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Abstract

Since the discovery of the Ice Ages it has been evident that Earth’s
climate is liable to undergo dramatic changes. In recent years the debate
concerning global warming has prompted a great effort to understand
the dynamics of Earth’s climate.

The previous climatic period known as the Last Glacial saw large
fluctuations in the extent of ice sheets covering the Northern hemisphere,
and in the temperature over Greenland. These fluctuations are known
as Dansgaard-Oeschger (DO) events after their discoverers. While the
evidence for the fluctuations is solid, their causes are not yet fully un-
derstood. An improved understanding of the DO events would add to
our knowledge of the climatic system and – hopefully – enable better
forecasts. Likewise, to forecast possible future sea level rise, it is crucial
to correctly model the large ice sheets on Greenland and Antarctica.

This project is divided into two parts. The first part concerns time
series analysis of data from the NGRIP ice core obtained from the Green-
land Ice Sheet. After introducing the appropriate theory we analyze parts
of the time series where DO events occur using the transfer operator,
and compare the results with time series from a conceptual double well
model. This model is capable of undergoing transitions caused by 1) a
bifurcation resulting from a slow parameter change, or 2) stochastic fluc-
tuations. We find that the DO event time series is most consistent with
the model undergoing a stochastic transition. Several previous studies
have found that the DO transitions most likely happen at random, while
other studies have reported early warning signals, excluding a stochastic
transition. Our analysis supports the first scenario using a method that
– to the author’s knowledge – has not been used for this problem before.

In the second part we use a minimal complexity ice sheet model sub-
ject to constant and fluctuating temperatures, respectively. We find that
the steady state volume of the ice sheet is lower for fluctuating tempera-
tures than for a constant temperature. We obtain an analytical relation-
ship between the two steady state volumes, and evaluate this numerically.
The agreement is found to be good. This finding may have implications
for future long-range ice sheet projections, as the steady state ice sheet
volume could be underestimated in studies using a constant temperature.

Noise in the climate system may be interpreted as “the weather”. This
study illustrates that noise may play a role both in a deterministic sense
– as changing the steady state of a system – and in a non-deterministic
sense, causing the climate system to change state.





Resumé på Dansk

Siden istiderne blev opdaget har det været klart at Jordens klima
tidligere har oplevet store forandringer. De seneste års debat om global
opvarmning har motiveret en omfattende indstats rettet mod at forstå
dynamikken i Jordens klima.

I den seneste klimatiske periode, den sidste istid, var der store udsving
i udbredelsen af iskapper på den nordlige halvkugle, og i temperaturen i
Grønland. Disse udsving kaldes DO begivenheder efter deres opdagere.
Beviserne for disse DO-begivenheder er klare, men årsagerne er endnu
ikke fuldt klarlagt. En forbedret forståelse af DO-begivenhederne vil
bidrage til vores viden om det klimasystemet og – forhåbentlig – gøre os
i stand til at lave bedre forudsigelser. Ligeledes er det essentielt at være
i stand til på korrekt vis at modellere de store iskapper i Grønland og på
Antarktis for at forudsige eventuelle fremtidige stigniger i havniveau.

Denne afhandling er inddelt i to. Den første del omhandler tidsserie-
analyse af iskernedata fra den Grønlandske iskappe. Efter at have intro-
duceret den nødvendige teori, analyserer vi de dele af tidsserierne hvor
DO-begivenhederne fremstår ved at bruge den såkaldte ‘transfer opera-
tor’. Dernæst sammenligner vi resultaterne med en analyse af tidsserier
fra en konceptuel model der kan skifte tilstand på to måder, enten 1) som
følge af en bifurkation i systemet på grund af langsom drift af en parame-
ter, eller 2) som følge af et stokastisk spring. Vi finder at tidsserien med
DO-begivenheder er mest konsistent med modellen i det tilfælde hvor
den springer stokastisk. Flere tidligere studier finder at DO begivenhed-
erne mest sandsynligt sker tilfældigt, mens andre studier har rapporteret
‘early warnings’ – det sidste udelukker tilfældige skift. Vores analyse
støtter således det førsnævnte scenarie med en metode der – såvidt vi
ved – ikke tidligere blevet anvendt på dette problem.

I den anden del af afhandlingen bruger vi en simpel model af en
iskappe og udsætter den for henholdsvis konstant og tidsligt svingende
temperatur. Vi finder at ligevægtsvolumenen af iskappen er mindre når
temperaturen svinger. Vi udleder et analytisk udtryk for forskellen i
isvolumen imellem de to tilfælde, og evaluerer dette udtryk numerisk.
Sammenhængen mellem simulationer og den analytiske tilgang er god.
Dette bidrag kan have betydning for fremtidige iskappesimuleringer, da
ligevægtsvolumenen af iskappen muligvis overvurderes såfremt man bruger
en konstant temperatur i modellerne.

I klimasystemet kan man tænke på “vejret” som “støj”. Dette studie
illustrerer at støj både kan spille en rolle i en deterministisk forstand – ved
at sænke ligevægtsvolumenen af en iskappe – og i en ikke-deterministisk
forstand, ved at forårsage store ændringer i klimasystemet.





Preface

Previous Work by the Author

I have previously written a short course paper (Mikkelsen 2012) on the topics
of dynamical systems and bifurcations that included numerical analysis of the
Lorenz (1963) system and the logistic map (eg. Strogatz (1994)).

Next my Master’s thesis (Mikkelsen 2013) dealt with the Duffing Oscillator
(eg. Guckenheimer and Holmes (1983)) and the occurrence of Arnold tongues
in its parameter space and the numerical and theoretical analysis of these
phenomena.

The two main themes in this thesis are 1) ice core data analysis and 2)
ice sheet modeling, neither of which featured in Mikkelsen (2012) or Mikkelsen
(2013). As both this thesis and the two mentioned studies employ the theory of
dynamical systems and numerical methods, they necessarily draw on a common
body of well known theory; some overlap is natural. When such theory is
introduced in this thesis, I will refer to original sources and textbooks only.
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1 Introduction & Scientific
Background

This work consists of two parts. The first part is concerned with time series
analysis of ice core data from a Greenland ice core in order to determine whether
early warning signals (EWS) can be found before the onset of Dansgaard-
Oeschger (DO) events, large past fluctuations in Greenland temperature. We
use a method based on the transfer operator that – to the author’s knowledge
– has not been used for this purpose and in this way before. This part is
presented in Chapters 2 to 5.

In the second part, we use a simple ice sheet model that takes surface tem-
perature as the only forcing input and investigate the consequences of letting
the temperature fluctuate from year to year. This part is presented in the
manuscript Mikkelsen et al. (2017) in Appendices D and E, which is summa-
rized in Chapter 6.

In Section 1.1 we take a look at the fascinating history of Earth’s climate
from about 715 million years (Ma) ago to the present. Unless otherwise noted,
Section 1.1 is based on Ruddiman (2013, Chapters 4–13). Section 1.2 presents
the history leading up to the discovery of DO events as well as hypotheses for
their causes.

In Section 1.3 we review earlier work focused tipping points and their detec-
tion, with special emphasis on time series analysis of ice core data. We digress
slightly and mention other related areas of active research.

Both theory and possible applications of the transfer operator are being
actively researched. In Section 1.4 we review a few recent papers where this
approach has been applied to data from climate models. Finally we outline the
rest of this thesis in Section 1.5.

1.1 A Brief Look at Earth’s Climatic History

Changes in Earth’s climate have taken place on very different time scales. These
are commonly referred to by the processes that are relatively most important
on that particular time scale (Bartlein 2013). On tectonic time scales (10–400
Ma) significant processes are the motion – and collision – of Earth’s continents,
and removal of CO2 from Earth’s atmosphere by weathering.

The amount of insolation – incoming solar radiation – varies on orbital
timescales (20–400 kilo years (ka)) due to changes in the Earth’s axis of rota-
tion, precession of the same axis, as well as precession and change in eccentricity
of Earth’s orbit around the Sun. This phenomenon is often called Milankovitch

1



2 Chapter 1. Introduction & Scientific Background

cycles after the astronomer who proposed the influence of orbital changes on
the insolation received on earth (Lowe et al. 2013).

The DO events happen on sub-orbital, millennial time scales (Dansgaard
et al. 1993; Wolff et al. 2010; Bartlein 2013). On even shorter time scales,
prominent examples of climatic variability are the El Niño-Southern Oscillation
(ENSO) (sub-decadal) as well as the annual cycle.

The climate of the Earth has varied significantly in the past. Glacial de-
posits on several continents suggest that glaciers existed in what is now the
tropics about 715 – 640 Ma ago, and that the Earth was near completely
frozen in some periods, the so-called “Snowball Earth.”

At the other extreme, fossil records indicate that around 100 Ma the South
Pole may have been completely ice free. Sea levels at this time were likely 80
meters higher than today, and the South Pole up to 40◦C warmer, termed the
“Greenhouse Earth.”

Approximately 50 Ma ago a gradual cooling started, as indicated by fossil
evidence and δ18O data obtained from benthic foraminifera, tiny ocean bottom
dwelling shelled organisms. This cooling continued, and 2.75 Ma ago progres-
sively larger ice sheets would periodically appear and disappear in the Northern
Hemisphere. These ice sheets became more prominent from 600 ka ago; the
last 600 ka has seen 6 glacial periods – or glacials – with large portions of
the Northern Hemisphere covered in ice. Each glacial is followed by an inter-
glacial with significantly smaller ice sheets. The last of these interglacials is
the present period, the Holocene.

The Last Glacial culminated in the Last Glacial Maximum (LGM) about 21
kilo years before year 2000 (ka b2k). At this time, ice sheets covered large parts
of North America and Europe. The amount of ice is estimated to correspond
to a decrease in sea level of more than 100 meters compared to present levels.

The Last Glacial started with a gradual cooling from ∼122 ka b2k to ∼115
ka b2k (NGRIP 2004) and ended with large fluctuations; from glacial to mild
conditions during the Bølling-Allerød (BA) (∼14.6–12.9 ka b2k) and back into
glacial conditions during the Younger Dryas (YD) (∼12.9–11.7 ka b2k), after
which the Holocene started (Steffensen et al. 2008; Rasmussen et al. 2014).

1.2 Ice Cores & Dansgaard-Oeschger Events

Dansgaard et al. (1982) compared a newly drilled ice core from the Distant
Early Warning Line (Cape Dyer), Station 3 (DYE-3) to a core previously drilled
at Camp Century (Figure 1.1). In the Camp Century core, large fluctuations
in δ18O – a proxy for site temperature (Section 5.1) – had been observed in ice
from the Last Glacial period. However, it was not clear whether the fluctuations
in the Camp Century core were of a local nature.

Camp Century and DYE-3 were drilled 1400 km apart and δ18O in the two
cores were found to correlate well. Thus Dansgaard et al. (1982) found support
for the hypothesis that these fluctuations were not of a local nature, but rather
a consequence of climatic events affecting the North Atlantic region in general.
The DYE-3 site was not optimal for drilling since it was chosen for logistical
reasons; the “well-equipped” (Dansgaard et al. 1982) American radar station
DYE-3, part of the distant early warning (DEW) line, was already situated on
the ice cap (Lackenbauer et al. 2005).
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In contrast to DYE-3, the Greenland Ice Core Project (GRIP) core was
drilled in much better locations at Summit with minimal horizontal ice flow and
negligible summer melting; both may disturb the signal (Johnsen et al. 1992).
The results from Camp Century and DYE-3 were reproduced by Johnsen et
al. (1992) and Dansgaard et al. (1993) using data from the GRIP core, and
by Grootes et al. (1993) using data from the Greenland Ice Sheet Project 2
(GISP2) core; GRIP and GISP2 are situated about 28 km apart. As the δ18O
variations could now be excluded to be of a local nature, and as similar signal
were found in ocean cores, Dansgaard et al. (1993) and Grootes et al. (1993)
concluded that the cause of the δ18O signal was large scale atmospheric events
events in the Northern Hemisphere.

It turned out that the bottom ∼ 10% of ice in both the GISP2 and GRIP
cores were disturbed, ultimately leading to the drilling of the North Greenland
Ice Core Project (NGRIP) core (NGRIP 2004).

The amplitudes of the DO events were quite dramatic, with Greenland
temperature variations from 5◦C to 16◦C between the cold Greenland Stadials
(GSs) and the warm Greenland Interstadials (GIs) on a decadal scale (Ras-
mussen et al. 2014). Some GIs saw Greenland temperatures almost as warm
as today (Lowe et al. 2013).

1.2.1 Probable Cause for the Dansgaard-Oeschger Events
Since the DO events happen on a sub-orbital time scale, an explanation cannot
be sought only in terms of Milankovitch forcing (Lowe et al. 2013). There is
a general agreement that the DO events are connected with changes in the
thermohaline circulation (THC).

The THC is a driving mechanism for large ocean currents whereby warm sea
water is transported from the tropics and subtropics to higher latitudes; here,
in the deep water formation zones (such as the Greenland-Norwegian Sea, The
Labrador Sea, The Ross and Weddell Seas), the warm water releases some of
its heat (Rahmstorf 2013). Note that these deep water formation zones include
Antarctic waters. Cold water is then transported at depth to upwelling zones;
these are much less well defined and localized than the deep water formation
areas. Heat is required for the deep, cold water to rise to the surface; this heat
is supplied from the surface by turbulent mixing (Rahmstorf 2013). The THC
is thus primarily driven by heat, although increased salinity in the deep water
formation areas create a positive feedback (Rahmstorf 2013).

The THC is thus one of the driving mechanisms for the Atlantic Merid-
ional Overturning Circulation (AMOC), the Atlantic north-south flow, where
another significant driver is the wind. We note that the two terms THC and
AMOC are often (incorrectly) used interchangeably (IPCC 2013) – Rahmstorf
(2013) makes the distinction between the THC as a mechanism on the one
hand, and the AMOC as a measurable quantity (in principle) on the other.
The AMOC has a significant influence on the Northern hemisphere, at present
transporting about 15 Sverdrup (Sv) (1 Sv is 106 m3/s) of sea water and 1.2
PW of heat (Rahmstorf 2013).

Johnsen et al. (1992) argue that the DO events were likely caused by changes
in the intensity or direction of the AMOC. Grootes et al. (1993) note that the
rapidity of the DO events excludes causes such as changes in insolation, deep
water transport or global ice volume, since these phenomena happen on a much



4 Chapter 1. Introduction & Scientific Background

60◦N

65◦N

70◦N

75◦N

60◦W 50◦W 40◦W 30◦W

NGRIP

GRIP

DYE-3

GISP2

EGRIP

Camp Century

Renland/RECAP

NEEM

Figure 1.1 | Ice core drill sites. Location of NGRIP, GRIP and DYE-3 from
Vinther et al. (2006); North Greenland Eemian Ice Drilling (NEEM) location
from Rasmussen et al. (2013); East Greenland Ice-core Project (EGRIP) loca-
tion from Dahl-Jensen et al. (2016); GISP2 location from Wolff et al. (2010);
Renland & Camp Century from private communication with J. P. Steffensen.

longer time scale than the DO – thus the causes are likely atmospheric forcing,
or North Atlantic Ocean mixed layer1 forcing (Grootes et al. 1993).

If a decrease in the AMOC is responsible for Greenland coolings then one
would expect to see a warming in the Southern hemisphere, and vice versa for
Greenland warmings; this idea is aptly named the “bipolar seesaw” (Stocker

1 Depending on the season, roughly the upper 100 meters of the oceans can be considered
to be mixed by wind (Ruddiman 2013, Section 18.3).



1.2. Ice Cores & Dansgaard-Oeschger Events 5

and Johnsen 2003) and is confirmed by ice core observations. WAIS (2015) find
that Antarctica cooled during Greenland warmings, with Greenland warming
leading Antarctic cooling by 218 ± 92 years. On the other hand, Greenland
cooling leads Antarctic warming by 208± 96 years – the DO events thus initi-
ate in the Northern Hemisphere. Furthermore, since the DO events are seen in
multiple ice core locations as well as marine cores, the δ18O signal likely rep-
resents a large scale event affecting the North Atlantic region (Grootes et al.
1993; NGRIP 2004).

The AMOC was operating at reduced intensity during GSs (Steffensen et
al. 2008). The amount of water transported by the AMOC can be reduced
disturbed by large influxes of fresh surface water (Lowe et al. 2013; Rahmstorf
2013).

One possible mechanism for alternating warm and cold periods over Green-
land can thus be proposed; melting of large ice sheets in Greenland releases
large amounts of fresh water into the North Atlantic, preventing deep water
formation. The AMOC is reduced and transports less heat to the Northern
Hemisphere (Lowe et al. 2013).

An explanation confined to the ocean is not sufficient though. (Steffensen
et al. 2008) investigate the warmings at the beginning of the BA and end of
YD using data from the NGRIP core, and report a decrease in dust content
approximately 10 years before observing a change in δ18O – since the dust in
Greenland is carried from Asian deserts (Section 5.1) this finding suggests that
atmospheric circulation patterns over the Northern Hemisphere changed signi-
ficantly in connection with DO events. This changing atmospheric pattern was
likely a northward shift of the intertropical convergence zone (ITCZ) resulting
in a wetting of Asian deserts by a more intense monsoon; this “was followed
by a complete reorganization of the mid- to high-latitude atmospheric circula-
tion almost from one year to the next” (Steffensen et al. 2008) and ultimately
followed by a retreat of sea ice.

The following quote is from Alley et al. (2003):

“Systems exhibiting threshold behavior are familiar. For example,
leaning slightly over the side of a canoe will cause only a small tilt,
but leaning slightly more may roll you and the craft into the lake.
[...] An abrupt change, of a canoe or the climate, requires a trigger,
such as you leaning out of a canoe; an amplifier and globalizer, such
as the friction between you and the canoe that causes the boat to
flip with you; and a source of persistence, such as the resistance of
the upside-down canoe to being flipped back over.”

Even though the causes of DO events are not fully understood at present (WAIS
2015), we can identify at least two positive feedbacks that serve as ‘persistence’.
The ice-albedo feedback will cause a cooling in an already ice covered area
by increasing surface reflectivity; conversely, bedrock exposed by melting will
absorb more incoming solar radiation. As the THC is driven in large part by
high latitude cooling (Rahmstorf 2013), a shift of the deep water formation
areas to higher, colder latitudes will amplify the THC.

As ‘globalizers’ we can identify the northern shift of the ITCZ during Green-
land warm periods as well as the strengthened AMOC, as the first strengthens
the monsoons and the latter cools the Southern Hemisphere.



6 Chapter 1. Introduction & Scientific Background

What is ultimately lacking is the ‘trigger’ – even if melt events trigger an
AMOC shutdown, what triggers the melt event? At present, this ‘trigger’
mechanism is unknown, and not necessarily observable in ice core data (Lowe
et al. 2013; Rahmstorf 2013; WAIS 2015).

1.3 Previous Research on Tipping Points

As the climate of the Earth has shifted between drastically different states over
the course of its history, it is natural to ask if such large transitions are likely to
happen again. Given the discussion of DO events above, one could also ask how
such a transition may occur; will a given transition happen slowly or abruptly?
Several authors put forward the idea that elements of Earth’s climate may be
susceptible to tipping or abruptly swithcing between states:

“I reserve the term critical transition for the subclass of regime
shifts that in models would correspond to shifts between alternative
attractors. Those are the transitions in which a positive feedback
pushes a runaway change to a contrasting state once a threshold is
passed” (Scheffer 2009, p. 104).

The term “tipping element” is derived from the influential 2 paper by Lenton
et al. (2008) which evaluates – by expert elicitation – large scale elements of the
Earth’s climate system, ranging the Amazon rainforest to the West Antarctic
ice sheet, and attempts to identify which elements are most “policy-relevant”.

1.3.1 The Double Well Potential Model and EWS
As a conceptual model for a system capable of undergoing a critical transition,
a double well potential model (Chapter 3) is often considered (eg. Scheffer et al.
(2009), Livina et al. (2010), Ditlevsen and Johnsen (2010), and Cimatoribus et
al. (2013). This is the simplest model with two states separated by a potential
barrier (Kwasniok and Lohmann 2009).

This model will be investigated in detail in Section 3.3 and Chapter 4.
Crucially, it is able to undergo a transition in either of two ways; 1) as a result
of a bifurcation when a parameter p is varied or 2) by stochastically jumping
from one state to the other. In the first case, it is sometimes possible to observe
EWS before the transition happens, while in the latter case it is not.

The EWS one looks for are typically lag-1 autocorrelation, variance and
detrended fluctuation analysis (DFA) exponent α, each calculated from the
time series in a sliding window.

DFA was introduced by Peng et al. (1994). Here one measures the fluctua-
tion function F (s) as a function of window size s for a range of window sizes,
and determine the scaling exponent α such that F (s) ∝ sα; α = 0.5 for white
noise and α = 1.5 for a random walk, and DFA thus measures the length of
memory in the system (Livina and Lenton 2007).

2When searching Web of Science for the term “tipping point” on November 23, 2016
Lenton et al. (2008) was the second most cited paper with 845 citations; the most cited
paper Hoegh-Guldberg et al. (2007) with 1740 citations specifically pertained to coral reefs.
When searching for “tipping points” (plural) Scheffer et al. (2009) was the most cited paper
with 871 citations, and Lenton et al. (2008) the second most cited.

https://webofknowledge.com
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The DFA method is advantageous to use when the dataset considered is non-
stationary since detrending is built in to the method (Kantelhardt et al. 2001).
However, it has been shown to be substantially more data consuming than
computing the autocorrelation function (ACF) (Höll and Kantz 2015). Lag-1
autocorrelation and the DFA exponent measure memory in the system and
thus detects critical slowing down (see Chapter 3 or eg. Scheffer et al. (2009)).
In general, variance and lag-1 autocorrelation are expected to increase before a
bifurcation (eg. Ditlevsen and Johnsen (2010)) although in some special cases
the variance will not increase (Dakos et al. (2012b), see below).

The lag-1 autocorrelation can be calculated by fitting an autoregressive
(AR) model of order 1, known as an AR(1) model, to the time series – AR
model are described in Section 2.2.

A note on terminology: in the litterature these quantities are sometimes
called “indicators” and sometimes “propagators”; further, Livina and Lenton
(2007) introduce a rescaling of the DFA exponent (see below) which they called
the “DFA propagator”, symbolized with ζ. I will use the term “indicator”
exclusively, unless referring to the original DFA exponent α.

1.3.2 Research on Time Series and Tipping Points
The main results concerning ice core data analysis from the articles discussed
here in Section 1.3.2 are summarized in Table 1.1.

Held and Kleinen (2004) use a model of the AMOC and consider the leading
empirical orthogonal function (EOF) (von Storch and Zwiers 2003, Chapter 13)
of the Atlantic salinity field. The overturning strength is denoted q (in units
of Sv) and the bifurcation parameter p is the freshwater flux into the North
Atlantic. The object of interest is q(p) and the especially the critical value pc
where the AMOC experiences a shutdown. They note that in the small noise
limit, the system may be approximated by a deterministic equilibrium solution
stochastically perturbed by noise (representing “the weather”), and point out
that for a dynamical system approaching a bifurcation, the smallest decay rate
will vanish and the variance will increase.

Since the leading EOF is designed to capture the largest possible amount
of variance, and because an increase in variance will accompany the vanishing
rate, only the leading EOF of the Atlantic salinity field is studied; they name
this method “degenerate fingerprinting”. By modeling the leading salinity EOF
as an AR(1) process, they observe increasing lag-1 autocorrelation leading up
to an AMOC shutdown.

Nes and Scheffer (2007) investigate six models of ecological systems, each
represented by ordinary differential equations (ODEs). As the models approach
a threshold, they observe critical slowing down in all models. They perform
their analysis in one of two ways, depending on the system: either (for one-
dimensional systems) by linearization of the equations, whereafter the real part
of the dominant eigenvalue is used as an approximation of the recovery rate; or
(forN -dimensional systems, N > 1) by perturbing the system and investigating
the resulting time series.

Nes and Scheffer (2007) point out that changes in – and not the absolute
values of – the rate of recovery should be considered as the main object of
interest, since two different systems may have vastly different natural rates of
recovery.
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Livina and Lenton (2007) study GISP2 paleo temperature data obtained
from oxygen isotope ratios (Alley 2000) in the interval from 50 ka b2k to the
present. They start by calculating the DFA exponent α from a set of time series
simulated with AR models, and proceed to determine an empirical relationship
– a piecewise polynomial function– between α and the lag-1 autocorrelation
coefficient, thus yielding the DFA indicator ζ (note that ζ is called the “DFA
propagator” in Livina and Lenton (2007)). When analyzing the GISP2 paleo
temperature data they find a steady increase in ζ from ∼ 30 ka b2k to ∼ 12 ka
b2k which they interpret as anticipation of the warming at the end of the YD.

Dakos et al. (2008) use a range of climate proxies from past abrupt climatic
changes and compute the lag-1 autocorrelation coefficient in sliding windows
leading up to the transitions; this is done by fitting an AR(1) model in each
window. They do not consider variance in the time series. Critical slowing
down is found in all cases considered; most robustly for the end of Greenhouse
Earth (34 Ma ago), the end of Glaciation I (17 ka b2k) (Dakos et al. 2008,
supporting information) and the end of the YD. More moderate signs of crit-
ical slowing down was observed leading up to BA. The proxies considered for
BA are GISP2 paleo temperature derived from oxygen isotopes (Alley 2000;
Alley 2004) and for YD, grey scale data from a Cariaco Basin sediment core.
Grey scale, or sediment reflectance, is proxy for surface productivity and wind
strength (Hughen et al. 2000).

Dakos et al. (2008) point out that their analysis does not suggest any un-
derlying mechanism, but do suggest that positive feedbacks in the system play
a role.

Ditlevsen and Johnsen (2010) analyze the double well model capable of
undergoing stochastic and bifurcation induced transitions, the latter resulting
from slow variation of a control parameter. They show that variance and lag-1
autocorrelation will increase in time from the model in the bifurcation case;
increases in both indicators should thus be detected simultaneously in data in
order to conclude that a tipping point is reached. They analyze δ18O from
NGRIP and find no EWS prior to DO events.

Kuehn (2011) demonstrates that ensembles of events should be considered
whenever possible, as analyzing a single time series may give spurious results
(cf. Kuehn (2011, Fig. 14) and Figure 4.1 in the present work).

Dakos et al. (2012b) show how the effect of noise on the state variable
Xt has different effects than noise on a parameter p. In the latter case they
take p to be a random variable with mean p∗. For a system described by a
stochastic differential equation (SDE) dXt = f(Xt, p)dt + σdWt, the effect is
shown by expanding around a steady state (x∗, p∗) such that f(x∗, p∗) = 0.
They derive analytical expressions for autocorrelation and variance in both
cases (noise on Xt, noise on p), and show that – depending on the form of
∂f/∂p – situations are possible where variance will decrease gradually before
the a bifurcation; immediately before the bifurcation, however, variance will
still increase. Conversely, the expression for autocorrelation is the same in both
cases.

The effect is illustrated in a model of logistic growth of a biomass under
harvesting. Furthermore, Dakos et al. (2012b) demonstrate that a “slow” sys-
tem – where the slowness may be the result of an approach to a bifurcation –
subject to fast parameter variations will see a decrease in variance, simply be-
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cause the system has insufficient time to adjust to the fast fluctuations. Again,
the autocorrelation is unaffected by this effect.

Lenton et al. (2012a) investigate GRIP, GISP2 and NGRIP δ18O and
[Ca2+]. The time series are investigated from ∼ 22.9 to ∼ 11.7 ka b2k, a
time span that includes the LGM, the BA warming and the warming at the
end of the YD. They compute the variance, the lag-1 autocorrelation and the
DFA indicator ζ introduced by Livina and Lenton (2007).

They observe signs of critical slowing down in some of the series, but ul-
timately ascribe these these results to inadequate detrending. As mentioned,
Dakos et al. (2008) reported critical slowing down during leading up to the BA
warming – no further evidence to support this is found in either GISP2 [Ca2+],
or GRIP and NGRIP δ18O when considering autocorrelation or ζ. Similarly,

“[...] results from Greenland ice cores do not provide convincing
support for the hypothesis that the climate approached a bifurca-
tion at the end of the Younger Dryas” (Lenton et al. 2012a).

Lenton et al. (2012b) analyze GISP2 δ18O and Cariaco Basin grey scale
data, as well as Antarctic ice core data and model output from AMOC sim-
ulations. Comparing the result of autocorrelation and the DFA indicator ζ,
robust early warnings are found before the end of the YD; conversely, only a
weak trend is found before the BA transition.

Following the now established trend of analyzing NGRIP δ18O data, Cima-
toribus et al. (2013) first perform a phase space reconstruction by delay em-
bedding of the time series (eg. Kantz and Schreiber (2000)) and show that
the time series before 22 ka b2k exhibits a bimodal distribution; after 22 ka
b2k the distribution is unimodal. Additionally, they analyze an ensemble of 15
DO events and compute the variance and lag-1 autocorrelation as well as the
DFA exponent α. Averaging these quantities over the whole ensemble shows a
“moderate but significant” increase for all three indicators.

A fresh approach is taken by Nikolaou et al. (2014) who investigate GISP2
and NGRIP δ18O data using “a time series segmentation algorithm combining
a clustering technique and a genetic algorithm”. This method starts with a
random segmentation, or partitioning, of the time series. Six different statistics
(variance, skewness, kurtosis, slope of linear fit, mean squared error of the
linear fit and lag-1 autocorrelation coefficent) are computed for each segment,
allowing the segments to be represented as points in a 6-dimensional feature
space. The clustering algorithm partitions the segments into clusters, and the
fitness function F is evaluated; Nikolaou et al. (2014) use the fitness function
F =

(
1/N

∑N
i=1(di)

2
)−1

where N is the number of segments and di is the
distance in feature space from the segment to the nearest cluster centroid. The
genetic algorithm (GA) now is allowed to alter the time series segmentation
(eg. cutting the time series in different places) with the objective of maximizing
F .

Using this method – that assumes no prior knowledge of the transitions –
Nikolaou et al. (2014) detect EWS > 70% of the times (the GA is run several
times with different random seeds) for half of the 12 considered DO events, and
less robustly for the remaining 6 DO events. The main distinguishing features of
the segments showing EWS are found to be increased variance, autocorrelation
and non-linearity (as measured by the deviation from the linear fit).
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Rypdal (2016) investigate δ18O from NGRIP and reports two findings. The
first is an increase in mean ensemble variance leading up to transitions from GS
to GI, thus supporting the findings of Cimatoribus et al. (2013). The second
result is obtained by using the continuous wavelet transform (CWT). Ryp-
dal (2016) focuses on the wavelet coefficients corresponding to high-frequency
fluctuations; by considering the standard deviation of this set of coefficients
computed in sliding windows, EWS are found for a number of DO events.

1.3.3 B-Tipping, N -Tipping & R-Tipping
Above we have considered two types of critical transitions, namely those caused
by a bifurcation and those caused by a noise induced transition. Although this
topic is not investigated further here we mention another type of tipping me-
chanism, namely R-tipping (Ashwin et al. 2012) where the tipping mechanism
depends on the rate of change of a parameter.

Luke and Cox (2011) investigate the ominously sounding “compost-bomb
instability” in a model of soil carbon and atmospheric temperature. Soil car-
bon in the form of peat deposits are broken down by microbes in a process
that depends on the soil temperature: a higher soil temperature increases the
microbial carbon breakdown; the soil temperature in turn depends on the at-
mospheric temperature. Further, the microbial breakdown of carbon itself
produces heat and so the system contains a positive feedback (Luke and Cox
2011, Figure 1). The study concludes that there is a critical rate rc of global
temperature rise above which the carbon-microbe system may run away leading
to the compost-bomb instability. This release of carbon into the atmosphere
in the form of CO2 may then further increase global waming (Luke and Cox
2011; Wieczorek et al. 2011).

Wieczorek et al. (2011) put these findings on a rigorous footing and analyt-
ically derive the critical rate rc. Ashwin et al. (2012) introduces the following
terminology for the three different types of tipping points encountered so far:

• B-tipping where a changing parameter causes a bifurcation,

• N-tipping where external noise pushes the system over a tipping thresh-
old, and

• R-tipping where the rate of change of a control parameter becomes too
large for the system to “track” (Ashwin et al. 2012) the stable solution.

Furthermore, Ashwin et al. (2012) investigate a zero-dimensional global energy
balance model and show that – for different parameter ranges – the system
exhibits all three types of tipping mechanisms (Ashwin et al. 2012, Figure 7
and Table 1).

The study ends by posing as an open question whether EWS for a system
undergoing R-tipping may be found, as R-tipping does not imply a change in
stability of the system (Ashwin et al. 2012, p. 1182). This question about
EWS for R-tipping systems is investigated by Ritchie and Sieber (2016) who
study a one-dimensional system and conclude that in the small noise limit,
both increasing variance and lag-1 autocorrelation can be expected.



1.3. Previous Research on Tipping Points 11

St
ud

y
Su

bj
ec

t
D

at
a

M
et

ho
ds

EW
S

fo
un

d?

R
yp

da
l(

20
16

)
D

O
ev

en
ts

&
Y

D
N

G
R

IP
δ1

8
O

C
W

T
&

Va
r

In
cr

ea
sin

g
Va

r∗
,h

ig
h-

fr
eq

ue
nc

y
flu

ct
ua

tio
ns

†

N
ik

ol
ao

u
et

al
.(

20
14

)
D

O
ev

en
ts

G
IS

P2
&

N
G

R
IP

δ1
8
O

T
im

e
se

rie
s

se
gm

en
ta

tio
n,

G
A

Va
r†

,A
C

†

D
ev

ia
tio

n
fr

om
lin

ea
r†

C
im

at
or

ib
us

et
al

.(
20

13
)

D
O

ev
en

ts
N

G
R

IP
δ1

8
O

Va
r,

A
C

,
D

FA
ex

po
ne

nt
α

In
cr

ea
sin

g
Va

r∗
,A

C
∗

an
d
α
∗

Le
nt

on
et

al
.(

20
12

b)
Se

ve
ra

l,
in

cl
ud

in
g

B
A

&
Y

D
B

A
:G

IS
P2

δ1
8
O

Y
D

:C
ar

ia
co

gr
ey

sc
al

e
Va

r,
A

C
D

FA
in

di
ca

to
r
ζ

B
A

:i
nc

on
cl

us
iv

e
Y

D
:I

nc
re

as
in

g
A

C
†

an
d
ζ
†

Le
nt

on
et

al
.(

20
12

a)
LG

M
,B

A
,Y

D
G

R
IP

,G
IS

P2
&

N
G

R
IP

δ1
8
O

&
[C

a2
+
]

Va
r,

A
C

&
D

FA
in

di
ca

to
r

N
o

(p
ar

tly
in

co
nc

lu
siv

e)
D

itl
ev

se
n

an
d

Jo
hn

se
n

(2
01

0)
D

O
ev

en
ts

N
G

R
IP

δ1
8
O

Va
r,

A
C

N
o

D
ak

os
et

al
.(

20
08

)
Se

ve
ra

l,
in

cl
ud

in
g

B
A

&
Y

D
B

A
:G

IS
P2

te
m

pe
ra

tu
re

Y
D

:C
ar

ia
co

gr
ey

sc
al

e
A

C
In

cr
ea

sin
g

A
C

†

Li
vi

na
an

d
Le

nt
on

(2
00

7)
En

d
of

Y
D

G
IS

P2
te

m
pe

ra
tu

re
D

FA
in

di
ca

to
r
ζ

In
cr

ea
sin

g
ζ

†

T
ab

le
1.

1
|P

re
vi

ou
s

st
ud

ie
s

of
ea

rl
y

w
ar

ni
ng

s.
Se

et
ex

ti
n

Se
ct

io
n

1.
3.

2
fo

ra
de

ta
ile

d
de

sc
rip

tio
n

of
th

es
tu

di
es

.
A

C
:a

ut
oc

or
re

la
tio

n,
B

A
:B

øl
lin

g-
A

lle
rø

d,
C

W
T

:c
on

tin
uo

us
w

av
el

et
tr

an
sf

or
m

,D
FA

:d
et

re
nd

ed
flu

ct
ua

tio
n

an
al

ys
is,

D
O

:D
an

sg
aa

rd
-O

es
ch

ge
r,

E
W

S:
ea

rly
w

ar
ni

ng
sig

na
ls,

G
A

:g
en

et
ic

al
go

rit
hm

,L
G

M
:L

as
tG

la
ci

al
M

ax
im

um
,V

ar
:

va
ria

nc
e,

Y
D

:Y
ou

ng
er

D
ry

as
.

G
R

IP
,G

IS
P

2
&

N
G

R
IP

:
ic

e
co

re
s,

se
e

Fi
gu

re
1.

1.
∗ :

EW
S

fo
un

d
in

en
se

m
bl

es
.†

:
EW

S
fo

un
d

in
in

di
vi

du
al

tim
e

se
rie

s
(n

ot
ne

ce
ss

ar
ily

al
lt

im
e

se
rie

s
co

ns
id

er
ed

).



12 Chapter 1. Introduction & Scientific Background

1.3.4 Further Research
Excellent reviews tipping point research can be found in Scheffer et al. (2009),
Thompson and Sieber (2010), Thompson and Sieber (2011), Lenton (2011),
Scheffer et al. (2012), Dakos et al. (2012a), and Thomas (2016).

Notably absent from the discussion of paleoclimatic time series analysis
presented here is spectral analysis (eg. Yiou et al. (1997) and Ditlevsen et al.
(2005)), the topic of potential analysis (eg. Kwasniok and Lohmann (2009),
Livina et al. (2010), and Livina et al. (2012)) and the application of nonlinear
oscillators as conceptual climate models (eg. Crucifix (2012), Kwasniok and
Lohmann (2012), and Ashwin and Ditlevsen (2015)).

1.4 Applications of the Transfer Operator

The transfer operator approach to analyzing dynamical systems is probabilistic
(Dellnitz et al. 2009) rather than geometric (eg. in terms of using bifurcation
diagrams). The transfer operator Lτ acts on probability distributions that are
defined on the on the state space Ω of the dynamical system under investigation.

We present four studies below that share similarities. Lτ : L1 → L1 is
approximated by a transition matrix Pij(τ). Pij(τ) in turn is calculated by
partitioning Ω into N boxes {Bi}Ni=1. After observing trajectories x(t) of the
system, the ij’th entry of Pij(τ) is thus the observed probability of x(t) occu-
pying the box Bi and x(t + τ) occupying the box Bj . We investigate this in
greater detail in Chapter 2 – here we give a few examples of applications.

The aim of Dellnitz et al. (2009) is to identify the Ross and Weddell gyres –
large scale observable structures in the Southern Ocean – in data output from
an ocean model. One of the model outputs is the monthly averaged velocity
field v(x; t) as a function of month t. By using v(x; t) to integrate a large
number of trajectories, Dellnitz et al. (2009) search for almost-invariant sets,
sets of the state space that change very little under the flow; these sets are
successfully identified with the Ross and Weddell gyres.

Chekroun et al. (2014) simulate the ENSO with an intermediate complexity
model forced by seasonal variations while varying a central model parameter. In
particular, they study the spectral gap γ = 1−|λ2| where λ2 is the subdominant
eigenvalue (second largest in absolute magnitude) of Pij(τ). γ can be related
to the memory of the system (see Section 2.7.2); Chekroun et al. (2014) find
that regimes with small gaps correspond to regimes of long memory, where
autocorrelation decays slowly.

A key contribution of Chekroun et al. (2014) is a theorem relating transition
probabilities in the state space Ω ∈ Rn to transition probabilities in a reduced
state space Y ∈ Rm with m < n through a continuous observation function
h : Ω → Y (Section 2.8.1).

The theorem by Chekroun et al. (2014) is exploited by Tantet et al. (2015a)
who investigate output from an atmospheric model. In this model, circulation
patterns alternate between two regimes, zonal and blocking. The system is
observed through the first and third leading EOFs; thus the EOF decomposition
constitutes the observation function h.

After a clear theoretical exposition Tantet et al. (2015a) use the transfer
operator to show the presence of time scale separation in the system, uncover-
ing meta-stable regimes corresponding to the two system states. Finally, the
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transition matrices Pij(τ) are used to construct an early warning system for
transitions between the two regimes.

We end this section by mentioning Tantet et al. (2015b) who use a climate
model capable of switching from a present day-like state to a Snowball Earth
state. The critical parameter in this model is the solar constant S with units
W/m2. For large values of S the Snowball Earth state vanishes, and for small
S-values the warm state vanishes. For intermediate S-values the two states
coexist, resulting in a hysteresis loop.

Tantet et al. (2015b) start the model in present day conditions and decrease
S. They approximate Lτ by Pij(τ) from two model outputs, namely fraction
of sea ice cover in the Northern Hemisphere and mean surface temperature in
a belt around the Equator. Leading up to a transition from the warm state
to the snowball state they observe critical slowing down through a decreasing
spectral gap.

Crucially, as their model is chaotic Tantet et al. (2015b) do not attribute
the slowing down to an approaching bifurcation, but rather to an “attractor
crisis” – the attractor corresponding to the warm state is destroyed after the
crisis.

1.5 Outline

Chapter 2 presents the analytical framework. In Sections 2.1 to 2.4 we recall
some tools from time series analysis with a focus on autoregressive processes
and the Ornstein-Uhlenbeck (OU) process, as these lay the groundwork for the
study of EWS and the work presented in Mikkelsen et al. (2017). The trans-
fer operator and methods of its approximation are introduced in Sections 2.5
to 2.11.

Chapter 3 list some types of bifurcations commonly studied in the context
of tipping points. We motivate and introduce the double well potential model
and derive expressions for the observed variance and autocorrelation when
approaching a bifurcation.

In Chapter 4 we apply the methods from Chapter 2 to the model from
Chapter 3 and verify that – for the conceptual model – we can detect EWS by
using the transfer operator framework.

Chapter 5 is concerned with analysis of data from the NGRIP ice core.
We introduce and interpret the proxies δ18O, [Ca2+], [Na+] and [NH+

4 ] in Sec-
tion 5.1 and detail our methodology in Section 5.2. We analyze the NGRIP
data in Sections 5.3 and 5.4.

In Chapter 6 we summarize Mikkelsen et al. (2017) and give a suggestion
for future work building on the results we have obtained; Chapter 7 provides
a general conclusion and discussion of the work presented in this thesis. As
abbreviations are prolific in this work, Appendix A lists the ones we use most
often; Appendix B lists the computational tools we have used and developed,
and points the more intrepid reader to Bitbucket where the code can be ob-
tained.

Finally the article Mikkelsen et al. (2017) is appended in Appendix D and
supplementing information in Appendix E; Appendix C contains the wording
of the co-author statements that are required by the University of Copenhagen.

https://bitbucket.org/




2 Time Series Analysis and
Modeling

2.1 Time Series From Dynamical Systems

A continuous dynamical system St : Ω × R → Ω on a state space Ω is a rule
that for all t ∈ R maps Ω on to itself; furthermore, (Lasota and Mackey 1994,
Chapter 7):

• S0(z) = z ∀z ∈ Ω,

• Ss(St(z)) = Ss+t(z) ∀z ∈ Ω, ∀t, s ∈ R,

• The mapping (t, z) 7→ St(z) is continuous.

For applications arising in physics the rule St will often be a system of
ordinary differential equations on a finite dimensional state space (Kantz and
Schreiber 2000), and we may think of t as time and write

dz

dt
:= ż = f(z). (2.1.1)

Let z0 = z(t = 0) and zt = St(z0). In this way St is the flow generated by
Equation (2.1.1) (Kantz and Schreiber 2000) such that

d

dt
St(z) = f(z(t)). (2.1.2)

If we during an experiment observe the system Equation (2.1.1) at times
tn = n∆t, n = 0, 1, . . . through some observation function h we end up with a
time series (Kantz and Schreiber 2000, p. 35)

x0 = x(0) = h(z(0))

x1 = x(∆t) = h(z(∆t))

. . .

(2.1.3)

Measurements of a physical system will invariably contain uncertainties
(Taylor 1982); maybe our system itself may also contain elements that we
choose to model as noise because they are uninteresting for our purposes
(Ditlevsen 2004); even carrying out computer simulations will contain round-
off error that can be thought of as noise (Ruelle 1986b). In all these cases our
time series {xn}, n = 0, 1, . . . can be thought of as realizations of a stochastic
process {Xn}, n = 0, 1, . . . (Madsen 2008; Kantz and Schreiber 2000).

15
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Let X be a discrete stochastic variable and P (X = x) the probability that
X assumes the value x. For discrete X the expectation of is X

E [X] =
∑
x

xP (X = x); (2.1.4)

for a continuous variable with continuous density function fX the expectation
is

E [X] =

∫ ∞

−∞
fX(x) dx, (2.1.5)

and in both cases

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2 (2.1.6)

defines the variance of X.

2.2 Autoregressive Processes

When modeling a time series {xn} it is convenient to introduce backward shift
operator B defined as follows (Box et al. 2008; Madsen 2008):

Bxn = xn−1,

B2xn = xn−2,

. . .

(2.2.1)

so

(1−B)xn = xn − xn−1. (2.2.2)

Let {εn} denote a series of independent, Gaussian distributed random variables
with mean µ and variance σ2, ie. εn ∼ N (µ, σ2). AR of order p, or or AR(p)
processes, have the form

Xn = φ1Xn−1 + ...+ φpXn−p + εn. (2.2.3)

Using the backward shift operator this can be written as

(1− φ1B − ...− φpB
p+)Xn = εn (2.2.4)

or
φ(B)Xn = εn (2.2.5)

where φ is seen as a polynomial in B. An AR model is stable if all the complex
roots of φ(B) lie outside the unit circle; thus the AR(1) model is stable if
|φ1| < 1 (Box et al. 2008, p. 10). Next we define a moving average (MA)
model of order q,

Xn = εn + θ1εn−1 + ...+ θqεn−q (2.2.6)

or using the backward shift operator,

Xn = θ(B)εn

=
(
1 + θ1B

1 + ...+ θqB
q
)
εn.

(2.2.7)



2.3. Stochastic Differential Equations 17

For completeness we mention integrated models of order d as

(1−B)dXn = εn. (2.2.8)

Combining this leads to the ARIMA(p, d, q) model (Madsen 2008):

φ(B)(1−B)dXn = θ(B)εn. (2.2.9)

Note that the process
(1−B)Xn = εn (2.2.10)

or
Xn = Xn−1 + εn (2.2.11)

is the random walk (Madsen 2008, p. 131) which has non-constant variance
(Box et al. 2008, p. 119) and so is non-stationary.

Large physical system such as climate models contain “fast” and “slow”
subsystems (Ditlevsen 2004). It was shown by Hasselmann (1976) that this
type of time scale separation naturally leads to modeling the system as an
AR(1)-process (Mudelsee 2010) or, equivalently, the Ornstein-Uhlenbeck (OU)
process.

2.3 Stochastic Differential Equations

Since SDEs and stochastic processes will play a substantial role in this work
we will here review some basic concepts pertaining to analytical and numerical
solutions. For extensive reviews of analytical tools see eg. Gardiner (2009) and
Øksendal (2013) and for numerical solutions eg. Kloeden and Platen (1995)
and Higham (2001).

2.3.1 The Wiener Process
The Wiener process – or Brownian motion – {Wt, t ≥ 0} has continuous sample
paths with stationary, independent increments satisfying the following proper-
ties (Dijkstra 2013, p. 40):

W0 = 0,

Wt+s −Wt ∼ N (0, s), s > 0,

Wt ∼ N (0, t).

(2.3.1)

2.3.2 Itô Processes
Stochastic calculus arises from the desire to integrate processes of the form
(Øksendal 2013)

dX

dt
= f(x) + ”noise”. (2.3.2)

A possibility is to write Equation (2.3.2) in the form

dXt = u(Xt, t)dt+ v(Xt, t)dWt (2.3.3)

or, equivalently,

Xt = X0 +

∫ t

0

u(Xs, s)ds+

∫ t

0

v(Xs, s)dWs (2.3.4)
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where Wt represents the Wiener process. One way to interpret the last term
in Equation (2.3.4) is as an Itô integral, which is the interpretation we will
use. Equation (2.3.4) is then also called an Itô process. Chapters 3 and 4 in
Øksendal (2013) contain a thorough introduction to this material as well as
to the alternative Stratonovich calculus for SDEs which we will not explore
further here.

2.3.3 Itô’s Lemma
To solve integrals like Equation (2.3.4) the following can be very useful:

Theorem 2.1 (Itô’s lemma, (Øksendal 2013)). If Xt is an Itô process and
g(x, t) ∈ C2, then Yt = g(Xt, t) is also an Itô process and

dYt =
∂g

∂t
(Xt, t)dt+

∂g

∂x
(Xt, t)dXt +

1

2

∂2g

∂x2
(Xt, t) · (dXt)

2. (2.3.5)

Furthermore, the terms in (dXt)
2 are calculated according to the rules

dt · dt = dWt · dt = 0,

(dWt)
2 = dt.

(2.3.6)

4

Theorem 2.2 (The Itô Isometry, (Øksendal 2013)). Let

f : Ω× [0,∞) → R (2.3.7)

where Ω is the state space and let f satisfy certain measurability conditions
(Øksendal 2013, p. 25); furthermore we demand that

E

[∫ T

S

f2(Xt, t)dt

]
<∞. (2.3.8)

Then

E

(∫ T

S

f(Xt, t)dWt

)2
 = E

[∫ T

S

f2(Xt, t)dt

]
. (2.3.9)

4

The following properties of the Itô integral will be needed in Example 2.3;
for the same class of functions as in Theorem 2.2 the following hold for 0 ≤
S < U < T (Øksendal 2013, Theorem 3.2.1, i) & iii)):∫ T

S

fdWt =

∫ U

S

fdWt +

∫ T

U

fdWt, (2.3.10)

and

E

[∫ T

S

fdWt

]
= 0. (2.3.11)

We will make extensive use of the Ornstein-Uhlenbeck process in Chapters 3
and 4 where we investigate the increase in variance and autocorrelation before
a tipping point. The following example is rather lengthy but represents a solid
foundation from which to understand these results.
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Example 2.3 (Mean, variance and autocorrelation of the Ornstein-Uhlenbeck
process, (Horsthemke and Lefever 2006; Ditlevsen 2008; Gardiner 2009)). Let
Xt be the OU process. Then dXt satisfies

dXt = −αXtdt+ σdWt (2.3.12)

with initial condition Xt=0 = X0 = 0. To solve Equation (2.3.12) using Itô’s
lemma we use the standard y = g(x, t) = xeαt and note that dYt is given by
Equation (2.3.5):

dYt = Xt · αeαtdt+ eαt · dXt. (2.3.13)

We plug in our expression for dXt:

dYt = Xt · αeαtdt+ eαt (−αXtdt+ σdWt)

= eαt (αXtdt− αXtdt+ σdWt)

= σeαtdWt.

(2.3.14)

Now we have an expression for Yt; according to Equation (2.3.4)

Yt = Y0 + σ

∫ t

0

eαsdWs. (2.3.15)

We substitute Xt; since Yt = Xte
αt we have Xt = Yte

−αt

Xt = e−αt

(
Y0 + σ

∫ t

0

eαsdWs

)
= e−αtX0 + σ

∫ t

0

e−α(t−s)dWs.

(2.3.16)

We evaluate the expectation of Equation (2.3.16)

E [Xt] = E
[
e−αtX0

]
+ E

[
σ

∫ t

0

e−α(t−s)dWs

]
= e−αtX0 = 0.

(2.3.17)

where we used Equation (2.3.11). Next we evaluate the variance of Equa-
tion (2.3.16):

Var [Xt] = E
[
(Xt − E [Xt])

2
]

= E

[
σ2

(∫ t

0

e−α(t−s)dWs

)2
]
.

(2.3.18)

By Theorem 2.2 (∫ t

0

e−α(t−s)dWs

)2

=

∫ t

0

e−2α(t−s)ds (2.3.19)

so Equation (2.3.18) reads

Var [Xt] = σ2

∫ t

0

e−2α(t−s)ds = σ2 1− e−2αt

2α
, (2.3.20)
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or, for large times t

Var [Xt] ≈
σ2

2α
. (2.3.21)

For the autocovariance E [Xt1Xt2 ] we use Equation (2.3.16): such that

E [Xt1Xt2 ] = E

[
σ

∫ t1

0

e−α(t1−u)dWu × σ

∫ t2

0

e−α(t2−v)dWv

]
= σ2e−α(t1+t2) E

[∫ t1

0

eαudWu ×
∫ t2

0

eαvdWv

]
.

(2.3.22)

The integrals in Equation (2.3.22) are then split into two parts (Horsthemke
and Lefever 2006, pp. 49–53). Assume that t1 < t2:

E [Xt1Xt2 ] = σ2e−α(t1+t2) E

[∫ t1

0

eαu dWu ×
∫ t1

0

eαv dWv

]
+ σ2e−α(t1+t2) E

[∫ t1

0

eαu dWu ×
∫ t2

t1

eαv dWv

]
= σ2e−α(t1+t2) E

[(∫ t1

0

eαu dWu

)2
]

+ σ2e−α(t1+t2) E

[∫ t1

0

eαu dWu

]
× E

[∫ t2

t1

eαv dWv

]
= σ2e−α(t1+t2)

∫ t1

0

(eαu)
2
du+ 0.

(2.3.23)

We have split the expectation of the two integrals in the fourth line since the
increments at times t < t1 and t > t1 are uncorrelated (Section 2.3.1), and
applied Equation (2.3.11); the last line uses the Itô isometry (Theorem 2.2).
We evaluate the last integral in Equation (2.3.23); since the choice t1 < t2 was
arbitrary:

E [Xt1Xt2 ] =
σ2

2α
e−α(t1+t2)

(
e2αmin(t1,t2) − 1

)
, (2.3.24)

or

E [Xt1Xt2 ] =
σ2

2α

(
e−α|t1−t2| − e−α(t1+t2)

)
. (2.3.25)

Let τ > 0 be a fixed time interval and consider E [XtXt+τ ]. We get for large
times t

E [XtXt+τ ] ≈
σ2

2α
e−ατ (2.3.26)

and, dividing the autocovariance with the variance (Equation (2.3.21)) we ob-
tain the autocorrelation C(τ) (Madsen 2008, p. 130)

C(τ) ≈ e−ατ . (2.3.27)

4
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2.3.4 The Euler-Maryuama Scheme
Let ẋ be given by a function f(x) = ẋ. We wish to solve this numerically
at times t0, t1, . . . tk, . . . to obtain approximate solutions xk at times tk. The
Euler scheme or Euler’s method for solving ordinary differential equations is
(Heath 2005)

xk+1 = xk + f(xk, tk)∆tk (2.3.28)

where ∆tk = tk+1−tk is some small time step. This method uses the definition
of the differential directly and is thus very illustrative; however for some cases
it may be insufficient (Hairer et al. 2008; Hairer and Wanner 2010).

Assume we instead of dx
dt = f(x) have an SDE of the form Equation (2.3.3)

dXt = u(Xt, t)dt+ v(Xt, t)dWt (2.3.29)

and wish to approximate a solution Xk. Euler’s method shows us how to solve
the deterministic part coming from u(Xt, t) - if we add a stochastic term to
Equation (2.3.28) we get

Xk+1 = u(Xk, tk)∆tk + v(Xk, tk)∆Wk. (2.3.30)

The question is, how large should ∆Wk be? Well, this is given by Equa-
tion (2.3.1) that tells us that the variance of W (t+∆t)−W (t) is proportional
to ∆t – it follows that if we for every time step k draw a random Gaussian
variate Nk ∼ N (0, 1) we can write Equation (2.3.30) as

Xk+1 = u(Xk, tk)∆tk + v(Xk, tk)
√
∆tNk; (2.3.31)

Equation (2.3.31) is known as the Euler-Maryuama (EM) method (Higham
2001).

There exists an abundance of schemes for solving SDEs numerically (Kloe-
den and Platen 1995). We will use the EM method due to its simplicity and its
widespread use in literature (eg. Kuehn (2011), Kuehn (2012), Kwasniok and
Lohmann (2012), Cimatoribus et al. (2013), and Mitsui and Crucifix (2016))
for solving problems such as the ones presented in Chapter 4.

2.4 Detrending

In Chapter 4 we will analyze time series from a a system undergoing a bifur-
cation. This timeseries will be seen by inspection to have an obvious trend.
Livina et al. (2011) suggest removing such obvious trends before performing
analyses while Kuehn (2012) shows that linear detrending yields satisfactory
results when analysing data from the Stommel (1961) box model with stochas-
tic forcing (Cessi 1994); further Box et al. (2008, pp. 285–286) explore the
possibility of linearly detrending data with a deterministic linear trend before
fitting an AR(1)-model.

Detrending is challenging however (Dakos et al. 2008). Rypdal (2016) points
out that simply detrending data may leave low-frequency variability in the data
that obscures the high-frequency early warning signals.

When estimating autocorrelation and variance in Chapter 4 I will use linear
detrending based on the mentioned results from Kuehn (2012).
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2.5 The Transfer Operator

The remainder of this chapter is devoted to introducing the transfer operator
or Perron-Frobenius (PF) operator and illustrate how this can be used to study
the evolution of densities in state space, specifically the decay of correlations
between observables.

This subject is rich and contains a large number of results that we do not
hope to cover completely; we merely aim to justify the use of the PF operator
for time series analysis. We provide a summary of this topic and its application
to time series analysis in Section 2.11.

2.5.1 Semidynamical Systems
We define a semi-dynamical system {St}t≥0 as a family of maps St : Ω → Ω,
t ∈ R+ acting on points x ∈ Ω (Lasota and Mackey 1994, Chapter 7):

1. S0(x) = x,

2. St(Ss(x)) = St+s(x) for t, s ∈ R+,

3. The mapping (t, x) → St(x) from R+ × Ω into Ω is continuous.

For a dynamical system {Tt}t∈R invertibility naturally follows: simply let
t > 0 and observe that T−t(T (t(x))) = Tt−t(x) = T0(x) = x. On the other
hand a semidynamical system is not invertible (Lasota and Mackey 1994, p.
195) since t is restricted to lie in R+

A semidynamical system {St}t≥0 however may still arise from a system of
ordinary differential equations ẋ = f(x) simply by restricting our attention to
St(x0) = x(t) for nonnegative times t ≥ 0 with x0 = x(t = 0) (Lasota and
Mackey 1994, p. 210). The reason for this seemingly artificial restricting our
attention to semidynamical systems should become clear in Section 2.6.3 where
a result from the theory of semigroups is introduced.

I find that some of the results presented in the remainder of this chapter are
best described in continuous time (represented by s, t, τ) and some in discrete
time (represented by i, n, k). We will distinguish flows St (continuous time t)
from maps Sn (discrete time n) using subscript for the former and superscript
for the latter. I hope that this is not too great a concern to the reader; for any
fixed time t the definitions of the Koopman and Perron-Frobenius operator are
the same in continuous and discrete time, and the interpretations of eg. mixing
(Definition 2.7) and ergodicity (Definition 2.8) are interpreted the same way
(Lasota and Mackey 1994, Chapter 7 ).

2.5.2 The Perron-Frobenius and Koopman Operators
Let Ω be a given set, Σ a σ-algebra on Ω and µ a measure so that (Ω,Σ, µ)
is a measure space. Further let L1 denote the space of integrable function,
L∞ the space of essentially bounded functions and for f ∈ L1(Ω), g ∈ L∞(Ω),
f, g : Ω → R let

〈f, g〉 =
∫
Ω

f(x)g(x) µ(dx) =

∫
Ω

fg dµ (2.5.1)

define the scalar product of f and g.
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Figure 2.1 | Illustration of the action of the Perron-Frobenius ope-
rator. The observable f is defined on the same space Ω as the flow Sτ . Sτ

transforms a set A, and Lτ propagates f correspondingly (Equation (2.5.2)).
Compare with Figure 2.2.

The PF operator Lτ : L1 → L1 corresponding to Sτ is defined as (Lasota
and Mackey 1994, Chapter 7):∫

S−1
τ (A)

f(x)dµ =

∫
A

Lτf(x)dµ. (2.5.2)

The Koopman operator Uτ : L∞ → L∞ is defined as (Lasota and Mackey 1994,
Chapter 7)

Uτg(x) = g(Sτ (x)). (2.5.3)
or

Uτg = g ◦ Sτ . (2.5.4)
Lτ and Uτ are adjoint:

〈Lτf, g〉 = 〈f,Uτg〉 for f ∈ L1, g ∈ L∞. (2.5.5)

Illustrations of the action of Lτ and Uτ are shown in Figures 2.1 and 2.2, both
inspired by Mezic (2015).

In the context of Equation (2.5.5), f and g are often called observables in
the literature (Ruelle 1986b; Young 2002; Froyland 2008; Chekroun et al. 2011;
Tantet et al. 2015b; Butterley 2016). This is simply to be interpreted as some
physical observable output of the system (Gaspard and Tasaki 2001; Mezic
2013; Susuki and Mezic 2015). .

2.5.3 The Liouville Equation and the Transfer Operator
The transfer operator L is intimately connected to the Liouville equation. Con-
sider a vector field defined on a state space Ω ⊆ Rn

ẋ = F(x) (2.5.6)
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Figure 2.2 | Illustration of the action the of Koopman operator. The
Koopman operator Uτ corresponding to the flow Sτ propagates the observable
g (Equation (2.5.3)). Compare with Figure 2.1

.

where x ∈ Ω. We consider the action of the vector field (Equation (2.5.6)) on
an initial density ρ0(x, t = 0); for this initial density ρ0, the Liouville equation
specifies the evolution of densities (see for example Gaspard et al. (1995) or
Nicolis (1995, Chapters 2 & 3)):

∂tρ(x, t) = −∇· [Fρ(x, t)] := L̂ρ(x, t). (2.5.7)

The solution ρτ = ρ(x, t = τ) to Equation (2.5.7) is (Gaspard et al. 1995):

ρτ = eτL̂ρ0. (2.5.8)

The Liouville operator L̂ is the generator of the transfer operator Lτ (Gaspard
and Tasaki 2001)

Lτ = eτL̂. (2.5.9)

2.5.4 Discrete Spectrum of the Liouville Operator

For the sake of simplicity let us for now assume that L̂ has only discrete eigen-
values and that {sn} form the set of eigenvalues corresponding to the eigen-
vectors {ψn}, and correspondingly that {s∗n} are the eigenvalues of the adjoint
L̂† corresponding to the eigenvectors

{
ψ̃n

}
:

L̂ψn(x) = snψn(x),

L̂†ψ̃n(x) = s∗nψ̃n(x).
(2.5.10)
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Under certain conditions (Gaspard et al. 1995) we can assume that {ψn} and{
ψ̃n

}
are biorthogonal and complete

〈ψ̃n, ψm〉 = δm,n,∑
n

ψn(x)ψ̃n(y) = δ(x− y). (2.5.11)

We now expand ρ(x, t) using Equation (2.5.11) (Gaspard et al. 1995)

ρ(x, t) =
∑
n

cn(t)ψn(x) (2.5.12)

and substitute Equation (2.5.12) into the evolution Equation (2.5.7):

∂

∂t
ρ(x, t) =

∂

∂t

∑
n

cn(t)ψn(x)

= L̂
∑
n

cn(t)ψn(x)

=
∑
n

cn(t)snψn(x).

(2.5.13)

For any given n the equation for cn(t)

∂

∂t
cn(t)ψn(x) = cn(t)snψn(x) (2.5.14)

has the solution
cn(t) = cn(0)e

tsn (2.5.15)

so Equation (2.5.12) becomes

ρ(x, t) =
∑
n

cn(0)e
tsnψn(x). (2.5.16)

Let us calculate cn(0) - we set t = 0 in Equation (2.5.16) and take the inner
product with ψ̃n:

〈ψ̃n, ρ0〉 = 〈ψ̃n,
∑
m

cm(0)ψm〉

=
∑
m

cm(0)〈ψ̃n, ψm〉

=
∑
m

cm(0)δm,n

= cn(0),

(2.5.17)

leading us to the final expression for ρ(x, t)

ρ(x, t) =
∑
n

〈ψ̃n, ρ0〉etsnψn(x). (2.5.18)

The eigenvectors ψ̃n and ψn may be either functions or distributions1 de-
pending on the system considered, but in either case an expansion of the form

1See eg. Gowers et al. (2008, pp. 184–187) for a definition.
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Equation (2.5.18) will hold (Gaspard et al. 1995). It has been shown that
for Anosov flows2 the eigenvectors corresponding to isolated eigenvalues are
distributions (Froyland 2008; Blank et al. 2002), and the same is the case
for a one-dimensional vector field undergoing a pitchfork bifurcation (Gaspard
et al. 1995) and a two-dimensional vector field undergoing a Hopf bifurcation
(Gaspard and Tasaki 2001). On the other hand, in the case where random
perturbations are added to the system the eigenvectors appear as functions
(Dellnitz and Junge 1999; Froyland 2008).

2.5.5 Stationary Densities & Physical Measures

Definition 2.4 (Invariant measure, Lasota and Mackey (1994), definition
4.1.1). Let (Ω,Σ, µ) be a measure space and S : Ω → Ω a transformation
on Ω. The measure µ is invariant under S if

µ(S−1(A)) = µ(A) ∀A ∈ Σ. (2.5.19)

4

Theorem 2.5 (Invariant measure and fixed points of Lτ , Lasota and Mackey
(1994) Theorem 4.1.1). Let (Ω,Σ, µ) be a measure space, S : Ω → Ω a transfor-
mation on Ω and Lτ the PF operator corresponding to Sτ . Then the measure
µf

µf (A) =

∫
A

f(x)dµ (2.5.20)

is invariant under S if and only if f is a fixed point of Lτ ; that is iff

Lτf = f. (2.5.21)

4

If Equation (2.5.21) holds for a density f then f is a stationary density of
the PF operator (Lasota and Mackey 1994, p. 41).

In the case where we are working with a dissipative dynamical system,
volume in state space is in general not preserved (Strogatz 1994). In this case
it is important to chose a physical measure for which spatial and temporal
averages coincide (Tantet et al. 2015a):

Definition 2.6 (Physical Measure, (Eckmann and Ruelle 1985; Young 2002)).
Suppose S : Ω → Ω is an arbitrary map and µ an invariant probability measure.
µ is a physical measure if there is a set with positive Lebesgue measure A ⊂ Ω
such that for every continuous observable function f : Ω → R and for all x ∈ A

lim
N→∞

1

N

N−1∑
n=0

f(Sn(x)) =

∫
Ω

f(x) dµ. (2.5.22)

4

2See eg. Young (2002).
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Physical measures – more specifically Sinaï-Ruelle-Bowen (SRB) measures
– have been shown to exist for Anosov flows (Young 2002). To the author’s
knowledge, SRB measures have not been shown to exist for dynamical systems
in general. However, Gallavotti and Cohen (1995) propose the so-called chaotic
hypothesis under which we can regard many practical systems as being “close
enough” to Anosov – see Section 2.6.4. With two additional definitions we can
say something about the uniqueness of the invariant distribution:

Definition 2.7 (Lasota and Mackey (1994), definition 4.3.1). Let (Ω,Σ, µ) be
a measure space; a transformation S : Ω → Ω is called mixing if

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B) ∀A,B ∈ Σ. (2.5.23)

4

For a finite n consider the set

C = A ∩ S−n(B). (2.5.24)

If x ∈ S−n(B) then Sn(x) must lie in B. Thus the set C in Equation (2.5.24)
can be written

C = {x | x ∈ A and Sn(x) ∈ B} . (2.5.25)

We can interpret the mixing condition Equation (2.5.23) as follows: for any
point x ∈ Ω the probability of x lying in A and Sn(x) lying in B is proportional
to the product of the measures of A and B – that is at least if µ(Ω) = 1.

Definition 2.8 (Lasota and Mackey (1994), definition 4.3.1). Let (Ω,Σ, µ) be
a measure space and S : Ω → Ω a nonsingular transformation. S is called
ergodic if for every invariant set A ∈ Σ either µ(A) = 0 or µ(Ω \A) = 0. 4

The definition of ergodicity thus tells us that almost all sets A ∈ Σ will
be visited by Sn(x) for almost every x ∈ Ω – that is, pick an initial condition
and, given enough iterations of the map S we will visit every set A ∈ Σ almost
surely. A mixing S transformation is also ergodic (Lasota and Mackey 1994, p.
65) – and if S is ergodic there is at most one unique stationary density (Lasota
and Mackey 1994, Theorem 4.2.2).
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2.6 Relating the Spectra of the Liouville and Transfer
Operators

2.6.1 Spectrum of the PF Operator

Re(z)

Im(z)

|z| = 1

ρe

Figure 2.3 | Illustration of the spectrum of the PF operator. When
acting on functions of bounded variation, eigenvalues of the PF operator with
modulus larger than ρe are isolated and of finite multiplicity3(Dellnitz et al.
2000; Froyland et al. 2009).

DenoteBV ([0, 1]) the space of functions of bounded variation on the interval
[0, 1]. For the transfer operator restricted to the space BV ([0, 1]) it can be
shown that the spectrum of the transfer operator σ(L) lies within the unit disc
and 1 is an eigenvalue of L (Keller 1984; Dellnitz et al. 2000; Froyland et al.
2009; Froyland et al. 2014).

In this setting the essential spectrum of the transfer operator is located
within a disc of radius ρe called the essential spectral radius; spectral points
outside ρe are eigenvalues of finite multiplicity (Dellnitz et al. 2000; Froyland
et al. 2014) and will be referred to as isolated eigenvalues (Froyland 2007).
The points in the spectrum of L correspond (Dorfman 1999, p. 259), (Gaspard
and Tasaki 2001) to the so-called Ruelle-Pollicott resonances (Pollicott 1985;
Ruelle 1986a; Ruelle 1986b).

Below we will approximate L with the matrix representation Pij (see Sec-
tion 2.8). In general, eigenvalues λk of Pij will correspond to eigenvalues of

3We sketch the essential spectrum as a circle and not a disc due to a result from Blank
et al. (2002), who show that the essential spectrum in some cases is contained in an annulus,
and not a disc – as discussion of this result is out of the scope of this thesis.
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L (Dellnitz et al. 2000). If we assume that a calculation of ρe is possible and
that for a given eigenvalue λk of Pij we have |λk| > ρe, then we will know
that λk is an isolated eigenvalue (Dellnitz et al. 2000). If on the other hand
|λk| ≤ ρe we only know λk is an eigenvalue of L, not whether it is isolated;
further there may be isolated eigenvalues λk, |λk| ≤ ρe that are not eigenvalues
of Pij (Dellnitz et al. 2000).

General proofs of existence for isolated eigenvalues other than the unit
eigenvalue is an open problem (Froyland et al. 2014). However Dellnitz et al.
(2000) conjecture that isolated eigenvalues may indeed be present in many “sys-
tems arising in applications” which is encouraging, given the many interesting
and recent results discussed in Section 1.4.

Let {λ1, λ2, . . . λN} denote the isolated eigenvalues of L ordered in decreas-
ing order so that eigenvalues of multiplicity larger than one occurs only once.
By the arguments above we see that λ1 = 1. We will be especially interested
in the subdominant eigenvalue λ2 = max1<i≤N |λi| since this is responsible for
the rate of decay of correlations detailed in Section 2.7 (Baladi 2000; Dellnitz
et al. 2000; Froyland 2008).

A sketch of the possible PF spectrum is shown in Figure 2.3. The unit
eigenvalue is in green, isolated eigenvalues in red and z : |z| ≤ ρe is shown in
blue. Compare this to Figures 2.4 and 2.5 where we show Ulam approximations
to the spectrum of the the PF operators for the Lorenz system and the Van
der Pol oscillator, respectively.

2.6.2 One-parameter Semigroups

Definition 2.9 ((Engel and Nagel 2000), definition I.5.1). A family of bounded
linear operators {Tt}t≥0 on a Banach space Ω is said to be a strongly continuous
one-parameter semigroup if

Ts+t = TsTt ∀t, s ≥ 0

T0 = I
(2.6.1)

and if the orbit maps
ξx : t→ ξx(t) := Tt(x) (2.6.2)

are continuous from R+ into Ω for all x ∈ Ω. 4

2.6.3 The Spectral Mapping Theorem

We will need the Spectral Mapping Theorem (SMT) when relating the eigen-
values of the transfer operator Lτ to the eigenvalues of the generator L̂. Denote
Pσ(·) the point spectrum, or set of eigenvalues, of an operator.

Theorem 2.10 (IV.1.6 and IV.3.7, Engel and Nagel (2000)). For the generator
A of a strongly continuous semigroup {Tt}t≥0 on a Banach space Ω the following
holds:

Pσ(Tt) \ {0} = etPσ(A). (2.6.3)

4
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2.6.4 The Chaotic Hypothesis
By introducing the appropriate Banach spaces, Butterley and Liverani (2007)
show that – for Anosov systems – the semigroup of transfer operators Lτ is
strongly continuous and that therefore the spectrum of the generator L̂ of Lτ

is contained in {z | Re{z} ≤ 0} (Tantet et al. 2015a).

If we assume the chaotic hypothesis (Gallavotti and Cohen 1995):

“A reversible many particle system in a stationary state can be re-
garded as a transitive Anosov system for the purpose of computing
the macroscopic properties of the system.”

we can consider our system as “close enough” to an Anosov system that the
semigroup of transfer operators is a strongly continuous semigroup, and thus
the spectral mapping theorem will hold (Tantet et al. 2015a).

2.7 Decay of Correlations

For f ∈ L1 and g ∈ L∞ the following defines a correlation function between
the observables f and g (Ruelle 1986b; Butterley and Liverani 2007; Tantet
et al. 2015a):

Cf,g(τ) =

∫
f · g ◦ Sτdµ−

∫
f dµ

∫
g dµ. (2.7.1)

For a mixing system, the correlation function Equation (2.7.1) will converge
to zero, Cf,g(τ) → 0 as τ → ∞ (Lasota and Mackey 1994, Proposition 4.4.1
b). We write the first term on the right hand side of Equation (2.7.1) as∫

f · g ◦ Sτ dx = 〈f, g ◦ Sτ 〉; (2.7.2)

using the definitions of the transfer and Koopman operators (Equations (2.5.4)
and (2.5.5))

〈f, g ◦ Sτ 〉 = 〈f,Uτg〉 = 〈Lτf, g〉, (2.7.3)
and by the relationship between the L̂ and Lτ (Equation (2.5.9))

〈Lτf, g〉 = 〈eτL̂f, g〉. (2.7.4)

Still only considering the discrete spectrum, as in Section 2.5.4 we assume
bi-orthogonality and completeness such that

f =
∑
n

〈ψ̃n, f〉ψn. (2.7.5)

With the eigenrelations L̂ψn = snψn,

eτL̂f =
∑
n

〈ψ̃n, f〉eτsnψn. (2.7.6)

Equation (2.7.4) now reads

〈Lτf, g〉 =
∑
n

〈ψ̃n, f〉eτsn〈g, ψn〉 (2.7.7)
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and, crucially, by the SMT

〈Lτf, g〉 =
∑
n

〈ψ̃n, f〉λn〈g, ψn〉 (2.7.8)

where λn are the eigenvalues of the transfer operator Lτ .

2.7.1 Projection of the Essential Spectrum
We now turn our attention to the essential spectrum of the transfer operator.
It has been shown that for Anosov flows the spectral decomposition of Equa-
tion (2.7.1), including the essential spectrum, is given as (Tantet et al. 2015b;
Butterley 2016):

Cf,g(τ) = 〈Lτf, g〉 −
∫
fdµ

∫
gdµ

=

M∑
n=1

eτsn〈ψ̃n, f〉〈g, ψn〉+ 〈Λτf, g〉 −
∫
fdµ

∫
gdµ

(2.7.9)

where M is finite and the term Λτ corresponds to the essential spectrum of
Lτ . Butterley (2016) gives a bound on the contribution from the term 〈Λτ , f〉.
The essential spectrum governs local properties such as exponential separation
of nearby trajectories (Dellnitz et al. 2000) – as mentioned in Section 2.6.1 we
are interested in the decay of correlations caused by the isolated eigenvalues
and will therefore not further consider the essential spectrum. If the system
corresponding to Lτ is mixing, the first term in the sum in Equation (2.7.9)
corresponding to s1 = 0 cancels out with the term

∫
fdµ

∫
gdµ (Tantet et al.

2015b). To see this, recall that for a mixing system we have (Lasota and
Mackey (1994, Corollary 4.4.1), Chekroun et al. (2011) and Definition 2.7)

〈Lτf, g〉 −−−−→
τ→∞

∫
fdµ

∫
gdµ. (2.7.10)

By assuming the chaotic hypothesis we know σ(L̂) is contained in {z | Re(z) ≤ 0}
and further that λn = eτsn is an eigenvalue of Lt. Since Re(sn) < 0 for
n = 2, 3, 4, . . . the correlations will decay exponentially and

〈ψ̃1, f〉〈g, ψ1〉 =
∫
fdµ

∫
gdµ. (2.7.11)

2.7.2 The Spectral Gap and Decorrelation Time
The spectral gap 1 − |λ2| considered in Chekroun et al. (2014) can be related
to the decorrelation time τC defined as the time when the correlation function
Cf,g(t) has decayed to 1/e:

Cf,g(t) ∼ et/τC . (2.7.12)

Consider Equation (2.7.9) and assume that the subdominant eigenvalue
λ2 of Lτ is primarily responsible for the decay of correlation. Let ψ2 be the



32 Chapter 2. Time Series Analysis and Modeling

eigenvector corresponding to λ2 and assume the spectral mapping theorem
holds so λ2 = eτs2 (Tantet et al. 2015a):

〈Lτψ2, g〉 = λ2〈ψ2, g〉
= eτs2〈ψ2, g〉
= eτ Re(s2)eτ Im(s2)〈ψ2, g〉.

(2.7.13)

To connect Equation (2.7.12) and Equation (2.7.13) we set

τC,2 =
−1

Re(s2)
. (2.7.14)

The subscript “2” in Equation (2.7.14) is there to remind us that we only
considered the effect of the subdominant eigenvalue λ2. Since λ2 = eτs2 we
see that s2 = ln(λ2)/τ and Re(s2) = ln|λ2|/τ . We put this expression into
Equation (2.7.14):

τC,2 = − τ

ln|λ2|
. (2.7.15)

Since the spectral gap is γ = 1− |λ2| we get

τC,2 = − τ

ln(1− γ)
(2.7.16)

or, in the case where decay of correlation is primarily caused by λ2,

τC ≈ − τ

ln(1− γ)
. (2.7.17)

We keep in mind that Equation (2.7.17) is merely an approximation as we
only considered the effect of the eigenvalue λ2.

2.8 Ulam Approximation of the Transfer Operator

The transfer operator Lτ can be approximated by a method originally proposed
by Ulam (1964, Section VI.4) and further described by eg. Froyland (1998),
Dellnitz and Junge (1999), and Chekroun et al. (2014).

This method works by first dividing the state space Ω into a set of boxes
{Bi}Ni=1. Then for a specific lag τ we calculate the observed transition proba-
bilities

Pij(τ) =
# {x(t) ∈ Bi ∧ x(t+ τ) ∈ Bj}

# {x(t) ∈ Bi}
(2.8.1)

as an estimate of the true transition probabilities Pij(τ). We will sometimes
for convenience abstain from referring explicitly to the lag τ when there is no
risk of confusion. Because Pij is a stochastic matrix whose rows sum to 1, the
following will characterize stationarity (Asmussen 2003):

πPij = π (2.8.2)

that is, π is the left eigenvector with eigenvalue 1. Pij is the maximum likeli-
hood estimate of Pij and converges to Pij as the number of boxes N → ∞, with
and error of order O(N−1/2) (Chekroun et al. (2014) and references therein).
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2.8.1 State Space Reduction
As mentioned in Section 1.4, a theorem by Chekroun et al. (2014) allows us to
study trajectories on the reduced state space Y of a system instead of the full
state space Ω. This allowed Chekroun et al. (2014), Tantet et al. (2015a), and
Tantet et al. (2015b) to study only a few outputs of a high-dimensional system.
By the same argument, we will study only a few climate proxies in Chapter 5
with the hope of gaining knowledge of the climatic system.

Consider a system S acting on a state space Ω ⊂ Rn that has a unique
physical measure µ. Let h be a continuous observation function h : Ω → Y ∈
Rm with m < n, and suppose we observe a trajectory x(t) ∈ Ω such that
h(x(t)) = y(t) ∈ Y . Chekroun et al. (2014) show that (Tantet et al. 2015a)

P(y(t) ∈ Bi∧y(t+τ) ∈ Bj) = P(x(t) ∈ h−1(Bi)∧x(t+τ) ∈ h−1(Bj)). (2.8.3)

Thus the observation function h preserves transition probabilities.

2.8.2 Significance of the Lag Parameter τ

It is challenging to give a precise interpretation of the meaning of the lag
parameter τ when estimating Lτ from data. In general, the choice of τ should
reflect the timescale of changes in the data we wish to examine – a large τ will
disregard fast fluctuations as noise (Tantet et al. 2015b).

Furthermore, using the theorem by Chekroun et al. (2014) (Section 2.8.1)
comes with a price. The projection will in most cases introduce a memory
effect such that the SMT cannot be expected to hold and the spectral gap γ
will depend on the choice of lag τ (Tantet et al. 2015a; Tantet et al. 2015b).
Thus to verify our results we will calculate the spectral gap for a range of lags
τ1, τ2, . . . in Chapters 4 and 5.

2.8.3 The Spectral Gap and Mixing Rate of Markov
Matrices

The results considered in Section 2.6.1 concerning the spectrum of the PF
operator and the results considered in Section 2.7 can also be understood in
the context of Markov matrices. To see this we need a few definitions.

First, denote a matrix P with real entries pij as non-negative if the entries
pij ≥ 0 for all i and j, and positive if pij > 0 for all i and j; similarly, denote
a vector π as non-negative if πi ≥ 0 for all i, or positive if πi > 0 for all i.

Definition 2.11 (Irreducible Markov chain, Levin et al. (2008), p. 8). Let P
be the transition matrix of a Markov chain on a finite state space Ω. A Markov
chain is called irreducible if it is possible to get from any state x ∈ Ω to any
other state y ∈ Ω. 4

For an irreducible Markov chain there exists a unique probability distribu-
tion π such that πP = π (Levin et al. 2008, p. 14). Next we introduce the
Frobenius theorem (Leon 2006, p. 395), which tells us that if P is an irreducible,
non-negative matrix then P has a positive real eigenvalue λ1; furthermore,

• λ1 corresponds to a positive eigenvector π,
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• For any other eigenvalues λ of P , it holds that |λ| ≤ λ1. All eigenvalues
λk : |λk| = λ1 are simple roots of the characteristic polynomial of P and
of the form

λk = λ1e
2πki/m, k = 0, 1, . . .m− 1 (2.8.4)

where m is the number of such eigenvalues.

If P is a Markov operator on a finite state space Ω we know that 1 is
always an eigenvalue of P (Davies 2007, p. 361) and that for all eigenvalues
λ of P it will hold that |λ| ≤ 1 (Levin et al. 2008, p. 153) – thus the λ1 in
Equation (2.8.4) is equal to 1 for Markov matrices.

Definition 2.12 (Period of Markov chain, Levin et al. (2008) p. 8). Let
T (x) = {n ≥ 1 : Pn(x, x) > 0} be the set of times where the chain can return
to the state x. The period of the state x is the greatest common divisor of
the set T (x) := gcd(T (x)). If the chain represented by P is irreducible then
T (x) = T (y) ∀x, y ∈ Ω. The chain is aperiodic if all states have period 1 –
otherwise it is periodic. 4

With these definitions in place, let P with entries pij be the transition
matrix for a Markov chain on a finite state space Ω, with stationary distribution
π. If P is irreducible and aperiodic then P is called ergodic, and (Asmussen
2003, Corollary I.3.7 and Theorem I.4.2) then

pnij → πj , n→ ∞ (2.8.5)

for all j; ie Pn → 1π. If λ2 is the second largest eigenvalue of P , λ2 =
max {z ∈ sp(P ) : |z| < 1}; the convergence in Equation (2.8.5) happens on the
order of (Asmussen 2003, Proposition I.6.2)

pnij = πj +O(nkλn2 ), n→ ∞ (2.8.6)

for some constant k.
Thus, from Equation (2.8.6), we can expect λ2 to encode valuable infor-

mation about the system dynamics if the transition matrices Pij(τ) represent
aperiodic and irreducible Markov chains. This also provides a convenient check
of our methodology – we will check numerically if irreducibility and aperiodicity
are fulfilled in the obtained matrices (eg. Section 2.10.1).

2.9 Estimating Errors on Markov Matrices

To estimate errors on matrices obtained with the methods in Section 2.8 we use
the following bootstrap method also employed in Chekroun et al. (2014) and
Tantet et al. (2015a). I find that this relatively simple and intuitive approach is
too easily obscured by matrix notation so I will instead use a simple example.

Suppose the ith row of the unnormalized transition matrix P̃ on a state
space partitioned into boxes {Bi}10i=1 is given by:

P̃i,· = (2, 0, 3, 0, 0, 4, 0, 1, 0, 0). (2.9.1)

In this case we have recorded 2 transitions from state i to state 1, 0 transitions
from state i to state 2 and so on. We normalize the row to obtain observed
transition probabilities:

Pi,· = (0.2, 0, 0.3, 0, 0, 0.4, 0, 0.1, 0, 0) (2.9.2)
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Since
∑

j P̃ij = 10 we now draw 10 times from a multinomial distribution
with probabilities corresponding to Equation (2.9.2). The result will be the
surrogate row s̃i,· and might look like

s̃i,· = (3, 0, 2, 0, 0, 5, 0, 0, 0, 0). (2.9.3)

This process is repeated for every row, and the resulting matrix normalized
so that a surrogate transition matrix Psg is formed. We form a total of Nsg

surrogate matrices (Nsg is specified in Chapters 4 and 5 when relevant) and
calculate the spectral gap γi for each surrogate matrix. The set {γi} of spectral
gaps is then ordered. Since this bootstrap method introduces a bias towards
lower mixing rates (Tantet et al. 2015a) the mean of the set {γi} is adjusted
so that it is centered on the original spectral gap γ. For a confidence level
β the lower and upper bounds will be taken as the (β/2)th and (1 − β/2)th
percentiles on the set of adjusted spectral gaps, respectively.

2.10 The Transfer Operator and Noise

Gaspard et al. (1995) consider two one-dimensional vector fields,

ẋ = px (2.10.1)

and
ẋ = px− x3, (2.10.2)

the latter undergoing a pitchfork bifurcation (Chapter 3). Gaspard et al. (1995)
find that far from the bifurcation the spectrum of the Liouville operator is
discrete, whereas the spectrum is continuous close the bifurcation. As described
in Section 2.5.3, the evolution of a density is described by the Liouville equation
which we repeat here for convenience; if the vector field

F (x) = ẋ (2.10.3)

is one-dimensional, the Liouville equation reads

∂

∂t
ρ(x, t) = − ∂

∂x
[F (x)ρ(x, t)] . (2.10.4)

If we add Gaussian white noise to the process Equation (2.10.3) as in Sec-
tion 2.3.2

dXt = F (x)dt+ σdWt (2.10.5)

the system is instead governed by the Fokker-Planck equation (Dijkstra 2013)

∂

∂t
ρ(x, t) = − ∂

∂x
[F (x)ρ(x, t)] +

1

2

∂2

∂x2
[
σ2ρ(x, t)

]
. (2.10.6)

For both systems considered in Gaspard et al. (1995) (that is, Equations (2.10.1)
and (2.10.2)) the Fokker-Planck (FP) spectrum is calculated and found to con-
verge to the Liouville spectrum in the noiseless limit.

Blank and Keller (1998) consider maps and show that in some cases the
PF spectrum can be unstable in the presence of noise. First it is important to
note that for the noise they consider, any limit point of eigenvalues of the PF
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operator corresponding to the system with noise that lies outside the essential
spectral radius correspond to the eigenvalues of the unperturbed PF operator
(Blank and Keller 1998, Theorem 1.1). Blank and Keller (1998) consider exam-
ples of maps where either Ulam’s approximation or the noise may lead to poor
results. However, as Froyland (2008) points out “there are no isolated eigenval-
ues for Ulam’s method to approximate” in the cases mentioned in Blank and
Keller (1998).

2.10.1 Examples of Spectrums: Well-Known Dynamical
Systems With Noise
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Figure 2.4 | Eigenvalues of transition matrix for the Lorenz (1963)
system. Trajectory integrated without noise (crosses and darkest blue), and
with random noise ∼ N (0, η2∆t) added at every time step. The 15 eigenvalues
with largest absolute magnitude are shown, numbered in decreasing order. See
Table 2.1 for parameters used.

Here we illustrate the effect of noise on the spectrum of Lτ – as approxi-
mated by the eigenvalues of Pij(τ) – by investigating the van der Pol (1927) os-
cillator and the Lorenz (1963) system, both classical examples of nonlinear sys-
tems (eg. Strogatz (1994), whence we obtain Equations (2.10.7) and (2.10.8)).
We write the van der Pol oscillator in (x, y)-coordinates as

ẋ = y,

ẏ = −(x2 − 1)y,
(2.10.7)
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Figure 2.5 | Eigenvalues of transition matrix for the van der Pol
(1927) oscillator. Interpretation as Figure 2.4. Note that considerably more
noise is applied than for the Lorenz system. It is remarkable that all calculated
eigenvalues are situated so close to the unit circle.

and use the “standard” parameters in the Lorenz system:

ẋ = 10(y − x),

ẏ = x(28− z)− y,

ż = xy − (8/3)z.

(2.10.8)

Figures 2.4 and 2.5 (inspired by Ostruszka and Zyczkowski (2001)) show
the 15 eigenvalues with largest absolute magnitude of Pij(τ) for the Lorenz
system and the Van der Pol oscillator, respectively.

To make these figures, we integrate the systems with the Runge-Kutta (RK)
method (Weber and Arfken 2003, p. 466) with and without noise, the magni-
tude of which is denoted by the (discrete) color bars; at each time step white
noise with standard deviation η

√
dt is added. For the van der Pol system,

we calculate Pij(τ) directly from the (x, y)-coordinates. For the Lorenz sys-
tem we apply principal component analysis (PCA) (using the Python library
Scikit-learn; Pedregosa et al. (2011)) and project the (x, y, z)-coordinates on
to (p1, p2) from which Pij(τ) is calculated; the PCA projection thus constitutes
the observation of the system, h : Ω → Y (Chekroun et al. 2014).

In each case, the two dimensional (reduced for the Lorenz system) state
space is partitioned into 50 × 50 boxes, spanning minimum and maximum
values. Boxes never visited by the trajectories are discarded before calculating
Pij(τ).
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We note that – in both cases – the eigenvalues of the systems integrated with
and without noise coincide very well. This is the most important finding. It is
remarkable that the eigenvalues of Pij(τ) calculated for the van der Pol system
are all very close to the unit circle (|λi| > 0.98, i = 1 . . . 15). For both the van
der Pol and Lorenz systems, all transition matrices represented irreducible and
aperiodic Markov chains4.

Lorenz (1963) van der Pol (1927)
x0 (1, 1, 1) (0.5, 0)
∆t 0.01 0.01
ts 0 0
t0 500 500
t1 2500 2500
(Nr ×Nc) (50× 50) (50× 50)
τ 1 1

Table 2.1 | Parameters used for Figures 2.4 and 2.5. Both systems
are integrated from ts to t1 with at time step of ∆t using the standard RK
method (Weber and Arfken 2003), adding noise at every time step (see text).
The initial condition is x0; in order to discard transients we use data from t0 to
t1 for calculating Pij(τ). Nr and Nc denote the number of rows and columns,
respectively, used for partitioning the 2-dimensional state spaces (reduced state
space for the Lorenz system).

2.11 How to Apply the Transfer Operator

Here we provide a summary of Sections 2.5 to 2.10.

1. We observe a dynamical system S : Ω → Ω operating on a space Ω ⊂ Rn

through a continuous observable h : Ω → Y where Y ⊂ Rm, m < n
(Section 2.8.1).

2. We partition the reduced state space Y into “boxes” {Bi}Ni=1 and calcu-
late the observed transition probabilities

Pij(τ) =
# {x(t) ∈ Bi ∧ x(t+ τ) ∈ Bj}

# {x(t) ∈ Bi}
(2.11.1)

as an approximation of the true transition probabilities Pij(τ) (Equa-
tion (2.8.1)).

3. The transition probabilities on the reduced state space Y are connected
to the transition probabilities on the full state space Ω by the observable
h : Ω → Y (Chekroun et al. 2014) (Equation (2.8.3)).

4. The transition probabilities Pij(τ) are used as an approximation of the
transfer operator Lτ (Section 2.8).

4 We use the functions is_aperiodic() and is_strongly_connected() from the Python
package NetworkX (Hagberg et al. (2008) – see also Appendix B) to determine this numeri-
cally.
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5. By assuming the chaotic hypothesis we regard the dynamical system S
as an Anosov system for the purpose of our calculations (Section 2.6.4).

6. For Anosov systems, Butterley and Liverani (2007) show that the semi-
group of transfer operators {Lt}t≥0 is strongly continuous (Section 2.6.4).

7. For a strongly continuous semigroup the spectral mapping theorem holds

Pσ(Lτ ) \ {0} = ePσ(τL̂) (2.11.2)

where Pσ(·) denotes the point spectrum of an operator (Section 2.6.3).

8. The spectral mapping theorem allows us – for strongly continuous semi-
groups – to relate the eigenvalues of the generator L̂ to the eigenvalues
of the transfer operator Lτ (Section 2.6.3). This relation in turn yields
information regarding the decay of correlations of two observables f and
g (Section 2.7).

9. As the observable h : Ω → Y introduces memory effects (Section 2.8.2),
we calculate the spectral gap γ = 1− |λ2| for a range of values of the lag
parameter τ .

10. By the arguments presented in Section 2.10 we expect that the spectral
gap calculated from noisy data is “close to” the real spectral gap.





3 Bifurcations and Tipping Points

In this chapter we review a give and overview of some commonly considered
one-parameter bifurcations. In Section 3.1 we recall what can be learned from
the Jacobian of a dynamical system in the neighborhood of a fixed point. Sec-
tion 3.2 list four bifurcations – the saddle-node, Hopf, pitchfork and transcrit-
ical bifurcations – that can give rise to critical transitions. We emphasize the
saddle-node as this is relevant to the discussion in Section 3.3 and mention the
remaining bifurcations for completeness. We analyze the double well model in
Section 3.3 and show how time series generated with this model exhibit EWS
in the case where transitions are caused by a saddle-node bifurcation resulting
from slow parameter variations.

3.1 Linear Stability Analysis

Consider a smooth vector field f : Rn → Rn

ẋ = f(x) (3.1.1)

that has a fixed point x∗ such that

f(x∗) = 0. (3.1.2)

To examine the stability of f(x) we expand f around x∗ with the the Jacobian
J(x∗) [

∂fi
∂xj

∣∣∣∣
x∗

]
i,j=1,...n

= J(x∗). (3.1.3)

Since dx∗/dt = 0 we obtain the linearized system for small y as

dy

dt
= f(x∗ + y) ≈ J(x∗)y; (3.1.4)

when setting y0 = y(t0 = 0), the linearized solution to Equation (3.1.4) is
(Dijkstra 2013)

y(t) ≈ etJ(x
∗)y0. (3.1.5)

Thus the eigenvalues of J(x∗) determine the stability of solutions to Equa-
tion (3.1.1) close to x∗. Specifically, let n−, n0, n+ the number of eigenvalues
of J(x∗) with negative, zero and positive real part, respectively. If n0 = 0 the
fixed point is hyperbolic; for a hyperbolic fixed point, if n−n+ 6= 0 the fixed
point is a hyperbolic saddle; if n0 = n+ = 0 then the fixed point is stable
(Kuznetsov 1998, Theorem 1.5 and Definition 2.7).

41



42 Chapter 3. Bifurcations and Tipping Points

3.2 Some One-Parameter Bifurcations

In this section we consider one-dimensional vector fields that depend on a
parameter p so that ẋ = f(x; p). We will examine four different bifurcations,
each represented by their normal form, in the sense that any system exhibiting
the same type of bifurcation at an equilibrium locally “looks like” the normal
form in the neighborhood of that equilibrium.

In more detail, if a system undergoes one of these bifurcations at an equi-
librium, then the state space and parameter space of that system are related to
the state and parameter spaces of the normal form system by two simultaneous
homeomorphisms, where the homomorphism of the parameter space preserves
the direction of time; this is termed topological equivalence. We will not need
greater detail in this thesis and refer the reader to Kuznetsov (1998, especially
Section 2.4).

Kuehn (2011) examines one-parameter bifurcations and shows that the fol-
lowing give rise critical transitions:

• The saddle-node,

• The subcritical Hopf,

• The subcritical pitchfork, and

• The transcritical.

We focus our attention on the saddle-node and briefly examine the the remain-
ing bifurcations.

3.2.1 The Saddle-Node Bifurcation
The saddle-node bifurcation has the normal form (Strogatz 1994)

ẋ = p+ x2. (3.2.1)

We apply the results from Section 3.1. The vector field f(x) in Equation (3.2.1)
is

f(x; p) = ẋ = p+ x2 (3.2.2)

so a fixed point x∗ is given by

f(x∗; p) = 0 ⇒ x∗± = ±
√
−p. (3.2.3)

We require the parameter p to be real so there are only fixed points for p ≤ 0.
The Jacobian of Equation (3.2.2) evaluated at a fixed point x∗ is

∂f

∂x

∣∣∣∣
x∗

= 2x∗ (3.2.4)

and so x∗− is stable while x∗+ is unstable. Next we examine what happens
for a small perturbation y around the stable fixed point x∗−. According to
Equation (3.1.5)

y(t) ≈ y(0)e2tx
∗
− = y(0)e−2t

√
−p. (3.2.5)
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As the parameter p approaches 0, perturbations decay progressively slower –
this is the phenomenon of critical slowing down1 as defined in Nes and Scheffer
(2007) and Scheffer et al. (2009) and mentioned in Chapter 1

When p approaches 0 from below, x∗− and x∗+ collide in a saddle-node bi-
furcation leaving a half stable fixed point at the origin for p = 0 (Figure 3.1).
When p increases further, the fixed point disappears. When ∂f/∂x|x∗= 0,
which happens when p = 0 and thus x∗ = 0, in general the linearization does
not tell us anything about the stability of the fixed point (Strogatz 1994). The
phase portrait of the saddle-node is shown in Figure 3.1.

In Figure 3.3 we show the bifurcation diagram of the saddle-node bifur-
cation as well as other bifurcations that give rise to critical transitions. This
figure, along with Figure 3.4 shows the parameter value on the x-axis and the
corresponding values of x∗ (or r∗ for the Hopf bifurcation) on the y-axis. Stable
fixed points are shown as full lines while unstable fixed points are shown as
dotted lines.

x

ẋ

p < 0

x

ẋ

p = 0

x

ẋ

p > 0

Figure 3.1 | Phase portrait of the saddle-node bifurcation. For p < 0
there are are two fixed points, one stable (filled) and one unstable (blank).
At p = 0 the fixed points collide in a saddle-node bifurcation, leaving a half
stable fixed point at the origin; this disappears for p > 0. Compare with the
bifurcation diagram in Figure 3.3a.

1 We note that the definition is different in Strogatz (1994, p. 40) where critical slowing
down is defined as algebraic rather than exponential decay.
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3.2.2 The Hopf Bifurcation

x

y

p < 0

x

y

p = 0

x

y

p > 0

Figure 3.2 | Sample trajectories of the subcritical Hopf bifurcation.
For p < 0 the origin is stable and attracts trajectories with r <

√
−p, and there

is an unstable limit cycle with r =
√
−p – the green curve is started here. The

unstable limit cycle collides with the origin at p = 0, and r = 0 becomes an
unstable fixed point – compare with the bifurcation diagram in Figure 3.3b.

The Hopf bifurcation has the normal form (Kuznetsov 1998, Theorem 3.4)(
ẋ1
ẋ2

)
=

(
p −1
1 p

)(
x1
x2

)
±
(
x21 + x22

)(x1
x2

)
, (3.2.6)

where a plus sign in the last term gives rise to a subcritical Hopf and a mi-
nus sign a supercritical Hopf (Kuznetsov 2006). Equation (3.2.6) is easier to
interpret in polar coordinates. Using a coordinate transformation from Perko
(2001, Section 2.10) we arrive at (for r > 0):

ṙ = pr ± r3

θ̇ = 1
(3.2.7)

where the plus and minus signs still represent the sub- and supercritical Hopf
bifurcations, respectively.

3.2.3 The Transcritical and Pitchfork Bifurcations
Finally we mention the transcritical bifurcation

ẋ = px− x2 (3.2.8)

and the pitchfork bifurcation

ẋ = px+ x3 (subcritical) (3.2.9)
ẋ = px− x3 (supercritical). (3.2.10)

Bifurcation diagrams for these are shown in Figures 3.3 and 3.4.
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(d) Transcritical.

Figure 3.3 | Bifurcation diagrams for some critical transitions. Full
lines represent stable fixed points, dotted lines unstable fixed points. These
bifurcations give rise to critical transitions (Kuehn 2011). Note that the Hopf
bifurcation in polar coordinates in b) is analogous to the pitchfork bifurcation
in c). For the transcritical bifurcation in d), note that ẋ < 0 for p > 0 and
x < 0, so trajectories initiated here will escape.

−2 −1 0 1 2

p

−2

−1

0

1

2

r∗

(a) Supercritical Hopf.
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(b) Supercritical pitchfork.

Figure 3.4 | Bifurcation diagrams for some non-critical transitions.
Interpretation as Figure 3.3. When comparing these bifurcation diagrams with
those shown in Figure 3.3 it is intuitively clear that the supercritical bifurca-
tions – despite their names – do not give rise to critical transitions, as there
are close stable fixed points on both sides of p = 0.
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3.3 Bifurcations and Noise – Early Warning Signals

In this section we will analyze the double-well potential model presented in
Section 1.3.1. In particular we show the increase in variance and lag-1 au-
tocorrelation of a time series obtained from the model when it undergoes a
bifurcation. The analysis presented here follows Ditlevsen and Johnsen (2010),
and we add to their analysis by quantifying some of their results.

−2 −1 0 1 2
x

−1

0

1

2

U
(x

)

p = 0

−2 −1 0 1 2
x

p = pc+

−2 −1 0 1 2
x

p > pc+

Figure 3.5 | Sketch of the climate pseudo-potential. A sketch of the
climate pseudo-potential, Equation (3.3.1) for varying values of p where the
system state is represented by the red disc initially positioned in x∗−. The
value of the bifurcation parameter p is increasing panel-wise from left to right.
In the leftmost panel there are two fixed points x∗− and x∗+ as well as the
unstable fixed point x∗u (see text). As the value of p is increased x∗− and x∗u
collide and annihilate leaving only the distant attractor x∗+. This chain of
events constitutes a critical transition (Kuehn 2011).

The basic feature of the double-well potential model is a climate pseudo-
potential of the form

U(x; p) =
x4

4
− x2

2
− px; (3.3.1)

Equation (3.3.1) gives rise to an SDE

dXt = −∂xU(x; p)dt+ σdWt (3.3.2)

which is known as a Langevin equation (Gardiner 2009, p. 77). Equation (3.3.2)
models a particle moving in a potential subject to random forcing.

The term “double-well” is immediately made clear when plotting Equa-
tion (3.3.1) as is done in Figure 3.5. The one-dimensional vector field generated
by Equations (3.3.1) and (3.3.2) is

−∂xU(x; p) = −x3 + x+ p. (3.3.3)

For varying values of p Equation (3.3.3) may have up to three fixed points as
is visualized in the bifurcation diagram shown in Figure 3.6. Here, as previously,
full lines indicate a stable fixed point and dotted lines an unstable one.

Denote – if they exist – x∗− the stable fixed point for negative x-values, x∗+
the stable fixed point for positive x-values and x∗u the remaining unstable fixed
point. For p = 0 in Equation (3.3.3) the fixed points are at (x∗−, x

∗
u, x

∗
+) =
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Figure 3.6 | Time series from bifurcating system. Bifurcation diagram
of the vector field generated by the double-well potential via Equation (3.3.3)
– stable fixed points correspond to the bottom(s) of the potential well in Fig-
ure 3.5. A full line denotes a stable fixed point x∗(p), a dashed line an unstable
fixed point. The p-coordinates of the points marked LP1 and LP2 are at
pc± = ±2

√
3/9, respectively. Bifurcation diagram made by numerical contin-

uation with PyDSTool (Clewley et al. 2007; Clewley 2012). The blue curve
is a time series with varying p generated by numerically integrating Equa-
tion (3.3.2) with the EM method.

(−1, 0, 1). The model potentially undergoes two bifurcations at critical values
of the parameter p, pc± = ±2

√
3/9 (Ditlevsen and Johnsen 2010).

When decreasing the value of p from 0 to pc− = −2
√
3/9 we observe from

Figure 3.6 that x∗+ and x∗u collide and annihilate, leaving only x∗− – the opposite
situation happens when p is increase from 0 to pc+ where x∗− and x∗u collide and
annihilate. Both cases are instances of a saddle-node bifurcation (Berglund
and Gentz 2006). Note that with the chosen notation, x∗− disappears when p
reaches pc+ from below and vice versa.

It was claimed in Section 1.3.1 that variance and lag-1 autocorrelation in-
crease before a bifurcation. To see how this is the case for the double-well
system we consider a particle situated at the bottom of the potential well sub-
jected to random forcing as in Equation (3.3.2). For small fluctuations we
can regard the potential as parabolic (Ditlevsen and Johnsen 2010), namely
by performing a Taylor expansion of Equation (3.3.3) and only keeping terms
up to order x2. Without loss of generality we can consider the case where
the potential minimum is located at x = 0. Following Ditlevsen and Johnsen
(2010) we will denote the parabolic potential approximation around a potential
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Figure 3.7 | Theoretical bifurcation statistics. a) Drift parameter, b)
variance and c) autocorrelation for the quadratic potential approximation
(Equation (3.3.5)) of the Langevin equation for the double-well potential model
(Equation (3.3.1)). Results are obtained by a numerical Taylor expansion of
U(x; p) around x∗−(p) followed by application of Equations (3.3.6) and (3.3.7)
with σ2 = 1 and τ = 1.

minimum as Up(x) so that

Up(x) = αp · x2/2 (3.3.4)

and such that the corresponding Langevin Equation (3.3.2) becomes

dXt = −∂xUp(x)dt+ σdWt

= −αpXtdt+ σdWt.
(3.3.5)

In Example 2.3 we calculated the variance and autocorrelation of the Ornstein-
Uhlenbeck process and obtained Equations (2.3.21) and (2.3.27). These are
repeated here for the readers convenience:

Var [Xt] ≈
σ2

2α
, (3.3.6)

and
C(τ) ≈ e−ατ . (3.3.7)

When the bottom of the potential well “flattens” as happens before a bi-
furcation (see Figure 3.5) the value of αp will decrease from a positive value
towards zero. For fixed values of σ and τ , respectively, in Equations (3.3.6)
and (3.3.7) we see that the potential flattening will cause an increase in variance
and autocorrelation.

This statement is confirmed in Figure 3.7 where we show results of numeri-
cally performing a Taylor expansion of Up(x) around x∗−(p) for p ∈

[
−2, pc+ = 2

√
3/9
]
.

We use σ2 = 1 and τ = 1 in Equations (3.3.6) and (3.3.7). Figure 3.7 a) shows
the drift parameter αp as pc+ is approached, clearly capturing the flattening of
the potential minimum. Panels b) and c) show the variance and autocorrela-
tion, respectively, and it is clear that both values increase.

We note that ∼ 0.33% of the values of αp in Figure 3.7 and the corre-
sponding values of autocorrelation and variance closest to pc+ were discarded
on numerical grounds.



4 A Conceptual Model of
Dansgaard-Oeschger Events

In this chapter we analyze time series generated with the double well model
by calculating the spectral gap γ in sliding windows, yielding a series γ(t). We
plot γ(t) in the right endpoint of the window such that for a window of size
Ws, γ(t) is calculated from data in the interval (t−Ws, t).

In addition to the 1-dimensional model presented in Section 3.3, we will
make a simple extension to two dimensions in Section 4.1. This is done to
show that transfer operator (TO) methods can be used on time series with two
variables. In Section 4.2 we compare the results of computing γ(t) with the
classical early warning indicators, variance and lag-1 autocorrelation.

When approximating Lτ by Markov matrices Pij(τ) there are several pa-
rameters that have to be chosen (Table 4.3). We end this chapter by varying
these parameters and analyzing the results in Section 4.3.

4.1 1D and 2D Double Well Models

The one-dimensional double well (DW) model was introduced in Section 3.3
as Equations (3.3.1) and (3.3.2) that are repeated here for convenience. The
climate pseudo-potential is

U(x; p(t)) =
x4

4
− x2

2
− p(t)x; (4.1.1)

and by using −∂xU(x; p(t)) as the drift term in an SDE

dXt =
[
−X3

t +Xt + p(t)
]
dt+ σdWt. (4.1.2)

I will refer to Equation (4.1.2) as the “1D double well”. The extension to
two dimensions – the 2D double well – is constructed by adding a parabolic
potential in the y-direction:

U(x, y; p(t)) =
x4

4
− x2

2
− p(t)x+

y2

2
. (4.1.3)

Taking −∂xU(x, y; p(t)) and −∂yU(x, y; p(t)) as drift terms in an SDE as above
leads to the system

dXt = −
[
−X3

t +Xt + p(t)
]
dt+ σXdWt,

dYt = −Ytdt+ σY dWt.
(4.1.4)
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Note that the bifurcation parameter p only enters in the equation for dXt in
Equation (4.1.4).

The parameters we use for integrating Equation (4.1.2) are shown in Ta-
ble 4.1, and parameters used for integrating Equation (4.1.4) are shown in
Table 4.2. For the 1-dimensional model, the noise level σ = 0.1 for the bifurca-
tion induced transition and σ = 0.25 for the stochastic transition are the same
as in Ditlevsen and Johnsen (2010). The noise level was increased slightly for
the 2-dimensional model undergoing a stochastic transition in order to observe
transitions in a reasonable timeframe.

Both systems are integrated with the EM method and down-sampled to
∆t = 0.1, a step size comparable with the time step size in the ice core data
we analyze in Chapter 5. The time series are then re-arranged so that the
transition happens at t = 1500. We perform a linear detrending of the series in
the interval 0 ≤ t ≤ 1500 and calculate variance, lag-1 autocorrelation and the
spectral gap γ(t) for the detrended series up to time t = 1495. We mention that
the Python package statsmodels is used for calculating the autocorrelation
here and in the following (see Appendix B).

Bifurcation Stochastic Jump

p(t) t · (2
√
3/9)/2000 0

σ 0.1 0.25
x0 −1 −1
EM time step h 0.001 0.001
Sampling time ∆t 0.1∗) 0.1∗)

Table 4.1 | 1D double well simulation parameters. The simulations are
shown in Figure 4.1 a) (bifurcation) and b) (stochastic jump). The time series
are re-arranged so that the transitions happen at t = 1500. ∗) Sampling time
∆t = 0.1 unless otherwise noted (see Figure 4.8).

4.2 Analysis of Data From the Double Well Models

4.2.1 1D Double Well Model

In Figure 4.1 a) and b) we show time series from the 1D double well model. In
panel a) the model undergoes a bifurcation induced transition while panel b)
shows stochastic transitions. There are 25 individual time series in each case.

The clear increases in both variance and lag-1 autocorrelation evident in
panels c) and e) are absent in panels d) and f) as expected. The individual
series are shown in grey while the ensemble means are in red.

Figure 4.1 also shows that it is unwise to trust an early warning indicator
based on a single time series x(t). One rebellious realization seen in panel a)
(purple) causes a large increase in both variance and autocorrelation.

In Figure 4.2 the spectral gap γ(t) is computed for the same time series
as shown in Figure 4.1 a) and b). The increase in lag-1 autocorrelation seen
in Figure 4.1 c) corresponds to the decrease in γ(t) seen in the left panel of
Figure 4.2; a decrease in γ(t) is expected to be accompanied by an increase in
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Bifurcation Stochastic Jump

p(t) t · (2
√
3/9)/2200 0

σX 0.1 0.3
σY 0.1 0.3
X0 −1 −1
Y0 0 0
EM time step h 0.001 0.001
Sampling time ∆t 0.1 0.1

Table 4.2 | 2D double well simulation parameters. These parameters
are used for integrating Equation (4.1.4), and the simulations are shown in
Figure 4.4 a) for the bifurcation case and b) for the stochastic case. Again
we re-arrange the data so the transitions happen at t = 1500. Note that the
noise is slightly increased in the stochastic jump case compared to the one-
dimensional case (σX = σY = 0.3 here vs σ = 0.25 in Table 4.1). A slightly
longer time series was generated in the two-dimensional case (tbif = 2200 here
vs. tbif = 2000 in Table 4.1) prior to re-arranging the time series, since the
spread in “jumping time” was larger in the two-dimensional case.

Standard Values
Window size Ws 200
Grid size, 1D 50 rows
Grid size, 2D 15× 15 (rows× columns)
Lag time τ in Lτ 1

Table 4.3 | Standard spectral gap calculation parameters. We show the
results of varying these parameters in the one-dimensional case in Section 4.3.

autocorrelation (Chekroun et al. 2014). This decrease in γ(t) is absent for the
time series resulting from a stochastic transition.

Note that there are several sudden drops in the values of γ(t) in Figure 4.2.
This happens when the transition matrices Pij(τ) computed in each window
do not represent irreducible Markov chains, as shown in Figure 4.3. In this
figure we show all the series γ(t) in Figure 4.2 where γ(t) drops to zero.

We determine, for the transition matrix in each window, whether it is ir-
reducible or not. This is done using the function is_strongly_connected()1

from the Python library NetworkX (Hagberg et al. (2008) – see also see Ap-
pendix B).

The occurrence of reducible Markov chains requires a careful application
of the TO methods. When summarizing the results concerning mixing rate
of Markov matrices in Section 2.8.3 we assumed that the Markov matrix in
question was irreducible. For this reason we check how many of the transition
matrices in each window used to compute γ(t) satisfy this assumption – the

1 When using this function, the transition matrix is considered as a directed graph. A
strongly connected graph then corresponds to a transition matrix representing an irreducible
Markov chain as follows: for an irreducible Markov chain (strongly connected graph) it is
possible to get from any state (node) to any other state (node).
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Figure 4.1 | Time series, observed variance and lag-1 autocorrelation
for the 1D double well model. 25 time series x(t) generated by integrating
Equation (4.1.2) with parameters as described in Table 4.1 for the case of a)
a bifurcation and b) a stochastic transition. c), e): rolling variance and lag-1
autocorrelation (grey) and mean values (red) calculated from the time series in
a) after linear detrending. The window size is 200 time units, corresponding
to 2000 data points. The values are calculated up to t = 1495, just before
the transition. Both the variance and lag-1 AC are seen to increase when ap-
proaching the bifurcation. d), f): as c) and e) but for the stochastic transition.
There is no increase in either indicator before the transition.

results are shown in Table 4.4.

Data # Points (γ) % Irreducible % Aperiodic
Figure 4.2, bifurcation 32525 98.4% 99.1%
Figure 4.2, stochastic 32525 98.0% 98.9%
Figure 4.5, bifurcation 13010 93.9% 96.2%
Figure 4.5, stochastic 13010 87.9% 93.5%

Table 4.4 | Percentage of transition matrices representing irreducible
/ aperiodic Markov chains. Values are shown for the resulting transition
matrices in each sliding window where γ(t) is shown in Figures 4.2 and 4.5.
Aperiodic transition matrices were also identified using NetworkX, with the
function is_aperiodic() (Hagberg et al. (2008) and Appendix B).
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Figure 4.2 | Spectral gap for the 1D double well model. The parameters
for calculating γ(t) are as in Table 4.3. Grey curves are individual γ(t) series,
red curves are ensemble means. Left: spectral gap γ(t) calculated for the data
in Figure 4.1 a) (bifurcation). There is a clear decrease in γ(t) corresponding
to a slower decay of the ACF. γ(t) is calculated up to t = 1495 (vertical lines).
Right: as the left figure but for time series from the stochastic transitions
in Figure 4.1 b). Note the sudden drops in γ(t) seen in both series. Since
γ = 1− |λ2|, these drops correspond to the appearance (and disappearance) of
a subdominant eigenvalue with magnitude close to unity.
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Figure 4.3 | Fluctuations in calculated values of the spectral gap.
The grey lines are the subset of the curves shown in Figure 4.2 where the
values of γ(t) suddenly drops. This happens because the transition matrices
Pij(τ) calculated to approximate Lτ and in turn γ(t) at these instances are
reducible; they may thus have more than one unity eigenvalue. The red dots
show where reducible transition matrices occur. For all the values of γ(t) shown
in Figure 4.2 (25 × 1301 = 32525 values, both for the stochastic case and the
bifurcation case) this happens less than 2% of the time (Table 4.4).
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4.2.2 2D Double Well Model
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Figure 4.4 | Time series from the 2D double well model. Time series
x(t) and y(t) generated by integrating Equation (4.1.4) with the EM method
using the parameters in Table 4.1. a), c): 10 realizations of the model under-
going a bifurcation. b), d): same as a) and c) but for the model exhibiting a
stochastic jump. Note that x(t) and y(t) are independent so the bifurcations
evident in x(t) in a) are not seen in y(t) in c).

Figure 4.4 show data generated with the 2D double well model (Equa-
tion (4.1.3)) using the parameters in Table 4.2. In this case there are 10 indi-
vidual time series of (x(t), y(t)) in both the stochastic and bifurcation cases.
Rolling variance, lag-1 autocorrelation and spectral gap obtained from the time
series are shown in Figure 4.5. Variance and autocorrelation are calculated sep-
arately for x(t) and y(t) while both time series were used simultaneously for
computing γ(t). There is a clear decrease in γ(t) before the approach to the
bifurcation in Figure 4.5 e) while there is no increase in the stochastic case.

The results in Figure 4.5 indicate that computing the spectral gap is useful
to distinguish between the two transition types, also in the case of two variables.

4.2.3 Decorrelation time and spectral gap for the
1-dimensional double well

In Section 2.7.2 we derived an approximate relation between the spectral gap
γ and the decorrelation time τC ; we repeat that result here for convenience:

τC ≈ − τ

ln(1− γ)
. (4.2.1)

It is illustrative to compare this to the decorrelation time obtained by more
familiar means. While it seems most natural to obtain τC from the ACF and
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Figure 4.5 | Variance, lag-1 AC and spectral gap for the 2D double-
well model. All values are calculated up to t = 1495 with a window size of 200
time units corresponding to 2000 data points. a), b) variance and c), d) lag-1
AC for the bifurcation time series (left column) and the stochastic time series
(right column). Variance and lag-1 AC are calculated separately for x(t) (blue)
and y(t) (green). The are only early warning signals in the series for x(t) in a)
and c). e): the spectral gap for the bifurcation series is seen to decrease before
the transition. f): there is no early warning before the stochastic transition.

eg. finding the lag k where the ACF crosses 1/e, this has proven numerically
unreliable. Instead we fit an AR(1)-model

Xk = φXk−1 + εk (4.2.2)

to the data and estimate τC from this. Equation (4.2.2) has ACF for k ≥ 0
(Box et al. 2008)

R(k) = φk = ek lnφ, (4.2.3)

giving a decorrelation time τC = −1/ ln(φ). The results are shown in Figure 4.6;
full lines show mean τC for 100 time series using the two different methods,
and the shaded regions show ± one standard deviation. The agreement is
reasonable, although the τC values computed from the spectral gap does have
larger variability.
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Figure 4.6 | Decorrelation time from spectral gap and AR(1) model.
The red curve denotes the decorrelation time calculated by fitting an AR(1)-
model in windows of 200 time units to 100 separate time series from the 1D
double well undergoing a bifurcation. Shaded regions denote ± one standard
deviation. The blue curve is the result of computing the spectral gap and using
Equation (4.2.1). Before performing the calculation, values of γ(t) < 0.01 (less
than 0.1% of 32525 values) were dropped for numerical reasons. In this case
the time series were down-sampled to ∆t = 1 to use identical data for both
methods. It is clear that the variability is larger for the τC estimated by the
TO method.
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4.3 Parameter Variation for the Spectral Gap
Computations

Figures 4.7 to 4.10 all concern the data presented in Figure 4.1 a) and b). We
will vary the parameters for calculating γ(t) presented in Table 4.3 one by one
and investigate the results.
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Figure 4.7 | Mean spectral gap γ(t) for 25 1D double well time series
with varying grid size Results of varying the grid size in the calculation of
γ(t) for the data shown in Figure 4.1 a) and b). Only the mean values of γ(t)
are shown for clarity. It is seen that varying the grid size does not appreciably
change the results presented in Figure 4.2.
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Figure 4.8 | Mean spectral gap γ(t) for 25 1D double well time series
with varying data ∆t. The original data is on a time scale with ∆t = 0.1
and is here down sampled to ∆t = 0.5 and ∆t = 1, respectively. For larger
∆t the computed values of γ(t) are lower, corresponding to quicker decay of
the ACF. We interpret this as due to a larger amount of small scale variation
being resolved for a finer temporal resolution. Comparing the two figures, it is
clear that we still see the approach to the transition in the bifurcating case on
the left.
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Figure 4.9 | Mean spectral gap γ(t) for 25 1D double well time series
with varying window size. For the rather large variations in window size
presented here the results are practically similar, indicating that the choice of
window size is not likely to have a large influence on the results.
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Figure 4.10 | Mean spectral gap γ(t) for 25 1D double well time series
with varying lag τ . A much larger effect on the spectral gap computations
are seen in the choice of the lag τ . This is expected from the discussion in
Section 2.8.2, as a longer lag τ disregards the fast fluctuations in the data.
Most importantly, the fact that the general structure is seen for several values
of τ is encouraging.





5 Ice Core Data Analysis

We begin this chapter by summarizing the interpretation of the three cli-
mate proxies [Ca2+], [Na+] and [NH+

4 ], denoting the concentration of calcium,
sodium and ammonium ions in the ice core, respectively. As variations in δ18O
led to the discovery of the DO events, this climate proxy is also introduced.
We will however not use this variable in the following time series analysis since
it has a significantly lower temporal resolution.

In Section 5.2 we introduce a mapping from ice core depth to age. Creating
a time scale for the data will consist of two steps. First we map ice core depth
to ice age (and thus data age), and second we interpolate the resulting time
series to equidistant time steps. Next we address the question of which parts
of the time series to analyze. Since we are concerned with possible changes in
dynamics leading up to DO events we naturally focus on these. However, some
parts of the time series contain too many missing values and will have to be
excluded.

In Section 5.3 the results of analyzing the data using the TO framework are
described. On an ensemble level we find no evidence of a change in dynamics
before DO events using this method. The justification for computing the TO
in sliding windows is assessed in Section 5.4 by varying the parameters used
and determining the fraction of the transition matrices representing irreducible
Markov chains. We give a brief discussion of the results in Section 5.5.

5.1 Climate Proxies

[Ca2+], [Na+] and [NH+
4 ] are commonly studied when attempting to recon-

struct past climate from ice core records (eg. Legrand and Mayewski (1997)).
[Ca2+] and [Na+] reflect changes in atmospheric circulation happening under
DO events that affect continental (calcium) and marine (sodium) conditions,
while [NH+

4 ] records changes in vegetation patterns (Legrand and Mayewski
1997).

For each climatic state the ion concentrations have approximately log-
normal distribution (Steffensen et al. 2008; Gfeller et al. 2014; Rasmussen
et al. 2014) and are studied on a natural log scale as in Lenton et al. (2012a).
Data from the Last Glacial period is shown in Figure 5.1.

5.1.1 δ18O

On Earth there are three naturally occurring stable isotopes of oxygen (16O,
17O and 18O) and two naturally occurring stable isotopes of hydrogen (H and

61
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Figure 5.1 | Greenland ice core data from the Last Glacial. This pe-
riod occured from ∼ 11.6 to ∼ 116 ka b2k (IPCC 2013). The data is from
the NGRIP ice core (NGRIP 2004). δ18O (in %�, see Equation (5.1.1)) has
a temporal resolution of 20 years while [Ca2+], [Na+] and [NH+

4 ] have spa-
tial resolutions of 1mm. The latter results in varying temporal resolution (see
Section 5.2.3). Note the log scale for the ion data that shows the (natural) log-
arithm of concentration in parts per billion, weight (ppbw). The vertical lines
mark 22 DO events initially selected for analysis (see Section 5.2.4). †Green-
land Ice Core Chronology 2005, model extended (GICC05modelext) age scale
(Wolff et al. 2010).

D). This results in 9 different isotopologues; the two most common are H16
2 O

(99.73098%) and H18
2 O (0.199978%) (Galewsky et al. 2016).

δ18O is a measure of the content of 18O relative to 16O in water. This has
units of permille (%�) and is defined as (Galewsky et al. 2016)

δ18O =
(18O/16O)sample − (18O/16O)standard

(18O/16O)standard
× 1000. (5.1.1)

The term “standard” in Equation (5.1.1) refers to Vienna standard mean ocean
water (V-SMOW) where (18O/16O)V−SMOW = 2.0052× 10−3 (Galewsky et al.
2016).

Imagine that we follow a parcel of water vapor that has evaporated from
the ocean and travels northward. As the water vapor cools some vapor will
condense. Since the vapor pressure of H16

2 O is slightly higher than that of
H18

2 O this condensation process will favor H18
2 O, leading to isotopic fractiona-

tion; the water vapor reaching the poles will thus be depleted in 18O (Brook
2013). The further north and further up the water travels before it condenses,
the lower δ18O-value – this explains that δ18O in Greenland snow decreases
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with increasing altitude, increasing northern latitude and decreasing surface
temperature (Johnsen et al. 1989).

Dansgaard (1964) showed the relationship between local annual mean sur-
face air temperature and local annual mean δ18O levels, with colder tempera-
tures leading to decreasing values of δ18O. This makes δ18O useful as a proxy
for site temperature at the time of snow deposition (Steffensen et al. 2008;
Vinther and Johnsen 2013; Rasmussen et al. 2014). The relationship between
δ18O and site temperature is approximately linear (Dansgaard 1964; Johnsen
et al. 1989; Brook 2013). In order not to over-simplify the picture we mention
that other processes are involved as well. In the upper part of the ice core there
is diffusion of water vapor causing the δ18O-signal to be smeared out (Vinther
and Johnsen 2013). Also present in Greenland ice cores δ18O is an annual
signal that persists for most of the Holocene, enabling the indentification of
individual years in the ice cores. This signal does not continue into the last
glacial due to low accumulation rates (Vinther and Johnsen 2013).

5.1.2 Calcium
Calcium in Greenland ice cores comes mainly from terrestrial dust (Hutterli
et al. 2007; Rasmussen et al. 2014) with the primary source being Asian deserts
(Steffensen et al. 2008). [Ca2+] measured in Greenland ice is thus a proxy for
atmospheric availability of the dust itself as well as the conditions that move
the dust from Asia to Greenland (Steffensen et al. 2008). The availability of
dust is mediated by soil moisture, whereas higher wind speed will increase
the transport. Both conditions likely contributed to higher Greenland [Ca2+]
during the Last Glacial as compared to today (Kreutz and Koffman 2013).

Since changes in δ18O and [Ca2+] are close in time they are thought to
be linked to the same atmospheric changes (Steffensen et al. 2008; Rasmussen
et al. 2014). It has been shown that the logarithm of [Ca2+] in Greenland ice
is anti-correlated with δ18O (Yiou et al. 1997, Eq. 5).

Furthermore, [Ca2+] in Greenland ice cores exhibit seasonal variation with
peaks in spring (Legrand and Mayewski 1997). On a GS-to-GI scale, [Ca2+]
time series show “an excellent signal-to-noise ratio” (Rasmussen et al. 2014)
with large changes in magnitude between GS and GI, leading to its widespread
use in the study of the dynamics of DO-cycles (eg. Ditlevsen (1999), Steffensen
et al. (2008), and Livina et al. (2010)).

5.1.3 Sodium
Concentration of sea salts decrease during DO-events (Wolff et al. 2010) and
in general [Na+] is higher during glacial than interglacial conditions (Kreutz
and Koffman 2013). Sodium ions comes primarily from sea salt and changes
less than [Ca2+] at DO events (eg. Steffensen et al. (2008)), also evident in
Figure 5.7.

The causes leading to increased [Na+] during winter and glacial conditions
are not yet entirely understood, but both atmospheric conditions as well as
sea ice extent are expected to play a role (Steffensen et al. 2008; Kreutz and
Koffman 2013). In Greenland (and Antarctic) ice cores, [Na+] increases in
winter due to increased storminess over the oceans and correspondingly larger
transport (Legrand and Mayewski 1997).
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In colder climate conditions, even though the ice sheets had a greater extent
and thus to a larger degree separated the ice sheets from the ocean, there is
an increase in [Na+], possibly due to a more effective transport (Legrand and
Mayewski 1997).

5.1.4 Ammonium
Ammonium originates from soil and vegetation emissions, but also forest fires
(Brook 2013; Wolff et al. 2010). [NH+

4 ] is higher in ice from GSs than from GIs
(Wolff et al. 2010). Ice volume as well as orbital parameters influence [NH+

4 ] in
Greenland ice cores due to the effect on biological activity, and thus emission
(Brook 2013). In terms of clear interpretation and signal to noise ratio [NH+

4 ]
may be the weakest of the three variables presented.

No seasonal cycle is observed in Antarctic [NH+
4 ] but a strong summer

maximum is seen in Greenland due to the latter’s proximity to major continents
(Legrand and Mayewski 1997).

5.2 Data and Methods

5.2.1 NGRIP CFA Data
We will analyze [Ca2+], [Na+] and [NH+

4 ] from the NGRIP ice cores (NGRIP
2004). The data is obtained by continuous flow analysis (CFA) and contains
measurements as a function of depth in 1 mm intervals (Ruth et al. 2003;
Bigler 2004). CFA enables high resolution and deals effectively with possible
contamination of the ice core, since – during the continuous melting – the
outside is discarded, and only the inner part of the core is used. For an overview
of this method, see eg. Röthlisberger et al. (2000), Ruth et al. (2003), and
Breton et al. (2012).

An example of the raw data along with an interpolated age scale (to be
described in Section 5.2.3) is shown in Table 5.1.

NGRIP Depth (m) Age (ka b2k) [Ca2+] (ppbw)
2450.000 62443.750 471.3892
2450.001 62443.875 457.8362
2450.002 62444.000 446.3019
2450.003 62444.125 437.5937
2450.004 62444.250 428.4819
2450.005 62444.375 420.1682
2450.006 62444.500 419.3330

Table 5.1 | Example NGRIP CFA data. The table shows NGRIP CFA
data depth (left) and the result of linearly interpolating the age between
GICC05modelext age points (Section 5.2.3). On the right we show an ex-
ample of the [Ca2+] data. Only the middle column is a result of the present
study – the two outer columns show raw data. It is important to note that the
interpolated age does not allow an interpretation along the lines of “62440.250
ka b2k ≈ month of March, 60440 years B.C.” – the timing is to uncertain for
any interpretation like this (Section 5.2.8).
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5.2.2 GICC005modelext Time Scale

The CFA data is measured as a function of depth. To map from ice core depth
to data age we will use the Greenland Ice Core Chronology 2005 (GICC05) time
scale1 available from CIC (2010). This scale is based on annual layer counting
and extends to 60 ka b2k (Vinther et al. 2006; Rasmussen et al. 2006; Andersen
et al. 2006; Svensson et al. 2008), and the model extension GICC05modelext
to 122 ka b2k (Wolff et al. 2010).

The GICC05modelext time scale contains age before year 2000 (b2k) in 20
year intervals and the corresponding depth – an example of data can be seen
in Table 5.2. When using the GICC05modelext time scale we will refer to it
with a dagger, as in “Age (ka b2k)†”.

NGRIP Depth (m) Age (ka b2k)† MCE (years)
2373.37 56.42 2425.0
2373.63 56.44 2427.0
2373.91 56.46 2429.0
2374.16 56.48 2430.0
2374.41 56.50 2430.0
2374.67 56.52 2431.0
2374.94 56.54 2432.0

Table 5.2 | NGRIP depth and GICC05modelext time scale (raw
data). There is a depth point for every 20 years. Until 60 ka b2k, the age is
assigned by annual layer counting and by matching the data to volcanic events.
Maximum counting error (MCE) measures counting uncertainty in the sense
that an uncertain year is counted as 0.5± 0.5 years (Rasmussen et al. (2006) –
see also Section 5.2.8). †GICC05modelext time scale.

If snow remains on the ice sheet, older snow will be compressed over the
course of time as new snow falls on top. In general, this means that a piece of
ice core corresponding to 20 years of accumulation will be shorter the older it is.
This is evident in Figure 5.2 where the depth differences between consecutive
data points in the GICC05modelext series are shown.

Figure 5.2 also shows how many CFA data points there will be for every
(depth, age) point in the GICC05modelext time scale. If, for example, ∆Depth
between two (depth, age) points is 1m we will have 1000 CFA data points be-
tween the two endpoints, since the CFA data has a resolution of 1mm. The
corresponding age for each CFA data point will be the result of linear interpo-
lation between the two GICC05modelext endpoints.

5.2.3 Interpolation, pt. I - Mapping Depth to Age

The first step is to match the CFA data depth to depth in the GICC05modelext
time scale. This is accomplished by piecewise linear interpolation between the
(depth, age) data points in GICC05modelext using Python’s numpy.interp()
(Walt et al. 2011) – see Table 5.1 and Figure 5.3 for examples.

1 For an overview of the work leading to the GICC05 time scale, see CIC (2016).
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Figure 5.2 | ∆Depth in the GICC05modelext time scale. The CFA
data has a spatial resolution of 1mm and it is our objective to put this on the
GICC05modelext time scale. This figure shows the spatial resolution of the
GICC05modelext scale where an age estimate is available for each data point
in 20 year intervals.

5.2.4 Selection of Greenland Interstadials for Analysis
In order to detect any potential changes in the system dynamics we require a
time series of reasonable length before the transition. We use the list of GI and
GS periods and the corresponding nomenclature from Rasmussen et al. (2014)
and initially select events by requiring that 1) there should be at least 500 years
of data prior to the event to analyze and 2) each GI should be directly preceded
by a GS so that the chosen events correspond to transitions from GS to GI, ie.
a DO event. The resulting list of events is presented in Table 5.3. We see that
the shortest time series obtained is actually 640 years long, corresponding to
the time between GS-10 and GI-9.

5.2.5 Interpolation, pt. II - Equidistant Time Steps
In order to simplify time series analysis we interpolate the data to equidistant
time steps. It is desirable to have a time scale that is as highly resolved as
possible while avoiding “upsampling” of the date, i.e. sampling the data at
a finer resolution that what is available. Upsampling potentially introduces a
dependence between consecutive data points that may be absent in the original
data (Mudelsee 2010, pp. 22–24). As we saw in Figure 5.2, ice from the lower
part of the ice core is compressed. Thus 1mm of ice (as is the measuring interval
in the CFA data) will correspond to longer and longer time spans.

To choose a reasonable time step ∆t we investigate the time difference
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Figure 5.3 | Interpolated CFA data age. The data age is a result of
piecewise linear interpolation of the GICC05modelext time scale to the 1mm
intervals contained in the CFA data. Left: Interpolated age for the entire CFA
dataset. Right: Example of a subset of the age scale. †GICC05modelext time
scale.

in the data for each event. This is shown in Figure 5.4 where the values of
∆t in the time series from the transitions in Table 5.3 are shown. The left
panel of Figure 5.4 shows cumulative histograms of ∆t where all time series
with max(∆t) > 0.1 years are shown in color. Note that the time scale has
been flipped as compared to Figure 5.1; the time scale t in the right panel of
Figure 5.4 shows time progressing from left to right with the series aligned so
that all events happen at t = 640. It is evident that a value of ∆t = 0.2 years is
coarse enough to avoid upsampling in all cases, while choosing ∆t = 0.1 years
is feasible for some events.
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Figure 5.4 | Interpolated ∆t in data. Left: Cumulative histogram of ∆t
of the interpolated data age scale for data 640 years prior and 100 years after
the events in Table 5.3. Grey curves have maximum ∆t < 0.1 years, colored
curves maximum ∆t < 0.2 years. Right: ∆t as a function of time for the same
events as on the left.
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Period Age (ka b2k)† Previous Period ∆Age (years)† Notes
GI-1e 14.692 GS-2.1a 2788 a), b)
GI-2.2 23.340 GS-3 4200 b)
GI-3 27.780 GS-4 820 a), b)
GI-4 28.900 GS-5.1 1700 b)
GI-5.1 30.840 GS-5.2 1200 b)
GI-5.2 32.500 GS-6 860 a), b)
GI-6 33.740 GS-7 1000 b)
GI-7c 35.480 GS-8 1100 b)
GI-8c 38.220 GS-9 1680 b)
GI-9 40.160 GS-10 640 b)
GI-10 41.460 GS-11 780 b)
GI-11 43.340 GS-12 940 a), b)
GI-12c 46.860 GS-13 1480 a), b)
GI-14e 54.220 GS-15.1 680 a)
GI-15.2 55.800 GS-16.1 700 a)
GI-17.2 59.440 GS-18 4400 a)
GI-18 64.100 GS-19.1 5300 a)
GI-19.1 69.620 GS-19.2 760 a)
GI-19.2 72.340 GS-20 1760 a)
GI-20c 76.440 GS-21.1 1320 a)
GI-21.2 85.060 GS-22 2540 a)
GI-23.2 104.520 GS-24.1 920 a)

Table 5.3 | List of Dansgaard-Oeschger events. The naming and dating
of onsets of periods are from Rasmussen et al. (2014). The interpretation is
as follows: a transition from stadial GS-2.1a to interstadial GI-1e occurred
at 14.692 ka b2k. Prior to that transition Greenland had experienced stadial
conditions for 2788 years. Timing uncertainty is ± 20 years (corresponding to
one data point in the GICC05modelext time scale) for all transitions except
GI-1e (±4 years) and GI-5.1 (± 40–60 years) (Rasmussen et al. 2014, Table
2). Notes; a): Any section of consecutive missing values is shorter than 10
years (see Figure 5.6). b): interpolation to ∆t = 0.1 years feasible without
upsampling (see Figure 5.4). †GICC05modelext time scale.
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5.2.6 Missing Values
The time series presented in Section 5.2.5 were interpolated to ∆t = 0.1 years
and ∆t = 0.2 years. We will have to consider that the data contains missing
values or not a numbers (NaNs), and the most straightforward way to treat
this is a further linear interpolation of the missing values. An example of this
approach using toy data is shown in Figure 5.5. It is evident that this approach
to handling missing data will only work if the amount of missing values in the
data is not too high.

Time (arbitrary)
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rb
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)

Interpolated

Missing values

Original data

Figure 5.5 | Illustration of the interpolation procedure. The original
data is on a non-equidistant time scale and has missing values. The resulting
interpolated data has no missing values and the time spacing is equidistant;
however, this method is only reasonable if the number of missing values is low.

Figure 5.6 shows the cumulative fraction of NaNs in the [Ca2+], [Na+]
and [NH+

4 ] time series for all the events listed in Table 5.3. The highlighted
time series represent time series where the length of the intervals containing
consecutive NaNs are larger than 10 years.

It is especially evident that several of the [Na+] time series contain large
intervals with consecutive missing values. This is possibly a consequence of
different measurement techniques for [Na+] (absorption spectrometry) on the
one hand and [Ca2+], [NH+

4 ] (fluorescence spectrometry) on the other (Röth-
lisberger et al. 2000).

The events highlighted in the middle and lower panel of Figure 5.6 will thus
be excluded from our analysis in order to avoid artifacts from the interpolation
procedure. Events not highlighted in Figure 5.6 are marked a) in Table 5.3
and will form our dataset in the remainder of this chapter, unless otherwise
specified.



70 Chapter 5. Ice Core Data Analysis

0

5

10

15

20

25
C

u
m

.
%

N
aN

s
in

d
at

a [Ca2+]

0

5

10

15

20

25

C
u

m
.

%
N

aN
s

in
d

at
a [Na+]

GI-2.2

GI-4

GI-5.1

GI-6

GI-7c

GI-8c

GI-9

GI-10

0 100 200 300 400 500 600 700

Time t (years) – event at t = 640

0

5

10

15

20

25

C
u

m
.

%
N

aN
s

in
d

at
a

[NH+
4 ]

GI-5.1

GI-6

GI-7c

GI-10

Figure 5.6 | Consecutive missing values. Colored curves denote data se-
ries with more than 10 years of consecutive missing data. 10 years corresponds
to 5% of a window size of 200 years.
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5.2.7 Example Data

3

4

5

6

7

[C
a2

+
]

(l
og

p
p

b
w

)

GI-3

GI-5.1

GI-9

2

4

6

8

[N
a+

]
(l

og
p

p
b
w

)

0 100 200 300 400 500 600 700 800
Time t (years) – event at t = 640

0
1
2
3
4
5
6

[N
H

+ 4
]

(l
og

p
p

b
w

)

Figure 5.7 | Example NGRIP data. Data ∆t = 0.2 years. GI-3 is an
example of a “nice” time series with only a few missing values. As noted in
Table 5.3 the timing of GI-5.1 has a larger uncertainty (±40-60 years) than
most of the other events (± 20 years). The [Ca2+] time series in the top panel
illustrates this larger uncertainty. GI-9 has a large fraction of consecutive
missing [Na+] values around the event. The middle panel shows the result
of linearly interpolating missing [Na+] values – clearly the gap is too large to
justify this approach, leading to the exclusion of GI-9.

5.2.8 Timing Uncertainty – Maximum and Relative
Counting Error (MCE & RCE)

There are three sources of timing or dating uncertainty we will have to take
into account:

1. the uncertainty in timing the events themselves,

2. the MCE,

3. the uncertainty in the CFA system used to obtain the data.

Our objective will be to obtain a “data timing uncertainty” δt with the following
interpretation: if we observe a change in the system dynamics at δt before the
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Figure 5.8 | Maximum and mean relative counting error. Left: The
MCE is given up to 60.2 ka b2k (at a depth of 2428.78 m). The MCE is
approximately linear from 14.35 ka b2k onwards and we use the corresponding
values for the fit. Right: Mean µ and ± two standard deviations of relative
counting error (RCE) up to 200 years before the DO events shown in Table 5.3.
†GICC05modelext time scale.

events or earlier, we can be confident that we are not merely observing artifacts
introduced by timing timing error.

First we take into account the uncertainty in timing the events. The 22 DO
events listed in Table 5.3 have an uncertainty of ± 20 years, except for GI-5.1
that has an uncertainty of ± 40–60 years and GI-1e that has an uncertainty of
±4 years. GI-5.1 was excluded based on the discussion in Section 5.2.6. For
this reason we take the event timing uncertainty to be ±20 years for all the
events, or

δevent = 20. (5.2.1)

As we saw in Table 5.2 the GICC05 time scale comes with an uncertainty.
Every uncertain year is counted as 0.5 ± 0.5 years, so N uncertain layers will
lead to an MCE of N × 0.5 (Andersen et al. 2006). The MCE is given up
to 60.2 ka b2k. To assign an age uncertainty to data older than this we will
extrapolate the MCE to cover all the data. This is shown in Figure 5.8a. As a
linear function fits the MCE very well, this will be used for extrapolation.

For a time tb years prior to an event we define the relative counting error
(RCE) as the difference between the MCE tb years before the event and the
MCE at the event:

RCEevent(tb) = MCE(ageevent + tb)−MCE(ageevent) (5.2.2)

The RCE is computed for all 22 events listed in Table 5.3. The mean µ and
µ ± 2σ where σ is the standard deviation of the resulting RCE are shown in
Figure 5.8b. As we must observe a change minimum 20 years before an event
(see Equation (5.2.1)) we are interested in the RCE 20 years prior to events. A
reasonable choice would be to take the mean RCE plus two standard deviations
as a δRCE (see Figure 5.8):

δRCE = µRCE(20) + 2σRCE(20) = 2.2. (5.2.3)
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The CFA system can be expected to have an uncertainty of ±1 cm (Röth-
lisberger et al. 2000). The maximum age difference for a depth difference of
1 cm in the CFA data (before interpolating to equidistant ∆t) is 1.82 years
leading to

δCFA = 1.82. (5.2.4)

There is no reason to assume that δCFA is correlated with δevent or δRCE.
If we assume that δevent and δRCE are correlated then (see eg. Taylor (1982))

δt =
√
(δCFA)2 + (δevent + δRCE)2 = 22.3; (5.2.5)

if we assume δevent or δRCE are uncorrelated

δt =
√
(δCFA)2 + (δevent)2 + (δRCE)2 = 20.2 (5.2.6)

A conservative approach is to take the value from Equation (5.2.5) and round
it up to 23 years. Thus if we observe a change in the system dynamics at
least δt = 23 years before the events we can be confident that we in fact are
observing a change in system dynamics rather than an artifact of dating error.
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5.3 Analysis Using the Transfer Operator

First we present results of analyzing time series from the 14 events marked a)
in Table 5.3 separately for [Ca2+], [Na+] and [NH+

4 ]. Next we perform analyses
using two variables; first using [Ca2+] and [Na+] and then using [Ca2+] and
[NH+

4 ]. The reason for including [Ca2+] in both analyses is that [Ca2+] exhibits
the strongest climate signal (cf. Section 5.1).

The analyses are carried out using time series interpolated to ∆t = 0.2
years, and we use a window size of 200 years. For the one variable analyses
we divide the data space into 50 boxes and approximate the transfer operator
Lτ with lag τ = 1 year. For the two-variable analyses, the grid resolution
is 15 × 15 and was chosen to reduce the fraction of transition matrices that
represent reducible Markov chains, as in Chapter 4. Choosing a resolution of
15 × 15 results in about 90% irreducible Markov chains – this is summarized
in Table 5.4.

In Section 5.4 we explore the effect of varying the lag τ , the number of
boxes, the window size and the temporal resolution of the data ∆t.

5.3.1 One Variable Analyses

0.00

0.05

0.10

0.15

0.20

V
ar

ia
n

ce

Individual series Ensemble mean 640− δt

0.0

0.2

0.4

0.6

0.8

1.0

L
ag

-1
A

C

200 300 400 500 600 700

Time t – event at t = 640

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ec
tr

al
ga

p
γ

Figure 5.9 | Spectral gap, variance and lag-1 autocorrelation for 14
[Ca2+] time series. Grey curves show the computed quantities for the
individual events, red curves show the ensemble means. Apart from a slight
increase in variance there is no increase in either indicator. Data ∆t is 0.2
years, and the window size is 200 years. As computed values are plotted at the
right endpoint of the interval the first values appear at t = 200. The vertical
black line shows tevent − δt that is, t = 627.
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Figure 5.10 | Spectral gap, variance and lag-1 autocorrelation for
14 [Na+] time series. Interpretation as Figure 5.9. All three indicators are
practically constant. The outlier in the two upper panels is GI-1e.
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Figure 5.11 | Spectral gap, variance and lag-1 autocorrelation for 14
[NH+

4 ] time series. Interpretation is as Figures 5.9 and 5.10. The picture is
generally the same; no obvious change is observed in either indicator.
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5.3.2 Two Variable Analyses
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Figure 5.12 | Spectral gap from 14 [Ca2+] and [Na+] time series com-
bined. The TO is calculated on a 15 × 15 grid in windows of size 200 years.
Data ∆t is 0.2 years. The confidence intervals were calculated for each series
using 200 surrogate transition matrices. The blue shaded area shows the max-
imum and minimum 95% confidence interval taken over all the 14 time series.
There is a small decrease in mean γ around t = 520 years. However this de-
crease in γ represents a drop from about 0.24 to 0.2, and values of γ ≈ 0.2 are
also seen in the beginning of the series.

5.3.3 Fraction of Transition Matrices Representing
Irreducible Markov Chains

Figure # Points (γ) % Irreducible % Aperiodic
Figure 5.9 6174 95.3% 97.7%
Figure 5.10 6174 97.7% 98.8%
Figure 5.11 6174 95.8% 97.9%
Figure 5.12 6174 89.8% 94.9%
Figure 5.13 6174 87.6% 93.5%

Table 5.4 | Percentage of transition matrices representing irreducible
and aperiodic Markov chains. As we saw in Chapter 4 the occurrence
of transition matrices representing reducible transition matrices may affect the
reliability of the results.
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Figure 5.13 | Spectral gap from 14 [Ca2+] and [NH+
4 ] time series

combined. Same interpretation as Figure 5.12, using [NH+
4 ] instead of [Na+].

The mean value of γ is close to constant at around 0.25.
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5.4 Varying Parameters in the Transfer Operator
Analysis

Here we repeat some of the calculations presented above while varying the
parameters chosen for approximating Lτ . The purpose of this is to verify
that the results we have obtained are not strongly dependent on the chosen
parameters, and so a qualitative agreement is the objective.

Below is presented both ensemble means of γ(t), the spectral gap as a
function of time, and a subset of γ(t) series calculated for specific events. We
will mainly focus on the ensemble means – the individual series are shown for
completeness.
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Figure 5.14 | Spectral gap of [Ca2+] for varying ∆t Here we analyze
the 13 DO events marked “b)” in Table 5.3 where interpolation to ∆t = 0.1
years is feasible without upsampling. We perform this analysis for the [Ca2+]
data only, as this variable has the least fraction of consecutive missing values
(cf. Figure 5.6). There are only negligible differences in the results of the two
computations indicating that the data ∆t = 0.1 does not significantly influence
the results.

These results in Figure 5.15 are in agreement with Tantet et al. (2015a,
Figure 15) where it is found that decreasing the grid resolution leads to an
increasing ’rate’, the inverse of decorrelation time. The second rate r2 in Tantet
et al. (2015a) corresponds to − ln(1− γ)/τ .
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Figure 5.15 | Spectral gap of [Ca2+] and [Na+] for varying grid res-
olution. The results of lowering the grid resolution to 10× 10 and increasing
the resolution to 50 × 50 are shown. The same pattern is evident in all three
series and we conclude that the results presented above are robust to changing
grid size.
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Figure 5.16 | Spectral gap of [Ca2+] and [Na+] for varying window
size. We see that a larger window size Ws yields a series γ(t) that fluctuates
less, which is to be expected when including more data points in the calculation.
The general pattern is the same in all cases, an indication that the results are
robust to variations in window size.
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Figure 5.17 | Spectral gap of [Ca2+] and [Na+] for varying lag param-
eter τ . The variations in γ(t) seems to be higher for larger values of the lag
parameter τ . This is investigated further in Section 5.4.2.
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5.4.1 Irreducible Markov Chains and Data

Ws Nr ×Nc # Points (γ) % Irreducible % Aperiodic
200 10× 10 6174 93.8% 97.2%
200 15× 15 6174 89.8% 94.9%
200 50× 50 6174 59.8% 75.5%

100 15× 15 7574 82.9% 91.9%
200 15× 15 6174 89.8% 94.9%
300 15× 15 4774 92.0% 95.9%
400 15× 15 3374 92.2% 95.8%
500 15× 15 1974 91.9% 95.5%

Table 5.5 | Spectral gap for [Ca2+] and [Na+] time series – variation
of parameters. Percentage of irreducible and aperiodic transition matrices.
It is clear that the amount of data available to calculate the matrices affect the
results, as increasing the window size or decreasing the grid resolution leads to
fewer reducible transition matrices; however, this number is seen to saturate
at about 92% for a window size of 300. Highlighted rows denote the standard
parameters.

5.4.2 Increasing the Lag Parameter to τ = 5

In Figure 5.17 it appeared that increasing the lag parameter τ will affect the
results. To determine whether this is the case we compute γ for the [Ca2+]
time series with τ = 5. The results are shown in Figure 5.18. We do observe a
decrease in the ensemble mean of γ(t), when investigating the individual series
of γ(t) this decrease turns out to be caused by only three events, namely GI-18,
GI-19.1 and GI-19.2 that we show in green in Figure 5.18.

Data # Points (γ) % Irreducible % Aperiodic
[Ca2+] 6174 88.3% 92.7%

Table 5.6 | Irreducible and aperiodic Markov chains in Figure 5.18
These statistics for the computation using the [Ca2+] series are comparable to
the values reported in Table 5.4.
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Figure 5.18 | Spectral gap of the [Ca2+] time series for τ = 5. Param-
eters are as in Figure 5.9, but here we also show the 95% confidence region
calculated from 200 surrogate matrices at each value of γ(t) – the shaded area
shows the maximum and minimum range for all series. The mean value of γ
starts to drop at around t = 550 – however, this pattern is only evident in
three of the individual series of γ, corresponding to GI-18, GI-19.1 and GI-19.2
(shown in green). We can thus conclude that this is not a general feature of
all (or most of) the events.

5.5 Discussion

We have analyzed three proxies from the NGRIP data set using the transfer
operator. This analysis required choosing a set of parameters. Initially our
choice of grid size, or number of boxes used to partition the reduced state
space, was guided by demanding that a large fraction of the calculated tran-
sition matrices should represent irreducible and aperiodic Markov chains (cf.
Section 4.2).

Within the confidence region of the estimated spectral gap γ(t), we did not
find any EWS leading up to the DO transitions in any of the timeseries we
analyzed in Section 5.3. Varying the chosen parameters in Section 5.4 did not
change this conclusion, thus confirming that the results were not caused by
specific parameter choices.

Our findings here do not support the several of the studies in Section 1.3.2
where EWS were reported, by do support Ditlevsen and Johnsen (2010) where
no EWS prior to DO events were reported. Likewise, our conclusion may
support the findings of Ditlevsen et al. (2007) where the recurrence times of the
DO events were studied and found to be compatible with random occurences,
as opposed to being cyclic.



6 Minimal Ice Sheet Model With
Stochastic Forcing

In the manuscript Mikkelsen et al. (2017) (Appendices D and E) we study a
minimal complexity ice sheet model that describes the time evolution of an ice
sheet as a function of temperature. When forcing the model with fluctuating
temperatures we find that the steady state volume decreases; ie. the variation
in temperature is directly responsible for the lower steady state volume.

The idea for this study was initially proposed by Aslak Grinsted at the Cen-
tre for Ice and Climate (CIC) retreat at Møn, August 16th–18th, 2014. At the
time of writing we are finishing revisions before re-submitting the manuscript
to Geophysical Research Letters (GRL).

6.1 Summary of Mikkelsen et al. (2017)

6.1.1 Notation
We remark that there are slight differences between the notation used in the
manuscript, and that used in the rest of this thesis. In the manuscript we use
angle brackets to denote expectation, and use subscript t for a discrete time
variable. The choice was made to use E [·] for the expectation in this thesis
due to the extensive use of angle brackets as inner products in Chapter 2.
Conversely, brackets are commonly used to denote expectation in physics (eg.
Ditlevsen (2004) and Weisstein (2017)), in which we expect the readers of the
manuscript to have a background. As this chapter is most likely read in connec-
tion with the manuscript, we will use the same notation here in Chapter 6 as
in Mikkelsen et al. (2017). The choice of different notation can be summarized
as follows: if

〈Xt〉 = X, (6.1.1)

then the expected value of the discrete time series {Xt} is X.

6.1.2 Summary
For this study we use a model proposed by Oerlemans (2003). The ice sheet
in the model is sketched in Figure 6.1, and the model is thoroughly described
in Appendix E. We choose parameters so that the steady state ice sheet vol-
ume in the model roughly approximates the ice sheet volume on Greenland
(Appendix E, Table 1).

Oerlemans (2003) describes the model “quasi-analytical” in the sense that
one can obtain an analytical relationship specifying dR/dt = f(T,R), where

83



84 Chapter 6. Minimal Ice Sheet Model With Stochastic Forcing

−1000 −500 0 500 1000

Radius R (km)

0

1000

2000

3000

4000

H
ei

gh
t
h

(m
)

Ice

Ocean

Bedrock

Figure 6.1 | Sketch of the ice sheet in the Oerlemans (2003) model.
The ice sheet is symmetric around R = 0 and coupled to the surrounding
temperature through the height of the equilibrium line (Appendix E, Figure 1
and Equation 2).

R is the radius of the ice sheet, and T the temperature at the surface. For a
given set of parameters, the volume V can then be uniquely determined from
R, allowing us to write

V̇ :=
dV

dt
= f(T, V ), (6.1.2)

whereafter we integrate Equation (6.1.2) numerically. We use the EM method
for this purpose since it is adequate (Appendix E, Figure 2) and integrate the
model with ∆t = 1 year. At a steady state (T0, V0) the volume will not change:

f(T0, V0) = 0. (6.1.3)

We now let the temperature fluctuate as follows. We fit an AR(1) model
to the observed annual mean temperature over Greenland from 1851 to 2011
(Appendix E, p. 6), allowing us to generate temperature time series Tt with
different mean temperatures T = 〈Tt〉.

Now, as opposed to Equation (6.1.3), a statistical steady state will be char-
acterized by

〈f(T , V )〉 = 0 (6.1.4)

where V = 〈Vt〉 is the time average of the volume time series Vt resulting from
integrating Equation (6.1.2) with Tt as forcing.

The main observation in Mikkelsen et al. (2017) is attained after performing
a Taylor expansion of Equation (6.1.4) around (T , V ) (Appendix D, Equations
2-5), whence we obtain

〈f(Tt, Vt)〉 ≈ f0 +
σ2

2
f0TT ; (6.1.5)

here f0 = f(T , V ) and f0TT = ∂2f
∂T 2 |(T ,V ). To arrive at Equation (6.1.5), first

note that some terms in the Taylor expansion vanish because we expand around
(T , V ). The remaining terms that involve f0V V and f0TV (defined in a similar
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way as f0TT ) are evaluated numerically and found to be negligible (Appendix E,
Figure 4). Note that the arguments leading to Equation (6.1.5) are independent
of the Oerlemans (2003) model.

The physical mechanism responsible for the decrease in steady state volume
can be explained quite simply: a large temperature increase has the potential
to melt a large amount of ice in a short time. On the other hand, it takes
a long time to build up an ice sheet through precipitation. This asymmetry
is evident in the surface mass balance (SMB) against T curves (Appendix D,
Figure 2 left).

Next we “forecast” the effect of temperature fluctuations by comparing the
prediction of Equation (6.1.5) with time series Vt from the model; we find an
excellent agreement (Appendix D, Figure 1).

Finally we evaluate this effect on the study by Robinson et al. (2012). They
present a series of long term Greenland Ice Sheet (GrIS) forecasts for a range
of temperature increases or “warmings”. Robinson et al. (2012) couple their
ice sheet model to a regional climate model (RCM) which in turn is forced by
a constant temperature climatology at the boundaries (Robinson et al. 2012,
Methods).

For a realistic warming relative to today, we find that Robinson et al. (2012)
may overestimate the GrIS SMB by as much as 30 Gt/yr (gigaton per year).
For context, the current GrIS SMB is estimated at −234± 20 Gt/yr (Barletta
et al. 2013).

6.2 Discussion

Our estimate of the effect of temperature fluctuations on the results of Robinson
et al. (2012) is a worst case scenario, since the coupling of the ice sheet model to
an RCM presumably generates some temperature fluctuations; thus the effect
we describe is most likely accounted for to some extent.

Furthermore, many studies may already implicitly account for this effect
since ice sheet models are often tuned to the problem under investigation. When
tuning an ice sheet model, one could – for example – attempt to reproduce an
observed ice sheet history with a model using a time series of observed forcing
(temperature, precipitation etc.) as input. Parameters in the model are then
adjusted so that output best matches observations; see eg. Muresan et al.
(2016) for an example of this approach.

By adjusting a range of parameters this way it is possible, and likely, that
the effect we describe is already partly or completely accounted for in many
model studies; not explicitly, but “hidden” in the parameter tuning.

6.3 Ideas for Future Work

The logical next step is to investigate the effect of fluctuating temperatures
using a more realistic model than the Oerlemans (2003) model.

Currently we are working on the design of a study using the Parallel Ice
Sheet Model (PISM) (Bueler and Brown 2009; Aschwanden. et al. 2012; PISM
2017) for this purpose, incidentally the same ice sheet model that was used in
Muresan et al. (2016).





7 Discussion & Conclusion

7.1 Transfer Operator Analysis of NGRIP Data

In the first part of this thesis we used a novel method based on the transfer
operator to search for EWS before DO events. This analysis was done after
verifying that the method could distinguish time series from a double well
potential model undergoing either 1) a stochastic transitions or 2) a bifurcation
induced transitions. Based on the literature review presented in Section 1.3.2,
we focused our analysis on ensembles of events instead of time series from
individual events.

As we did not observe any EWS, our findings suggest that DO events are
most likely random transitions. Thus our conclusion supports the findings of
Ditlevsen et al. (2007) and Ditlevsen and Johnsen (2010), but does not support
the findings of for example Cimatoribus et al. (2013), Nikolaou et al. (2014),
and Rypdal (2016).

Active research is still being contributed to an already well developed body
of literature on the theoretical aspects of transfer operators. On the other hand,
the literature concerned with applications is quite scattered. This means that
the road from an interesting data set to a finished analysis based on the transfer
operator requires sourcing information from several articles, as opposed to a
unified source.

The situation at present then clearly calls for a review paper with a focus on
methodology, while still presenting a necessary amount of theory. Such a paper
would ideally include topics from the chaotic hypothesis to the spectral map-
ping theorem. The biggest challenges presented by writing such a paper would
be to balance between presenting all the sufficient – but only the necessary –
theory at each step.

A review paper in this format would make transfer operator methods acces-
sible to a much wider audience, and would ideally be accompanied or comple-
mented by a well-tested and well-documented numerical library in a language
suited for numerical analysis, such as Python, Julia or R.

In Chapter 1 we mentioned the R-tipping and the relatively recent results
obtained in this area of research. To the author’s knowledge, no results combin-
ing knowledge about R-tipping and transfer operators have been contributed.
Analysis of time series from an R-tipping system could provide an exciting
challenge for the transfer operator approach to tackle. As the raison d’être for
R-tipping as a concept was the compost-bomb instability – a real world climatic
problem – such an analysis could potentially contribute knowledge about an
essential problem in climate research.
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7.2 Minimal Ice Sheet Model With Stochastic Forcing

Our goal of the second part was to investigate the consequences of fluctuating
surface temperatures in an ice sheet model. We derived an analytical relation-
ship between the magnitude of the fluctuations and the reduction in steady
state ice sheet volume, and we found this expression to be in agreement with
numerical results from the minimal complexity Oerlemans (2003) model. We
clearly showed that temperature fluctuations of a realistic magnitude lead to a
decrease in steady state ice sheet volume.

Furthermore we estimated which effects fluctuating temperatures could
have on the results of recent long term Greenland ice sheet simulations (Robin-
son et al. 2012), were a constant temperature climatology was used.

It is clear that studies exploiting more comprehensive ice sheet models are
needed to further clarify this effect. Using a more comprehensive model such as
the PISM would allow us to uncover in greater detail the physical mechanisms
behind the mathematical results we presented in Mikkelsen et al. (2017).

The discussion of physical mechanisms leads to another intriguing area to
explore. As opposed to the SMB vs. temperature-relationship we investi-
gated in Mikkelsen et al. (2017), the SMB in large parts of Antarctica shows
the opposite relationship to temperature: increasing temperature leads to in-
creasing precipitation, which in turn drives a higher accumulation rate. This
relationship is naturally only valid for a limited temperature increase relative
to today. For such a study, one would likely need to couple the ice sheet model
to a regional climate model as the precipitation is influenced strongly by the
surrounding climate.

As melting of the West Antarctic Ice Sheet (WAIS) would have drastic con-
sequences on sea level, the topic of most accurately modeling WAIS is natural
are to explore.

An important question of a general nature is, how much has the effect
of temperature fluctuations already been implicitly accounted for by model
tuning? As mentioned in Section 6.2, the effect of temperature fluctuations
may already be partly or completely accounted for by model tuning.

Nevertheless, the clearest possible interpretation of all model parameters is
always desirable. We believe that our findings contribute to this by potentially
isolating effects of temperature variation that were previously hidden in other
parameters.



Appendix A

List of Acronyms

AC autocorrelation.

ACF autocorrelation function.

AMOC Atlantic Meridional Overturning Circulation.

AR autoregressive.

ARIMA autoregressive integrated moving average.

ARMA autoregressive moving average.

BA Bølling-Allerød.

CFA continuous flow analysis.

CIC Centre for Ice and Climate.

CWT continuous wavelet transform.

DEW distant early warning.

DFA detrended fluctuation analysis.

DO Dansgaard-Oeschger.

DW double well.

DYE-3 Distant Early Warning Line (Cape Dyer), Station 3.

EGRIP East Greenland Ice-core Project.

EM Euler-Maryuama.

ENSO El Niño-Southern Oscillation.

EOF empirical orthogonal function.

EWS early warning signals.
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90 List of Acronyms

FP Fokker-Planck.

GA genetic algorithm.

GI Greenland Interstadial.

GICC05 Greenland Ice Core Chronology 2005.

GICC05modelext Greenland Ice Core Chronology 2005, model extended.

GISP Greenland Ice Sheet Project.

GISP2 Greenland Ice Sheet Project 2.

GRIP Greenland Ice Core Project.

GrIS Greenland Ice Sheet.

GRL Geophysical Research Letters.

GS Greenland Stadial.

ITCZ intertropical convergence zone.

ka kilo years.

ka b2k kilo years before year 2000.

LGM Last Glacial Maximum.

MA moving average.

Ma million years.

MCE maximum counting error.

NaN not a number.

NEEM North Greenland Eemian Ice Drilling.

NGRIP North Greenland Ice Core Project.

ODE ordinary differential equation.

OU Ornstein-Uhlenbeck.

PCA principal component analysis.

PF Perron-Frobenius.

PISM Parallel Ice Sheet Model.

ppbw parts per billion, weight.

RCE relative counting error.
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RCM regional climate model.

RK Runge-Kutta.

SDE stochastic differential equation.

SMB surface mass balance.

SMT Spectral Mapping Theorem.

SRB Sinaï-Ruelle-Bowen.

Sv Sverdrup.

THC thermohaline circulation.

TO transfer operator.

Var variance.

V-SMOW Vienna standard mean ocean water.

WAIS West Antarctic Ice Sheet.

YD Younger Dryas.





Appendix B

Numerical Tools

B.1 Libraries Developed and Reproducibility of Results

The results presented in Chapters 2 to 5 were made with Python, while we
used MATLAB for Mikkelsen et al. (2017). Some of the routines we developed
have been compiled into the libraries shown below, of which we give a brief
and non-exhaustive summary.

The results shown in Chapter 5 were made using the NGRIP CFA dataset
(Ruth et al. 2003; Bigler 2004); this data set is unfortunately not in the public
domain at the time of writing. After having obtained this dataset and the
GICC05 time scale available from CIC (2010) – and after having set local path
variables – the results in Chapters 2 to 5 can be reproduced with the libraries
mentioned in items 1–4 below; these have as dependency the Python packages
in Appendix B.2. Note that the results in Chapters 2 to 4 are independent of
the NGRIP dataset.

Similarly, most of the results presented in Mikkelsen et al. (2017) can be
reproduced using the the library in item 5 below, which in turn have as de-
pendency the MATLAB packages in Appendix B.3. To reproduce the full set
of results, one must acquire the data from the simulations done by Robinson
et al. (2012). This was obtained effortlessly by private communication with
Alexander Robinson, but we do not consider it ours to share.

We have developed the following libraries:

1. bitbucket.org/bogeholm/criticalstatistics implements the EM method and
is used for some calculations of running statistics.

2. bitbucket.org/bogeholm/topy – for “transfer operators in Python” – is
used for calculating transitions matrices and spectral gaps.

3. bitbucket.org/bogeholm/notebookcommon contains various utility func-
tions that are used in several Jupyter notebooks (see below).

4. bitbucket.org/bogeholm/phd-mikkelsen-jupyter comprises the full set of
Jupyter notebooks (see below) used for producing the results in Chap-
ters 2 to 5.

5. bitbucket.org/bogeholm/ice-sheets-fluctuating-temp contains the MATLAB
code for Mikkelsen et al. (2017).
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6. github.com/bogeholm/pytisean is a Python interface for the TISEAN li-
brary (Hegger et al. 1999) which we explored, but did ultimately not use
in this thesis.

B.2 Python Tools Used

We have derived tremendous utility from the following Python tools:

• Scipy (scipy.org) (Jones et al. 2001): numerical routines such as linear
algebra functions, eigenvalue computations and curve fitting.

• NumPy (numpy.org) (Walt et al. 2011): implements matrices and vectors,
and a variety of numerical routines.

• IPython (ipython.org) (Pérez and Granger 2007): interactive Python
shell.

• Jupyter (jupyter.org) (Kluyver et al. 2012): implements a notebook for-
mat so code, output and figures can be viewed together in a browser.
This, dear reader, is the future!

• Matplotlib (matplotlib.org) (Hunter 2007): library for creating figures.

• Pandas (pandas.pydata.org) (McKinney 2010): implements a DataFrame
object that is very useful for time series analysis.

• Scikit-learn (scikit-learn.org) (Pedregosa et al. 2011): machine learn-
ing routines used for PCA when making Figure 2.4.

• Seaborn (seaborn.pydata.org) (Waskom et al. 2014): additional plotting
utilities.

• PyDSTool (pydstool.sourceforge.net) Clewley et al. (2007) and Clewley
(2012): methods for numerical continuation and creatingbifurcation dia-
grams, used for making Figure 3.6.

• Statsmodels (statsmodels.sourceforge.net) (Seabold and Perktolf 2010):
statistical routines used eg. for calculating autocorrelation, fitting AR
models and curve fitting.

• xarray (xarray.pydata.org) (Hoyer and Hamman 2016; Hoyer et al. 2016)
implements a data format that allows handling of arbitrary dimensional
data sets.

• NetworkX (networkx.github.io) (Hagberg et al. 2008): we use the func-
tion from_numpy_matrix() to create a directed graph from transition
matrices, which in turn allows us to use is_strongly_connected() and
is_aperiodic() to determine if a matrix is irreducible and/or aperiodic,
respectively.

• SymPy (github.com/sympy/sympy) (SymPy Development Team 2016):
symbolic calculations.

https://github.com/bogeholm/pytisean
https://www.scipy.org/
http://www.numpy.org/
https://ipython.org/
https://jupyter.org/
http://matplotlib.org/
http://pandas.pydata.org/
http://scikit-learn.org/stable/
http://seaborn.pydata.org/
http://www.ni.gsu.edu/~rclewley/PyDSTool/FrontPage.html
http://statsmodels.sourceforge.net/
http://xarray.pydata.org/en/stable/
https://networkx.github.io/
https://github.com/sympy/sympy


B.3. MATLAB Tools Used 95

B.3 MATLAB Tools Used

The following MATLAB packages from the MATLAB File Exchange were used,
mainly for producing the figures in Mikkelsen et al. (2017):

• export_fig by Yair Altman: for saving figures.

• ds2nfu by Michelle Hirsch: plotting utilities.

• hslcolormap by Aslak Grinsted: used for the colormap in Mikkelsen et al.
(2017, Figure 1).

• suplabel by Ben Barrowes: plotting utilities.

• matrix2latex by Moritz Koehler: for exporting data to LATEX tables.

https://se.mathworks.com/matlabcentral/fileexchange/
https://se.mathworks.com/matlabcentral/fileexchange/23629-export-fig
https://se.mathworks.com/matlabcentral/fileexchange/10656-data-space-to-figure-units-conversion
https://se.mathworks.com/matlabcentral/fileexchange/48586-hslcolormap
https://se.mathworks.com/matlabcentral/fileexchange/7772-suplabel
https://se.mathworks.com/matlabcentral/fileexchange/4894-matrix2latex
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Co-Author Statements

The co-author statement regarding Mikkelsen et al. (2017) has been handed
in separately from this thesis. The form is number 3A from science.ku.dk/english/re-
search/phd/student/forms/.

The wording of the co-authorship statement is reproduced here.
• What was the role of the PhD student in designing the study?

– The study was jointly designed by all three authors.

• How did the PhD student participate in data collection and/or develop-
ment of theory?

– Troels did the numerical work, Peter and Aslak contributed with
ideas and interpretation.

• Which part of the manuscript did the PhD student write or contribute
to?

– Aslak and Troels co-wrote the introduction, Troels wrote draft ver-
sions of the rest of the paper.

• Did the PhD student read and comment on the final manuscript?

– N/A
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Abstract

Forecasting the future sea level relies on accurate modeling of the response of the Green-
land and Antarctic ice sheets to changing temperatures. We show why the steady state of an
ice sheet is biased toward larger size if the interannual weather generated fluctuations in tem-
perature are not taken into account in numerical modeling of the ice sheet. We illustrate this
in a simple ice sheet model. This bias could, if not taken into account, imply that the risk of
collapse in a given climate change scenario is underestimated. We estimate that the effect of
temperature variability on the surface mass balance of the Greenland Ice Sheet in recent en-
semble forecasting should be adjusted downward by approximately 13 percent of the present
day observed value, if assuming a 2 degree warming. Many predicted scenarios of the fu-
ture climate show an increased variability in temperature over much of the Earth. In light of
our findings it is important to gauge the extent to which this increased variability will further
influence the mass balance of the ice sheets.

1 Introduction

Using coupled climate and ice sheet models, long time forecasting is often made com-
putationally feasible by running a climate model for one or more years and then repeatedly
applying the climate (or the surface mass balance computed from it) to an ice sheet model
[Vizcaino et al., 2015; Roche et al., 2014; Ziemen et al., 2014; Gregory et al., 2012]. Some
studies [e.g. Kageyama et al., 2004] compute the surface mass balance from a climatology.
The present analysis shows that computing the surface mass balance from a climatology can
result in a bias towards a larger ice sheet size, if the tuning is done with computing the surface
mass balance from individual model years.Peter ToDo: Check references Ice sheet modeling
and evidence from paleoclimatic records indicate that ice sheets display a hysteresis response
to climate forcing [Abe-Ouchi et al., 2013; Robinson et al., 2012]. There is a critical thresh-
old in temperature, a tipping point, beyond which an ice sheet becomes unsustainable. This
is a generic saddle-node bifurcation point, estimated by Robinson et al. [2012] to be reached
for the Greenland Ice Sheet (GrIS) at a global warming of +1.6◦C (0.8◦C – 3.2◦C) above
preindustrial.

Several recent studies suggest that parts of the West Antarctic Ice Sheet (WAIS) may
already have been destabilized [Favier et al., 2014; Joughin et al., 2014; Rignot et al., 2014;
Mouginot et al., 2014; Seroussi et al., 2014]. Other studies find that East Antarctica may be
more vulnerable to warming than previously thought [Mengel and Levermann, 2014; Green-
baum et al., 2015; Sun et al., 2014; Pollard et al., 2015; Fogwill et al., 2014]. There is a grow-
ing concern for a considerable risk of a marine ice-sheet instability of the WAIS may lead to a
substantial sea level rise contribution already this century [Bamber and Aspinall, 2013].

Paleoclimatic records show a nonlinear relationship between temperature increase and
sea level rise consistent with the threshold behavior of ice sheets, predicted by modeling stud-
ies. Gasson et al. [2012]; Foster and Rohling [2012] find that even a moderate global warming
of +2◦C or CO2 levels of 400 ppm is associated with a likely long-term sea level rise of more
than 9 m. This is consistent with evidence from the last interglacial which points toward
a collapse of the WAIS [Kopp et al., 2009; Dahl-Jensen et al., 2013; Strugnell et al., 2012].
Likewise there is evidence for at least one substantial deglaciation period in Greenland having
occurred during the past 1.1 million years. Blard et al. [2016]; Bierman et al. [2016]; Schaefer
et al. [2016]

The greenhouse gas concentrations and intense warming in high-end scenarios such as
ECP8.5 (Extended Concentration Pathways, extension of Representative Concentration Path-
ways beyond 2100) [Meinshausen et al., 2011] correspond to an ice-free planet in the paleo-
climatic record [Gasson et al., 2012; Foster and Rohling, 2012] which evidence suggests was
the case until approximately 35 million years ago [Ruddiman, 2014].
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Observations, paleoclimatic records and model studies indicate a real risk of ice sheet
collapse for realistic future scenarios global warming. A substantial part of WAIS may already
be committed to collapse. The threshold for GrIS is estimated to be passed in ECP4.5 and
ECP6, and even total deglaciation is within reach of the ECP8.5 scenario. The complete loss
of the Greenland –, the West Antarctic –, and the East Antarctic ice sheets would raise global
sea levels by 7.4 m, 4.3 m, and 53 m respectively, excluding any solid earth rebound effects that
would take place during ice sheet decay [Bamber et al., 2013; Fretwell et al., 2013]. The risk
that global warming might exceed the tipping points of ice sheet stability pose an existential
threat to low lying coastal nations. Estimating how close each ice sheet is to a tipping point is
thus critically important .

The stability of ice sheets is typically investigated by imposing a constant climate forc-
ing and then letting the ice sheet model reach equilibrium [Robinson et al., 2012; Solgaard and
Langen, 2012; Huybrechts and de Wolde, 1999]. The hysteresis curve, and collapse thresholds
are then traced out by repeating these experiments for a range of temperatures and starting
from ice free conditions. However, this approach disregards the effects of interannual vari-
ability.

In the classical study of the effect of asynchronous coupling by Pollard et al. [1990] it
was noticed that a stochastic forcing in an ice sheet model results in a smaller ice sheet in
comparison to a constant constant forcing. Here we show how variability in forcing changes
the expected mass balance of an ice sheet. We develop a general theoretical framework for
how forcing variability impact the expected response in a model that exhibits a non-linear
response. We illustrate the importance using a minimal model of how Greenland surface mass
balance responds to temperature fluctuations. The simple model is also used to assess the bias
adjustments needed in model studies when constant forcing is applied.

Though some studies implement full GCM coupling to the ice sheet model, or have
some mixed approaches [Ridley et al., 2005] [Gregory and Huybrechts, 2006], the computa-
tional demand of the GCM could come at an expense for the resolution of the ice sheet flow
model. The results presented here shows explicitely how to account for the effect of unre-
solved temperature variability.

Previous studies of natural variability in the context of ice sheets include Fyke et al.
[2014], who find that the variability of the GrIS surface mass balance will increase in a warmer
climate due to increased ablation area, and Roe and O’Neal [2005] who find that large fluctu-
ations in glacier extent can be driven by natural, fast fluctuations in climate.

That the SMB of an ice sheet model is nonlinear is well known. Ridley et al. [2010]
specifically avoid using monthly climatologies in order to include the effect of interannual
variablity in their study. Seguinot [2013] shows how simplifying assumptions (in general lead-
ing to lower temperature variability) in a positive degree day (PDD) scheme leads to errors.
Fettweis et al. [2013, see Figure 6h] investigate the GrIS SMB simulated by regional climate
models (RCM) as a function of mean surface temperature from general circulation models
(RCM). Our contribution is a quantification of this effect, and an estimate of the necessary
bias correction in long term ice sheet simulations.

Sub-annual temperature variability in the context of positive degree-day (PDD) is in-
vestigated in Hock [2003], Seguinot [2013] and Wake and Marshall [2015] – in the present
study we are concerned with interannual variability and our results apply to a broader class of
models.
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2 The Mass Balance of an Ice Sheet

2.1 A Minimal Ice Sheet Model

We consider a simple ice sheet model introduced by Oerlemans [2003] hereafter denoted
Oer03. This model describes the essential dynamics of an ice sheet initiated from a mountain
glacier. It assumes an axially symmetric ice sheet resting on a bed that slopes linearly down-
wards from the center. The ice is modeled as a perfectly plastic material, and the ice sheet is
coupled to the surrounding climate by adjusting the height of the equilibrium line – above this
the specific balance is constant and below this the balance decreases linearly with decreasing
altitude (supplementing text).

The model is chosen for its simplicity, thus it is not accurately modeling a specific ice
sheet; the two main reasons for choosing it for our analysis are: 1) The simplicity of Oer03
allows the analytical approach detailed below and 2) The Oer03 model shows the same func-
tional relationship between surface mass balance (SMB) and temperature as has been found for
regional climate models (RCM) for a range of temperature scenarios [Fettweis et al., 2013].
The change in volume or mass of the ice sheet depends on the balance between accumula-
tion, ablation and ice sheet discharge which in turn depends on both the interplay between the
fluctuating temperature and the state of the ice sheet itself.

Before proceeding with the simple model, we investigate the effect of interannual tem-
perature fluctuations by considering the ice sheet as a simple dynamical system. Assume the
mass balance of the ice sheet to depend only on the volume V itself and a single time-varying
mean temperature over the ice sheet, T ; thus all components of the mass budget are uniquely
determined by temperature and volume. This is a vast simplification but sufficient to illu-
minate the essential dynamical effect we consider in this paper. Denoting the mass balance
(change in ice sheet volume) as V̇ ,

V̇ = f(T, V ), (1)

where f(V, T ) is some non-linear function. The (stable) fixed point, f(T, V ) = 0 corre-
sponds to a balance between loss and gain in the ice volume. This is in general an implicit
equation to determine the steady state volume V0(T ) as a function of temperature, such that
f(V0(T ), T ) = 0.

However, the fixed point is not identical to the statistically steady state volume with a
temporally fluctuating temperature Tt = T (t) with expectation value 〈Tt〉 = T . A comparison
between an ice sheet model with and without interannual fluctuating temperature shows that in
steady state the ice sheet volume Vt will fluctuate around 〈Vt〉 = V where V is systematically
smaller than the corresponding V0(T ).

Since the temperature Tt – and thus the ice sheet ice sheet volume Vt – is a stochastic
variable the following will characterize a equilibrium state:

〈f(Tt, Vt)〉 = 0. (2)

To calculate V we perform a Taylor expansion of (2) around the – presently unknown
– steady state (T , V ) and calculate the mean volume V . We use the notation fT := ∂f

∂T ,

fTV := ∂2f
∂T∂V , etc. Furthermore, f0 := f(T , V ), f0T := ∂f

∂T (T, V )

∣∣∣∣
(T ,V )

etc. We then get:

〈f(Tt, Vt)〉 = f0 + 〈Tt − T 〉f0T + 〈Vt − V 〉f0V +
1

2
〈(Tt − T )2〉f0TT

+
1

2
〈(Vt − V )2〉f0V V + 〈(Tt − T )(Vt − V )〉f0TV +O(3), (3)

where O(3) represents higher order terms.

We can simplify (3) considerably: First note that since T is the expectation value of Tt
we have 〈Tt − T 〉 = 〈Tt〉 − T = T − T = 0 and with the same argument 〈Vt − V 〉 = 0. The
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quantity 〈(Tt − T )2〉 is the variance of the fluctuating temperature – we will assume this is
known in simulations and substitute 〈(Tt − T )2〉 = σ2

T . Since the temperature variations are
small with respect to the mean and has a symmetric distribution we may neglect higher order
terms in (3) Rodriguez and Tuckwell [1996] We are left with:

〈f(Tt, Vt)〉 ≈ f0 +
σ2
T

2
f0TT

+
1

2
〈(Vt − V )2〉f0V V + 〈(Tt − T )(Vt − V )〉f0TV . (4)

We have evaluated the last two terms in (4) numerically for the model presented in Section 3
and found that 〈(Vt−V )2〉 and 〈(Tt−T )(Vt−V )〉 tend to zero (supplementing information)
– neglecting the last two terms (4) reduces to

〈f(Tt, Vt)〉 ≈ f0 +
σ2
T

2
f0TT . (5)

Equation (5) is the main observation in this work. We shall in the following estimate
the implications of this result on realistic asynchronously coupled state-of-the-art ice sheet
climate model simulations. As 〈f(Tt, Vt)〉 = 0 at the steady state it can be seen from (5) that

0 = f0 +
σ2
T

2
f0TT ⇒

f0 = −σ
2
T

2
f0TT > 0 (6)

since f0TT < 0 – this negative curvature of f0 is the nonlinear effect causing the bias. V0(T )
is the stable fixed point; f(V0(T ), T ) = 0, thus f(V, T ) > 0 for V < V0 and f(V, T ) < 0 for
V > V0. This together with (6) implies that V < V0.

3 Ice Sheet Simulations

3.1 Fluctuating Temperatures

To generate an ensemble of volume simulations we use time series Tt comparable to
the observed temperatures over Greenland between year 1851 and 2011. For this we use
the AR(1)-process [Hasselmann, 1976; Frankignoul and Hasselmann, 1977; von Storch and
Zwiers, 2003; Mudelsee, 2010]:

Tt+1 = T + a× (Tt − T ) + σARWt. (7)

The parameters (a, σ2
AR) were obtained by fitting (7) to the observed annual mean tem-

peratures over Greenland between year 1851 and 2011 (supplementing information). We
obtain (a, σ2

AR) = (0.67, 0.85) thus the process (7) has variance [Box et al., 2008] σ2
T =

σ2
AR/(1−a2) = 1.54 K2 comparable to the observed temperature over Greenland σobs

T = 1.55
K2.

We find time step size of one year to be sufficient for integrating the Oer03-model (sup-
plementing information); thus Tt+1 in (7) represents the temperature one year after Tt.

To find the steady state volume we run the Oer03-model forward long enough for the
ice sheet to reach equilibrium, with and without fluctuating temperatures. The results of this
procedure are shown in Figure 1 (left) where it is clearly seen that the steady state volume
is lower for simulations with fluctuating temperatures than with constant temperature. We
emphasize that the fluctuating temperature time series {Tt} have as mean the constant tem-
perature, 〈Tt〉 = T so that the results are due to the temperature fluctuation.

In Figure 1 (right) the effect of temperature fluctuations is shown in the (T, V )-plane:
The markers “+” are steady states of numerical simulations with constant temperature, while
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Figure 1. (Left) Simulations of the Oer03-model for T = −1.5, 0, 1.5 and 3. The black curves de-

note a constant temperature and the grey curves fluctuating temperatures generated with (7). (Right) The

mass balance (Equation 1) for the Oer03-model in the (T, V )-plane. The black contour is the steady state

f = dV/dt = 0. The markers represent the average of the numerical simulation with constant (+) and

fluctuating (◦) temperature seen on the left. Finally the yellow contour shows the approximation derived in in

(5).

the circles represent ensemble averages of simulations with fluctuating temperatures. It is
evident that temperature fluctuations decrease the steady state ice volume. The yellow curve
in Figure 1 (right) was calculated using (5) and gives a good agreement with the results from
ensemble simulations.

In order to illustrate the physics behind (5), consider values of the mass budget function
f for different ice sheet volumes V , shown in Figure 2. The insert shows, for a particular value
of V , how the steady state is influenced by fluctuating temperatures: The average mass budget
of a colder year and a warmer year is less than the mass budget of a year with a temperature
corresponding to the average of “cold” and “warm”; to put it another way: the increased
SMB of a single anomalously cold year cannot balance the increased melt from an equally
anomalously warm year. In particular let Tc = T − σ and Th = T + σ:

f(V, Tc) + f(V, Th)

2
< f

(
V,
Tc + Th

2

)
; (8)

this is consistent with f0TT < 0 as shown in (6).

4 Consequences for Long Term Ice Sheet Simulations

Here we investigate the effect of accounting for fluctuating temperatures when running
long time scale climate simulations. These can be either transient runs, scenarios with spec-
ified changing CO2-forcing or equilibrium runs with specified constant forcing. Specifically
we analyze the results of Robinson et al. [2012] where the long term stability of the GrIS is
investigated. In this study an ice sheet model is forced by the output of a regional climate
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Figure 2. Left: Mass balance V̇ of the ice sheet for different values of the total ice sheet ice volume V

in the Oer03-model. Similar to Figure 1 but here we show V̇ as a function of T for different total volumes

V . Insert, left: The curvature of V̇ (T ) influences the steady state behavior – a cold year does not cancel out

the effect of an equally warm year as shown in Eq. 8. The value of σT is used for illustration and is given

as the square root of the temperature variance, σT =
√

1.54K2 = 1.24K. Note the similarity of the V̇ (T )

found here to Figure 6h in Fettweis et al. [2013]. Right: Estimating the effect of fluctuating temperatures on

GrIS projections. The full curve is obtained by fitting a third degree polynomial f̃(T ) to an SMB(T ) from

Robinson et al. [2012]. The dotted line show the effect of temperature fluctuations obtained by applying Eq.

(5). For a warming of 4◦C the green circle shows the SMB. ∆SMB is obtained by applying Eq. (10) and

represents the change in mass balance resulting from the temperature fluctuations. −∆T is the temperature

change required to negate this effect and is obtained implicitly from Eq. (11).

model driven by the ERA40 climatology with a constant temperature anomaly applied, see
Robinson et al. [2012] and Supplementary Information.

As parameters in ice sheet models are often tuned to best match the problem under
investigation (eg. Muresan et al. [2016]), the ice sheet volume bias we describe may already
be implicitly compensated. To estimate the size of the temperature fluctuation bias, we assume
that this has not already been accounted for by parameter tuning.

Fettweis et al. [2013] compare the output of RCMs forced with multiple future climate
scenarios and show that the effect of rising temperature on the GrIS SMB is well described by
a third degree polynomial (note the qualitative similarities between Figure 2 and Figure 6h in
Fretwell et al. [2013]). Here we take the same approach. To the ensemble of simulations in
Robinson et al. [2012] we fit third degree polynomials to the SMB as a function of temperature
at time t = 200 years (supplementing information) and obtain third degree polynomials in T :{

f̃ij(T )
∣∣f̃ij(T ) = AijT

3 +BijT
2 + CijT +Dij

}
(9)

where the indices i and j run over two separate parameters in the model that take 9 – respec-
tively 11 –values [Robinson et al., 2012] so in total we have 99 unique polynomial fits. These
polynomials are then used as a simple description of the mass balance function as a function
of temperature, SMBij(T ) = f̃ij(T ). Differentiating twice we obtain f̃TT (T ) = 6AT + 2B
(suppressing indices i, j for clarity).

For all parameter pairs (i, j) we evaluate f̃(T ) and f̃(T ) + (σ2
T /2)f̃TT (T ) – this is

shown in Figure 2 (right) as the full and dotted lines, respectively.

To illustrate this approach we pick a specific temperature T0. f̃(T0) is thus the SMB
for a constant temperature and f̃(T0) + (σ2

T /2)f̃TT (T0) represents the effect of letting the

–7–



Confidential manuscript submitted to Geophysical Research Letters

temperatures fluctuate. This procedure gives us an expression for ∆SMB

∆SMB = f̃(T0)−
[
f̃(T0) +

σ2
T

2
f̃TT (T0)

]
= −σ

2
T

2
f̃TT (T0) (10)

where ∆SMB is positive in accordance with (6). Next we find the temperature difference ∆T
such that

f̃(T0 −∆T ) +
σ2
T

2
f̃TT (T0 −∆T ) = f̃(T0). (11)

In this way ∆T is the effective temperature change resulting from considering fluctuat-
ing temperatures.

The results of applying the steps outlined above on the data from Robinson et al. [2012]
are shown in Figure 3 (see also supplementing information). The red curves in Figure 3
shows the most likely ∆T and ∆SMB; the grey curves are estimates for the 9× 11 individual
parameter values and the blue shade area represents the 95% credibility region.

The warmings quoted in Robinson et al. [2012] are relative to the preindustrial period
whereas the reported warming from the preindustrial period to the present day is estimated to
1◦C [Stocker et al., 2013, p. 78]. Furthermore, as a likely warming from today to the year 2100
can be taken the RCP45 scenario yielding more likely than not a further warming of 2.0◦C
[IPCC, 2013, p. 21]. Combing these numbers we arrive at a warming of 3.0◦C in the year
2100 relative to the preindustrial when considering the RCP45 scenario. For this value it is
seen in Figure 3 that an additional 0.12◦C should be added to any constant warming term when
considering simulations of the Greenland ice sheet, assuming the same temperature variance
as in Section 3 (top). Further, Figure 3 (bottom) shows the most likely ∆SMB resulting from
temperature fluctuations at a 3◦C warming to be 30 Gt/y. To put this number in context,
consider Barletta et al. [2013] who report an average GrIS SMB of −234 ± 20 Gt/y for the
period 2003 to 2011.

Observe in Fig. (3) that ∆T goes to zero for low temperature anomalies and appears to
saturate for higher temperature anomalies. In the framework presented here this can be ex-
plained by considering the SMB(T )-curves shown in Fig. (2). For low temperature anomalies
the SMB(T ) curve is close to flat so the second derivative is small; this gives a small contribu-
tion to ∆SMB from Eq. (10). On the other hand, as the SMB(T ) curve becomes progressively
steeper, a correspondingly smaller ∆T in Eq. (11) is required to compensate for ∆SMB.

The results above highlight that interannual temperature variability cannot be neglected
in long term studies involving ice sheet models. The straightforward approach would be to
simply include the expected temperature variability in a number simulations followed by cal-
culating the ensemble average. Conversely, one could calculate the effect of temperature vari-
ability for a range of climate scenarios as a starting point for a following bias adjustment.

5 Discussion

5.1 Limitations of this study

When calculating the f̃ ’s in (9) and (10) we assume a constant volume in the data from
Robinson et al. [2012], but in reality the relative variations are as large as 9.5% when consid-
ering all the warming temperatures shown in Figure 3 (supplementing information). However
to draw the conclusion about the consequences of a 3◦C warming it is adequate to consider
warmings less than 4◦C and here the volume variation was less than 3% of the average. Ne-
glecting variations in volume does add uncertainty to our results, and it is not immediately
clear to us how to quantify that uncertainty. Additionally, at time t = 200 where we extracted
the data the ice sheets in Robinson et al. [2012] are not in steady state, expanding the analysis
using a data set from ice sheet simulations in steady state would be desirable.
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Figure 3. Maximum likelihood estimates of ∆T and ∆SMB (red curves). The grey curves are estimates

from individual simulations and the blue shaded area denotes 95% credibility regions.

The temperature fluctuation is accounted for in most studies either explicitly [Ridley et
al., 2010; Seguinot, 2013] or implicitly in the tuning of the surface mass balance scheme. Our
result may be used to explicitely implement the contribution from the temperature fluctuations
in the mass balance schemes before bias correcting due to other possible model deficiencies.

5.2 Conclusion and outlook

From a theoretical argument and by considering a minimal ice sheet model we have
shown that fluctuating temperatures forcing the ice sheet have an effect on the steady state
volume of the ice sheet.

The effect is explained by the curvature, or second derivative, of the mass balance as a
function of temperature. A negative curvature gives rise to nonlinear effects meaning that the
average mass accumulation resulting from a cold year and a warm year in succession is less
than the mass accumulation of two consecutive years having the average temperature of the
“warm” and “cold” years.

Even though we considered a simple ice sheet model, the results are transferable to
other more realistic models as long as the rather weak assumptions leading up to (5) hold. E.g.
models of sub-shelf melting, grounding line migration, and ice discharge respond very non-
linearly to changes in ocean temperatures [Favier et al., 2014; Joughin et al., 2014; Seroussi
et al., 2014; Mengel and Levermann, 2014; Pollard et al., 2015; Fogwill et al., 2014], thus it
is critical to take variability into account for quantitative assessments.
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The response of a real ice sheet to temperature increase is naturally much more complex
than what can be described in a simple study such as the present paper. In a model study Born
and Nisancioglu [2012] observe mass loss acceleration of the Northeastern GrIS as a response
to warming. This part of the GrIS experiences comparatively little precipitation and thus in-
creasing melt is not compensated by increasing accumulation. However, the opposite has been
shown to be the case for Antarctica. Frieler et al. [2015] show that increasing temperatures
will increase Antarctic SMB at continental scales due to increasing precipitation. This is an
interesting special case of an accumulation dominated mass balance, where the curvature term
in Eq. (5) has the opposite sign, thus an underestimated temperature fluctuation would lead to
an underestimation of the growth of the ice sheet.

We have evaluated the consequences of the temperature fluctuation bias on long-term
GrIS simulations and found that, if the full effects are taken into account with no further mod-
ifications, a significant effective temperature change would be required for an unbiased esti-
mation of the equilibrium ice volume. Peter: Skulle vi gentage vores talestimater p temperatur
stigning og masse tab her?
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haus, S. Sheldon, S. B. Simonsen, J. Sjolte, a. M. Solgaard, T. Sowers, P. Sperlich, H. C.
Steen-Larsen, K. Steffen, J. P. Steffensen, D. Steinhage, T. F. Stocker, C. Stowasser, a. S.
Sturevik, W. T. Sturges, a. Sveinbjörnsdottir, a. Svensson, J.-L. Tison, J. Uetake, P. Valle-
longa, R. S. W. van de Wal, G. van der Wel, B. H. Vaughn, B. Vinther, E. Waddington,
a. Wegner, I. Weikusat, J. W. C. White, F. Wilhelms, M. Winstrup, E. Witrant, E. W. Wolff,
C. Xiao, and J. Zheng (2013), Eemian interglacial reconstructed from a Greenland folded
ice core, Nature, 493(7433), 489–494, doi:10.1038/nature11789.

Eakins, B., and G. Sharman (2010), Volumes of the world’s oceans from etopo1.
Favier, L., G. Durand, S. L. Cornford, G. H. Gudmundsson, O. Gagliardini, F. Gillet-

Chaulet, T. Zwinger, a. J. Payne, and a. M. Le Brocq (2014), Retreat of Pine Island
Glacier controlled by marine ice-sheet instability, Nature Climate Change, 4, 117–121, doi:
10.1038/nclimate2094.

Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den
Broeke, and H. Gallée (2013), Estimating Greenland ice sheet surface mass balance con-
tribution to future sea level rise using the regional atmospheric climate model MAR, The
Cryosphere, 7, 469–489, doi:10.5194/tc-7-469-2013.

Fogwill, C. J., C. S. M. Turney, K. J. Meissner, N. R. Golledge, P. Spence, J. L. Roberts, M. H.
England, R. T. Jones, and L. Carter (2014), Testing the sensitivity of the East Antarctic
Ice Sheet to Southern Ocean dynamics: Past changes and future implications, Journal of
Quaternary Science, 29(1), 91–98, doi:10.1002/jqs.2683.

Foster, G., and E. Rohling (2012), Relationship between sea level and climate forcing by CO2
on geological timescales, Proceedings of the National Academy of Sciences, 110(4), 1209–
1214, doi:10.1073/pnas.1216073110.

Frankignoul, C., and K. Hasselmann (1977), Stochastic climate models, part ii – application
to sea-surface temperature anomalies and thermocline variability, Tellus, 29(4), 289–305,
doi:10.1111/j.2153-3490.1977.tb00740.x.

Fretwell, P., H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi,
R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, a. J.
Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim,
P. Gogineni, J. a. Griggs, R. C. a. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel,
a. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. a.
Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O.
Nitsche, Y. Nogi, O. a. Nost, S. V. Popov, E. Rignot, D. M. Rippin, a. Rivera, J. Roberts,

–11–



Confidential manuscript submitted to Geophysical Research Letters

N. Ross, M. J. Siegert, a. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C.
Welch, D. Wilson, D. a. Young, C. Xiangbin, and a. Zirizzotti (2013), Bedmap2: Improved
ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7(1), 375–393, doi:
10.5194/tc-7-375-2013.

Frieler, K., P. U. Clark, F. He, C. Buizert, R. Reese, S. R. M. Ligtenberg, M. R.
van den Broeke, R. Winkelmann, and A. Levermann (2015), Consistent evidence of in-
creasing antarctic accumulation with warming, Nature Climate Change, 5, 348–352, doi:
10.1038/NCLIMATE2574.

Fyke, J. G., Miren, Vizcaı́no, W. Lipscomb, and S. Price (2014), Future climate warming in-
creases greenland ice sheet surface mass balance variability, Geophysical Research Letters,
41(2), 470–475, doi:10.1002/2013GL058172.

Gasson, E., M. Siddall, D. J. Lunt, O. J. L. Rackham, and C. H. Lear (2012), Exploring Uncer-
tainties in the Relationship Between Temperature , Ice Volume , and Sea Level Over the Past
50 Million Years, Reviews of Geophysics, 50(RG1005), 1–35, doi:10.1029/2011rg000358.

Greenbaum, J. S., D. D. Blankenship, D. a. Young, T. G. Richter, J. L. Roberts, a. R. a. Aitken,
B. Legresy, D. M. Schroeder, R. C. Warner, T. D. van Ommen, and M. J. Siegert (2015),
Ocean access to a cavity beneath Totten Glacier in East Antarctica, Nature Geoscience,
8(4), 294–298, doi:10.1038/NGEO2388.

Gregory, J. M., and P. Huybrechts (2006), Ice-sheet contributions to future sea-
level change., Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 364(1844), 1709–1731, doi:10.1098/rsta.2006.1796.

Gregory, J. M., O. J. H. Browne, A. J. Payne, J. K. Ridley, and I. C. Rutt (2012), Modelling
large-scale ice-sheet–climate interactions following glacial inception, Climate of the Past,
8(5), 1565–1580, doi:10.5194/cp-8-1565-2012.

Hasselmann, K. (1976), Stochastic climate models – part i. theory, Tellus A, 28(6), 473–485,
doi:10.3402/tellusa.v28i6.11316.

Hock, R. (2003), Temperature index melt modelling in mountain areas, Journal of Hydrology,
282(1–4), 104–115, doi:10.1016/S0022-1694(03)00257-9.
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U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J. Gregory, D. Hartmann,
E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-
Delmotte, G. Meehl, I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas,
C. Sabine, D. Shindell, L. Talley, D. Vaughan, and S.-P. Xie (2013), Technical Summary,
book section TS, pp. 33–115, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, doi:10.1017/CBO9781107415324.005.

Strugnell, J. M., P. C. Watts, P. J. Smith, and A. L. Allcock (2012), Persistent genetic signatures
of historic climatic events in an Antarctic octopus, Molecular Ecology, 21(11), 2775–2787,
doi:10.1111/j.1365-294X.2012.05572.x.

Sun, S., S. L. Cornford, Y. Liu, and J. C. Moore (2014), Dynamic response of Antarctic ice
shelves to bedrock uncertainty, The Cryosphere, 8(4), 1561–1576, doi:10.5194/tc-8-1561-
2014.

Vernon, C. L., J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and
P. Huybrechts (2013), Surface mass balance model intercomparison for the greenland ice
sheet, The Cryosphere, 7, 599–614, doi:10.5194/tc-7-599-2013.

Vizcaino, M., U. Mikolajewicz, F. Ziemen, C. B. Rodehacke, R. Greve, and M. R. van den
Broeke (2015), Coupled simulations of greenland ice sheet and climate change up to a.d.
2300, Geophysical Research Letters, 42(10), 3927–3935, doi:10.1002/2014gl061142.

von Storch, H., and F. W. Zwiers (2003), Statistical Analysis in Climate Research, netlibrary
edition ed., Cambridge University Press.

Wake, L., and S. Marshall (2015), Assessment of current methods of positive degree-day cal-
culation using in situ observations from glaciated regions, Journal of Glaciology, 61(226),
329–344, doi:10.3189/2015JoG14J116.

Ziemen, F. A., C. B. Rodehacke, and U. Mikolajewicz (2014), Coupled ice sheet–climate
modeling under glacial and pre-industrial boundary conditions, Climate of the Past, 10(5),
1817–1836, doi:10.5194/cp-10-1817-2014.

–14–





Appendix E

Supporting Information for
“Influence of temperature
fluctuations on equilibrium ice
sheet volume”

115



Confidential manuscript submitted to Geophysical Research Letters

Supporting Information for1

“Influence of temperature fluctuations on equilibrium volume in conceptual2

ice sheet model”3

Troels Bøgeholm Mikkelsen1, Aslak Grinsted1and Peter D. Ditlevsen1
4

1Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen Ø5

Contents6

1. The Oer03 model7

2. Observed Fluctuations in Greenland Temperature8

3. Evaluation of Neglected Terms in Equation 5)9

4. Analysis of Robinson et al. [2012]’s Data10

5. References11

The Oer03 model12

The Oer03 model is introduced in Oerlemans [2003] – some details are briefly summa-13

rized here. The model is “highly paramterized” and coupled to the surrounding climate by14

the altitude of the runoff line. Effectively the model consists of three steps: 1) describing the15

shape of the ice sheet, 2) analytically integrating the mass balance over the ice sheet and 3),16

numerically integrating the resulting expression for dR/dt where R is the radius of the ice17

sheet; the volume V is then uniquely determined from R.18

Above the runoff line the accumulation is constant, below the balance gradient is con-19

stant; this is illustrated in Figure 1. The ice sheet is axially symmetric and rests on a sloping20

bed; furthermore ice is assumed to be a perfectly plastic material [Oerlemans, 2003].21

The parameters we use are shown in Table 1. We have kept most parameters fixed22

as compared to Oerlemans [2003] but changed a total of 7 values to crudely approximate23

Greenland – note that we do not claim to be able to make accurate predictions of the GrIS24

even with this parametrisation. The temperature T = 5.8�C has been chosen so that no25

temperature anomaly (i.e. setting T = 0 in Equation 2) gives a equilibrium volume of about26

7m SLE, corresponding roughly to the GrIS [Church et al., 2013].27
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Name Unit Value Notes

A0 m ice yr�1 1.0 † Characteristic specific balance.
� m ice yr�1m�1 0.005 † Specific balance gradient.
c m1/2 2⇥ 106 † Bed slope effect parameter.
C

R

m 5⇥ 105 † e-folding radius for “desert effect” from large ice sheets; see Eq. 3
d0 m = h

E,0
⇤) Undisturbed bed height at center of ice sheet.

h
Eq

m See Eq. 2 ⇤) Height of equilibrium line.
h
E,0 m 1545 ⇤) Equilibrium line height at T = 0. Approximate 1990 - 2010 average (NOAA [2015], Fig 3.2a).

f yr�1 0.5 + Bulk flow parameter related to ice discharge.
µ0 m1/2 8 † Bed slope effect parameter.
µ = µ0 + cs2 Equation 4 in Oerlemans [2003]
⇢
i

kg m�3 900 + Density of ice.
⇢
w

kg m�3 1025 + Density of sea water.
⇢
m

kg m�3 3500 + Density of bedrock.
r
c

m 8⇥ 105 ⇤) Continental radius. Approximate width of Greenland.
r
gr

m 8⇥ 105 ⇤) Initial value – dynamical value in the model.
s m/m d0/rc ⇡ 0.002 ⇤) Bed slope.
T̄ �C 5.8⇤) Temperature offset.

Table 1. †: Suggested in Oerlemans [2003]. +: suggested in private communication with Hans Oerlemans.
⇤): chosen by the present authors.
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Figure 1. Specific balance B for T = 0 resulting from the parameters in Table 1 and Equations 2, 3 and
4. For h  hR we have B = A, whereas for h < hR , B = A � �(hR � h) (Equation 14 in Oerlemans

[2003].) Above the runoff line hr the specific balance is constant, below hr the balance gradient is constant.
hEq denotes the equilibrium line.
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Steps 1 through 11 below describe the Oer03 model setting used – these steps describe34

calculations performed at every time step that give an expression for35

dR

dt
= f(T,R); (1)

dR/dt is then integrated using the Euler scheme with a time step of 1 year. We find that using36

a smaller time step size than this only produce negligible differences – see Figure 2 for an37

example.38

1. We couple the ice sheet to the ambient temperature by introducing the following rela-39

tionship between temperature and height of the equilibrium line [Oerlemans, 2008]:40

h
Eq

= h
E,0 + (T � T̄ ) · 1000/6.5. (2)

Equation 2 represents an increase of the equilibrium line altitude of approximately 15441

m �C�1.42

2. Equation 3 reflects that the accumulation rate will likely decrease for a large ice sheet43

(Equation 20 in Oerlemans [2003]):44

A A0e
�R/RC . (3)

3. Height of the runoff line (Equation 15 in Oerlemans [2003]):45

h
R

 h
Eq

+A/�. (4)

4. Height of the bedrock where the ice sheet ends:46

h
E

 d0 � sR. (5)

5. Location where the runoff line intersects the ice sheet surface (Equation 17 in Oerle-47

mans [2003]):48

r
R

 R� (h
R

� h
E

)2/µ. (6)

6. Check if the ice sheet extends into the sea, i.e. if R > r
c

. If so, use Equation (7) in49

Oerlemans [2003] to define the radial coordinate of the grounding line r
gr

:50

• if R > rc:51

r
gr

= R� h2
E

/µ. (7)

7. If the radial coordinate of the runoff line is larger than of the grounding line, set runoff52

coordinate to grounding coordinate:53

• if r
R

> r
gr

:54

r
R

 r
gr

. (8)

8. If the height of the runoff line is smaller than the height of ice sheet termination, set55

radial coordinate of the runoff line to radius of the ice sheet:56

• if h
R

< h
E

57

r
R

 R. (9)

9. If R < r
c

the ice sheet is continental. Equations 10 and 11 are included for numerical58

reasons.59

• if R  r
c

60

– if r
R

< 061

r
R

 0 (10)

– if R < 162

R 1 (11)
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– Calculate total dV/dt = B
tot

:63

B
tot

 ⇡AR2 (12)
�⇡� (h

R

� h
E

)
�
R2 � r2

R

�
(13)

+
4⇡�µ1/2

5
(R� r

R

)5/2 (14)

�4⇡�µ1/2

3
R (R� r

R

)3/2 . (15)

(16)

10. If R > r
c

the the ice sheet extends into the sea:64

• if R > r
c

65

B
tot

 ⇡Ar2
gr

(17)
�⇡� (h

R

� h
E

)
�
r2
gr

� r2
R

�
(18)

+
4⇡�µ1/2

5

⇣
(R� r

R

)5/2 � (R� r
gr

)5/2
⌘

(19)

�4⇡�µ1/2

3

⇣
R (R� r

R

)3/2 �R (R� r
gr

)3/2
⌘

(20)

�2⇡r
gr

✓
⇢
w

⇢
i

◆
f (sr

gr

� d0)
2 . (21)

Here the last term corresponds to Equation 19 in Oerlemans [2003] and is related to66

the flux across the grounding line.67

11. Relationship between dR

dt

and B
tot

, corresponding to Equation 13 in Oerlemans [2003]:68

• if R  r
c

69

Q  ⇡

✓
1 +

⇢
i

⇢
m

� ⇢
i

◆✓
4

3
µ1/2R3/2 � sR2

◆
, (22)

dR

dt
 B

tot

/Q. (23)

• if R > r
c

70

Q  ⇡

✓
1 +

⇢
i

⇢
m

� ⇢
i

◆✓
4

3
µ1/2R3/2 � sR2

◆
(24)

�2 ⇢
w

⇢
m

� ⇢
i

�
⇡sR2 � d0R

�
, (25)

dR

dt
 B

tot

/Q. (26)

Integrating steps 1-11 yield a time series of the ice sheet radius. To convert to volume71

we use the following relations (Equations 9, 11 and 12 in Oerlemans [2003]); the volume of72

the continental part of the ice sheet:73

V
cont

=
8⇡µ1/2

15
R5/2 � 1

3
⇡sR3. (27)

In the case of the ice extending to the sea, the volume of the sea water replaced by ice:74

V
sea

= ⇡

✓
2

3
s
�
R3 � r3

c

�
� d0

�
R2 � r2

c

�
.

◆
(28)

V
sea

is set to zero if the ice does not extend to the sea and thus R < r
c

. The total volume is75

given by:76

V
tot

= V
cont

✓
1 +

⇢
i

⇢
m

� ⇢
i

◆
� ⇢

w

⇢
m

� ⇢
i

V
sea

. (29)
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Figure 2. Varying the integration stepsize �t from 1 year to 0.01 years for a simulation with T = 0, such
that the (random) fluctuating temperature Tt is the same for each whole year. A visual inspection confirms
qualitatively that the graphs for varying �t coincide and we do not further analyze the consequences of
varying �t.

77

78

79

80
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Observed Fluctuations in Greenland temperature81

Surface temperature anomalies were obtained from (KNMI) [2015]. We use the “Twen-82

tieth Century Reanalysis V2c” from the years 1851 to 2011 in a box spanning 68�N to 80�N83

and 25�W to 60�W. The raw data consists of monthly means and is shown in Figure 3 as the84

blue curve.85
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Figure 3. Reanalysis data showing monthly mean surface temperature anomaly (blue curve) over the area
68�N – 80�N, 25�W – 60�W covering a large part of Greenland. The red curve is the annual mean surface
temperature anomaly.

86

87

88

We treat the temperature data as follows:89

1. We calculate the yearly mean (the red curve in Figure 3),90

2. To the yearly means we fit an autoregressive model of order 1 or an AR(1)-model,91

3. The parameters from this model is used to generate artificial temperature time series92

{T
t

} that fluctuate in a way similar to the observed temperatures over Greenland.93

An AR(1) model describing describing {T
t

} has the form94

T
t+1 = c+ aT

t

+ �
AR

W
t

. (30)

where (c, a,�
AR

) are parameters to be determined and W
t

is white noise with unit variance95

and zero mean. The parameters (a,�
AR

) are found using MATLAB’s estimate(). We find96

(a,�2
AR

) = (0.67, 0.85). (31)
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Evaluating Neglected Terms in Equation 5)97

Figure 4. Evaluation of part of the terms dropped from Equation 4 in the main article, for simulations with
same parameters as in Figure 1. It is clear that h(Vt � V )2i and h(Tt � T )(Vt � V )i tend to zero.

98

99
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Analysis of Robinson et al. [2012]’s Data100

We aim to estimate what effect a fluctuating temperature would have on the results101

quoted in Robinson et al. [2012] concerning the stability of the Greenland Ice Sheet (GrIS).102

Methodology103

The Surface Mass Balance (SMB) as a function of warming (T̄ ) is extracted as follows:104

• In Robinson et al. [2012] the warming is ramped for the first 100 years for numerical105

reasons. We wait until t = 200 years to extract SMB(T),106

• Robinson et al. [2012] employ 9⇥11 values of two separate parameters deemed “equally107

likely” in their simulations,108

• For each of these 99 simulations a 3rd degree polynomial is fitted to SMB(T ) following109

Fettweis et al. [2012]. We denote these fits g
ij

(T ),110

• We proceed as outlined in Section 4 (main article).111

• Finally we calculate 95% credible intervals for each value of T . This is done by fitting112

a densities to the obtained �T and �SMB and calculating the interval containg 95%113

of the observations.114

Figure 5. Histogram of the maximum difference in volume for different temperature anomalies divided
by the mean volume t = 200 years in the data from Robinson et al. [2012], calculated for each parameter
combination; in total there are 9⇥ 11 combinations of two separate parameters .

115

116

117
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Figure 6. Same as Figure 5 but for a maximum warming of 4�C.118
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