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PhD Thesis

Danish National Research Foundation Center for Quantum Optics (QUANTOP)

Niels Bohr Institute

This thesis has been submitted to the PhD School of the Faculty of Science,

University of Copenhagen

February, 2014

Supervisor: Prof. Eugene Simon Polzik





ABSTRACT

There is currently an increasing interest in developing hybrid devices that unite the de-
sirable features of different systems. Opto-electromechanics has emerged as one of these
promising hybrid fields, where the functionality of conventional electrical circuits can be
combined with the salient features of optical systems for various technological and sensing
applications. Nanomechanical resonators stand as promising candidates in terms of link-
ing the two systems, primarily thanks to their versatility in coupling to various physical
systems, together with their excellent mechanical quality factors. For example, a hybrid
system like this, would enable the use of well-established shot-noise limited optical sensing
technologies for detecting weak radio-frequency (rf) signals, rf-to-optical photon conversion
and transmission of information in low-loss fiber-optic links over long distances.
Driven mainly by potential sensing applications, we started an experimental project with
the goal of realizing a hybrid opto-electromechanical device operating at room tempera-
ture. The device consists of an LC electrical circuit coupled to a metal-coated high-quality
nanomechanical membrane, the vibrations of which are monitored as phase fluctuations via
optical interferometry. At the first stage of the experiment, we have tested several bare,
metal (aluminum)-coated and graphene-coated SiN (silicon nitride) membranes in terms
of their capacitive interaction strength. Our findings support the expectation that metal
and graphene coated membranes show similar performance that is significantly better than
bare SiN membranes and single layer graphene does not alter the mechanical quality and
mass. Later on, we have incorporated an inductor to the system in order to achieve cou-
pling between an aluminum coated membrane and an LC circuit (at ≈ 0.7 MHz). We have
characterized the electromechanical coupling by both optical and electrical means, along
with the observation of mechanically induced transparency and normal mode splitting due
to strong coupling. Finally, we have analyzed the noise performance of our device for op-
tical detection of radio waves. We demonstrate an actual Johnson noise-limited voltage
sensitivity of ≈ 800 pV/

√
Hz and beyond that, we infer a sensitivity of 60 pV/

√
Hz both

for the thermal noise of the membrane and shot noise (quantum) of the optical readout,
at the optimal electromechanical cooperativity Cem = 150. Our findings are supplemented
by additional Y-factor noise temperature measurements. This performance competes with
the current state of the art operational amplifiers at room temperature and our device’s
performance can be improved with further advances. For a specific set of parameters, we
have achieved Cem = 6800 meaning that the membrane noise can be suppressed down to
Tm/Cem ≈ 40 mK. We believe our device will be of interest in sensing applications (NMR,
radio astronomy etc.) where it is coupled to a cold signal input and the Johnson noise is
strongly suppressed.





RESUMÉ

Der har i nyere tid været en stigende interesse i at udvikle hybride enheder, der forener
de ønskelige egenskaber af forskellige systemer. Opto-elektromekanik er opst̊aet som en
af disse hybrid teknikker, hvor funktionaliteten af konventionelle elektroniske kredsløb kan
kombineres med de fremtrædende egenskaber af optiske systemer, til forskellige teknologiske
anvendelser. Nanomekaniske resonatorer er en lovende kandidat til at forbinde optik med
elektronik, takket være deres alsidige kobling til forskellige fysiske systemer sammen med
fremragende mekanisk Q-faktor. For eksempel vil et hybrid-system som dette tillade brugen
af etablerede optiske m̊alemetoder, som kun er begrænset af kvantemekanisk m̊alestøj, til
at m̊ale svage radio-frekvens (rf) signaler, rf-til-optisk foton konvertering og transmission
af information i optiske fibre med lavt tab over lange distancer.
Vi startede p̊a et eksperimentelt projekt med m̊alet om at lave et hybridt opto-elektromekan-
isk element der virker ved stuetemperatur, hovedsageligt motivet af de potentielle anven-
delser indenfor præcisionsm̊aling. Vores system, best̊ar af et LC elektrisk kredsløb koblet til
en metal-belagt nanomekanisk membran med høj Q-faktor. Membranen giver et faseskift
n̊ar den vibrerer, hvilket kan m̊ales af et optisk interferometer. I starten af eksperimentet
testede vi flere rene, samt metal (aluminum)- og grafen-belagte SiN membraner og fandt
deres kapacitative interaktionsstyrke. Vores resultater understøtter forventningen om at
metal- og grafen-belægning klarer sig nærmest identisk, men bedre end almindelige SiN
membraner, og at et enkelt grafen lag ikke forringer den mekaniske Q-faktor. Senere har
vi inkorporeret en induktor i systemet, for at opn̊a kobling mellem en aluminiums-belagt
membran og et LC kredsløb (≈ 0.7 MHz). Vi har karakteriseret den elektromekaniske
kopling b̊ade optisk og elektronisk, samt observeret mekanisk induceret transparens og
opdeling af egensvingningen p̊a grund af den stærke kobling. Tilsidst har vi analyseret
præstationen af vores enhed igennem dens støjniveau for optisk detektion af radiobølger.
Vi demonstrerer en Johnson-støj begrænset spændingsfølsomhed af ≈ 800 pV/

√
Hz og vi

udleder en sensitivitet p̊a 60 pV/
√

Hz for membranens termiske samt den optiske støj ved
en optimal elektromekaniske kooperativitet p̊a Cem = 150, hvilket er understøttet af sup-
plerende Y-faktor m̊alinger. Denne ydeevne kan konkurrere med moderne avancerede oper-
ationsforstærkere ved stuetemperatur og præstationen af vores produkt kan forbedres med
yderligere udviklinger. For et givet sæt parametre har vi opn̊aet Cem = 6800 hvilket vil
sige at membranens støjbidrag kan undertrykkes til Tm/Cem ≈ 40 mK. Vi tror p̊a, at vores
produkt vil have potentielle anvendelsesmuligheder indenfor præcisionsm̊alinger (NMR, ra-
dio astronomi, etc.), hvor det kobles til en kold signal input s̊a den Johnson støj er stærkt
undertrykt.
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Chapter 1

Introduction

1.1 Background and motivation

Optomechanics and electromechanics have gained a large momentum in the last decade.
Along with the advances in fabricating high-quality mechanical resonators [1, 2], a promis-
ing toolbox of physics has emerged together with the utilization of optical cavities and mi-
crowave resonator circuits. On the one side, optomechanical systems have shown progress
with recent experimental demonstrations such as strong coupling of radiation pressure to
mechanics [10], ground state cooling of a mechanical resonator [8] and quantum coherent
coupling between optical and mechanical states [9]. On the other side, microwave fields in
an electrical resonator circuit have been coupled to mechanical resonators [21] and ground-
state cooling [11] as well as coherent state transfer [22] have also been achieved with these
systems. Besides microwave and optical manipulation, high-quality mechanical resonators
have found extensive use in various sensing applications such as highly sensitive displacement
detection [3], temperature sensing [26], mass detection [27], magnetic resonance imaging of
single electrons [23] and force detection at zeptonewton level [24]. Due to their ease of
coupling to different degrees of freedom, it has been proposed to use mechanical resonators
as tranducers between charge and spin [25].
Given all these expeditious advances in optomechanical and electromechanical systems, the
idea of combining the desirable features of the two in a hybrid opto-electromechanical setup
has evoked a rapidly rising interest. A high-quality mechanical interface coupled to both
optical and electrical systems can be utilized for efficient and faithful transfer of quantum
microwave and optical states [12,13]. A crucial advantage of converting an rf or microwave
signal to optical domain is that quantum-limited signal detection can be routinely achieved
with current laser technology, whereas in the microwave domain it becomes a tedious task
even with expensive cryogenic amplifiers such as HEMT (high electron mobility transis-
tor) [81] and JPA (Josephson parametric amplifier) [82]. Another advantage of optical
systems appears in the transmission of signals over long distances, as fiber optic-links offer
low-loss transfer whereas microwave channels are typically lossy and detrimental for fragile
states [12].
In a theoretical work performed in collaboration with our group, a scheme has been pro-
posed where a nanomembrane is coupled capacitively to an LC electrical resonator and to
an optical resonator simultaneously in a hybrid setup (J. Taylor et al [19]). In this setup,
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2 Chapter 1 Introduction

the membrane displacement changes the capacitance, thereby the LC resonance frequency
- generating the electromechanical coupling. Since the membrane-LC circuit is placed in
an optical cavity, a laser beam can be used to achieve considerable optomechanical cou-
pling as well. It has been shown that the laser beam can be used to monitor the coupled
electromechanical system by probing the cavity output and furthermore radiation-pressure
cooling can be applied to the electrical circuit via the mechanical interface. Therefore, the
envisioned setup enables both optical detection and cooling of rf resonators.
Inspired by the proposal in [19], the Quantum Membrane group at NBI (Niels Bohr In-
stitute) - QUANTOP Labs (under the supervision of Prof. Eugene Polzik) started an
experimental project in close collaboration with DTU Nanotech - Technical University of
Denmark (Silvan Schmid and Anja Boisen). The main motivation of the experiment - within
the timescale of this PhD study - was to realize an opto-electromechanical device for low-
noise detection of weak radio waves at room temperature. Throughout the project, we have
characterized the voltage sensitivity performance of our device thoroughly and demonstrated
low-noise optical detection of rf signals. Although we have so far worked in the classical
domain at room-temperature, extension of our setup to the quantum domain at cryogenic
temperatures together with superconducting circuitry is a possible direction of research.
We note that around the same time, relevant experimental works resulted in demonstration
of coupling between microwave and optical photons in a piezoelectric nanomechanical ma-
terial [84] and efficient rf to optical photon transfer in a cryogenic opto-electromechanical
configuration [85].

1.2 Publications and conferences

Journal papers

[P1] Optical detection of radio waves through a nanomechanical transducer
T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor,
A. Sørensen, K. Usami, A. Schliesser, E. S. Polzik.
Accepted to Nature (2014).
(preliminary version on arXiv:1307.3467).

[P2] Single-layer graphene on silicon nitride micromembrane resonators
S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus,
L. G. Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. Sørensen, K. Usami, E. S.
Polzik.
Journal of Applied Physics 115, 054513 (2014).

[P3] Optical cavity cooling of mechanical modes of a semiconductor nanomembrane
K. Usami, A. Naesby, T. Bagci, B. M. Nielsen, J. Liu, S. Stobbe, P. Lodahl, E. S. Polzik.
Nature Physics 8, 168-172 (2012).

[P4] High-Q optomechanical GaAs nanomembranes
J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl and S. Stobbe.
Applied Physics Letters 99, 243102 (2011).
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Conference contributions

[C1] Optical readout of coupling between a nanomembrane and an LC circuit at room
temperature
T. Bagci, A. Simonsen, E. Zeuthen, J. M. Taylor, L.G.Villanueva, S. Schmid, A. Sørensen,
A. Schliesser, K. Usami and E.S. Polzik.
CLEO Europe - IQEC, Conference on Laser and Electro-optics, Munich (2013).

[C2] Graphene on silicon nitride micromembranes for optoelectromechanical devices
S. Schmid, T. Bagci, A.N. Rasmussen, P. Herring, M. Cassidy, C.M. Marcus, J. Taylor,
A.S. Sørensen, K. Usami and E.S. Polzik.
Carbonhagen 2012 : 3rd Symposium on graphene and carbon nanotubes. 2012. p. 12.

Talks/Presentations

[T1] Invited Talk - Optical readout of coupling between a nanomembrane and an LC circuit
at room temperature
CLEO Europe- IQEC, Conference on Laser and Electro-optics. Munich, Germany (2013).

[T2] Talk - Hybrid cavity opto-electromechanics
QNLO Summer School, Sønderborg, Denmark (2012).

[T3] Poster presentation - Optoelectronic cooling of a GaAs membrane
Quantum Optics of Microresonators (Conference), Monte Verita, Switzerland (2011).

Contribution of the author

The project regarding the realization of an opto-electromechanical device is the main work
of the author within this PhD study. In paper [P1] - the author’s main contribution, the
experimental work (except fabrication) and data collection have been carried out exten-
sively by the author and Anders Simonsen, together with significant help and guidance
from Albert Schliesser. The formal theoretical framework and modelling behind this paper
is mostly worked out by Albert Schliesser, with contributions from the author for the data
analysis. The author’s contribution to the development of the manuscript was substantial.
In paper [P2] - the author’s contribution is second to Silvan Schmid, with significant amount
of work on the measurements, data collection and analysis.
Before starting the main opto-electromechanics project, the author has also been involved
in a separate experiment - optical cooling of a GaAs (Gallium Arsenide) membrane - which,
timewise, coincided with the first year of the PhD study. In paper [P3] - the main work
of Koji Usami and Andreas Næsby, the author has contributed to the initial setup for
the experimental project, data collection for several measurements and discussions for the
manuscript. In paper [P4] - Jin Liu’s main work, the author’s contribution was to help for
some part of the data analysis/presentation and discussions for the manuscript.
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1.3 Chapter structure

The focus of the experimental work performed for this PhD work lies on the realization of an
opto-electromechanical system for highly-sensitive detection of radio waves. The structure
of the thesis is arranged such that the main work of the author- the opto-electromechanical
project- is treated in detail and systematically, while the GaAs membrane experiment (to
which the author has contributed) is discussed in Chapter 6 in a compact way (This has
been treated in detail in Andreas Næsby’s PhD thesis). Chapter 2 covers the theory of
the opto-electromechanical system. The experimental part of the opto-electromechanical
project is divided into three consecutive parts that follow the logical flow and unity towards
the main goal and fit the actual chronological order of the experimental work. This includes
the systematic investigation of capacitive coupling with different membrane types (Chapter
3), optical/electrical characterization of the coupled membrane-LC circuit (Chapter 4) and
the opto-electromechanical system used as an optical radio wave sensor (Chapter 5). In the
following chapter (Chapter 6), the GaAs project is presented as an independent topic. In
Chapter 7, we conclude by summarizing the outcome of the thesis. A more detailed account
of what is presented is given below with a short description of each chapter.

Chapter 2 : In this chapter, the theory behind our opto-electromechanical device is worked
out. We first start with the treatment of vibrational modes of a mechanical resonator and
write down the equations of motion for a harmonic oscillator. Subsequently, capacitive cou-
pling is introduced where a mechanical resonator modulates the capacitance of a capacitor
due to its displacement. For an intuitive understanding, the equivalent RLC circuit model
is introduced for the mechanical resonator. In the next section, we switch to a more for-
mal treatment of the theory, starting with the system Hamiltonian and writing down the
Langevin equations of a coupled membrane - LC circuit system. We derive expressions that
are essential tools in the modelling and analysis for the characterization and determination
of the final noise performance of our device (Chapter 4 and Chapter 5).

Chapter 3 : We start with the underlying mechanism behind capacitive coupling and
present our first experimental results with a membrane coupled to a capacitor, only. This
chapter covers all the measurements we have performed with the Doppler Vibrometer
at DTU and the investigation of different membrane types - bare, aluminum-coated and
graphene-coated SiN membranes in terms of their electrostatic force constants and me-
chanical qualities. This study has helped us in understanding the interaction between the
membrane and the capacitor which is crucial for the next step of introducing an inductor
and realizing membrane- LC circuit coupling. But apart from that, the study in this chap-
ter has yielded independently meaningful comparative results. Aluminum and graphene
coated membranes show similar electrostatic performance and they clearly outperform SiN
membranes. In addition, the coating eliminates the unwanted charging effects of bare SiN
membranes. We also report advantages of graphene- coated membranes such as undegraded
Q-factors and unchanged mass.

Chapter 4 : This chapter deals with the systematic measurements and analysis we have
carried out with the coupled membrane- LC circuit system. We have utilized both electri-
cal and optical detection for the characterization of the electromechanical coupling. The
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experimental results in the mechanically induced transparency and strong coupling regimes
are analyzed separately based on our model introduced in Chapter 2. We discuss several
ways of extracting the coupling parameter G which shows our corroborative understanding
of the underlying physics behind our device. We report large normal mode splitting, which
exhibits the strong electromechanical coupling we can achieve with this system.

Chapter 5 : In this chapter, we discuss our experiments performed in order to achieve very
low-noise optical detection of radio waves with our opto-electromechanical system. This is
carried out via optical interferometric monitoring of the membrane vibrations. We first ana-
lyze the results we have obtained with high ambient noise due to inductive pickup. Then we
describe our efforts to reach Johnson noise-limited (LC circuit) sensitivity by trying several
inductor types and report the actual noise, together with inferred membrane and optical
readout contributions. Finally, we discuss our experiments where we couple the inductor
to an external coolable resistor (77K) in order to perform the Y-factor noise temperature
measurements. Based on our final results, we compare the performance of our device to
state-of-the-art operational amplifiers. In the end, we discuss the possible improvements
and future prospects for our device.

Chapter 6 : We discuss briefly an independent project in this chapter which deals with
optical cavity cooling of a GaAs membrane. In this experiment, we have explored a novel
cooling mechanism originating from electron-hole pair generation and subsequent thermal
stress release in the membrane. A mode temperature of 4K is achieved for a specific me-
chanical mode. The main results are outlined in a compact manner.

Chapter 7 : We wrap up the milestones of the work performed within this PhD the-
sis and discuss the outlook.
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Chapter 2

Theory

In this chapter, we will discuss the equations of motion that govern our electromechanical
system consisting of an LC circuit and a nanomechanical resonator, the motion of which-
in its most general sense- is monitored by optical interferometry. We will start with the
mechanical component and study the equations of motion for a thin vibrating membrane.
Next, we will deal with a simple depiction of a mechanical resonator-coupled to a capacitor-
which is modeled as an RLC circuit for an intuitive understanding. This introduction will
form the basis for the capacitive coupling tests we will show in Chapter 3. We will then
continue with a generic opto-electromechanical device, incorporating a mechanical resonator
coupled to an LC circuit. We will follow a formal treatment starting from the system
Hamiltonian and derive the Langevin equations for a mathematical understanding of the
system. This treatment will lead to the equations for the noise and sensitivity performance
of our device which we experimentally test in the following chapters. Finally, we will briefly
discuss the concept of rf to optical photon conversion and extension of the device to GHz
frequency range.

2.1 Vibrations of a thin membrane

The mechanical resonator, which is a thin nanomembrane in our case, is a crucial compo-
nent of our hybrid device. With its ability to couple to both a capacitor and a laser beam,
it forms the bridge between the rf photons and optical photons as a transducer. In this
section we will aim at understanding the dynamics and equations governing the vibrations
of the mechanical resonator, which in the end can be tracked by optical interferometry.
We will begin our treatment by introducing the elastic wave equation and follow the ap-
proach in Theory of Elasticity by Landau and Lifshitz [5]. Afterwards, by making the
proper assumptions for the specific case of an externally stretched thin membrane, we will
simplify the wave equation and solve it to find the eigenmodes of a square membrane.
We start by restricting our investigation to thin deformed plates where the thickness of the
plate is small compared to the other two dimensions. x and y refer to the coordinate axis
in the direction of the lateral displacements, whereas the variable z refers to the displace-
ments perpendicular to the x-y plane of the plate. The full derivation of the elastic wave
equation is rather lengthy, so we will give the key steps in [5] briefly. Following the general
treatment for large deformations of plates (dz is allowed to be on the order of the thickness,

7



8 Chapter 2 Theory

but still small enough so as to keep Hooke’s law valid - relating stress and strain), we have
the following definition for the two-dimensional strain tensor

uαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+

1

2

∂z

∂xα

∂z

∂xβ
(2.1)

where ux and uy form the two-dimensional vector u for pure stretching. Here, the indices
α and β run over x and y and the Einstein summation convention is used. Using the strain
tensor and the stress tensor σαβ stemming from the stretching of the plate, one can write
the total free energy of the plate as

F =

∫
(Ψ1(z) + Ψ2(uαβ))df (2.2)

where Ψ2 = 1
2huαβσαβ is the total stretching energy per unit area with h denoting the

thickness of the plate, Ψ1 is the bending energy per unit area (function of the Young’s
modulus and partial derivatives of z) and df = dxdy is the surface element. The potential
energy U in this case is U = −

∫
Pδz df where P is the external force per unit area.

Imposing the condition of minimum energy δF + δU = 0 and calculating the variations of
the integrals, one finally reaches the key equation

D42z − h ∂

∂xβ

(
σαβ

∂z

∂xα

)
= P (2.3)

where 4 = ∂2

∂x2 + ∂2

∂y2 is the two-dimensional Laplace operator and D is the flexural rigidity.
We may now treat the vibrations of a thin membrane as a particular case of this equation.
The membrane - as a result of the fabrication process - is bounded with a solid frame and
externally stretched. This streching is typically very large compared to the bending of the
membrane, therefore we can neglect the first term in equation 2.3 and other longitudinal
stress components of the stress tensor and simply write for equilibrium

hσαβ
∂2z

∂xα∂xβ
+ P = 0 (2.4)

By assuming an isotropic stretching of the membrane and letting T be the magnitude of the
stretching per unit length, then we have hσαβ = Tδαβ. With this, we reach the equation of
equilibrium in a simple form

T4z + P = 0 (2.5)

Alternatively, the equation can be written as

T4z = ρhz̈ (2.6)

where ρ is the density of the membrane and z̈ refers to the second time derivative of the
transverse displacement. In our case for a membrane with tensile stress T (defined per unit
area) and film mass density ρ the equation takes the form T 4z = ρz̈ . This leads to the
standard form of the wave equation

∂2z

∂x2
+
∂2z

∂y2
=

1

c2

∂2z

∂t2
(2.7)
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relating the spatial derivates and the time derivative via the speed of wave propagation

c =

√
T
ρ

(2.8)

In order to solve the differential equation for z(x, y, t), we shall write it as multiplication of
three seperable solutions X(x),Y (y) and T (t) [6]

z(x, y, t) = X(x)Y (y)T (t) (2.9)

Inserting this form into the elastic wave equation and solving for the derivatives, we reach
the following expression

Y T
d2X

dx2
+XT

d2Y

dy2
=

1

c2
XY

d2T

dt2
(2.10)

Dividing all the terms by XY T and multiplying by c2, we get

c2

X

d2X

dx2
+
c2

Y

d2Y

dy2
=

1

T

d2T

dt2
(2.11)

There is only one possibility for a solution being that both sides are equal to the same

Figure 2.1 Depiction of the vibrational eigenmodes of the membrane based on
the solution of the elastic wave equation( (1,1) mode on the left and (2,2) mode
on the right) .

constant yielding
1

T

d2T

dt2
= −Ω2

m (2.12)

This is the well-known equation for a harmonic oscillator oscillating with frequency Ωm.
Then T (t) becomes,

T (t) = A cos(Ωmt) +B sin(Ωmt) (2.13)
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Doing the same operation for the left hand side

c2

X

d2X

dx2
+
c2

Y

d2Y

dy2
= −Ω2

m (2.14)

The equation can be re-written in a form as follows

1

X

d2X

dx2
= −Ω2

m

c2
− 1

Y

d2Y

dy2
= −k2

x (2.15)

by introducing the new constant k2
x. The same procedure follows for the Y dependent terms

leading to
1

Y

d2Y

dy2
= k2

x −
Ω2
m

c2
= −k2

y (2.16)

imposing the new relationship for the constants

k2
x + k2

y =
Ω2
m

c2
(2.17)

The separate solutions for the x and y coordinates become

X = C cos(kxx) +D sin(kxx)

Y = E cos(kyy) + F sin(kyy)

(2.18)

As the membrane is rigidly fixed from its ends, we can apply the boundary condition that
the wave should vanish at the boundaries. Formally, these conditions imply that

z(0, y, t) = 0, z(x, 0, t) = 0, z(Lx, y, t) = 0, z(x, Ly, t) = 0 (2.19)

with the membrane dimensions Lx and Ly. The first two boundary conditions yield C=0
and E=0 and the other two yield sin(kxLx) = 0 and sin(kyLy) = 0 , thus the wave numbers
kx and ky can be written as

kx =
iπ

Lx
, ky =

jπ

Ly
(2.20)

where i and j are integers.
The eigenfrequency of the mechanical oscillator Ωm can then be written as

Ωm = cπ

√(
i

Lx

)2

+

(
j

Ly

)2

(2.21)

Here, i and j are integers referring to the specific vibrational modes. For the particular case
of a square membrane with length L in each dimension, we have [1, 2]

νm = Ωm/2π =

√
T

4ρL2

√
i2 + j2 (2.22)
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Finally, the most general form of a solution for the motion of a square membrane can be
written as the sum of all vibrational modes

z(x, y, t) =
∞∑
i=1

∞∑
j=1

[Aij cos(Ωijt) +Bij sin(Ωijt)] sin

(
iπx

d

)
sin

(
jπy

d

)
(2.23)

where Aij and Bij are constants of motion depending on the initial conditions. At this point,
it would be convenient to transform the problem of the transverse vibrations on the surface
of a thin plate to a single point harmonic oscillator problem in one dimension. This can be
done by introducing the so-called effective mass which accounts for the motion of different
points in the plate, namely due to the spatial structure of the eigenmodes. Choosing a
proper probing point (for example the antinode), one can assign a corresponding effective
mass to the membrane (1/4 of the physical mass in case of a square membrane) [7] and
then treat the membrane as a one-dimensional harmonic oscillator vibrating along the z-
axis. The detailed discussion for the effective mass determination for a square membrane
is given in Appendix F. Having made this transformation, we can write the equation of
motion for our membrane as [14,15]

m ¨z(t) +mΓm ˙z(t) + kz(t) = Fth(t) (2.24)

where m refers to the effective mass, Γm is the dissipation rate of the membrane to ac-
count for the phenomenologically inserted velocity-dependent damping term and k = mΩ2

m

is the one-dimensional spring constant. The right-hand side of the equation has the force
term Fth(t) which denotes the thermal Langevin force on the membrane. Following the ap-
proach in [14] and implementing a Laplace transform on the equation, we have the following
equation in the frequency domain

−mΩ2zΩ + iΩmΓmzΩ + kzΩ = Fth(Ω) (2.25)

Solving for zΩ, we find

zΩ =
Fth(Ω)

m

1

Ω2
m − Ω2 − iΩΓm

(2.26)

where |Fth(Ω)|2 = Sdf with S denoting the spectral density per bandwidth and Ωm is the
natural resonance frequency of the mechanical oscillator. As the Langevin force, by using
the fluctuation dissipation theorem, is given by (single-sided spectrum)

|Fth(Ω)|2 = 4kBTmΓm
dΩ

2π
(2.27)

we end up with the power spectral density expression for the vibration amplitude in case
of a thermally driven mechanical oscillator [14]

|zΩ|2 =
4kBTΓm

m

1

(Ω2
m − Ω2)2 + (ΩΓm)2

dΩ

2π
(2.28)

This is the expression - which is a Lorentzian- that governs the mechanical power in the
frequency domain in case of only thermal noise. In a series of experiments, we monitor the
membrane spectral shape by optical detection and fit the recorded data to this function in
order to extract the intrinsic parameters like Γm and m of the membrane. However, the
mechanical transfer function is strongly modified when coupled to an LC resonator and the
detailed treatment of this is given in the section with Langevin equations.



12 Chapter 2 Theory

2.2 Mechanical resonator-capacitor coupling

In this section, we will focus on the description of a vibrating mechanical resonator which is
coupled to a capacitor. We will first write down the capacitive force on the resonator - typical
for NEMS capacitive devices. The main idea is that the membrane acts as a capacitance
modulating element due to its varying displacement and this can be interpreted as a current
flowing through the circuit due to this modulated capacitance [17, 18]. For this part, we
will follow [16] and in its simplest form, the equivalent circuit can be represented by Fig.
2.2 below where the membrane is represented as a series RLC circuit in paralel to C0.

Figure 2.2 Equivalent circuit picture of a mechanical resonator coupled to a
capacitor. C0 is the unchanging capacitor with current iac flowing through that
part. The membrane brings a modulated capacitance Cm which causes a motional
current imot in a paralel branch to C0.

We start by writing the electrical energy for a capacitive system where one of the end
plate, which constitutes the mechanical resonator, is free to move and therefore brings a
position dependent capacitance. For the general case of a dc bias voltage and rf voltage
applied (at Ωm) on the capacitor legs, we have

E =
1

2
C(Vdc + Vrf )2 =

1

2
C(V 2

dc + 2VdcVrf + V 2
rf ) (2.29)

and concentrating on the response at the mechanical resonance, V 2
rf term that resonates

at twice the resonance frequency and the static term V 2
dc drop out. Inserting the general

expression for capacitance between two paralel plates C = εA/(d−x) where ε is the permit-
tivity, A is the area of the plate, d is the intial separation distance and x is the displacement
of the mechanically movable part, we shall write the electrostatic force as the first derivative
of the energy f = −∂E

∂x which yields for the magnitude of the force

f = (V 2
dc + 2VdcVrf + V 2

rf )ε
A

2(d− x)2
≈ VdcVrf ε

A

d2
(2.30)

where we have used two assumptions (x � d and V 2 ≈ 2VdcVrf ). It would then be
convenient to define the electrostatic transduction factor which converts a given Vrf to
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an actuation force f as follows,

f = ηVrf with η = Vdcε
A

d2
(2.31)

In case of a fixed voltage condition where we bias the capacitor with a dc voltage, the
current through the capacitor is given by

i =
dq

dt
=
∂(CV )

∂t
= C

∂V

∂t
+ V

∂C

∂t
(2.32)

and by using the approximations we made before, one reaches

i = C0
∂Vrf
∂t

+ η
∂x

∂t
= irf + imot (2.33)

where C0 is the non-varying offset capacitance. The first term is the standard ac current that
passes through the capacitor and the second term is the contribution from the vibrations
of the membrane that results in a motional current through the capacitor.
In order to be able to represent the mechanical resonator with an equivalent RLC circuit,
we first write the equations of motion for a damped harmonic osciallator in the time domain

m
∂2x

∂t2
+ Γm

∂x

∂t
+ kx = f (2.34)

We can replace ∂x
∂t by imot

η to write the formula in terms of electrical parameters like current
and also inserting f = ηVrf , we end up with the following equation

m

η2

∂imot
∂t

+
Γm
η2
imot +

k

η2

∫
imotdt = Vrf (2.35)

The equation of motion for a series RLC circuit (with Lm,Rm and Cm) is given by

Lm
∂imot
∂t

+Rmimot +
1

Cm

∫
imotdt = Vrf (2.36)

therefore we can rewrite equation 2.35 with the following transformation between electrical
and mechanical parameters [16,17]

Rm =
Γm
η2

=
√
km/Qη2

Cm = η2/k

Lm = m/η2 (2.37)

where Q is the mechanical quality factor. This shows that given the mechanical param-
eters of the mechanical resonator, we can represent it as a series RLC circuit with the
electrical parameters as formulized above. The treatment so far gives an intuitive picture
of the two-way coupling between the capacitor and the mechanical resonator. An actuation
voltage applied to the capacitor electrodes drives the membrae via the capacitive force and
conversely the mechanical vibrations create a modulated capacitance. This results in a mo-
tional current that can be modelled electrically on top of the electrical circuit it is coupled
to.
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2.3 Langevin equations of motion for the electromechanical
system (Membrane-LC)

In this section, we will give a formal treatment of the equations of motion that govern an
opto-electromechanical system where an LC circuit (now an inductor is introduced) is cou-
pled to a nanomechanical resonator via capacitive coupling and the mechanical vibrations
are read out via optical interferometry. For the sake of generality, we model the electrical
circuit as a series RLC circuit and the mechanical resonator acts as a perturbation on the
total capacitance of the circuit. Here, we will stick to the formalism that is worked out by
A. Schliesser in the SI of our work [4] and we will use it to model and describe our exper-
imental setup. The following data analysis in the subsequent chapters is to a large extent
based on the equations of motion we derive in this section. We start by writing down the
Hamiltonian [19] of our electromechanical system based on the simplified electrical circuit
(Fig. 2.3) as follows (back-action of the optical readout is negligible in our case, therefore
it acts a non-perturbative probe)

Figure 2.3 Simplified circuit diagram for a generic LC resonator circuit with
resistive loss R (assigned to the inductor), Vs (Johnson noise source) and a posi-
tion dependent capacitance C0 + Cx due to capacitive coupling to a mechanical
resonator. Vdc is the bias voltage that is applied to the capacitor electrodes to
enhance the coupling (A large capacitor in series to the inductor is used in the
experiment in order to avoid short-circuiting of the dc bias which is not shown
here).
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H =
φ2

2L
+

p2

2m
+
mΩ2

mx
2

2
+

q2

2C(x)
− qV (2.38)

where φ and q denote the flux of the inductor (with inductance L) and the charge on the
capacitors (with capacitance C(x)) forming an LC resonator circuit with eigenfrequency
ΩLC = 1√

LC
. x and p denote the displacement and momentum of the mechanical resonator,

respectively. We note that we only deal with one vibrational mode of the mechanical
resonator (square membrane in our case) which is the fundamental drum mode with effective
mass m and eigenfrequency Ωm. The origin of the electromechanical coupling is encoded

in the q2

2C(x) term which refers to the displacement dependence capacitance of the circuit.
Applying the Langevin approach on the Hamiltonian, we reach the following set of equations

ẋ =
p

m
(2.39)

ṗ = −mΩ2
mx−

q2

2

∂

∂x

(
1

C(x)

)
− Γmp− δFth (2.40)

q̇ =
φ

L
(2.41)

φ̇ = − q

C(x)
− ΓLCφ+ V (2.42)

where Γm denotes the dissipation rate of the membrane and the electrical loss in the LC
circuit ΓLC = R/L is modeled as a resistive element (R) attached in series to the coil. We
also add a term Fth to account for the thermal Langevin force on the membrane and a
driving voltage term V to refer to a voltage induced in the inductor.
From this point on, we will write the voltage V as the sum of a dc bias voltage Vdc and a
small fluctuating term δV together with the total charge as

V (t) = Vdc + δV (t) (2.43)

q(t) = q̄ + δq(t) (2.44)

and we write the terms x, p and φ as the sum of their equilibrium values x̄, p̄ and φ̄)
plus small fluctuations around these values in order to be able to switch to the picture of
linearized Langevin equations. We can then express the new form of the set of equations
as follows (first order perturbations)

δ̇x(t) =
δp(t)

m
(2.45)

δ̇p(t) = −mΩ2
mδx(t)− q̄2

2

∂2

∂x2

(
1

C(x)

)∣∣∣∣
x=x̄

δx(t)− Γmp− q̄
∂

∂x

(
1

C(x)

)∣∣∣∣
x=x̄︸ ︷︷ ︸

G

δq(t)− δFth(t)

(2.46)

δ̇q(t) =
δφ(t)

L
(2.47)

δ̇φ(t) = −δq(t)
C(x̄)

− q̄ ∂

∂x

(
1

C(x)

)∣∣∣∣
x=x̄︸ ︷︷ ︸

G

δx(t)− ΓLCδφ(t) + δV (t) (2.48)
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where we have the conditions pertaining to the equilibrium state

mΩ2
mx̄ = − q̄

2

2

∂

∂x

(
1

C(x)

)∣∣∣∣
x=x̄

=
q̄2

2

C ′(x̄)

C(x̄)2
(2.49)

q̄ = VdcC(x̄) (2.50)

p̄ = φ̄ = 0 (2.51)

Here, equation 2.49 gives the static displacement of the membrane due to the capacitive
force on it, leading to a new equilibrium position and equation 2.50 gives the static charge
on the capacitor due to the applied dc bias voltage. A crucial parameter for the system,
named the coupling parameter G, is introduced here which is given by

G = q̄
∂

∂x

(
1

C(x)

)∣∣∣∣
x=x̄

= −q̄ C
′(x̄)

C(x̄)2
= −Vdc

C ′(x̄)

C(x̄)
(2.52)

The coupling parameter is linearly proportional to the applied dc voltage and the ratio of
the modulated capacitance to the total capacitance. It also provides a convenient direct link
between voltage fluctuations in the circuit and mechanical fluctuations of the membrane.
An important feature of the electromechanical system - namely the frequency shift of the
mechanical resonator due to the electrostatic force in addition to the intrinsic spring con-
stant - has already been discussed in the previous chapters and here it appears related the
second derivative of the q2/2C(x) term which in the end looks like

∆Ωm =
q̄2

4mΩm

∂2

∂x2

(
1

C(x)

)∣∣∣∣
x=x̄

(2.53)

We now transform the time-dependent set of equations of motion to frequency domain with
a Fourier transform and also absorb the frequency shift into the redefined Ωm.

−iΩ δx(Ω) = δp(Ω)/m (2.54)

−iΩ δp(Ω) = −mΩ2
mδx(Ω)− Γmδp(Ω)−Gδq(Ω)− δFth(Ω) (2.55)

−iΩδq(Ω) = δφ(Ω)/L (2.56)

−iΩδφ(Ω) = −δq(Ω)/C − ΓLCδφ(Ω)−Gδx(Ω)− δV (Ω) (2.57)

At this point it would be convenient to introduce the bare susceptibilities for the mechanical
resonator and the LC circuit as well as their modified forms due to the electromechanical
coupling, namely the effective susceptibilities as follows

χm(Ω) =
1

m (Ω2
m − Ω2 − iΩΓm)

(2.58)

χLC(Ω) =
1

L
(
Ω2
LC − Ω2 − iΩΓLC

) (2.59)

χm, eff(Ω) =
1(

χ−1
m (Ω)−G2χLC(Ω)

) (2.60)

χLC,eff(Ω) =
1

(χLC(Ω)−1 −G2χm(Ω))
(2.61)
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Now we establish the link between the coupling parameter G and the electromechanical
coupling rate gem through the zero-point fluctuations of the membrane displacement xzpf

and capacitor charge qzpf

~gem = Gxzpfqzpf = G

√
~

2mΩm

√
~

2LΩLC
, (2.62)

It is then possible to write down the electromechanical cooperativity [20,21], a very cruical
parameter for the system that relates the coupling rate to the individual dissipation rates
of the mechanical resonator and the electrical circuit as follows

Cem =
4g2

em

ΓmΓLC
(2.63)

Having established the equations of motion and relations that govern our electromechanical
system, we now look at the two experimentally feasible methods of probing the system.
First, we concentrate on the electrical response of the system which can be probed non-
perturbatively (in our experiment via an op amp) at the leads of the capacitor by measuring
the voltage across the capacitor

Vc =
q

C(x)
= V̄c + δVc = (q̄ + δq)

(
1

C(x̄)
+

∂

∂x

1

C(x)

∣∣∣∣
x=x̄

δx

)
(2.64)

and neglecting the small nonlinear terms, we end up with

δVc =
δq

C(x̄)
+Gδx (2.65)

By using the set of Langevin equations in the Fourier domain, we can write the voltage
across the capacitor as follows

δVc(Ω) =

(
1

C(x̄)
− χm(Ω)G2

)
δq(Ω) =

=

(
1

C(x̄)
− χm(Ω)G2

)(
χLC(Ω)−1 −G2χm(Ω)

)−1︸ ︷︷ ︸
χeff

LC(Ω)

(−δV s(Ω)) (2.66)

where the circuit is driven via inductive coupling through the inductor port with a signal
δV s(Ω). The driving signal is supposed to be large with respect to the fluctuating terms.
Equation 2.66 is one of the key equations describing the voltage dynamics in the circuit
influenced by the presence of coupling to the mechanical resonator. The electrical response
of the system is now altered due to the effective susceptibility χLC,eff originating from the
coupling dynamics. An obvious consequence of this coupled dynamics is the appearance of a
mechanically induced transparency window within the LC resonance bandwidth stemming
from the interference of the probe voltage and the back-coupled voltage due to the membrane
fluctuations. Observation of this coupling physics has beeen realized in an optomechani-
cal (OMIT- Optomechanically induced transparency [20]) and electromechanical (EMIT-
Electromechanically induced transparency [21]) setup. This is one of the phenomena we
will refer quite often in order to analyze our experimental results which will be discussed in
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detail in the following chapters. We note that the appearance of the mechanically induced
dip is a purely classical interference phenomenon that is encoded in the Langevin equations.

Next we turn to another way of extracting information regarding the electromechanical
system which can be implemented via purely optical means. Just like the voltage fluc-
tuations in the circuit, the displacement fluctuations of the membrane reveal the coupled
nature of the electromechanical system. This becomes clear when the Langevin equations
are arranged such that δx(Ω) is written in terms of the total force acting on it and the
modified mechanical susceptibility of the membrane as follows(

χ−1
m (Ω)−G2χLC(Ω)

)
δx(Ω) = −δFth(Ω) +GχLC(Ω)δV (Ω) (2.67)

or in a more compact form by using χm,eff

δx(Ω) = χm, eff(Ω)(−δFth(Ω) +GχLC(Ω)δV (Ω)) (2.68)

Equation 2.68 shows that it is possible to extract electromechanical coupling parameters
also by looking at the mechanical response around resonance. In terms of optical detection,
it would show up in the phase fluctuations of light hitting the membrane, which is for
the sake of generality, a part of an interferometric path. Following the well-known phase
relation

δϕmem = 2kδx (2.69)

and replacing δx with 2.68, the measured optical phase shift becomes

δϕ(Ω) = 2kχeff
m (Ω) [−δFth(Ω) +GχLC(Ω)δV (Ω)] + δϕim(Ω) (2.70)

where δϕim refers to the imprecision term coming from the optical readout. In our exper-
iments, we probe the optical phase fluctuations due to the mechanical displacements via
interferometric means (Doppler Vibrometry and Michelson Interferometry). An immediate
consequence of electromechanical coupling acting on the membrane is the change in the
mechanical susceptibility. This is manifest in the modification of the mechanical linewidth
(broadening in case of Qm � QLC) which can be summarized in the following relation

Γm,eff = Γm(1 + Cem) (2.71)

As the cooperativity is increased, the membrane linewidth starts to broaden due to its
coupling to a more lossy resonator. To sum up, the presence of electromechanical coupling
manifests itself both in the electrical and optical readout, giving us two independent ways
of quantifying the coupling parameters of the device. We note that the treatment here so
far has dealt with the special case of dc drive. In the section discussing the alternative way
of representing the coupling strength, we will write it as a general voltage term which can
also be an ac driving voltage and make use of it for future goals related to the experiment.

2.4 Voltage sensitivity and noise

In this section, we will follow the equations we have derived in the previous section and
use them to write down the voltage sensitivity of our opto-electromechanical system taking
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into account the relevant noise sources. The motivation behind this treatment is to see how
this opto-electromechanical device can be used as a very sensitive sensor by converting an
rf input signal to an optical signal via nanomechanics. Focusing on optical detection, we
can start by writing down the spectral density of phase fluctuations by taking the square
of the expression in equation 2.70 and omitting the cross coupling terms since we assume
uncorrelated inputs for δV , δFth and δϕim. Thus the total phase noise becomes

Stot
φφ (Ω) = (2k)2 |χm,eff(Ω)|2

(
|GχLC(Ω)|2 SV V (Ω) + Sth

FF (Ω)
)

+ Sim
φφ(Ω) (2.72)

where SV V (Ω) and Sth
FF (Ω) refer to the power spectral densities (double-sided) for the

voltage fluctuations and thermal Brownian motion of the membrane, respectively. As can be
seen, in order to be detected, a voltage signal has to be larger than the two noise contribution
terms, namely the thermal fluctuations of the membrane and the optical readout noise. It
is worth to note the situation for the case when the optical readout noise can be neglected.
Then the thermal noise - limited voltage sensitivity becomes

Smem
V V (Ω) =

Sth
FF (Ω)

|GχLC(Ω)|2
=

∣∣∣∣χLC(ΩLC)

χLC(Ω)

∣∣∣∣2 · 2kB
Tm

Cem
R (2.73)

On resonance (Ωm = ΩLC), it further simplifies to

Smem
V V (Ωm) = 2kB

Tm

Cem
R (2.74)

The result is remarkable in the sense that due to the rich coupled nature of the system, the
voltage sensitivity can be increased significantly since the thermal membrane fluctuations
are suppressed by the cooperativity. Thus, as a fundamental limit, the individual mem-
brane thermal noise contribution can be much lower than the physical temperature of the
membrane (Tm-room temperature in our case).
Following the same treatment for the optical readout noise (which in principle is the quan-
tum shot-noise of light), we find the voltage sensitivity as

Sim
V V (Ω) =

Sim
φφ(Ω)

|2kχm,eff(Ω)GχLC(Ω)|2
, (2.75)

and again at resonance, this becomes

Sim
V V (Ωr) =

2nim~Ωr ·R(1 + Cem)2

Cem
(2.76)

with

nim =
Sim
xx(Ωr)

4x2
zpf/Γm

(2.77)

referring to the imprecision in terms of the number of quanta. Here Sim
xx is the optical read-

out imprecision expressed in terms of displacement noise. In Chapter 5, the relationship
between the displacement imprecision and optical readout noise will become more clear
within the discussion of optimal cooperativity.
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Noise Temperature

The spectral noise power densities we have dealt with in the previous section can for
convenience be translated into effective noise temperatures. We can therefore assign a
noise temperature to our transducer/amplifier by summing all the individual contributions
- namely the thermal noise of the membrane, optical readout noise and Johnson noise of
the circuit. We start by writing down the relationship between the total voltage noise and
the total phase noise

Stot
V V (Ω) = Stot

φφ (Ω)/|χtot(Ω)|2 (2.78)

where
χtot(Ω) = 2kχm,eff(Ω)GχLC(Ω) (2.79)

is the transducer transfer function. Also including the Johnson noise of the LC circuit
SJ
V V (Ω) = 2kBTRR, we then have the total voltage noise

Stot
V V (Ω) = SJ

V V (Ω) + Smem
V V (Ω) + Sim

V V (Ω) (2.80)

Writing down the individual contributions explicitly and imposing the resonance condition
again, we reach

Stot
V V (Ωr) = 2kBTRR+ 2kB

Tm

Cem
(R+Rs) +

2nim~Ωr · (R+Rs)(1 + Cem)2

Cem
(2.81)

At this stage, we have introduced a series source resistance Rs that is connected to the
input of the transducer. This is done in order to switch to the conventional language of
electrical engineering where an amplifier noise is referred with respect to a source resistance
at its input. The noise temperature of a receiver is defined as the temperature of a source
resistor that would generate power equal to the noise power of the receiver [28]. As can
be seen, the noise equation above takes into account the fact that the additional source
resistance alters the cooperativity of the system due to increased electrical damping. By
using equation 2.81, we can write the total noise temperature of the transducer referenced
to the input resistance Rs as

Tn =
R

Rs
TR +

R+Rs

Rs

(
Tm

Cem
+

(1 + Cem)2

Cem
nim~Ωr

)
(2.82)

By defining a loading factor ηe = Rs
Rs+R

to account for the effect of the source resistance

and the optical readout noise temperature TL = nim~Ωr, we reach the following form for
the noise of the transducer

Tn =

(
1

ηe
− 1

)
TR +

1

ηe

(
Tm

Cem
+

(1 + Cem)2

Cem
TL

)
(2.83)

Equation 2.83 is a crucial result describing the noise contributions due to different elements
of our hybrid opto-electromechanical device as an effective noise temperature. This total
output noise temperature of the transducer can experimentally be determined by imple-
menting the so-called Y-factor method [29] which will be explained in Chapter 5. The
source resistor temperature can be varied and the output noise of the amplifier at different
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temperatures can be measured to extract the actual transducer noise in the presence of
thermal LC noise. Decomposing the total noise into its constituents, the first term now
appears as the Johnson noise of the LC circuit, however modified due to coupling to the
source resistor which might be at a different physical temperature. The second term is
the membrane noise contribution which is suppressed by the modified cooperativity due
to the additional source resistance. The third term is the optical noise which also scales
with the modified cooperativity. We will use this formula in order to analyze our data in
chapter 5 regarding the noise measurements of our device with external loading and cooling.

2.5 Alternative derivation of the coupling rate

Our treatment has so far involved writing down the Hamiltonian and solving the Langevin
equations of the coupled electromechanical system. It can be seen from the set of equations
we have reached that the voltage fluctuations and mechanical displacement are coupled
via the coupling parameter G and it can also be expressed through the electromechanical
coupling rate gem. It would be useful to reach the coupling rate in an alternative way,
where it is expressed via the mean displacement of the membrane - namely by gem =
√

ΩmΩLC

√
xe−x0

2ζ as formulated in the proposal by Taylor et al [19]. Thus in this section,

we will attempt to reach the same expression by going through the intermediate steps. In
the end, we will also mention the form of the coupling rate for the case of an ac drive.
The Hamiltonian is the same as before so we begin by writing the interesting term that
brings the coupling

Hint =
q2

2C(x)
(2.84)

Expanding C(x) around a large offset capacitance and assuming small changes in capaci-
tance, we can write

Hint =
q2

2(C0 + C(x))
=

q2

2(1 + Cx
C0

)C0

≈ q2

2C0
(1− Cx

C0
) (2.85)

Dropping out the offset term (q2/2C0) that is independent of C(x), writing the total charge
as a large classical value q0 plus a small fluctuating term δq as q = q0 + δq and applying
linearization (omitting q2

0 and δq2 and only keeping 2q0δqδx), we end up with

Hint = − q0

C2
0

∂C

∂x
δqδx (2.86)

and here we have replaced the position dependent capacitance (to first order approximation)
with C(x) = ∂C

∂x δx. Next we find the new equilibrium position due to the applied bias
voltage V . This can be found by equating the derivative of the capacitive force to the
spring force acting on the membrane.

− 1

2

∂C

∂x
V 2 = −mΩ2

m(x0 − xe) (2.87)

where xe is the equilibrium position at V = 0 and x0 is the new equilibrium position with
the applied voltage V (although in general it can be an ac voltage, it is assumed to be dc
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in this case). We now write this equation in a slightly different manner with the convenient
characteristic length ζ−1 = −C−1∂C/δxm|x0 introduced in [19]

x0 − xe = − q2
0

C(x0)

1

Ωm

x2
zpf

ζ
(2.88)

and with ~ = 1, we have defined the zero point fluctuations of charge and position as
qzpf = 1/

√
2LΩLC and xzpf = 1/

√
2mΩm with the new equilibrium charge q0 = C(x0)V .

By using 2.88 and reexpressing the equilibrium charge, we have

q0 =
√

(xe − x0)Ωm

√
2mζC0 (2.89)

Here we use the sign convention such that (xe − x0) is positive and consequently ∂C
∂x is

negative. We have also replaced C(x0) by C0. Now by inserting this expression for q0 into
the interaction Hamiltonian in 2.86, we get

Hint =

√
(xe − x0)Ωm

√
2mζC0

C0
(−)

1

C0

∂C

∂x︸ ︷︷ ︸
1
ζ

δqδx (2.90)

By switching to the annihilation/creation operators for charge (a,a†) and position (b,b†)
fluctuations as follows

δq = (a+ a†)
1√

2LΩLC
(2.91)

δx = (b+ b†)
1√

2mΩm
(2.92)

the expression for the interaction Hamiltonian becomes

Hint =

√
(xe − x0)Ωm

√
2mζC0

C0

1

ζ
(a+ a†)

1√
2LΩLC

(b+ b†)
1√

2mΩm
(2.93)

and simplifies to

Hint =
√

(xe − x0)
√

ΩmΩLC
1√
2ζ

(a+ a†)(b+ b†) = gem(a+ a†)(b+ b†) (2.94)

and consequently the operators for charge and displacement fluctuations become coupled
through the electromechanical coupling rate gem [19]

gem =
√

ΩmΩLC

√
(xe − x0)

2ζ
(2.95)

This expression can be written in a more intuitive way if we use the assumption that
the derivative of the capacitance ∂C/δxm|x0 is constant between xe and x0. This is a
safe assumption as the static displacement caused by the applied bias voltage is typically
small compared to the initial distance between the membrane and the capacitor electrodes.
Therefore for small displacements we can write

∆C =
∂C

∂xm
(x0 − xe) (2.96)
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where ∆C is the change in capacitance (positive) due to the static displacement caused by
the applied bias voltage and it is directly proportional to the derivative times the displace-
ment from the initial membrane-electrode distance at V = 0. Then by rewriting xe − x0 in
terms of this capacitance change and plugging into 2.95, we end up with [19]

gem =
√

ΩmΩLC

√
∆C

2C0
(2.97)

It is clear that any additional capacitance (parasitic elements for example) reduce the cou-
pling since it is the ratio of the change in capacitance that matters for the coupling rate
(for an ΩLC that is fixed by modifying the inductance for example). Furthermore, it is
possible to link the capacitance change to more readely accessible experimental parameters
like the static displacement and frequency shift by using the approximations to first order
∆C/C0 ≈ ∆x/x ≈ ∆Ωm/Ωm. For example, by just measuring the frequency shift of the
mechanical resonator, one can estimate the coupling strength for a given bias voltage and
LC circuit parameters.
It would also be important to write down the coupling rate for the case of ac drive,
where the LC resonator frequency might be vastly larger than the mechanical frequency. A
convenient way to derive such an expression (usually done in the context of opto or elec-
tromechanical systems) is to start from the frequency change of the LC resonator due to
the motion of the membrane. gem in this case is given by

gem =
dΩLC

dx
xzpf

√
n =

(
d

dx

1√
LC(x)

)√
~

2mΩm

√
1
2CV

2
c

~ΩLC
(2.98)

where n is the number of charges circulating in the LC resonator, C is the capacitance and
Vc is the rms voltage on the capacitor. The expression simplifies to

gem = Vc
∂C

∂x

√
ΩLC

4ΩmmC
(2.99)

The coupling rate for ac drive is linearly proportional to the derivative of the capacitance
and the voltage on the capacitor which depends on the response function of the LC circuit
to a given ac coupling voltage at a specific frequency. The coupling term arises out of the
frequency shift of the LC resonator due to the mechanically modulated capacitance and the
coupling rate is enhanced by the number of charges.

2.6 Instability due to the pull-in voltage

There is a certain instability limit for the bias voltage that can be used to increase the
cooperativity. This voltage is known as the pull-in voltage [16, 30] for capacitive systems
and it is therefore also relevant for our system. Writing the capacitance as C = Aε

(d−x) we

find for the force on the membrane (here we are interested in the static response under fixed
bias voltage conditions)

F = −∂E
∂x

=
1

2

Aε

(d− x)2
V 2
dc − k0x (2.100)
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where d is the initial membrane-chip gap distance, k0 is the intrinsic spring constant of the
membrane and x is the displacement of the membrane towards the electrodes. From the
equation above, we find the relation at equilibrium as

k0x =
Aε

2(d− x)2
V 2
dc (2.101)

By substituting the above equation in the expresssion for the spring constant ∂F/∂x (deriva-
tive of the expression in 2.100, we reach for the spring constant at equilibrium [16]

∂F

∂x
=

2k0x

(d− x)
− k0 (2.102)

The equation goes to zero at the condition x = d/3 meaning that if the membrane is dis-
placed by that amount due to the dc bias voltage, the spring constant will go to zero causing
instability of the system. Practically, when this point is reached, the membrane will collapse
and stick to the electrodes rendering the device useless.
We have observed this phenomenon during our tests with several membranes resulting in
the eventual breaking of the membranes. Experimentally, a conventional way of keeping
track of this instability regime is to monitor the frequency shift of the membrane. Making
some reasonable assumptions, a direct mathematical link between the relative static dis-
placement and the relative frequency shift of the membrane can be established. Assuming
a homogeneous force and neglecting the deflection of the membrane (or treating the mem-
brane as a slab moving straight down), one can find the direct link between the two as
follows. For a coplanar electrode-membrane configuration, the capacitance and its first and
second derivates are related by

C =
Aε

d
C ′ = −Aε

d2
C ′′ = 2

Aε

d3
(2.103)

The equilibrium distance is directly related to the first derivative of the capacitance yielding
the expression below for the relative displacement

∆x

d
= − 1

2d

C ′V 2
dc

m4π2f2
=

1

2

Aε

d3

V 2
dc

k0
(2.104)

whereas the frequency shift is related to the second derivative of the capacitance bringing

∆f

f
≈

1
2C
′′V 2

dc

2k0
=

1

2

Aε

d3

V 2
dc

k0
(2.105)

leading to the same expression. So within the limits of these assumptions, the measured
frequency shift can be related to the relative displacement in order to estimate the maximum
allowable dc voltage by empirical means through

∆f

f
≈ ∆x

d
(2.106)
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2.7 RF to optical photon conversion

So far in the theory chapter, we have dealt with how a voltage signal is transferred to
mechanical vibrations. Another interesting case would be to investigate how the number of
rf photons is converted to optical photons. This is basically derived from the same Langevin
equations, however the impedance matching conditions are different. The concept of rf to
optical photon coversion is important in achieving faithful coherent transfer of photons from
the rf domain to optical domain including practical applications like carrying otherwise
fragile microwave states (quantum) via less lossy fiber-optic communication lines to long
distances.
The fundamental equation that we use to derive the conversion efficiency is the total phase
noise equation we have introduced before in our opto-electromechanical system

δφ(Ω) = 2kχm,eff(Ω)
[
−δFth(Ω) +GχLC(Ω)δV (Ω)

]
+ δφim(Ω) (2.107)

For the special case of a sufficiently high rf input, we may neglect the thermal noise term
for the membrane and the optical readout imprecision leaving us with

δφ(Ω) = 2kχm,eff(Ω)
[
GχLC(Ω)δV (Ω)

]
(2.108)

Furthermore, imposing the resonant drive condition (ΩR), we end up with

δφ(ΩR) = 2k

√
C

mΓLCΓm

Cem

(Cem + 1)2
δV (ΩR) (2.109)

One of the figure of merits for such an electro-optic modulator is the half-wave voltage Vπ
which is the voltage necessary to yield an optical phase shift of π. Using the optimum
cooperativity Cem = 1 for the expression above, Vπ becomes

Vπ =
λ

2

√
mLΓLCΓmΩR (2.110)

Next, we derive the explicit form of the conversion efficiency which is given by the ratio of
output optical photons to the input rf photons

ηeo =
Psb/~Ωopt

PRF/~ΩR
(2.111)

where the modulated sideband optical power Psb with an optical input of Pin is given by

Psb = Pin2(φ/2)2 (2.112)

and the electrical power in the circuit is

Prf =
V 2
s

rs(1 + Cem)
(2.113)

with φ = 2(2π/λ)xrms. Going back to the conversion efficiency equation 2.111 and also
writing the phase shift in terms of the Vπ, one reaches

ηeo =
4Cem

1 + Cem
(kx0)2 Φcar

Γm
(2.114)
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where Φcar is the flux for the carrier photons. The conversion efficiency does not have the
same optimal condition of Cem = 1 for Vπ. Since, in our opto-electromechanical system,
the impedance increases with higher cooperativites, it means that less rf power is needed
to make the same optical phase shift. So for Cem � 1, the expression simplifies to [4]

ηeo = 4(kx0)2 Φcar

Γm
(2.115)

The conversion efficiency increases with the optical input (it can exceed one at the expense of
added noise) and inversely proportional to the mechanical dissipation rate of the membrane.

2.8 Inductive coupling for ac drive

In this section, we theoretically investigate the case of an ac coupling voltage which is
relevant for the extension of our device (at ≈ MHz) to frequencies in the GHz range.
Here, we derive an expression for the voltage on the membrane capacitor and also for
the cooperativity at the optimal coupling condition between the drive circuit and the LC
resonator. To begin with, we take the specific case of inductive drive where we transfer the
rf coupling voltage through a primary transformer circuit to the tuned secondary circuit (LC
resonator). Note that there are several other possible coupling schemes (tuned primary and
secondary, capacitive etc) [31] which however may be practically more involved compared
to this simple inductive drive case. The generic circuit for such a scenario is depicted in
Fig. 2.4. The primary circuit (left) consists of an rf drive source Vd with a typical output

Figure 2.4 The primary circuit is driven with an rf source and the voltage on L1

can be transferred to the second inductor L2 via inductive coupling. The secondary
circuit is a resonant LC circuit where Cm is a capacitive element consisting of a
metal coated membrane sitting on electrodes.

impedance of R and a small inductor L1. The secondary circuit in the close vicinity (right) is
inductively coupled through the mutual inductance M = k

√
L1L2 where k is the coupling

factor and L2 is the inductance of the secondary resonant circuit. Here, Cm represents
the membrane capacitance together with added parasitic elements (pcb etc) and r denotes
the effective series resistance of the LC circuit which is set by the inductor L2. Following
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Kirchoff’s rules for the two circuits, we have the equations for the primary and secondary
circuit, respectively (i1 and i2 are the corresponding clockwise currents)

Vd = (R+ jΩL1)i1 + jΩMi2 (2.116)

0 = i2(r + jΩL2 +
1

jΩCm
) + jΩMi1 (2.117)

Solving for i2 and plugging into Vc = i2Zc = i2
1

jΩCm
, one reaches the expression for the

voltage across the capacitor

Vc =
Vd

jΩCm

1(
(R+jΩL1)(r+jΩL2+ 1

jΩCm
)

−jΩM + jΩM

) (2.118)

Imposing the resonance condition for the secondary circuit Ω = 1√
L2Cm

and expressing M

Figure 2.5 Cooperativity divided by α as a function of the coupling factor k
between the primary and secondary circuit, reaching a maximum for k ≈ 0.12. The
parameters used for the circuit elements are Vd = 1 V, L1 = L2 = 1 nH, R = 50
Ω and Cm = 3 pF with a corresponding LC resonance frequency ΩLC = 2π × 2.9
GHz. The inital Q of the LC circuit is assumed to be 100 which is limited by
the resistive part r assigned to the secondary coil. The mechanical decay rate is
Γm = 2π × 2 Hz.
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explicitly with the coupling factor k, one reaches the absolute value of the voltage across
the capacitor as follows

|Vc| =
Vdk
√
L1L2√

(RrCm + k2L1)2 + L2
1r

2Cm
L2

(2.119)

Using the general expression for the cooperativity, Cem = 4g2
em

ΓmΓLC
and gem = αVc, the

cooperativity can be parametrized with the circuit elements and more importantly with the
coupling factor k which needs to be optimized for reaching the maximum cooperativity (in
case reaching a Cem as high as possible is of interest). Here α is a scaling factor establishing
the link between the parametric ac drive coupling and the voltage across the capacitor.
The scaling factor α was worked out in section 2.5 and expressed through the relation

gem = Vc
∂C
∂x

√
ΩLC

4ΩmmC
. Here, it also absorbs a linear correction factor due to the off-resonant

drive (ΩLC − Ωm for the parametric coupling case), however for the optimization problem
the explicit form of the scaling factor is irrelevant since it is independent of the coupling
factor k and involves fixed parameters. Thus, we end up with an expression for Cem as
follows

Cem =
4αV 2

d

Γm(ΓLC + k2L1
L2RCm

)

k2L1L2(
(RrCm + k2L1)2 + L2

1r
2Cm
L2

) (2.120)

Here the expression k2L1
L2RCm

can be interpreted as an additional dissipation rate on top of

ΓLC as the secondary circuit now sees a modified impedance given by r′ = r + k2L1L2Ω2

R
due to coupling to the primary circuit. By using equation 2.120, Cem/α can be maximized
for the optimal coupling condition. Within the realistic set of parameters for our system
(considering typical fabrication limitations), this optimal coupling factor k is found to be
around 0.12 (Fig. 2.5). At this condition, the initial Q-factor of the LC which is taken to
be 100 becomes Qloaded = 66 due to coupling to the primary and Vc on the capacitor is
enhanced to 2.8 V (on resonance) for an input of Vd = 1 V.
With this general treatment, one engineering problem - namely the coupling of the drive
voltage to the capacitor - can be solved for the optimal condition with a given set of realistic
parameters. Furthermore, with the explicit form of the ac coupling rate gem which was found
previously, the cooperativity can be estimated at the optimal coupling condition for a given
bias voltage.
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Capacitive coupling with metal and
graphene coated SiN membranes

In this chapter, we will discuss our first experimental attempts and results on the way
to realizing an opto-electromechanical system. The physics behind capacitive force will
be examined and the experimental system including the capacitor electrodes and various
membrane types will be explored. At this stage, the inductor that forms the LC resonator
is not yet introduced, therefore these measurements can be seen as preliminary steps for
understanding and maximizing the electromechanical coupling, by investigating different
capacitor-membrane configurations. Throughout these experimental runs, we have investi-
gated several bare SiN, aluminum coated (SiN-Al) and graphene coated (SiN-G) membranes
in order to compare their performances in terms of the electrostatic force contstant. The
main motivation behind metal-coated membranes is that the electrostatic force is expected
to be larger than the bare dielectric SiN membranes as this has typically been the case with
capacitive systems. The idea behind experimentation with graphene is, in a more general
sense, based on its intruguing and exceptional electrical properties [45] and potential use for
future opto-electromechanical experiments, as it also has exceptional mechanical properties
such as extremely small thickness, low mass density and high Young’s modulus [46]. These
properties make graphene-NEMS devices ideal for mass, force and charge detection [46]. A
few of the specific questions that have motivated us for the graphene project are: Would
graphene coated membranes give similar results to a perfect conductor (aluminum for ex-
ample) in terms of the electromechanical coupling strength? Is the mechanical Q-factor of
the SiN membrane not affected since it is coated with only single layer of graphene? Are the
mass and frequency of the membrane minimally affected? These questions are addressed in
the results/analysis parts along with a comparison of different membranes.
During the timespan of this project, we have used the membranes and chips that have been
fabricated by our collaborators. Fabrication of the capacitor chips and Al-coated membranes
has been accomplished at DTU/Danchip facilities and production of the graphene-coated
membranes has been mostly conducted at Harvard.

29
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3.1 Mechanism behind capacitive coupling

Capacitive systems have long been in extensive use in our daily lives. The main idea be-
hind such devices is to measure the change in the capacitance of the system which depends
on certain geometric parameters. In that sense, utilizing the position dependence of the
capacitance has appeared as a very conventional and higly sensitive method for various ap-
plications [34,38]. A simple conceptual model for capacitive coupling along with the circuit
picture has already been been given in Chapter 2. Here, we will outline the possible prac-
tical incarnations of such devices. The idea behind capacitive coupling can be summarized
with the modification of the electric field lines between two charged plates which is a func-
tion of their relative distance. Several capacitive devices have been demonstrated over the
last couple of decades based on this mechanism [37]. The use of capacitive MEMS (micro-
electromechanical) devices in rf-based switches has shown significant advantages like low loss
and low power consumption over power-hungry semiconductor switches [43, 44]. Together
with the improvements in fabrication and understanding of nano-mechanical resonators,
the field of NEMS (nano-electromechanical sensors) has extended the concept of capacitive
coupling to very versatile and sensitive nano-devices [38,39].
Starting from the capacitive energy stored between two plates as given below (under fixed
voltage conditions)

E =
1

2
C(x)V 2 (3.1)

where C(x) is the position dependent capacitance and V is the voltage difference between
the two plates, the most generic form of a capacitive force can readily be shown to be

Fc = −1

2

∂C(x)

∂x
V 2 (3.2)

by taking the first derivative of the energy. There are different ways of achieving capacitive
coupling, depending on the method of charging the two metal electrodes (one of which is
movable). One way is to make electical connections to both plates and apply voltage. This,
however, requires contacting the movable object as well which might be invasive in the con-
text of keeping the nice properties of nanomechanical resonators. Apart from that, there
are basically two non-contact ways where a position dependent electrostatic interaction can
take place, which can be outlined [37] in Fig. 3.1. In the first case (a), an applied voltage V
induces charges on the surface of a suspended metallic plate, which results in electric field
lines directed perpendicular to the surface of the plate and attracts the suspended plate
towards the electrodes. In the second case, where the suspended object is a dielectric ma-
terial, the net force comes from dielectrophoresis [48], which is a phenomenon experienced
by any polarizable object placed in an inhomogeneous electric field. The attractive force
is essentially generated via the gradient of the electric field intensity (also known as the
Kelvin polarization force) [42]. Since charges can not move freely as in a metal, but can
only be polarized as depicted in Fig. 3.1, an inhomogenous field is necessary to apply a net
force and attract the object, which usually requires a strong gradient provided by the gap.
A detailed analytical and numerical analysis on the Kelvin polarization force for nanome-

chanical beams has been conducted by Schmid et al in [42]. Starting from the force on an
infinitesmall dipole

f = p.∇E (3.3)
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Figure 3.1 a) Depiction of the electrostatic interaction between two oppositely
charged electrodes (maintained with a bias voltage V) and a suspended metallic
plate. b) The suspended object in this case is a dielectric plate which is polarized
when a bias voltage is applied to the electrodes. In both cases, the field lines are
formed such that the suspended plate is attracted towards the electrodes [37].

one can calculate the corresponding Kelvin polarization force density and then integrate
this force over the thickness of a nanomechanical beam of width w, length L , thickness
h and distance to the electrodes d, in order to reach the distance dependent total force as
follows

F (d) = − 1

2π
ε0(εd − εm)α2L

h

d(d+ h)
V 2 (3.4)

where ε0, εd and εm refer to the permitivity of vacuum and the relative dielectric constant of
the beam and the surrounding medium, respectively. To get this simple form of dependence,
a beam width that is large compared to the thickness of the beam and distance to the
electrodes needs to be assumed. α is a correction factor that accounts for the imperfection
of the field inside the dielectric and the electric field is assumed to be concentric over the
whole area [42]. This equation is very similar in nature to the force between two parallel-
plate capacitors which reads as

F (d) = −1

2
ε0εm

A

d2
V 2 (3.5)

where A is the area of one of the plates. In our experiements, we have used capacitor
samples with interdigitated design allowing for dielectric coupling and planar electrodes for
metallic coupling and compared their performances with different types of membranes. As
can be seen from the dicsussion above, the mathematical form of the capacitive force is the
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same in nature and we will use a generic form of the capacitive force for convenience for
the rest of the discussion in this chapter, given by

Fc = cAf(d)V 2 (3.6)

where c is defined as the electrostatic force constant which absorbs all the geometric pa-
rameters as well the permittivity and f(d) refers to the distance dependence of the force
which accounts for corrections to the general 1/d2 scaling law.

3.2 Experimental Setup

The experiments performed in this section for the characterization of capacitive coupling and
electrostatic force constants of different membranes, have been conducted at DTU with an
integrated commercial Doppler Vibrometer MSA-500 from Polytec [49]. The interdigitated

Figure 3.2 Setup for the capacitive coupling experiments (reproduced from [41])
comprises a commercial vibrometer which utilizes optical interferometry and a
vacuum chamber (10−5 mbar) in which the membrane- capacitor chip samples are
placed. Samples are aligned by using the integrated camera/imaging system in the
vibrometer head (in the middle of the photo). Light that is reflected back from
the membrane goes through a fiber interferometer (box in the right) in which it
interferes with the beam from the reference arm mirror. The thermal or driven
amplitude of the mechanical vibrations are analyzed via the FFT software of the
vibrometer and displayed in calibrated units. Capacitive excitation of the mem-
brane is achieved via a dc bias and an rf signal. The electronic control unit of the
vibrometer is not shown here.

and quarter-segment electrodes for the capacitor chips have been fabricated through several
iterations at DTU/Danchip clean room facilities. Fig. 3.2 shows a wholistic picture of
the setup. The samples are prepared manually before each experimental run and placed
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inside a vacuum chamber. Sample preparation involves cleaning of the chip surface and
membranes and then assembling the two to form a distance dependent capacitor, which will
be discussed particularly in this chapter.

3.2.1 Doppler Vibrometer

The vibrometer is of type MSA-500 analyzer system with integrated laser scanning head,
fiber interferometer and software for data acquisition. The principle behind detection of
vibrational modes of the mechanical resonator is based on the Laser-Doppler Vibrometry
[49] which is a powerful tool for several sensing applications. The basic idea is to interfere

Figure 3.3 Depiction of the Laser-Doppler Vibrometry scheme utilized by the
Polytec Vibrometer. The beam from the reference arm and the sample arm in-
terfere at the detector and the frequency shift from the moving object is deduced
from the demodulation of the interference signal. The Bragg cell is an additional
element in the reference arm used to infer the direction of the moving object.

light coming from a reference arm and a moving object in order to deduce the Doppler
shifted frequency of the beam as this will generate a phase modulation at the output. The
frequency shift of a beam reflected from a moving object is given by [49]

∆f = 2
v

λ
(3.7)

where λ is the fixed wavelength of the laser beam and v is the velocity of the moving
object. If two coherent beams having intensities I1 and I2 and path lengths r1 and r2 are
overlapped, the resultant intensity profile exhibits the well-know interference signal

I = I1 + I2 + 2
√
I1I2cos(2π(r1 − r2)/λ) (3.8)

As one of the arms (reference arm) is fixed and the sample arm has a time dependent optical
path due to its motion, it is possible to see fringes. In this case, the modulation frequency
of the interference pattern is directly linked to the velocity of the moving object. Thus the
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frequency modulation can be used to infer the velocity of the object and its displacement
by time-integration of the acquired data. For the specific device we use (Fig. 3.3), the beam
from a He-Ne laser first passes through beam splitter 1. One arm goes to a Bragg cell unit
(Acousto-optic modulator) which shifts the frequency by 40 MHz. The purpose of the Bragg
cell is to be able to distinguish the direction of the object since two different directions give
shifts either below or above this 40 MHz extra shift. The beam that by-passes the Bragg
cell goes to beam splitter 2 where some portion of the light impinges on the sample and
is reflected back on to beam splitter 2, finally interfering with the reference arm beam on
the detector. The detector then sees the beat note between the shifted frequency of the
reference beam (due to the Bragg cell) and the Doppler shifted beam from the sample.
The vibrometer has electronic units which allow detection up to 25 MHz. The FFT (fast
Fourier transform) spectrum analyzer has a resolution limit of 1 Hz which is good enough
to resolve the narrow mechanical peaks (typically 2-3 Hz) we are interested in. The output
power of the He-Ne laser can be adjusted in discrete steps up to 250 µW. Fig. 3.4 shows an
example of a SiN membrane on an interdigitated capacitor that is excited via an rf signal
(in this case a periodic chirp sent from the vibrometer electronic unit) applied through
the capacitor electrodes together with a dc bias voltage. Several mechanical modes can be
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Figure 3.4 With a dc bias=10 V and an rf signal amplitude=6 V, several mechan-
ical modes of a SiN membrane are excited via the Kelvin polarization force. The
fundamental mode of this membrane is clearly seen at the expected eigenfrequency
around 410 kHz which is the typical value for a 1 mm square membrane.

excited and tracked at the same time and these preliminary measurements constitute the
first indication that our capacitive coupling mechanism actually works. We have also used
the scanning function of the vibrometer which generates a clear picture (in Fig. 3.5) of the
vibrating modes of the membrane. In the scan mode, the membranes are capacitively excited
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and the vibrometer automatically scans the laser beam position (beam size of a couple of
microns) along the sample area and then shows the vibrating mode in an animation. The

Figure 3.5 A snapshot from the FFT analyzer of the vibrometer revealing the
spectrum of membrane vibrations. A thermally excited membrane peak which
corresponds to the fundamental drum mode is easily discernible. Attached on the
spectrum is a snapshot from the animations recorded with the scaning mode of
the vibrometer. The membrane is capacitively excited to have high signal to noise
ratio for the quality of the scan picture.

thermal noise of the membrane due to the Brownian motion at room temperature can also
be readily resolved with the FFT of the vibrometer. This is shown with a sample snapshot
from the analyzer of the vibrometer in Fig. 3.5. The mechanical peak amplitude is tracked
with the red line. A lorentzian fit can then be fitted to the spectrum after a few seconds
of averaging in order to deduce the peak amplitude and the mechanical linewidth (which is
2.8 Hz in the example).
The distance between the membrane and the capacitor electrodes is a crucial parameter in
our electromechanical setup that determines the strength of coupling together with the dc
bias voltage. Therefore, for each sample we have tested at DTU throughout this project,
we have checked this distance after the assembly of our samples, since we have had several
problems in reaching the pre-determined values set by the pillar heights (600 nm and 1µm).
This issue will be addressed in the assembly process in this chapter and in section 5.5
while dealing with the limitations of the setup. Before starting the measurements with
our membranes in the vacuum chamber, white light interferometry setting of the Doppler
vibrometer (no vacuum) is utilized to infer the distance. The white light measurement is
performed with a broadband light source (green laser beam from the vibrometer) which is
split to the reference arm and the sample arm (in our case membrane placed on the chip).
As the piezo attached to the reference mirror is scanned, the interference signal from the
sample surface is recorded. This signal reaches a maximum when the path length of the
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beam reflected from the sample equals the reference arm path length. In this way, one
can map out the surface profile of a sample that needs to be investigated. The plot shown

Figure 3.6 White Light Interferometry setting of the vibrometer. The initial dis-
tance between the membrane and the chip, which is crucial for the strength of the
electromechanical coupling, is determined via a white light inteferometric measure-
ment. The outcome is a profile picture deduced from the analysis of the reflected
beam coming from different layers-the membrane and the electrodes underneath
(reproduced from [4]) .

in Fig. 3.6 depicts the surface height variation along the corresponding line-cut of the
membrane placed on the chip. In our case, we deduce the distance between the membrane
and the electrode underneath in the following way. We get a strong reflection from the
Al-coated part which is converted to a certain distance (around -6.5 µm in this case) which
is denoted by the red dashed line. However, for example the edges of the membrane (SiN)
are not coated with Al and the only reflection from the surface comes from the electrode
beneath the SiN layer (the first reflection from the SiN is small and the program records
only the strongest reflection signal) which is denoted with the green dashed line. Therefore,
the difference between between the two layers is an approximate measure of the distance
between the membrane and the chip-electrode around that region. Having experimented
with dozens of samples, we have typically observed variations on the order of 0.5 µm along
the whole sample.
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3.2.2 Capacitor chips and membranes

Capacitor chips
The capacitor chip together with the membrane serves as an element that has a position
dependent capacitance. The electrodes of the chip are kept at a dc bias voltage to provide
the electrostatic induction of the membrane and an rf voltage is applied on top that can
actuate the mechanical resonator via the capacitive force.

Figure 3.7 a) Interdigitated chip design for dielectric capacitive actuation. The
typical electrode width is 4 µm with a gap of 2 µm. The gap provides the electric
field gradient which is necessary for the interaction with a dielectric object through
the Kelvin polarization force b) Four-segment electrode structure. The electrodes
induce charges on the surface of the metallic membrane and directly interacts with
the field lines from the electrodes (reproduced from [41]).

The experiments with the aim of investigating different capacitor chips and membranes
span a time period of almost a year in which the fabrication process has been iterated a few
times due to the problems realized during characterization (mostly related to the fingers of
the interdigitated capacitors). The general procedure for the fabrication of chips is based on
standard clean-room processing. Electrodes made of 200 nm thick gold layer are deposited
on a substrate (SiN-covered silicon or borosilicate glass) [41]. We have experimented with
two types of chips; one with interdigitated fingers and the other with four- segment elec-
trodes to achieve dielectric and metallic type of coupling, respectively, which are depicted
in Fig. 3.7. Before starting the fabrication process, simulations have been performed (by
S. Schmid) in order to calculate the geometric parameters for reaching suitable capacitance
values (aimed to be typically between 0.4 pF - 5 pF).
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Figure 3.8 Capacitor chips (with slightly different geometric designs and sizes)
fabricated at DTU. The substrate is made of glass and the electrodes deposited
on top are made of gold. The upper layer of the chip is covered with a polymer
for protection which is removed just before being used in a measurement.

The first fabrication run has been performed with a silicon substrate. Although these
substrates work in the sense that capacitive actuation has been observed with the SiN mem-
branes, there have been two crucial problems experienced with that batch of chips. Firstly,
the capacitance of the chip itself is measured to be around 250 pF with an LCR meter-
much larger than the typically expected values of 5 pF. Secondly, we have realized that the
substrate introduces significant loss which is tested by recording the resonance response of
an LC circuit with a high-Q inductor. We think both effects presumably come from the
free charges in the semiconductor silicon layer. Therefore, we switched to chips with glass
substrates for the second generation chips and it has been observed that these effects are
eliminated, yielding small capacitance values with low-loss as expected.

Membranes
The three types of membranes we have used in this project are: 1) Bare SiN membranes 2)
Aluminum coated SiN Membranes (SiN-Al) 3) Graphene coated SiN Membranes (SiN-G).
Bare SiN square membranes (including stoichometric high stress and low stress samples)
are bought from Norcada with typical sizes of 0.5 mm and 1 mm and a thickness of 50 nm.
For the fabrication of SiN-Al membranes, standard cleanroom processing is used where the
Al layer is deposited on top of the whole wafer after the membranes have been released [4].
Along the anchor of the membrane is a rim for the purpose of minimizing damping [33] and
in addition a circular Al layer (hole) is removed from the center. Both patterning processes
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Figure 3.9 A bunch of aluminum coated SiN membranes fabricated at DTU.
Typical sizes for the membranes (windows in the middle) are 0.5 mm and 1 mm.
The membranes are surrounded with a thick silicon frame.

are performed via photolithography and chemical etching. For the fabrication of the SiN-
G membranes, standard CVD (Chemical Vapor Deposition) techniques are used. A single
layer graphene is grown on copper foil. After cutting the graphene on copper to size, the
copper layer is wet-etched and the graphene is transferred to the surface of the membrane
in an aqueous solution. The grahene is supported by a thin PMMA film during the transfer.
Acetone vapor is used to remove the PMMA layer in the end [41]. The procedure turned
out to be fragile and unfortunately the number of surviving samples after the fabrication
process was only a few.

In order to see the quality of the graphene coating and whether it is single layer, Raman
spectroscopy is performed (by S.Schmid). The Raman signal is investigated on 22 different
points on the membrane. Below in Fig. 3.10, we show the spectra recorded at a point
within the coated membrane area. The result indicates a high quality (with probably few
defects) graphene as the D-peak at 1300 − 1400 cm−1 is missing in all the measurements.
Overall, we see a typical single layer graphene spectrum with a 2D peak having double the
amplitude of the G peak. The G peak in graphene refers to the high-frequency E2g phonon.
The origin of the D peak is the breathing modes of six atom rings and the activation of
this peak requires a defect which is found to be absent in our Raman spectra. 2D peak is
an overtone of this, however since momentum conservation is satisfied by two phonons with
opposite wave vectors, this peak is always present even in the absence of defects [47].
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Figure 3.10 Raman spectrum of a SiN-G chip recorded on a point within the
graphene coated membrane area. An optical beam of 10 mW power from a 532
nm laser is used for the measurement with an exposure time of 15 s (reproduced
from [41]).

Assembling the chip and the membrane

Our assembly process is a manual operation performed before investigation of each mem-
brane. A membrane is first cleaned by soaking it in acetone and then in water typically for
a minute. The procedure is followed in the same manner for the chip as well. Immediately
after soaking in the solution, both the chip and the membrane are blown with high-pressure
air gun. Afterwards, the membrane is placed gently (with a tweezer) on the chip surface.
The membrane-chip sample is then placed inside a vacuum chamber which sits under the
vibrometer head for the measurements. A typical pair of an Al-membrane on four-segment
electrodes is shown with the micoscope image of the vibrometer in Fig. 3.11. However,
this procedure of assembly has yielded varying distances between the membrane and the
chip (3.5− 14 µm), significantly larger than the pre-determined pillar heights. This issue is
touched upon in section 5.5 together with the second generation membrane (etched) fabri-
cation to tackle this problem.
The electrical connection to the capacitor chip is provided via thin electrodes ending with
a pad- which is an extension of the gold electrodes of the interdigitated or four-segment ca-
pacitor. For some of our old chips, the capacitor chip is glued on a PCB and the electrode
pads are wirebonded to the connection lines on the PCB. However, it turned out to be not
practical in terms of experimenting with many samples quickly. During the course of time,
we switched to a configuration where the glass substrate of the capacitor chip is placed on a
rigid mount and the electrode pads are contacted by pressing with contact probes to apply
voltage. This has given us the opportunity to directly use the glass chip-membrane sample
and change it quickly if another sample is required for testing.
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Figure 3.11 Picture of an Al-coated SiN membrane (under the microscope of
the vibrometer) placed on a four-segment electrode chip. For this sample, the
electrodes of the chip are bigger than the 0.5 mm membrane. Note that the edges
of the membrane do not contain aluminum for mechanical Q-factor considerations.
There is a hole in the middle of the aluminum layer for future cavity optomechanics
experiments.

3.3 Preliminary tests

The preliminary tests involve measurements with several samples in order to test our capac-
itive actuation/coupling and understand the observed behaviour based on our expectations
from the capacitive force. The physics of this type of capacitive coupling can be tracked via
measurements like the frequency shift of the mechanical resonator, the static displacement
and the mechanical response at resonance due to an applied dc and rf voltage. Starting
from the capacitive force equation and taking the case of a dc bias voltage with a small rf
modulation on it, the capacitive force takes the form as follows (as shown in Chapter 2)

Fc = cAf(d)V 2 = cAf(d)(V 2
dc + 2VdcVrf + V 2

rf ) ≈ cAf(d)(V 2
dc + 2VdcVrf ) (3.9)

where V 2
rf term is neglected [40]. The first term in the equation brings a static force which

is proportional to the square of the dc voltage and the second term brings an ac force that
is linearly proportional to the dc voltage.

3.3.1 AC force as a function of the dc bias and rf modulation

For the general case of a broadband rf modulation, the mechanical resonator will feel an ac
force term Frf = 2cAf(d)VdcVrf and exhibit driven vibrations governed by its mechanical
susceptibility. For simplicity, we focus on detection of the vibrations at a single frequency
which is the fundamental mechanical resonance frequency of the membrane. Keeping the
rf modulation amplitude the same, the membrane resonance amplitude is expected to grow
linearly with the dc bias voltage as it gets polarized more strongly. Fig. 3.12 a) shows an
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Figure 3.12 a)A SiN-Al membrane (1 mm) on a four-segment electrode with a
gap distance= 11 µm is excited with a fixed rf modulation of 10 mV as the dc bias
voltage is varied. The metallic membrane shows a perfectly linear curve as expected
with reversed polarity as well. The maximum mechanical excitation amplitude is
chosen to be sufficiently far from the nonlinear regime. b) Graphene coated (SiN-
G) membrane (0.5 mm) on an interdigited capacitor with a gap distance= 6.5 µm.
Error bars refer to the standard deviation of 3 consecutive measurements.

example recorded with an aluminum coated (50 nm) SiN membrane (100 nm) which has
an eigenfrequency of 238 kHz (1 mm size). The mechanical resonator amplitude is tracked
on resonance via the FFT of the vibrometer while it is being excited by a periodic chirp
rf signal (2 kHz bandwidth) provided from the vibrometer electronics unit. In the first
measurement (Fig. 3.12 a), we apply a fixed rf modulation=10 mV from the signal gener-
ator of the vibrometer and vary the bias voltage supplied by a dc source. The mechanical
resonance amplitude grows linearly (high quality linear fit) with the dc voltage as expected.
Another important test for the nature of the capacitive force is the behaviour with respect
to the polarity of the dc source [40]. As seen from the plot, the mechanical amplitude is
symmetric with respect to the polarity change and the values are very similar at opposite
polarities meaning that a hysteresis or a memory effect is negligible in this case. In panel
b, we show the same type of measurement with varying dc bias on a SiN-G membrane.
A second type of measurement to test the behaviour of the capacitive force is conducted
by keeping the dc bias fixed and varying the rf excitation amplitude. With a dc bias= 1 V,
the mechanical resonance amplitude scales linearly (high quality fit) with the rf excitation
as expected from the capacitive force expression (Fig. 3.13). Including these sample mea-
surements, our complete set of experiments show that the metal-coated membranes behave
in a totally expected manner where additional free charge effects and hysteresis type of
behaviour are negligible (also quite similar in graphene-coated membranes) which, however,
is not the case with bare SiN membranes as we will see in the discussion regarding free
charge and hysteresis effects in subsection 3.3.4.
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Figure 3.13 A SiN-Al membrane (the same one as in the previous figure) is
excited with a dc bias= 1 V as the rf excitation amplitude is varied. The mechanical
amplitude scales linearly with the rf voltage.

3.3.2 Static displacement of the membrane

Due to the capacitive force, the mechanical resonator experiences a static force term Fs =
cAf(d)V 2

dc which displaces its equilibrium position simply by Fs/k0 where k0 is the intrinsic
spring constant (under the assumption that the displacement is small compared to the
initial gap distance). In our measurements, we also check this dependence by varying the dc
bias voltage and looking at the supposedly quadratic behaviour of the static displacement
of the membrane. However, the static displacement measurement is not straightforward
as it requires reading out a stable dc signal. Therefore, we chose to work under quasi-
static conditions which would approximate the static displacement of the membrane under
certain conditions. To this end, we typically send a low frequency ac modulation (square
waveform) to the capacitor and track the demodulated peak amplitude of the mechanical
resonator at this specific frequency (beam position close to the center of the membrane).
The modulation frequency (typically a few kHz) is chosen such that it is sufficiently far
away from the fundamental resonance frequency of the membrane in order to resemble a
static response. In Fig. 3.14, we show a sample measurement which compares the two
types of membranes, a) bare SiN membrane and b) SiN-Al membrane. AC modulation of
20 kHz (SiN) and 10 kHz (SiN-Al) is used to quasi-statically excite the membrane and the
mechanical amplitude at this frequency is plotted against the amplitude of the dc voltage
(quasi-static). As can be seen, the response of the bare SiN membrane does not follow the
quadratic behaviour expected from the polarization force. It first grows linearly with the
voltage for small values and starts to behave quadratic for large values. We believe this
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Figure 3.14 a) Quasi-static response of a bare SiN membrane. It shows a be-
haviour which is a combination of free charges and induced charge effects, bring-
ing both linear and quadratic terms. b) SiN-Al membrane shows the expected
quadratic dependence on the quasi-static voltage. The quadratic fit function is
ffit = a0 + a1 × x2.

irregular behaviour is mostly due to the free charges in the SiN layer which has been a
problem for MEMS devices [44]. For example, if the free charges on the SiN, the number
of which is fixed, dominate the interaction, one would expect a linear behaviour since it is
the fixed amount of charge q that interacts with the varying quasi- static voltage instead
of induced charges that would otherwise bring quadratic dependence. On the contrary, we
observe a quadratic dependence with the SiN-Al membrane which is expected from the
induced voltage behaviour on the metal surface.

3.3.3 Frequency shift of the membrane

A well-known property of a capacitively coupled nanomechanical system is the so-called
electrostatic spring softening effect [40] due to the capacitive force on the mechanical res-
onator which leads to a shift in the mechanical resonance frequency. The shift in the
resonance frequency appeared within our formal treatment in the theory chapter starting
from the coupled Langevin equations of a generic membrane-LC circuit system. The ori-
gin of this effect comes from the distance dependent nature of the interaction between the
membrane and the capacitor. Following a simple and intuitive approach, the derivative of
the capacitive force with respect to displacement can be interpreted as being equivalent to
an additional spring constant term (kel = −∂Fc(x)

∂x ). This term (negative in this case) pulls
the intrinsic constant k0 down, resulting in a decrease in the frequency since the frequency

is directly linked to the spring constant via Ωm =
√

k0+kel
m . Taking the derivative of the

general capacitive force term, one reaches

kel = −∂Fc(x)

∂x
=

1

2

∂2C(x)

∂2x
V 2
dc (3.10)
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Figure 3.15 a) Frequency shift of a high-stress SiN-Al membrane as a function
of the dc bias voltage. The shift follows perfectly the quadratic behaviour of the
capacitive force along with a symmetric response with respect to polarity reversal.
b) Frequency shift of a bare SiN membrane.

Keeping only the first order term with the Taylor expansion for small frequency shifts, the
modifed eigenfrequency of the membrane then becomes [40]

Ωm ≈ Ω0(1−
aV 2

dc

2k0
) (3.11)

where a is a constant absorbing the second derivative of the capacitance. The end result
shows that the effect of the electrostatic interaction can be observed by tracking the mem-
brane resonance frequency and that the frequency shift should scale quadratically with the
dc bias voltage. Monitoring the frequency shift provides us a reliable way to extract the
electrostatic force factor which will be discussed in section 3.4.

An example for the experimental observation of the frequency shift with respect to dc
bias voltage is shown in Fig. 3.15. The SiN-Al membrane follows the expected quadratic
curve very closely, whereas the bare SiN membrane shows deviations due to the free charge
effect. We note that at each new dc voltage setting, we wait for the membrane frequency to
settle to the new shifted value (which takes a few seconds) and once it is stable around this
value, we start recording the data. Each data point corresponds a few seconds of averaging
for the thermal membrane peak. The resolution of the FFT of the vibrometer is 1 Hz.
The error bars for the SiN membrane come from the std (standard deviation) of several
measurements. An important test for the frequency shift is the effect of polarity reversal. It
is clear from the mathematical form that changing the sign of the voltage source should not
have any effect on the results. What matters is the square of the voltage difference between
the electrode gaps, therefore it is insensitive to the direction of the field lines. This means
that the eigenfrequency of the membrane is always pulled down irrespective of the sign of
the voltage, which is shown in Fig. 3.15a for the SiN-Al membrane.
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3.3.4 Charging and hysteresis effects in bare SiN membranes

As can be seen from the sample figures shown in this chapter and based on the general
trend observed for dozens of different membranes we have experimented so far, we can re-
port that bare SiN membranes have exhibited complicated and irregular behaviour such as
time-dependent charging and discharging, deviations from the expected curves for dc and ac
voltage driving and quite unstable membrane resonance amplitudes along with hysteresis.
Although it is difficult to identify the exact origin of all these phenomena, our measurements
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Figure 3.16 Frequency shift of a bare SiN membrane. First run (black) starts by
increasing the voltage up to 30V. After short time (around a minute) it is followed
by a second run where the voltage is decreased. Third and fourth runs follow the
same procedure. For the fifth run, the voltage polarity is reversed and increased
in the negative direction. A hysteresis behaviour (leftover charge) and deviations
from quadratic voltage dependence are clearly seen.

indicate that it presumably comes from trapped charges in SiN which has been known by
the NEMS world especially in the context of SiN based switches [44]. The origin of these
charges is complicated and different mechanisms have been proposed to account for that.
For example, silicon and nitrogen dangling bonds can form states that trap holes or elec-
trons [51,52]. Apart from that, it has been shown that silicon and hydrogen have an effect
on the amount of trapped charges [44] in SiN. In contrast to the complex and uncontrollable
behaviour of bare SiN membranes, almost all the aluminum and graphene coated SiN mem-
branes have shown responses that would be expected from the induced charge mechanisms.
In these membranes, the metallic coating layer dominates the free charge effects present on
the bare SiN layer. This is a meaningful result also in the context of our future experiments
(coupling to the LC circuit) that metal and graphene coated membranes are more suitable
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since the mechanism behind coupling is clearly comprehensible and experimentally control-
lable.
A clear observation of irregularities of the bare SiN membranes related to the charg-
ing/discharging and hysteresis effects is solidified in a more systematic measurement shown
in Fig. 3.16. Several runs of voltage scan are performed where the voltage is varied in the
forward and backward direction. It is observed that the data show quadratic dependence in
the beginning and start to deviate from that in the next runs, in the fourth run becoming
dominantly linear. This is an indication that the interaction between the free charges in
the SiN layer and the biased electrodes start to take over the polarization based interac-
tion. This is consistent with the fact that as time goes by, SiN gets more charged since the
free charges are separated more towards the interface. The frequency shift also becomes
larger for the same voltage as time passes which suggests a hysteresis effect. Another effect
consistent with the free charge domination sets in when the voltage polarity is reversed.
Instead of a regular decrease in frequency which is insensitive to polarity, this time the
frequency climbs up as the voltage becomes negative. In this case, the charges that are
already accumulated can not immediately follow the polarity reversal, thus they carry the
same sign of charge resulting in a repulsive interaction which increase the spring constant.
Beyond a certain voltage, the polarization mechanism starts to take over again.

3.4 Results/Analysis

This section is dedicated to the comparison of bare SiN, SiN-Al and SiN-G membranes in
terms of their electrostatic interaction strength (based on the electrostatic force constant)
and their mechanical quality factors.

3.4.1 Electrostatic interaction strength with different types of membranes

As we have encountered before, the electrostatic (capacitive) force can most generally be
described by

Fc = cAf(d)V 2 (3.12)

where c refers to the interaction strength (electrostatic force constant) as A and f(d) take
care of the geometric parameters. Written in this form, we take c as the figure of merit
when we compare different membrane types on particular electrode configurations. Based
on our measurements with several membranes so far, monitoring the frequency shift, which
can be performed in a simple experimental setting, provides a reliable way of extracting
this number experimentally. Here in this subsection, we represent the frequency shift in a
form based on our work [41] as it allows us to write it conveniently in terms of the c factor
and the geometric parameters of the membrane-capacitor pair.
Starting from the equation of motion for the membrane and using the first order Taylor
expansion for the capacitive force (where Vdc is the only voltage applied), we have

σ0h∇2z − ρh∂
2z

∂t2
+
(
cV 2

dcf(d)− cV 2
dcf
′(d)z

)
ξ(x, y) = 0 (3.13)

where

z(x, y, t) =

∞∑
n=1

∞∑
m=1

AnmΦn,m(x, y) eiΩmt (3.14)
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denotes the deflection of the membrane with vibrational modes Φn,m(x, y). As we are only
interested in the fundamental mode, we multiply the equation by Φ1,1 and integrate over
the entire membrane area A = Lx × Ly = L × L with thickness h. We then reach the
following for the equation of motion

− 2
π2

L2
σ0h

∫∫
A

Φ2
1,1dxdy + ρhΩ2

m

∫∫
A

Φ2
1,1dxdy − cV 2

dcf
′(d)

∫∫
A

Φ2
1,1ξ(x, y)dxdy = 0 (3.15)

By using this equation, we can write the square of the modified mechanical frequency as

Ω2
m = 2π2σ0

ρ

1

L2︸ ︷︷ ︸
Ω2

0

+c
V 2
dcf
′(d)

hρ

∫∫
A

Φ2
1,1ξ(x, y)dxdy∫∫
A

Φ2
1,1dxdy

(3.16)

and again using a first order Taylor approximation, the eigenfrequency itself can be written
as the sum of the original eigenfrequency Ω0 and frequency shift term ∆Ω which comes
from the electrostatic force

Ωm ≈ Ω0

(
1 +

c

2

V 2
dcf
′(d)

hρΩ2
0

η1,1

)
(3.17)

with η1,1, the correction function due to the spatial overlap between the membrane mode
shape and the fixed electrodes where ξ(x, y) takes into account the mask, hole in the middle
and gaps.

η1,1 =

∫∫
A

Φ2
1,1ξ(x, y)dxdy∫∫
A

Φ2
1,1dxdy

(3.18)

Equation 3.17 shows that given we know the geometrical parameters of the chip and the
membrane, we can extract the c factor by fitting the experimentally measured mechanical
frequency to a quadratic function of Vdc. The fit coefficient α in front of V 2

dc, can then be
related to the c factor via

c = 2α[−f ′(d)]−1hρΩ2
0η
−1
1,1 (3.19)

To this end, we have performed mechanical frequency vs dc bias measurements on two
different types of electrodes. The first type is interdigated electrodes on which we have
placed bare SiN and SiN-G membranes. The second type is the four-segment coplanar
electrodes used to compare the performance of SiN-Al and SiN-G membranes.
The distance dependence of the force for interdigitated capacitors can be approximated by

f(d) = A−1
0 e−κd (3.20)

where A0 is a scaling constant with units of area which for our set of parameters is taken as
1µm2. This exponential dependence comes out of numerical simulations (by Emil Zeuthen)
based on the number of interdigitated fingers used in the experiments. Starting from the
midpoint of one the fingers and ending at the midpoint of the adjacent finger including the
gap between them defines the unit cell for the E field simulation. The boundary condition
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Figure 3.17 Comparison of force constants c for different combinations of mem-
branes and electrodes. In the panel to the left, the mean values for SiN (4 samples)
and SiN-G (3 samples) are shown where the error bars correspond to the standard
deviation. For these experiments, the width of the electrode fingers is 4 µm and
the gap between them is 2 µm. In the panel to the right, force constants c of
SiN-Al (3 samples) and SiN-G (4 samples) are shown on four-segment electrodes.
The solid and dashed lines refer to the theoretical force constants for the dielectric
polarization force and electrostatic force for conductive membranes, respectively
(reproduced from [41]).

that the electrical field is zero accounts for the influence of neighbouring cells. The de-
pendence is valid for the distances we are working with, which are comparable to the gap
length. κ is numerically determined to be 1.05µm−1 for our setup.

The second configuration consists of four-segment electrodes with SiN-Al and SiN-G
membranes on, where the membranes serve as the floating electrodes. This configuration
follows the simple distance scaling law (essentially coming from the capacitance law between
two paralel plates) which is

f(d) = 1/d2 (3.21)

The experiments we have performed for the comparison of c are outlined in Fig. 3.17 where
the values are extracted from the experimentally measured frequency shifts by using the
general equation 3.19. The distance dependent function is taken with the proper scaling for
the intedigitated and four-segment electrodes.
Firstly, we show (on the left) the comparison of bare SiN and SiN-G membranes on the
interdigitated capacitors. As can be seen, a single layer of graphene improves the c factor by
5.5 with respect to the bare SiN membranes. The solid line, which corresponds to the theo-
retical value, comes from the numerical simulations based on the exponential dependence as
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stated previously. Graphene layer added on the SiN membranes is simulated as a perfectly
conducting layer where the potential goes to half of the difference between the potentials on
the electrode fingers. The dielectric constant of SiN is taken to be 7.6 for the simulations.
The experimentally extracted values for the SiN is slightly above the theoretical line which
might presumably come from the enhancement due to the free charges on the SiN layer as
the distance dependence would be weaker in this case (∝ 1/d). The mean value of SiN-G
membranes on the other hand agree with the theoretical prediction well within the error
bar.
Secondly, we investigate the performance of metallic SiN-Al and SiN-G membranes on four-
segment electrodes (on the right). The experimentally extracted values agree with theory
within the error bars for both types of membranes showing similar values. Here, the the-
oretical value is predicted from a simple analytical expression for the capacitance between
a floating electode and two fixed electrodes beneath, which will be discussed in the next
subsection. The distance dependence is simply 1/d2 in this case. According to this data,
graphene seems to act as a perfect conductor as one would intuitively expect. We note that
the large error bars can be attributed to the uncertainties in the distance d measurements
which may be up to 0.5 µm. The lateral misalignment is also predicted to yield up to 20 per-
cent error. We believe that the somewhat larger c value of the SiN-G membranes can arise
due to the excess graphene layer on the frame which is also discussed in the next subsection.

3.4.2 Theoretical force constant for four-segment electrodes and effects
of the graphene layer

The force constant c for the four-segment electrodes can be written readily with simple
arguments starting from the magnitude of the well-known force between two parallel plates
(neglecting fringe field effects)

Fc =
1

2
ε0
A

d2
V 2 (3.22)

If the conducting and floating membrane is placed symmetrically over the fixed electrodes,
then the potential on the membrane becomes V/2 which makes the force constant 4 times
smaller than the usual two paralel plate case.

csym =
1

8
ε0 (3.23)

Another approach to reach the same result is to seperate the total capacitance between
the two fixed electrodes into its three components - namely the capacitance from the (+)
electrode to the membrane (C1), the capacitance within the conducting membrane (C3)
which can be assumed to be very small and finally the capacitance from the membrane to
the (-) electrode (C2) closing the field line loop between the two fixed electrodes. As these
capacitances are in series, the total capacitance then becomes

CT =
1

1
C1

+ 1
C2

(3.24)

Since both C1 and C2 have half the area A and they are summed in a paralel configuration,
this leads to a decrease of the capacitance by a factor of 4 as compared to the two paralel
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plate capacitor configuration. In the end, this yields the same csym we have shown previously.
As seen from the data for SiN-G in Fig. 3.17, the c factor for SiN-G on 4-segment electrodes
is relatively larger than the theoretical value. This, we believe, can be explained by some
hypothetical effects that take into account the deviation from the symmetric placement of
the membrane on the electrodes. This effect of assymmetry might be strongly pronounced
since we have the graphene layer extending over the entire membrane frame area as opposed
to the aluminum-coated membranes. Assuming an extremely asymmetric case with respect
to two polarities due to this excess graphene layer, the force constant for one of the polarities
will vanish, whereas it would yield casym = 1

2ε0 for the other one, in the end summing up to
c = 1

4ε0 for the force constant (a factor of 2 enhancement). This , we think, might to some
extent explain the average force constant being above the predicted value by a factor of 2.7
with respect to the case of perfectly symmetrical coupling.

3.4.3 Overlap factor as a correction to the force constant

As it has been noted before, the force constant c we extract from the experimental data
takes into account the asymmetry and imperfect overlap of the membrane with the fixed
electrodes by introducing the general overlap factor ηn,m. This overlap factor accounts for
the asymmetry by dividing the capacitance contributions to three (C3 however is negligible)
as shown in the previous subsection and also for the gaps between the segments, edges, a
slight asmmetry in the mask and finally a central hole in the Al layer. These corrections
have been worked out in detail by Emil Zeuthen. Here, we write down the most general
form of the overlap factor (Supp.Info [41])

ηn,m = 4
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where

O
(j)
i ≡

∫∫
Ai

Φj
n,mξ(x, y)dx dy(∫∫

A

Φ2
n,mdx dy

)j/2 , (3.26)

with i ∈ {+,−} and Ai being the area of the membrane above electrodes of polarity i and the
term in the denominator simply comes from the normalization of the coordinate. The first
(second) term represents the frequency shift contribution from the membrane area above
positive (negative) electrodes for fixed potential values. These terms come from the second
derivative of the position dependant capacitance where the mode shape of the membrane is
taken into account. Thus, the derivatives are calculated in a more general form by using the
chain rule which takes the position also as a function of the corresponding mode amplitude.
The third term is a minor correction due to the modulations of the membrane potential
around the equilibrium value.
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3.4.4 Mechanical Q-factor comparison

Apart from the electrostatic performance of SiN, SiN-Al and SiN-G membranes, we were
also interested in the comparison of the mechanical Q-factors. To this end, we have per-
formed quality factor measurements in two ways; bandwidth determination and ringdown
measurements which have shown similar values. The simplified experimental setup for the

Figure 3.18 Experimental setup for the ringdown measurements in order to ex-
tract the mechanical quality factor of the membranes. The optical interferometric
signal from the vibrometer is fed to an oscilloscope. The plot shows an example
of the amplitude ringdown of a SiN membrane.

ringdown measurements is shown in Fig. 3.18. We place the membranes on a small frame
with a piezo attached and drive them at their eigenmode frequencies. The edges of the
membrane frame (lower side) are in contact with a sticky tape on both sides to ensure
fixing of the membrane to the stage. We record the vibrations of the membrane via the
Doppler Vibrometer. The optical signal from the vibrometer is fed to a fast oscilloscope.
The excitation from a function generator is cut off at a proper time to observe the expo-
nential decay which is then fitted to extract the mechanical Q-factors via Q = Ωmτ where
Ωm and τ are the mechanical eigenfrequency and the energy decay time, respectively.

The result is shown in Fig. 3.19. For this specific experiment, we have used membranes
with the same geometry- 0.5mm2 area and high-stress stoichometric SiN layer. We remind
that the SiN-Al membranes are patterned such that there is no Al layer in the edges in
order not to degrade the Q [33]. Our results suggest that there is no observable difference
between the Q-factors of different membranes. The Q-factors are highly mode dependent
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Figure 3.19 Mechanical quality factors (Q) of SiN (red), SiN-Al (green) and SiN-
G (black). Several modes with increasing frequencies are measured (reproduced
from [41]).

as it would be expected from clamping limited loss (the membrane frame is attached gently
to the piezo frame with a double sided tape) in agreement with [33]. A positive result from
this measurement is that a single graphene layer (even though it covers the whole frame
and is not patterned like Al to avoid the edges) does not degrade the mechanical Q-factor
compared to the bare SiN membranes. We note that a similar experimental study has been
made in [32] where it has been found that a single graphene layer brings minimal loss to the
Q-factor, only around 30% on average with respect to the bare SiN membranes. It should
be noted, however, that a perfectly one to one comparison between all membrane types is
not possible due to the fact that SiN-Al membranes show a frequency that is typically 10
percent lower due to the added mass.

3.5 Conclusive remarks

The measurements we have conducted in this chapter contain our first tests with capacitive
coupling under different membrane-electrode configurations and the specific measurements
we have performed in order to extract the intrinsic electrostatic force constant of different
membrane types. Aside from that, these measurements have been relevant and guiding for
our goals in the next chapter dealing with membrane-LC circuit coupling, as the capacitive
coupling is precisely the same except that there is an additional element, namely the induc-
tor.
In summary, we have experimented with bare SiN, SiN-Al and SiN-G membranes on dif-
ferent electrode configurations. Our results show that graphene coating on SiN membranes
significantly improves the intrinsic electrostatic force factor compared to bare SiN on in-
terdigitated electrodes. In addition to that, by comparing the SiN-Al and SiN-G on four-
segment electrodes, we have shown that graphene coating behaves like a perfect conductor
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following the intuitive expectation and brings similar electrostatic force constant to SiN-Al.
The results follow the theoretical predictions based on the simple analytical expressions and
numerical simulations when the proper correction factors are taken into account.
Our findings suggest that bare SiN membranes usually yield relatively small electrostatic
force constants and also exhibit uncontrollable charging and hysteresis effects presumably
coming from trapped charges in the SiN layer. Together with our quantitative comparative
analyis, we can argue that addition of a metallic or graphene layer helps in removing these
unwanted effects and in addition increases the electrostatic force constant which is critical
for achieving high electromechanical coupling strengths. Apart from that, the mechanical
Q-factor measurements show that a single layer of graphene does not degrade the mechani-
cal Q-factor and it does not pull the eigenfreqency down due to its almost negligible mass,
which is desirable in the context of electromechanical coupling and rf to optical conversion.



Chapter 4

Optical/Electrical readout of
electromechanical coupling

This chapter deals with the experimental realization of a coupled electromechanical system
and the analysis of the results we have obtained with this system. The hybrid system is
partitioned into its components (optical interferometry, LC electrical circuit, metal-coated
nanomembrane) and explained along with the technical issues. We discuss the methods
we have used to characterize the system both optically and electrically. The mechanically
induced transparency (MIT) and strong coupling regimes achieved with this electromechan-
ical system are analyzed. Our analysis based on both optical tracking of the membrane and
electrical readout of the LC circuit shows very good agreement with our theoretical models
which is crucial to characterize the electromechanical coupling strength of the system. The
systematic analysis carried out in this chapter forms the basis for the understanding of the
opto-electromechanical device as a voltage sensor, which is discussed in Chapter 5. We note
that for achieving electromechanical coupling and implementing a hybrid device, we decided
to work with aluminum-coated membranes due to the higher yield in fabrication. But over-
all, based on our measurements in the previous chapter, we expect similar performances
from both coated membrane types which is significantly better than bare SiN membranes.

4.1 Experimental Setup

In this section, a simplified and a wholistic picture of the setup, including the two different
optical interferometers is depicted (Fig. 4.1). We have carried out series of experiments at
DTU by using the commercial vibrometer and at NBI by using our home-made Michelson
interferometer. Apart from that, the idea of the setup is mainly the same, where we have
an LC circuit that is capacitively coupled to a vibrating aluminum-coated membrane. The
characteristics of the electromechanical system is analyzed by monitoring the electrical
response of the circuit via standard lock-in detection and the mechanical vibrations of the
membrane via optical interferometric methods.
A photo of the setup established at NBI is shown in Fig. 4.2. The membrane and the four-

segment electrode capacitor are placed inside a vacuum chamber forming the probe arm of
the Michelson interferometer. The beam from a Nd:Yag laser (Mephisto-Innolight [54]) is
sent onto the membrane in a vertical configuration and the reflected light is back coupled

55
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Figure 4.1 A simplified version of the setup. A SiN-Al membrane is placed on the
four-segment coplanar electrode (capacitor) with a spacing d. Membrane motion
is tracked optically with the laser beam via two alternative methods - Doppler Vi-
brometry and Michelson Interferometry. As the membrane vibrates, it modulates
the capacitance of the LC circuit, thereby creating electromechanical coupling,
where Vdc acts as a knob for enhancing the coupling. A simplified electrical circuit
schematics depicting the LC resonator is shown in the bottom left (for details see
section 4.2.1). The two resonators are matched by tuning a trimmer capacitor C0.
The ferrite inductor (L) acts as an antenna inducing rf signals in the circuit. The
circuit can be driven inductively through port 2 and the voltage fluctuations on
the capacitor are probed by a low noise fast FET (Field Effect Transistor) op-
amp (port 1) and then fed to a lock-in amplifier or a spectrum analyzer for noise
measurements. The membrane-capacitor is placed in a vacuum chamber (< 10−5

mbar).

to the interferometer via a fiber. All the electronic elements necessary for controlling the
electromechanical coupling are contained in the shielded PCB (Printed Circuit Board). The
output of the PCB is connected to the electrical feedthrough in the chamber and a short
low-capacitance wire inside the chamber extends the connection to the membrane-capacitor
chip. The inductor is made of a high-Q ferrite rod material wounded with Litz wires. It is
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Figure 4.2 A photo of the setup at NBI. The optical table is occupied with the
Michelson Interferometer (partly seen here), the PCB unit (for electromechanical
coupling) and the membrane-capacitor chip sitting inside the vacuum chamber
(probe arm of the interferometer).

positioned inside a shielding box and connected to the PCB control unit (to form the LC
resonator) via shielded Litz wires.
The optical interferometer at DTU is a commercial vibrometer (Polytec MSA-500) which
uses the Doppler shift effect to extract the velocity of the mechanical resonator and to
deduce the displacement. The operating principle of the device is explained in chapter 3. A
large fraction of our experimental data as well as fast, preliminary tests of samples during
the first two years of the project have been recorded with this device.
For the sake of more sensitive measurements and the general needs of the Membrane projects
at Polzik Lab, our group - during the course of time - has developed a home-made Michelson
Interferometer. The operation of the interferometer is also explained in the experimental
methods section 4.3.
A vacuum chamber is used in order to prevent air damping of the mechanical resonator
and therefore to preserve the high Q-factor of the membrane. Typically a pressure of 10−5

mbar is enough to eliminate air damping and we operate around 10−6 mbar.

4.2 LC circuit

Our resonant LC circuit is composed of a ferrite inductor and a capacitor whose total
capacitance (≈ 80 pF) is the sum of a large tuning capacitor, the modulated membrane-
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electrode chip capacitance and other small parasitic capacitances. In the following sub-
sections, the key components of the circuit are discussed.

4.2.1 LC Circuit diagram and the PCB

Figure 4.3 Schematics of the electronics for realizing electromechanical coupling
and characterizing the electrical response of the electromechanical system. Repro-
duced from [4].

The design of the PCB (see Fig. 4.3) takes into into account concerns such as keeping
the high Q of the LC resonator, minimizing coupling of unwanted capacitive or inductive
noise and keeping parasitic capacitances added by connection lines as low as possible. We
soldered these components on a PCB shielded with a metal box.
The dc bias voltage is used to charge the membrane (by electrostatic induction) and there-
fore to increase the coupling strength. VRF port on the PCB, which consists of a BNC
input and a small 1:1 transformer, is used for the option of exciting the system capacitively.
For example, the ringdown measurements at zero coupling (inductor disconnected) was per-
formed by using this port. For the driven LC measurements and exciting the membrane
inductively, we placed a coil with a few windings (driven by VD) in the close vicinity of
the inductor. In order not to load the LC circuit with the dc and ac drive, two 22 MΩ
resistors are used. Short circuiting of the dc bias through the inductor is avoided with the
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two 330 nF capacitors. The dc voltage source is low-pass filtered with a 1 MΩ resistor and
a 330 nF capacitor. CT is a high Q trimmer capacitor used for frequency tuning of the LC
circuit. The voltage fluctuations on the capacitor (therefore on the membrane) are probed
by a FET op-amp. The op-amp inputs are protected by 1 kΩ resistors which are not shown
in the diagram. The op-amp component is more involved in reality (actually consisting of
two identical op-amps followed by a third) and the total gain is 1000 at our frequency of
interest. The power supply for the op-amp is filtered by capacitors and kept constant at
5V by regulators. The detailed schematics for the circuit is provided in Appendix A.
Fig. 4.4 shows how our PCB looks like in practice. It is designed in a compact way such
that the parasitic capacitances are eliminated as much as possible. Panel on the left shows
the upper side of the PCB that is placed in a shielded metal box. One of the FET op-amps
(ADA4817-2) from Analog Devices [58] which can take differential inputs is soldered on this
side. The tuning capacitor can be varied with screws to match the resonance frequencies.
One connector goes to the inductor that is to be used and the multi-pin connector goes
to the feedthroughs of the vacuum chamber in order to have connection to the membrane-
capacitor inside. Panel on the right shows the lower side of the PCB where the other op-amp
ADA4817-1 is placed.

Figure 4.4 Upper side of the PCB (left). Lower side of the PCB (right).

4.2.2 Inductor-The antenna

This subsection is dedicated to the inductor which is a crucial component of our LC cir-
cuit. Several tests have been conducted during the initial period of the project in pursuit
of making the appropriate inductor for the specific requirements in our experiment. For
the reasons as outlined below, it turned out that experimenting with ferrite core inductors
(wound with Litz wires) was a promising a solution, especially in terms of getting high
Q-factors. As the project was moving forward, we switched to different compact inductor
geometries, specifically for low-noise detection considerations which will be discussed in
chapter 5.
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Figure 4.5 A close-up photo of our ferrite rod inductor placed inside the shielding
box. The Litz wires wrapped in aluminum foil (for shielding) connect the inductor
to the PCB unit. The coil nearby can be used to drive the inductor.

Frequency matching of the LC: As our mechanical resonators typically have frequencies
in the range of 700 kHz (for 0.5 mm size), the LC circuit has to be tuned to those frequen-
cies. Taking a realistic approach for the total capacitance we could have in the circuit (a
few tens of pF), this means that the inductance should be in the mH range for frequency
matching. As this is a relatively high inductance, using a core material is typically necessary
to reach those values at small sizes.

High Q-factor: In order to demonstrate strong coupling between the nanomebrane and
the LC circuit, the coupling rate should exceed both the mechanical and the LC decay
rate. The mechanical decay rates are typically very small (meaning quite high Q-factors),
however the Q-factor of rf circuits at MHz frequencies is hardly above 100. Known to radio
amateurs, ferrite cores (with the proper material and geometric design) provide the best
way of getting higher Q-factors [55, 57] and this becomes crucial if the coupling rates are
suspected to be small. Also in terms of the voltage sensitivity of our opto-electromechanical
device, cooperativity has to be close to its optimum value and this becomes difficult if both
the LC circuit and the mechanical resonator are lossy for some samples. Apart from the
core material, Litz wires are crucial in eliminating skin effect and proximity effects which
are typical loss mechanisms for AC signals [56]. These wires are made of bundles of very
thin, individually isolated wires which are in the end connected at the soldering point. Thus
the current flows independently in each wire, minimizing ac loss.
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Parasitic capacitance: The parasitic capacitance added to the circuit should ideally be
as small as possible to have higher coupling. Making a big inductor without a core material
is usually accompanied by large parasitic capacitance which favors the use of compact core
inductors due to their low parasitic capacitance (a few pF).

Driven by these initial motivations and following the common knowledge of radio amateur
designers [57], we embarked on a few tests with winding inductors on a ferrite core. Ferrite
has large resistivity and is therefore expected to have less eddy current loss. The material
we chose for the ferrite core is Ferrite 61 (mixture of Zinc and Nickel) from Amidon as it is
known for its suitibility at MHz range [55]. These core materials are usually dominated by

Figure 4.6 a) One of our ferrite rod inductors wound with Litz wires. b) A
sample test of a ferrite rod inductor with respect to operation frequency. The
Q-factor is measured with an analog Q-meter.

core losses (hysteresis loss) at high frequencies. Furthermore, the geometry and positioning
of the wires is important in determining the Q-factor. Ferrite rods with optimized length
and diameter ratio (10 cm long, 1.25 cm diameter) have been purchased for this purpose.
Apart from that, commercial Litz wires have been chosen with optimal diameter and bundle
number for our specific frequency(20 µm diameter, 50 AWG, 130 strands).
In Fig. 4.6a, we show one of our manually wound (Litz wires) ferrite rod inductor. In
panel b, a test performed with a Ferrite 61 rod (83 turns,1 layer) is shown. Around our
frequency of interest (700 kHz), a remarkable Q-factor(≈ 600) can be realized with the right
range of inductance (≈ 500 µH). In the experiments with the systematic analysis of our
LC-membrane coupling, we have used a 90 winding inductor with an inductance of 635 µH
and a Q-factor of around 500.
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4.2.3 Membrane-Capacitor chip

The membrane-capacitor chip component used in the LC coupling experiments is in principle
the same with the ones explained in the previous chapter. In this chapter, based on the
reasons mentioned before, we will be dealing with aluminum-coated membranes. Fig. 4.7
shows a microscope picture of one of our samples.
In panel a, we show a four-segment electrode capacitor. The four circles surrounding the

Figure 4.7 a) Four-segment electrode forming the capacitor. b) An Al-coated
SiN membrane. Metal coating on the edges are patterned out for mechanical
Q considerations. The hole in the middle is considered for future cavity opto-
electromechanics experiments (reproduced from [4]).

electrodes are the pillars that are designed to determine the membrane-electrode distance.
In panel b, we show a sample SiN membrane coated with aluminum avoiding the edges.
The layer that is surrounding the membrane is a large silicon frame. A photo of a typical
combination we have been using, which is a 860×860 µm capacitor chip with a 0.5 mm Al-
coated SiN membrane, is shown in Fig. 4.8. Assembly of the membrane and the capacitor
chip is a critical task and the procedure is the same as described for the samples discussed in
the previous chapter. After the assembly, the samples are inspected under the microscope
(as in Fig. 4.7) for the gentle alignment of the membrane with respect to the chip and
general inspection of dirt or residual particles. As can be seen in Fig. 4.8, the four-segment
electrode is patterned on a transparent glass substrate. The substrate is then placed on a
mount inside the vacuum chamber. We use contact probes to press on the electrode pads
from above for electrical connection that also helps to immobilize the chip.

4.2.4 Loss of the equivalent circuit

The LC decay rate is a determining parameter of the setup. The cooperativity of the sys-
tem (which effects the sensitivity) is inversely proportional to the LC linewidth and for
reaching the strong coupling regime, the coupling rate should be larger than both the LC
and the mechanical decay rates. As outlined in the inductor section, we have used a high Q
ferrite inductor (≈ 500), however the whole circuit including all the parasitic elements has
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Figure 4.8 Photo of a SiN-Al membrane placed on a four-segment electrode chip
deposited on glass. The chip is connected to the PCB via the gold contact probes
shown here.

shown Q-factors of around 130 (confirmed with LC resonant response measurements). Even
though this was sufficient for us to observe strong coupling in the end, it would be useful
to mention the possible loss mechanisms in the chain. First of all, we suspect that the the
PCB introduces some dielectric losses since the connection of the PCB and the inductor
only (without the membrane-capacitor chip) already reduces the Q to typically 300. Later
on, the inductor is placed in a shielding box which is kept at a certain distance from the
optical table. We have realized that at our working distances the optical table and magnetic
elements contribute to the reduction of the Q, roughly to around 250. In the last stage, we
connect the combined LC circuit to the membrane-chip inside the chamber. In this case, we
have consistently observed the Q-factor being reduced to 100-130. In order to investigate
whether the membrane or the four-segment electrode chip brings the significant reduction,
we have tested the situation with a membrane on chip and a chip only. Even without the
membrane, we have still observed similar reductions suggesting that the four-segment elec-
trode is mainly responsible for the decrease in Q. We measured roughly a contact resistance
of 50 Ω for the gold connection lines on the chip at that time and lower than 10 Ω for our
next generation chips with wider electrodes. The origin of the reduction in the loss rate of
the combined circuit is not clearly understood, but it is presumably a combination of ohmic
and dielectric losses.
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4.3 Experimental Methods

In this section, we describe the full set of methods we have so far utilized in order to
characterize our electromechanical system and extract the crucial parameters. First, the

Figure 4.9 Depiction of the Doppler Vibrometer tracking the mechanical vibra-
tions coupled to the LC circuit (the detailed circuit is the same as depicted in Fig
4.3). Here Cc in series to the inductor represents the capacitor necessary in order
not to short-circuit the dc bias through the inductor (reproduced from [71]).

optical interferometry part is introduced (including the experiments with the vibrometer at
DTU and the Michelson Interferometer at NBI) with which the membrane vibrations are
tracked. Then, we will describe the electrical measurements where we simply extract the
system parameters by recording the spectral response of the LC circuit via lock-in detection
or noise measurements of the circuit voltage. Finally, we will explain the calibration methods
where we deduce the absolute vibrations of the membrane in units of meters.

4.3.1 Optical Interferometry I- Doppler Vibrometer

Major part of our preliminary experiments and LC coupling results (except for the recent
high sensitivity measurements) have been recorded with the Doppler vibrometer. Fig.
4.9 shows in a simplified way how the vibrometer optics is interfaced with the coupled
electromechanical system. All the details about the vibrometer are given in Chapter 3,
which also applies to the methods of the LC coupling experiments.
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4.3.2 Optical Interferometry II- Michelson Interferometer

Figure 4.10 A generic picture of a Michelson Interferometer with a probe and
reference arm. Ein is the incoming laser beam and Eout is the output beam which
carries the interference pattern of the probe and reference arm.

Michelson interferometry is known to be a well-established technique used to detect
minute path length changes [59–61]. Fig. 4.10 depicts a typical Michelson interferometer
with a reference and probe arm (Other necessary optical elements are skipped). The main
idea is that the beam coming from the laser is split into the two arms via the beam splitter,
reflected back and recombined at the detector part. Assuming that the reference arm is
stable and not moving, path length changes caused by the motion of the probe arm (a
moving mirror etc) can be detected via the interference pattern seen on the detector.
The mathemathics behind detection can be grasped in a straightforward manner by writing
down the electric field amplitudes summed up at the detector side. Imagine the input beam
to be a simple plane wave with frequency ω, then the input and the following output fields
can be written as follows

Ein = E0e
i(ωt−kx) (4.1)

Eout =
i

2
Ein(2l1, t) +

i

2
Ein(2l2, t) (4.2)

where t = 1/
√

2 and r = i/
√

2 have been used as the complex transmission and reflection
coefficients for a 50/50 beam splitter and k = 2π/λ is the wave number with λ referring to
the wavelength of the laser beam. Following the two equations above, the output field can
be written as

Eout =
i

2
E0e

iωt(e−i2kl1 + e−i2kl2) (4.3)
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yielding
Eout = iE0e

i(ωt−k(l1+l2))cos(k(l1 − l2)) (4.4)

We are interested in the power measured by the photodetector, so by taking the square of
the field amplitude, one reaches

Pout =
E2

0

2
(1− cos(2k∆l)) (4.5)

At this point, it is useful to define the parameter V (visibility) that is used to characterize
the contrast of interference of the optical system

V =
Pmax − Pmin

Pmax + Pmin
(4.6)

The detailed schematics of our home-built interferometer is depicted in Fig. 4.11. First,
the laser beam (fiber coupled to the laser source) is introduced into the common path of
the interferometer. The polarization is cleaned with a polarizer right after the fiber output.

Figure 4.11 Schematics of the Michelson interferometer with balanced detection
(HWP: Half wave plate, QWP: Quarter wave plate, PBS: Polarizing beam splitter,
PZT: Piezo tube ).

A λ/2 waveplate is used to arrange the amount of light going to the reference and probe
arms. Then PBS1 splits the beam into two arms. The beam continuing in the reference
arms is fiber coupled and sent onto a piezo mounted mirror to change the path length of
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the arm. The piezo is controlled with a servo box to scan the fringe pattern and lock the
interferometer at the right operating point.
The beam travelling on the probe arm is also coupled to a fiber and sent on to the membrane
in the vacuum chamber with the head (involving a camera to monitor and illumination).
A λ/4 waveplate is used both in the probe and reference arm to recombine the reflected
lights at the first beam splitter. The back reflected beams from the reference and probe arm
recombine at PBS1 again and then split at PBS2 for balanced homodyne detection. The
waveplate in between can be used to finetune the powers on the two arms reaching the two
photodiodes of the detector. The photodetector is a sensitive Thorlabs balanced detector
(InGaAs) with 0-75 MHz bandwidth with high common-mode rejection ratio. There are
two DC output ports of the photodector which can be used to monitor the interferometer
signal and an rf output which gives the differential signal from the two. The difference of
the two DC ports is used to generate an error signal for the lock.
Our home-built interferometer is shown in the photo in Fig. 4.12a. Light from the Mephisto
laser (Nd:YAG) at 1064 nm is sent through an isolator and follows the optical paths aimed
for different experiments. Part of the optical power is coupled to the fiber that enters the

Figure 4.12 a) Michelson Interferometer setup b) Probe head with the fiber port
and the camera on top of the vacuum chamber. The other optical elements are
tied together in a cage system.

interferometer arm. As shown in the right (b), the beam in the probe arm is coupled to a
fiber and is mounted on the readout head fixed in a cage system (fiber is not connected in
the picture). The beam travels inside the cage system and follows a quarter waveplate, a
beam splitter and a focusing lens before hitting the membrane. The beam passes through
the beam splitter, hits the membrane and some part of the reflected light shines on the
vertically positioned camera inside the cage. With some LED illumination, we can see the
membrane and the beam position on the membrane as well as the electrodes underneath.
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Big portion of the reflected light couples back to the fiber (having passed through the quarter
waveplate two times) and goes back to the interferometer with the right polarization for
detection.

4.3.3 Calibration of the mechanical amplitude

In this subsection, we will describe how we convert our optical signals from membrane vi-
brations into absolute amplitudes in meters, seperately for the Doppler Vibrometer and the
Michelson Interferometer.

Doppler Vibrometer
The mechanical noise spectrum measurements done with the vibrometer uses the built-in
calibrated procedure of the commercial device. As the membrane moves, it gives rise to a
Doppler shift proportional to its velocity which is detected interferometrically. The voltage
controlled piezo in the reference arm is used for the absolute calibration of the displacement.
The velocity information is then processed to yield amplitudes and an FFT is performed to
generate the membrane spectrum in units of meters.
However, for the driven membrane measurements with the vibrometer, an additional calibra-
tion procedure has to be implemented since the output of the vibrometer is fed to a lock-in
amplifier for those measurements. The procedure we have used can be described as follows.
The membrane is first excited with a single frequency sine wave of known amplitude from
the rf output of the lock-in via a drive coil. This appears as a sharp mechanical response
on the FFT analyzer of the vibrometer which is already calibrated in meters. This value is
then used to calibrate the wide membrane spectrum while we scan the rf excitation signal
and record the driven response of the vibrometer output which is fed to the lock-in amplifier.

Michelson Interferometer
The working principles and key equations of the Michelson Interferometer have been ex-
plained in the Optical Interferometry-II part. The way we calibrate the mechanical am-
plitudes in meters rely on the interference fringe equations. In the experimental setup, we
have (ideally) two identical voltage measures (except for their signs) coming from the two
photodiodes of the balanced detector. The voltage measured by those is proportional to the
power of the light impinging, therefore the difference of the two can be written simply as

Vdiff = Acos(2k∆l) (4.7)

where A quantifies the signal amplitude and the signal is a function of the path length
difference as expected. The two voltages and their difference in a typical measurement are
depicted in Fig. 4.13 yielding the interference fringe pattern (numerical) as one scans the
path length difference. As can be seen, the difference signal oscillates around zero where
the intensity fluctuations are cancelled to a large extent. Furthermore λ/8 point gives the
highest slope, therefore the sensitivity is maximized around this point. For these reasons, we
lock our interferometer at this 0V point. The piezo is fedback depending on this differential
error signal such that it keeps this level the same. Then, we look at the high frequency
signals (1MHz) that carry the mechanical vibrations with the rf part of this error signal.
To see how calibration is performed, we need to look at the equations that convert a certain
voltage to an absolute displacement. First of all, the differential voltage can be reexpressed
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in terms of VFF the full fringe voltage (peak-to-peak) - maximum and minimum of the
interference signal

Figure 4.13 Interference fringe pattern (numerical) for the separate signals from
the two photodiodes (green and blue) and their differential signal (red) which
produces the error signal for the lock.

Vdiff =
VFF

2
cos(2k∆l) (4.8)

Assuming that we are operating at the locking position (λ/8) and we are interested in small
vibrations of the mechanical oscillator in the vicinity of this locking point, the detected
voltage can be written as follows

dV = Vdiff(λ/8 + dx) =
VFF

2
cos(

π

2
+ 4π

dx

λ
) = −VFF

2
sin(4π

dx

λ
) (4.9)

where dV and dx refer to the rms voltage and vibration amplitude, respectively.
As the vibrations are expected to be small, the sin term can be approximated by

sin(4πdx/λ) ≈ 4πdx/λ. Thus the conversion equation between voltage and displacement is
given by

|dx| = λ

2π

|dV |
|VFF |

(4.10)

This means that for a given voltage detected with this differential signal, we can deduce
the absolute displacement if we know the wavelength of light and the full fringe voltage. In
the experiment, we realize the calibration procedure using the following methodology. We
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first make a fringe measurement where we sweep the piezo with a certain voltage to see the
full fringe signal like depicted in Fig. 4.13. We read off a full fringe voltage from the two
signals on the scope which will enter in the calibration equation. Then we use a calibration
peak, which is itself calibrated with respect to the full fringe measurement by using the
fringe equation, to set a reference for the membrane thermal noise measurements . The
calibration peak is essentially a small modulation at a frequency close to the mechanical
frequency (typically 700 kHz) which is provided by driving the piezo with a certain voltage
amplitude. This signal shakes the piezo and the interferometer optical readout sees it as
a modulation peak in the spectrum (a sample calibration plot is shown in Fig. 4.14). To

Figure 4.14 Calibration peak and membrane thermal peak recorded in the same
spectrum with a low resolution setting. The peak amplitudes in this setting cor-
respond to rms values that can also be used as a way of calculating the effective
mass.

determine this calibration peak amplitude, we measure it with a high impedance setting
of a lock-in amplifier which gives the rms voltage at this specific frequency. Once this is
done, the calibration peak itself can then be compared to the full fringe voltage and its
amplitude in meters can be calculated. Following this procedure, the thermal peak of the
membrane can be calibrated by referencing it to the calibration peak. The calibration of
the membrane peak with the intermediate step of referencing it to a calibration peak is
useful for practical reasons. In case the beam position or light power change or have to
be varied for various experiments, it is not necessary to re-do the full fringe measurements
from the beginning since no matter what is changing in the system, the calibration peak
will automatically adjust itself as the membrane does. Thus the significant quantity to
keep track of is the ratio of the two. Depending on the purpose of the experiment, a
low resolution or a high resolution spectrum recording might be used for the displacement
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calibration and effective mass determination. For example, for quick determination of the
mass, it is convenient to use a low resolution spectrum (both wider than the calibration and
membrane peak linewidth) as the thermal peak amplitude refers to the rms value and the
square of this calibrated rms value gives the integrated x2 which can be directly inserted in
the equipartition theorem, 1

2kx
2
rms = 1

2kBT as in Fig. 4.14. The temperature T is assumed
to be room temperature (300K) in our case. Alternatively, the narrow membrane spectrum
can be recorded with a high resolution setting and then fitted to a Lorentzian in order to
extract both the effective mass and the mechanical linewidth Γm by using the double-sided
thermal spectrum [14,62]

Sxx(Ω) = |χm(Ω)|2SFF (Ω) =
1

m2

1

(Ω2
m − Ω2)2 + Γ2

mΩ2
2mΓmkBTm (4.11)

We note that the measured effective mass for our membrane is dependent on the position of
the optical readout beam on the membrane. The expected value (referenced to the center
of the membrane) is always 1/4 of the physical mass for a square membrane. Therefore,
depending on where our laser beam hits (typically slightly off-center with respect to the
hole in the middle), the effective mass can show variations from this expected number.

4.3.4 Electrical characterization

Driven LC circuit and Noise Measurements
In our setup, we have the advantage of using two non-perturbative probing methods; optical
interferometry and electrical probing. As the membrane is coupled to the capacitor (which
drives its vibrations) and the capacitor is part of a resonant LC circuit, one can observe
the electromechanical coupling and extract crucial parameters by driving the LC curcuit
and monitoring the voltage on the capacitor with a low-noise detection configuration. Here,
we achieve this by incorporating a weakly coupled rf driving (not to load the Q) and a
very low-noise amplifier (FET) which detects the voltage on the capacitor, ideally without
affecting the system (as it was shown in the detailed circuit diagram). Fig. 4.15a shows an
example from a characterization measurement of the coupled electromechanical system. In
order to extract the bare properties of the LC circuit such as linewidth, the circuit is driven
with a coil in the vicinity of the ferrite inductor. The resonating voltage is then tracked with
the op-amp, the output of which is fed to a lock-in amplifier or a spectrum analyzer. The
Lorentzian fits give the intrinsic Q (or the linewidth) of the uncoupled LC in the absence
of DC voltage. The LC resonance frequency is tracked in this way as well while adjusting
the tuning capacitor. When a DC voltage is applied, membrane vibrations couple to the
circuit and create voltage fluctuations that dramatically change the LC circuit behavior as
seen in the mechanically induced transparency dip of Fig. 4.15b. We make fits coming from
our theoretical models to extract coupling related parameters as it will be discussed in the
MIT regime later.
Apart from driven LC measurements, we have also performed electrical noise measurements
where the electrical spectrum is recorded with a spectrum analyzer or an oscilloscope (FFT).
For the measurements performed at DTU, we have worked with a lock-in amplifier from
Zurich Instruments (HF2LI) which can be set to work both in FFT spectrum analyzer and
lock-in mode. For the measurements performed at NBI, we have used several devices de-
pending on the purpose of the experiment. An ESA Agilent Spectrum Analyzer and an HP
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Figure 4.15 An example from an electrical characterization measurement of the
electromechanical system. a) Rf coil driven response of the LC circuit at 0 V
dc bias. Without any dc voltage, membrane dynamics is decoupled from the LC
circuit and the Q-factor of the bare LC circuit can be determined. b) Rf driven
response with dc=25 V. A clear dip (MIT feature) is observed due to coupling to
the vibrations of the membrane.

Network analyzer have been utilized for driven response and noise measurements together
with a fast Lecroy Oscilloscope for acquiring FFT spectrum data.

FET Op-amp
In order to read out the voltage across the capacitor, to which the membrane is connected,
we have used a low-noise fast FET (Field Effect Transistor) ADA4817 from Analog De-
vices [58]. The op-amp has a specified voltage noise of 4 nV/

√
Hz and a current noise of

2.5 fA/
√

Hz at 100 kHz. The actual bandwidth of the op-amp is 1 GHz, however this gets
reduced down to a few MHz in our case depending on the feedback resistors we use for
achieving gain. The configuration we utilize in the experiment is a High Speed JFET Input
Instrumentation Amplifier mode (with three ADA4817 op-amps) arranged in a way to yield
a gain of G=1000. This Instrumentation Amplifier mode is suitable for our application since
it is possible to accept floating inputs from both leads of our capacitor. A more detailed
information about our op-amp configuration can be found in Appendix A.

4.4 Data analysis and results

One of the immediate goals in our project was to demonstrate coupling between the mem-
brane and the LC circuit by optical means. This would then pave the way for using this
system as an efficient transducer to readout rf signals with optics or convert rf photons to
optical photons, as well as further possible applications in different coupling regimes. In
this section, we will present the results obtained with this electromechanical system and
analyze the data in light of our theoretical models. The section is divided into three main
parts; MIT regime, strong coupling regime and extraction of the coupling strength.
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4.4.1 Mechanically induced transparency regime

The fundamental reason behind electromechanical coupling is the distance dependence ca-
pacitance of the LC resonator. As the membrane moves, it alters the capacitance, thereby
modulating the resonance frequency of the LC circuit. In such an electromechanical system,
one can observe the dramatic effect of coupling in both ways (on the membrane and the LC
circuit) if the coupling rate is sufficiently large. This dynamics would then give rise to an
interesting phenomenon called MIT (Mechanically Induced Transparency) which is an in-
terference effect like the well-known EIT (Electromagnetically Induced Transparency) [64].
Such a phenomenon has been observed with a microwave circuit operating at cryogenic
temperatures [21] and named EMIT (Electro-mechanically Induced Transparency). When
the coupling microwave tone (together with a probe tone) is injected into the circuit, the
mechanical resonator is driven coherently and this in turn causes voltage fluctuations in
the circuit which interferes destructively with the incoming probe signal. This results in a
dip at resonance which is manifestation of the physics of coupling [68]. This phenomenon
has first been observed in an optomechanical system (OMIT- Optomechanically Induced
Transperancy) with an optical cavity and a mechanical resonator [20]. Slightly different
from the setups described, here we observe this phenomenon with a room temperature LC
circuit and a membrane by using a DC voltage source for the coupling. In both examples
stated above, the microwave and optical cavities are driven at vastly different frequencies
than the mechanical resonator which is known as the parametric coupling [65–67], whereas
in our case the LC resonator and the mechanical resonator frequencies are matched.
We have experimented with several Al-coated SiN membranes for the preliminary tests on
the way to the observation of electromechanical coupling. Those measurements have been
performed with the Doppler vibrometer. The handy feature of the vibrometer is that the
initial distance between the membrane and the chip can be measured quickly with the White
Light Interferometer setting without first placing the sample under vacuum and connecting
to a voltage source. This helps us in estimating quickly the possibility of observing high
coupling rates with different samples for a realisticly applicable voltage. At the same time,
the Michelson Interferometer at NBI had been under construction and was not available
until our first experiments for low-noise optical detection.
Usually our procedure of observing a coupled system starts with initial frequency shift tests

of the membrane with the inductor being disconnected from the PCB (same procedure as
stated in the previous chapter). This helps us identify the expected shifted membrane fre-
quency (shift corresponding to ∆Ωm ≈ −C ′′(x)V 2

dc/2mΩm) after applying a dc bias voltage.
Fig. 4.16 shows the mechanical frequency vs dc bias of a 0.5 mm size SiN-Al membrane
tracked with the Doppler Vibrometer in the presence of the LC circuit (inductor connected).
In this measurement, the peak frequencies are extracted from Lorentzian fits to the driven
membrane spectra (via the drive coil in the vicinity of the inductor). Note that the fre-
quency shift vs dc bias measurement does not require the presence of the inductor (as it
has been performed in the capacitive coupling chapter), but it allows observing all features
of the coupled system in one and the same setting.

The results we will show in the MIT section refer to a data set taken with this sample
which has 50 nm Al coating and a 100 nm SiN layer with a measured effective mass of 30
ng. After having observed the range of the mechanical frequency (how it shifts with the dc
bias), we concentrate on the LC response when driven with the coil in order to see the first
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Figure 4.16 Membrane mechanical resonance frequency tracked with the Doppler
Vibrometer. The fit is a quadratic function of the dc bias voltage as expected from
our models.

signs of LC-membrane coupling. With the dc bias off, we can tune the capacitor to match
the LC to the desired mechanical frequency, known from the previous tests. Then applying
a dc bias voltage generates coupling between the membrane and the LC circuit which can
be observed with an MIT dip at the mechanical frequency on the driven LC response. Fig.
4.17 shows a sample coupling picture at 25 V dc. The fit function for the electrical response
comes from equation 4.12 for the voltage across the capacitor.
As we first see the MIT dip, we also fine tune the position of the dip by slightly changing the
dc voltage. In this way, one can position the MIT dip in the center. This should correspond
to the maximization of the coupling strength. At the same time, we can monitor the
membrane fluctuations by looking at the optical signal from the Doppler Vibrometer. Due
to the coupled nature of the sytem, a dramatic change becomes clear in the spectrum,
namely broadening of the membrane linewidth from a few Hz to several kHz increasing
with the dc voltage. This can be understood by looking at the Langevin equations of the
coupled system we have treated in the theory chapter. An intuitive explanation is that
the membrane (the high Q oscillator in this case) couples to a lower Q resonator, therefore
dissipating its energy faster than its intrinsic decay rate. The models that we use to fit the
data come from the coupled equations of motion that describe the voltage probed on the
capacitor and membrane vibrations derived in the theory chapter. It is possible to show
that the voltage on the capacitor - assuming that the drive is dominated by the induced
voltage on the inductor - can be described by (as shown in section 2.3)

δVc(Ω) = −
(

1

C(x̄)
− χm(Ω)G2

)
χLC,eff(Ω)δVs(Ω) (4.12)

By inserting the total capacitance measured beforehand (typically C(x̄) = 80 pF) and fitting
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Figure 4.17 a) MIT dip in the driven electrical response with a model fit at 25 V
bias. b) Broadened membrane driven response (at the same bias voltage) tracked
optically and fitted to the model for the mechanical resonator.

this function to the measured voltage on the capacitor, we extract the parameters Ωm,
ΩLC , ΓLC , G and δVs. Following the relationship between the optically detected phase
fluctuations and the membrane fluctuations

δφ(Ω) = 2kχm,eff(Ω)GχLC(Ω)δVs(Ω) (4.13)

the membrane spectrum can be described by

δx(Ω) = χm,eff(Ω)GχLC(Ω)δVs(Ω) (4.14)

where again the driving voltage dominates over the thermal noise of the membrane. The
system parameters like m and C are extracted from independent measurements (uncoupled
membrane thermal spectrum for determining m and LC resonance frequency with a known
inductance for determining C) and ΓLC is found by fitting the measured voltage on the
capacitor with the equation 4.12. The fit function for the mechanical spectrum is then used
to extract the parameters Ωm, ΩLC , G and δVs as done for the electrical response.
Another test of the nature of the experimentally observed coupling comes from the detuning
of the two resonators. As the LC resonator’s frequency is varied by tuning the capacitance,
the strength of coupling falls, having a maximum at the zero detuning case (resonant cou-
pling) at a constant dc bias voltage (60 V in this case). This is what we observe in Fig.
4.18 fitted to a Lorentzian function. We note that at the time of this specific measurement,
we did not have the FET op-amp, so this was recorded with a pick-up coil and a simple
op-amp to detect the driven response.
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Figure 4.18 The LC circuit is tuned to a specific frequency for each data point
and the circuit is driven with an rf signal. Driven membrane spectrum (optical
signal) is recorded to determine the mechanical linewidth at each detuning.

After the preliminary experiments with our membrane-LC circuit and testing different PCB
designs, we recorded data with the PCB (now including the FET op-amp) for the systematic
analysis of our system. The membrane- electrode distance is around 5.6 µm for this sample
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Figure 4.19 Membrane broadening as a function of the dc voltage exhibiting
quadratic behaviour as expected.

and thus requires relatively high dc voltages to achieve measurable coupling strengths. In
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the MIT regime, the mechanical resonance linewidth is a good parameter to extract the
coupling strength of the system. The broadening of the mebrane due to coupling to the LC
is described by the simple relation

Γeff = Γm(1 + Cem) (4.15)

where Cem is the cooperativity which has been introduced in the theory section. Since the
cooperativity is proportional to g2

em and gem is a linear funtion of Vdc , broadening of the
linewidth is expected to scale quadratically with the bias voltage which is seen in Fig. 4.19.
Each point comes from a high quality Lorentzian fit to an rf driven membrane response.
Error bars come from the uncertainties in the fitted width. A similar phenomenon for
the membrane linewidth broadening has been observed in a different system [63] where a
nanomembrane is coupled to an ultracold atomic ensemble.
Later on, we embarked on more systematic measurements with this sample in the MIT
regime. Fig. 4.20 shows our investigation in a compact way. Panel a and b refer to the
driven electrical and mechanical responses, respectively. As we increase the dc bias voltage,
membrane linewidth gets broadened as expected from the theory and on top of that, the
quadratic frequency shift can be seen (dashed line is a fit to the points corresponding to the
dip). We note that for each dc bias voltage measurement, we tune the LC circuit to reso-
nance with the shifted mechanical frequency. Broadening of the membrane is shown in an
inset in panel b and analyzed in three ways by model fits to the electrically (circles) and op-
tically (boxes) measured response and Lorentzian fits to the optically measured membrane
response (diamond). These three ways show very similar values. Absolute displacement

Figure 4.20 Detailed systematic study of the MIT regime showing both LC
circuit (a) and membrane (b) responses. Reproduced from [4].

of the membrane is performed via the methodology described in the calibration discussion
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4.3.3. We note that in this figure, the curves for each dc bias voltage are given an offset to
match the baseline to the corresponding dc voltage in the y-axis. In panel a, we analyze
the corresponding electrical picture (voltage probed with the op-amp) showing the MIT
dips of the LC resonance. The width of the MIT dip also broadens and dip depth grows in
unison with our theoretical expectations. Our fits to the electrical and optical spectra are
based on the theoretical model discussed in the theory chapter. These fits have been used
to determine crucial system parameters like Ωm, ΩLC, ΓLC , G and Vs and the agreement
between the two fits (optical and electrical) is fairly good for Ωm, ΩLC and G - within 1%.
In addition to that, we measure the intrinsic mechanical linewidth of the membrane via the
thermal noise spetcrum recorded with the Doppler vibrometer with high resolution (1Hz).
Typically, with a few averaging the mechanical spectrum can be fitted to a Lorentzian and
the linewidth can be extracted. Then this calibrated mechanical displacement is integrated
to estimate the effective mass (≈ 30 ng) for this membrane which is in very good agreement
with the theoretical effective mass deduced from the physical mass divided by four (28 ng).
The mechanical linewidth referring to this particular data set is Γm/2π = 2.3 Hz .

4.4.2 Extraction of the coupling parameter (G) in different ways

After the systematic measurements in the previous section, we now extract the coupling
strength parameter G for our electromechanical system in this regime. G is a crucial pa-
rameter of the coupled electromechanical system for understanding the physics and is also
one of the figure of merits of the system in the context of a sensitive voltage probe. We,
therefore, have analyzed it in several ways and confirmed the consistency of the numbers
we have extracted. The four independent ways we have used for quantifying the coupling
strength comprise;

1) Spectral Response - Electrical and Mechanical
2) Amplitude ratio - Comparison of the voltage and displacement modulation amplitudes
(fits to electrical and optical data)
3) Frequency shift - with dc bias.
4) Purely theoretical- Estimates starting from the geometry of the transducer

These four independent methods have shown fairly good agreement with each other. The
details for each method are given below based on the S.I of our work [4].

1) Spectral Shape
The spectral shape of the voltage fluctuations probed by the op-amp and the membrane
vibrations recorded via optical means give us two independent ways of extracting G from
the experimental data and model fits. The expressions governing the voltage and the mem-
brane displacement were given in equations 4.12 and 4.14. By fitting the experimentally
recorded spectrum to these functions, we can obtain fit parameters including G as outlined
before where the amplitudes (voltage and displacement) are fit parameters as well. At a
dc bias voltage of 125 V for the MIT regime data, this spectral method yields GI = 10.3
kV/m.
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2) Amplitude Ratio
Another way of extracting G is to infer the ratio of the measured voltage fluctuations to
the mechanical fluctuations (rms) and then use the fit model. The frequency dependent
expression for this ratio is given by

δVc(Ω)

δx(Ω)
=
−( 1

C(x) − χm(Ω)G2)χLC,eff(Ω)δVs(Ω)

χm,eff(Ω)GχLC(Ω)δVs(Ω)
(4.16)

A simpler expression can be constructed by choosing a specific frequency, namely the reso-
nance frequency where Ωres = ΩLC = Ωm and then the formula is simplified to

| δVc(Ωres)

δx(Ωres)
|=
√
G2 +

L2m2ΓmΩ6
res

G2
(4.17)

We have had several trials for measuring this ratio at resonance, however it turned out to
be tedious since we have not been able to extract consistent experimental values. For this
method, we first scan the LC resonance (including the MIT dip) with an rf signal and locate
the MIT dip point. Then we choose the demodulation frequency of the lock-in exactly at
this dip frequency, so that this value can be recorded in a narrow band (high resolution).
Afterwards, we perform the same type of lock-in detection for the mechanical resonance by
attempting to track the maximum peak height. However, the peak values we extract in this
way, are not stable in time and mainly the frequency shift of the membrane with respect
to the LC resonance makes it challenging to record reasonable values. Therefore, instead of
using only the resonance point, we have decided to rely on the broadband scan of the LC
and mechanical resonance and use the frequency dependent fit functions to infer the ratio
of the mechanical amplitude to the MIT dip voltage amplitude. This has resulted in more
stable values and the value of G turned out to be within the expected range. At 125 V, we
extract GII = 8.5 kV/m.

3) Frequency Shift
The electrostatic spring softening effect that brings a shift to the mechanical resonator fre-
quency (that has been discussed several times so far) can also be used as an independent
way of inferring the coupling strength G. The frequency shift is proportional to the second
derivative of the reciprocal of the position dependent capacitance. We start by defining m∗

as the physical mass with the correspondingly defined x coordinate. In order to proceed
further from here, we assume a certain distance dependence for the capacitance. For a
capacitive system like ours, it is valid to assume a relationship of the form

C(x) = C0 + Cm(x) = C0 +
a

d+ x
(4.18)

since our system can be envisioned as a simple paralel plate capacitor with one end free to
move (d is the equilibrium distance between the plates and x is a small perturbation of the
moving end). Here, C0 is a large capacitance offset on top of which the small membrane
modulation comes. Then the relationship between the first and second derivatives becomes
trivial

∂

∂x

1

C(x)
= − ∂2

∂x2

1

C(x)
· d

2
(4.19)
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Following our approach in [4], it is convenient to insert an additional factor to the right hand
side of the equation, namely to acount for the freedom of choice with regards to the gauge
for the oscillator mass. (with m being the effective mass and x needs to be scaled suitably
as well). This is carried out as follows by writing the membrane displacement around
the equilibrium δx(y, z) as an expansion of drum modes Φm,n(y, z) with the canonical
coordinates βm,n

δx(y, z) =
∑
m,n

βm,nΦm,n(y, z) (4.20)

where the modes are normalized in such a way∫∫
Amem

Φ2(y, z)dydz =
m

m∗
(4.21)

With this coordinate transformation and using the chain rule for the derivatives with respect
to the coordinates (switching between β and δx) one reaches

∂

∂x

1

C(x)
= − ∂2

∂x2

1

C(x)
· d

2

√
m/m∗ (4.22)

G is related to the second derivative of the reciprocal of the capactitance (therefore to the
frequency shift) as shown in the theory chapter

G = q̄
∂

∂x

1

C(x)
= −q̄ d

2

√
m/m∗

∂2

∂x2

1

C(x)
= −2

√
mm∗Ωmd

C(x̄)Vdc
∆Ωm (4.23)

As can be seen, G is now a function of independently measurable parameters and can be
deduced for a given dc voltage. For the MIT data, we find GIII = 14.4 kV/m at 125 V bias
voltage. Here, m = 30 ng is the experimentally measured effective mass, m∗ = 110 ng is the
physical mass from the dimensions calculated by using the mass densities ρSiN = 3.0g/cm3

and ρAl = 2.7g/cm3. The total capacitance C(x) = 76 pF is measured independently via
the experimentally determined resonance frequency and inductance. d = 5.5 µm is the
initial distance measured with the white light interferometry before the experimental run.

4) Theoretical - Geometry
The coupling strength G can in principle be calculated based on a purely analytical ap-
proach where the geometric parameters pertaining to the capacitive system are provided
as inputs. This has been caried out in detail by Emil Zeuthen by taking into account the
membrane mode shape, the electrode mask and their relative alignment as well. Here, we
neglect edge effects for the capacitance and also take the membrane to be locally flat as it
is small compared to the large intial distance between the membrane and electrodes. Fol-
lowing the coordinate definitions and transformation stated in the third method (frequency
shift) and writing G as

G = q̄
∂

∂β

1

C[δx(y, z)]
(4.24)

Also taking into account the specific geometry of our capacitor design (four-segment elec-
trodes), we can write the total capacitance as the series combination of C+, C− and C0
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which denote the capacitance from the positive and negative electrodes and the total tun-
ing capacitor, respectively

C = C0 +
1

1
C+

+ 1
C−

, (4.25)

The end result for G is then found to be

G =
Vdcε0L

2

C(eq)d2

√
m

m∗


O

(1)
+

[O
(0)
+ ]2

+
O

(1)
−

[O
(0)
− ]2(

1

O
(0)
+

+ 1

O
(0)
−

)2

 , (4.26)

where L is the membrane side length and the overlap factors are defined in the following
way

O
(j)
i ≡

∫∫
Ai

Φj(y, z)ξ(y, z)dydz( ∫∫
Amem

Φ2(y, z)dydz

)j/2 (4.27)

with i ∈ {+,−} and Ai being the area of the membrane above electrodes of polarity i;
ξ(y, z) is the Heaviside function that takes into account the electrode gaps and the hole in
the membrane metalization just as stated within the treatment in the previous chapter. For
the value of the overlap factor, we used the mean value taking into account the typical 25
% lateral misalignment. With the parameters of our device, we find G/Vdc = 66m−1. For
Vdc = 125 V we find a value of Giv = 8.2 kV/m.

4.4.3 Strong coupling regime

In this part, we will concentrate on the strong coupling regime which is of interest in any
kind of physical system as it refers to the energy exchange at a considerable rate between
two resonators. The very general description of the strong coupling regime is that the
coupling rate between the two coupled systems exceeds the dissipation rates of the two
individual systems [69], thus allowing transfer of excitations between the two before they
die out. More formally, it corresponds to the condition 2g (splitting) > Γ1,Γ2 where g
is the coupling rate and Γ1 and Γ2 are the dissipation rates of the two independent sys-
tems. In the context of optomechanics and microwave electromechanics, strong coupling has
been observed in several setups [9–11, 70]. In that case, a mechanical resonator is coupled
strongly either to an optical field in an optical cavity or a microwave field resonating in an
LC circuit. The resulting dynamics is intruguing since it allows coherent manipulation of
signals between mechanics and microwave or optical fields. It may also serve for interfac-
ing microwave and optical systems for coherent state transfer via mechanics in this case.
Here, we should note that quantum strong coupling regime has more strict requirements
in the opto-electromechanics context - that the coupling rate should be larger than Γmn,
namely the mechanical decay rate multiplied by the thermal occupation number which is
typically quite large at room temperature. Therefore, it becomes possible at the expense of
a formidable task of having very high-Q mechanical resonators and starting from very low
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base temperatures. This has recently been achieved in [9, 11].
The strongly coupled system shows distinct features with qualitatively observable changes
when the sytem is probed. The onset of strong coupling is characterized by a phenomenon
called normal mode splitting, where the coupled system shows splitting into two peaks in
the frequency domain [69, 70]. In this regime, the two individual sytems can no longer be
treated seperately, but they have instead truely hybridized into a common mode. Based on
the Hamiltonian introduced in [19]

H =
φ2

2L
+
q2

2C
+
p2
m

2m
+
mΩ2

mx
2
m

2
+
gem
q0x0

(qxm) (4.28)

and applying the resonance condition (Ω = Ωm = ΩLC), the usual canonical variables refer-
ing to charge and displacement can be rewritten in the language of normal mode solutions
Y+, Y−, P+, P− [19] where

xm = (Y+ + Y−)/
√

2m, q = (Y+ − Y−)/
√

2L (4.29)

pm = (P+ + P−)
√
m/2, φ = (P+ − P−)

√
L/2 (4.30)

and the two modes have separated frequencies depending on the strength of the coupling
rate as follows

Ω± = Ω
√

1± gem/Ω (4.31)

From a practical point of view, although strong coupling (observation of the splitting)
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Figure 4.21 Optical detection of the membrane vibrations and gradual observa-
tion of the strong coupling regime. At 175 V, the mechanical peak starts to get
asymmetric and splitting becomes clearer with increasing bias voltage.

is not necessarily the best condition for reaching high voltage sensitivities for the opto-
electromechanical device (considering the optimization for Cem discussed in the following
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chapter), it is important to see the limits of the coupling rate when considering the band-
width of the device. For example, it might first be desirable to show as high coupling rate
as possible and then the LC linewidth may be deteriorated (loaded manually etc.) until the
device is optimized for both bandwidth and cooperativity. Other than that, an interesting
opportunity would arise if one can incorporate the strongly coupled electromechanical sys-
tem inside a high finesse cavity and cool the normal modes of the LC-membrane system via
radiation pressure cooling of the membrane as proposed in [19].
In our experiments, we have tested several membrane-chip samples in the beginning to reach
the strong coupling regime. Pushing the coupling rate up in order to overcome the LC decay
rate (which is typically 5 kHz) has been challenging due to the large membrane-capacitor
distances. In addition to that, our PCB has a margin of 280 V DC due to the capacitive
elements used in the circuit and going above that can damage the circuit. In the end, we
managed to observe the onset of strong coupling (normal mode splitting) for the first time
with the sample investigated in the MIT section, at a distance of 5.5 µm with a high dc
voltage Vdc > 250 V. Fig. 4.21 shows the data where we gradually monitor the appearance

Figure 4.22 Linear dependance of the normal mode splitting (2gem/2π) on the
dc bias voltage. At each dc bias voltage, the splitting is extracted from a two-peak
Lorentzian fit to the mechanical spectrum.

of strong coupling (mode splitting) with increasing bias voltage. The membrane amplitude
tracked by the vibrometer decreases as the coupling strength is increased and the mechan-
ical frequency shifts to lower values as expected.
After the first indication of strong coupling, we started analyzing this regime more sys-
tematically to extract some parameters and confirm the normal mode splitting with our
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theoretical predictions. We first study the dependence of the coupling rate 2gem/2π on the
dc bias voltage in a different experimental run. According to our models, the coupling rate
should scale linearly with the applied voltage as follows

gem = Vdc
C ′

C

1√
2mΩm

√
2LΩLC

(4.32)

We observe this linear scaling as can be seen in Fig. 4.22. The bias voltage is increased
starting from the onset of normal mode splitting up to 290 V where 2gem safely exceeds
the LC decay rate for this experimental run. Each data point corresponds to the splitting
(2gem/2π) that is extracted from the frequency spacing of the two-peak Lorentzian function
fitted to the mechanical spectrum (at the resonant coupling condition). We note that even
though our sample is the same, we have observed slight changes of the dc bias voltage for
the onset of normal splitting as small misalignments and gap distance changes between
different runs (on different days) might alter the coupling strength.
In addition, we have observed and analyzed the phenomenon of avoided crossing in another
experimental run, which can be seen in Fig. 4.23. We note that these data are recorded

Figure 4.23 Avoided crossing as a typical feature of the strongly coupled sys-
tem. a) Electrical response of the LC circuit. b) Optical detection of membrane
displacement. Reproduced from [4].

with a smaller distance of 4.5 µm. Panel a shows the electrical response tracked with the
op-amp and panel b corresponds to the mechanical response recorded with the vibrometer.
The circuit (and consequently the membrane) is driven inductively to clearly demonstrate
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the phenomenon. In the mechanical response, normal mode splitting becomes clear for a
dc voltage of 242 V (corresponding to the orange line). We also show the model fits on the
electrical and mechanical spectrum based on our coupled set of equations. The parameters
we extract from the fits are in excellent agreement with the predictions and the coupling
strength values (extracted by using the link between g and G) from the two independent
measurements are very close. For this specific condition, we have achieved a cooperativity
of Cem = 3800 with parameters meff = 24 ng and Γm/2π = 3.1 Hz deduced independently
from thermal noise spectra of the membrane.
Avoided crossing is clearly observed with the system in both responses. The large dc bias
voltage is scanned in small steps in order to tune the LC resonator and the membrane (by
exploiting the frequency shift of the membrane due to the electrostatic spring softening)
and the colored graphs in Fig. 4.23 map out the detected probe voltage and membrane
displacement with respect to a certain dc voltage and frequency. As can be seen, when
the two resonators approach the resonance condition, they exhibit avoided crossing which
is 2gem apart in frequency space. The small steps in the dc bias also changes the coupling
strength, however over this small scan range and on top of the large dc bias, this effect
turned out to be negligible.
After the fabrication of the second generation membranes (etched) to tackle the gap dis-
tance problem mentioned earlier, measurements have been performed with membrane-chip
distances getting closer to the designed pillar heights. Fig. 4.24 shows the highest normal
mode splitting recorded with such an etched membrane-chip sample. Y-axis is the mechan-
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Figure 4.24 Largest splitting achieved with a small gap distance (≈1 µm).

ical spectrum (arbitrary units) tracked via the vibrometer. The spectrum is fitted to a
two-peak Lorentzian function (green). The gap distance is around 1 µm in this case and
only a dc voltage of 16 V is enough to see a splitting of ≈ 35 kHz which is almost six times
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larger than the typical linewidth of the LC circuit. However, one problematic issue with this
sample (and many others we have experimented with) is that the mechanical linewidths are
usually much worse than the intrinsic linewidth of the membranes which will be discussed
in section 5.5. We note that this membrane collapsed on the chip after taking this data
upon increasing the dc bias slightly more, suggesting that it was very close to the instability
limit due to the pull-in voltage discussed in section 2.6.

4.5 Conclusive remarks

In this chapter, we have shown the experimental details of our coupled system consisting
of the mechanical resonator and the electrical LC circuit. We have characterized and stud-
ied systematically the electromechanical coupling (characterized by G) and explained the
physics behind with a well-understood theoretical modelling. The electromechanical system
is investigated both electrically and optically together with the observation of mechanically
induced transparency and strong coupling physics. Mode splitting of around 35 kHz, which
is several times higher than the LC linewidth, has been achieved. The results and the char-
acterization of the system presented here lay the foundations for the next chapter where
the device is investigated as an opto-electromechanical voltage sensor.



Chapter 5

An opto-electromechanical sensor
for detection of rf waves

Having investigated the experimental observation of electromechanical coupling, we continue
with our recent experiments in that direction, which in summary, support the use of this
coupled system as a sensitive room temperature device for optical detection of radio waves
via a mechanical interface. The outstanding noise performance of the device (achieved with
the NBI interferometer) will be discussed in detail along with the limitations and current
problems to be investigated. Apart from sensitive voltage detection, photon conversion from
rf to optical domain will shortly be discussed with possible future directions. Towards the
end, we will touch upon the issue of extension of this voltage sensor to microwave frequencies
(≈ GHz) with improved bandwidth together with future prospects for an integrated and
compact opto-electromechanical sensor.

5.1 Voltage sensitivity under ambient rf noise

5.1.1 First noise tests with the Michelson interferometer

In paralel to the characterization measurements at DTU, a Michelson Interferometer has
been developed at NBI with the hope of improved optical readout for highly sensitive
voltage measurements. In June 2013, the interferometer was ready for operation. We
then established the same electromechanical setup and put it under investigation with the
new optical interferometry. It turned out that the Michelson interferometer performed
considerably better (with the possibility of higher optical powers and flexibility of optimizing
the readout in a custom manner as opposed to the commercial vibrometer at DTU). In the
end, a shot-noise limited resolution of around 1.5 fm/

√
Hz has been reached.

Details of the experimental setup can be found in the previous chapter. The results discussed
here have been recorded with the experimental configuration corresponding to the Michelson
interferometer section 4.3.2. In Fig. 5.1, we show a compact depiction of the setup in the
language of input/output ports. Briefly put, the opto-electromechanical system can be
thought as an amplifier/receiver that takes an rf input signal and converts it to an optical
output with the help of a mechanical resonator.
To continue our experiments in that direction, we first started experimenting with the

87
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Figure 5.1 Depiction of our opto-electromechanical device based on a mechanical
interface. Typically, an rf signal is injected as an input through the receiver coil
and converted into mechanical vibrations. These vibrations then introduce a phase
shift of the reflected optical beam, which carries the signal through a fiber to an
interferometric detection route.

etched Al-coated membranes to ensure that the distance between the electrodes and the
membrane was sufficiently small so as to achieve high coupling rates at small dc voltages.
The initial measurements have been performed with a membrane-capacitor sample with a
gap distance of ≈ 1µm (inferred from the frequency shift) and a mechanical linewidth of
≈ 20 Hz also confirmed with the ringdown method which we have used for some of our
samples.
The measurement procedure for the ringdown is carried out as follows: First, we apply a
certain dc voltage (the coupling voltage that we aim to operate at) and on top of that,
we apply an rf signal at the membrane-capacitor connection lines to excite the membrane
via the capacitive force. For this, the rf drive port inside the PCB (shown in the detailed
circuit diagram in Fig. 4.3) is used as the inductor should be disconnected for the intrinsic
(no coupling) linewidth measurement. The excitation signal coming from the generator
is gated such that during the excitation time a sinosoidal waveform at the mechanical
frequency is applied and during the dead time there is no signal. In this way, ringdown of
the membrane is readily observed with the Michelson interferometer optical signal that is
fed to a fast oscilloscope. Fig. 5.2 shows an example of a high-Q membrane measured with
the ringdown method.
Apart from the investigation of mechanical properties of the membrane, we have optimized
the interferometer for low optical readout noise. As a general procedure, we first maximize
the back reflection (probe arm fiber) from the membrane by fine tuning the optical head
alignment for a given beam position on the membrane. We then adjust the input power
with polarizing elements such that the recombined beams coming from the probe arm and
the reference arm are balanced to a large extent. Additional waveplates are used to fine
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Figure 5.2 Optical interferometric signal encoding the decay of the mechanical
vibrations of the Al-coated membrane. Y-axis is the natural logarithm of the
absolute value of the voltage signal with a ringdown time of 0.21 s and a linewidth
of 1.5 Hz (reproduced from [4]).

tune the balancing of the homodyne detection path - the light hitting on the two detectors.
Based on these short optimization procedures, an optical noise background of a few fm/

√
Hz

has been reproduced consistently over time. Finally, the offset of the locking position is
adjusted which helps in increasing the sensitivity slightly.
After having settled on a particular membrane-chip sample for the systematic measurement
series, we started recording noise traces. All the procedures (such as tuning the LC and
the membrane) are the same as explained before in the previous chapter. In Fig. 5.3, one
can see (a) the undriven membrane response (power) which is strongly coupled to the LC
circuit at 21 V dc bias voltage, where the membrane frequency is around 700 kHz (shifted
due to electrostatic spring softening). The peak at 770 kHz is used for calibration. The
signal is the optical interferometric signal coming from the vibrations of the membrane
around the locking point of the interferometer. Strong coupling (splitting) is clearly visible
in the mechanical response (log scale). For this specific noise measurement, we have used
0.8 mW light (1064 nm Nd:YAG) returned from the membrane. The effective mass of this
particular membrane (50 nm Al coated on 180 nm SiN) is measured to be 140 ng, higher
than expected from the dimensions of the membrane (44 ng). Later on, we noticed that
this was due to the off-center beam bosition resulting in a smaller amplitude, therefore a
bigger mass compared to the center.
In panel b, we show the electrical noise power of the LC circuit (measured with the op-amp

on the capacitor) at 21 V coupling voltage. The two pictures (a-b) are equivalent in the
sense that the antenna pick-up noise in the environment which can be seen in the noisy
MIT trace of the non-driven LC circuit (b) is actually the noise responsible for the high
membrane mechanical noise that is optically tracked (a). The origin of the noise and how it
fits our model is discussed in the next subsection. However, a qualitative hint can already be
noticed from the comparative figure here that the narrow peaks picked up by the inductor
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Figure 5.3 a) Membrane displacement noise power via optical interferometry at
21 V dc bias (The large peak at 770 kHz is used for calibration). b) Corresponding
voltage on the capacitor measured with the op-amp at 21 V dc with a broad dip due
to the electromechanical coupling. The pick-up noise peaks (especially pronounced
around 600 kHz) show up in both pictures.

in the LC response are also present in the membrane response, indicating their correlated
nature through the electromechanical coupling.

5.1.2 Experimental noise performance, model fits and discussion

In this section, we discuss in detail the noise performance of our device and the sensitivity
achieved at certain experimental settings. Our theoretical model describing the underly-
ing physics of coupling so far can be extended further to predict the rf voltage detection
sensitivity via optical interferometry. The optical readout signal is essentially a phase shift
due to the fluctuations of the membrane which is given by, δφmem = 2kδx. By using the
Langevin equations of motion, one can find an expression for the displacement fluctuations
and thus the phase fluctuations (derived in the theory chapter). The final result is a spectral
density for the phase fluctuations as follows

Stot
φφ (Ω) = (2k)2 |χm,eff(Ω)|2

(
|GχLC(Ω)|2 SV V (Ω) + Sth

FF (Ω)
)

+ Sim
φφ(Ω) (5.1)
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Figure 5.4 a) Phase and displacement spectral density of the membrane recorded
via optical interferometry at 21 V dc bias with strong coupling in the presence
of high ambient rf noise. Red points represent the measured noise. Blue curve
corresponds to the total optically measured noise based on our theoretical model.
The other curves; violet, yellow and green refer to the Johnson noise of the LC,
optical detection noise (quantum) and membrane noise, respectively. b) The same
values represented as a voltage noise with respect to the input resistance of the
circuit, by using the transfer function of the interface (reproduced from [4]).

where Sim
φφ(Ω) is a term denoting the optical readout imprecision. Optical readout noise

limited voltage sensitivity could then be written as

Sim
V V (Ω) =

Sim
φφ(Ω)

|2kχm,eff(Ω)GχLC(Ω)|2
=

Sim
xx(Ω)

|χm,eff(Ω)GχLC(Ω)|2
(5.2)

By using the equation above, an experimentally realized optical displacement readout sen-
sitivity can be converted to an equivalent voltage sensitivity for our opto-electromechanical
transducer.
Fig. 5.4 shows a detailed analysis from one of our measurements performed in order to
demonstrate the noise performance of our device. In panel a and b, we present the opti-
cal phase/displacement spectral densities and the corresponding voltage noise, respectively.
The voltage noise/sensitivity is determined by dividing the values and curves in panel a by
the total transfer function of our system χtot ≡ 2kχm,effGχLC . We note that all the voltage
values refer to the resistance of the circuit at the antenna input (R). The total noise (blue
curve) consists of high ambient rf radiation (violet curve) and the optical readout noise
(yellow curve) together with the membrane noise (green curve). For the data set presented
here, we have achieved an interferometric imprecision level of 1.7 fm/

√
Hz and dividing this
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constant value by the transfer function, one reaches the frequency dependent yellow curve
shown in panel b. On resonance the optical noise contribution is around 500 pV/

√
Hz. We

note that by using more optical power (with some modification of our detection setup) or
going to a high-finesse cavity, this optical readout sensitivity can be improved significantly.
The second source of noise that can limit the voltage sensitivity is the membrane thermal
fluctuations at room temperature. However, in our system, we have the advantage that this
noise contribution is strongly suppressed due to the presence of the high electromechanical
cooperativity. A simple expression for the membrane noise limited sensitivity (on resonance
where Ωm = ΩLC) is, in the theory chapter, found to be

Smem
V V = 2kB

Tm

Cem
R (5.3)

where R is the resistive loss of the circuit. As can be seen, the effective noise temperature is
reduced by the cooperativity of the system and can be made significantly smaller with high
coupling strengths as achieved here. For the data of Fig. 5.4, a bias voltage of Vdc = 21
V yields a cooperativity of Cem = 6800 which brings the voltage sensitivity to a level as
low as 5 pV/

√
Hz over a bandwidth of ΓLC (green curve in Fig. 5.4b). This corresponds

to an added noise of only 40 mK. The sensitivity here can further be slightly increased by
pushing the voltage to the maximum allowable voltage due to the instability effect which
will be discussed in subsection 5.5.3.
Although, with the presented experimental parameters, very low voltage sensitivities can
be inferred for the optical and membrane noise, the actual performance of our device in
this case is limited by high ambient rf pick-up noise which is represented with the violet
curve in Fig. 5.4. The equivalent voltage sensitivity is in the range of 10 nV/

√
Hz. This

also agrees with the independent electrical noise measurements, where we have measured
the ambient noise picked up with the LC circuit by probing the voltage on the capacitor via
the low noise op-amp. Although the Q-factor of the inductor is high and this enables us to
easily observe strong coupling (splitting), the ferrite inductor, at the same time, serves as
a very sensitive antenna that picks up the ambient radiation and hinders us from realizing
the actual transducer noise. Despite our efforts to shield the inductor with an aluminum
box, the noise level was still high. Considering the frequency range we are working at (≈ 1
MHz), it is not unlikely that ambient noise levels can be dramatically high for typical radio
receivers. For example, references can be found in CCIR 322 report (Consultative Comitee
on International Radio) that has tracked the noise variations from 1960-1980 [72]. There are
typically three noise contributions; atmospheric noise stemming from natural atmospheric
processes mainly caused by lightning discharges, man-made electronic noise from various
devices [74] and galactic noise (Sun, Milky Way etc) [73, 75]. Lightning discharges from
distant locations can cause white noise, whereas closer ones can cause pulsed noise. We
believe in our case, where the operation frequency is around 700 kHz, it is likely that we
observe a combination of atmospheric and man-made noise.
Apart from the spectral response of the noise we have observed with the ferrite rod induc-

tors, we have also investigated its dc voltage dependence to compare it to our expectations
from our model. As can be seen in Fig. 5.5, the theoretical curve that is derived from the
equations for a signal coupled from the inductor port well describes the evolution of the
mechanical peak amplitudes with respect to the dc bias voltage. For this measurement,
we detect the ambient noise-driven mechanical vibration amplitudes of the membrane with
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Figure 5.5 Mechanical amplitude as a function of the dc bias voltage in the case of
high ambient rf pick-up. The curve is a theoretical line derived from the coupled
equations relating the induced voltage and membrane fluctuations (reproduced
from [4]).

the Doppler vibrometer. Peak amplitudes are extracted from Lorentzian fits to the spectral
data. The points up to 150 V cover the MIT regime where the amplitude corresponds to a
single resonance peak. As we start to see splitting beyond 150 V due to the onset of strong
coupling, we use the amplitude in the plateu between the two split-peaks for this regime.
The function used for the fit is given by f = αVdcVs

(α2V 2
dc+LmΓLCΓmΩ2)

where α is a constant ab-

sorbing the parameters for the linear dependence of the coupling parameter on the voltage
(G = αVdc). We note that this treatment is valid for resonant driving (Ω = Ωm = ΩLC)
assuming white ambient noise (Vs) throughout the relevant frequency range.

5.2 Johnson noise-limited performance with shielded induc-
tors

5.2.1 Reducing the noise

In order to improve the noise performance of the device that is limited by the high ambient
rf noise, we have attempted to try different types of inductors that are less susceptible to
ambient noise. During the course of time, we have experimented with toroidal and com-
pact commercial inductors which have showed noise performances much better than the
ferrite inductors - getting close to the Johnson noise limit [77]. However, their Q values
were usually small, in the end reducing our cooperativites. Fig. 5.6 shows a compact com-
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pilation of our efforts to have a better understanding of how the inductor pick-up noise
affects the membrane noise temperature. Panel a and b refer to data recorded with a ferrite

Figure 5.6 a) Optically detected mechanical noise power of the membrane con-
nected to a ferrite inductor with varying dc bias. b) Normalized noise temperature
of the membrane with respect to cooperativity extracted from Lorentzian fits. c)
Calibrated mechanical noise spectral density (NSD) of the membrane coupled to
a compact commercial inductor (1 mH). d) Normalized noise temperature of the
membrane with the same type of compact inductor (470 µH).

inductor connected to the setup. As the dc voltage is increased, we observe an increase in
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the mechanical power spectrum (optical interferometry) which is a typical sign of excess
pick-up noise, as otherwise 300 K membrane temperature should stay constant. In b, we
show the normalized noise temperature of the membrane extracted from the area under
the Lorentzian fits to the mechanical spectra. X-axis refers to the cooperativity values
which are extracted from broadened Lorentzian-shaped membrane spectra. Normalization
is referenced to the membrane temperature at 0 V (300 K). Data shown for panels c and
d, refer to a compact commercial inductor (1 mH and 470 µH, respectively). The noise
performance is significantly improved compared to the ferrite inductor although it is still
above being Johnson-noise limited. In panel c, the membrane is biased at 83 V and the
calibrated amplitude goes down to as low as tens of fm which we have never been able
to achieve with the ferrite inductors. In the end, through our searches, we have found a
compact commercial ferrite inductor (Pico electronics [76]) which has magnetic shielding
and exhibits Q-factors that are tolerable for our parameter set (roughly ranging between
30 and 80).
For the analysis of the specific Johnson-noise limited measurements, we continue with our
experiments performed with the home-made Michelson interferometer. The optical power
returned from the membrane is ≈ 1mW. Precharacterization of the membrane yields an
effective mass of 64 ng deduced from thermal noise measurements and the equipartition
theorem and we extract an intrinsic linewidth of Γm/2π = 20 Hz. For this measurement,
a SiN-Al membrane-with a coating of 100 nm Al on 50 nm SiN- is used. The initial dis-
tance of this sample is estimated from the observed frequency shift (26 kHz at 88 V) by

using the relation d3 =
cV 2
DC

∆Ω2hρΩ0
yielding d = 2.3 µm. We note that in order to extract

the correct cooperativity for a given dc coupling voltage, one should refer to the intrinsic
mechanical linewidth at this specific voltage, since as stated before, we have observed dc
voltage dependent intrinsic linewidth broadening. This is done, as usual, by disconnecting
the inductor (no coupling) at a dc bias voltage and recording the membrane linewidth. Q
of the LC circuit with the new shielded inductor (L = 700 µH) is found to be 47 from LC
response measurements.
Before recording the Johnson-noise limited membrane spectrum, we have implemented quick
tests in order to see whether the transducer operates close to that noise limit or has some
extra noise. This becomes necessary to check, because each time the inductor is connected
to the membrane through the pcb, the other parts of the circuit become critical if they
pickup extra noise (through ground loops, cables etc). In order to achieve a low noise per-
formance, a big aluminum shield is used to cover the shielded pcb unit and the inductor
attached to that. This has helped substantially in terms of reducing the inductive and
capacitive pickup.
Though several methods have been tested to quickly confirm whether the membrane is LC

Johnson-noise limited or not, one of them has proven to be fast and reliable. The method
uses the same principle to extract the effective mass (which is explained in the previous
chapter). The procedure is carried out as follows: We first start with 0V dc bias case
which corresponds to the condition that coupling to the LC circuit is off. At this condition,
the membrane integrated area should correspond to 300 K (which actually yields the same
values when all the electrical connections are disconnected from the membrane). We take
this as a reference and we monitor the behaviour of the membrane noise area as the dc bias
voltage is increased. If there is no extra pick-up noise, this value should stay constant. In
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Figure 5.7 A sample measurement to deduce the membrane noise temperature.
The spectrum is recorded with a big resolution bandwidth (10kHz) with typically
an averaging of 30. Calibration peak is always present so as to infer the membrane
noise referenced to the calibrated signal.

order to do this in a fast and convenient way, we record the power spectrum including the
calibration peak and the membrane thermal peak with a Spectrum Analyzer (SA) using
a much broader resolution bandwidth - RBW (10 kHz) than the two peaks. This ensures
that the square of the rms peak values tracked by the SA are actually proportional to the
integrated area (or the temperature). It is important to normalize the thermal peak to the
calibration peak for each measurement, since this takes into account any changes in the
interferometric detection (power fluctuations, fringe variation etc). We then compare the
normalized values for 0V and the coupling voltage to conclude whether the performance is
close to the Johnson-noise limit within the uncertainty of our measurement scheme. The
method is summarized in a sample measurement shown in Fig.5.7. We note that this method
has been improved significantly (in terms of data recording) for the following experiments
with the cooled resistor, especially in order to reduce the error bars.

5.2.2 Adjusting the optimum cooperativity

For this measurement, we operate close to the optimum cooperativity Copt which we estimate
by following our model and equations for the total noise of the system we have developed
in the theory chapter. The thermal rms amplitude (at resonance) of the membrane is given
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by

xres =

√
2kBT

mΩ2
mΓm

(5.4)

whereas this amplitude is reduced by a factor of
√
Cem when it is not strongly coupled to

the LC circuit leading to the coupled amplitude xc (where Cem � 1)

xc =

√
2kBT

mΩ2
mΓmCem

(5.5)

Following this, we can assign an equivalent noise temperature for the optical detection
sensitivity. Replacing this coupled xc by xL to denote the optical (laser) sensitivity and
taking the square of x2

L to calculate Sim
xx , we reach the following equation

Sim
xx =

2kBTL
mΩ2

mΓmCem
(5.6)

and the noise temperature from the optical detection becomes

kBTL =
1

2
CemmΩ2

mΓmS
im
xx (5.7)

The added membrane noise for our transducer is suppressed by the cooperativity giving Tm
Cem

thus making the total noise temperature TT (optical, membrane and LC Johnson noise)

kBTT =
1

2
CemmΩ2

mΓmS
im
xx +

kBTm
Cem

+ kBTR (5.8)

where the term kBTR - LC Johnson noise - is referenced to the resistive loss of the LC circuit.
The sum of the first two terms that is a function of the cooperativity can be minimized at
the optimal cooperativity which is found to be

Copt =

√
x2

res

Sim
xx

(5.9)

The expression has a form that can be readily tracked experimentally. Sim
xx is the optical

measurement imprecision which is the background noise in the membrane spectrum mea-
surements with the SA and its absolute value (typically on the order of 1-2 fm2/Hz) is
known since we compare it to the calibration peak . xres is the thermal peak amplitude of
the membrane (rms) when it is decoupled from the LC circuit which we also measure with
the inductor disconnected. Having done these preliminary measurements, we estimate our
optimal cooperativity Copt to be around 150 for our present settings. We then increase our
dc voltage up to a point where we get close to this cooperativity value (this is checked by
looking at the broadening of the membrane at this voltage and estimating Cem from that).
For this experiment, we operate around 88 V bias voltage to reach this optimal cooperativ-
ity. As can be seen in Fig. 5.8, the optically measured membrane spectrum data indicates
that the extra ambient rf noise in our previous measurements (Fig. 5.4) is now eliminated
due to the shielded inductor (almost 20 dB improvement) and that our total noise is dom-
inated by the Johnson noise of the LC circuit (violet curve). The experimental data is also
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Figure 5.8 a) Spectral density of the optical phase shift/membrane displace-
ment at Copt = 150 measured with the interferometer (red points). Blue curve
corresponds to the total optically measured noise based on our theoretical model.
Violet, yellow and green curves refer to the Johnson noise of the LC, optical de-
tection noise (quantum) and membrane noise, respectively. b) The red points and
curves refer to the same noise contributions now represented as equivalent volt-
age noise by dividing the displacement noise by the transducer transfer function
(reproduced from [4]).

very well-descibed by our model regarding the total noise of the system (blue curve). As
has been done before, the total transducer noise is broken into its components which are
the LC Johnson noise (violet), optical quantum noise (yellow) and membrane noise (green).
The Johnson noise voltage estimated from the LC parameters for the present resistive loss
is
√

2kBTR =734 pV/
√

Hz is in agreement with the measured value of ≈ 800 pV/
√

Hz. At
this optimum cooperativity, the sum of the optical measurement noise and membrane noise
is minimized and has equal contributions coming from each. In panel b, we again have
curves translated into voltage noise by using the transducer transfer function. In terms
of voltage noise, both membrane and optical readout noise contribute with 60 pV/

√
Hz

at resonance (inferred from the theoretical curves). Bandwidth of the detection is deter-
mined by the broadened linewidth of the membrane, which in this case, is approximately
Γm/2π×Copt ≈ 3 kHz where Γm/2π = 20 Hz is the intrinsic mechanical linewidth. We note
that the mechanical response is also significantly cleaner than our previous measurements,
where several narrow peaks coming from rf pick-up in the environment have been observed.
Being an already important result in itself, this Johnson noise-limited measurement pro-
vides the stage for the next measurement run, where we have made an attempt to show the
sub-Johnson noise contributions of our nanomechanical transducer backed up with more
systematic analysis.
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5.3 Noise measurements with a cold resistor

5.3.1 Noise temperature and the Y-factor method

As seen in the previous section, the real noise of the transducer (membrane and optical
readout nouse) is still buried in the Johnson noise of the LC circuit. In order to be able
show experimentally that the real noise performance of our transducer can be smaller, we
have implemented a well-known technique in the field of low noise operational amplifiers.
The technique is named Y-factor method [29, 78] and aims at deducing the added noise
of an amplifier by linear extrapolation of measured outputs at two different temperatures.
A generic picture to depict the procedure is shown in Fig. 5.9. This can be achieved by

Figure 5.9 Typical procedure for a Y-factor measurement. Thot and Tcold refer
to the physical temperatures of the two resistors. The amplifier/receiver has an
equivalent noise temperature Te. The output powers (P1 and P2) corresponding
to Tcold and Thot are measured to extract Te.

connecting a source resistance Rs to the input of the amplifier and measuring the output
noise of the amplifier at two different source resistor temperatures, Thot and Tcold. The
equations for the output noise in the two cases are given as follows

Tcold + Te = P1

Thot + Te = P2

where P1 and P2 refer to the measured output powers and Te is the equivalent noise tem-
perature added by the amplifier. Defining P2/P1 as the Y-factor and solving for Te,

Te =
Thot − Y Tcold

Y − 1
(5.10)

This expression is equivalent to measuring the output power (in arbitrary units) at two
different temperatures and extrapolating the noise temperature to the zero value of the
y-axis (intersecting the x-axis at a negative source temperature). The result is a ’negative’
noise temperature representing the added noise of the amplifier.
In order to relate this equivalent noise temperature to the noise of our specific transducer,
we write down the individual noise contributions of our device. This has been shown step
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by step in the theory chapter, therefore we note the end result which is referenced to the
source resistor and encodes the total noise of our transducer corresponding to Te defined
within the concept of the Y-factor measurement.

Tn =

(
1

ηe
− 1

)
TR +

1

ηe

(
Tm

Cem
+

(1 + Cem)2

Cem
TL

)
(5.11)

Here ηe = Rs
Rs+R

is the degree of loading the intrinsic resistance of the LC circuit with

the external source resistance and TL = nim~Ωr. The first term is the Johnson noise
contribution of the LC circuit which is modified due to the loading with a colder resistor.
The term with Tm refers to the membrane noise that is suppressed by the cooperativity
(note that cooperativity is reduced with the external loading) and the last term being the
quantum shot noise of optical detection. Thus by measuring the total noise temperature
with the Y-factor method, the measured noise can then be decomposed into its components
and we can apply our model by using equation 5.11 in order to identify the individual
contributions.

5.3.2 Preliminary measurements with liquid nitrogen

We have performed several experimental runs in order deduce the noise temperature of our
transducer with the Y-factor method. To this end, we attach a source resistor to our com-
pact inductor (Pico electronics) as shown in Fig. 5.10 and physically cool this resistor by
dipping it in a styrofoam box filled with liquid nitrogen. The resistor is specifically chosen

Figure 5.10 The ultra-high precision resistors (with jumpers on the back side
to vary the total resistance) connected to the compact inductor with a shielded
coaxial cable.

to be an ultra-high precision cryogenic resistor (from Vishay [79]) which ensures that the
resistance value is unchanged at cyrogenic temperatures and the added noise and capaci-
tance are minimized with proper fabrication methods (Appendix D). The source resistor is
connected to the inductor- pcb unit (in a big rf shield) with a 10-20 cm length of cable.
The setup for the liquid nitrogen cooling experiments is depicted in Fig. 5.11.
We have realized throughout the experimental runs that it is challenging to achieve first of
all a Johnson-noise limited setting as we have shown before in Fig. 5.8. This task becomes
crucial since any extra noise added by the additional circuit elements would show up when
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Figure 5.11 Optical noise thermometry setup with reduced Johnson-noise. A
high-precision resistor placed in liquid nitrogen is connected to the inductor in
series, providing a cold bath that reduces the effective LC circuit temperature.
In this way, a Y-factor measurement is performed with the resistor at two dif-
ferent temperatures; 77 K and 300 K to determine the actual noise of our opto-
electromechanical transducer.

we start to cool the circuit with liquid nitrogen. Practically, it took us consirable amount
of time with many iterations of measurements to get down to the level we have aimed at.
Briefly put, we have observed that shielding of the added cable to the resistor as well as
the resistor itself, meticulous grounding of several circuit elements extended over the opti-
cal table and finding a quiet frequency band become critical in order to reach the optimal
noise performance. Furthermore, the op-amp together with its power supply, has to be
disconnected from the pcb as it has been observed that large amount of noise can couple
to the membrane when the op-amp has gain instability issues from time to time. The cable
to the source resistor is chosen to be a well-shielded coaxial cable with the shield properly
grounded. The proper cable has helped significantly in reducing the capacitive pick-up.
Finally, shielding the resistor dipped in liquid nitrogen has improved our performance con-
siderably. To summarize all our efforts in the direction of achieving low noise, we discuss
briefly the output of our intermediate measurements - including the ones exhibiting excess
noise. This, I believe, would be meaningful in terms of testing our model and interpreting
the possible extra noise terms coupling to our transducer.
In Fig. 5.12, we show our first attempt to cool the resistor and measure the corresponding
membrane noise temperature via optical interferometry. The membrane noise is (as men-
tioned before) measured with 10 kHz resolution bandwidth (sufficiently broader than the



102 Chapter 5 An opto-electromechanical sensor for detection of rf waves

thermal peak) and is always referenced to a calibration peak at 900 kHz (in other words,
the ratio of the thermal and calibration peak is used to assign a temperature). Each data
point refers to five averaged spectrum measurement (acquired for 30 seconds each) and the
error bars correspond to the standard deviation. 300 K room temperature, in our case, is

Figure 5.12 Noise thermometry via optical detection of the membrane noise.
First run is performed with the source resistor at room temperature and the second
run in the same manner at liquid nitrogen temperature.

referenced to many averages recorded at 0 V corresponding to no coupling (therefore the
bare membrane at room temperature). We note that the temperatures deduced from the
measured spectra and the equipartition theorem, are corrected for frequency shift due to
the dc bias. The dc voltage is first scanned at room temperature behaving as expected
(relatively constant) except for a small dip at 128 V. We note that beyond 140 V, we see a
large increase in the noise temperature since at those specific dc voltages, the corresponding
membrane frequency coincides with a noisy spectral region (possibly pickup from the en-
vironment). After the measurements at room temperature, we pour liquid nitrogen on the
resistor until it is fully dipped and start recording the membrane noise at the corresponding
dc voltages. We have observed a clear effect of cooling of the membrane through the cooled
resistor, showing that the mechanism is actually working. However, the analysis of noise
contributions shows that we have exess noise on the membrane on top of our predicted noise
floor. For the best data point (at 128 V) with the highest cooperativity, we deduce a total
transducer noise of 92 K (from extrapolation/Y-factor at 128 V). 10 K of this total noise
comes from the membrane estimated at a cooperativity of 28. We note that although the
estimation for the suppressed membrane noise Tm/Cem is valid on resonance, our measure-
ment within the 10 kHz bandwidth is still a good approximation as it will also be shown in
our final noise data. 30 K comes from the Johnson noise of the LC (which is reduced from
300 K by a factor of 10 due to the loading resistor that is cooled). Light noise is shown to be
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negligible at these experimental settings and thus we end up with an extra noise of ≈ 50 K.
The inductor for this particular experiment is a shielded inductor with Q=20 corresponding
to ≈ R = 200 Ω and the cooled source resistor is 2 kΩ. Since the loaded LC circuit Q is
around 2 and the width is large, tuning of the capacitor each time at a different dc voltage
is not necessary.
We deduce the estimated membrane noise contribution by extracting the cooperativity from
the broadened membrane linewidths. As can be seen in Fig. 5.13, Cem does not necessarily
increase with the dc bias since the intrinsic linewidth degrades due to an unknown effect.
However, the thermal membrane noise we estimate from the cooperativites still can not ex-
plain the discrepancy in our total noise since the membrane contribution is found to be only
≈ 10 K. Therefore, it is highly likely that the noise comes from extra pick-up, presumably
from the cable-resistor line which was not shielded at that time.
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Figure 5.13 a) Investigation of the intrinsic membrane linewidth change with
respect to the dc bias voltage. The inductor is disconnected (no electrical cou-
pling) and the membrane spectrum is recorded at each voltage. The linewidths
are extracted from Lorentzian fits to the thermal traces. b) Estimated membrane
thermal noise contribution due to suppression by the cooperativity.

After this measurement, we proceeded with slightly different settings, namely with a new
inductor (again from Picoelectronics) to reach higher cooperativities. The inductor has a
higher Q ≈ 50 and in this run, it is loaded with a 500 Ω resistor. Fig. 5.14 shows the
extrapolated total noise temperature of the transducer based on the Y-factor method at
125 V and the corresponding membrane noise spectra with the source resistor at an equiva-
lent noise temperature (Te) of 77 K and 300 K. Instead of the 10 kHz broadband detection
in the previous measurement, the output noise power (a.u) is determined from the square
of the peak height (on resonance) of the membrane. The peak height is extracted from a
Lorentizan fit to the spectral response of the membrane (the optical noise background is
included). The deduced temperature is 80 K with an error bar of 26 K. Even though the
error bar is relatively large due to the propogation of individual error bars at the extrapola-
tion point, there is still a large discrepancy between the model and the data. Substracting
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Figure 5.14 Extraction of the total noise temperature of the transducer via the
Y-factor method at 125 V dc bias. Te refers to the equivalent noise temperature of
the source resistor (77 K and 300 K for the two data points). The insets show the
corresponding membrane spectral responses. Error bars come from the standard
deviation of five identical measurements.

the Johnson noise and membrane noise contributions for this set of parameters, we end up
with ≈ 40 K extra noise, still suggesting pick-up from the environment. In order to rule
out whether a possible change in the LC circuit response due to cooling with nitrogen is
responsible for such a discrepancy, we monitor (Fig.5.15a) the bare LC spectral response
with the op-amp when we pour liquid nitrogen on the resistor. As can be seen, the spectral
shape does not change and therefore the LC circuit itself does not bring any complication to
the noise performance of the device. We have also performed another type of measurement
in order to rule out that membrane heating due to the laser beam is responsible for extra
noise temperature. For this measurement, the membrane is completely disconnected from
the electrical components and we monitor the bare membrane noise temperature (tracked
with low RBW=10 kHz method) and vary the laser power hitting on the membrane. The
result is shown in Fig. 5.15b indicating that within the typical laser powers we use in our
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experiments, there is no observable systematic effect on the membrane noise temperature
upon increasing the laser power. Error bars come from the standard deviation of several
subsequent recordings.
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Figure 5.15 a) LC circuit response without the membrane confirming that the
spectral response of the LC circuit is not altered due to cooling with liquid nitrogen.
The blue data corresponds to the source resistor (500 Ω) in liquid nitrogen, whereas
the red data refers to the source resistor at room temperature. b) Membrane noise
temperature with varying laser power. Here x-axis refers to the returned power
from the membrane that goes to the interferometer arm.

Varying the source resistance
Having observed excess noise which is likely to originate from pickup, we proceeded by
performing more experimental runs where we varied the source resistor in order to gain a
better understanding. The source resistors (in steps of 50 Ω) are soldered on a small pcb
with jumpers on each to be able to vary the resistor in liquid nitrogen. For this measurement
we implement the low resolution bandwidth method in a slightly different way in order to
record more data points for the sake of reducing the large noise temperature error bars. The
thermal mechanical peak is recorded with an SA with a RBW of 10 kHz and smoothened
by VBW (video bandwidth)=30 Hz in order to increase averaging. The calibration peak
rms amplitude is separately tracked with a lock-in amplifier with proper time constants and
the ratio of the two is used to assign a noise temperature. More averaging is performed
by measuring in subsequent time chunks (which is limited by our stability of lock). Fig.
5.16, shows the outcome of such a measurement taken at 125 V dc bias by varying the
source resistance at a fixed liquid nitrogen temperature in this case. We note that here we
plot the total membrane temperature that is optically tracked. 300 K is referenced to the
membrane noise temperature when the inductor is disconnected. The cooperativity without
any external load resistance is Cem = 222 found from the broadened linewidth of 6700 Hz
and an intrinsic linewidth of 30 Hz at this specific voltage. Insight on the noise performance
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Figure 5.16 Membrane noise temperature (optically tracked) with increasing
source resistance (Rs) kept at liquid nitrogen temperature. The fit function (orange
line) which includes different extra noise contributions is used to explain the higher
membrane noise temperature.

can be gained by fitting the data points to the expected total membrane noise temperature
based on the following function

Ttotal =
Rs

R+Rs
(77 + n) +

R

R+Rs
(300 + e) + a

Rs +R

R
(5.12)

where R = 60 Ω. The individual terms are based on a possible scenario of noise terms
coupling through different ports. The first term comes from the source resistance with a
hypothetically added extra noise temperature denoted by n on top of 77 K. The second
term is the Johnson noise contribution from the LC circuit which is suppressed by the
source resistor. e represents a hypothetical noise source coupling through the pickup of the
inductor. The last term is the membrane thermal noise contribution scaled by the degrading
cooperativity with added source resistance. Optical readout noise is negligible in this case.
Here a refers explicitly to Tm/Cem, physical temperature of the membrane (300 K) divided
by the cooperativity at Rs = 0. The fit parameters yield, n=26.5 K for the excess source
resistance temperature and e=156 K for the excess noise of the inductor indicating that
extra noise coupling through different channels might explain the higher total added noise
appearing in the optically detected membrane noise. Remarkably, the fit parameter a=1.33
K is in very good agreement with the predicted value of 1.35 K independently extracted
from the cooperativity of 222 (inferred from the measured linewidth).
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5.3.3 Sub-300 K transducer noise temperature without excess noise

As shown in the previous sections, it has proven to be tricky to get down to low noise
temperatures mainly due to excess pickup from different channels. After several trials with
grounding of the elements (such as the cables) on the optical table and also incorporating
a metallic shield for the cryogenic resistors in liquid nitrogen, the excess pickup noise has
finally been eliminated. This is indicated in a separate experimental run shown in Fig. 5.17

Figure 5.17 Noise temperature of the opto-electromechanical receiver/amplifier
as a function of the source resistance. The temperatures are determined via the
Y-factor measurements (as shown in the inset for Rs = 1250 Ω), where the noise
powers are measured at the resonance frequency (dark red points) and within a
10 kHz bandwidth (light red points). Blue curve (theoretical total noise) is the
sum of the violet (Johnson noise), yellow (optical readout) and green (membrane)
curves from our model. Error bars come from the standard deviation of identical
measurements (reproduced from [4]).

and the analysis is carried out in the same manner based on the noise temperature equation
5.11 and the Y-factor method. The inductor is the same shielded commercial inductor with
resistance R = 60 Ω. The intrinsic cooperativity C is 550 at Rs = 0 and scales accordingly
as we start to load the circuit with the cooled external resistor (Rs). Each data point is
deduced from the Y-factor method (the extrapolation is shown as an inset for Rs = 1250 Ω)
by measuring the output noise power of the membrane optically, at 300 K and 77 K with
a fixed source resistance. Dark red points refer to the measurements on resonance, where
the noise power is deduced from the square of the resonance amplitude extracted from the
Lorentzian fits to the spectral shape. Light red points refer to the low RBW method within
10 kHz bandwidth where the noise power is referenced to the square of the peak amplitude.
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The two methods show fairly good agreement with relatively small error bars compared to
our previous measurements. The source resistance is then varied in discrete steps and the
output noise measurements are performed for each resistance value. In the end, we see a
behaviour consistent with our noise model based on the equation 5.11 represented by the
blue curve. Violet curve refers to the Johnson-noise contribution from the LC circuit which
is suppressed as the source resistance in liquid nitrogen is increased. Green curve is the
membrane noise which, in this case, increases as the cooperativity gets smaller due to the
increased source resistance. Yellow curve is the optical readout noise (quantum) which is
expected to fall with larger resistance. As can be seen, the sum of the noise contributions
from the membrane and the optical readout can be minimized at the optimal cooperativity
corresponding to Copt = 70 in this case. Subtracting the Johnson noise from the measured
total noise (we rely on the blue curve), we infer that the membrane noise and the optical
readout noise each contribute with 4 K noise temperature or equivalently with 210 pV/

√
Hz

voltage noise referenced to the input. With this measurement, we have a more controlled
way of monitoring the output noise by varying the source resistance which we analyze by
using our model. We show that the Johnson noise contribution can indeed be reduced by
coupling to a cold resistor and sub-300 K temperatures for the transducer can be shown
experimentally (we observe a total noise of 24 K for the best data point). This measurement
therefore makes our claims stronger for the Johnson-noise limited measurement in Fig. 5.8
where we had inferred our best sensitivity to be 60 pV/

√
Hz for both the membrane and

the optical readout noise.

5.4 Performance comparison

It is interesting to compare the noise performance of our opto-electromechanical transducer
with commercially available low-noise voltage sensors. For highly sensitive measurements,
operational amplifiers (op-amp) typically made of bipolar junction transistors or field effect
transistors are used with preferably high input impedance and low input capacitance. Gain-
bandwidth products of 1 GHz is usually achievable. In a more general sense, both input
voltage noise and current noise of the op-amp have to be taken into account for a specific
source impedance

Soa,tot
V V (Ω) = Soa,in

V V (Ω) +R2Soa,in
II (Ω) (5.13)

where Soa,in
II (Ω) is introduced as the current noise spectral density. For low source impedance

applications, bipolar transistors can provide the best performance due to their very low volt-
age noise (as low as 0.85 nV/

√
Hz with a commercially available LT1028 [80]) even though

the current noise is relatively high (≈ 1pA/
√

Hz). However, for high source impedance
applications, FET transistors are prefarable [29] as they can reach current noise levels as
low as a few fA/

√
Hz.

So far we have considered detection over a large bandwidth as many commercial amplifiers
can achieve. However, an LC resonator can be used to enhance the sensitivity (by Q-factor)
furthermore at the expense of narrowing the bandwidth of the device. Following the simple
circuit equations at resonance and assuming QLC � 1, one reaches for the total noise,

Soa,tot
V V (ΩLC) =

Soa,in
V V (ΩLC)

Q2
LC

+R2Q2
LCS

oa,in
II (ΩLC) (5.14)
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For our measurements, we have used an ADA4817 op-amp cascade operating at G=1000 and

ended up with S
oa,tot(ΩLC)
V V = (130 pV)2/Hz by taking into account the resonant enhance-

ment of the LC circuit which is comparable to our opto-electromechanical transducer’s
current performance. In principle, amplifiers specified with 1 nV/

√
Hz and ∼ 50 fA/

√
Hz

voltage and current input noise [91] can be used however their performance is also similar
for the parameters QLC = 45 and R = 60 Ω in our current setup. We note that within this
comparative treatment, the commercial amplifiers also operate in a very narrow bandwidth
due to the resonant LC enhancement. In terms of impedance performance, commercial
amplifiers can typically have very high values (≈ GΩ) whereas our device has a coupling

dependent impedance given by Zem(Ωm) = 1
jΩmCm(x=0) + G2

mΓmΩ2
m

at the mechanical reso-

nance. By increasing the coupling parameter G, the impedance of our device can be tuned
higher on demand. Apart from those commercial amplifiers, it is worth noting an interest-
ing nanomechanical device made of a carbon nanotube that acts as an integrated, compact
radio receiver [83]. However, the performance of the device is limited by the thermal noise
of the mechanical resonator to 1V/ m/

√
Hz which is far above our noise limit.

As can be seen, it is not trivial to reach very low-noise performance even with the state-
of-the-art electronic amplifiers. For example in radio astronomy, it is required to cool the
low noise amplifiers to achieve a level needed for a specific task. Recently, SiGe transistors
operating at a physical temperature of 15 K have demonstrated 5 K noise temperature [86]
(without LC enhancement). For much more demanding detection tasks, it becomes a neces-
sity to use very expensive amplifiers [12] that have to be operated at cryogenic conditions,
like HEMT (High Electron Mobility Transistor) and JPA (Josephson Parametric Amplifier).
For example, a HEMT microwave amplifier has been used to detect nanomechanical motion
with only an added noise quanta of 30 [81]. Detection with added noise of less than half a
quanta has been demonstrated with a JPA [82].

5.5 Limitations of the setup

5.5.1 Gap distance

Throughout the whole project, we have experimented with several membranes at varying
electrode-membrane distances. In specific experiments where the coupling has to be rel-
atively large (especially for demonstrating strong coupling) or where reaching a sufficient
cooperativity is critical, achieving a smaller gap is crucial as the electromechanical coupling
strongly depends on the distance given by

gem ∝ Vdc
1

d2
(5.15)

During our first experiments with the LC-membrane coupling, we have worked with samples
(first generation) having large gap distances (ranging between 3-14 µm). This made it
difficult to see a large splitting or more importantly achieve large cooperativities for noise
measurements. Through our investigatons with optical microscopy, we have come to the
conclusion that residual particles both on the membrane frame and chip surface have had
an effect on the larger than expected distance (pillar height) between the mebrane and
the chip. This typically originates from either fabrication residuals or dust picked up from
the environment during the assembly process. In order to solve this problem, a second
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fabrication step has been taken with the SiN-Al membranes where most of the frame area is
etched away (50 µm thick layer) with the idea of reducing the possibility of contamination.
Our trials with several samples have shown that this method works and we have been able
to confirm distances typically between 1-3 µm. So the coupling strenghts with these samples
are typically higher and this has allowed us to reach the desired cooperativities at relatively
smaller dc voltages. However, for most of the samples, it has brought another negative effect
which reduces the cooperativity due to the increased mechanical linewidth. This issue is
summarized in the following subsection.

5.5.2 Mechanical damping

For the set of membranes we have been working with (bare SiN, SiN-Al and SiN-G), the
typical mechanical linewidth (without connection to any electrical element) is 1-2 Hz. This
is confirmed by mechanical spectrum and ringdown measurements. When the membrane
and chip are assembled and the gap distance between them is around 4-5 µm, it has been
observed that the mechanical linewidth stays around the same value also in the presence
of a dc bias voltage. As discussed in the previous subsection, smaller distances (≈ 1-3
µm) have been achieved by using etched SiN-Al membranes. However, cooperativity has
suffered from this due to a yet unexplained decrease in the mechanical linewidth at these
small distances. The effect becomes more clear upon increasing the dc voltage. An example
of this behaviour is investigated in Fig. 5.13, which limits our cooperativity. We have
tracked more dramatic linewidth broadening with other samples. It has been observed that
the linewidth degraded day by day, broadening up to ≈ 200 Hz which in the end made the
cooperativity too small for further measurements. The origin of this effect is not clear at
the moment and requires further investigation. Possible explanations for this effect might
be surface charge interactions starting to dominate at a certain distance creating another
dissipation channel for the membrane or residual particles getting close to the membrane
surface as the membrane is deflected towards the electrodes with the dc bias voltage.

5.5.3 Sensitivity limit due to instability

The instability issue due to the spring softening with the applied dc voltage has been dis-
cussed in section 2.6. Based on that treatment, we can estimate the improved cooperativity
we can achieve with the experimental parameters for the data presented in Fig. 5.4 with
Cem = 6800. As the instability occurs at the condition when the displacement is one third of
the initial distance or in other words the frequency shift is one third of the bare membrane
frequency, this yields a maximum allowable frequency shift of ∆fmax = 260 kHz for our
membrane (bare frequency is 780 kHz at 0V dc bias). At a dc bias voltage 21 V, we observe
a frequency shift of 88 kHz at a distance of 1µm. Using the frequency shift scaling with dc
voltage (∝ V 2

dc), we can argue that the dc voltage can be increased by a factor of
√

260/88
leading to an increased cooperativity by a factor of 3 (C36V = 20000). This would mean
that the membrane noise limited voltage sensitivity can be improved down to 2.9 pV/

√
Hz.
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5.6 RF to optical photon conversion in practice

In this section, the concept of rf-to-optical photon conversion and the preliminary results
we have realized so far with our system will be discussed. The main idea behind conversion
is that an input voltage Vs injected throught the inductor port causes driven motion of the
membrane which in turn results in a phase modulation of the light that is reflected from the
membrane. Following the treatment in the theory chapter, we have reached for Vπ (a figure
of merit for conversion) at the optimal cooperativity condition Cem = 1 (on resonance)

Vπ =
1

2

√
mLΓmΓLCλΩr ≈ 140µV (5.16)

which is much smaller than microwave photonic devices such as [92, 93]. The experimental
parameters are based on our data set for Fig. 4.20. The theoretical quantum efficiency for
our system has been shown to be (in section 2.7)

ηeo = 4(kxzpf)
2 Φcar

Γm
. (5.17)

Now we extract our experimental conversion efficiency based on the data for the MIT regime.
At the highest cooperativity at 125 V (in contrast to Vπ, high cooperativity is better for
making ηeo large), we can directly reach the efficiency by using

ηeo =
Φsb

Φrf
=
Psb/~Ωopt

Prf/~Ωrf
(5.18)

Here the modulated optical power Psb and the rf powerPrf are given by Psb = Popt2(φ/2)2

and Prf = V 2
s

rs(1+Cem) where φ = 2(2π/λ)xrms and the incident light on the membrane
Pin = 250µW for this specific experiment. Note that since the beam hits the aluminum
part, the reflection is assumed to be unity. Inserting our experimental parameters and
the independently measured rf voltage and optical phase modulation at this specific bias
voltage, we end up with a conversion efficiency of 0.8% . Note that this efficiency is lim-
ited by the optical power of the Doppler Vibrometer. We have afterwards tested sending
20 mW optical power on the membrane with the NBI interferometer and confirmed that
the mechanical properties are unaffected. Thus by using the theoretically expected effi-
ciency in equation 5.17 and inserting typical parameters m = 30 ng, Ωm/2π = 690 kHz,
Γm/2π = 2 Hz, Φcarhc/λ = 20 mW, we find a projected conversion efficiency of ηeo = 48%.
We note that a thorough investigation of rf to optical conversion efficiency in a cryogenic
opto-electromechanical setup has been tackled in [85] and classical efficiencies on the order
of 10 % has been demonstrated.

5.7 Conclusive remarks

The experimental results shown in this chapter demonstrate that our opto-electromechanical
device can be used as a very sensitive tool in order to detect faint classical rf signals by optical
means. The nanomechanical resonator, utilized in a novel approach, acts as a transducer
and a link between the rf signal and the optical signal . This makes the device potentially
a universal, versatile tool for sensing purposes without using cryogenics. In summary, we
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have demonstrated an actual noise floor that is limited by Johnson-noise of the LC circuit
at room temperature, equivalent to ≈ 800 pV/

√
Hz. Beyond this Johnson noise, we infer

our limiting noise to be 60 pV/
√

Hz from the membrane thermal noise and the optical
readout noise (quantum) each, at the optimal cooperativity Cem = 150. Our claims are
furthermore supported by our subsequent Y-factor noise figure measurements, where we
reduce the effective membrane temperature with a cold resistor at 77 K and extract noise
temperatures for the transducer with also varying source resistance. The performance of
our device is overall on par with the best commercial op-amps taking into account both
their voltage and current noise. Further development in sensitivity of electronic amplifiers
requires involvement of cryogenics which is expensive. Our device is completely cryogenic
free and its current performance can be pushed further by operating at a higher cooperativity
along with a reduced optical readout noise, for example, by incorporating an optical cavity.
Apart from that, the device can also be used for rf to optical photon conversion which
requires slightly different optimization conditions. Preliminary experimental tests so far
without an optimized design have shown conversion efficiencies in the range of ≈ 1%.

5.8 Future prospects and outlook

Our current opto-electromechanical device operates at MHz frequency range and consider-
ing the usual rf and microwave applications, a natural way of improving the device would
be to extend its operation to GHz frequency range. In addition to specific applications, a
GHz version of this setup would necessairily imply a compact design which is expected to
help in reducing extra noise effects and parasitic capacitive elements. Furthermore, if our
device is coupled to a cold transmission line (for example cold sky at GHz), the ambient
noise level would be a few Kelvin which is in comparison with the current noise level of our
device, therefore making it interesting for highly sensitive astrophysical applications. For a
high frequency version of this device, parametric coupling can be implemented where the
LC resonator (GHz) is driven at a frequency vastly different from the mechanical frequency
(MHz) which is ΩLC − Ωm . This type of coupling (beam splitter Hamiltonian) has been
realized with different microwave electromechanical and opto-electromechanical systems to-
gether with strong coupling and sideband cooling even to the quantum ground state [11]
and it has shortly been discussed in the theory chapter.
Along with the idea of extension to high frequencies, it becomes a necessity to realize a
compact device. To that end, our near future plans include an integrated design where the
mechanical resonator is patterned on top of the capacitor electrodes. This would mean that
the manual assembly process that we have gone through so far, would no longer be necessary
which is a big practical improvement. Furthermore, either an optical cavity can be used
to encapsulate the electromechanical resonator or an ethalone can be formed between the
membrane and the chip electrodes to allow for integrated optical detection as well. With
the incorporation of a high-finesse optical cavity, it would in principle be possible to reach
even lower optical detection noise. Apart from that it would be possible to cool the coupled
membrane-LC resonator system via radiation pressure cooling which has been proposed
in [19]. Using the Hamiltonian and the annihilation operators a and b for the membrane
displacement fluctuations and the LC circuit charge fluctuations introduced in [19], it is
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found that the evolution of the charge operator follows the Heisenberg-Langevin equation

ḃ ≈ −(γ + Γ)b+
√

2γbin − i
gem
2Γm

√
2γmain (5.19)

for the strong damping limit Γm > gem where γ is the LC damping rate, γm is the intrinsic
mechanical damping rate prior to cooling and Γm is the optical cooling induced damping.
Γ = g2

em/4Γm denotes the cooling rate of the charge fluctuations (b) that is induced by
the optical field interacting with the hybridized electromechanical mode. In the end the
thermal occupation number is given by

〈b†b〉 ≈ γ

Γ + γ
nb +

2γm
gem

na (5.20)

Given high mechanical Q-factors are expected for the membrane, the second term can be
made small and the first term dominates the final number. This treatmaent shows that light
can not only be used as a probe for the electromechanical system, but also can manipulate
the thermal occupation number acting independently on the hybridized mechanical and
electrical modes.
We believe with some crucial improvements like increasing the currently small bandwidth
and operating resonance frequency as well as optimizing the impedance for a specific task,
our proof-of-principle device can be utilized for highly sensitive applications in fields such as
Nuclear Magnetic Resonance (NMR) Spectroscopy and astrophysics. Achieving high signal
to noise ratio in NMR is of paramount importance since typical magnetic resonance signals
are not so powerful. NMR probes usually consist of high-Q coils that pick up rf waves from
the sample. SNR is given by [87]

S

N
∝ B1/Icoil√

4kB∆f(Rc(Tc + Ta)−Rs(Ts + Ta))
(5.21)

where B1 is the rf magnetic field, Icoil is the current induced in the coil. Rc and Tc refer
to the coil resistance and temperature, whereas Rs and Ts denote the sample resistance
and temperature. Ta is the preamplifier noise temperature. The noise, in this case, will be
determined by the Johnson noise of the coil circuit. In order to reduce this noise, the coil
has to be cryogenically cooled. However, this is not sufficient to reach low noise levels, since
the preamplifier that is between the cold receiver coil and the ambient temperature elec-
tronics should also be cooled as it adds excess noise otherwise. Considering this, our room
temperature transducer/amplifier (membrane) can replace cryogenically cooled amplifiers
for such applications.
Besides NMR, detection of radio waves is crucial for the study of astrophysical systems.
Typical setups to detect galactic signals include large dish antennae picking up signals and
transmitting them through a lossy transmission line to a cascade receiver with several ampli-
fiers [28]. First of all, ambient ground noise (≈ 300 K) is avoided by using a narrow antenna
at high attidues in order to detect sub-300 K noise sources. For example, for an anteanna
looking at the cold sky at 10 GHz frequency, the ambient noise is around 6 K [78,90]. More
general behaviour of sky noise with respect to frequency can be found in [88, 89]. Another
noise channel is the lossy elements in the transmission line. For a loss factor of L and a
physical temperature of Tl for the lossy channel (for example cable) and Ts for the source,
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the total noise temperature becomes [78]

Ts1 = Ts/L+ ((L− 1)/L)Tl (5.22)

On top of that, there is finally the receiver/amplifier temperature. This is usually done in a
cascaded way where the first preamplifier is followed by several amplifier stages. The total
noise added in this case is [78]

Tt = Te1 + Te2/G1 + Te3/(G1G2)...+ TeN/(G1G2G3...GN−1) (5.23)

As can be seen, if the gain G1 of the preamplifier is high, the other terms are small and
it is clear that the low noise performance of the preamplifier is very critical. In order
to achieve low noise temperatures for demanding tasks, the amplifier stages are kept in
cryogenic coolers to start from low physical temperatures [86]. Considering the current
performance of our nanomechanical transducer and given that it can be coupled to a cold
transmission line, it brings only a few K added noise when the transducer itself is physically
kept at room temperature. Improvements in optical readout sensitivity and increasing the
cooperativity will further push this number down. Therefore, we think that our device,
with some engineering and optimization, has a big potential in astrophysical applications
and can in principle replace cryogenic preamplifiers.



Chapter 6

Optical cavity cooling with GaAs
membranes

One of the independent experimental projects performed at Polzik group was dedicated to
optomechanics with semiconductor - Gallium Arsenide (GaAs) membranes. This project
started roughly four years ago (as the main work of Koji Usami and Andreas Næsby) and
the author has also been involved in this project before focusing on the main work of this
thesis (opto-electromechanics). The author has worked on the initial phase of the devel-
opment of the experimental setup and helped with several measurements, particularly for
the identification of the cooling mechanism. The GaAs project has been worked out in de-
tail in Andreas Næsby’s thesis [94] and has resulted in two experimental papers where the
author of this thesis is a co-author. In this chapter, we aim at giving a compact overview
of the measurements we have performed along with the key results [96, 99]. The details
and involved calculations can be found in these references. The main outcome of the GaAs
experiment is that we have demostrated a novel optical cavity cooling mechanism of a semi-
conductor membrane which stems from electron-hole pair generation and cavity assisted
photothermal cooling.

6.1 GaAs membranes - Fabrication and characterization

We start by describing the GaAs membranes we have worked with throughout this project.
The initial interest was to optomechanically characterize and explore a semiconductor mem-
brane which could have potential use for prospective (quantum) optics experiments that
might bring together opto-electronics and nanomechanics. The GaAs membranes were fab-
ricated by Lodahl group (at DTU at that time). During the optomechanical characteriza-
tions in a Fabry-Perot cavity at NBI (mainly for the mechanical Q-factor of the membrane),
we have realized (with the initial discovery of Koji Usami) that the cavity showed interest-
ing behaviour which would later on be demonstrated to be an optical cooling effect of the
GaAs membrane thanks to its semiconductor properties.

115
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Fabrication procedure
GaAs has been a subject of investigation as a popular material with its direct band-gap semi-
conductor properties. It also provides a ground for merging opto-electronics with nanome-
chanics [97]. The considerable effect of its piezoelectricity has been utilized for carrier medi-
ated optomechanical coupling and actuation [98]. Fabricating GaAs based microresonators
with good mechanical quality has attracted attention [95], however these structures have
usually exhibited considerable mechanical loss. Therefore, fabrication and characterization
of GaAs nanomembranes with high mechanical Q-factors is one of the initial motivations
of this project.
The fabrication procedure of our GaAs membranes is described in detail in [96]. In order
to fabricate the GaAs membrane, a GaAs/AlGaAs heterostructure wafer is used. The sub-
strate is a (100) oriented GaAs substrate of thickness 350 µm. A 1 µm thick Al0.85Ga0.15As
layer is used as an etch stop layer. The actual membrane is a 160 nm thick layer of GaAs
on the same heterostructure. The membrane is a macroscopic structure in the lateral di-
mensions (1.91×1.36 mm). The picture of the fabricated membrane with its layers and the
real SEM microscope image are shown in Fig. 6.1. In order to remove the substrate, selec-

Figure 6.1 a) Depiction of the layers of the GaAs membrane. After selective
etching, the actual mechanical resonator appears as a thin GaAs membrane that
is optically accessible from both sides. b) SEM image of the membrane after
cleaning (reproduced from [96]).

tive wet-etching with citric acid is used where the AlGaAs acts as an etch stop layer. The
next step is to use hydrofluoric acid (HF) for selective wet-etching of the sacrifical AlGaAs
layer. Additionally, oxygen plasma and potassium hydroxide (KOH) solution is applied to
the membrane for the cleaning process. We note that the shapes of the membranes are
not exactly rectangular due to the different etch rates for different crytsallograpic planes of
GaAs. The membranes are also intrinsically bent in a certain direction.

Mechanical characterization
The mechanical properties of the GaAs membranes have been characterized at NBI in a
cavity optomechanical setup with which we have also observed the novel optical cooling
mechanism. A macroscopic concave mirror and the GaAs membrane constitute the end
mirrors of a Fabry-Perot cavity. We monitor the mechanical vibrations of the membrane
by looking at the optical cavity transmission with a photodetector. The rf detector signal
is then directly fed to a spectrum analyzer to record the mechanical peaks in the spectrum.
The setup used for these measurements is the same with the cooling setup, so it will be



6.1 GaAs membranes - Fabrication and characterization 117

shown in the cooling section. The vibrational modes of the GaAs membrane, that are in-

Figure 6.2 a) Mechanical spectrum of the membrane tracked via the cavity
transmission signal. b) Snapshots from Doppler Vibrometry images for a similar
GaAs sample showing the (1,1), (2,1), (1,3), (2,2) vibrational modes (reproduced
from [96]).

vestigated via cavity transmission spectroscopy, are shown in Fig.6.2a. In order to match to
the fundamental mode, tensile stress is used as a fit parameter since it was not known prior
to the measurements. The rest of the modes follow in agreement with the rectangular drum
mode model. In Fig. 6.2b, scanning vibrometry images (recorded at DTU) are shown for a
similar membrane. We have furthermore performed mechanical ringdown measurements in
order to extract the Q-factors of several modes. To this end, the cavity field is modulated
with an AOM (acousto-optic modulator) for excitation and shut off properly so that the
mechanical signal is recorded as a ringdown decay. The mechanical signal for the ringdown
is monitored with a split photodiode which is then fed to a lock-in amplifier to look at
the mechanical resonance component (Fig. 6.3). However, since we have observed opti-
cal power dependent linewidth broadening due to cooling, the intrinsic mechanical decay
rates are extracted via extrapolation to zero optical power. Below is a table showing the
Q-factors of some mechanical modes. The results we have obtained are unexpectedly high.
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A remarkably high Q is observed with (4,3) mode reaching 2.3× 106 at an eigenfrequency
of ≈ 60kHz that yields a Q× ν product of 1.4× 1011. These are the first findings that hint
the promising mechanical properties of GaAs membranes.

Mode Frequency Q factor

(2,1) 23.4 kHz 0.50× 106

(3,2) 45.5 kHz 0.56× 106

(4,1) 47.5 kHz 0.53× 106

(4,3) 59.5 kHz 2.3× 106

6.2 Setup for characterization and cooling of GaAs mem-
branes

The experimental setup we have used throughout this project is outlined in Fig. 6.3. The
setup basically serves for two purposes - monitoring the mechanical characteristics of the
membrane and cooling the vibrations via light.

Figure 6.3 Simplified picture of the experimental setup for the mechanical charac-
terization and optical cavity cooling of GaAs membranes. The Fabry-Perot cavity,
composed of a membrane and a piezo-mounted mirror, is contained in a vacuum
chamber (reproduced from [99]).

A GaAs membrane (with reflectivity %62) and a concave mirror (with reflectivity %96)
are mounted on a stage which is kept in a vacuum chamber (10−5 Pa) to form a Fabry-Perot
cavity of length ≈ 29 mm. The finesse is measured to be roughly 10. A piezo is attached to
the mirror to be able to scan the cavity. Cavity input light is generated from a Ti-Sapph
laser (810-880nm) and is used to monitor the mechanical spectrum (with a photodiode),
cool or excite vibrations depending on the purpose. For probing, cavity is locked at the
slope of the cavity resonance with a slow signal and fast modulations are monitored with
a photodiode that is fed to an SA. In order to get a better SNR, the cavity input signal
(seperated with a BS which is also used for intensity stabilization) is subtracted from the
cavity transmission signal. Intensity modulation for mechanical excitation and intensity
stabilization are caried out via an AOM. An additional beam from a diode laser (975 nm)
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is directed with an angle and used for probing the mechanical ringdown with a split diode
photodetector. We excite the membrane by adding a frequency modulation to the rf driver
for the AOM (close to the mechanical frequency) and the AOM is switched off with a proper
circuit to cut off the excitation. The exponential decay gives the Q-factor of the membrane.

6.3 Cooling mechanism

Here we will describe briefly the main mechanism behind cooling of the GaAs membrane.
The first sign of this physically interesting phenomenon appeared in our cavity transmission
measurements. We have observed unexpected fluctuations in the cavity resonance even
though the finesse was so low to expect any kind of radiation pressure induced cooling or
heating. Fig. 6.4 shows a snapshot from such a cavity response recording. The input optical

Figure 6.4 A snaphot from the oscilloscope exhibiting an unexpected response
(yellow) in the cavity transmission (with above band-gap light) which was the first
hint for semiconductor physics coupled to cavity degrees of freedom. The cavity
response is asymmetric and carries fluctuations on both sides stemming from the
complex dynamics.

power is around 500 µW and the wavelength of the laser beam is 810 nm. It turned out
that both the asymmetry that is associated with the static bending of the membrane due
to the photo-induced force and the fluctuations we observe come from a complex physical
mechanism that combines semiconductor phyics with cavity optomechanics. Throughout
several experimental runs and confirmations, we have realized that cooling of the mechanical
modes originates from the intrinsic semiconductor properties of the GaAs membrane which
is subsequently assisted with the cavity. The mechanism is depicted in Fig. 6.5. Vibrational
cooling of the GaAs membrane can be summarized as follows. First, a laser beam which
has energy larger than the bandgap energy of GaAs, couples in and circulates inside the
Fabry-Perot cavity. The energy of the photons absorbed by the GaAs membrane is sufficient
to excite electron-hole pairs inside the semiconductor material. These electron-hole pairs
recombine non-radiatively leading to heating and thermal stress which in turn deflects
the membrane. As the cavity length now changes with the deflection of the membrane,
the number of photons inside also change. This leads to a cavity-assisted feedback on
the membrane with a position dependent photothermal force, together with a time delay
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Figure 6.5 Pictorial description of the internal semiconductor dynamics of the
GaAs membrane which is the primary source of optically induced cooling in our
experiment. Cavity feedback and thermal stress released by the non-radiative
decay of optically excited charge carriers govern the dynamics of cooling.

coming from the thermal diffusion process. This complex coupling mechanism leads to
the rich dynamics and the cooling effect on the membrane when certain conditions are
satisfied. The origin of the cooling mechanism has been identified and analyzed with several
experiments which will be discussed briefly. But before that, it would be useful to give a
short theoretical background for the dynamic back-action. No matter how complicated and
indirect the structure of the coupling mechanism is, a generic treatment with a position
dependent photo-induced force including a time delay is sufficient to understand the core
dynamics of the interaction. This has been treated in [14], so we will follow the main
formulae derived in this paper. In the presence of thermal force and a photo-induced force
F with a Laplace-transformed time-delay function hΩ = 1

iΩ(1+iΩτ) where τ is the time delay
originating from the relevant timescale of the mechanism, the equation of motion for the
membrane becomes as follows

−mΩ2zΩ + iΩmΓ0zΩ + k0zΩ = Fth(Ω) +∇FiΩzΩhΩ (6.1)

and ∇F refers to the spatial derivative of the photo-induced force. Following and rearrang-
ing the equation of motion, the effective mechanical decay rate is given by

Γeff = Γ0

(
1 +Q

Ω0τ

1 + Ω2τ2

∇F
k0

)
(6.2)

and the effective spring constant is

keff = k0

(
1− 1

1 + Ω2τ2

∇F
k0

)
(6.3)

which then makes the effective frequency

Ω2
eff = Ω2

0

(
1− 1

1 + Ω2τ2

∇F
k0

)
(6.4)

where Ω0,k0 and Γ0 are the intrinsic resonance frequency, spring constant and mechanical
decay rate, respectively. Furthermore, by using the equipartition theorem and the noise
spectral densities, one reaches a crucial and simple expression

Teff = T
Γ0

Γeff
(6.5)
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which gives the final temperature depending on the initial temperature (T ) and the ratio
of the intrinsic and effective dampings. Experimentally, this means that by measuring the
mechanical dissipation rate with a ringdown measurement, one can quantify the amount of
cooling (appearing as an additional damping on the membrane). More explicitly, it can be
formulated by

Teff = T
1

1 +Q Ω0τ
1+Ω2τ2

∇F
k0

(6.6)

where the cooling rate is optimized for Ω0τ = 1. Here, we have kept the fourier frequency
Ω, but typically we are interested in the response around the resonance frequency Ω ≈ Ω0.

6.4 Vibrational cooling results

We have performed several experiments in order to confirm that the vibrational modes of
the GaAs is indeed cooled. First, we look at the cavity transmission signal that reveals the
Brownian peak of the (2,1) mode of the membrane. As we increase the optical power from
13 µW to 26 µW, we observe a decrease in the integrated membrane area as a first indication
of vibrational cooling (Fig. 6.6a). In addition to that, we measure the effective mechanical
damping rate which is modified due to the cooling force (Fig. 6.6b). Mechanical ringdown
times are measured at varying optical powers with the ringdown method outlined before
and damping rates are extracted from that. At the same time, mechanical eigenfrequencies
can be easily tracked. As expected, we see an increase in the effective damping linear in
optical power and a decrease in the egenfrequency also linear in optical power, which in our
case, is due to heating and released tensile stress.
We further confirm our cooling results by comparison of the mode temperatures extracted
from two different methods in Fig. 6.6c. The purple points come from the average of 5
identical measurements of the mechanical power spectrum and the red points come from
the average of 5 identical measurements of the ringdown time. We see good agreement
between the two methods and the mode temperatures extracted from the ringdown time
follow the curve with 1/τ with respect the cavity input power. This is because the damping
time τ is a linear function of the input power. Wavelength of the laser is 870 nm for this
experiment. We note that we have done most of the systematic analysis for the cooling with
the (2,1) mode, however the best cooling performance is achieved with the (4,3) mode as it
has a remarkably higher mechanical Q-factor, which is a crucial parameter for the cooling
performance. For this specific mode, we have achieved a cooling factor of 75 (confirmed
with the ringdown results) which allows us to reach 4 K mode temperature starting from
room temperature with a cavity input power of 50 µW and finesse of 10. The cooling per-
formance of our setup is limited by the instability that stems from the static deformation
of the membrane due to photothermal stress, setting in around 50 µW optical power.
Another experimental run is performed by changing the wavelength of the laser thanks to
the tunability range of the Ti-Sapph laser as shown in Fig. 6.7. The result indicates possi-
bly the most dramatic consequence of electron-hole pair generation in the GaAs membrane.
The cooling rate is calculated by measuring the effective damping rate and the intrinsic
damping rate of the membrane and plotted as a function of the photon energy. As can be
seen, before reaching the bandgap energy (Eg ≈ 870 nm), the cooling rate is very small and
it quickly rises up close to the bandgap edge. Beyond the bandgap energy, it stays more or
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Figure 6.6 a) Calibrated Brownian vibration spectrum (with Lorentzian fits)
of the (2,1) mode of the GaAs membrane with varying cavity input power. The
thermal peak area decreases as the optical power for the cooling light increases. b)
Mechanical damping rate and mechanical resonance frequency as a linear function
of the input power. c) Comparison of the mode temperature with the ringdown
and power spectrum methods. Error bars come from the standard deviation of
five measurements (reproduced from [99])

less constant with some bumps which have to be investigated further. The overall picture
is consistent with the excitonic absorption spectrum [100]. This measurement yields one of
the strongest evidences that cooling of the membrane is related to the electron-hole pair
formation within the semiconductor structure.

Apart from that, detuning dependence of the cooling is also interesting to note since
it shows some deviances from a typical Fabry-Perot cavity. This comes from the com-
plex interference picture that shows up inside the cavity due to the finite thickness of the
GaAs membrane. Therefore, it becomes necessary to solve the electric field equations for
the coupled cavity and then calculate the intra-membrane photon number (and its spatial
derivative) which is crucial in determining the cooling behaviour. This problem has been
tackled in detail in the Supplementary Info. of [99]. The outcome is that the transmission,
reflection and absorption of such a coupled cavity shows a shifted detuning picture with
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Eg

Figure 6.7 Cooling factor extracted from Γeff/Γ0 as a function of the wavelength
(or energy) of the cooling beam (reproduced from [99]).

a) 

b) 

Figure 6.8 a) The cooling factor as a function of the normalized detuning with
respect to the cavity resonance. b) Mechanical resonance frequency as a function
of normalized cavity detuning (reproduced from [99]).

assymetric features in contrast to normal Fabry-Perot cavities. Consequently, nmem - the
number of photons inside the membrane - follows this modified absorption profile. In Fig.
6.8, we show our experimental results revealing the peculiar detuning dependence of cooling
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in our coupled cavity system. In panel a, the cooling factor with respect to the detuning
of the cooling light is shown. The cooling factor follows the shifted curve calculated for
the spatial derivative of the intra-membrane photon number (∇nmem) instead of the intra-
membrane photon number itself (nmem) as expected since Γeff/Γ0 − 1 ∝ ∇F ∝ ∇n. The
mechanical resonance frequency, however, follows directly nmem as shown in panel b due to
the fact that the dominant effect in our case is the photothermal stress instead of the dy-
namic backaction which would follow ∇nmem. Error bars come from the standard deviation
of subsequent measurements.

6.5 Investigation of the cooling mechanism

Gathering the experimental results outlined in the previous section, we have had strong
evidence that the primary source of the cooling mechanism was related to electron-hole
pair generation as the wavelength dependent cooling factor data also supports this. Fur-
thermore, the effect of radiation pressure cooling is estimated to be very small with our
moderate finesse of 10. In addition to that, the opposite side of detuning for cooling and
heating does not comply with conventional raditation pressure cooling. It turned out that
this effect actually comes from the initially bent (towards the cavity mirror in this experi-
ment) structure of the GaAs membranes. However, it was not experimentally clear which
mechanism was responsible for the deflection and cooling dynamics with its characteris-
tic timescale after the generation of charge carriers in GaAs. There might be two typical
mechanisms for such a membrane: first one being the electronic stress due to radiative
recombination of the pairs and the second one being the thermal stress due to non-radiative
recombination. From a simple intuitive argument, the total electronic and thermal stress
can be estimated by σelδnmemτel and σthδnmemτth where σel is the electronic stress with a
timescale τel and σth is the thermal stress with a timescale τth where δnmem is the number
of photons absorbed per unit time. And for our case, thermal stress dominates due to the
huge timescale difference (τel/τth) ≤ 5× 10−9.
In order to demostrate the thermal stress related dynamics, we have performed a measure-
ment where the timescale of the mechanism behind cooling could be addressed. For this
measurement, a pump laser (853 nm) is used to excite electron-hole pairs in the GaAs mem-
brane and a cavity probe laser (884 nm) is used to monitor the membrane displacement.
As the pump is switched on and off, the photodetector signal is recorded to measure the
relaxation timescale. For both cases, we find an exponential behaviour yielding a timescale
of 10 ms (Fig. 6.9a). This is in good agreement with an estimated heat diffusion time of
l2/2D = 20 ms where l ≈ 1mm is the lateral dimensions and D = 0.25cm2/s is the thermal
diffusivity constant of GaAs.
For further confirmation, we have performed a spectral type of measurement where we
measure the imaginary part of the mechanical response for slow modulations of the photo-
induced force (cavity input light) [14]. The imaginary part of the lock-in response in this
case is given by

Im[zΩ] ≈ −
FphεΩ
mΩeff

1

Ωeffτ

Ω

Ω2 + (1/τ)2
(6.7)

where εΩ is the modulation depth.
The experimental result is shown in Fig. 6.9b. The data points follow the expected curve
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Figure 6.9 a) Cavity transmission signal when the pump is on (green) and
when the pump is off (orange). b) Imaginary part of the lock-in response of
the membrane position fluctuations when driven with a modulated (lower than
mechanical resonance frequency) cavity beam c) The response in the vicinity of
the mechanical resonance (reproduced from [99]).

and has a minimum around 30 Hz corresponding to an extracted time constant τ of 6.6 ms
as a fit parameter (along with Fph ) which is in agreement with the time domain measure-
ment. As a last measurement, the response around (2,1) mechanical mode is recorded and
fitted to the model which is expected to show a dispersion like behaviour (Fig. 6.9c). This
time the parameters from the previous measurement (τ = 6.6 ms and Fph) are used to plot
the fit function. All these measurements confirm our supposedly dominant thermal stress
related dynamics in the cooling process, ruling out the deformation potential effect which
is expected to take place with a much faster time constant.

6.6 Conclusive remarks and outlook

In conclusion, we have realized a novel cooling mechanism with a GaAs membrane by
exploiting the internal degrees of freedom (electron-hole pair generation) and the cavity
assisted photothermal effect. The GaAs membrane has a remarkably high mechanical Q-
factors for several modes with an exceptional value of ≈ 2×106 for (4,3) mode) for which we
achieve a mode temperature of 4 K. We have performed several systematic measurements
to figure out the underlying mechanism behind the cooling. We confirm that the primary
source is the electron-hole pair generation upon excitation with an above band-gap laser
beam and the cooling dynamics is then governed by the cavity assisted photothermal stress
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on the membrane. However, it would be an interesting direction to search for the conditions
of making the other mechanism- electronic pressure- dominant as the thermal stress mech-
anism currently limits the cooling rate due to the thermal expansion related instability.
This can in principle be achieved by increasing the time constant of the electronic pressure
coupling mechanism by, for example, engineering quantum well structures to increase the
radiative recombination time. This is one of the initiatives started in the group in collabo-
ration with Imamoglu group at ETH Zurich and Lodahl group at NBI. The idea is to tune
the lifetime of GaAs quantum well structures by applying voltage at the contacts and tests
are ongoing at the moment. One other possible way is to start the base temperature from
12 K or 50 K since the thermal expansion of GaAs goes to zero and the thermal stress
related mechanism is expected to diminish. Along with the experiments, a theoretical work
in [101] has been carried out in order to understand the electron-hole pair dynamics and
the electronic pressure coupling better for future applications. We believe that this ex-
perimental work presented here might pave the way for interesting photonics experiments
with semiconductors where their unique intrinsic electronic properties are coupled to the
mechanical degrees of freedom in an optical cavity.
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Summary and conclusion

In the beginning of the PhD study (within the first year), the author first contributed to
an optomechanics experiment with a GaAs membrane. After the characterization measure-
ments, the surprisingly high mechanical quality factors of the membranes were reported in
Liu et al [96]. Later on, we performed systematic studies on a novel optical cavity cooling
mechanism. We have shown that above bandgap light generates electron-hole pairs which
results in thermal stress in the semiconductor membrane due to non-radiative recombina-
tion. Along with cavity feedback, this photothermal mechanism is responsible for cooling
the mechanical modes of the membrane. These findings were published in our work by
Usami et al [99] and treated in detail in Andreas Næsby’s thesis [94].
The author then concentrated on the main project of the PhD thesis which deals with
the demonstration of an opto-electromechanical device for low-noise radio signal detection.
In the first phase of the project, capacitive coupling has been explored via optical inter-
ferometry for different membrane types - bare SiN, aluminum and graphene coated SiN
membranes. The advantage of metal and graphene coatings over the bare SiN membranes
has been demonstrated with regard to the electrostatic interaction strength. Our findings
show good agreement with the expected capacitive force behaviour. Furthermore, single
layer graphene -with negligible added mass- does not bring an observable systematic effect
on the excellent mechanical properties of SiN membranes. The results of this comparative
study, which have also been illuminating for our following experiments in the project, are
presented in our work [41] by Schmid et al.
In the second phase of the project, we have worked on the capacitive coupling of an Al-
coated membrane to an LC circuit. The rich resonance dynamics stemming from the elec-
tromechanical coupling (including mechanically induced transparency and strong coupling)
has been investigated and analyzed via both optical interferometry and electrical means,
showing excellent agreement with our theoretical models. Electromechanical cooperativ-
ities as high as ≈ 7000 have been achieved. We then show with our room-temperature
opto-electromechanical transducer highly sensitive optical detection of radio waves via use
of Michelson interferometry. Beyond the actual Johnson noise limited sensitivity of our
device, we infer a total noise contribution (at the optimal cooperativity) on the order of a
few Kelvin for the membrane and optical readout noise (quantum shot noise) that is in com-
petition with the state of the art op-amps operating at room temperature. Y-factor noise
figure measurements with a cold resistor supplement our findings. Apart from that, rf-to-
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optical photon conversion performance of the device (currently ≈ 1%) has been discussed.
The measurements demonstrating the optical detection of electromechanical coupling and
the characterization of the noise performance of our device are presented in our work [4]
by Bagci et al. The current noise performance of the device can be further improved by
reducing the optical readout noise - at the same time allowing for higher cooperativities in
order to suppress the membrane noise floor significantly.
We expect that our opto-electromechanical device - with its improved bandwidth and ex-
tension to higher frequencies - will find place in demanding sensing applications like NMR
imaging and astrophysics. In such applications, the currently limiting Johnson noise of the
LC circuit is expected to be suppressed to a large extent as our transducer will be coupled
to a cold signal line. The total noise of the transducer in this case will fundamentally be
dominated by the membrane noise and the optical readout imprecision. Thus we expect that
our room-temperature transducer can potentially replace the expensive cryogenic amplifiers
used for ultra-sensitive applications.



Appendix A

Detailed schematics for the
electrical circuit

Here we give a more detailed schematics of the pcb we have used for controlling the electrical
detection, coupling and excitation of our electro-mechanical system (Fig.A.1). Although

Figure A.1 The detailed schematics of the PCB with the op-amp.

during the course of the experiments, we made small modifications on the circuit, this
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picture represents the main idea and elements behind the circuit design. The LC circuit
part is connected via jumpers to the fast FET op-amp used for the detection of the capacitor
voltage in a non-perturbative way. The LC circuit is also connected to the membrane-
capacitor system inside the vacuum chamber via short cables not shown here. The op-amps
are powered from a 15V Lemo line which is stabilized and filtered by a set of resistors and
capacitors before they reach the op-amps (here the power supply stabilization and filtering
are not connected to the op-amps in order to keep the picture simple). We use three low-
noise ADA4817 fast FET op-amps which are operated in a JFET input instrumentation
amplifer configuration. The first two symetrically set amplifiers (ADA4817-2) receive input
voltages from the LC circuit (both floating) and the third amplifier (ADA4817-1) carries
out the differential detection with common-mode noise rejection. The total gain of the
amplifier in the differential mode (VN and VP are the voltages going to the first amplifier
and the second amplifier, respectively) is given by [58]

Vout = (VN − VP )

(
1 +

2RF
RG

)
(A.1)

In our case, the values of R8,R9 and R10 are chosen such that we yield a gain G=100.
On top of that, the third amplifier brings gain G=10. In total, we end up with a gain of
1000. This of course significantly reduces the original bandwidth of 1 GHz for unity gain.
However, we still have a bandwidth of around 4 MHz estimated from

BWD = (fCR ×RG)/(2×RF ) (A.2)

where FCR is the corner frequency which is 400 MHz for our op-amp. The achieved band-
width is sufficient for our application since our operation frequency is around 700 kHz.
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FET Op-amp for the electrical
measurements

Some of the specifications (from [58]) of the fast FET op-amp (1GHz) we have used:

High speed
3 dB bandwidth (G=1, RL=100): 1050 MHz

Low input bias current: 2 pA

Low input capacitance:
Common-mode capacitance: 1.3 pF
Differential-mode capacitance: 0.1 pF

Low noise
Input voltage noise: 4 nV/Hz @ 100 kHz
Input current noise: 2.5 fA/Hz @ 100 kHz

Common mode noise rejection: 90 dB (typical)

Low distortion: 90 dBc @ 10 MHz (G=1, RL=1 k)

Offset voltage: 2 mV maximum

Input resistance: 500 GΩ
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Appendix C

Mechanical endurance of the
membranes

Throughout the experimental runs related to this project, we have experimented with nu-
merous membrane samples. The membranes have thicknesses varying from 50 nm-180 nm
which makes them mechanically fragile to external perturbations. During our trials, we
have lost several membranes due to various reasons. First of all, the current assembly
process - namely placing the membrane on the capacitor chip in a reasonably well-aligned
way - becomes, from time to time, tricky as it might be necessary to move the membrane
around when it stands on the chip. Several times, this has caused the membranes break
most probably due to residual elements on the chip-membrane surface. We have experi-
enced breaking of the membranes which can be attributed to electrical effects as well. If the
grounding of the whole setup is problematic, the membrane might break when a dc voltage
is applied, presumably due to the high current leaking through the membrane-capacitor
path. Furthermore, when an ac drive is applied to excite the LC circuit, the membrane can
be excited to high vibration amplitudes which might be above the nonlinearity threshold
causing instability and eventual breaking of the membrane. Therefore, attention must be
paid to stay typically below 1 nm amplitude range even though it might compromise signal
to noise ratio in some cases. Also for small distance samples, we have experienced that tun-
ing the capacitor manually is destructive when a dc voltage is on (most probably due to the
increased sensitivity to static charges coupling to the membrane at these small distances).
From then on, we first tuned the capacitor (dc coupling off) and only then applied the dc
voltage, which solved this problem.
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Appendix D

Ultra-high precision resistors for
the Y-factor measurement

In our measurements of the Y-factor, we have used ultra-high precision Vishay foil resistors
as it is crucial, for such cryogenic measurements, to have a practically unaltered resistance
value due to temperature changes together with immunity to noise. We chose to work with
SMR1DZ/SMR3DZ resistors which are compact Z-foil molded surface mount resistors. The
special design of these resistors allow for very low TCR (Temperature Coefficient of Resis-
tance), very low PCR (Power Coefficient Temperature) and low noise performance. For foil
resistors, ambient temperature variations cause negligibly small changes in resistance which
are reversible. Typical reported values are [79] :

Temperature Coefficient of Resistance (TCR):
0.05 ppm/◦C typical (0 ◦C to + 60 ◦C)
0.2 ppm◦C typical (- 55 ◦C to + 125 ◦C,+ 25 ◦C)
and
Power Coefficient of Resistance (PCR):
∆R due to self heating: 5 ppm at Rated Power

Since TCR and PCR values are not specified for temperatures as low as 77K, we have
checked the resistance change with an ohmmeter when the resistors were immersed in liq-
uid nitrogen. As we could not see a measurable change in the resistance, we concluded to
proceed to the measurements with these resistors. Apart from temperature stability and
noise considerations, the special Z-foil design minimizes the parasitic capacitance and in-
ductance of the resistor. The interloop capacitance is reduced due to series capacitance and
the mutual inductance is reduced due to change in the current direction with the zigzag
structure.
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Appendix E

Shot noise limited optical detection

For the highly sensitive optical interferometry measurements at NBI, we have utilized an
Innolight Mephisto Laser (Nd:YAG) as a light source and balanced homodyne detection
with a fast Thorlabs InGaAs photodetector. The noise behaviour of the optical detection
has been investigated with optical power dependence measurements. It was observed that
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Figure E.1 PSD (Power Spectral Density) of detected light noise with respect to
the frequency (left). The optical power is increased from 0 mW up to 1.5 mW in
small steps. Noise level (right) plotted with respect to the optical power at three
different frequencies with linear fits for each data set (Courtesy of Andreas Barg).

around 1 MHz the laser shows relaxation oscillations when the interferometer operates at
the unbalanced condition and the noise scales quadratically with optical power as it would
be expected for classical noise. However, this relaxation noise peak is strongly suppressed
when the interferometer is operated at the balanced condition allowing us to see the linear
power dependence as an indication of shot noise limited sensitivity. (shown in Fig.E.1).
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Appendix F

Effective mass

In our experiments, we have worked with square membrane mechanical resonators and
looked at their vibrational modes which can be treated as drum modes and this has been
studied in the theory chapter. It is convenient to treat the thin 2D membrane as a one
dimensional harmonic oscillator with a certain amplitude along that direction and use this
approach when we write down the equations of motion. However, since all the points on
the 2D membrane surface vibrate with a certain amplitude governed by the modal shape
and contribute with a different kinetic energy, it becomes necessary to assign an effective
mass consistent with a proper coordinate definition. There is furthermore another factor
involved as one also needs to take into account the optical beam overlap that samples the
mechanical mode. However, as the beam size is relatively small with the respect to the
membrane size, this can be neglected in our case. We start by writing down the deflection
for a single point depending on the vibrational mode

u(x, y, z, t) =
∞∑
m=1

akΦk(x, y, z) (F.1)

Summing over all infinitesmal elements on the membrane and using the equipartition the-
orem, the total average kinetic energy for mode k can be written as

〈Ek〉 = 〈ak〉2Ω2
k

∫
V

ρ(x, y, z)|Φk(x, y, z)|2dV︸ ︷︷ ︸
meff

= kBT (F.2)

where ρ(x, y, z) is the density of the membrane. The term in underbrace can be recognized
as the effective mass where the physical mass is given by mphys =

∫
V

ρ(x, y, z)dV . The choice

of the amplitude ak is indeed arbitrary, however a convenient approach would be to define
it as the maximum displacement of the antinode of the corresponding mode. For our square
membranes with dimensions L × L and thickness h, we have shown that the vibrational
modes are given by

Φij(x, y, z) = sin

(
iπx

L

)
sin

(
jπy

L

)
(F.3)

139



140 Chapter F Effective mass

therefore the effective mass referring to mode ij becomes

mij = ρh

L∫
0

L∫
0

sin2

(
iπx

L

)
sin2

(
jπy

L

)
dxdy =

1

4
mphys (F.4)

We end up with the conclusion that for our square membranes, all the vibrational modes
have an effective mass equal to 1/4 of the physical mass.
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[20] S. Weis, R. Riviére, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippen-
berg. Optomechanically induced transparency. Science 330, 1520-1523 (2010).

[21] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross and T. J. Kippenberg.
Slowing, advancing and switching of microwave signals using circuit nanoelectrome-
chanics. Nature Physics 9, 179-184 (2013).

[22] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds and K. W. Lehnert.
Coherent state transfer between itinerant microwave fields and a mechanical oscillator.
Nature 495, 210-214 (2013).

[23] D. Rugar, R. Budakian, H. J. Mamin and B. W. Chui. Single spin detection by
magnetic resonance force microscopy. Nature 430, 329-332 (2004).

[24] H. J. Mamin and D. Rugar. Sub-attonewton force detection at millikelvin tempera-
tures. Applied Physics Letters 79, 3358 (2001).

[25] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller and M. D.
Lukin. A quantum spin transducer based on nanoelectromechanical resonator arrays.
Nature Physics 6, 602 (2010).



BIBLIOGRAPHY 143

[26] T. Larsen, S. Schmid and A. Boisen. Micro string resonators as temperature sensors.
A I P Conference Proceedings Series (ISSN: 0094-243X), vol: 1552, pages: 931-936
(2013).

[27] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali and A. Bachtold. A nanome-
chanical mass sensor with yoctogram resolution. Nature Nanotechnology 7, 301-304
(2012).

[28] educypedia.karadimov.info/library/sysnoise.pdf

[29] P. Horowitz Hill and W. Hill. The art of electronics. Cambridge University Press. 2nd
edition (1989).

[30] S. Chowdhury, M. Ahmadi and W. C. Miller. A closed-form model for the pull-in
voltage of electrostatically actuated cantilever beams. Journal of Micromechanics and
Microengineering 15, 756-763 (2005).

[31] C.B. Aiken. Proceedings of the Institute of Radio Engineers, Volume:25 , Issue:2,
230-272 (1937).

[32] S. Lee, V. P. Adiga, R. A. Barton, A. M. van der Zande, G. Lee, B. R. Ilic, A.
Gondarenko, J. M. Parpia, H. G. Craighead and J. Hone. Graphene Metallization
of High-Stress Silicon Nitride Resonators for Electrical Integration. Nano Letters, 13
(9), pp 4275-4279 (2013).

[33] P.L. Yu, T. P. Purdy, and C. A. Regal. Physical Review Letters 108, 083603 (2012)

[34] D. Antonio, H. Pastoriza, P. Julian and P. Mandolesi. Cryogenic transimpedance
amplifier for micromechanical capacitive sensors. Review of Scientific Instruments 79,
084703 (2008)

[35] F. L. Hampton and J. R. Cricchi. Steadystate electron and hole space charge distri-
bution in LPCVD silicon nitride films. Applied Physics Letters. 35, 802 (1979)

[36] J. Wibbeler, G. Pfeifer, M. Hietschold. Parasitic charging of dielectric surfaces in
capacitive microelectromechanical systems (MEMS). Sensors and Actuators A 71,
74-80 (1998).

[37] J.U. Jeon and T. Higuchi. Electrostatic Suspension of Dielectrics. IEEE Transactions
on Inductrial Electronics 45, No. 6 (1998).

[38] P. A. Truitt, J. B. Hertzberg, C. C. Huang, K. L. Ekinci and K. C. Schwab. Efficient
and sensitive capacitive readout of nanomechanical resonator arrays. Nano Letters 7,
120-126 (2007)

[39] T. Faust, P. Krenn, S. Manus, J.P. Kotthaus and E.M. Weig. Microwave cavity-
enhanced transduction for plug and play nanomechanics at room temperature. Nature
Communications 3, Article number: 728 (2012).

[40] Q. P. Unterreithmeier, E. M. Weig and J. P. Kotthaus. Universal transduction scheme
for nanomechanical systems based on dielectric forces. Nature 458, 1001-1004 (2009).



144 BIBLIOGRAPHY

[41] S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M.
Marcus, L. G. Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen,
K. Usami and E. S. Polzik. Single-layer graphene on silicon nitride micromembrane
resonators. Journal of Applied Physics 115, 054513 (2014).

[42] S. Schmid, C. Hierold and A. Boisen. Modeling the Kelvin polarization force actuation
of micro- and nanomechanical systems. Journal of Applied Physics 107, 054510 (2010).

[43] B. Pillans, G. Rebeiz, and J.-B. Lee. Advances in RF MEMS Technology. IEEE MTT-
GaAs Dig. Int., 17-20 (2003)

[44] A. Dogan. The reliability of the silicon nitride dielectric in capacitive MEMS switches.
Master thesis in Materials Science and Engineering. The Pennsylvania State Univer-
sity (2005).

[45] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim.
Nature 490, 192 (2012).

[46] D. G-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen and A.
Bachtold. Imaging mechanical vibrations in suspended graphene sheets. Nano Letters
8, no:5, 1399-1403 (2008)

[47] A. C. Ferrari and D. M. Basko. Raman spectroscopy as a versatile tool for studying
the properties of graphene. Nature Nanotechnology 8, 235-246 (2013).

[48] H. A. Pohl. Dielectrophoresis. Cambridge University Press, Cambridge, 1978.

[49] Polytec-MSA 500 Micro System Analyzer

[50] http://www.norcada.com/

[51] G. Dupont, H. Caquineau, B. Despax, R. Berjoan, and A. Dollet. Structural Properties
of N-rich a-SiN:H films with a low electron-trapping rate. J. Phys. D: Appl. Phys., 30
1064-76 (1997).

[52] C.T. Kirk. Valence alternation pair model of charge storage in MNOS memory De-
vices. Journal of Applied Physics, 50 [6] 4190-95 (1979).

[53] Peter R. Saulson. Fundamentals of interferometric gravitational wave detectors. World
Scientific Publishing, USA (1994).

[54] Innolight, Mephisto, Ultrastable single frequency cw laser. Technical Data.

[55] http://www.amidoncorp.com/61-material-ferrite-rods/

[56] C. R. Sullivan. Optimal choice for number of strands in a Litz-Wire transformer
winding. IEEE Transactions on Power Electronics, vol. 14, no. 2, 283-291 (1999).

[57] http://www.bentongue.com/xtalset/29MxQFL/29MxQFL.html

[58] Analog Devices, ADA4817, Technical Data Sheet.



BIBLIOGRAPHY 145

[59] http://www.ligo.org/science/GW-IFO.php

[60] A. Abramovici et al. LIGO: The Laser Interferometer Gravitational-Wave Observatory
Science, vol.256, no. 5055, pp. 325-333 (1992).

[61] Carlton M. Caves. Quantum-mechanical noise in an interferometer. Physical Review
D 23, 1693 (1981)

[62] M. Pinard, P. F. Cohadon, T. Briant and A. Heidmann. Full mechanical characteri-
zation of a cold damped mirror. Physical Review A 63, 013808 (2000).
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