence of methods exploiting
symmetry to improve the error scaling [44,57]. It may further
reduce the timescale of the charge-transfer process.

III. NUMERICAL RESULTS

In this section, we test the predictions of APT numeri-
cally. We show that the dimensionless expansion parameter
�η/(T w) describes the adiabatic condition. We pick an opti-
mal path based on the APT prediction, which minimizes the
operation timescale and the nonadiabatic errors. We simulate
numerically the protocol with and without the flux echo. We
find that the echo protocol substantially extends the parameter
space where MBS non-Abelian properties can be shown using
charge-transfer operations.

In the left panel of Fig. 4, we display the probability of
transitioning to the excited state, �, as a function of η and
the inverse operation time, (T w)−1. We show results after a
single charge-transfer operation in the case where the even and
odd parity sectors are degenerate. As expected, the transition
probability to the excited state decreases when the operation
time increases. The white line is a contour of the dimen-
sionless expansion parameter, �η/(T w) = 2. As suggested
from APT, the dimensionless expansion parameter separates
well the adiabatic (suppressed � region below the line) and
the nonadiabatic regimes (larger � region above the line).
APT agrees quantitatively with the numerical calculations for
η � 2. For η > 2, the contour avoids the regions of nonzero
transition probability in the lower right corner. In this region
outside of the APT regime, the system behavior is nonmono-
tonic, as shown by the local � maxima as a function of the
operation time. In Appendix C, we further discuss the APT
prediction at η > 2.

The solid cyan line, given by �η/(T w) = 0.5, lies in
the adiabatic region, where charge-transfer operations can be
done with high accuracy. In the right panel of Fig. 4, we
show the relative phase between the even and odd ground
states after a single charge transfer operation following the
cyan line in the left panel for φ = 0.05π . For charge-transfer
operations, small deviations from the ideal conditions can
lead to a significant relative dynamical phase as illustrated by
the difference between the dashed (ideal result) and the solid
lines. The agreement between the numerical result and APT is
good, except close to η = 0. This is due to the approximation
x0 → ∞ when computing θD in Eq. (51).
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FIG. 4. Numerical results for a charge-transfer process with θ = π/4 and x0 = 100. (Left) Color map of the transition probability after
a single charge-transfer operation at the degeneracy point (φ = 0) as a function of η and the inverse time (T w)−1. The two lines represent
the prediction from APT for �η/(T w) = 2 (dashed white) and �η/(T w) = 0.5 (solid cyan). For η � 2, the dashed white line separates the
adiabatic region (dark blue) from the nonadiabatic region (green and yellow). The solid cyan line lies well in the adiabatic region and is used
for reference to the right panel. (Right) Plot of the relative phase for a slight detuning φ = 0.05π from the ideal phase (φ = 0) following the
cut at the solid cyan line in the left panel (�η/(T w) = 0.5). We display the numerical result (cyan), theoretical prediction (orange) and the
geometric phase (dashed) for reference to the ideal situation.

Combining the results obtained by the numerically
simulated charge-transfer operations, we conclude that
�η/(T w) � 0.5 and η = 2 are the best values, as suggested
by APT. As for realistic parameters, we assume that the
induced superconducting gap is 
SC = 0.1 meV. To avoid
transitioning to the continuum of states, we take ε0 =
0.5 
SC = 50 μeV. Using a value of x0 = ε0/(2w) = 100,
we get w = 0.25 μeV and T ≈ 17 ns. It is thus possible
to perform fast adiabatic charge-transfer operations on the
∼10 ns scale. The transition probability for these parameters
is � < 10−5. Using the same parameters, but with a linear
sweep (η = 0), the corresponding timescale is approximately
1 μs with similar transition probability. Previous experiments
have shown that parity lifetime in trivial superconducting is-
lands are ∼1 μs [58], illustrating that it might not be possible
to perform accurate operations using a linear sweep.

Using the optimal path found, �η/(T w) = 0.5 and η = 2,
we simulate the protocols described in Sec. II B to demon-
strate MBS non-Abelian properties. The results are shown in
Fig. 5. Here we make color maps of the sequence visibility
 as a function of φ and the coupling asymmetry cos2 θ .
As explained around Eq. (13),  measures how well the se-
quences in Eqs. (9)–(12) can be distinguished by the measured
parity of the M12 fermion. It thus quantifies the confidence of
demonstrating non-Abelian properties. Here,  = ±1 means
that the parity of M12 fermion can distinguish between the
two sets of operations, while the protocol fails for  = 0.

In the top left panel of Fig. 5, we display numerical re-
sults for the visibility for the protocol without the echo. Note
that the optimal parameter values θ = π/4 and φ = 0 lie at
the central yellow sliver with maximal visibility. The narrow
width (≈0.1π ) of this high-visibility region is due to the con-
tribution of the dynamical phase and illustrates the importance
of accurately tuning φ. It appears less important to tune the
coupling asymmetry θ . In Appendix D, we display the se-
quence visibility for different T values to show that the width

of the high-visibility regions decreases as T is increased. The
top left panel should be compared to the numerical results
for the echo protocol displayed in the top right panel. Here
the central yellow region is significantly extended due to the
cancellation of the dynamical phase, making the experiment
rather insensitive to φ. The outcome is also insensitive to
T , as shown in Appendix D. The echo protocol, however,
depends on tuning φ → φ + δφ with δφ = 2π ideally and
is thus robust to drifts in φ. In Appendix E, we offset the
parameter δφ and find that the echo protocol is robust up to
deviation of ∼0.2π in δφ. For completeness, we show the
probability to end up in the state |0〉M12 after each sequence
in Appendix F.

In the bottom panels of Fig. 5, we display the visibility
obtained from APT, in good agreement with the numerical
results shown in the top row panels. However, there is a
discrepancy in the region sin(2θ ) sin(φ/2) ∼ 1. The disagree-
ment between theory and the numerical results is due to the
closing of the gap between the ground and the excited states as
w

√
1 − ρ sin(2θ ) sin(φ/2), Eq. (3). This results in transitions

and large nonadiabatic errors to the phase in that region.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we have proposed a minimal experiment
for demonstrating Majorana non-Abelian properties. The ex-
periment requires three Majorana bound states (MBSs), the
minimal number to measure non-Abelian signatures. Our
proposal is based on charge-transfer operations between a
quantum dot and two MBSs. Another quantum dot is used
for the initialization and readout. We also devise a minimal
protocol relying on two sequences of three adiabatic charge-
transfer operations. The final result depends on the order of
operations due to Majorana non-Abelian properties.

We study the robustness of the protocol as a function of the
model parameters, taking into account nonadiabatic effects.
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numerical simulations of the protocol proposed in Sec. II B (top panels) and APT predictions (bottom panels). We show results with (right
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To this end, we develop a framework based on adiabatic
perturbation theory (APT) for finding fast adiabatic paths in
nondegenerate quantum systems. This framework describes
the optimal adiabatic energy sweep for the charge-transfer
operation. We find that the experiment is sensitive to the
SC phase difference, φ. Small deviations, ∼0.05π from the
degeneracy point (φ = 0) lead to a substantial dynamical
phase that can dominate over the non-Abelian signal. To
solve this issue, we propose a flux echo protocol that sig-
nificantly reduces the sensitivity on φ. The flux echo relies
on increasing the superconducting phase difference by 2π

between subsequent operations, exploiting the 4π periodicity
of the topological state. The tolerance on the additional phase
is ∼0.2π , while the outcome of the protocol is insensitive to
the operation time and robust to drifts in φ.

Since our proposal relies on parameter space operations
rather than real space braiding, it is relevant to discuss the
uniqueness of the MBS signature in the proposed experi-
ment. A system hosting trivial subgap states may also acquire
geometric and dynamical phases during charge-transfer op-
erations. As a result, charge-transfer operations might not
commute, leading to potentially large  values for some
parameters. However, the flux echo, exploiting MBSs 4π -
periodicity, leads to a robust non-Abelian signal over a wide

range of parameters. This is in contrast to trivial bound states,
which are 2π -periodic, where large  values only appear at
fine-tuned situations due to the dynamical phase. Other than
trivial states, the experiment might also suffer from various
sources of error that can lead to a reduction of the non-Abelian
signal. First, fluctuations in the superconducting phase dif-
ference will introduce a random phase. However, the flux
echo protocol reduces their effect if the operations are faster
than the timescale of phase fluctuation. Second, the coupling
between MBSs will split the ground state degeneracy intro-
ducing a constraint on the upper limit for the charge-transfer
operations. However, as shown in Ref. [12], this effect is likely
not a limiting factor. Additionally, quasiparticle poisoning is
detrimental to the experiment and its timescale should there-
fore be longer than that of the experiment. Finally, nonzero
temperature and electric fluctuations in the gates will reduce
the non-Abelian signal. In these cases, the tunnel coupling
strength should be larger than the temperature and electric
variations. Also, the optimal path found, minimizing the oper-
ation timescale reduces their impact.
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APPENDIX A: THE GEOMETRIC PHASE

There is a technical subtlety when computing the relative
geometric phase in Eq. (5): a single charge-transfer process
does not constitute a loop in parameter space. It makes diffi-
cult to determine the acquired geometrical phase. We instead
compare the geometric phases collected by the even and odd
ground states during a charge-transfer process. However, the
even and odd parity ground states live in different Hilbert
spaces. Since there is a clear one-to-one mapping between
these two spaces, we treat the ground state vectors as living
in the same Hilbert space.

The gauge choice in Eq. (4) is such that for each parity,
there is no mathematical contribution to the geometric phase
when changing ε2 : ε0 → −ε0 in time T ,

i
∫ T

0
dt (ψρ

−)† dψ
ρ
−

dt
= 0. (A1)

This is easy to see as the ground states have the form (ψρ
−)† =

(eiξ cos(λ(t )), sin(λ(t ))). The gauge choice in Eq. (4), how-
ever, is different for the two parity sectors and this gives a
relative geometric phase between the even and odd parity
ground states. To compute this relative geometric phase con-
tribution, we evaluate the phase difference between the ground

states using arctan[ �[(ψ+
− )†· ψ−

− ]
�[(ψ+

− )†· ψ−
− ]

] and compare the results at
initial and final values of the level energy. This calculation
leads to the result in Eq. (5).

The relative geometric phase can also be understood as a
proper loop in parameter space by noticing that the even and
odd parity Hamiltonian and eigenvectors can be transformed
into each other by θ → −θ . We can thus compute the relative
geometric phase by considering the loop ε0 → −ε0, θ → −θ ,
−ε0 → ε0, −θ → θ . This can be understood as performing a
charge-transfer operation in the even parity state, inverting θ

to transform it to the odd parity state. We then perform another
operation and invert again the sign of θ to return to the even
subspace. The geometric phase due to this loop corresponds
to the relative geometric phase acquired between the even
and odd parity ground states due to a single charge-transfer
process. There is no contribution to the geometric phase for
large negative level energies as the ground states become
(ψρ

−)† = (0,−1) in this limit. At the other side of the loop,
where the level energy has a large positive value, the ground
states are (ψρ

−)† = (wρ/|wρ |, 0). Using the gauge in Eq. (4)
no geometrical phase is acquired by the system when varying
ε2. The relative geometric phase is given by

θG = i
∫ θ

−θ

dθ ′ (ψ−
− )† dψ−

−
dθ ′ , (A2)

in the limit of large positive level energies. This approach pro-
vides an alternative picture of how to calculate the geometric
phase, but mathematically it is tedious to carry out. Perform-
ing the integration in Eq. (A2) and evoking the identity

2 arctan(tan(x) cos(y)) = arctan

(
tan x

cos y
− tan y

cos x

)

+ arctan

(
tan x

cos y
+ tan y

cos x

)
, (A3)

we arrive at Eq. (5).

APPENDIX B: SOLUTION IN TERMS OF THE GAUSSIAN
HYPERGEOMETRIC FUNCTION

For a symmetric charge-transfer following:

ẋopt(s) = ±�η[xopt(s)2 + 1]η/2, (B1)

the solution is

±�η(s − 1/2) = xopt(s) 2F1

(
1

2
,
η

2
;

3

2
; −xopt(s)2

)
, (B2)

where the Gaussian hypergeometric function is defined by

2F1(a, b; c; z)

= �(c)

�(a)�(b)

∞∑
n

�(a + n)�(b + n)

�(c + n)n!
zn, |z| < 1. (B3)

The initial and final conditions determine �η,

�η = 2x0 2F1

(
1

2
,
η

2
;

3

2
; −x2

0

)
. (B4)

To get the approximation for large x0 in Eq. (37), we use the
transformation rule

2F1(a, b; c; z) (B5)

= �(c)�(b − a)

�(b)�(c − a)
(−z)−a

2F1(a, a − c + 1; a − b + 1; 1/z)

(B6)

+ (a ↔ b), for| arg(−z)| < π. (B7)

APPENDIX C: DERIVING ADIABATIC CONDITIONS

In this section, we derive the adiabatic conditions,
Eqs. (43)–(46) in the main text, starting from Eqs. (40)–(42).
We omit in the following the time variable for simplicity.

In Eq. (42), we split the left-hand side term into contribu-
tions from n = m and n �= m,

∑
n

∑
m

∣∣b(p+1)
nm

∣∣
T p+1

=
∑

n

(∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

+
∣∣b(p+1)

nn

∣∣
T p+1

)
. (C1)

The condition (42) is satisfied if each term is individually
smaller than its right-hand side,

∑
n

∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C2)

∑
n

∣∣b(p+1)
nn

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

. (C3)
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We study these two cases separately. We begin with the n �= m
case, substituting Eq. (40) in Eq. (C2)

∑
n

∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

=
∑

n

∑
m �=n

∣∣∣∣∣ i

T 
nm

d

ds

b(p)
nm

T p
+

∑
k �=n

iMnk

T 
nm

b(p)
km

T p

∣∣∣∣∣ (C4)

�
∑

n

∑
m �=n

(
1

T |
nm|
∣∣∣∣ d

ds

b(p)
nm

T p

∣∣∣∣ +
∑
k �=n

|Mnk|
T |
nm|

∣∣b(p)
km

∣∣
T p

)
.

(C5)

Again, the condition (42) is satisfied if each term fulfills

∑
n

∑
m �=n

1

T |
nm|
∣∣∣∣ d

ds

b(p)
nm

T p

∣∣∣∣ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C6)

∑
n

∑
m

( ∑
k �=n,m

|Mnk|
T |
mk|

)∣∣b(p)
nm

∣∣
T p

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C7)

where we have relabelled the sums. Similarly, by substituting
Eq. (41) to the left-hand side of Eq. (C3) and considering each
term separately, we get

∑
n

∑
m �=n

∫ s

0

|Mnm|
T |
nm|

∣∣∣∣ d

ds′ b
(p)
nm

∣∣∣∣ ds′ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C8)

∑
n

∑
m

∫ s

0

∣∣∣∣∣
∑

k �=n,m

MmkMkn

T 
mk

∣∣∣∣∣
∣∣b(p)

nm

∣∣
T p

ds′ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

,

(C9)∑
n

∑
m �=n

∣∣b(p+1)
nm (0)

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

. (C10)

Note that the last of these conditions is included in Eq. (C2).
We first focus on Eqs. (C7) and (C9), which are the sim-

plest inequalities. They are satisfied for∑
k �=n,m

|Mnk|
T |
mk| � 1, (C11)

∫ s

0

∣∣∣∣∣
∑

k �=n,m

MmkMkn

T 
mk

∣∣∣∣∣ ds′ � 1. (C12)

For a two level system as the one considered in Sec. II D,
Eqs. (C11) and (C12) results in the conditions in Eqs. (44)
and (46).

To continue with Eqs. (C6) and (C8), we need to under-
stand how db(p)

nm/ds relates to b(p)
nm for n �= m. For that, we

restrict ourselves to the example of a two level system, Eq. (2).
In the following, we make an argument based on induction for
the approximation∣∣∣∣ d

ds
b(p)

nm

∣∣∣∣ ∼ �η(x2 + 1)
η−1

2
∣∣b(p)

nm

∣∣ n �= m. (C13)

The argument relies on the basic observation that all operators

10, M10 and d/ds = ẋ (∂

√
x2 + 1/∂x) ∂/∂

√
x2 + 1, used to

compute the coefficients b(p)
nm, are polynomial in

√
x2 + 1 with

rational exponents, see Eqs. (31), (32), and (36). We begin the
argument by checking that Eq. (C13) holds for the first-order
coefficients found in Sec. II C. Taking the derivative of the
only n �= m, nonconstant, first-order coefficient, we get∣∣∣∣ d

ds
b(1)

10

∣∣∣∣ = �η(x2 + 1)η/2

∣∣∣∣∂
√

x2 + 1

∂x

∣∣∣∣
∣∣∣∣∂ (M10/
10)

∂
√

x2 + 1

∣∣∣∣. (C14)

Since 
10 and M10 are polynomials in
√

x2 + 1, we make the
assertion ∣∣∣∣∂ (M10/
10)

∂
√

x2 + 1

∣∣∣∣ = |3 − η|
∣∣∣∣M10/
10√

x2 + 1

∣∣∣∣ (C15)

∼
∣∣∣∣M10/
10√

x2 + 1

∣∣∣∣ = |b(1)
10 |√

x2 + 1
. (C16)

Combining this with Eq. (C14) and dropping |∂√
x2 + 1/∂x|

as it is unimportant, we conclude that b(1)
10 fulfills Eq. (C13).

To complete the induction, we show that if the coefficients of
order p fulfill Eq. (C13), then also the p + 1 order coefficients
should fulfill Eq. (C13). We rewrite Eq. (40) using the hypoth-
esis in Eq. (C13),

b(p+1)
nm ∼ i�η(x2 + 1)

η−1
2


nm
b(p)

nm(s)

+
∑

k �=n,m

iMnk (s)


nm(s)
b(p)

km + iMnm(s)


nm(s)
b(p)

mm. (C17)

This equation consists of polynomials in
√

x2 + 1 and n �=
m coefficients of order p, which by the hypothesis fulfills
Eq. (C13). Therefore also the coefficients of order p + 1 obeys
Eq. (C13). The only exception in Eq. (C17) is the last term
with the n = m coefficient. However, for large |x|, this coeffi-
cient is almost constant as the tails of the integrals are very
close to zero and it is unimportant. For |x| ∼ 1, all of the
p-order coefficients are of the same magnitude, (�η/w)p, and
thus the coefficient of order p + 1 still fulfills Eq. (C13). This
completes the argument.

A heuristic argument that leads to the same scaling behav-
ior for large x is that whatever d/ds = ẋ d/dx acts on, gets
multiplied by ẋ while a power of x gets subtracted from the
differentiation d/dx.

We may now use Eq. (C13) to rewrite Eqs. (C6) and (C8)
and extract the corresponding adiabatic conditions:

�η(x2 + 1)
η−1

2

T |
nm| � 1 n �= m, (C18)∫ s

0
�η(x2 + 1)

η−1
2

|Mnm|
T |
nm| ds′ � 1 n �= m. (C19)

That is, if Eqs. (C18) and (C19) are satisfied, then also
Eqs. (C6) and (C8) are satisfied. By inserting 
10 and M10

we arrive at the conditions in Eqs. (43) and (45).
As a final remark, we discuss the APT prediction for

η > 2. The conditions in Eqs. (43) and (C18), that gives the
APT prediction for η > 2, rely on Eq. (C13) whose proof is
somewhat heuristic. The APT prediction for η > 2 is there-
fore approximated but still required to achieve adiabaticity as
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FIG. 6. Sequence visibility  obtained from numerical simulation with x0 = 100 and η = 2. The dimensionless expansion parameter is
varied from top to bottom: �η/(T w) = 0.25, 0.5, and 1.

shown in Fig. 4. The conditions in Eqs. (43) and (C18) are
important to ensure that higher-order contributions in the adi-
abatic expansion do not grow with the order. These conditions
do not appear in the first-order coefficients. It may therefore
be possible to relax the requirement in Eq. (42), replacing the
� with <, while still requiring that the first-order coefficients
are small. Convergence of the adiabatic expansion in Eq. (17)
is then ensured by the geometric series. This would relax
the condition for adiabaticity in the region 2 < η � 3 from
�η/(T w) � xη−2

0 to �η/(T w) < xη−2
0 . The other conditions

in Eqs. (44) and (46) would still be in effect.

APPENDIX D: SEQUENCE VISIBILITY
AT DIFFERENT TIMESCALES

In Fig. 6, we display the sequence visibility from numerical
simulation for different values of the dimensionless expansion
parameter. We show results for decreasing T values from
top to bottom. The panels in the left column show the pro-
tocol without the flux echo. Since this protocol is sensitive
to the dynamical phase, we observe an increased number
of fringes in the top left panel where the operation time is
slower. In the bottom left panel, we see fewer fringes but also
distortions due to nonadiabatic errors. In the right column,
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FIG. 7. Sequence visibility  obtained from numerical simulation with parameters x0 = 100, �η/(T w) = 0.5, and η = 2 for the echo
protocol. The additional phase δφ used is varied from top left to bottom right with increasing offset from the ideal point: δφ = 2π, 1.05 ×
(2π ), 1.1 × (2π ), and 1.15 × (2π ).

we show results for the flux echo protocol that cancels out
the contribution from the dynamical phase. For this rea-
son, we only see the contribution from the geometric phase
which is insensitive to the time of operation as long as it is
adiabatic.

The number of fringes ν in the left column panels can be
theoretically estimated. For symmetric couplings, θ = π/4,
the sequence visibility simply becomes

 = cos(2 θD) (D1)

= cos

(
2
√

π�
(

η

2

)
�

(
η+1

2

) T w

�η

sin(φ/2)

)
. (D2)

The number of fringes can then be counted by the number
of times  is ±1. In the region −π < φ < π , the number of
fringes is well-approximated by

ν = 2

⌊
2 �

(
η

2

)
√

π�
(

η+1
2

) T w

�η

⌋
+ 1, (D3)

for the optimal path found in this paper. Here, �·� is the floor
function. In agreement with the left column in Fig. 6, Eq. (D3)
predicts 11, 5, and 3 fringes for the top, middle, and bottom
panels.

APPENDIX E: ROBUSTNESS OF FLUX ECHO

In Fig. 7, we display the sequence visibility  for the
echo protocol at different values of the additional SC phase
φ → φ + δφ. In the top left panel, we show the ideal situation
of δφ = 2π . In top right and bottom panels, we tune slightly
away from the optimal point (δφ = 2π ) by 5%, 10%, and
15%. A 5% offset, as shown in the top right panel, still results
in a large region in parameter space with good visibility. At
a 10% offset, as shown in the bottom left panel, the region
size and visibility is slightly reduced and shifted to nonzero
coupling asymmetry. However, even for 10% error in δφ, a
high visibility can be reached by tuning θ , which gives the
ratio between w3 and w4. At 15% offset, as shown in the
bottom right panel, the dynamical phase plays a significant
role and reduces the visibility.

APPENDIX F: MEASUREMENT SIGNATURE
FOR EACH SEQUENCE

In Fig. 8, we resolve the sequence visibility into the specific
probabilities after each sequence. We display the probability κ

to end up in the |0〉M12 state. In the top panels, we show κ for
sequences A and B. Besides weak nonadiabatic corrections,
sequence A only gets contributions from the dynamical phase
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FIG. 8. The probability of finding the state |0〉M12 after each sequence. Numerical results with parameters η = 2, �η/(T w) = 0.5, and
x0 = 100.

and sequence B gets contributions from both geometric and
dynamical phases. For sequences A′ and B′, where the flux
echo is in effect, there is no contribution from the dynamical

phase. In this case, only sequence A′ gets a contribution from
the geometric phase, this is the reason why κ remains zero
after sequence B′.
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Fast, high fidelity control and readout of protected superconducting qubits are fundamentally
challenging due to their inherent insensitivity. We propose a flux qubit variation which enjoys a
tunable level of protection against relaxation to resolve this outstanding issue. Our qubit design,
the double-shunted flux qubit (DSFQ), realizes a generic double-well potential through its three
junction ring geometry. One of the junctions is tunable, making it possible to control the barrier
height and thus the level of protection. We analyze single- and two-qubit gate operations that rely
on lowering the barrier. We show that this is a viable method that results in high fidelity gates
as the non-computational states are not occupied during operations. Further, we show how the
effective coupling to a readout resonator can be controlled by adjusting the externally applied flux
while the DSFQ is protected from decaying into the readout resonator. Finally, we also study a
double-loop gradiometric version of the DSFQ which is exponentially insensitive to variations in the
global magnetic field, even when the loop areas are non-identical.

I. INTRODUCTION

Qubits based on superconducting junctions form a
promising platform for quantum computation (QC) ar-
chitectures [1–3]. In order to scale up fault-tolerant QC,
it is crucial that gate and readout infidelities must be
lower than the threshold for quantum error correction
(QEC), which for the surface code is about 1% [4, 5].
A number of experiments using transmon-based multi-
qubit chips have demonstrated surface code QEC close
to the threshold [6–8].

To go beyond the capabilities of contemporary
transmon-based architectures, a number of T1-protected
qubit designs have appeared [2, 9–12]. The general
idea of a T1-protected superconducting qubit is that the
computational states are localized in different quantum
wells, leading to exponentially suppressed noise-induced
transitions, enhancing the relaxation time significantly
[2]. Additionally, the double-well potential realizes low-
frequency qubits resulting in less sensitivity to dielectric
loss and Ohmic noise channels [13, 14].

In the flux qubit modality, this kind of double-well pro-
tection can be reached by biasing the superconducting
loop with an external flux close to half a flux quantum
[15, 16]. Here, the low-energy computational states cor-
responds to supercurrent flowing in opposite directions
in the loop. At a bias of half a flux quantum, the fluxon
states are degenerate up to the exponentially small split-
ting due to overlap of the evanescent part of the wave
functions across the barrier separating the two wells. Be-
low we refer to this small splitting as the wave-function
overlap. The fluxon states are sensitive to the external
magnetic flux as it picks out a preferred current direc-
tion and determines the energy splitting. The strong
flux dependence leads to a linear sensitivity of the qubit
frequency to flux noise, causing dephasing of the qubit
and limiting coherence [10, 17].

Despite the enhanced relaxation time of low-frequency

qubits (e.g. heavy fluxonium [10, 18], 0− π qubit [9, 19],
etc.), a general disadvantage is that gate times typically
also increase due to the vanishing wave-function overlap
of the computational states. One way of circumventing
this limitation is to use higher lying non-computational
states [2, 10, 19]. In this manner, single and two qubit
gates can be activated through multi-tone driving [20].
The downside of such an approach, however, is that the
momentary occupancy of the non-computational states
leads to increased decoherence, limiting gate fidelities
[21]. Another possibility is to rely on diabatic single qubit
control [18].

In this paper, we explore an alternative approach to
perform gates on T1-protected qubits that rely on adia-
batically adjusting the level of protection by lowering the
barrier between the two wells. We propose a qubit de-
sign, the double-shunted flux qubit (DSFQ), which aims
to be a relatively simple modification of a flux qubit with
exponentially tunable wave-function overlap. The DSFQ
is related to the persistent current flux qubit (PCFQ)
[15, 17] and the capacitively shunted flux qubit (CSFQ)
[22] as they all share the same circuit layout of three
Josephson junctions (JJs) connected in a loop, see Fig.
1. While the PCFQ realizes a large EJ/EC via three
large junctions, the CSFQ uses smaller junctions with
one large capacitive shunt such that one mode is heavy
(large EJ/EC) and one mode is light (smaller EJ/EC).
The DSFQ finds the middle ground between these de-
signs by using small junctions and two large capacitive
shunts such that both modes are heavy, similar to the
PCFQ. Since both modes are heavy, the lowest energy
wave functions are localized in separate wells, protect-
ing the qubit from relaxation. Other designs, namely the
super-semi cos(2ϕ) qubit and the bifluxon, have success-
fully shown an order-of-magnitude improvement of the
relaxation time in the protected regime [11, 12]. How-
ever, both qubits are challenging to fabricate and tune to
the ideal regime and two-qubit gates have not yet been
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realized [2]. The DSFQ offers a comparatively simple
platform for studying universal gate sets for qubits with
variable wave-function overlap. In addition to the uni-
versal gate scheme, we also propose a noise-insensitive
readout method for the DSFQ.

We imagine tuning the barrier height by a tunable
junction, implemented either in a SQUID-loop as in pre-
vious PCFQ experiments [23–26] or in a hybrid ver-
sion where the tunable junction is a superconductor-
semiconductor-superconductor junction. This type of
junction has been demonstrated earlier to be stable and
having coherence times longer than the anticipated gate
times [11, 27–30]. However, we note that the coher-
ence times for the semiconductor-based junctions are still
shorter than the more standard insulator-barrier junc-
tions. The physics of this is still not understood and the
coherence times could improve with future devices [31].

We calculate the coherence properties of the DSFQ
and discuss the flux-noise sensitivity. In order to reduce
the flux dephasing, we propose a double-loop gradiomet-
ric version of the DSFQ which gives exponential protec-
tion against global flux noise. Gradiometric qubit designs
have been proposed previously but rely on identical ar-
eas in the two loops [23, 26, 32]. We show that small
area variations can be compensated for by adjusting the
tunable junction without introducing sensitivity to the
junction control line. The main focus of our study is a
set of one- and two-qubit gates where the idea is to tune
the qubit out of the protected regime by adiabatically
lowering the barrier between the two wells and thereby
hybridize the computational states. Two-qubit gates can
be performed by simultaneously lowering the barriers for
two capacitively coupled DSFQ’s while single qubit gates
require a fast single-tone microwave pulse in the an inter-
mediate regime. Advantages of variable-protection gates
are that fast-decaying non-computational states do not
participate in gate operations and that two-qubit inter-
actions can be turned off with exponential on/off ratio
while maintaining the ability to perform one-qubit gates.
Finally, we show how the effective coupling to a readout
resonator can be adjusted with a simple flux control of
the qubit, leading to an order-of-magnitude on/off ratio
while decay to the readout resonator is suppressed.

II. THE DOUBLE-SHUNTED FLUX QUBIT

We consider a system of three Josephson junctions con-
nected in a ring. The circuit is illustrated in Fig. 1(a)
where the Josephson energy of the tunable junction is de-
noted by αEJ . The two other junctions have Josephson
energy EJ , but they do not have to be identical for our
proposal to work. In the phase variables ϕ = (ϕ1−ϕ2)/2
and θ = (ϕ1 + ϕ2)/2, the potential energy of the qubit is
thus given by

HJ = −2EJ cos(ϕ) cos(θ)− αEJ cos(2ϕ+ ϕext), (1)

FIG. 1. (a) Circuit layout for the DSFQ with a variable junc-
tion by either a SQUID or gate voltage tunable nanowire
junction. (b) Potential landscape of the DSFQ with the
two lowest energy eigenstates shown in red and blue with
EJ/EC = 100, α = 1 and ϕext = 0.997π. (c) One dimensional
cut of (b) along ϕ = (ϕ1 − ϕ2)/2 with wave functions show-
ing their exponential separation at α = 1. The potential at
α = 0.7 is shown in gray dashed. (d) Energy splitting of the
qubit as a function of the barrier height controlled by α. The
value of α corresponding to the CSFQ/PCFQ is indicated
with a star/bullet (α = 0.5/0.8). Energies are in units of the
Josephson energy, EJ .

where ϕext = 2πΦ/Φ0 and Φ is the flux through the loop,
controlled by an external magnetic field whose value is
typically set to ϕext = 0.997π unless other stated. At
α = 0.5, the barrier is completely lowered, making the
potential along the ϕ-direction approximately quartic as
for the CSFQ [22]. At a value of α = 0.8, the barrier
is significant and the potential of the PCFQ [15, 17] is
recovered. Controlling the barrier height of the DSFQ
through α thus interpolates between the PCFQ and the
CSFQ. Note that in the flux-tunable PCFQ, the barrier
height can be controlled via an external flux in a slightly
different geometry [23, 25, 26].
The charging energy is determined by the capacitances

C shown in Fig. 1(a) and gives rise to the kinetic energy
[33]

HC = 2EC (−i∂ϕ − ngϕ)
2
+ 2EC (−i∂θ − ngθ)

2
. (2)

Here we have included offset charges ngϕ and ngθ (the
4EC typically found as the prefactor is reduced due to
the change of variables nθ/ϕ = n1 ± n2). The qubit will

be operated in the regime of small EC = e2/2C (i.e., both
ϕ and θ being heavy modes). Realistically, the Josephson
capacitances are about two orders of magnitude smaller
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than the large shunting capacitances and thus merely
renormalizes EC without affecting the results presented
in this work.

The potential landscape and the ground-state wave
functions are shown in Fig. 1(b) in the heavy-modes
regime (EJ/EC = 100). The external flux is tuned to
a value close to half a flux quantum. The two wave func-
tion shown in red and blue (ψ0 and ψ1) are clearly well
separated and localized in the two wells. They repre-
sent the qubit states |0⟩ and |1⟩. The state separation is
most easily seen in Fig. 1(c) which is a cut along the ϕ-
direction. Due to their separation, the tunneling between
the two wells is suppressed. It results in a small qubit
splitting near α = 1 determined by the external flux and
also a large anharmonicity, see Fig. 1(d). Lowering the
barrier by reducing α, increases the qubit frequency and
decreases the anharmonicity αan = (ω02 − ω01)− ω01, as
the states hybridize and change significantly. This fact
is used below to perform fast gates by lowering the value
of α to α ≈ 0.7 where the logical states partially overlap.

A. Gradiometric DSFQ

The qubit discussed above is designed to have a large
relaxation time due to the exponential suppression of
inter-well coupling. However, it is likely to have a poor
dephasing coherence time because of the sensitivity of the
energy difference of the two wells to flux noise. To im-
prove the dephasing time, we propose a double-loop vari-
ation as in Fig. 2(e) which is designed to cancel out any
fluctuations in the global flux. In the double-loop design,
we picture the variable junctions as tunable nanowire
junctions. Alternatively, these could be SQUIDs con-
trolled by individual flux lines without defeating the pur-
pose of the gradiometric setup. However, the additional
flux loops will complicate the control of the qubit be-
cause there will be flux lines to each SQUID and one to
control the global flux. The tunable Josephson junctions
give an advantage with fewer flux control lines compared
to using SQUIDs at the potential expense of reduced co-
herence due to semiconducting junctions. To understand
the double-loop cancellation better, we consider the sit-
uation where half a flux quantum threads through each
loop. This gives rise to two lowest-energy combinations
of current flowing in the circuit; |⟲⟳⟩ , |⟳⟲⟩, where an
arrow indicates the direction of the current in each loop.
Thus, the two lowest energy states correspond to the sit-
uation where current flows in opposite directions, making
them indifferent to variations in the external flux. Said
differently, the magnetic dipole moment vanishes and the
computational states are only affected by magnetic field
gradients through the magnetic quadrupole moment as
verified in Refs. [26, 32, 34]. In Fig. 2(b,f), we show the
dependence of the qubit splitting on the global flux for
both single- and double-loop DSFQs.

For a symmetric situation where the areas of the two
loops and the Josephson energies of two outer junctions

are identical, the dependence of the global flux ΦG (pro-
portional to a global magnetic field) has zero slope when
ΦG is at half flux quantum (see Fig. 2(f), blue solid
line). In an experimental situation, the loop areas will
be slightly different, leading to a sensitivity to the global
magnetic field (blue dash-dotted line). However, by ap-
propriately choosing the ratio of the tunable junctions,
the dispersion with ΦG can become exponentially flat
again at the expense of splitting the degeneracy (blue
dashed line). If the flux through the two non-identical
loops is controlled by a single global field, and the tunable
junctions can be tuned to be asymmetric, α2 = (1+δ)α1,
then the sweet-spot simply shifts to

δ = −1 +
1 + r

1− r
cos

(
2πr

1− r

)
≈ 2r, r =

A1 −A2

A1 +A2
. (3)

where r is a measure of the loop area asymmetry and as-
sumed small, see also Appendix A where the condition on
δ is derived. Here, it is also shown that the fluctuations
in δ has very little effect on the energies near half a flux
quantum as can also be seen by comparing the dashed
(δ = 2r) and dash-dotted blue line (δ = 0). Fig. 2(f)
summaries how the sensitivity to the external global mag-
netic field and how choosing the value of the Josephson
energy of the second junction can make the spectrum
practically insensitive to the global field. As detailed in
Appendix A, the slope and height of the curve is set by
the area and junction asymmetry. While being insensi-
tive to variations in the global magnetic field, the qubit
frequency is still linearly sensitive to the local fluxes in
the individual loops, see Fig. 2(h) and discussion below.

B. Decoherence times

The decoherence of the DSFQ is estimated by calcu-
lating relaxation and dephasing rates for different noise

sources. The relaxation time T1 =
(∑

λ Γ
λ
1

)−1
is com-

puted through the relaxation rates which are given by
Fermi’s Golden rule [13, 14, 35]

Γλ
1 =

1

ℏ2
|⟨1| ∂λH |0⟩|2 Sλ(ω),

Γdiel
1 = ℏ |⟨1|ϕ |0⟩|2 Sdiel(ω) (4)

where λ is an external noise source and Sλ(ω) is the power
spectral function for a given noise source. We consider
1/f and ohmic noise which were the limiting noise chan-
nels for flux and charge noise respectively for the CSFQ
[22] in addition to dielectric loss, the limiting factor for
fluxonium relaxation time [14, 36]. The associated spec-
tral functions are

S
1
f

λ (ω) =
2πA2

λHz

|ω| , SΩ
λ (ω) =

B2
λω

2π × 1GHz
,

Sdiel(ω) =
ω2 tan δdiel

4EC

[
coth

(
ω

kBT

)
+ 1

]
,
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FIG. 2. (a) Circuit layout of the single-loop DSFQ. (b) Dispersion of the qubit frequency with respect to the reduced ex-
ternal flux through the loop, showing the linear dependence in the region ϕext/2π = 0.47 − 0.53. (c-d) Relation between
the relaxation/dephasing time (T1/Tφ) and the barrier height controlled by α for the single loop DSFQ. (e) Circuit layout
of the gradiometric DSFQ with two tunable junctions. The inconvenient placement of large capacitors in the loops can be
worked around by using cross-over junctions. (f) Dispersion of the qubit frequency with respect to the redcued external global

flux, ϕG = 2πΦG
Φ0

. We display the cases where the loop areas are identical (solid line), non-identical (dot-dashed line) and

non-identical with compensating asymmetric junctions (dashed line). (g-h) Relation between the relaxation/dephasing time
(T1/Tφ) and the barrier height controlled by α for the gradiometric DSFQ. Note the insensitivity to noise in the global magnetic

field and sensitivity to local magnetic field noise. The noise amplitudes in all figures are AΦ = 10−6Φ0/
√
Hz, Ang = 10−4e/

√
Hz

[13], Bng = 5.2 × 10−9e/
√
Hz [22] and tan δdiel = 2× 10−7 [14]. The Josephson energy is EJ = 10hGHz and external flux is

ϕext = 0.997π where relevant.

where Aλ and Bλ are noise amplitudes for 1/f and
ohmic noise respectively, tan δdiel = 2× 10−7 is the loss
tangent and T = 20mK is the temperature [14]. We

use typical noise amplitudes AΦ = 10−6Φ0/
√
Hz [13],

Ang
= 10−4e/

√
Hz [13] and Bng

= 5.2 × 10−9e/
√
Hz

[22].
In Fig. 2(c, g), we display the computed relaxation

times for the single loop and double loop (gradiomet-
ric) versions of the DSFQ. Both panels show exponen-
tially enhanced T1 in the protected regime (α = 1) with
T1 = 603 µs in the single loop and T1 = 733 µs in the
gradiometric setup, the limiting factor being dielectric
loss. In the unprotected regime (α = 0.5), the relaxation
time is reduced to T1 = 0.35 µs in the single loop and
T1 = 0.35 µs in the gradiometric equivalent to 3 orders
of magnitude.

We can compare the relaxation times to the dephasing
times shown in Fig. 2(d, h). The first order dephasing
rates for 1/f noise are computed through [13],

Γ
1
f ,λ
φ =

√
2Aλ (∂λωq)

2
ln |ωirt|,

where we have introduced an infrared cutoff and a char-
acteristic time with the product ωirt = 2π × 10−6 as in
Ref. [13]. The dephasing times shown in Fig. 2(d, h) are

limiting the coherence time 1
T2

= 1
2T1

+ 1
Tφ

compared to

the relaxation time due to the linear sensitivity to (lo-
cal) flux noise in the T1-protected regime. Conversely, in
the unprotected regime, the coherence is limited by re-
laxation through dielectric loss, illustrating the trade-off
between T1-protection and dephasing due to flux noise is
general to flux qubits. Note that the sensitivity to global
flux noise in Fig. 2(g, h) is reduced due to the gradio-
metric construction of the device. In the T1 protected
regime (α = 1) the dephasing time is Tφ = 0.12 µs in the
single loop and Tφ = 0.74 µs in the gradiometric setup.
In the unprotected regime (α = 0.5) the dephasing time
is enhanced to Tφ = 7.6 µs in the single loop and Tφ = 98
µs in the gradiometric setup. The CSFQ has relaxations
times reported in the range T1 = 20 − 60 µs [22]. State
of the art transmon qubit report relaxations times up to
T1 = 0.5 ms [37].

In total, the DSFQ does not exceed the relaxation time
of state of the art transmon qubits but offers a platform
with adjustable and strong noise bias and a tunable de-
gree of T1-protection, which can be used to study opti-
mum strategies for gate operations on protected qubits.
While the noise bias, in principle, opens up paths to-
wards efficient noise biased error correcting codes, the
linear sensitivity to (local) flux noise is a limiting factor.
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This could be suppressed by choosing a larger qubit split-
ting, creating a wider sweet spot at half flux quantum.
However, we have chosen to focus on the T1 protected
regime here. We note that such compromise is relevant
for other qubit proposals such as the heavy fluxonium
and the bifluxon [10, 12, 18].

III. QUBIT CONTROL

To control the DSFQ, we leave the protected regime
(α = 1) and lower the barrier between the two wells
(α ≃ 0.5− 0.7). When the barrier is lowered, traditional
techniques in microwave control such as DRAG and IQ-
mixing can be used for the DSFQ [38, 39]. As detailed in
the sections below, the height of the barrier at the oper-
ating point and the rate at which it is lowered depends
on whether single or two-qubit gates are performed. We
continue in the following section by implementing an σx
gate numerically to illustrate how single qubit gates can
be performed on qubits with variable-protection using
single-tone driving.

A. Variable-protection single qubit gates

Our proof-of-concept σx-gate has three steps as illus-
trated in Fig. 3:

I. Lower the barrier adiabatically, α = 1 → 0.7.

II. Apply an appropriate microwave pulse to the qubit.

III. Raise the barrier adiabatically, α = 0.7 → 1.

This control sequence is illustrated in Fig. 3 where
the lowering and raising of the barrier takes 7 ns and
the microwave drive takes 11ns (including 1.5 ns ramp
up/down), totalling a gate time of 25 ns. The microwave
drive line is coupled to one of the nodes of the qubit
through a small capacitance Cd ≪ C, giving rise to
the Hamiltonian term Hd = Cd

C+Cd
Vd(t)n1 [39]. As the

barrier is lowered, the quantum states changes signifi-
cantly and a small subspace of states is insufficient to
describe the evolution due to H(t) = HC + HJ(t). We
therefore perform simulation in a relatively large Hilbert
space with 625 states (in the charge basis with cutoff
ncutoff = 12 for both the ϕ- and θ-mode) and numerically
evaluate exp(−i∆tH(t)) at each time step to perform the
time-evolution (857 timesteps/nanosecond). When the
drive is turned on at fixed α, we instead numerically inte-
grate the time-dependent Schrödinger equation using the
same Hilbert space dimension. At each time-step, we nu-
merically diagonalize the Hamiltonian and compute the
overlap with the instantaneous qubit states to produce
Fig. 6(c).

In our single qubit gate scheme, we choose to lower
the barrier only partially (α = 0.7) to limit the time
spent adiabatically adjusting α and to avoid small, un-
wanted interactions with neighboring qubits which arise

FIG. 3. (a) The coupling of computational states through
the charge operator as a function of α, showing when transi-
tions can be stimulated through a capacitively coupled drive-
line. (b) The pulse profile for the σx gate displaying the low-
frequency α drive (black) and the high-frequency microwave
drive (red). The envelope of the microwave pulse is 11 ns long
with a 1.5 ns cosine ramp up/down. The drive frequency is
slightly detuned from the qubit frequency ωd = 0.979ωq. (c)
Numerical data from non-dissipative simulations showing the
time history of the spectral weights during the low-leakage,
high fidelity σx gate. In all panels, the scale of the Josephson
energy is EJ = 10hGHz and EJ/EC = 100 with the flux bias
set to ϕext = 0.995π.

when the barrier is completely lowered, see also Ap-
pendix C. The qubit frequency is changed from ωq(α =
1) = 0.25hGHz to ωq(α = 0.7) = 0.39hGHz, where the
Josephson energy is EJ = 10hGHz and EJ/EC = 100
with the flux bias set to ϕext = 0.995π. At the operating
point (α = 0.7) the relaxation time is reduced to 1.6µs.
The speed at which the barrier is lowered is adiabatic
with respect to the energy gap between the computa-
tional states and the non-computational states such that
the adiabatic time is set by the desired leakage bound.
The 7 ns lowering time results in a very small (∼ 10−4)
leakage but does admit for a small (∼ 10−3) probability
to transition from one logical state to the other. This
small effect makes it necessary to slightly adapt the mi-
crowave pulse to achieve high fidelity. One possibility is
to marginally reduce the drive amplitude, but the qubit
frequency is also shifted due to the AC-Stark effect. We
therefore instead adapt the pulse by a minor frequency
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shift of the drive, ωd = 0.979ωq, to account for both of
these contributions. The limit to the fidelity imposed by
coherent errors (leakage) during the σx gate is 99.98%
while the gate time is Tg = 25ns. The single qubit gate
fidelity is limited by decay from the shorter relaxation
time at the operating point. We estimate the T1 lim-

ited fidelity via F ≈ exp
[
−
∫ Tg

0
dtΓ1(t)

]
, where Γ1(t) is

the sum of (instantaneous) decay rates. The resulting
T1-limited fidelity is 99.1% for the single qubit X-gate.
While the gate is limited by decay in this device, the
coherence limited gate fidelity is comparable to state-of-
the-art single qubit gates on unprotected qubits such as
the transmon [7] and potentially faster than alternative
gates on T1-protected qubits [20]. The latter makes use
of non-computational states, multi-tone driving and an
optimal control algorithm to optimize gate performance.
The comparatively simple variable-protection gate shows
the benefits of tuning in and out of protection, and that
the access to fast, single tone pulse control outweigh the
additional overhead from the adiabatic control of the
level of protection. In Appendix B, we exemplify using
standard IQ-mixing how also σy and (σx −σy)/

√
2 gates

can be implemented with similar fidelity as the σx gate.
Combined with virtual σz gates, we have thus demon-
strated a compelling scheme for realizing universal single-
qubit control. It is natural to improve upon this proof-of-
principle design using more advanced α-profiles combined
with microwave pulse shaping techniques such as DRAG
[38] in order to reduce the time spent at low coherence
for smaller α. Alternatively, sudden gates or gates where
the flux bias is also controlled may be explored with in-
spiration from Ref. [18]. Ref. [18] also shows how multi-
tone driving can initialize low-frequency qubits where the
qubit frequency is subthermal. Alternatively, our flexible
design also allows for thermal initialization in the unpro-
tected regime.

B. Variable-protection two-qubit gates

An advantage of qubits with variable protection is that
they can act as their own tunable couplers with expo-
nential on/off ratio. In the protected idling regime, the
qubit-qubit coupling vanishes due to the exponentially
small wave-function overlap, see also Appendix C. As a
result of the exponentially suppressed coupling between
the computational states in the idling regime, a capaci-
tive qubit-qubit coupling,

HQ−Q = 4EC
Cg

C + Cg
n1n3, (5)

may be relatively strong Cg ≃ 0.3C compared to e.g.
transmon qubits, see Appendix C for a derivation of Eq.
5. We can thus implement two-qubit gates that rely
solely on the simultaneous lowering of both barriers of
two capacitively coupled DSFQs.

Our implementation of two-qubit gates has three steps:

I. Lower both barriers simultaneously in a time Ta/2,
α1 = α2 = 1 → αmin.

II. Wait for a time Tw.

III. Raise the barriers simultaneously in a time Ta/2,
α1 = α2 = αmin → 1.

The total gate time thus becomes the sum of the waiting
time and the adiabatic control time, T2Q = Ta + Tw.

When the barriers are lowered, the qubits can exchange
excitations through the capacitive coupling element re-

sulting in an effective σ
(1)
x σ

(2)
x +σ

(1)
y σ

(2)
Y interaction. Cru-

cially, the adiabatic control time can be adjusted such
that there occurs a transition between the states |01⟩
and |10⟩ due to their small energy difference and not
between other computational states whose energy differ-
ence is large compared to the adiabatic time. As shown
in Fig. 4(b), an avoided crossing occurs near α = 0.75.
On the other side of this avoided crossing, when α is
further decreased, the coupling dramatically increases.

See also Fig. 7, where the σ
(1)
z σ

(2)
z -interaction strength

is shown. The avoided crossing shown in Fig. 4(b) is
a generic feature of the coupled spectrum as long as the
qubit frequencies of the two interacting qubits are similar
at α = 1.

To exclude transitions between the other computa-
tional states and transitions out of the computational
subspace, the speed at which α is lowered should be
slower compared to the single qubit gate. As a concrete
example, we consider lowering the barriers with a con-
stant speed, meaning that the adiabatic time is propor-

tional to the minimum value αmin = 1 − Ta/2
2·35 ns . Thus,

the barrier can be completely lowered in 35 ns which is
three times slower than for the lowering rate used for the
single qubit gate. Adiabatic lowering/raising times Ta/2
less than 35 ns results in only partly lowering the barrier
due to the constant lowering/raising speed, see also Fig.
4(c).

In addition to the σ
(1)
x σ

(2)
x + σ

(1)
y σ

(2)
y interaction, the

energies of the coupled system shifts relative to the bare

energies due to an effective σ
(1)
z σ

(2)
z interaction, see also

Appendix C. Below we simulate the two-qubit gate shown
in Fig. 4 and discuss the types of gates achieved. The
two-qubit unitaries can be modelled by a two-qubit in-
teracting system of the following form

Heff = −ω1

2
σ(1)
z − ω2

2
σ(2)
z (6)

+
gxy
2

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
+
gz
2
σ(1)
z σ(2)

z ,

where the σ
(i)
x,y,z’s are Pauli matrices acting in the logical

subspace of qubit i, ωi describe the qubit frequencies,

and the swap coupling gxy and σ
(1)
z σ

(2)
z coupling gz are

all α-dependent. This model Hamiltonian gives rise to
the so-called fSim-gates which interpolate between the
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FIG. 4. Two qubit setup and gate characteristics from non-dissipative simulations. (a) Schematic of two capacitively coupled
DSFQs with substantial coupling capacitance Cg = 0.3C. (b) The five lowest energy states shown as the two barriers are
lowered simultaneously by decresing α1 = α2. (c) The α1 = α2 profile as a function of time for the CPHASE gate. (d)
The entanglement entropy of the final two-qubit gate as a function of the waiting time Tw and the total adiabatic control
time Ta. The red markers in this and subsequent panels show the optimal

√
iSWAP (star) and CPHASE (triangle) gates

which have respective fidelities limited by coherent gate errors and gate times of F√
iSWAP = 99.96%, T√

iSWAP = 32.66 ns and
FCPHASE = 99.95%, TCPHASE = 68.76 ns. The estimated T1-limited fidelities are F√

iSWAP = 99.7% and FCPHASE = 91.4%.
(e-f) The resulting phase and swap parameters ϕCPHASE and θSWAP of the final two-qubit gate as a function of the waiting
time Tw and the total adiabatic control time Ta. The flux bias is set to ϕext = 0.99π.

iSWAP- and CPHASE-gate [39, 40],

UfSim =



1 0 0 0
0 cos(θSWAP) −i sin(θSWAP) 0
0 −i sin(θSWAP) cos(θSWAP) 0
0 0 0 e−iϕCPHASE




(7)
which is precisely what we see in the simulation of the
full model. By timing the adiabatic control time and
the waiting time to match |01⟩ ⇐⇒ |10⟩ swap oscilla-

tions and the rotating σ
(1)
z σ

(2)
z -phase, different gates in

the fSim-space can be targeted as shown in Fig. 4(d-f).
Here, we sweep over the adiabatic and waiting times,
Ta and Tw, and in panel (d), we display the entangle-
ment entropy which is normalized to unity for maximally
entangling gates [41]. The only maximally entangling
gates in the fSim-space are CPHASE and iSWAP. In
panels (e) and (f), we decompose the resulting unitary
into the fSim-parameters; the phase angle ϕCPHASE and
the swap angle θSWAP. The red markers show two exam-
ple gates in the fSim-space; the CPHASE and

√
iSWAP

gates. The fidelity limited by coherent errors (lekage)
is well beyond 99.9% (up to single qubit σz-gates) and
can be performed in about 69 ns and 33 ns respectively.
Again, the two-qubit gates are limited by decay, with

estimated T1-limited fidelities of F√
iSWAP = 99.7% and

FCPHASE = 91.4%. The fidelity of the CPHASE gate
is severely impacted by the low qubit coherence near
α = 0.6 where T1 = 0.6 µs but the

√
iSWAP gate is a

promising high fidelity alternative. The iSWAP gate can-
not be implemented to high fidelity as it requires both
fine-tuning of energies to achieve a full swap of excita-

tions and zero (mod 2π) σ
(1)
z σ

(2)
z -phase. The combined

requirement is challenging to tune with our parameters,
so we instead propose to simply apply two

√
iSWAP gates

successively. The
√
iSWAP gate is comparatively easy to

perform as a partial swap of excitations happens before

any significant σ
(1)
z σ

(2)
z phase is accrued. Finally, The

CPHASE gate depends to an intermediate degree on the
Hamiltonian parameters as it does not require a transfer
of excitations. Our testing finds that appropriate times
Ta and Tw can be chosen for a range of parameters to
yield a CPHASE gate.

As mentioned, the wave functions change substantially
as the barriers are lowered and complicates the simu-
lation of the qubit interactions. In order to faithfully
simulate the time-evolution, we numerically diagonalize
the charge-basis Hamiltonian (ncutoff = 9) at each α and
keep the 24 lowest states. Since the diagonalizing uni-
tary, V : V †HV = diag(E1, E2, . . .), is time-dependent,
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FIG. 5. (a) The qubit coupled to a readout resonator. The
qubit induces a state-dependent shift of the frequency of the
resonator, which can be measured using standard techniques.
(b) Dispersive shift as a function of external flux. By adjust-
ing the flux away from half flux bias, a resonance between
one of the computational states become and a higher energy
states comes close to the frequency of the readout resonator.
The resonator shift is increased resulting in a stronger read-
out signal. A smaller shift is preferable in the context of error
suppression where it reduces the sensitivity to photon-shot
noise.

the Schrödinger equation acquires an additional term,
−iV †∂tV . Finally, using the combined Hamiltonian
H = H1 +H2 +HQ−Q (Eqs. (1), (2) and (5)), the time-
evolution operator of the lowest 24 states is evolved by
exp

[
−i(V †HV − iV †∂tV )∆t

]
at each timestep ∆t (286

timesteps/nanosecond).
Despite relying only on adiabatic control, the two-

qubit gates presented here are competitive compared
to state-of-the-art two-qubit gates for both single- and
double-well qubits [18, 19, 21]. Further advantages in-
clude the exponential on/off coupling ratio, that only
the computational states are used and the possibility of
being able to produce different gates in the fSim-space.
Further developments, for example controlling α1 and α2

individually as well as the fluxes, will likely provide more
control over what fSim-gates can be reached and reduce
the overall gate time or increase fidelities using optimized
strategies. Additionally, recent work suggests to also use
the DSFQ as a transmon-transmon coupler (called the
“double transmon coupler”), which illustrates the excit-
ing flexibility of the device [42].

C. Readout

Readout of the DSFQ device can be performed using
conventional dispersive readout techniques [39]. How-
ever, rather than reading out via the ϕ-mode, similar to
fluxonium qubits, we instead propose to readout via the
θ-mode. By coupling the qubit capacitively to a read-
out resonator through the θ degree of freedom, as shown
in Fig. 5(a), we can achieve substantial dispersive shifts

while remaining in the protected qubit regime to sup-
press (Purcell enhanced) relaxation. As we detail below,
the plasmon frequency of the θ-mode depends on which
well the ϕ-mode is localized in. Further, the difference in
plasma frequencies for the two wells are tuned by the ex-
ternal magnetic flux. In this way, we can use the external
flux to control the state dependent shift of the readout
resonator as shown in Fig. 5(b-c).
We start by considering the Hamiltonian of the com-

bined system which can be written as [39]

H = Hsys + g(a+ a†)nθ + ωra
†a, (8)

where Hsys is the qubit Hamiltonian, a(a†) is the res-
onator annihilation(creation) operator, ωr is the bare res-
onator frequency and g is the coupling strength between
resonator and qubit. In the dispersive regime, the res-
onator frequency is effectively shifted by the state of the
qubit. This can be seen by performing a Schrieffer-Wolff
transformation [43, 44] to second order,

Heff = Hsys + ωra
†a−

(χ
2
a†a+ δ

)
σz, (9)

where χ is the qubit state dependent resonator shift, δ is a
small shift of the qubit frequency and σz = |0⟩ ⟨0|−|1⟩ ⟨1|
is the qubit Pauli Z operator. To correctly estimate the
dispersive resonator shift it is important to account for
higher levels outside of the computational subspace. Car-
rying out the perturbation calculation, we find the dis-
persive shift as χ =

∑
j χ1j − χ0j , where

χij = g2 |⟨i|nθ |j⟩|2
(

1

Ei − Ej − ωr
+

1

Ei − Ej + ωr

)
.

(10)
Figure 5(b, c) shows the resonator shift as a function
of the externally applied magnetic flux. For these sim-
ulations, we have used a bare resonator frequency of
ωr = 4.8hGHz and coupling strength of g = 25hMHz.
To explain the working principle of the readout, we

briefly adopt a simple, minimal model of the DSFQ. In
this model, we assume that we are away from the sweet-
spot at exactly half flux quantum and write an effective
potential for the θ-degree of freedom by freezing the ϕ-
degree of freedom to one of the two minima at ϕ± =
(±π − δϕext)/3 for α = 1 and thus momentarily neglect
tunneling between the two wells,

V± = ∓EJ
δϕext

2
√
3

− EJ

(
1± δϕext√

3

)
cos(θ), (11)

where ϕext = π + δϕ and δϕ ≪ 1. In this picture, each
minima corresponds to one of the computational states.
Close to half flux bias (δϕext ≈ 0), V± are nearly iden-
tical and the readout resonator cannot discriminate be-
tween the computational states as the matrix elements
| ⟨±|nθ |j⟩ | are approximately the same for the two qubit
states |±⟩. By increasing the offset from the flux frustra-
tion point, the two terms in Eq. (11) lead to differences
between the two wells that can result in a large dispersive
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shift if the readout resonator is close in frequency to the
plasma frequency of the θ-mode in one of the wells. The
first term in Eq. (11) contains the simple energy splitting
between the two wells due to the external flux which does
not change the plasmon frequency. The second term in
Eq. (11) shows that the plasmon frequency of the θ-mode

in each well ω±
θ =

√
8ẼCẼ

±
J , where ẼC and Ẽ±

J are the

effective charging and Josephson energies of the θ-mode
[39], also depends on the offset from half flux bias. In
this way, we may tune the plasmon frequency in one of
the wells close to the readout resonator frequency and
thereby achieve a large dispersive shift, see Fig. 5(b-c).
We may now consider what happens at exactly half flux
quantum where the small tunneling between the wells re-
sults in wave functions that are even/odd in ϕ. In this
situation, different selection rules for the even/odd com-
putational states dictate what matrix elements can be
nonzero and will generally result in a nonzero dispersive
shift. However, as the resonator frequency can be far off
the frequency of the contributing transitions, the disper-
sive shift remains small.

There are several advantages to performing readout in
the proposed scheme: Suppression of the dispersive shift
controlled by the external flux grants us insensitivity to
dephasing through photon shot noise [39]. By coupling
the readout resonator to the θ-mode of the qubit, we also
obtain protection against Purcell decay: The matrix ele-
ment ⟨0|nθ |1⟩ (or in the notation surrounding Eq. (11)),
⟨+|nθ |−⟩) is zero since the computational states are both
in the even θ-mode ground state in their respective wells.
Via this mechanism, the qubit is protected from the Pur-
cell effect due to the symmetries of the wave functions.
There are no additional Purcell effect due to nϕ as the
readout resonator remains decoupled from this mode. In
total, the dominant source of error during readout is the
direct tunneling between the qubit states. The T1-times
computed in Sec. II depends weakly on the external flux
and for readout at ϕext = 1.023π we find T1 = 519µs. For
a readout integration time around 1µs, the T1-limited
readout fidelity is F = 99.8%.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have shown how gates and readout
can be performed on a new flux qubit variation with a
variable level of T1-protection, the DSFQ. By adiabat-
ically reducing the height of the barrier, the otherwise
insensitive qubit can be made sensitive to a microwave
drive. Our implementation of this variable-protection
gate scheme shows that fast, high fidelity single qubits
gates can be performed without involving lossy non-
computational states. We achieve single qubit gates with
coherence limited fidelities at 99.98% in 25 ns, making it
competitive with established gate schemes for both pro-
tected and unprotected qubits. However, non-optimized
gates suffer from T1 decay during the lowering of the

barrier and results in a T1-limited gate fidelity of 99.1%.
Likewise, we show that by lowering the barriers of two
capacitively coupled DSFQs, that high fidelity two qubit
gates in the fSim-space can be performed. Specifically,
we find CPHASE and

√
iSWAP gates with a coherence

limited fidelity above 99.9% in 69 ns and 33 ns respec-
tively without residual ZZ-interactions. Again, the two-
qubit gates are limited by relaxation and the T1-limited
fidelities are FCPHASE = 91.4% and F√

iSWAP = 99.7%
respectively The fidelities and gate times can be further
improved by using optimized protocols.

We have further shown that readout can be per-
formed efficiently in the T1-protected regime by adjust-
ing the external flux bias away from the flux frustration
point. Near half a flux bias, the dispersive shift is not
only reduced due the the qubit-resonator detuning, but
also due to the approximate symmetry between the two
wells. With the order-of-magnitude variations in disper-
sive shift and separated double-wells, the DSFQ is robust
againt noise channels arising from the coupling to the res-
onator.

In addition to the T1-protection, we have also proposed
a gradiometric double-loop variation of the DSFQ which
is exponentially insensitive to global flux noise while re-
maining linearly sensitive to local flux noise. We show
that area variability of the loops can be compensated
for by making the tunable junction slightly asymmetric
without being sensitive to the noise in the tunable junc-
tions.

In total, the DSFQ presents an experimentally avail-
able platform for studying qubits with a variable level of
T1-protection, where gates can be performed without in-
volving non-computational states. This contribution may
help pave the way for achieving fast, high fidelity gates on
protected qubits using this novel gate implementation.
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FIG. 6. (a)-(c) Pulse sequence for the σx, σy and σxy = (σx − σy)/
√
2. Parameters for the pulse envelope and the α-profile

is identical to those in Fig. 3. The phase offset and drive frequency are in the three cases: (a) ϕoffset = 0π, ωd = 0.979ωq, (b)
ϕoffset = 0.5π, ωd = 0.979ωq and (c) ϕoffset = 0.26π, ωd = 0.977ωq. (d)-(f) Corresponding evolution of the states during the gate
operation. The fidelities in the three panels are (d) Fx = 99.98%, (e) Fy = 99.98% and (f) Fxy = 99.93%.

FIG. 7. Plot of the ZZ-interaction strength due to the capac-
itive coupling. When one or none of the barriers are lowered,
the interaction strength is suppressed to the 10 kHz level.

Appendix A: Gradiometric DSFQ

To better understand the dependence on the global
flux, we look at the potential energy for the double-loop
qubit

HJ =− EJ cos(ϕ1)− EJ cos(ϕ2) +HJα,

HJα =− EJ

2
[α1 cos(ϕext,1 + 2ϕ) + α2 cos(ϕext,2 + 2ϕ)] .

(A1)
Here the flux-induced phases are given by

ϕext1,2 =
±2πA1,2B1,2

Φ0
, (A2)

where A1,2 are the areas of the two loops and B1,2 =
(B ± b)/2 are the field through them.

In the symmetric case when A1B1 = A2B2, α1 = α2

the flux-dependent term becomes

HJα = −EJ

2
α1 cos(2ϕ) cos(ϕext,1), (A3)

and we see that the potential maintains the symmetry
with two degenerate minima for all values of the global
field B. However, it is not realistic to assume that the
two areas can fabricated to be identical. Therefore, we
consider the situation where they differ by some (small)
amount. To study this case, we write HJα as

HJα = −EJ

2
[Vc cos(2ϕ)− Vs sin(2ϕ)] , (A4)

where

Vc = α1 cos(ϕext,1) + α2 cos(ϕext,2), (A5a)

Vs = α1 sin(ϕext,1) + α2 sin(ϕext,2). (A5b)

The splitting of the degeneracy of the minima of Vc is con-
trolled by the second term Vs. One could, in principle,
choose a set parameters (α1, α1, B1, B2) such that Vs = 0
and regain the degenerate double-well potential. How-
ever, the degeneracy is lifted linearly in both the global
external field B and the tuning of the Josephson junc-
tions, and the situation is therefore worse than before.
Instead, we search for a point where the qubit is split
by the different well depths, but with at least quadratic
protection against deviations from the mentioned set of
parameters. If both junctions in the outer SQUID-loop
are tunable junctions, we have to minimize with respect
to both which gives the condition sin(ϕext,1) = sin(ϕext,2)
at the operating point. Consequently, the condition for
the junctions when minimizing with respect the global
field B is

A1α1 = A2α2. (A6)
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If the tunable junctions are parameterized as α2 = (1 +
δ)α1, the condition obtaining the sweet spot where the
splitting is quadratic or better in δ and B is

∂Vs
∂δ

= 0 → sin(ϕext,2) = 0, (A7a)

∂Vs
∂B

= 0 → cos(ϕext,1) =
(1 + δ)A2

A1
cos(ϕext,2).

(A7b)

Note that the condition in Eq. (A7a) results in a Vs
which is insensitive to δ for all δ. If the flux through
the two loops is controlled by a single global field (i.e.,
b = 0), the two equations above can be combined to give
the following condition on δ,

δ = −1+
1 + r

1− r
cos

(
2πr

1− r

)
≈ 2r, r =

A1 −A2

A1 +A2
, (A8)

for small r.

Appendix B: IQ-mixing

We show that our single qubit gate scheme is compati-
ble with IQ-mixing in Fig. 6. The pulses are parametrized
by ε(t) cos(ωdt+ ϕoffset), where ε(t) is the envelope with
cosine ramp up/down and ϕoffset is the phase offset
that determines the I and Q components. We dis-
play three flip gates σx (also found in Fig. 3), σy and

σxy = (σx − σy)/
√
2 with similar fidelities > 99.9% and

a 25 ns gate time. The pulse parameters can be found in
the caption of Fig. 6.

Appendix C: Q-Q coupling

Two coupled DSFQs are shown in Fig. 4(a). The
Lagrangian for the total circuit is

L =
C

2
ϕ̇21 +

C

2
ϕ̇22 +

C

2
ϕ̇23 +

C

2
ϕ̇24

+
Cg

2

(
ϕ̇1 − ϕ̇3

)2

+ EJ cosϕ1 + EJ cosϕ2 + α1EJ cos (ϕ1 − ϕ2 + ϕext,1)

+ EJ cosϕ3 + EJ cosϕ4 + α2EJ cos (ϕ3 − ϕ4 + ϕext,2).
(C1)

By performing a Legendre transformation, we arrive at
the result

H1(2) = 4EC

(
C + Cg

C + 2Cg

)
n21(3) + 4ECn

2
2(4)

− EJ cosϕ1(3) + EJ cosϕ2(4)

+ α1(2)EJ cos
(
ϕ1(3) − ϕ2(4) + ϕext1(2)

)
,

HQ−Q = 4EC

(
Cg

C + Cg

)
n1n3, (C2)

where 1(2) refers to qubit 1(2) with charge and phase
operators n1(3), n2(4), ϕ1(3), ϕ2(4). The full Hamiltonian
is a sum the two qubit Hamiltonians and the interac-
tion term, H = H1 + H2 + HQ−Q. The qubit Hamil-
tonians have been renormalized due to the coupling ca-
pacitance between the two circuits. In Fig. 7, we show

the σ
(1)
z σ

(2)
z coupling due to the capacitive coupling de-

fined by ζZZ = ω00 − ω01 − ω10 + ω11. In Fig. 7, it is

apparent that the σ
(1)
z σ

(2)
z coupling is suppressed unless

both barriers are lowered. Thus, single qubit gates where
only one barrier is lowered do not give rise to unwanted

σ
(1)
z σ

(2)
z interactions. However, we are limited to only

half-grid single qubit gates if we neglect the next nearest
neighbor stray capacitances. As a final remark, we would
like to point to the half-circular suppression of ζ<< in
Fig. 7. This interesting feature appears when the sign of

the σ
(1)
z σ

(2)
z interaction changes. In colloquial terms, the

σ
(1)
z σ

(2)
z interaction is exactly cancelled when the “push”

or “pull” on the |11⟩ state from states below it is exactly
compensated for by the push/pull from states above it.
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Large superinductors allow engineering of qubits that are protected against noise-induced decoher-
ence. Often, superinductors are based on arrays of hundreds of Josephson junctions in series, where
the inductance is the sum of Josephson inductances. Less conventionally, it is possible to boost the
inductance of the array by canceling the harmonic part of the Josephson inductances and thereby
realizing a nonlinear superinductor. Common to both designs are parasitic capacitances to ground
which sets a practical limit to the magnitude of the impedance. In this work, we perform a detailed
analysis of a nonlinear superinductor comprised of an array of quarton elements and discuss effects
of component variations and optimal design parameters. We study dephasing of the three common
flux noise protected qubits, the 0 − π qubit, the bifluxon, and the Blochnium, implemented with
nonlinear superinductors. We show that fluctuations of the fluxes in the quarton array are generally
a limiting noise channel. Further, in the 0 − π qubit, the nonlinear inductance, resulting from the
use of quartons, gives rise to an always-on coupling to the spurious ζ mode, leading to shot-noise
dephasing. We find that shot-noise is limiting the coherence time unless the ζ mode is actively
cooled. Despite the noise channel that they introduce, the use of quartons array in superconductors
significantly reduce the experimental requirement for realizing deep qubit protection.

I. INTRODUCTION

Through clever design, protected qubits enjoy ex-
ponentially suppressed sensitivity to some or all noise
sources at the hardware level [1–12]. By this virtue, pro-
tected qubits are expected to be useful components of
heterogeneous quantum computers, for example as quan-
tum memory [1].

Qubits can be protected from relaxation, dephasing or
enjoy full protection from both mechanisms of decoher-
ence [1]. Exponential enhancement of relaxation time T1
can be accomplished by engineering qubits with disjoint
support of their logical wavefunctions [2–10]. The expo-
nential suppression of dephasing due to charge noise can
be attained in the transmon limit of large ratio of Joseph-
son to charging energy [13] or by shunting the qubit with
a superinductor [14, 15].

Realizing protection against dephasing due to flux
noise at the hardware level, however, sets demanding re-
quirements for the circuit components. While protection
against dephasing due to charge noise is obtained in the
transmon, it is a fundamental challenge to suppress flux
noise in analogous fashion [1, 4, 5, 14, 15]. In principle,
protection against flux noise dephasing can be achieved
using an ultra-high inductance element such that the cir-
cuit impedance is much larger than the resistance quan-
tum Z ≫ RQ = h/(2e)2 ≈ 6.45 kΩ. This limit defines
Z ≫ RQ the “deep” regime of protection and results
in large phase fluctuations ⟨ϕ2⟩ ∝ Z/RQ [2, 4, 5, 14].
In practice, however, the self-impedance of a simple wire
loop is limited by the vacuum impedance Zvac = 8αRQ ≈
377Ω, which is small compared to the resistance quan-

tum owing to the smallness of the fine-structure constant
α ≈ 1/137 [14–16]. The limit set by the impedance of free
space can be circumvented in a number of ways to realize
superinductors with a self-impedance Zself > RQ, how-
ever, self-capacitance or parasitic capacitance to ground
always limits the maximal impedance [12, 14–26]. In
broad terms, superinductance can result from large ge-
ometric or kinetic inductance [12, 14–26]. In a geomet-
ric superinductor, a superconducting wire is coiled in a
planar spiral to overcome the vacuum impedance limit
through increased self-inductance [12, 17]. Kinetic su-
perinductors either leverage the large kinetic inductance
inherent to disordered superconductors [18–26] or result
from an ordered array of hundreds of Josephson junctions
whose combined inductance is given by the sum of the
(kinetic) Josephson inductances [14, 15]. The latter ap-
proach is widely used in, for example, fluxonium qubits
[9, 10, 15, 27–32].

Three qubit designs with superinductor-based flux
noise protection have been realized experimentally: the
0−π qubit [6], the bifluxon [7] and the Blochnium [11, 12].
These experiments show promising features of general
noise protection, such as beyond millisecond T1 in the
0− π qubit [6], and suppression of relaxation and charge
noise dephasing in the bifluxon tuned to its protected
regime [7]. Common to all attempts of realizing pro-
tected qubits is, that their deep protected regime is not
reached due to the superinductor self-impedance limit.

In this work, we explore how replacing Josephson junc-
tions by quartons in superinductors can facilitate the
realization of protected qubits in the deep protected
regime. The quarton is a SQUID-like device where one of
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the junctions is replaced by a small subarray of junctions.
By balancing the ratios of Josephson energies and bias-
ing the quarton with half a flux quantum, interference
effects cancel the energy contribution quadratic in phase
and result in an approximately quartic element [33, 34].
Stringing together quartons in an array results in a non-
linear superinductor with quartic phase dependence on
the energy, and has been studied in the context of the
“quartic” Blochnium [35]. Superinductors with tunable
nonlinearity has been experimentally realized in the ini-
tial study found in Ref. [36].

Compared to state-of-the-art conventional junction ar-
rays, we estimate that an equivalent quarton array su-
perinductor (QASI) can achieve an order of magnitude
improvement in inductance while reducing the number
of junctions by a factor of three. If the capacitance to
ground is further reduced, the self-impedance limit gets
significantly increased, leading to continued improve-
ments in the QASI over the conventional array. We
also study array nonidealities and, however, find that the
QASI shows increased sensitivity to variations in Joseph-
son energies, leading to imperfect cancellation of the har-
monic contribution. Requiring the junction variation to
be below 1% ensures that the phase dependence is ap-
proximately quartic. Additionally, variations in loop ar-
eas are found to contribute to an energy term linear in
the superconducting phase, something that can be mit-
igated by alternating the quarton loop orientations. To
test the coherence properties of protected qubits based
on QASIs, we numerically evaluate the dephasing time
due to flux noise of the 0 − π, bifluxon and Blochnium
qubits. For the QASI-based 0−π qubit, we also evaluate
the dephasing from photon shot-noise in the spurious ζ
mode, a known limiting noise channel [1, 4–6]. Based
on our results, we argue that flux noise protection in
the 0−π and Blochnium qubits can be achieved with re-
duced experimental requirements using the quarton array
superinductor.

Finally, we note that there are several other applica-
tions of junction array superinductors that can poten-
tially benefit from QASIs. These include models of 1D
quantum systems [37], traveling wave parametric am-
plifiers [38–40] and Bloch oscillations for a quantum-
metrology current standard [14, 41–46].

II. JUNCTION ARRAY SUPERINDUCTORS

We begin by reviewing conventional junction array su-
perinductors following Refs. [14, 15] before turning to the
quarton array superinductor (QASI). The description of
the QASI follows closely that of the conventional array
which also serves as a natural comparison.
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(c) Conventional array superind.
Quarton arr. superind., = 1
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FIG. 1. (a) Comparison between geometric, conventional
junction array and quarton array superinductors. (b) Cir-
cuit diagrams of Blochnium, bifluxon and 0 − π qubits. The
dashed boxes should contain large superinductors as shown
in (a) to protect the qubits from flux noise. (c) The effective
potentials of the conventional array (red line) and the quarton
array with full/partial suppression of EL (lightblue/darkblue
lines). The quarton array superinductor can achieve larger in-
ductances than the conventional array and also be tailored via
the EL suppression parameter γ−1 ∈ [0, 1] to interpolate be-
tween ϕ4- and ϕ2-dominated potentials. The parameters are
EJA = 40hGHz, ECA = 0.25hGHz and Cgr/CJA = 10−5.

A. Conventional array superinductors

The conventional junction array superinductor con-
sists of a series of NJ Josephson junctions with nom-
inally identical Josephson energies EJA and identical
charging energies ECA = e2/2CJA, see Fig. 1(a). In
order for the array to effectively operate as a classi-
cal inductive element, the junctions are required to be-
have semi-classically. In other words, quantum phase
slips should be suppressed and quantum excitations in
the array should have a large energy cost. Avoiding
quantum phase slips is straightforwardly satisfied by ex-
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ponentially suppressing tunneling by making the ratio
EJA/ECA large. Furthermore, the large EJA/ECA ratio
results in a protection against random charge fluctuations
[13]. The second requirement assures that the low-energy
physics of the device is not dominated by the low-energy
excitations of the array. This can be satisfied by taking
ℏωJA =

√
8ECAEJA ≳ 10hGHz [16].

Using a large EJ/EC ratio allows for two useful ap-
proximations to be made in the description of the device.
We refer to the first approximation as the “distributed
phase approximation” (DPA) which replaces the phase
drop across the ith junction ϕi with ϕ/NJ , distributing
the total phase drop across the array evenly among the
identical junctions. Secondly, we may perform the stan-
dard expansion and truncation EJA [1− cos(ϕ/NJ)] =
EJA

[
(ϕ/NJ)

2/2− (ϕ/NJ)
4/4! + . . .

]
. Summing up the

contributions for all NJ junctions in these approxima-
tions results in an effective potential for the junction ar-
ray,

V =
1

2
ELϕ

2 +
1

2
ENLϕ

4 + . . . , (1)

where

EL =
EJA

NJ
, (2)

ENL =
EJA

12N3
J

. (3)

The inductive energy is inversely proportional to the in-
ductance EL = (Φ0/2π)

2/L and thus the inductance
scales with the number of junctions in the array, L ∝ NJ .
For large arrays, NJ ≫ 1, the quartic and higher order
terms are further reduced by higher powers of N−1

J and
can safely be neglected.

The inductance, however, is in practice limited by par-
asitic capacitances to ground [15, 16], see Fig. 2. As for
the excitations in the individual junctions, the plasma
oscillating frequency between the inductive array and
ground should be larger than the low-frequency modes
of the device. With each superconducting island in the
array having a capacitance Cgr to ground, the aggregate
capacitance of the array is approximately Cself = NJCgr,

resulting in an excitation energy ℏωself =
√

8ELEself
C and

self-impedance Zself =
√
2

π RQ

√
Eself

C /EL where Eself
C =

e2/2Cself . Demanding the array plasma frequency to be
larger than the junction frequency, ωself ≳ ωJA, results in
a limit to the number of junctions NJ ≲ (Cgr/CJA)

−1/2

[16]. In turn, setting a limit to how small (large) the
inductive energy (inductance) can be

EL ≳ EJA

√
Cgr

CJA
. (4)

Thus, the magnitude of the inductance and self-
impedance is primarily set by the smallness of Cgr, and
less so by EJA and CJA which are constrained by the “no

quantum phase slips” and “no low-energy excitations”
requirements. In Fig. 1(c), we show the array energy
versus phase (red line) for typical parameters (see cap-
tion) and assuming the capacitance to ground to be of the
order of one attofarad. The conventional array is char-
acterized by NJ ≈ 300, ωgr/2π = ωJA/2π = 8.9GHz,
EL = 0.13hGHz, L = 1.3 µH and Zself = 11RQ, similar
to Ref. [10].
As a final remark, we mention relative insensitivity to

variations in EJA. If δJ is the relative deviation in the
Josephson energies, the relative deviation in the inductive

energy is smaller by a factor of N
−1/2
J : δL = δJ/

√
NJ .

In practice, the junction variation is around δJ = 10%,
leading to expected variations in inductive energy of δL ≈
0.5%.

B. Ideal quarton array superinductors

The goal for the quarton array superinductor is to sup-
press the leading order quadratic contribution in Eq. (1)
to significantly increase the associated inductance. The
cancelation of the quadratic term can be accomplished
in more advanced junction arrays via interference effects
[35, 36]. We exemplify the cancelation mechanism by
considering an array of Nq quartons. The quarton con-
sists of a subarray of Ns > 1 identical junctions shunted
by a single junction with Josephson energy EJA [33, 34],
see Fig. 2(a) for a diagram with Ns = 2. Each junction in
the subarray has a Josephson energy γNsEJA, where γ is
the parameter controlling the suppression of EL. When
γ = 1 and the quarton loop is biased by exactly half a
flux quantum, the interference between the subarray and
the single junction exactly cancels the quadratic term in
Eq. (1) (up to small renormalization corrections derived
in Appendix C and similar to the renormalization dis-
cussed in Refs. [36, 37]). As detailed in Appendix A, the
ideal quarton array results in an effective potential of the
same form as Eq. (1) where

EL = (γ − 1)
EJA

Nq
, (5)

ENL =
1

12

(
1− γ

N2
s

)
EJA

N3
q

. (6)

When EL ≈ 0 and the leading contribution is quartic,
the inductive element is sometimes referred to as a non-
linear superinductor. Similarily, we refer to ENL as the
nonlinear inductive energy. In the case where γ = 2,
the quarton array mimics a conventional array with Nq

junctions and inductive energy EL = EJA/Nq. For this
reason, we interpret γ − 1 ∈ [0, 1] as the EL suppression
parameter that interpolates between a purely quartic and
a quadratic potential. Values γ − 1 < 0 formally result
in two minima, but the distributed phase approximation
fails in this regime. In Fig. 1(c), we compare effective
potentials for the conventional array (red line), the fully
EL suppressed (γ = 1) quarton array (light blue) and the
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FIG. 2. (a) A closer look of the quarton array, showing capac-
itance to ground and quarton loop areas. (b) Largest achiev-
able inductance for the conventional (red line) and quarton
(blue line) array superinductors when limited by capacitance
to ground. (c) Same as (b) for the optimal number of junc-
tions in the array. (b) and (c) together shows increased in-
ductance and improved scaling with Cgr of the quarton array.
(d) Effective potentials of the quarton superinductor when
subject to unmitigated area variations δA = 0.5%. An array
with partial suppression of EL (darkblue) is less sensitive to
area variations than an array with full suppression (lighblue).
(e) The relative variations in inductance δL for different lev-
els of variations in Josephson energy δJ . The sensitivity to
junction variations require precise fabrication δJ < 1%. We
use the value EJA = 40hGHz throughout the paper.

partially EL suppressed (γ = 1.02) quarton array (dark
blue).

There is not a unique way of relating the nonlinear
inductive energy ENL to the standard inductive energy
EL. One option is to compare an oscillator, consisting
of a QASI shunted by a capacitor, to an LC-oscillator.
To establish an equivalence between the two oscillators,
we can consider the |0⟩ → |1⟩ excitation energy of the
QASI-oscillator and equate it with the frequency of the
LC-oscillator ωLC = 1/

√
LC. The equivalent inductive

energy can then be defined as the inductive energy of
the same-frequency LC-oscillator. In Appendix B, we
discuss further ways of defining an equivalent inductive

energy an arrive at the following approximate result,

Eeq = (4ECE
2
NL)

1/3. (7)

Importantly, the equivalent inductive energy depends on
the oscillator charging energy EC since harmonic and an-
harmonic oscillator frequencies depend differently on this
quantity. The present case is complicated by the rele-
vance of two charging energy scales that result in two dif-
ferent equivalent inductive energies. The charging energy
due to capacitance to ground Eself

C determines the array
plasma frequency ωself which corresponds to an equiva-
lent inductive energy Eself

eq . When the QASI is imple-
mented in a qubit, the charging energy EC of the qubit
determines the qubit excitation energies which result in
a different equivalent inductive energy Eeq. The equiv-
alent inductive energy defined in Eq. (7) shows that the
equivalent inductive energies Eself

eq and Eeq are related by

the ratio Eself
eq /Eeq = (Eself

C /EC)
1/3.

Using the equivalent inductive energy determined by
Eself

C , we may now consider the inductance limit set by
parasitic capacitance to ground, see Fig. 2 for a cir-
cuit diagram. The aggregate capacitance to ground for
the quarton array is approximately Cself = NsNqCgr

and results in ℏωself ≈
√

8Eself
eq Eself

C and self-impedance

Zself ≈
√
2

π RQ

√
Eself

C /Eself
eq . Requiring that ωself ≳ ωJA

yields an analogous condition on the equivalent inductive
energy relevant to the self-impedance,

Eself
eq ≳ EJANsNq

Cgr

CJA
. (8)

We note that EL should replace Eself
eq if the suppression

of EL is only partial such that EL > Eself
eq . Since the

total capacitance to ground scales with the number of
junctions in the quarton subarray Ns > 1, Eq. (8) shows
that arrays with subarray sizeNs = 2 achieves the largest
self-impedance. For this reason, we focus on Ns = 2
for the remainder of the paper. Enforcing equality in
Eq. (8), assuming γ − 1 ≪ 1 while using Eself

eq /Eeq =

(Egr
C /EC)

1/3, we find the maximal number of quartons
and minimal equivalent inductive energy Eeq relevant to
the qubit when limited by capacitance to ground,

Nq =
1

2

(
ECA

EJA

)1/10(
Cgr

CJA

)−2/5

, (9)

Eeq = EJA

(
ECA

EJA

)2/15(
EC

ECA

)1/3(
Cgr

CJA

)4/5

. (10)

Compared to the conventional array, the QASI enjoys
improved scaling relations with Cgr for both the array size
and inductive energy. Using the values also used for the
conventional array EJA = 40hGHz, ECA = 0.25hGHz
and Cgr/CJA = 10−5 and assuming the QASI to be in a
circuit with charging energy EC = 10hGHz, results in
NJ = 3Nq = 90, ωgr/2π = ωJA/2π = 8.9GHz, Eeq =
6.9hMHz, Leq = 24µH and Zself = 59RQ. Thus at 3
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times fewer junctions, the QASI achieves more then an
order of magnitude increase in (equivalent) inductance
compared to the conventional array. These results are
shown in Fig. 1(c) and Fig. 2(b, c) and summarized in
Table I. Our results show that the QASI can be a useful
tool in the engineering of ultra-large impedance circuits
such as those displayed in Fig. 1(b).

C. Nonideal quarton array superinductors

The downside of the above approach to obtain large
inductance is that the array becomes relatively sensitive
to variations in junctions and geometry. If the Josephson
energies vary, the offset amount can give rise to signifi-
cant contributions to the (standard) inductive energy EL.
Likewise, in the presence of a global externalB-field, vari-
ations in the quarton loop areas away from the nominal
value A0 give rise to offset terms in the potential energy
that are proportional to the phase ϕ. As illustrated in
Fig. 2(d), even small terms linear in ϕ can severely mod-
ify the QASI effective potential.

To better quantify these effects, we present a detailed
analysis of the nonideal quarton array in Appendix C.
The dominant offset terms are

∆V = ∆φA
EJA√
Nq

ϕ+
1

2
∆ELϕ

2, (11)

where ∆φA is defined in Eq. (13). The second term re-
sults from relative variations in Josephson energies δJ
and ∆EL is given by

∆EL =

√
3

2
δJ
EJA

N
3/2
q

. (12)

As shown in Fig. 2(e), when assuming full nominal can-
cellation γ = 1, the offset contribution ∆EL can be sig-
nificant compared to the quartic term as measured by
δL = ∆EL/Eeq. Ensuring that the inductance of the ar-
ray is not limited by variations in junctions therefore re-
quires δJ ∼ 1%. This is beyond what is currently achiev-
able with state-of-the-art fabrication [47, 48]. Until fab-
rication improves below δJ = 1%, we propose to only
partially suppress EL to accommodate for large varia-
tions ∆EL. The optimal degree of suppression and the
corresponding value of γ depends on the experimentally
realized variation in junctions.

The first term in Eq. (11) is related to the relative vari-
ation in loop areas δA = ∆A/A and locally fluctuating
fields ∆Bf with,

∆φA = π

(
N+ −N−√
N+ +N−

∆Bg

B0
+ δA +

∆Bf

B0

)
. (13)

Here, the total applied field is given by B = B0 + ∆Bg

such that the nominal values of loop area and B-field sat-
isfy the half flux-quantum condition, A0B0 = Φ0/2. The

Conv. Quarton

Leading Term Quadratic Quartic

Zself scales with C
−1/2
gr C

−7/10
gr

L scales with C
−1/2
gr C

−4/5
gr

NJ scales with C
−1/2
gr C

−2/5
gr

δL scales with C
1/4
gr C

−1/5
gr

Sensitive to JJ variation No Yes

Sensitive to flux No Yes

TABLE I. Comparison between conventional and quarton ar-
ray superinductors.

total number of quartons Nq = N+ + N− is distributed
between N± quartons with orientation ± as discussed
below. We account for the small offset magnetic field
∆Bg because the array can be sensitive to fluctuations
and offsets in the global field and because careful adjust-
ments in the global field away from B0 can compensate
for the offset due to area variations δA. Since the effects
of area variations drastically change the effective QASI
potential, it is crucial to mitigate this issue. As detailed
below, we propose to do this by adjusting the global field
∆Bg, which is straightforward in experiment.
Important to the array’s response to the external field

is the orientation of the quarton loops. The quarton loops
can all be oriented in the same direction as shown in
Fig. 1 or in alternating directions shown in Fig. 2. The
loop orientation determines the sign of the external flux
relative to the phase drop across the single junctions. In
Eq. (13), we assume the general case where N± quartons
are oriented to yield a ± sign on the flux. As seen in
Eq. (13), the sensitivity to the offset global field ∆Bg is
determined by the quarton loop orientation through the
prefactor K = (N+ −N−)/

√
N+ +N−. A desired value

of K can be realized by picking the quarton orientaion
according to

N± =
1

2

(
Nq ±K

√
Nq

)
. (14)

The parameter K can be interpreted as the lever arm
in the quarton array’s response to the global offset field
∆Bg. Using this gradiometric lever arm, the offset due to
loop area variation can be exactly canceled by adjusting
the global field by an amount ∆Bg = −δAB0/K. When
choosing a value for K, it is important to also consider
the random fluctuations in ∆Bg. Experiments show that
the amplitude of flux noise in flux bias lines is more than
two orders of magnitude less than the locally fluctuating
fields often associated with randomly flipping spins in the
surface oxide [49–51]. For K ∼ 1, the global field fluctua-
tions will thus not be a dominant noise source compared
to random local fields ∆Bf and the contribution from δA
can be canceled by a small field offset ∆Bg ∼ δAB0 with-
out additional effects. As a consequence, we can assume
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that ∆Bf approximately cancels the δA contribution and
only take the locally fluctuating fields as a noise source
such that Eq. (13) becomes

∆φA ≈ π∆Bf

B0
. (15)

Fluctuations in ∆Bf is likely a significant dephasing
channel for QASI-based devices. To address this poten-
tial issue, we again propose to only partially suppress EL.
When the effective potential is approximately quadratic,
the addition of a term linear in ϕ merely leads to a shift
of the harmonic potential, which does not affect transi-
tion energies. The impact of unmitigated loop area vari-
ations at a realistic value of δA = 0.5% [49, 51] is dis-
played in Fig. 2(d), where the effective potential of the
quartic (γ = 1, light blue) and approximately quadratic
(γ = 1.02, dark blue) QASI is compared.

Considering the impact of component variation, it is
not obvious how to best choose γ and the correspond-
ing degree of EL suppression. When implementing the
QASI in protected qubit design, competing factors are at
play: A fully EL suppressed QASI is more sensitive to
variations, but it also achieves a higher (equivalent) in-
ductance that can protect the qubit against noise. Con-
versely, a partially EL suppressed QASI is more robust
against variations but results in lower inductance and
qubits that are more sensitive to noise. In the subse-
quent sections, we therefore study dephasing due to 1/f
flux noise in protected qubits: the 0 − π, bifluxon and
Blochnium qubits. By sweeping the degree of EL sup-
pression through γ − 1, we obtain optimal design recipes
for the QASI for all three protected qubit designs and dis-
cuss the feasibility of reaching their respective protected
regimes. Since the quartic potential also introduces a
coupling to the spurious ζ mode in the 0 − π qubit, we
also analyze the dephasing time due to photon shot-noise
in this qubit.

III. THE QASI 0− π QUBIT

In this section, we consider the consequences of using
QASIs in the realization of the 0−π qubit. We study its
coherence properties and discuss the possibility of realiz-
ing the deep protected regime.

The 0 − π circuit consists of pairs of identical capaci-
tances, Josephson junctions and inductors arranged in a
nontrivial circuit layout [2], see Fig. 3(a). The four nodes
in the 0− π circuit give rise to three independent modes
which are typically collected in qubit modes ϕ, θ and the
spurious ζ mode. The phase drop across circuit compo-
nents are conveniently expressed by the ϕ, θ, ζ modes,

Junctions : ϕ± θ, (16)

Capacitors : θ ± ζ, (17)

Inductors : ϕ± ζ, (18)

where ± refers to the two elements in the circuit. These
modes also diagonalize the capacitance matrix of the cir-
cuit and leads to a succinct formulation of the 0 − π
Hamiltonian [3–5, 52].
In the QASI 0 − π qubit, the inductive elements are

replaced by quarton array superinductors, see Fig. 3(a).
By using the ϕ, θ, ζ modes, we find the Hamiltonian de-
scribing the QASI 0−π qubit, H = HC+HJ+HL, which
differs from the conventional 0−π qubit [3–5, 52] only in
the inductive term HL,

HC =4Eϕ
Cn

2
ϕ + 4Eθ

C (nθ − ng)
2
+ 4Eζ

Cn
2
ζ , (19)

HJ = − 2EJ cos(ϕ+ φext/2) cos(θ), (20)

HL =
√
2∆φA

EJA√
Nq

ϕ+ EL

(
ϕ2 + ζ2

)
(21)

+ ENL

(
ϕ4 + ζ4 + 6ϕ2ζ2

)
.

The charging energies are given by their usual expressions

Eϕ
C = e2/4CJ , E

θ
C = e2/4(C + CJ) and Eζ

C = e2/4C
where C and CJ are the large circuit and small junction
capacitances respectively. The Josephson energy of the
junctions are EJ and the external flux in the qubit loop
formed by the junctions and inductors enters via φext =
2πΦext/Φ0.
The inductive part of the Hamiltonian in Eq. (21)

is found from V + ∆V in Eqs. (1) and (11) where
the phase drop is replaced by ϕ ± ζ for the two QA-
SIs. We highlight the origin of the important coupling
term in Eq. (21) which appears as a cross-term in the
quartic potential, ENL(ϕ + ζ)4/2 + ENL(ϕ − ζ)4/2 =
ENL

(
ϕ4 + ζ4 + 6ϕ2ζ2

)
. Just as for the conventional 0−π

qubit, asymmetry in the device components can also lead
to coupling between the ϕ and ζ modes. It is believed
that this coupling is limiting the coherence of the con-
ventional 0 − π qubit via shot-noise dephasing [1, 4–6]:
The thermal population of the low-energy ζ mode leads
to dephasing in the qubit through a dispersive interac-
tion. The analysis of component asymmetry will not be
reiterated here and we refer to Refs. [4, 5] for a thorough
treatment. Instead, we focus on the shot-noise dephas-
ing derived from the new ϕ2ζ2-coupling in Sec. III B and
Appendix D.

The linear term in Eq. (21) is due to locally fluctuating
fluxes in the quarton array as discussed in the context of
Eq. (15). This flux noise dephasing channel is expected
to be significant and we study it in Sec. III A. The cor-
responding linear term in ζ is left out since random flux
fluctuations are small and leads to decoherence of the
ζ mode, which is not a direct decoherence channel of
the qubit. We account for dephasing of the qubit modes
induced by relaxation of the ζ mode when considering
shot-noise dephasing.

The quartic contribution ENLϕ
4 slightly alters the

QASI 0−π qubit states. However, they remain very sim-
ilar to the conventional 0− π qubit states, see Fig. 3(c);
the QASI 0 − π states show the characteristic localiza-
tion to the θ = 0 and θ = π valleys while the ϕ mode
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FIG. 3. Flux dephasing in the 0 − π qubit with quarton array nonlinear superinductors. (a) The 0 − π circuit diagram with
QASIs. (b) Dephasing due to 1/f loop (red line) and array (blue line) flux noise as a function of external flux in the qubit loop,
φext = Φext/2πΦ0, showing sweet-spots at integer flux quanta. The parameters used are (Nq, γ−1) = (50, 8 ·10−3) as indicated
by the stars in (d). (c) Qubit state wave functions of the 0− π qubit for the same parameters and evaluated at φext = 0. (d)
Dephasing due to 1/f loop flux noise (left) and array flux noise (right) as a function of the number of quartons Nq and the EL

suppression parameter γ−1. The yellow lines indicate the maximal number of quartons allowed by the parasitic capacitance to
ground for a given level of EL suppression, see Eq. (7). The 0−π qubit is sensitive to the array fluxes but becomes protected for
large enough arrays (Cgr/CJA ≲ 10−7). The dephasing times are computed following Ref. [4] using the same noise parameter
AΦ = 1µΦ0 and the same infrared and ultraviolet cutoffs for the 1/f noise. The circuit parameters used here and in Fig. 4 are

also taken from Ref. [4]: EJ = 10hGHz, Eϕ
C = 10hGHz, Eζ

C = 0.01hGHz with Eθ
C = (1/Eϕ

C + 1/Eζ
C)

−1.

is spread across several troughs of the cosine potential
of Eq. (20). As discussed, both of these properties are
important for realizing the deep protected 0 − π regime
[1–5]. We also remark that the ζ mode remains approx-
imately harmonic despite the quartic term ENLζ

4: the
large shunting capacitors C localizes the ζ mode near
zero where the quartic contribution is small compared
to the quadratic contribution, see Fig. 4(c) where the ζ
mode potential and energies are displayed. We discuss
the ζ mode further in Appendix D and quantify when
the ζ mode is harmonic to a good approximation.

A. Flux noise dephasing

To study dephasing due to flux noise, we start by sim-
plifying the Hamiltonian in Eqs. (19)-(21). Since the
qubit states are localized in the 0 and πvalleys, we freeze
that mode to θ = 0, π. Moreover, as argued in Appendix
D, we replace ζ2 by its mean value ζ̄2 such that the
coupling to the ζ mode results in a renormalizing term,
6ENLζ̄

2ϕ2. The resulting effective Hamiltonian describ-
ing the ϕ mode is given by

Hϕ =4Eϕ
Cn

2
ϕ ∓ 2EJ cos(ϕ+ φext/2) (22)

+
√
2∆φA

EJA√
Nq

ϕ+
(
EL + 6ENLζ̄

2
)
ϕ2 + ENLϕ

4,

where ∓ refers to the 0 and π valleys. The dephasing
time Tφ due to 1/f flux noise can be numerically eval-
uated from Hϕ to second order in flux fluctuations fol-
lowing Ref. [4]. We use realistic noise parameters and

Hamiltonian parameters identical to those used to study
the protected 0− π regime in Ref. [4], see the caption of
Fig. 3 for details.

Figure 3(b,d) shows the dephasing time due to 1/f
noise in the qubit loop (red) and quarton array (blue).
In panel (b), we show the dephasing times as a func-
tion of external flux in the qubit loop φext for QASIs
with 50 quartons and EL suppression γ − 1 = 8 · 10−3.
For this realization, we also display the qubit states in
panel (c). As expected, the QASI 0 − π qubit is very
sensitive to fluctuations in the local fluxes entering the
quarton array ∆φA (blue line) compared to the qubit
loop flux φext (red line), see Fig. 3(b). These dephas-
ing times also show sweet-spots at integer flux quanta in
the qubit loop. However, many competing noise chan-
nels might not make these flux sweet-spots the optimal
operating point, see for example Fig. 4(b) and Ref. [4].
For this reason, we evaluate the loop flux and array flux
dephasing times at half-integer flux quantum and sweep
the number of quartons Nq and the EL suppression γ−1
in panel (d). The red and blue stars correspond to the
parameters used in panels (b) and (c). The left (loop
flux) and right (array flux) panels in (d) share the same
qualitative features: no protection and low coherence at
a small number of quartons or low level of EL suppres-
sion (larger γ − 1) and exponentially high coherence at
a large number of quartons and high degree of EL sup-
pression (small γ − 1). The high-coherence lines arching
out from the protected regime correspond to parameters
where the θ = 0 and θ = π ground states become de-
generate. Near these lines the θ = 0 and θ = π states
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FIG. 4. Shot-noise dephasing in the quarton array based 0 − π qubit via the always-on coupling to the spurious ζ mode in
Eq. (25). (a) The 0 − π circuit diagram showing the spurious ζ mode as the phase difference between pink and teal nodes.
(b) Shot-noise dephasing due to the “hot” (red line) and cooled (blue line) ζ mode as a function of external flux in the qubit
loop, showing sweet-spots at half-flux frustration. Parameters are identical to Fig. 3 and indicated by the stars in (d). (c) Bare
potential and energies of the ζ mode showing its approximately harmonic potential even at a large suppression of EL (small
γ−1). The hot (red line) and cooled (blue line) temperatures are also indicated on the energy axis and correspond to nhot

th = 7.0
and ncool

th = 0.14. (d) Dephasing due to 1/f loop flux noise (left) and array flux noise (right) as a function of the number
of quartons Nq and the EL suppression parameter γ − 1. The yellow lines indicate the maximal number of quartons allowed
by the parasitic capacitance to ground for a given level of EL suppression, see Eq. (7). The cooling of the ζ mode decreases
its effective temperature and increases coherence significantly near the protected regime (Cgr/CJA < 10−6). The dephasing
time is evaluated away from sweet-spots at φext = 0. The shot-noise dephasing and ζ mode cooling is computed following
Refs. [4, 5] using similar parameters: T = 15mK = 0.3125hk−1

B GHz, Tζ = κ−1
ζ = 0.1ms, Tb = κ−1

b = 80ns, ωb/2π = 5GHz,

ϵ/2π = 400MHz, ḡ = 10hMHz, such that the lossy resonator has a Q-factor around 1250. See Appendix E for further details
on the cooling scheme.

exchange role as ground and excited states. The change
of qubit ground/excited states is a curious feature of the
quartic potential and is also seen in panel (c) where one
would expect the θ = 0 state to be the ground state in
the conventional 0 − π qubit [1–6]. On top of the de-
phasing time colormaps, we show yellow to brown lines
that indicate the limit set by capacitance to ground, see
Eq. (8). For a given value of capacitance to ground,
the colormap is divided into an experimentally accessi-
ble regime (left of the line) and an inaccessible regime
(right of the line). Looking at the array flux dephasing
with these guiding lines, we conclude that above millisec-
ond coherence can be achieved when the capacitance to
ground is around Cgr ∼ 10−6×CJA and the EL suppres-
sion is around γ − 1 ∼ 10−2 or less. If the capacitance
to ground approaches Cgr ∼ 10−7 × CJA, the coherence
time increases exponentially and quickly grows beyond
one second. However, the current estimate of the para-
sitic capacitance to ground is Cgr ∼ 10−5×CJA [10]. At-
taining one to two orders of magnitude decrease in capac-
itance to ground is a significant experimental challenge.
In context, the previous decade have seen a decrease in
capacitance to ground by about one order of magnitude
[14–16]. An advanced fabrication procedures where the
junction array is lifted off the substrate, shows that it
is possible to further decrease the capacitance to ground
[11]. However, this technique is likely not compatible
with the QASI as the quarton array requires precise flux

bias.

B. Shot-noise dephasing

Photon shot-noise dephasing via the ζ mode is another
candidate for a limiting noise channel in the QASI 0− π
qubit. To estimate the shot-noise dephasing, we simplify
the Hamiltonian in Eqs. (19)-(21) by performing steps
similar to those leading to Eq. (22), see Appendix D.
The resulting effective Hamiltonian contains a dispersive
coupling at first order in ENL from the diagonal part of
ϕ2ζ2,

Hdisp = −ωq

2
σz +Ωζa

†a+ χσz(a
†a− nth), (23)

where

χ =
24ENLE

ζ
C

ℏΩζ

[
⟨ϕ2⟩0 − ⟨ϕ2⟩π

]
. (24)

We have labeled the qubit states |0⟩, |π⟩ according to
the θ = 0, π valleys and introduced the qubit Pauli Z
operator σz = |0⟩ ⟨0| − |π⟩ ⟨π| along with ⟨ϕ⟩i = ⟨i|ϕ2 |i⟩.
The dispersive shift χ can be numerically evaluated from
the renormalized ϕ mode Hamiltonian in Eq. (22) at
∆φA = 0. The raising operator of the ζ mode is a† and

Ωζ = 4
√
Eζ

C(EL + 6ENLϕ̄2) is its renormalized energy.
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The ζ mode is indicated in Fig. 4(a) as the difference be-
tween pink and teal nodes. Using the ζ mode potential
Vζ = (EL + 6ENLϕ̄

2)ζ2 + ENLζ
4, we numerically evalu-

ate the ζ mode energy Ωζ,i of the ith state. The ζ mode
potential and energies are displayed in Fig. 4(c), showing
the approximately harmonic ζ mode. The ladder of ener-
gies can be compared to the ζ mode temperature T which
sets the photon number nth = 1/ [exp(ℏΩζ/kBT )− 1].

When the ζ mode photon number fluctuates, the dis-
persive interaction in Eq. (23) leads to dephasing of the
QASI 0− π qubit with rate [4, 5, 53–55]

ΓSN
ϕ =

κζ
2
Re



√(

1 +
2iχ

κζ

)2

+
8iχnth
κζ

− 1


 , (25)

where κζ is the decay rate of the ζ mode. The Hamil-
tonian of Eq. (23) is similar to the one studied in Refs.
[4, 5] where a coupling ∝ ϕζ results in a dispersive in-
teraction at second order. There, the authors find that
the conventional 0 − π qubit is protected against shot-
noise dephasing in the weak dispersive limit, χnth ≪ κζ .
Further, Ref. [5] proposes to actively cool the ζ mode by
coupling it to a lossy resonator while modulating the res-
onators inductance harmonically. This procedure cools
the ζ mode to an effective temperature Teff and can in-
crease the shot-noise dephasing time substantially. The
cooled ζ mode effective temperature is shown in Fig. 4(c)
and we discuss further ζ mode cooling in Appendix E.

We present photon shot-noise dephasing via the ζ
mode in Fig. 4 as obtained from Eq. (25). In panel
(b), the shot-noise dephasing times are shown against
the qubit loop flux φext using the same parameters as in
Fig. 3 and indicated by stars in panel (d). We denote
the cooled ζ mode by “cool” (blue line) and the ζ mode
without cooling by “hot” (red line), using the cryostat
base temperature T = 15mK as in Refs. [4, 5]. As also
found in Ref. [5], panel (b) shows that ζ mode cooling can
increase the shot-noise dephasing time by a few orders of
magnitude; in this particular instance, by two orders of
magnitude. Moreover, panel (b) also shows that the flux
sweet spot for dephasing due to photon shot-noise is at
ϕext/2π = 1/2. This is to be contrasted to flux noise
where the sweet spot is at ϕext/2π = (0, 1), see Fig. 3(b).

In addition to the bare ζ mode potential and ener-
gies, panel (c) displays the ζ mode (effective) temper-
ature using the same parameters as in panel (b). For
these parameters, the ζ mode is cooled from the 15mK
cryostat base temperature to about Teff = 1mK, corre-
sponding to reducing the photon number from nhotth = 7.0
to ncoolth = 0.14.

Panel (d) is similar to Fig. 3(d), here showing the “hot”
(left colormap) and “cool” (right colormap) shot-noise
dephasing times evaluated at φext = 0. The arching high-
coherence lines in panel (d) are different from those in
Fig. 3 and are present when quantum fluctuations in ϕ
for θ = 0 and θ = π are identical such that χ = 0 in
Eq. (24). Shot-noise dephasing due to the hot ζ mode
(left colormap) is similar to the array flux noise dephasing

in Fig. 3(d) and these are simultaneously limiting the
QASI qubit coherence. However, when the ζ mode is
cooled (right colormap), the shot-noise dephasing is no
longer limiting the qubit coherence. In this case, the
QASI 0−π qubit can be operated at the flux noise sweet-
spot which is at integer flux quanta in the qubit loop.
Consequently, we estimate that the deep 0 − π regime
can be reached when the capacitance to ground is Cgr =
10−6×CJA or smaller. On the other hand, if the ζ mode
is not cooled, the estimates given in Sec. III A pertain.
In addition to the shot-noise dephasing studied here,

component asymmetry also leads to a shot-noise dephas-
ing channel studied in Refs. [4, 5]. In general, we expect
this noise channel to be less significant as it is due to
a second order process but it ultimately depends on the
precision with which each component of the device can
be fabricated.

IV. THE QASI BIFLUXON

In this section, we study the bifluxon qubit imple-
mented with a quarton array superinductor. Similar to
Sec. IIIA, we evaluate the dephasing time limited by flux
noise and compare it to the 0− π qubit.
The conventional bifluxon qubit consists of two iden-

tical junctions (EJ) and an inductor (EL) connected in
a loop [7], see Fig. 5(a) for a diagram where the induc-
tive element is the QASI. As derived in Refs. [1, 7] and
briefly discussed in Appendix F, the bifluxon can be de-
scribed by an effective Hamiltonian akin to the effective
0 − π qubit Hamiltonian. Replacing the device’s induc-
tance with a QASI, this effective Hamiltonian takes the
form,

Hbi =4ECn
2
ϕ ∓ EJ cos

(
ϕ

2
+
φext

2

)
(26)

+ ∆φA
EJA√
Nq

ϕ+
EL

2
ϕ2 +

ENL

2
ϕ4,

where EC is the charging energy of the ϕ mode, which is
the phase difference across the inductive element. The ∓
sign in Eq. (26) correspond to the even/odd configura-
tions of zero and one Cooper pairs on the middle island in
Fig. 5, see Appendix F for further details. The resulting
ground states |ψ±⟩ of the effective bifluxon Hamiltonian
are the computational states [7]. These are shown in
Fig. 5(c) and are similar to cuts at θ = 0, π of the QASI
0− π qubit states in Fig. 3.
We compute the dephasing time due to 1/f flux noise

in the bifluxon qubit loop and the quarton array in the
same manner as for the QASI 0 − π qubit. Fig. 5(b, d)
shows the dephasing times which are qualitatively sim-
ilar compared to Fig. 3. We find identical sweet-spots
at integer flux quanta in panel (b) and the same high-
coherence features in panel (d). Most importantly, we
find that the QASI bifluxon coherence time is much re-
duced compared to the QASI 0− π qubit. In agreement
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FIG. 5. Flux dephasing in the bifluxon qubit with a quarton array nonlinear superinductor. (a) The QASI bifluxon circuit
diagram. (b) Dephasing due to 1/f loop (red line) and array (blue line) flux noise as a function of external flux in the qubit
loop, φext = Φext/2πΦ0, showing sweet-spots at integer flux quanta. The parameters used are (Nq, γ − 1) = (160, 5 · 10−4) as
indicated by the stars in (d). (c) Qubit state wave functions in the effective bifluxon potentials for the same parameters and
evaluated at φext = 0. (d) Dephasing due to 1/f loop flux noise (left) and array flux noise (right) as a function of the number
of quartons Nq and the EL suppression parameter γ − 1. The yellow lines indicate the maximal number of quartons allowed
by the parasitic capacitance to ground for a given level of EL suppression, see Eq. (7). The bifluxon’s response to flux noise
is qualitative the same as that shown by the 0 − π qubit in Fig. 3. Albeit, the bifluxon requires much larger array sizes as
explained Appendix F. The dephasing time is evaluated away from sweet-spots at φext = π. The parameters and approach are
identical to Fig. 3 with EJ = EC = 10hGHz.

with the result of Appendix F, we find that the protected
regime has receded in the (Nq, γ − 1)-parameter space.

Despite the bifluxon’s advantages compared to the 0−π
qubit; simpler design and no spurious ζ mode, from
Fig. 5(d) it appears exceedingly challenging to satisfy
the component requirements that lead to its protected
regime, Cgr < 10−7 × CJA. Meeting these requirements
demands substantial improvements in fabrication tech-
niques beyond what can be expected in the near-term.

V. THE QASI BLOCHNIUM

We now turn to the Blochnium qubit whose circuit is
identical to the fluxonium circuit [11, 15], see Fig. 6(a)
for a diagram of the QASI-based Blochnium. The ideal
parameter regime for the Blochnium qubit, however, dif-
fers from the fluxonium parameter regime by requiring
smaller EJ/EC and EL/EC [11, 12]. Ref. [11] realizes a
Blochnium qubit with EJ < EC and EL/EC ∼ 1/100.
There, the authors lift the qubit off the substrate to de-
crease the parasitic capacitance to ground and thereby
decrease EL significantly.

This Blochnium qubit distinguishes itself from the
0 − π and bifluxon qubits by being a single mode cir-
cuit [11]. The computational states of the Blochnium
qubit is the ground and first excited states, see Fig. 6(c)
[1, 11], as opposed to the valley-degenerate states of the
0 − π and bifluxon qubits. As we elaborate later in this
section, it turns out that valley-degenerate states and
ground/excited states of a single mode responds qualita-
tively different to flux noise in the quarton array. Addi-

tionally, the Blochnium qubit is also susceptible to relax-
ation as its computational states are not disjointly sup-
ported in phase space [1].
The Hamiltonian describing the QASI Blochnium

qubit in Fig. 6(a) is given by

HBloch =4ECn
2
ϕ − EJ cos(ϕ+ φext) (27)

+ ∆φA
EJA√
Nq

ϕ+
EL

2
ϕ2 +

ENL

2
ϕ4,

where EC and EJ are the charging and Josephson energy
of the capacitor and junction in Fig. 6(a) and φext is the
flux in the qubit loop. Using Eq. (27), it is straightfor-
ward to compute the dephasing time due to flux noise in
the same way as in Secs. III A and IV.
We show the numerically evaluated dephasing times

due to 1/f flux noise in the qubit loop (red) and the
quarton array (blue) in Fig. 6(b, d). In panel (b), we
see the large difference in sensitivity to flux in the qubit
loop and the quarton array which is common to all three
qubit designs. Additionally, we identify sweet-spots at
half-integer flux quanta. In the left of panel (d), we
find the same qualitative response to flux noise in the
qubit loop as found in Figs. 3 and 5. Compared to the
QASI 0−π and bifluxon qubits, protection against qubit
loop flux noise is more easily attained for the Blochnium
qubit. The (slight) enhancement of the Blochnium’s pro-
tection to this noise channel is simply due to the factor
of 1/2 in the inductive terms in Eq. (27), compare to
Eq. (22) and the discussion in Appendix F. In the right
of panel (d), the response to flux noise in the quarton ar-
ray shows very different features compared to the QASI
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FIG. 6. Flux dephasing in the Blochnium qubit with a quarton array nonlinear superinductor. (a) The QASI Blochnium circuit
diagram. (b) Dephasing due to 1/f loop (red line) and array (blue line) flux noise as a function of external flux in the qubit
loop, φext = Φext/2πΦ0, showing sweet-spots at half-integer flux quanta. The parameters used are (Nq, γ−1) = (60, 3 ·10−2) as
indicated by the stars in (d). (c) Qubit state wave functions in the Blochnium potential for the same parameters and evaluated
at φext = 0. (d) Dephasing due to 1/f loop flux noise (left) and array flux noise (right) as a function of the number of quartons
Nq and the EL suppression parameter γ−1. The yellow lines indicate the maximal number of quartons allowed by the parasitic
capacitance to ground for a given level of EL suppression, see Eq. (7). The Blochnium’s response to loop flux noise is qualitative
the same as that shown by the 0 − π and bifluxon qubits in Figs. 3 and 5. However, due to the non-degeneracy of the qubit
states, the Blochnium qubit is not protected from array flux noise in the ϕ4-dominated regime at large EL suppression (small
γ − 1). Instead, the Blochnium qubit requires an approximately harmonic potential to become insensitive to array flux noise.
The dephasing time is evaluated away from sweet-spots at φext = π/2. The parameters and approach are identical to Figs. 3
and 5 with EJ = EC = 10hGHz.

0 − π and bifluxon qubits. Protection against this noise
channel vanishes for large suppression of EL (small values
of γ − 1), showing that the Blochnium qubit requires an
approximately quadratic inductive potential. The spread
of the first excited state in the qubit’s potential can be
substantially larger than the ground state, resulting in
greater sensitivity to the linear term ∆φAEJAϕ/

√
Nq.

This displacement generally shifts the energies unless the
inductive potential is quadratic as discussed in Sec. II C.
Thus, we find that the protected Blochnium regime can
be realized starting at around Cgr = 10−6 × CJA at a
relatively low level of EL suppression, γ − 1 ≈ 3 · 10−2.

VI. CONCLUSION

We have studied a quarton array superinductor whose
energy as a function of phase can be either quadratic,
quartic or interpolate between these two limiting cases.
We consider the self-impedance of the QASI which is lim-
ited by parasitic capacitances to ground. By compar-
ing the QASI to state-of-the-art conventional junction
array superinductors, we find that more than an order
of magnitude increase in (equivalent) inductance can be
achieved. This gain does not compromise the size of the
array. Contrary, the QASI utilizes about a factor of three
fewer junctions than the conventional array in this ex-
ample. Further, the quantities of interest in the QASI
(inductance, self-impedance, number of junctions, etc.)
scale significantly better with capacitance to ground rel-
ative to the conventional junction array.

The promising results, however, are at a cost. The
QASI shows increased sensitivity to variations due to fab-
rication. Varitations in quarton loop area can be highly
detrimental but it is possible to mitigate this issue by
alternating the quarton orientation. Worse are relative
variations in Josephson energies of the junctions which
should be below 1% and, ideally, smaller still to be able
to control the exact ratios between quadratic and quartic
contributions to the energy. We speculate that it might
be possible to design other junction array superinductors
where the requirements on junction variations are less but
likely at the cost of additional junctions that increase the
total capacitance to ground.

High-impedance superinductors are useful components
in the design of protected superconducting qubits as it
allows for exponentially suppressed sensitivity to flux-
noise. We have explored using the QASI in the 0 − π,
bifluxon and Blochnium qubits. Numerical evaluation of
the dephasing time due to 1/f flux noise in the qubit
loop and array loops show 2-3 orders of magnitude in-
crease in the sensitivity to flux noise in the quarton array
compared to the qubit loop. Despite this limiting noise
channel introduced by the QASI, the significantly higher
inductance makes up for this deficit as the deep protected
regimes of these qubits can be more easily reached. Ad-
ditionally, the QASI introduces a significant coupling to
the ζ mode in the 0 − π qubit leading to shot-noise de-
phasing on the same level as the dephasing due to flux
noise in the quarton array.

We estimate that if the parasitic capacitance to ground
is reduced by about one order of magnitude beyond cur-
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rent state-of-the-art, the deep protected regime of the
0−π qubit and Blochnium can be reached while the con-
ditions set by the bifluxon qubit remain hard to meet. An
additional requirement is an order of magnitude or more
improvement in the precision of fabricated Josephson en-
ergies to go below the 1% threshold. These predictions
should be seen in the light of the more than 2-3 orders of
magnitude decrease in capacitance to ground necessary
to reach a similar level of protection using conventional
junction array superinductors.
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Appendix A: Ideal quarton array

In this appendix, we derive the effective potential of
the ideal quarton array superinductor. We start by con-
sidering a single quarton, consisting of a subarray of Ns

junctions shunted by a single junction as explained in
Sec. II and Ref. [14, 15]. When the phase drop across the
single quarton is ϕi, the distributed phase approximation
can be envoked for the subarray itself, leading to a term
of the form

Vsub,i = N2
s γEJA(1− cos(ϕi/Ns)). (A1)

In the ideal scenario, exactly half a flux quantum threads
the quarton loop. We allocate the external flux ϕext,i =
2πΦ/Φ0 = π in the single junction, changing the sign of
the cosine,

Vsingle,i = EJA(1 + cos(ϕi)). (A2)

Summing up the contributions from all Nq quarton el-
ements while using the DPA across the entire array,
ϕi → ϕ/Nq, we get

V = NqEJA

[
cos(ϕ/Nq)−N2

s γ cos(ϕ/NsNq)
]
+ const.

(A3)
Finally, we may expand the effective potential in ϕ,

V =
1

2
(γ−1)

EJA

Nq
ϕ2+

1

24

(
1− γ

N2
s

)
EJA

N3
q

ϕ4+. . . , (A4)

giving the results quoted in Sec. II.

Appendix B: Equivalent Inductive Energy

The task of comparing the nonlinear inductive energy
ENL to a linear inductive energy EL is not unique and

depends on the relevant physics. For example, for a (non-
linear) LC-resonator, the relevant quantity may be the
ground to excited state energy ω01. For the 0 − π, bi-
fluxon and Blochnium qubits, it is instead more impor-
tant to know the spread of the ground state wavefunc-
tions

√
⟨0|ϕ2 |0⟩ to assess the degree of protection against

flux induced dephasing. We note that defining the induc-
tance from the energy separation is similar to [36] and the
wavefunction spread is considered in [35]. For a quartic
oscillator H = 4ECn

2 + 1
2ENLϕ

4, the energy ω01 can be
straightforwardly computed in the WKB approximation
and the wavefunction spread can be approximated by the
classical turning points of the ground state,

ωWKB
01 ≈ 5.77 . . .× E

2/3
C E

1/3
NL, (B1)

√
⟨0|ϕ2 |0⟩ ≈ ϕWKB

cl = 1.36 . . .× EC

ENL

1/6

. (B2)

The WKB approximation is notoriously inaccurate for
the lowest energy levels, but in the present situation,
we are only interested in approximate scaling relations.
The results in Eqs. (B1) and (B2) can be compared to
the equivalent results from a harmonic oscillator H =
4ECn

2 + 1
2ELϕ

2,

ωHO
01 =

√
8ECEL, (B3)

√
⟨0|ϕ2 |0⟩ ≈ ϕHO

cl =

(
8EC

EL

)1/4

. (B4)

By equating ωWKB
01 = ωHO

01 and ϕWKB
cl = ϕHO

cl , we get two
expressions for an equivalent inductive energy EL,

Eω
L ≈ 0.89 . . .× E

1/3
C E

2/3
NL, (B5)

Eϕ
L ≈ 2.31 . . .× E

1/3
C E

2/3
NL. (B6)

These approximate results have the same scaling in the
Hamiltonian parameters but different numerical prefac-
tors. For simplicity, we define a single equivalent induc-
tive energy similar to Eqs. (B5) and (B6),

Eeq = (4ECE
2
NL)

1/3. (B7)

The prefactor 41/3 ≈ 1.59 . . . is chosen to be a compro-
mise between Eqs. (B5) and (B6) and simplifies the equa-
tions presented in the main text.

Appendix C: Nonideal quarton array

In this Appendix, we derive the effective potential for
the disordered QASI and assume variations in Josephson
energies and quarton loop areas.
We begin by considering a single quarton at position i

in the array, this time specializing to Ns = 2 from the be-
ginning. We label the single junction j = 0 and label the
two junctions in the subarray j = 1, 2. The Josephson
energy of the single junction and subarray junctions are
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given by EJA + dE
(i,0)
JA and 2γ

(
EJA + dE

(i,j)
JA

)
respec-

tively. The independent random variations in Josephson

energy dE
(i,j)
JA are assumed to be distributed with zero

mean and standard deviation σJ = δJEJA. The junction
capacitances are assumed to take their nominal values,
Cj=0 = CJA and Cj=1,2 = γNsCJA, as variations in
the capacitances does not directly influence the quarton
array potential. The total phase drop across quarton i
is distributed across the two junctions in the subarray
ϕi = ϕi,1 + ϕi,2. The external flux threading the ith

quarton 2πΦi/Φ0 = φ
(i)
A is allocated to the single junc-

tion whose phase drop becomes ϕi + ρiφ
(i)
A . The orienta-

tion of the quarton loop relative to the externally applied
field is encoded in the sign ρi = ±1. Finally, we rotate
to the basis ϕi = ϕi,1+ϕi,2, θi = ϕi,1−ϕi,2 to obtain the
general single quarton Hamiltonian Hi = Ti + Vi,

Ti =4
ECA

1 + γ
n2ϕ,i + 4

ECA

γ
n2θ,i, (C1)

Vi =(EJA + dE
(i,0)
JA ) cos

(
ϕi + ρidφ

(i)
A

)
(C2)

− 4γ (EJA + dE
(i,+)
JA ) cos(ϕi/2) cos(θi/2)

+ 4γ dE
(i,−)
JA sin(ϕi/2) sin(θi/2),

where dE
(i,±)
JA =

(
dE

(i,1)
JA ± dE

(i,2)
JA

)
/2. Nominally, the

flux in the quarton loop is Φi = A0B0 = Φ0/2, how-
ever, deviations in the loop areas dAi and magnetic

field dBi results in deviations dφ
(i)
A = φ

(i)
A − π =

2π
Φ0

(dAiB0 +A0dBi). The area variation dAi is assumed
to be drawn independently from a distribution with zero
mean and deviation σA = δAA0.

As a first step, we integrate out the internal θ degree of
freedom. We assume that it remains in its ground state
since EJA/ECA ≫ 1 and replace θi with its expectation
value

⟨θi⟩ = −2dE
(i,−)
JA sin(ϕi/2)

EJA cos(ϕi/2)
, (C3)

Next, we approximate the θ mode to be a harmonic os-
cillator whose ground state energy is

ℏωθ

2
= EJA

√
2ECA

EJA

√
cos(ϕi/2). (C4)

In this approximation, the effective potential for the ϕi
mode becomes

Vi =(EJA + dE
(i,0)
JA ) cos

(
ϕi + ρidφ

(i)
A

)
(C5)

− 4γ (EJA + dE
(i,+)
JA ) cos(ϕi/2)

− 8γEJA

(
dE

(i,−)
JA

EJA

)2
sin2(ϕi/2)

cos(ϕi/2)

+ EJA

√
2ECA

EJA

√
cos(ϕi/2).

We expand the potential and keep significant

terms {ϕ2i , ϕ4i ,
√

ECA

EJA
ϕ2i , dXiϕi, dXiϕ

2
i , dX

2
i ϕ

2
i }

while disregarding higher order terms

{
√

ECA

EJA
dXi, dXidYi, dXiϕ

3
i , dXiϕ

4
i ,
√

ECA

EJA
ϕ4i } and

beyond. The result is Vi = V0,i + dVi where

V0,i =
1

2
EJA

(
γ − 1−

√
ECA

32EJA

)
ϕ2i (C6)

+
1

2

EJA

12

(
1− γ

4

)
ϕ4i ,

dVi = − EJA ρidφ
(i)
A ϕi (C7)

+




(
dφ

(i)
A

)2

2
+
dE

(i,Σ)
JA

EJA
− 4γ

(
dE

(i,−)
JA

EJA

)2

 EJAϕ

2
i

2
,

where dE
(i,Σ)
JA = γdEJ+,i−dE(i,0)

JA . The value of γ, where
the quadratic contribution is canceled, gets slightly per-
turbed by the internal θ mode; γ∗ = 1 +

√
ECA/32EJA.

The renormalization of γ does not change the results in
the main text as the EL suppression parameter can sim-
ply be interpreted as γ − γ∗ rather than γ − 1. For this
reason, we neglect the small renormalization of γ due to
the internal quarton mode.
Assuming that variations are small, we envoke the dis-

tributed phase approximation across the entire quarton
array ϕi = ϕ/Nq and sum all quarton potentials. The
resulting potential of the quarton array V = V0 + ∆V ,
as quoted in the main text, becomes

V0 =
∑

i

V0,i =
1

2
ELϕ

2 +
1

2
ENLϕ

4, (C8)

∆V =
∑

i

dVi = EJA
∆φA√
Nq

ϕ+
1

2
∆ELϕ

2, (C9)

where we define

EL = (γ − 1)
EJA

Nq
, (C10)

ENL =
1

12

(
1− γ

4

) EJA

N3
q

, (C11)

∆EL =

(
∆φ2

A

2
+

√
3

2Nq
δJ − 2δ2J

)
EJA

Nq
. (C12)

For realistic parameters, the middle term in Eq. (C12)
is dominant since 1/Nq is generally larger than δ2J and
area variations are generally smaller than variations in
junctions.
While every realization of the QASI is unique, the

result in Eq. (C9) is obtained by replacing
∑

i dXi →√
NqσX . We make this general simplification due to the

following reasoning: If the dXi’s are identical and inde-
pendently distributed with zero mean and standard devi-
ation σX , then the sum is distributed with zero mean and
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standard deviation
√
NqσX . We thus assume the statis-

tically likely outcome that a particular realization of the
array lies one standard deviation from the mean. In a
similar line of reasoning, we replace

∑
i dX

2
i by its non-

zero mean Nqσ
2
X . In this approach, other combinations

like dXidYi and dX3
i are higher order and are not in-

cluded. As an example, we compute ∆φA and ∆φ2
A (note

that in this notation (∆φA)
2 ̸= ∆φ2

A). The phase offset

dϕ
(i)
A contain contributions from both the globally ap-

plied field and locally fluctuating field dBi = ∆Bg+dB
(i)
f

as well as the area variations,

dφ
(i)
A =

2π

Φ0
(dAiB0 +A0δBg +A0dB

(i)
f ). (C13)

The quartons orientation encoded in the sign ρi can be

absorbed in the random variables dB
(i)
f and dAi if we

assume they come from even distributions. Summing up
the contributions for all quarton elements, we get

∆φA =
1√
Nq

∑

i

ρidϕ
(i)
A (C14)

=
1√
Nq

2π

Φ0

∑

i

ρidAiB0 +A0∆Bg +A0dB
(i)
f

=π

(
δA +

N+ −N−√
N+ +N−

∆Bg

B0
+

∆Bf

B0

)
,

∆φ2
A =

1

Nq

∑

i

(
ρidϕ

(i)
A

)2
(C15)

=
1

Nq

4π2

Φ2
0

∑

i

ρ2i

(
dAiB0 +A0∆Bg +A0dB

(i)
f

)2

=π2

[(
δ2A +

∆Bg

B0

)2

+

(
∆Bf

B0

)2

+
2∆Bg√
NqB0

(
δA +

∆Bf

B0

)]
.

Here, the the cumulative locally fluctuating field ∆Bf =∑
i dB

(i)
f /
√
Nq shares the same noise amplitude AΦ0 as

the individual fields dB
(i)
f . Immediately, we see that

∆φ2
A only gives rise to higher order contributions. On

the other hand, the contributions from ∆φA play an im-
portant role as discussed in the main text. While the
argument in Sec. II, regarding the cancellation of the off-
set due to area variations, assumes a realization of loop
areas

∑
i dAi =

√
NqδAA0, we wish to emphasize that

the external magnetic field may always be adjusted to
cancel this term regardless of the realization of loop ar-
eas.

Appendix D: Coupling to the ζ mode

In this Appendix, we discuss the coupling to the ζ
mode in the QASI 0 − π qubit and derive the effective

Hamiltonians used in Sec. III. The coupling term in
Eq. 21 can be rewritten by adding and subtracting mean
values which denote by a bar,

Hcoup =6ENLϕ̄
2 ζ2 + 6ENLζ̄

2 ϕ2 (D1)

+ 6ENL

(
ϕ2 − ϕ̄2

) (
ζ2 − ζ̄2

)

The last term contains the fluctuations away from the
mean and we find appropriate expressions for ϕ̄2 and ζ̄2

when we later treat this term. The first two terms in
Eq. (D1) renormalizes bare ϕ- and ζ modes in Eq. (21)
and presents us with a “chicken or the egg” situation;
the mean ϕ̄2 cannot be found without ζ̄2 and vice versa.
Since the ratio ⟨ϕ2⟩/⟨ζ2⟩ is large, the heavy ζ mode
will be influenced more by the renormalization than the
lighe ϕ mode. We argue that the ϕ mode can be used
to find the bare mean ϕ̄2bare which renormalizes the ζ
mode Hamiltonian to good approximation. Then, the

renormalized energy Ωζ = 4
√
(EL + 6ENLϕ̄2bare)E

ζ
C and

mean ζ̄2reno can be computed and used to renormalize
the ϕ-potential, 6ENLζ̄

2
reno ϕ

2. This approach is some-
what reminiscent of the Born-Oppenheimer approxima-
tion and is an alternative to solving for the expectations
values self-consistently.
We may now consider the last term in Eq. (D1). We

start by considering the part that is diagonal in the
(renormalized) qubit eigenstates |i⟩,

Hdiag =6ENL

[
4Eζ

C

ℏΩζ
(a† + a)2 − ζ̄2 · 1

]
(D2)

×
∑

i

|i⟩ ⟨i|
(
⟨ϕ2⟩i − ϕ̄2

)
,

where a† and a are the raising and lowering operators
for the harmonic ζ mode and 1 is the identity in this
space. We also shorten the notation ⟨ϕ2⟩i = ⟨i|ϕ2 |i⟩.
The off-diagonal part of the operator (a†+a)2 is (a†)2+a2

and can be treated, for example, via a Schrieffer-Wolff
transformation [56, 57]. We will not attempt to perform
this perturbative calculation, but instead argue that the
terms acquired from such a calculation will be subleading
compared to the diagonal part ∝ 2a†a+1. The Schrieffer-
Wolff transformation is useful in the dispersive regime
defined by

ENLE
ζ
Cnth

(ℏΩζ)2
(
⟨ϕ2⟩i − ϕ̄2

)
≪ 1. (D3)

For the qubit states i = 0, π, this perturbative parameter
is small when ϕ̄2 is chosen appropriately,

ϕ̄2 =
⟨ϕ2⟩0 + ⟨ϕ2⟩π

2
. (D4)

For parameters where the qubit is unprotected, the ζ
mode has a large energy and low photon number nth
such that Eq. (D3) is satisfied. On the other hand, when
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the qubit is protected, the qubit states becomes indistin-
guishable and ⟨ϕ2⟩i=0,π − ϕ̄2 tends towards zero, again
satisfying Eq. (D3). We therefore dismiss the off-diagonal
part of Eq. (D2) and focus only on the computational
qubit states,

Hdiag ≈ χσz(a
†a− nth), (D5)

χ =
24ENLE

ζ
C

ℏΩζ

[
⟨ϕ2⟩0 − ⟨ϕ2⟩π

]
, (D6)

where σz = |0⟩ ⟨0| − |π⟩ ⟨π| is the qubit Pauli Z operator

and ζ̄2 =
4Eζ

C

ℏΩζ
(2nth + 1). The dispersive interaction in

Eq. (D5) becomes relevant when the ζ mode number op-
erator n = a†a fluctuates relative to its thermal average
nth. The time-scale of these fluctuations are much longer
than the device dynamics and we therefore only include
this term when we study photon shot-noise dephasing in
Sec. III B.

We are still left to tackle the terms in Eq. (D1) that
are off-diagonal in the qubit states,

Hoffdiag =6ENL

[
4Eζ

C

ℏΩζ
(a† + a)2 − ζ̄2 · 1

]
(D7)

×
∑

i,j

|i⟩ ⟨j| ⟨ϕ2⟩ij .

The matrix element ⟨ϕ2⟩ij = ⟨i|ϕ2 |j⟩ predominantly
couples the computational qubit states to states which
are excited twice in the ϕ-direction due to even/odd se-
lection rules. These states are significantly higher in en-
ergy and will only give a small dispersive correction to the
diagonal part in Eq. (D5), as could be computed from a
Schrieffer-Wolff transformation as mentioned. We there-
fore also dismiss these contributions and arrive at the
coupling term

Hcoup ≈ 6ENLϕ̄
2 ζ2 + 6ENLζ̄

2 ϕ2 (D8)

+ χσz(a
†a− nth),

where the two first terms renormalizes the bare ϕ- and ζ
modes and is used throughout Sec. III. The latter term is
only relevant when computing the shot-noise dephasing
in Sec. III B.

Finally, we may consider when the ζ mode is approxi-
mately harmonic by comparing the quadratic prefactors
2EL and 12ENLϕ̄

2 to the equivalent inductive energy rel-

evant to the ζ mode, Eζ
eq = nth(4E

ζ
C(2E

2
NL))

1/3. We in-
clude nth ≈ kBT/ℏΩζ to make sure that the quadratic
contribution at least dominates up to kBT . The resulting

conditions are

EL :
√
Nq(γ − 1)3 ≳ 1

8

(
Eζ

C

4EJA

)1/3
kBT√
Eζ

CEJA

≈ 0.002,

(D9)

ϕ̄2 :

√√√√
(
ϕ̄2
)3

N5
q

≳
√

2

3

(
Eζ

C

4EJA

)1/3
kBT√
Eζ

CEJA

≈ 0.015,

(D10)

Since ϕ̄2 ∝ Nq, see for example Eq. (B2), the sec-
ond condition is fulfilled when Nq ≲ 100. For larger
Nq, the first condition takes over and is satisfied when

γ−1 ≳ 3·10−3×(100/Nq)
1/3. In the situation where both

Nq is large and γ − 1 is small, two considerations can be
made: In this case, the photon number nth is large such
that the anharmonicity between relevant states around
kBT is small. Additionally, the qubit will be deep into
the protected regime and is thus insensitive to the ζ mode
regardless of its anharmonicity. Alternatively, the cool-
ing scheme studied in Sec. III B also cools the ζ mode
sufficiently to satisfy Eqs. (D9)-(D10).

Appendix E: Cooling the ζ mode

This appendix briefly reviews the ζ mode cooling
scheme envisioned by Ref. [5] and used in Sec. III B.

Ref. [5] proposes to capacitively couple the ζ mode to
a lossy resonator,

Hcool = ℏΩζa
†a+ ℏωb(t)− ℏg(t)(a† − a)(b† − b). (E1)

The lossy resonator is described by raising and lower-
ing operators b†, b and by its frequency ωb(t) = ω̄b +
ϵ cos(ωmt). The time-dependence enters via a small har-
monic modulation of the resonator inductance, result-
ing in a frequency modulation with amplitude ϵ away
from the mean ω̄b. Similarly, the mean of the coupling
g(t) is ḡ. By choosing the modulation frequency to be
ωm = ω̄b−Ωζ , excitations in the ζ mode can be swapped
to the lossy resonator where they are lost at an increased
rate κb.

When the coupling is small ḡ ≪ ω̄b, Ωζ , the system
described by Eq. (E1) can be treated in a master equation
formalism to reveal the effective ζ mode up and down
rates Γ↑/↓ and the effective coupling g′,

Γ↑ = κb

(
2g′

κb

)2
/[(

4Ωζ

κb

)2

+ 1

]
, (E2)

Γ↓ = κb

(
2g′

κb

)2

, (E3)

g′ ≈ ḡ
ϵ

4ω̄b
. (E4)
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To avoid saturating the lossy resonator, the loss-rate is
required to be larger then the effective coupling, κb ≫ g′.
In this case, the effective ζ mode cooling rate becomes

γcool = κζ + Γ↓ − Γ↑, (E5)

and its equilibrium photon number is

ncoolth =
κζ
γcool

nth +
Γ↑
γcool

. (E6)

By this prescription, we cool the ζ mode in Sec. III B
using parameters that are in agreement with the stated
requirements for the derivation.

Appendix F: The bifluxon qubit

In this appendix, we briefly introduce the conventional
bifluxon qubit and compare its flux noise response to the
0− π qubit.

The bifluxon qubit consists of two modes; a Cooper
pair box mode and a light ϕ mode [7]. The middle island
between the Josephson junctions forms a Cooper pair box
whose offset charge 2eng can be controlled by external
circuitry. When the offset charge is exactly ng = 1/2,
the lowest energy Cooper pair box states are formed by
the even and odd combinations of zero and one Cooper
pairs on the island, |±⟩ = (|0⟩ ± |1⟩)/

√
2. In this case,

the effective Hamiltonian describing the dynamics of the
phase difference across the inductor is given by [1, 7]

Hbi = 4ECn
2
ϕ ∓ 2EJ

k
cos

(
ϕ

k
+
φext

2

)
+ kEL

(
ϕ

k

)2

,

(F1)

where EC is the charging energy of the light ϕ mode
and φext is the flux in the qubit loop. The label k re-
lates the 0 − π (k = 1) and bifluxon (k = 2) effective
Hamiltonians. Given the similar descriptions, we expect
the flux noise response to also be similar. However, the
bifluxon’s 4π-periodicity in the cosine term necessitates
larger inductance to achieve protection against flux noise.
Exponential suppression of flux noise is present when the
ground state wave function spreads across several troughs
of the cosine [1, 2]. We can estimate the spread of the
ground state wave function by dropping the cosine term
in Eq. (F1), w =

√
⟨ϕ2⟩ ≈ (kEC/EL)

1/4, and compare it
to the wavelength of the cosine-potential, λ = 2πk:

w/λ =
1

2π

(
EC

k3EL

)1/4

. (F2)

Thus, the inductive element in a bifluxon qubit (k = 2)
should be 23 = 8 times larger than the inductors in a 0−π
qubit (k = 1) in order to achieve the same level of flux
noise protection. Realizing this factor of 8 would require
almost two orders of magnitude decrease in the capac-
itance to ground, see Eq. (4), as verified by comparing
panel (d) in Figs. 3 and 5.
The T1-protection of the bifluxon qubit, however, re-

quires the computational states to be separated in phase
space [1, 7]. Disjoint support of the computational states
is achieved when EC < EJ such that the wave func-
tions localize in the cosine wells. Demanding smaller
EC further increases the requirement on the inductance
to reach flux noise protection in Eq. (F2) and this is a
trade-off inherent to the bifluxon. Despite these consid-
erations, we do not change the charging energy of the
QASI bifluxon qubit relative to the QASI 0 − π qubit,

EC = Eϕ
C = 10hGHz, to make comparison to the QASI

0− π qubit straightforward.
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[26] O. Dupré, A. Benôıt, M. Calvo, A. Catalano, J. Goupy,
C. Hoarau, T. Klein, K. L. Calvez, B. Sacépé, A. Mon-
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