
Automatic Parallelization of Scientific
Application

Troels Blum
blum@nbi.ku.dk

Supervisor:
Brian Vinter

vinter@nbi.ku.dk

October 2015

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Publications . 6

2 Background 8
2.1 Computational Science . 8

2.1.1 Productivity . 8
2.2 Parallel Programming Models 10

2.2.1 Shared Memory . 10
2.2.2 Message Passing . 13
2.2.3 Vector Based Programming 14

2.3 Programming the GPU . 15
2.3.1 Architecture . 16
2.3.2 Programming model 18

3 Bohrium 21
3.1 Design . 22

3.1.1 Vector Byte-code . 24
3.1.2 Bridge . 29
3.1.3 Vector Engine . 30
3.1.4 Example . 32
3.1.5 Vector Engine Manager 32
3.1.6 Configuration . 34

3.2 The Bohrium NumPy Bridge 34

4 The Bohrium GPU Vector Engine 36
4.1 JIT Compilation . 37
4.2 Data Management . 39
4.3 Code Specialization . 42

4.3.1 Limitations . 42

1

4.3.2 Strategy . 43

5 Ongoing Work 47

6 Conclusion 48

7 Publications 49
7.1 cphVB: A Scalable Virtual Machine for Vectorized Applications 49
7.2 Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster 58
7.3 Bohrium: a Virtual Machine Approach to Portable Parallelism 67
7.4 Transparent GPU Execution of NumPy Applications 78
7.5 Separating NumPy API from Implementation 88
7.6 Code Specialization of Auto Generated GPU Kernels 98
7.7 Fusion of Array Operations at Runtime 113

2

Chapter 1

Introduction

Computer simulations, which are widely used in both academia and the in-
dustry, often consists of large compute intensive tasks. At the same time
there is a continuing, and growing, interest in constructing mathematical
models and quantitative analysis techniques, i.e. computational science.
These are good candidates for harvesting the computing power of modern,
highly parallel computing systems, such as Graphics processing units (GPU)
and other massively parallel accelerator cards like the Xeon Phi. These tech-
nologies promise to deliver more “bang for the buck” over conventional CPUs.
The challenge lies in the fact, that these systems must be programmed using
specialized programming models, which, even for skilled programming pro-
fessionals, make the development cycle very long. This is a big problem in an
environment which relies on an iterative method of developing new models.
Alternatively programs that are written by domain experts, but they do not
have the knowledge to program the highly parallel systems. In the best case
the program ends up not utilizing the hardware properly, more likely the
program will simply be sequential in nature and to slow. Parallelization of
existing sequential programs is both a bug prone and time consuming task.
All in all this is a big and costly problem for both academic and industrial
communities.

1.1 Motivation

Much research time is spent on transforming codes from prototypes in high
productivity array-based languages, such as Matlab or Python/NumPy, into
compilable languages, because the scientist expect performance improve-
ments of an order of magnitude.

Most scientists within physics, chemistry, geology, etc., are naturally con-

3

fortable with array-based expression of their problems, largely because their
first approach to any programming problem is usually Matlab or Python/Numpy,
where array-based notation is both natural and essential to achieve even a
reasonable performance. Once a correctly functioning prototype has evolved,
the code is often ported to C/C++ or Fortran for performance improvement.
Little work has been done on formally verifying the speed difference between
Matlab/Numpy and compiled languages, but a blog [1] does some struc-
tured experiments and end up with the conclusion that on a Jacobi solver in
Numpy is approximately 8-9 times slower than Intel Fortran depending on
the dimensionality of the problem. This is inline with common assumption
that Numpy is approximately 10 times slower than compiled code; Matlab is
slightly slower than that.

Thus, it is reasonable to conclude that much researcher time is spent
transforming solutions from Matlab/Numpy versions into compileable code,
in order to reach an order of magnitude in performance. In addition to using
researcher resources, and delaying progress, it also stands to reason that this
conversion process is a source of errors in the final version.

1.2 Contributions

The majority of the research work I have done as part of my PhD has been
implemented in the Bohrium project. The Bohrium project is an open source
project which is being developed in collaboration with Mads R. B. Kristensen,
Simon A. F. Lund and Kenneth Skovhede. All of whom have been valuable
research partners.

Bohrium Architecture

The idea behind Bohrium is to separate the programming language, or front-
end, from the execution engine. Allowing the programmer to be oblivious
of the hardware and specific programming model for the given hardware.
To my knowledge this is a novel approach to closing the gap between high
productivity languages and highly parallel architectures.

Bohrium consists of a number of components which communicate by the
defined Vector Bytecode language. Some components, like the execution en-
gine are architecture specific; others are language specific, like the language
bridges; fusers, filters and managers are neither. Bohrium relies on lazy
evaluation and Just In Time (JIT) compilation for performance benefits.

A short description of the different component types:

4

Bridge This is the users programming interface to Bohrium. The Bridge
may integrate Bohrium into an existing programming language as a
library, like the C++ and CIL bridge does. It cal also integrate into an
existing library, as is the case with the NumPy bridge. The bridge could
also define a new domain specific language (DSL), or implement an
existing language, the MiniMatlab bridge is somewhere between these
two. The Bridge generates the Bohrium bytecode that corresponds to
the users program at runtime.

Vector Engine Manager The Vector Engine Manager (VEM) is named
so for historical reasons. As the original design contained a bridge, a
VEM, and one or more Vector engines. The current design is more
flexible, and as a result a VEM may manage any component below the
language bridge, even other VEMs. The VEM’s role is to manage the
data location and ownership of arrays. It also manages the distribution
of computing jobs between potentially several Vector Engines.

Vector Engine The Vector Engines (VE) are the components in Bohrium
which execute the calculations described by the vector bytecodes it
receives. The vector engines are architecture-specific.

Fuser Originally it was up to the vector engines, specifically the GPU vec-
tor engine, to combine multiple Bohrium vector bytecodes into suitable
kernels. However we realized that it would be possible to devise a strat-
egy for combining the vector bytecodes into kernels that are beneficial
and well suited for a wide variety of vector engines and hardware.

The fuser combines, or fuses, multiple array operations into a single
kernel of operations. The main benefit of which is temp array elimina-
tion, and ensuring that input and output arrays are read and written
as few times as possible. Limiting the stress in the memory bandwidth
of the system. Since the fuser is now a component it is possible to test
and compare different strategies for kernel fusion.

Filter The main idea behind introducing filters into Bohrium is a means to
bytecode transformation, but other uses have proven useful. The rea-
son to introduce a means to bytecode transformation is twofold. One,
to keep the vector engines simpler. The vector engines are already very
complex, but at least they can be kept conceptually simple: execute
the calculations described by the vector bytecode. With filters some
optimizations and restrictions can be implemented here. The second
benefit is that many optimizations are applicable across vector engines.

5

This type of optimization can generally be expressed ad bytecode trans-
formations.

I played a central role in the design and implementation of the Bohrium
system.

Bohrium Bridge for Numerical Python

There are several different language bridges included in the Bohrium project.
There is a C and a C++ bridge, there is a .NET bridge for the Microsoft .NET
languages, and there is a small Matlab interpreter. The first bridge, and the
one that has received the most attention is the NumPy bridge. NumPy is
widely used in the scientific computing community, and it is open source.
I have also played a major role in the development of the NumPy bridge,
while Mads R. B. Kristensen has been the main contributor due to his vast
knowledge about Numerical Python.

GPU Execution Engine

My largest contribution to the Bohrium project has been the GPU vector
engine. Which facilitates the execution of Bohrium byte code on any GPU
with OpenCL support. The development of the GPU vector engine has
inspired some major changes and improvements to the rest of the Bohrium
system. Most prominently the architecture independent kernel construction
which is being documented in the paper “Fusion of Array Operations at
Runtime” is a generalization of how kernels were built in the GPU vector
engine, see Section 7.7. This in turn has improved the GPU vector engine,
as the kernels have become more general and include more instructions and
concepts. The GPU vector engine now streaming by including generators
and reductions in the same kernels with element wise instructions this work
is unfortunately at this time undocumented.

1.3 Publications

cphVB: A Scalable Virtual Machine for Vectorized Ap-
plications

Mads Ruben Burgdorff Kristensen, Simon Andreas Frimann Lund,
Troels Blum, Brian Vinter.
Proceedings of The 11th Python In Science Conference (SciPy’12). Austin,
Texas, USA.

6

Bohrium: Unmodified NumPy Code on CPU, GPU,
and Cluster

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter.
4th Workshop on Python for High Performance and Scientific Computing
(PyHPC 2013)

Bohrium: a Virtual Machine Approach to Portable Par-
allelism

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter.
28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014)

Transparent GPU Execution of NumPy Applications

Troels Blum, Mads R. B. Kristensen, and Brian Vinter.
28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014)

Separating NumPy API from Implementation

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Ken-
neth Skovhede.
5th Workshop on Python for High Performance and Scientific Computing
(PyHPC 2014)

Code Specialization of Auto Generated GPU Kernels

Troels Blum and Brian Vinter.
Communicating Process Architectures 2015

Fusion of Array Operations at Runtime

Mads R. B. Kristensen, Troels Blum, Simon A. F. Lund, and James
Avery.
To be submitted.

7

Chapter 2

Background

2.1 Computational Science

Computer simulations, which are widely used in both academia and the in-
dustry, often consists of large compute intensive tasks. This makes them
good candidates for harvesting the computing power of modern, highly par-
allel computing systems, such as GPUs. The challenge lies in the fact, that
these systems must be programmed using specialized programming models,
which, even for skilled programming professionals, make the development
cycle very long. This is a big and costly problem for both academic and
industrial communities, which rely on an iterative method of developing new
models.

2.1.1 Productivity

There is a continuing, and growing, interest in constructing mathematical
models and quantitative analysis techniques, i.e. computational science, in
both academia and in industry. This results in an increasing number of
programs that are written by domain experts, as opposed to trained pro-
grammers. At the same time the availability and power of accelerator cards,
e.g. Graphics processing units (GPU), and coprocessors, e.g. Xeon Phi, is
also increasing. These technologies promise to deliver more bang for the buck
over conventional CPUs. However, these technologies require programming
experts, i.e. engineers and computer scientists, to program.

The gap between these fields of expertise can be overcome by employing
both domain experts and programming experts. However, this solution is of-
ten both expensive and time consuming, since coordination between scientists
and programmers constitutes an overhead. Other possible solutions include
developing domain specific languages (DSLs). Such DSLs may either be

8

compiled or interpreted, in both cases JIT compilation may be involved, for
example Fortress[6] and X10[17] running on the Java Virtual Machine. One
may port or develop accelerator enabled libraries like QDP-JIT/PTX[69],
which is a lattice quantum chromodynamics (QCD) calculation library, a
port of the QDP++[23] library, which may help domain experts to leverage
the power of accelerators without learning accelerator based programming,
naturally the performance imprpovements is then limited to the portion of
the code that uses accelerated libraries.

For general purpose programming languages such as C/C++ or Fortran
annotation in the shape of pragmas as in OpenACC[24] is often used to
annotate parts of the code that is well suited for execution on the GPU.
This may not in fact bridge the gap between domain and programming ex-
pertise, as both the languages and correct use of pragmas require a high
level of programming and architecture knowledge. Template libraries like
Thrust[10] from NVIDIA or Bolt[7] from AMD are also available. They save
the programmer the trouble of writing some boiler plate code, and contain
implementations of standard algorithms. Again some architecture knowledge
is required, and most problems can not simply be solved by gluing standard
algorithms together. SyCL[63], a specification from the Khronos group, and
C++ AMP[20], from Microsoft, are both single source solution compilers
for parallel, heterogeneous hardware. This allows for GPU kernel code to
be templated, and methods can be implemented on vector data types for
seamless parallelization. All of these technologies, while useful for skilled
programmers, are of little help to domain experts as they still require ad-
vanced programming skills and hardware knowledge.

An increasingly popular choice for domain experts is to turn to interpreted
languages[53] like MATLAB[3] or Python with the scientific computing pack-
age NumPy[51]. These languages allow the scientist to express their problems
at higher level of abstraction, and thus improves their productivity as well as
their confidence in the correctness of their code. The function decorators of
SEJITS[16] is one way to utilize accelerators (GPUs) from Python, another
is project Copperhead[14] which rely on decorators to execute parts of the
Python code on GPUs through CUDA[50]. It is also possible is to use a more
low level framework such as pyOpenCL/pyCUDA[33], which provides tools
for writing GPU kernels directly in Python. The user writes OpenCL[48] or
CUDA specific kernels as text strings in Python. This allows for the control
structure of the program to be written in Python while also avoiding writ-
ing boilerplate OpenCL- or CUDA code. This still required programming
knowledge of OpenCL or CUDA.

Systems such as pyOpenCL/pyCUDA[33] provides tools for interfacing
a high abstraction front-end language with kernels written for specific po-

9

tentially exotic hardware. In this case, lowering the bar for harvesting the
power of modern GPU’s, by letting the user write only the GPU-kernels as
text strings in the host language Python.

unPython[27] is a compilation framework for execution in a hybrid envi-
ronment consisting of both CPUs and GPUs. The framework uses a Python/NumPy
based front-end that uses Python decorators as hints to do selective opti-
mizations. Which requires the user to modify the source code manually, by
applying hints in a manner similar to that of OpenMP.

2.2 Parallel Programming Models

Modern computing hardware is inherently parallel, CPUs are multicore, and
accelerator cards like GPGPUs and Xeon Phi are many core. However, the
idea of performing computational tasks in parallel is almost as old as the
computers themselves[28]. Parallelism exists on many levels, from indepen-
dent tasks that running on different computing nodes, to Streaming SIMD
Extensions (SSE) capabilities in modern CPUs.

Through the years, several programming models and methods have been
developed to reduce the complexity of parallel programming. This chapter
is not intended be a complete survey of parallel programming methods, but
an overview of the most common methods and their benefits and drawbacks.

2.2.1 Shared Memory

In the shared memory programming model every processing unit, logical of
physical, share access to the same memory. The model does not impose
any restrictions on the program on how to access the memory. In the most
basic case, all threads in a process share all resources, including memory, and
cooperate in solving a computational task. Processes, however, do not, in
general, share any memory or resources. The shared memory programming
model is widely used in symmetric multiprocessing (SMP) architectures like
multicore CPUs.

Since threads work independently on common data structures, and com-
municate through shared variables some means of synchronization is needed.
We need locks, semaphores, and mutexes to control the execution flow of
threads and access to data to ensure correct program execution. Many pro-
gramming languages support threads, either as a native feature like C++11
[60] or through libraries like Java’s thread class[2]. Higher level languages,
such as Python[4], dictate a thread model, and abstracts the actual thread

10

Physical Machine

Main MemoryMain Memory

Thread
#3

Thread
#3

Processor #2

Thread
#1

Thread
#1

Thread
#2

Thread
#2

Processor #1

Figure 2.1: Multiple processes on a shared memory machine

implementation. Languages like C1 and Fortran do not provide native sup-
port for threads. They provide access to threads through an API to the op-
erating system’s thread library. The POSIX standard is the most ubiquitous
thread library standard, and defines an API for creating and manipulating
threads including access control.

Most hardware systems support shared memory. The x86 architecture
originally did not have any hardware features to restrict access to mem-
ory and as such had only shared memory[19]. With the 80286 Intel started
supporting protected mode[19] in their processors. This feature enabled the
operating system (OS) to prevent one process from accessing the data of an-
other. The primary motivation was not to ensure security and OS stability,
but rather to allow memory segmentation. Enabling the system to utilize
more than 1MB of memory, which was originally the limit[19]. The sup-
port, and switching between real mode and protected mode improved with
the 80386 processor[18]. Figure 2.1 shows an example of a shared memory
machine.

Open Multi-Processing

Open Multi-Processing (OpenMP)[22] is a multi-platform shared-memory
programming extension for writing parallel programs for C/C++ and For-
tran. The specification states how memory consistency must work which
makes OpenMP based code more portable across different systems[54]. OpenMP

1C++ only started having native support for threads after the C++11 standard.

11

Figure 2.2: The Fork/Join parallel paradigm. The master thread forks off a
number of threads which execute blocks of code in parallel.

also makes it easier to create parallel application by using the fork/join pro-
gramming paradigm, see Figure2.2. This encapsulates much of the tedious
work involved in multi-threading programming, such as creating, joining and
destroying threads. OpenMP also provides a parallelization strategies for
implementing common code structures, such as automatic parallelization of
for-loops that which no dependent iterations.

The fork/join programming paradigm (Figure 2.2) implemented by OpenMP
begins execution as a single process, called the master thread of execution.
When the master threads enters a parallel section in the program, it forks a
team of threads (one of them being the master thread), and work is contin-
ued in parallel among these threads. Upon exiting the parallel section, all
the threads in the team synchronize (join the master), and only the master
continues execution. The fundamental directive for expressing parallelism on
OpenMP is the parallel directive.

All statements in the parallel section of the program, including function
calls, are executed in parallel by each thread in the team. It is up to the
programmer to classify all variables as either shared or private, to the thread.
The compiler uses this information to ensure thread safe access to the vari-
ables. In other words OpenMP does not hide the parallelism from the user,
but provides convenient language constructs to write parallel programs.

Numerical Libraries

Libraries, and especially numerical libraries is another way of parallelizing
certain sections of a program. The libraries implement commonly used func-
tions and subroutines which the user can the use to create his program. From

12

the view of the programmer certain functionality is encapsulated, and it be-
comes possible to write seemingly sequential code where the computational
intensive parts executes in parallel. From a portability perspective, the li-
braries can also support multiple platforms and expose the same interface,
making it easier to write portable code. The libraries place some burden on
the programmer who is responsible for dividing the program into tasks that
are suitable for the library. The two most commonly used numerical libraries
for linear algebra are BLAS[41] and LAPACK[9].

2.2.2 Message Passing

Message passing is very broad parallel programming paradigm, witch is im-
plemented by very different libraries, systems, and languages. The one thing
they have in common is that data messages are being sent over some com-
munication channel.

Parallel Virtual Machine (PVM)[61] is a software system that enables a
collection of heterogeneous computers to be used as one Distributed Memory
Machine. PVM is built around the concept of a virtual machine which is
a dynamic collection of (potentially heterogeneous) computational resources
managed as a single parallel computer. One aspect of the virtual machine
is how parallel tasks exchange data. This is accomplished using simple mes-
sage passing constructs. The virtual machine transparently handles message
routing and data conversion for incompatible architectures.

Message Parsing Interface (MPI)[59] focuses on a more tightly bound
communication paradigm, in which a cluster of homogeneous nodes is pre-
ferred. To limit the amount of memory which needs to be copied when
transmitting data, the MPI standard supports user-defined data types. This
makes it possible to send and receive non-contiguous data blocks: A typical
use case is when working with data in a matrix structure, and column of
data needs to be communicated.

Communicating Sequential Processes (CSP)[30] is very different from
both PVM and MPI. It is a formal language for describing interaction be-
tween concurrent processes. The basic components of CSP are processes and
channels. By using the abstraction of a channel, it is possible to formally
verify that the program is correct. The channel also serves the purpose of
hiding the implementation details. Using the CPS programming paradigm it
is simpler to describe highly irregular problems, as each process is isolated.

13

2.2.3 Vector Based Programming

The Python programming language and its de-facto scientific library NumPy[51]
targets the academic and the industrial community as a high-productivity
framework with a very short development cycle. Python/NumPy supports
a declarative vector programming style where numerical operations oper-
ate on full arrays rather than scalars. This programming style is often re-
ferred to as vector or array programming and is frequently used in program-
ming languages and libraries that target the scientific community and the
high-technology industry, e.g. HPF[42], MATLAB[70], Armadillo[56], and
Blitz++[68].

Microsoft Accelerator [62] introduces ParallelArray, which is similar to
the utilization of the NumPy arrays in Bohrium but there are strict limita-
tions to the utilization of ParallelArrays. ParallelArrays does not allow the
use of direct indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. Bohrium instead allows indexed
operations and additionally supports vector-views, which are vector-aliases
that provide multiple ways to access the same chunk of allocated memory.
Thus, the data structure in Bohrium is highly flexible and provides elegant
programming solutions for a broad range of numerical algorithms. Intel pro-
vides a similar approach called Intel Array Building Blocks (ArBB) [49] that
provides retargetability and dynamic compilation. It is thereby possible to
utilize heterogeneous architectures from within standard C++. The retar-
getability aspect of Intel ArBB is represented in Bohrium as a simple con-
figuration file that defines the Bohrium runtime environment. Intel ArBB
provides a high performance library that utilizes a heterogeneous environ-
ment and hides the low-level details behind a declarative vector-programming
model similar to Bohrium. However, ArBB only provides access to the pro-
gramming model via C++ whereas Bohrium is not limited to any one specific
front-end language.

The concept of views is essential to NumPy programming. A view is a
reference to a subpart of an array that appears as a regular array to the user.
Views make it possible to implement a broad range of applications through
element-wise vector (or array) operations. In Figure 3.3, we implement a heat
equation solver that uses views to implement a 5-point stencil computation
of the domain.

On multiple points, Bohrium is closely related in functionality and goals
to the SEJITS [15] project, but takes a different approach towards the front-
end and programming model. SEJITS provides a rich set of computational
kernels in a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criterion . This approach is

14

1 import bohrium as numpy

2 solve(grid , epsilon):

3 center = grid[1:-1, 1:-1]

4 north = grid[:-2, 1:-1]

5 south = grid [2: , 1:-1]

6 west = grid[1:-1, :-2]

7 east = grid[1:-1, 2:]

8 delta = epsilon +1

9 while delta > epsilon:

10 work = 0.2*(center+north+south+east+west)

11 delta = numpy.sum(numpy.abs(work -center))

12 center [:] = work

Figure 2.3: Python/NumPy implementation of a heat equation solver. The
grid is a two-dimensional NumPy array and the epsilon is a Python scalar.
Note that the first line of code imports the Bohrium module instead of the
NumPy module, which is all the modifications needed in order to utilize
Bohrium and our GPU backend.

shown to provide performance that at times out-performs even hand-written
specialized code towards a given architecture[46]. Being able to construct
computational kernels is a core issue in data-parallel programming. The
programming model in Bohrium does not provide this kernel methodology,
but deduces computational kernels at runtime by inspecting the flow of vector
bytecode.

Bohrium provides, in this sense, a virtual machine optimized for execu-
tion of vector operations. Previous work [8] was based on a complete virtual
machine for generic execution whereas Bohrium provides an optimized sub-
set.

2.3 Programming the GPU

The Graphics card industry, driven by the gaming marker, has found the
need for specialized processors used to perform shading. When rendering a
3D object onto a 2D screen, each pixel can to be calculated individually to
create a realistic representation. This has lead to Graphics Processing Units
(GPU) with a set of specialized floating-point processors that are specifically
targeted at performing shading. The shaders became programmable which
made it possible to running programs on them. Although the input had
to be represented as textures and polygons, and the output would be pixel
values[57]. Even with these constraints the need for compute power in scien-

15

tific computing led to research in utilizing the GPU shaders for non graphical
use[29].

In 2007 NVIDIA announced CUDA[5], which made it possible to use the
GPU for General Purpose processing (GPGPU)

2.3.1 Architecture

A GPGPU device is a computing device, separate from the host system. It
has its own memory hierarchy with a separate address space. Data has to
be explicitly copied to and from the device for manipulation and viewing.
This is typically done over the PCI-express bus, which makes it an expensive
operation, even for simple memory copy.

The GPGPU consists of a number of multiprocessing units, each con-
taining several cores. The cores are the hardware units doing the actual
computations.

Memorywise the device contains a global memory with random access.
Each multiprocessor contains some memory called shared memory. This is
shared by the cores belonging to the multiprocessor, and only accessible to
those. The shared memory can be thought of, as a user managed cache,
although in newer generations of GPGPUs the default is to have part of the
shared memory used as a traditional cache, controlled by the driver. Each
compute core has access to a private register file. A schematic model a generic
GPGPU can be seen in figure 2.4.

The GPUs global memory has very high bandwidth (tens to hundreds of
GB/s). This is achieved using a wide data path,up to 512 bits. Resulting in
reads of 128 bytes at a time. This is important to have in mind when accessing
global memory. The access time, on the other hand, is high compared to the
instruction cycle time. It takes in the order of 100 instructions to access global
memory. The register file and shared memory are both accessed directly in
one instruction.

The GPU architecture supports light weight hardware threads. The
threads are light weight in the sense that threads can be scheduled for execu-
tion within a single clock cycle. Threads running on the same multiprocessor
execute the same instruction at the same time. NVIDIA calls this a Single
Instruction Multiple Threads (SIMT) architecture.

SIMT is akin to Single Instruction, Multiple Data (SIMD), with the key
difference that SIMD is data-centric, where SIMT is execution-centric. It is
however, very simple to map SIMT to SIMD by mapping every data point
to a thread. This is in fact a recommended abstraction, and is very good for
latency hiding, as long as the problem at hand allows for it.

16

PC
I	 B

U
S	

Streaming	 	
mul2processor	

SP	

Shared	
memory	

SP	

SP	 SP	

SP	 SP	

SP	 SP	

SFU	 SFU	

Streaming	 	
mul2processor	

SP	

Shared	
memory	

SP	

SP	 SP	

SP	 SP	

SP	 SP	

SFU	 SFU	

Device	 memory	

Host	 memory	

Streaming	 	
mul2processor	

SP	

Shared	
memory	

SP	

SP	 SP	

SP	 SP	

SP	 SP	

SFU	 SFU	

Streaming	 	
mul2processor	

SP	

Shared	
memory	

SP	

SP	 SP	

SP	 SP	

SP	 SP	

SFU	 SFU	

Streaming	 	
mul2processor	

SP	

Shared	
memory	

SP	

SP	 SP	

SP	 SP	

SP	 SP	

SFU	 SFU	

Figure 2.4: Generic GPGPU hardware setup

17

2.3.2 Programming model

The fundamental concept in programming GPGPU’s is the kernel. A kernel is
basically a function, whose body is executed N time by N different concurrent
threads. Take for example the pseudo c-style function in listing 2.1, for
increasing the brightness of a RGB image. It does this by running through
all the pixels, and increasing the RGB-value by delta.

void increase_brightness(rgb* img , int height , int width , int delta)

{

for (int h = 0; i < height; ++h)

{

for (int w = 0; w < width; ++w)

{

img[h][w].red += delta;

img[h][w]. green += delta;

img[h][w].blue += delta;

}

}

}

Code Listing 2.1: Classic C style

The same function can easily be rewrite into a kernel for execution on a
GPU. That would look something like the pseudo code in listing 2.2. Here
the width and the height is coded into the kernel shape. In general a kernel
has a shape which represents the layout of the threads in one, two or three
dimensions. I will not go further into details with this, but instead refer the
reader to the CUDA C programming guide [21].

__global__

void increase_brightness(rgb* img , int delta)

{

int h = threadIdx.x;

int w = threadIdx.y;

img[h][w].red += delta;

img[h][w]. green += delta;

img[h][w].blue += delta;

}

Code Listing 2.2: CUDA C style

18

Cooperative Threads

To help manage resources and enable some synchronization, Threads are
divided into blocks. A thread block can consist of up to 512 threads. The
threads that make up a block are able to communicate via shared memory,
and can synchronize execution and communication via special function calls.
This means that all threads belonging to a block will be running on the same
multi-processor, although not necessarily at the same time. Threads running
in parallel in a single multiprocessor are called a warp. Threads in a warp
always belong to the same thread block.

Threads that belong to the same warp execute the same operation at the
same time. therefore it comes at great cost, if threads within a warp diverge
in their execution path. As all paths will have to be followed by all threads.
Only memory reads and writes are the selected appropriately.

Threads that belong to the same block share all resources. That includes
register space. So even though threads cannot access each other registers, the
amount of threads in a thread block, limits the number of registers available
to each thread.

The threads in a tread block can be laid out in a one, two or three
dimensional pattern. Each thread can retrieve its position within the block
via special registers.

When invoking a kernel, it is done with an array of thread blocks, called a
Cooperative Thread Array (CTA). The thread blocks can be laid out in one
or two dimensions within the CTA. For this reason it is often referred to as
a grid (of thread blocks). Threads belonging to the same CTA, but different
blocks can only communicate via global memory. In that sense they have
no special relation, other than belonging to the same kernel. A thread can
retrieve information about which thread block it belongs to, in the same way
as its position within a block. That way it can calculate its global position.
This information is often used to calculate which data elements to access
from global memory.

Kernel Wrapping Libraries

A framework such as pyOpenCL/pyCUDA[33] provides tools for writing
GPU kernels directly in Python. The user writes OpenCL[47] or CUDA[50]
specific kernels as text strings in Python, which simplifies the utilization of
OpenCL or CUDA compatible GPUs. This strategy saves the programmer
the trouble of writing some boilerplate code, while sacrificing some control
and flexibility.

19

Code annotation

Some projects enable the use of GPGPU’s via code annotations. The Copperhead[14]
project relies on Python decorators, when compiling and executing a re-
stricted subset of Python through CUDA. Because of the Bohrium runtime
system, our GPU backend does not require any modifications to the Python
code.

Array API

Python libraries such as CUDAMat[45] and Gnumpy[64] provide an API
similar to NumPy for utilizing GPUs. The API of Gnumpy is almost identical
with the API of NumPy. However, Gnumpy does not support arbitrary
slicing when aliasing arrays.

20

Chapter 3

Bohrium

Bohrium is a runtime-system for mapping vector operations onto a number of
different hardware platforms, from simple multi-core CPU systems to clusters
and GPU enabled systems. In order to make efficient choices Bohrium is
implemented as a virtual machine which makes runtime decisions.

Obtaining high performance from today’s computing environments re-
quires both a deep and broad working knowledge on computer architecture,
communication paradigms and programming interfaces. Today’s comput-
ing environments are highly heterogeneous consisting of a mixture of CPUs,
GPUs, FPGAs and DSPs orchestrated in a wealth of architectures and lastly
connected in numerous ways.

Utilizing this broad range of architectures manually requires programming
specialists and is a very time-consuming task. A high-productivity language
that allows rapid prototyping and still enables efficient utilization of a broad
range of architectures is would be preferable. There exist high-productivity
language and libraries which automatically utilize parallel architectures [37,
62, 49]. They are however still few in numbers and have one problem in
common. They are closely coupled to both the front-end, i.e. programming
language and IDE, and the back-end, i.e. computing device, which makes
them interesting only to the few using the exact combination of front and
back-end.

To provide a high productivity environment for the end user, the Bohrium
system provides a number of language bridges. The language bridges attempt
to integrate naturally into the host language. As the name implies, they
provide a bridge from the programming language to the Bohrium runtime
system. The overall programming method is known as array (or vector)
programming, and is similar to the programming model found in Matlab [3]
and NumPy [52].

In the current implementation of Bohrium, we provide language bridges

21

for C++, Python, and the Common Intermediate Language (CIL), also
known as .Net. While these are the only three bridges implemented, they
show that the array programming approach can be applied to different classes
of programming languages, including: static and dynamic typed, compiled,
interpreted, procedural, and functional. All implementations are provided as
libraries, so that they may be used without customized tool-chains, compilers,
or special runtime environments. Both the Python and CIL implementations
include fallback implementations, which allows successful execution, even in
the case where Bohrium is not present on the system. This enables the
programmer the possibility to develop and verify applications in an environ-
ment the user is comfortable with, and then later add the option of efficient
execution.

The Bohrium Python bridge [35] mimics the NumPy libraries and uses
NumPy for fallback execution, so any existing NumPy program can be ex-
ecuted with Bohrium simply by changing the import statement to refer to
Bohrium. The C++ bridge uses templates and operator overloads to pro-
vide an elegant interface to vectors and matrices. The CIL implementation
uses the NumCIL [58] library as a front-end and provides simple access to
vector and matrix operations from any of the CIL languages, such as C#,
F#, IronPython and Visual Basic.

The key motivation for Bohrium is to provide a framework for the utiliza-
tion of diverse and complex computing systems, with the goal of obtaining
high-performance, high-productivity and high-portability, HP 3.

3.1 Design

Bohrium performs data-centric optimizations on vector operations, which can
be viewed as akin to selective optimizations, in the respect that it does not
optimize the program as a whole. This ensures a less intrusive user experi-
ence when using the Bohrium for interpreted languages like Python/NumPy.
Where all arrays are by default handled by Bohrium. This approach provides
the advantage that any existing NumPy program can run unaltered and take
advantage of Bohrium without changing a single line of code. We envision
that this approach could also be used for R and other languages.

The Bohrium system consists of a number of runtime components, see
Figure 3.1

Bridge The bridge translates the high level host language into Bohrium
byte code. The bridge can either map an existing language or library
into Bohrium bytecode as is the case with the NumPy bridge. In this

22

Figure 3.1: Bohrium Component Overview

case the use of Bohrium is completely transparent to the user. Another
possibility is to implement a library which exposes the multidimensional
array constructs and operations in a natural way to the programmer.
The C, C++ and CIL bridges are examples of this approach. The
main difference being that it is obvious to the programmer that he/she
is using the Bohrium system directly via the implemented library.

In the MiniMatlab interpreter a complete, though small, language is
implemented. This is an example of how Bohrium may be used by im-
plementing a Domain Specific Language (DSL). A subset of the Matlab
language was chosen so a new language did not have to be invented,
but a new language for a specific set of tasks is a likely scenario for a
DSL implementation of a Bohrium bridge.

Even with the compiled languages the Bohrium bytecode is generated
at runtime. This allows for lazy evaluation of the generated code, which
enables the rest of the Bohrium system to implement latency hiding,
streaming, and other performance optimizing strategies.

Vector Engine Manager The Vector Engine Manager (VEM) is named
so for historical reasons. As the original design contained a bridge, a
VEM, and one or more Vector engines. The current design is more
flexible, and as a result a VEM may manage any component below the
language bridge, even other VEMs. The VEM’s role is to manage the
data location and ownership of arrays. It also manages the distribution
of computing jobs between potentially several Vector Engines.

23

Vector Engine The Vector Engines (VE) are the components in Bohrium
which execute the calculations described by the vector bytecodes it
receives. The vector engines are architecture-specific.

Fuser Originally it was up to the vector engines, specifically the GPU vec-
tor engine, to combine multiple Bohrium vector bytecodes into suitable
kernels. However we realized that it would be possible to devise a strat-
egy for combining the vector bytecodes into kernels that are beneficial
and well suited for a wide variety of vector engines and hardware.

The fuser combines, or fuses, multiple array operations into a single
kernel of operations. The main benefit of which is temp array elimina-
tion, and ensuring that input and output arrays are read and written
as few times as possible. Limiting the stress in the memory bandwidth
of the system. Since the fuser is now a component it is possible to test
and compare different strategies for kernel fusion.

Filter The main idea behind introducing filters into Bohrium is a means to
bytecode transformation, but other uses have proven useful. The rea-
son to introduce a means to bytecode transformation is twofold. One,
to keep the vector engines simpler. The vector engines are already very
complex, but at least they can be kept conceptually simple: execute
the calculations described by the vector bytecode. With filters some
optimizations and restrictions can be implemented here. The second
benefit is that many optimizations are applicable across vector engines.
This type of optimization can generally be expressed ad bytecode trans-
formations.

3.1.1 Vector Byte-code

The Bohrium project builds upon a common, vector based, byte-code lan-
guage. The Bohrium byte-code supports operations on multidimensional ar-
rays, which can be sliced into sub-arrays, broadcast into higher dimensions,
or viewed in other exotic ways. High level languages construct and oper-
ations are translated into this byte-code, that in turn will be executed by
the different Bohrium vector engines. Every bytecode contains information
on how the data of each array operand should be accessed (viewed). Each
view consists of a data type, number of dimensions, an offset, and number
of elements and a stride1 for each dimension. See Figure 3.2 for a graphical
representation of a Bohrium view.

1Number of base elements to skip ahead, to access the next data element in the given
view, may be negative.

24

type

ndim

start

shape

stride

data *

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension

O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

1110

0 1

3 4

Seen 3d-array

Figure 3.2: Descriptor for n-dimensional array and corresponding interpre-
tation

A vital part of Bohrium is the Vector Bytecode that constitutes the link
between the high-level user language and the low-level execution engine. The
bytecode is designed with the declarative array-programming model in mind
where the bytecode instructions operate on input and output arrays. The
arrays can also be shaped into multi-dimensional arrays, to avoid excessive
memory copying. These reshaped array views are then not necessarily com-
prised of elements that are contiguous in memory. Each dimension comprises
a stride and size, such that any regularly shaped subset of the underlying
data can be accessed. We have chosen to focus on a simple, yet flexible, data
structure that allows us to express any regularly distributed arrays. Figure
3.2 shows how the shape is implemented and how the data is projected.

Figure 3.4 illustrates a list of vector bytecode that the NumPy Bridge
will generate when executing one of the iterations in the Python/NumPy
implementation of the heat equation solver (Fig. 3.3). The example demon-
strates the nearly one-to-one mapping from the NumPy vector operations to
the Bohrium vector bytecode. The code generates seven temporary arrays
(t1, ..., t7) that are not specified in the code explicitly, but is a result of how
Python interprets the code.

The aim is to have a vector bytecode that support data parallelism im-

25

1 import bohrium as numpy

2 solve(grid , epsilon):

3 center = grid [1:-1,1:-1]

4 north = grid [-2:,1:-1]

5 south = grid [2:,1:-1]

6 east = grid [1: -1,:2]

7 west = grid [1: -1,2:]

8 delta = epsilon +1

9 while delta > epsilon:

10 tmp = 0.2*(center+north+south+east+west)

11 delta = numpy.sum(numpy.abs(tmp -center))

12 center [:] = tmp

Figure 3.3: Python/NumPy implementation of the heat equation solver. The
grid is a two-dimensional NumPy array and the epsilon is a Python scalar.
Note that the first line of code imports the Bohrium module instead of the
NumPy module, which is all the modifications needed in order to utilize the
Bohrium runtime system.

plicitly and thus makes it easy for the bridge to translate the user language
into the bytecode efficiently. Additionally, the design enables the VE to
exploit data parallelism through the “Single Instruction, Multiple Data”
(SIMD) paradigm and the VEM through the “Single Program, Multiple
Data” (SPMD) paradigm.

In the following section, we will go through the four types of vector byte-
codes in Bohrium.

Element-wise

Element-wise bytecodes perform a unary or binary operation on all array
elements. Bohrium currently supports 53 element-wise operations, e.g. ad-
dition, multiplication, square root, equal, less than, logical and, bitwise and,
etc. For element-wise operations, Bohrium only allows data overlap between
the input and the output arrays if the access pattern is the same, which,
combined with the fact that they are all stateless, makes it straightforward
to execute them in parallel.

Reduction

Reduction bytecodes reduce an input dimension using a binary operator.
Again, Bohrium does not allow data overlap between the input and the out-
put arrays and the operator must be associative. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc. Even though

26

1 ADD t1 , grid[center], grid[north]

2 ADD t2 , t1 , grid[south]

3 FREE t1

4 DISCARD t1

5 ADD t3 , t2 , grid[east]

6 FREE t2

7 DISCARD t2

8 ADD t4 , t3 , grid[west]

9 FREE t3

10 DISCARD t3

11 MUL work , const (0.2) , t4

12 FREE t4

13 DISCARD t4

14 MINUS t5 , work , grid[center]

15 ABS t6 , t5

16 FREE t5

17 DISCARD t5

18 ADD_REDUCE t7, t6

19 FREE t6

20 DISCARD t6

21 ADD_REDUCE delta , t7

22 FREE t7

23 DISCARD t7

24 IDENTITY grid[center], work

25 FREE work

26 DISCARD work

27 SYNC delta

Figure 3.4: Bytecode generated in each iteration of the Python/NumPy im-
plementation of the heat equation solver (Fig. 3.3). For convenience, the
arrays and views are given readable names. Views are annotate in “[]”.
Note that the SYNC instruction at line 27 transfers the scalar delta from the
Bohrium address space to the NumPy address space in order for the Python
interpreter to evaluate the while condition (Fig. 3.3, line 9).

27

none of them is stateless, the reductions are all straightforward to execute in
parallel because of the non-overlap and associative properties.

Generators

Generators are byte codes which generate data in some structured way. This
can simply be the assignment of a single value to every element of an array.
The BH RANGE byte code enables the assignment of an equally spaced range of
values to an array. The values can the be manipulated into other structured
distributions of values like for example values evenly spaced on a logarithmic
scale.

Bohrium also implements a pseudo random number generator via the
Random123[55] library. This enables Bohrium to generate the same sequence
of pseudo-random numbers on different hardware. Separate portions of the
same sequence can even be generated by different engines with out the need
for communication.

Data Management

Data Management bytecodes determine the data ownership of arrays and
consist of three different bytecodes. The synchronization bytecode orders a
child component to place the array data in the address space of its parent
component. The free bytecode orders a child component to free the data
of a given array in the global address space. Finally, the discard operator
that orders a child component to free the meta-data associated with a given
array, and signals that any local copy of the data is now invalid. These
three bytecodes enable lazy allocation where the actual array data allocation
is delayed until it is used. Often arrays are created with a generator (e.g.
random, constants) or with no data (e.g. temporary), which may exist on
the computing device exclusively. Thus, lazy allocation may save memory
allocations and copies.

Extension methods

The bulk of a Bohrium execution consists mainly of the above three types
of bytecode. However, not all algorithms may be efficiently implemented
in this way. In order to handle operations that would otherwise be inef-
ficient or even impossible, we introduce a fourth bytecode type: extension
methods. Bohrium imposes no restrictions to this generic operation; the ex-
tension writer has total freedom. However, Bohrium does not require that all
components support the operation. Initially, the user registers the extension

28

method with paths to all component-specific implementations of the opera-
tion. The user then receives a new handle for this extension method and may
use it subsequently as a vector bytecode. Matrix multiplication and FFT are
examples of extension methods that are obviously needed. For matrix mul-
tiplication, a CPU specific implementation could simply call a native BLAS
library and a Cluster specific implementation could call the ScaLAPACK
library[11].

3.1.2 Bridge

The Bridge component is the bridge between the programming interface, e.g.
Python/NumPy, and the VEM. The Bridge is the only component that is
specifically implemented for the user programming language. In order to add
Bohrium support to a new language or library, only the bridge component
needs to be implemented. The bridge component generates bytecode based
on the user application and sends them to the underlying VEM.

To hide the complexities of obtaining high-performance from the diverse
hardware making up modern computer systems any given framework must
provide a meaningful high-level abstraction. This can be realized in the
form of domain specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes: (1) It must
provide meaning for the end-user such that the goal of high-productivity can
be met with satisfaction. (2) It must provide an abstraction that consists of
a sufficient amount of information for the system to optimize its utilization.

Bohrium does not introduce a new programming language and is not
biased towards any specific choice of abstraction or front-end technology.
However, the front-end must be compatible with the declarative vector pro-
gramming model and support vector slicing, also known as vector or matrix
slicing [42, 70, 44, 66]. Bohrium introduces bridges that integrate existing
languages into the Bohrium runtime system.

The Python Bridge is an extension of NumPy version 1.6, which seam-
lessly implements a new array back-end that inherits the manipulation fea-
tures, such as slice, reshape, offset, and stride. As a result, the user only
needs to modify the import statement of NumPy (Fig. 3.3) in order to uti-
lize Bohrium.

The Python Bridge uses hooks to divert function call where the program
accesses Bohrium enabled NumPy arrays. The hooks will translate a given
function into its corresponding Bohrium bytecode when possible. When it
is not possible, the hooks will feed the function call back into NumPy and
thereby forces NumPy to handle the function call itself. The Bridge operates
with two address spaces for arrays: the Bohrium space and the NumPy space.

29

The user can explicitly assign new arrays to either the Bohrium or the NumPy
space through a new array creation parameter. In two circumstances, it is
possible for an array to transfer from one address space to the other implicitly
at runtime.

1. When an operation accesses an array in the Bohrium address space but
it is not possible for the bridge to translate the operation into Bohrium
bytecode. In this case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency, no data is actually copied.
Instead, the bridge uses the mremap function to re-map the relevant
memory pages when the data is already present in main memory.

2. When an operations accesses arrays in different address spaces the
Bridge will transfer the arrays in the NumPy space to the Bohrium
space.

In order to detect direct access to arrays in the Bohrium address space by
the user, the original NumPy implementation, a Python library, or any other
external source, the bridge protects the memory of arrays that are in the
Bohrium address space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmentation fault. The
Bridge can then handle this kernel signal by transferring the array to the
NumPy address space and cancel the segmentation fault. This technique
makes it possible for the Bridge to support all valid Python/NumPy appli-
cation, since it can always fall back to the original NumPy implementation.

To reduce the overhead related to generating and processing the bytecode,
the Bohrium Bridge uses lazy evaluation for recording instruction until a side
effect can be observed.

Due to the nature of Bohrium, being a runtime system, and Python
being an interpreted language, the Python bridge will need to synchronize
with Bohrium every time the while statement in figure 3.3 line 9 is evaluated
i.e. for each loop iteration. This means that the body of the loop (Fig. 3.3 l.
10 – 12) resulting in the bytecode in figure 3.4 will be sent repeatedly by the
bridge. Every time as a separate batch. In fact, Bohrium does not provide
any control instructions at all.

3.1.3 Vector Engine

The Vector Engine (VE) is the only component that does computations,
specified by the user application. It has to execute the instructions it receives
in a valid order; that comply with the dependencies between instructions, i.e.

30

program order. Furthermore, it has to ensure that its parent VEM has access
to the results as governed by the Data Management bytecodes.

The VE is the focus of this paper – in order to utilize the GPU, we
implement a GPU-VE that execute Bohrium bytecode on the GPU. In the
following section, we will describe our GPU-VE in detail.

CPU

The CPU-ve utilizes all cores available on the given CPU. The CPU-ve is
implemented as a in-order interpreter of bytecode. It features dynamic com-
pilation for single-expression just-in-time optimization. Which allows the
engine to perform runtime-value-optimization, such as specialized interpre-
tation based on the shape and rank of operands. As well as parallelization
using OpenMP.

Dynamic memory allocation on the heap is a time-consuming task. This is
particularly the case when allocating large chunks of memory because of the
involvement of the system kernel. Typically, NumPy applications use many
temporary arrays and thus use many consecutive equally sized memory allo-
cations and de-allocations. In order to reduce the overhead associated with
these memory allocations and de-allocations, we make use of a reusing scheme
similar to a Victim Cache[31]. Instead of de-allocating memory immediately,
we store the allocation for later reuse. If we, at a later point, encounter a
memory allocation of the same size as the stored allocation, we can simply
reuse the stored allocation. In order to have an upper bound of the extra
memory footprint, we have a threshold for the maximum memory consump-
tions of the cache. When allocating memory that does not match any cached
allocations, we de-allocate a number of cached allocations such that the to-
tal memory consumption of the cache is below the threshold. Previous work
has proven this memory-reusing scheme very efficient for Python/NumPy
applications[43].

GPU

To harness the computational power of the modern GPU we have created
the GPU-VE for Bohrium. Since Bohrium imposes an array oriented style
of programming on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL over CUDA. This
was the natural choice since one of the major goals of Bohrium is portability,
and OpenCL is supported by more platforms.

The GPU-VE currently use a simple kernel building and code generation

31

scheme: It will keep adding instructions to the current kernel for as long
as the shape of the instruction output matches that of the current kernel,
and adding it will not create a data hazard. Input parameters are registered
so they can be read from global memory. Similarly, output parameters are
registered to be written back to global memory.

The GPU-VE implements a simple method for temporary array elimina-
tion when building kernels:

• If the kernel already reads the input, or it is generated within the kernel,
it will not be read from global memory.

• If the instruction output is not need later in the instruction sequence
– signaled by a discard – it will not be written back to global memory.

This simple scheme has proven fairly efficient. However, the efficiency is
closely linked to the ability of the bridge to send discards close to the last
usage of an array in order to minimize the active memory footprint since this
is a very scarce resource on the GPU.

The code generation we have in the GPU-VE simply translates every
Bohrium instruction into exactly one line of OpenCL code.

3.1.4 Example

Figure 3.4 illustrate the list of vector byte code that the NumPy Bridge
will generate when executing one of the iterations in the Jacobi Method
code example (Fig. 3.3). The example demonstrates the nearly one-to-one
mapping from the NumPy vector operations to the Bohrium vector byte code.
The code generates seven temporary arrays (t1,...,t7) that are not specified
in the code explicitly but is a result of how Python interprets the code. In
a regular NumPy execution, the seven temporary arrays translate into seven
memory allocations and de-allocations thus imposing an extra overhead. On
the other hand, a Bohrium execution with the Victim Cache will only use
two memory allocations since six of the temporary arrays (t1,...,t6) will use
the same memory allocation. However, no writes to memory are eliminated.
In the GPU-VE the source code generation eliminates the memory writes all
together. (t1,...,t5) are stored only in registers. Without this strategy the
speedup gain would no be possible on the GPU due to the memory bandwidth
bottleneck.

3.1.5 Vector Engine Manager

In order to couple the Bridge and the hardware specific Vector Engine,
Bohrium uses a third component: the Vector Engine Manager (VEM). The

32

VEM is responsible for one memory address space in the hardware configu-
ration. In our configuration, we only use a single machine (Node-VEM) thus
the role of the VEM component is insignificant. The Node-VEM will simply
forward all instruction from its parent to its child components.

Rather than allowing the Bridge to communicate directly with the Vector
Engine, we introduce a Vector Engine Manager into the design. The VEM
is responsible for one memory address space in the hardware configuration.
The current version of Bohrium implements two VEMs: the Node-VEM that
handles the local address space of a single machine and the Cluster-VEM that
handles the global distributed address space of a computer cluster.

The Node-VEM is very simple since the hardware already provides a
shared memory address space; hence, the Node-VEM can simply forward
all instruction from its parent to its child components. The Cluster-VEM,
on the other hand, has to distribute all arrays between Node-VEMs in the
cluster.

Cluster Architectures

In order to utilize scalable architectures fully, distributed memory parallelism
is mandatory. The current Cluster-VEM implementation is currently quite
näıve; it uses the bulk-synchronous parallel model[65] with static data de-
composition and no communication latency hiding. We know from previous
work than such optimizations are possible[39].

Bohrium implements all communication through the MPI-2 library and
use a process hierarchy that consists of one master-process and multiple
worker-processes. The master-process executes a regular Bohrium setup with
the Bridge, Cluster-VEM, Node-VEM, and VE. The worker-processes, on
the other hand, execute the same setup but without the Bridge and thus
without the user applications. Instead, the master-process will broadcast
vector bytecode and array meta-data to the worker-processes throughout the
execution of the user application.

Bohrium use a data-centric approach where a static decomposition dic-
tates the data distribution between the MPI-processes. Because of this static
data decomposition, all processes have full knowledge of the data distribution
and need not exchange data location meta-data. Furthermore, the task of
computing array operations is also statically distributed which means that
any process can calculate locally what needs to be sent, received, and com-
puted. Meta-data communication is only needed when broadcasting vector
bytecode and creating new arrays – a task that has an asymptotic complexity
of O(log2 n), where n is the number of nodes.

33

Bridge for NumPy

[numpy]

type = bridge

children = node

Vector Engine Manager for a single machine

[node]

type = vem

impl = libbh_vem_node.so

children = gpu

Vector Engine for a GPU

[gpu]

type = ve

impl = lbbh_ve_gpu.so

Figure 3.5: This example configuration provides a setup for utilizing a GPU
on one machine by instructing the Vector Engine Manager to use the GPU
Vector Engine implemented in the shared library lbhvb ve gpu.so.

3.1.6 Configuration

To make Bohrium as flexible a framework as possible, we manage the setup
of all the components at runtime through a configuration file. The idea is
that the user or system administrator can specify the hardware setup of the
system through an ini-file (Fig. 3.5). Thus, it is just a matter of editing
the configuration file when changing or moving to a new hardware setup and
there is no need to change the user applications.

3.2 The Bohrium NumPy Bridge

The popularity of the Python programming language is growing in the HPC
community. Python is a high-productivity programming language that fo-
cus on high-productivity rather than high-performance thus it might seem
paradoxical that such a language would gain popularity in HPC. However,
Python is easily extensible with libraries implemented in high-performance
languages such as C and FORTRAN, which makes Python a great tool for
gluing high-performance libraries together[67].

Numerical Python (NumPy[51]) is the de-facto standard for scientific ap-
plications written in Python. It provides a rich set of high-level numeri-
cal operations and introduces a powerful array object. NumPy supports
a declarative vector programming style where numerical operations operate

34

on full arrays rather than scalars. This programming style is often referred
to as vector or array programming and is commonly used in programming
languages and libraries that target the scientific community, e.g. HPF[42],
MATLAB[70], Armadillo[56], and Blitz++[68].

A major shortcoming of Python/NumPy is the lack of thread-based con-
currency. The de-facto Python interpreter, CPython, uses a Global Inter-
preter Lock to serialize concurrent execution of Python bytecode thus par-
allelism in restricted to external libraries. Similarly, NumPy does not par-
allelize array operations but might use external libraries, such as BLAS or
FFTW, that do support parallelism.

The result is that Python/NumPy is great for gluing HPC code together,
but often it cannot stand by itself. In this paper, we introduce a framework
that addresses this issue. We introduce a runtime system, Bohrium, which
seamlessly executes NumPy array operations in parallel. Through Bohrium,
it is possible to utilize CPU, GPU, and Clusters without changing the orig-
inal Python/NumPy code besides adding the import statement: “import
bohrium as numpy”.

The Python/NumPy[51] support in Bohrium consists of an extension of
NumPy version 1.6, which seamlessly implements a new array back-end that
inherits the manipulation features, such as view, slice, reshape, offset, and
stride. As a result, the user only needs to modify the import statement of
NumPy in order to utilize the GPU back-end.

35

Chapter 4

The Bohrium GPU Vector
Engine

The Bohrium vector bytecode with its SIMD properties is a good match for
the GPU. In this section, we will explain how we have chosen to convert the
vector bytecode into code that executes on the GPU.

In order to implement the GPU-VE, we use the OpenCL[47] framework.
There are many possible choices for an implementation framework. One of
the main goals of the Bohrium project is to deliver high performance. For
this reason, we want a framework that allows for fairly low-level control of
the hardware and relatively close mapping between the code we generate and
the operations the hardware executes. The other candidates for this level of
control are CUDA[50] and LLVM[40]. While LLVM could be a good choice
for the code generated for the GPU kernels, LLVM depends on CUDA or
OpenCL, to drive the GPU i.e. compiling and loading kernels and moving
data to and from GPU memory.

The obvious alternative is the CUDA framework though it has a couple
of drawbacks compared to OpenCL. Firstly, CUDA imposes a vendor lock in
since it only supports devices by NVIDIA. We would prefer our solution to be
vendor independent. Secondly, CUDA uses the pseudo-assembly language,
PTX, which is more complex, requiring address calculations, and explicit
load/store operations and register management. Alternatively, it is possible
to compile C/C++ code to PTX using the external compiler, nvcc, and
pay the relatively expensive cost of a system call. CUDA allegedly has a
performance advantage (on NVIDIA devices) but studies[25] have shown that
OpenCL achieves comparable performance under fair comparison. On top
of this, we expect that the simplicity of the GPU kernels we generate makes
the effect of advanced optimizations negligible.

36

4.1 JIT Compilation

The element-wise operations (Sec. 3.1.1) are considered the basic operations
of Bohrium, as these are in effect vector operations. They are also the most
common bytecodes received by the vector engine. A notable property of
these vector operations is that all input and output operands have the same
size even though the underlying base array might have different sizes. The
Bridge will enforce this property through dimension duplications and/or vec-
tor slicing. Because of this property, mapping the element-wise operations to
the GPU is straightforward through the SIMD execution model. Since the
SIMD execution model is often recommended as an implementation model
for the SIMT architecture of the GPU[50], it seems like a simple and log-
ical choice. We map one thread to each output data element where each
thread is responsible for fetching the required input data, doing the required
calculations, and saving the result to the correct index in the output data.

Detecting kernel boundaries

A Bohrium bytecode represents a relatively simple operation, addition, sub-
traction, square root, less than, etc. The execution time for such an operation
is very small compared to the time required to fetch the data elements from
global memory, and writing the result back to global memory. Even when
spawning millions of threads, and thus implementing latency hiding on the
GPU, fetching and writing data is going to be the dominant time factor. The
result is that single operation microkernels is not a viable solution for the
GPU vector engine.

We need a scheme for collecting multiple operations into compound ker-
nels for the GPU to run. Finding the optimal execution order for all the
instructions in a batch is an NP-hard problem[26]. However, there exist dif-
ferent heuristic methods for finding good execution orders, while obeying the
inter-instruction dependencies[32]. It is, however, out of the scope of this
thesis to do a performance analysis of these methods for our given setup. We
have chosen to implement a simple scheme that guarantees a legal ordering
of instruction since it does not reorder the instructions.

This scheme keeps adding instructions, in order, from the batch to the
current kernel for as long as the instructions are compatible. When the
scheme encounters a non-compatible instruction, it schedules the current
kernel under construction for execution. Subsequently, the scheme initiates
a new kernel with the non-compatible instruction as the first instruction.
The scheme repeats this process until all instruction has been scheduled and
executed. The criteria for a compatible instruction are:

37

1. The instruction has to be one of the element-wise operations. If it is a
reduction or an extension method the current kernel will be executed
before executing the reduction- or extension method instruction.

2. The shape and size of the data elements that are accessed must be the
same as that of the kernel.

3. Adding the instruction can not create a data hazard. A data hazard is
created if the new instruction reads a data object, that is also written
in the same kernel, and the access patterns are not completely aligned.
This is similar to loop fusion strategies implemented by compilers.

When the rules, outlined above, are applied to the bytecode example
shown in figure 3.4, four kernel boundaries will be found. Resulting in four
kernels. Of these four kernels only three of them will be executed on the GPU.
The bytecode shown in figure 3.4 is produced by the loop body in figure 3.3,
line 9 – 12, and is repeated for as long as delta > epsilon, although every
iteration will produce a separate bytecode batch as explained in sec. 3.1.2.

At the beginning of the batch, the current kernel is empty thus the first
operation (the ADD in line 1) is added. The first operation that requires
the insertion of a boundary and triggers kernel compilation and execution
is the ADD REDUCE-instruction in line 18, because this is not an element-wise
operation. Reduction is handled separately, and it is compiled into its own
kernel. The second reduction will also be handled as a separate kernel, except,
it is not executed on the GPU. Rather the result of the previous reduction is
transferred to the host memory, and the second reduction is executed on the
host CPU. This is done for efficiency, as the second reduction is too small
to utilize the GPU. Finally, the IDENTITY-operation in line 24, to copy the
intermediate result back to the main grid, is compiled into its own kernel due
the fact that the batch of instructions ends after the SYNC-instruction in line
27.

It is worth noticing that if the while loop from figure 3.3 was a for-
loop instead, or in another way did not depend on the calculations within
the loop, the batches would be concatenated into one, i.e. the bytecode
in figure 3.4 would repeat with line 1 again after line 27. If this were the
case, the IDENTITY-operation in line, 24 would still end up in its own kernel,
because trying to add the following ADD-operation would break the third
rule, listed above. As the input grid[north] is unaligned with the output
grid[center] of the IDENTITY-operation.

Of the data management instructions, only the DISCARD instruction po-
tentially effects the kernel. If it is one of the output arrays of one of the
instructions of the current kernel, that means that the result is not used

38

outside the kernel, and; therefore it does not need to be saved for later use.
This saves the memory write of one data element per thread.

Source code generation

Before a kernel can be scheduled for execution, it needs to be translated into
an OpenCL C kernel function. The bytecode sequence shown in figure 3.4
will create three GPU kernels. Since the bytecode sequence is repeated for
each iteration of the while loop of the Python/NumPy code from figure 3.3,
the three kernels could be generated for each iteration. While generation
of the OpenCL source code is relatively inexpensive, calling the OpenCL
compiler and translating the source code into a hardware specific kernel comes
at a cost that has a significant impact on the total execution time of the
program. To minimize the time spent on compilation, the GPU-VE will
cache all compiled kernels for the lifetime of the program. The recurrence
of a byte-code sequence is registered, and the compiled kernel is reused by
simply calling it again, possibly with new parameters.

Every single bytecode is trivially translated into a single line of OpenCL
C code, since every unique array-view just needs to be given a unique name.
This way line 1 – 15 from figure 3.4 is translated into the calculation body an
OpenCL function kernel: line 18 – 31 of figure 4.1, which is then prepended
with the code for loading the needed data (line 13 – 17), and appended with
code for saving the results (line 32 – 33). Notice that t1 ... t5 are not
saved, as they are not needed outside the kernel. Code to make sure surplus
threads do not write to unintentional addresses is inserted (line 8 – 9 & 11
– 12). Finally, the function header, with call arguments consisting of input
and output parameters (line 1 – 5) are added to the code block. The kernel
is then compiled and executed. The kernel code for the reduction is included
in figure 4.2. Figure 4.3 shows the code for the copy-back-function generated
by the IDENTITY-instruction in line 24 of figure 3.4.

4.2 Data Management

The remaining data management instructions, FREE and SYNC, do not effect
the content of the kernel. A SYNC-instruction may force the execution of a
kernel, if the array in question is being written by the current kernel, and
the data is the copied from the GPU to the main memory for availability to
the rest of the system.

A FREE-instruction only concerns the main memory of the system thus;
it is just executed when encountered.

39

1 __kernel void kernelb981208bc41e203a(

2 __global float* grid

3 , __global float* work

4 , const float s0

5 , __global float* t6)

6 {

7 const size_t gidy = get_global_id (1);

8 if (gidy >= 1000)

9 return;

10 const size_t gidx = get_global_id (0);

11 if (gidx >= 1000)

12 return;

13 float center = grid[gidy *1002 + gidx*1 + 1003];

14 float north = grid[gidy *1002 + gidx*1 + 1];

15 float south = grid[gidy *1002 + gidx*1 + 1004];

16 float east = grid[gidy *1002 + gidx*1 + 1002];

17 float west = grid[gidy *1002 + gidx*1 + 2005];

18 float t1;

19 t1 = center + north;

20 float t2;

21 t2 = t1 + south;

22 float t3;

23 t3 = t2 + east;

24 float t4;

25 t4 = t3 + west;

26 float work_;

27 work_ = s0 * t4;

28 float t5;

29 t5 = work_ - center;

30 float t6_;

31 t6_ = fabs(t5);

32 work[gidy *1000 + gidx*1 + 0] = work_;

33 t6[gidy *1000 + gidx*1 + 0] = t6_;

34 }

Figure 4.1: First of three kernels generated by the GPU-VE from the byte-
code shown in Fig. 3.4. The kernel inplements line 1 – 17 of the bytecodes.

40

1 __kernel void reduce6020b3d120d0ec9a(

2 __global float* t7

3 , __global float* t6)

4 {

5 const size_t gidx = get_global_id (0);

6 if (gidx >= 1000)

7 return;

8 size_t element = gidx*1 + 0;

9 float accu = t6[element];

10 for (int i = 1; i < 1000; ++i)

11 {

12 element += 1000;

13 accu = accu + t6[element];

14 }

15 t7[gidx*1 + 0] = accu;

16 }

Figure 4.2: Source code for the reduction kernel produced by line 18 of the
bytecode in Fig. 3.4

1 __kernel void kernela016730fd6e00085(

2 __global float* grid

3 , __global float* work)

4 {

5 const size_t gidy = get_global_id (1);

6 if (gidy >= 1000)

7 return;

8 const size_t gidx = get_global_id (0);

9 if (gidx >= 1000)

10 return;

11 float work_ = work[gidy *1000 + gidx*1 + 0];

12 float center;

13 center = work_;

14 grid[gidy *1002 + gidx*1 + 1003] = center;

15 }

Figure 4.3: Source code for the copy back kernel produced by line 24 of the
bytecode in Fig. 3.4

41

There is no instruction for signaling that data needs to be copied to the
GPU from main memory. The data will simply be copied to the GPU as it
is needed.

4.3 Code Specialization

The Bohrium operator access patterns are prime candidates for code special-
ization. The GPU vector engine of Bohrium translates the vector byte code
into OpenCL bases GPU kernels at run-time. We can choose to make the
generated kernels more general by including the access patterns as param-
eters, or specialize the kernels by including the access patterns as literals.
It is our expectation that specialized kernels will perform better than non-
specialized due to the fact the compiler will have more information to work
with.

4.3.1 Limitations

Bohrium byte-code does not support loops or control structures. Bohrium
relies on the host language for these programming constructs. When iter-
ating through a loop the same byte-code sequence will simply be repeated.
Though operands and access patterns may change with each iteration. It is
important for the vector engine to detect these repetitions since JIT compil-
ing OpenCL source code at run-time is a time consuming task, compared to
the execution time of the generated kernel. That way JIT compiling cost is
amortized with repeated calls to same OpenCL kernel. We need to ensure
that our specialization of the generated GPU kernels do not prohibit them
from being reused. If we consider the loop body of LU decomposition, as
it may implemented in Python/NumPy, as shown in Figure 4.4. The views
on both l and u change with each iteration. When translated into Bohrium
bytecode the specific view attributes are concretized, i.e. no longer symbolic.

Bohrium is designed to support interpreted languages. As a result of
this design choice we may need to execute calculations based on very limited
knowledge of the general structure of the host program — since we have no
knowledge of future calculations. This needs to be taken into account when
devising a strategy for code specialization. Consider the Jacobi stencil code
in Figure 4.5: The Python interpreter evaluates the boolean clause of the
while statement in line 3, thus the value of delta is returned to the host-
language bridge together with the control for each iteration of the loop. So
from Bohriums point of view we do not know that the views do not change.
At least not for the first calculation of delta. With each iteration we could

42

1 def lu(a):

2 u = a.copy()

3 l = numpy.zeros_like(a)

4 numpy.diagonal(l)[:] = 1.0

5 for c in xrange(1,u.shape [0]):

6 l[c:,c-1] = u[c:,c-1] / u[c-1,c-1:c]

7 u[c:,c-1:] = u[c:,c-1:] -

8 l[c:,c-1][: , None] * u[c-1,c-1:]

9 return (l,u)

Figure 4.4: Python/NumPy implementation of LU decomposition.

assume static views with higher and higher confidence.

1 def jacobi_2d(grid , epsilon =0.005):

2 delta = epsilon + 1

3 while delta > epsilon:

4 work = (grid [1:-1,1:-1] + grid [0:-2,1:-1] +

5 grid [1: -1,2:] + grid [1:-1,0:-2] +

6 grid [2: ,1: -1]) * 0.2

7 delta = numpy.sum(numpy.absolute(work -

8 grid [1: -1 ,1: -1]))

9 grid [1:-1,1:-1] = work

10 return grid

Figure 4.5: Python/NumPy implementation of 2D-Jacobi stencil.

4.3.2 Strategy

There are two extremes of code specialization, focusing on the views or access
patterns of Bohrium. The first is of course to specialize everything found in
the Bohrium view descriptor, i.e. use only literals. The other extreme is
to parametrisize the generated kernels with the Bohrium view descriptor,
i.e. use only function variables. Choosing no specialization gives us the best
chance of code reusability, resulting in less time spent on the compiler com-
piling code if the indexes change, but perhaps more time calculatng data
indexes during execution. Symmetrically, the effect of full specialization is
the reverse: Giving the compiler as much information as possible to work
with, hopefully enabling better optimized code. The optimal solution would
be to include exactly those values that do not change over the lifetime of
the program as literals. In our scenario, however, we do not have the global
knowledge required for implementing this optimal solution. We may, depend-

43

ing on the application, actually have very limited knowledge — it would be
desirable with a strategy that is both simple, and works well in most situa-
tions.

The strategy we have chosen for this work, testing the benefits of code
specialization, if any, is as follows:

The first time a unique set of byte codes, which constitute a GPU ker-
nel, are encountered: We compile both a completely specialized kernel
and a generalized kernel, i.e. the two extremes. The compilations are
done separately and asynchronously. We enqueue the fully specialized
kernel for execution. As we expected this to be the most efficient ver-
sion of the kernel. We also expected the compilation time for both
kernels to be largely the same.

Upon receiving the same pattern of byte codes, constituting a kernel,
again, we know that we have a matching kernel i.e. the generalized,
parametrizied, kernel. The specialized version of the kernel is tested for
fitness, i.e. the access pattern is the same as when the code was gen-
erated. If the specialized kernel matches it is scheduled for execution,
otherwise the generalized kernel is scheduled.

Most of the code for the generated kernels are the same, independent of
specialization, since the core functionality is the same. So we found it most
convinient to generate one source code, and use the c preprocessors #define
directives to generate the different GPU kernels. The Python code shown
in Figure 4.5 generates two GPU kernels. The main body of the generated
OpenCL source code is shown in Figure 4.6, and the define and size parameter
parts are shown in Figure 4.7.

44

1 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

2 #ifdef FIXED_SIZE

3 // defines go here

4 #endif

5 __kernel __attribute__ ((work_group_size_hint (64, 4, 1))) void

6 #ifndef FIXED_SIZE

7 kernel429d67e832590722

8 #else

9 kernel429d67e832590722_

10 #endif

11 (

12 __global double* a1

13 , __global double* a5

14 , __global double* a7

15 , const double s0

16 #ifndef FIXED_SIZE

17 // size parameters go here

18 #endif

19)

20
21 {

22 const size_t gidx = get_global_id (0);

23 if (gidx >= ds0)

24 return;

25 const size_t gidy = get_global_id (1);

26 if (gidy >= ds1)

27 return;

28 double v1 = a1[gidy*v1s2 + gidx*v1s1 + v1s0];

29 double v2 = a1[gidy*v2s2 + gidx*v2s1 + v2s0];

30 double v4 = a1[gidy*v4s2 + gidx*v4s1 + v4s0];

31 double v6 = a1[gidy*v6s2 + gidx*v6s1 + v6s0];

32 double v8 = a1[gidy*v8s2 + gidx*v8s1 + v8s0];

33 double v0;

34 v0 = v1 + v2;

35 double v3;

36 v3 = v0 + v4;

37 double v5;

38 v5 = v3 + v6;

39 double v7;

40 v7 = v5 + v8;

41 double v9;

42 v9 = v7 * s0;

43 double v10;

44 v10 = v9 - v1;

45 double v11;

46 v11 = fabs(v10);

47 a5[gidy*v9s2 + gidx*v9s1 + v9s0] = v9;

48 a7[gidy*v11s2 + gidx*v11s1 + v11s0] = v11;

49 }

Figure 4.6: Generated OpenCL kernel created by 2D-Jacobi stencil.45

#define ds1 1998

#define ds0 1998

#define v1s0 2001

#define v1s2 2000

#define v1s1 1

#define v2s0 1

#define v2s2 2000

#define v2s1 1

#define v4s0 2002

#define v4s2 2000

#define v4s1 1

#define v6s0 2000

#define v6s2 2000

#define v6s1 1

#define v8s0 4001

#define v8s2 2000

#define v8s1 1

#define v9s0 0

#define v9s2 1998

#define v9s1 1

#define v11s0 0

#define v11s2 1998

#define v11s1 1

, const int ds1

, const int ds0

, const int v1s0

, const int v1s2

, const int v1s1

, const int v2s0

, const int v2s2

, const int v2s1

, const int v4s0

, const int v4s2

, const int v4s1

, const int v6s0

, const int v6s2

, const int v6s1

, const int v8s0

, const int v8s2

, const int v8s1

, const int v9s0

, const int v9s2

, const int v9s1

, const int v11s0

, const int v11s2

, const int v11s1

Figure 4.7: The define and parameter declaration part of the generated code
in figure 4.6.

46

Chapter 5

Ongoing Work

At the time of writing this theses the work described in the “Fusion of Ar-
ray Operations at Runtime” (see Section 7.7) has been implementer in the
Bohrium system as the fuser component. The paper has, however not been
published yet.

The current implementation of the GPU vector engine supports these
architecture independent kernels. That means that the GPU vector engine is
able to generate more complex GPU-kernels, containing more instructions per
kernel. This also means that the GPU vector engine now supports combining
generators, element-wise operations, and reductions in the same GPU-kernel.
All of this leads to better performance for the GPU vector engine. How
much of a performance gain is dependent on the benchmark. This work is
unfortunately undocumented at this time.

47

Chapter 6

Conclusion

In my PhD work I show that it is possible to run unmodified Python/NumPy
code on modern GPUs. This is done by using the Bohrium runtime system to
translate the NumPy array operations into an array based bytecode sequence.
Executing these byte-codes on two GPUs from different vendors shows great
performance gains.

Scientist working with computer simulations should be allowed to focus on
their field of research and not spend excessive amounts of time learning exotic
programming models and languages. We have with the Bohrium achieved
very promising results by starting out with a relatively simple approach.
This has the leas to more specialized methods as I have shown with the work
done with both specialized-, and parametrizied- kernels. Both have their
benefits and recognizable use cases. We achieved clear performance benefits
without any significant negative impact on overall application performance.
Even in the cases where we were not able to gain any performance boost by
specialization the added cost, for kernel generation and extra bookkeeping,
is minimal.

Many of the lessons learned developing and optimizing the Bohrium GPU
vector engine has proven to be valuable in a broader perspective. Which has
made it possible to generalize to benefit the complete Bohrium project.

48

Chapter 7

Publications

7.1 cphVB: A Scalable Virtual Machine for

Vectorized Applications

Mads Ruben Burgdorff Kristensen, Simon Andreas Frimann Lund,
Troels Blum, Brian Vinter.
Proceedings of The 11th Python In Science Conference (SciPy’12).

49

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012) 1

cphVB: A System for Automated Runtime
Optimization and Parallelization of Vectorized

Applications
Mads Ruben Burgdorff Kristensen∗†, Simon Andreas Frimann Lund†, Troels Blum†, Brian Vinter†

F

Abstract—Modern processor architectures, in addition to having still more
cores, also require still more consideration to memory-layout in order to run
at full capacity. The usefulness of most languages is deprecating as their
abstractions, structures or objects are hard to map onto modern processor
architectures efficiently.

The work in this paper introduces a new abstract machine framework, cphVB,
that enables vector oriented high-level programming languages to map onto a
broad range of architectures efficiently. The idea is to close the gap between
high-level languages and hardware optimized low-level implementations. By
translating high-level vector operations into an intermediate vector bytecode,
cphVB enables specialized vector engines to efficiently execute the vector
operations.

The primary success parameters are to maintain a complete abstraction from
low-level details and to provide efficient code execution across different, modern,
processors. We evaluate the presented design through a setup that targets
multi-core CPU architectures. We evaluate the performance of the implemen-
tation using Python implementations of well-known algorithms: a jacobi solver,
a kNN search, a shallow water simulation and a synthetic stencil simulation. All
demonstrate good performance.

Index Terms—runtime optimization, high-performance, high-productivity

Introduction

Obtaining high performance from today’s computing envi-
ronments requires both a deep and broad working knowl-
edge on computer architecture, communication paradigms and
programming interfaces. Today’s computing environments are
highly heterogeneous consisting of a mixture of CPUs, GPUs,
FPGAs and DSPs orchestrated in a wealth of architectures and
lastly connected in numerous ways.

Utilizing this broad range of architectures manually requires
programming specialists and is a very time-consuming task
– time and specialization a scientific researcher typically
does not have. A high-productivity language that allows rapid
prototyping and still enables efficient utilization of a broad
range of architectures is clearly preferable. There exist high-
productivity language and libraries that automatically utilize
parallel architectures [Kri10], [Dav04], [New11]. They are

* Corresponding author: madsbk@nbi.dk
† University of Copenhagen

Copyright © 2012 Mads Ruben Burgdorff Kristensen et al. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

however still few in numbers and have one problem in
common. They are closely coupled to both the front-end,
i.e. programming language and IDE, and the back-end, i.e.
computing device, which makes them interesting only to the
few using the exact combination of front and back-end.

A tight coupling between front-end technology and back-
end presents another problem; the usefulness of the developed
program expires as soon as the back-end does. With the
rapid development of hardware architectures the time spend
on implementing optimized programs for specific hardware,
is lost as soon as the hardware product expires.

In this paper, we present a novel approach to the prob-
lem of closing the gap between high-productivity languages
and parallel architectures, which allows a high degree of
modularity and reusability. The approach involves creating a
framework, cphVB* (Copenhagen Vector Bytecode). cphVB
defines a clear and easy to understand intermediate bytecode
language and provides a runtime environment for executing
the bytecode. cphVB also contains a protocol to govern the
safe, and efficient exchange, creation, and destruction of model
data.

cphVB provides a retargetable framework in which the
user can write programs utilizing whichever cphVB supported
programming interface they prefer and run the program on
their own workstation while doing prototyping, such as testing
correctness and functionality of their programs. Users can then
deploy exactly the same program in a more powerful execution
environment without changing a single line of code and thus
effectively solve greater problem sets.

The rest of the paper is organized as follows. In Section
Programming Model. we describe the programming model
supported by cphVB. The section following gives a brief
description of Numerical Python, which is the first program-
ming interface that fully supports cphVB. Sections Design and
Implementation cover the overall cphVB design and an imple-
mentation of it. In Section Performance Study, we conduct an
evaluation of the implementation. Finally, in Section Future
Work and Conclusion we discuss future work and conclude.

*. Open Source Project - Website: http://cphvb.bitbucket.org.

2 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Related Work

The key motivation for cphVB is to provide a framework
for the utilization of heterogeneous computing systems with
the goal of obtaining high-performance, high-productivity and
high-portability (HP3). Systems such as pyOpenCL/pyCUDA
[Klo09] provides a direct mapping from front-end language to
the optimization target. In this case, providing the user with
direct access to the low-level systems OpenCL [Khr10] and
CUDA [Nvi10] from the high-level language Python [Ros10].
The work in [Klo09] enables the user to write a low-level
implementation in a high-productivity language. The goal is
similar to cphVB – the approach however is entirely different.
cphVB provides a means to hide low-level target specific code
behind a programming model and providing a framework and
runtime environment to support it.

Intel Math Kernel Library [Int08] is in this regard more
comparable to cphVB. Intel MKL is a programming library
providing utilization of multiple targets ranging from a single-
core CPU to a multi-core shared memory CPU and even to
a cluster of computers all through the same programming
API. However, cphVB is not only a programming library it
is a runtime system providing support for a vector oriented
programming model. The programming model is well-known
from high-productivity languages such as MATLAB [Mat10],
[Rrr11], [Idl00], GNU Octave [Oct97] and Numerical Python
(NumPy) [Oli07] to name a few.

cphVB is more closely related to the work described in
[Gar10], here a compilation framework is provided for exe-
cution in a hybrid environment consisting of both CPUs and
GPUs. Their framework uses a Python/NumPy based front-end
that uses Python decorators as hints to do selective optimiza-
tions. cphVB similarly provides a NumPy based front-end and
equivalently does selective optimizations. However, cphVB
uses a slightly less obtrusive approach; program selection
hints are sent from the front-end via the NumPy-bridge. This
approach provides the advantage that any existing NumPy
program can run unaltered and take advantage of cphVB
without changing a single line of code. Whereas unPython
requires the user to manually modify the source code by
applying hints in a manner similar to that of OpenMP [Pas05].
This non-obtrusive design at the source level is to the author’s
knowledge novel.

Microsoft Accelerator [Dav04] introduces ParallelArray,
which is similar to the utilization of the NumPy arrays in
cphVB but there are strict limitations to the utilization of
ParallelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. cphVB instead
allows indexed operations and additionally supports array-
views, which are array-aliases that provide multiple ways to
access the same chunk of allocated memory. Thus, the data
structure in cphVB is highly flexible and provides elegant
programming solutions for a broad range of numerical algo-
rithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [New11] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The

retargetability aspect of Intel ArBB is represented in cphVB
as a plain and simple configuration file that define the cphVB
runtime environment. Intel ArBB provides a high performance
library that utilizes a heterogeneous environment and hides the
low-level details behind a vector oriented programming model
similar to cphVB. However, ArBB only provides access to the
programming model via C++ whereas cphVB is not biased
towards any one specific front-end language.

On multiple points cphVB is closely related in functionality
and goals to the SEJITS [Cat09] project. SEJITS takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criteria. This
approach has shown to provide performance that at times out-
performs even hand-written specialized code towards a given
architecture. Being able to construct computational kernels is
a core issue in data-parallel programming.

The programming model in cphVB does not provide this
kernel methodology. cphVB has a strong NumPy heritage
which also shows in the programming model. The advantage is
easy adaptability of the cphVB programming model for users
of NumPy, Matlab, Octave and R. The cphVB programming
model is not a stranger to computational kernels – cphVB
deduce computational kernels at runtime by inspecting the
vector bytecode generated by the Bridge.

cphVB provides in this sense a virtual machine optimized
for execution of vector operations, previous work [And08] was
based on a complete virtual machine for generic execution
whereas cphVB provides an optimized subset.

Numerical Python

Before describing the design of cphVB, we will briefly
go through Numerical Python (NumPy) [Oli07]. Numerical
Python heavily influenced many design decisions in cphVB –
it also uses a vector oriented programming model as cphVB.

NumPy is a library for numerical operations in Python,
which is implemented in the C programming language. NumPy
provides the programmer with a multidimensional array object
and a whole range of supported array operations. By using
the array operations, NumPy takes advantage of efficient C-
implementations while retaining the high abstraction level of
Python.

NumPy uses an array syntax that is based on the Python list
syntax. The arrays are indexed positionally, 0 through length –
1, where negative indexes is used for indexing in the reversed
order. Like the list syntax in Python, it is possible to index
multiple elements. All indexing that represents more than one
element returns a view of the elements rather than a new copy
of the elements. It is this view semantic that makes it possible
to implement a stencil operation as illustrated in Figure 1 and
demonstrated in the code example below. In order to force
a real array copy rather than a new array reference NumPy
provides the ”copy” method.

In the rest of this paper, we define the array-base as the
originally allocated array that lies contiguously in memory.
In addition, we will define the array-view as a view of the

CPHVB: A SYSTEM FOR AUTOMATED RUNTIME OPTIMIZATION AND PARALLELIZATION OF VECTORIZED APPLICATIONS 3

Fig. 1: Matrix expression of a simple 5-point stencil computation ex-
ample. See line eight in the code example, for the Python expression.

elements in an array-base. An array-view is usually a subset
of the elements in the array-base or a re-ordering such as the
reverse order of the elements or a combination.
1 center = full[1:-1, 1:-1]
2 up = full[0:-2, 1:-1]
3 down = full[2: , 1:-1]
4 left = full[1:-1, 0:-2]
5 right = full[1:-1, 2:]
6 while epsilon < delta:
7 work[:] = center
8 work += 0.2 * (up+down+left+right)
9 center[:] = work

Target Programming Model

To hide the complexities of obtaining high-performance from
a heterogeneous environment any given system must provide
a meaningful high-level abstraction. This can be realized in
the form of domain specific languages, embedded languages,
language extensions, libraries, APIs etc. Such an abstraction
serves two purposes: 1) It must provide meaning for the end-
user such that the goal of high-productivity can be met with
satisfaction. 2) It must provide an abstraction that consists of
a sufficient amount of information for the system to optimize
its utilization.

cphVB is not biased towards any specific choice of abstrac-
tion or front-end technology as long as it is compatible with
a vector oriented programming model. This provides means
to use cphVB in functional programming languages, provide
a front-end with a strict mathematic notation such as APL
[Apl00] or a more relaxed syntax such as MATLAB.

The vector oriented programming model encourages ex-
pressing programs in the form of high-level array operations,
e.g. by expressing the addition of two arrays using one high-
level function instead of computing each element individually.
The NumPy application in the code example above figure 1
is a good example of using the vector oriented programming
model.

Design of cphVB

The key contribution in this paper is a framework, cphVB,
that support a vector oriented programming model. The idea
of cphVB is to provide the mechanics to seamlessly couple a
programming language or library with an architecture-specific
implementation of vectorized operations.

cphVB consists of a number of components that communi-
cate using a simple protocol. Components are allowed to be
architecture-specific but they are all interchangeable since all
uses the same communication protocol. The idea is to make
it possible to combine components in a setup that perfectly
match a specific execution environment. cphVB consist of the
following components:

Fig. 2: cphVB design idea.

Programming Interface
The programming language or library exposed to the
user. cphVB was initially meant as a computational
back-end for the Python library NumPy, but we have
generalized cphVB to potential support all kinds
of languages and libraries. Still, cphVB has design
decisions that are influenced by NumPy and its
representation of vectors/matrices.

Bridge
The role of the Bridge is to integrate cphVB into ex-
isting languages and libraries. The Bridge generates
the cphVB bytecode that corresponds to the user-
code.

Vector Engine
The Vector Engine is the architecture-specific imple-
mentation that executes cphVB bytecode.

Vector Engine Manager
The Vector Engine Manager manages data location
and ownership of vectors. It also manages the distri-
bution of computing jobs between potentially several
Vector Engines, hence the name.

An overview of the design can be seen in Figure 2.

Configuration

To make cphVB as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user can change the
setup of components simply by editing the configuration file
before executing the user application. Additionally, the user
only has to change the configuration file in order to run the
application on different systems with different computational
resources. The configuration file uses the ini syntax, an exam-
ple is provided below.
Root of the setup
[setup]

4 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

bridge = numpy
debug = true

Bridge for NumPy
[numpy]
type = bridge
children = node

Vector Engine Manager for a single machine
[node]
type = vem
impl = libcphvb_vem_node.so
children = mcore

Vector Engine using TLP on shared memory
[mcore]
type = ve
impl = libcphvb_ve_mcore.so

This example configuration provides a setup for utilizing a
shared memory machine with thread-level-parallelism (TLP)
on one machine by instructing the vector engine manager to
use a single multi-core TLP engine.

Bytecode

The central part of the communication between all the compo-
nents in cphVB is vector bytecode. The goal with the bytecode
language is to be able to express operations on multidi-
mensional vectors. Taking inspiration from single instruction,
multiple data (SIMD) instructions but adding structure to the
data. This, of course, fits very well with the array operations
in NumPy but is not bound nor limited to these.

We would like the bytecode to be a concept that is easy
to explain and understand. It should have a simple design
that is easy to implement. It should be easy and inexpensive
to generate and decode. To fulfill these goals we chose
a design that conceptually is an assembly language where
the operands are multidimensional vectors. Furthermore, to
simplify the design the assembly language should have a one-
to-one mapping between instruction mnemonics and opcodes.

In the basic form, the bytecode instructions are primitive
operations on data, e.g. addition, subtraction, multiplication,
division, square root etc. As an example, let us look at
addition. Conceptually it has the form:

add $d, $a, $b

Where add is the opcode for addition. After execution $d
will contain the sum of $a and $b.

The requirement is straightforward: we need an opcode.
The opcode will explicitly identify the operation to perform.
Additionally the opcode will implicitly define the number of
operands. Finally, we need some sort of symbolic identifiers
for the operands. Keep in mind that the operands will be
multidimensional arrays.

Interface

The Vector Engine and the Vector Engine Manager exposes
simple API that consists of the following functions: initial-
ization, finalization, registration of a user-defined operation
and execution of a list of bytecodes. Furthermore, the Vector
Engine Manager exposes a function to define new arrays.

Bridge

The Bridge is the bridge between the programming interface,
e.g. Python/NumPy, and the Vector Engine Manager. The
Bridge is the only component that is specifically implemented
for the programming interface. In order to add cphVB support
to a new language or library, one only has to implement the
bridge component. It generates bytecode based on program-
ming interface and sends them to the Vector Engine Manager.

Vector Engine Manager

Instead of allowing the front-end to communicate directly with
the Vector Engine, we introduce a Vector Engine Manager
(VEM) into the design. It is the responsibility of the VEM to
manage data ownership and distribute bytecode instructions to
several Vector Engines. It is also the ideal place to implement
code optimization, which will benefit all Vector Engines.

To facilitate late allocation, and early release of resources,
the VEM handles instantiation and destruction of arrays.
At array creation only the meta data is actually created.
Often arrays are created with structured data (e.g. random,
constants), with no data at all (e.g. empty), or as a result of
calculation. In any case it saves, potentially several, memory
copies to delay the actual memory allocation. Typically, array
data will exist on the computing device exclusively.

In order to minimize data copying we introduce a data
ownership scheme. It keeps track of which components in
cphVB that needs to access a given array. The goal is to
allow the system to have several copies of the same data while
ensuring that they are in synchronization. We base the data
ownership scheme on two instructions, sync and discard:

Sync
is issued by the bridge to request read access to a
data object. This means that when acknowledging a
sync request, the copy existing in shared memory
needs to be the most resent copy.

Discard
is used to signal that the copy in shared memory has
been updated and all other copies are now invalid.
Normally used by the bridge to upgrading a read
access to a write access.

The cphVB components follow the following four rules
when implementing the data ownership scheme:

1. The Bridge will always ask the Vector Engine
Manager for access to a given data object. It will
send a sync request for read access, followed by a
release request for write access. The Bridge will not
keep track of ownership itself.

2. A Vector Engine can assume that it has write
access to all of the output parameters that are refer-
enced in the instructions it receives. Likewise, it can
assume read access on all input parameters.

3. A Vector Engine is free to manage its own copies
of arrays and implement its own scheme to mini-
mize data copying. It just needs to copy modified
data back to share memory when receiving a sync
instruction and delete all local copies when receiving
a discard instruction.

CPHVB: A SYSTEM FOR AUTOMATED RUNTIME OPTIMIZATION AND PARALLELIZATION OF VECTORIZED APPLICATIONS 5

4. The Vector Engine Manager keeps track of array
ownership for all its children. The owner of an array
has full (i.e. write) access. When the parent com-
ponent of the Vector Engine Manager, normally the
Bridge, request access to an array, the Vector Engine
Manager will forward the request to the relevant
child component. The Vector Engine Manager never
accesses the array itself.

Additionally, the Vector Engine Manager needs the capabil-
ity to handle multiple children components. In order to max-
imize parallelism the Vector Engine Manager can distribute
workload and array data between its children components.

Vector Engine

Though the Vector Engine is the most complex component of
cphVB, it has a very simple and a clearly defined role. It has
to execute all instructions it receives in a manner that obey the
serialization dependencies between instructions. Finally, it has
to ensure that the rest of the system has access to the results
as governed by the rules of the sync, release, and discard
instructions.

Implementation of cphVB

In order to demonstrate our cphVB design we have imple-
mented a basic cphVB setup. This concretization of cphVB is
by no means exhaustive. The setup is targeting the NumPy
library executing on a single machine with multiple CPU-
cores. In this section, we will describe the implementation
of each component in the cphVB setup – the Bridge, the
Vector Engine Manager, and the Vector Engine. The cphVB
design rules (Sec. Design) govern the interplay between the
components.

Bridge

The role of the Bridge is to introduce cphVB into an already
existing project. In this specific case NumPy, but could just as
well be R or any other language/tool that works primarily on
vectorizable operations on large data objects.

It is the responsibility of the Bridge to generate cphVB
instructions on basis of the Python program that is being run.
The NumPy Bridge is an extension of NumPy version 1.6. It
uses hooks to divert function call where the program access
cphVB enabled NumPy arrays. The hooks will translate a
given function into its corresponding cphVB bytecode when
possible. When it is not possible, the hooks will feed the
function call back into NumPy and thereby forcing NumPy
to handle the function call itself.

The Bridge operates with two address spaces for arrays:
the cphVB space and the NumPy space. All arrays starts
in the NumPy space as a default. The original NumPy im-
plementation handles these arrays and all operations using
them. It is possible to assign an array to the cphVB space
explicitly by using an optional cphVB parameter in array
creation functions such as empty and random. The cphVB
bridge implementation handles these arrays and all operations
using them.

In two circumstances, it is possible for an array to transfer
from one address space to the other implicitly at runtime.

1. When an operation accesses an array
in the cphVB address space but it is not
possible for the bridge to translate the
operation into cphVB code. In this case,
the bridge will synchronize and move the
data to the NumPy address space. For ef-
ficiency no data is actually copied instead
the bridge uses the mremap† function to
re-map the relevant memory pages.

2. When an operations access arrays in
different address spaces the Bridge will
transfer the arrays in the NumPy space to
the cphVB space. Afterwards, the bridge
will translate the operation into bytecode
that cphVB can execute.

In order to detect direct access to arrays in the cphVB
address space by the user, the original NumPy implementation,
a Python library or any other external source, the bridge
protects the memory of arrays that are in the cphVB address
space using mprotect‡. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by
transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application since it
can always fallback to the original NumPy implementation.

In order to gather greatest possible information at runtime,
the Bridge will collect a batch of instructions rather than
executing one instruction at a time. The Bridge will keep
recording instruction until either the application reaches the
end of the program or untranslatable NumPy operations forces
the Bridge to move an array to the NumPy address space.
When this happens, the Bridge will call the Vector Engine
Manager to execute all instructions recorded in the batch.

Vector Engine Manager

The Vector Engine Manager (VEM) in our setup is very simple
because it only has to handle one Vector Engine thus all
operations go to the same Vector Engine. Still, the VEM
creates and deletes arrays based on specification from the
Bridge and handles all meta-data associated with arrays.

Vector Engine

In order to maximize the CPU cache utilization and enables
parallel execution the first stage in the VE is to form a
set of instructions that enables data blocking. That is, a
set of instructions where all instructions can be applied on
one data block completely at a time without violating data
dependencies. This set of instructions will be referred to as a
kernel.

The VE will form the kernel based on the batch of in-
structions it receives from the VEM. The VE examines each
instruction sequentially and keep adding instruction to the
kernel until it reaches an instruction that is not blockable with
the rest of the kernel. In order to be blockable with the rest

6 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Processor Intel Core i5-2510M
Clock 2.3 GHz
Private L1 Data Cache 128 KB
Private L2 Data Cache 512 KB
Shared L3 Cache 3072 KB
Memory Bandwidth 21.3 GB/s
Memory 4GB DDR3-1333
Compiler GCC 4.6.3

TABLE 1: ASUS P31SD.

of the kernel an instruction must satisfy the following two
properties where A is all instructions in the kernel and N is
the new instruction.

1. The input arrays of N and the output array of A do
not share any data or represents precisely the same
data.

2. The output array of N and the input and output
arrays of A do not share any data or represents
precisely the same data.

When the VE has formed a kernel, it is ready for execution.
Since all instruction in a kernel supports data blocking the
VE can simply assign one block of data to each CPU-core in
the system and thus utilizing multiple CPU-cores. In order to
maximize the CPU cache utilization the VE may divide the
instructions into even more data blocks. The idea is to access
data in chunks that fits in the CPU cache. The user, through
an environment variable, manually configures the number of
data blocks the VE will use.

Performance Study

In order to demonstrate the performance of our initial cphVB
implementation and thereby the potential of the cphVB de-
sign, we will conduct some performance benchmarks using
NumPy§. We execute the benchmark applications on ASUS
P31SD with an Intel Core i5-2410M processor (Table 1).

The experiments used the three vector engines: simple, score
and mcore and for each execution we calculate the relative
speedup of cphVB compared to NumPy. We perform strong
scaling experiments, in which the problem size is constant
though all the executions. For each experiment, we find the
block size that results in best performance and we calculate
the result of each experiment using the average of three
executions.

The benchmark consists of the following Python/NumPy
applications. All are pure Python applications that make use
of NumPy and none uses any external libraries.

• Jacobi Solver An implementation of an
iterative jacobi solver with fixed iterations in-
stead of numerical convergence. (Fig. 3).

• kNN A naive implementation of a k Nearest
Neighbor search (Fig. 4).

†. The function mremap() in GNU C library 2.4 and greater.
‡. The function mprotect() in the POSIX.1-2001 standard.

• Shallow Water A simulation that simulates a
system governed by the shallow water equa-
tions. It is a translation of a MATLAB applica-
tion by Burkardt [Bur10] (Fig. 5).

• Synthetic Stencil A synthetic stencil simulation
the code relies heavily on the slicing operations
of NumPy. (Fig. 6).

Discussion

The jacobi solver shows an efficient utilization of data-
blocking to an extent competing with using multiple proces-
sors. The score engine achieves a 1.42x speedup in comparison
to NumPy (3.98sec to 2.8sec).

On the other hand, our naive implementation of the k
Nearest Neighbor search is not an embarrassingly parallel
problem. However, it has a time complexity of O(n2) when
the number of elements and the size of the query set is n, thus
the problem should be scalable. The result of our experiment
is also promising – with a performance speedup of of 3.57x
(5.40sec to 1.51sec) even with the two single-core engines and
a speed-up of nearly 6.8x (5.40sec to 0.79) with the multi-core
engine.

The Shallow Water simulation only has a time complexity
of O(n) thus it is the most memory intensive application in
our benchmark. Still, cphVB manages to achieve a perfor-
mance speedup of 1.52x (7.86sec to 5.17sec) due to memory-
allocation optimization and 2.98x (7.86sec to 2.63sec) using
the multi-core engine.

Finally, the synthetic stencil has an almost identical per-
formance pattern as the shallow water benchmark the score
engine does however give slightly better results than the simple
engine. Score achieves a speedup of 1.6x (6.60sec to 4.09sec)
and the mcore engine achieves a speedup of 3.04x (6.60sec
to 2.17sec).

It is promising to observe that even most basic vector engine
(simple) shows a speedup and in none of our benchmarks
a slowdown. This leads to the promising conclusion that
the memory optimizations implemented outweigh the cost of
using cphVB. Adding the potential of speedup due to data-
blocking motivates studying further optimizations in addition
to thread-level-parallelization. The mcore engine does provide
speedups, the speedup does however not scale with the number
of cores. This result is however expected as the benchmarks
are memory-intensive and the memory subsystem is therefore
the bottleneck and not the number of computational cores
available.

Future Work

The future goals of cphVB involves improvement in two
major areas; expanding support and improving performance.
Work has started on a CIL-bridge which will leverage the
use of cphVB to every CIL based programming language
which among others include: C#, F#, Visual C++ and VB.NET.
Another project in current progress within the area of support
is a C++ bridge providing a library-like interface to cphVB

§. NumPy version 1.6.1.

CPHVB: A SYSTEM FOR AUTOMATED RUNTIME OPTIMIZATION AND PARALLELIZATION OF VECTORIZED APPLICATIONS 7

numpy simple score mcore

Vector Engine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p
 i
n
 r

e
la

ti
o
n
 t

o
 N

u
m

P
y

Jacobi Solver

Fig. 3: Relative speedup of the Jacobi Method. The job consists of
a vector with 7168x7168 elements using four iterations.

numpy simple score mcore

Vector Engine

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p
 i
n
 r

e
la

ti
o
n
 t

o
 N

u
m

P
y

kNN

Fig. 4: Relative speedup of the k Nearest Neighbor search. The job
consists of 10.000 elements and the query set also consists of 1K
elements.

numpy simple score mcore

Vector Engine

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p
 i
n
 r

e
la

ti
o
n
 t

o
 N

u
m

P
y

Shallow Water

Fig. 5: Relative speedup of the Shallow Water Equation. The job
consists of 10.000 grid points that simulate 120 time steps.

numpy simple score mcore

Vector Engine

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p
 i
n
 r

e
la

ti
o
n
 t

o
 N

u
m

P
y

Synthetic Stencil

Fig. 6: Relative speedup of the synthetic stencil code. The job consists
of vector with 10240x1024 elements that simulate 10 time steps.

using operator overloading and templates to provide a high-
level interface in C++.

To improve both support and performance, work is in
progress on a vector engine targeting OpenCL compatible
hardware, mainly focusing on using GPU-resources to improve
performance. Additionally the support for program execution
using distributed memory is on progress. This functionality
will be added to cphVB in the form a vector engine manager.

In terms of pure performance enhancement, cphVB will
introduce JIT compilation in order to improve memory in-
tensive applications. The current vector engine for multi-cores
CPUs uses data blocking to improve cache utilization but as
our experiments show then the memory intensive applications
still suffer from the von Neumann bottleneck [Bac78]. By JIT
compile the instruction kernels, it is possible to improve cache
utilization drastically.

Conclusion

The vector oriented programming model used in cphVB
provides a framework for high-performance and high-
productivity. It enables the end-user to execute vectorized
applications on a broad range of hardware architectures ef-
ficiently without any hardware specific knowledge. Further-
more, the cphVB design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine
architectures in order to exploit hybrid programming where
multiple levels of parallelism exist. The authors in [Kri11]
demonstrate that combining shared memory and distributed
memory parallelism through hybrid programming is essential
in order to utilize the Blue Gene/P architecture fully.

In a case study, we demonstrate the design of cphVB
by implementing a front-end for Python/NumPy that targets
multi-core CPUs in a shared memory environment. The imple-
mentation executes vectorized applications in parallel without
any user intervention. Thus showing that it is possible to
retain the high abstraction level of Python/NumPy while fully
utilizing the underlying hardware. Furthermore, the imple-
mentation demonstrates scalable performance – a k-nearest

8 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

neighbor search purely written in Python/NumPy obtains a
speedup of more than five compared to a native execution.

Future work will further test the cphVB design model as
new front-end technologies and heterogeneous architectures
are supported.

REFERENCES

[Kri10] M. R. B. Kristensen and B. Vinter, Numerical Python for Scalable
Architectures, in Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS{’}10. ACM, 2010. [Online].
Available: http://distnumpy.googlecode.com/files/kristensen10.pdf

[Dav04] T. David, P. Sidd, and O. Jose, Accelerator : Using Data Par-
allelism to Program GPUs for General-Purpose Uses, October.
[Online]. Available: http://research.microsoft.com/apps/pubs/default.
aspx?id=70250

[New11] C. J. Newburn, B. So, Z. Liu, M. Mccool, A. Ghuloum, S.
D. Toit, Z. G. Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z.
Liu, and D. Zhang, Intels Array Building Blocks : A Retargetable
, Dynamic Compiler and Embedded Language, Symposium A
Quarterly Journal In Modern Foreign Literatures, pp. 1–12, 2011.
[Online]. Available: http://software.intel.com/en-us/blogs/wordpress/
wp-content/uploads/2011/03/ArBB-CGO2011-distr.pdf

[Klo09] A. Kloeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, o and
A. Fasih, PyCUDA and PyOpenCL: A Scripting-Based Approach to
GPU Run-Time Code Generation, Brain, vol. 911, no. 4, pp. 1–24,
2009. [Online]. Available: http://arxiv.org/abs/0911.3456

[Khr10] K. Opencl, W. Group, and A. Munshi, OpenCL Specification, ReVi-
sion, pp. 1–377, 2010. [Online]. Available: http://scholar.google.com/
scholar?hl=en&btnG=Search&q=intitle:OpenCL+Specification#2

[Nvi10] N. Nvidia, NVIDIA CUDA Programming Guide 2.0, pp. 1–111,
2010. [Online]. Available: http://developer.download.nvidia.com/
compute/cuda/32prod/toolkit/docs/CUDACProgrammingGuide.pdf

[Ros10] G. V. Rossum and F. L. Drake, Python Tutorial, History, vol. 42,
no. 4, pp. 1–122, 2010. [Online]. Available: http://docs.python.org/
tutorial/

[Int08] Intel, Intel Math Kernel Library (MKL), pp. 2–4, 2008. [Online].
Available: http://software.intel.com/en-us/articles/intel-mkl/

[Mat10] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[Rrr11] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2011. [Online]. Available: http://www.r-project.org

[Idl00] B. A. Stern, Interactive Data Language, ASCE, 2000.
[Oct97] J. W. Eaton, GNU Octave, History, vol. 103, no. February, pp. 1–356,

1997. [Online]. Available: http://www.octave.org
[Oli07] T. E. Oliphant, Python for Scientific Computing, Comput-

ing in Science Engineering, vol. 9, no. 3, pp. 10–20, 2007.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4160250

[Gar10] R. Garg and J. N. Amaral, Compiling Python to a hybrid execution
environment, Computing, pp. 19–30, 2010. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1735688.1735695

[Pas05] R. V. D. Pas, An Introduction Into OpenMP, ACM SIGARCH Com-
puter Architecture News, vol. 34, no. 5, pp. 1–82, 2005. [Online].
Available: http://portal.acm.org/citation.cfm?id=1168898

[Cat09] B. Catanzaro, S. Kamil, Y. Lee, K. Asanov’i, J. Demmel, c K.
Keutzer, J. Shalf, K. Yelick, and O. Fox, SEJITS: Getting Productivity
and Performance With Selective Embedded JIT Specialization, in
Proc of 1st Workshop Programmable Models for Emerging Architec-
ture PMEA, no. UCB/EECS-2010-23, EECS Department, University
of California, Berkeley. Citeseer, 2009. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-23.html

[And08] R. Andersen and B. Vinter, The Scientific Byte Code Virtual
Machine, in Proceedings of the 2008 International Conference on
Grid Computing & Applications, GCA2008 : Las Vegas, Nevada,
USA, July 14-17, 2008. CSREA Press., 2008, pp. 175–181. [Online].
Available: http://dk.migrid.org/public/doc/published_papers/sbc.pdf

[Apl00] “why apl?” [Online]. Available: http://www.sigapl.org/whyapl.htm
[Sci02] R. Pozo and B. Miller, SciMark 2.0, 2002. [Online]. Available: http:

//math.nist.gov/scimark2/
[Bur10] J. Burkardt, Shallow Water Equations, 2010. [Online]. Available:

http://people.sc.fsu.edu/~jburkardt/m_src/shallow_water_2d/

[Bac78] J. Backus, Can Programming be Liberated from the von Neumann
Style?: A Functional Style and its Algebra of Programs, Communi-
cations of the ACM, vol. 16, no. 8, pp. 613–641, 1978.

[Kri11] M. Kristensen, H. Happe, and B. Vinter, Hybrid Parallel Program-
ming for Blue Gene/P, Scalable Computing: Practice and Experience,
vol. 12, no. 2, pp. 265–274, 2011.

7.2 Bohrium: Unmodified NumPy Code on

CPU, GPU, and Cluster

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter.
4th Workshop on Python for High Performance and Scientific Computing.
(PyHPC 2013)

58

Bohrium: Unmodified NumPy Code on CPU, GPU,
and Cluster

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

{madsbk/safl/blum/skovhede/vinter}@nbi.dk

Abstract—In this paper we introduce Bohrium, a runtime-
system for mapping array-operations onto a number of different
hardware platforms, from multi-core systems to clusters and
GPU enabled systems. As a result, the Bohrium runtime system
enables NumPy code to utilize CPU, GPU, and Clusters. Bohrium
integrates seamlessly into NumPy through the implicit data
parallelization of array operations, which are called Universal
Functions in NumPy. Bohrium requires no annotations or other
code modifications besides changing the original NumPy import
statement to: “import bohrium as numpy”.

We evaluate the presented design through a setup that
targets a multi-core CPU, an eight-node Cluster, and a GPU, all
implemented as preliminary prototypes. The evaluation includes
three well-known benchmark applications, Black Sholes, Shallow
Water, and N-body, implemented in Python/NumPy.

I. INTRODUCTION

The popularity of the Python programming language is
growing in the HPC community. Python is a high-productivity
programming language that focus on high-productivity rather
than high-performance thus it might seem paradoxical that
such a language would gain popularity in HPC. However,
Python is easily extensible with libraries implemented in high-
performance languages such as C and FORTRAN, which
makes Python a great tool for gluing high-performance li-
braries together[1].

NumPy is the de-facto standard for scientific applications
written in Python[2]. It provides a rich set of high-level
numerical operations and introduces a powerful array object.
NumPy supports a declarative vector programming style where
numerical operations operate on full arrays rather than scalars.
This programming style is often referred to as vector or
array programming and is commonly used in programming
languages and libraries that target the scientific community,
e.g. HPF[3], MATLAB[4], Armadillo[5], and Blitz++[6].

A major shortcoming of Python/NumPy is the lack of
thread-based concurrency. The de-facto Python interpreter,
CPython, uses a Global Interpreter Lock to serialize concurrent
execution of Python bytecode thus parallelism in restricted to
external libraries. Similarly, NumPy does not parallelize array
operations but might use external libraries, such as BLAS or
FFTW, that do support parallelism.

The result is that Python/NumPy is great for gluing HPC
code together, but often it cannot stand by itself. In this paper,
we introduce a framework that addresses this issue. We intro-
duce a runtime system, Bohrium, which seamlessly executes
NumPy array operations in parallel. Through Bohrium, it is
possible to utilize CPU, GPU, and Clusters without changing

the original Python/NumPy code besides adding the import
statement: “import bohrium as numpy”.

In order to couple NumPy with the execution back-end,
Bohrium uses an intermediate vector bytecode that correspond
to the NumPy array operations. The execution back-end is then
able to execute the intermediate vector bytecode without any
Python/NumPy knowledge, which also makes Bohrium usable
for any programming language. Additionally, the intermediate
vector bytecode solves the Python import problem where the
“import numpy” instruction overwhelms the file-system in
supercomputers[7], [8]. With Bohrium, only a single node
needs to run the Python interpreter, the remaining nodes
execute the intermediate vector bytecode directly.

The version of Bohrium we present in this paper is
a proof-of-concept implementation that supports the Python
programming language through a Bohrium implementation
of NumPy1. However, the Bohrium project also supports
additional languages, such as C++ and Common Intermedi-
ate Language (CIL)2, which we have described in previous
work [9]. The proof-of-concept implementation supports three
computer architectures: CPU, GPU, and Cluster.

II. RELATED WORK

The key motivation for Bohrium is to provide a frame-
work for the utilization of diverse and complex comput-
ing systems, with the goal of obtaining high-performance,
high-productivity and high-portability, HP 3. Systems such as
pyOpenCL/pyCUDA[10] provides tools for interfacing a high
abstraction front-end language with kernels written for specific
potentially exotic hardware. In this case, lowering the bar for
harvesting the power of modern GPU’s, by letting the user
write only the GPU-kernels as text strings in the host language
Python. The goal is similar to that of Bohrium – the approach
however is entirely different. Bohrium provides a means to
hide low-level target specific code behind a programming
model and providing a framework and runtime environment
to support it.

Bohrium is more closely related to the work described in
[11], where a compilation framework, unPython, is provided
for execution in a hybrid environment consisting of both
CPUs and GPUs. The framework uses a Python/NumPy based
front-end that uses Python decorators as hints to do selective
optimizations. Bohrium performs data-centric optimizations on
vector operations, which can be viewed as akin to selective
optimizations, in the respect that we do not optimize the

1The implementation is open-source and available at www.bh107.org
2also known as Microsoft .NET

program as a whole. However, we find that the approach used
in the Bohrium Python interface is much less intrusive. All
arrays are by default handled by Bohrium – no decorators
are needed or used. This approach provides the advantage
that any existing NumPy program can run unaltered and take
advantage of Bohrium without changing a single line of code.
In contrast, unPython requires the user to modify the source
code manually, by applying hints in a manner similar to that
of OpenMP. The proposed non-obtrusive design at the source
level is to the author’s knowledge novel.

Microsoft Accelerator [12] introduces ParallelArray, which
is similar to the utilization of the NumPy arrays in Bohrium
but there are strict limitations to the utilization of Paral-
lelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. Bohrium instead
allows indexed operations and additionally supports vector-
views, which are vector-aliases that provide multiple ways
to access the same chunk of allocated memory. Thus, the
data structure in Bohrium is highly flexible and provides
elegant programming solutions for a broad range of numerical
algorithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [13] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The
retargetability aspect of Intel ArBB is represented in Bohrium
as a simple configuration file that defines the Bohrium runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-
level details behind a declarative vector-programming model
similar to Bohrium. However, ArBB only provides access to
the programming model via C++ whereas Bohrium is not
limited to any one specific front-end language.

On multiple points, Bohrium is closely related in func-
tionality and goals to the SEJITS [14] project, but takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criterion .
The programming model in Bohrium does not provide this
kernel methodology, but deduces computational kernels at
runtime by inspecting the flow of vector bytecode.

Bohrium provides, in this sense, a virtual machine opti-
mized for execution of vector operations. Previous work [15]
was based on a complete virtual machine for generic execution
whereas Bohrium provides an optimized subset.

III. THE FRONT-END LANGUAGE

To hide the complexities of obtaining high-performance
from the diverse hardware making up modern computer sys-
tems any given framework must provide a meaningful high-
level abstraction. This can be realized in the form of domain
specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes:
(1) It must provide meaning for the end-user such that the goal
of high-productivity can be met with satisfaction. (2) It must
provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

1 i m p o r t bohrium as numpy
2 solve (grid , epsilon) :
3 center = grid [1 : - 1 , 1 : - 1]
4 north = grid [- 2 : , 1 : - 1]
5 south = grid [2 : , 1 : - 1]
6 east = grid [1 : - 1 , : 2]
7 west = grid [1 : - 1 , 2 :]
8 delta = epsilon+1
9 w h i l e delta > epsilon :

10 tmp = 0 . 2 * (center+north+south+east+west)
11 delta = numpy . sum (numpy . abs (tmp -center))
12 center [:] = tmp

Fig. 1: Python/NumPy implementation of the heat equation solver. The grid
is a two-dimensional NumPy array and the epsilon is a Python scalar. Note
that the first line of code imports the Bohrium module instead of the NumPy
module, which is all the modifications needed in order to utilize the Bohrium
runtime system.

Bohrium does not introduce a new programming language
and is not biased towards any specific choice of abstraction
or front-end technology. However, the front-end must be
compatible with the declarative vector programming model and
support vector slicing, also known as vector or matrix slicing
[3], [4], [16], [17]. Bohrium introduces bridges that integrate
existing languages into the Bohrium runtime system.

The Python Bridge is an extension of NumPy version
1.6, which seamlessly implements a new array back-end that
inherits the manipulation features, such as slice, reshape, offset,
and stride. As a result, the user only needs to modify the import
statement of NumPy (Fig. 1) in order to utilize Bohrium.

The Python Bridge uses hooks to divert function call where
the program accesses Bohrium enabled NumPy arrays. The
hooks will translate a given function into its corresponding
Bohrium bytecode when possible. When it is not possible, the
hooks will feed the function call back into NumPy and thereby
forces NumPy to handle the function call itself. The Bridge
operates with two address spaces for arrays: the Bohrium space
and the NumPy space. The user can explicitly assign new
arrays to either the Bohrium or the NumPy space through
a new array creation parameter. In two circumstances, it is
possible for an array to transfer from one address space to the
other implicitly at runtime.

1) When an operation accesses an array in the Bohrium
address space but it is not possible for the bridge to
translate the operation into Bohrium bytecode. In this
case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency, no data is
actually copied. Instead, the bridge uses the mremap
function to re-map the relevant memory pages when
the data is already present in main memory.

2) When an operations accesses arrays in different ad-
dress spaces the Bridge will transfer the arrays in the
NumPy space to the Bohrium space.

In order to detect direct access to arrays in the Bohrium
address space by the user, the original NumPy implementation,
a Python library, or any other external source, the bridge
protects the memory of arrays that are in the Bohrium address
space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by

Bridge

Vector Engine
Manager

Vector Engine
Manager

Vector Engine
Manager

Vector
Engine

Vector
Engine

Vector
Engine

Vector
Engine

Bridge is language bindings and interface to
Bohrium, currently for NumPy

VEM has a simple interface and can support
hierarchical setups. The VEM can distribute
and load-balance as required.

Node level VEM knows about hardware
features and schedules operations optimally
on hardware.

VE's are the workhorses and know how to
implement elementwise operations and
composite operations, currently on CPU and
GPU

Fig. 2: Bohrium Overview

transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application, since it
can always fall back to the original NumPy implementation.

To reduce the overhead related to generating and processing
the bytecode, the Bohrium Bridge uses lazy evaluation for
recording instruction until a side effect can be observed.

IV. THE BOHRIUM RUNTIME SYSTEM

The key contribution in this work is a framework, Boh-
rium, which significantly reduces the costs associated with
high-performance program development. Bohrium provides the
mechanics to couple a programming language or library with
an architecture-specific implementation seamlessly.

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode3. Components are
allowed to be architecture-specific but they are all interchange-
able since all uses the same communication protocol. The idea
is to make it possible to combine components in a setup that
match a specific execution environment. Bohrium consist of
the following three component types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of arrays. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one imple-
mentation of each component type must be available. However,
the exact component setup depends on the runtime system and
what hardware to utilize, e.g. executing NumPy on a single ma-
chine using the CPU would require a Bridge implementation
for NumPy, a VEM implementation for a machine node, and
a VE implementation for a CPU. Now, in order to utilize a
GPU instead, we can exchange the CPU-VE with a GPU-VE
without having to change a single line of code in the NumPy
application. This is a key contribution of Bohrium: the ability

3The name vector is roughly the same as the NumPy array type, but from
a computer architecture perspective vector is a more precise term

Bridge for NumPy
[numpy]
type = bridge
children = node

Vector Engine Manager for a single machine
[node]
type = vem
impl = libbh_vem_node .so
children = gpu

Vector Engine for a GPU
[gpu]
type = ve
impl = lbbh_ve_gpu .so

Fig. 3: This example configuration provides a setup for utilizing a GPU on
one machine by instructing the Vector Engine Manager to use the GPU Vector
Engine implemented in the shared library lbhvb_ve_gpu.so.

base

type

ndim

start

shape

stride

data

*

*

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension
O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

11 10

0 1

3 4

Seen 3d-array

Fig. 4: Descriptor for n-dimensional array and corresponding interpretation

to change the execution hardware without changing the user
application.

A. Configuration

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through an ini-file (Fig. 3). Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user
applications.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative array-programming model in mind where the
bytecode instructions operate on input and output arrays. To
avoid excessive memory copying, the arrays can also be shaped
into multi-dimensional arrays. These reshaped array views are
then not necessarily comprised of elements that are contiguous
in memory. Each dimension comprises a stride and size, such
that any regularly shaped subset of the underlying data can be
accessed. We have chosen to focus on a simple, yet flexible,

data structure that allows us to express any regularly distributed
arrays. Figure 4 shows how the shape is implemented and how
the data is projected.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD4 and the VEM through SPMD5.

In the following, we will go through the four types of vector
bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes performs a
unary or binary operation on all array elements. Bohrium
currently supports 53 element-wise operations, e.g. addition,
multiplication, square root, equal, less than, logical and, bit-
wise and, etc. For element-wise operations, we only allow data
overlap between the input and the output arrays if the access
pattern is the same, which, combined with the fact that they
are all stateless, makes it straightforward to execute them in
parallel.

2) Reduction: Reduction bytecodes reduce an input di-
mension using a binary operator. Again, we do not allow
data overlap between the input and the output arrays and
the operator must be associative. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them are stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative properties.

3) Data Management: Data Management bytecodes de-
termine the data ownership of arrays, and consists of three
different bytecodes. The synchronization bytecode orders a
child component to place the array data in the address space
of its parent component. The free bytecode orders a child
component to free the data of a given array in the global
address space. Finally, the discard operator that orders a child
component to free the meta-data associated with a given array,
and signals that any local copy of the data is now invalid.
These three bytecodes enable lazy allocation where the actual
array data allocation is delayed until it is used. Often arrays
are created with a generator (e.g. random, constants) or with
no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save several
memory allocations and copies.

4) Extension methods: The above three types of bytecode
make up the bulk of a Bohrium execution. However not all
algorithms may be efficiently implemented in this way. In order
to handle operations that would otherwise be inefficient or even
impossible, we introduce the fourth type of bytecode: extension
methods. We impose no restrictions to this generic operation;
the extension writer has total freedom. However, Bohrium
do not guarantee that all components support the operation.
Initially, the user registers the extension method with paths
to all component-specific implementations of the operation.
The user then receives a new handle for this extension method
and may use it subsequently as a vector bytecode. Matrix
multiplication and FFT are examples of a extension methods
that are obviously needed. For matrix multiplication, a CPU

4Single Instruction, Multiple Data
5Single Program, Multiple Data

specific implementation could simply call a native BLAS
library and a Cluster specific implementation could call the
ScaLAPACK library[18].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

D. Vector Engine Manager

Rather than allowing the Bridge to communicate directly
with the Vector Engine, we introduce a Vector Engine Manager
into the design. The VEM is responsible for one memory
address space in the hardware configuration. The current
version of Bohrium implements two VEMs: the Node-VEM
that handles the local address space of a single machine and
the Cluster-VEM that handles the global distributed address
space of a computer cluster.

The Node-VEM is very simple since the hardware already
provides a shared memory address space; hence, the Node-
VEM can simply forward all instruction from its parent to its
child components. The Cluster-VEM, on the other hand, has
to distribute all arrays between Node-VEMs in the cluster.

1) Cluster Architectures: In order to utilize scalable archi-
tectures fully, distributed memory parallelism is mandatory.
The current Cluster-VEM implementation is currently quite
naı̈ve; it uses the bulk-synchronous parallel model[19] with
static data decomposition and no communication latency hid-
ing. We know from previous work than such optimizations are
possible[20].

Bohrium implements all communication through the MPI-
2 library and use a process hierarchy that consists of one
master-process and multiple worker-processes. The master-
process executes a regular Bohrium setup with the Bridge,
Cluster-VEM, Node-VEM, and VE. The worker-processes, on
the other hand, execute the same setup but without the Bridge
and thus without the user applications. Instead, the master-
process will broadcast vector bytecode and array meta-data
to the worker-processes throughout the execution of the user
application.

Bohrium use a data-centric approach where a static de-
composition dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all pro-
cesses have full knowledge of the data distribution and need
not exchange data location meta-data. Furthermore, the task of
computing array operations is also statically distributed which
means that any process can calculate locally what needs to
be sent, received, and computed. Meta-data communication is
only needed when broadcasting vector bytecode and creating
new arrays – a task that has an asymptotic complexity of
O(log2 n), where n is the number of nodes.

E. Vector Engine

The Vector Engine (VE) is the only component that actually
does the computations, specified by the user application. It
has to execute instructions it receives in an order that comply
with the dependencies between instructions. Furthermore, it
has to ensure that its parent VEM has access to the results as
governed by the Data Management bytecodes.

1) CPU: The CPU-ve utilizes all cores available on the
given CPU. The CPU-ve is implemented as a in-order inter-
preter of bytecode. It features dynamic compilation for single-
expression just-in-time optimization. Which allows the engine
to perform runtime-value-optimization, such as specialized
interpretation based on the shape and rank of operands. As
well as parallelization using OpenMP.

Dynamic memory allocation on the heap is a time-
consuming task. This is particularly the case when allocating
large chunks of memory because of the involvement of the
system kernel. Typically, NumPy applications use many tem-
porary arrays and thus use many consecutive equally sized
memory allocations and de-allocations. In order to reduce
the overhead associated with these memory allocations and
de-allocations, we make use of a reusing scheme similar to
a Victim Cache[21]. Instead of de-allocating memory im-
mediately, we store the allocation for later reuse. If we, at
a later point, encounter a memory allocation of the same
size as the stored allocation, we can simply reuse the stored
allocation. In order to have an upper bound of the extra
memory footprint, we have a threshold for the maximum
memory consumptions of the cache. When allocating memory
that does not match any cached allocations, we de-allocate
a number of cached allocations such that the total memory
consumption of the cache is below the threshold. Previous
work has proven this memory-reusing scheme very efficient
for Python/NumPy applications[22].

2) GPU: To harness the computational power of the mod-
ern GPU we have created the GPU-VE for Bohrium. Since
Bohrium imposes an array oriented style of programming
on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL
over CUDA. This was the natural choice since one of the major
goals of Bohrium is portability, and OpenCL is supported by
more platforms.

The GPU-VE currently use a simple kernel building and
code generation scheme: It will keep adding instructions to
the current kernel for as long as the shape of the instruction
output matches that of the current kernel, and adding it will not
create a data hazard. Input parameters are registered so they
can be read from global memory. Similarly, output parameters
are registered to be written back to global memory.

The GPU-VE implements a simple method for temporary
array elimination when building kernels:

• If the kernel already reads the input, or it is generated
within the kernel, it will not be read from global
memory.

• If the instruction output is not need later in the
instruction sequence – signaled by a discard – it will

1 . . .
2 ADD t1 , center , north
3 ADD t2 , t1 , south
4 FREE t1
5 DISCARD t1
6 ADD t3 , t2 , east
7 FREE t2
8 DISCARD t2
9 ADD t4 , t3 , west

10 FREE t3
11 DISCARD t3
12 MUL tmp , t4 , 0 . 2
13 FREE t4
14 DISCARD t4
15 MINUS t5 , tmp , center
16 ABS t6 , t5
17 FREE t5
18 DISCARD t5
19 ADD_REDUCE t7 , t6
20 FREE t6
21 DISCARD t6
22 ADD_REDUCE delta , t7
23 FREE t7
24 DISCARD t7
25 COPY center , tmp
26 FREE tmp
27 DISCARD tmp
28 SYNC delta
29 . . .

Fig. 5: Bytecode generated in each iteration of the Jacobi Method code
example (Fig. 1). Note that the SYNC instruction at line 28 transfers the
scalar delta from the Bohrium address space to the NumPy address space
in order for the Python interpreter to evaluate the condition in the Jacobi
Method code example (Fig. 1, line 9).

not be written back to global memory.

This simple scheme has proven fairly efficient. However, the
efficiency is closely linked to the ability of the bridge to send
discards close to the last usage of an array in order to minimize
the active memory footprint since this is a very scarce resource
on the GPU.

The code generation we have in the GPU-VE simply
translates every Bohrium instruction into exactly one line of
OpenCL code.

F. Example

Figure 5 illustrate the list of vector byte code that the
NumPy Bridge will generate when executing one of the
iterations in the Jacobi Method code example (Fig. 1). The
example demonstrates the nearly one-to-one mapping from the
NumPy vector operations to the Bohrium vector byte code. The
code generates seven temporary arrays (t1,...,t7) that are not
specified in the code explicitly but is a result of how Python
interprets the code. In a regular NumPy execution, the seven
temporary arrays translate into seven memory allocations and
de-allocations thus imposing an extra overhead. On the other
hand, a Bohrium execution with the Victim Cache will only
use two memory allocations since six of the temporary arrays
(t1,...,t6) will use the same memory allocation. However, no
writes to memory are eliminated. In the GPU-VE the source
code generation eliminates the memory writes all together.
(t1,...,t5) are stored only in registers. Without this strategy
the speedup gain would no be possible on the GPU due to the
memory bandwidth bottleneck.

CPU Cluster AMD/ATI NVIDIA
0

20

40

60

80

100

120

140

160

2.18

13.2

89.1

140

S
pe

ed
up

Fig. 6: Relative speedup of the Shallow Water application. For the CPU and
Cluster, the application simulates a 2D domain with 25k2 value points in 10
iterations. For the GPUs, it is a 2k× 4k domain in 100 iterations.

Machine: 8-node Cluster GPU Host
Processor: AMD Opteron 6272 AMD Opteron 6274
Clock: 2.1 GHz 2.2 GHz
L3 Cache: 16MB 16MB
Memory: 128GB DDR3 128GB DDR3
Compiler: GCC 4.6.3 GCC 4.6.3 & OpenCL 1.1
Network: Gigabit Ethernet N/A
Software: Linux 3.2, Python 2.7, NumPy 1.6.1

TABLE I: Machine Specifications

V. PRELIMINARY RESULTS

In order to demonstrate our Bohrium design we have imple-
mented a basic Bohrium setup. This concretization of Bohrium
is by no means exhaustive but only a proof-of-concept. The
implementation supports Python/NumPy when executing on
CPU, GPU, and Clusters. However, the implementation is
preliminary and has a high degree of further optimization
potential. In this section, we present a preliminary performance
study of the implementation that consists of the following three
representative scientific application kernels:

Shallow Water A simulation of a system governed by the
shallow water equations. A drop is placed in a still
container and the water movement is simulated in discrete
time steps. It is a Python/NumPy implementation of a
MATLAB application by Burkardt [23].

Black Scholes The Black-Scholes pricing model is a partial
differential equation, which is used in finance for calcu-
lating price variations over time[24]. This implementation
uses a Monte Carlo simulation to calculate the Black-
Scholes pricing model.

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and
a velocity, move in space according to the laws of
Newtonian physics. We use a straightforward algorithm
that computes all body-body interactions, O(n2), with
collisions detection.

We execute all three applications using four different
hardware setups: one using a two CPUs, one using an eight-
node cluster, one using a AMD GPU, and one using a NVIDIA
GPU. The dual CPU setup uses one of the cluster-nodes
whereas the two GPU setups use a similar AMD machine

CPU Cluster AMD/ATI NVIDIA
0

20

40

60

80

100

120

140

160

180

200

1.28
10.1

130

181

S
pe

ed
up

Fig. 7: Relative speedup of the Black Scholes application. For the CPU and
Cluster, the application generates 10m element arrays using 10 iterations. For
the GPUs, it generates 32m element arrays using 50 iterations.

CPU Cluster AMD/ATI NVIDIA
0

10

20

30

40

50

60

70

80

90

1.29

9.0

41.3

77.1
S
pe

ed
up

Fig. 8: Relative speedup of the N-Body application. For the CPU and Cluster,
the application simulates 25k bodies in 10 iterations. For the GPUs, it is 1600
bodies and 50 iterations.

(Table I, II). For each benchmark/language, we compare the
Bohrium execution with a native NumPy execution and calcu-
late the speedup based on the average wall clock time of five
executions. When executing on the PU, we use all CPU cores
available likewise when executing on the eight-node cluster,
we use all CPU cores available on the cluster-node. The input
and output data is 64bit floating point for all executions. While
measuring the performance, the variation of the timings did not
exceed 1%.

The data set sizes are chosen to represent realistic work-
loads for a cluster and GPU setup respectively. The speedups
reported are obtained by comparing the wall clock time of
the original NumPy execution with the wall clock time for

GPU: AMD/ATI NVIDIA
Processor: ATI Radeon HD 7850 GeForce GTX 680
#Cores: 1024 1536
Core clock: 900 MHz 1006 MHz
Memory: 1GB DDR5 2GB DDR5
Memory bandwidth: 153 GB/s 192 GB/s
Peak (single-precision): 1761 GFLOPS 3090 GFLOPS
Peak (double-precision): 110 GFLOPS 128 GFLOPS

TABLE II: GPU Specifications

executing the same Python program with the same size of
dataset.

A. Discussion

The Shallow Water application is memory intensive and
uses many temporary arrays. This is clear when comparing
the Bohrium execution with the Native NumPy execution on
a single CPU. The Bohrium execution is 2.18 times faster
than the Native NumPy execution primarily because of mem-
ory allocation reuse. The Cluster setup demonstrates good
scalable performance as well. Even without communication
latency hiding, it achieves a speedup of 6.07 compared to the
CPU setup and 13.2 compared to Native NumPy. Finally, the
two GPUs show an impressive 89 and 140 speedup, which
demonstrates the efficiency of parallelizing array operations
on a vector machine. NVIDIA is roughly one and a half times
faster than AMD primarily because of the higher floating-point
performance and memory bandwidth.

The Black Scholes application is computationally intensive
and embarrassingly parallel, which is evident in the benchmark
result. The cluster setup achieve a speedup of 10.1 compared
to the Native NumPy and an almost linearly speedup of 7.91
compared to the CPU. Again, the performance of the GPUs is
superior with a speedup of 130 and 181.

The N-Body application is memory intensive but does not
use many temporary arrays thus the speedup of the CPU
execution with the Native NumPy execution is only 1.29.
However, the application scales well on the Cluster with a
speedup of 9.0 compared to the Native NumPy execution and
a speedup of 7.96 compared to the CPU execution. Finally,
the two GPUs demonstrate a good speedup of 41.3 and 77.1
compared to the Native NumPy execution.

VI. FUTURE WORK

From the experiments, we can see that the performance is
generally good. There is much room for further improvements
when executing on the Cluster. Communication techniques,
such as communication latency hiding and message aggrega-
tions, should improve performance[25], [26] further.

Despite the good results, we are convinced that we can still
improve these results significantly. We are currently working
on an internal representation for bytecode dependencies, which
will enable us to rearrange the instructions and eliminate
the use of temporary storage. In the article describing Intel
Array Building Blocks, the authors report that the removal
of temporary arrays is the single optimization that yields
the greatest performance improvement. Informal testing with
manual removal of temporary storage shows an order of
magnitude improvement, even for simple benchmarks.

The GPU vector engine already uses a simple scanning
algorithm that detects some instances of temporary vectors
usage, as that is required to avoid exhausting the limited GPU
memory. However, the internal representation will enable a
better detection of temporary storage, but also enable loop
detection and improve kernel generation and kernel reusability.

This internal representation will also allow pattern match-
ing, which will allow selective replacement of parts of the
instruction stream with optimized versions. This can be used

to detect cases where the user is calculating a scalar sum, using
a series of reductions, or detect matrix multiplications. By
implementing efficient micro-kernels for known computations,
we can improve the execution significantly.

Once these kernels are implemented, it is simple to offer
them as function calls in the bridges. The bridge implementa-
tion can then simply implement the functionality by sending
a pre-coded sequence of instructions.

We are also investigating the possibility of implementing a
Bohrium Processing Unit, BPU, on FPGAs. With a BPU, we
expect to achieve performance that rivals the best of todays
GPUs, but with lower power consumption. As the FPGAs
come with a built-in Ethernet support, they can also provide
significantly lower latency, possibly providing real-time data
analysis.

Finally, the ultimate goal of the Bohrium project is to
support clusters of heterogeneous computation nodes where
components specialized for GPUs, NUMA6 aware multi-core
CPUs, and Clusters, work together seamlessly.

VII. CONCLUSION

The declarative array-programming model used in Boh-
rium provides a framework for high-performance and high-
productivity. It enables the end-user to execute regular
Python/NumPy applications on a broad range of hardware
architectures efficiently without any hardware specific knowl-
edge. Furthermore, the Bohrium design supports scalable ar-
chitectures such as clusters and supercomputers. It is even
possible to combine architectures in order to exploit hybrid
programming where multiple levels of parallelism exist, which
is essential when fully utilizing supercomputers such as the
Blue Gene/P[27].

In this paper, we introduce a proof-of-concept implemen-
tation of Bohrium that supports the Python programming
language through a Bohrium implementation of NumPy and
three computer architectures: CPU, GPU, and Cluster. The
preliminary results are very promising – a Black Scholes
computation achieves 181 times speedup for the same code,
when comparing a Native NumPy execution and a Bohrium
execution that utilize the GPU back-end.

The results are sufficiently good that we remain optimistic
that we can reach a level where a pure Python/NumPy appli-
cation offers sufficient performance on its own.

REFERENCES

[1] G. van Rossum, “Glue it all together with python,” in Workshop
on Compositional Software Architectures, Workshop Report, Monterey,
California, 1998.

[2] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

[3] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[4] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[5] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

6Non-Uniform Memory Access

[6] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[7] J. Brown, W. Scullin, and A. Ahmadia, “Solving the import problem:
Scalable dynamic loading network file systems,” in Talk at SciPy
conference, Austin, Texas, July 2012.

[8] J. Enkovaara, N. A. Romero, S. Shende, and J. J. Mortensen, “Gpaw-
massively parallel electronic structure calculations with python-based
software,” Procedia Computer Science, vol. 4, pp. 17–25, 2011.

[9] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and B. Vin-
ter, “Bohrium: a virtual machine approach to portable parallelism,” in
Parallel & Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International. IEEE, 2014, pp. 312–321.

[10] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[11] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[12] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program gpus for general-purpose uses,” SIGARCH Comput. Archit.
News, vol. 34, no. 5, pp. 325–335, Oct. 2006.

[13] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang,
“Intel’s array building blocks: A retargetable, dynamic compiler and
embedded language,” in Code Generation and Optimization (CGO),
2011 9th Annual IEEE/ACM International Symposium on, 2011, pp.
224–235.

[14] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, 2009.

[15] R. Andersen and B. Vinter, “The scientific byte code virtual machine,”
in GCA’08, 2008, pp. 175–181.

[16] B. Mailloux, J. Peck, and C. Koster, “Report on the algorithmic
language algol 68,” Numerische Mathematik, vol. 14, no. 2, pp. 79–218,
1969. [Online]. Available: http://dx.doi.org/10.1007/BF02163002

[17] S. Van Der Walt, S. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[18] L. S. Blackford, “ScaLAPACK,” in Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Super-
computing 96, 1996, p. 5.

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[20] M. Kristensen and B. Vinter, “Managing communication latency-hiding
at runtime for parallel programming languages and libraries,” in High
Performance Computing and Communication 2012 IEEE 9th Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, 2012, pp. 546–555.

[21] N. Jouppi, “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers,” in
Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on, may 1990, pp. 364 –373.

[22] S. A. F. Lund, K. Skovhede, M. R. B. Kristensen, and B. Vinter,
“Doubling the Performance of Python/NumPy with less than 100
SLOC,” in 4th Workshop on Python for High Performance and Scientific
Computing (PyHPC’13), 2013.

[23] J. Burkardt, “Shallow water equations,” people.sc.fsu.edu/\∼jburkardt/
m\ src/shallow\ water\ 2d/, [Online; accessed March 2010].

[24] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[25] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[26] M. R. B. Kristensen, Y. Zheng, and B. Vinter, “Pgas for distributed nu-
merical python targeting multi-core clusters,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 680–690, 2012.

[27] M. Kristensen, H. Happe, and B. Vinter, “GPAW Optimized for Blue
Gene/P using Hybrid Programming,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–6.

7.3 Bohrium: a Virtual Machine Approach

to Portable Parallelism

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter.
28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014).

67

Bohrium: a Virtual Machine Approach to Portable
Parallelism

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

{madsbk/safl/blum/skovhede/vinter}@nbi.dk

Abstract—
In this paper we introduce, Bohrium, a runtime-system for

mapping vector operations onto a number of different hardware
platforms, from simple multi-core systems to clusters and GPU
enabled systems. In order to make efficient choices Bohrium is
implemented as a virtual machine that makes runtime decisions,
rather than a statically compiled library, which is the more
common approach. In principle, Bohrium can be used for any
programming language but for now, the supported languages are
limited to Python, C++ and the .Net framework, e.g. C# and F#.

The primary success criteria are to maintain a complete
abstraction from low-level details and to provide efficient code
execution across different, current and future, processors.

We evaluate the presented design through a setup that targets
a multi-core CPU, an eight-node Cluster, and a GPU, all pre-
liminary prototypes. The evaluation includes three well-known
benchmark applications, Black Sholes, Shallow Water, and N-
body, implemented in C++, Python, and C# respectively.

I. INTRODUCTION

Finding the solution for computational scientific and engi-
neering problems often requires experimenting with various
algorithms and different parameters with feedback in several
iterations. Therefore, the ability to quickly prototype the
solution is critical to timely and successful scientific discovery.

In order to accommodate these demands, the scientific
community makes use of high-productivity programming lan-
guages and libraries. Particularly of interest are languages
and libraries that support a declarative vector programming
style; such as HPF[1], MATLAB[2], NumPy[3], Blitz++[4],
and ILNumerics.Net[5].

In this context declarative means the ability to specify
an operation, e.g. addition of two vectors, as a full-vector
operation, a + b, instead of explicitly specifying looping and
element-indexing: for i in n : a[i]+b[i]. Vector programming,
also know as array programming, is of particular interest
since full-vector operations are closer to the domain of the
application-programmer.

The performance of a high-productivity programming lan-
guage and/or library is often insufficient to handle problem
sizes required in scientific community. Thus, we see the
scientific community reimplement the prototype using another
more high-performance framework, which exposes both the
complexity and the performance-potential of the underlying
hardware. This reimplementation is very time-consuming and
a source of errors in the scientific code. Especially, when the
computing environments are highly heterogeneous and require
both parallelism and hardware architecture expertise.

Bohrium is a framework that circumvents the need for
reimplementation completely. Instead of manually paralleliz-
ing the scientific applications for a specific hardware com-
ponent, the Bohrium framework seamlessly interprets several
high-productivity languages and libraries while transparently
utilizing the parallel potential of the underlying hardware. The
expressed goal of Bohrium is to achieve 80% of the achievable
performance compared to a highly optimized implementation.

The version of Bohrium we present in this paper is a proof-
of-concept that supports three languages; Python, C++, and
Common Intermediate Language (CIL)1, and three computer
architectures, CPU, Cluster, and GPU2. Bohrium defines an
intermediate vector bytecode language specialized for the
declarative vector programming model and provides a runtime
environment for executing the bytecode. The intermediate
vector bytecode makes Bohrium a retargetable framework
where the front-end languages and the back-end architectures
are fully interchangeable.

II. RELATED WORK

The key motivation for Bohrium is to provide a frame-
work for the utilization of diverse and complex comput-
ing systems, with the goal of obtaining high-performance,
high-productivity and high-portability, HP 3. Systems such as
pyOpenCL/pyCUDA[6] provides tools for interfacing a high
abstraction front-end language with kernels written for specific
potentially exotic hardware. In this case, lowering the bar for
harvesting the power of modern GPU’s, by letting the user
write only the GPU-kernels as text strings in the host language
Python. The goal is similar to that of Bohrium – the approach
however is entirely different. Bohrium provides a means to
hide low-level target specific code behind a programming
model and providing a framework and runtime environment
to support it.

Bohrium is more closely related to the work described in
[7], where a compilation framework, unPython, is provided
for execution in a hybrid environment consisting of both
CPUs and GPUs. The framework uses a Python/NumPy based
front-end that uses Python decorators as hints to do selective
optimizations. Bohrium performs data-centric optimizations on
vector operations, which can be viewed as akin to selective
optimizations, in the respect that we do not optimize the

1also known as Microsoft .NET
2The implementation is open-source and available at www.bh107.org

program as a whole. However, we find that the approach used
in the Bohrium Python interface is much less intrusive. All
arrays are by default handled by Bohrium – no decorators
are needed or used. This approach provides the advantage
that any existing NumPy program can run unaltered and take
advantage of Bohrium without changing a single line of code.
In contrast, unPython requires the user to modify the source
code manually, by applying hints in a manner similar to that
of OpenMP. The proposed non-obtrusive design at the source
level is to the author’s knowledge novel.

Microsoft Accelerator [8] introduces ParallelArray, which
is similar to the utilization of the NumPy arrays in Bohrium
but there are strict limitations to the utilization of Paral-
lelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. Bohrium instead
allows indexed operations and additionally supports vector-
views, which are vector-aliases that provide multiple ways
to access the same chunk of allocated memory. Thus, the
data structure in Bohrium is highly flexible and provides
elegant programming solutions for a broad range of numerical
algorithms. Intel provides a similar approach called Intel
Array Building Blocks (ArBB) [9] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The
retargetability aspect of Intel ArBB is represented in Bohrium
as a simple configuration file that defines the Bohrium runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-
level details behind a declarative vector-programming model
similar to Bohrium. However, ArBB only provides access to
the programming model via C++ whereas Bohrium is not
limited to any one specific front-end language.

On multiple points, Bohrium is closely related in func-
tionality and goals to the SEJITS [10] project, but takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criterion.
The programming model in Bohrium does not provide this
kernel methodology, but deduces computational kernels at
runtime by inspecting the flow of vector bytecode.

Bohrium provides, in this sense, a virtual machine optimized
for execution of vector operations. Previous work [11] was
based on a complete virtual machine for generic execution
whereas Bohrium provides an optimized subset.

III. FRONT-END LANGUAGES

To hide the complexities of obtaining high-performance
from the diverse hardware making up modern compute sys-
tems any given framework must provide a meaningful high-
level abstraction. This can be realized in the form of domain
specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes:
(1) It must provide meaning for the end-user such that the goal
of high-productivity can be met with satisfaction. (2) It must

Fig. 1: A computation that makes use of views to implement a 5-point stencil.

provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

Bohrium is not biased towards any specific choice of
abstraction or front-end technology as long as it is compatible
with the declarative vector programming model. This provides
means to use Bohrium in functional programming languages,
provide a front-end with a strict mathematic notation such as
APL [12], or a more relaxed syntax such as MATLAB.

The declarative vector programming model encourages ex-
pressing programs in the form of high-level vector operations,
e.g. by expressing the addition of two vectors using one high-
level function instead of computing each element individually.
Combined with vector slicing, also known as vector or matrix
slicing [1], [2], [13], [14], the programming model is very
powerful as a high-level, high-productive programming model
(Fig. 1).

In this work, we will not introduce a whole new pro-
gramming language, instead we will introduce bridges that
integrate existing languages into the Bohrium framework. The
current prototype implementation of Bohrium supports three
popular languages: C++, .NET, and Python. Thus, we have
three bridges – one for each language.

The C++ and .NET bridge provides a new array library for
their respective languages that utilizes the Bohrium framework
by mapping array operations to vector bytecode. The new
array libraries do not attempt to be compatible with any
existing libraries, but rather provide an intuitive interface to the
Bohrium functionality. The Python bridge make use of NumPy,
which is the de facto library for scientific computing in Python.
The Python bridge implements a new version of NumPy
that uses the Bohrium framework for all N-dimensional array
computations.

Brief descriptions on how each one of the three bridges
can be used is given in the following. An implementation that
solves the heat equation iteratively using the Jacobi Method,
we use as a running example for each language.

A. C++

The C++ bridge provides an interface to Bohrium as
a domain-specific embedded language (DSEL) providing a
declarative, high-level programming model. Related libraries
and DSELs include Armadillo[15], Blitz++[4], Eigen[16] and
Intel Array Building Blocks[9]. These libraries have simi-
lar traits; declarative programming style through operator-
overloading, template metaprogramming and lazy evaluation
for applying optimizations and late instantiation.

A key difference is that the C++ bridge applies lazy evalu-
ation at runtime by delegating all operations on arrays to the
Bohrium runtime environment. Whereas the other libraries ap-
ply lazy evaluation at compile-time via expression-templates.
This is a general design-choice in Bohrium – evaluation is

i n c l u d e <bh / bh . hpp>
do ub l e solve (multi_array<double> grid , size_t epsilon)
{
multi_array<double> center ,north ,south ,east ,west ,tmp ;
center = grid [_ (1 , - 1 , 1)] [_ (1 , - 1 , 1)] ;
north = grid [_ (0 , - 2 , 1)] [_ (1 , - 1 , 1)] ;
south = grid [_ (2 , 0 , 1)] [_ (1 , - 1 , 1)] ;
east = grid [_ (1 , - 1 , 1)] [_ (2 , 0 , 1)] ;
west = grid [_ (1 , - 1 , 1)] [_ (0 , - 2 , 1)] ;
do ub l e delta = epsilon+1;
w h i l e (delta > epsilon){
tmp = 0 . 2 * (center+north+east+west+south) ;
delta = scalar (sum (abs (tmp -center))) ;
center (tmp) ;

}
}

Fig. 2: Bohrium C++ implementation of the heat equation solver. The grid
is a two-dimensional Bohrium array and the epsilon is a regular C/C++
scalar.

improved by a single component and not in every language-
bridge. A positive side-effect of avoiding expression-templates
in the C++ bridge are better compile-time error-messages for
the application programmer.

Figure 2 illustrates the heat equation solver implemented
in Bohrium/C++, a brief clarification of the semantics follow.
Arrays along with the type of their containing elements are
declared as multi_array<T>. The function _(start,
end, skip) creates a slice of every skip element from
start to (but not including) end. The generated slice is
then passed to the overloaded operator[] to create a
segmented view of the operand. Overload of operator=
creates aliases to avoid copying. To explicitly copy an operand
the programmer must use a copy(...) function. Overload
of operator() allows for updating an existing operand; as
can been seen in the loop-body.

B. CIL

The NumCIL library introduces the declarative vector pro-
gramming model to the CIL languages[17] and, like ILNu-
merics.Net, provides an array class that supports full-array
operations. In order to utilize Bohrium, the CIL bridge extends
NumCIL with a new Bohrium back-end.

The Bohrium extension to NumCIL, and NumCIL itself,
is written in C# but with consideration for other languages.
Example benchmarks are provided that shows how to use
NumCIL with other popular languages, such as F# and Iron-
Python. An additional IronPython module is provided which
allows a subset of Numpy programs to run unmodified in
IronPython with NumCIL. Due to the nature of the CIL, any
language that can use NumCIL can also seamlessly utilize the
Bohrium extension. The NumCIL library is designed to work
with an unmodified compiler and runtime environment and
supports Windows, Linux and Mac. It provides both operator
overloads and function based ways to utilize the library.

Where the NumCIL library executes operations when re-
quested, the Bohrium extension uses both lazy evaluation and
lazy instantiation. When a side-effect can be observed, such as
accessing a scalar value, any queued instructions are executed.
To avoid problems with garbage collection and memory limits

u s i n g NumCIL .Double ;
u s i n g R = NumCIL .Range ;
d o u b l e Solve (NdArray grid , do u b l e epsilon)
{

v a r center = grid [R .Slice (1 , - 1) , R .Slice (1 , - 1)] ;
v a r north = grid [R .Slice (0 , - 2) , R .Slice (1 , - 1)] ;
v a r south = grid [R .Slice (2 , 0) , R .Slice (1 , - 1)] ;
v a r east = grid [R .Slice (1 , - 1) , R .Slice (2 , 0)] ;
v a r west = grid [R .Slice (1 , - 1) , R .Slice (0 , - 2)] ;
v a r delta = epsilon+1;
w h i l e (delta > epsilon){

v a r tmp = 0 . 2 * (center+north+east+west+south) ;
delta = (tmp -center) .Abs () .Sum () ;
center [R .All] = tmp ;

}
}

Fig. 3: NumCIL C# implementation of the heat equation solver. The grid
is a two-dimensional NumCIL array and the epsilon is a CIL scalar.

1 i m p o r t bohrium as numpy
2 solve (grid , epsilon) :
3 center = grid [1 : - 1 , 1 : - 1]
4 north = grid [- 2 : , 1 : - 1]
5 south = grid [2 : , 1 : - 1]
6 east = grid [1 : - 1 , : 2]
7 west = grid [1 : - 1 , 2 :]
8 delta = epsilon+1
9 w h i l e delta > epsilon :

10 tmp = 0 . 2 * (center+north+south+east+west)
11 delta = numpy . sum (numpy . abs (tmp -center))
12 center [:] = tmp

Fig. 4: Python/NumPy implementation of the heat equation solver. The grid
is a two-dimensional NumPy array and the epsilon is a Python scalar. Note
that the first line of code imports the Bohrium module instead of the NumPy
module, which is all the modifications needed in order to utilize the Bohrium
runtime system.

in CIL, access to data is kept outside CIL. This allows lazy
instantiation, and allows the Bohrium runtime to avoid costly
data transfers.

The usage of NumCIL with the C# language is shown in
Figure 3. The NdArray class is a typed vesion of a general
multidimensional array, from which multiple views can be
extracted. In the example, the Range class is used to extract
views on a common base. The notation for views is influenced
by Python, in which slices can be expressed as a three element
tuple of offset, length and stride. If the stride is omitted, as in
the example, it will have the default value of one. The length
will default to zero, which means “the rest”, but can also be
set to negative numbers which will be intepreted as “the rest
minus N elements”. The benefits of this notation is that it
becomes possible to express views in terms of relative sizes,
instead of hardcoding the sizes.

In the example, the one line update, actually reads multiple
data elements from same memory region and writes it back.
This use of views simplifies concurrent access and removes all
problems related to handling boundary conditions and manual
pointer arithmetics. The special use of indexing on the target
variable is needed to update the contents of the variable,
instead of replacing the variable.

C. Python

The Python Bridge is an extension of the scientific Python
library, NumPy version 1.6 (Fig. 4). The Bridge seamlessly
implements a new array back-end for NumPy and uses hooks
to divert function call where the program access Bohrium en-
abled NumPy arrays. The hooks will translate a given function
into its corresponding Bohrium bytecode when possible. When
it is not possible, the hooks will feed the function call back
into NumPy and thereby forcing NumPy to handle the function
call itself. The Bridge operates with two address spaces for
arrays: the Bohrium space and the NumPy space. The user
can explicitly assign new arrays to either the Bohrium or the
NumPy space through a new array creation parameter. In two
circumstances, it is possible for an array to transfer from one
address space to the other implicitly at runtime.

1) When an operation accesses an array in the Bohrium
address space but it is not possible for the bridge to
translate the operation into Bohrium bytecode. In this
case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency no data
is actually copied instead the bridge uses the mremap
function to re-map the relevant memory pages when the
data is already present in main memory.

2) When an operations access arrays in different address
spaces the Bridge will transfer the arrays in the NumPy
space to the Bohrium space.

In order to detect direct access to arrays in the Bohrium
address space by the user, the original NumPy implementation,
a Python library, or any other external source, the bridge
protects the memory of arrays that are in the Bohrium address
space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by
transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application since it
can always fallback to the original NumPy implementation.

Similarly to the other Bridges, the Bohrium Bridge uses
lazy evaluation where it records instruction until a side-effect
can be observed.

IV. THE BOHRIUM RUNTIME SYSTEM

The key contribution in this work is a framework, Bohrium,
which significantly reduces the costs associated with high-
performance program development. Bohrium provides the
mechanics to couple a programming language or library with
an architecture-specific implementation seamlessly.

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode. Components are
allowed to be architecture-specific but they are all interchange-
able since all uses the same communication protocol. The idea
is to make it possible to combine components in a setup that
match a specific execution environment. Bohrium consist of
the following three component types (Fig. 5):

Bridge

Vector Engine
Manager

Vector Engine
Manager

Vector Engine
Manager

Vector
Engine

Vector
Engine

Vector
Engine

Vector
Engine

Bridge is language bindings and interface to
Bohrium, currently for NumPy, C++, and CIL

VEM has a simple interface and can support
hierarchical setups. The VEM can distribute
and load-balance as required.

Node level VEM knows about hardware
features and schedules operations optimally
on hardware.

VE's are the workhorses and know how to
implement elementwise operations and
composite operations, currently on CPU and
GPU

Fig. 5: Bohrium Overview

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of vectors. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one implemen-
tation of each component type must be available. However, the
exact component setup depends on the runtime system and
what hardware to utilize, e.g. executing NumPy on a single
machine using the CPU would require a Bridge implementa-
tion for NumPy, a VEM implementation for a machine node,
and a VE implementation for a CPU. Now, in order to utilize a
GPU instead, we can exchange the CPU-VE with a GPU-VE
without having to change a single line of code in the NumPy
application. This is a key contribution of Bohrium: the ability
to change the execution hardware without changing the user
application.

A. Configuration

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through an ini-file (Fig. 6). Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user
applications.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative vector programming model in mind where the
bytecode instructions operate on input and output vectors.
To avoid excessive memory copying, the vectors can also
be shaped into multi-dimensional vectors. These reshaped
vector views are then not necessarily comprised of elements
that are contiguous in memory. Each dimension comprises a

Bridge for NumPy
[numpy]
type = bridge
children = node

Vector Engine Manager for a single machine
[node]
type = vem
impl = libbh_vem_node .so
children = gpu

Vector Engine for a GPU
[gpu]
type = ve
impl = lbbh_ve_gpu .so

Fig. 6: This example configuration provides a setup for utilizing a GPU on
one machine by instructing the Vector Engine Manager to use the GPU Vector
Engine implemented in the shared library lbhvb_ve_gpu.so.

base

type

ndim

start

shape

stride

data

*

*

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension

O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

11 10

0 1

3 4

Seen 3d-array

Fig. 7: Descriptor for n-dimensional vector and corresponding interpretation

stride and size, such that any regularly shaped subset of the
underlying data can be accessed. We have chosen to focus on a
simple, yet flexible, data structure that allows us to express any
regularly distributed vectors. Figure 7 shows how the shape is
implemented and how the data is projected.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD3 and the VEM through SPMD4.

In the following we will go through the four types of vector
bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes performs a unary
or binary operation on all vector elements. Bohrium currently
supports 53 element-wise operations, e.g. addition, multipli-
cation, square root, equal, less than, logical and, bitwise and,
etc. For element-wise operations, we only allow data overlap
between the input and the output vectors if the access pattern
is the same, which, combined with the fact that they are all
stateless, makes it straightforward to execute them in parallel.

2) Reduction: Reduction bytecodes reduce an input dimen-
sion using a binary operator. Again, we do not allow data
overlap between the input and the output vectors and the

3Single Instruction, Multiple Data
4Single Program, Multiple Data

operator must be associative5. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them are stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative properties.

3) Data Management: Data Management bytecodes deter-
mine the data ownership of vectors, and consists of three
different bytecodes. The synchronization bytecode orders a
child component to place the vector data in the address space
of its parent component. The free bytecode orders a child
component to free the data of a given vector in the global
address space. Finally, the discard operator that orders a child
component to free the meta-data associated with a given
vector, and signals that any local copy of the data is now
invalid. These three bytecodes enable lazy allocation where the
actual vector data allocation is delayed until it is used. Often
vectors are created with a generator (e.g. random, constants)
or with no data (e.g. temporary), which may exist on the
computing device exclusively. Thus, lazy allocation may save
several memory allocations and copies.

4) Extension methods: The above three types of bytecode
make up the bulk of a Bohrium execution. However not all
algorithms may be efficiently implemented in this way. In
order to handle operations that would otherwise be inefficient
or even impossible, we introduce the fourth type of bytecode:
extension methods. We impose no restrictions to this generic
operation; the extension writer has total freedom. However,
Bohrium do not guarantee that all components support the
operation. Initially, the user registers the extension method
with paths to all component-specific implementations of the
operation. The user then receives a new handle for this exten-
sion method and may use it subsequently as a vector bytecode.
Matrix multiplication and FFT are examples of a extension
methods that are obviously needed. For matrix multiplication,
a CPU specific implementation could simply call a native
BLAS library and a Cluster specific implementation could call
the ScaLAPACK library[18].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

D. Vector Engine Manager

Rather than allowing the Bridge to communicate directly
with the Vector Engine, we introduce a Vector Engine Manager
into the design. The VEM is responsible for one memory
address space in the hardware configuration. The current
version of Bohrium implements two VEMs: the Node-VEM

5Mathematically associativity; we allow non-associativity because of float-
ing point approximations

that handles the local address space of a single machine and
the Cluster-VEM that handles the global distributed address
space of a computer cluster.

The Node-VEM is very simple since the hardware already
provides a shared memory address space; hence, the Node-
VEM can simply forward all instruction from its parent to its
child components. The Cluster-VEM, on the other hand, has
to distribute all vectors between Node-VEMs in the cluster.

1) Cluster Architectures: In order to utilize scalable archi-
tectures fully, distributed memory parallelism is mandatory.
The current Cluster-VEM implementation is currently quite
naı̈ve; it uses the bulk-synchronous parallel model[19] with
static data decomposition and no communication latency hid-
ing. We know from previous work than such optimizations are
possible[20].

Bohrium implements all communication through the MPI-2
library and use a process hierarchy that consists of one master-
process and multiple worker-processes. The master-process
executes a regular Bohrium setup with the Bridge, Cluster-
VEM, Node-VEM, and VE. The worker-processes, on the
other hand, execute the same setup but without the Bridge
and thus without the user applications. Instead, the master-
process will broadcast vector bytecode and vector meta-data
to the worker-processes throughout the execution of the user
application.

Bohrium use a data-centric approach where a static de-
composition dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all pro-
cesses have full knowledge of the data distribution and need
not exchange data location meta-data. Furthermore, the task of
computing vector operations is also statically distributed which
means that any process can calculate locally what needs to
be sent, received, and computed. Meta-data communication is
only needed when broadcasting vector bytecode and creating
new vectors – a task that has an asymptotic complexity of
O(log2 n), where n is the number of nodes.

E. Vector Engine

The Vector Engine (VE) is the only component that actually
does the computations, specified by the user application. It
has to execute instructions it receives in an order that comply
with the dependencies between instructions. Furthermore, it
has to ensure that its parent VEM has access to the results as
governed by the Data Management bytecodes.

1) CPU: The CPU-VE targets shared-memory multi-core
CPU architectures through OpenMP. The CPU-VE is imple-
mented as an in-order interpreter of vector bytecode. It features
dynamic compilation for single-expression just-in-time opti-
mization, which allows the engine to perform runtime-value-
optimization, such as specialized interpretation based on the
shape and dimensionality of operands.

The CPU-VE just-in-time compiles each vector bytecode
into individual computation kernels that consists of N nested
loops where N is the dimensionionality of the operands. The
current parallelization strategy simply applies #pragma omp
for to the outer-most loop, which tells OpenMP to parallelize

over the first dimension. This naı̈ve approach requires that
the size of the first dimension is greater than the number of
CPU-cores to utilize. As a special case, the CPU-VE solves
this limitation for operands with contiguous memory-access
by collapsing the loops into a single loop.

Dynamic memory allocation on the heap is a time-
consuming task. This is particularly the case when allocating
large chunks of memory because of the involvement of the
system kernel. Typically, vector programming involves the use
of many temporary vectors and thus uses many consecutive
equally sized memory allocations and de-allocations. In order
to reduce the overhead associated with these memory alloca-
tions and de-allocations, we introduces a reusing scheme sim-
ilar to a Victim Cache[21]. Instead of de-allocating memory
immediately, we store the allocation for later reuse. If we, at a
later point, encounter a memory allocation of the same size as
the stored allocation, we can simply reuse the stored allocation.
In order to have an upper bound of the extra memory footprint,
we have a threshold for the maximum memory consumptions
of the cache. When allocating memory that does not match
any cached allocations, we de-allocate a number of cached
allocations such that the total memory consumption of the
cache is below the threshold.

2) GPU: To harness the computational power of the mod-
ern GPU we have created the GPU-VE for Bohrium. Since
Bohrium imposes a vector oriented style of programming
on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL over
CUDA. This was the natural choice since one of the major
goals of Bohrium is portability, and OpenCL is supported by
more platforms.

The GPU-VE currently use a simple kernel building and
code generation scheme: It will keep adding instructions to
the current kernel for as long as the shape of the instruction
output matches that of the current kernel, and adding it will not
create a data hazard. Input parameters are registered so they
can be read from global memory. Similarly, output parameters
are registered to be written back to global memory.

The GPU-VE implements a simple method for temporary
vector elimination when building kernels:

• If the kernel already reads the input, or it is generated
within the kernel, it will not be read from global memory.

• If the instruction output is not need later in the instruction
sequence – signaled by a discard – it will not be written
back to global memory.

This simple scheme has proven fairly efficient. However, the
efficiency is closely linked to the ability of the bridge to
send discards close to the last usage of an vector in order
to minimize the active memory footprint since this is a very
scarce resource on the GPU.

The code generation we have in the GPU-VE simply
translates every Bohrium instruction into exactly one line of
OpenCL code.

1 . . .
2 ADD t1 , center , north
3 ADD t2 , t1 , south
4 FREE t1
5 DISCARD t1
6 ADD t3 , t2 , east
7 FREE t2
8 DISCARD t2
9 ADD t4 , t3 , west

10 FREE t3
11 DISCARD t3
12 MUL tmp , t4 , 0 . 2
13 FREE t4
14 DISCARD t4
15 MINUS t5 , tmp , center
16 ABS t6 , t5
17 FREE t5
18 DISCARD t5
19 ADD_REDUCE t7 , t6
20 FREE t6
21 DISCARD t6
22 ADD_REDUCE delta , t7
23 FREE t7
24 DISCARD t7
25 COPY center , tmp
26 FREE tmp
27 DISCARD tmp
28 SYNC delta
29 . . .

Fig. 8: Bytecode generated in each iteration of the Python/NumPy implemen-
tation of the heat equation solver (Fig. 4). Note that the SYNC instruction
at line 28 transfers the scalar delta from the Bohrium address space to
the NumPy address space in order for the Python interpreter to evaluate the
while condition (Fig. 4, line 9).

F. Python/NumPy Example

Figure 8 illustrate the list of vector byte code that the
NumPy Bridge will generate when executing one of the
iterations in the Python/NumPy implementation of the heat
equation solver (Fig. 4). The example demonstrates the nearly
one-to-one mapping from the NumPy vector operations to
the Bohrium vector byte code. The code generates seven
temporary arrays (t1,...,t7) that are not specified in the code
explicitly but is a result of how Python interprets the code.
In a regular NumPy execution, the seven temporary arrays
translate into seven memory allocations and de-allocations thus
imposing an extra overhead. On the other hand, a Bohrium
execution with the Victim Cache will only use two memory
allocations since six of the temporary arrays (t1,...,t6) will
use the same memory allocation. However, no writes to
memory are eliminated.

In the GPU-VE the source code generation eliminates the
memory writes all together. (t1,...,t5) are stored only in
registers. Without this strategy the speedup gain would not be
possible on the GPU due to the memory bandwidth bottleneck.

V. PRELIMINARY RESULTS

In order to demonstrate our Bohrium design we have
implemented a basic Bohrium setup. This concretization of
Bohrium is by no means exhaustive but only a proof-of-
concept implementation. The implementation supports three
popular languages: C++, CIL, and Python, and the three
computer architectures: CPU, GPU, and Cluster. All of which
are preliminary implementations that have a high degree of

further optimization potential. Below we conduct a preliminary
performance study of the implementation that consists of the
following three representative scientific application kernels:

Shallow Water A simulation of a system governed by the
Shallow Water equations. A drop is placed in a still
container and the water movement is simulated in discrete
time steps. It is a Python/NumPy implementation of a
MATLAB application by Burkardt [22]. We use this
benchmark for studying the Python/NumPy performance
in Bohrium where the Bohrium execution uses the Boh-
rium back-end and the baseline execution uses the native
NumPy back-end.

Black Scholes The Black-Scholes pricing model is a partial
differential equation, which is used in finance for calculat-
ing price variations over time[23]. This implementation
uses a Monte Carlo simulation to calculate the Black-
Scholes pricing model. In order to study the performance
of Bohrium in C++, we compare an implementation that
uses Bohrium with a baseline implementation that uses
Blitz++. The two C++ implementations are very similar
and both uses vector operations almost exclusively.

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and
a velocity, move in space according to the laws of
Newtonian physics. We use a straightforward algorithm
that computes all body-body interactions, O(n2), with
collisions detection. It is a C# implementation that uses
the NumCIL vector library[17]. We use this benchmark
for studying the NumCIL performance in Bohrium where
the Bohrium execution uses the Bohrium back-end and
the baseline execution uses the native NumCIL back-end.

For the performance study, we use two different hardware
installations: an installation of eight AMD cluster-nodes and
an installation of a single AMD GPU-node (Table I & II).

For each scientific application kernel, we execute using four
different Bohrium setups:

• A setup with the Node-VE and the CPU-VE where the
execution utilize a single CPU-core on one of the AMD
cluster-nodes.

• A setup with the Node-VE and the CPU-VE where the
execution utilize all 32 CPU-cores on one of the AMD
cluster-nodes through OpenMP.

• A setup with the Cluster-VEM, the Node-VE, and the
CPU-VE where the execution utilize all 32 CPU-cores on
each of the eight AMD cluster-nodes – 256 CPU-cores
in total. The setup make use of the Hybrid Programming
Model[24] where the Cluster-VEM spawns four MPI-
processes per node and the CPU-VE in turn spawns eight
OpenMP threads per MPI-process.

• A setup with the Node-VE and the GPU-VE where the
execution utilize the GPU on the GPU-node.

Please note that none of the setups requires any change to the
scientific applications. It is simply a matter of changing the
Bohrium configuration ini-file (Fig. 6).

NODE-VEM
 CPU-VE
 (1 core)

NODE-VEM
 CPU-VE
 (32 cores)

CLUSTER-VEM
 NODE-VEM
 CPU-VE
 (256 cores)

0

20

40

60

80

100

120

140

160

2.1

13.3

93.2

S
pe

ed
up

(a)

NODE-VEM
 GPU-VE
(1536 cores)

0

20

40

60

80

100

120

140

160

140.2

S
pe

ed
up

(b)

Fig. 9: Relative speedup of the Shallow Water application. For the execution
on the Cluster-node (a), the application simulates a 2D domain with 25k2
value points in 10 iterations. For the execution on the GPU-node (b), it is a
4k2 domain in 100 iterations.

NODE-VEM
 CPU-VE
 (1 core)

NODE-VEM
 CPU-VE
 (32 cores)

CLUSTER-VEM
 NODE-VEM
 CPU-VE
 (256 cores)

0

20

40

60

80

100

120

140

0.8

13.8

125.1

S
pe

ed
up

(a)

NODE-VEM
 GPU-VE
(1536 cores)

0

20

40

60

80

100

120

140

82.6

S
pe

ed
up

(b)

Fig. 10: Relative speedup of the Black Scholes application. For the execution
on the Cluster-node (a), the application generates 100m element vectors using
10 iterations. For the execution on the GPU-node (b), it generates 64m element
vectors using 50 iterations.

For each scientific application kernel, we compare the
Bohrium execution with the baseline execution using the same
installation e.g. we compare a Node-VE/GPU-VE execution on
the GPU-node with a baseline execution on the GPU-node. We
calculate the relative strong scale speedup based on the average
wall clock time of five executions and the input and output data
is 64bit floating point for all executions. While measuring the
performance, the variation of the measured wall clock timings
did not exceed 5%.

A. Discussion

Shallow Water (Fig. 9): The Shallow Water application
is memory intensive and uses many temporary arrays. This
is clear when comparing the Bohrium execution with the
native NumPy execution on a single CPU-core. The Bohrium
execution is 2.1 times faster than the Native NumPy execution
primarily because of memory allocation reuse of temporary
arrays. The CPU-VE achieves limited scalability within one

NODE-VEM
 CPU-VE
 (1 core)

NODE-VEM
 CPU-VE
 (32 cores)

CLUSTER-VEM
 NODE-VEM
 CPU-VE
 (256 cores)

0

20

40

60

80

100

120

140

1.5

30.9

115.9

S
pe

ed
up

(a)

NODE-VEM
 GPU-VE
(1536 cores)

0

20

40

60

80

100

120

140 133.7

S
pe

ed
up

(b)

Fig. 11: Relative speedup of the N-Body application. For the execution on
the Cluster-node (a), the application simulates 15k bodies in 10 iterations. For
the execution on the GPU-node (b), it is 3200 bodies and 50 iterations.

Machine: Cluster-node GPU-node
Processor: AMD Opteron 6272 AMD Opteron 6274
#CPUs per Node: 2 1
#Cores per CPU: 16 16
Clock: 2.1 GHz 2.2 GHz
L3 Cache: 16MB 16MB
Memory: 128GB DDR3 128GB DDR3
Peak: 134.4 GFLOPS 70.4 GFLOPS
Network: Gigabit Ethernet N/A
Compiler: GCC 4.6.3 GCC 4.6.3 & OpenCL 1.1
GPU: N/A Nvidia GeForce (Table II)
Software: Linux 3.2, Mono Compiler 2.10, Python 2.7, NumPy

2.6, Blitz++ 0.9

TABLE I: Machine Specifications

node – a speedup of 13 when utilizing 32 cores through
OpenMP. The problem is twofold: first, the CPU-VE execution
has very poor cache utilization because it executes one vector
operation at a time. Since the vector operations are very large
and cannot fit in the cache, the CPU cannot exploit temporal
locality. The result is a very memory bound execution that
is limited by the Von Neumann bottleneck[25]. Secondly,
the Shallow Water application uses mostly two-dimensional
non-contiguous vector operations, which hinder the current
OpenMP parallelization significantly.

The Cluster-VEM together with the CPU-VE demonstrates
good scalable performance. Even without communication la-
tency hiding, it achieves a speedup of 7.0 when going from
utilizing one cluster-node fully to utilizing all eight cluster-
nodes fully.

Finally, the GPU shows an impressive 140 speedup, which
demonstrates the efficiency of parallelizing vector operations
on a vector machine while removing temporary arrays and

Processor: Nvidia GeForce GTX 680
#Cores: 1536
Core clock: 1006 MHz
Memory: 2GB DDR5
Memory bandwidth: 192 GB/s
Peak (single-precision): 3090 GFLOPS
Peak (double-precision): 128 GFLOPS

TABLE II: GPU Specifications

compiling multiple vector instructions into single kernels.
Black Scholes (Fig. 10): The Black Scholes application is

embarrassingly parallel, which the scalability of the CPU-VE
and the Cluster-VEM confirms. Similar to Shallow Water, the
Black Scholes execution has very limited temporal locality.
However, Black Scholes uses contiguous vector operations
exclusively, which fits the current OpenMP parallelization very
well. CPU-VE archives a speedup of 14 compared to Blitz++
and 17 compared to the CPU-VE single core execution.

The Cluster-VEM archives a speedup of 9.1 compared to
the CPU-VE that utilize all 32 cores on a single node. The
Hybrid Programming Model makes this superlinear speedup
possible. Since the cluster-nodes are Non-Uniform Memory
Access (NUMA) architectures with four NUMA nodes each,
the Hybrid Programming Model confines the eight OpenMP
threads within a MPI-process to a single NUMA node. The
result is enhanced load-balance among the CPU memory
channels.

Compared to Shallow Water, the GPU-VE achieves a
slightly lower speedup mainly because of the faster baseline,
i.e. Blitz++ is significantly faster than native NumPy and 20%
faster than CPU-VE single core execution.

N-Body (Fig. 11): Unlike the two previous applications,
Shallow Water and Black Scholes, the N-Body application
uses many vector-operations that fit in the CPU cache, which
makes temporal locality exploitation possible. The result is a
speedup of 20 when the CPU-VE goes from a one core to 32
cores execution.

At first sight, the Cluster-VEM does not scale very well
with a speedup of 3.7 going from one to eight cluster-
nodes. However, an execution that uses four MPI-processes
per cluster-node, which is one MPI-process per NUMA node
and 32 MPI-process in total, and no OpenMP paralleliza-
tion, archives an almost linear speedup of 31 (not shown
in the figure). The problem appears when combining MPI
and OpenMP parallelization because the Cluster-VEM may
divide contiguous vector operation into non-contiguous vector
operations when doing communication thus hindering the
OpenMP parallelization.

Finally, the GPU demonstrate a good speedup of 134
compared to NumCIL.

B. Low-level Baseline

In order to judge Bohrium against a, close to, optimal
baseline, we compare Bohrium with a low-level ANSI C
implementation of the Shallow Water benchmark. The C
implementation outperforms Bohrium with a speedup of 5.6
(not shown in the graph) because of explicit temporal local-
ity exploitation and reduced memory access. In contrast to
Bohrium, the C implementation applies all operations within
a single loop and uses no temporary arrays.

However, the speedup comes with a price: the code use
for-loops and pointer arithmetic in order to index the two-
dimensional domain, which reduces the readability and makes
it harder to generalize into more dimensions. Figure 12 and 13

l ong n = / *<g r i d s i z e i n x and y - a x i s>* / ;
d o u b l e H [(n+2) * (n+2)] ; / / C u r r e n t wave h i g h t
d o u b l e U [(n+2) * (n+2)] ; / / C u r r e n t momentum i n x - a x i s
d o u b l e V [(n+2) * (n+2)] ; / / C u r r e n t momentum i n y - a x i s
d o u b l e Vnew [(n+2) * (n+2)] ; / / New momentum i n y - a x i s
d o u b l e g = 9 . 8 ; / / g r a v i t a t i o n a l c o n s t a n t
l ong i ,j ;

f o r (i=0; i<n+1; i++)
f o r (j=0; j<n ; j++)
Vnew [i*n+j] = (V [(i+1) *n+j+1]+V [i*n+j+ 1]) / 2 - \

0 . 5 * ((U [(i+1) *n+j+1]*V [(i+1) *n+j+ 1] /H [(i+1) *n+j+ 1])\
- U [i*n+j+1] * V [i*n+j+ 1] /H [i*n+j+ 1]) ;

Fig. 12: ANSI C implementation of the first half of the y-axis momentum in
the Shallow Water benchmark. The complete Shallow Water implementation
consist of nine similar calculations.

i m p o r t bohrium as np
n = #<g r i d s i z e i n x and y - a x i s>
H = np .empty ((n+2 ,n+2)) # C u r r e n t wave h i g h t
U = np .empty ((n+2 ,n+2)) # C u r r e n t momentum i n x - a x i s
V = np .empty ((n+2 ,n+2)) # C u r r e n t momentum i n y - a x i s
g = 9 . 8 # g r a v i t a t i o n a l c o n s t a n t

Vnew = (V [1 : , 1 : - 1] +V [: - 1 , 1 : - 1]) / 2 - \
0 . 5 * ((U [1 : , 1 : - 1] *V [1 : , 1 : - 1] / H [1 : , 1 : - 1]) - \

(U [: - 1 , 1 : - 1] *V [: - 1 , 1 : - 1] /H [: - 1 , 1 : - 1]))

Fig. 13: Python/NumPy implementation of the first half of the y-axis mo-
mentum in the Shallow Water benchmark. The complete Shallow Water
implementation consist of nine similar calculations.

illustrate a small subset of the calculation in the Shallow Water
benchmark implemented in C and Python/NumPy respectively.

In conclusion, the C implementation outperforms the current
version of Bohrium on a single CPU-core. However, through
Bohrium the user may utilize multi-core architectures seam-
lessly thus on 32 CPU-cores, Bohrium surpass the performance
of the C implementation.

VI. FUTURE WORK

From the presented experiments, we can see that the perfor-
mance is generally good. However, we are convinced that we
can still improve these results significantly. We are currently
working on an internal representation for bytecode dependen-
cies, which will enable us to rearrange the instructions, fuse
computation loops, and eliminate temporary arrays. In the arti-
cle describing Intel Array Building Blocks, the authors report
that the removal of temporary arrays is the single optimization
that yields the greatest performance improvement. We see
similar results in the ANSI C implementation of the Shallow
Water benchmark (Sec. V-B). With no temporary arrays and
a single computation loop, the C implementation outperforms
the current Bohrium implementation.

The GPU vector engine already uses a simple scanning
algorithm that detects some instances of temporary vectors
usage, as that is required to avoid exhausting the limited GPU
memory. However, the internal representation will enable a
better detection of temporary storage, but also enable loop
detection and improve kernel generation and kernel reusability.

In order to improve the Cluster performance, the internal

representation will facilitate optimization techniques, such as
communication latency hiding and message aggregation, that
can improve the scalability[26], [27].

The internal representation will also allow pattern match-
ing, which will allow selective replacement of parts of the
instruction stream with optimized versions. This can be used
to detect cases where the user is calculating a scalar sum, using
a series of reductions, or detect matrix multiplications. By
implementing efficient micro-kernels for known computations,
we can improve the execution significantly. Once these kernels
are implemented, it is simple to offer them as function calls
in the bridges. The bridge implementation can then simply
implement the functionality by sending a pre-coded sequence
of instructions.

We are also investigating the possibility of implementing a
Bohrium Processing Unit, BPU, on FPGAs. With a BPU, we
expect to achieve performance that rivals the best of todays
GPUs, but with lower power consumption. As the FPGAs
come with a built-in Ethernet support, they can also provide
significantly lower latency, enabling real-time data analysis.

Finally, the ultimate goal of the Bohrium project is to
support clusters of heterogeneous computation nodes where
components specialized for GPUs, NUMA aware multi-core
CPUs, FPGAs, and Clusters, work together seamlessly.

VII. CONCLUSION

The declarative vector-programming model used in Boh-
rium provides a framework for high-performance and high-
productivity. It enables the end-user to execute vectorized
applications on a broad range of hardware architectures ef-
ficiently without any hardware specific knowledge. Further-
more, the Bohrium design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine
architectures in order to exploit hybrid programming where
multiple levels of parallelism exist, which is essential when
fully utilizing supercomputers such as the Blue Gene/P[28].

In this paper, we introduce a proof-of-concept implemen-
tation of Bohrium that supports three front-end languages –
Python, C++ and the .Net – and three back-end hardware archi-
tectures – multi-core CPUs, distributed memory Clusters, and
GPUs. The preliminary results are very promising – a Shallow
Water simulation achieves 140.2 speedup when comparing a
Native NumPy execution and a Bohrium execution that utilize
the GPU back-end.

REFERENCES

[1] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[2] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[3] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

[4] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[5] “Ilnumerics,” http://ilnumerics.net/, [Online; accessed 12 March 2013].

[6] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[7] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[8] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program gpus for general-purpose uses,” SIGARCH Comput. Archit.
News, vol. 34, no. 5, pp. 325–335, Oct. 2006.

[9] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang,
“Intel’s array building blocks: A retargetable, dynamic compiler and
embedded language,” in Code Generation and Optimization (CGO),
2011 9th Annual IEEE/ACM International Symposium on, 2011, pp.
224–235.

[10] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, 2009.

[11] R. Andersen and B. Vinter, “The scientific byte code virtual machine,”
in GCA’08, 2008, pp. 175–181.

[12] K. E. Iverson, A programming language. New York, NY, USA: John
Wiley & Sons, Inc., 1962.

[13] B. Mailloux, J. Peck, and C. Koster, “Report on the algorithmic
language algol 68,” Numerische Mathematik, vol. 14, no. 2, pp. 79–218,
1969. [Online]. Available: http://dx.doi.org/10.1007/BF02163002

[14] S. Van Der Walt, S. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[15] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

[16] “Eigen,” http://eigen.tuxfamily.org/, [Online; accessed 12 March 2013].
[17] K. Skovhede and B. Vinter, “NumCIL: Numeric operations in the Com-

mon Intermediate Language,” Journal of Next Generation Information
Technology, vol. 4, no. 1, 2013.

[18] L. S. Blackford, “ScaLAPACK,” in Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Super-
computing 96, 1996, p. 5.

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[20] M. Kristensen and B. Vinter, “Managing communication latency-hiding
at runtime for parallel programming languages and libraries,” in High
Performance Computing and Communication 2012 IEEE 9th Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, 2012, pp. 546–555.

[21] N. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” in Computer
Architecture, 1990. Proceedings., 17th Annual International Symposium
on, may 1990, pp. 364 –373.

[22] J. Burkardt, “Shallow water equations,” people.sc.fsu.edu/\∼jburkardt/
m\ src/shallow\ water\ 2d/, [Online; accessed March 2010].

[23] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[24] F. Cappello and D. Etiemble, “Mpi versus mpi+openmp on the ibm sp for
the nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Conference,
2000, pp. 12–12.

[25] J. Backus, “Can programming be liberated from the von neumann style?:
a functional style and its algebra of programs,” Commun. ACM, vol. 21,
no. 8, pp. 613–641, Aug. 1978.

[26] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[27] M. R. B. Kristensen, Y. Zheng, and B. Vinter, “Pgas for distributed
numerical python targeting multi-core clusters,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 680–690, 2012.

[28] M. Kristensen, H. Happe, and B. Vinter, “GPAW Optimized for Blue
Gene/P using Hybrid Programming,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–6.

7.4 Transparent GPU Execution of NumPy

Applications

Troels Blum, Mads R. B. Kristensen, and Brian Vinter.
28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014).

78

Transparent GPU Execution of NumPy Applications

Troels Blum, Mads R. B. Kristensen and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

{blum/madsbk/vinter}@nbi.dk

Abstract—In this work, we present a back-end for the Python
library NumPy that utilizes the GPU seamlessly. We use dynamic
code generation to generate kernels, and data is moved transpar-
ently to and from the GPU. For the integration into NumPy, we
use the Bohrium runtime system. Bohrium hooks into NumPy
through the implicit data parallelization of array operations, this
approach requires no annotations or other code modifications.

The key motivation for our GPU computation back-end is
to transform high-level Python/NumPy applications to the low-
level GPU executable kernels, with the goal of obtaining high-
performance, high-productivity and high-portability, HP 3.

We provide a performance study of the GPU back-end that
includes four well-known benchmark applications, Black-Scholes,
Successive Over-relaxation, Shallow Water, and N-body, imple-
mented in pure Python/NumPy. We demonstrate an impressive
834 times speed up for the Black-Scholes application, and an
average speedup of 124 times across the four benchmarks.

I. INTRODUCTION

Computer simulations, which are widely used in both
academia and the industry, often consists of large compute
intensive tasks. This makes them good candidates for harvest-
ing the computing power of modern, highly parallel comput-
ing systems, such as GPUs. The challenge lies in the fact,
that these systems must be programmed using specialized
programming models, which, even for skilled programming
professionals, make the development cycle very long. This is
a big and costly problem for both academic and industrial
communities, which rely on an iterative method of developing
new models.

The Python programming language and its de-facto sci-
entific library NumPy targets the academic and the industrial
community as a high-productivity framework with a very short
development cycle[1]. Python/NumPy supports a declarative
vector programming style where numerical operations operate
on full arrays rather than scalars. This programming style
is often referred to as vector or array programming and is
frequently used in programming languages and libraries that
target the scientific community and the high-technology indus-
try, e.g. HPF[2], MATLAB[3], Armadillo[4], and Blitz++[5].

In this paper, we describe a new computation back-end
for the NumPy library that utilizes the GPU seamlessly. The
idea is to offload all array operations to the GPU without any
change to the original sequential Python code. In order to hook
into the NumPy library, we make use of the Bohrium run-time
system[6], which translates NumPy vector operations into an
intermediate vector bytecode suitable for GPU parallelization.

II. RELATED WORK

A framework such as pyOpenCL/pyCUDA[7] provides
tools for writing GPU kernels directly in Python. The user

writes OpenCL[8] or CUDA[9] specific kernels as text strings
in Python, which simplifies the utilization of OpenCL or
CUDA compatible GPUs. We have a similar goal – our
approach, however, is entirely different. Instead of handling
some management code specific for a given GPU API, we
handle the complete process of writing GPU specific applica-
tion automatically. The user needs not any GPU specific, or
indeed any parallelization specific, knowledge.

In combination with Bohrium, we provide a framework
more closely related to the work described in [10] where a
compilation framework, unPython, is provided for execution
in a hybrid environment consisting of both CPUs and GPUs.
The framework uses a Python/NumPy based front-end that
uses Python decorators as hints to do selective optimizations.
Particularly, the user must annotate variables with C data
types. Similarly, the project Copperhead[11] relies on Python
decorators, when compiling and executing a restricted subset
of Python through CUDA. Because of the Bohrium runtime
system, our GPU backend does not require any modifications
to the Python code.

Python libraries such as CUDAMat[12] and Gnumpy[13]
provide an API similar to NumPy for utilizing GPUs. The
API of Gnumpy is almost identical with the API of NumPy.
However, Gnumpy does not support arbitrary slicing when
aliasing arrays.

III. THE PYTHON/NUMPY INTEGRATION

In this work, we take advantage of the work done through
Bohrium, which significantly reduces the costs associated with
high-performance program development. Bohrium provides
the mechanics to couple a programming language or library
with an architecture-specific implementation seamlessly. In our
case, we use Bohrium to integrate a GPU specific implementa-
tion of NumPy array operations with the Python programming
language.

The Python/NumPy support in Bohrium consists of an
extension of NumPy version 1.6, which seamlessly implements
a new array back-end that inherits the manipulation features,
such as view, slice, reshape, offset, and stride. As a result, the
user only needs to modify the import statement of NumPy in
order to utilize the GPU back-end.

The concept of views is essential to NumPy programming.
A view is a reference to a subpart of an array that appears
as a regular array to the user. Views make it possible to
implement a broad range of applications through element-wise
vector (or array) operations. In Figure 1, we implement a heat
equation solver that uses views to implement a 5-point stencil
computation of the domain.

1 i m p o r t bohrium as numpy
2 solve (grid , epsilon) :
3 center = grid [1 : - 1 , 1 : - 1]
4 north = grid [: - 2 , 1 : - 1]
5 south = grid [2 : , 1 : - 1]
6 west = grid [1 : - 1 , : - 2]
7 east = grid [1 : - 1 , 2 :]
8 delta = epsilon+1
9 w h i l e delta > epsilon :

10 work = 0 . 2 * (center+north+south+east+west)
11 delta = numpy . sum (numpy . abs (work -center))
12 center [:] = work

Fig. 1. Python/NumPy implementation of the heat equation solver. The grid
is a two-dimensional NumPy array and the epsilon is a Python scalar. Note
that the first line of code imports the Bohrium module instead of the NumPy
module, which is all the modifications needed in order to utilize Bohrium and
our GPU backend.

Bridge

Vector Engine
Manager

Vector Engine
Manager

Vector Engine
Manager

Vector
Engine

Vector
Engine

Vector
Engine

Vector
Engine

Bridge is language bindings and interface to
Bohrium, currently for NumPy

VEM has a simple interface and can support
hierarchical setups. The VEM can distribute
and load-balance as required.

Node level VEM knows about hardware
features and schedules operations optimally
on hardware.

VE's are the workhorses and know how to
implement elementwise operations and
composite operations, currently on CPU and
GPU

Fig. 2. Bohrium Overview

A. The Bohrium Runtime System

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode1. Components are
allowed to be architecture-specific, but they are all interchange-
able since all components use the same communications proto-
col. The idea is to make it possible to combine components in
a setup that match a specific execution environment. Bohrium
consist of the following three component types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of arrays. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one imple-
mentation of each component type must be available. However,
the exact component setup depends on the runtime system and
what hardware to utilize, e.g. executing NumPy on a single ma-
chine using the CPU would require a Bridge implementation
for NumPy, a VEM implementation for a machine node, and
a VE implementation for a CPU. Now, in order to utilize a
GPU; instead, we can exchange the CPU-VE with a GPU-VE

1The name vector is roughly the same as the NumPy array type, but from
a computer architecture perspective vector is a more precise term.

base

type

ndim

start

shape

stride

data

*

*

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension

O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

11 10

0 1

3 4

Seen 3d-array

Fig. 3. Descriptor for n-dimensional array and corresponding interpretation

without having to change a single line of code in the NumPy
application. This is a key contribution of Bohrium: the ability
to change the execution hardware without changing the user
application.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that
constitutes the link between the high-level user language and
the low-level execution engine. The bytecode is designed
with the declarative array-programming model in mind where
the bytecode instructions operate on input and output arrays.
The arrays can also be shaped into multi-dimensional arrays,
to avoid excessive memory copying. These reshaped array
views are then not necessarily comprised of elements that are
contiguous in memory. Each dimension comprises a stride and
size, such that any regularly shaped subset of the underlying
data can be accessed. We have chosen to focus on a simple,
yet flexible, data structure that allows us to express any
regularly distributed arrays. Figure 3 shows how the shape is
implemented and how the data is projected.

Figure 4 illustrates a list of vector bytecode that the NumPy
Bridge will generate when executing one of the iterations in
the Python/NumPy implementation of the heat equation solver
(Fig. 1). The example demonstrates the nearly one-to-one
mapping from the NumPy vector operations to the Bohrium
vector bytecode. The code generates seven temporary arrays
(t1, ..., t7) that are not specified in the code explicitly, but
is a result of how Python interprets the code.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD2 and the VEM through SPMD3.

In the following section, we will go through the four types
of vector bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes perform a unary
or binary operation on all array elements. Bohrium currently
supports 53 element-wise operations, e.g. addition, multipli-
cation, square root, equal, less than, logical and, bitwise and,
etc. For element-wise operations, Bohrium only allows data

2Single Instruction, Multiple Data
3Single Program, Multiple Data

1 ADD t1 , grid [center] , grid [north]
2 ADD t2 , t1 , grid [south]
3 FREE t1
4 DISCARD t1
5 ADD t3 , t2 , grid [east]
6 FREE t2
7 DISCARD t2
8 ADD t4 , t3 , grid [west]
9 FREE t3

10 DISCARD t3
11 MUL work , const (0 . 2) , t4
12 FREE t4
13 DISCARD t4
14 MINUS t5 , work , grid [center]
15 ABS t6 , t5
16 FREE t5
17 DISCARD t5
18 ADD_REDUCE t7 , t6
19 FREE t6
20 DISCARD t6
21 ADD_REDUCE delta , t7
22 FREE t7
23 DISCARD t7
24 IDENTITY grid [center] , work
25 FREE work
26 DISCARD work
27 SYNC delta

Fig. 4. Bytecode generated in each iteration of the Python/NumPy imple-
mentation of the heat equation solver (Fig. 1). For convenience, the arrays
and views are given readable names. Views are annotate in “[]”. Note that
the SYNC instruction at line 27 transfers the scalar delta from the Bohrium
address space to the NumPy address space in order for the Python interpreter
to evaluate the while condition (Fig. 1, line 9).

overlap between the input and the output arrays if the access
pattern is the same, which, combined with the fact that they
are all stateless, makes it straightforward to execute them in
parallel.

2) Reduction: Reduction bytecodes reduce an input dimen-
sion using a binary operator. Again, Bohrium does not allow
data overlap between the input and the output arrays and
the operator must be associative. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them is stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative properties.

3) Data Management: Data Management bytecodes de-
termine the data ownership of arrays and consist of three
different bytecodes. The synchronization bytecode orders a
child component to place the array data in the address space
of its parent component. The free bytecode orders a child
component to free the data of a given array in the global
address space. Finally, the discard operator that orders a child
component to free the meta-data associated with a given array,
and signals that any local copy of the data is now invalid.
These three bytecodes enable lazy allocation where the actual
array data allocation is delayed until it is used. Often arrays
are created with a generator (e.g. random, constants) or with
no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save memory
allocations and copies.

4) Extension methods: The bulk of a Bohrium execution
consists mainly of the above three types of bytecode. However,
not all algorithms may be efficiently implemented in this
way. In order to handle operations that would otherwise be
inefficient or even impossible, we introduce a fourth bytecode

type: extension methods. Bohrium imposes no restrictions to
this generic operation; the extension writer has total freedom.
However, Bohrium does not require that all components sup-
port the operation. Initially, the user registers the extension
method with paths to all component-specific implementations
of the operation. The user then receives a new handle for this
extension method and may use it subsequently as a vector byte-
code. Matrix multiplication and FFT are examples of extension
methods that are obviously needed. For matrix multiplication, a
CPU specific implementation could simply call a native BLAS
library and a Cluster specific implementation could call the
ScaLAPACK library[14].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

Due to the nature of Bohrium, being a runtime system,
and Python being an interpreted language, the Python bridge
will need to synchronize with Bohrium every time the while
statement in figure 1 line 9 is evaluated i.e. for each loop
iteration. This means that the body of the loop (Fig. 1 l. 10 –
12) resulting in the bytecode in figure 4 will be sent repeatedly
by the bridge. Every time as a separate batch. In fact, Bohrium
does not provide any control instructions at all.

D. Vector Engine Manager

In order to couple the Bridge and the hardware specific
Vector Engine, Bohrium uses a third component: the Vector
Engine Manager (VEM). The VEM is responsible for one
memory address space in the hardware configuration. In our
configuration, we only use a single machine (Node-VEM) thus
the role of the VEM component is insignificant. The Node-
VEM will simply forward all instruction from its parent to its
child components.

E. Vector Engine

The Vector Engine (VE) is the only component that does
computations, specified by the user application. It has to
execute the instructions it receives in a valid order; that comply
with the dependencies between instructions, i.e. program order.
Furthermore, it has to ensure that its parent VEM has access
to the results as governed by the Data Management bytecodes.

The VE is the focus of this paper – in order to utilize
the GPU, we implement a GPU-VE that execute Bohrium
bytecode on the GPU. In the following section, we will
describe our GPU-VE in detail.

IV. THE GPU VECTOR ENGINE

The Bohrium vector bytecode with its SIMD properties is
a good match for the GPU. In this section, we will explain
how we have chosen to convert the vector bytecode into code
that executes on the GPU.

A. Implementation framework

In order to implement the GPU-VE, we use the OpenCL[8]
framework. There are many possible choices for an imple-
mentation framework. One of the main goals of the Bohrium
project is to deliver high performance. For this reason, we
want a framework that allows for fairly low-level control of
the hardware and relatively close mapping between the code
we generate and the operations the hardware executes. The
other candidates for this level of control are CUDA[9] and
LLVM[15]. While LLVM could be a good choice for the code
generated for the GPU kernels, LLVM depends on CUDA or
OpenCL, to drive the GPU i.e. compiling and loading kernels
and moving data to and from GPU memory.

The obvious alternative is the CUDA framework though
it has a couple of drawbacks compared to OpenCL. Firstly,
CUDA imposes a vendor lock in since it only supports
devices by NVIDIA. We would prefer our solution to be ven-
dor independent. Secondly, CUDA uses the pseudo-assembly
language, PTX, which is more complex, requiring address
calculations, and explicit load/store operations and register
management. Alternatively, it is possible to compile C/C++
code to PTX using the external compiler, nvcc, and pay the
relatively expensive cost of a system call. CUDA allegedly has
a performance advantage (on NVIDIA devices) but studies[16]
have shown that OpenCL achieves comparable performance
under fair comparison. On top of this, we expect that the
simplicity of the GPU kernels we generate makes the effect of
advanced optimizations negligible.

B. Executing Bohrium bytecode on the GPU

The element-wise operations (Sec. III-B1) are considered
the basic operations of Bohrium, as these are in effect vec-
tor operations. They are also the most common bytecodes
received by the vector engine. A notable property of these
vector operations is that all input and output operands have
the same size even though the underlying base array might
have different sizes. The Bridge will enforce this property
through dimension duplications and/or vector slicing. Because
of this property, mapping the element-wise operations to the
GPU is straightforward through the SIMD execution model.
Since the SIMD execution model is often recommended as
an implementation model for the SIMT architecture of the
GPU[9], it seems like a simple and logical choice. We map
one thread to each output data element where each thread
is responsible for fetching the required input data, doing the
required calculations, and saving the result to the correct index
in the output data.

1) Detecting kernel boundaries: A Bohrium bytecode rep-
resents a relatively simple operation, addition, subtraction,
square root, less than, etc. The execution time for such an
operation is very small compared to the time required to fetch
the data elements from global memory, and writing the result
back to global memory. Even when spawning millions of
threads, and thus implementing latency hiding on the GPU,
fetching and writing data is going to be the dominant time
factor. The result is that single operation microkernels is not a
viable solution for the GPU vector engine.

We need a scheme for collecting multiple operations into
compound kernels for the GPU to run. Finding the optimal

execution order for all the instructions in a batch is an NP-hard
problem[17]. However, there exist different heuristic methods
for finding good execution orders, while obeying the inter-
instruction dependencies[18]. It is, however, out of the scope
of this paper to do a performance analysis of these methods
for our given setup. We have chosen to implement a simple
scheme that guarantees a legal ordering of instruction since it
does not reorder the instructions.

This scheme keeps adding instructions, in order, from the
batch to the current kernel for as long as the instructions are
compatible. When the scheme encounters a non-compatible
instruction, it schedules the current kernel under construction
for execution. Subsequently, the scheme initiates a new kernel
with the non-compatible instruction as the first instruction.
The scheme repeats this process until all instruction has
been scheduled and executed. The criteria for a compatible
instruction are:

1) The instruction has to be one of the element-wise
operations. If it is a reduction or an extension method
the current kernel will be executed before executing
the reduction- or extension method instruction.

2) The shape and size of the data elements that are
accessed must be the same as that of the kernel.

3) Adding the instruction can not create a data hazard.
A data hazard is created if the new instruction reads
a data object, that is also written in the same kernel,
and the access patterns are not completely aligned.
This is similar to loop fusion strategies implemented
by compilers.

When the rules, outlined above, are applied to the bytecode
example shown in figure 4, four kernel boundaries will be
found. Resulting in four kernels. Of these four kernels only
three of them will be executed on the GPU. The bytecode
shown in figure 4 is produced by the loop body in figure 1, line
9 – 12, and is repeated for as long as delta > epsilon,
although every iteration will produce a separate bytecode batch
as explained in sec. III-C.

At the beginning of the batch, the current kernel is empty
thus the first operation (the ADD in line 1) is added. The first
operation that requires the insertion of a boundary and trig-
gers kernel compilation and execution is the ADD_REDUCE-
instruction in line 18, because this is not an element-wise
operation. Reduction is handled separately, and it is compiled
into its own kernel. The second reduction will also be handled
as a separate kernel, except, it is not executed on the GPU.
Rather the result of the previous reduction is transferred to the
host memory, and the second reduction is executed on the host
CPU. This is done for efficiency, as the second reduction is too
small to utilize the GPU. Finally, the IDENTITY-operation in
line 24, to copy the intermediate result back to the main grid,
is compiled into its own kernel due the fact that the batch of
instructions ends after the SYNC-instruction in line 27.

It is worth noticing that if the while loop from figure 1 was
a for-loop instead, or in another way did not depend on the
calculations within the loop, the batches would be concatenated
into one, i.e. the bytecode in figure 4 would repeat with line
1 again after line 27. If this were the case, the IDENTITY-
operation in line, 24 would still end up in its own kernel, be-
cause trying to add the following ADD-operation would break

1 __kernel vo id kernelb981208bc41e203a (
2 __global f l o a t * grid
3 , __global f l o a t * work
4 , c o n s t f l o a t s0
5 , __global f l o a t * t6)
6 {
7 c o n s t size_t gidy = get_global_id (1) ;
8 i f (gidy >= 1000)
9 r e t u r n ;

10 c o n s t size_t gidx = get_global_id (0) ;
11 i f (gidx >= 1000)
12 r e t u r n ;
13 f l o a t center = grid [gidy*1002 + gidx*1 + 1 0 0 3] ;
14 f l o a t north = grid [gidy*1002 + gidx*1 + 1] ;
15 f l o a t south = grid [gidy*1002 + gidx*1 + 1 0 0 4] ;
16 f l o a t east = grid [gidy*1002 + gidx*1 + 1 0 0 2] ;
17 f l o a t west = grid [gidy*1002 + gidx*1 + 2 0 0 5] ;
18 f l o a t t1 ;
19 t1 = center + north ;
20 f l o a t t2 ;
21 t2 = t1 + south ;
22 f l o a t t3 ;
23 t3 = t2 + east ;
24 f l o a t t4 ;
25 t4 = t3 + west ;
26 f l o a t work_ ;
27 work_ = s0 * t4 ;
28 f l o a t t5 ;
29 t5 = work_ - center ;
30 f l o a t t6_ ;
31 t6_ = fabs (t5) ;
32 work [gidy*1000 + gidx*1 + 0] = work_ ;
33 t6 [gidy*1000 + gidx*1 + 0] = t6_ ;
34 }

Fig. 5. First of three kernels generated by the GPU-VE from the bytecode
shown in Fig. 4. The kernel inplements line 1 – 17 of the bytecodes.

the third rule, listed above. As the input grid[north] is un-
aligned with the output grid[center] of the IDENTITY-
operation.

Of the data management instructions, only the DISCARD
instruction potentially effects the kernel. If it is one of the
output arrays of one of the instructions of the current kernel,
that means that the result is not used outside the kernel, and;
therefore it does not need to be saved for later use. This saves
the memory write of one data element per thread.

2) Moving data to and from GPU: The remaining data
management instructions, FREE and SYNC, do not effect the
content of the kernel. A SYNC-instruction may force the
execution of a kernel, if the array in question is being written
by the current kernel, and the data is the copied from the GPU
to the main memory for availability to the rest of the system.

A FREE-instruction only concerns the main memory of the
system thus; it is just executed when encountered.

There is no instruction for signaling that data needs to be
copied to the GPU from main memory. The data will simply
be copied to the GPU as it is needed.

3) Source code generation: Before a kernel can be sched-
uled for execution, it needs to be translated into an OpenCL
C kernel function. The bytecode sequence shown in figure
4 will create three GPU kernels. Since the bytecode se-
quence is repeated for each iteration of the while loop of the
Python/NumPy code from figure 1, the three kernels could be
generated for each iteration. While generation of the OpenCL
source code is relatively inexpensive, calling the OpenCL com-
piler and translating the source code into a hardware specific

1 __kernel vo id reduce6020b3d120d0ec9a (
2 __global f l o a t * t7
3 , __global f l o a t * t6)
4 {
5 c o n s t size_t gidx = get_global_id (0) ;
6 i f (gidx >= 1000)
7 r e t u r n ;
8 size_t element = gidx*1 + 0 ;
9 f l o a t accu = t6 [element] ;

10 f o r (i n t i = 1 ; i < 1000 ; ++i)
11 {
12 element += 1000 ;
13 accu = accu + t6 [element] ;
14 }
15 t7 [gidx*1 + 0] = accu ;
16 }

Fig. 6. Source code for the reduction kernel produced by line 18 of the
bytecode in Fig. 4

1 __kernel vo id kernela016730fd6e00085 (
2 __global f l o a t * grid
3 , __global f l o a t * work)
4 {
5 c o n s t size_t gidy = get_global_id (1) ;
6 i f (gidy >= 1000)
7 r e t u r n ;
8 c o n s t size_t gidx = get_global_id (0) ;
9 i f (gidx >= 1000)

10 r e t u r n ;
11 f l o a t work_ = work [gidy*1000 + gidx*1 + 0] ;
12 f l o a t center ;
13 center = work_ ;
14 grid [gidy*1002 + gidx*1 + 1003] = center ;
15 }

Fig. 7. Source code for the copy back kernel produced by line 24 of the
bytecode in Fig. 4

kernel comes at a cost that has a significant impact on the total
execution time of the program. To minimize the time spent on
compilation, the GPU-VE will cache all compiled kernels for
the lifetime of the program. The recurrence of a byte-code
sequence is registered, and the compiled kernel is reused by
simply calling it again, possibly with new parameters.

Every single bytecode is trivially translated into a single
line of OpenCL C code, since every unique array-view just
needs to be given a unique name. This way line 1 – 15 from
figure 4 is translated into the calculation body an OpenCL
function kernel: line 18 – 31 of figure 5, which is then
prepended with the code for loading the needed data (line 13
– 17), and appended with code for saving the results (line 32 –
33). Notice that t1 ... t5 are not saved, as they are not needed
outside the kernel. Code to make sure surplus threads do not
write to unintentional addresses is inserted (line 8 – 9 & 11 –
12). Finally, the function header, with call arguments consisting
of input and output parameters (line 1 – 5) are added to the
code block. The kernel is then compiled and executed. The
kernel code for the reduction is included in figure 6. Figure
7 shows the code for the copy-back-function generated by the
IDENTITY-instruction in line 24 of figure 4.

V. PERFORMANCE STUDY

We have conducted a performance study in order to evalu-
ate how well the GPU-backend performs, compared to regular
sequential Python/NumPy execution. This is by no means

Machine: Workstation Laptop
Processor: Intel Core i7-3770 Intel Core i5-2410M
Clock: 3.4 GHz 2.3 GHz
#Cores: 4 2
Peak performance: 108.8 GFLOPS 37 GFLOPS
L3 Cache: 16MB 3MB
Memory: 128GB DDR3 4GB DDR3

TABLE I. SYSTEM SPECIFICATIONS

Machine: Workstation Laptop
Vendor: AMD NVIDIA NVIDIA
Model: HD 7970 GTX 680 GT 540M
#Cores: 2048 1536 96
Clock: 1000 MHz 1006 MHz 672 MHz
Memory: 3GB GDDR5 2GB DDR5 1GB DDR3
-bandwidth: 288 GB/s 192 GB/s 28.8 GB/s
Peak perf.: 4096 GFLOPS 3090 GFLOPS 258 GFLOPS

TABLE II. GPU SPECIFICATIONS

a study of how well Bohrium with the GPU-backend, or
NumPy utilize the hardware. It is simply an illustration of the
magnitude of speedup the end user can expect to experience,
when using Bohrium with the GPU-backend. Keeping in mind
that the transition from native Python/NumPy to Bohrium is
completely seamless and requires no effort of the user. Wall
clock time is measured for all benchmark executions, which
include data transfers between the CPU and GPU. For the
performance study, we use the following four well-known
benchmark applications implemented in Python/NumPy:

Black Scholes The Black-Scholes pricing model is a partial
differential equation, which is used in finance for calcu-
lating price variations over time[19]. This implementation
uses a Monte Carlo simulation to calculate the Black-
Scholes pricing model.

Successive Over-relaxation (SOR) A large 2D heat equation
using Successive Over-relaxation. This is a variant of
the Gauss–Seidel method for solving a linear system of
equations, with faster convergence.

Shallow Water A simulation of a system governed by the
shallow water equations. A drop is placed in a still
container, and the water movement is simulated in discrete
time steps. It is a Python/NumPy implementation of a
MATLAB application by Burkardt [20].

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and a ve-
locity move in space according to the laws of Newtonian
physics. The algorithm is straightforward, and computes
all body-body interactions, O(n2), with simple collision
detection. We have chosen this naive implementation in
order to represent a whole class of problems calculating
forces of all pairs, often used in molecular dynamics.

The initial data for all benchmarks are constructed within
the Python program, and as such can be initialized on the GPU
when running the Bohrium enable interpreter.

All four benchmarks iterate through consecutive time steps,
where the calculations for times step tn requires the result for
time step tn−1.

All four applications are executed on both a workstation
system (see table I), in two different GPU setups (see table II),
and on a laptop system (see table I and II). The two workstation
setups are chosen with two purposes: Firstly to demonstrate

the magnitude of speedup one can expect from the Boh-
rium GPU implementation, in this first naive approach while
demonstrating that the Bohrium GPU-VE is cross platform.
Secondly to explore how GPUs from the two major vendors
(NVIDIA and AMD) compare when used as Bohrium GPU
execution engines. The two GPUs are reasonably new, and the
prices are comparable. We also chose to run the benchmark
application on a laptop system to demonstrate that such a
system also benefits from running Python/NumPy through the
Bohrium/GPU run-time system.

The four benchmarks are run using both 32 bit floats,
and 64 bit floats (doubles). It is our experience, that most
scientific applications are written using 64 bit floats. This is
seldom a conscious choice on the part of the programmer,
but the result of the fact that that is the default data type, of
both NumPy, MATLAB, and other frameworks used by the
scientific community. When moving the applications to the
GPU, this choice of data type comes at a cost. The Fermi
(NVIDIA) architecture performs eight single precision floating
point operations for every double precision (8:1 ratio), and on
the Kepler (NVIDIA) architecture it is a 24:1 ratio. The AMD
Radeon HD 7900 series delivers double precision throughput
at a 4:1 ratio relative to its single precision throughput. While
one of the goals of the Bohrium project is to hide hardware
specific choices from the programmer, the requirement of the
data type is application specific. As such, it has to be the
choice of the programmer. Maybe moving more applications
to GPU will force scientific application developers to think
more actively about the data type they chose.

For each benchmark, a Bohrium execution that uses the
GPU-backend is compared with a native NumPy execution.
Speedup is calculated based on the average wall clock time
of five executions. While measuring the performance, the
variation of the measured wall clock timings did not exceed 5%
within any of the benchmarks. All measurements are preceded
by a warm-up run.

Native NumPy/Python execution time is used as a baseline
for calculating the speedup of the Bohrium/GPU engine. We
view this as fair and relevant comparison since it is exactly
the same code (Python script) that is executed in both setups.
Still, it is relevant to ask: “How efficient is Python/NumPy
code” This is a very open question, and, therefore, hard to
answer. To quantify Python/NumPy’s execution power, we
have implemented the Black-Scholes benchmark using the
Armadillo[4] library, and the Blitz++[5] library, for com-
parison. When running these benchmarks on datasets of the
same size as for the GPU benchmarks, Armadillo is 24%
faster than Python/NumPy and Blitz++ is 34% faster than
Python/NumPy. Both numbers are the best achieved speedups,
obtained on the biggest problems. Even though these are
not negligible speedups, Python/NumPy’s performance is still
in the same order of magnitude. Acquiring these speedups
requires rewriting the code. Bohrium with the GPU backend
delivers speedups that are orders of magnitude better, while
running the same exact code.

A. Results

The Black-Scholes- and N-body applications are both run
for 50 time loop iteration, and the SOR- and shallow water

0

10

20

30

40

50

60

70

80

Laptop

application

sp
e
e
d
u
p

Fig. 8. Relative speedup of all application running on the laptop. BS: Black-
Scholes, SOR: Successive Over-Relaxation, SW: Shallow Water, NB: N-Body.
32/64: 32 or 64 bit floating point numbers.

applications are both run for 100 iterations. This is far less than
the applications would run in at “real” scenario, but enough
that the majority of application run time is spent execution
kernels on the GPU, thereby giving realistic and stable results.

Figure 8 shows the relative speedup of running the four
applications with both double and single precision floats, on
the laptop setup (see table I and II). It is clear to see the penalty
payed for double precision in the Black-Scholes application.
All of the applications are run with a problem size that allow
them to fit within the 1GB of memory on the GPU. When
running the applications with double precision data type the
problem size is halved. Making all the data structures of the
application take up the same amount of space independent
of data type. Thus putting the same amount of stress on the
memory bandwidth. The run-time for the BS64 is 3.92 times
that of the BS32, requiring half the amount of floating point
operations (half problem size). This comes pretty close to
the specs of 1:8 single to double precision ratio. Indicating
that Black-Scholes application running on the GPU is largely
computational bound. This results in a speedup on the given
laptop of 72 times for single precision, and 11 times for the
double precision. Our assessment is that this is close to the
optimum of what one can expect from running Python/NumPy
applications through the Bohrium/GPU system, with the cur-
rent implementation. The rest of the applications are to a
larger, but varying, degree more memory bound. This results
in a smaller but still significant speedup for these applications,
and a smaller difference between using double or single point
precision. It is worth noting that even the N-Body simulation,
faring the worst, still delivers a 9.4 to 9.7 times speedup.

The Black-Scholes application is embarrassingly parallel,
which makes it perfect for porting to the GPU. Even with
the relatively simple scheme for kernel generation, the GPU-
VE currently implements; it generates only one kernel per
iteration of the main loop. The result is a very effective
execution that achieves a speedup of 834 times (ATI) and
643 times (NVIDIA) respectively for the largest 32bit float
problems (Fig. 9). Additionally, it clearly demonstrates the
comparably poor 64bit performance of the Kepler architecture
(NVIDIA). Remember: the GTX 680 deliver 1/24 double

0

100

200

300

400

500

600

700

800

900

GTX 680 (f64)

ATI 7970 (f64)

GTX 680 (f32)

ATI 7970 (f32)

problem size

sp
e

e
d

u
p

Fig. 9. Relative speedup of the Black the Scholes application running on the
workstation

0

20

40

60

80

100

120

GTX 680 (f64)

ATI 7970 (f64)

GTX 680 (f32)

ATI 7970 (f32)

problem size

sp
e

e
d

u
p

Fig. 10. Relative speedup of the SOR application running on the workstation

precision operation per single precision operation according
the specifications, which is worse than the ratio of 1:14 seen
in the Black-Scholes benchmark. This indicates that even in
the embarrassingly parallel Black-Scholes application, which
generates the largest kernel and has the best operation to
calculation ratio, memory bandwidth still plays a role as a
limiting factor.

The SOR application is the most memory bound and the
least compute intensive of the four applications. Still, it is
clearly beneficial to utilize the GPU through Bohrium (Fig.
10). For the largest problem size, it achieves a speedups of 109
and 94 times for the single precision versions and 72 and 61
times for the double precision versions. Even for the smallest
problem size, it achieves a significant speedup. The drop-off in
performance for the ATI GPU for single precision from 8k x
8k to 16k x 16k is something that needs further investigation.

The shallow water application works on several distinct
arrays and has more complex computational kernels, compared
to the SOR application. The more complex kernel is why we
are able to get better performance. Again we observe the same
drop off in performance for the largest problem size – though
this time on the NVIDIA GPU (see fig. 11). The more curious

0

20

40

60

80

100

120

140

160

180

200

GTX 680 (f64)

ATI 7970 (f64)

GTX 680 (f32)

ATI 7970 (f32)

problem size

sp
e

e
d

u
p

Fig. 11. Relative speedup of the shallow water application running on the
workstation

0

20

40

60

80

100

120

GTX 680 (f64)

ATI 7970 (f64)

GTX 680 (f32)

ATI 7970 (f32)

problem size

sp
e

e
d

u
p

Fig. 12. Relative speedup of the N-body application running on the
workstation

observation one can make from the graph in figure 11 is that
the ATI GPU performs much poorer than NVIDIA. ATI has
both better specifications in both memory bandwidth and peak
performance. We will have to investigate whether the code we
generate favors NVIDIA GPUs, and if we can do something
to remedy this.

The straight forward algorithm used in the N-body sim-
ulations computes distances of all pairs. Expanding the N-
body data to O(N2) data points. While calculating the forces,
the data is reduced back to the original O(N) size. Due to
the simple algorithm use in the GPU-VE, outlined in section
IV-B1, the reduction will force a kernel boundary. Resulting in
the expanded data being written back to global memory, before
being read again by another reduction kernel – thereby being
reduced. The large space requirements, due to the all pairs
expansion, also puts an unfortunate limitation on the problem
sizes Numpy is able to run. Only the two largest problem sizes
are theoretically able to use all the core on the two GPUs,
which leaves little room for latency hiding. Still, the Bohrium
GPU backend is able to achieve up to 40–100 times speedup
as Figure 12 illustrate.

One of the future plans for the GPU-VE is to be able to
generate kernels, where the expansion and reduction happen
within the same kernel. This would dramatically reduce both
the space requirements and the load on the limited memory
bandwidth for this type of application.

It is clear from the graphs in figure 9–12 that the bigger the
problem size, the better suited it is for execution on the GPU.
This is no surprise since a bigger problem, will instantiate more
threads, better utilizing the many cores of the GPUs, and at
the same time enabling better latency hiding for the memory
fetches. It is also expected, that there is a certain initialization
cost for calling an external library, generating and decoding
the bytecode, generation kernels and source code and invoking
the GPU kernels. All of the experiments above have been run
for a small, but sufficient number of iterations that the initial
costs are amortized. To illustrate that the initialization costs
are not excessively large, all four benchmark applications were
run for just a single iteration. The Black-Scholes application
still shows a speedup of 10–500 times dependent on the
problem size for a single iteration. The SOR and Shallow
water applications show speedup for all, but the two smallest
problem sizes (up to 30 times). Finally, the N-body application
only shows speedup for the two largest problem sizes with a
single iteration – keeping in mind that it is only these problem
sizes that theoretically are able to utilize all cores. All the
experiments that do not show a speedup for a single iteration
has a total execution time of less than 0.4 seconds. We feel
that this is a very good result.

VI. FUTURE WORK

As the performance study demonstrates, we are able to
show some significant performance improvements from run-
ning the Python/NumPy applications on the GPU. The im-
provements are possible through relatively simple strategy and
implementation thus we expect to improve the GPU utilization
even further.

The Bohrium project is currently working on a directed
acyclic graph (DAG) representation for bytecode dependencies
that will enable out-of-order execution and improved tempo-
rary array elimination. Furthermore, the DAG will enable the
generation of larger, more complex kernels and better kernel
reuse while easing the detection of code blocks that expands
and reduces data, as the N-body application does. We expect to
be able to contain these expansions/reductions within a kernel,
effectively boosting performance and drastically reducing the
memory footprint of such applications.

For now, the GPU-VE is limited to executing an application
where the maximum memory footprint never exceeds the
available memory on the GPU. The goal is to enable the GPU-
VE to work on data sets that do not fit within the GPU memory,
by employing an array splitting and buffering scheme. This
will in turn enable us to experiment with utilizing multiple
GPUs that collaborate on solving the same task.

VII. CONCLUSION

In this work, we show that it is possible to run unmodified
Python/NumPy code on modern GPUs. We use the Bohrium
runtime system to translate the NumPy array operations into
an array based bytecode sequence. Executing these bytecodes

on two GPUs from different vendors shows great performance
gains. In particularly the Black-Scholes application achieved a
speedup of 834 times compared with native NumPy execution.

We believe that scientist working with computer simula-
tions should be allowed to focus on their field of research and
not spend excessive amounts of time learning exotic program-
ming models and languages. We have achieved very promising
results with a relatively simple approach. We expect to be
able to improve further in these results in the future making
well-known, readily available programming languages with a
high abstraction level a viable choice for high performance
computer simulations.

REFERENCES

[1] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

[2] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[3] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[4] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

[5] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[6] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and
B. Vinter, “Bohrium: Unmodified NumPy Code on CPU, GPU, and
Cluster,” in 4th Workshop on Python for High Performance and Scien-
tific Computing (PyHPC’13), 2013.

[7] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[8] A. Munshi et al., “The OpenCL Specification,” Khronos OpenCL
Working Group, vol. 1, pp. l1–15, 2009.

[9] C. Nvidia, “Programming guide,” 2008.
[10] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution

environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[11] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling
an embedded data parallel language,” in Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 47–56. [Online].
Available: http://doi.acm.org/10.1145/1941553.1941562

[12] V. Mnih, “Cudamat: a cuda-based matrix class for python,” Department
of Computer Science, University of Toronto, Tech. Rep. UTML TR,
vol. 4, 2009.

[13] T. Tieleman, “Gnumpy: an easy way to use gpu boards in python,”
2010.

[14] L. S. Blackford, “ScaLAPACK,” in Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Super-
computing 96, 1996, p. 5.

[15] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[16] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive
performance comparison of cuda and opencl,” in Proceedings of the
2011 International Conference on Parallel Processing, ser. ICPP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 216–225.
[Online]. Available: http://dx.doi.org/10.1109/ICPP.2011.45

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[18] A. A. Khan, C. L. McCreary, and M. S. Jones, “A comparison
of multiprocessor scheduling heuristics,” in Proceedings of the 1994
International Conference on Parallel Processing - Volume 02, ser. ICPP
’94. Washington, DC, USA: IEEE Computer Society, 1994, pp. 243–
250.

[19] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[20] J. Burkardt, “Shallow water equations,” peo-
ple.sc.fsu.edu/j̃burkardt/m src/shallow water 2d/, [Online; accessed
March 2010].

7.5 Separating NumPy API from Implemen-

tation

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Ken-
neth Skovhede.
5th Workshop on Python for High Performance and Scientific Computing
(PyHPC 2014).

88

Separating NumPy API from Implementation

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede
Niels Bohr Institute, University of Copenhagen, Denmark

{madsbk/safl/blum/skovhede}@nbi.dk

Abstract—In this paper, we introduce a unified back-
end framework for NumPy that combine a broad range of
Python code accelerators with no modifications to the user
Python/NumPy application. Thus, a Python/NumPy application
can utilize hardware architecture such as multi-core CPUs and
GPUs and optimization techniques such as Just-In-Time compi-
lation and loop fusion without any modifications. The backend
framework defines a number of primitive functions, including
all existing ufuncs in NumPy, that a specific backend must
implement in order to accelerate a Python/NumPy application.
The framework then seamlessly translates the Python/NumPy
application into a stream of calls to these primitive functions.

In order to demonstrate the usability of our unified backend
framework, we implement and benchmark four different back-
end implementations that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium. The results are
very promising with a speedup of up to 18 compared to a pure
NumPy execution.

I. INTRODUCTION

Python is a high-level, general-purpose, interpreted lan-
guage. Python advocates high-level abstractions and conve-
nient language constructs for readability and productivity
rather than high-performance. However, Python is easily ex-
tensible with libraries implemented in high-performance lan-
guages such as C and FORTRAN, which makes Python a great
tool for gluing high-performance libraries together[1]. NumPy
is the de-facto standard for scientific applications written in
Python[2] and contributes to the popularity of Python in the
HPC community. NumPy provides a rich set of high-level
numerical operations and introduces a powerful array object.
The array object is essential for scientific libraries, such as
SciPy[3] and matplotlib[4], and a broad range of Python
wrappers of external scientific libraries[5], [6], [7]. NumPy
supports a declarative vector programming style where numer-
ical operations applies to full arrays rather than scalars. This
programming style is often referred to as vector or array pro-
gramming and is commonly used in programming languages
and libraries that target the scientific community, e.g. HPF[8],
ZPL[9], MATLAB[10], Armadillo[11], and Blitz++[12].

NumPy does not make Python a high-performance lan-
guage but through array programming it is possible to achieve
performance within one order of magnitude of C. In contrast
to pure Python, which typically is more than hundred if
not thousand times slower than C. However, NumPy does
not utilize parallel computer architectures when implementing
basic array operations; thus only through external libraries,
such as BLAS or FFTW, is it possible to utilize data or task
parallelism.

In this paper, we introduce a unified NumPy backend that
enables seamless utilization of parallel computer architecture

such as multi-core CPUs, GPUs, and Clusters. The framework
exposes NumPy applications as a stream of abstract array
operations that architecture-specific computation backends can
execute in parallel without the need for modifying the original
NumPy application.

The aim of this new unified NumPy backend is to provide
support for a broad range of computation architectures with
minimal or no changes to existing NumPy applications. Fur-
thermore, we insist on legacy support (at least back to version
1.6 of NumPy), thus we will not require any changes to the
NumPy source code itself.

II. RELATED WORK

Numerous projects strive to accelerate Python/NumPy ap-
plications through very different approaches. In order to utilize
the performance of existing programming languages, projects
such as Cython[13], IronPython[14], and Jython[15], introduce
static source-to-source compilation to C, .NET, and Java,
respectively. However, none of the projects are seamlessly
compatible with Python – Cython extends Python with static
type declarations whereas IronPython and Jython do not sup-
port third-party libraries such as NumPy.

PyPy[16] is a Python interpreter that makes use of Just-
in-Time (JIT) compilation in order to improve performance.
PyPy is also almost Python compliant, but again PyPy does
not support libraries such as NumPy fully and, similar to
IronPython and Jython, it is not possible to fall back to
the original Python interpreter CPython when encountering
unsupported Python code.

Alternatively, projects such as Weave[17], Numexpr[18],
and Numba[19] make use of JIT compilation to accelerate
parts of the Python application. Common for all of them is
the introduction of functions or decorators that allow the user
to specify acceleratable code regions.

In order to utilize GPGPUs the PyOpenCL and PyCUDA
projects enable the user to write GPU kernels directly in
Python[20]. The user writes OpenCL[21] or CUDA[22] spe-
cific kernels as text strings in Python, which simplifies the
utilization of OpenCL or CUDA compatible GPUs but still
requires OpenCL or CUDA programming knowledge. Less in-
trusively, libgpuarray, which is part of the Theano[23] project,
introduces GPU arrays on which all operations execute on the
GPU. The GPU arrays are similar to NumPy arrays but are
not a drop-in replacement.

III. THE INTERFACE

The interface of our unified NumPy backend (npbackend)
consists of two parts: a user interface that facilitates the
end NumPy user and a backend interface that facilitates the

Fig. 1: The Software Stack

.

backend writers (Fig. 1). The source code of both interfaces
and all backend implementations is an available at the Bohrium
project’s website1 for further inspection. In the following two
subsections, we present the two interfaces.

A. The User Interface

The main design objective of the user interface is easy
transition from regular NumPy code to code that utilizes a
unified NumPy backend. Ideally, there should be no difference
between NumPy code with or without a unified NumPy
backend. Through modifications of the NumPy source code,
the DistNumPy[24] and Bohrium[25] projects demonstrate
that it is possible to implement an alternative computation
backend that does not require any changes to the user’s NumPy
code. However, it is problematic to maintain a parallel version
of NumPy that contains complex modifications to numerous
parts of the project, particularly when we have to fit each
modification to a specific version of NumPy (version 1.6
through 1.9).

As a consequence, instead of modifying NumPy, we in-
troduce a new Python module npbackend that implements an
array object that inherit from NumPy’s ndarray. The idea is
that this new npbackend-array can be a drop-in replacement
of the numpy-array such that only the array object in NumPy
applications needs to be changed. Similarly, the npbackend
module is a drop-in replacement of the NumPy module.

The user can make use of npbackend through an ex-
plicit and an implicit approach. The user can explicitly im-
port npbackend instead of NumPy in the source code e.g.
“import npbackend as numpy” or the user can alias
NumPy imports with npbackend imports globally through
the -m interpreter argument e.g. “python -m npbackend
user_app.py”.

Even though the npbackend is a drop-in replacement, the
backend might not implement all of the NumPy API, in
which case npbackend will gracefully use the original NumPy
implementation. Since npbackend-array inherits from numpy-
array, the original NumPy implementation can access and
apply operations on the npbackend-array seamlessly. The result
is that a NumPy application can utilize an architecture-specific
backend with minimal or no modification. However, npback-
end does not guarantee that all operations in the application
will utilize the backend — only the ones that the backend
support.

1http://bh107.org

1 i m p o r t npbackend as np
2 i m p o r t matplotlib .pyplot as plt
3
4 d e f solve (height , width , epsilon= 0 . 0 0 5) :
5 grid = np .zeros ((height+2 ,width+2) ,dtype=np .float64)
6 grid [: , 0] = -273 .15
7 grid [: , - 1] = -273 .15
8 grid [- 1 , :] = -273 .15
9 grid [0 , :] = 4 0 . 0

10 center = grid [1 : - 1 , 1 : - 1]
11 north = grid [: - 2 , 1 : - 1]
12 south = grid [2 : , 1 : - 1]
13 east = grid [1 : - 1 , : - 2]
14 west = grid [1 : - 1 , 2 :]
15 delta = epsilon+1
16 w h i l e delta > epsilon :
17 tmp = 0 . 2 * (center+north+south+east+west)
18 delta = np . sum (np . abs (tmp -center))
19 center [:] = tmp
20 plt .matshow (center , cmap= ' h o t ')
21 plt .show ()

Fig. 2: Python implementation of a heat equation solve that uses the finite-
difference method to calculate the heat diffusion. Note that we could replace
the first line of code with “import numpy as np” and still utilize
npbackend through the command line argument “-m”, e.g. “python -m
npbackend heat2d.py”

Figure 2, is an implementation of a heat equation solver
that imports the npbackend module explicitly at the first
line and a popular visualization module, Matplotlib, at the
second line. At line 5, the function zeros() creates a new
npbackend-array that overloads the arithmetic operators, such
as * and +. Thus, at line 17 the operators use npbackend
rather than NumPy. However, in order to visualize (Fig. 3)
the center array at line 20, Matplotlib accesses the memory
of center directly.

Now, in order to explain what we mean by directly, we
have to describe some implementation details of NumPy. A
NumPy ndarray is a C implementation of a Python class
that exposes a segment of main memory through both a C
and a Python interface. The ndarray contains metadata that
describes how the memory segment is to be interpreted as a
multi-dimensional array. However, only the Python interface
seamlessly interprets the ndarray as a multi-dimensional array.
The C interface provides a C-pointer to the memory segment
and lets the user handle the interpretation. Thus, with the
word directly we mean that Matplotlib accesses the memory
segment of center through the C-pointer. In which case, the
only option for npbackend is to make sure that the computed
values of center are located at the correct memory segment.
Npbackend is oblivious to the actual operations Matplotlib
performs on center.

Consequently, the result of the Matplotlib call is a Python
warning explaining that npbackend will not accelerate the
operation on center at line 20; instead the Matplotlib im-
plementation will handle the operation exclusively.

B. The Backend Interface

The main design objective of the backend interface is
to isolate the calculation-specific from the implementation-
specific. In order to accomplish this, we translate a NumPy
execution into a sequence of primitive function calls, which
the backend must implement.

Fig. 3: The matplotlib result of executing the heat equation solver from figure
2: solve(100,100)

.

Figure 4 is the abstract Python module that a npbackend
must implement. It consists of two Python classes, base
and view, that represent a memory sequence and a multi-
dimensional array-view thereof. Since this is the abstract
Python module, the base class does not refer to any physical
memory but only a size and a data type. In order to implement
a backend, the base class could, for example, refer to the
main memory or GPU memory. Besides the two classes,
the backend must implement eight primitive functions. Seven
of the functions are self-explanatory (Fig. 4), however the
extmethod() function requires some explanation. In order
to support arbitrary NumPy operations, npbackend introduces
an Extension Method that passes any operations through to
the backend. For example, it is not convenient to implement
operations such as matrix multiplication or FFT only using
ufuncs; thus we define an Extension Method called matmul
that corresponds to a matrix multiplication. Now, if a backend
knows the matmul operation it should perform a matrix mul-
tiplication. On the other hand, if the backend does not know
matmul it must raise a NotImplementedError exception.

IV. THE IMPLEMENTATION

The implementation of npbackend consists primarily of the
new npbackend-array that inherits from NumPy’s numpy-array.
The npbackend-array is implemented in C and uses the Python-
C interface to inherit from numpy-array. Thus, it is possible
to replace npbackend-array with numpy-array both in C and
in Python — a feature npbackend must support in order to
support code such as the heat equation solver in figure 2.

As is typical in object-oriented programming, the
npbackend-array exploits the functionality of numpy-array as
much as possible. The original numpy-array implementation
handles metadata manipulation, such as slicing and trans-
posing; only the actual array calculations will be handled
by the npbackend. The npbackend-array overloads arithmetic
operators thus an operator on npbackend-arrays will call the
backend function ufunc (Fig. 4 Line 26). Furthermore, since
npbackend-arrays inherit from numpy-array, an operator on a
mix of the two array classes will also use the backend function.

However, NumPy functions in general will not make use

1 ””” A b s t r a c t module f o r c o m p u t a t i o n backends ”””
2
3 c l a s s base (o b j e c t) :
4 ””” A b s t r a c t b a s e a r r a y h a n d l e (an a r r a y has on ly one ←↩

base a r r a y) ”””
5 d e f __init__ (self , size , dtype) :
6 self .size = size # T o t a l number o f e l e m e n t s
7 self .dtype = dtype # Data t y p e
8
9 c l a s s view (o b j e c t) :

10 ””” A b s t r a c t a r r a y view h a n d l e ”””
11 d e f __init__ (self , ndim , start , shape , stride , base) :
12 self .ndim = ndim #Number o f d i m e n s i o n s
13 self .shape = shape # Tuple o f d imens ion s i z e s
14 self .base = base #The ba se a r r a y t h i s view r e f e r s t o
15 self .start = start*base .dtype .itemsize # O f f s e t from ←↩

b as e (i n b y t e s)
16 self .stride = [x*base .dtype .itemsize f o r x i n stride] ←↩

Tuple o f s t r i d e s (i n b y t e s)
17
18 d e f get_data_pointer (ary , allocate=False , nullify=False) :
19 ””” R e tu r n a C- p o i n t e r t o t h e a r r a y d a t a (a s a Python ←↩

i n t e g e r) ”””
20 r a i s e NotImplementedError ()
21
22 d e f set_data_from_ary (self , ary) :
23 ””” Copy d a t a from ' a r y ' i n t o t h e a r r a y ' s e l f ' ”””
24 r a i s e NotImplementedError ()
25
26 d e f ufunc (op , *args) :
27 ””” Per fo rm t h e ufunc ' op ' on t h e ' a r g s ' a r r a y s ”””
28 r a i s e NotImplementedError ()
29
30 d e f r e d u c e (op , out , a , axis) :
31 ””” Reduce ' a x i s ' d imens ion of ' a ' and w r i t e t h e r e s u l t ←↩

t o o u t ”””
32 r a i s e NotImplementedError ()
33
34 d e f accumulate (op , out , a , axis) :
35 ””” Accumulate ' a x i s ' d imens ion of ' a ' and w r i t e t h e ←↩

r e s u l t t o o u t ”””
36 r a i s e NotImplementedError ()
37
38 d e f extmethod (name , out , in1 , in2) :
39 ””” Apply t h e e x t e n d e d method ' name ' ”””
40 r a i s e NotImplementedError ()
41
42 d e f r a n g e (size , dtype) :
43 ””” C r e a t e a new a r r a y c o n t a i n i n g t h e v a l u e s [0 : s i z e [”””
44 r a i s e NotImplementedError ()
45
46 d e f random (size , seed) :
47 ””” C r e a t e a new random a r r a y ”””
48 r a i s e NotImplementedError ()

Fig. 4: The backend interface of npbackend.

of the npbackend backend since many of them uses the C-
interface to access the array memory directly. In order to
address this problem, npbackend has to re-implement much
of the NumPy API, which is a lot of work and is prone to
error. However, we can leverage the work by the PyPy project;
PyPy does not support the NumPy C-interface either but they
have re-implemented much of the NumPy API already. Still,
the problem goes beyond NumPy; any library that makes use
of the NumPy C-interface will have to be rewritten.

The result is that the npbackend implements all array
creation functions, matrix multiplication, random, FFT, and all
ufuncs for now. All other functions that access array memory
directly will simply get unrestricted access to the memory.

A. Unrestricted Direct Memory Access

In order to detect and handle direct memory access to
arrays, npbackend uses two address spaces for each array

memory: a user address space visible to the user interface
and a backend address space visible to the backend interface.
Initially, the user address space of a new array is memory
protected with mprotect such that subsequent accesses to the
memory will trigger a segmentation fault. In order to detect and
handle direct memory access, npbackend can then handle this
kernel signal by transferring array memory from the backend
address space to the user address space. In order to get access
to the backend address space memory, npbackend calls the
get_data_pointer() function (Fig. 4, Line 18). Simi-
larly, npbackend calls the set_data_from_ary() function
(Fig. 4, Line 22) when the npbackend should handle the array
again.

In order to make the transfer between the two address
spaces, we use mremap rather than the more expensive
memcpy. However, mremap requires that the source and
destination are memory page aligned. That is not a problem
at the backend since the backend implementer can simply use
mmap when allocating memory; on the other hand, we cannot
change how NumPy allocates its memory at the user address
space. The solution is to re-allocate the array memory when
the constructor of npbackend-array is called using mmap. This
introduces extra overhead but will work in all cases with no
modifications to the NumPy source code.

V. BACKEND EXAMPLES

In order to demonstrate the usability of npbackend, we im-
plement four backends that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium, all of whom are
standalone Python libraries in their own right. In this section,
we will describe how the four backends implement the eight
functions that make up the backend interface (Fig. 4).

A. NumPy Backend

In order to explore the overhead of npbackend, we
implement a backend that uses NumPy i.e. NumPy uses
NumPy through npbackend. Figure 5 is a code snippet
of the implementation that includes the base and view
classes, which inherit from the abstract classes in figure
4, the three essential functions get_data_pointer(),
set_data_from_ary(), and ufunc(), and the Exten-
sion Method function extmethod().

The NumPy backend associates a NumPy view
(.ndarray) with each instance of the view class and an
mmap object for each base instance, which enables memory
allocation reuse and guarantees memory-page-aligned
allocations. In [26] the authors demonstrate performance
improvement through memory allocation reuse in NumPy.
The NumPy backend uses a similar technique2 where it
preserves a pool of memory allocations for recycling. The
constructor of base will check this memory pool and, if the
size matches, reuse the memory allocation (line 11-15).

The get_data_pointer() function simply returns a
C-pointer to the ndarray data. The set_data_from_ary()
function memmoves the data from the ndarray ary to the view
self. The ufunc() function simply calls the NumPy library
with the corresponding ufunc. Finally, the extmethod()

2Using a victim cache

1 i m p o r t numpy
2 i m p o r t backend
3 i m p o r t os
4
5 VCACHE_SIZE = i n t (os .environ .get (”VCACHE SIZE” , 10))
6 vcache = []
7 c l a s s base (backend .base) :
8 d e f __init__ (self , size , dtype) :
9 s u p e r (base , self) .__init__ (size , dtype)

10 size *= dtype .itemsize
11 f o r i , (s ,m) i n enumera t e (vcache) :
12 i f s == size :
13 self .mmap = m
14 vcache .pop (i)
15 r e t u r n
16 self .mmap = mmap .mmap (- 1 , size)
17 d e f __str__ (self) :
18 r e t u r n ”<b as e memory a t %s>”%self .mmap
19 d e f __del__ (self) :
20 i f l e n (vcache) < VCACHE_SIZE :
21 vcache .append ((self .size*self .dtype .itemsize , ←↩

self .mmap))
22
23 c l a s s view (backend .view) :
24 d e f __init__ (self , ndim , start , shape , stride , base) :
25 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩

base)
26 buf = np .frombuffer (self .base .mmap , dtype=self .dtype , ←↩

offset=self .start)
27 self .ndarray = np .lib .stride_tricks .as_strided (buf , ←↩

shape , self .stride)
28
29 d e f get_data_pointer (ary , allocate=False , nullify=False) :
30 r e t u r n ary .ndarray .ctypes .data
31
32 d e f set_data_from_ary (self , ary) :
33 d = get_data_pointer (self , allocate=True , nullify=False)
34 ctypes .memmove (d , ary .ctypes .data , ary .dtype .itemsize * ←↩

ary .size)
35
36 d e f ufunc (op , *args) :
37 args = [a .ndarray f o r a i n args]
38 f = e v a l (”numpy.% s ”%op)
39 f (*args [1 :] , out=args [0])
40
41 d e f extmethod (name , out , in1 , in2) :
42 (out , in1 , in2) = (out .ndarray , in1 .ndarray , in2 .ndarray←↩

)
43 i f name == ” matmul ” :
44 out [:] = np .dot (in1 , in2)
45 e l s e :
46 r a i s e NotImplementedError ()

Fig. 5: A code snippet of the NumPy backend. Note that the backend module
refers to the implementation in figure 4.

recognizes the matmul method and calls NumPy’s dot()
function.

B. Numexpr Backend

In order to utilize multi-core CPUs, we implement a back-
end that uses the Numexpr library, which in turn utilize Just-
In-Time (JIT) compilation and shared-memory parallelization
through OpenMP.

Since Numexpr is compatible with NumPy ndarrays,
the Numexpr backend can inherit most functionality from the
NumPy backend; only the ufunc() implementation differs.
Figure 6 is a code snippet that includes the ufunc() imple-
mentation where it uses numexpr.evaluate() to evaluate
a ufunc operation. Now, this is a very naı̈ve implementation
since we only evaluate one operation at a time. In order
to maximize performance of Numexpr, we could collect as
many ufunc operations as possible into one evaluate()

1 ufunc_cmds = { ' add ' : ” i 1 + i 2 ” ,
2 ' m u l t i p l y ' : ” i 1 * i 2 ” ,
3 ' s q r t ' : ” s q r t (i 1) ” ,
4 # . . .
5 }
6
7 d e f ufunc (op , *args) :
8 args = [a .ndarray f o r a i n args]
9 i1=args [1] ;

10 i f l e n (args) > 2 :
11 i2=args [2]
12 numexpr .evaluate (ufunc_cmds [op] , \
13 out=args [0] , casting= ' u n s a f e ')

Fig. 6: A code snippet of the Numexpr backend.

1 i m p o r t pygpu
2 i m p o r t backend_numpy
3 c l a s s base (backend_numpy .base) :
4 d e f __init__ (self , size , dtype) :
5 self .clary = pygpu .empty ((size ,) , dtype=dtype , cls=←↩

elemary)
6 s u p e r (base , self) .__init__ (size , dtype)
7
8 c l a s s view (backend_numpy .view) :
9 d e f __init__ (self , ndim , start , shape , stride , base) :

10 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩
base)

11 self .clary = pygpu .gpuarray .from_gpudata (base .clary .←↩
gpudata , offset=self .start , dtype=base .dtype , ←↩
shape=shape , strides=self .stride , writable=True , ←↩
base=base .clary , cls=elemary)

12
13 d e f get_data_pointer (ary , allocate=False , nullify=False) :
14 ary .ndarray [:] = np .asarray (ary .clary)
15 r e t u r n ary .ndarray .ctypes .data
16
17 d e f set_bhc_data_from_ary (self , ary) :
18 self .clary [:] = pygpu .asarray (ary)
19
20 d e f ufunc (op , *args) :
21 args = [a .ndarray f o r a i n args]
22 out=args [0]
23 i1=args [1] ;
24 i f l e n (args) > 2 :
25 i2=args [2]
26 cmd = ” o u t [:] = %s ”%ufunc_cmds [op]
27 exec cmd
28
29 d e f extmethod (name , out , in1 , in2) :
30 (out , in1 , in2) = (out .clary , in1 .clary , in2 .clary)
31 i f name == ” matmul ” :
32 pygpu .blas .gemm (1 , in1 , in2 , 1 , out , overwrite_c=True)
33 e l s e :
34 r a i s e NotImplementedError ()

Fig. 7: A code snippet of the ligpuarray backend (the Python binding module
is called pygpu). Note that the backend_numpy module refers to the
implementation in figure 5 and note that ufunc_cmds is from figure 6.

call, which would enable Numexpr to fuse multiple ufunc
operations together into one JIT compiled computation kernel.
However, such work is beyond the focus of this paper – in this
paper we map the libraries directly.

C. Libgpuarray Backend

In order to utilize GPUs, we implement a backend
that makes use of libgpuarray, which introduces a GPU-
array that is compatible with NumPy’s ndarray. For the
two classes, base and view, we associate a GPU-array
that points to memory on the GPU; thus the user ad-

Processor: Intel Xeon E5640
Clock: 2.66 GHz
L3 Cache: 12MB
Memory: 96GB DDR3
GPU: Nvidia GeForce GTX 460
GPU-Memory: 1GB DDR5
Compiler: GCC 4.8.2 & OpenCL 1.2
Software: Linux 3.13, Python 2.7, & NumPy 1.8.1

TABLE I: The Machine Specification

dress space lies in main memory and the backend address
space lies in GPU-memory. Consequently, the implemen-
tation of the two functions get_data_pointer() and
set_data_from_ary() uses asarray() to copy be-
tween main memory and GPU-memory (Fig. 7 Line 14 and
15). The implementation of ufunc() is very similar to the
Numexpr backend implementation since GPU-arrays supports
ufunc directly. However, note that libgpuarray does not support
the output argument, which means we have to copy the result
of an ufunc operation into the output argument.

The extmethod() recognizes the matmul method and
calls Libgpuarray’s blas.gemm() function.

D. Bohrium Backend

Our last backend implementation uses the Bohrium runtime
system to utilize both CPU and GPU architectures. Bohrium
supports a range of frontend languages including C, C++, and
CIL3, and a range of backend architectures including multi-
core CPUs through OpenMP and GPUs through OpenCL. The
Bohrium runtime system utilizes the underlying architectures
seamlessly. Thus, as a user we use the same interface whether
we utilize a CPU or a GPU. The interface of Bohrium is very
similar to NumPy – it consists of a multidimensional array and
the same ufuncs as in NumPy.

The Bohrium backend implementation uses the C interface
of Bohrium, which it calls directly from Python through
SWIG[27]. The two base and view classes points to a
Bohrium multidimensional array called .bhc_obj (Fig. 8).
In order to use the Bohrium C interface through SWIG, we
dynamically construct a Python string that matches a specific
C function in the Bohrium C interface.

The set_bhc_data_from_ary() function is iden-
tical to the one in the NumPy backend. However,
get_data_pointer() needs to synchronize the array data
before returning a Python pointer to the data. This is because
the Bohrium runtime system uses lazy evaluation in order to
fuse multiple operations into single kernels. The synchronize
function (Fig. 8 Line 34) makes sure that all pending opera-
tions on the array have been executed and that the array data
is in main memory, e.g. copied from GPU-memory.

The implementations of ufunc() and extmethod()
simply call the Bohrium C interface with the Bohrium arrays
(.bhc_obj).

VI. BENCHMARKS

In order to evaluate the performance of npbackend, we
perform a number of performance comparisons between a

3Common Intermediate Language

1 i m p o r t backend
2 i m p o r t backend_numpy
3 i m p o r t numpy
4
5 d e f dtype_name (obj) :
6 ””” Re tu rn name of t h e d t y p e ”””
7 r e t u r n numpy .dtype (obj) .name
8
9 c l a s s base (backend .base) :

10 d e f __init__ (self , size , dtype , bhc_obj=None) :
11 s u p e r (base , self) .__init__ (size , dtype)
12 i f bhc_obj i s None :
13 f = e v a l (” bhc . b h m u l t i a r r a y %s new empty ”%←↩

dtype_name (dtype))
14 bhc_obj = f (1 , (size ,))
15 self .bhc_obj = bhc_obj
16
17 d e f __del__ (self) :
18 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y (s e l f . bhc ob j) ”%←↩

dtype_name (self .dtype)
19
20 c l a s s view (backend .view) :
21 d e f __init__ (self , ndim , start , shape , stride , base) :
22 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩

base)
23 dtype = dtype_name (self .dtype)
24 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e (bas e .←↩

bhc ob j) ”%dtype
25 f = e v a l (” bhc . b h m u l t i a r r a y %s new from view ”%dtype)
26 self .bhc_obj = f (base , ndim , start , shape , stride)
27
28 d e f __del__ (self) :
29 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y (s e l f . bhc ob j) ”%←↩

dtype_name (self .dtype)
30
31 d e f get_data_pointer (ary , allocate=False , nullify=False) :
32 dtype = dtype_name (ary)
33 ary = ary .bhc_obj
34 exec ” bhc . b h m u l t i a r r a y %s sy nc (a r y) ”%dtype
35 exec ” bhc . b h m u l t i a r r a y %s d i s c a r d (a r y) ”%dtype
36 exec ” bhc . b h r u n t i m e f l u s h () ”
37 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e (a r y) ”%dtype
38 exec ” d a t a = bhc . b h m u l t i a r r a y %s g e t b a s e d a t a (base) ”%←↩

dtype
39 i f data i s None :
40 i f n o t allocate :
41 r e t u r n 0
42 exec ” d a t a = bhc . b h m u l t i a r r a y %←↩

s g e t b a s e d a t a a n d f o r c e a l l o c (base) ”%dtype
43 i f data i s None :
44 r a i s e MemoryError ()
45 i f nullify :
46 exec ” bhc . b h m u l t i a r r a y %s n u l l i f y b a s e d a t a (ba se) ”%←↩

dtype
47 r e t u r n i n t (data)
48
49 d e f set_bhc_data_from_ary (self , ary) :
50 r e t u r n backend_numpy .set_bhc_data_from_ary (self , ary)
51
52 d e f ufunc (op , *args) :
53 args = [a .bhc_obj f o r a i n args]
54 in_dtype = dtype_name (args [1])
55 f = e v a l (” bhc . b h m u l t i a r r a y %s %s ”%(dtype_name (←↩

in_dtype) , op .info [' name ']))
56 exec f (*args)
57
58 d e f extmethod (name , out , in1 , in2) :
59 f = e v a l (” bhc . b h m u l t i a r r a y e x t m e t h o d %s %s %s ”%(←↩

dtype_name (out) , dtype_name (in1) , dtype_name (in2)))
60 ret = f (name , out , in1 , in2)
61 i f ret != 0 :
62 r a i s e NotImplementedError ()

Fig. 8: A code snippet of the Bohrium backend. Note that the backend
module refers to the implementation in figure 4 and note that the
backend_numpy module is figure 5.

Hardware Utiliza-
tion

Matrix Multiplica-
tion Software

Native 1 CPU-core ATLAS v3.10
NumPy 1 CPU-core ATLAS v3.10
Numexpr 8 CPU-cores ATLAS v3.10
libgpuarray 1 GPU clBLAS v2.2
BohriumCPU 8 CPU-cores O(n3)
BohriumGPU 1 GPU O(n3)

TABLE II: The benchmark execution setup. Note that Native refers to a regular
NumPy execution whereas NumPy refers to the backend implementation that
makes use of the NumPy library.

regular NumPy execution, referred to as Native, and the four
backend implementations: NumPy, Numexpr, libgpuarray, and
Bohrium, referred to by their name.

We run all benchmarks, on an Intel Xeon machine with a
dedicated Nvidia graphics card (Table I). Not all benchmark
executions utilize the whole machine; Table II shows the spe-
cific setup of each benchmark execution. For each benchmark,
we report the mean of ten execution runs and the error margin
of two standard deviations from the mean. We use 64-bit
double floating-point precision for all calculations and the size
of the memory allocation pool (vcache) is 10 entries when
applicable.

We use three Python applications that use either the NumPy
module or the npbackend module. The source codes of the
benchmarks are available at the Bohrium project’s website4:

Heat Equation simulates the heat transfer on a surface rep-
resented by a two-dimensional grid, implemented using
jacobi-iteration with numerical convergence (Fig. 2).

Shallow Water simulates a system governed by the Shallow
Water equations. The simulation commences by placing
a drop of water in a still container. The simulation then
proceeds, in discrete time-steps, simulating the water
movement. The implementation is a port of the MATLAB
application by Burkardt5.

Snakes and Ladders is a simple children’s board game that
is completely determined by dice rolls with no player
choices. In this benchmark, we calculate the probability
of ending the game after k-th iterations through successive
matrix multiplications. The implementation is by Natalino
Busa6.

Heat Equation

Figure 9 shows the result of the Heat Equation benchmark
where the Native NumPy execution provides the baseline. Even
though the npbackend invertible introduces an overhead, the
NumPy backend outperforms the Native NumPy execution,
which is the result of the memory allocation reuse (vcache).
The Numexpr achieves a 2.2 speedup compared to Native
NumPy, which is disappointing since Numexpr utilizes all
eight CPU-cores. The problem is twofold: we only provide one
ufunc for Numexpr to JIT compile at a time, which hinders
loop fusion, and secondly, since the problem is memory bound,
the utilization of eight CPU-cores through OpenMP is limited.

4http://www.bh107.org
5http://people.sc.fsu.edu/˜jburkardt/m src/shallow water 2d/
6https://gist.github.com/natalinobusa/4633275

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0

5

10

15

20

25

30

35

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 9: The Heat Equation Benchmark where the domain size is 30002 and
the number of iterations is 100.

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0

20

40

60

80

100

120

140

160

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 10: The Shallow Water Benchmark where domain size is 20002 and the
number of iterations is 100.

The Bohrium-CPU backend achieves a speedup of 2.6 while
utilizing eight CPU-cores as well.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 5.6 and 18 respectively. Bohrium-
GPU performs better than libgpuarray primarily because of
loop fusion and array contraction[28], which is possible since
Bohrium-GPU uses lazy evaluation to fuse multiple ufunc
operations into single kernels.

Shallow Water

Figure 10 shows the result of the Shallow Water bench-
mark. This time the Native Numpy execution and the NumPy
backend perform the same, thus the vcache still hides the
npbackend overhead. Again, Numexpr and Bohrium-CPU
achieve a disappointing speedup of 2 compared to Native
NumPy, which translate into a CPU utilization of 25%.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 3.7 and 12 respectively. Again,

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 11: The Snakes and Ladders Benchmark where the domain size is 10002

and the number of iterations is 10.

Bohrium-GPU outperforms libgpuarray because of loop fusion
and array contraction.

Snakes and Ladders

Figure 11 shows the result of the Snakes and Ladders
benchmark where the performance of matrix multiplication
dominates the overall performance. This is apparent when ex-
amining the result of the three first executions, Native, NumPy,
and Numexpr, that all make use of the matrix multiplication
library ATLAS (Table II). The Native execution outperforms
the NumPy and Numexpr executions with a speedup of 1.1,
because of reduced overhead.

The performance of the Bohrium-CPU execution is signif-
icantly slower than the other CPU execution, which is due to
the naı̈ve O(n3) matrix multiplication algorithm and no clever
cache optimizations.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieves a speedup of 1.5 and 1.9 respectively. It is a
bit surprising that libgpuarray does not outperform Bohrium-
GPU since it uses the clBLAS library but we conclude that
the Bohrium-GPU with its loop fusion and array contraction
matches clBLAS in this case.

Fallback Overhead: In order to explore the overhead of
falling back to the native NumPy implementation, we execute
the Snakes and Ladders benchmark where the backends do not
support matrix multiplication. In order for the native NumPy
to perform the matrix multiplication each time the application
code uses matrix multiplication, npbackend will transfer the
array data from the backend address space to the user ad-
dress space and vice versa. However, since npbackend uses
the mremap() function to transfer array data, the overhead
is only around 14% (Fig. 12) for the CPU backends. The
overhead of libgpuarray is 60% because of multiple memory
copies when transferring to and from the GPU (Fig. 7 Line 13-
18). Contrarily, the Bohrium-GPU backend only performs one
copy when transferring to and from the GPU, which results in
an overhead of 23%.

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 12: The Snakes and Ladders Benchmark where the backends does not
have matrix multiplication support. The domain size is 10002 and the number
of iterations is 10.

Heat Equation Shallow Water Snakes and Ladders
0 %

5 %

10 %

15 %

20 %

25 %

Ov
er

he
ad

 in
 re

la
tio

n
to

 N
at

iv
e

Nu
m

Py

Fig. 13: Overhead of npbackend where we compare the NumPy backend with
the native NumPy execution from the previous benchmarks.

Overhead

In the benchmarks above, the overhead of the npbackend is
very modest and in the case of the Heat Equation and Shallow
Water benchmarks, the overhead is completely hidden by the
memory allocation pool (vcache). Thus, in order to measure
the precise overhead, we deactivate the vcache and re-run the
three benchmarks with the NumPy backend (Fig. 13). The ratio
between the number of NumPy operations and the quantity
of the operations dictates the npbackend overhead. Thus, the
Heat Equation benchmark, which has a domain size of 30002,
has a lower overhead than the Shallow Water benchmark,
which has a domain size of 20002. The Snakes and Ladders
benchmark has an even smaller domain size but since the
matrix multiplication operation has a O(n3) time complexity,
the overhead lies between the two other benchmarks.

VII. FUTURE WORK

An important improvement of the npbackend framework
is to broaden the support of the NumPy API. Currently,
npbackend supports array creation functions, matrix multipli-
cation, random, FFT, and all ufuncs, thus many more functions
remain unsupported. Even though we can leverage the work
by the PyPy project, which re-implements a broad range of the
NumPy API in Python7, we still have to implement Extension
Methods for the part of the API that is not expressed well
using ufuncs.

Currently, npbackend supports CPython version 2.6 to 2.7;
however there is no technical reason not to support version
3 and beyond thus we plan to support version 3 in the near
future.

The implementation of the backend examples we present
in this paper has a lot of optimization potential. The Numexpr
and libgpuarray backends could use lazy evaluation in order to
compile many ufunc operations into single execution kernels
and gain similar performance results as the Bohrium CPU and
GPU backends.

Current ongoing work explores the use of Chapel[29] as a
backend for NumPy, providing transparent mapping (facilitated
by npbackend), of NumPy array operations to Chapel array
operations. Thereby, facilitating the parallel and distributed
features of the Chapel language.

Finally, we want to explore other hardware accelerators,
such as the Intel Xeon Phi Coprocessor, or distribute the
calculations through MPI on a computation cluster.

VIII. CONCLUSION

In this paper, we have introduced a unified NumPy back-
end, npbackend, that unifies a broad range of Python code
accelerators. Without any modifications to the original Python
application, npbackend enables backend implementations to
improve the Python execution performance. In order to assess
this clam, we use three benchmarks and four different backend
implementations along with a regular NumPy execution. The
results show that the overhead of npbackend is between 2%
and 21% but with a simple memory allocation reuse scheme
it is possible to achieve overall performance improvements.

Further improvements are possible when using JIT com-
pilation and utilizing multi-core CPUs, a Numexpr back-
end achieves 2.2 speedup and a Bohrium-CPU backend
achieves 2.6 speedup. Even further improvement is possi-
ble when utilizing a dedicated GPU, a libgpuarray backend
achieves 5.6 speedup and a Bohrium-GPU backend achieves
18 speedup. Thus, we conclude that it is possible to accel-
erate Python/NumPy application seamlessly using a range of
different backend libraries.

REFERENCES

[1] G. van Rossum, “Glue it all together with python,” in Workshop
on Compositional Software Architectures, Workshop Report, Monterey,
California, 1998.

[2] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

7http://buildbot.pypy.org/numpy-status/latest.html

[3] E. Jones, T. Oliphant, and P. Peterson, “Scipy: Open source scientific
tools for python,” http://www. scipy. org/, 2001.

[4] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[5] M. Sala, W. Spotz, and M. Heroux, “PyTrilinos: High-performance
distributed-memory solvers for Python,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 34, March 2008.

[6] D. I. Ketcheson, K. T. Mandli, A. J. Ahmadia, A. Alghamdi,
M. Quezada de Luna, M. Parsani, M. G. Knepley, and M. Emmett,
“PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation
Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 4, pp.
C210–C231, Nov. 2012.

[7] J. Enkovaaraa, M. Louhivuoria, P. Jovanovicb, V. Slavnicb, and
M. Rännarc, “Optimizing gpaw,” Partnership for Advanced Computing
in Europe, September 2012.

[8] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[9] B. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and W. Weath-
ersby, “Zpl: a machine independent programming language for parallel
computers,” Software Engineering, IEEE Transactions on, vol. 26, no. 3,
pp. 197–211, Mar 2000.

[10] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[11] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

[12] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[13] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[14] M. Foord and C. Muirhead, IronPython in Action. Greenwich, CT,
USA: Manning Publications Co., 2009.

[15] S. Pedroni and N. Rappin, Jython Essentials: Rapid Scripting in Java,
1st ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2002.

[16] A. Rigo and S. Pedroni, “Pypy’s approach to virtual machine
construction,” in Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 944–953.
[Online]. Available: http://doi.acm.org/10.1145/1176617.1176753

[17] E. Jones and P. J. Miller, “Weaveinlining c/c++ in python.” OReilly
Open Source Convention, 2002.

[18] D. Cooke and T. Hochberg, “Numexpr. fast evaluation of array expres-
sions by using a vector-based virtual machine.”

[19] T. Oliphant, “Numba python bytecode to llvm translator,” in Proceed-
ings of the Python for Scientific Computing Conference (SciPy), 2012.

[20] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[21] A. Munshi et al., “The OpenCL Specification,” Khronos OpenCL
Working Group, vol. 1, pp. l1–15, 2009.

[22] C. Nvidia, “Programming guide,” 2008.
[23] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-

jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[24] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[25] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and
B. Vinter, “Bohrium: Unmodified NumPy Code on CPU, GPU, and
Cluster,” in 4th Workshop on Python for High Performance and Scien-
tific Computing (PyHPC’13), 2013.

[26] S. A. F. Lund, K. Skovhede, M. R. B. Kristensen, and B. Vinter,
“Doubling the Performance of Python/NumPy with less than 100

SLOC,” in 4th Workshop on Python for High Performance and Scientific
Computing (PyHPC’13), 2013.

[27] D. M. Beazley et al., “Swig: An easy to use tool for integrating scripting
languages with c and c++,” in Proceedings of the 4th USENIX Tcl/Tk
workshop, 1996, pp. 129–139.

[28] V. Sarkar and G. R. Gao, “Optimization of array accesses by collective
loop transformations,” in Proceedings of the 5th International Confer-
ence on Supercomputing, ser. ICS ’91. New York, NY, USA: ACM,
1991, pp. 194–205.

[29] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The Cascade High
Productivity Language,” in 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS
2004). IEEE Computer Society, April 2004, pp. 52–60.

7.6 Code Specialization of Auto Generated

GPU Kernels

Troels Blum and Brian Vinter.
Communicating Process Architectures 2015.

98

Communicating Process Architectures 2015
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2015
© 2015 The authors and Open Channel Publishing Ltd. All rights reserved.

1

Code Specialization of Auto Generated
GPU Kernels

Troels BLUM a and Brian VINTER a,
a University of Copenhagen, Niels Bohr Institute

Abstract. In this work we explore and evaluate the effect of automatic code special-
ization on auto generated GPU kernels. When combining the high productivity cod-
ing environment of computational science with the Just-In-Time compilation nature of
many GPU runtime systems there is a clear cut opportunity for code optimization and
specialization. We have developed a hybrid kernel generation method which is shown
to be useful and competitive across very different use cases, and requires minimal
knowledge of the overall structure of the program.

Stencil codes which are commonly found at the core of computer simulations are
ideal candidates for this type of code specialization. For exactly this type of application
we are able to achive speedups of up to 2.5 times with the implemented strategy.

Keywords. Automatic Code Optimization, Code Generation, GPU, JIT, Python,
Scientific Byte Code

1. Introduction

There is a continuing, and growing, interest in constructing mathematical models and quanti-
tative analysis techniques, i.e. computational science, in both academia and in industry. This
results in an increasing number of programs that are written by domain experts, as opposed
to trained programmers. At the same time the availability and power of accelerator cards, e.g.
Graphics processing units (GPU), and coprocessors, e.g. Xeon Phi, is also increasing. These
technologies promise to deliver more bang for the buck over conventional CPUs. However,
these technologies require programming experts, i.e. engineers and computer scientists, to
program.

The gap between these fields of expertise can be overcome by employing both domain
experts and programming experts. However, this solution is often both expensive and time
consuming, since coordination between scientists and programmers constitutes an overhead.
Other possible solutions include developing domain specific languages (DSLs). Such DSLs
may either be compiled or interpreted, in both cases JIT compilation may be involved, for
example Fortress[1] and X10[2] running on the Java Virtual Machine. One may port or de-
velop accelerator enabled libraries like QDP-JIT/PTX[3], which is a lattice quantum chromo-
dynamics (QCD) calculation library, a port of the QDP++[4] library, which may help domain
experts to leverage the power of accelerators without learning accelerator based program-
ming, naturally the performance imprpovements is then limited to the portion of the code that
uses accelerated libraries.

For general purpose programming languages such as C/C++ or Fortran annotation in
the shape of pragmas as in OpenACC[5] is often used to annotate parts of the code that is
well suited for execution on the GPU. This may not in fact bridge the gap between domain
and programming expertise, as both the languages and correct use of pragmas require a high
level of programming and architecture knowledge. Template libraries like Thrust[6] from
NVIDIA or Bolt[7] from AMD are also available. They save the programmer the trouble of

2 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

writing some boiler plate code, and contain implementations of standard algorithms. Again
some architecture knowledge is required, and most problems can not simply be solved by
gluing standard algorithms together. SyCL[8], a specification from the Khronos group, and
C++ AMP[9], from Microsoft, are both single source solution compilers for parallel, het-
erogeneous hardware. This allows for GPU kernel code to be templated, and methods can
be implemented on vector data types for seamless parallelization. All of these technologies,
while useful for skilled programmers, are of little help to domain experts as they still require
advanced programming skills and hardware knowledge.

An increasingly popular choice for domain experts is to turn to interpreted languages[10]
like MATLAB[11] or Python with the scientific computing package NumPy[12]. These lan-
guages allow the scientist to express their problems at higher level of abstraction, and thus
improves their productivity as well as their confidence in the correctness of their code. The
function decorators of SEJITS[13] is one way to utilize accelerators (GPUs) from Python,
another is project Copperhead[14] which rely on decorators to execute parts of the Python
code on GPUs through CUDA[15]. It is also possible is to use a more low level framework
such as pyOpenCL/pyCUDA[16], which provides tools for writing GPU kernels directly in
Python. The user writes OpenCL[17] or CUDA specific kernels as text strings in Python. This
allows for the control structure of the program to be written in Python while also avoiding
writing boilerplate OpenCL- or CUDA code. This still required programming knowledge of
OpenCL or CUDA.

The authors have previously presented a Python/NumPy backend framework[18], which
simplifies changing the execution engine of Python/NumPy to a number of low level APIs,
including pyOpenCL. The Bohrium project1 contains several backends for Python/Numpy
including one the utilizes the GPU[19]. This is completely transparent to the programmer, no
change to the Python/Numpy code is required. This approach provides speedup levels in the
hundreds when utilizing the GPU. Both the GPU backend replacement and Bohrium library,
are part of the Bohrium[20] project, which is a drop-in replacement for NumPy, and makes
the use of accelerators completely transparent to the user. The work described in this paper is
part of the Bohrium project, where the optimizations are implemented in the GPU execution
engine.

Common for many of the approaches to accelerator enabling code is that they involve
JIT compilation for the target hardware. In OpenCL[17], which is the de facto standard for
cross platform, vendor independent, GPU programming, JIT compilation is the default mode
of operation. When using the OpenCL framework GPU kernels are included as text strings in
the program. Which are then compiled at into hardware specific binaries by the runtime API
at runtime.

Even though GPU code is often compiled at runtime the source code that is compiled is
generally static. Optimizations are implemented by the compiler thus they are vendor specific,
and may even be target specific. Compiling at runtime ensures that the compiler can know
more about the problem, that we are trying to solve, than the programmer did at the time of
programming. This is due to the fact that we write code to solve a type of problem, but when
we are running the code we are solving a specific instance of that problem, making it possible
for us to do automatic code specialization at runtime without altering the original program
code.

In this work we investigate the benefits of code specialization at runtime. Providing the
compiler with more information to work with, should enable it to generate more efficient
code. As we show in Section 4 a simple specialization scheme can result in a significant
speedup. First we will be setting the scene by giving a quick overview of how Bohrium works

1Bohrium is an open source project. The source code can be downloaded from http://www.bh107.org.
Further documentation is also available at the website.

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 3

and how it views data in Section 2. Then we will outline our strategy for exploiting JIT com-
pilation for the GPU, using the Bohrium library in Section 3. In Section 5 we will speculate
on where to go from here, and in Section 6 we will summarize on the work described in this
paper.

2. Bohrium

type

ndim

start

shape

stride

data *

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension

O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

1110

0 1

3 4

Seen 3d-array

Figure 1. Bohrium view descriptor for an n-dimensional array and corresponding interpretation.

The Bohrium project builds upon a common, vector based, byte-code language. The
Bohrium byte-code supports operations on multidimensional arrays, which can be sliced into
sub-arrays, broadcast into higher dimensions, or viewed in other exotic ways. High level
languages construct and operations are translated into this byte-code, that in turn will be
executed by the different Bohrium vector engines. Every bytecode contains information on
how the data of each array operand should be accessed (viewed). Each view consists of a
data type, number of dimensions, an offset, and number of elements and a stride2 for each
dimension. See Figure 1 for a graphical representation of a Bohrium view.

The Bohrium operator access patterns are prime candidates for code specialization. The
GPU vector engine of Bohrium translates the vector byte code into OpenCL bases GPU
kernels at run-time. We can choose to make the generated kernels more general by including
the access patterns as parameters, or specialize the kernels by including the access patterns as
literals. It is our expectation that specialized kernels will perform better than non-specialized
due to the fact the compiler will have more information to work with.

2.1. Limitations

Bohrium byte-code does not support loops or control structures. Bohrium relies on the host
language for these programming constructs. When iterating through a loop the same byte-
code sequence will simply be repeated. Though operands and access patterns may change
with each iteration. It is important for the vector engine to detect these repetitions since JIT

2Number of base elements to skip ahead, to access the next data element in the given view, may be negative.

4 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

compiling OpenCL source code at run-time is a time consuming task, compared to the exe-
cution time of the generated kernel. That way JIT compiling cost is amortized with repeated
calls to same OpenCL kernel. We need to ensure that our specialization of the generated GPU
kernels do not prohibit them from being reused. If we consider the loop body of LU decom-
position, as it may implemented in Python/NumPy, as shown in Figure 2. The views on both
l and u change with each iteration. When translated into Bohrium bytecode the specific view
attributes are concretized, i.e. no longer symbolic.

1 d e f lu (a) :
2 u = a . copy ()
3 l = numpy . zeros_like (a)
4 numpy . diagonal (l) [:] = 1 . 0
5 f o r c i n x r a ng e (1 , u . shape [0]) :
6 l [c : , c−1] = u [c : , c−1] / u [c−1,c−1:c]
7 u [c : , c−1:] = u [c : , c−1:] −
8 l [c : , c−1] [: , None] * u [c−1,c−1:]
9 r e t u r n (l , u)

Figure 2. Python/NumPy implementation of LU decomposition.

Bohrium is designed to support interpreted languages. As a result of this design choice
we may need to execute calculations based on very limited knowledge of the general structure
of the host program — since we have no knowledge of future calculations. This needs to
be taken into account when devising a strategy for code specialization. Consider the Jacobi
stencil code in Figure 3: The Python interpreter evaluates the boolean clause of the while
statement in line 3, thus the value of delta is returned to the host-language bridge together
with the control for each iteration of the loop. So from Bohriums point of view we do not
know that the views do not change. At least not for the first calculation of delta. With each
iteration we could assume static views with higher and higher confidence.

1 d e f jacobi_2d (grid , epsilon = 0 . 0 0 5) :
2 delta = epsilon + 1
3 w h i l e delta > epsilon :
4 work = (grid [1:−1 ,1:−1] + grid [0:−2 ,1:−1] +
5 grid [1 : −1 , 2 :] + grid [1:−1 ,0:−2] +
6 grid [2 : , 1 : −1]) * 0 . 2
7 delta = numpy . sum (numpy . absolute (work −
8 grid [1 :−1 ,1 :−1]))
9 grid [1:−1 ,1:−1] = work

10 r e t u r n grid

Figure 3. Python/NumPy implementation of 2D-Jacobi stencil.

3. Specialization Strategy

There are two extremes of code specialization, focusing on the views or access patterns of
Bohrium. The first is of course to specialize everything found in the Bohrium view descriptor,
i.e. use only literals. The other extreme is to parametrisize the generated kernels with the
Bohrium view descriptor, i.e. use only function variables. Choosing no specialization gives
us the best chance of code reusability, resulting in less time spent on the compiler compiling
code if the indexes change, but perhaps more time calculatng data indexes during execution.
Symmetrically, the effect of full specialization is the reverse: Giving the compiler as much

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 5

information as possible to work with, hopefully enabling better optimized code. The optimal
solution would be to include exactly those values that do not change over the lifetime of the
program as literals. In our scenario, however, we do not have the global knowledge required
for implementing this optimal solution. We may, depending on the application, actually have
very limited knowledge — it would be desirable with a strategy that is both simple, and works
well in most situations.

The strategy we have chosen for this work, testing the benefits of code specialization, if
any, is as follows:

The first time a unique set of byte codes, which constitute a GPU kernel, are encoun-
tered: We compile both a completely specialized kernel and a generalized kernel, i.e.
the two extremes. The compilations are done separately and asynchronously. We en-
queue the fully specialized kernel for execution. As we expected this to be the most
efficient version of the kernel. We also expected the compilation time for both kernels
to be largely the same.3

Upon receiving the same pattern of byte codes, constituting a kernel, again, we know
that we have a matching kernel i.e. the generalized, parametrizied, kernel. The spe-
cialized version of the kernel is tested for fitness, i.e. the access pattern is the same
as when the code was generated. If the specialized kernel matches it is scheduled for
execution, otherwise the generalized kernel is scheduled.

Most of the code for the generated kernels are the same, independent of specialization,
since the core functionality is the same. So we found it most convinient to generate one
source code, and use the c preprocessors #define directives to generate the different GPU
kernels. The Python code shown in Figure 3 generates two GPU kernels. The main body of
the generated OpenCL source code is shown in Figure 4, and the define and size parameter
parts are shown in Figure 5.

4. Performance Study

We have conducted a small performance study in order to evaluate:

• What are the benefits of doing code specialization on auto generated code.
• How well is our simple strategy for code specialization suited for taking advantage of

these benefits.

We will in this Section use the following terminology:

Dynamic is the fully parameterized kernel. This is what we regard as our base scenario.
Fixed is the fully specialized kernels, where all view parameters are literalized.
Selected represents the case where we generate and compile both kernels, and then select

the best suited for execution, as explained in Section 3.

4.1. Benchmarks applications

We have chosen six benchmark applications for the performance study. All of the applications
are implemented in Python using the Bohrium NumPy bridge. The applications are simple,
and have been chosen to represent one of two categories:

• Applications where the views do not change throughout the execution, and therefore
will benefit from specialization.

3As shown in Table 3 and 4 compilation time for dynamic and fixed kernels are often similar but not always.

6 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

1 # pragma OPENCL EXTENSION c l k h r f p 6 4 : e n a b l e
2 # i f d e f FIXED SIZE
3 / / d e f i n e s go h e r e
4 # e n d i f
5 __kernel __attribute__ ((work_group_size_hint (6 4 , 4 , 1))) vo id
6 # i f n d e f FIXED SIZE
7 kernel429d67e832590722
8 # e l s e
9 kernel429d67e832590722_

10 # e n d i f
11 (
12 __global do ub l e * a1
13 , __global do ub l e * a5
14 , __global do ub l e * a7
15 , c o n s t do ub l e s0
16 # i f n d e f FIXED SIZE
17 / / s i z e p a r a m e t e r s go h e r e
18 # e n d i f
19)
20
21 {
22 c o n s t size_t gidx = get_global_id (0) ;
23 i f (gidx >= ds0)
24 r e t u r n ;
25 c o n s t size_t gidy = get_global_id (1) ;
26 i f (gidy >= ds1)
27 r e t u r n ;
28 do ub l e v1 = a1 [gidy*v1s2 + gidx*v1s1 + v1s0] ;
29 do ub l e v2 = a1 [gidy*v2s2 + gidx*v2s1 + v2s0] ;
30 do ub l e v4 = a1 [gidy*v4s2 + gidx*v4s1 + v4s0] ;
31 do ub l e v6 = a1 [gidy*v6s2 + gidx*v6s1 + v6s0] ;
32 do ub l e v8 = a1 [gidy*v8s2 + gidx*v8s1 + v8s0] ;
33 do ub l e v0 ;
34 v0 = v1 + v2 ;
35 do ub l e v3 ;
36 v3 = v0 + v4 ;
37 do ub l e v5 ;
38 v5 = v3 + v6 ;
39 do ub l e v7 ;
40 v7 = v5 + v8 ;
41 do ub l e v9 ;
42 v9 = v7 * s0 ;
43 do ub l e v10 ;
44 v10 = v9 − v1 ;
45 do ub l e v11 ;
46 v11 = fabs (v10) ;
47 a5 [gidy*v9s2 + gidx*v9s1 + v9s0] = v9 ;
48 a7 [gidy*v11s2 + gidx*v11s1 + v11s0] = v11 ;
49 }

Figure 4. Generated OpenCL kernel created by 2D-Jacobi stencil.

• Applications where the views change repeatedly. If we use specialization for this type
of application, we will trigger a new compilation for every kernel execution. Which is
very costly.

Four applications are dense stencil applications of increasing dimensionality, and two are
algorithms used in linear algebra.

Stencil applications are good candidates for benefiting from specialization. We have chosen
1D – 4D dense stencil applications. They are all of the same structure as the Jacobi
code shown in Figure 3.

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 7

d e f i n e ds1 1998
d e f i n e ds0 1998
d e f i n e v1s0 2001
d e f i n e v1s2 2000
d e f i n e v1s1 1
d e f i n e v2s0 1
d e f i n e v2s2 2000
d e f i n e v2s1 1
d e f i n e v4s0 2002
d e f i n e v4s2 2000
d e f i n e v4s1 1
d e f i n e v6s0 2000
d e f i n e v6s2 2000
d e f i n e v6s1 1
d e f i n e v8s0 4001
d e f i n e v8s2 2000
d e f i n e v8s1 1
d e f i n e v9s0 0
d e f i n e v9s2 1998
d e f i n e v9s1 1
d e f i n e v11s0 0
d e f i n e v11s2 1998
d e f i n e v11s1 1

, c o n s t i n t ds1
, c o n s t i n t ds0
, c o n s t i n t v1s0
, c o n s t i n t v1s2
, c o n s t i n t v1s1
, c o n s t i n t v2s0
, c o n s t i n t v2s2
, c o n s t i n t v2s1
, c o n s t i n t v4s0
, c o n s t i n t v4s2
, c o n s t i n t v4s1
, c o n s t i n t v6s0
, c o n s t i n t v6s2
, c o n s t i n t v6s1
, c o n s t i n t v8s0
, c o n s t i n t v8s2
, c o n s t i n t v8s1
, c o n s t i n t v9s0
, c o n s t i n t v9s2
, c o n s t i n t v9s1
, c o n s t i n t v11s0
, c o n s t i n t v11s2
, c o n s t i n t v11s1

Figure 5. The define and parameter declaration part of the generated code in figure 4.

1 d e f gauss (a) :
2 f o r c i n x r a ng e (1 , a . shape [0]) :
3 a [c : , c−1:] = a [c : , c−1:] −
4 (a [c : , c−1]/a [c−1,c−1:c]) [: , None] *
5 a [c−1,c−1:]
6 a /= numpy . diagonal (a) [: , None]
7 r e t u r n a

Figure 6. Python/NumPy implementation of Gaussian elimination without pivoting.

1D is a 3 point stencil application containing 9 indexing components4.
2D is a 9 point stencil application containing 45 indexing components.
3D is a 27 point stencil application containing 189 indexing components.
4D is a 81 point stencil application containing 729 indexing components.

Gaussian elimination without row pivoting as shown in Figure 6. The different array in-
dexes change for each loop iteration. This in not suitable for pure specialization, thus
testing our kernel reuse strategy.

LU decomposition as shown in Figure 2, and discussed in Section 2. Like Gaussian elimi-
nation this will test our reuse strategy.

We ran all the benchmarks on hardware from the two major GPGPU5 vendors, namely
AMD and NVIDIA. The GPUs from the two vendors are installed in two identical machines,
which are configured as shown in Table 1. The NVIDIA GPU we used is a GTX 680, and the
AMD GPU is a HD7970. These two GPUs were chosen as they are similarly priced, and of
the same generation of GPUs, i.e. were marketed at the same time. The specs of the GPUs
are shown in Table 2. All benchmarks were run with both 32-, and 64-bit floating point data,
since GPUs of this generation have very different performance in single and double preci-

4The index of each stencil data point will be calculates as: gidx*vi s1 + vi s0
5General-purpose computing on graphics processing units

8 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

Processor: Intel Core i7-3770
Clock: 3.4 GHz
#Cores: 4
Peak performance: 108.8 GFLOPS
L3 Cache: 16MB
Memory: 128GB DDR3
Operating system: Ubuntu Linux 14.04.2 LTS

Table 1. System specifications.

Vendor: AMD NVIDIA
Model: HD 7970 GTX 680
Driver version: 1214.3 (VM) 331.38
#Cores: 2048 1536
Clock: 1000 MHz 1006 MHz
Memory: 3GB GDDR5 2GB DDR5
Memory bandwidth: 288 GB/s 192 GB/s
Peak performance: 4096 GFLOPS 3090 GFLOPS

Table 2. GPU specifications.

sion floating point arithmetic. This was done to show if the data type has any effect on the
benefits from code specialization. The physical layout of the cores on the two GPUs are a lit-
tle different. The NVIDIA GPU has 32 multiprocessors each of which contain 64 streaming
processors, or cores. The AMD GPU has 32 multiprocessors each containing 64 cores. The
important feature to consider when programming GPUs is that the hardware threads are exe-
cuted in groups called wavefronts or warps. NVIDIA uses a warp size of 32 where an AMDs
warp contains 64 threads. The threads within a warp are executed in lock step, a technology
called Single Instruction Multiple Thread (SIMT). This means that the execution path of the
threads within a warp can not diverge. If different code paths needs to be followed, i.e. given
an if statement, all threads will need to follow both or all paths. The Bohrium byte codes do
not contain loop constructs or conditionals. The strategy implemented in the GPU execution
engine is to treat the GPU as a large Single Instruction Multiple Data (SIMD) machine. All
GPU threads execute the same instructions even across warps.

4.2. Kernel Compilation

A key assumption for this work, is that compiling a generated OpenCL kernel is a time con-
suming task, compared to the execution of said kernel. This is illustrated by the application
runtime of the Gaussian elimination, and LU decomposition applications, when forcing the
system to use fixed kernels only. The application runtimes are orders of magnitude larger
that the time spent executing the kernels as shown in Figure 7, 8, 9, and 10. The other main
assumption is that the compilers will be able to produce better code from the specialized
kernels — resulting in shorter execution times.

The default behaviour of the NVIDIA OpenCL driver is to cache compiled kernels in
binary format to disc, so they may be reused with out recompilation if the same source code
kernel is encountered again. This is all done behind the scenes, with out the need for the
programmer to do any thing. When trying to compile a source code kernel which has been
compiled before, the NVIDIA runtime system will simply return the previously compiled
binary version, saving time. We have disabled automatic caching for this performance study,
so the runtimes presented here show the performance of the implemented strategy without

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 9

influence from NVIDIAs caching strategy. The AMD runtime system does not have any
automatic caching behaviour.

Kernel: Dynamic Fixed
Data: double single double single
1D stencil 725 728 729 724
2D stencil 735 736 732 728
3D stencil 773 772 736 737
4D stencil 1259 1257 2709 2735
Gauss 1105 1094 1104 1089
LU 1465 1459 1460 1446

Table 3. Compile times by the NVIDIA OpenCL driver in ms.

Kernel: Dynamic Fixed
Data: double single double single
1D stencil 60.4 60.3 59.3 59.2
2D stencil 65.7 65.4 62.6 62.3
3D stencil 84.3 83.8 70.3 70.0
4D stencil 301.1 299.3 188.1 186.5
Gauss 96.9 95.9 94.2 93.0
LU 124.7 123.5 122.2 121.0

Table 4. Compile times by the AMD OpenCL driver in ms.

In Table 3 and 4 we show the time spent on compiling the different types of kernels for
the different applications. The compile time for the different applications is the same for the
two data types used, i.e. floats and doubles. It would be surprising if the primitive data type
had any influence on the time spent on compilation. This is true for both platforms.

We stated in Section 3 that we expected compile times for both kernel types, i.e. dynamic
and fixed, to be very similar. As we can see in Table 3 and 4 the compile times for the 1D
stencil, 2D stencil, Gaussian elimination, and LU decomposition applications are very close
to the same on both the NVIDIA and the AMD platform. There is a small difference in
favor of the fixed kernel for the 3D stencil application on both platforms. For the 4D stencil
application on AMD we see the difference is somewhat larger, but still in favor of the fixed
kernel. We can not be sure about the reason for this difference, as we do not have access
to the strategies that are implemented in the two compilers. But an educated guess is: Due
to some of the indexing sub expressions becoming the same, these can be replaced by a
single expression. This is a relatively simple and inexpensive operation. When this is done the
register allocation may become simpler, because potentially fewer registers are needed due
to reuse. If one uses the defines in Figure 5 in the OpenCL kernel for the 2D-Jacobi stencil
shown in Figure 4; the sub expression gidy*2000 appears five times, gidx*1 seven times,
and gidy*1998 two times.

The compilation time for the 4D stencil application on the NVIDIA platform stands out.
The compilation time for the fixed kernel is more than twice as long as for the equivalent
dynamic kernel. It is both a surprise that the difference is so large, and that it is in favor
of the dynamic kernel. This fact is a disadvantage to the strategy we have chosen: Always
enqueuing the fixed kernel when a new set of kernels are compiled as explained in Section 3.
A better strategy in this case may be to enqueue the first available kernel, i.e. the kernel with
the shortest compilation time. This would be beneficial as long as the difference the execution
time for the kernel is shorter than the difference in compilation time. We do not, and can not,

10 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

know the execution time. For the benchmarks we have chosen for this work it would hold.
For generality and simplicity we have chosen to stick with the previously explained strategy.

NVIDIA AMD ratio
1D stencil 1445ms 117ms 12.3
2D stencil 1460ms 125ms 11.7
3D stencil 1503ms 151ms 9.9
4D stencil 3993ms 482ms 8.3
Gauss 2199ms 186ms 11.8
LU 2929ms 241ms 12.2
Average 10.4

Table 5. Comparison of combined compile times for both dynamic and static kernels by the two vendors.

The AMD driver’s OpenCL compiler is much faster than NVIDIA’s. On average it is 10
times faster as we have shown in Table 5. This may be due to NIVIDA doing more complex
optimizations on the generated code. The difference in compilation times between the two
vendors is probably a factor in that NVIDIA has implemented kernel caching, and AMD has
not.

4.3. Results

The four Figures 7, 8, 9, and 10 show the application runtime for the two hardware vendors
NVIDIA and AMD, running the benchmarks with both single- and double precision floating
point data. We have run all six benchmarks on all combinations of vendor, data type and the
three kernel generation strategies, i.e. dynamic, fixed, and selected. We show both the time
spent by the GPU actually executing kernels, in a darker shade, and the over all application
run time. It is clear to see from all four figures that only generating fixed kernels is not a vi-
able solution. The application run times for the Gaussian elimination and LU decomposition
benchmarks are orders of magnitude longer for the fixed kernel only strategy than for the
dynamic kernel only. The significantly contributing factor is the kernel compilation overhead.

 1D stencil 2D stencil 3D stencil 4D stencil Gauss LU

31
.5

33
.3

31
.6

31
.5

33
.3

31
.6

28
.2

30
.0

28
.3

28
.2

30
.0

28
.3 33

.338
.0

33
.3

33
.338

.0

33
.3

47
.7

79
.2

48
.4

47
.7

79
.2

48
.4

66
50

.4

28
.6

28
.8

66
50

.4

28
.6

28
.8

66
53

.7

27
.7

29
.1

66
53

.7

27
.7

29
.1

0

25

50

75

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Kernel type

T
im

e
in

 s
ec

on
ds

Application
GPU kernel

NVIDIA double

Figure 7. Application run time on NVIDIA for double precision data.

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 11

Looking at the execution times on the NVIDIA GPU for double precision data in Figure
7: We see the overall picture we were expecting. The four stencil applications benefit from
the specialization. They benefit to an increasing degree with increased dimensionality. Which
is what one would expect with the increasing number of index calculations required per data
element, that needs to be fetched or stored. Table 6 shows the speedup of our selected kernel
strategy over the dynamic kernel only strategy. We consider the dynamic kernel strategy
the basis. We can see that there is no difference in the speedup of the 1D- and 2D- stencil
applications, which is a little surprising.

Data type: double single
Application Kernel Application Kernel

1D stencil 1.05 1.06 1.01 1.01
2D stencil 1.06 1.07 1.02 1.02
3D stencil 1.14 1.15 1.01 1.01
4D stencil 1.64 1.72 2.49 2.64
Gauss 0.99 1.00 1.00 1.00
LU 0.95 1.00 0.97 1.00

Table 6. Speed up on NVIDA GTX 680.

Turning to the single precision benchmarks, Table 6 and Figure 8, we see that there is
no significant benefit from code specialization in the 1D – 3D stencil benchmarks. While we
see an even greater speedup in the 4D stencil application. It is reasonable to assume that this
performance increase is due to the fact that the GTX 680 is able to perform 24 single preci-
sion floating point operations for every double precision operation. Which in turn means that
the integer index calculations will account for a relatively larger portion of the time spent ex-
ecuting the GPU kernels — thus increasing the relative benefit from code specialization. We
also attribute the lack of speedup in the 1D – 3D stencil benchmarks to the 1:24 performance
ratio between single- and double precision calculations. When the calculations on the data
become that much faster, the memory band width becomes the limiting factor, and we are
moving the same amount of data independent of kernel strategy.

There is a small loss in performance in the 4D stencil and the LU decomposition bench-
marks, see Table 6. These are also the benchmarks with the longest compile times, see Table
3. There is reason to believe that the added compile time overhead would be amortizes in
applications with longer execution times.

Data type: double single
Application Kernel Application Kernel

1D stencil 1.00 1.01 1.01 1.02
2D stencil 1.00 1.00 1.24 1.52
3D stencil 1.19 1.30 2.18 3.23
4D stencil 1.02 1.02 1.80 2.20
Gauss 1.00 1.00 1.00 1.00
LU 1.00 1.00 1.01 1.00

Table 7. Speed up on AMD HD 7970.

When looking at the results for the AMD GPU running the benchmarks in Table 7 we
see that it is mainly the single precision benchmarks that benefit from the code specialization.
Again we see an increased benefit from specialization going from 1D- to 2D- and on to the 3D
stencil benchmark. However, there is a drop off when going to the 4D stencil. In the 4D stencil
benchmark we do introduce a loop in the kernel which is not needed for lower dimensionality.

12 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

 1D stencil 2D stencil 3D stencil 4D stencil Gauss LU

37
.5

37
.7

37
.5

37
.5

37
.7

37
.5

30
.7

31
.3

30
.8

30
.7

31
.3

30
.8 37

.0

37
.3

37
.1

37
.0

37
.3

37
.1

53
.4

13
5.

2

54
.2

53
.4

13
5.

2

54
.2

88
77

.1

43
.7

43
.7

88
77

.1

43
.7

43
.7

88
80

.5

42
.0

43
.3

88
80

.5

42
.0

43
.3

0

50

100

150

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Kernel type

T
im

e
in

 s
ec

on
ds

Application
GPU kernel

NVIDIA float

Figure 8. Application run time on NVIDIA for single precision data.

 1D stencil 2D stencil 3D stencil 4D stencil Gauss LU

43
.7

43
.9

43
.7

43
.7

43
.9

43
.7

23
.7

23
.7

23
.7

23
.7

23
.7

23
.7

18
.321

.8

18
.3

18
.321

.8

18
.3

19
.0

19
.3

19
.0

19
.0

19
.3

19
.0

59
2.

1

25
.9

25
.9

59
2.

1

25
.9

25
.9

58
6.

2

26
.0

26
.0

58
6.

2

26
.0

26
.0

0

10

20

30

40

50

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Kernel type

T
im

e
in

 s
ec

on
ds

Application
GPU kernel

AMD double

Figure 9. Application run time on AMD for double precision data.

Both the OpenCL and CUDA programming models support up to three dimensions natively.
Going above three dimension necessitates the introduction of loops. The loop construct is
present in both the static and dynamic kernel, so in it self it should not make a difference.
It is not clear at this point if the introduction of a loop in the kernel is the reason for the
reduced speedup in the 4D stencil benchmark. Why we do not see any benefits from the
specialization when using double precision data on the 1D-, 2D-, and 4D stencil is not clear to
us, and warrants further investigation. On the AMD platform the performance penalty for the
extra kernel generation in the Gaussian elimination and LU decomposition benchmarks are
so small that they do not show in the runtime graphs, see the Dynamic and Selected columns
for the two benchmarks in Figure 9 and 10.

T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels 13

 1D stencil 2D stencil 3D stencil 4D stencil Gauss LU

43
.3

43
.7

43
.2

43
.3

43
.7

43
.2

22
.6

28
.1

22
.6

22
.6

28
.1

22
.6

14
.4

31
.3

14
.4

14
.4

31
.3

14
.4

14
.2

25
.6

14
.2

14
.2

25
.6

14
.2

83
4.

0

28
.2

28
.2

83
4.

0

28
.2

28
.2

83
9.

5

29
.2

29
.0

83
9.

5

29
.2

29
.0

0

10

20

30

40

50

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Dynam
ic

Fixed
Selected

Kernel type

T
im

e
in

 s
ec

on
ds

Application
GPU kernel

AMD float

Figure 10. Application run time on AMD for single precision data.

Figure 9 and 10 show that there is a significant overhead in the AMD driver, and that it
is correlated to the number of kernel calls. For the 1D stencil only half the total application
runtime is spent executing kernels. Most of this exes time is spent by the AMD driver, not in
the collected Bohrium system, otherwise we would see the same overhead in the benchmarks
running on NVIDIA hardware.

5. Future Work

We have shown, in this work, that there are clear benefits to be gained from specialization
of GPU-kernels, and that the added costs of compiling and managing the extra kernels are
quickly amortized. We are convinced that there is basis for doing more advanced kernel
analysis and specialization. This would require a deeper analysis of the incoming bytecode
and even compiling more than two versions of the operational-wise same kernel. We envision
analyzing exactly which parameters change over the course of several iterations. Potentially
it would even be beneficial to analyze which parameters change synchroniously — simply to
limit the function parameter space used. Available parameter space is a limited resource on
GPU’s, especially when moving to higher dimensionality, or when generation more complex
kernels.

6. Conclusion

In this work, we show that both specialized-, and parametrizied- kernels have their benefits
and recognizable use cases. We have implemented a simple hybrid method and show that it
is possible to reap the benefits of both approaches in the realm of auto generated kernels. We
have achieved these benefits without any significant negative impact on overall application
performance. Even in the cases where we were not able to gain any performance boost by
specialization the added cost, for kernel generation and extra bookkeeping, is minimal.

14 T. Blum and B. Vinter / Code Specialization of Auto Generated GPU Kernels

References

[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu, Guy L.
Steele, and Sam Tobin-Hochstadt. The Fortress Language Specification. Technical report, Sun Microsys-
tems, Inc., March 2008. Version 1.0.

[2] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to non-uniform
cluster computing. SIGPLAN Not., 40(10):519–538, October 2005.

[3] F.T. Winter. QDP-JIT/PTX: A QDP++ Implementation for CUDA-Enabled GPUs. PoS, LAT-
TICE2013:042, 2014.

[4] Robert G. Edwards and Balint Joo. The Chroma software system for lattice QCD. Nucl.Phys.Proc.Suppl.,
140:832, 2005.

[5] CAPS Enterprise, Cray Inc., NVIDIA, and the Portland Group. The OpenACC™ Application Program-
ming Interface (v2.0). OpenACC-Standard.org, June 2013.

[6] Nathan Bell and Jared Hoberock (NVIDIA). Thrust: A productivity-oriented library for cuda. https:

//developer.nvidia.com/Thrust, 2012.
[7] AMD. Bolt: C++ template library with support for opencl. http://developer.amd.com/

tools-and-sdks/opencl-zone/bolt-c-template-library, 2013.
[8] the Khronos group. Sycl: C++ single-source heterogeneous programming for opencl. https://www.

khronos.org/sycl, 2014.
[9] Microsoft Corporation. C++ amp : Language and programming model, 2012.

[10] Jeffrey M Perkel. Programming: pick up python. Nature, 518(7537):125–126, 2015.
[11] Matlab Programming Environment. http://www.mathworks.com/products/matlab/. [Online; ac-

cessed March 13th 2015].
[12] Travis E Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing USA, 2006.
[13] Bryan Catanzaro, Shoaib Ashraf Kamil, Yunsup Lee, Krste Asanović, James Demmel, Kurt Keutzer, John

Shalf, Katherine A. Yelick, and Armando Fox. Sejits: Getting productivity and performance with selective
embedded jit specialization. Technical Report UCB/EECS-2010-23, EECS Department, University of
California, Berkeley, Mar 2010.

[14] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: compiling an embedded data parallel
language. In Proceedings of the 16th ACM symposium on Principles and practice of parallel programming,
PPoPP ’11, pages 47–56, New York, NY, USA, 2011. ACM.

[15] CUDA Nvidia. Programming guide, 2008.
[16] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed Fasih. Py-

CUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Comput-
ing, 38(3):157 – 174, 2012.

[17] Aaftab. Munshi et al. The OpenCL Specification (v1.1). Khronos OpenCL Working Group, 2011.
[18] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede. Separating NumPy

API from Implementation. In 5th Workshop on Python for High Performance and Scientific Computing
(PyHPC’14), 2014.

[19] Troels Blum, Mads R. B. Kristensen, and Brian Vinter. Transparent gpu execution of numpy applications.
In Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2014 IEEE 28th
International. IEEE, 2014.

[20] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter. Bohrium:
a virtual machine approach to portable parallelism. In Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International, pages 312–321. IEEE, 2014.

7.7 Fusion of Array Operations at Runtime

Mads R. B. Kristensen, Troels Blum, Simon A. F. Lund, and James
Avery.
To be submitted.

113

Fusion of Array Operations at Runtime
Mads R. B. Kristensen, Troels Blum, Simon A. F. Lund, and James Avery

Niels Bohr Institute, University of Copenhagen, Denmark
{madsbk/safl/blum/avery}@nbi.dk

Abstract—In this paper, we address the problem of fusing
array operations based on criteria, such as compatibility, data
communication, and/or reusability. We formulate the problem as
a graph partition problem that is general enough to handle loop
fusion, combinator fusion, or other fusion of subroutines.

I. INTRODUCTION

Array operation fusion is a program transformation which
combines, or fuses, multiple array operations into a single
kernel of operations. When it is applicable, the technique can
drastically improve cache utilization through temporal data
locality and enables other program transformations such as
streaming and array contraction[1]. In scalar programming
languages, such as C, array operation fusion typically cor-
responds to loop fusion where individual computation loops
are combined into single loops. The effiect is a reduction of
arrays traversals (Fig. 1). Similarly, in functional programming
languages it typically corresponds to the fusion of individual
combinators. In array programming languages, such as HPF[2]
and ZPL[3], the fusion of array operations is mandatory since
a user application in these languages will consist of array
operations almost exclusively.

However, the fusion of two array operations is not always
applicable. Consider the two for-loops in Fig. 2; since the
second loop traverse the result from the first loop reversely,
we have to compute the complete result of the first loop
before continuing to the second loop thus fusion is not directly
applicable. With clever analytics, it might be possible to
transform the program to a form where fusion is applicable
however in this paper we presume that such optimizations have
already been done.

We generalize this problem to: Given a mixed graph, find
a legal partition of vertices that cuts all non-directed edges
and minimizes the cost of the partition.1. Hereafter, we refer
to this problem as the Weighted Subroutine Partition Problem.

We develop different algorithms to solve this problem
and evaluate both their theoretical and practical performance
compared to an optimal solution. In order to maximize data
locality, we use them to fuse array operations within the
Bohrium project[4] thus evaluating the algorithms in practice.
All of Bohrium including the work of this paper is open source
and available at www.bh107.org.

II. THE WEIGHTED SUBROUTINE PARTITION PROBLEM

The Weighted Subroutine Partition (WSP) problem is an
extension of the The Weighted Loop Fusion Problem[5] where

1See Sec. II for the definition of a legal partition and its cost.

#define N 1000
double A[N], B[N], T[N];
// Array expression : A += B*A
for (int i=0; i<N; ++i)
T[i] = B[i] * A[i];

for (int i=0; i<N; ++i)
A[i] += T[i];

(a) Two individaul for-loops.

for (int i=0; i<N; ++i){
T[i] = B[i] * A[i];
A[i] += T[i];
}

(b) Loop fusion: the two
for-loops fused into one.

for (int i=0; i<N; ++i){
double t = B[i] * A[i];
A[i] += t;
}

(c) Array contraction: the
temporary array T is con-
tracted into the scalar t.

Fig. 1. Loop fusion and array contraction in C.

#define N 1000
double A[N], B[N], T[N];
int j = N;
// Array expression : A += reverse(B * A)
for (int i=0; i<N; ++i)
T[i] = B[i] * A[i];

for (int i=0; i<N; ++i)
A[i] += T[--j];

Fig. 2. Two for-loops that cannot be fused easily because of inter-iteration
dependencies.

we include the weight function in the problem formulation. In
this section, we will formally define the WSP problem and
show that it is NP-hard.

Definition 1. A WSP graph, G = (V,Ed, Ef), is a mixed
graph where (V,Ed) forms a directed graph and Ef is
undirected edges between vertices in V .

Definition 2. The vertices in a WSP graph, G = (V,Ed, Ef),
have a strict partial order imposed by the directed edges in
Ed such that if there exist a path from v1 ∈ V to v2 ∈ V
then v1 < v2. Since the order is strict, the directed part of the
graph, (V,Ed), is also acyclic.

Definition 3. Let a partition, P , of a WSP graph, G =
(V,Ed, Ef), denote a partitioning of the vertices, V , into
k blocks, P = {B1, B2, ..., Bk}. Let ΠV denotes the set of
possible partitions of V and let P, P ′ ∈ ΠV have a partial
order, P ≤ P ′, defined as ∀B ∈ P,∃B′ ∈ P ′ : B ⊆ B′.
Definition 4. Given a WSP graph, G = (V,Ed, Ef), a
partition, P ∈ ΠV , is said to be legal when for each block,
B ∈ P , the following holds:

1) @v1, v2 ∈ B : (v1, v2) ∈ Ef . (I.e. no block contains both
endpoints of a fuse-preventing edge)

2) If v1 < v2 < v3 and v1, v3 ∈ B then v2 ∈ B. (I.e. the
directed edges between blocks must not form cycles)

Definition 5. Given a partition, P , of vertices in a WSP graph,
a cost function cost(P) returns the cost of the partition and
respects the following conditions:

1) cost(P) ≥ 0
2) P ≤ P ′ ⇒ cost(P) ≥ cost(P ′)

Definition 6. Given a WSP graph, G = (V,Ed, Ef), and a
cost function, cost(P), the WSP problem is the problem of
finding a legal partition, P , of V with minimal cost:

P ∈ argmin
P ′∈Π̂V

cost(P ′) (1)

where Π̂V denotes the set of legal partitions of V .

A. Complexity

In order to proof that the WSP problem is NP-hard, we
perform a reduction from the Multiway Cut Problem[6], which
Dahlhaus et al. shows is NP-hard for all fixed k ≥ 3.

Definition 7. The Multiway Cut (MWC) problem can be
defined as follows: An instance of the MWC problem,
µ = (V,E, S,w), consist of a graph (V,E), a set S =
{s1, s2, ..., sk} of k specified vertices or terminals, and a non-
negative weight w(u, v) for each edge (u, v) ∈ E. A partition,
P = {B1, B2, ..., Bk}, of V associate a cost:

costMWC(µ, P) :=
∑

B,B′∈P ′

B 6=B′

∑

u∈B
v∈B′

(u,v)∈E

w(u, v) (2)

and is said to be legal when each B ∈ P contains no more
than one terminal.

Given an instance of the MWC problem, µ = (V,E, S,w),
the set of solutions is given by:

argmin
P∈Π̂V

costMWC(µ, P) (3)

where Π̂V denote the set of possible legal partitions of the
vertices in V .

Theorem 1. The WSP problem is NP-hard for a graph, G =
(V,Ed, Ef), with a chain of k ≥ 3 edges in Ef .

Proof. We prove NP-hardness through a reduction from the
MWC problem.

Given an instance of the MWC problem, µ = (V,E, S,w),
we build an instance of the WSP problem as follows. We
form the graph G = (V,Ed, Ef) where V = V ′, Ed = ∅, and
Ef = {(si, sj) : 1 ≤ i < j ≤ k}. We set the cost function to:
cost(P) = costMWC(µ, P).

We then have that Π̂V = Π̂V ′ , where Π̂V and Π̂V ′ is the
set of legal partitions of the vertices V and V ′ respectively,
because:
• The fuse-preventing edges in Ef is exactly between

each terminal in S thus in both partition sets, multiple

terminals are never in the same block (required by Def.
7 and the first condition of Def. 4).

• The set of directed edges in Ed is empty, which makes
Def. 2 and the second condition of Def. 4 always true.

The cost function, cost(P), is a legal WSP cost function
because it respects the conditions of Def. 5:
• Since w(u, v) is non-negative for all (u, v) ∈ E′, cost(P)

is non-negative for all P ∈ Π̂V .
• When P, P ′ ∈ Π̂V and P < P ′, it means that some

blocks in P have been merged into shared blocks in P ′,
which reduces the cost, but they are otherwise identical
thus cost(P) > cost(P ′).

Finally, since Π̂V = Π̂V ′ and the set of solutions to the
MWC and WSP instance is identical (Eq. 3), we hereby
conclude the proof.

III. CONCRETIZATION OF THE WSP PROBLEM

Since the WSP problem formulation is very general, we will
express a concrete optimization problem as a WSP problem
thus demonstrates its real world use. The concrete problem
is an optimization phase within the Bohrium runtime system
where Bohrium partitions a set of array operations for fusion
– the Fusion of Array Operations (FAO) problem:

Definition 8. Given set of array operations, A, equipped
with a strict partial order imposed by the data dependencies
between them, (A,<), find a partition, P , of A where:

1) All array operations within a block in P are fusible (Def.
10)

2) For all blocks, B ∈ P , if v1 < v2 < v3 and v1, v3 ∈ B
then v2 ∈ B. (I.e. the directed edges between blocks
must not form cycles).

3) The cost of the partition (Def. 11) is minimized.

In the following, we will provide a description of Bohrium
and show that a solution to the WSP problem is a solution to
the FAO problem (Theorem 2).

A. Fusion of Array Operations in Bohrium

Bohrium is a computation backend for array programming
languages and libraries that supports a range of languages,
such as Python, C++, and .NET, and a range of computer
architectures, such as CPU, GPU, and clusters thereof. The
idea is to decouple the domain specific frontend implemen-
tation with the computation specific backend implementation
in order to provide a high-productivity and high-performance
framework.

Similar to NumPy, a Bohrium array operation operates
on a set of inputs and produces a set of outputs[4]. Both
input and output operands are views of arrays. An array view
is a structured way to observe the whole or parts of an
underlying base array. A base array is always a contiguous
one-dimensional array whereas views can have any shape,
stride, and dimensionality[4]. Hereafter when we refer to an
array, we mean an array view; when we refer to identical
arrays, we mean identical array views that points to the same

1 import bohrium as bh
2
3 def synthetic():
4 A = bh.zeros(4)
5 B = bh.zeros(4)
6 D = bh.zeros(5)
7 E = bh.zeros(5)
8 A += D[:-1]
9 A [:] = D [:-1]

10 B += E[:-1]
11 B [:] = E [:-1]
12 T = A * B
13 bh.maximum(T, E[1:], out=D[1:])
14 bh.minimum(T, D[1:], out=E[1:])
15 return D
16 print synthetic()

(a)

1 COPY A, 0
2 COPY B, 0
3 COPY D, 0
4 COPY E, 0
5 ADD A, A, D[:-1]
6 COPY A, D[:-1]
7 ADD B, B, E[:-1]
8 COPY B, E[:-1]
9 MUL T, A, B

10 MAX D[1:], T, E[1:]
11 MIN E[1:], T, D [1:]
12 DEL A
13 DEL B
14 DEL E
15 DEL T
16 SYNC D
17 DEL D

(b)

Fig. 3. A Python application that utilizes the Bohrium runtime system. In
order to demonstrate various challenges and trade-offs, the application is very
synthetic. Fig. (a) shows the Python code and Fig. (b) shows the corresponding
Bohrium array bytecode.

base array; and when we refer to overlapping arrays, we mean
array views that points to some of the same elements in a
common base array.

Fig. 3a is a Python application that imports and uses
Bohrium as a drop-in replacement of NumPy. The application
allocates and initiates four arrays (line 4-7), manipulates those
array through array operations (line 8-14), and prints the
content of one of the arrays (line 16).

In order to be language agnostic, Bohrium translates the
Python array operations into array bytecode (Fig. 3b) that the
Bohrium backend can execute2. In the case of Python, the
Python array operations and the Bohrium array bytecode is
almost a one-to-one mapping where the first bytecode operand
is the output array and the following operands are either input
arrays or input literals. Since there is no scope in the bytecode,
Bohrium uses DEL to destroy arrays and SYNC to move
array data into the address space of the frontend language
– in this case triggered by the Python print statement (Fig.
3a, line 16). There is no explicit bytecode for constructing
arrays; on first encounter, Bohrium constructs them implicitly.
Hereafter, we use the term array bytecode and array operation
interchangeable.

In the next phase, Bohrium partitions the list of array
operations into blocks that consists of fusible array operations
– the FAO problem. As long as the preceding constraints
between the array operations are preserved, Bohrium is free
to reorder them as it sees fit thus optimizations based on data
locality, array contraction, and streaming are possible.

In the final phase, the hardware specific backend implemen-
tation JIT-compiles each block of array operations and execute
them.

1) Fusibility: In order to utilize data-parallelism, Bohrium
and most other array programming languages and libraries
impose a data-parallelism property on some or all array
operations. The property ensures that the runtime system

2For a detailed description of this Python-to-bytecode translation we refer
to previous work [7], [8].

can calculate each output element independently without any
communication between threads or processors. In Bohrium, all
array operation must have this property.

However, before we formally define this data-parallelism
property, we must introduce some notation:

Definition 9. Given an array operation f , the notation in[f]
denotes the set of arrays that f reads; out[f] denotes the set
of arrays that f writes; and del[f] denotes the set of arrays
that f deletes (or memory de-allocates).

Let us define the data-parallelism property and thus the
criteria for array operation fusion:

Definition 10. An array operation, f , in Bohrium has the
data-parallelism property where each output element can be
calculated independently, which imposes the following restric-
tions:

∀i ∈ in[f],∀o ∈ out[f],∀o′ ∈ out[f] :

i ∩ o = ∅ ∨ o = o′ ∧ o ∩ o′ = ∅ ∨ o = o′
(4)

In other words, if an input and an output or two output arrays
overlaps, they must be identical. This does not apply to DEL
and SYNC since they do not do any actual computation.

Consequently, array operation fusion must preserve the data-
parallelism property:

Corollary 1. In Bohrium, two array operations, f and f ′, are
said to be fusible when the following holds:

∀i′ ∈ in[f ′],∀o ∈ out[f] : i′ ∩ o = ∅ ∨ i′ = o

∧
∀o′ ∈ out[f ′],∀o ∈ out[f] : o′ ∩ o = ∅ ∨ o′ = o

∧
∀o′ ∈ out[f ′],∀i ∈ in[f] : o′ ∩ i = ∅ ∨ o′ = i

Proof. It follows directly from Definition 10.

2) Cost Model: In order to have an optimization object,
Bohrium uses a generic cost function that quantify unique
memory accesses and thus rewards optimizations such as array
contraction, data reuse, and operation streaming. For simplic-
ity, Bohrium will not differentiate between reads and writes
and will not count access to literals and register variables, such
accesses adds no cost:

Definition 11. In bohrium, the cost of a partition, P =
{B1, B2, ..., Bk}, of array operations is given by:

0 ≤ cost(P) =
∑

B∈P
length

 ⋃

f∈B
(in[f] ∪ out[f])

 (6)

where length(A) returns the total number of bytes accessed
by the unique arrays in A. A exception to the cost function:
the cost of DEL and SYNC is always zero.

Bohrium implements two techniques to improve data local-
ity through array operation fusion:

Array Contraction When an array is created and destroyed
within a single partition block, Bohrium will contract the
array into temporary register variables, which typically
corresponds to a scalar variable per parallel computing
thread. Consider the program transformation between Fig.
1b and 1c where the temporary array T is array contracted
into the scalar variable t. In this case, the transformation
reduces the accessed data and memory requirement with
(N-1) * sizeof(double) bytes.

Data Access Reuse When a partition block accesses an array
multiple times, Bohrium will only read and/or write to
that array once thus saving access to main memory.
Consider the two for-loops in Fig. 1a that includes two
traversals of A and T. In this case, it is possible to save
one traversal of A and one traversal of T through fusion
(Fig. 1b). Furthermore, the compiler can reduce the access
to the main memory with (N − 1)2 since it can keep the
current element of A and T in register.

Corollary 2. In Bohrium, the cost saving of fusing two array
operations, f and f ′, (in that order) is given by:

0 ≤ saving(f, f ′) =

length(out[f] ∩ del[f ′]) + length(out[f] ∩ in[f ′])
(7)

Proof. The cost saving of fusing f and f ′ follows directly
from the definition of the two optimizations Bohrium will
apply when able: Array Contraction and Data Access Reuse.
Array Contraction is applicable when an output of f is
destroyed in f ′, which saves us length(out[f] ∩ del[f ′])
bytes. Meanwhile, Data Access Reuse is applicable when
an output of f is also an input of f ′, which saves us
length(out[f]∩ in[f ′]) bytes. Thus, we have a total saving of
length(out[f] ∩ del[f ′]) + length(out[f] ∩ in[f ′]).

3) Fusion of Array Operations: Finally, we will show that
algorithms that find solutions to the WSP problem also find
solutions to the FAO problem.

Lemma 1. In Bohrium, the cost of a partition of array
operations is non-negative and monotonically decreasing on
fusion thus satisfies the WSP requirement (Def. 5).

Proof. The cost is clearly non-negative since the amount of
bytes accessed by an array is non-negative. The cost is also
monotonically decreasing when fusing two array operations
since no new arrays are introduced; rather, the cost is based
on the union of the arrays the two array operations accesses
(Eq. 11).

Theorem 2. A solution to the WSP problem is a solution to
the FAO problem.

Proof. Given an instance of the FAO problem, (A,<), we
build an instance of the WSP problem as follows. We form
the graph G = (V,Ed, Ef) where:

1) For each array operation a ∈ A, we have a unique vertex
v ∈ V such that v represents a.

2) For each pair of array operations a, a′ ∈ A, if a < a′

then there is an edge (a′, a) ∈ Ed.

3) For each pair of array operations a, a′ ∈ A, if a and a′

is non-fusible then there is an edge (a, a′) ∈ Ef .
We set the WSP cost function to the partition cost in Bohrium
(Def. 2).

Through the same logical steps as in Theorem 1, it is easy
to see that the set of legal partition of A equals the set of
legal partitions of V. Additionally, Lemma 1 shows that the
partition cost in Bohrium is a legal WSP cost function (Def.
5), which hereby concludes the proof.

IV. FINDING A SOLUTION

In this section, we will present a range of WSP partition
algorithms – from a greedy to an optimal solution algorithm.
We use the Python application in Fig. 3 to demonstrate the
results of each partition algorithm.

In order to unify the WSP problem into one data structure,
Bohrium represents the WSP problem as a partition graph:

Definition 12. Given an instance of the WSP problem – a
graph, G = (V,Ed, Ef), a partition, P = {B1, B2, ..., Bk}
of V , and a partition cost, cost(P) – the partition graph
representation is given as Ĝ = (V̂ , Êd, Êf , Êw) where:
• Vertices, V̂ , represents partition blocks thus V̂ = P .
• Directed edges, Êd, represents dependencies between

blocks thus if (B1, B2) ∈ Êd then there exist an edge
(u, v) ∈ Ed where u ∈ B1 and v ∈ B2.

• Fuse-preventing edges, Êf , represents non-fusibility be-
tween blocks thus if (B1, B2) ∈ Êf then there exist an
edge (u, v) ∈ Ef where u ∈ B1 and v ∈ B2.

• Weighted cost-saving edges, Êw, represent the reduction
in the partition cost if blocks are fused thus there is an
edge between all fusible blocks and the weight of an edge
(B1, B2) ∈ Ew is cost(P1) − cost(P2) where B1, B2 ∈
P1 and (B1 ∪B2) ∈ P2, which in Bohrium corresponds
to saving(B1, B2) (Corollary 2).

Additionally, we need to define some notation:
• Given a partition graph, Ĝ, the notation V [Ĝ] denotes the

set of vertices in Ĝ, Ed[Ĝ] denotes the set of dependency
edges, Ef [Ĝ] denotes the set of fuse-preventing edges,
and Ew[Ĝ] denotes the set of weight edges.

• Given a partition graph, Ĝ, let each vertex v ∈ V [Ĝ]
associate a set of vertices, θ[v], where each vertex
u ∈ θ[v] cannot fuse with v either directly because u, v
are connected with a fuse-preventing edge or indirectly
because there exist a path from u to v in Ed[Ê] that
contains vertices connected with a fuse-preventing edge.

Thus we have that a vertex in a partition graph v̂ ∈ V [Ĝ] is a
set of vertices in the WSP problem. In order to remember this
relationship, we mark the vertices in a partition graph with
theˆnotation.

A. Initially: No Fusion

Initially, Bohrium transforms the list of array operations into
a WSP instance as described in Theorem 2 and then represents
the WSP instance as a partition graph (Def. 12) where each
block in the partition is assigned exactly one array operation

and the weight of the cost-saving edges is derived by Corollary
2. We call this the non-fused partition graph.

The complexity of this transformation is O(V 2) since we
might have to check all pairs of array operations for depen-
decies, fusibility, and cost-saving, all of which is O(1). Fig.
5 shows a partition graph of the Python example where all
blocks have one array operation. The cost of the partition is
86.

B. Sequences of Vertex Fusions
We will now show that it is possible to build an optimal

partition graph through a sequences of weighted edge fusions
(i.e. edge contractions). For this, we need to define vertex
fusion in the context of a partition graph:

Definition 13. Given a partition graph, Ĝ = (V̂ , Êd, Êf , Êw),
and two vertices, û, v̂ ∈ V̂ , the function FUSE(Ĝ, û, v̂) returns
a new partition graph where û, v̂ has been replaced with a
single vertex x̂ ∈ V̂ . All three sets of edges, Êd, Êf , and
Êw, are updated such that the adjacency of x̂ is the union
of the adjacency of û, v̂. The vertices within x̂ becomes the
vertices within û ∪ v̂. Finally, the weights of the edges in Êw

that connects to x̂ is re-calculated.

The asymptotic complexity of FUSE is O(Êd +Êf +Êw$)
where $ is the complexity of calculating a weight edge. In
Bohrium $ equals the set of vertices within the WSP problem
V thus we get O(Êd + Êf + ÊwV).

In order to simplify, hereafter when reporting complexity we
use O(V) to denote O(V + V̂) and O(E) to denote O(Êd +
Êf + Êw +Ed +Ef) where Ed, Ef are the set of edges in the
WSP problem. Therefore, the complexity of FUSE in Bohrium
is simply O(V E).

Furthermore, the FUSE function is commutaive:

Corollary 3. Given a partition graph Ĝ and two vertices
û, v̂ ∈ Ĝ, the function FUSE(Ĝ, û, v̂) is commutaive.

Proof. This is because FUSE is basically a vertex contraction
and an union of the vertices within û, v̂ both of which are
commutative operations[9].

However, it is not always legal to fuse over a weighted edge
because of the preservation of the partial order of the vertices.
That is, given three vertices, a, b, c, and two dependency edges,
(a, b) and (b, c); it is illegal to fuse a, c without also fusing b.
We call such an edge between a, c a transitive weighted edge
and we must ignore them. Now we have:

Lemma 2. Given a basic non-fused partition graph,
Ĝ1, there exist a sequences of weighted edge fusions,
FUSE(Ĝ1, û1, v̂1), FUSE(Ĝ2, û2, v̂2), ..., FUSE(Ĝn, ûn, v̂n),
where (ûi, v̂i) ∈ Ew[Ĝi] and (ûi, v̂i) is non-transitive for
i = 1, 2, ..., n, for any legal partition graph Ĝn.

Proof. This follows directly from Corollary 3 and the build of
the basic non-fused partition graph, which has weight-edges
between all pairs of fusible vertices. The fact that we ignore
transitive weighted edges does not preclude any legal partition.

1: function IGNORE(G, e)
2: (u, v)← e
3: l← length of longest path between u and v in Ed[G]
4: if l = 1 then
5: return true
6: else
7: return false
8: end if
9: end function

Fig. 4. A help function thet determines whether the weight edge, e ∈ Ew[G],
should be ignored when searching for vertices to fuse.

Fig. 5. A partition graph of the Python application in Fig. 3. For illustrative
proposes, the graph does not include ignored weight edges (cf. Fig. 4).

Bohrium implements, IGNORE(Ĝ, e), which given a weight
edge, e ∈ Ew[Ĝ], determines whether the edge should be
ignored or not (Fig. 4). The search of the longest path (line
3) dominates the complexity of this function thus the overall
complexity is O(V + E).

C. Greedy Fusion

Fig. 6 shows a greedy fuse algorithm. It uses the function
FIND-HEAVIEST to find the edge in Ew with the great-
est weight and either remove it or fuse over it. Note that
FIND-HEAVIEST must search through Ew in each iteration
since FUSE might change the weights.

The number of iterations in the while loop (line 2) is O(E)
since minimum one weight edge is removed in each iteration
either explicitly (line 5) or implicitly by FUSE (line 7). The
complexity of finding the heaviest (line 3) is O(E), calling

1: function GREEDY(G)
2: while Ew[G] 6= ∅ do
3: (u, v)← FIND-HEAVIEST(Ew[G])
4: if IGNORE(G, (u, v)) then
5: Remove edge (u, v) from Ew

6: else
7: G← FUSE(G, u, v)
8: end if
9: end while

10: return G
11: end function

Fig. 6. The greedy fusion algorithm that greedily fuses the vertices connected
with the heaviest weight edge in G.

Fig. 7. A partition graph of the greedy fusion of the graph in Fig. 5.

IGNORE is O(E + V), and calling FUSE is O(V E) thus the
overall complexity is O(V E2).

Fig. 7 shows a greedy partition of the Python example. The
partition cost is 46, which is a significant improvement over
no fusion. However, it is not the optimal partitioning, as we
shall see later.

D. Unintrusive Fusion

In order to reduce the size of the partition graph, we
apply an unintrusive strategy where we fuse vertices that are
guaranteed to be part of an optimal solution. Consider the two
vertices, a, e, in Fig. 5. The only beneficial fusion possibility
a has is with e thus if a is fused in the optimal solution, it is
with e. Now, since fusing a, e will not impose any restriction
to future possible vertex fusions in the graph. The two vertices
are said to be unintrusively fusible:

Theorem 3. Given a partition graph, Ĝ, that, through the
fusion of vertices u, v ∈ V [Ĝ] into z ∈ V [Ĝ′], transforms
into the partition graph Ĝ′; the vertices u, v is said to be
unintrusively fusible when the following conditions holds:

1) θ[z] = θ[v] = θ[u], i.e. the set of non-fusibles must not
changes after the fusion.

2) Either u or v is a pendant vertex in graph (V [Ĝ], {e ∈
Ew[Ĝ]|¬IGNORE(Ĝ, e)}), i.e. the degree of either u or

Fig. 8. A partition graph of the unintrusive fusion of the graph in Fig. 5.

v must be 1 in respect to the weigh edges in Ĝ that are
not ignored.

Proof. The sequences of fusions that obtain an optimal par-
tition solution cannot include the fusion of u, v into z when
two conditions exists:

1) There exist a vertex x both in G and G′ that are fusible
with u or v but not z and the cost saving of fusing z, u
or z, v is greater than the cost saving of fusing u, v.

2) There exist two non-fusible vertices x, y both in Ĝ and
Ĝ′ in which the cost saving of fusing x, u and fusing
v, y is not greater than the cost saving of fusing u, v.

Since we have that θ[z] = θ[v] = θ[u], condition (1) cannot
exist and since either u or v is a pendant vertex condition (2)
cannot exist. Thus, we have that the fusion of u, v is always
beneficial and is part of an optimal solution, which concludes
the proof.

Fig. 9 shows the unintrusive fusion algorithm. It uses a
help function, FINDCANDIDATE, to find two vertices that are
unintrusively fusible. The complexity of FINDCANDIDATE is
O(E(E+V)), which dominates the while-loop in UNINTRU-
SIVE thus the overall complexity of the unintrusive fusion
algorithm is O(E2(E + V)). Note that there is no need to
further optimize UNINTRUSIVE since we only use it as a
preconditioner for the optimal solution, which will dominate
the computation time anyway.

Fig. 8 shows an unintrusive partition of the Python example
with a partition cost of 62. However, the significant improve-
ment is the reduction of the number of weight edges in the
graph. As we shall see next, in order to find an optimal graph
partition in practical time, the number of weight edges in the
graph must be very modest.

1: function FINDCANDIDATE(G) . Help function
2: for (v, u)← Ew[G] do
3: if IGNORE(G, (u, v)) then
4: Remove edge (u, v) from Ew

5: end if
6: end for
7: for (v, u)← Ew[G] do
8: if the degree is less than 2 for either u or v

when only counting edges in Ew[G] then
9: if θ[u] = θ[v] then

10: return (u, v)
11: end if
12: end if
13: end for
14: return (NIL,NIL)
15: end function
16:
17: function UNINTRUSIVE(G)
18: while (u, v)← FINDCANDIDATE(G) 6= (NIL,NIL) do
19: G← FUSE(G, u, v)
20: end while
21: return G
22: end function

Fig. 9. The unintrusive fusion algorithm that only fuse unintrusively fusible
vertices.

E. Optimal Fusion

Generally, we cannot hope to solve the WSP problem in
polynomial time because of the NP-hard nature of the problem.
In worse case, we have to search through all possible fuse
combinations of which there are 2E . However, in some cases
we may be able to solve the problems within reasonable time
through a carefully chosen search strategy. For this purpose,
we implement a branch-and-bound algorithm that explores the
monotonic decreasing property of the partition cost (Lemma
1).

Consider the result of the unintrusive fusion algorithm (Fig.
8). In order to find the optimal solution, we start a search
down through a tree of possible partitions. At the root level of
the search tree, we check the legality of a partition that fuses
over all weigh edges. If the partition graph is legal, i.e. it did
not fuse vertices connected with fuse-preventing edges, than
it follows from Lemma 1 that the partition is optimal. If the
partition is not legal, we descend a level down the tree and try
to fuse over all but one weight edge. We continue this process
such that for each level in the search tree, we fuse over one
less weight edge. We do this until we find a legal partition
(Fig. 10).

Furthermore, because of Lemma 1, we can bound the search
using the cheapest legal partition already found. Thus, we
ignore sub-trees that have a cost greather than the cheapest
already found.

Fig. 11 shows the implementation and Fig. 12 shows an
optimal partition of the Python example with a partition cost
of 34.

Fig. 10. A branch-and-bound search tree of the unintrusively fused partition
graph (Fig. 8). Each vertex lists a sequences of vertex fusions that build a
specific graph partition. The grayed out area indicates the part of the search
tree that a depth-first-search can skip because of the cost bound.

F. Naı̈ve Fusion

For completeness, we also implement a partition algorithm
that does not use a graph representation. In our naı̈ve approach,
we simply go through the array operation list and add each
array operation to the current partition block unless the array
operations makes the current block illegal, in which case we
add the array operation to a new partition block, which then
becomes the current one. The asymptotic complexity of this
algorithm is O(n2) where n is the number of array operations.

Fig. 13 show that result of partitioning the Python example
with a cost of 50.

G. Fuse Cache

In order to amortize the runtime of applying the fuse
algorithms, Bohrium implements a fuse cache of previously
found partitions of array operation lists. It is often the case that
scientific applications use large calculation loops such that an
iteration in the loop corresponds to a list of array operations.
Since the loop contains many iterations, the cache can amortize
the overall runtime time.

V. EVALUATION

In this section, we will evaluate the different partition
algorithm both theoretically and practically. We execute a
range of scientific Python benchmarks, which are part of an
open source benchmark tool and suite named Benchpress3.
Table I shows the specific benchmarks that we uses and Table
II specifies the host machine. When reporting runtime results,
we use the results of the mean of eight identical executions
as well as error bars that shows two standard deviations from
the mean.

We would like to point out that even though we are
using benchmarks implemented in pure Python/NumPy, the
performance is comparable to traditional high-performance
languages such as C and Fortran. This is because Bohrium

3Available at http://benchpress.bh107.org. For reproducibility, the exact
version can be obtained from the source code repository at https://github.
com/bh107/benchpress.git revision 01e84bd995.

1: function FUSEBYMASK(G,M) . Help function
2: f ← true . Flag that indicates fusibility
3: for i← 0 to |Ew[G]| − 1 do
4: if Mi = 1 then
5: (u, v)← the i’th edge in Ew[G]
6: if not FUSIBLE(G, u, v) then
7: f ← false
8: end if
9: G← FUSE(G, u, v)

10: end if
11: end for
12: return (G, f)
13: end function
14:
15: function OPTIMAL(G)
16: G← UNINTRUSIVE(G)
17: for (v, u)← |Ew[G] do
18: if IGNORE(G, (u, v)) then
19: Remove edge (u, v) from Ew

20: end if
21: end for
22: B ← GREEDY(G) . Initially best partitioning
23: M0..|Ew [G]| ← 1 . Fill array M with ones
24: o← 0 . The mask offset
25: Q← ∅
26: ENQUEUE(Q, (M, o))
27: while Q 6= ∅ do
28: (M, o)← DEQUEUE(Q)
29: (G′, f)← FUSEBYMASK(G,M)
30: if cost(G′) < cost(B) then
31: if f and G′ is acyclic then
32: B ← G′ . New best partitioning
33: end if
34: end if
35: for i← o to |M | − 1 do
36: M ′ ←M
37: M ′

i ← 0
38: ENQUEUE(Q, (M ′, i+ 1))
39: end for
40: end while
41: return B
42: end function

Fig. 11. The optimal fusion algorithm that optimally fuses the vertices in G.
The function, cost(G), returns the partition cost of the partition graph G.

overloads NumPy array operations[8] in order to JIT compile
and execute them in parallel seamlessly[cite simon].

1) Theoretical Partition Cost: Fig. 14 shows that theoret-
ical partition cost (Def. 11) of the four different partition
algorithms previously presented. Please note that the last five
benchmarks do not show an optimal solution. This is because
the associated search trees are too large for our branch-and-
bound algorithm to solve. For example, the search tree of
the Lattice Boltzmann is 2664, which is simply too large
even when the bound can cut much of the search tree away.
As expected, we observe that the three algorithms that do
fusion, Naı̈ve, Greedy, and Optimal, have a significant smaller
cost than the non-fusing algorithm Singleton. The difference
between Naı̈ve and Greedy is significant in some of the
benchmarks but the difference between greedy and optimal
does almost not exist.

Fig. 12. A partition graph of the optimal fusion of the graph in Fig. 5.

Fig. 13. A partition graph of a Naı̈ve partition of the Python example (Fig.
3).

Benchmark Input size (in 64bit floats) Iterations
Black Scholes 1.5×106 20
Game of Life 108 20
Heat Equation 1.44×108 20
Leibnitz PI 108 20
Gauss Elimination 2800 2799
LU Factorization 2800 2799
Monte Carlo PI 108 20
27 Point Stencil 4.2875×107 20
Shallow Water 1.024×107 20
Rosenbrock 2×108 20
Successive over-relaxation 1.44×108 20
NBody 6000 20
NBody Nice 40 plantes, 2×106asteroids 20
Lattice Boltzmann D3Q19 3.375×106 20
Water-Ice Simulation 6.4×105 20

TABLE I
BENCHMARK APPLICATIONS

Processor: Intel Core i7-3770
Clock: 3.4 GHz
#Cores: 4
Peak performance: 108.8 GFLOPS
L3 Cache: 16MB
Memory: 128GB DDR3
Operating system: Ubuntu Linux 14.04.2 LTS
Software: GCC v4.8.4, Python v2.7.6, NumPy 1.8.2

TABLE II
SYSTEM SPECIFICATIONS

L
ei

b
n

it
z

P
I

B
la

ck
S

ch
ol

es

M
on

te
C

ar
lo

P
I

G
am

e
of

L
if

e

G
au

ss
E

li
m

in
a
ti

on

H
ea

t
E

q
u

at
io

n

L
U

F
ac

to
ri

za
ti

on

27
P

oi
n
t

S
te

n
ci

l

S
h

al
lo

w
W

at
er

R
os

en
b

ro
ck

L
at

ti
ce

B
ol

tz
m

an
n

N
B

o
d

y

N
B

o
d

y
N

ic
e

S
O

R

W
at

er
-I

ce
S

im
u

la
ti

on

0

1

2

3

4

5

6

fu
se

p
ri

ce

×1011

No-Fusion Naive Greedy Optimal

Fig. 14. Theoretical cost of the different partition algorithms. NB: the last
five benchmarks, Lattice Boltzmann, NBody, NBody Nice, SOR, Water-Ice
Simulation, does not show an optimal solution.

2) Practical Runtime Cost: In order to evaluate the full
picture, we do three runtime measurements: one with a warm
fuse cache, one with a cold fuse cache, and one with no
fuse cache. Fig. 15 shows the runtime when using a warm
fuse cache thus we can compare the theoretical partition cost
with the practical runtime without the overhead of running
the partition algorithm. Looking at Fig. 14 and Fig. 15, it
is evident that our cost model, which is a measurement of
unique array accesses (Def. 11), compares well to the practical
runtime result in this specific benchmark setup. However, there
are some outliners – the Monte Carlo Pi benchmark has a
theoretical partition cost of 1 when using the Greedy and
Optimal algorithm but has a significantly greater practical
runtime. This is because the execution becomes computation
bound rather than memory bound thus a further reduction in
memory accesses does not improve performance. Similarly, in
the 27 Point Stencil benchmark the theoretical partition cost
is identical for Naı̈ve, Greedy, and Optimal but in practices
the Optimal is marginal better. This is an artifact of our cost
model, which define the cost of reads and writes identically.

Fig. 16 shows the runtime when using a cold fuse cache such
that the partition algorithm runs once in the first iteration of the
computation. The results show that 20 iterations, which most
of the benchmarks uses, is enough to amortize the partition
overhead. Whereas, when running the partition algorithm in
each iteration, which is the case when running with no fuse

L
ei

b
n

it
z

P
I

B
la

ck
S

ch
ol

es

M
on

te
C

a
rl

o
P

I

G
am

e
of

L
if

e

G
au

ss
E

li
m

in
a
ti

o
n

H
ea

t
E

q
u

at
io

n

L
U

F
a
ct

or
iz

at
io

n

2
7

P
oi

n
t

S
te

n
ci

l

S
h

al
lo

w
W

at
er

R
o
se

n
b

ro
ck

L
a
tt

ic
e

B
o
lt

zm
an

n

N
B

o
d

y

N
B

o
d

y
N

ic
e

S
O

R

W
at

er
-I

ce
S

im
u

la
ti

o
n

0

5

10

15

20

25

30

35

40

el
ap

se
d

No-Fusion Naive Greedy Optimal

Fig. 15. Runtime of the different partition algorithms using a warm cache.

L
ei

b
n

it
z

P
I

B
la

ck
S

ch
ol

es

M
on

te
C

ar
lo

P
I

G
am

e
o
f

L
if

e

G
au

ss
E

li
m

in
at

io
n

H
ea

t
E

q
u

at
io

n

L
U

F
ac

to
ri

za
ti

on

27
P

oi
n
t

S
te

n
ci

l

S
h

al
lo

w
W

at
er

R
os

en
b

ro
ck

L
at

ti
ce

B
ol

tz
m

an
n

N
B

o
d

y

N
B

o
d

y
N

ic
e

S
O

R

W
at

er
-I

ce
S

im
u

la
ti

on

0

5

10

15

20

25

30

35

40
el

ap
se

d
No-Fusion Naive Greedy Optimal

Fig. 16. Runtime of the different partition algorithms using a cold cache.

cache (Fig. 17), the Naı̈ve partition algorithm outperforms both
the Greedy and Optimal algorithm because of its smaller time
complexity.

REFERENCES

[1] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath, “Collective loop fusion for
array contraction,” in Languages and Compilers for Parallel Computing,
ser. Lecture Notes in Computer Science, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, Eds. Springer Berlin Heidelberg, 1993, vol.
757, pp. 281–295.

[2] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[3] B. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and W. Weath-
ersby, “Zpl: a machine independent programming language for parallel
computers,” Software Engineering, IEEE Transactions on, vol. 26, no. 3,
pp. 197–211, Mar 2000.

[4] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and B. Vinter,
“Bohrium: a Virtual Machine Approach to Portable Parallelism,” in
Parallel & Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International. IEEE, 2014, pp. 312–321.

[5] K. Kennedy and K. McKinley, “Maximizing loop parallelism and im-
proving data locality via loop fusion and distribution,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1994, vol. 768, pp. 301–320.

L
ei

b
n

it
z

P
I

B
la

ck
S

ch
ol

es

M
on

te
C

a
rl

o
P

I

G
am

e
of

L
if

e

G
au

ss
E

li
m

in
a
ti

o
n

H
ea

t
E

q
u

at
io

n

L
U

F
a
ct

or
iz

at
io

n

2
7

P
oi

n
t

S
te

n
ci

l

S
h

al
lo

w
W

at
er

R
o
se

n
b

ro
ck

L
a
tt

ic
e

B
o
lt

zm
an

n

N
B

o
d

y

N
B

o
d

y
N

ic
e

S
O

R

W
at

er
-I

ce
S

im
u

la
ti

o
n

0

5

10

15

20

25

30

35

40

el
ap

se
d

No-Fusion Naive Greedy Optimal

Fig. 17. Runtime of the different partition algorithms using no cache.

[6] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis, “The complexity of multiway cuts,” in Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing. ACM,
1992, pp. 241–251.

[7] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and B. Vinter,
“Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster,” in 4th
Workshop on Python for High Performance and Scientific Computing
(PyHPC’13), 2013.

[8] M. R. B. Kristensen, S. A. F. Lund, T. Blum, and K. Skovhede,
“Separating NumPy API from Implementation,” in 5th Workshop on
Python for High Performance and Scientific Computing (PyHPC’14),
2014.

[9] T. Wolle, H. L. Bodlaender et al., “A note on edge contraction,” Technical
Report UU-CS-2004, Tech. Rep., 2004.

Bibliography

[1] Comparing python, numpy, matlab, fortran, etc. https://

modelingguru.nasa.gov/docs/DOC-1762. [Online; accessed April 7.
2014].

[2] Java - Class Thread. http://docs.oracle.com/javase/1.5.0/docs/

api/java/lang/Thread.html. [Online; accessed 7 September 2015].

[3] Matlab Programming Environment. http://www.mathworks.com/

products/matlab/. [Online; accessed March 13th 2015].

[4] Python - Higher-level threading interface. http://docs.python.org/

2/library/threading.html. [Online; accessed 7 September 2015].

[5] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide. Technical report, 2007. [Online; accessed 21 February 2013].

[6] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele, and Sam Tobin-Hochstadt. The
Fortress Language Specification. Technical report, Sun Microsystems,
Inc., March 2008. Version 1.0.

[7] AMD. Bolt: C++ template library with support for opencl.
http://developer.amd.com/tools-and-sdks/opencl-zone/

bolt-c-template-library, 2013.

[8] Rasmus Andersen and Brian Vinter. The scientific byte code virtual
machine. In GCA’08, pages 175–181, 2008.

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

124

https://modelingguru.nasa.gov/docs/DOC-1762
https://modelingguru.nasa.gov/docs/DOC-1762
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://docs.python.org/2/library/threading.html
http://docs.python.org/2/library/threading.html
http://developer.amd.com/tools-and-sdks/opencl-zone/bolt-c-template-library
http://developer.amd.com/tools-and-sdks/opencl-zone/bolt-c-template-library

[10] Nathan Bell and Jared Hoberock (NVIDIA). Thrust: A productivity-
oriented library for cuda. https://developer.nvidia.com/Thrust,
2012.

[11] Laura Susan Blackford. ScaLAPACK. In Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM) - Supercomputing
96 Supercomputing 96, page 5, 1996.

[12] Troels Blum, Mads R. B. Kristensen, and Brian Vinter. Transpar-
ent GPU Execution of NumPy Applications. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2014 IEEE 28th International. IEEE, 2014.

[13] Troels Blum and Brian Vinter. Code Specialization of Auto Generated
GPU Kernels. In Communicating Process Architectures 2015. IOS Press,
2015.

[14] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead:
compiling an embedded data parallel language. In Proceedings of the
16th ACM symposium on Principles and practice of parallel program-
ming, PPoPP ’11, pages 47–56, New York, NY, USA, 2011. ACM.

[15] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanovic, James
Demmel, Kurt Keutzer, John Shalf, Kathy Yelick, and Armando Fox.
Sejits: Getting productivity and performance with selective embed-
ded jit specialization. Programming Models for Emerging Architectures,
2009.

[16] Bryan Catanzaro, Shoaib Ashraf Kamil, Yunsup Lee, Krste Asanović,
James Demmel, Kurt Keutzer, John Shalf, Katherine A. Yelick, and
Armando Fox. Sejits: Getting productivity and performance with selec-
tive embedded jit specialization. Technical Report UCB/EECS-2010-23,
EECS Department, University of California, Berkeley, Mar 2010.

[17] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster com-
puting. SIGPLAN Not., 40(10):519–538, October 2005.

[18] Intel Corporation. 80386 programmer’s reference manual. Intel Corpo-
ration, 1986.

[19] Intel Corporation. 80286 And 80287 Programmer’s Reference Manual,
revised. Intel Corporation, 1987.

125

https://developer.nvidia.com/Thrust

[20] Microsoft Corporation. C++ amp : Language and programming model,
2012.

[21] NVIDIA Corporation. Nvidia cuda c programming guide (version 3.2).
http://developer.nvidia.com/page/home.html, August 2010.

[22] L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science Engineering, IEEE,
5(1):46–55, 1998.

[23] Robert G. Edwards and Balint Joo. The Chroma software system for
lattice QCD. Nucl.Phys.Proc.Suppl., 140:832, 2005.

[24] CAPS Enterprise, Cray Inc., NVIDIA, and the Portland Group. The
OpenACCTM Application Programming Interface (v2.0). OpenACC-
Standard.org, June 2013.

[25] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive
performance comparison of cuda and opencl. In Proceedings of the 2011
International Conference on Parallel Processing, ICPP ’11, pages 216–
225, Washington, DC, USA, 2011. IEEE Computer Society.

[26] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

[27] Rahul Garg and José Nelson Amaral. Compiling python to a hybrid
execution environment. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU ’10, pages
19–30, New York, NY, USA, 2010. ACM.

[28] S. Gill. Parallel programming. The Computer Journal, 1(1):2–10, 1958.

[29] M.J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-
based visual simulation on graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 109–118. Eurographics Association, 2002.

[30] C.A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[31] N.P. Jouppi. Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers. In Computer
Architecture, 1990. Proceedings., 17th Annual International Symposium
on, pages 364 –373, may 1990.

126

http://developer.nvidia.com/page/home.html

[32] A. A. Khan, C. L. McCreary, and M. S. Jones. A comparison of multi-
processor scheduling heuristics. In Proceedings of the 1994 International
Conference on Parallel Processing - Volume 02, ICPP ’94, pages 243–
250, Washington, DC, USA, 1994. IEEE Computer Society.

[33] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Computing,
38(3):157 – 174, 2012.

[34] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Ken-
neth Skovhede. Separating NumPy API from Implementation. In 5th
Workshop on Python for High Performance and Scientific Computing
(PyHPC’14), 2014.

[35] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter. Bohrium: Unmodified NumPy Code on
CPU, GPU, and Cluster. In 4th Workshop on Python for High Perfor-
mance and Scientific Computing (PyHPC’13), 2013.

[36] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter. Bohrium: a Virtual Machine Approach
to Portable Parallelism. In Parallel & Distributed Processing Sympo-
sium Workshops (IPDPSW), 2014 IEEE International, pages 312–321.
IEEE, 2014.

[37] Mads Ruben Burgdorff Kristensen and Brian Vinter. Numerical python
for scalable architectures. In Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model, PGAS ’10, pages
15:1–15:9, New York, NY, USA, 2010. ACM.

[38] M.R.B. Kristensen, S.A.F. Lund, T. Blum, and B. Vinter. cphvb: A
system for automated runtime optimization and parallelization of vec-
torized applications. In Proceedings of The 11th Python In Science Con-
ference (SciPy’12). Austin, Texas, USA., 2012.

[39] M.R.B. Kristensen and B. Vinter. Managing communication latency-
hiding at runtime for parallel programming languages and libraries.
In High Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pages 546–555,
2012.

127

[40] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on, pages 75–86. IEEE,
2004.

[41] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.
Krogh. Basic linear algebra subprograms for fortran usage. ACM Trans-
actions on Mathematical Software (TOMS), 5(3):308–323, 1979.

[42] D.B. Loveman. High performance fortran. Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, 1(1):25–42, 1993.

[43] Simon A. F. Lund, Kenneth Skovhede, Mads R. B. Kristensen, and
Brian Vinter. Doubling the Performance of Python/NumPy with less
than 100 SLOC. In 4th Workshop on Python for High Performance and
Scientific Computing (PyHPC’13), 2013.

[44] B.J. Mailloux, J.E.L. Peck, and C.H.A. Koster. Report on the algorith-
mic language algol 68. Numerische Mathematik, 14(2):79–218, 1969.

[45] Volodymyr Mnih. Cudamat: a cuda-based matrix class for python.
Department of Computer Science, University of Toronto, Tech. Rep.
UTML TR, 4, 2009.

[46] Jeffrey Morlan. Auto-tuning the Matrix Powers Kernel with SE-
JITS. PhD thesis, MA thesis. EECS Department, University
of California, Berkeley, 2012. URL: http://www. eecs. berkeley.
edu/Pubs/TechRpts/2012/EECS-2012-95. html, 2012.

[47] Aaftab Munshi et al. The OpenCL Specification. Khronos OpenCL
Working Group, 1:l1–15, 2009.

[48] Aaftab. Munshi et al. The OpenCL Specification (v1.1). Khronos
OpenCL Working Group, 2011.

[49] C.J. Newburn, Byoungro So, Zhenying Liu, M. McCool, A. Ghuloum,
S.D. Toit, Zhi Gang Wang, Zhao Hui Du, Yongjian Chen, Gansha Wu,
Peng Guo, Zhanglin Liu, and Dan Zhang. Intel’s array building blocks:
A retargetable, dynamic compiler and embedded language. In Code
Generation and Optimization (CGO), 2011 9th Annual IEEE/ACM In-
ternational Symposium on, pages 224–235, 2011.

[50] CUDA Nvidia. Programming guide, 2008.

128

[51] Travis E Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing
USA, 2006.

[52] Travis E. Oliphant. Python for Scientific Computing. Computing in
Science and Engineering, 9:10–20, 2007.

[53] Jeffrey M Perkel. Programming: pick up python. Nature, 518(7537):125–
126, 2015.

[54] SN Rao, EV Prasad, and NB Venkateswarlu. A critical performance
study of memory mapping on multi-core processors: An experiment
with k-means algorithm with large data mining data sets. International
Journal of Computer Applications IJCA, 1(9):90–98, 2010.

[55] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw.
Parallel random numbers: As easy as 1, 2, 3. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 16:1–16:12, New York, NY, USA,
2011. ACM.

[56] Conrad Sanderson et al. Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments.
Technical report, Technical report, NICTA, 2010.

[57] Mark Segal and Kurt Akeley. The OpenGL Grapichs System: A
Specification (version 2.0). https://www.opengl.org/documentation/
specs/version2.0/glspec20.pdf, 10 2004. [Online; accessed 12 March
2013].

[58] Kenneth Skovhede and Brian Vinter. NumCIL: Numeric operations
in the Common Intermediate Language. Journal of Next Generation
Information Technology, 4(1), 2013.

[59] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI:
The Complete Reference (Vol. 1): Volume 1-The MPI Core, volume 1.
MIT press, 1998.

[60] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Professional, 4th edition, 2013.

[61] V. S. Sunderam. Pvm: A framework for parallel distributed computing.
Concurrency: Pract. Exper., 2(4):315–339, November 1990.

129

https://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
https://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

[62] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data par-
allelism to program gpus for general-purpose uses. SIGARCH Comput.
Archit. News, 34(5):325–335, October 2006.

[63] the Khronos group. Sycl: C++ single-source heterogeneous program-
ming for opencl. https://www.khronos.org/sycl, 2014.

[64] Tijmen Tieleman. Gnumpy: an easy way to use gpu boards in python.
2010.

[65] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, August 1990.

[66] S. Van Der Walt, S.C. Colbert, and G. Varoquaux. The numpy array:
a structure for efficient numerical computation. Computing in Science
& Engineering, 13(2):22–30, 2011.

[67] Guido van Rossum. Glue it all together with python. In Workshop
on Compositional Software Architectures, Workshop Report, Monterey,
California, 1998.

[68] ToddL. Veldhuizen. Arrays in Blitz++. In Denis Caromel, Rod-
neyR. Oldehoeft, and Marydell Tholburn, editors, Computing in Object-
Oriented Parallel Environments, volume 1505 of Lecture Notes in Com-
puter Science, pages 223–230. Springer Berlin Heidelberg, 1998.

[69] F.T. Winter. QDP-JIT/PTX: A QDP++ Implementation for CUDA-
Enabled GPUs. PoS, LATTICE2013:042, 2014.

[70] W.Y. Yang, W. Cao, T.S. Chung, and J. Morris. Applied numerical
methods using MATLAB. Wiley-Interscience, 2005.

130

https://www.khronos.org/sycl

	Introduction
	Motivation
	Contributions
	Publications

	Background
	Computational Science
	Productivity

	Parallel Programming Models
	Shared Memory
	Message Passing
	Vector Based Programming

	Programming the GPU
	Architecture
	Programming model

	Bohrium
	Design
	Vector Byte-code
	Bridge
	Vector Engine
	Example
	Vector Engine Manager
	Configuration

	The Bohrium NumPy Bridge

	The Bohrium GPU Vector Engine
	JIT Compilation
	Data Management
	Code Specialization
	Limitations
	Strategy

	Ongoing Work
	Conclusion
	Publications
	cphVB: A Scalable Virtual Machine for Vectorized Applications
	Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster
	Bohrium: a Virtual Machine Approach to Portable Parallelism
	Transparent GPU Execution of NumPy Applications
	Separating NumPy API from Implementation
	Code Specialization of Auto Generated GPU Kernels
	Fusion of Array Operations at Runtime

