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Abstract

Large-scale entangled quantum states of multiple photons are consid-
ered a promising resource for measurement-based quantum computing and
long-range quantum communication. Quantum emitters have proven to
be a powerful tool as deterministic single-photon sources. By implement-
ing spin inside such an emitter and applying the appropriate driving se-
quence, one can create a spin-photon interface capable of generating a one-
dimensional entangled chain of photonic qubits. However, for a universal
quantum computing resource, more complex structures are required. One
approach to scaling up to higher dimensions, allowing for improved toler-
ance to qubit losses, involves coupling multiple emitters to create a highly
entangled photon state up front. Here, we present the first demonstration
of photon-mediated coupling between solid-state quantum dots.

Direct signatures of coupling between self-assembled quantum dots have
been challenging to observe, primarily due to inhomogeneities in their emis-
sion frequencies and position, along with their susceptibility to decoher-
ences from the environment. In the present work, we use InAs quantum
dots embedded in a GaAs photonic crystal waveguide. The waveguide ef-
fectively extends the range of the dipole-dipole interaction, mitigating the
spatial limitation. From transmission measurement of the nanophotonic de-
vice, we select three quantum dots well coupled to the mode of the shared
waveguide, and spectrally close to each other. By applying an out-of-plane
magnetic field, we tune the quantum dots into resonance, pairwise. The
interaction between the pairs is induced by their coupling to the local polar-
ization of the waveguide mode.

Under these conditions, the investigation of the coupling between the
quantum dots is enabled. By driving a single emitter of a pair with res-
onant optical pulses, we observe the modification of its lifetime when the
two emitters are tuned to resonance. The exhibited fast Γ+, and slow Γ−,
components of the decay stem from the super- and subradiant collective
emission from the coupled system. The ratio between the two decay rates,
equal to Γ+/Γ− = 4.8 for one of the pairs, constitutes a figure of merit of
the coupling strength, and is strongly sensitive to decoherences and imper-
fections. We further probe the coherent evolution of the collective states for
a range of detunings between the emitters, and identify a predominantly
dissipative coupling. Our results are in good agreement with numerical
simulations conducted based on the theory developed for the present work.

By means of different excitation conditions, we additionally explore the
controlled preparation of the initial collective state. We drive the system col-
lectively and utilize the polarization of the excitation beam as the enabling
parameter to impose a relative driving phase between the two emitters. We
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propose to exploit this method to selectively populate the super- and subra-
diant states on demand.

The system is finally probed with second-order correlation measurements
under coherent and continuous drive. Contrary to previous works, we drive
one quantum dot of the indistinguishable pair and observe an anti-dip of
g(2)(0) = 0.94 in the photon-coincidences, along with a broadening of the
single-emitter dip. We suggest that, in the single-emitter excitation scheme,
the presence of the anti-dip serves as a clear indicator of coupling through
the waveguide mode and can be directly associated with superradiance.
The broadening of the dip, on the other hand, is attributed to the decay
of the longer-lived subradiant state. These interpretations are further sup-
ported by numerical simulations.

Our work constitutes a first demonstration of coupling between distant
quantum dots and lays the foundation for deterministic entanglement gen-
eration through collective excitation of the emitters.
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Sammenfatning

Store sammenfiltrede kvantetilstande med flere fotoner er udset til at
være en lovende resurse til en målingsbaseret kvantecomputer og langdis-
tance kvantekommunikation. Kvantelyskilder har vist sig at være et vigtigt
værktøj som deterministiske enkeltfotonkilder. Ved at implementere et spin
i sådan en lyskilde, og ved anvendelse af en passende sekvens af drivsig-
naler, er det muligt at skabe en spin-foton grænseflade, som er i stand til at
generere en endimensionel sammenfiltret kæde af fotoniske qubits. Imidler-
tid kræves der mere komplekse strukturer, for at have en resurse til en uni-
versel kvantecomputer. En måde at skalere op til højere dimensioner, som
tillader en forbedret modstandsdygtighed mod tab af qubits, involverer
kobling af flere lyskilder for at generere en særligt sammenfiltret fotonisk
tilstand fra starten. Her præsenterer vi den første demonstration af foton-
formidlet kobling mellem faststofkvantepunkter.

Direkte signaturer af koblingen mellem selvsamlende kvantepunker har
været vanskelige at observere, primært grundet forskelle i deres emissions-
frekvenser og position, samt deres følsomhed for inkohærens fra omgivelserne.
I denne afhandling bruger vi InAs kvantepunkter indlejret i GaAs en fo-
tonisk krystal-bølgeleder. I praksis forlænger bølgelederen rækkevidden af
dipol-dipol interaktionen, hvorved den omgår de rumlige begrænsninger.
Fra transmissionsmålinger af den nanofotoniske struktur vælger vi tre kvan-
tepunkter som alle er velkoblede til modet af deres fælles bølgeleder, og som
er spektralt tæt på hinanden. Ved at benytte et ude-af-planet magnetfelt,
kan vi bringe kvantepunkterne parvist i resonans. Interaktionen mellem
parrene er induceret af deres kobling til den lokale polarisering af bølgeled-
erens mode.

Under disse forhold er det muligt at studere af koblingen mellem kvan-
tepunktern. Ved at drive en enkelt af lyskilderne i parret med resonante
optiske pulser, observerer vi ændringer i levetiden, når også de to lyskilder
er i resonans. De udviste hurtige Γ+, og langsomme Γ− komponenter af
henfaldet stammer fra super- og subudstråling fra den kollektive emission
fra det koblede system. Forholdet mellem de to henfaldsrater, som er lig
Γ+/Γ− = 4.8 for det ene par, konstituere et mål for koblingsstyken, og
er særligt sensitiv til inkohærens og ufuldkommenheder. Vi måler også
den kohærente udvikling af de kollektive tilstande for en række detuninger
mellem lyskilderne, og identificere in overvægt af dissipativ kobling. Vores
resultater er i god overensstemmelse med numeriske simuleringer, som er
baseret på teorien der er udledt i forbindelse med det præsenterede værk.

Ved brug af forskellige betingelser for exciteringen undersøger vi også
den kontrollerede forberedelse af den oprindelige kollektive tilstand. Vi
driver systemet kollektivt og benytter polariseringen af excitationsstrålen,
som den aktiverende parameter til at pålægge en relativ fase mellem de to
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lyskilder. Vi foreslår at tage gavn af denne metode til selektivt at okkupere
den super- og subudstrålende tilstand på kommando.

Endeligt er systemet undersøgt med anden-ordens korrelationsmålinger
under kohærent og kontinuert drev. I modsætning til tidligere værker, driver
vi én af kvantepunkterne af det identiske par. Vi observerer et anti-dyk
af g(2)(0) = 0.94 i fotonsammenfaldene og en udvidelse af enkelt-lyskilde
dykket. Vi foreslår, at i enkelt-lyskilde excitations tilfældet, er tilstedeværelsen
af et anti-dyk en klar indikator for kobling gennem bølgeledermodet. Anti-
dykket kan associeres direkte med superudstråling, mens udvidelsen af
dykket tilskrives til

henfaldsraten af den længere-levende subudstrålingstilstand. Disse for-
tolkninger er yderligere understøttet af numeriske simuleringer.

Vores værk konstituerer en første demonstration af kobling mellem fjerne
kvantepunkter og lægger fundamentet for deterministisk fremstilling af sam-
menfiltring gennem kollektiv excitation af lyskilderne.
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1

Multi-emitter coupling for scalable
quantum-information processing

Evolution of quantum mechanics in a nutshell

The development of quantum mechanics in the early decades of the
20th century fundamentally transformed our understanding of the physi-
cal world. In 1900, Max Planck proposed the quantization of the energy
exchanged between light and matter to explain thermal radiation [1]. He
was followed shortly after by Albert Einstein who introduced the particle
nature of light, later named “photon” [2], in his theory on the photoelectric
effect [3, 4]. In 1913, Niels Bohr introduced his model of the atom with the
quantized electronic orbits, expanded later by Louis de Broglie, who sug-
gested that the orbiting electron has wave-like properties [5]. Building on
de Broglie’s approach, Heisenberg and Schrödinger formalisms were devel-
oped. The latter put forward a probabilistic view of the world, where a
“wavefunction” describes the quantum state of a physical system in space
and time. With these additions, the fundamental idea of the wave-particle
reality was completed. This duality of the elementary constituents of nature
underlies numerous scientific and technological breakthroughs in electron-
ics and photonics. From electronic semiconductor physics, that led to the
invention of the transistor, to the concept of photons used to build lasers
and the atom-photon interaction for the development of atomic clocks, this
First Quantum Revolution has evolved into many of the core technologies
underpinning modern society.

By 1982, with the experiment [6]1 of Alain Aspect demonstrating the
violation of Bell’s inequalities [8], the fundamental quantum mechanical
concepts of superposition and entanglement were well accepted. Quan-
tum superposition states that a particle, like an electron or a photon, can
be in two states simultaneously, while entanglement describes that two or
more individual particles correlated with each other, can not be described
independently. It was in the late half of the same century that scientists
thought of harnessing these explored concepts for real-world applications.
In the words of Jonathan P. Dowling and Gerard J. Milburn “The First Quan-
tum Revolution gave us new rules that govern physical reality. The Second
Quantum Revolution will take these rules and use them to develop new
technologies” [9].

1The original experiment was later considered to have a potential flaw, the detection
loophole. Numerous other experiments followed considered loophole free, confirming As-
pect’s original result [7].



2 Chapter 0. Multi-emitter coupling for scalable quantum-information
processing

From bit to qubit

Today, advancements in technology and engineering, have enabled us to
apply quantum mechanics to initialize, manipulate, and measure individual
quantum systems. These are physical systems that can be described by two
quantized states. Aiming to leverage their properties of superposition and
entanglement, in recent years researchers use such two-level systems to en-
code information2. Contrary to a classical bit of information, which can be
either 0 or 1, a quantum bit or “qubit” can be in a coherent superposition
of both 0 and 1 simultaneously (here |0⟩ and |1⟩ in Dirac’s notation). A set
of such information carriers hold promise for securing communications, en-
hancing the performance of measurements for quantum sensing and metrol-
ogy and serving as elementary quantum processors for “quantum compu-
tations”, solving long-standing problems exponentially faster than classical
computers. An example of their most noble application is predicted to be in
life science and chemistry, where complex quantum simulations of molecu-
lar systems could help in drug discovery.

Currently the development of quantum technologies for practical uses
is challenged by the degree of controllability over these quantum systems,
and the necessity of protecting them from a noisy environment and deco-
herences. Whether or not we are at a potential onset of a second quantum
revolution, and if it will be as successful as anticipated, is yet to be decided.
However, the first encouraging indications arrived with the development of
quantum algorithms based on genuine quantum effects, that greatly speed
up some classes of calculations. Two noteworthy examples are Grover’s
search algorithm [11] and Shor’s algorithm for factoring [12], with the lat-
ter showing evidence of superpolynomial speedup compared to the best-
known classical counterpart.

Solid-state quantum emitters as photonic qubit sources

Over the past years, a number of different platforms have been investi-
gated and developed in parallel for their potential as qubits. Each comes
with its own advantages and challenges. A few examples of the currently
leading ones are trapped ions, superconducting circuits, neutral atoms, ni-
trogen vacancies in diamond, semiconductor spins and photons. Photons
are attractive candidates for qubit encoding and manipulation [13]. They
can encode information in various degrees of freedom, such as their num-
ber, frequency, spatial or temporal mode and polarization, while interacting
very weakly with their environment. This inherent resilience against deco-
herence and noise makes photonic qubits promising for quantum commu-
nication applications, for secure transmission of secret messages, and for
scalable, fault-tolerant quantum computations.

2In the words of Richard Feynman, launching quantum computing as a field of study
“...nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d bet-
ter make it quantum mechanical, and by golly it’s a wonderful problem because it doesn’t
look so easy”[10].
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However, the weak photon-photon interaction has also the drawback of
prohibiting two-qubit interactions. This prevents them from fulfilling the
4th condition of DiVincenzo’s criteria for a universal quantum computer,
requiring a universal set of quantum gates [14]. To overcome this limita-
tion, theoretical proposals with linear optics, submitting photons to inter-
ferometric networks and using detection feedback [15] were implemented
experimentally. For most, probabilistic sources of entangled photon pairs by
spontaneous parametric down-conversion (SPDC) were employed. As this
approach appears challenging to scale up due to its probabilistic nature in
qubit generation, there was a need for a more efficient photon source. An al-
ternative is to use quantum emitters as deterministic single photon sources
and induce indirect interactions between photons via non-linear coupling
to their emitter.

Solid-state quantum emitters can provide fast photon emission and be
integrated into photonic nanostructures that allow enhancement of the light-
matter interaction, making them particularly promising for scalable archi-
tectures [16]. The study of such photon sources is accompanied by advances
in the development of integrated optical components, paving the way for a
quantum computer with a hybrid platform of matter and photon qubits on
chip.

Quantum dots for multi-emitter applications

Among other promising solid-state emitters stand quantum dots, arti-
ficial atoms grown inside a semiconductor host material, operating effec-
tively as two-level systems. Embedded in photonic nanostructures, they
can generate efficiently pure single photons on demand [17], while control
over their charge solid-state environment leads to high indistinguishability
between the photons emitted [18]. In addition, a quantum dot can posses a
spin [19] which enables it to mediate the interaction between emitted pho-
tons, resulting in entanglement between the matter-spin qubit and the pho-
tons polarization degree of freedom. This allows for the generation of one-
dimensional cluster states of entangled photons [20], which are valuable
resource for measurement-based quantum computing.

However, for universal quantum computing, higher-dimensional entan-
gled states are required [21]. For this purpose, protocols for fusing smaller
entangled states together have been developed for fault-tolerant quantum
computing [22, 23]. Nevertheless, using a single quantum emitter as the
source, fusion is rather challenging as it is sensitive to photon losses, and
the overall success probability decreases rapidly with the number of fusion
operations [24].

To this end, a deterministic approach of scaling-up the number of emit-
ters to generate up front highly entangled multi-photon states has been pro-
posed, as particularly tolerant to qubit losses [25]. The theoretical proposal
involves two coupled quantum dots generating a two-dimensional cluster
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state of polarization-encoded photonic qubits [26]. Along these lines, proto-
cols for spin-spin entanglement between distant emitters in subwavelength-
confined structures [27] could be realized among spins of coupled quantum
dots, with the interaction mediated by the mode of the nanostructure in
which they are placed.

Multi-emitter coupling finds use too in quantum communication, as it
can mitigate the challenge posed by photon losses. Photons appear to be
naturally the information carriers for quantum communication, as they prop-
agate with high speed and have long coherence times. Transmitted over
long distances through the existing optical fiber network or free space with
little decoherence, photonic qubits have been envisioned to bridge distant
quantum nodes, where information would be generated, processed or stored
locally, enabling a quantum internet [28]. The main limitations for its real-
ization are owed to losses and decoherences, as photons propagate over
long, usually lossy, channels. In quantum communication, due to the no-
cloning theorem, quantum information can not be amplified as it is done
classically. A solution to this is given by quantum repeaters, which divide
the total distance between the sender and receiver into many short links.
By creating entanglement between the two parties, quantum information
can be teleported over long distances [29]. Quantum repeaters require ei-
ther nodes with long-lived quantum memories [30], or sources of entangled
photons. For the latter, a scheme for all-photonic quantum repeaters has
been proposed, where the information is encoded and protected in multi-
photon entangled states [31]. Explicit protocols where only two coupled
quantum emitters are needed for its realization have been recently put for-
ward [32, 33]. Yet another proposal considering the interaction between
multiple emitters, suggests using the notion of “subradiance” for quantum
memories or photon storage [34]. Subradiance is described as the absence of
radiation resulting from destructive interference of the spontaneous collec-
tive emission from an ensemble of emitters. The authors suggest leveraging
this collective effect in an array of atoms coupled to a nanophotonic struc-
ture and introduce “selective radiance” to improve the fidelity of photon
storage.

Thesis objective - Collective super- and subradiant dynamics
of quantum dots in photonic nanostructures

Collective effects can occur from photon-mediated interaction of indis-
tinguishable quantum emitters, via a shared electromagnetic mode. This
coupling results in the emission of identical wave packets that cannot be
spatially distinguished. The coupled system is then naturally described by
a set of collective states, referred to as Dicke states [35]. In dense atomic en-
sembles [36–40] or solid-state emitters [41–44], Dicke states can yield super-
(enhanced) and subradiant (suppressed) emission with modified temporal,
spectral and directional properties.

Even though these collective phenomena have already been observed
in free space with atoms and ions [37, 45] or with few superconducting
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or solid-state emitters coupled to one-dimensional waveguides [42, 44, 46],
quantum dots have been challenging candidates for the realization of con-
trolled, coherent optical interactions. The drawbacks inherent to their self-
assembled growth (randomness in size, the strain and composition) result in
large variation of their resonant frequencies, limiting the chances of finding
indistinguishable emitters. In addition, inhomogeneous broadening and de-
coherence introduced by the solid-state environment [47] can prohibit the
observation of long-lived subradiant emission [48], emphasizing the need
for a highly coherent light-matter interface. Finally, for coherent interaction
between the quantum dots, the coupling strength needs to be larger than the
decoherence rate, implying that the inter-emitter separations should then be
at nanometric distances.

In this thesis, we demonstrate direct observation of super- and subra-
diant emission from three pairs of quantum dots, interacting via the shared
mode of a photonic crystal waveguide. The waveguide essentially mitigates
the requirement for spatial proximity of the emitters, as it extends the range
of interaction3 [47]. To bring the post-selected detuned quantum dots on
resonance, we employ an external magnetic field as the tuning mechanism.
The observation of the super- and subradiant emission is realized by lifetime
measurements. The coherent dynamics are further investigated by record-
ing the modification of the lifetime for a continuous range of detunings be-
tween the emitters, and controlled preparation of the initial collective state
is studied while driving both quantum dots. Following previous works on
quantum dots, where collective emission was demonstrated by recording
the modification of the second-order intensity correlations [51–54], we probe
the coupled system with continuous driving of a single emitter and record
the photon coincidences. In [54], the authors rightly highlight that, despite
the observed modification in the coincidence measurements at zero time de-
lay —previously interpreted as the result of superradiant emission from the
coupled system— the measured lifetimes did not exhibit super- and sub-
radiance. Hence, they argue that photon coincidences are an ambiguous
proof of collective phenomena [55]. Our results show that photon coinci-
dences can be exclusively associated with superradiance when only a single
emitter is directly driven.

More precisely, the thesis is structured as follows:

• Chapter 1 introduces the concepts of super- and subradiance. We begin
by explaining the emergence of these collective emission phenomena in
a dense atomic ensemble in free space, and then focus on the theoretical
model describing the coupling of two emitters in a waveguide.

• Chapter 2 contains a description of the platform, the experimental setup,
the basic excitation techniques and the optical systems used to perform
the measurements.
3This could allow entanglement between distant emitters [49] or the construction of

deterministic two-emitter quantum phase-gates [50]
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• Chapter 3 describes the spectroscopic methodology used to identify the
quantum dot candidates. Basic characterization of their properties, pre-
sentation of the control knob for their relative detunings, and imaging of
the quantum dots inside the photonic crystal waveguide, are included.

• Chapter 4 demonstrates experimentally the photon-mediated coupling
between pairs of quantum dots, by probing the coherent dynamics with
lifetime measurements. Interpretation of the mechanisms that modify the
collective emission when driving one emitter is discussed, and a proof-
of-principle of controlled preparation to a collective state is discussed.

• In Chapter 5 we study the coupled system with second-order correlation
measurements and explain why the existence of photon coincidences at
zero delay time in resonance fluorescence, serves as evidence of superra-
diance when a single emitter is driven.

• Finally, Chapter 6 concludes the present work and outlines future re-
search directions.

It is important to note that the present work constitutes fundamental re-
search. Our goal is to demonstrate the feasibility of photon-mediated cou-
pling between two dipoles separated by multiple wavelengths, using quan-
tum dots embedded in nanophotonic waveguides. However, transitioning
from this first demonstration to envisioned applications requires substantial
future work, and the currently inherent scalability limitations of the plat-
form must be addressed.
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1 Theory of collective dynamics

In this chapter, we provide a brief introduction to the concepts of super-
and subradiance, starting from their discovery by R.H. Dicke in 1954 and
extending to their potential applications. A qualitative treatment on these
phenomena follows, initially for an ensemble of N two-level emitters in free
space and close proximity. We then narrow our focus to the simplest collec-
tive system of two emitters, where the effects are fundamentally the same,
but easier to understand. Next, the two regimes of coupling induced by
the emitter-emitter interaction are described. To justify their origin we start
with the light-matter interaction for a system of N dipoles in an external
field, and shortly explain the model. The effects of each coupling regime
are summarized in an illustration of the energy diagram for the two-emitter
case. Finally, we conclude with the system that was used for the experi-
ments of this thesis; two emitters in a photonic crystal waveguide. Here,
the theory employed for simulating and interpreting our experimental data
in Chapters 4 and 5 is being discussed. The theory model was developed by
Björn Schrinski, Oliver August Dall’Alba Sandberg and Anders Søndberg
Sørensen for [56]. A detailed derivation is included in the Supplementary
Material of the same work and in [57].

1.1 Introduction to super- and subradiance
We begin with the simple picture of a single emitter as a two-level sys-

tem in free space. The two levels are the ground |g⟩ and excited |e⟩ states of
the emitter, with a difference in energy of h̄ω0. An emitter prepared in the
excited state will spontaneously decay to the ground state with a character-
istic rate Γ, induced by the vacuum fluctuations. This decay is accompanied
by the simultaneous release of a photon, exhibiting an exponential decay
pulse shape. For an ensemble of N such emitters, the simplified picture as-
sumed that the intensity of spontaneous radiation from the ensemble would
be N times that of the single emitter, with a rate Γ. The model was therefore
suggesting that each emitter in the ensemble decays independently from the
others.

That was up until the pioneering article of R.H. Dicke in 1954, where
he stated that this assumption overlooks a key fact in the process, that the
emitters interact with the same radiation field. Specifically, the work exam-
ines an ensemble of atoms, starting with all in the excited state. The size of
the studied ensemble is smaller than the radiation wavelength λ0 = 2π/ω0

(with c = 1, for the speed of light), and therefore all emitters see the same
coherent field. In this system, the spontaneous radiation does not follow a
single exponential behavior. Instead, it manifests as a brief, bright burst that
initially rises in intensity, followed by a fast decay compared to the single
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emitter. That is the phenomenon of collective spontaneous emission, that
Dicke called superradiance [35].

To explain the mechanism of how superradiance occurs, we start with
the discussed system of N atoms all in the excited state and in close prox-
imity. When the first photon is emitted, the ensemble will be in an equal
superposition of states1, where every atom has been the one that decayed,
|ψ⟩ = |gee...e⟩ + |ege...e⟩ + ... + |eee...g⟩ = {|gee...e⟩} . This photon then in-
duces correlations between the individual emitters, causing the next photon
to be emitted faster, bringing in more correlations in the system. The cor-
relations continue to build-up, leading to an avalanche effect, that increases
till the number of emitters in the ground state exceeds that of the excited
state.

Looking at the emitters as dipoles, these dipole-dipole correlations are
induced as each one influences the radiative environment of its neighbors.
Namely, the emitters of the fully inverted ensemble, initially in an incoher-
ent state, synchronize2 as they emit coherently in a common radiation field,
locking in phase with each other [36]. This leads to an effective macroscopic
dipole, that would emit a short pulse of high intensity. In other words, the
emitted in-phase fields interfere constructively, giving a superradiant burst
of light. The maximum intensity of the light emitted, is proportional to the
square of the number N of atoms in the cloud, increasing their decay rate
to Γ+ = NΓ, due to energy conservation. This means that the coherently in-
teracting emitters radiate their energy N times faster than with incoherent
emission.

For superradiance to be observed in the first place, two fundamental
conditions need to be fulfilled. One of them is that the emitters should be
indistinguishable from each other, such that the transitions of the dipoles are
degenerate in energy, and the other that there is permutational symmetry in
the exchange between any two emitters in the system. Of course, even with
these requirements satisfied, superradiance could still be constrained. A
fundamental limitation to superradiance is the dipole-dipole Van der Waals
coupling between the emitters (∼ 1/r3mn, where rmn the inter-emitter dis-
tance). For a big ensemble, this coupling is non-invariant by emitter per-
mutation. The system can then evolve to states other than the maximum-
correlated-symmetrical ones, deviating from the perfectly symmetrical su-
perradiant behavior. Another factor that would restrict superradiance is
dephasing. The cooperative effect of superradiance, arising from the corre-
lated dissipation of the emitters, constitutes a macroscopic observable of the
quantum coherence of the system. Coherence here, refers to both the elec-
tromagnetic field and the emitters themselves. The presence of any cause of
dephasing; i.e., any inhomogeneity or noise from the environment, would
restrict or prohibit this phase-locking condition between the dipoles, con-
sequently decreasing or eliminating superradiance [58]. Furthermore, the

1One hole is equally spread over every single atom.
2This synchronization happens with the first emitted photon. If it does not happen then,

it never will.
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enhancement of emission can be also constrained by the presence of multi-
ple channels, or modes, that the system can decay into. Specifically, as the
spatial separation between the emitters increases, more channels become
relevant for the decay, and the atomic phases get randomized after several
emissions. Therefore superradiance gets diminished, as photons emitted in
different channels do not enhance one-another [59].

In free space, the amount of superradiant emission and its directional-
ity depends on the geometry of the sample [59]. That is due to construc-
tive collective interference of the emitted fields in those directions, leading
to enhanced emission in specific decay channels or modes of the electro-
magnetic field. However, constructive interference from the emission of an
ensemble does not necessarily hint superradiance, and if one wants to be
careful, would need to distinguish between the different cases. Signatures
similar to the ones from superradiance have been observed in photon coinci-
dences, for inter-emitter distances larger than the radiation wavelength [54].
Even though this too is a result of cooperative emission, it has been distin-
guished from superradiance as measurement-induced cooperativity [55]. In
another limit, for closely spaced emitters experiencing homogeneous broad-
ening, superradiance turns into amplified spontaneous emission (ASE), a
phenomenon described as a sequence of spontaneous and stimulated emis-
sion by the individual emitters [58, 60]. Against this scenario, superradiance
occurs so quickly, that makes it impossible, in principle, to treat the process
as a sequence of individual events. In free space, for dimensions within a
defined cooperative length, the whole collective system radiates as a single
entity, leading to an overall increase of the radiative decay rate.

Up to now, within Dicke’s model in free space, we have only mentioned
the permutationally-symmetric states, where the in-phase emission from
the dipoles leads to constructive interference. That is a single channel, and
the only possible path, through which the collective excitation decays to its
ground state, resulting in superradiant emission. However, there also ex-
ist anti-symmetric manifolds of collective states, where the fields emitted
by the dipoles interfere destructively. Hence, photon emission from these
states is highly suppressed (Γ− = 0), giving rise to superradiance’s com-
plementary phenomenon, subradiance. Within the discussed model, ideal
subradiant states are not possible to populate, as they are decoupled from
an external drive, preventing from any observation of subradiance.

In an experimental implementation, the real conditions differ from the
symmetry of the Dicke model. This occurs either due to the finite size of the
ensemble of emitters, unlike the proposed point-like distribution, or the dis-
ordered positioning of the emitters, leading to variations in the interactions
between the dipoles. This symmetry breaking can enable the population of
the subradiant states, indirectly, through the decay of a superradiant state
to a subradiant one, and directly by driving with a longer excitation pulse
[40], or choosing the right angle for the driving laser [61]. Their observation
has been realized in recent experiments with cold atomic ensembles, where
subradiance is recorded as a slow emission, compared to the decay of the
single emitter [39, 62–64].
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Collective effects have also been studied in waveguide quantum electro-
dynamics (QED) with different emitters, where only two modes are present,
the left- and right-propagating waveguide modes, with respect to the emit-
ter’s position3. The observation of collective effects in waveguide QED is
made possible via photon-mediated interaction or coupling [42, 46, 65] and
interference effects in an ensemble of emitters [66]. In the former case, the
collective effects are leveraged by the platform, as the waveguide-mediated
coupling extends the spatial range of the interaction among strongly cou-
pled emitters to the guided mode, while suppressing other decay channels.
Having the ability to increase the inter-emitter distance, ensures the prob-
ing of the “pure” Dicke superradiance effect, as the dipole-dipole dephasing
due to Van der Waals coupling, becomes negligible [36]. The spatial range
of the interaction is upper bounded by the losses from the propagation in
the waveguide, or by retardation in case of a large ensemble (> c/Γ).

Superradiant states can be populated by driving the emitters through the
waveguide. However, that is not a possibility for the subradiant states, in
the absence of imperfections. Destructive interference decouples them from
the electromagnetic environment of the waveguide, making them unable to
drive and to decay in it. From a different perspective, the fact that the subra-
diant states cannot decay in the waveguide, means that they emit outside of
it, through the leaky mode. This imperfection of the structure can therefore
be exploited to address these otherwise inaccessible dark states, by driving
the system from the top of the waveguide. In fact, with this driving scheme
[46], one can control the relative driving phase between the emitters, leading
the system to exhibit super- or subradiant decay.

While super- and subradiance were first introduced in the same work,
the former has been comparably studied more extensively, both theoreti-
cally [36, 55, 58, 59, 67] and experimentally [37, 45, 52, 66, 68]. Over the
years, superradiance has been studied as a means of enhancing the effi-
ciency of coherent light sources [69, 70], improving precision in quantum
metrology [71, 72] and as a building block for quantum information pro-
cessing [73, 74]4. On the other hand, subradiance initially received less at-
tention, possibly due to the challenges in efficiently addressing the subradi-
ant states. The recognition of subradiance as an exciting and valuable phe-
nomenon came with the realization that the inability to emit photons makes
subradiant states long-lived coherent states. In recent years, the study of
subradiance has seen increasing interest, both from a theoretical [48, 61,
74, 75], as well as an experimental perspective [40, 42, 44, 46, 76, 77]. In
addition to proof-of-principle demonstrations of subradiance, its potential
as a resource for implementing quantum information protocols, and more
specifically, for storing light with optimized fidelity, is being explored [34,
39].

3In reality, there exists also a leaky mode outside the waveguide, due to structural im-
perfections.

4Fun fact from a discussion with Anders Søndberg Sørensen: “It is superradiance that
makes the windows transparent”.
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1.2 The Dicke model
Following the work of M. Gross and S. Haroche [36], we begin with the

general case of a dense atomic ensemble in free space, and show how su-
perradiance rises from its spontaneous emission. We then narrow the dis-
cussion down to the case of two emitters to approach the system that was
experimentally investigated during this thesis.

1.2.1 Superradiance in a dense atomic ensemble

We begin with an atomic cloud in free space, consisting of N atoms in
close proximity (size < λ0). Each atom is a 2-level system with a ground
|g⟩ and an excited |e⟩ state, separated by a transition energy of h̄ω0. The
exploration of the ensemble starts at time t = 0 with all the atoms in their
excited state, |ψ(0)⟩ = |eee....e⟩.

To look into how the system decays, we introduce the atomic raising
σ̂+
m = |e⟩m ⟨g|m and lowering operators σ̂−

m = |g⟩m ⟨e|m for the mth atom. For
that, the atomic lowering operator is applied on each emitter. Borrowing
the notation often used for spin-1/2 systems, for an ensemble of N atoms
this should result in a number of eigenstates with total angular momentum
J = N/2, of the form

|J,MJ⟩ =
√

(J +MJ)!

N !(J −MJ)!

(∑
m

σ̂−
m

)(J−MJ )

|eee...e⟩ , (1.1)

where MJ is the projection of the total angular momentum −J ≤ MJ ≤ J ,∑
m σ̂

−
m is the collective de-excitation operator for m = 1, 2, 3, ..., N atoms,

and J −MJ is the number of emitters in |g⟩ state for each |J,MJ⟩, given by
⟨∑m σ̂

−
mσ̂

+
m⟩ = ⟨J,MJ |

∑
m σ̂

−
mσ̂

+
m |J,MJ⟩ = J −MJ .

The resulting states would be of the form,

|J,MJ⟩ = S{|ggg...eee⟩}, (1.2)

where each |J,MJ⟩ is a symmetrical superposition of eigenstates, with re-
spect to permutation between atoms of the ensemble and S is a symmetriza-
tion operator. Each state consists of J−MJ atoms in the |g⟩ state and J+MJ

in the |e⟩. With the above operation the system results in 2J + 1 such sym-
metrical eigenstates, separated by equal energy of h̄ω0. This is known as
the Dicke ladder and is depicted in Figure 1.1. In this picture, the system de-
cays with a cascaded emission of photons along the ladder, and the energy
emitted will be MJ h̄ω0, depending on the initial |J,MJ⟩ state.

To explain how this collective behavior affects the spontaneous emis-
sion of the ensemble, we use a qualitative description of the rate of photon
emission, W. Generalizing the radiation rate of a single emitter W1, a large
effective dipole composed of N atoms gives

W1 = Γ
〈
σ̂+
1 σ̂

−
1

〉
→ WN = Γ

〈
Ĵ+Ĵ−

〉
, (1.3)
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FIGURE 1.1: The Dicke ladder: Energy diagram of an atomic dense ensem-
ble of N atoms that behave collectively. The collective states are equidis-
tant, separated by h̄ω0. For each |J,MJ⟩ the number of atoms in |e⟩ (|g⟩)
state is given by J +MJ (J −MJ ). Cascading down the ladder will induce
superradiant emission. The Figure is directly adapted from [36].

where Γ is the decay rate of a single atom. With Ĵ representing the collective
operator of the total angular momentum,

〈
Ĵ+Ĵ−

〉
= ⟨J,MJ | Ĵ+Ĵ− |J,MJ⟩

gives the average number of excited atoms, with Ĵ± =
∑

m σ̂
±
m. We use the

Ĵ2 = 1/2
(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

z operator, where Ĵz = 1/2
∑

m σ̂
z
m, and the

commutation relation between σ̂+
m and σ̂−

m,

Ĵ2 |J,MJ⟩ = J(J + 1) |J,MJ⟩
Ĵz |J,MJ⟩ =MJ |J,MJ⟩[
σ̂+
m, σ̂

−
n

]
= 2δmnσ̂

z
m,

(1.4)

to deduce the average number of atoms in the excited state
〈
Ĵ+Ĵ−

〉
as,

⟨J,MJ | Ĵ+Ĵ− |J,MJ⟩ = ⟨J,MJ | Ĵ2 − Ĵ2
z + Ĵz |J,MJ⟩

= J (J + 1) +MJ (−MJ + 1) ,
(1.5)

Rewriting (1.5) we finally get from (1.3),

WN = Γ (J +MJ) (J −MJ + 1) , (1.6)

From (1.6) it becomes clear that the radiation rate increases as the pop-
ulation cascades down the Dicke ladder. From 2ΓJ = NΓ of the fully in-
verted population, |J,MJ = J⟩, it reaches the maximal rate of J(J + 1)Γ =
1
2
N(1

2
N + 1) when half of the population is in the excited state, |J,MJ = 0⟩5.

From here we already see that the photon emission rate increases signifi-
cantly as the system cascades down the ladder, and the system loses energy
with a maximum rate proportional to N2 for the half-excited state. From

5As there are no interference terms, there is no superposition state that can radiate
stronger than |J = N/2,MJ = 0⟩.
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that state down, the decay rate decreases till it reaches |J,MJ = −J⟩, where
all the atoms are in the ground state and the emission stops.

The initial increase of the decay rate up to the |J,MJ = 0⟩ state is a conse-
quence of the strong correlations that build up between the interchangeable
atoms. This build-up begins with the first emitted photon in the ensemble,
as the which-atom-emitted information is lost. The induced correlations
from this decay cause the locking of the emission phase of the atoms in the
cloud, giving rise to the effective collective dipole. As they now emit collec-
tively, the radiated intensity is proportional to N2, and thus the emission of
N photons occurs in a time N times shorter compared to the spontaneous
emission rate of the single emitter, due to energy conservation. The system
therefore exhibits the signatures of superradiance.

FIGURE 1.2: Energy diagram of collective Dicke states for N atoms, where
the subradiant manifolds (J ̸= N/2) are present next to the superradiant
Dicke ladder (J = N/2) illustrated in Figure 1.1. The thickness of the ar-
rows in the latter shows the change of the spontaneous radiation probabil-
ities as the collective system decays. The Figure is adapted from [35].

Before proceeding in the discussion, it is essential to highlight here that
the permutationally symmetric states included in the ladder of Figure 1.1
are only the ones involved in the superradiant emission. However, those are
not the only states of the collective system. For each MJ there is a number
of states for all possible J values within |MJ | ≤ J ≤ N

2
, that are degenerate

in energy6. This leads to multiple ladders of states, extended next to the
superradiant one [35], as illustrated in Figure 1.2, that are anti-symmetric
and therefore not invariant to atom exchange, as the superradiant states.
These states are not coupled to the environment or to the external drive,
making them challenging to populate and unable to decay. They exist only
for ensembles with an even number of emitters and exhibit as well high cor-
relations. Though, in contrast to the superradiant case, the emitters radiate

6The total angular momentum in principle takes all the values J = 0, 1, ...N/2. We
started the discussion with the J = N/2 to focus on the ladder giving the superradiance.
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in pairs out-of-phase with each other, resulting into very low (or zero in the
ideal case) radiation rates. Hence, these states are rightfully named subradi-
ant. In order to access such long-lived states, there should be a symmetry
breaking of the ensemble, which could for example be made possible by
increasing its size. Another approach to populating subradiant states, is to
make use of pulses with duration longer than NΓ. This has been shown to
increase the likelihood of populating subradiant states rather than the su-
perradiant [78], a mechanism that could be attributed to the quantum Zeno
effect [79].

1.2.2 Two-atom collective emission

Superradiance can be observed even in the smallest system that could
show any collective behavior. That is the one with only two atoms (N
= 2) sitting much closer than λ0. In this case, it is simple to include in
the energy diagram all the stationary states of the collective system, since
0 ≤ J ≤ 1 ⇒ J = 0, 1. The resulting |J,MJ⟩ states then are: |0, 0⟩, |1, 1⟩,
|1, 0⟩ and |1,−1⟩. For |1, 1⟩ and |1,−1⟩, both atoms are in the excited or the
ground state, respectively. We further on adopt the notation |1, 1⟩ → |ee⟩
and |0, 0⟩ → |gg⟩ for clarity. For the states |0, 0⟩ and |1, 0⟩ one emitter is
in the excited while the other in the ground state. Specifically, the two
are defined as the symmetric |1, 0⟩ → |+⟩ = 1√

2
(|eg⟩+ |ge⟩) state, alike

the symmetric triplet state in the spin-1/2 systems, and the anti-symmetric
|0, 0⟩ → |−⟩ = 1√

2
(|eg⟩ − |ge⟩) state, known as singlet. They are degenerate

in energy and compose the single-excitation subspace. The energy diagram
describing the two-emitter system is shown in Figure 1.3. In comparison to
the N-atom case, we can already correspond the three-level ladder of J+ to
the superradiant decay path, and J− to the subradiant one.

FIGURE 1.3: Energy diagram of the collective states for a two-atom sys-
tem. The two intermediate states |+⟩ and |−⟩ are degenerate in energy and
correspond to in- or out-of-phase emission from the two emitters. That,
would lead to super- or sub-radiant emission from the two-atom system,
respectively. In the superradiant case (yellow arrows), the decay rate will
be twice the one of the single emitter, Γ. The cascade down through the
subradiant state, |−⟩ (dashed arrows), is prohibited as it is decoupled to
the environment.

Similar to the qualitative derivation for the N-atom system, we focus on
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the J+ = 1 ladder. Looking into the photon emission rate W2, we aim to
show that the two indistinguishable emitters exhibit superradiance. Start-
ing in the doubly excited state |ee⟩ at t = 0, the initial population probabil-
ities for the three J+ = 1 states are P|ee⟩(0) = 1, P|+⟩(0) = P|gg⟩(0) = 0. At
a later time t, the system starts to decay. The states that contribute to the
emission are |ee⟩ and |+⟩ with a rate calculated by (1.6) to be 2Γ, while |gg⟩
does not emit. The photon emission rate of the two-emitter system is then
given by,

W2(t) = 2Γ
(
P|ee⟩(t) + P|+⟩(t)

)
. (1.7)

The average number of excited atoms can also be written in terms of the
probabilities as, 〈∑

m=1,2

σ̂+
mσ̂

−
m

〉
= 2P|ee⟩(t) + P|+⟩(t). (1.8)

Using then the intuitive argument, that the decrease in the number of the
excited atoms should be equal to the photon emission rate at any time, we
write,

−
d
〈∑

m=1,2 σ̂
+
mσ̂

−
m

〉
dt

= W2(t). (1.9)

which by (1.7) and (1.8) turns into,

2
dP|ee⟩(t)

dt
+
dP|+⟩(t)

dt
= −2Γ

(
P|ee⟩(t) + P|+⟩(t)

)
. (1.10)

To solve (1.10) and find the time dependent probabilities, we start with
the doubly excited state |ee⟩. While in this state, the two emitters are not
correlated to each other. The first photon can therefore be emitted by ei-
ther of the two with a rate Γ, as the emitters act independently. The total
probability for this state to decay is then 2Γ. Hence,

dP|ee⟩(t)

dt
= −2ΓP|ee⟩(t). (1.11)

Plugging (1.11) in (1.10),

P|+⟩(t) = 2Γ t e−2Γt

P|ee⟩(t) = e−2Γt,
(1.12)

and from the total probability conservation: P|ee⟩(t) + P|+⟩(t) + P|gg⟩(t) = 1
we find

P|gg⟩(t) = 1− (1 + 2Γt) e−2Γt. (1.13)

The photon emission rate of the collective system is then derived as,
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W2(t) = 2Γ (1 + 2Γt) e−2Γt. (1.14)

To emphasize the effect of the collective behavior, we compare (1.14) to
the photon rate resulting from the independent emission of two simultane-
ously excited atoms, W2 ind(t) = 2Γe−Γt. To visualize the difference, the two
cases for independent (Figure 1.4(a)) and coupled (Figure 1.4(b)) emitters
are plotted together in Figure 1.4(c). Starting from the doubly excited state
|ee⟩, both rates begin from the same value at t = 0, since the two emitters
are not yet correlated. At short times after the decay, the photon rate of the
collective system, W2, exceeds that of the independent emitters, W2 ind, ex-
hibiting non-exponential behavior, characteristic of the superradiant emis-
sion from the decay of |ee⟩. At longer times W2 becomes smaller than W2 ind,
due to energy conservation. This small overshooting of W2 at short times is
the manifestation of superradiance, that results in the decay being twice as
fast when the emitters are correlated.

FIGURE 1.4: Energy diagrams of two (a) distinguishable and (b) super-
radiant emitters. (c) Photon decay rates from a two-atom system, when
the emitters decay collectively (yellow), and independent from each other
(red). Here an initially prepared doubly excited state, |ee⟩, is assumed. Fig-
ure is adapted by [55].

In the three-level ladder the two decays appear to have identical rates
of 2Γ. It is important to highlight here that each one is attributed to a dif-
ferent reason. From the doubly excited |ee⟩ to the symmetric superradiant
state, |+⟩, the decay has twice the rate of the single emitter, because at that
point the two uncorrelated atoms decay independently, each with a rate Γ.
Schematically this can be explained using Figure 1.4(a) which indicates that
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the 2Γ decay rate results due to the presence of two decay channels from
|ee⟩, the |eg⟩ and |ge⟩, with rates Γ each. This is consistent too with the pho-
ton rate deducted by (1.6) for J = MJ = 1. The actual superradiant effect
manifests at the second decay from |+⟩ to the collective ground state, |gg⟩.
There, the two emitters have interacted via the first emitted photon, which
generated correlations between them. That induces the enhanced dipole,
which decays with twice the rate of the single emitter, through the single
available decay channel. This enhanced decay rate is a clear indication of
cooperation of both atoms in the emission process, and reveals coupling be-
tween the two.

What is even more fundamental to highlight here is that this modifica-
tion of the decay rate is present even if there is only a single excitation in
the system. This is when the so-called single-photon superradiance takes
place. Characteristically, Dicke uses the example of two neutrons, at dis-
tance closer than the radiation wavelength λ0, where only one of them is in
the excited state [35]. In this scenario, the initial state of the system is |eg⟩.
Written in terms of the super- and subradiant states |eg⟩ = 1√

2
(|+⟩+ |−⟩),

the system would have a probability of one-half to emit a photon. If the
neutrons were in the subradiant (singlet) state, then no photon would be
emitted, as the singlet state is not coupled to |gg⟩. Instead, if the neutrons
were in the superradiant (triplet) state, the emission of a photon would oc-
cur with certainty and a rate twice that of the single emitter. We then see
that the correlations between the emitters are generated simply by the fact
that they sit within the same electromagnetic field, where, in the illuminat-
ing words of R. H. Dicke, simply “the presence of the unexcited neutron in
this case doubles the radiation rate”.

Closing this section, one could be equally confused and fascinated by
the fact that superradiance in this single-excitation subspace is still a result
of constructive interference, and what interferes here is “the emission from
one or the other emitter”.

1.3 Dissipative and dispersive coupling regimes
Up to now we discussed about the collective emission from an ensem-

ble of atoms and derived the modification of the decay rate for two in free
space. Before delving into the investigation of the system used in the exper-
iments of this thesis —a pair of quantum emitters coupled through a shared
waveguide mode— we first need to introduce the coupling regimes that de-
fine the type of interaction between the emitters. Namely, the dissipative and
dispersive coupling regimes.

To provide some intuition on that, we begin with the description of the
light-matter interaction. The Hamiltonian that describes a system of N two-
level identical emitters coupled to an electromagnetic field is given by,

Htot = HD +HF +HI , (1.15)
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where HD is the Hamiltonian describing the N dipoles,

HD =
∑
m

h̄ω0 σ̂
m
ee , (1.16)

with σ̂ee = |e⟩ ⟨e| and h̄ω0 the energy difference between |g⟩ and |e⟩ for each
one of the identical emitters. The HF is the Hamiltonian of the electromag-
netic field in the notation of the bosonic creation and annihilation operators,
α̂†
k, α̂k, respectively

HF =

∫
h̄ωkα̂

†
kα̂k dk, (1.17)

where k is the wavenumber and h̄ωk the energy of the photon for each mode.
Lastly, the Hamiltonian describing the interaction of the light with the elec-
tric dipoles reads,

HI = −
∑
m

[
Ê
+
(rm) + Ê

−
(rm)

]
p̂m, (1.18)

with p̂m the dipole moment operator of the mth emitter. For the expression
of the electromagnetic field Ê

+
(rm) we resort to the quantization technique

based on the classical electromagnetic Green’s function, G (r, rn, ω), [50, 80,
81] to avoid the heavy derivation using creation and annihilation operators
[57].

We consider a system of N polarizable dipoles pn at positions rn, and a
known input driving field Ep (r, ω). The dipoles are excited by the field and
re-scatter light in the ensemble themselves. The total field at a position r is
then described by E(r, ω) = Ep(r, ω)+µ0ω

2
∑N

n=1 G (r, rn, ω) ·pn(ω), where µ0

is the vacuum permeability. Here, G (r, rn, ω) is the total Green’s function,
describing the electromagnetic field that a dipole in position r experiences,
due to another dipole n oscillating in rn.

Direct correspondence to the quantum counterpart applies by replacing
the field and the dipole moment with their operators. Assuming narrow
bandwidth emission around the resonance frequency ω0 of the dipoles, we
can approximate G (r, rn, ω) → G (r, rn, ω0). The generalized input-output
equation for the total field then reads [34],

Ê
+
(r) = Ê

+

p (r) + µ0ω
2
0

N∑
n=1

G (r, rn, ω0) · d σ̂−
n , (1.19)

where d = ⟨g| p̂n |e⟩ the dipole matrix element of the transition of the dipole
moment operator p̂n = d∗σ̂+

n + dσ̂−
n for the nth emitter. Therefore, Ê

+
(rm) in

(1.18) is the total guided-mode field and is given by the sum of the driving
electromagnetic field and the field re-scattered by all other dipoles at the
position rm of the mth dipole.

The Hamiltonian in (1.15) contains all the details of the system. For our
purpose we can simplify to an equation that governs the dynamics. To do
so, we make use of the master equation to describe the evolution of this
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system, in the Born-Markov approximation. For this approximation to hold
we make the assumption that the decays in the ensemble are much slower
than any time-scale of the environment. In other words, we assume that the
environment is broad in frequency, such that it can be considered flat over
the resonance frequency ω0 of the dipole, hence ω → ω0

7. In this approx-
imation, the photonic degrees of freedom can be traced out and we arrive
to an effective dipole-dipole Hamiltonian. The evolution of the system can
then be derived by ρ̇ = − i

h̄
[H, ρ] + L[ρ], where ρ is the density matrix of the

dipole. Within the rotating wave approximation and in the rotating frame
of the guided-mode driving field frequency ωp, the Hamiltonian and the
Lindbladian considered are [81],

H =− h̄∆
N∑

m=1

σ̂m
ee − h̄

N∑
m,n=1

Jmnσ̂
+
mσ̂

−
n

−
N∑

m=1

[
d · Ê

−
p (rm)σ̂

−
m + d∗ · Ê

+

p (rm)σ̂
+
m

]
,

L[ρ] =
N∑

m,n=1

Γmn

2

(
2σ̂−

mρσ̂
+
n − σ̂+

mσ̂
−
n ρ− ρσ̂+

mσ̂
−
n

)
,

(1.20)

with ∆ = ωp − ω0 the detuning between the guided-mode driving field and
any of the identical emitters.

In this expression, the evolution is divided between the coherent part
of the dynamics, contained in H , and the dissipative part described by the
Lindbladian, L[ρA]. In (1.20) the total Green’s function G (rm, rn, ω0), is sep-
arated in its real and imaginary part as,

Jmn =
µ0ω

2
0

h̄
d∗ · Re{G (rm, rn, ω0)} · d,

Γmn =
2µ0ω

2
0

h̄
d∗ · Im{G (rm, rn, ω0)} · d.

(1.21)

The two parameters Jmn and Γmn are referred to as the coupling rates of
the interacting system and will be used to identify the nature of the cou-
pling. Specifically, Γmn is called the dissipative coupling rate and contains the
self Γmm and mutual Γmn decays between the dipoles. When it reaches its
maximum value for a specific system, the coupling between the emitters is
considered to be of dissipative character (Jmn = 0). For such a coupling, a
photon from the decay of an emitter is absorbed and re-emitted by an ad-
jacent one. The symmetric (superradiant) and anti-symmetric (subradiant)
states are in this case degenerate in energy, and maximally modified in the
decay rates as Γ+ = NΓ and Γ− = 0, with respect to the single emitter, Γ.
Hence, super- and subradiant emission manifest in the dissipative coupling

7Equivalent to neglecting the frequency dependence in the Greens function above.
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regime. The energy diagram for this limit is illustrated in Figure 1.5(a) for
the simplest collective system of two emitters.

Jmn, is called the dispersive coupling rate and is related to the dipole-dipole
coupling, containing 1/r3mn terms, as well as the long-range, waveguide-
mediated interaction. For a maximum Jmn, the emitters exhibit a flip-flop
interaction via the exchange of virtual photons, that exert an electromag-
netic force on them. As a result, the symmetric and anti-symmetric levels
shift apart in energy by a maximum of 2Jmn (Figure 1.5(b)), while both states
decay with the single emitter rate, Γ. This term is associated with the disper-
sive coupling regime (Γmn = 0), often described as the collective Lamb-shift8

[82].

FIGURE 1.5: Illustration of the energy diagrams for the two coupling
regimes. The system considered is of two emitters for simplicity. (a) Dis-
sipative coupling, where the symmetric, |+⟩ and anti-symmetric |−⟩ states
are degenerate in energy, but maximally modified in the decay rate, and
(b) Dispersive coupling, where the |+⟩ and |−⟩ are maximally shifted apart
in energy.

From (1.21) it becomes clear that the dipole-dipole interaction depends
on the inter-emitter separation rmn = rm − rn, included in the Green’s func-
tion. The exact calculation of G (rm, rn, ω0) is challenging and often derived
numerically, given the geometry of the dielectric media [48]. However an
effective model can be constructed with basic assumptions for certain struc-
tures, that allow to estimate the Green’s function for a region of interest
analytically. In the next Section, we specifically address our structure of in-
terest —the photonic crystal waveguide (PCW)— where the approximate
Green’s function reveals that the type of coupling in such nanostructures
is in fact determined by the inter-emitter separation, rmn. Thus, for this
system, one could engineer purely dissipative or dispersive interactions by
carefully tuning the distance between the emitters [34, 48, 65].

Having described the two coupling regimes, we note as a final remark
here that the claims in Section 1.2.2 are accurate only when considering an
ideal system, where permutation-symmetry is preserved, and for specific

8Here we note that the individual Lamb-shifts, owed to undesired guided or non-
guided modes that would shift the dipole resonance frequency, are neglected since they
can be directly included in ω0.
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inter-emitter separations, leading to dissipative coupling. In a real sample,
the simple Dicke model breaks down when the Green’s function is not per-
mutationally symmetric. For example, in the case where the interactions be-
tween adjacent emitters are of different character, the symmetric states are
not eigenstates of the system. Also, in the non-ideal sample, as brought up
in the introduction, the doubly excited state may have a probability of de-
caying through the subradiant state (black dashed arrows in Figure 1.4(b))
with a certain rate (Γ− ̸= 0). Additionally, the degeneracy between |+⟩ and
|−⟩ might be lifted due to imprecise positioning of the emitters, resulting in
an intermediate type of coupling that combines dissipative and dispersive
effects.

1.4 Collective dynamics of two emitters in a
waveguide

Until now the collective effects of super- and subradiance have been de-
scribed qualitatively for a system of closely positioned, interacting atoms in
free space. From here on, we consider the system of two two-level emit-
ters inside a waveguide, as shown in Figure 1.6. This environment will
now mediate the interaction via photon absorption and re-emission by the
emitters, theoretically extending it to an infinite range9. Such a photonic
nanostructure, specifically a PCW, was employed for the work of this the-
sis. In this section, we introduce the theory that was developed to model
our system (Supplementary Material of [56]), directing the discussion to
the one-dimensional (1D) light-matter interaction of waveguide quantum
electrodynamics (QED). The derivation of the expressions that follow are
rigorously discussed in [34, 57, 65, 74].

In a PCW the emitters couple predominately to a single guided mode of
the waveguide. It is therefore convenient to separate the Green’s function in
the 1D guided mode of the waveguide and the remaining non-guided ones
as G (rm, rn, ω0) = Gwg (rm, rn, ω0) + G′ (rm, rn, ω0). For the waveguide, the
Green’s tensor of the guided mode reads [47],

Gwg (rm, rn, ω0) = i
αω0

2ug
Θ(xm − xn)bk(rm)b∗

k(rn)e
ik(xm−xn)

+ i
αω0

2ug
Θ(xn − xm)b∗

k(rm)bk(rn)e−ik(xm−xn) ,
(1.22)

where α is the lattice constant of the PCW, ug = ∂ω/∂k is the group ve-
locity for the light propagating inside the waveguide, bk(rm) is a 1D peri-
odic function along the axis of the waveguide, Θ is the Heaviside function
which determines the left (L) and right (R) propagating modes, k is the Bloch
wavenumber and xmn = xm − xn the spacing between the m and n dipoles
along the waveguide. The coupling rates Jmn and Γmn can be then rewritten

9Limited by losses and decoherences from imperfections of the structure and the envi-
ronment.
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FIGURE 1.6: Two quantum emitters m and n, driven inside a waveguide,
with spacial separation of xmn. Each emitter is a two-level system with a
ground |g⟩m and an excited |e⟩m state. The emitters can be driven through
the waveguide, from the right ER

p or left EL
p , as well as from the top, Ep,

depending on the experimental purpose. After excitation, the emitter m
decays with a rate Γm. In non-directional structures, the emitter will de-
cay with equal probability towards either of the two directions inside the
waveguide, with a rate of Γwg

m , giving the output field ER or EL. In addi-
tion, part of the emission can leak out of the waveguide, with rate Γloss

m .

as Γmn = Γwg
mn + Γ′δmn and Jmn = Jwg

mn + J ′δmn, where δmn is the Kronecker
delta [81].

To describe the evolution of the system, we make use of the Lindbald
master equation described in (1.20). With the revised Green’s function, the
master equation is separated between the dynamics in the 1D transmission
line of the waveguide and the non-guided part. Specifically, the latter will
be included as a Liouvillian Lloss[ρ], describing the emission to modes other
than the waveguide. In addition, to account for dephasing from the envi-
ronment Ldph[ρ] is introduced. The complete master equation then reads (for
h̄ = 1) [59, 65],

ρ̇ = −i[H ′, ρ] +
∑
m,n

Γwg
mn

2

(
2σ̂−

mρσ̂
+
n − {σ̂+

mσ̂
−
n , ρ}

)
+ Lloss[ρ] + Ldph[ρ] , (1.23)

where now the Hamiltonian of (1.20) can be rewritten as,

H ′ = −
∑
m

∆m

2
σ̂z
m −

∑
m,n

Jwg
mnσ̂

+
mσ̂

−
n +

Ωm

2

(
eiθmσ̂+

m + e−iθmσ̂−
m

)
. (1.24)

Here, we use ∆m = ωp−ωm to account for differences between the emitters’
resonance frequency. Compared to (1.20), the interaction of the dipoles with
the input driving field is replaced by Ωm

2

(
eiθmσ̂+

m + e−iθmσ̂−
m

)
, where Ωm =∣∣d∗

m · ER
p (rm)

∣∣/h̄ and θm the driving phase. The driving phase of an emitter
will be more often mentioned in reference to a second one, as the relative
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phase between them θ = θm − θn will be the useful parameter. The two
Liouvilians included are described by,

Lloss[ρ] =
∑
m

Γloss
m σ̂−

mρσ̂
+
m

Ldph[ρ] =
Γdph

2

∑
m

[σ̂z
mρσ̂

z
m − ρ] ,

(1.25)

where Γloss
m is the decay rate of the mth emitter in the non-guided modes,

and Γdph is the dephasing rate, which is here assumed to be the same for all
emitters for simplicity. Finally, the coupling rates are defined by (1.21) with
the Green’s function of the waveguide (1.22) as,

Γwg
mn =

4πgk,mgk,n
ug

Re{eiϕmn} and Jwg
mn =

2πgk,mgk,n
ug

Im{eiϕmn}. (1.26)

Here, ϕmn = k|xmn| is the coupling phase, which accumulates as the field
propagates between the interacting emitters, depending on their spatial sep-
aration, |xmn|. gk,m = −Ek(rm)·dm, is the local coupling rate of themth dipole

to the waveguide mode k, where Ek(rm) =
√

h̄ωk

2ϵ0
uk(rm) is the field ampli-

tude with ωk the frequency of the optical mode, ϵ0 the vacuum permittivity
and uk(rm) =

√
α
L

b(rm)eikxm the Bloch modes, constituting the periodic ba-
sis functions for a single band of the PCW, where L is the length of the
waveguide10 [47].

Using the relation Γmβm = 4πg2k,m/ug, the coupling rates can be written
in a more intuitive form,

Γwg
mn =

√
βmβnΓmΓn cosϕmn and Jwg

mn =
1

2

√
βmβnΓmΓn sinϕmn (1.27)

where Γm = Γwg
m + Γloss

m , is the sum of all decays from a single emitter11,
inside the mode of the waveguide and out of it, while βm = Γwg

m /Γm is the
coupling factor of an emitter m to the waveguide mode.

As mentioned in Section 1.3, from (1.27) it becomes clear that the cou-
pling phase ϕmn; i.e., the inter-emitter spacing |xmn|, is the parameter that
determines the nature of the coupling in the system. Specifically, one can
deduce from the relations above that for ϕmn = (N + 1/2) π, where N an
integer12, the emitters exhibit dispersive coupling (Γwg

mn = 0) and unchanged
decay rates compared to those of the uncoupled emitters. For ϕmn = Nπ
the dissipative coupling (Jwg

mn = 0) leads to super- and subradiant states

10Since the waveguide obeys time-reversal symmetry, Ek = E∗
−k holds, meaning that the

periodic function is also real in backward direction (u−k = uk).
11There is also part of the decay that might happen through non-radiative processes,

which are not included here.
12Not to be confused with the number of emitters.
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with maximally modified decay rates. More intuitively, ϕmn is the parame-
ter that defines the interference of the radiation field emitted into the PCW
and scattered from each of the emitters, as they switch excitations back and
forth. Hence, for ϕmn = Nπ the field emitted by the coupled system in-
terferes either constructively or destructively, yielding super- or subradiant
emission, respectively.

Finally, to provide a more direct understanding of the physics behind
the coupling, a simplified analytical approach is employed. For that, the
dephasing will be neglected and only the dynamics in the single-excitation
subspace will be considered. This treatment is valid when driving only one
of the emitters, with a pulse much shorter than their individual lifetimes. In
this case, (1.23) can be written as

ρ̇ = −i
[
Heffρ− ρH†

eff

]
, (1.28)

where the effective Hamiltonian Heff is given by13,

Heff =
2∑

m,n=1

(
Jmn − i

Γmn

2

)
σ̂+
mσ̂

−
n +

2∑
m=1

(
∆m − i

Γloss
m

2

)
σ̂+
mσ̂

−
m. (1.29)

The first term accounts for the interaction of the two dipoles via photon
emission and re-absorption in the waveguide, and the second contains the
dipole Hamiltonian and the non-guided terms of the dynamics.

In the evolution described by (1.28), the jump terms, representing the
state of the system after the decay, essentially preparing it in the collective
ground state |gg⟩, have been omitted. As this state does not emit light, the
full dynamics of the system can be understood within the so-called no-jump
formalism used here14. However, if the emitters undergo dephasing, are
re-excited, or simultaneously driven populating |ee⟩, the system exits the
single-excitation subspace and the jump evolution becomes important. In
these cases the full master equation (1.23) should be employed for a com-
plete description of the dynamics in the system.

While Heff provides valuable insights into the system’s dynamics, nu-
merical integration of the complete master equation (1.23) was used to sim-
ulate the experimental results of Chapter 4. As it will be demonstrated (in
Figures 4.5 and 4.7), the present model succeeds in describing with very
good precision the experimental data for both the single-emitter excitation
scheme and the simultaneous driving of both emitters from the top of the
waveguide.

13Here we drop the wg superscript at the coupling rates to ease the notation.
14Corresponds to the so-called no-jump evolution of the quantum Monte-Carlo wave-

function approach [83].



1.5. Summary and Connection 25

1.5 Summary and Connection
In the present Chapter we aimed to build the theoretical background re-

quired to motivate our experimental methodology and interpret the results.
We started by introducing the collective phenomena of super- and subra-
diance, as the results of constructive and destructive interference, respec-
tively, of the coherent emission from an ensemble of interacting emitters.
In an ideal system, superradiance occurs when the individual fields lock
in-phase, giving rise to a short pulse of high intensity, whereas for subradi-
ance an even number of emitters should emit out-of-phase, canceling each
other out. We then qualitatively discussed the superradiant Dicke ladder
for an ensemble of closely spaced atoms and delved deeper into the small-
est system, composed of two, under ideal conditions. The complete energy
diagram of two coupled emitters provides an intuitive understanding of
the modification of the decay rates, leading to super- and subradiance. It
also highlights the fundamental aspect of the interaction, that in the single-
excitation subspace of two coupled emitters, the presence of the non-driven
one will double the rate of the coherent radiation (Γ+ = 2Γ) or eliminate it
(Γ− = 0). Further we distinguished between the dispersive (Γmn = 0) and
dissipative (Jmn = 0) coupling regime. We introduced their characteristic
effects on the coupled system, emphasizing that the maximal modification
of decay rates, resulting in super- and subradiance, occurs at the dissipa-
tive limit. Finally, considering photon-mediated coupling of two emitters
through a shared waveguide mode, we showed that the inter-emitter sep-
aration |xmn|, directly related to the coupling phase ϕmn, is the parameter
that determines the nature of the coupling. This is easier seen in the ex-
pressions of the coupling rates Γmn and Jmn, from where it becomes evident
that super- and subradiance reach their peak for a coupling phase of an in-
teger number of π, ϕmn = Nπ. The discussion concludes with the effective
Hamiltonian that describes our experimental system of two coupled emit-
ters embedded in a PCW, in the single-excitation subspace.

Having introduced the fundamental theoretical tools required for the
present thesis, we proceed to describe the experimental in the following
Chapter.
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2 Experimental setup and equipment

This chapter includes a description of the platform, the optical compo-
nents and the equipment used to conduct the experiments of this thesis. We
begin by introducing briefly our quantum emitter and its tailored nanopho-
tonic environment. Next, the structure of the sample is presented. We fur-
ther describe the cryostat and the main optical setup employed to drive the
emitters and collect the radiation, along with the two excitation techniques
used throughout this work. Finally, the lasers, spectral filtering setups and
detectors are outlined.

2.1 Quantum dots in a photonic crystal waveg-
uide

For many fundamental experiments in quantum optics and applications
in quantum technology, the initial requirement is to control a single quan-
tum emitter by exciting it and coupling its emission to a single optical mode.
Various quantum emitters have been explored for this purpose, with solid-
state emitters having the advantage of enabling direct integration into pho-
tonic nanostructures. This allows to tailor the light-matter interaction, cou-
ple the emitter to a single optical mode and route single photons for fur-
ther experiments. Our platform adopts a self-assembled InAs quantum dot
(QD) as the quantum emitter, coupled to a photonic nanostructure [47]. In
this section, we make a concise presentation of the self-assembled QD and
its optical properties, introduce the relevant nanophotonic structure and de-
scribe the composition of the sample used for this thesis, layer-by-layer.

2.1.1 The self-assembled quantum dot

The QDs used in this work are grown with the Stranski-Krastanov
method, relying on the self-assembly of InAs QDs inside a GaAs membrane.
In this approach, the QDs are formed due to the intrinsic strain induced by
the 7% lattice mismatch between the two semiconductor materials. Specifi-
cally, the QDs are grown on top of 1.5 monolayers of InAs, called the wetting
layer, deposited on a GaAs (Figure 2.1(a)). After the wetting layer, the strain
leads to the formation of randomly positioned clusters. These clusters are
composed of approximately 104 − 105 atoms each, forming small dome-like
islands with varying diameters of 15− 20 nm and heights of 5− 10 nm. It is
these islands that constitute the QDs.

InAs and GaAs are both semiconductor materials. Their continuum of
electronic states are divided between two bands, the valence (VB) and the
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conduction band (CB), separated in energy by a band-gap. In Figure 2.1(b)
the band diagram of the InAs QD and the surrounding GaAs is illustrated.
The two materials exhibit different band-gaps. As the InAs in enclosed
within a material of larger bandbap, a three-dimensional (3D) quantum well
is created. Due to this quantum confinement of electrons to nanometric di-
mensions, the continuum of electronic states of InAs become quantized. As
a result, even though a QD consists of hundreds of thousands of atoms, it
exhibits the optical properties of a single one, rightfully called an “artificial
atom”.

For a neutral QD (|0⟩), the states of the valence band are fully occupied
while the conduction band is empty. Under optical excitation of the QD
with a laser beam, an electron moves to the conduction band, leaving be-
hind a hole in the valence band. The electron-hole pair forms a bound state,
referred as the exciton. After a certain time, corresponding to the lifetime of
the excited state, typically of ∼ 1 ns, the pair recombines, emitting a single
photon. The frequency of the emitted photon depends both on the band-gap
of the InAs material and the size of the QD, which determines the confine-
ment potential. Variation of the QDs’ dimensions due to the random growth
process results in an inhomogeneous broadening among the emitters within
the same sample, where the emitted photons range between 915 − 945 nm
in wavelength. This broadening poses a challenge for achieving interaction
between different QDs, as they would need to be individually tuned to res-
onance.

FIGURE 2.1: (a) Transmission electron microscope image of a self-
assembled InAs QD embedded in GaAs. Adapted by [84] and [85]. Cour-
tesy of Jean-Michel Chauveau and Arne Ludwig (b) Electronic potential
of an InAs QD in GaAs. Smaller band-gap between the valence (VB) and
the conduction band (CB) of the InAs, leads to a 3D quantum confinement.
In turn, this creates the quantized energy levels of the QD. Three meth-
ods of optical excitation are illustrated; above band (ABB, blue), through
the p shell (green) and resonant excitation (red). After excitation a pair of
an electron (black disk) and a hole (white disk) is created, i.e., an exciton.
Upon recombination of the electron-hole pair, a photon is emitted.
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2.1.1.1 Optical excitation schemes

In order to create an exciton in the QD, different optical excitation
schemes can be used. The three types exploited throughout this thesis are
summarized in Figure 2.1(b). In the above band (ABB) driving (blue ar-
rows), the excitation laser has much larger energy than the GaAs band-gap
and the exciton is created in the bulk material of GaAs. From there the ex-
cited electron decays non-radiatively down to the lowest energy state of the
conduction band in the QD (s shell), while the corresponding hole arrives at
the higher energy state of the valence band. The electron-hole pair will then
recombine at the ground state, and emit a single photon with the resonant
frequency of the QD transition. This excitation scheme was used for the ini-
tial spectroscopy of the QDs, as it does not require any pre-characterization
of the sample. Another way to create an exciton is to adjust the frequency
of the laser beam to drive the electron to the second energy level of the con-
duction band, the p shell (green arrows). After few ps the electron relaxes
through phonon processes to the s shell, from where it will decay radiatively
and the electron-hole pair diffuses. This method of excitation is incoherent,
due to the relaxation process it undergoes before the radiative decay, but
can be particularly advantageous as it allows to filter out the excitation laser
light from the photons emitted by the QD. Finally, the exciton can be created
under resonant excitation, where the frequency of the laser exactly matches
the QD transition (red arrows). This scheme conserves the coherence in the
emission and different techniques are used to mitigate the laser background
in the signal, as it now overlaps spectrally with the QD emission1.

2.1.1.2 The neutral exciton

The electron-hole excitons discussed above are known as neutral exci-
tons, X0, as there is no additional, unpaired electron or hole to impose a
charge on the QD. In the neutral exciton the electron e, has a spin of Se =
1/2, Se,z = ±1/2, that is indicate with |↑⟩ and |↓⟩ for the up and down spin
orientations, and a heavy hole h, with angular momentum Jh = 3/2, Jh,z =
±3/2, denoted by |⇑⟩ and |⇓⟩ for up and down hole spin, respectively. From
combinations of these, four bound states are formed, characterized by the
projection of their total angular momentum Jex,z = Se,z + Jh,z = −2,−1, 1, 2,
where ex stands for exciton. Of these four Jex,z = −2,+2 are dark states, as
only transitions with ∆Jex = ±1 are allowed by selection rules. The bright
states of Jex,z = −1,+1 corresponding to |↓⇑⟩ and |↑⇓⟩, can be excited with
circularly polarized light, σ+ and σ− respectively, due to angular momen-
tum conservation. These two states are degenerate in energy for a symmet-
ric QD. However, a weakly broken QD symmetry2, leads to an exchange
interaction between the electron and the hole spins [86], which lifts this de-
generacy of the exciton states by the fine-structure splitting (FSS). Conse-
quently, the angular momentum Jex is no longer a good quantum number,

1e.g. when exciting the QD from the top, walking the beam in its vicinity has shown to
improve the signal-to-noise ratio (SNR). Here, noise translates to the laser background.

2as it can occur due to strain during the growth of the self-assembled QDs
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and the energy eigenstates are symmetric and anti-symmetric linear combi-
nations of the bright exciton states, (|↓⇑⟩ − |↑⇓⟩)/

√
2 and (|↓⇑⟩ + |↑⇓⟩)/

√
2,

referred as the x- and y-dipole, respectively (Figure 2.2).

FIGURE 2.2: Energy level diagram of a neutral exciton. The two exciton
states are shifted apart in energy by the fine-structure splitting (FSS) due
to asymmetries in the geometry of the QD, and exhibit orthogonal linear
dipoles, x and y. The neutral QD, |0⟩, can then be excited to each of the two
with a properly linear polarized excitation beam. Adapted by [87].

2.1.2 Light-matter interaction in a photonic crystal waveg-
uide

Embedding a QD in a nanophotonic waveguide gives the ability to en-
hance its interaction with light and couples it to a single guided mode.
Here, we focus on the nanostructure used for this thesis —a photonic crys-
tal waveguide— and give a short description of its properties and effects on
the QD emission.

2.1.2.1 Spontaneous emission of a two-level system

The fundamental phenomena where an excited two-level system even-
tually decays to its ground state emitting a photon, is known as spontaneous
emission and is attributed to fluctuations of the vacuum. Considering the
two-level system coupled to a continuum reservoir of optical modes with
wavevectors k, its spontaneous emission can be described by the Wigner-
Weisskopf theory3 which predicts an exponential decay of the excited state
of the emitter with a rate of,

Γ =
πω

h̄ϵ0
|d|2ρ(r0, ω, êd), (2.1)

and a Lorentzian emission spectrum of width Γ. Here, ω is the optical fre-
quency of the dipole, ϵ0 the vacuum permitivity, |d| the magnitude of the
optical dipole, r0 the position of the emitter, êd the unit vector specifying

3Holds for the case where the local density of optical states is insignificant over a fre-
quency interval comparable to the emitter linewidth.
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the orientation of the transition dipole moment and ρ is the local density of
states (LDOS). The LDOS defines the number of optical states at frequency
ω per frequency bandwidth and volume at the position of the emitter, and
relates to the local light-matter interaction strength.

From (2.1) it becomes clear that the spontaneous emission of an emitter
can be controlled by modifying the LDOS in its environment. The enhance-
ment of the decay rate can be quantified by the Purcell factor FP , describing
the decay rate inside the waveguide, Γ(r0, ω, êd), relative to the decay rate of
the same emitter in a homogeneous medium, Γhom(ω),

FP (r0, ω, êd) =
Γ(r0, ω, êd)

Γhom(ω)
∝ ρ(r0, ω, êd). (2.2)

2.1.2.2 Photonic crystal waveguide

The LDOS can be efficiently modified by placing the emitter inside a
nanostructure, like a cavity or a waveguide. Specifically, a photonic crystal
waveguide (PCW) has been measured experimentally to increase the decay
rate by FP = 9 [88]. Figure 2.3(a), shows a scanning electron micrograph
(SEM) of a PCW, similar to the one used for this thesis, engraved on top
of a GaAs suspended membrane. The modification of the LDOS with this
nanostructure is owed to the periodic modulation of the refractive index,
determined by the characteristics of the photonic crystal, the lattice con-
stant, α, and hole radius, r (inset of Figure 2.3(a)). This periodicity modifies
the distribution of the electric field on the membrane and consequently the
supported modes.

FIGURE 2.3: (a) Scanning electron micrograph (SEM) of a photonic crystal
waveguide. The lattice constant (holes separation) α and hole radius r are
240 nm and 65 nm, respectively. (b) Band diagram of a GaAs PCW. Three
TE-like waveguide modes (orange lines) appear in the band gap (white re-
gion between the two gray shaded areas). Lowest in energy is the primary
mode, that is usually the one of interest, exhibiting a slow group velocity
near the band edge (at kxα/2π = 0.5). Gray regions correspond to slab
modes which are not confined in the waveguide, while the light cone con-
tains the continuum of modes leaking outside the waveguide. Adapted
from [47].
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To elaborate, a photonic crystal is fabricated by etching holes, of radius
r and periodicity α, into the membrane, with α comparable to the optical
wavelength inside the material. This induces a periodic alternation of the
refractive index between GaAs and air, leading to optical Bragg scattering of
the light, with the propagating optical modes being Bloch modes. When the
difference between the two refractive indices is large, Bragg scattering can
suppress the propagation of optical modes for a range of frequencies in the
membrane, giving rise to a band-gap. The band-gap frequencies are deter-
mined by the radius of the holes, their separation, the lattice structure, the
thickness of the membrane, as well as the material of it. It can be therefore
tailored to the frequency range of QDs. By removing a single row of holes
from the photonic crystal, creating a defect to the periodicity, a number of
guided modes are allowed to propagate through, and this row is now forms
the photonic crystal waveguide, PCW. Figure 2.3(b) shows the resulting band
diagram with the dispersion relation of the guided modes ω = ω(k). The
three modes appearing inside the band-gap of the membrane are confined
in-plane (xy-plane) with the structure by total internal reflection in z and
propagate along the x direction due to Bragg scattering in y. Therefore, the
TE-like (transverse electric) modes propagating the waveguide will interact
with the dipoles of the QDs within it. Of the three, the relevant mode with
respect to the resonance frequencies of the QDs is the lowest in frequency,
primary mode. This essentially establishes the PCW as a 1D single-mode
optical system.

Near the low frequencies of the primary mode, at the edge of the Bril-
louin zone (kxα/2π → 0.5), the dispersion relation in the photonic crystal
flattens-out, leading to a low group velocity, ug = ∂ω/∂k. This means that
light at these frequencies slows down significantly in the membrane and
therefore interacts with the corresponding QDs for longer. This occurs for
frequencies near the so-called band-edge of the photonic crystal, where light
below the band-edge frequency is prevented from transmitting the waveg-
uide. Low group velocity means that the group index ng = c/ug increases
drastically close to the band-edge. Hence, as the maximum of the Purcell
factor is Fmax

P (ω) ∝ ng(ω) [47], the LDOS increases proportionally to the
group index, ng(ω). Therefore the decay rate of a QD with a transition fre-
quency close to the band-edge will be strongly enhanced4. Theoretically,
the ng diverges at the band-edge, but fabrication imperfection are prevent-
ing from such an observation [89]. In fact simulated values of the group
index at the band-edge have shown ng = 58 [90].

As a final remark, we note here that Purcell enhancement can become
quite complex, as besides the spectral position of the QD with respect to the
band-edge of the photonic crystal, it also depends on the emitter’s spatial
position, r0, within the waveguide, as well as its dipole orientation, êd [90].

Enhancement of the QD decay rate implies reduced interaction time with
the noisy solid-state environment. This is harnessed as a remedy to mitigate

4Again as mentioned for the band-gap, the frequency of the band-edge can be tailored
to approach the resonance frequencies of the QDs, as it depends on the lattice constant α
and the holes radius r of the photonic crystal.
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the effect of the fast noise, occurring on a timescale of ∼ 100 ps, from the
elastic phonon scattering, known as pure dephasing. This phenomena serves
as yet another source of decoherence, broadening the Lorentzian lineshape
of the zero-phonon-line of the emission. Purcell-enhanced QDs, as those
spectrally close to the band-edge of the photonic crystal, exhibit low pure
dephasing leading to near-lifetime-limited coherence [91].

As the PCW essentially suppresses the emission of photons to modes
other than the guided one, the QD couples efficiently to the single, well-
defined mode of the waveguide. The parameter used to quantify the cou-
pling of the emitter to the waveguide mode is the β-factor, given by

β =
Γwg

Γwg + Γng + Γnrad

, (2.3)

where Γwg is the decay rate in the waveguide mode, Γng is the decay outside
of the waveguide, hence in non-guided modes, and Γnrad is the decay rate
through non-radiative processes5. β-factor is then essentially the probabil-
ity of the emitted photon to be channeled through the desired waveguide
mode. A coupling efficiency of β > 98% over a large bandwidth has been
demonstrated experimentally with the current nanostructures, owed to the
Purcell enhanced Γwg and to the reduced Γng by the photonic crystal band-
gap [88]. This results into efficient photon countrates by the deterministic
emission from the QDs into the guided mode [18].

2.1.3 Sample

2.1.3.1 Sample growth

The wafer material used in this study is synthesized through molecular
beam epitaxy6. Specifically, the self-assembled InAs QDs are formed in the
center of a 180 nm-thin GaAs membrane (Figure 2.4(a)), atop a ∼1µm-thick
sacrificial layer based on GaAs substrate [18]. The QDs are embedded in the
center of this very thin membrane in order to maximize the probability of
coupling to a single, TE-mode propagating the sample. During the growth
of the membrane, the GaAs is doped such that a p-i-n diode with a Fermi
level, EF , fixed to the n-contact is structured. The doped regions generate a
constant intrinsic voltage, Vintr, across the membrane, bending the conduc-
tion and valence band of the heterostructure, as illustrated in Figure 2.4(b).
The wetting layer below the QDs brings a continuum of energy levels close
to the emitters. To eliminate any coupling to this continuum of states, the
QDs are capped with a higher band-gap material of AlAs [92]. On top of
the emitters, a thick layer of AlGaAs is employed prior to the doped GaAs
region. This serves as a tunnel barrier, since it assists further the controlled
tuning of the emitters by restricting the flow of electrons through the QDs

5Γng + Γnrad is what we refer to as Γloss in Chapter 1.
6A piece from the “magical” B15027 wafer! All our wafers come from the team of Dr.

Arne Ludwig in the University of Bochum.
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to forward bias [19], and decreases the non-radiative exciton recombina-
tion, that could occur through tunneling. The sample is finally capped with
a GaAs layer.

FIGURE 2.4: (a) Composition of the p-i-n heterostructure of the sample.
Electrical contacts between the p- and n-doped layers are illustrated with
the dark yellow wire. z is the direction of the QDs growth. Adapted
from [18]. (b) Conduction band of one QD embedded in a p-i-n diode.
The doped layers introduce an intrinsic constant electric field Vintr, which
bends the conduction band. By applying an external bias, Vbias, the slope
can be modified. Tuning the conduction band of the QD lower than the
Fermi level, can lead to a negatively charged QD.

2.1.3.2 Photonic chip fabrication

From this wafer material, a 3 x 4 mm sample is cleaved to prepare the
photonic chip we used. At first, electrical contacts to the diode are fabri-
cated. For that, the sample is etched in certain regions down to the n-doped
layer, followed by metal deposition to both p- and n- layers separately, for
the formation of electrodes. Through those a bias voltage, Vbias, can be ap-
plied across the QDs. This feature gives accessibility to the properties of the
emitters, as it allows for tuning of their emission frequencies via the DC-
Stark effect (Figure 2.4(b)). Applying a positive bias will lower the intrinsic
field of the diode. Reducing it further, so that a single conduction band
reaches below EF , can result in a charged QD through the tunneling of an
electron from the n-doped layer. In addition, the p-i-n diode can be used
to quench the charge noise of the solid-state environment, reducing signifi-
cantly the spectral diffusion. Spectral diffusion is a consequence of the shift of
the QD resonance due to the Stark effect caused by the charges surrounding
the QDs. Over longer times (∼ ms) these shifts of the resonance frequency
effectively broaden the linewidth, γ = Γ/2π, defined by the radiative life-
time of the transition7. The implementation of the p-i-n diode mitigates this
effect, enabling near-lifetime emission linewidths.

Next, the nanostructures, specifically designed for the project, are pat-
terned with electron beam lithography. The PCW is connected to two
shallow etched grating out-couplers (Port 1 and Port 2) through short

7Defined as: decay rate Γ, linewidth γ and lifetime of the transition 1/Γ.
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nanobeams (Figure 2.3(a)). To engrave the nanostructure on the sample,
the holes of the photonic crystal and the nanobeams are etched through the
membrane. Finally, the sacrificial layer below the membrane is chemically
removed, leaving the structures suspended in air8.

The PCW used in this thesis have a lattice constant of α = 240 nm and
hole radius r = 65 nm. The photonic crystal is composed of two regions,
the so-called slow (broader) and fast (narrower) light region, exhibiting dif-
ferent ug of the propagating light, with the latter serving as a mode adapter
between the slow light PCW and the nanobeams. The grating out-couplers
in both ends allow for coupling the light to and out of the photonic chip.
By diffracting the emission in the waveguide out-of-plane with high effi-
ciency and collecting the photons through the objective, the current devices
have demonstrated > 60% chip-to-fiber coupling efficiency [94]. Their broad
bandwidth of above 50 nm, allows for excitation and collection of almost the
full spectral range of the InAs QDs in the waveguide. Moreover, they facili-
tate the suppression of the laser background in the signal by spatial and po-
larization selectivity. In particular, the input-output gratings are separated
in space, and have orthogonal orientations, coupling to linearly polarized
near-Gaussian modes in x and y for Port 1 and Port 2, respectively. In this
way, the scattered input light at Port 1, going through the objective, can be
rejected from the signal collected from Port 2. The nanostructures are com-
monly fabricated along the crystallographic axis of the wafer ([110] or [110]
[95]), such that either the x- or y-dipole of the QD has high probability of
coupling well to the mode of the waveguide.

2.2 Optical setup

Exciting the QDs on demand and detecting their single photon emission,
requires to ensure that thermal energy is below the confinement potential,
eliminating the probability of thermal population of the QDs. Hence, the
sample needs to be placed at the center of a cryogenic system.

To do so, the sample is glued9 and wire-bonded on a PCB for electrical
accessibility to the QDs. It is then fixed atop a stage of a three-axis stack
of linear, piezo-driven nanopositioners, that is placed at the bottom of a
dipstick. The sample is oriented with its z axis (Figure 2.4(a)) along the dip-
stick and electrical feedthroughs10 from BNC connectors at the top of the
dipstick, reach the PCB. Right above the sample there is a low-temperature
compatible, apochromatic microscope objective, of numerical aperture NA
= 0.81 and focal length f = 2.93 mm, suitable for near-infrared wavelength
range (LT-APO/NIR/0.81). Through that objective, the laser light reaches
the sample highly focused, gets efficiently collected, and the sample is im-
aged under white light. Moving upwards on the dipstick, a 4f lens system

8More details about the fabrication procedure can be found in [18] and [93].
9with silver paste for thermal contact.

10connecting to ultra-low noise voltage source (lower than 1 µVRMS output voltage
noise), from Basel Precision Instruments.
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FIGURE 2.5: Illustration of the cryostat with the sample (contained in the
dashed loop) and the primary optical setup of the breadboard on top of
it. The excitation light going to the cryostat from the Resonance Transmis-
sion (RT) and Resonance Fluorescence (RF) paths is indicated with a red
line. The laser reaches the sample by reflecting downwards on the 50:50
beamsplitter on top of the dipstick, and going through the microscope ob-
jective. The signal from the chip, indicated with blue line, is now transmit-
ted through the same 50:50 beamsplitter, and collected by the single-mode
fibers.

fixed in the optical path follows the objective. This is used as an optical relay
for the alignment of the laser on the sample, while it also limits the losses
from diffraction. The dipstick is top-loaded in the center of a closed-cycle
cryostat11 that operates at 4K, with ∼50 mbar of helium gas inside the sam-
ple space, to ensure thermal contact for efficient heat dissipation from the
cold finger.

To send light to the sample, a breadboard with fibers and optical compo-
nents fixed on top of the cryostat, guides the light to the center of the dip-
stick. The laser light arrives to the breadboard through polarization main-
taining optical fibers. The beam is collimated at their output with a cou-
pler lens of different f , determined by the excitation technique they would
serve. Two optical paths for excitation are prepared on the breadboard. One
is dedicated for driving the emitters from the top of the waveguide, and the

11AttoDRY1000 with 5/3T magnet from Attocube (aka: HyQ cryo)



2.3. Excitation techniques 37

other to couple the light through it, using the grating couplers. For the exci-
tation from the top, also referred to as Resonant Fluorescence (RF), f = 18 mm
is used resulting to a diffraction-limited beam spot (of ∼ 1 µm diameter)
on top of the waveguide. For the excitation through the waveguide, also
known as Resonant Transmission (RT), a lens of f = 10 mm is used to create
a larger spot on the sample, allowing for efficient coupling to the grating
ports. Subsequently, in both RF and RT paths the light goes through a linear
polarizer, to ensure a well defined starting polarization of the beam. Part
of the light is sent to a power meter fixed on the reflecting side of a beam
splitter (BS) in the optical paths. The optical power measured is then stabi-
lized with a feedback loop from the power meter, through a PID controller
and an Acousto-Optic Modulator (AOM) setup. The excitation beam in both
paths is further passed through a pair of half (λ/2) and quarter (λ/4) wave-
plates on motorized mounts, for polarization control. Finally, the two paths
are combined on a BS and are both reflected downwards to the center of
the cryostat, by a 50:50 BS12 at the top of the dipstick. The collimated beam
then continues through the 4f system and the objective to reach the photonic
chip.

The light diffracted from the grating coupler used as the collection port
of the nanostructure, follows the same path upwards. It instead now trans-
mits through the same 50:50 BS at the top of the dipstick and is sent to the
collection path of the breadboard. After another pair of λ/4 and λ/2 wave-
plates, a polarizing beam splitter (PBS) separates the collection in polariza-
tion to two single-mode fibers, with fiber-couplers13 of f= 5 mm. One will
collect the x- (horizontal) and the other the y- (vertical) polarization, de-
pending on the port of the PCW we choose to collect from.

With a flippable 50:50 BS in the optical path of the collection, we can
send diffused white light, back to the dipstick and illuminate the sample.
The light reflected from the sample is imaged by a CMOS camera14, that is
placed at the reflection side of a 10:90 BS, added in the RF path.

The current cryostat, contains superconducting magnets in x and z ori-
entation, that can reach up to 3 T and 5 T, respectively. This allows us to
apply an external magnetic field over the sample, which, as we will see, will
play an instrumental role in the QD coupling experiment.

2.3 Excitation techniques
Throughout the thesis, two excitation methods will be used: the Reso-

nance Transmission (RT) and Resonance Fluorescence (RF). In RT (Figure
2.6(a)), the beam spot of the laser is usually aligned on top of the coupling
grating Port 2, with a small angle. The light couples into the waveguide
(optimally at about 8.4◦) and while propagating through, it interacts with a
QD that is coupled to the same mode. In the case where the light is resonant

12A 10:90 BS could be consider for more efficient collection. A 50:50 was used in this case,
as high power in excitation was a requirement for a potential future experiment.

13Fiber-coupler 60FC-SFF-4M5-10 from Schäfter & Kirchhoff.
14DCC1645C USB 2.0 from Thorlabs
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with the QD transition, and the QD is not saturated by the driving, the pho-
ton will be absorbed and re-emitted in the direction opposite to the laser
light propagation. It will be essentially reflected by the QD, towards Port
215. Higher-photon components of the laser will be transmitted to Port 1,
along with photons that are off-resonant to the QD transition. Hence, under
RT excitation with a coherent light source, the spectra of a QD will reveal an
RT dip at the resonance frequency, due to the reflection of the single-photon
component. Importantly, the shape of this dip is directly related to the de-
cay rate, Γ, of the QD transition. The photons that reach Port 1 scatter off
the chip with the same optimal angle. Through the objective, the light is
directed to the collection fiber in the transmission of the PBS (Figure 2.5),
aligned with the x-polarization of Port 1 (Section 2.1).

FIGURE 2.6: Illustration of the excitation techniques of a QD, by (a) Reso-
nant Transmission (RT) and (b) Resonant Fluorescence (RF). (a) In RT the
laser is aligned to one of the grating couplers (Port 2). When the light is
resonant with the transition of the emitter, the QD will absorb and re-emit
the light in reflection (yellow photons), allowing only off-resonant photons
to transmit (red photons) in weak excitation. (b) In RF the QD is excited
from the top of the waveguide and has equal probability of emitting pho-
tons in either of the two directions. Figure adapted by [87].

In RF excitation (Figure 2.6(b)), the diffraction limited beam spot is
aligned well focused on top of the waveguide, at the known position of
the QD. Part of the light will couple to the waveguide and excite the emit-
ter. The polarization of the beam can be adjusted by the quarter- and half-
waveplates on the RF excitation path (Figure 2.5), according to the orienta-
tion of the QD dipole that we want to drive. The photons emitted by the
QD will propagate towards either of the ports with equal probability in the
(non-chiral) PCW.

2.4 Excitation lasers
Two lasers were employed for the entirety of this thesis. A continuous-

wave (CW), tunable laser16 with wavelength range 910-980 nm and typical

15In other words, the emitted photon interferes destructively with the laser light in trans-
mission after the QD.

16CTL950 from Toptica
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linewidth < 10 kHz, was used for spectroscopy in Chapter 3 and photon-
coincidence measurements in Chapter 5. To stabilize the driving frequency
to a precise value, part of the beam is directed to a wavemeter17 which,
through a feedback loop, enables to lock the frequency of the laser to the
desired value, with 60 MHz absolute accuracy.

For the time-resolved dynamics measurements presented in Chapter 4,
we used a mode-locked Ti:Sapphire laser18 with about 10 ps pulse dura-
tion19, as given by the autocorrelator signal, and 80 MHz repetition rate.
Such a pulse corresponds to about 32 GHz transform-limited bandwidth,
considering a sech2 temporal pulse shape. To address the much narrower
QD transitions more efficiently, the beam goes through a 4f stretcher setup,
similar to the one described in [96]. In short, the beam is initially expanded
by a pair of lenses, obtaining a diameter of 25 mm on a diffraction grat-
ing. The reflecting diffraction grating20 of 1200 grooves/mrad, disperses
the light as 0.74 nm/mrad to its spectral components. A big lens of f = 750
mm focal length in the optical path, focuses the beam onto a mirror placed
in the Fourier-plane of an effective 4f system. Mounted on the mirror is an
adjustable slit with micrometer precision and the mirror is fixed on a lin-
early movable stage. By choosing the angle of the grating and the position
of the mirror-slit component perpendicular to the beam, we can select the
desired central frequency. The opening of the slit will define the FWHM
bandwidth of the stretched beam. The selected frequency is reflected fol-
lowing the same path backwards. In order to separate the input beam from
the output, a PBS and a quarter-waveplate are placed21 before the expan-
sion lenses. The input beam will be transmitted through the PBS and get
a circular polarization after the quarter-waveplate. Upon reflection on the
Fourier-plane mirror, the beam acquires a pi-phase shift that will reverse the
handedness of the circular polarization. This leads to a vertical polarization
after the quarter-waveplate, and thus to reflection by the PBS, separating
from the input light. After the stretcher the pulse on the spectrometer has a
bandwidth of ∼ 91 pm. Correcting for the instrument response of the spec-
trometer, that is 24 pm [87], and considering a Gaussian pulse shape after
the stretcher, the resulting pulse is 29.3 GHz FWHM with a duration of 15
ps.

2.5 Filter boards
The collected light from the sample undergoes frequency filtering to sep-

arate the emitters signal from the noise, before directed to the detectors. For
the measurements done by off-resonant excitation (ABB, through the p shell
or a higher-energy level, Section 2.1.1.1), the laser frequencies were most

17WS-7 from HighFiness.
18Tsunami from Spectra Physics.
1910 ps FWHM from autocorrelator should come from a 6.6 ps pulse duration for a sech2

pulse.
20Near-IR ruled reflective diffraction grating, at 750 nm blazed wavelength from Thor-

labs.
21This is not optimal for the grating that is polarization-sensitive to our wavelengths.
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commonly about 6 THz higher than the resonance of the emitters. To filter
out the laser, a reflecting diffraction grating22 of 22.1 GHz FWHM band-
width and 65 % efficiency was used [96].

FIGURE 2.7: Individual transmissions through the transmission grating
(red) and the etalon filter (light blue). The free spectral range, FSR, of the
etalon, FWHM and relative efficiencies of both are identified.

In the case of resonant excitation, the broadband, compared to the QD
transition, pulsed laser, was filtered by the combination of a transmission
grating23 and a solid silica etalon filter. The transmission grating has a
bandwidth of 18 GHz FWHM, and > 80 − 90% diffraction efficiency at 930
nm, depending on the polarization of the light (Figure 2.7 red). The etalon
has a 100 GHz free spectral range (FSR), 3 GHz FWHM bandwidth and ex-
hibits a measured efficiency of about 95% (Figure 2.7 light blue). Placing the
etalon at a small angle with respect to the optical path, allows to separate
the reflected undesired frequencies of the light from the signal. The central
transmitted frequency can be selected with high precision and stability, by
adjusting the thickness of the etalon. This can be controlled by regulating
the etalon’s temperature using a Peltier element, placed below its mount,
and a PI-controller. The two filters are calibrated such that they are centered
around the frequency of the QD transition.

2.6 Detectors
The detection systems used throughout the thesis were a spectrometer

and three types of single photon detectors. The spectrometer was employed
to identify the promising QDs, as well as for their initial spectroscopic in-
vestigation. The single photon detectors that were used for the rest of the
experiments were avalanche photo-diodes (APDs), fast APDs and super-
conducting nanowire single photon detectors (SNSPDs). Depending on the
needs of each experiment, the suitable detector was chosen with respect to

22Same type as the one described for the stretcher setup.
23GP3515N VPH Transmission Grating at 930 nm by Thorlabs
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their efficiency and time jitter. Both the APDs and SNSPDs are fiber coupled
detectors, with the latter being extensively used, due their high quantum ef-
ficiency (70% at 940 nm), and very low dark count rate (< 5 Hz). However,
their temporal jitter, of 200 ps FWHM, would limit the resolution of dy-
namics happening at shorter timescales. The fast APDs were employed for
most of the decay dynamics measurements, included in Chapter 4, due to
their comparably low time jitter of 40 ps FWHM. This property is advanta-
geous for the decay measurements of the coupled emitters, as it allows to re-
solve the fast (superradiant) emission. On the downside, as these detectors
are free space systems, they have very low quantum efficiency (1%), which
makes the measurements remarkably longer in duration. A table with the
parameters of all three detectors can be found in [96].

The time taggers used depending on their availability were a Pico-
Harp300, with time precision < 12 ps RMS, or a Time Tagger Ulta24 with
time jitter 20 ps FWHM. The time jitter for both devices is low enough, that
does not limit the timing resolution of the measurements themselves. For
the time resolved measurements with pulsed excitation, an electrical signal
was sent from a fast photodiode in the path of the laser, to one of the chan-
nels of the time tagger counter. This ‘clock’ signal was used as reference
to tag the detected photons in time. For the coincidence measurements de-
scribed in Chapter 5, electrical signals from two single photon detectors are
connected to two channels of the time tagger, where one is selected as the
reference to tag in time the photons arriving in the other.

2.7 Summary and Connection
This Chapter introduces the solid-state emitter embedded in the pho-

tonic nanostructure, that enables modification of its spontaneous emission.
We further compiled a concise description of the platform, as well as techni-
cal information on the optical setup and equipment used to excite, manipu-
late and detect the emission from the QDs.

In the Chapter that follows we employ all components to investigate the
sample with spectroscopy. We will look into identifying the suitable QDs
for the observation of the collective phenomena, along with the parameter
that will be used to tune the emitters into resonance with control.

24By PicoQuant and Swabian respectively.
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“So, where are the dots?” - Theory Prof. Anders Søndberg Sørensen in the lab

On the way to explore the coupling between multiple emitters with our
platform, two requirements emerged from the beginning: (1) We needed to
find at least two QDs well coupled to the shared waveguide mode, and (2)
spectrally close to each other, such that they could be brought to resonance
with an external tuning knob.

In this Chapter we identify the promising QDs for the experiments that
follow. We perform basic spectroscopy, probe their tunability and esti-
mate their spatial separations. At first, the emitters are selected spectrally
through resonant transmission of the PCW and located spatially inside the
waveguide via photo-luminescence. Next, an out-of-plane magnetic field is
introduced as the tuning knob to bring the emitters into resonance with con-
trol. Closing, we image the QD candidates inside the PCW, to approximate
the inter-emitter separations.

3.1 Identifying the emitters in resonant transmis-
sion

Starting with a new sample, to identify the promising QD candidates,
we begin by performing RT measurements for different nanostructures. For
this study the nanostructures of interest are PCWs, identical to the device
shown in Figure 2.3(a). As described in Section 2.3 for an RT measurement,
the CTL laser is shined with low power1, well below the saturation of QDs,
upon Port 2. Following, its frequency is scanned, initially for a broad range,
with a step of 300 MHz. The light transmitted through the waveguide is
collected from Port 1. For each frequency the counts are recorded for two
bias voltages Vbias; at 0 V, to measure the laser background, and at 1.24 V,
the voltage at which neutral excitons can be excited. With this method, for a
PCW with lattice constant α = 240 nm and hole radius r = 65 nm, we obtain
the transmission spectrum shown in Figure 3.1(a).

We observe the band-edge of the waveguide2 at about 318.4 THz and
three transmission dips (RT dips Section 2.3) exhibiting good extinction,
spectrally close to each other and the band-edge. These RT dips correspond
to the frequencies for which the laser is on resonance with three different
QDs inside the PCW (highlighted in yellow, orange and red). As mentioned

11µW and filtered with OD 5.0 filter.
2Found at the 1/e of the maximal transmission.
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in Section 2.3, under this excitation scheme, each QD would reflect back the
resonant light instead, resulting in the observed dips in transmission.

The specific structure is selected among others, because of the large
depth of the RT dips, which consists a criteria of both good coupling be-
tween the waveguide and the QDs (high β-factor), and low spectral diffu-
sion and pure dephasing3. Operating with QDs that are well coupled to
the waveguide mode and less susceptible to noises, naturally increases the
chances for an efficient photon-mediated dipole-dipole interaction and im-
proved coupling.

FIGURE 3.1: RT spectrum of the PCW containing the three well-coupled
emitters at B = 0 T. (a) Off-resonance (brown) and on-resonance (blue)
countrates were recorded, using Vbias = 0V and 1.24V, respectively. The
colored lines: QD1 yellow, QD2 orange and QD3 red, are highlighting the
spectral positions of the QDs with respect to the band-edge (band-gap: the
gray shaded area). (b) Zoom-in RT at the region of the three emitters. Both
x- and y-dipoles of QD2 and QD3 are coupled to the waveguide, while only
one dipole of QD1 appears predominantly at B = 0 T. The FSS between
the two dipoles is indicated for QD2.

3Due to the spectral position of the emitters with respect to the band-edge of the PCW,
see Section 2.1.2.2.
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From the tested nanostructures, on this sample we find that one out of
three PCWs contained at least two QDs well coupled to the waveguide and
spectrally close to each other. Given that the self-assembled QDs grow ran-
domly in position and size, and the engraving of nanostructures on the
sample is done with knowledge limited to the orientation of the crystal-
lographic axis, this relatively high probability is attributed to the density
of QDs, measured to be 10 µm−2 [85, 97]. However, scaling up to more
emitters, would require deterministic positioning of the nanostructures on
pre-localized QDs [98] or deterministic QD growth [99–101]. With the for-
mer demanding in its implementation and the latter in preliminary stage of
fabrication, we for now rely on the high density of the QD wafer material.

Figure 3.1(b) shows a finer resolution scan around the frequencies of
QD1, QD2 and QD3 at low power4. The scan reveals two dips at B = 0 T
for each one of the three emitters. Those correspond to the linear x- and
y-dipoles of the QDs, intrinsic result of the asymmetric QDs shape, due to
the strain they experience during growth [47] (see Section 2.1.1). Their res-
onance frequencies for Vbias = 1.26 V and FSS (indicated in Figure 3.1(b) for
QD2) evaluated from this measurement, are included in Table 3.1. The ad-
jacent dipoles show a spectral separation of about 49 GHz and 21 GHz, be-
tween QD1-QD2 and QD2-QD3, respectively. From the spectra it becomes
apparent that the low frequency (LF) dipole of QD1 is much better coupled
to the waveguide mode (∼ 82% maximum of transmission dip) than the
higher (HF) one, while both dipoles of QD2 and QD3 show similar cou-
pling (∼ 71% and ∼ 67% respectively). These variations to the coupling
of the different dipoles are related to the position of the emitters inside the
PCW. Specifically, they are attributed to the varying local polarization of the
PCW mode, leading to different projections of the QD dipole moments [90].

The transmission dips is fitted individually with the model described in
[102]

T =
[(Γ + 2Γdph)((β − 1)2Γ + 2Γdph) + 4∆2](1 + ξ2)

(Γ + 2Γdph)2 + 4∆2 + 4βΓ∆ξ + [((β − 1)Γ− 2Γdph)2 + 4∆2]ξ2
, (3.1)

where Γ is the decay rate of each dipole, Γdph the pure dephasing rate, β the
β-factor, ∆ the detuning between the laser frequency and the transition of
the QD dipole, and ξ is the Fano-parameter. The latter originates from weak
cavity resonances caused by reflections between the interfaces of the waveg-
uide, inducing the observed asymmetry to an otherwise Lorentzian dip. To
take the effect of spectral diffusion, σsd, into account, the above expression
is convolved with a Gaussian distribution of detunings ∆ centered around
zero, and a standard deviation that corresponds to the spectral diffusion
from the local environment.

To extract the decay rates, the spectral diffusion and β-factors of all
dipoles, a power-dependent RT measurement at B = 0 T is recorded and
fitted with the convolved function for each of the three emitters. Figure

4This scan was done for Vbias = 1.26 V, with 1µW power and an optical filter of OD 5.0,
to ensure that the QDs will not be saturated.
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FIGURE 3.2: (a) Power dependent RT measurement for the three QDs. (b)
RT dips of the LF QD1 dipole, at all powers, tracing the dash line in (a). The
solid line is the result of modeling the experimental data, with the sum of
multiple transmission dips given by (3.1), convolved with the Gaussian
spectral diffusion.

3.2(a) shows the power-dependent RT for the three QDs. The single trans-
mission dip of the QD1 LF dipole is fitted for all powers at once, with a sum
of the above mentioned convolved functions. The resulting fit is shown in
Figure 3.2(b)5. Respectively, for QD2 and QD3 the same procedure is fol-
lowed, where now a product of two transmission dips of (3.1) is convolved
with the Gaussian, to account for both x- and y-dipole of each QD. A sum
of these is used to fit the two dips of QD2 and QD3 at all powers. For the
entirety of the modeling, the pure dephasing is fixed at γdph = 0.05 GHz,
where γdph = Γdph/2π and the spectral diffusion is considered the same for
both dipoles of each QD. Individual fits to the transmission dips at B = 0 T
and P = 1µW are shown in Figure 3.3. The modeled parameters are sum-
marized in Table 3.1.

FIGURE 3.3: RT spectra of all five dipoles at B = 0 T. From left to right: low
frequency (LF) dipole of QD1, LF of QD2, high frequency (HF) dipole of
QD2, LF of QD3 and HF of QD3. The solid lines are fits to the transmission
dips by (3.1) convolved with a Gaussian spectral diffusion.

Extracting precise values of these parameters solely through RT data is
not straight forward. That is because the β-factor, pure dephasing and spec-
tral diffusion, all contribute to the decrease of the RT dip [102]. A more
thorough investigation of RT dip analysis is described in [103]. In our case,
an optimal approach would have been to measure the decay rate of each
dipole individually at B = 0 T, by performing lifetime measurements. This

5The transmission dips are shifted by a constant detuning for clarity of the plot.
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way, one out of four free parameters would have been fixed and estimated
independently.

3.2 Charge plateaus
To investigate the tuning range (voltage span) of our neutral excitons, we

trace in RT the frequency-voltage plateau of each QD. For that we use once
more the CW laser coupled to the waveguide from Port 2. The optical power
is set to 1µW and a filter in the excitation path with optical density of 5.0,
ensures driving well below saturation. Assuming from Figure 3.1(b), that
the resonant frequencies at Vbias = 1.26 V are approximately at the center
of the plateaus, we scan the frequency of the laser for about 70 GHz (100
GHz) around the resonant frequency of QD1 (QD2), with a step of 50 MHz.
For each frequency the laser is locked and the bias voltage is scanned with
a step of 2 mV. The transmitted light is collected from Port 1 and measured
with an APD. The results are depicted in Figure 3.4, where the transmission
is normalized to the counts collected with non-resonant bias voltage (1 V),
to correct for the laser background.

Each frequency-voltage plateau shows a stable QD emission tuning with
the bias voltage applied. The three QDs show a Stark tuning of 0.62
GHz/mV for QD1, 0.69 GHz/mV for QD2 and 0.63 GHz/mV for QD3.
From the current measurement, it is also confirmed that the pairs of dips
seen in Figure 3.1(b) are two dipoles of the same QD, as they tune with the
same slope (Figure 3.4(b)). The plateau abruptly disappears after 1.3 V, as
for larger Vbias the QD gets charged with an electron that tunnels through
the barrier of the intrinsic region of GaAs and jumps to a different energy,
outside the measured spectrum.

FIGURE 3.4: Frequency-voltage plateaus of the neutral excitons (X0) of (a)
QD1, (b) QD2 and QD3. At B = 0 T, only the LF dipole of QD1 couples to
the waveguide mode, whereas both LF and HF dipoles of QD2 and QD3
appear in the RT spectra.
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3.3 Magnetic field as the tuning knob
As mentioned in the introduction of this Chapter, to satisfy the last re-

quirement for the coupling experiment, the emitters should be brought to
resonance. From the charge plateaus it becomes clear that, with the current
device, the electric field can not be used as the knob that would tune the
frequencies of the QDs to resonance. This could have been made possible
in a more dedicated design6, that would allow for independent control over
the electric field on each emitter locally [85, 104]. We then turn to make use
of the magnets of the cryostat (Figure 2.5), which in x and z can produce
an in-plane (Voigt configuration), or out-of-plane (Faraday configuration)
magnetic field with respect to the sample, respectively.

3.3.1 Out-of-plane magnetic field on a neutral exciton

To elaborate on the effect that an external magnetic field has on a neutral
exciton, we recall from Section 2.1.1.2 that in the absence of it (B = 0 T) the
QD has two linear dipoles, |x⟩ = (|↓⇑⟩−|↑⇓⟩)/

√
2 and |y⟩ = (|↓⇑⟩+|↑⇓⟩)/

√
2,

shifted in energy by FSS. Applying now an external magnetic field B⃗ =
(Bx, By, Bz) of arbitrary strength and orientation on the neutral exciton, the
FSS is extended by the Zeeman interaction of the electron and the hole spins
with B, given by the Hamiltonian [86],

HZeeman(B) = −µB

∑
i=x,y,z

(ge,iSe,i − 2κiJh,i − 2qiJ
3
h,i)Bi, (3.2)

where µB is the Bohr magneton, ge is the electron g-factor, Se the electron
spin and Jh the hole spin, while κ and q are the valence-band parameters in
the Luttinger-Kohn Hamiltonian, related to the material7.

Using the magnet along the x axis to apply an in-plane B field (Voigt
configuration), the two bright states at B = 0 T would both shift to higher
energies with increasing Bx. It would therefore be unlikely to bring two
QDs to resonance under this tuning field.

For an out-of-plane magnetic field (Faraday configuration) where B is
oriented along the heterostructure growth direction z, (3.2) can be simplified
to [86],

HF
Zeeman(B) = −µB(ge,zSe,z −

gh,z
3
Jh,z)Bz, (3.3)

with gh,z being the effective hole g-factor8. Within this field the two bright
dipoles of each QD shift apart with an increasing Bz field, due to their dif-
ferent symmetries. To elaborate, the linearly polarized x- and y-dipoles at
B = 0 T transition to circularly polarized in the presence of a Bz field. Plug-
ging in (3.3) the electron and hole spins for each exciton σ±: Jex,z = ±1 →
Se,z = ∓1/2, Jh,z = ±3/2 (see Section 2.1.1.2), we deduct the exciton energies

6An example of such a device is shown in Figure 6.1
7For InAs κ = 7.68 and q = 0.04 [105].
8Given by gh,z = 6κz + 13.5qz [86].
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E±,Zeeman = ∓µB

2
(ge,z + gh,z)Bz. The two dipoles then exhibit an even and

linear energy shift in opposite directions with increasing Bz due to Zeeman
effect, with σ+ shifting downwards and σ− upwards in energy.

In addition, at large magnetic fields, the contribution of the exciton dia-
magnetic shift given by ∆Edia = σB2

z becomes significant, causing a devia-
tion from the purely linear behavior in the energy shift.

The bright exciton eigenstates for a neutral QD with reduced symmetry
under a Bz field are then described by,

E± = E0 +
1

2
FSS ± 1

2

√
FSS2 + (µBgex,zBz)2 + σB2

z , (3.4)

where E0 is the energy of the low frequency dipole of each QD at Bz = 0 T,
FSS is the fine-structure splitting between the initially linear dipoles and
gex,z= ge,z + gh,z is the exciton g-factor. From (3.4) we see that for each QD at B
= 0 T we begin with a degenerate energy for both dipoles ofE0. Considering
a QD with reduced symmetry, the degeneracy is lifted and the two bright
dipoles split in energy by FSS. At low magnetic field the energy splitting
varies quadratically withBz. AsBz increases to values much larger than the
exchange energy, the shift exhibits linear behavior, with the Zeeman effect
dominating. For large values of Bz, the diamagnetic effect shifts equally
both dipoles up in energy quadratically, independent of their polarization.
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FIGURE 3.5: RT spectra of all three QDs at V = 1.24 V, as a function of the
out-of-plane magnetic field, Bz . The red dashed lines follow the theoretical
prediction for the Zeeman effect with a diamagnetic shift, while the black
dashed lines are highlighting the Bz values where the dipoles of the differ-
ent QDs come to resonance pairwise.

3.3.2 Tuning pairs of quantum dots to resonance

With the expected effects in mind, we exploit the magnet of the cryostat
in z direction to impose an external magnetic field in Faraday configuration
on our three QDs. To test the tunability, we repeat the RT measurement,



50 Chapter 3. Optical Spectroscopy

while sweeping Bz up to 4 T. Figure 3.5 shows the effect of the increasing Bz

over the spectra of the three emitters. The red dashed lines are fits to the RT
dips with (3.4).

We note that the RT dips of both dipoles for each QD exhibit approx-
imately equal strength for the neutral exciton. This happens because the
circularly polarized dipoles are projected onto the local linear polarization
of the PCW, allowing them to couple equally well to the waveguide mode.
As it will be mentioned later, it is for the same reason that the two opposite
in polarization dipoles can couple when tuned to resonance—because they
interact through the mode of the waveguide they couple in.

From Figure 3.5 it becomes clear that Bz is a suitable tuning knob for
the relative detunings of the three QDs. We observe opposite dipoles of the
three QDs coming to resonance pairwise, for three different values of Bz

(black dashed lines). Specifically, the first crossing at Bz = 1.07 T is between
QD2 and QD3, the second at Bz = 2.13 T between QD1 and QD2, and the
third at Bz = 3.33 T between QD1 and QD3.

As the three QDs couple efficiently to the waveguide mode, exhibit low
noise, owed to their spectral proximity to the band-edge of the photonic
crystal, and can be tuned to resonance with control by an applied magnetic
field, we focus the experiments for the entirety of the thesis on these three
emitters.
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FIGURE 3.6: Amplitude of transmission dips as a function of the magnetic
field Bz , for the high frequency (HF) and low frequency (LF) dipoles of
the three emitters. The symmetry around Bz = 0 T confirms the absence of
chirality in the device.

Before moving on, the chirality of the structure was tested, by comparing
the RT dips of Figure 3.5, to counts from an identical RT measurement at
negative Bz values. The resulting spectra are a mirror image of Figure 3.5.
Figure 3.6 summarizes the amplitudes of the transmissions of each dipole
(HF and LF) for the three emitters, for Bz = [−4, 4] T. All six dips exhibit
symmetry aroundBz = 0 T, verifying the absence of chirality in the coupling
of the QDs to the waveguide mode.
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3.4 Resonant fluorescence
The QDs are also probed in RF. For that, we need first to find the position

of the emitters inside the waveguide. To do so, we initially use a CW laser to
mark the resonant frequencies of the QDs on a spectrometer and then per-
form excitation through a higher-energy state, while scanning the position
of the laser on top of the waveguide. Obtaining counts on the spectrometer
at the marked frequencies indicates that we have successfully located the
QDs of interest. In the paragraphs that follow we describe this procedure in
more detail.

We begin with the CW laser aligned through the RF path (Figure 2.5),
focused on top of the waveguide. Locking the laser to the central frequency
of the charge plateau for each QD (corresponding to Vbias = 1.26 V in Figure
3.4) we collect the light coupled to the waveguide from Port 1 and direct it
to a spectrometer. The three central frequencies of the QDs are then marked
for reference.

FIGURE 3.7: Resonance fluorescence spectra of (a) QD1, (b) QD2 and QD3
at Bz = 0 T as a function of frequency and bias voltage. As we excite from
free space on top of the PCW, (b) implies that QD2 and QD3 are positioned
close to each other, within the diameter of the beam spot.

We then perform ABB9 excitation (Section 2.1.1.1) for each emitter, from
free space. As this driving scheme creates the excitation in the bulk material
(GaAs), our sample of high density and inhomogeneous broaden ensemble
of QDs, can lead to a large number of overlapping spectral lines from the
emitters at the vicinity of the beam spot. However, it is chosen as it does not
require pre-characterization of the emitters, it can efficiently generate charge
carries and the frequency of the laser is far-detuned from the emission of the
QDs.

For the ABB drive, the frequency of the laser is locked at ∼ 800 nm and
the beam spot is translated continuously along the waveguide. When the
beam approaches one of the three QDs, the emitter will be excited, and its
emission will exhibit a peak on the spectrometer in one of the three marked

9We here use the pulsed Tsunami, as it has a larger spectral range



52 Chapter 3. Optical Spectroscopy

frequencies. With this process, we identified two spots on the waveguide as
the locations of the three emitters10.

With the locations of the QDs now known, we can perform the RF mea-
surements. For that, the CW laser is sent again through the RF path on top
of the each of the two identified locations, to excite now the emitters reso-
nantly, with a power of 5µW. Similar to the RT charge plateaus above, at
each location, the frequency of the laser is scanned with a step of 25 MHz,
around the central value for each QD, and for each frequency, the voltage is
scanned with a step of 5 mV around the central Vbias = 1.26 V of the charge
plateau. The light emitted is collected from Port 1 and detected by an APD.
Figure 3.7 shows the result of the two RF measurements11.

From these we notice that the RF plateaus show similar characteristics
to the RT equivalent. However, Figure 3.7(b) provides a new information.
While here only QD2 is intentionally driven for this RF measurement, both
QD2 and QD3 plateaus are recorded from the same location. This measure-
ment therefore reveals that the two emitters are not only close spectrally,
but also spatially, within the diameter of the diffraction-limited beam spot,
∼ 1µm12.

3.5 Imaging the quantum dots
A last step in characterizing the emitters, is to estimate their spatial sepa-

rations. For that, we employ the camera of the setup to image the three QDs
inside the PCW. As it will be discussed later, this result could prove useful
in confirming the character of the coupling between the crossing QD pairs.

The QDs are imaged from the top of the PCW, by the CMOS camera
(DCC CMOS camera, 1280 x 1024 resolution) on the breadboard. To do so,
we perform three RT measurements with acquisition time of 30 s. For each
of them, the laser is locked on resonance with the imaged QD, at 318.678
THz (QD1), 318.741 THz (QD2) and 318.766 THz (QD3), with Vbias = 1.26
V, and following with Vbias ≈ 1 V, to subtract the respective backgrounds.
The out-of-plane fluorescence of each QD is then recorded on the camera.
This imaging method, is essentially exploiting the imperfection of the sys-
tem, as the photons arriving to the camera are the ones emitted outside of
the waveguide, through the leaky mode. The images taken with this pro-
cedure are shown in the three bottom plots of Figure 3.8. Finally, to locate
the emitters with respect to the waveguide, an image of the PCW with the
white-light switched on is acquired and the four images are superimposed
(Figure 3.8 top).

The center of each emitter is deducted by fitting the individual images
with a Gaussian. For each image, the counts along (x-axis) and vertical (y-
axis) to the waveguide are summed up and fitted individually, to obtain the

10The same translation of the beam spot for p-shell excitation (laser at ∼ 920 nm), giving
more clear spectral lines was done to verify the positions.

11The ‘wavy’ features in the background can be owed to different reasons, e.g. poor
alignment or laser locking, interferences in the optical setup ect.

12From then on, QD2-QD3 were named “Twins”, while QD1“Big Sister”.
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FIGURE 3.8: Fluorescence image of the three emitters inside the PCW. Top:
Imaging of the QDs superimposed to a white-light image. Bottom: Indi-
vidual images of the three emitters.

[x,y] position in pixels for each emitter.
To calculate the separations between each QD pair, the pixels are con-

verted to µm. For that, the dimensions of different features of the nanos-
tructure from the white-light image, are compared to the corresponding fea-
tures on the mask used to fabricate the chip. The conversion parameter is
then found to be ∼ 182 ± 5 nm/pixels, resulting into spatial separations of
x12 = 970 nm, x23 = 1252 nm and x13 = 2222 nm, along the waveguide. The
uncertainty for each xmn is ∼ ±184 nm, including the resolution and the un-
certainties of the fits. We therefore note that the precise identification of the
spatial separations between the QD pairs is limited by our imaging system,
given that the QD size is an order of magnitude smaller than the imaging
resolution.
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3.6 Parameter summary

Parameters QD1 QD2 QD3
Central frequency, THz 318.678 318.734 318.762

FSS , GHz 7.05 6.75 4.05
β 0.94 0.83(LF), 0.88(HF) 0.83(LF),0.84(HF)

Γm/2π , GHz 2.3 0.69(LF), 0.87(HF) 0.72(LF),0.92(HF)
σsd/2π , GHz 0.59 0.22 0.6

TABLE 3.1: Summary of the parameters from the character-
ization of the three emitters in B = 0 T, at V = 1.26 V and
P = 1µW. The central frequencies shown are of the LF dipole
of each emitter.

3.7 Summary and Connection
In the present Chapter we identified and characterized the QDs that

will be used throughout the experiments of this thesis. We found three
QDs, spectrally close to each other and the band-edge, and well coupled
to the mode of their waveguide. Those were the first indications of promis-
ing candidates for the investigation of photon-mediated coupled emitters.
Frequency-voltage scans showed stable charge plateaus and similar electri-
cal tuning for all three QDs. To bring the detuned emitters to resonance,
an out-of-plane magnetic field was identified as the suitable tuning knob.
Specifically, by increasing the applied external Bz field, we observed oppo-
site circularly polarized dipoles of the different QDs coming to resonance,
pairwise. Finally, from RF measurements we found the physical positions
of the emitters inside the waveguide.

In the next Chapter we explore the collective dynamics between the
three QD pairs, to observe direct signatures of photon-mediated coupling
through the shared waveguide mode, in the modification of their lifetimes.
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4 Collective dynamics of two coupled
quantum dots

This Chapter is based on the following article

Collective super- and subradiant dynamics between distant optical quantum
emitters, A. Tiranov, V. Angelopoulou, C. J. van Diepen, B. Schrinski, O. A.
Dall’Alba Sandberg, Y. Wang, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, A.
Søndberg Sørensen & P. Lodahl, https://www.science.org/doi/10.1126/science.
ade9324

In this Chapter we demonstrate experimentally the realization of
photon-mediated coupling between different pairs of QD dipoles, embed-
ded, multiple wavelengths apart, in a PCW. We probe the time-resolved
dynamics of each pair, for off- and on-resonance conditions between them,
and show clear evidence of collective behavior through the super- and sub-
radiant components of the emission. This modification of the decay dynam-
ics is, to the best of our knowledge, the first direct experimental proof of
coupling between two QDs. The coherent evolution of the coupling is then
investigated through the dynamics obtained by gradual spectral tuning of
the crossing dipoles. Finally, we perform a proof-of-principle measurement,
to directly drive to a collective state of the coupled system with control, by
means of collective excitation.

4.1 Photon-mediated coupling between two opti-
cal emitters

In Chapter 3 we characterized three QDs embedded in the same PCW.
This system was claimed as promising for probing collective dynamics, as
the emitters were found to be: (1) well coupled to the waveguide mode, by
the high extinction in the transmission counts, (2) close to the band-edge,
which would reduce their radiative lifetime, leaving them less susceptible to
noises from the environment, and (3) spectrally close enough to each other
to be pairwise tuned to resonance, by a controllable out-of-plane magnetic
field, Bz. Benefiting still from the coherent light-matter interface provided
by the nanophotonic environment, extending the interaction to multiple op-
tical wavelengths, we use these candidates to observe super- and subradi-
ance from their collective emission.

We begin by recalling the effective Hamiltonian (1.29) describing the dy-
namics that occur in a dipole-dipole interaction through a waveguide mode,

https://www.science.org/doi/10.1126/science.ade9324
https://www.science.org/doi/10.1126/science.ade9324
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which constitutes the simplified expression of the full master equation
(1.23), in the frame rotating with the driving frequency and in the single-
excitation subspace. Summarizing briefly the parameters from Section 1.4,
∆m, is the detuning of QDm with the driving frequency, such that ∆mn =
∆m − ∆n is the relative detuning between QDm and QDn, Γloss

m is the rate
of photons emitted outside of the waveguide, σ± are the raising and lower-
ing atomic operators, Jmn = 1

2

√
βmβnΓmΓn sinϕmn is the dispersive coupling

rate and Γmn =
√
βmβnΓmΓn cosϕmn the dissipative coupling rate. The pa-

rameters in the coupling rate expressions are Γm = Γwg
m +Γloss

m the sum of all
decays, in and out of the waveguide, βm the coupling factor to the waveg-
uide mode for QDm, given by βm = Γwg

m /Γm, and ϕmn the coupling phase. As
introduced before, this is the phase that the electric field accumulates when
traveling the distance between the interacting QDs. It relates to their spatial
separation xmn by ϕmn = k|xmn|, where k is the effective wavenumber of the
PCW, and constitutes the defining parameter for the type of the coupling
between the emitters.

To experimentally investigate the coupling dynamics of this system, we
start with the excitation scheme of driving selectively one emitter from the
top of the PCW, as illustrated in Figure 4.1(a). To describe qualitatively
the emergence of the depicted dynamics, we make use of the energy dia-
grams in Figure 4.1(b). Under the single-emitter excitation scheme, when
the two QDs are off-resonance with each other, ∆mn ̸= 0, (left energy di-
agram), the photons emitted with a decay rate Γm by the driven QDm are
transmitted through the waveguide, either towards Port 1 or Port 2, unaf-
fected by the presence of the second emitter. When the two are brought to
resonance, ∆mn = 0, the second emitter will scatter the photons of the first.
This photon-mediated interaction, leads to coherent optical dipole coupling
between the emitters, and the system is then naturally described by the
collective eigenstates (right energy diagram) |+⟩ = (|emgn⟩ + |gmen⟩)/

√
2

and |−⟩ = (|emgn⟩ − |gmen⟩)/
√
2, with their decay rates determined by ϕmn.

Specifically, as discussed in Section 1.3, ϕmn defines the coupling parameters
Jmn and Γmn and therefore the type of coupling, ranging between the dis-
persive, for ϕmn = (N + 1/2)π, and the dissipative, for ϕmn = Nπ, coupling
regime.

In the dissipative coupling regime, the two emitters will absorb and re-
emit photons in- or out-of-phase with each other, leading to constructive
and destructive interference between their fields, respectively. For ideal in-
terference, the constructive case will result into a field with twice the inten-
sity and the decay rate, Γ+ = 2Γm (assuming Γm = Γn) of the individual
emitter (yellow emission in Figure 4.1). This enhanced emission represents
the described phenomenon of superradiance and emerges from the decay
of the bright state, |+⟩. If the two fields interfere destructively, there should
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FIGURE 4.1: (a) Illustration showing the modified emission by two cou-
pled (white ∞ line) QDs (yellow hemispheres), embedded in a PCW, when
only one emitter is optically driven. The emission dynamics then exhibits
super- and subradiace, due to constructive (yellow) and destructive (black)
interference of the emitted field scattered by the two QDs. The two arrows
at the bottom indicate the direction of the two collection ports. (b) En-
ergy diagrams depicting the transition between the two basis used to de-
scribe the two-emitter system. Here, the illustrated dynamics correspond
to the case of dissipative coupling between the emitters. For off-resonant
QDs (left), detuned by ∆mn, the two decay independently with Γm and Γn,
while when tuned to resonance (right) super- and subradiant dynamics oc-
cur with decay rates Γ+ and Γ−, respectively.

be no light seen at the collection ports of the waveguide. In other words,
the coupled system is a dark state, |−⟩, associated with subradiance, which
ideally never decays, Γ− = 0 (black emission in Figure 4.1).

There are two pictures to understand subradiance in our system; either
one where the photons emitted by the QDs will forever scatter back and
forth between them and never exit the system, with the QDs acting as per-
fect mirrors, or another where the emission happens outside of the waveg-
uide, as the subradiant state is uncoupled from its nanophotonic environ-
ment. The latter implies that the ideal subradiant state should be neither
excited through the waveguide, nor decaying in it [42]. However, by driv-
ing the emitters in RF, from the top of the waveguide, we can populate |−⟩
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even deterministically, while imperfections of the system enable the mea-
surement of its emission through the waveguide. Such imperfections could
be a residual detuning ∆mn, the presence of pure dephasing γdph, any small
deviation of ϕmn from the Nπ of the pure dissipative coupling, or uneven
decay rates of the individual emitters, that would prevent from the ideal in-
and out-of-phase emission [65]. These imperfections facilitate the measure-
ment of the emission from the subradiant state through the waveguide by
disrupting the perfect destructive interference. As a result, the long-lived
subradiant features diminish quickly, as they are sensitive to decoherences
and imperfections [48]. With our system, we exploit the nanophotonic envi-
ronment and the spectral position of the QDs with respect to its band-edge,
to mitigate the effects of γdph, and employ the magnetic field Bz to finely
control ∆mn.

From the above discussion on the effects of the dissipative coupling
regime it becomes clear that, with single-emitter excitation, a direct exper-
imental proof of dissipative coupling between two emitters, is to observe
a modification in the decay dynamics when the two are tuned off- and on-
resonance with each other. Hence, our first objective is to detect this signa-
ture in the lifetime measurements of the coupled system.

4.2 Observation of super- and subradiant emis-
sion

We begin with calibrating the optical setup for the lifetime measure-
ments, ensuring driving of a single emitter and identifying the suitable ex-
citation scheme. To drive only one emitter of an adjacent pair of QDs1, we
exploit the orthogonal2 polarization of the crossing dipoles. By driving in
RF on top of the QD pair of interest and adjusting the excitation waveplates
(Figure 2.5), we can suppress the excitation of the undesired emitter while
efficiently driving the other. For the driving, initially, we decided to per-
form excitation through a higher-energy state (often referred to as p-shell,
d-shell.. excitation, see Section 2.1.1.1), to facilitate the filtering of the laser
leakage in the waveguide. For that, an initial characterization is required,
where the excitation spectra of each QD with a CW laser are recorded on
the spectrometer. As an example, the excitation spectra of QD2 is showed in
Figure 4.2(a). The spectra show a single photoluminescence line at a fixed
wavelength of 940.09 nm (dashed line). The absence of other spectral lines
over a large range of the QD emission wavelengths, verifies that only QD2
is excited efficiently under these waveplate conditions. The excitation fre-
quency is then chosen far from resonance to be properly filtered out of the
collection, but also close enough such that the relaxation to the s-shell of
the conduction band would not affect the lifetime measurement itself. The

1that sit ∼ 1µm apart (see Section 3.5), with a diffraction-limited beam spot, arriving on
the chip with a diameter of the same order

2and circularly polarized orientations, when the magnetic field in Faraday configura-
tion, Bz , is applied
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frequency selected for the lifetime measurements of QD2 is around 325.72
THz (laser locked at 920.40 nm).

The investigation of the coupled system with lifetime measurements be-
gins by optically driving, with pulsed excitation, a single QD of a pair in
RF. We then record the collective emission dynamics for a continuous range
of detunings ∆mn between the emitters around their resonance point, from
both ports of the waveguide. This set of measurements are repeated for each
of the three QD pairs crossing in Figure 3.5. The pulsed laser employed is
a Tsunami laser of 5 ps pulse duration and 80 MHz repetition rate. The
laser frequency is fixed to the selected value from the excitation spectra of
each QD, depending on the crossing we study, and the power is locked close
to the saturation of the driven emitter, as calibrated by power dependence
measurements, similar to the one shown in Figure 4.2(b). The emitted inten-
sity in either of the ports is then sent through an optical reflection grating
filtering setup (25 GHz bandwidth) and the filtered output is detected either
by an SNSPD or a fast APD. We note here that the relative detunings, ∆mn

that we scan through, are converted from the values of the magnetic field,
Bz, that is the experimentally accessible tuning parameter. The conversion
factor is estimated from the fits in Figure 3.5 to be 24.6 GHz/T and the rela-
tive ∆mn/2π = 0 is defined at the crossing point of the fitted traces for each
QD pair.

FIGURE 4.2: (a) Excitation spectra of QD2 at 940.09 nm , as a function of
excitation wavelength, at zero magnetic field. Higher-energy states appear
with increasing laser wavelength. The photoluminescence excitation spec-
tra recorded at the emission wavelength (dashed line) is shown on the left
side. (b) Power saturation measurement for the three QDs, with pulsed
excitation through higher-energy state.

The lifetime measurements recorded for the crossing of QD1-QD2 while
driving QD2, and QD2-QD3 while driving QD3 are shown in Figure 4.3(a)
and (b), respectively, in logarithmic scale. Here, two time traces of the com-
plete scan of ∆mn, included in Appendix B, collected from Port 1 are plot-
ted for the two pairs. The traces shown are for the emitters off-3 and on-
resonance with each other. In each time trace the counts are normalized to
the maximum at zero-time delay, corresponding to the time of excitation of
the coupled system.

3At ∆12/2π = 6 GHz and ∆23/2π = 5 GHz.
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From the plots we observe that, in the case where the two emitters
are off-resonant (red), the expected monotonic exponential decay from the
single-emitter driving4 is recorded. Interestingly, when the emitters are
brought to resonance (yellow-black), the decay behavior shows evident
modification. Instead, the emission follows a bi-exponential decay, with a
fast component (yellow) at short times and a slow component (black) per-
sisting after the single emitter has fully decayed to its ground state. The fast
decay with rate Γ+, is attributed to the emission from the superradiant state,
|+⟩, while the slow decay, Γ−, results from the depopulation of the subradi-
ant state, |−⟩. We here emphasize that it is exactly these modifications of the
decay dynamics from the resonant emitters that we were after. This obser-
vation constitutes a direct signature of coherent coupling between the QD
pairs.

FIGURE 4.3: Time-resolved decay dynamics in logarithmic scale, as
recorded in the experiment for the pairs (a) QD1-QD2 and (b) QD2-QD3,
for off- and on-resonance conditions. For the on-resonance trace, two col-
ors are used to highlight the bi-exponential trend, where the fast Γ+ (yel-
low) and slow Γ− (black) components of the decay, correspond to super-
and subradiant dynamics. The counts are normalized to the maximum
at τ = 0. The blue solid line is a fit to the experimental data, by a bi-
exponential convolved with the instrument response function (IRF) of the
corresponding detector.

The decay rates of the two collective states are deducted by fitting (blue
line) the on-resonance experimental data with a bi-exponential function.
This is convolved with the instrument response function (IRF, black dashed
lines) of the single-photon detectors, which limits the modeling at short
times. For the QD1-QD2 pair, an SNSPD with 200 ps FWHM temporal jitter
is used, whereas for QD2-QD3 the detection is done by a fast APD with 40 ps
FWHM temporal jitter. By fitting the intensities of QD1-QD2, the modified
radiative linewidths from the coupling are found to be Γ+/2π = 1.36± 0.08

4Either QD2 or QD3 in (a) and (b), respectively.
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GHz and Γ−/2π = 0.28±0.02 GHz5. Those should be considered in compar-
ison to the linewidths of the individual emitters, obtained at off-resonance
conditions for this pair, Γ1/2π = 0.85 ± 0.01 GHz and Γ2/2π = 0.79 ± 0.02
GHz, which are approximately in between the two modified values.

Deriving the ratio of the super- over the subradiant decay rate for QD1-
QD2 we find Γ+/Γ− = 4.8. This enhancement factor constitutes a direct fig-
ure of merit of the coupling strength between the two emitters. Increasing
the ratio further would demand careful considerations over the system and
the excitation scheme, as the coupling strength is sensitive to the experi-
mental decoherences and imperfections listed in Section 4.1, as well as to
the duration of the excitation pulse, which needs to be calibrated for the
examined QD pair. Potential optimization steps to increase the coupling
strength are discussed in more detail in the Outlook.

Another parameter that would limit the dipole-dipole coupling strength
and the scaling up of the inter-emitter separation, xmn, are the losses of
photons that mediate the interaction [106]. In free space, xmn needs to be
smaller than the optical wavelength, such that the coupling strength would
be larger than the coherence decay rate. In our system, we observe that the
nanophotonic structure, as a coherent light-matter interface, extends this
dipole-dipole coupling to multiple wavelengths. To demonstrate this we
imaged the QDs inside the PCW, to estimate the spatial separations between
the crossing pairs (see Section 3.5). By comparison to the optical wavelength
inside GaAs, λ = 270 nm6, we confirm the above claim as x12 ≈ 3.6λ and
x23 ≈ 4.6λ. An upper bound to the xmn, is imposed by the photon losses
inherent to the nanostructure7, which restrict the spatial separation of the
coupled emitters to ∼ 20µm (∼ 70λ) in the slow light region of the PCW,
where the QDs are well-coupled to the waveguide mode [47].

Finally, to extract a consistent set of the coupling parameters, we use
the complete experimental dataset recorded for all three QD pairs in both
collection ports (in Appendix B). For each pair and port, five time-traces of
different detunings ∆mn/2π around ∆mn/2π = 0 are fitted with the theoret-
ical model described in Section 1.4. Specifically, the analytical expressions
for the output fields are used to calculate the intensity at the two ports as
IR,L = |ER,L|2, with R and L standing for right (Port 2) and left (Port 1)
side of the waveguide. For a simplified form of the output fields, an instan-
taneous π-pulse excitation, compared to the emitters’ lifetimes 1/Γm, 1/Γn,
and zero dephasing are assumed. The expressions for the fields arriving
at the left and the right detector then read (from Supplemental Material of
[56]),

ER,L = ER,L
+ + ER,L

− , (4.1)

5The complete set of radiative decays found from the fits are included in Table 4.1 to-
gether with all modeled experimental parameters.

6To be transparent, from a different approach, since the QDs are close to the band-edge,
the relation kα/2π = 0.5 holds, where k is the wavevector and α the lattice constant of the
PCW. This results in a λ = 2α = 480 nm. To find an accurate relation between xmn and λ,
one would need to solve the Greens function in the PCW.

77 dB/mm, attributed to scattering losses due to the sidewall roughness [85]
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where + and − correspond to super- |+⟩ and subradiant |−⟩ emission with,
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where S =
√

4e2iϕmnΓmΓnβmβn + (2i∆mn − Γm + Γn)2. For the fitting, a con-
servative value of

√
βmβn = 0.8 is used to extract a lower bound to the

coupling parameters of the QD pairs. The total intensity IR,L found, is then
integrated over the spectral linewidth for detunings ∆mn between each pair
of QDs, to account for spectral diffusion. The result is finally convolved
with the IRF of the detectors. In particular, of the SNSPD for the QD1-QD2
pair and the fast APD IRF for QD2-QD3 and QD1-QD3, with their respec-
tive temporal jitters (see Section 2.6). The extracted coupling parameters,
ϕmn,Γmn/2π and Jmn/2π for all three pairs, are summarized in Table 4.1.
These parameters are then used to model the experimental data through
numerical integration of (1.23). The result is averaged over a normal distri-
bution of detunings ∆m around the resonant transition of the driven QDm,
with standard deviation σsd, to include the effects of spectral diffusion. The
theoretical modeling for all pairs and both ports are presented in the theory
figures of Appendix B and exhibit good agreement with the experimental
data.

4.3 Coherent evolution of the coupled system
To explore further the dynamics of the system, we repeat the previous

set of measurements driving now the emitters resonantly, and investigate
the coherent evolution of the collective states.

Continuing with the single-emitter excitation in RF, we proceed to drive
the QD3 dipole of QD2-QD3 and record the time-evolution of the collec-
tive dynamics, as a function of ∆23/2π. Here, the pulsed laser is tuned in
resonance with the transition of QD3 at about 318.76 THz, and is power-
stabilized with an AOM. The power used is calibrated by performing Rabi
oscillation measurements prior to each lifetime measurement, to apply the
optical power corresponding to a π-pulse for the driven QD. An indicative
Rabi measurement for QD2-QD3 pair is shown in Figure 4.4, where in (a)
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only QD3 is excited, by alignment and polarization selectivity, while the an-
ticipated emission from QD2 at around 1.275 V, as seen in (b), is not present.
The power selected for QD3 from (a) is about 4 µW. The emission is collected
again from both ports of the waveguide, and prior to detection, is subjected
to filtering, by a transmission grating and a temperature-controlled etalon
filter, with narrow linewidth of 3 GHz, to suppress the laser background.
The detector used here is an SNSPD.

FIGURE 4.4: Rabi oscillations from (a) QD3 and (b) both QD3 and QD2 after
rotating the polarization of the excitation laser. (b) QD2 dipole is resonant
with the filtering etalon for a voltage of about 1.275 V. Two maxima appear
implying that both dipoles are excited for different excitation powers. The
calibration is done at a magnetic field where the two dipoles are far from
resonance, at 0.8 T, and the pulsed laser is locked at around 940.5 nm.

The results of these measurements are shown in Figure 4.5(a) and (b) for
Ports 1 and 2, respectively, where the counts in each time-trace have been
normalized to the sum of the counts for that ∆23/2π. These 2D maps are
essentially a collection of single time-traces, similar to the ones shown in
Figure 4.3(b), for a range of ∆23/2π around the crossing point of the QD2-
QD3 dipoles. We visualize this correspondence by indicating the two time-
traces of Figure 4.3(b) with dashed color-coded lines on Figure 4.5(a).

With the excitation of QD3, the system is prepared in an equal super-
position of the two collective states, |g2e3⟩ = (|+⟩ + |−⟩)/

√
2. To explain

the emerging features in Figure 4.5(a) and (b), as the system evolves with
time from the initial state |g2e3⟩, we refer back to the effective Hamilto-
nian, Heff , in (1.29). Assuming that the two emitters have the same de-
cay rates Γ2 = Γ3 = Γ and coupling efficiencies β2 = β3 = β, we
deduct a simplified form of the two eigenvalues of the coupled system,
E± = 1

2

(
−iΓ +∆2 +∆3 ±

√
∆2

23 + (2J23 − iΓ23)2
)

[107] and claim that the
correlated dynamics would then evolve according to the difference between
them,

fosc =
√

∆2
23 + (2J23 − iΓ23)2. (4.4)

Considering pure dissipative coupling (J23 = 0), from the above relation
two co-existing effects that dictate the dynamics are identified:
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• The coherent evolution due to ∆23, which, in a simplified picture, can
be translated to an acquired phase in time between the excitation of
the two emitters, |e2g3⟩ + ei∆23t |g2e3⟩. This would induce interchange
of population between |+⟩ and |−⟩, as illustrated in Figure 4.6(a) with
red arrows.

• The dissipation itself Γ23, that defines the decay rates of the collective
states, Γ± = Γ ± Γ23 (for ∆23 = 0) [57], bringing the population to the
collective ground state, |g2g3⟩.

More specifically, for a short pulse duration and a repetition rate larger
than the longer decay time of the coupled system (1/Γ−), such that we en-
sure that we are in the single-excitation subspace, the equation (4.4) indi-
cates three regimes:

|∆23| > Γ23 , the under-damped regime, where the coherent evolution
dominates the dissipation. There, as soon as the state evolves out of
the perfect superpositon, |g2e3⟩, (since the population in |+⟩ starts to
decay fast after excitation) ∆23 will induce exchange of population be-
tween |+⟩ and |−⟩ states, leading to coherent oscillations of the inten-
sity. The dashed white lines in Figure 4.5, trace the intensity maxima
for the different ∆23, corresponding to the maximal population of |+⟩.
This occurs at times t = π/fosc for each ∆23. The intensity oscillations
are gradually damped in time, as the system simultaneously decays to
|g2g3⟩.

|∆23| = Γ23 , the critical damping regime, where the dissipation and
the coherent oscillations impact the evolution equally. This results into
the long “fins” appearing symmetrically around ∆23/2π = 0.

|∆23| < Γ23 , the over-damped regime, where the dissipative coupling
damps the excitation fast to |g2g3⟩, before any coherent oscillation oc-
curs, giving rise to the gap of 2Γ23 between the white dashed lines.
In the resonant case specifically, ∆23/2π = 0, the coherent evolution
exhibits no oscillations. The population in |+⟩ will decay fast after
excitation, and the remaining population in |−⟩ will decay at longer
times, directly to |g2g3⟩.

To visualize the dynamics that occur in the coupled system through time,
we simulate the evolution of the quantum state for a large detuning between
the emitters, ∆23 = −5.5Γ on the Bloch sphere, in Figure 4.6(b). This Bloch
sphere represents the single-excitation subspace of the coupled system. In
sequential colors, the length of the Bloch vector indicates the population of
the collective state at each time; from the moment of excitation, to the com-
plete decay down to the collective ground state |g2g3⟩, at the origin of the
sphere. Following the colormap of time, the population starts from |g2g3⟩.
When QD3 is excited with a π-pulse, the population is transferred to |g2e3⟩
at the equator. For the case of large ∆23 between the emitters as depicted
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FIGURE 4.5: (a) and (b) Complete set of experimental data of the time-
resolved intensity of the collective emission from QD2-QD3, as a function
of ∆23/2π when driving QD3. The collection is recorded from Port 1 and
2, respectively. The data of each trace are normalized to the sum of the
counts in each ∆23/2π. The horizontal dashed lines in (a) are color-coded
to correspond to the traces shown in Figure 4.3(b), while the white dashed
lines trace the maximum of the intensity for all ∆23/2π. (c) Modeling the
experimental data with the theory, using the experimental parameters of
QD2-QD3 pair (Table 4.1).

here, as soon as the system begins to decay, it will no longer be in an eigen-
state of the coupled system. ∆23 then induces coherent oscillations between
the super- (north pole) and the subradiant (south pole) states, at a frequency
defined by the ∆23

8. Since the coupled system dissipates at the same time,
these coherent oscillations appear as a spiral with decreasing amplitude,
while the system decays to |g2g3⟩, back to the center of the Bloch sphere. The
handedness of the state’s evolution is determined by the orientation of the
quantization axis. That is the resultant of ∆mn (gray solid arrow) and Jmn

(gray dashed arrow), represented as vectors on the Bloch sphere. As we are
restricting ourselves to the dissipative limit, where Jmn = 0, the state then
revolves around the axis defined by ∆mn, as shown in Figure 4.6(b). Specif-
ically, for ∆23 < 0, where ∆23 = ∆2 − ∆3, the state evolves anti-clockwise,
whereas for ∆23 > 0 clockwise.

By comparing the intensities from the two collection ports in Figure

8since Γ23 is fixed for a specific pair, as it is defined by the |x23|.
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4.5(a) and (b), we see similar behavior, implying a predominately dissipa-
tive character for the coupling of the emitters. To elaborate, the intensities
from the two sides of the waveguide can be expressed by,

IL =
3∑

m,n=2

E∗
mEne

−iϕmn

IR =
3∑

m,n=2

E∗
mEne

iϕmn ,

(4.5)

where Em = −i
√
βmΓmσ−

m√
2

, is the amplitude of the field in the waveguide.
The two almost identical results in Figure 4.5(a) and (b), reveal that IL ≈
IR ⇒ ϕ23 ≈ Nπ, since only then e−iϕ23 = eiϕ23 = (−1)N , resulting in an
equal signal at both detectors. As explained in Section 1.3, ϕ23 = Nπ would
maximize the dissipative coupling rate Γmn, leading to maximally modified
decay rates of the coupled system, Γ±. This determines the nature of the
coupling as predominantly dissipative9.

FIGURE 4.6: (a) Energy diagram of the collective states relevant for the
single-emitter excitation scheme. Detuning ∆mn between the emitters al-
lows for coherent exchange of population, between the super- and the sub-
radiant states. (b) Bloch sphere of the single-excitation subspace of the
coupled system with the state evolution trajectory for ∆23 = −5.5Γ.

Comparing Figure 4.5(a) and (b) with the corresponding complete scans
done through higher-order QD shell excitation, “off-resonantly”, for QD2-
QD3 (Figure B1), we observe an equivalent behavior in the results. The only
discrepancy appears at short times after the excitation, where the resonant
driving exhibits higher-resolution to the dynamics features. That can be
explained by the nature of the decay process for the “off-resonant” driving,
that takes short, but finite, time for the electron to relax to the s shell of
the conduction band before the decay (see Section 2.1.1.1). This relaxation
process has not a well-defined time-duration, resulting in washing-out the
effects of the dynamics for short times after excitation.

We note that by comparing the experimental results acquired by exci-
tation through a higher-energy state (Appendix B) we find similar signal

9Further discussion is provided in the Supplementary Material of [56]
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recorded in both ports, for all three QD pairs, suggesting predominately
dissipative coupling between all studied QDs. Indeed, the experimentally
extracted coupling rates Γmn and Jmn in Table 4.1 are very similar for all
three QD pairs and result to a coupling phase ϕmn = 0.05 − 0.08π, approxi-
mating at the limit of pure dissipative coupling (ϕmn = Nπ). The explana-
tion behind this phenomenologically suspicious coincidence, lies in the se-
lection method of the QD candidates. As discussed in Section 3.1, the three
QDs, investigated in this Chapter, were pre-selected for their high extinc-
tion in the RT measurement, implying good coupling to the PCW mode, i.e.,
high β-factors. This condition, leads to the selection of QDs that are at well-
defined positions in a unit cell of the PCW, as the β-factor has strong spatial
dependence [90]. Therefore, the spatial separation xmn of adjacent pairs is
determined by the periodicity of the photonic crystal lattice, as xmn ≈ Nα,
where α the lattice constant and N an integer number. Since the QDs are
also spectrally close to the band-edge of the PCW, the wavevector is given
by kxα/2π ≈ 0.5 ⇒ kxα ≈ π [47]. Consequently, for QD pairs with high
β-factors and spectrally close to the band-edge of the PCW, their spatial
separation leads to an accumulated phase of ϕmn = kx|xmn| ≈ Nπ. As a re-
sult, the coupling is predominantly of dissipative character for all three QD
pairs, due to their selection requirements.

The experimental results in Figure 4.5(a) and (b) are further simulated
with the theoretical model developed for the coupled QDs in the waveg-
uide. Specifically, we follow the procedure described for the theory figures
in Appendix B and use the experimentally extracted parameters of QD2-
QD3 in Table 4.1. The resulting theoretical calculation is depicted in Figure
4.5(c) and shows good agreement with the experimental data. The theory
figures of both ports are included in Appendix C.

The dissipative and dispersive coupling rates included in Table 4.1 from
the analysis of the data discussed in Section 4.2, are calculated by their def-
initions, Γ23 =

√
β2β3Γ2Γ3 cosϕ23 and J23 = 1

2

√
β2β3Γ2Γ3 sinϕ23 using the

fitted {Γ2,Γ3}/2π and ϕ23. They are found to be Γ23/2π = 0.61 GHz and
J23/2π = 0.03 GHz, respectively. The negligible dispersive component of
the coupling, allows to approximate the relations of the super- and subradi-
ant decay rates. Given by Γ± = −2 Im (E±), where E± the simplified eigen-
values of theHeff introduced earlier, the result to the lowest order, where the
decay rates scale quadratically, reads

Γ+ ≈ Γ + Γ23 −
σ2
sd

2βΓ

Γ− ≈ Γ− Γ23 +
σ2
sd

2βΓ
,

(4.6)

assuming once more Γ2 = Γ3 = Γ, while σsd substituted the detuning ∆23 in
the eigenvalues E±, considering the two QDs in resonance with each other,
∆23 = 0. The modified linewidths due to the coupling are then calculated
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to be Γ+/2π = 1.25 GHz and Γ−/2π = 0.27 GHz, using the QD2-QD3 pa-
rameters from Table 4.110. The modeled values seem to approximate well
enough the experimentally estimated Γ+/2π = 1.33 GHz and Γ−/2π = 0.22
GHz, extracted by fitting the resonance data curve in Figure 4.3(b) with the
empirical convolved function. The same analysis is applied to the other two
crossings of QD1-QD2 and QD1-QD3 dipoles, completing Table 4.1.

4.4 Proof-of-principle controlled preparation of
the collective state

Having pinned down the coupling, we aim now to find an excitation
scheme that would give control over the preparation of the initial collective
state. Dominating the deterministic population of the super- or the sub-
radiant state, would pave the way for their use in quantum-information
processing [26, 34, 39, 108].

In order to initialize the system to a desired collective state, both QDs
of the crossing pair have to be coherently excited, with driving fields Ωm

and Ωne
iθ, where Ωm and Ωn are the driving field areas and θ the relative

driving phase. These three are the parameters that would determine the
initial state of the coupled system. For equal driving pulse areas, Ωm = Ωn,
corresponding to a π/2 Rabi flip on each QD dipole, the prepared state is
given by (|gm⟩ + |em⟩) ⊗ (|gn⟩ + eiθ |en⟩). This implies a population of 50%
in the single-excitation subspace |emgn⟩+ eiθ |gmen⟩, and 25% for each of the
|gmgn⟩ and |emen⟩. By then having control over the relative driving phase θ,
we can populate the desired collective state on demand, where θ = 0 would
drive the system11 to |+⟩ state and θ = π to |−⟩.

To implement this driving experimentally with our setup, we exploit
their spatial proximity and orthogonal polarizations. As the coupled QDs
are in close proximity, the double excitation can be applied by a single driv-
ing beam, circumventing the requirement for phase stabilization in the case
where two individual excitation beams would be needed. As already dis-
cussed in Section 3.3, with the magnetic field applied in Faraday configura-
tion, Bz, the Zeeman splitting leads to the crossing of both orthogonally and
circularly polarized dipoles, σ±, of the two QDs12. This suggests that by con-
trolling the polarization of the excitation laser, we can effectively determine
the relative driving phase θ between the two dipoles.

As the latter argument might not be directly intuitive, we recall the def-
inition of the Rabi frequency from the semi-classical description of light-
matter interaction Ωne

iθn = −E0,n

h̄
⟨gn| ϵ⃗n · d⃗n |en⟩, where ϵ⃗n is the polarization

and E0,n the amplitude of the driving laser field. From here we see that the
same polarization of the excitation laser, can induce different Rabi frequen-
cies Ωn and driving phases θn, depending on the dipole d⃗n it addresses. In

10β2 = β3 = 0.8 and Γ = (Γ2 + Γ3)/2.
11by 50%
12Yet, they are efficiently coupled through the optical mode of the PCW.



4.4. Proof-of-principle controlled preparation of the collective state 69

FIGURE 4.7: (a) Excitation scheme driving both QDs at the same time, with a phase
difference θ. Controlling θ allows to initialize the system in a collective state. (b)
Measured time-resolved intensity of the emission as a function of detunings ∆23/2π
and (c) the theoretical equivalent, calculated for the experimental parameters of
the pair QD2-QD3 and a θ ≈ −π/2. (d) Two traces of the lifetimes measured at
symmetrical ∆23/2π around zero, showing out-of-phase coherent oscillations of
their intensities. (e) Bloch sphere showing the evolution of the quantum state with
time from the initially prepared |e2g3⟩+i |g2e3⟩ towards |+⟩ for a negative detuning,
∆23/2π < 0, between the emitters.

other words, the relative driving phase θ = θm − θn, is determined by the
local polarization projection of the driving field on the two crossing dipoles.

Making use of this information, we return to excite resonantly the QD2-
QD3 pair. The same calibration procedure described for the single-emitter
excitation in Section 4.3 is followed, but now the polarization of the exci-
tation beam is adjusted to drive both dipoles simultaneously (Rabi oscilla-
tions observed similar to Figure 4.4(b)). This results in the driving scheme
illustrated in Figure 4.7(a) for off-resonant QD dipoles. We then conducted
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lifetime measurements across a range of ∆23/2π centered around the res-
onance point of the pair, by sweeping again Bz. Figure 4.7(b), shows the
intensities of the collective emission from Port 1, normalized over the sum
of the counts in each respective time-trace, as collected after the etalon filter
and detected by an SNSPD.

From this plot it becomes apparent that, unlike the single-emitter excita-
tion case, the data from driving both QDs exhibit large asymmetry around
∆23/2π = 0. Close to zero time delay, τ = 0, for ∆23/2π < 0, the emission
from the coupled system results in high counts, whereas for a symmetric
∆23/2π > 0 the counts appear to be low. This asymmetry continues through
time, leading to out-of-phase coherent oscillations of the intensity. To show
this more clearly, two time-traces from the experimental data, at almost
symmetric detunings around zero, are shown in Figure 4.7(d). The over-
all asymmetric behavior becomes also apparent when following the white
dashed lines in Figure 4.7(b). Even though symmetric around zero ∆23/2π,
they trace the first minima of the intensities for ∆23/2π < 0, and the first
maxima for ∆23/2π > 0.

To find the driving parameters Ω2, Ω3 and θ, we employ the full master
equation (1.23) and model the experimental data using the parameters in
Table 4.1 for the QD2-QD3 pair. The theoretical calculation, shown in Fig-
ure 4.7(c), appears to reproduce well the coherent behavior observed exper-
imentally, for Rabi frequencies Ω2/2π = 0.87±0.06 GHz, Ω3/2π = 1.33±0.05
GHz and a relative driving phase θ = −(0.48± 0.02)π.

Given the driving parameters, we can now explain the coherent dynam-
ics rising with time in Figure 4.7(b), using the Bloch sphere introduced pre-
viously. With the above found parameters, the driving initially populates in-
part a state close to |e2g3⟩+i |g2e3⟩13 as shown in Figure 4.7(e), where the time
evolution of the quantum state is traced in Bloch sphere, for ∆23/2π < 0.
Upon excitation, the system starts to evolve towards the |+⟩ state. The |+⟩
state decays in-part fast, giving the high counts in intensity at short time
delays in Figure 4.7(b) for ∆23/2π < 0. At the same time, the rest of the
population in |+⟩ is transferred to |−⟩, due to the presence of large ∆23 be-
tween the two emitters. As a result, the intensity counts subsequently drop,
since |−⟩ effectively delays the emission. This coherent exchange between
the two collective states continues, while the system decays to |g2g3⟩, at the
origin of the Bloch sphere. The observed oscillations in the intensity, are
therefore again attributed to the exchange of population between |+⟩ and
|−⟩, induced by ∆23. Those are here more pronounced than in the single-
emitter excitation case, since the system is directly initialized in a state that
is not an eigenstate, and thus starts to coherently evolve immediately after
its excitation.

For the case where ∆23/2π > 0, the reverse behavior is observed. The
evolution in the Bloch sphere would be equivalent to the one shown in
Figure 4.7(e), but with the time-trace revolving now clockwise, populat-
ing first |−⟩ state. That can be understood again in terms of the quanti-
zation axis, which would flip its orientation depending in the sign of ∆23.

13As mentioned the remaining population is shared between |g2g3⟩ and |e2e3⟩.
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For ∆23/2π > 0, the quantization axis would have a direction opposite to
the one shown in Figure 4.6(b), towards |gmen⟩, causing the state to evolve
clockwise in the Bloch sphere. The prepared |e2g3⟩ + i |g2e3⟩ state evolving
towards |−⟩ initially, results in low counts for ∆23/2π > 0 close to τ = 0, in
Figure 4.7(b). Subsequently, the emission intensity increases, as the coherent
evolution owed to ∆23, transfers population to |+⟩. This reverse evolution
with respect to ∆23/2π < 0, results in the out-of-phase coherent oscillations
of the emission intensity for symmetrical detunings around zero.

The Bloch sphere has been very useful in explaining the dynamics that
occur in the single-excitation subspace. With the present excitation scheme
of simultaneous drive of both emitters, the doubly excited state |e2e3⟩, which
is not represented in this picture, is also populated weakly. However, pop-
ulation of the |e2e3⟩ would not influence the asymmetry in the intensities
between positive and negative ∆23, as in both cases |e2e3⟩ will decay with
highest probability via the fast channel, through the |+⟩ state.

In short, we have here demonstrated that driving both emitters with the
appropriate polarization of the excitation beam, enables the preparation of
the system into either |+⟩ or |−⟩, by controlling the detuning ∆23 between
the emitters. With the current excitation conditions, the population of |+⟩
or |−⟩ occurred after time evolution to this state, due to the presence of ∆23.
An interesting next step would then be to deterministically populate either
of the two. Initial investigation with the present optical setup showed the
ability of mapping different polarizations of the excitation beam to a con-
tinuous range of driving θ. This was made possible by analyzing the re-
sponse of the QDs in RF excitation, to the different angles of the excitation
waveplates (Figure 2.5). Selecting then the appropriate waveplate coordi-
nates from the full mapping, would allow to apply a driving with θ = 0 or
θ = π and populate |+⟩ or |−⟩, respectively, with small population in |e2e3⟩
and |g2g3⟩ [109]. Furthermore, considering a larger inter-emitter separation
xmn, or even driving more than two emitters, would require individual, well
phase-locked beams. A robust solution to this could be to employ a Spatial
Light Modulator (SLM) to diffract a single light beam, and control the rel-
ative excitation phase between the diffracted beam spots by sweeping the
grating pattern on the SLM screen. Preliminary exploration of such a device
was conducted with the current QDs (Appendix E). Although the proximity
of the QD pairs prevented from proper testing14, the SLM is still considered
a promising tool for driving distant QD pairs independently.

14The two generated beam spots where partially overlapping, giving rise to interference
patterns.



72 Chapter 4. Collective dynamics of two coupled quantum dots

4.5 Summary of the coupling parameters

Parameters QD2-QD3 QD1-QD2 QD1-QD3
{Γm,Γn}/2π , GHz 0.79 , 0.73 0.85 , 0.79 0.9 , 0.65
σsd/2π , GHz 0.38 0.18 0.33
Γdph/2π , GHz 0.03 0.03 0.03
ϕmn , rad 0.05 0.08 0.05

Γmn/2π , GHz 0.61 0.66 0.61
Jmn/2π , GHz 0.03 0.05 0.03
Γ+/2π , GHz 1.25 1.36 1.3
Γ−/2π , GHz 0.27 0.28 0.26

TABLE 4.1: The parameters of the photon-mediated coupling
for the three pairs of crossing dipoles, as extracted from mod-
eling with the theory, where Γm,Γn are the individual de-
cay rates of QDm and QDn, σsd/2π the spectral diffusion
linewidth, Γdph the phonon dephasing rate, ϕmn the coupling
phase, Γmn the dissipative coupling rate, Jmn the dispersive
coupling rate, Γ+ the decay rate of the superradiant state
and Γ− the decay rate of the subradiant state. For all pairs√
βmβn = 0.8 is used, to obtain a lower bound to the coupling

parameters. Γ± of QD1-QD3 are calculated using (4.6).

4.6 Summary and Connection
In this Chapter, we demonstrated dipole-dipole photon-mediated cou-

pling, between pairs of QDs, separated by multiple wavelengths. The im-
plementation was enabled by the PCW that the QDs are embedded in and
the tuning parameter—the out-of-plane magnetic field— used to bring op-
posite dipoles of the three QDs to resonance pairwise. The coupling was
experimentally observed through the modification of the lifetime measure-
ments when driving in RF a single emitter of a resonant QD pair. In particu-
lar, instead of the anticipated single exponential decay of the driven emitter,
Γ3/2π = 0.73 GHz, the emission intensity exhibited a super- and a subra-
diant component, Γ+/2π = 1.33 GHz and Γ−/2π = 0.22 GHz, in the decay,
characteristic signatures of coupling between the interacting QDs. The co-
herent evolution of the collective dynamics was further investigated, with
a continues set of lifetime measurements, for a range of detunings, ∆23, be-
tween the emitters. The time-resolved dynamics were recorded from both
ports of the PCW, and the symmetry in intensity between the two confirmed
the predominantly dissipative character of the coupling. This was sup-
ported further by modeling the experimental data with the theory, reveal-
ing a coupling phase of ϕ23 = 0.05π, hence close to the pure dissipative limit
condition. This analysis was performed for all three pairs of coupled QDs,
where similar coupling parameters were identified, resulting in the same
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type of coupling for all crossings. This was attributed to the pre-selection of
QDs that are well-coupled to the mode of the waveguide, and consequently
with a spatial separation xmn of an integer number of unit-cells. Finally, a
first attempt to obtain control over the preparation of a collective state was
realized. This was implemented by driving both emitters of the coupled
pair with a relative phase, θ and excitation pulse areas Ω2,Ω3. Using a sin-
gle excitation beam to drive both emitters, the θ applied was defined by
the local polarization projection of the driving field over the two dipoles of
the coupled QD pair. Under this excitation scheme, the super- or subradi-
ant state was populated directly after excitation, depending on the sign of
∆23. However, additional calibration of this excitation method is required
to enable population of the collective states on demand.

In the next Chapter, following previous works [51, 52, 54], we probe
the collective system with second-order intensity correlation measurements,
g(2)(τ), under continuous excitation, to determine whether coincidence mea-
surements can be used to claim super- and subradiant emission from the
coupled system.
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5 Anti-dip in photon coincidences from
coupled quantum dots

This Chapter is based on the following article (in preparation)

Anti-dip in photon coincidences from coupled quantum dots, C.J. van Diepen,
V. Angelopoulou, A. Tiranov, A. Ahmad, O.A. Dall’Alba Sandberg, Y. Wang, L. Mi-
dolo, S. Scholz, A. D. Wieck, A. Ludwig, A. Søndberg Sørensen & P. Lodahl

Another approach to observe cooperative emission from a coupled sys-
tem of quantum emitters, is through second-order intensity correlations,
given by

g(2)(t, τ) =
⟨α̂†(t)α̂†(t+ τ)α̂(t+ τ)α̂(t)⟩

⟨α̂†(t)α̂(t)⟩2 , (5.1)

where α̂†(t) and α̂(t) are the bosonic raising and lowering operators and τ
is the correlation time delay. This coherence function measures the degree
of correlations in the intensity of a scattered field. In other words, it gives
the probability of detecting a photon at time t + τ , given that another one
was already detected at time t. To measure g(2)(τ), a Hanbury Brown Twiss
(HBT) experiment is performed [110]. In such a measurement, the emitted
field is sent to a 50:50 beamsplitter with one detector on each side. The time
correlations of a photon detected in transmission, with respect to photons
detected at the reflection of the beamsplitter, are recorded. The setup of the
HBT experiment for a pair of coupled quantum dots in a PCW is illustrated
in Figure 5.1.

The second-order intensity correlations at τ = 0 for Fock states is given
by g(2)(0) = 1 − 1/N , where ⟨α̂†α̂⟩ = N is the mean photon number. For a
perfect single-photon emitter then, there should be no photon coincidences
at zero-time delay, resulting into a dip with g(2)(0) = 0, while it can be
shown that for a coherent light source g(2)(0) = 1. In a system of N = 2
off-resonant distinguishable emitters, the coincidence measurements for an
ideal system will exhibit a dip at zero-time delay down to g(2)(0) = 1/2
for simultaneous driving of both. However, for a pair of indistinguish-
able emitters, the coincidence at zero-time delay reveals an anti-dip with
g(2)(0) > 1/2, depending on the decoherence processes, the driving and the
relative positions of the detectors. This modification of the correlations can
provide insights into the collective character of the interacting emitters.

In the past, this method has been used to probe the collective behavior
of two SiV centers in a diamond photonic cavity [111] and two trapped ions
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FIGURE 5.1: Illustration of the second-order correlation measurement, for
the single-emitter driving. The first of the two QDs (yellow discs) is excited
with a CW laser from free space, inside a PCW. When the two QDs are on
resonance, they exhibit photon-mediated coupling through the waveguide
mode, which results in the emission of photons with modified temporal
profile (yellow-black photons). The photons enter the beam-splitter of the
HBT setup, that will give the photon statistics.

in free space [112]. The QDs community has also exploited photon coin-
cidences, to declare observation of superradiance. In previous works, QDs
exhibit an anti-dip at τ = 0, when brought on resonance, either by strain [52]
or thermal tuning [51]. More recently, Z.X. Koong et al. [54] investigated
the coupling between a pair of electrically tuned QDs in bulk, that sit ap-
proximately a wavelength apart, both with coincidence measurements and
time-resolved dynamics. Even though an anti-dip was present in the HBT
experiment, the anticipated modification of the lifetime was not observed.
Further modeling clarified that zero-time delay coincidences can also arise
from correlations induced by measurement or by driving the emitters co-
herently [55]. These observations led to the conclusion that the zero-time
delay anti-dip in second-order intensity correlations, is an indication of co-
operative emission, but does not exclusively indicate a direct proof of su-
perradiance. Note that we adhere to the convention where “superradiance"
exclusively refers to cases where cooperative emission additionally leads to
an increased radiative decay rate of the system, as observed in Chapter 4.

The common element in [51, 52, 100] is that the anti-dip was obtained
while driving multiple emitters simultaneously. In this case, the anti-dip
can appear due to the detection scheme, which does not allow to distinguish
between the two emitters, resulting in measurement-induced cooperativity
effects. In this Chapter, we report the observation of photon coincidences
from a pair of QDs, when only one of the emitters is driven. We argue that
under this excitation scheme, the anti-dip is a direct signature of photon-
mediated coupling between the two emitters, associated with superradiant
emission. Focusing on the pair of QDs participating in the first crossing of
the energy levels in Figure 3.5, we measure the second-order intensity corre-
lations with resonance fluorescence, when the two emitters are detuned and
on resonance with each other. We record a transition of g(2)(0) from a dip of
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the single emitter, to an anti-dip when brought to resonance. Another fea-
ture that becomes apparent during the transition, is the broadening of the
dip at longer delay times around zero. This behavior was not present in the
previous investigations of the coupling with second-order correlations. By
modeling g(2)(τ), we conclude that it arises from the emission of long-lived
single photons, as the broadened dip exhibits a decay rate that matches that
of the subradiant state. We further interpret the results by describing the
mechanisms that induce the correlations, and support our statements with
numerical analysis. Finally, g(2)(τ) was also probed in resonant transmis-
sion. There, the expected correlation peak from two-photon bunching is
modified according to the decay dynamics of the coupled system, while
tuning the emitters to resonance.

The second-order correlation data discussed in the present Chapter were
partially analyzed, modeled, and interpreted at the time of writing of this
thesis. We here include the progress made so far, highlight areas of uncer-
tainty, and refer the interested reader to the relevant paper in preparation
for more precise conclusions.

5.1 Resonant fluorescence cross-correlation with
coupled emitters

For the HBT experiment, we pick up where we left off in the dynamics
measurements. We use the same optical path to excite from the top of the
waveguide with resonance fluorescence, but this time with a CW laser. The
investigation focuses on the QD2-QD3 pair and begins with the driving of
a single emitter, specifically of QD3. Prior to the measurement, the optical
setup and the excitation scheme had to be adjusted accordingly. We then
start by describing the procedure we followed.

5.1.1 Calibration and alignment of optical setup

We begin by optimizing the collection efficiency from Port 1 (Figure 2.4)
of the nanostructure. For that, the collection waveplates are calibrated by
sending the CW laser from Port 2 through the waveguide, in a transmis-
sion measurement. With the bias voltage switched off and the laser locked
to about the resonance frequency of QD3 (∼ 318.74 THz), the angles of the
HWP and the QWP are scanned and fixed to the values that gave the high-
est counts in the collection fiber, at the transmission of the PBS (Figure 2.5).
Next, the laser is sent through the RF excitation path and is aligned ap-
proximately on top of the position of QD3, as determined during the spec-
troscopy measurements (Chapter 3). Switching off the bias voltage, such
that no QD is excited, the laser background is eliminated at the collection
by tweaking the angles of the collection waveplates.

We then proceed to refine the alignment of the driving beam on top
of the waveguide for QD3. As the QDs are close in proximity, approxi-
mately within the diameter of the diffraction-limited beam spot on the sam-
ple, proper alignment and waveplate calibration are required to ensure the
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FIGURE 5.2: (a) Calibration of the waveplates in the excitation path, for
the pair of QD2-QD3 dipoles. For Bz = 0.8 T, far from their crossing, we
measure the difference in counts from the two dipoles (Rejection colorbar),
for all angle combinations of the HWP and QPW. (b) Saturation measure-
ment of the low frequency dipole of QD3, with the CW laser power, as it is
measured before attenuation. The expression used for the fit (dashed line)
and the saturation power Psat estimation, is included in the main text.

driving of the low-frequency dipole of QD3 and the suppression of QD2.
We begin with iterative beam-walking on top of the position of QD3 to
obtain good signal-to-noise ratio (SNR) and a saturation measurement is
performed for each iteration. Figure 5.2 (b) shows an indicative saturation
curve. The optimal position of the beam is found for high SNR and low
saturation power.

Further, the polarization of the excitation beam needs to be calibrated
to optimally excite the low-frequency dipole of QD3, while simultaneously
suppressing the opposite dipole of QD2. For that, we lock the CW laser
frequency to the value that excites both QD2 and QD3 resonantly at the
crossing (∼ 318.754 THz). For a low Bz (∼ 0.8 T), such that the crossing
dipoles are spectrally separated, we perform voltage scans to find the values
for which each QD is resonant with the laser. For these two voltages1, the
excitation HWP and QWP are scanned step-wise, and two 2D maps of the
emission from QD2 and QD3 are collected. To find the optimal orientations
for HWP and QWP, the difference of these maps is used. An example of
this is shown in Figure 5.2(a), where the normalized difference of the counts
between the crossing dipoles of QD2 and QD3 is shown. We then select a
combination of HWP and QWP that gives a large difference between the
two, hence simultaneously high counts from QD3, and, more importantly,
good suppression of QD2.

Additional voltage scans and beam-walking are often needed to opti-
mize further the SNR. By iterating over voltage scans, beam walking and
waveplate scans, we converge to the alignment that gives a high difference
in counts between the two dipoles, ± 0.98 (Rejection colormap in Figure
5.2(a)) and SNR of 250, sufficient to begin with the longer spectroscopic

1We scan around the central voltages for each combination of HWP and QWP to ensure
that we trace the counts at the resonant excitation
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measurements.

5.1.2 Resonance fluorescence spectra of coupled emitters

The first measurement that would allow to verify single emitter excita-
tion, is to record the resonance fluorescence spectra as a function of detuning
between the emitters, ∆23/2π. For that, the CW laser is set at the frequency
for which the two dipoles come to resonance, and the magnetic field Bz is
scanned around the crossing value (∼ Bz = 1.07 T). For each Bz, the bias
voltage is scanned, such that the QD3 transition is always resonant with the
laser frequency.

Figure 5.3(a) shows the result of this scan2, where the vertical axis is the
frequency offset3 from the crossing value. The white dashed line represents
the expected resonance of the laser with QD2, following Figure 3.5, whose
excitation is well suppressed throughout the scan. In combination with the
counts recorded from the emission of QD3, the plot confirms the direct driv-
ing of the low frequency QD3 dipole after calibration.

Here, the feature that stands out in the spectra is the decrease of the
fluorescence signal of QD3, at the crossing with QD2 (∆23/2π = 0). This
occurs since the photons emitted by QD3 are coherently reflected by QD2
when the two emitters are on resonance, resulting in the observed extinction
in transmission4 at ∆23/2π = 0 [113].

5.1.3 Photon coincidences from single-emitter driving

To measure now the second-order intensity correlations g(2)(τ), the scat-
tered light collected from Port 1 is send to a 50:50 (fiber) beamsplitter, with
one detector5 on each side, as depicted in Figure 5.1. The coincidence his-
togram of the clicks between the detection events at the two detectors are an-
alyzed by a time-to-digital converter (time-tagger6). The excitation power
we send to the emitter is estimated by fitting the saturation measurement
shown in Figure 5.2(b) with ρee = Pin/Psat

1+2Pin/Psat+4∆2/γ2 , where ρee the excited
state population of the steady state solution for a two-level emitter [87]. The
excitation power was Pin/Psat ≈ 0.12, where Psat is the saturation power of
QD3. For the transparency of our procedure, we note here that this satu-
ration curve is an indicative measurement on QD3 to get an estimation of

the driving frequency from the relation Ω3 =
√

Pin

Psat
Γ3, where Γ3 is the de-

cay rate of QD3, neglecting here the spectral diffusion of the emitter. This
gives an estimated Rabi frequency of Ω3/2π = 0.25 GHz = 0.35 γ3, where
γ3 = Γ3/2π the linewidth of QD3.

2An APD was used.
3Converting the voltage scan to frequency, from the Stark tuning of Figure 3.4, and

taking the offset from the crossing of the two dipoles.
4Here the data are collected from Port 2 of the PCW.
5SNSPDs were employed.
6PicoHarp 300
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FIGURE 5.3: (a) Resonance fluorescence of QD3, as a function of the detun-
ing between QD2-QD3. The white dashed line traces the expected spectral
emission from QD2, whose excitation is prohibited by spacial and polar-
ization selectivity of the laser. (b) Two-photon correlations g(2)(τ) for three
detunings ∆23/2π, color-coded with the dot-dashed vertical lines in (a).

The obtained g(2)(τ) is shown in Figure 5.3(b) for three different detun-
ings between the two QDs, ∆23/2π, normalized to photon coincidences at
longer times7 after exciting QD3. Since we drive only one emitter, the char-
acteristic single-emitter dip approaching zero is expected when the two are
far from resonance. Indeed, the coincidence counts for a large detuning
(red) revealed anti-bunching of the emitted photons, with g(2)(0) ≈ 0.24.
The parameters that could prevent g(2)(0) from reaching lower values, are
potentially the imperfect extinction of the laser background in the waveg-
uide, following the relation g(2)(0) = 2ξ − ξ2 where ξ = 1/ SNR including
the background emission from the sample, [114] and the time-jitter of the
detection. Here, after fitting with the IRF of the detectors, we determined
that g(2)(0) is within the range 0.12 − 0.15. Accounting for the SNR, the
dip reaches a minimum of approximately g(2)(0) ≈ 0.1, with the remain-
ing attributed to the coupling to the waveguide. The intermediate detuning
(green) is simply shown to highlight the transition of the features as the
dipoles are tuned from distinguishable (off-resonance ∆23/2π ̸= 0) to indis-
tinguishable (on-resonance ∆23/2π = 0). When the two QDs are brought

7The oscillations that are present at longer times arrive from crosstalk between the two
channels of the time-tagger.
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to resonance (blue), a clear anti-dip approaching g(2)(0) ≈ 0.94 is mea-
sured, while, at longer delay times (|τ | ≈ 0.4 ns), the single-emitter dip
gets broader. By modeling g(2)(τ) with the empirical convolution function
of the sum of the standard RF dip with an exponential for the anti-dip [47],

g(2)(τ) = 1− e
−
(

3Γdip
4

+
Γdph

2

)
τ

(
cos(µτ) +

3Γdip + 2Γdph

4µ
sin(µτ)

)
+ e−Γadipτ

(5.2)

where Γdph is the pure dephasing rate and µ =

√
Ω2

3 +
(

Γdip−2Γdph

4

)2
, con-

volved with the IRF of the detection, we obtain the linewidths of Γadip/2π =
1.44 ± 0.16 GHz and Γdip/2π = 0.31 ± 0.03 GHz. Those appear to be in
agreement with Γ+/2π = 1.33 GHz of super- and Γ−/2π = 0.22 GHz of sub-
radiance respectively for the QD2-QD3 pair, found from the analysis of the
lifetime data (see Table 4.1).

5.1.4 Interpretation of the photon coincidences

The feature of the anti-dip has been observed in all works previously
mentioned with QDs [51, 52, 54]. There, since more than one emitters were
excited simultaneously, the presence of the anti-dip is attributed to emis-
sion from the collective doubly excited state |ee⟩, that is directly populated
by the laser excitation. The population of |ee⟩ is a prerequisite for photon
coincidences, as it leads to emission of two subsequent photons, which can
coincide in time at the two detectors. The novelty of Figure 5.3(b) lies in the
single emitter drive. In order to populate |ee⟩ with this excitation scheme,
there needs to be a process that would induce interaction between the emit-
ters, such that the driving of the first would also excite the second, i.e. the
distant emitters need to be coupled through a shared optical mode.

To understand better the underlying mechanisms that give rise to the
features around zero-time delay, we make use of the energy level diagrams
in Figure 5.4. Describing one QD as a two-level system with a |g⟩ and an
|e⟩ state, a pair of resonant QDs can be represented by a four-level system,
as shown in Figure 5.4(a), where m = 3 and n = 2 for the discussed pair.
As QD3 is coherently driven with a Rabi frequency Ω3/2π, |e3g2⟩ gets pop-
ulated. The excitation then dissipates with rate Γ3 and brings the excita-
tion to QD2 through the mode of the waveguide. The population is then
in part transferred to |g3e2⟩, due to the photon-mediated coupling between
the QDs, indicated with the double-sided arrow, representing Γmn, the dis-
sipative coupling rate. Since QD3 is driven continuously, the doubly excited
state |e3e2⟩ gets populated. Upon its decay to |g3g2⟩, two subsequent corre-
lated photons are emitted from the coupled system.

To discuss in more depth the effects of the dynamics that occur due
to the coupling, it is natural to turn to a four-level system in the basis of
|+⟩ = 1√

2
(|e3g2⟩ + |g3e2⟩) and |−⟩ = 1√

2
(|e3g2⟩ − |g3e2⟩) of the single excita-

tion subspace, depicted in Figure 5.4(b). As argued in Chapter 4, the cou-
pling between the two emitters is predominantly of dissipative character,
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FIGURE 5.4: Energy level diagrams that describe the mechanisms taking
place in the system under CW excitation, in (a) the individual-emitters ba-
sis and (b) the collective basis. In (a) the QDm is driven with Ωm. Through
photon mediated interaction (double-sided arrow Γmn) and continuous
drive (red arrows), the doubly excited state |emen⟩ gets populated. In (b)
the drive is shown in terms of pumping rate P , taking into account the big
difference between the collective decay rates, Γ±.

and therefore |+⟩ and |−⟩ are degenerate in energy, but maximally modified
in their decay rates, Γ±. In this picture, the initial state is |e3g2⟩ = 1√

2
(|+⟩ +

|−⟩). However, we do not in fact drive to |e3g2⟩, as the probabilities to popu-
late |+⟩ and |−⟩ are not equal. That is because the population of |+⟩ and |−⟩,
depends on the rate at which each state decays Γ± (Table 4.1) with respect
to the driving frequency Ω3/2π. Given a weak drive of QD3, with respect
to the superradiant decay rate (Γ− < Ω3 < Γ+), this results into different
pumping rates P− = Ω2

3/Γ− and P+ = Ω2
3/Γ+ for the two states, indicated by

the thickness of the red arrows [27].
More specifically, as the superradiant state decays faster than the applied

driving to the system, it will be populated with very low probability, mean-
ing effectively a low pumping rate, P+. This can be explained by the quan-
tum Zeno effect [79], which suggests that: a state that is measured more
frequently than it decays will essentially never decay, since the measure-
ment continuously projects it back to the initial state. In our system, it is the
fast decay of the superradiant state which represents the frequent measure-
ment by the environment in terms of the quantum Zeno effect. This means
that |+⟩ is hard to excite with a weak drive, as its fast decay projects it con-
tinuously back to |g3g2⟩. Therefore, in this subspace, most of the population
remains in the collective ground state, |g2g3⟩.

On the other side of the temporal spectrum, is the subradiant state |−⟩,
which decays much slower than it gets populated, leading to a high pump-
ing rate P− > P+. Due to the continuous drive, part of the population will
transition to the doubly excited state |e3e2⟩. Here, the quantum Zeno argu-
ment used for the population of |+⟩ also holds for |e3e2⟩, resulting in a weak
pumping rate Pee < P− for the doubly excited state. Hence, the population
of the system accumulates in the slowly decaying |−⟩.

The population that ends up in |e3e2⟩ will decay with high probability
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through the fast channel (yellow arrows in Figure 5.3(b)), or in other words
through the two-step Dicke ladder |e2e3⟩ → |+⟩ → |g2g3⟩. The two subse-
quently emitted fast decaying photons give rise to the observed anti-dip.
More precisely, the detection of the first photon (|e2e3⟩ → |+⟩) will project
the system to the superradiant state, which will emit the second fast pho-
ton right after with high probability. The anti-dip at zero-time delay is then
related to the probability that these two photons arrive together at the two
detectors, and its decay essentially follows the temporal shape of the sec-
ond fast decaying photon. The decay rate of the anti-dip, Γadip, is then di-
rectly related to the superradiant decay rate, Γ+. In addition, the effective
two-level system formed by |g3g2⟩ and |−⟩, decays by emitting one slow-
decaying photon, causing the broadening of the dip at longer delay times.
The decay rate of the dip Γdip, is then linked to the subradiant decay rate,
Γ−. A last small contribution on g(2)(τ) comes from the single photons emit-
ted with small probability from the decay of |+⟩ to |g3g2⟩. These short-lived
photons are expected to overall decrease the photon coincidences g(2)(0),
and narrow the width of the dip, opposing the broadening from the subra-
diance.

5.1.5 Numerical simulations for various experimental con-
ditions

Making use of the theory that was developed for the coupled QDs in
the waveguide (see Section 1.4), we move on to model the second-order
correlations, to probe the effects of the different parameters on the photon
statistics and further support our interpretations about the coupled system.

To do so we use the formula for the normalized second-order correlation
function (5.1), which can be transformed into

g(2)(τ) =
Tr
(
α̂(t+ τ)ρ′(t+ τ)α̂†(t+ τ)

)
Tr (α̂(t)ρ(t)α̂†(t))2

(5.3)

where, G(2)(τ) = Tr
(
α̂(t+ τ)ρ′(t+ τ)α̂†(t+ τ)

)
is derived by the quantum

regression theorem [57] and ρ′(t + τ) comes from ρ′(t) = α̂(t)ρ(t)α̂†(t) after
time evolution t→ t+ τ .

In Figure 5.5(a) we show now the full scan of g(2)(τ) as a function of
detuning ∆23/2π, around the crossing of QD2-QD3 dipoles, and compare
with its numerical simulation in Figure 5.5(b). The model was calculated for
the experimental parameters of Table 4.1 and for driving QD3 dipole with a
rate equal to 0.5γ3. To account for spectral diffusion, the model is averaged
over a Gaussian distribution of detunings around the resonant transition of
QD3, with standard deviation σsd. Finally the result is convolved with a
Gaussian to include the time-jitter effect.

The modeled g(2)(τ) shows many similarities to the experimental data.
The anticipated transition from the single-emitter dip to the anti-dip is
present in both. A common feature that becomes apparent is the asymmetry
of the resonance value ∆23/2π = 0 GHz (black dashed line in 5.5(a)), with
respect to the presence of the anti-dip at small detunings. This asymmetry is
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FIGURE 5.5: (a) Experimental data of second order intensity correlations
of QD2-QD3, as a function of the detuning ∆23/2π. (b) Numerical simu-
lation of the experiment shown in (a), using the model developed for the
HBT experiment of the coupled system. (c) g(2)(0) throughout the scan of
∆23/2π. (d) Simulation of the second order intensity correlations for four
different detunings between QD2-QD3. Their positions on the overall scan
(b) are noted with dot-dashed vertical lines. The detunings are chosen to
match the g(2)(τ) traces shown in Figure 5.3(b).

attributed to the small deviation of the coupling phase from the ideal ϕ23 =
Nπ of the dissipative coupling. More specifically, the ϕ23 = 0.05 rad that was
found for the spatial separation of QD2 and QD3, causes imperfect interfer-
ence of the fields from the two emitters at the collection ports. That effect
can be compensated by the presence of a small detuning between the emit-
ters. The result is then the appearance of the maximum of the anti-dip at
larger ∆23/2π values. It is important to note here as well, that the definition
of ∆23/2π = 0 GHz from the resonant transmission measurement (Figure
3.5) is again an estimate for the resonance of QD2-QD3. In reality the mag-
netic field for which the emitters come to resonance, deviates by about 0.04
T in the various measurements done for this crossing. This shift differs de-
pending on the type of driving (CW or pulsed), the excitation scheme (RT or
RF), the driving power (Figure A1), as well as on the nuclear spin dragging,
caused by the nuclei in the vicinity of the two interacting emitters [19].

Another feature of the experimental data that is though not well repro-
duced in the theory plot, is the range of detunings for which the anti-dip
is present. In the experiment the presence of the anti-dip extends to larger
detunings between the emitters (∆23/2π ≈ 1 GHz) than in the simulation.
This is, for now, attributed to the nuclear spin dragging that the emitters ex-
perience, which is not included in the theoretical model we use. Specifically,
we note that the dipole of QD3 driven by the laser, undergoes anti-dragging
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by the nuclear spin bath. The anti-dragging of the QD transition effectively
increases the spectral diffusion of the dipole, broadening the dependence of
the anti-dip on the detuning ∆23/2π. The nuclear spin is therefore responsi-
ble for the abrupt changes observed in the RF spectra of Figure 5.3(a), and
limits the value of the anti-dip g(2)(0) .

The transition of the experimental g(2)(0), is traced for all detunings in
Figure 5.5(c). We divide the plot into three regimes. At large enough de-
tunings, |∆23/2π| > |Γ2/2π + Γ3/2π| (orange), g(2)(τ) give the characteristic
single-emitter dip, as only one QD is driven. For a small range of detunings
(green), QD2 appears to be excited by the photons emitted by QD3, since
the two start to overlap in frequencies due to their respective spectral diffu-
sion. However, as they are still distinguishable, the dip of the second-order
coincidences reaches up to g(2)(τ) = 0.5. From there on an anti-dip starts to
appear, as the probability of populating the doubly excited state increases
with smaller detunings (blue). To explain the gradual increase of the anti-
dip with detuning as we move towards the resonant condition, we recall
the description of the dynamics that occur in Section 4.3 and make use of
a more intuitive expression of the zero-time delay photon coincidences for
super- and subradiant emitters8,

g(2)(t, 0) =
Γ2
3 ρee(t)

(Γ3ρee(t) +
Γ+

2
ρ+(t) +

Γ−
2
ρ−(t))2

, (5.4)

where ρee, ρ+ and ρ− are the populations in the doubly excited, the super-
and the subradiant states, and Γ± = Γ3 ± Γ23 from (4.6) while neglecting
spectral diffusion. Before continuing the discussion, it is important to high-
light that, contrary to the pulsed excitation which revealed coherent oscilla-
tions in the population between the super- and the subradiant states, with
CW driving the coupled system reaches steady state values for all popula-
tions. The presence of detuning ∆23/2π, will cause exchange of population
between the super- and the subradiant states. Specifically, for detunings
in Γ23/2π < |∆23/2π| < Γ+/2π , the anti-dip remains small, as part of the
subradiant population is transferred to the superradiant state. As then ρ+
increases, the anti-dip g(2)(0) decreases. This exchange of population occurs
slower as the detuning gets smaller. For |∆23/2π| < Γ23/2π, where the dis-
sipation starts to dominate, the population starts to accumulate in the sub-
radiant state, and from there it can get re-excited to |e3e2⟩. At the resonant
condition, the anti-dip reaches its highest value and the dip its maximum
width, as there are now less fast single photons that would narrow it down.

Finally, Figure 5.5(d) shows traces of the simulated g(2)(τ), for the detun-
ings depicted in Figure 5.3(b). The simulation demonstrate a good agree-
ment between the experiment and the theoretical prediction, and validate
the experimental parameters extracted by the analysis of the lifetime data
in Chapter 4.

To further support the claim that, in the single-emitter excitation regime,
the anti-dip in photon coincidences is a clear indication of coupling between

8This formula is inspired by [55].
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two resonant emitters, we exploit the model to show how g(2)(τ) is affected
by different strengths and types of coupling. For these simulations, the ex-
perimental parameters were used as before, but the contributions from spec-
tral diffusion and time-jitter have been neglected, in order to highlight more
explicitly the rising effects.

FIGURE 5.6: Simulations of g(2)(τ) of two indistinguishable emitters for
different (a) coupling strengths to the waveguide mode of the non-driven
emitter, β2, and a coupling phase of ϕ23 = 0 rad and (b) coupling phases
ϕ23 and ideal coupling parameters β2, β3 = 0.99 for both QDs.

To probe the effect of the coupling strength on the intensity correlations,
we plot g(2)(τ) with an increasing coupling parameter of QD2 to the waveg-
uide mode, β2 (Figure 5.6(a)). For all traces the coupling phase is fixed to
ϕ23 = 0 rad, to ensure dissipative coupling between the emitters. For the
weakest coupling to the waveguide mode, β2 = 0.1, the system behaves as
if there is only a single emitter in the waveguide and gives the characteristic
dip in photon coincidences (dark red). As the coupling of QD2 to the waveg-
uide strengthens, its interaction with QD3 via the shared waveguide mode
increases, leading to the gradual emergence of an anti-dip at zero-time de-
lay. In other words, this plot emphasizes that driving a single emitter alone
does not yield observable photon coincidences, as we see experimentally,
unless there is strong coupling between the emitters through the mode of
the waveguide.

To illustrate that the type of coupling is also related to the presence or
absence of the anti-dip, in Figure 5.6(b) we simulate the behavior of g(2)(τ)
throughout the transition between the two coupling regimes, i.e. from
dissipative (ϕ23 = 0) to dispersive (ϕ23 = π/2), by scanning the coupling
phase, ϕ23 between two emitters with nearly-ideal coupling to the waveg-
uide mode, β2, β3 = 0.99. From the outcome, one could conclude that the
probability of getting two photons out of the coupled system decreases with
increasing ϕ23. Specifically, the anti-dip is completely absent at the disper-
sive limit, ϕ23 = π/2, while it maximizes at the dissipative, ϕ23 = 0. This re-
sult would then directly relate the anti-dip emergence to a dissipative char-
acter of the coupling between two well coupled emitters. However, we note
that further investigation with numerical simulations showed that the pres-
ence of an anti-dip from one collection port does not exclusively indicate
dissipative coupling. Similar to the argument discussed in Section 4.4, it is
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important to consider the photon statistics from both ports of the waveg-
uide, taking into account which QD is driven. Therefore, our experimental
data presented here is insufficient to conclude on the type of coupling with
certainty.

In both plots of Figure 5.6 the simulations show clear bunching (g(2)(τ) >
1) for β2 ≥ 0.7 and ϕ23 ≤ 0.15π, which was not observed experimentally for
β2 = 0.8 and ϕ23 = 0.05π. We attribute the limitation of the anti-dip to a
combination of experimental imperfections in our system, such as the pure
dephasing, spectral diffusion, the driving power, Ω3, the limited β-factors
and the imbalanced decay rates of the two QDs.

FIGURE 5.7: (a) Simulation of g(2)(τ) of two indistinguishable emitters as
a function of pure dephasing, γdph, for fixed Ω3/2π = 0.5γ3. (b) Energy
diagram showing the effect of pure dephasing to the populations of the
collective states.

To clarify the effects that two of these parameters have on the photon co-
incidences of two resonant emitters, we simulate g(2)(τ) for different values
of pure dephasing, γdph in Figure 5.7, and driving power Ω3 in Figure 5.8.

The simulation for different pure dephasing (Figure 5.7(a)) shows that
even small amounts of such decoherence will quickly damp the mechanisms
that give rise to the anti-dip. The dynamics that γdph induces are illustrated
in Figure 5.7(b). Pure dephasing of the system will cause oscillations be-
tween the collective |+⟩ and |−⟩ states, similar to the detuning. As argued
before, this results into the emission of more single photons from the decay
of |+⟩, which consequently decreases the photon coincidences (seen from
(5.4)). However, in contrast to detuning, this process is incoherent, adding
time-varying phase to the photon-mediated interaction. This would disrupt
the constructive and destructive interference, damping the features that in-
dicate super- and subradiance. The loss of coherence becomes evident in
the decreasing width of the dip and the anti-dip, with increasing γdph.

Finally, the photon coincidences g(2)(τ) of the cooperative emission for
continuous and coherent driving is plotted for different Rabi frequencies
Ω3/2π in Figure 5.8(a). To understand the impact that the different driv-
ing has on the coupled system, the populations at the steady state for each
Ω3/2π are also plotted in (b). The first effect of the increasing driving fre-
quency to notice is the decrease of the anti-dip and width of the dip. This
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FIGURE 5.8: (a) Simulation of g(2)(τ) of two indistinguishable emitters as a
function of Ω3/2π, for fixed pure dephasing at γdph/2π = 0.07 γ3. (b) Pop-
ulations of the individual emitters and their collective states, as a function
of Ω3/2π.

can be justified, as before, by the increasing population in |+⟩ (ρ+ yellow line
in 5.8(b)). The oscillations (shoulders) of g(2)(τ) appearing at longer times
for high driving frequencies, are indicative of Rabi flopping in the two-level
system. Another feature that becomes apparent is that the anti-dip remains
the same up to Ω3/2π = 0.5γ3 and decreases for stronger driving. This high-
lights the fact that to obtain the highest bunching, Ω3/2π should be low
enough such that the superradiant state is hardly excited. For the conditions
of the present experiment this seems to occur for Rabi frequencies around
Ω3/2π = 0.5γ3. With this low driving frequency the population in the sub-
radiant state, that is the requirement for the emergence of the anti-dip, has
been well accumulating (ρ− gray line), while the superradiant population
is still low and the doubly excited state just begins to be populated (ρee red
line).

As a final remark here, looking at g(2)(τ) of the lowest simulated Ω3/2π,
one could wonder, why the anti-dip exceeds 1 when the doubly excited state
is barely populated for Ω3/2π < 0.5γ3. This feature is not the result of two-
photon detection, but of how rare these coincidences are. To explain this
paradoxical result, we retrieve to the intuitive expression for g(2)(0) (5.4). In
the limit of low power, where the population in |+⟩ is very small, the ex-
pression could be simplified to g(2)(0) ≈ 1

ρee
. Therefore, the low population

in |e3e2⟩ can result in g(2)(0) > 1. In fact, the bunching can become infinitely
large in the limit of weak driving.

5.1.6 Driving the less noisy emitter

The resonance fluorescence and second-order correlation measurements
(as in Figure 5.3) were repeated, while driving QD2 instead. Surprisingly,
the anticipated decrease in counts in the resonance fluorescence and the
anti-dip at g(2)(0) in resonant conditions between the two emitters, were
not observed. The absence of these features is attributed to the response to
the noise exhibited by each of the QD2-QD3 dipoles and the post-selective
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nature of the g(2)(τ) measurement.
More specifically, in a HBT experiment there will be no signal in the

cases where the laser is off-resonant with the addressed QD. Therefore, the
measurement effectively post-selects the cases where the light and the emit-
ter are resonant. Due to the nuclear spin of the solid-state environment,
QD2 experiences dragging, which broadens its RT dip, reducing the ef-
fect of spectral diffusion. As mentioned previously, QD3 undergoes anti-
dragging, which has the opposite effect, complicating the task of maintain-
ing its dipole transition resonant to the laser frequency consistently. This
implies that when QD3 is driven, it naturally benefits the post-selection of
the cases where its transition is resonant with the laser and with the less
noisy QD2 dipole, resulting in more pronounced signatures of the coupling,
as depicted in Figure 5.3(b). On the other hand, when QD2 is driven, the
probability of having both QD2 and QD3 dipoles in resonance with the laser
is low. This results in reduced effects from the photon-mediated coupling
on g(2)(τ), washing out the coupling features.

To support the hypothesis about the noise, further investigation along
with numerical simulations are still pending. The experimental results are
included in Appendix D.

5.2 Photon coincidences in resonant transmission
The coupled system was probed also in RT, with continuous and co-

herent driving, sent through the waveguide from Port 2. Using an atten-
uated beam of the CW laser, with frequency fixed to the value for which the
dipoles come to resonance, the magnetic field is scanned along the crossing.
The voltage is respectively scanned such that each QD is excited resonantly
at all Bz values.

The resonant transmission spectra are depicted in Figure 5.9(a), where
the RT dips reach their maximum depth at the crossing resonant frequency.
The transmission counts are normalized to the background, collected with
bias voltage of 1 V, such that no QDs were driven. We note that the widths of
the two dips differ, due to the different contribution of the spectral diffusion
on each dipole from the nuclear spin noise at increasing magnetic fields.
Specifically, QD3 exhibits more noise compared to QD2, as its dipole is being
anti-dragged by the nuclear spin, leading to a shift in its transition away
from the laser frequency. On the other hand, the dipole of QD2 undergoes
dragging, which imparts a square-like shape to its RT spectra.

For every detuning, a g(2)(τ) measurement is recorded, while exciting
each QD individually, by choosing the bias voltage. Figure 5.9(b) shows
three second-order correlation measurements, when driving QD2. The pho-
ton coincidences were normalized to the coincidences at long delays. For
this excitation scheme, g(2)(τ) exhibits a bunching peak at zero-time delay
for all detunings. The bunching is induced by the nonlinear single photon
response of the QD to a weak driving field [103], while its profile is modified
according to the altering photon-statistics throughout the scan. The traces in
(b) show decreasing bunching from g(2)(τ) ≈ 4.5 at large detunings, down
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FIGURE 5.9: (a) Resonance transmission measurement, as a function of the
detuning between the two crossing dipoles of QD2-QD3. (b) Two-photon
correlations for three detunings ∆23/2π, color-coded with the dot-dashed
vertical lines in (a), when driving QD2. The three traces come from Figure
5.10(a).

to 3.5 at ∆23/2π = 0, and broadening of the width that maximizes when
the two QDs come to resonance. Plotting the photon coincidences in log-
arithmic scale and fitting them with a single exponential convolved with a
Gaussian to account for IRF (Empirical fit lines in Figure 5.9(b)), facilitates
the observation of a widening trend as we move towards ∆23/2π = 0 GHz.

5.2.1 Preliminary interpretation using numerical simula-
tions

The experimental results were modeled to get an intuition about the dy-
namics we recorded. Figure 5.10(a) and (b) show the second-order corre-
lations as a function of detuning from experiment and theory, respectively.
In the numerical simulation we have neglected spectral diffusion to empha-
size the effects of the coupling. The theoretical plot shows a bunching peak
with exponential decay far from the crossing of the dipoles, whereas strong
modification is observed for detunings −0.5 ≤ ∆23/2π ≤ 0.5 GHz. There
the decay exhibits a bi-exponential behavior, with the maximal width for
∆23 = 0 GHz. Further comparison between these 2D maps is not directly
possible, due to noise in the experimental data.

The bi-exponential decay with a fast and a slow component can be seen
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FIGURE 5.10: (a) Two-photon correlations, g(2)(τ) in transmission mode
of the nanostructure, as a function of the detuning, ∆23/2π, between two
QDs. For each detuning the laser was set in resonance with QD2. (b)
Theoretical simulation of (a), using the experimental parameters and ne-
glecting spectral diffusion. (c) The decay rate of the second-order correla-
tion bunching peak, as a function of the detuning between two QDs. The
red curve traces the change of the decay rates as derived by the theoreti-
cal model. (d) Theoretical simulation of the experimental result shown in
5.9(b). The detunings shown are color-coded in (b).

more clearly in Figure 5.10(d), where four traces from (b) are plotted. Simi-
lar to a lifetime measurement, what is recorded in the g(2)(τ) is the temporal
profile of the photon emitted by the coupled system, with a super- and sub-
radiant component, after the detection of a short-lived photon from the de-
cay of |ee⟩ to |+⟩. The theoretical g(2)(τ) traces were plotted for comparison
with the experimental ones of 5.9(b), where apart from the broadening of
the width close to ∆23 = 0 GHz, owed to the decay of the subradiant state,
no fast component is recorded experimentally. A valid argument about the
lack of the fast decay from our data, is the limited time resolution of the de-
tection system, as the time-jitter of the SNSPDs used here (200 ps FWHM)
was larger than the superradiant decay times (∼ 120 ps).

The fitted bunching widths of the experimental g(2)(τ) for all detunings
in Figure 5.10(a), are plotted in (c) (blue points). The widths at large detun-
ings ≈ 0.6± 0.02 GHz are not compatible with the linewidth of QD3 found
in Chapter 4, Γ3/2π = 0.73 ± 0.02 GHz. Accordingly, for detunings near
resonance the fitted values give a linewidth of ≈ 0.43 ± 0.02 GHz which
is far from the subradiant linewidth, Γ−/2π = 0.22 ± 0.02 GHz found for
QD2-QD3. This discrepancy emphasizes the need for a more suitable fitting
model. In the same plot we overlay the theoretical widths for the same scan
of detunings (red line). These values were extracted by fitting all traces in
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Figure 5.10(b) using a bi-exponential function convolved with a Gaussian.
The plotted width is of the subradiant component of the decay, Γ−/2π, to be
consistent with the experimentally deducted linewidths. Theory and exper-
iment follow the same trend, with the minimum width found at resonance.
However, there is clear deviation in the value of the minima, as well as the
range of detunings for which the bunching peak exhibits broadening. These
differences are for now attributed to the nuclear spin dragging, inducing ad-
ditional spectral diffusion, which is not included in the theoretical model.

5.3 Summary
In this Chapter, we demonstrated that the observation of photon coin-

cidences at zero-time delay in second-order intensity correlations from two
emitters, can be a proof of photon-mediated coupling, directly associated to
superradiance in the case where only a single emitter is driven. The system
was initially explored using coherent and continuous drive in resonance
fluorescence. We observed an anti-dip at g(2)(0) from the decay through the
two-step Dicke ladder, via the superradiant state, as well as broadening of
the single emitter dip, that was associated with direct emission from the
subradiant state.

Numerical simulations confirmed that observing photon coincidences
at zero-time delay with single-emitter excitation is only possible when the
emitters are coupled. It was also suggested that the presence of the anti-
dip can reveal the type of coupling, based on the photon coincidences from
both sides of the PCW. Further, the factors preventing the observation of a
bunching peak in resonance fluorescence were discussed. We specifically
provided insights through simulations of the effects of pure dephasing and
driving power on g(2)(τ).

Lastly, we investigated photon coincidences in resonance transmission,
where preliminary analysis showed modifications of the bunching peak that
align with those of the decay rate from the collective emission.
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6 Conclusion and Outlook

6.1 Summarizing and reflecting
In the present work we demonstrated photon-mediated coupling be-

tween different pairs of QDs, embedded in a nanophotonic waveguide. Di-
rect signatures of super- and subradiant emission dynamics were observed
through the modification of the lifetimes when the emitters were tuned to
resonance. The demonstration of the coupling extended beyond the sub-
wavelength limit, facilitated by the nanophotonic environment of the PCW,
providing broadband spectral operation and long-range coherent interac-
tion between the QDs. The coupling was also observed in second-order
intensity correlations, g(2)(τ), where, by driving a single emitter, we en-
sured that the emerging features in the g(2)(τ) are unambiguously associated
with super- and subradiance from the waveguide-mediated coupling. This
observation was of fundamental scientific interest for the platform, as the
demonstration of dipole-dipole coupling lays the groundwork for harness-
ing multiple QDs for applications in quantum communication and quantum
information processing.

Coupling multiple emitters requires spectral and spatial proximity be-
tween them, as well as a highly coherent light-matter interface. As these re-
quirements are not easy to fulfill with self-assembled QDs, due to the spec-
tral and spatial inhomogeneities inherent to the growth process, we initially
focused on the spectroscopic investigation of the sample.

Owing to the high density of the sample [85], by performing transmis-
sion measurements on different PCWs we could find at least two QDs spec-
trally close and well coupled to the waveguide mode in one out of three
nanostructures. The one that was selected contained three QDs, all close to
the band-edge of the PCW, particularly favorable for probing the coupling
between the QDs. That is because, on the band-edge, the high LDOS en-
hances the radiative decay rate Γ of the QDs [47], making them less suscep-
tible to fast noise from elastic phonon scattering, inducing pure dephasing.
In turn, this improves the likelihood that the pair of dipoles will remain on
resonance for the entirety of the measurement, and the coherence needed
to observe the coupling effects, will be preserved. In addition to that, a
bias voltage, applied across the sample through the p-i-n diode, limits the
electronic noise from the environment, inducing spectral diffusion to the
emitters.

The three QDs were selected for their high coupling to the waveguide
mode, indicated by the depth of the RT dips of the transmission measure-
ment. This suggests that the QDs are positioned at specific locations within
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a unit cell of the PCW, resulting in approximately equidistant separations
between the adjacent pairs, |xmn|. Since their spatial separation defines the
type of coupling, this argument was later used to explain why all three pairs
of coupled dipoles exhibit the same dissipative character.

With the current device, independent tuning of the QDs was not feasi-
ble, limiting the possibility of tuning multiple emitters into resonance. Al-
ternatively, a homogeneous out-of-plane magnetic field, Bz was used as the
tuning parameter for the frequencies of the QDs. That, induced opposite
energy shifts to the two dipoles of each QD, resulting in the crossing of
opposite circularly polarized dipoles, σ±, of different QD pairs. Naturally,
the two opposite polarized dipoles would not be able to interact. How-
ever, as the QDs are embedded and well-coupled to their nanostructure,
the dipole-dipole interaction is mediated by the shared mode of the waveg-
uide. Essentially, the emitters interact with each other through a photon
exchange between the projection of their dipoles to the local polarization of
the waveguide mode.

While coupling opposite dipoles might initially appear as a limitation to
the experiment, in the current structure it proved advantageous, enabling
independent or simultaneous driving of the coupled pair with a single exci-
tation beam. Specifically, since the adjacent coupled emitters are positioned
∼ 1µm apart, the diffraction-limited beam spot would address both at the
same time from the top of the waveguide. Then, by choosing the polar-
ization of the driving beam with the waveplates in the excitation path, we
could either fully suppress one of the dipoles and still drive efficiently the
other, for single-emitter excitation, or address both dipoles, for double ex-
citation. The latter enabled preparation of the collective state from a single
excitation beam.

The coupling between the pairs of dipoles was investigated through life-
time measurements. This approach was selected over the second-order in-
tensity correlations used in previous studies [51, 52], which has been de-
bated for its ambiguity in providing exclusive proof of superradiant emis-
sion from the coupled system [54, 55]. By driving a single emitter of a
pair and sweeping the detuning between them, we recorded the anticipated
modification of the lifetime. From initially exhibiting a single exponential
behavior in the far off-resonance case, resulting in radiative linewidths of
Γ2/2π = 0.79 GHz and Γ3/2π = 0.73 GHz for one of the pairs, the time-
resolved dynamics transitioned to a bi-exponential profile when the dipoles
were tuned to resonance. This included a superradiant component with
Γ+/2π = 1.33 GHz and a subrandiant with Γ−/2π = 0.22 GHz.

The strength of coupling, quantified by the ratio between the two com-
ponents of the decay Γ+/Γ−, was found by fitting to be below 5 for the three
pairs. The coupling strength is is limited by a combination of imperfections
and decoherences from the system. In particular, the uneven decay rates
of the emitters Γm,n, any deviation of the coupling phase from the dissipa-
tive ϕmn = Nπ limit, the imperfect β-factors, the spectral diffusion and pure
dephasing from the environment, as well as the losses in the waveguide,
contribute to the reduction of the coupling. Optimizations to the coupling
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strength can be made by improving the condition of the sample or calibrat-
ing the excitation scheme. We elaborate more on that at the Outlook below.

Looking into the lifetime measurements from the two ports of the PCW,
the symmetry in the intensities signifies an inter-emitter separation that cor-
responds to a coupling phase of ϕmn ≈ Nπ. By the definition of the coupling
rates, Γmn ∝ cosϕmn and Jmn ∝ sinϕmn, this separation determines a pre-
dominantly dissipative coupling (Jmn ≈ 0) between the emitters. This was
further supported by the estimation of ϕmn from numerical simulations of
the experiment, giving ϕmn = 0.03− 0.05 rad.

The theory developed for the present experiment [57] was used to ex-
plain the mechanisms that lead to the coherent evolution of the system. It
specifically revealed that in the dissipative coupling regime the coherent
dynamics result from an interplay of the detuning among the two coupled
emitters, ∆mn/2π, inducing population exchange between the super- and
subradiant states, and their dissipation, Γmn/2π, to the collective ground
state.

Obtaining understanding over our system, we aimed at preparing the
collective state on demand. For that, both emitters should be driven si-
multaneously, with a well-controlled relative driving phase θ. The first ap-
proach that was considered was to use a spatial light modulator (SLM) to
diffract a single beam into two. With that, we could drive each QD individ-
ually with a driving phase, θm,n, defined by the displacement of the diffrac-
tion pattern on the SLM screen. This method would have been robust to
phase drifts between the two beam spots, as they both originate from the
same laser and reach the sample following the same path. Yet, it proved
sub-optimal for our system, as the proximity of the adjacent pairs led to
the overlap of the two beam spots. Consequently, the resulting interference
posed challenges in controlling the relative driving phase.

Exploiting the opposite polarizations of the coupling dipoles, we used
the polarization of the single excitation beam to introduce the relative driv-
ing phase to the emitters. As the waveplates in the excitation path were not
mapped to the excitation power and driving phase, this first attempt led to
the population of |emgn⟩+ i |gmen⟩ where θ = −π/2. Instead, θ = 0 and π are
needed to populate the super- and subradiant states, respectively. This im-
plies that a full mapping of the excitation waveplates to the relative driving
phase and power is required to control the collective excitation.

Though, even with this control, the present excitation scheme would
prepare a product state (|em⟩ + |gm⟩)

⊗
(eiθ |en⟩ + |gn⟩), resulting to a maxi-

mum population of 50% in the super- and subradiant states. A proposal for
increased population of the subradiant state and improved fidelity of the
preparation has been suggested [27, 78] and considered for our system. Let
us elaborate a bit on that in the Outlook section below.

Finally, the coupled emitters were examined using second-order inten-
sity correlations g(2)(τ), under continuous driving. Unlike previous works
with QDs [51, 52, 54], we drove a single emitter of a pair, eliminating the
possibility of any collective feature emerging due to measurement-induced
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cooperativity. When the emitters are on resonance with each other, the pho-
ton coincidences revealed an anti-dip at zero time delay, g(2)(0) . This feature
arises from the decay of the doubly excited state, |emen⟩, to the superradi-
ant, |+⟩, and subsequently to the collective ground state, |gmgn⟩, along the
two-emitter Dicke ladder. The experimental anti-dip we observed reached a
maximum of g(2)(0) = 0.94, while simulations for ideal conditions exhibited
clear bunching at zero time delay, g(2)(0) > 1. We therefore note that the
maximum of the anti-dip is reduced due to imperfections and decoherences
of the system, similar to the coupling strength ratio Γ+/Γ−, and the driving
power that we used to perform the experiment. Modeling of the anti-dip
with a convolved function of a two-sided exponential with the instrument
response function (IRF) revealed a linewidth of Γadip/2π = 1.44± 0.16 GHz.
Comparing it to the superradiant linewidth extracted from the lifetime mea-
surements Γ+/2π = 1.33 GHz, we find the two to be in good agreement,
verifying the interpretation that the anti-dip emerges from the decay of the
superradiant state.

In addition, we observed broadening of the width of the single-emitter
dip when the QDs were tuned to resonance, a feature that was not present
in the previous works. For |τ | ≥ 0.4 ns then, g(2)(τ) could be modeled with a
standard RF dip of linewidth Γdip/2π = 0.31± 0.03 GHz. This approximates
the subradiant linewidth Γ−/2π = 0.22 GHz, implying that the broadening
of the dip at longer delay times stems from the decay of the longer-lived
subradiant state, |−⟩ to |gmgn⟩.

Preliminary analysis and simulations showed that, under this excitation
scheme where a single emitter is driven, the presence of the anti-dip and the
broadening of the dip can exclusively indicate dissipative coupling between
the QDs. However, further investigation revealed that, to certify the type of
coupling, photon coincidences from both ports of the PCW are required,
similar to the case of the lifetime measurements.

The sensitivity of these collective features to imperfections and decoher-
ences of the system was emphasized when g(2)(τ) measurements were re-
peated while driving the less noisy emitter of the pair. In this case, the anti-
dip was barely emerging in the photon coincidences from one of the ports
of the PCW. The absence of collective features is attributed to the spectral
diffusion of the non-driven noisy dipole, making it challenging for the two
to remain in resonance throughout the measurement.

Closing, our work marks the first demonstration of dipole-dipole
photon-mediated coupling between solid-state quantum dots separated by
multiple wavelengths, within a nanophotonic waveguide. Super- and sub-
radiant coherent dynamics of the coupled system were directly observed in
the lifetime measurements, and a proof-of-principle preparation of the col-
lective state was realized. We further probed the second-order intensity cor-
relations of the coupled system. Adding to previous investigations [54, 55],
we suggest that the emerging anti-dip at zero time delay can be an exclusive
signature of superradiance, when only a single emitter is driven. Our find-
ings constitute fundamental research, aiming to serve as the stepping stone
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towards multi-emitter applications in quantum technology on-chip.

6.2 Outlook
The understanding and control we obtained over the coupled system

of two quantum emitters are foundational steps towards applications in
quantum communication networks [32, 33] and photonic quantum com-
puting [26]. Scaling up to multiple QDs opens the door to applications
with non-linear optics [115], quantum memories with exponential improve-
ment in photon storage [34], the implementation of photon-photon quan-
tum gates [116], as well as the preparation of multi-photon states for en-
hanced quantum-metrology [71].

To advance towards these applications, there is considerable room for
improving the coupling conditions, exploring strategies for scaling up to
multiple emitters, and undertaking various steps to realize photonic cluster
states with our coupled QDs [26]. In this context, we discuss below a few
consideration that should be taken into account for our system.

6.2.1 Improving the coupling strength

As mentioned previously, the observed coupling strength defined by
Γ+/Γ− is restricted by different imperfections of the system. Specifically, the
uneven decay rates Γm,n of the emitters and arbitrary coupling phase ϕmn,
the imperfect β-factors, and decoherence from the solid-state environment,
such as spectral diffusion and pure dephasing, along with the waveguide
losses, contribute jointly to mitigating the effects of the coupling.

To address these imperfections, we can explore optimizations to our
methodology and system. The non-unity β-factors can be improved
with optimally-positioned QDs within the waveguide. This could be
achieved through the deterministic fabrication of nanostructures around
pre-localized QDs, as it has been demonstrated before [98, 117]. The spec-
tral diffusion, induced by charge noise from material impurities and free
charges in the p- and n-doped regions, could be reduced by employing
higher-quality materials and improving the quality of the p-i-n gate. To
tackle the fast source of decoherence, namely the pure dephasing due to
phonon noise from the environment, would require Purcell enhancement of
the spontaneous decay rate of the emitters and the use of stronger cooling
systems, operating at mK temperatures. Finally, the losses in the waveg-
uide which restrict the spatial range of the coupling, are measured to be 7
dB/mm and attributed to scattering losses due to the sidewall roughness
[85]. The currently proposed method to address this fabrication imperfec-
tion involves the re-flow of an electron-sensitive resist, that would smooth
out the sidewalls [118]. Another parameter that can impact the coupling
strength is the driving pulse duration. Specifically, calibrating the excitation
beam to obtain a long but weak drive over the emitters, is expected to im-
prove the coupling. We delve into the latter in more detail in Section 6.2.3
below.



98 Chapter 6. Conclusion and Outlook

6.2.2 Scaling-up to multiple coupled quantum dots

Up to now, when considering scaling up to multiple QDs, we have been
relying on their moderate density and the broadband nanostructures [97].
However, in the limited amount of PCWs that were tested for this thesis,
the number of well-coupled QDs within the same waveguide did not exceed
three. Consequently, to investigate protocols requiring many-body systems
[34, 116], deterministic positioning of nanostructures appears to be impera-
tive [98, 117].

The second challenge in scaling up our platform for multi-emitter cou-
pling, comes with the inhomogeneous broadening in the emission fre-
quency of the QDs, imposing the need for individual tuning. To tune more
emitters into resonance, a novel device allowing simultaneous and indepen-
dent control of different regions of the waveguide, has been under examina-
tion [104]. Figure 6.1 shows the present design of a nanostructure containing
individual electrodes for DC-Stark tuning of the different QDs, with a trench
etched across the PCW to electrically isolate the two sides. This will ensure
independent electrical control over the two parts of the nanostructure.

FIGURE 6.1: SEM image of the new generation trenched PCW. The trench
in the middle (white dashed line) electrically isolates the two sides of the
waveguide. The electrodes on each side (yellow and blue), color-coded
to the QDs, are used for independent electrical tuning of their emission
frequencies.

Finally, another parameter that can hinder the up-scaling of coupled
emitters is the disparate noise from charge carriers, that would be shifting
the emitters off resonance. This can be mitigated through active feedback to
the DC-voltage applied to the QDs [119].

6.2.3 Towards the generation of photonic cluster states from
two coupled quantum dots

As a final consideration for our coupled system of two QDs, we now
shift the focus on the steps towards achieving deterministic generation of
advanced photonic cluster states, for measurement-based quantum com-
puting protocols.
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To generate highly-entangled multi-photon states with our platform, we
need to realize spin-spin entanglement between different emitters. This
can be achieved by exploiting the waveguide-mediated dissipative coupling
[78, 120]. The reason we consider spins rather than neutral excitons is that
the former constitutes a more stable matter qubit, retaining its quantum co-
herence over much longer timescales, and can be as well coherently manip-
ulated [19]. However, before proceeding to introduce spins to our system,
the immediate step following our experimental work is to obtain control
over the generation of entanglement between the two QDs.

6.2.3.1 Generating dipole-dipole entanglement on demand

Recently, collective excitation to super- and subradiant states from two
ports on the sidewall of a waveguide was realized with superconducting
qubits [46]. To populate the collective states on demand with our system,
the current excitation scheme with the single beam should be further cali-
brated and optimized.

For the calibration, the driving power of the two emitters and relative
driving phase θ should be well controlled. Given the opposite polarization
and close proximity of the crossing dipoles, we propose to employ the col-
lective excitation scheme by a single beam discussed in Section 4.4. To this,
we now need to incorporate well-controlled polarization of the excitation
beam, for a well-defined relative driving phase θ. This can be implemented
by direct detailed mapping of the excitation quarter and half waveplates to
a relative driving power and phase θ between the two QDs1. The above
method has already yielded successful outcomes [109], where lifetime mea-
surements for a continuous scanning of θ between 0 and π, showed clear
transition from a fast decay of the superradiant state |+⟩, to a long-lived of
the subradiant |−⟩.

To extend the collective excitation to any pair of emitters with larger spa-
tial separation and with even parallel polarizations, the SLM becomes once
more appealing. By programming a pattern on the SLM, the shape, ampli-
tude and phase of the beam can be manipulated according to the needs of
the excitation.

As mentioned previously, even with a well-defined relative phase, the
excitation scheme used in Section 4.4 can maximally populate the addressed
super- or subradiant state by 50%, while the other half is shared between
|gmgn⟩ and |emen⟩. To prepare deterministically an entangled state with in-
creased population, the collective excitation scheme has to be modified. For
this purpose, we will exploit the waveguide-mediated dissipative coupling
between the two QDs [78, 120], which results into different decay times for
the super- and subradiant states. This difference essentially implies that it is
easier to pump in the subradiant state than out of it with a calibrated pulse
duration, which would lead to increased population in the subradiant state.

1Note that individual calibration for each emitter is required for every position of a
beam spot, as the local polarization of the PCW dictates the optimal excitation conditions.
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To maximize the selective population of the subradiant state, we need
to apply collective driving to the system, with a relative driving phase of
θ = π and a pulse duration in the order of few hundreds of ps for our QDs
(Ω ∼ Γ− ≪ Γ+)2. Experimentally, the pulse length can be controlled using
a CW laser and an electro-optic modulator (EOM) with a pulse generator.
With this dissipative generation of entanglement, a state fidelity of F|−⟩ =
⟨−| ρ |−⟩ ∼ 1− Γ−/Γ+ is possible [78]. From here, it becomes clear that for a
deterministic generation of entanglement (F|−⟩ > 0.5), the coupling strength
should be Γ+/Γ− > 2, a requirement that is well-satisfied by our current
system of QDs.

To characterize the entanglement, a protocol that was used before for dis-
tant atomic ensembles can be employed [121]. This requires a quantum state
tomography for the single excitation subspace3 to lower-bound the concur-
rence4, together with photon coincidence measurements to verify negligible
population in the doubly excited state.

6.2.3.2 Independent spin-spin tuning

The next step towards generating large-scale multi-photon states, in-
volves introducing spin to each of the two entangled QDs and establishing
spin-photon entanglement for each one. A single spin in a QD can be im-
plemented by adding a charge carrier in its potential well. This can be done
either by bringing in an electron to the conduction band, or removing one
from the valance band, leaving a hole behind. Experimentally this can be
done by applying a bias voltage across the p-i-n diode of the sample. This
might cause the energy levels of the conduction band to shift down, below
the fixed Fermi level Ef , allowing an electron to tunnel in the QD from the
back contact.

For spin-spin entanglement there are two requirements we need to sat-
isfy: (1) individual control over the optical transitions to tune the QDs to res-
onance and (2) independent spin control. For the first, the new generation of
trenched devices (Figure 6.1) for independent electrical tuning of the optical
transitions is under development. Considering the independent spin con-
trol, we can learn from the recently demonstrated generation of spin-photon
entanglement with our platform [122]. This requires both coherent spin con-
trol and optical cyclicity5 from the emitter. The spin control can be enabled
by an in-plane magnetic field (Voigt configuration) that will Zeeman-split
the spin-up and -down states, allowing for all-optical spin manipulation.
The required cyclicity in the optical transitions has been demonstrated to
be induced in Voigt configuration by the PCW [123]. Finally, as we want to

2The exact duration required depends on the coupled system and needs to be calibrated
for each pair individually.

3For the read-out of the subradiant state, an off-resonant, high power short pulse should
be applied on the system. This would cause an AC-Stark shift that would introduce a phase
and transfer the population to the superradiant state. From there the system would decay
fast and the emission would be finally detected.

4Concurrence C, is a qualitative measure of entanglement. If C > 0 the system is entan-
gled.

5High probability of decaying back to the initial spin state.
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implement independent spin control over the two emitters, a second optical
excitation path should be installed in the current optical setup.

Obtaining the above described toolbox would allow the generation of
spin-spin entanglement in our QD system. A potential protocol developed
for this purpose for ultracold atoms in nanoplasmonic lattices [27], uses the
collective excitation scheme discussed in Section 6.2.3.1. There the driving
to the subradiant state is combined with a mixing of the symmetric (triplet)
states, to ensure that the subradiant (singlet) is a unique steady state.

Achieving spin-spin entanglement with QDs would pave the way
for generating complex cluster states [26] as a universal resource for
measurement-based quantum computing on chip. The steps towards this
milestone are discussed almost philosophically above. There is no doubt
that it will take great effort and persistence to realize a large-scale multi-
photon entanglement source with our platform. From advancing the state-
of-the-art nanostructures and pushing the limits of our current experimen-
tal conditions, to refining the pulse driving sequences, there are numer-
ous challenges to undertake towards this goal. Though, often enough in
physics, challenge is all it takes to keep moving forward.
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A Power tuning

The resonant emission frequency of a QD is dependent on the power
used to excite it. In the figure A1 the transmission counts of QD2 are shown
as a function of voltage and excitation power. The frequency of the emission
appears to be shifting to larger values with increasing power. For this, a CW
laser was sent through the waveguide from Port 2 and the collected photons
from Port 1 were detected by an APD.
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FIGURE A1: Transmission measurement, tracing the power-tuning of QD2
as a function of voltage.
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B Decay dynamics with excitation through
higher-energy states

FIGURE B1: Decay dynamics with excitation through higher-energy states of QD3
for different detunings with QD2 around their resonance at 1.067T. (a) Experimen-
tal data of the time-resolved decay dynamics while driving QD3, for a complete
scan of detunings, ∆23, with collection from Port 1 and (b) Port 2. Each time-trace
is normalized to the sum of the counts in that trace. (c) and (d) Theoretical calcu-
lation of the experiment by the developed theory, using the parameters from Table
4.1. (e-h) Individual time-traces of the decay dynamics for different detunings ∆23.
We observe additional modulation on top of the decay for large ∆23 (orange), owed
to the exchange of population between the super- and subradiant states. The time-
traces close to the on-resonance condition, ∆23/2π = 0, consist of two components
corresponding to super- and subradiant emission. The solid lines are fits to the de-
cays using the parameters included in Table 4.1.
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FIGURE B2: The same experiment as in figure B1 realized for driving QD2 while
varying the detuning to QD1, around their resonance at 2.13 T.
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FIGURE B3: The same experiment as in figure B2 realized for driving QD1 while
varying the detuning to QD3, around their resonance at 3.33T.
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C Decay dynamics with resonant excitation

FIGURE C1: Decay dynamics with resonant excitation of QD3 for different detun-
ings with QD2 around their resonance at 1.067T. (a) Experimental data of the time-
resolved decay dynamics while driving QD3, for a complete scan of detunings, ∆23,
with collection from Port 1 and (b) Port 2. Each time-trace is normalized to the sum
of the counts in that trace. (c) and (d) Theoretical calculation of the experiment by
the developed theory, using the parameters from Table 4.1. (e-h) Individual time-
traces of the decay dynamics for different detunings ∆23. We observe additional
modulation on top of the decay for large ∆23 (orange), owed to the exchange of
population between the super- and subradiant states. The time-traces close to the
on-resonance condition, ∆23/2π = 0, consist of two components corresponding to
super- and subradiant emission. The solid lines are fits to the decays using the pa-
rameters included in Table 4.1.
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FIGURE C2: Decay dynamics with resonant excitation of both QD2 and QD3
around their resonance at 1.067T. (a) Experimental data of the time-resolved dy-
namics while driving QD2-QD3, for a complete scan of the detuning between them,
while collecting from Port 1. (b) The theoretical calculation of the experiment by the
developed theory. (c-d) Individual time-traces of the decay dynamics for different
detunings ∆23. The solid lines are fits to the decays using the parameters in table
4.1 and the extracted Rabi frequencies Ω2,3 and relative driving phase θ, as included
in the main text (see section 4.4).
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D Photon coincidences driving the less
noisy emitter

Repeating the same experiment by driving QD2 this time, and suppress-
ing QD3 with the excitation waveplates, the second order correlations re-
vealed only a single dip at all detunings (Figure D1(b)), while the reso-
nance fluorescence measurement (D1(a)) also did not show the prominent
decrease in counts at the crossing point, as in Figure 5.3(a).

FIGURE D1: Collection from Port 1. (a) Resonance fluorescence of the neu-
tral exciton of QD2, as a function of the detuning between the two crossing
dipoles QD2-QD3, while collecting from Port 1. The white dashed line
traces the expected spectral emission from QD3, whose excitation is pro-
hibited by the polarization of the laser. (b) Two-photon correlations g(2)(τ)
for three detunings, color-coded with the dot-dashed vertical lines in (a).

One hypothesis that could explain this outcome, is based on how the two
different dipoles are experiencing the semiconductor environment. From
Figure 3.5 it becomes apparent that the low frequency dipole of QD3 is more
“noisy" than the high frequency dipole of QD2. This could potentially be
explained by spectral diffusion. For long-scale measurements (> 1s) this
decoherence process can affect the result, as the resonance frequency of QD3
will be shifting in time around the original value, making it more difficult
to bring the two dipoles on resonance with each other. However, when
exciting QD3, the beam spot focused on top of the QD position, will dictate
the charge environment, keeping it more stable. This then should decrease
spectral diffusion, enabling us to have the crossing dipoles on resonance for
longer, and observe the effects of their coupling more pronounced than in
the opposite case.

Aiming to investigate further, the experiment was conducted again, us-
ing the other collection port (Port 2), for which a weak anti-dip feature was
present at zero-time delay (Figure D2(b)).
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FIGURE D2: Collection from Port 2. (a) Resonance fluorescence of the neu-
tral exciton of QD2, as a function of the detuning between the two crossing
dipoles QD2-QD3, while collecting from Port 1. The white dashed line
traces the expected spectral emission from QD3, whose excitation is pro-
hibited by the polarization of the laser. (b) Two-photon correlations g(2)(τ)
for three detunings, color-coded with the dot-dashed vertical lines in (a).
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E Preliminary characterization of the spa-
tial light modulator (SLM)

FIGURE E1: (a) Blazed grating pattern. By programming the pattern on the
SLM screen, the period (spacing between the subsequent blazes of the grat-
ing), sign (orientation), angle around z, gray level (amplitude of grating)
and phase (added by the relative position x0 of the grating pattern with
respect to the beam spot) can be controlled. (b) Intensity of the 0th and 1st
diffracted order, for period 13.5 and phase 0 (as defined in: M_SLM). The
beam spot continuously transitions from being only reflected on the SLM
(0th order) to be fully diffracted (1st order) for the maximum of the gray
level (250). Particularly interesting for the future work is the gray level
for which the two orders show equal intensity. (c) Intensity modulation of
the 1st order diffracted beam, by shifting the grating pattern on the SLM
screen, for period 13.5 and gray level 50.
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FIGURE E2: Optical setup on top of the breadboard (corresponds to Figure
2.5), with the SLM installed. The setup is adjusted to host two RF paths,
for the implementation of the entanglement protocol discussed in Section
6.2.3.1. After preparation to the subradiant state with good fidelity, by the
CTL+EOM path, the PICUS laser should apply a short, high-power, off-
resonant pulse to induce AC Stark shift and transfer the population to the
superradiant state for the readout.
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[115] D. CHANG, V. Vuletić, and M. Lukin. “Quantum nonlinear optics
— photon by photon”. Nature Photon 8 (13 2014), 685–694. DOI: 10.
1038/nphoton.2014.192 (cited on p. 97).

[116] B. SCHRINSKI and A. S. Sørensen. “Polariton interaction in one-
dimensional arrays of atoms coupled to waveguides”. Phys. Rev. Lett.
95 (13 2021), 133601. DOI: 10.48550/arXiv.2110.15878 (cited on pp. 97,
98).

https://doi.org/10.1103/PhysRevB.88.081303
https://doi.org/10.1103/PhysRevB.88.081303
https://doi.org/10.1103/PhysRevLett.95.133601
https://doi.org/10.1103/PhysRevLett.95.133601
https://doi.org/10.1103/PhysRevA.100.053843
https://doi.org/10.1103/PhysRevLett.95.133601
https://doi.org/10.1103/PhysRevLett.95.133601
https://link.aps.org/doi/10.1103/PhysRevLett.95.133601
https://link.aps.org/doi/10.1103/PhysRevLett.95.133601
https://doi.org/10.1038/177027a0
https://doi.org/10.1038/177027a0
https://doi.org/10.1126/science.aah6875
https://doi.org/10.1103/PhysRevLett.124.063603
https://doi.org/10.1103/PhysRevLett.131.033606
https://doi.org/10.1103/PhysRevLett.131.033606
https://doi.org/https://doi.org/10.1038/nmat1763
https://doi.org/https://doi.org/10.1038/nmat1763
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.48550/arXiv.2110.15878


126 Bibliography

[117] H. OLLIVIER et al. “Reproducibility of High-Performance Quan-
tum Dot Single-Photon Sources”. ACS Photonics 7 (4 2020), 133601.
DOI: 10.1021/acsphotonics.9b01805 (cited on pp. 97, 98).

[118] R. BENEVIDES, M. Ménard, G. S. Wiederhecker, and T. P. M. Ale-
gre. “Ar/Cl2 etching of GaAs optomechanical microdisks fabricated
with positive electroresist”. Opt. Mater. Express 10.1 (13 2020), 57–67.
DOI: 10.1364/OME.10.000057 (cited on p. 97).

[119] J. HANSOM, C. H. H. Schulte, C. Matthiesen, M. J. Stanley, and
M. Atatüre. “Frequency stabilization of the zero-phonon line of a
quantum dot via phonon-assisted active feedback”. Appl. Phys. Lett.s
105 (13 2014), 172107. DOI: 10.1063/1.49010457 (cited on p. 98).

[120] D. MARTÍN-CANO, A. González-Tudela, L. Martín-Moreno, F. J.
García-Vidal, C. Tejedor, and E. Moreno. “Dissipation-driven gen-
eration of two-qubit entanglement mediated by plasmonic waveg-
uides”. Phys. Rev. B 84 (23 2011), 235306. DOI: 10.1103/PhysRevB.84.
235306 (cited on p. 99).

[121] C. CHOU, H. de Riedmatten, D. Felinto, S. Polyakov, S. van Enk,
and H. Kimble. “Measurement-induced entanglement for excitation
stored in remote atomic ensembles”. Nature 438 (13 2005), 828–832.
DOI: 10.1038/nature04353 (cited on p. 100).

[122] M. H. APPEL, A. Tiranov, S. Pabst, M. L. Chan, C. Starup, Y.
Wang, L. Midolo, K. Tiurev, S. Scholz, A. D. Wieck, A. Ludwig,
A. S. Sørensen, and P. Lodahl. “Entangling a Hole Spin with a Time-
Bin Photon: A Waveguide Approach for Quantum Dot Sources of
Multiphoton Entanglement”. Phys. Rev. Lett. 128 (23 2022), 233602.
DOI: 10.1103/PhysRevLett.128.233602 (cited on p. 100).

[123] M. H. APPEL, A. Tiranov, A. Javadi, M. C. Löbl, Y. Wang, S.
Scholz, A. D. Wieck, A. Ludwig, R. J. Warburton, and P. Lodahl.
“Coherent Spin-Photon Interface with Waveguide Induced Cycling
Transitions”. Phys. Rev. Lett. 126 (1 2021), 013602. DOI: 10 . 1103 /
PhysRevLett.126.013602 (cited on p. 100).

https://doi.org/10.1021/acsphotonics.9b01805
https://doi.org/10.1364/OME.10.000057
https://doi.org/10.1063/1.49010457
https://doi.org/10.1103/PhysRevB.84.235306
https://doi.org/10.1103/PhysRevB.84.235306
https://doi.org/10.1038/nature04353
https://doi.org/10.1103/PhysRevLett.128.233602
https://doi.org/10.1103/PhysRevLett.126.013602
https://doi.org/10.1103/PhysRevLett.126.013602

	Abstract
	Sammenfatning
	Acknowledgments
	List of publications
	Multi-emitter coupling for scalable quantum-information processing
	Theory of collective dynamics
	Introduction to super- and subradiance
	The Dicke model
	Superradiance in a dense atomic ensemble
	Two-atom collective emission

	Dissipative and dispersive coupling regimes
	Collective dynamics of two emitters in a waveguide
	Summary and Connection

	Experimental setup and equipment
	Quantum dots in a photonic crystal waveguide
	The self-assembled quantum dot
	Optical excitation schemes
	The neutral exciton

	Light-matter interaction in a photonic crystal waveguide
	Spontaneous emission of a two-level system
	Photonic crystal waveguide

	Sample
	Sample growth
	Photonic chip fabrication


	Optical setup
	Excitation techniques
	Excitation lasers
	Filter boards
	Detectors
	Summary and Connection

	Optical Spectroscopy
	Identifying the emitters in resonant transmission
	Charge plateaus
	Magnetic field as the tuning knob
	Out-of-plane magnetic field on a neutral exciton
	Tuning pairs of quantum dots to resonance

	Resonant fluorescence
	Imaging the quantum dots
	Parameter summary
	Summary and Connection

	Collective dynamics of two coupled quantum dots
	Photon-mediated coupling between two optical emitters
	Observation of super- and subradiant emission
	Coherent evolution of the coupled system
	Proof-of-principle controlled preparation of the collective state
	Summary of the coupling parameters
	Summary and Connection

	Anti-dip in photon coincidences from coupled quantum dots
	Resonant fluorescence cross-correlation with coupled emitters
	Calibration and alignment of optical setup
	Resonance fluorescence spectra of coupled emitters
	Photon coincidences from single-emitter driving
	Interpretation of the photon coincidences
	Numerical simulations for various experimental conditions
	Driving the less noisy emitter

	Photon coincidences in resonant transmission
	Preliminary interpretation using numerical simulations

	Summary

	Conclusion and Outlook
	Summarizing and reflecting
	Outlook
	Improving the coupling strength
	Scaling-up to multiple coupled quantum dots
	Towards the generation of photonic cluster states from two coupled quantum dots
	Generating dipole-dipole entanglement on demand
	Independent spin-spin tuning



	Power tuning
	Decay dynamics with excitation through   higher-energy states
	Decay dynamics with resonant excitation
	Photon coincidences driving the less noisy emitter
	Preliminary characterization of the spatial light modulator (SLM)

