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"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the
carbon in our apple pies were made in the interiors of collapsing stars. We are
made of starstuff."

Carl Sagan, 1980

"Nature uses only the longest threads to weave her patterns, so that each small
piece of her fabric reveals the organization of the entire tapestry."

Richard P. Feynman
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Abstract

The Standard Model of particle physics describes the properties of the most

fundamental constituents of matter – elementary particles. This model has

been put to numerous consistency tests and all its major predictions have been

experimentally confirmed. Nevertheless it has been firmly established that

several observed phenomena do not find their explanation within the Standard

Model. Among these phenomena are: the origin of neutrino masses and of

neutrino oscillations; a mechanism of violation of matter-antimatter symmetry

in the early Universe; and the existence of dark matter. These phenomena

mean that the list of fundamental particles will extended one day beyond the

17 particles known today.

It is possible that new particles may have masses similar to those of known

elementary particles and very weak interaction strength (otherwise they would

have been discovered long ago). Dedicated experiments with high intensity

of interactions and sensitive detectors are required to discover these feebly
interacting particles. Such particles can also be copiously produced in cos-

mic environments where temperatures and matter densities are enormous as

compared to laboratory experiment. This thesis analyses cosmic bounds for

a particular class of such feebly interacting particles – sterile neutrinos (or

“heavy neutral leptons”).

In the first part of the thesis a new mechanism of sterile neutrino production in

the interiors of exploding supernovae is considered. This mechanism drastically

increases the efficiency of production. Surprisingly this does not lead to

stringent bounds on sterile neutrino parameters, given the scarcity of the

observational data and many “unknowns” about the details of supernovae

explosion.
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In the second part of the thesis, the interaction of sterile neutrinos with

primeval plasma is analysed. The presence of extra particle species in the

primordial plasma changes the dynamics of the Universe and in particular

affects the yield of primordial Helium-4 – second most abundant chemical

element in the Universe. The thesis discusses a novel effect that arises from

sterile neutrino interaction with primordial plasma. This effect significantly

changes the existing bounds on the properties of sterile neutrinos that stood

untouched for 20 years. Using the same machinery the influence of sterile

neutrinos on the global expansion of the Universe is analysed. The limits on

the lifetime of sterile neutrinos from the measurements of the anisotropies

of Cosmic Microwave Background are derived. It is also demonstrated that

while sterile neutrinos can reduce the observed tension between the Hubble

constant measurements from late-time and early-time probes, it cannot fully

alleviate this tension.

The final part of the thesis analyses how the parameter space, accessible to the

future intensity frontier experiments changes in view of our new results.
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Abstrakt

Standardmodellen for partikelfysik beskriver de mest egenskaber grundlæggende

bestanddele af stof - elementære partikler. Denne model er blevet sat til

adskillige konsistensforsøg, og alle dens vigtigste forudsigelser er blevet

bekræftet eksperimentelt. Ikke desto mindre er det fastslået, at flere ob-

serverede fænomener ikke finder deres forklaring inden for standardmodellen.

Blandt disse fænomener er: oprindelsen af neutrino-masser og af neutrino-

svingninger en mekanisme til krænkelse af materie-antimaterie-symmetri i

det tidlige univers; og eksistensen af mørkt stof. Disse fænomener betyder, at

listen over grundlæggende partikler udvides en dag ud over de 17 partikler,

der er kendt i dag.

Det er muligt, at nye partikler kan have masser svarende til kendte elementære

partikler og meget svag interaktionsstyrke (ellers ville de være blevet opdaget

for længe siden). Der kræves dedikerede eksperimenter med høj intensitet af

interaktioner og følsomme detektorer for at opdage disse svagt interagerende

partikler. Sådanne partikler kan også produceres rigeligt i kosmiske omgivelser,

hvor temperaturer og stofdensiteter er enorme sammenlignet med labora-

torieeksperimenter. Denne afhandling analyserer kosmiske grænser for en

bestemt klasse af sådanne svagt interagerende partikler - sterile neutrinoer

(eller “ tunge neutrale leptoner ”).

I den første del af afhandlingen overvejes en ny mekanisme til steril neutrino-

produktion i det indre af eksploderende supernovaer. Denne mekanisme

øger produktionseffektiviteten drastisk. Overraskende nok fører dette ikke

til strenge grænser for sterile neutrino-parametre i betragtning af knapheden

på observationsdataene og mange “ ukendte ” om detaljerne i eksplosion af

supernovaer.
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I anden del af afhandlingen analyseres interaktionen mellem sterile neutrinoer

med ural plasma. Tilstedeværelsen af ekstra partikelarter i urplasmaet ændrer

universets dynamik og påvirker især udbyttet af ur Helium-4 - det næstmest

forekommende kemiske element i universet. Specialet diskuterer en ny effekt,

der stammer fra steril neutrino-interaktion med urplasma. Denne effekt ændrer

markant de eksisterende grænser for egenskaberne ved sterile neutrinoer, der

stod uberørt i 20 år. Ved hjælp af det samme maskineri analyseres sterile

neutrinos indflydelse på den globale ekspansion af universet. Grænserne

for levetid for sterile neutrinoer fra målingerne af anisotropierne af kosmisk

mikrobølgebaggrund er afledt. Det er også demonstreret, at mens sterile

neutrinoer kan reducere den observerede spænding mellem Hubble-konstante

målinger fra sene tidlige og tidlige tidssonder, kan det ikke lindre denne

spænding fuldt ud.

Den sidste del af afhandlingen analyserer, hvordan parameterrummet, der er

tilgængeligt for fremtidige intensitetsgrænseeksperimenter, ændrer sig i lyset

af vores nye resultater.
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1Introduction

1.1 Need for new physics beyond the
Standard Model

The Standard Model has been enormously successful in providing a self-

consistent picture of elementary particle physics and interactions. It has

passed many consistency tests in earth-based collider experiments. However

the complete set of observables including cosmological and astrophysical ob-

servations still speaks of its incompleteness. Such inconsistencies between

the Standard Model (SM) and the observable data are usually referred to as

Beyond Standard Model (BSM). Such unexplained phenomena include: the
existence of dark matter; the origin of neutrino masses; matter-antimatter asym-
metry of the Universe; the origin of dark energy. Besides these phenomena,

there exist potential experimental evidence for new physics whose statistical

significance is insufficient at the time of writing to call them “BSM phenomena”

(e.g. anomalous magnetic moment of muon [10]). In addition to observa-

tional evidence, there are deep theoretical questions related to the origin and

structure of the SM, so called “fine-tuning problems”, including in particular

the strong CP problem; the difference between electroweak and Planck scales,

as well as our inability to consider gravity on equal field-theoretical footing

with other interactions, etc. Finally, SM possesses a number of unexpected and

unexplained relations between different parameters such as e.g. Koide formula

[188] or [81]. While not a problem per se it may be hinting at some common

origin of the seemingly random parameters of the SM.
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In this thesis we are concentrating on the first three observational problems

that are the most unambiguous hints that new particles and interactions should

exist.

1.1.1 Dark matter

The term dark matter (DM) [213] refers to a broad set of astrophysical and

cosmological observations, including [55, 173]:

• Rotational curves of galaxies [49] – radial distribution of velocities of

stars rotating around the galactic center can not be explained by the

observed (luminous) matter distribution in galaxy assuming classical

Newton gravity

• Bullet cluster observations (e.g. [171, 85, 72]) – a unique observation

of two colliding clusters of galaxies passing through each other. Hot gas

components of both clusters are emitting X-rays, making the gas visible.

Interactions between the gas components of two clusters cause the gas

distribution to be shifted from the centers of gravity of the corresponding

clusters. At the same time, according to the gravitational lensing maps,

the mass distribution follows that of the collisionless stars. This indicates

that most of the galaxy clusters’ mass comes from some collisionless

substance.

• Cosmic microwave background observations [15] indicate that while

photons and baryons were still a coupled substance, some unknown

structure was experiencing the Jeans instability, collapsing into primor-

dial overdensities. This substances is not coupled to photons/baryons

and therefore does not experience pressure. The cosmological numerical

simulations of large scale structure and of galaxy formation confirm that

such processes would occur very differently from what we observe now

if only baryonic matter1 was present.

All of these phenomena can be explained by postulating the presence of some

kind of “hidden” matter – something that is sufficiently massive and does not

1In cosmology by baryonic matter one means any forms of the usual matter: atoms, electrons,
ions
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interact with ordinary matter. No SM particles (not even neutrinos) can serve

as dark matter. Therefore a new particle – a dark matter candidate – has to be

postulated.2

For a particle to be a viable dark matter candidate, it should obey the following

properties:

1. Dark matter should be present in the Universe from the early times, when

the structure formation started and survive until nowadays, affecting the

evolution of the Universe and its structure throughout cosmic historis.

Hence, the life-time of dark matter particle has to be of the order or

longer than the age of the Universe τDM & tuniv ∼ 1010 y. Note, that there

might still be stable or (slowly) decaying DM particles.

2. According to the simulations of structure formation ([238, 189]) DM

particles have to be non-relativistic, when formation started. The struc-

tures are then formed in the bottom-up manner (the smallest structures

collapse first). This is one of the reasons why active neutrinos could

not constitute DM. For a specific DM generation mechanism this can

constrain the DM mass.

3. In the case of fermion dark matter, there is a robust bound on the

minimal mass of DM from the phase-space considerations [68]. The

Pauli exclusion principle does not allow fermions to occupy the same

state in the phase space, hence there is a limit on total number density

of DM particles [220].

With all those restrictions there is still a lot of space for different parameters

of hypotetical particles that could serve as a DM candidate.

2An alternative, non-particle, hypothesis could be modification of the laws of gravity and/or
of Newtonian dynamics (see e.g. [112, 84] for review). Such a modification, however, is
not able to account for all the observed phenomena especially taking into account necessity
to explain the Bullet cluster structures [84]. Hence we will stick with the particle dark
matter hypothesis.
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1.1.2 Neutrino masses and neutrino oscillations

Neutrino oscillations – transition of neutrinos of one flavour to another,νe ↔
νµ ↔ ντ – have been observed by many experiments, including Solar neutri-

nos [83], atmospheric neutrinos ([114]), reactor neutrinos detection [28, 22,

103] and neutrinos from accelerator experiments ([13, 9, 161]). Oscilaltion

phenomenon requires at least two of three neutrinos to have a mass (for a

review see [242]). The standard treatment of particle oscillation in quantum

mechanics tells that the flavour (charge) states (νe, νµ, ντ) not to have a def-

inite mass. While the states that do have one, need to be mixed from three

flavour states. A mixing pattern between different flavours is encoded into

a PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix [159, 177, 178]. The

only way to have neutrino mass term within the SM is to introduce a 5-dim

non-renormalizable operator (“Weinberg operator” [228]). This means that

SM becomes an effective field theory and the presence of higher-dimentional

operator is an indication of new physics (in analogy of Fermi theory of weak

interactions), possibly at high energies. This means that new particles are

required to make neutrinos massive.

1.1.3 Baryon asymemtry in the Universe

The Standard Model does not distinguish particles over antiparticles. Yet

in the universe we observe an asymmetry between matter and antimatter.

While historically first antiparticles were detected in cosmic rays [29], we

understand today that all antimatter that we observe (see e.g. [19] are

produced in cosmic ray interactions rather than being primordial). Thus,

we do not detect any primordial antimatter or antiparticle structures. Given

the standard cosmological history, this is possible only if there was a small

asymmetry between particles and antiparticles in the universe.

The quantitative measure of the asymmetry, defining how much particle num-

ber density exceeds the antiparticle number related to photons – baryon-to-

photon ration – has a very low value [14]

ηB ≡
nb − nb̄
nγ

≈ (6.05± 0.07)× 10−10 (1.1)
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which states, that at the earliest stages of Universe evolution, there was only 1

particle more, than anti-particle for each billion of them. It should be noted,

that this relation is applicable for the baryon matter and charged leptons,

which number density is tightened by the electro-neutrality of the Universe,

as those types of matter we can directly observe with large accuracy. But this

can not be applied for neutrinos, the cosmological neutrino background CνB

can in principle have sizeable asymmetry between neutrinos and antineutrinos

as for now it is unobservable due to extremely low energies of relic neutrinos.

This problem can not be solved within the SM [80] and any new physics is

required to satisfy three Sakharov conditions [195], to be a valid solution.

1.2 Three frontiers of exploration

The beyond-the-Standard-Model phenomena (as outlined above) are well

established and indicate that new particles (and maybe even new types of

interactions) should exist. At the same time, there are no clear indication as to

what kinds of particles/interactions can be responsible for resolution of these

BSM phenomena. Of course, there are so called “experimental anomalies”

(discrepancies/mismatches at 3− 4σ level between experiments or between

data and prediction)3 and each of them may become a new established signal

beyond-the-Standard model. But even if these or other experimental anomalies

will become well-established BSM phenomena, we will not be able to tell what

particles are behind them.

Broadly speaking, new particles have escaped our detections either because

they are too heavy (with masses higher than the energy reach of the LHC) or

because they interaction strength is smaller than that of weak interactions.

Such super-weakly (these days the name “feebly” gets used more and more,

see e.g. [17]) do not necessarily need to be heavy to stay undetected. The

situation is graphically depicted in Figure 1.1 — where a schematic space of

“mass vs. interaction” is shown. All known particles are then gathered in the

left upper corner of the parameter space, indicating that they are interacting

at least weakly. GeV, MeV or even keV-scale particles, interacting with the SM

sector with a sufficiently suppressed interaction strength, could have escaped

3At the time of writing one can mention Hubble tension in cosmology [93]; anomalous
magnetic moment of muon [10]; violation of lepton universality in B-meson decays [1].
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our detectors unnoticed (or has never been produced in sufficient quantities

to be distinguished from SM backgrounds). They can occupy region below the

diagonal line. In spite of being feebly interacting they still can be the ones,

responsible for resolution of the BSM phenomena.

Different kinds of experiments are required to search for particles of different

masses and interaction strengthes. The existing approaches can roughly be

combined into several groups.

1. Energy frontier – increasing the energy of particle collisions beyond

that of the Large Hadron Collider. New heavy particles can be discovered
in this way. Potential future experiments include FCC-hh [3], CLIC

[82], CEPC [100] and ILC [43], see the European Strategy for Particle

physics report [107] for discussion of their comparative science reach,

capabilities, etc.

2. Intensity frontier – increasing intensity of collisions and/or creating

detectors sensitive to rare events. This can be done both within the

scopes of existing experiments (as e.g. during the high-luminosity phase

of the LHC [199] or NA62 [160]), with the new dedicated experiments

(see the list in e.g. [47, 107]).

3. Cosmic frontier is different from the previous two approaches, because

in this case the “experiments” themselves are not human-made and there-

fore the “experimental environments” are not controllable. On the other

hand, cosmic frontier enables for us physical conditions unimaginable on

Earth and therefore their use can be complementary to the ground-based

experiments.

This thesis explores limits on hypothetical feebly interacting particles coming

from cosmic frontier. The obtained results allow to constrain particle physics

models and even have consequences for the future particle physics experiments

at intensity frontier. This demonstrates the complementarity of three frontiers

and the power of the cosmic frontier exploration.
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Figure 1.1: Known and unknown particles. All SM particles have masses below
200 GeV and interact at least via weak interaction. New particles may
either be (much) heavier – moving rightwards on the above figure – or
may have weaker-than-weak interaction strength with the SM particles
– moving downwards in Figure above. Image credit: Richard Jacobsson
and Daniel Dominguez. CERN Courier. February 2016.

Figure 1.2: To enable discoveries of new particles, all of the three frontiers should
be pushed forward. Energy frontier is advanced by increasing the energy
of colliding particles, beyond that attained at the Large Hadron Collider
in CERN. Intensity Frontier is pushed by experiments with high intensity
particle beams and sensitive large detectors, tuned for searching for rare
events. The high intensity beams do not necessarily need to have high
energy of particles, as many viable BSM models predict new particles
below GeV scale. Finally, the Cosmic Frontier uses cosmic environments as
“poor man’s accelerators”. Energies, intensities, temperatures, densities,
etc. reachable in these environments are often superior to those in
the human-made laboratories. Unfortunately, cosmic “experiments” are
beyond our control and we have to analyse the data, trying to marginalize
over vast variety of astrophysical and cosmological “unknowns”. Figure
from [132] is taken for illustrative purposes, variety of options for each
frontier are far greater than depicted, see e.g. [107].

1.2 Three frontiers of exploration 9





2Heavy neutral leptons

2.1 General properties

One of the promising extension of the Standard Model, capable of incorpo-

rating neutrino oscillations is the model with several right-handed neutral

particles, that are singlets with respect to the SM gauge group SUc(3)×SU(2)×
UY (1) [163, 237, 119, 165, 198, 197]. These particles play a role of right-

helicity partners of active (νe, ντ , νµ) neutrinos. Owing to the absence of SM

gauge charges they are called sterile neutrinos. The simplest Lagrangian of the

theory (called type I seesaw model) has the form1 (for reviews see e.g. [71, 25,

242]):

LνMSM = LSM + iN̄I∂µγ
µNI −

(
MI

2 N̄ c
INI + FαI l̄αNIΦ̃ + h.c.

)
(2.1)

Where LSM is the Standart model Lagrangian, lα - left-handed lepton doublets

(α enumerates lepton generations so runs through values e, µ, τ), MI - three

Majorana masses, Φ̃i = εijΦj – the conjugated Higgs doublet that allows

to “distinguish” neutrino from the charged lepton component in lα, NI are

several right-chiral fermion fields, (I = 1, 2, . . . ,N ). The matrix FαI is the

3 × N matrix of (in general complex) Yukawa couplings. The symbol N c
I

means charge-conjugation of the spinor NI and thus the term N̄ c
INI denotes

the Majorana mass term that can be added to the theory because spinors NI

carry no charges. The sum over indexes I, α is assumed.

1Here and in following we will use Heaviside system, where ~ = c = k = 1.
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Sterile neutrinos NI interact with the SM sector only through mixing with

active neutrinos as they are not coupled to any gauge boson. Mixing with

active neutrinos is governed by Yukawa interaction terms FαI l̄αNIΦ̃.

The Lagrangian (2.1) has 7N − 3 independent real parameters, N Majorana

masses MI and 6N − 3 dimentionless elements of Yukawa matrix FαI (angles

and phases) – parameters, that define mixing properties.

After the electroweak SU(2)× U(1)→ U(1) symmetry breaking, the Yukawa

interaction terms turn into the ordinary Dirac mass:

FαI l̄αNIΦ̃→
FαIv√

2
ν̄αNI (2.2)

where v = 246 GeV is the vacuum expectation of the Higgs field. We can

therefore introduce the matrix of Dirac masses MD = FαI · v√
2 . the Yukawa

couplings can be chosen smaller compared to the Majorana masses MI .

The ratio of the Dirac to Majorana masses defines the mixing strength between

sterile and active neutrinos, called mixing angle

ΘαI ≡
v2|FαI |2

M2
I

, θ2
I ≡

∑
α=e,µ,τ

v2|FαI |2

M2
I

(2.3)

For |FαIv| � |MI | one finds after the diagonalization of the mass matrix in

Eq. (2.1), 3 light mass eigenstates νi with masses m1,m2,m3 and N heavy

mass eigenstates (that we will call by the same name, NI) with masses ≈
M1, . . . ,MN . As a consequence, the flavor eigenstates (SM or active neutrinos)

να can be expressed as a linear combination of the 3 +N mass eigenstates of

the Lagrangian (2.1):

να =
3∑
i=1

V PMNS
αi νi +

N∑
I=1

ΘαIN
c
I , (2.4)

where V PMNS is the PMNS matrix [56, 111] and ΘαI are similar mixing angles
between SM and sterile neutrinos.

The active neutrino mass matrix is given then by the famous seesaw formulat:

(mν)α β = −
N∑
I=1

(MD)αI
1
MI

(MT
D)Iβ (2.5)
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and the light masses m1 . . .m3 are its eigenstates.

Similarly, the heavy mass eigenstates, having Majorana masses approximately

equal to MI contain small admixture of SM neutrinos να (proportional to the

same ΘαI).2 and therefore they inherit “neutrino-like” interactions (analogs of

charged and neutral currents of weak interactions), suppressed by ΘαI � 1.

2.1.1 Naming conventions

New particles NI have many names. Owing to the way they were introduced

they are called right handed neutrinos. Owing to the absence of gauge charges

they are called sterile neutrinos. Due to the fact that they possess neutrino-

like interactions they sometimes are called heavy (Majorana) neutrinos or

heavy neutral leptons (HNLs). Strictly speaking the name HNL or “heavy

Majorana neutrino” should be reserved for the mass eigenstate, while the name

“sterile neutrino” should be used for the flavour states, but this distinction

is rarely observed and the naming conventions rather depend on the field:

cosmologists and neutrino physicists usually speak about “sterile neutrino”s,

while particle physicists refer to “heavy neutral leptons”. We will use both

names interchangeably, having this distinctions in mind.

2.2 How sterile neutrinos can alleviate
BSM problems

Neutrino experiments have measured two neutrino mass splittings [111],

meaning that at least two of the 3 neutrino masses are non-zero. For N ≥ 2
the Lagrangian (2.1) has more free parameters that can be fixed by neutrino

oscillation experiments. Therefore, it can comfortably explain neutrino masses

and oscillations and some of the parameters remain unfixed. In particular,

masses MI are not constrained by the neutrino data, owing to the seesaw

relation (2.5) where we can always rescale MD → zMD simultaneously with

MI → z2MI without changing the matrix mα β. The number of free parameters

2With some abuse of notation we call both sterile (flavour) eigenstates and heavy mass
eigenstates NI . This is justified by the fact that the two states coincide (up to O(ΘαI)
corrections.
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for N = 2 is equal to 4 (2 HNL Majorana masses, 1 CP phase and 1 ratio

of Yukawa terms). The number of free parameters for N = 3 is equal to

9 and includes apart from 3 HNL Majorana masses some ratios of Yukawa

couplings, owing for example to the symmetry of the seesaw relation (2.5):

Fα I → Fα J(MI/MJ)1/2 for I 6= J .

The HNL masses can be fixed from purely “pragmatic” considerations – each

mass range demands its own search strategy [see e.g. 209, 39, 25]. Thus

for each mass range one can analyse available experiments and determine

whether seesaw predictions can be tested.

Although seesaw mechanism does not impose the limits on the mass directly,

the Majorana mass can be constrained by extra theoretical considerations. As

HNLs interact with the Higgs boson, the corresponding quantum corrections

to the Higgs mass from HNLs running in the loops, together with the seesaw

formula leads to the upper limit MI ∼ 107 GeV [224]

It is much more attractive, however, to ask whether HNls can solve more than

one existing BSM problem. It is interesting to consider this probability not only

from the point of view of our attempt to keep a model of elementary particle

physics as simple as possible, but also because it imposes some additional

restrictions on the parameters of new particles. We are focused on the three of

the above-mentioned BSM – neutrino oscillations, baryon asymmetry of the

Universe, and dark matter. Each of them can be either solved or alleviated

with the help of HNLs.

• Neutrino oscillations. As already mentioned, neutrino oscillation data

requires N ≥ 2 HNLs. For a fixed Majorana mass, the value of the

Yukawa coupling can be estimated to be

|F |2 ≈

√
∆m2

atmMI

v2 ∼ 2× 10−15 MI

GeV (2.6)

For HNLs beyond the electroweak scale if means |F |2 . 10−13. The

estimate (2.6) would hold for N = 1. In case of N > 1 it serves as the

lower bound on Yukawas of sterile neutrinos. Indeed, a pair of HNLs can

be combined into a quasi-Dirac fermion with approximately conserved

generalized lepton number [201, 143]. In the limit of degenerate in mass

HNL pair, neutrino masses are exactly zero even for Yukawa couplings
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O(1). The situation becomes more complicated for N = 3 [125] or if

one takes into account fine-tuning between various parameters [234,

164, 73, 123, 201, 143, 4, 190, 118, 102].

• Dark matter. The idea that sterile neutrino can serve as viable dark

matter candidate goes back to 1990s [94, 204], see [61] for review.

Sterile neutrinos in the seesaw model are decaying dark matter candidates
[98, 8]. There are two main decay channels of sterile neutrino:

N → γ + νi, N → νi + νj + ν̄j (2.7)

with decay width [71, 101]:

ΓN→3ν = G2
FM

2
I

96π3 θ2 = 1
4.7× 1010sec

(
MI

50 keV

)5
θ2 (2.8)

and subdominant (loop mediated) radiative decay

ΓN→γν = 9αG2
FM

2
I

256π4 θ2 = 1
1.45× 1013sec

(
MI

50 keV

)5
θ2 (2.9)

where theta2 = ∑
α θ

2
α and θα is given by (2.3). While the dark matter

particles should necessarily live longer than the lifetime of the Universe,

which translates into the bound

θ2 < 1.1× 10−7
(

50 keV
MI

)5

(2.10)

The main constrain comes, however, from the radiative decay chan-

nel (2.9), see [61] for review.

The production of sterile neutrinos in the early universe [98, 7, 37, 36,

150, 121] can proceed in different regimes at temperatures T & 10− 100
MeV, depending on the presence or absence of lepton asymmetry in

the Universe. Their abundance will be presented as either thermal or

non-thermal relic, decoupled at high temperatures and evolving as free

particles since then.

• Baryon asymmetry of the Universe. To generate the baryon asymmetry,

several Sakharov conditions [195] must be met – (i) Baryon number

should be violated, (ii) C-symmetry and CP-symmetry should be violated,
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and (iii) corresponding interactions should be out of thermal equilibrium.

In the SM there is no baryon-number violating processes at temperature

below the electroweak scale TEW ∼ 102 GeV. But for higher temperature,

there exist sphaleron processes [149] that lead to non-conservation of

total baryon plus lepton numbers B+L 6= const, although the difference

is conserved B − L = const. Two other conditions are not satisfied in

the Standard Model [200] for the experimentally observed value of the

Higgs boson.

The presence of HNLs changes the situation qualitatively, leading to lep-
togenesis [115]. In leptogenesis scenarios lepton number is violated and

sphalerons transfer it to baryon number. The violation of the lepton num-

ber in the early Universe can occur due to Majorana nature of HNLs [91]

(which is operational only for sufficiently large HNL masses [90]). For

the lower (GeV or even MeV scales HNL masses) CP-violating HNL oscilla-

tions as the source of lepton number violation [24, 35, 38], for the recent

status see [105, 144]. To generate the observable baryon asymmetry two

HNLs should be sufficiently degenerate in mass M2,M3 � |M2 −M3|
[105, 144].

2.3 Neutrino minimal Standard Model

Among many parameter choices of seesaw Lagrangian there is a special one

where parameters of the particles are chosen in such a way as to explain

all three BSM problems. The model with this choice of parameters received

the name νMSM (Neutrino Minimal Standard Model). Namely, it turns out

that the same two HNLs can explain neutrino oscillation and generate matter-

antimatter asymmetry of the Universe. The third HNL then plays the role of

dark matter particle, whose production depends on the properties of other two

particles.

Below we discuss in more details its structure and potential observational

constraints on its properties.

16 Chapter 2 Heavy neutral leptons



Matrix FαI in (2.1) can be parametrized as [38, 35]

F = K̃LfdK̃
†
R, K̃L = KLPα, K̃R = KRPβ (2.11)

where we separate 3 diagonal Yukawa couplings

fd = diag(f1, f2, f3), (2.12)

Majorana phases:

Pα/β = diag(eiα1/β1 , eiα2/β2 , 1) (2.13)

and the mixing matrix

KL/R =


1 0 0
0 c23

L/R s23
L/R

0 −s23
L/R c23

L/R



c13
L/R 0 s13

L/R

0 1 0
−s13

L/R 0 c13
L/R



c12
L/R s12

L/R 0
−s12

L/R c12
L/R 0

0 0 1

 (2.14)

where cijL/R, s
ij
L/R stands for cos(θijL/R), sin(θijL/R) The typical pick of masses are

chosen in that way, so the lightest of them is that M1 ∼ keV, and it will be

the main candidate to play the role of dark matter if the mixing angle (=

interaction strength) is small so has large life-time. Two others are much

heavier - with masses M2,3 ∼ 100 MeV or even ∼ few GeV . They are almost

degenerate, |M2 −M3| �M2. Those two heavy sterile neutrinos are chosen in

that way, so they can describe process of neutrino oscillations and to provide

observed baryon asymmetry of the Universe. This would be the mass ranges

we focus in our study.

2.3.1 Current and expected constraints on the
νMSM parameters

There are three main sources of constraint (current and planned) on the

HNL parameters – earth-based experiments, astrophysical and cosmological

constraints. Let us focus first on HNLs with masses M2,M3 & 50 MeV. Two

main types of earth-based experiments are missing energy experiments searching

for invisible decay channel of relatively long living mesons π/K and displaced
vertices experiments searching for appearance of SM particles as a result of

previously produced HNL decay. The first type of experiments can constrain

HNLs with mass smaller, than K-meson mN < mK and give a constraint in
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terms of pure flavour mixing Ue or Uµ (Uτ remains undetectable, as tau-lepton

is too massive to be produced in decays of such mesons mK � mτ). Existing

experiments: PIENU [18], TRIUMPH [74] (π → e), KEK [236], NA62 [87,

127] (K → e/µ), E949 [34] (K → µ), while the second type of experiments is

sensitive for also combinations of mixings (as it includes production and decay

of HNL than can proceed through different mixing channels) but they are less

restrictive. Corresponding experiments are PS-191 [54, 53], CHARM [52],

NuTeV [221] as well as DELPHI [12]. The combined existing experimental

bounds arefor both U2
e and U2

µ mixings are presented on Fig. 2.1.
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Figure 2.1: Accelerator bounds for mixing cases of U2
e (left panel) and U2

µ (right
panel) for the HNL mass below 5 GeV. For comparison, estimated sensi-
tivity of DUNE experiment [86] is given with dashed line. Figure taken
from [60]

We will discuss the constraints from BBN and abundances of the light elements

later on in corresponding Chapter. This is an important source of cosmological

constraints ( [193, 99, 194]) on parameters of HNLs as accuracy of the

measurements of light element abundances serves as one of the pillars of

modern cosmology.

Compound constrained region of parameter space from BBN, baryogenesis,

existing experiments and expected parameter space for future SHiP experi-

ment [21] has been analysed in [60] for the case of two heavy neutral leptons

providing a conservative coverage of parameter space that is either already

or will be constrained ( Fig. 2.2) for the scenarios of two hierarchies - normal

and inverted.

Constraints for the keV-mass sterile neutrinos may come from different sources.

Some of them may be relaxed, if we consider additional extensions to the SM,

besides the HNLs. As in that case, sterile neutrinos do not have to be 100
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Figure 2.2: Parameter space of the models with two HNLs that is constrained from ex-
isting experiments data and cosmological arguments such as constraints
from BBN and baryogenesis requirements together with prospective re-
sults from SHiP experiment. Green area corresponds to points in parame-
ter space, that is fully consistent with all of mentioned bounds, hence not
affecting abundances of light elements at significant level, can generate
correct baryon asymmetry and can be responsible for neutrino oscillation
data for either normal (NI) or inverted (IH) hierarchy.

percent of the density of dark matter. The most robust lower bound for the DM
sterile neutrinos comes from the phase-space limits. Since they are fermions and

due to Pauli principle, two of them can not occupy the same phase-space state,

there is a lower limit on their mass - Tremaine-Gunn bound [220]. Depending

on the production mechanism, velocity distribution and their dynamics, this

bound may vary, but in general it allows neutrinos with masses MI & 1 keV

([68]).

Another source is the X-Ray constraints. As we mentioned, sterile neutrinos is

an example of decaying DM. 2-body decay into neutrino and photon potentially

lead to a narrow line in a spectra, observed from object with large density of

DM. The initial energy of the photon Eγ = MI/2 would give a correction to

spectra of such objects. X-ray searches aim to find a narrow peak in telescope

data. Searches proceeds in spectra of central region of dwarph spheroidal

galaxies (Ursa Minos, Draco) and Andromeda galaxy. The main searches were

performed, using data of XMM-NEWTON [63, 65, 64, 227], INTERGAL [62,

239], Chandra [70, 6, 187], Suzaku [156]. There are other sources of indirect

observational constraint like from Lyman-α or from structure formation. Be-

sides such observations, there are direct searches of Dark matter or double

beta-decays which can be also used for constraining the parameters of sterile

neutrinos – XENON100 [32], XENON1T [31], DARWIN [2], KATRIN [230],

see [79]. The bounds are presented at Fig.??. Besides those bounds, there

exist presumptive bounds on the keV mass sterile neutrinos from study of their
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effect on the supernovae explosion. But such bounds are not strict yet, so we

do not present them at above plots. We will discuss this question in more

details in Sec. 3
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Figure 2.3: Plots, representing existing and expected constraints on the parameters
of keV-mass sterile neutrino from different sources - experimental direct
detection top panel or DM-based constraints bottom panel.Plots taken
from [61]
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3Supernovae constraints on
sterile netruino parameters

Although neutrinos play an important role in a huge variety of astrophysical

phenomena, including the evolution of all stars at almost every stage of their

life, among all of them, neutrinos are probably the most prominent in super-

nova explosions - one of the brightest and the most energetic phenomenon we

can observe. Supernovae explosion is a final stage of a massive star when it

runs out of fuel, that can support nuclear reaction in its core. The gravitational

force becomes stronger than the one from the pressure of the plasma and the

outer layers of the star begin to fall on its core. Such an increase of gravi-

tational binding energy is followed by a significant jump of the temperature

and the density of the star media up to orders of magnitude, reaching nuclear

density and MeV-temperatures in the core. At a certain moment, the fall of

the layers stops, and the shock wave inside the star, bouncing from the central

core, begins to rapidly propagate in the opposite direction. This leads to a

supernova explosion, during which neutrinos are believed to play an extremely

important role in energy transition inside the star. This process is followed by

a drastic increase of brightness of the star and intense emission of both photon

and neutrino radiation, with great superiority of the latter during the short

time. Such conditions are close to the ones, that can be present in the early

Universe and they are perfect for the study of the potential effect of novel

particles, especially HNLs as they are mixed exactly with neutrinos.

3.1 Observational data

Even though supernova explosions have been observed for a long time, almost

all of them corresponded to very distant events. Because of this, only the

emission of photons could be effectively observed while detection of the

neutrino flux was impossible. The only one close event was the observation of

SN 1987a, which exploded in the Large Magellanic Cloud - a dwarf satellite
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Figure 3.1: Neutrino detection events corresponding to SN1987a explosion. Data
from three experiments (IMB, Kamiokande II, and Baksan) is aligned in
such a way that the first event on each detector corresponds to t = 0. No
synchronization in detectors clocks does not allow to accurately arrange
in time events from different detectors, but only within one experiment,
hence the full data set may be shifted. The horizontal line corresponds to
the energy threshold in the Kamiokande II experiment analysis. Figure
taken from [58]

galaxy of the Milky Way at a distance of around 50 kPc away. Three detectors

have reported simultaneous detection of a series of events corresponding to a

neutrino flux from explosion of supernovae - IMB [212], Kamiokande II [133]

and Baksan scintillator telescope [26]. Time-aligned events from those three

detectors are shown at 3.1. Besides those three, there was another detection

of few neutrino events on the Mont Blanc neutrino observatory [16] which

preceded the other three experiments observations by about 4-5 hours. This

fact and that Mont Blanc was designed to capture neutrinos from closer (∼ 10
kPc) core-collapse SN events, prevents these results to be associated with the

SN1987A and they are commonly treated just as a background fluctuation.

The observed neutrino flux is in total given as a sequence of ∼ 20 events of ν̄e
detection with energy Eν ∼ 10 MeV. The number of events is not enough to

reproduce the emission spectrum with details like exact shape, but it still tells

about several features:

• The duration of the emission can not be longer, than ∆t dur h 10 s, as it

follows from Kamiokande and Baksan results. Although on these results

three last events are separated, they do not belong to other potential

sources with high confidence. At the same time, not all IMB events are

completely trustful as the two last ones are too close to the experiment
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threshold. Hence, although the total duration is quite established, there

is a possibility, that the emission was not continuous, but had a gap

between events at t ∼ 1− 2 sec after first detection and events at t ∼ 10
s.

• The energy of neutrinos were at the level of Eν̄e . 40 MeV giving the

expected temperature of the area of emission T ∼ 10 MeV.

• Bayesian analysis of the observed events in an assumption of different

shapes of the spectrum, estimates the total energy output in form of

electron anti-neutrinos as Eν̄e tot ∼ 0.5 · 1053 erg. Commonly assumed

flacour equipartition in neutrino emission (same energy release in each

of neutrino/anti-neutrino flavors) predicts total energy release at the

level of E tot ∼ 3 · 1053 erg. [157]

3.2 SN explosion model

A supernova explosion is an incredibly complex physical system that requires a

huge amount of computation to study and simulate. Correspondent research is

carried out by many different groups ([136, 78, 166, 138, 223, 75, 48, 58, 45,

216]) which typically includes different 1-D, 2-D and 3-D numeric simulations

of the explosion, which requires solving of a complicated MHD system of

equations together with neutrino transport equations. Commonly accepted

model of core-collapse supernovae and corresponding neutrino emission can

be described in the following steps [137]:

• Onset of Core Collapse - Contraction of the stellar core under increasing

pressure leads to an increase of temperature inside. Photons became

hot enough to start disintegration of nuclei of the iron group leading to

plasma of free nucleons.

• Trapped neutrinos - with the increase of matter density above ρ ∼
1011 g cm−3, neutrino mean free path becomes smaller, than the size of

the stellar core. It causes them to become trapped inside the core. Their

interaction with nucleons together with electron capture by nucleons

produce a large population of neutrinos inside the core.
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• Core bounce matter density inside the core continue to increase, reach-

ing the nuclear values ρ ∼ 1014 g cm−3. From this point on, the nuclear

forces resist the subsequent contraction as they significantly increase the

incompressibility of the core. The external layers of the star, previously

falling on the core, now bounce off it with generating a shock wave

propagating outwards.

• ν̄e burst Electrons, previously present in star medium and trapped in the

core are intensively captured and converted into ν̄e

p+ e− → n+ νe (3.1)

. It generates a population of neutrinos higher than a thermal equilibrium

population (for zero lepton asymmetry), as trapped electrons correspond

to a large lepton number captured inside the core. Those neutrinos, since

also trapped could not leave the core fast until shock leads to sufficiently

low densities, such that neutrinos can diffuse through the star media.

At this moment, a large fraction of electron anti-neutrinos finds their

way out, leading to the short-time burst emission of ν̄e and considerable

loss of electron lepton number inside the core media. Pair production

of neutrinos in a hot plasma leads to re-population of neutrinos of all

flavors.

• Shock stalling and revival During the propagation through the stellar

media, shock loses its energy in the dissociation of heavy nuclei. It is

enough to stall the propagation and for the successful explosion, energy

transition to the shockwave is required. Neutrinos could be a good agent

for this, transferring the energy via processes of neutrino/anti-neutrino

capture on nucleons

νe + n→ p+ e−, ν̄e + p→ n+ e+ (3.2)

During the time, needed for shock revival, the stellar matter continues

to collapse on the core, increasing its temperature and further emission

of neutrinos.

• Proto-neutron star cooling Already after the initial ν̄e burst, neutrino

emission from the SN started, actively cooling the SN media during the
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Figure 3.2: Neutrino emission rates as calculated in 20 M� star SN explosion [216,
137]. Three panels of the plot from left to right corresponds to three
subsequent phases of neutrino emission - ν̄e burst, accretion and Kelvin-
Helmholtz cooling. Approximately half of the total energy is emitted
during the first second of explosion in burst and accretion phases.

accretion and subsequent Kelvin-helmholtz cooling phase when the star

emits remaining gravitational binding energy. Unlike the ν̄e burst, during

this phase neutrinos of all flavours are emitted with the approximately

same rate. A simple estimate, using the diffusion approach for neutrinos

propagation gives the timescale of the remaining cooling [77]

τE, loss ∼
3R ns2

π2cλmfp

E th0

2E0
ν

∼ 10 s (3.3)

where R ns ≈ 10 km - the radius of the remaining neutron star, λmfp -

neutrino mean free path

λmfp = 1
nn〈σv〉ν

∼ 10 cm
(

E

100 MeV

)−2 ( M ns

1.5M�

)−1 (
R ns

10 km

)3
(3.4)

and E th0
2E0

ν
- ratio of thermal energies of neutrino and nucleons.

Schematic representation of the explosion phases are show on Fig. 3.3 and

example of neutrino emission luminocity dependence on time is shown on

Fig. 3.2.

Since neutrinos diffuse through the supernovae medium before being emitted,

they are not freely propagating from the very beginning of their production.

Rather than that, at some moment they become free due to a drop of proto-

neutron density - the radius of neutrino-sphere. This radius can be different
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Figure 3.3: Schematic diagrams of the SN pre- and during the collapse evolution.
Each diagram correspond to one of six described phases from top left
to bottom right. Here parameters R Fe, RS , Rν , Rg, R ns correspond to
radii of : iron core, shock, neutrinosphere, gain (separation between
heating and cooling from neutrinos) and proto-neutron star respectively.
MCh ≈ 1.4M� is a Chandrasekhar mass, Mhc - mass of the inner core,
ρc - is the density in the center and ρ0 ≈ 3 · 1014 g cm−3 - characteristic
nuclear density Figure taken from the [137]

for neutrinos of different energies, hence the resulting spectra of emitted

neutrinos will not be perfectly thermal but rather "pinched" [141, 142]:

fν(E) = (1 + α)3+α

Γ(3 + α)

(
E

〈E〉

)α
exp

(
−(1 + α) E

〈E〉

)
(3.5)
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where α - pinching parameter, describing the discrepancy between this spectra

and typical thermal distribution and can vary depending on the model and

flavor in the range (α h 2-11) and 〈E〉 - average energy of neutrinos.

The total energy, released in SN explosion would be given by the difference

of gravitational binding energy of progenitor and remnant. The absolute

value of this energy for the progenitor would be much smaller than of the

remnant E bind � 1053 erg, since the remnant is a much more compact object,

making it completely dependent on the latter. In general, there are two

options for SN remnants - neutron star and black hole. While in the first case

this value can be calculated for different neutron star EoS [207] (leading to

different density profiles) or at least estimated from the simple model of a

constant density sphere, which is a reasonable approximation, in the case

of a black hole there is no definite binding energy. Hence the total energy

deposit may be unknown. The previously described SN explosion model

and corresponding neutrino emission properties rely on the assumption of

having a neutron star as a remnant. In the case of a black hole, although the

beginning phases of evolution may coincide with the neutron star option it

can be significantly different later as if collapse to BH starts, it will cut the

emission of neutrinos and will begin to completely determine the subsequent

evolution of the system.

3.3 Simple model for estimates

We aim to demonstrate the effect of back-reaction from the build-up of the

lepton asymmetry on the resonant production of sterile neutrinos and demon-

strate, that uncertainties in the SN parameters are present in different numeric

models of the SN explosion can be crucial for a possibility to set any con-

straints on novel particles. As we will describe in more detail, the sterile

neutrino emission depends on the spatial and temporal distribution of density

of baryons ρB, temperature, lepton asymmetries of electrons, and neutrinos

of electron and other flavors Ye, Yνα. To obtain such quantities one has to

run a corresponding numeric simulation solving the MHD/transport system of

equations. Different numerical approaches, including 2- and 3-D simulations

to the supernova give broadly consistent results (see e.g. the comparison of

codes and approximations in [139, 170]). The differences of the SN media
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parameters within different codes and the same progenitor mass are typical

O(10%). In the case of different progenitor stars, distinctions between the

value of temperature profile in numeric simulation sometimes may reach a

considerably high level (see the comparison of temperatures at r ∼ R ns at

Fig. 3.5) even with other assumptions to be equivalent. Note, that it does

not mean the same significant difference in potential observation of neutrinos

flux as it is determined mostly by the temperature of the neutrino-sphere and

if two numeric models have this value coinciding, both of them may be as

good to simulate the SN1987A explosion1, hiding their discrepancies behind

the non-transparency wall of too dense plasma. Nevertheless, this does not

mean that such a medium will be opaque for sterile neutrinos. And quite the

opposite, we will see, that sterile neutrinos production may be significantly

affected by even small (compared to the potential difference between numeric

models ) changes of parameters of the SN media, leading to significant changes

in the number of produced sterile neutrinos (see Appendix 3.6.1) for giving

mass and mixing angle.

Therefore, we will not establish any constraints or limits on the sterile neutrinos

on purpose and demonstrate that the current state of the art of both existing

observations and theoretical understanding does not allow to provide any

robust constraints.

In our calculations, we will use two models of SN explosion - fiducial SN model,

which is a result of numerical treatment of hydrodynamic simulation [218]

of the progenitor star with a mass of 18.6M� and SFHo nuclear equation of

state [206]. The gravitational mass of the explosion remnant is a neutron star

with a mass 1.4M�. And for the tests and a simplified picture, we will use a toy

model which is represented via time-constant profiles of density, temperatures,

and some of the lepton numbers. The parameters of the toy model will only

roughly correspond to temperature and density orders of magnitude and their

radial profile behavior.

To simplify the analytical treatment of the problem and to achieve the result,

that is easily reproducible, instead of using the full simulation with time-

evolution we approximate the temporal evolution of our background SN

model by three snapshots of simulation taken at different post-bound times

1The progenitor of the SN1987A is a blue supergiant star Sk −62◦202 [122] whose mass is
expected to be in the range of 15− 20M� [229].
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t pb = 0.05, 0.5, 1 sec, see Fig. 3.4. We adopted the same model as was used

e.g. in [211, 210]. We will consider, that the profile does not change during

a one-time interval. At times t pb > 1 sec, the temperature begin to drop

significantly as the accretion phase ends. That is why we do not take into

account times t > 1 sec. The values of the correspondent (profiles of matter

density, temperature, and asymmetries) are shown in Fig. 3.4 for both fiducial

and toy models. We also follow [211, 210] and assume, that active neutrinos

have an equilibrium spectrum given by the temperature from the snapshot.
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Figure 3.4: Radial profiles of density, temperature, electron and electron neutrino
asymmetries, taken as snapshots from 1D hydrodynamic simulations
of the 18.6 M� supernovae explosion [218]. Post-bounce times are
t pb = 0.05, 0.5, 1 s Black lines show the (time-independent) profiles in
our toy model. ALthough the differences between fiducial and toy model
may look significant, it still captures well the main result and related
effects.

For the toy model we adopt the following conditions. Baryon density has a con-

stant value inside the supernova core (r < Rcore) and decrease exponentially

outside the core,

ρB = ρ0 exp
[
−r −Rcore

Rcore

]
, r > Rcore (3.6)

Temperature has a linear behaviour, decreasing from T max at r = 0 to T min

at r = 50 km and. Proton number fraction remains constant and it is just

a simplification for our model (note that does not necessarily mean that we
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Figure 3.5: Dependence of the temperature profiles (and in particular of the maximal
temperature, Tmax) on the mass of progenitors. Both temperature profiles
are for the same post-bounce time t pb ' 250 msec and obtained as a
result of simulations with the same numerical code [154]. The plots are
shown for two different progenitor models with main sequence masses of
13M� [167] and 15M� [232] that provided the initial conditions for the
corresponding runs. The uncertainty in the determination of the mass of
the progenitor of the SN1987A is 15− 20M� [see e.g. 229].

Core radius Rcore = 10km
Max. Temperature T max = 30 MeV
Min. Temperature T min = 3 MeV
Baryon core density ρ0 = 3× 1014 g

cm3

Baryon core number density N0 = 1038 cm−3

Proton fraction Yp = 0.3

Table 3.1: Parameters of the toy model of the supernova adopted in this section.
Temperature is chosen to decrease linearly from T max at r = 0 to T min at
r = 50km and is also constant during the first second.

define the number of electrons as there may be the change of population of

other charge massive leptons). Numerical values of the relevant parameters

are specified in Table 3.1.
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3.4 It it possible to set a robust constraint
on BSM particle from SN1987A
explosion?

If we assume the existence of any new BSM particles, they could affect a

supernova explosion in different ways. The simplest of them is producing

an additional cooling channel for the star. As was mentioned, estimate (3.3)

predicts the cooling time of the order of 10 sec, and it can not be decreased

significantly, as neutrinos are trapped inside the SN core. But new particles,

like sterile neutrinos, may have significantly weaker interactions with media

and hence, free-streaming out of SN core. This cooling channel is limited

rather by the rate of neutrino production than by their mean free path. In

this picture, the addition of new particles would lead to the shortening of the

duration of neutrino emission. It is therefore used as so-called "energy-loss

argument" e.g. [183, 181, 184, 101]. introduced by G.Raffelt and commonly

used to set an order-of-magnitude constraint on new particles. Author in [183]

studied a simplified cooling model of the SN in presence of axions and have

found, that the shortening of neutrino pulse duration may become inconsistent

with the SN1987a observations if the energy loss rate per unit mass via new

channel exceeds

εm . 1.0× 1019 erg g−1 s−1 (3.7)

which can be also rewritten as energy loss rate per unit volume

εv . 3.0× 1033 erg cm−3 s−1 (3.8)

assuming the SN core matter density ρ = 3.0 · 1014 g cm−3. For an object with

massM = 1.5 ·M� it would correspond to limit of total energy loss rate from

new channel

E total . 1053 erg s−1 (3.9)

There were a lot of studies of sterile neutrino production in the past years

for a different mass range from eV to GeV [140, 182, 175, 203, 169, 148,

97, 99, 98, 7, 116, 46, 130, 131, 147, 117, 215, 185, 233, 225, 241, 226,

33, 186, 235]. Almost all of them (except for e.g. [7, 185, 241, 33, 211,

210]) were focused on the study of electron flavour mixing and the energy-

loss argument was used quite widely to constraint the parameters of sterile
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neutrinos. Though, we believe, that even when the rate of energy loss rate

is close to 1053 erg, this does not lead to the bounds that are both strong and
robust. Indeed, applicability of this constraint requires several conditions and

the first of them is that the observation of neutrino flux from SN1987A was

indeed an observation of a continuous cooling process and not anything else,

which may be the case if the remnant of the SN1987A is a black hole instead

of the neutron star. Such possibility is allowed, as the remnant of the SN1987A

has not been found yet [27], although it does not mean, that the neutron star

is not hidden somewhere [110, 27] . It was proposed in [75, 48, 58, 45], that

the observation of the SN1987A could be a result of (i) delayed formation of

a black hole giving the initial seconds of neutrino pulse and (ii) emission of

neutrinos from the accretion disc. Such a scenario, if not refused, can make

such constraint inapplicable.

Even if the remnant of a star is a NS, its parameters are not precisely known.

Those, the energy deposit, that should be available for emission during explo-

sion is also not well restricted:

E NS ≈ 6.3× 1053 erg
( C

0.6

)(
M NS

2M�

)2 (10km
R NS

)
(3.10)

with the numeric coefficient C ≈ 0.6 [152, 153, 137], depending on the details

of mass distribution in the NS. The estimates made for the remnant allow the

range of masses of a neutron star M NS ' 1.7 − 1.9M�, see [27] for review,

while the radius of the NS can depend on different EoS. Those uncertainties

mean, that total energy released in an explosion may vary up to a factor of

1.5 which is already on the level of the energy-loss rate constraint. Taking all

this into account, we believe, that for now, it is impossible to provide a robust
constraint on the SN parameters.

3.5 HNLs production in supernovae
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3.5.1 Collision and resonant production
mechanisms

Propagation of neutrinos in homogeneous media Dense and hot super-

novae medium is an intense source of all neutrino flavors. Once produced,

they propagate through supernovae medium without free escaping. During

this propagation, neutrinos interact with media and this affects neutrino self-

energy that can be expressed as a correction to self-energy. This correction

leads to a change in the neutrino oscillation properties, potentially enhancing

the mixing between active (νe, νµ, ντ) and sterile flavor. Let us consider a

simple scenario of one active neutrino flavor, mixed with one sterile.

 νa

νb

 =
 cos θ − sin θ

sin θ cos θ

 ν

νs

 (3.11)

here νa, νb are eigenstates of free Hamiltionian - mass states, corresponding to

masses ma,mb respectively. Taking, that at moment t = 0, a pure flavour state

ν was produced with momentum p, this mixing leads to a well-known formula

for neutrino oscillation probability

Pν→νs(r) = sin2 (2θ) sin2
(

∆M2

4p r

)
(3.12)

where ∆M = ma−mb. If the uncertainty of area of initial neutrino production

is larger, than R−1 ∼ ∆M2

4p , than the result can be averaged over distance,

giving constant probability of finding a sterile neutrino

〈Pν→νs〉 →
1
2 · sin

2 (2θ) ≈ 2θ2 (3.13)

if mixing angle θ � 1. Now, consider the case of medium with constant

number density. In this case, dispersion relation for neutrino is affected by

interacting with surrounding particles.

iγ0∂0 → iγ0∂0 − V effγ
0 (3.14)

here V eff - correction for self energy (effective potential) that depends on the

energy of neutrino and population of plasma. Different particle species gives

different contributions to the value of V eff: ([151],[168])

3.5 HNLs production in supernovae 35



• Neutrinos of the different flavor - only Z-boson interactions:

V
νxνy
eff = ±

√
2GF (nν − nν̄) (3.15)

• Neutrinos of the same flavor - both W- and Z-boson interactions:

V νxνx
eff = ±2

√
2GF (nν − nν̄) + 8

√
2GFp

3m2
Z

(〈Eν〉nν + 〈Eν̄〉nν̄) (3.16)

• Protons background:

V νxp
eff = ± 1√

2
GF (np̄ − np)(1− 4 sin2 θw) (3.17)

• Neutrons background:

V νxn
eff = ± 1√

2
GF (nn − nn̄) (3.18)

• Charged leptons background of the same flavor:

V νxlx
eff = ±

√
2GF (1

2 + 2 sin2 θw)(nl − nl̄) + 8
√

2GF · p
3m2

Z

(〈El〉nl + 〈El̄〉nl̄)
(3.19)

• Charged leptons background of the different flavor:

V
νxly
eff = ±GF (1− 4 sin2 θw)(nl − nl̄)/

√
2 (3.20)

here θw - Weinberg angle, nl, nν , np/n number densities of leptons, neutrinos,

protons and neutrons respectively. 〈Ex〉 - average energy of the correspondent

particle of species x.

In general, contribution to effective potential can be separated into two terms

- proportional to the asymmetry between particles and anti-particles and

independent of it. The second term has an additional suppression due to

the mass of either W- or Z- boson as it appears due to the second-order of
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magnitude contribution of the bosonic propagator. At temperatures T � mW

it might give a very small correction but since the asymmetry of plasma is

another external parameter, which might be arbitrarily small, we can not

completely neglect it. This correction is applied for active neutrino flavor,

while the similar correction for sterile flavor is suppressed via small mixing

angle. Neutrinos obey Dirac equation and as a consequence - Klein-Gordon

equation.When particles are ultra-relativistic, their equation of motion could

be rewritten as (see e.g. the book [181, Chap. 8]):

i
d

dt

νx
νs

 = H eff

νx
νs

 (3.21)

where the “effective Hamiltonian” is

H eff = m2
s

4E

− cos 2θ0 sin 2θ0

sin 2θ0 cos 2θ0

+
V eff 0

0 0

 . (3.22)

Here V eff is the effective potential of νx ms is the mass of sterile neutrino, E is

its energy (ms � E) and we have neglected masses of the active neutrinos; θ0

is the vacuum active-sterile mixing angle. This effective potential leads to the

change of mixing angle ([5]):

sin2 2θm = ∆s(p) sin2 2θ
∆s(p) sin2 2θ + (∆s(p) cos 2θ + V eff)2 (3.23)

Together with mixing angle, oscillation probability (3.13) is also changed:

〈Pν→νs〉 ≈
1
2

∆s(p) sin2 2θ
∆s(p) sin2 2θ +D2(p) + (∆s(p) cos 2θ + V eff)2 (3.24)

where D(p) - damping factor due to neutrinos interaction correspondent to

probability that its wave function would collapse to a pure state. It is defined,

as

D(p) = Γνxint/2 (3.25)

where Γ int - interaction rate of neutrinos with flavour "x" in plasma. Also here,

and for further notations we have introduced parameter

∆s = m2
s

2p (3.26)

When V eff = 0 the eigenvalues of the Hamiltonian (3.22) are ±1
2∆s and the

vacuum active-sterile oscillation length is given by π/∆s. If the interaction
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rate is not high damping can be neglected, then matter mixing angle for small

vacuum mixing values takes a simple form:

tan 2θ ' 2θ0
∆s

∆s + V eff
+O(θ2

0) (3.27)

Let us concentrate on the case without damping, as it would be our main

scenario. From Eqn. (3.23) or (3.27) one can see, that depending on the value

and sign of effective potential, matter mixing angle can be either suppressed or

amplified. If the value of V eff is positive, mixing angle is additionaly suppressed

and this would not be the case of interest for now. But if it achieve negative

values, mixing angle increases. When the condition

∆s(E) + V eff(r) = 0 (3.28)

is satisfied, one has a resonance and θ res → π
4 - maximum mixing case when

both neutrino flavors enter the mass state in same proportions. For a specific

value of V eff there always exist an energy for which resonance occurs:

E res = m2
s

|V eff|
(3.29)

Note, that in case of damping, there exist a maximum value for probability of

conversion. Instead of resonance value 〈Pν→νs〉 → 1/2 we have

〈Pν→νs〉 ≈
1
2

∆s(p) sin2 2θ
∆s(p) sin2 2θ +D2(p) (3.30)

Significance of the resonance can be understood if we look at eigenvalues of

the Hamiltonian (3.22). Its diagonalization gives two eigenvalues Ea,b such

that

Ea,b = V eff

2 ±
√

(∆s + V eff)2 + 4∆2
sθ

2
0 (3.31)

Corresponding for two eigenfunctions (mass eigenstates) νa,b. At the resonance,

the difference Ea − Eb becomes smallest given by ∆E = 2∆sθ0 so the smaller

the vacuum mixing angle, the closer energy levels approach. In the opposite

case, when V eff has positive value, the gap between energy levels only increase

in media.

In case, if resonance is available, sterile neutrinos can be copiously produced

in such media due to a significantly increased probability of oscillation. Prop-
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agation of neutrinos in inhomogeneous media Now, let us consider the

case of media with variable density. Naively, we should only substitute the

constant potential with its variable form in the expressions of mixing angle

(3.23) and conversion probability (3.24). It is not completely true, though.

The equation of propagation of neutrinos in the media remains similar, but

now with hamiltonian, that is a function of coordinate.

i
d

dr

ν̄x
νs

 = H eff(r)
ν̄x
νs

 (3.32)

where the “effective Hamiltonian” is

H eff(r) = m2
s

4E

− cos 2θ0 sin 2θ0

sin 2θ0 cos 2θ0

+
V eff(r) 0

0 0

 . (3.33)

Notice that [H eff(r),H eff(r′)] 6= 0 for θ0 6= 0 and therefore exact solution of

Eq. (3.21) is complicated. Moreover, eigenstates of such Hamiltonian are no

more plane waves in whole space. But in the case of slowly varying media

|∇ log V eff| � ∆s one can, however, solve this equation in the adiabatic limit.

To this end one diagonalizes (3.33) at every point by the matrix U(r), given

by

U(r) =
 cos θ(r) sin θ(r)
− sin θ(r) cos θ(r)

 (3.34)

So we consider the eigenstates as a plane waves locally at every point. With

mixing angle defined by (3.23), up to change of constant V eff to the variable

one. In the medium with variable density the states νa,b propagate according

to the equation, similar to Eq. (3.21):

i
d

dr

 νa

νb

 =
 Ea(r) iθ′(r)
−iθ′(r) Eb(r)

νa
νb

 (3.35)

Non-diagonal elements appear since we define νa, νb as plane waves, that

are eigenstates of Hamiltonian only locally, but during propagation, they are

changing. The off-diagonal elements in the r.h.s. are equal to −IU †∂rU and

are responsible for the transition between different mass "eigenstates" (local)

that would be absent for θ′ = 0. Media with slowly varying density would

cause such a slow change of local eigenvalues, that the wave function of

propagating neutrinos would be able to "adjust" at every point adiabatically

without transiting to another state. Note, that it still allows a significant change
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Figure 3.6: Dependence of the adiabaticity parameter γ = θ′

Ea−Eb on radius
(Eq. (5.4)). We took the neutrino energy equals E = 40 MeV, sterile
neutrino mass ms = 10 keV. In the narrow region around resonance
(R res ' 16.3 km for the current parameters) mixing angle is varying
significantly and hence, values of the adiabaticity parameter can reach
large values there. While outside of the resonance, it may be negligibly
small. For even smaller vacuum mixing angle, the value of this param-
eter can be larger than 1. It shows that for such a small mixing angles
conversion indeed goes non-adiabatically while for larger values it is� 1
everywhere, so the conversion is totally adiabatic

.

of mixing angle at a large distance. This feature would lead to a well-known

MSW effect ([162],[231]). Let us introduce a parameter of non-adiabaticity,

γ:

γ ≡ θ′(r)
Ea(r)− Eb(r)

(3.36)

The ratio of the off-diagonal and the difference of diagonal elements is a

useful parameter in a two-level system determining, if a transition between

those two levels is possible. The fully adiabatic scenario, when no transition

occurs, corresponds to γ → 0 which is achieved by either slowly varying

matter density or large gap between local energy levels. Neglecting of such

transition is a case, for example, that occurs for neutrinos, propagating in the

Sun due to its relatively small density gradient. When γ becomes of the order

of unity, we can not neglect transitions. Since the mixing angle at resonance

can get large values, it turns out, that resonance value of parameter γ might

significantly increase and become different from zero in some narrow region.

We follow notations of [33] defining this region as where θ(r) changes from

sin2 2θ = 1 to sin2 2θ = 1
2 (i.e. π

8 ≤ θ(r) ≤ 3π
8 ) we get its width Rwidth =

40 Chapter 3 Supernovae constraints on sterile netruino parameters



νx

νx

νS

νS

15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0

1.4× 10-6

1.5× 10-6

1.6× 10-6

1.7× 10-6

1.8× 10-6

1.9× 10-6

2.× 10-6

r,km

E
-
|p
|,
M
eV

Figure 3.7: Energy levels Ea(black), Eb(red) of the system, depending on the radius.
Mixing angle is chosen as sin2 2θ = 10−3, mass ms = 10 keV, momentum
p = 30 MeV. The y-axis shows ma,b/2E. The closest distance between
energy levels is at the resonance where the transition between the levels
is the most likely. This plot demontrates, how a neutrino, produced as an
active one inside the SN core, if remaining on the same mass state (no
jumps between branches on plot), will become a sterile neutrino, when
propagating out of the SN

2 sin(2θ0)/
(
log V eff(R res)

)′
. The non-adiabaticity parameter is maximal at the

resonance and can be expressed through the width of the resonance

γ = 1
π

L osc

Rwidth
(3.37)

where L osc is the oscillation length at resonance

L osc = 2π
|V res

eff | sin 2θ0
. (3.38)

Now, assume at some point r = 0 active neutrino was produced and it freely

propagates in media. If it crosses the resonance at some moment, the tran-

sition between mass states can occur. Since the relation between mass and

flavor states is known at every point, this can be rethought as a transition be-

tween different flavor state combinations. In an extreme scenario of adiabatic

transition, when neutrino propagates from the area with maximum mixing

angle θ → π/2 (|V eff| � ∆s) to a small vacuum value, it would correspond for

transition between two pure flavor states - a situation similar to MSW effect.

But since the non-adiabaticity, after passing the resonance neutrino would

consist of two mass states with different proportions. If no more resonance

area appears, they would propagate adiabatically. According to this scenario,
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the probability of transition between flavor states νx and νs after crossing the

resonance is given by [172]

Px→s = 1
2 −

(1
2 − Pna

)
cos 2θin cos 2θout (3.39)

where θin – mixing angle, at the point of neutrino state creation and θout

– mixing angle at the point of detection. Pna is a probability of transition

between mass eigenstates due to non-adiabatic change of V eff. Note, that this

formula is meaningful only if propagation through resonance occurred. In the

opposite case, Pna should be set to zero unless propagation is non-adiabatic

everywhere. In the case, when Rwidth is much smaller than the characteristic

scale, over which V eff is changing, the effective potential can be approximated

as a linear function of (r − R res) around the resonance. In this case, the

Landau-Zener formula appears

Pna = exp
[
− π

2γ

]
. (3.40)

If such linear approximation won’t be applicable, expression will be more

complicated. For a variety assumptions about profile, it could be given in form

(see e. g. Ch.8 of [181])

Pna =
exp (−πF/

(
2γ)

)
− exp (−πF ′/

(
2γ)

)
1− exp(−πF ′/

(
2γ)

) (3.41)

Here F ′ = F/ sin2 θ0 and F - parameter, that depends on density profile. For

exponential dependence of effective potential F = 1 − tan(θ0). The more

general case was studied in [129] where more general form of transition

probability was found. For our purpose, the linear case (3.40) would be

enough. Propagation of neutrinos in supernovae We limit ourselves for the

case of pure mixing when a sterile neutrino is mixed with one active flavor. Let

us now consider a specific case of supernovae environment to study neutrino

production. According to the description of the supernovae explosion in 3.2,

the media interesting for us consists of protons, neutrons, electron-positron

pairs, and neutrinos of all flavors. The population of muons is relatively small

or negligible depending on the exact temperature of the media. The effective

potential for such media is given by
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• For electron flavor neutrinos:

V νe,ν̄e
eff (r) = ∓GF√

2
N b

(
−2Ye + Yn − 4Yνe − 2Yντ − 2Yνµ

)
. (3.42)

• For muon flavor neutrinos:

V
νµ,ν̄µ
eff (r) = ±GF√

2
N b

(
Yn − 2Yνe − 2Yντ − 4Yνµ − 2Yµ

)
, (3.43)

• For tau-flavor neutrinos:

V ντ ,ν̄τ
eff (r) = ±GF√

2
N b

(
Yn − 2Yνe − 4Yντ − 2Yνµ

)
, (3.44)

and the factor in front of the asymmetry terms is

GF√
2
N b = 11.4 eVN b

N0
(3.45)

so the typical value of the correction to neutrino self-energy in the SN core

is ∼ 10 eV� ms. Here N0 = 3 · 1014 g/cm3, Yi ≡ Ni−Nı̄
N b

is the asymmetry in

ith particle (i = {n, p, e, µ, τ, νe, νµ, ντ}) , N b is the baryons number density,

the upper sign is for neutrinos, the lower sign - for anti-neutrinos. In the

two latter cases, sign of effective potential does not change while in the case

of electron flavor mixing it might change. Value of the effective potential

for e- and µ/τ− mixing is presented at Fig. 3.8 We will focus on the case
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Figure 3.8: Value of the effective potential of neutrino, propagating in the SN media
in case of its mixing with electron (left panel) and µ/τ (right panel)
flavours. The result is calculated for three snapshots we use in our fiducial
model 3.2. Parameters Yνµ and Yντ are set to zero. While in the case of
µ/τ mixing, the function for the potential is monotonic and never crosses
zero value, electron flavour is much more complicated.
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Figure 3.9: Ratio of the resonant energy satisfying the condition (3.28) to tempera-
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E res/T � 1, it corresponds to exponentially suppressed population of
neutrinos, available for conversion and hence, its low rate. It becomes the
reason, why the production proceeds efficiently only at radii r h 10− 20
km.

of muon/tau-mixing. For them, only anti-neutrinos can undergo resonance

condition (3.28) so only their production might be enhanced in the SN. At

every point, there is a neutrino energy, which satisfies the resonance condition

establishes a relation between the anti-neutrino energy and the radius of the

resonance, R res:

V eff(R res) = m2
s

2E res
(3.46)

Ratio of the resonance energy to temperature at each radius is demonstrated

at Fig. 3.9. There are two production mechanisms to be considered - collision

production and resonance conversion. Both of these mechanisms were already

studied in the past for neutrinos of different flavors and sterile neutrinos

ranging in masses from eV to GeV [140, 182, 175, 203, 169, 148, 97, 99, 98,

7, 116, 46, 130, 131, 147, 117, 215, 185, 233, 225, 241, 226, 33, 186, 235,

33, 7, 185, 241, 211, 210]. Let us briefly describe both of them.

• Collisional production takes into account, that if an active neutrino was

produced, then during its propagation it can oscillate to sterile flavor.

Then, if interaction occurs, the wave function of neutrino collapses to

either active or sterile flavor (with probability, given by Eqn. (3.24)).

This allows sterile neutrinos to be produced in every 2 → 2 reaction
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involving neutrinos in a final state. This volume production can be

described via equation ([204, 185, 208])

dns
dtdE

= Γx
2 〈Pν→νs〉

dnx
dE

(3.47)

where dns
dE

and dnx
dE

- energy spectra of sterile and active flavor neutrinos,

Γx- interaction rate of x -flavor neutrinos in the SN plasma. In the

area, close to the point, where resonant condition 3.28 is satisfied,

sterile neutrinos can be effectively produced. Contrary to the active

neutrinos, they are not trapped inside the SN and can freely escape. But

as was pointed out in [185], at the very resonance, large mixing angles

makes also sterile neutrinos trapped, so the exact area of production

is not the resonance point but area around it. Every point of the star

volume corresponds to some resonance energy, and resulting spectra is

completely non-thermal, determined by the value of effective potential

at each point and population of neutrinos with corresponding energy.

The most effective this production is in the SN core where the densities

ρ ∼ 1014 g/ cm3 and temperatures T ∼ few ·10 MeV, are highest, leading

to the largest values of interaction rate. To fins the total production rate,

equation 3.47 must be integrated over whole star volume during the

time of explosion:

dNs

dE
=
∫
t
dt
∫
V

4πr2 Γx
2 (r)〈Pν→νs(r)〉

dnx(r)
dE

(3.48)

This final spectrum can be used to calculate the energy emission from

supernovae, by integrating over energies. Such production mechanism

can be present in both homogeneous and inhomogeneous media - hence

it will be relevant for both the SN core, which can be approximated with

constant density sphere, and the outer layers with variable density

• Resonance conversion is a production mechanism, available only in the

inhomogeneous media and is very similar to the MSW effect. The mixing

angle of neutrinos in the SN is given by

tan 2θ(r) ' 2θ0
∆s

∆s + V eff(r)
+O(θ2

0) (3.49)

From Eq. (3.49) one sees that deep inside the SN, where ∆s < |V eff(rin)|
and V eff < 0, one has tan 2θin → −0 ⇔ θin → π

2 , because θ is confined
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to 0 ≤ θ ≤ π
2 . Active neutrino is produced in the central part of the SN,

hence it can be considered as a pure mass state. It starts propagating

adiabatically out of the SN. If the energy of neutrino is not too low,

at some point it crosses the resonance where pure mass state may be

converted into combination of two mass states, each of them propagating

adiabatically again after the resonance. Almost immediately after the

resonance effective mixing angle decreases to values relatively close to

vacuum θ0 � 1 so correspondent mass states can be associated with

flavor states each. If the transition was adiabatic everywhere, than every

neutrino, that crosses the resonance would be converted to sterile at

infinity. Instead, we have a conversion probability of active neutrino to

sterile neutrino

Px→s = 1− exp
[
− π

2γ

]
. (3.50)

for the case of small vacuum mixing angle θ0 � 1. In the MSW effect case,

such a mechanism governed the conversion of electron flavor neutrinos

produced inside the sun in nuclear reactions into muon neutrinos. The

conversion, in that case, was fully adiabatic, but the vacuum mixing

angle is not small, hence electron neutrinos are converted not into

pure muon flavor but a linear combination of all flavors. Compared

to volume collisional production, when neutrino of different energies

may be converted to sterile at every point of the SN, but with different

probability, resonant conversion scenario is closer to surface emission,

as neutrinos with energy E are being converted and emitted only from

a surface, for which condition 3.46 is true. An example of P res values

are presented at Fig. 3.10 Figure 3.7 illustrates the above considerations.

Energy levels Ea(r) and Eb(r) do not cross. The value Ea − Eb reaches

its minimum as r → R res. In the case of fully adiabatic propagation (i.e.
change of the radius) one remains on the same energy level Ea(r) or

Eb(r). As a result, a state 〈νx| that is mostly 〈νa| deep inside the star

would remain mostly |νa〉 everywhere and would exit the star as mostly

sterile state |νs〉. The probability of such a process for θ0 � 1 is given

by P adiab
x→s ∼ cos2 θ0 → 1 – the result familiar from the MSW effect in

the Sun. This can be seen from Eq. (3.50) when the parameter of non-

adiabaticity γ → 0. Last detail is the probability for neutrino to interact

during crossing the resonance region. If it does, its wave function is

collapsed producing either pure active neutrino or sterile neutrino which

corresponds to previously discussed collisional production. Taking this
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Figure 3.10: Dependence of the resonant conversion probability 3.50 on the radius,
calculated for U2 = 10−11 (left panel) and U2 = 10−14 (right panel).
Behaviour of the conversion probability corresponds to the rate of V eff
change. At small radii R . 10 km, core density varies slowly, leading to
the most adiabatically transition, at larger radii, effective potential begin
to drop rapidly (see Fig. 3.8) and the transition becomes non-adiabatic.
It is seen, that at the beginning of the explosion, when the gradient of
matter density is not large, conversion probability is much larger, than
at later times, giving up to order-of-magnitude difference.

into account, the number of νs with energy E, resonantly produced by

the time t and travelling into the solid angle dΩ is given by (we assume

that E ≈ |~p|, i.e. sterile neutrinos are ultra-relativistic):

d2Ns(t, E)
dE dΩ =

∫ t

0
4πR2

res(E)E2f̄out
x

(
t′, R res(E), E

)
Px→s(E)e−Rwidth/λmfpdt′ .

(3.51)

here, R res(E) is the radius, at which resonance condition is satisfied for

anti-neutrinos with the energy E, fout
x - outgoing flux of active neutrinos

of flavor x, factor e−Rwidth/λmfp stands for probability of active neutrino not

to interact during crossing the resonance. We will focus on studying this

scenario for the case of muon and tau mixing.

3.5.2 Back reaction of neutrino production, active
neutrino population evolution during sterile
neutrinos emission

Depletion and re-population of active neutrinos.

Sterile neutrinos production mechanism described above, for both resonant

and collision conversion, acts effectively only on x- flavor anti-neutrinos.
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During the neutrino conversion process, the population of anti-neutrinos

at each resonance radius is being depleted, while the population of active

neutrinos remains almost unchanged, as the production via vacuum mixing

angle is negligible. Consider neutrino with energy Eν and corresponding

resonant radius for such neutrinos R res. Before the production starts, if this

radius is close to the core, the population of neutrinos has an equilibrium

value nνx ∼ T 3 given by FD spectrum in correspondence to the SN model. We

can estimate the total energy density stored in thermal neutrinos in the SN

volume:

Eν,therm =
∫

3.15 · T (r) · nνx(T (r))d3r ∼ 1051erg (3.52)

Resulting value is two orders of magnitude smaller, than estimated total emit-

ted energy. Also, sterile neutrinos, as we will see, can indeed lead to energy

emission at the level of Emax h 1053erg s−1. If there was no re-population pro-

cesses, all neutrinos would be washed-out of the supernovae during conversion

process with the timescale τνs,prod = Eν,therm/Emax ∼ 10−2 s. But the similar

processes, that keep neutrinos in equilibrium also lead to refilling of thermal

population - processes like nucleon-neutrino scattering

ν̄x +N → ν̄x +N (3.53)

return the shape of neutrino distribution to equilibrium form, though it does

not change the number of neutrinos at correspondent resonance radii. To-

gether with it, intense nucleon-nucleon bremsstrahlung produces neutrino-

antineutrino pairs

N +N → N +N + ν̄x + νx, (3.54)

that can refill the "lost neutrinos". The reaction rates of the processes (3.53)–

(3.54) are faster than sterile neutrino conversion rate [219]. It allows to

assume the local thermal equilibrium for neutrinos during the sterile neutrinos

production and hence, always use the FD distribution for fνx. Note, that the

rate of the process (3.54) depends on the distribution function of neutrinos

due to Pauli blocking ΓNN→NNνν̄ ∼ (1 − fνx)(1 − fν̄x). Since the conversion

process does not affect the population of neutrinos νx, reaction (3.54) can

create much more neutrinos than was present before the start of conversion.

It would lead to slowing down the rate of the process (3.54) and hence, not

complete refilling of neutrinos that were converted to HNLs. For the local
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equilibrium case, it will be described by adding a lepton chemical potential for

neutrino FD distributions:

f̄x(E, r, t) = 1
(2π)3

1
exp

[
E+µx(r,t)
T (r)

]
+ 1

(3.55)

(with µx → −µx for neutrino distribution function). The evolution of the neu-
trino population is hence fully encoded into the evolution of the chemical potential
µx and the value of the temperature of the supernovae. This additional source of

asymmetry between particles/anti-particles would be displayed in the change

of V eff. If in the SM scenario asymmetries for x-flavor is negligible [185], for

the case of sterile neutrinos. Correction for the effective potential may become

noticeable. The effect on the potential V eff and, therefore, the resonance

energy (3.46) via the change of the lepton number Yx would definitely affect

the production rate of sterile neutrinos. It is seen from the expression for

resonance energy (3.46) that with the growth of Yx the resonance energy

increases, so that the number density of active anti-neutrinos with energy

E ≥ E res diminishes. If the asymmetry reaches the value of

Y max
ντ ≈

1− Ye − 2Yνe − 2Yνµ
4 (3.56)

or, in the case of muon mixing

Y max
νµ ≈ 1− Ye − Yµ − 2Yνe − 2Yντ

4 (3.57)

, the resulting resonance energy becomes infinite. Here in the latter case, we

have included term with asymmetry of µ± as in the case of very large lepton

symmetries which, muons may be also present in plasma (while they remain

negligible in the τ−mixing case). It is a result of the increase of average

energy of neutrinos in the presence of effective potential - larger number

densities force neutrinos to occupy higher energy states and making them able

to produce muons in reactions:

νµ + n→ p+ µ− (3.58)

νµ + e− → µ− + νe (3.59)

νµ + ν̄e → µ− + e+ (3.60)

leading to potential non-negligible population of µ−. Similar reactions are

possible for anti-neutrinos and anti-muons, but the number density of ν̄µ

3.5 HNLs production in supernovae 49



is smaller in this asymmetry regime and they have slightly smaller energy,

leading to less abundant production of µ+. Because of this, muon lepton

number asymmetry will be stored not only in neutrinos, but in muons as well,

affecting also the number density of neutrons/protons through the electro-

neutrality condition. The population of τ± leptons remains negligible for

because of their large mass. Hence we see, that the back-reaction effect of the

production of sterile neutrinos - change of νx population, affects production

rate through two quantities - a decrease of effective potential and decrease

of anti-neutrinos number density available for conversion. Both of them lead

to a decrease in the production of sterile neutrinos. Diffusion of the lepton

number The inhomogeneous chemical potential µx(r, t) triggers the lepton
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Figure 3.11: The same as for Fig. 3.12, but without diffusion. In absence of asym-
metry, change of asymmetry and related chemical potential proceeds
independently on every radius. In the absence of diffusion, which can
redistribute the large number density of neutrinos to less populated
regions of the star, the maximum asymmetry is sufficiently larger. The
value of V eff can not change the sign in this case as once the asymmetry
reaches a critical value, that set V eff to zero, resonance energy becomes
infinite, completely turning off the production. The peak position is
changing with time slightly due to the change of resonance condition
eq. (3.46) with the build-up of the asymmetry Y as well as with the
change of parameters of SN.

number diffusion processes. Neutrinos (whose number exceeds greatly that

of anti-neutrinos) diffuse away and the reactions like (3.54) then replenish

population of anti-neutrinos A typical time scale for the diffusion over the

distance R is tdiff = R2

λmfp
, where λmfp is the mean free path of (anti)neutrinos

of x-flavour. The neutrino mean free path depends on the neutrino energy

and matter density. A straightforward computation of neutrino scattering in

a medium of non-relativistic nucleons gives λmfp ∼ π
G2
FN bE2 .2 Typical values

of neutrino energies in supernovae is E ∼ O(100) MeV and densities can

2Recall that we are interested only in the diffusion of µ or τ flavours and therefore only
neutral current processes contribute to the scattering of both neutrinos and anti-neutrinos.
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reach N b ∼ 2 × 1038 cm−3 so diffusion time can be as low as O(10−2 sec) –

much below the period of time over which we analyse the sterile neutrino

production. Therefore diffusion cannot be neglected. To describe the evolution

of the lepton asymmetry we use kinetic diffusion equation with diffusion

coefficient D(r, E) in the relaxation time-approximation:

D(r, E) = λmfp(r, E)
3 = π

3G2
FN b(r)E2 (3.61)

The collisional production of sterile neutrinos can also affect the evolution of

the chemical potential. Indeed, let Γ coll
νx→νs be the rate of collisional production

of sterile neutrinos νx → νs, while Γ coll
νx→νs be a similar rate for anti-neutrino

production (of course, νx and νx produce sterile states of opposite helicity).

Naively, one could argue that as there are more νx than νx in the resonance

region, the collisions will predominantly convert νx → νs, thus decreasing the

asymmetry. This is, however, not the case as the collision rates are not the

same, Γ coll
νx→νs � Γ coll

νx→νs in the resonance region, see e.g. [7] where the reso-

nance enhancement/suppression of the collisional production rate is discussed.

Indeed, the collision rates are proportional to sin2
(
2θ
)
. In the resonance re-

gion, angle for anti-neutrinos is θνxres ∼ O(1), while for neutrinos θνxres ' 1
2θ0,

as one can see by replacing V eff → −V eff in Eq. (3.49) and making use of the

condition (3.28). As a result

Γ coll
νx→νs ∼ θ2

0Γ coll
νx→νs (3.62)

With chemical potential reaching µx/T ∼ 3 (see Fig. 3.12) nνx ∼ 10−2nνx and

therefore we conclude that collisions do not contribute significantly to the

wash out of lepton asymmetry for mixing angles that we are considering. In

order to get the equation for the evolution of asymmetry parameter Yτ we start

from radial diffusion equation for distribution function with a source

∂fx(r, E, t)
∂t

= 1
r2

∂

∂r

(
r2D(r, E)∂fx(r, E, t)

∂r

)
+ Ix(r, E, t) (3.63)

where fx - distribution function of νx (ν̄x), D(E, r) – diffusion coefficient,

Ix(r, E, t) – source. By taking Eq. (3.63) for neutrinos and anti-neutrinos,

integrating their difference over momentum, and dividing by N b we find:

∂Yx(r, t)
∂t

= 1
N b(r)

1
r2

∫ ∂

∂r

(
r2D(r, E) ∂

∂r
(fx(E, r, t)− f̄x(E, r, t))

)
d3p+Sx(r, t)

(3.64)
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Figure 3.12: Evolution with time of the radial profiles of the lepton asymmetry Yτ in
the case of fiducial model. We have chosen the following parameters of
sterile neutrino: ms = 7.1 keV, the mixing angle sin2 2θτ = 5 × 10−11.
We see, that production starts the most efficiently at radii r = 10−15 km
right outside the stellar core, where the matter begin to decrease. With
the growth of asymmetry it starts to diffuse to the inner and outer
regions of the star. The core asymmetry is changing slowly as neutrinos
there are trapped, while asymmetry at the large radius decrease rapidly.
That is due to the increasing volume and that neutrinos efficiently
escape the SN, hence it can not stack. It is seen, that equilibrium
between diffusion and production is achieved in the outer layers within
a fraction of a second and is maintained afterwards

here Sx(r, t) is the integrated source of asymmetry

Sx(r, t) = π

N b(r)E
2
res(r, t) ¯f outx (E res(r), r, t)Px→s(E res(r), r, t)

dEres

dr
(r, t)

(3.65)

Combining these results together, we arrive to the final equation describing

the evolution of lepton number:

∂Yx(r, t)
∂t

= π

6G
2
F r

2Nb(r) ∂
∂r

(
r2

N b(r)
∂µx(r, t)
∂r

)
+

+ π

N b(r)E
2
res(r, t)f̄x(E res(r), r, t)Px→s(E res(r), r, t)

dE res

dr
(r, t) (3.66)

Now, if we solve the system of equations (3.66) and 3.51 we can obtain the

evolution of sterile neutrino spectra, produced resonantly.

3.6 Results: energy emission and the
possibility of constraints

In our calculations, we have focused on the resonant production of sterile

neutrinos, mixed solely with either νµ or ντ flavor. Following the approach
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described in Sec. 3.5 we have calculated the emitted energy in the form of

spectra of sterile neutrinos together with their spectra produced during the first
second after the core bounce.3 Besides the main "realistic" case, that accounts

for every effect we mentioned, we have studied several regimes when diffusion

is turned off as well as a regime with no back-reaction. Our results for the

fiducial model are summarised in Fig. 3.13 (energy, carried out as a function

of sterile neutrino parameters). We present the result for the νs − ντ mixing,

the result for νs − νµ mixing does not differ. On the same plot, we add a

modified fiducial model, where temperature in the central region R . 20 km

is decreased by 20 %. It is for demonstration , on how contours may change

under relatively small changes of internal parameters of the SN. We also

show, how the emitted energy depends on the temperature variation within

our fiducial model as anther demonstration of how sensitive is the sterile

neutrinos production to the exact temperature profile. To demonstrate the

importance of the back reaction we have repeated the calculation procedure

for two additional cases - neglecting the back-reaction completely and neglecting
the diffusion. The comparison of the same-energy contours and comparison of

neutrino spectra, produced for those three cases are given in Fig. 3.15 From

our study, we see that the most important parameter, that defines the energy

output is the maximal temperature in the SN interior in the area of conversion.

Indeed, independently of the exact SN model, Ye ∼ Yνe ∼ 0.1 therefore the

resonance energy of the HNL production is

E res ∼ 9 MeV ·
(

ms

10 keV

)2
· ρB

3 · 1014 g/cm3 (3.67)

reaching O(100) MeV for ms ∼ 30 keV. With the decrease of SN media density

or for neutrinos with larger masses, the resonance energy increases even more,

significantly higher, than the temperature of the SN media. When E res � Tmax

the population of neutrinos is exponentially suppressed, effectively switching

the sterile neutrino production off. Production with decrease of the mass below

ms . 1 keV is also suppressed in terms of energy emission. Although number

density of neutrinos, available for conversion does not decrease as drastically

as in the case of exponential suppression, but low-masses sterile neutrinos

allow conversion for only low energy anti-neutrinos, that can not carry a lot of

3We neglected the production after the ∼ 1 sec due to a decrease in temperature. Hence the
production rate is essentially switched off.
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Figure 3.13: Main results: Energy, emitted in the form of sterile neutrinos mixed
solely with ντ , produced in resonant conversion process during the first
second after the core bounce. Thick solid lines correspond for contours
of the same energy. A thinner dashed line of the same color corresponds
to the same amount of energy as a thick line but in the SN model, where
the temperature is artificially decreased by 20 % lower in the region
close to SN core R . 20 km. And the shaded region is just an area,
the contour passes if the temperature is modified. There is no dashed
line for the central region since energy production is not sufficient to
reach such values. As a reference value, we can use the total energy
emitted in all active neutrino species which is h 3×1053 erg. We also add
a light gray region which indicates, if the sterile neutrino can produce
the correct dark matter density in the Early Universe in the Neutrino
Minimal Standard Model (see Sec. 2). Though, it is not essential for SN
production, if the sterile neutrino is a DM particle or not. Black dot with
error bars corresponds to the 3.5 keV signal of [69, 76] interpreted in
terms of decays of sterile neutrino dark matter.

energy so the energy output in this case is low. If we ignore damping, energy

production rate for large mixing angles would be given by

dE
dt
∼
∫
R2E2

resfx(E res, T )dE res

dR
dR (3.68)
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Figure 3.14: Energy, emitted in the form of sterile neutrinos for masses ms = 10
keV (top plot) and 60 keV (bottom plot) depending on the mixing angle.
Different contours correspond to temperature value modifier starting
from 1 (base model) - the largest energy output, to the set of values
0.95, 0.9, 0.85, 0.8 as a sequence of contours with decreased production
rate.
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Figure 3.15: Left panel: Effects of the back-reaction of the sterile neutrino produc-
tion. We have chosen the energy value Es = 0.25 · 1053erg and found,
which parameters of sterile neutrino are needed to emit this amount
of energy during the resonance conversion in three cases of realistic
diffusion (corresponding to our complete approach), absence of diffusion
(where we take diffusion length to be infinitely small and hence, the
depleted number of neutrinos is not affected by anything, then the reso-
nance production) and absence of back-reaction which can be understood
as an approximation of instant diffusion, when generated asymmetry is
being washed out of the stars faster, that it is generated. Right panel:
Spectra of sterile neutrinos with mass m = 7.1 keV and the mixing angle
sin2 2θx = 5× 10−11 produced during the first second of explosion for
three cases as was described for the left panel.

We can find, that the maximum (in terms of parameters of HNLs) of the

production rate corresponds roughly to mass

dE
dms

= 0 → m max
s =

√
8TmaxV eff|r=r(Tmax) (3.69)
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This maximum mass production can be different at a different time due to

varying temperatures and density profiles. There is no simple estimate for the

emitted energy but one can assume that it also depends on the temperature

at least as an energy density of active neutrinos ∼ T 4 so the changes of this

SN parameter is affecting the results quite significant and can depend on

the explosion model a lot. Damping significantly distorts the picture as high

energy/mass production becomes suppressed.

3.6.1 Supernovae toy model results, potential
uncertainties

As a cross-check, that the values we obtained are not just accidental for a

specific SN model we repeated all the machinery of calculations for our toy

model described in Sec. 3.2.

The result is present at Fig. 3.16. Besides the toy model with parameters

we introduced, we also calculated the result with slight variations of the -

modified maximum temperature to values Tmax = 25 and 35 MeV and for

another temperature profile (quadratic T ∼ r−2, compared to the linear one
4). The influence of temperature modification in the toy model on the emitted

energy is on a par with that in the fiducial model, such that that 10 − 20%
changes of temperature lead to modification of emitted energy via a factor of

∼ 2− 3.

Although we see a difference in the behavior of the emitted energy depending

on the HNL parameter, which is absolutely expected due to the fact this toy

model is very artificial of our model, some of the features remain the same

in both fiducial and toy model results: (i) Maximum emitted energy in form

of sterile neutrinos is always at the level Es h O(1) × 1053. It reflects that

the back-reaction slows the conversion process efficiently in quite different

conditions, such that it is hard to obtain the overproduction of sterile neu-

trinos over the production of active ones, (i) The influence of the potential

uncertainty of temperature profile shape/ maximum values is relatively similar

for both fiducial and toy model. Hence, this is not an accidental feature of a

4Assuming, that value of Tmax in this profile as well as Tmin is the same. As we have found
out, energy emission at large radii is suppressed due to large resonant energy so the exact
profile at R & 20− 30 km is not relevant.
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Figure 3.16: Left panel: Energy emitted by sterile neutrinos in a toy model (thick
lines) and modified toy model (thin dashed lines) - when central tem-
perature in the SN is decreased to 25 MeV, which correspond to scaling
of temperature for ≈ 15%. Shaded region shows the corresponding
"uncertainty" of production. Sterile neutrino are considered mixed solely
with ντ . Right panel: Uncertainties related to the SN temperature mod-
els. Energy, emitted in the form of sterile neutrinos as a function of
the mixing angle for the mass ms = 20 keV. The curves show the ef-
fects of changing the maximal temperature Tmax by ±5 MeV as well as
and different scaling of the temperature profile between Tmax and Tmin
(quadratic rather than linear).

particularly chosen explosion simulation/particular snapshots. The production

rate is indeed very sensitive to the exact values of the temperature inside the

supernovae, information about which, unfortunately, we have nowhere to

draw from. Since the inner part of the SW, close to the core, is non-transparent

in relation to both neutrinos and photons. So we can only rely for now on

the numeric simulations of star collapse and subsequent explosion, which,

as we have shown in Fig. 3.5 can be very different. In order to qualify the

uncertainties, we also repeat our calculations in the model with the same

temperature profile, suppressed in amplitude by 20% – a highly conservative

estimate The exact value of temperature modification we used does not have

any well-defined origin. The main point here was to demonstrate, how much

production of sterile neutrinos depends ont the assumed temperature. As the

temperature difference (in the area of most intense production - around 10-20

km) may be much higher, than correction of 15 − 20 %, see the comparison

of temperature in two different simulations at Fig. (3.5). Hence, we only

wish to demonstrate, that even smaller modification can lead to significant

changes in sterile neutrino energy production. We stress that Fig. 3.13 does not

correspond to any constraints on sterile neutrino parameters. Given our current

knowledge about SN explosions in general and about SN1987A in particular,
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it is impossible to determine what energy loss would be incompatible with

existing scarce observations (see Section 3.4 and ?? for discussion). Addi-

tionally, a pure resonant conversion without scattering production does not

exceed the commonly used limit of 3 · 1053 erg [181] so we avoid setting even

order-of-magnitude constraints.
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4Cosmological constraints
on HNLs

4.1 BBN

One of the most important and accurate measurements referred to early Uni-

verse is the abundance of the light elements - D, He-3, He-4, Li-7. The Standard

model scenario of production of such elements - primordial nucleosynthesis

(BBN) can predict the corresponding abundances in the Universe with high

accuracy. The corresponding cosmological observations can give those abun-

dances relatively (compared to many others) high accuracy. As a consequence,

the presence of feebly interacting particles that affect primordial nucleosynthe-

sis may be significant enough to set constraints on their parameters.

4.1.1 Observation of primordial abundances

The abundance of the light elements does not remain unchanged after the

BBN. After the star’s formation started, nucleosynthesis inside them during

thermonuclear burning reactions will transfer a fraction of light elements into

heavier elements. Depending on the degree of star formation and burning,

observed abundances of light elements would be shifted from the initial value

while the presence of heavy - metal - elements would become noticeable.

Hence, only low-metallicity regions become interesting for measurements.

Currently, Helium measurements are based on the relative strength of emission

lines of H-I and He-I in metal-poor local galaxies. The observed value then

can be extrapolated to zero metallicity. The same approach is used for other

abundances, like deuterium D/H ≡ N (DI)/N (HI) or other elements and

isotopes.
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Figure 4.1: Light elements abundances observations (white boxes corresponding to
statistical error, and the yellow - systematics) with 2σ confidence level
data together with the SM predictions of their values for D,3He,4He,Li.
Thickness of the lines correspond to theoretical uncertainty. Credits:
[191]
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According to PDG, the current most precise measurements provide around a

one percent precision for deuterium:

D/H = (2.547± 0.025) · 10−6 (4.1)

A different selection of observations may give a bit different result, which

is still consistent with each other within 1 σ. The data is obtained from the

regions with low metallicity (0.001-0.03)× Solar and since there are no more

sources of deuterium, it will correspond to primordial value.

For the Helium-4 , PDG recommends the next value for mass fraction of Helium

to total baryon mass:

Yp = 0.245± 0.003, (4.2)

The uncertainty of a particular result may vary from< 1% (Yp = 0.2551±0.0022
[135]) up to 2-2.5 % [Fernandez:2018xx, 40, 174, 222] at the level of 2σ.

However, there is a discrepancy between those results which does not make

them fully consistent. The possible reason could be different account of

systematics [66]. Hence, while it is not completely stabilized, the error we

consider would be the largest difference between the current results leading

to the conservative bound

0.238 < Yp < 0.257 (4.3)

corresponding for ≈ 3.8% error.

Another Helium isotope - 3He data comes only from Solar-metallicity regions in

the Galaxy, hence could only roughly correspond to the primordial value. The

observed abundance with no radial dependence in our galaxy was interpreted

as upper limit for the primordial value [44]

3 He/H < (1.1± 0.2) · 10−5 (4.4)

In the case of Lithium-7, extrapolation for zero-metallicity is unavailable

and observational data provides a lower bound for its abundance from low-

metallicity stars ( Fe/H � 10−3( Fe/H) solar). The value may vary in differ-
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ent star samples and can correspond to destruction of 7 Li in stars atmo-

sphere.Therefore, available measurements (e.g. [196]) gives the next bound:

7 Li/H > (1.6± 0.3) · 10−10 (4.5)

There is no observation of primordial Tritium as it is unstable and decays, while

the primordial abundances of Heavier stable elements would be extremely low.

Therefore, the best accuracy of measurements is associated with deuterium and

Helium-4. Illustration for abudances of light elements is shown at Fig. 4.1

4.2 SM BBN

The Standard model Big Bang Nucleosynthesis scenario is completely based on

the neutron-to-proton ratio in the Universe at the moment of nuclei production.

Free neutrons decay will not be observed since they decay fast τ n ≈ 880s, so

the relative abundance of all elements will be determined by neutrons and

protons at the earliest stages of Universe evolution.

4.2.1 Instant freeze-out approximation

Let us start from the temperature, much higher, than the one, relevant to BBN.

At the highest temperatures of T > T QCD, there are no bound states of baryons

or mesons and only free quarks are present at plasma. When the temperature

drops below the QCD phase transition, quarks are getting bounded producing

a huge variety of hadrons. Their population could be significantly higher,

than allowed by thermal production since the T QCD ∼ 102 MeV is lower, than

mass of most of hadrons while number density of quarks available for forming

bound states before the transition was comparable to the one of photons due to

low mass of first quark’s generation. Hence, "excessive" hadrons would either

decay fast or annihilate. Population of baryons, though, will not go to zero at

low temperatures due to the presence of baryon asymmetry of the Universe

resulting in a tiny fraction of baryons survive at the level of nb/nγ ∼ 10−10.

At the temperature of few · MeV, only neutrons and protons are present at
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plasma among all hadrons. Ratio of their densities is kept in equilibrium by

weak reaction processes, converting n↔ p:

n+ νe ↔ p+ e− (4.6)

n+ e+ ↔ p+ ν̄e (4.7)

n↔ p+ e− + ν̄e (4.8)

Ratio of neutron to proton densities is given by Boltzman distribution:

nn
np

= Exp
[
−Q− µe

T

]
(4.9)

where µe - electron flavor asymmetry in leptons. This parameter in SM is

very small, of the order of baryon asymmetry and hence, can be neglected.

Q = mn −mp. = 1.293 MeV - mass difference between neutron and proton.

Weak processes decouple when their rate equal to Hubble rate

Γ w(T ) = H(T ), Γ w ∼ G2
FT

5, H =
(

1.66√g∗T 2

M pl

)
(4.10)

where M pl - Plank mass, g∗ - effective number of relativistic species in plasma

(see Plot 4.2), in the SM at temperatures T ∼ 1 MeV plasma consist of photons,

electrons, positrons and three neutino/anti-neutrino species each with either

equilibrium or close to equilibrium distribution. Value of g∗ in Standard model

is:

g∗ ≈ 2 + 7
8 (2 · 2 + 2 · 3) = 10.75 (4.11)

First-term corresponds for two photons polarisation, factor 7
8 - for all fermions,

for which 2 ·2 - two spin states for electrons and positrons and 2 ·3 - 1 spin state

for each neutrino and anti-neutrino of each flavor. An accurate calculation of

this parameter, that does not assume perfect equilibrium distribution of neutri-

nos will give a slightly different value. Due to electron-positron annihilation at

lower temperatures, its value will decrease at T < me.

Such estimate gives a temperature of weak reaction decoupling T h 2-3

MeV.
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Figure 4.2: Left panel: evolution of effective number of relativistic species with
temperature. Two rapid drops correspond to the electron-positron anni-
hilation at T ≈ 0.1 MeV and the QCD transition at T ≈ 150 MeV. Right
panel: Comparison of the SM Hubble and n→ p weak conversion rate
behaviour with temperature. At smaller temperature, Γn→p formally
becomes higher, than Hubble rate. But only because it has a constant
contribution from neutron decays. But at such temperatures, no more
neutrons left.

More accurate calculation of n↔ p conversion rate is given by:

Γ n→ p = Γnν→ep + Γne+→pν̄ + Γn→peν̄ (4.12)

With partial rates

Γnν→ep(T ) = (1 + 3g2
1)G2

F

2π3

∞∫
0

dkν
√

(Q+ kν)2 −m2
e(Q+kν)k2

νfν(ke)fe(−Q−kν),

(4.13)

Γne+→pν̄(T ) = neσne+→pν̄v ≈
(1 + 3g2

1)G2
F

2π3

∞∫
0

dkek
2
e(Q+Ee)2fe(Ee)fν(−Q−Ee),

(4.14)

Γn→peν̄(T ) ≈ (1 + 3g2
1)G2

F

2π3

√
Q2−m2

e∫
0

dkek
2
e(Q−Ee)2fe(−Ee)fν(−Q+Ee), (4.15)

where g1 = 1.26 - from axial current component. Ee energy of the electron, fx
- equilibrium distribution function of particle x. . Hubble and weak conversion

rates become equal at temperature Tn = 0.71 MeV, see left panel of Fig. 4.2.

We would refer to this temperature as neutron freeze-out temperature. Starting

from this temperature, neutron abundance would change only due to decays

of neutrons and Universe expansion.
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When temperature drops below the electron mass, rate of EM reactions, that

are in perfect equilibrium:

e− + e+ ↔ γ + γ (4.16)

start to tend to the r.h.s. When the Universe cool down, energy of photons

become not enough to produce electron -positron pair, while nothing stops

the annihilation. As soon as temperature drops below T � me the population

of electrons and positrons almost completely disappear (up to the value of

number density of protons, due to the electroneutrality). During this annihila-

tion photons are being heated up with the annihilating electrons, but other

decoupled species - nucleons and neutrinos do not recieve anything. As a

result their relative (to photons) abundance decreases. For nucleons, the same

as for neutrinos there appears additional factor for number density (and for

energy, in the case of neutrinos). This factor can be found from entropy release.

Due to relation of entropy conservation, we can find how would scaling factor

change due to this rapid energy release at temperature of annihilation Tann

s(T )a(T )3 = const,
a(T > Tann)
a(T < Tann) = 2

2 + 7
84 = 4

11 (4.17)

Hence number density of all decoupled particles would get a rapid decrease

with factor
(

4
11

)
and the energy of neutrinos would be changed with factor(

4
11

)1/3
.

Introducing neutron fraction at the moment of decoupling :

Xeq
n (Tn) ≈ e−Q/Tn

1 + e−Q/Tn
, (4.18)

Xeq
n (T < Tn) = Xeq

n (Tn) · Exp
[
−t(T )

τn

]
(4.19)

During the evolution of free neutrons, they can participate in nuclear reaction,

forming deuterium n + p → d + γ since nuclear reactions have significantly

higher rate, than weak processes. But in the same time, photo-disintegration

by photons in plasma prevents deuterium to survive. It means, that there

could not be a significant population of deuterium until photons can effectively

destroy it. Such moment can be estimated as temperature, at which number
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of photons with energy, higher, than deuteron binding energy Qd ≈ 2.22 MeV

is equal to total number of baryons

nEγ>Qdγ =
∫ inf

Qd

fγ(T, pγ)d3pγ ≈
Exp[−T/Qd]

π2 T · (Q2
d+2QdT +2T 2) = ηB ·nγ(T )

(4.20)

. Solution of this equation gives Td ≈ 75 keV and only weakly (logarythmic

dependence )depends on the parameter of baryon-to-photon ratio. After this

temperature, network of nuclear reactions start producing light nuclei. But

going straight to the result, almost all neutrons that did not decay before

t BBN ≡ Td end up in Helium-4, so primordial mass abundance of 4He can be

estimated as

Yp = 2Xn(t BBN) = 2Xeq
n (Tn)e−t BBN/τn (4.21)

. It means, that accurate calculation of neutron-to-proton ratio at the moment

of start of nuclear synthesis can be translated into Helium-4 abundance.

4.2.2 Exact evaluation of neutron abundance

The estimate, we shown before, can be refined using Boltzmann equation

approach. The neutron abundance Xn(t) is a solution of the following kinetic

equation:
dXn

dt
= Γp→n(t)(1−Xn)− Γn→p(t)Xn,

H2(t) = 8πGN

3 ρ(T ),
(4.22)

To solve this equation we need the temperature (time) dependence of the n↔p

conversion rates - Γn→p(t), Γp→n(t) and T (t), one can find the evolution of Xn.

When those rates are much higher, than Hubble rate, solution of Boltzmann

equation can be given by local equilibrium value obtained from setting r.h.s.

of Eq.(4.22) to zero:

Xeq
n (T ) ≡ Γp→n

Γp→n + Γn→p
,

nn
np

= Γp→n
Γn→p

, T > Tn (4.23)

If all particle species participating the rates are in thermal equilibrium - with

Fermi-Dirac distribution, n-to-p ratio from local equilibrium value can be

calculated directly from conversion rates or from Boltzmann distribution.

In the SM scenario, neutrinos decouple earlier, than the freeze-out of n ↔
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p conversions. But although neutrinos can not maintain their Fermi-Dirac

distribution with weak reactions, there are no sources of significant distortions

of their spectra.1

Let us compare the behaviour of Xn(T ) and final value Xn(T BBN), obtained

from Boltzmann equation and from estimate:

Numeric
Numeric (w/o n decay)
Analytic (α = 1.283)
Analytic (α = 1)

0.1 0.2 0.5 1 2
0.10

0.15

0.20
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X
n

Figure 4.3: Left panel: a behavior of the neutron abundance Xn in SBBN. The blue
lines denote the numeric solution of Eq. (4.22) with (solid line) and
without (dashed line) neutron decays. The green lines correspond to
the analytic estimate (4.21), according to which Xn is in dynamical
equilibrium until the temperature Tn given by Eq. (4.24). The vertical
red line denotes the value of Tn ≈ 0.793 MeV for a choice α ≈ 1.283.
Right panel: a behavior of Xn in presence of toy model p↔ n rates which
are much larger than the SM rates, maintain Xn = 1/2 and rapidly switch
off at T = 1.2 MeV. See text for details.

As expected, evolution of Xn at large temperatures completely coincides

with the simple estimate. When temperature decreases, difference between

numeric and analytic result increases and relative discrepancy can be as high as

(Xnum
n −Xana

n )/Xnum
n ≈ 45% at the estimated temperature of decoupling T = Tn

(so despite this estimate gives relatively good correspondence with the numeric

result at higher and lower temperatures, at the decoupling, difference may be

quite significant ). With the further temperature decrease, the discrepancy is

getting smaller finally became almost constant at the level of X analytic
n /X numeric

n

at T � Tn once numeric solution shows freeze-out of neutrons. This relates

for the final Xn(T BBN) value as well.

1There are minor distortions occurring during electron-positron annihilation at T . me due
to annihilation channel e+ ē→ ν + ν̄, but it happens at temperatures, lower, than neutron
freeze-out
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Note, that analytic Tn behavior at temperatures Tn, dec does not have much

in common with "true" freeze-out behavior of neutrons. It is seen from the

Fig. 4.3, that only at the temperature of T h 200− 300 keV neutron abundance

start to evolve only due to decays, meaning, that all n↔ p conversion 2↔ 2
reactions already decoupled (as we have mentioned, formal rate of neutron

decay will become higher, than Hubble rate at some moment, but that does not

mean anything, as all neutrons would be either bounded or decayed up to than

moment). Such smooth decoupling is a result of the power law of interaction

rates, that is partially canceled with Hubble rate temperature behavior.

Yet, at smaller temperatures, discrepancy is smaller so such estimate represent

the final result relatively good. For the further estimates we can impose a bit

"modified" estimate of the neutron decoupling temperature, that reproduces

the numeric result:

Γn→p(Tn) = α ·H(Tn), where α ≈ 1.283, (4.24)

It is seen in Fig. 4.3, that not only the final result for neutron abundance

coincide, but temperature-dependent behavior at intermediate temperatures is

closer to the numeric result.

4.2.3 Corrections

Now, let us look, how new physics can affect the BBN at the stages before start

of light nuclei synthesis, (let us call it pre-BBN phase) or in other words, how

neutron abundance can be affected. Let us consider the estimate (4.21) to

classify, which quantities can be affected

• Neutron decoupling temperature Tn - defines the neutron-to-proton ratio

at decoupling. This parameter can be affected by changing both the

expansion rate of the Universe and the interaction rates.

• Neutron-to-proton ratio temperature dependence Xn(T ). In the SM

case, n/p value is given by Boltzmann exponent so this value is fixed

at decoupling but in the BSM case, non-equilibrium corrections for the

conversion rates might change it due to (4.23).
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• Neutron free decay time t BBN - this parameter can be affected if the

Hubble rate changes or the temperature of the deuterium bottleneck Td
is shifted. The latter case is highly unlikely as it depends on the highly-

equilibrium photon distribution and baryon-to-photon ratio parameter

ηB. In what follows we will see, that this value can be affected with

decays of non-equilibrium particles.

Physically, change of those values is a result of the change of Hubble rate ≡
change of effective number of relativistic degrees of freedom g∗ or change of

weak conversion rates that are separated into either modification of active

neutrino spectra or rates, associated with particles, that are absent in the SM

scenario.

For a simple beginner estimate, let us consider a case, when additional de-

coupled particle species are present in plasma at the moment of neutrino

decoupling, hence not changing n ↔ p conversion rates (for example, dark

matter particles or HNLs with small mixing angle that did not decay yet). This

would result in additional energy density compared to the SM case that can be

expressed in a correction to the effective number of neutrino species:

δg∗ ≡
ρ bsm

π2/30T 4
n

(4.25)

Increase of the energy density leads to faster Universe expansion and hence

- for an earlier decoupling of neutrons. Assuming δg∗ is small compared to

g SM(T ∼ MeV) ≈ 10.75 in the SM case:

H(T ) = 1.66
Mpl

√
g∗ =

(
1 + δg∗

2g SM

)
H SM(T ) (4.26)

Taking our modified estimate (4.24) and assuming for the rough estimate

Γn→p ∼ T 5 we find correction for the decoupling temperature

Tn ≈ T SM
n

(
1 + δg∗

6g SM

)
(4.27)
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leading to the change of neutron-to-proton ratio

nn
np

=
(

1 + Q

Tn

δg∗
6g SM

)
nn
np
| SM (4.28)

Effect of correction to energy density is not limited to the change of neutron-

to-proton ratio at decoupling. Larger value of the Hubble parameter leads to

faster Universe cooling so it reaches the temperature of Td faster and there is

less time for neutrons to decay.

Strictly speaking, time-to-temperature relation depends on the dynamics of

the g∗ which is non-trivial even in the SM scenario due to electron-positron

annihilation. But since most of time passes, when temperature is low and

effective number of species is established we still can use simple estimate:

t(Td) = M pl

2 · 1.66√geffT 2
d

≈ t BBN

(
1− δg∗

2g SM(Td)

( 4
11

)4/3)
(4.29)

here t(Td)| SM ≈ 200 s, factor
(

4
11

)4/3
appears since e− e+ annihilation affects

all decoupled species, diluting them. Note, that this estimate will work only

in case if correction to energy density is generated by relativistic particles,

otherwise their energy density contribution will not scale as T 4 but as T 3, only

with number density. So in case of non-relativistic contribution, correction δg

will be increasing with temperature.

Together with (4.28), final estimate for the change of neutron to proton ratio

at T = Td ≡ estimate for Helium abundance change is

Yp ≈ Y SM
p

(
1 + Q

Tn

δg∗
6g SM(Tn) + t BBN

τn

δg∗
2g SM(Td)

( 4
11

)4/3)
≈ Y SM

p (1 + 0.04 · δg∗)

(4.30)

Increase of the energy density leads to increase of Helium outcome. Such

estimate is the simplest constraint one can set for novel particles, that might be

present before Td. Note, that this estimate accounts only effect of decoupled

species without considering their decays, energy injections, distortions of

particles spectra etc. We will see in what follows, that this effect is only minor

one compared to others. Moreover, it becomes completely negligible for a

certain region of HNL parameters. We will not consider other minor changes,

that might appear like change of neutron life-time due to Fermi-blocking in
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case of presence of non-equilibrium corrections to neutrino spectra. Also, we

will discuss post-BBN effect later.

4.2.4 Synthesis of lightest nuclei:Deuterium
production

Besides weak reactions, there are also strong nuclear reactions between neu-

trons and protons. Although their rate is suppressed via low density of baryons

governed by baryon-to-photon ratio ηB ∼ 10−10, cross-section of strong reac-

tions is much higher, than of the weak. One can expect, that it should lead to

effective production of deuterium in

p+ n→ d+ γ, 〈σv〉dpn ∼ α/m2
π (4.31)

Let us estimate, when such reactions would go out of equilibrium:

Γpn→d = H(T ), Γpn→d = 〈σv〉dpn · nB ∼
α

m2
π

ηBT
3 (4.32)

Ts, dec =

√
g∗(Ts, dec)m2

p

Mpl∗ηB
∼ 10−7 MeV (4.33)

Here we used geometrical cross-section estimate. Such rough estimate tells,

that nuclear reactions will be in equilibrium until ∼ eV temperature, long

after decoupling of weak reactions. But together with this process, photo-

dissociation of deuterium proceed

d+ γ → p+ n, Qd, diss ≈ −2.224 MeV (4.34)

This reaction has a threshold defined with binding energy of deuterium. Cross-

section of this process depends on energy. Analytic fit for it is given by [89]

:

σd, diss(Eγ) ≈ 18.7 mb



√
|Q|(Eγ − |Q|)

Eγ

3

+ 0.008

√
|Q|(Eγ − |Q|)

Eγ

2
1.3 MeV

Eγ − 2.18 MeV


(4.35)
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Figure 4.4: Left panel: Comparison of deuterium synthesis and photo-dissociation
rates for different temperatures. Baryons species in the synthesis rate is
not specified and taken as nB = ηB ·nγ - total number density of baryons.
This value can be lower if one take number density of neutrons. This does
not change the result of the estimate significantly. Right panel: Evolution
of number fraction of deuterium Xd ≡ nd/nB if it can only be synthesised
or dissociated without participating in other nuclear reactions. It perfectly
corresponds to dynamic equilibrium values.

If there would be no more processes which involve deuterium, equation for its

abundance would be:

dXd

dt
= 〈σv〉dpnXnnp − Γd, dissXd (4.36)

At high temperature, photo-dissociation rate is several orders of magnitude

larger, than synthesis rate. So the number density of deuterium nd is negligible.

But when temperature drops below T ∼ 0.1 ·Qd, number of photons, that can

participate in conversions becomes exponentially suppressed and at tempera-

ture T ∼ 0.09 MeV condition Γpn→d = Γd, diss is satisfied, so nd ∼ np ∼ nn. With

further decrease of temperature, photo-dissociation is turned-off and since

nuclear reactions are still in a good equilibrium, all available pairs of neutrons

and protons become bounded in deuterium nuclei.

Once production of deuterium is not suppressed via photo-dissociation, pro-

duction of heavier nuclei starts.
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4.2.5 Synthesis of elements, heavier, than
deuterium

Values of binding energy for heavier elements nuclei are larger than in the

case of deuterium, so photo-dissociation would have larger threshold energies.

For example, for reactions with minimal threshold energies we would have

Qγ,th
t ≈ 6.25 MeV for tritium, Qγ,th

3He ≈ 5.49 MeV for Helium-3 and Qγ,th
4He ≈ 19.81

MeV for Helium-4. It means, that we would lack photons with enough energy

before deuterium started producing, so photo-dissociation would not affect

the synthesis of such nuclei. Note, that some of the heavier nuclei might have

relatively low threshold energy, as (see [89]) Qγ,th
7Li ≈ 2.46 MeV or Qγ,th

7Be ≈ 1.58
MeV. But production of those nuclei is possible only after previous - lighter, are

already formed, so photo-dissociation would also not affect anything earlier.

Also, no need to consider reactions with three nucleons as initial reactants

as it will be significantly suppressed due to additional baryon-to-photon ratio

factor.

Figure 4.5: Nuclear reaction network in order, they proceed in the SBBN scenario
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Figure 4.6: Comparison of photo-dissociation cross-sections of different nucleus -
D,T,3He. 4He is not included as the threshold of the photo-dissociation
is Q4He ≈ 20 MeV, with negligibly small change to find a photon with
such temperature. We see, dissociation of deuterium has in the same
time smallest threshold and largest cross-section. It means, that at the
moment, photo-dissociation became irrelevant for Deuterium, it became
irrelevant for all particle species.

The next stage of nuclear reaction network is a production of Helium-3 and

Tritium in reactions

D +D → n+3 He, D + p→ γ +3 He

D +D → p+ T, D + n→ γ + T

3He + n→ p+ T

(4.37)

Unlike the previous case with deuterium, initial reactants in those processes are

same-charged. Therefore, their cross-section has a contribution from Coulomb

repulsion. For such reactions to proceed, nucleons must pass the Coulomb

barrier with tunnelling, as the energy of nucleons is not enough to approach

them at effective distance of strong force r ∼ m−1
π . Hence, the cross-sections

would have form

σv = σ0(E) · Sc(v, Z1, Z2,M) (4.38)

where σ0(E) - strong cross-section in the absence of Coulomb contribution

and Sc(v, Z1, Z2,M) - tunnelling probability factor, that depends on velocity

of nuclei v, charge of both reactants Z1, Z2 and their reduced mass M =
M1M2/(M1 + M2). Value of σ0(E), in the range of energies E ∼ 10 − 100
keV is varying a little ([128]) and for an estimate can be taken as constant.

In reactions, where photons are not present σ0 ∼ m−2
π , while if they are,
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additional factor appears σ0 ∼ α · m−2
π so the processes with photons are

additionally suppressed. The tunnelling amplitude is given by (see [191])

Sc = 2παZ1Z2

v
· e−2παZ1Z2/v (4.39)

Then after averaging the cross-section over the Maxwell-Boltzmann distribu-

tion we have

〈σv〉 ≈ σ0 ·
2√
3

(2παZ1Z2)4/3
(
M

T

)2/3
e−

3
2 (2παZ1Z2)2/3(MT )1/3

(4.40)

Values of averaged tunneling factor are given at Fig. 4.7.
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Figure 4.7: Coulomb tunnelling suppression factor for different reduced masses and
charges of nuclei. With increase of mass and charge, this suppression
factor might decrease up to several orders of magnitude. It is one of the
reasons, that will prevent heavy nuclei to form in primordial nucleosyn-
thesis.

Coulomb suppression is not significant for production of T and 3He. Hence,

nuclear reactions do not stop on production of deuterium. Consider the

processes D +D →3 He/T + p. An estimate for their cross-section is the same.

For both of them, the rate of deuterium burning depends on its own number

density. Once nd is large enough, such that burning rate is larger, than Hubble

rate, the deuterium is getting converted to either 3He or T.

ΓT,Heprod = 〈σv〉DDnd > H(T ) (4.41)

where 〈σv〉DD is averaged cross-section (4.40) with (M = mp, Z1 = Z2 = 1).
At temperature T = T BBN, it is enough to have nD/np ∼ 10−5 to satisfy the

above condition. It can also serve as a very rough estimate, on the abundance
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of deuterium, frozed-out at the end of BBN. More accurate estimate on this

number, obtained from approximate solution of kinetic equation

dnDn
dt

+ 3HnDn = −〈σv〉DDn2
D, nDn = nn + nD (4.42)

gives (see [191]) nD
np
≈ 2 · 10−5.

We can also consider other processes, like p+D →3 He + γ. On the one hand,

it’s buring rate depends on density of protons, but this is a photon-involving

process. Measurements of cross-section [92], [158] gives a value significantly

lower, than in D +D → ... reaction 〈σv〉Dp ∼ 0.5− 1µb. It makes the process

not relevant for definition of D/H freeze-out value.

Following the previous logic, if the were no other reactions with T and 3He,

almost all neutrons will end up bounded in those nuclei, since reactions freeze

out only for low abundances of both neutrons (in D production) and deuterium

(in its burning).

The next stage of nuclear network is a production of Helium-4. Corresponding

processes would be

T +D → n+4 He, T + p→ γ +4 He
3He +D → p+4 He, 3He + n→ γ +4 He

(4.43)

Similar to the (4.37), those reactions can be separated into one involving pho-

tons and without them. Reactions with γ would have additional suppression

in cross-sections from EM-interaction. Note, that Helium-3 burning reaction

D +3 He →4 He + p proceed through resonance and a simple geometrical

estimate is not viable here ([88]).

Instead, cross section can be estimated as ([191])

〈σv〉3HeD ≈ 0.03barn ·
(

T

0.086 MeV

)−1/2
e−1.8·(0.086 MeV)/T (4.44)

Somewhat similar estimate also present for cross section of Tritium burning

T +D →4 He + n

〈σv〉TD ≈ 0.03barn ·
(

T

0.086 MeV

)−2/3
e−0.5·(0.086 MeV)/T (4.45)

76 Chapter 4 Cosmological constraints on HNLs



Both of these cross-sections are higher, than those of deuterium production

and burning, although Coulomb correction is stronger in the latter case at

low temperatures T ∼ 10 keV. Following the same logic as before, residual

abundances of 3He and T right after BBN would be small, transferring neutrons

into being bounded in Helium-4 nuclei. Note, that T primordial abundance

can not be measured as it is unstable so we would be interested only in

It is, although, not a completely trivial statement. The processes we mentioned

above are all dependent on the abundance of deuterium. If its burning rate

was significantly higher, than the burning rate of 3He to T, at some moment

all deuterium would be transferred into either Helium-3 or tritium and in

this case those processes (4.43) with D would be terminated. Production of

Helium-4 would be still available but with the considerably lower rate, leading

to completely different abundances of light elements. Though, it is not the

real scenario, as the burning rate of 3He is actually significantly higher, than

the one of deuterium. It allows all neutrons to gradually be "transferred" first

to deuterium, than to Helium-3 and Tritium and afterwards - to Helium-4

without "staggering" anywhere.

In principle, we could expect continuation of this scenario and production of

more and more heavy nuclei. But Coulomb barrier suppression becomes too

significant, together with fact, that reactions of production of next elements -

lithium-7/6 and berilium-7 all proceeds with emission of a photon, hence with

additional EM constant suppression.

T +4 He→ γ +7 Li, 3He +4 He→ γ7Li, 4He +D → γ +6 Li (4.46)

Numerical value of T burning cross-section can be estimated from

〈σv〉3HeD ∼ 33µbarn ·
(

T

0.086 MeV

)−2/3
e−8·(0.086 MeV)/T (4.47)

the corresponding rate at T BBN is already smaller, than expansion rate

〈σv〉3HeD · n4He

H(T ) ∼ 0.1 at T = T BBN (4.48)
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. Moreover, Lithium burning 7Li+p→4 He+4 He cross section does not involve

photon and has the similar Coulomb suppression, so it is significantly higher,

than Lithium production rate.

〈σv〉3HeD ∼ 33 · 103µbarn ·
(

T

0.086 MeV

)−2/3
e−8.5·(0.086 MeV)/T (4.49)

This prevents the effective production of heavier nuclei in primordial nucle-

osynthesis.

Summarising the story we see, that nuclear reaction dynamics lead to such a

redistribution between different, that abundances of D, T, 3He, 6,7Li, 7Be are

much less than one, for the lightest nuclei it is supported by fast burning rates,

while for heavier - on the contrary, with production rate that is too slow. The

only abundance values, that are relatively large correspond to Helium-4, where

almost all neutrons, available as free particles at T � T BBN are stored.

4.3 HNLs before BBN epoch

The impact of the HNLs on the BBN depend on their number and energy density.

And since the decoupling process of neutrons is not instant, we will require not

only instantaneous value at T = Tn but evolution of corresponding parameters.

This evolution can be separated into several periods -(i) before HNLs final

decoupling from the SM plasma T < T dec (strictly speaking, due to matter

effects HNLs will be decoupled from the SM plasma at the highest temperature,

then they might enter the stage of equilibrium with other species and with

temperature decrease and only after that would be completely decoupled from

plasma); (ii) free HNLs evolution before their decays t . τN ; (iii) Evolution of

HNls during their decays until the negligible population reached.
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4.3.1 T < T dec Production and decoupling of
HNLs

Heavy neutral leptons can interact in νMSM with other particles only via

mixing to active neutrinos. Hence, they can participate in any SM reaction of

the form ∑
i

Ai →
∑
j

Bj + ν,
∑
i

Ci + ν →
∑
j

Dj (4.50)

instead of active neutrino if such reaction would be allowed by energy-

momentum conservation, since HNLs compared to active neutrinos might

me significantly heavier. Any matrix elements, cross-sections or rates of such

reaction will be suppressed via mixing parameter U with corresponding power.

Due to this suppression, production of HNLs can be significant only at high

temperatures, higher, than active neutrino decoupling T > Tν, dec and in reac-

tions . We have used matrix elements from [194] (Appendix D.) Roughly, one

can expect, that the interaction rate of sterile neutrinos will be Γ int
N ∝ U2G2

FT
5

and hence there will always be a temperature, when the interaction rate is

significantly higher, than the Hubble rate as it scales with T as: H ∼ T 2. But

due to matter effects, that are present in hot and dense SM plasma, mixing

parameter will obtain an effective value. In the case of absence of lepton asym-

metry, at temperatures T & 1 GeV its effective value becomes (see e.g. [168,

98]):

U2
m(T ) ≈ U2[

1 + 9.6 · 10−24
(

T
1 MeV

)6 ( mN
150 MeV

)−2
]2 (4.51)

Numeric coefficients may vary at some level, due to different species population

available in plasma, but the general conclusion is that interaction rate Γ int
N ∝

G2
FT

5U2
m is suppressed both at low (as T 5) and high (as T−7) temperatures.

Now , this interaction rate can be compared with Hubble rate. Two cases are

possible:

• There was a period, when interaction rate was higher, than of expansion

Γ int
N & H(T ). Then we can expect, that HNL’s population achieved

equilibrium value. In this case, their number and density is totally
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defined via temperature of plasma and mass of neutrino and while

neutrinos are coupled to SM plasma, they have Fermi-Dirac distribution

fN = 1

Exp
(√

p2+m2
N

T

)
+ 1

(4.52)

• Interaction rate was always lower, than of expansion Γ int
N . H(T ). In

this case, number density of HNLs is defined by whole evolution period

and can be obtained by solving Boltzmann equation

∂nN
∂t

+ 3H · nN = Γ int
N · nN (4.53)

From (4.53) we can set a condition, when HNLs may enter equilibrium. From

(4.51) and Γ int
N ∝ G2

FT
5U2

m, temperature, where interaction rate reaches its

highest value Tmax is roughly (see Fig. 4.13).

Tmax h 10 GeV ·
(
mN

1 GeV

)1/3
(4.54)

We imply condition Γ int
N (Tmax) = 3H(Tmax) to find the smallest mixing angle

values dependence on mass for HNLs that might enter equilibrium:

U2
min & 6 · 10−12 · 1 GeV

mN

(4.55)

In this work, we will only consider HNLs with mixing angles above Umin.

Eq. (4.55) thus provides the lower bound below which our studies are not

valid.2 Notice that if HNLs are responsible for the generation of neutrino

masses, there exists another lower bound on the mixing angle – the seesaw

bound. At least one HNL with mass mn should have a mixing angle above

this bound to be responsible for the generation of the atmospheric neutrino

mass difference, c.f. [25]. The bound depends on details of the given HNL

model – mixing pattern and neutrino mass hierarchy (see, e.g., [104, 192]).

2Our results can be readily extended for non-equilibrium and non-resonantly produced
HNLs [94, 36]. See e.g. [120].
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For simplicity, as the scale of the see-saw bound we will use the toy-model

estimate

U2 & U2
see-saw ' 5 · 10−11

(1 GeV
mn

)
(4.56)

The true see-saw bound may differ from the toy model estimate by within an

order of magnitude.

In the second case of never-enter-equilibrium HNLs, there is no decoupling

temperature but in the first case, we can introduce two temperatures T+ and

T− of entering the equilibrium and decoupling correspondingly. While the

first value T+ does not represent much interest since subsequent (T < T+)

evolution will only lead to equilibrium, the second value T− will define the

final distribution/number densities of HNLs. They will be frozen-out at T−
and will serve as the initial condition for the period of free evolution before

decays.

Let us roughly define the freeze-out condition for T− as smaller solution of

equation

Γ int
N (T ) = 3H(T ), (4.57)

see Fig. 4.13. An estimate for the decoupling temperature can be done:

T− ' Tν, dec ×


1

U2/3
1
n

1/3
int

(
g∗(T−)
10.75

)1/6

, UR regime

1
U2

1
n int

(100 MeV
mN

)2 (g∗(T−)
10.75

)1/2

NR regime,

(4.58)

here UR and NR regime stands for cases, when T− � mN and T− � mN

correspondingly, Tν, dec ≈ 1.4 MeV is the decoupling temperature of active

neutrinos, n int = ΓN, int/G
2
FT

5/96π3 - parameter, that varies from 1 at T '
O(1 MeV) to ' 3 at GeV temperatures. It depends on the constituents of

plasma and particle species, HNLs are interacting with.

Such difference appears since the rough estimate of interaction rate Γ int
N ∝

G2
FT

5U2
m is not fully correct. In the case of massive HNLs we would have

Γ int
N = U2G2

F s · ni(T ) ∝

 U2G2
FT

5 UR regime

U2G2
Fm

2
NT

3 NR regime,
(4.59)
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as the center of mass energy begins to depend on mass of HNL in non-

relativistic regime. These different rates lead to the different behavior of

decoupling temperature with HNL parameters. The values of T− for different

masses are shown in Fig. 4.12 (left). It is important, that HNLs can decouple

non-relativistic. It means, that even the equilibrium population can be very low

if it is being suppressed via Boltzmann factors. Due to different dependence

on the mass of HNL and another (compared to active neutrinos) temperature

behavior of interaction rate, HNLs might decouple even later, than active neu-

trinos but in this case population of mN & MeV particles will be completely

suppressed.

Finally let us estimate the number densities of HNLs at the moment of decou-

pling in these 2 regimes. It is convenient for the following to parametrize the

population of HNLs in terms of the abundance, defined by

YN =
(
nN
s

)
T=T−

, (4.60)

where nN is the number density of HNLs and s = g∗
2π2

45 T
3 is the entropy density

of the Universe. We use SM value of g∗ here. Contribution for entropy density

from HNLs is small as it can give no more than 2 · 7/8 effective species to

g∗, while SM values of relativistic degrees of freedom at high temperatures

is g∗ ∼ 102. Since entropy density scales with the expansion of Universe in

the same way as number density due to relation sa3 = const, this parameter

will remain constant until decays of HNL start. Depending on the decoupling

regime - UR or NR, abundance may significantly vary. Note, that abundance

also depends on the effective number of relativistic species in SM plasma at

moment of decoupling.

Using nN = 3
42 ζ(3)

π2 T
2 for the UR regime and nN ∼

(
mn
T−

)3/2
e−mn/T− for the NR

regime, we can get the abundance in these two limit cases:

YN '


0.6

g∗(T−) , UR regime

α(mN , τN)
(
mn

T−

)3/2

e−mn/T− , NR regime
(4.61)

Here we introduced numeric coefficient α(mN , τN), since on the one hand

Boltzmann distribution can be very sensitive to temperature due to suppression
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exponent and on the other hand, the decoupling process is not instantaneous.

Absolutely similar to the case of neutron decoupling, estimated decoupling

temperature does not necessarily correspond to the obtained freezed-out

number density of particles. And the more sensitive exponent is, the more

inaccuracy might appear. This factor can vary as much as O(10). For the

exact value, we need to solve the Boltzmann equation as in the case of never

under-equilibrium HNLs ( see Appendix A.4.) There is no such problem in

the UR regime. In this case, no mass-dependence for number density appears

(up to change of g∗(T−)) and although decoupling is still a continuous process

it proceeds faster due to another power law of rates (∼ T 5 in UR regime

compared to ∼ m2
NT

3 in NR) giving us a chance of simple estimate.

The values of calculated abundances for a range of HNL parameters (10−2 GeV .

mn . 2 GeV and τN > 10−3 sec) are presented at Fig. 4.12. For masses

mN > 0.2 GeV, decoupling is UR and occurs at temperature higher, than QCD

transition. While for lower masses, decoupling may occur after QCD transition.

Since there is a significant jump in the number of effective species (see 4.2) at

QCD transition, there will also be a rapid increase of abundances value.

After the decoupling, the frozed-out population of HNLs continues to evolve as

separate speciment affecting only total energy density of the Universe.

4.3.2 Evolution after decoupling T < T dec and
before start of decays

After decoupling, distribution function of HNLs is changed according to redshift

affecting neutrino momentum p→ pa(T dec)
a(T ) where a(T dec)

a(T ) is the ratio of Universe

scale factors at the moment of decoupling and at some later moment defined

by temperature T. The corresponding number density of HNLs is being scaled

as

nN(T ) = nN(T dec)
(
a(T dec)
a(T )

)3

(4.62)

Scaling of energy density depends on the mass, temperature, and decoupling

regime. In the case of the NR regime, E ≈ mN and hence energy density
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changes as number density. In the case of UR - at T � mN scaling would

correspond to radiation

ρN(T ) = ρN(T dec)
(
a(T dec)
a(T )

)4

(4.63)

, at lower temperatures scaling would transit to similar to the NR regime.

According to the mass and lifetime range of HNLs we are interested in, at the

temperatures of neutron decoupling T ∼ 1 MeV, HNLs will be completely non-

relativistic. That leads to the potential outcome, that long-living, massive HNLs

might achieve a larger contribution to energy density, than SM plasma which

continues to scale as radiation up to very late times, so the ratio ρ HNL/ρ SM ∝
YN

mN
T

might become larger, than 1. But we will see, that neutrinos, surviving

for so long would be already excluded so we do not need to consider any

transition to matter-dominated expansion.

Number density of HNLs before decays is defined from abundance and entropy

density values

nN(T ) = YN · s(T ) = YN · g∗(T )2π2

45 T
3 (4.64)

In the SM parameter g∗ undergoes significant change at T ∼ 200 MeV (see Fig.

4.2) when quarks are harmonized. This leads to rapid change in the number

density of HNLs. It can be understood in a next way.

Recall the process of electron-positron annihilation in the early Universe in the

SM scenario. At temperatures below electron mass, such annihilation heats

up photons but does not change the temperature of neutrinos as they are

already decoupled. The number of photons and their temperature increase

after annihilation. Which can be understood as the dilution of neutrinos

compared to photons. Let us generalize this statement:

Assume there are two types of particles in plasma - decoupled and equilibrium

species. And some of equilibrium species begin to decay or annihilate through

channels into others equilibrium species but do without restoring their popula-

tion, due to the mass-temperature ratio. In this case, all decoupled species can

be thought of as effectively diluted compared to equilibrium ones.

This scenario occurs for HNLs as they are decoupled from the SM plasma.

At the temperatures of T = T QCD there is only a small change due to details
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of this transition. At T > TQCD there are free quarks and gluons in plasma,

and they are not hadronized. Their mass is enough to exist up to relatively

low temperatures (especially for u- and d-quarks) but once T drops below

T QCD, hadronization occurs, leaving no free quarks and hence, gluons. They

form another effective degree of freedom in form of mesons and baryons. But

even the lightest of hadrons - π0 and π± mesons with mπ0 = 134.9 MeV and

mπ± = 139.57 MeV are already close to T QCD ∼ 150 MeV so their population

can not be restored effectively. On the other hand, only protons and neutrons

have long lifetimes compared to other hadrons (τb . 10−10 sec among other

baryons and τm . 10−8 among mesons). Hence, when temperature decreases

further, most of the mesons and baryons either decay or annihilates into

remaining longer-living or stable SM particles, leaving only a tiny fraction of

baryons due to initial symmetry. During that decay/annihilation process all

remaining SM sector that is in equilibrium is being heated while HNLs are

untouched.

It results in an additional dilution of HNLs, decoupled at T � T QCD and no

such dilution if T dec � T QCD. Roughly, that leads to the change of population

by the factor of 10. Hence, early decoupled HNLs would be significantly less

abundant, than those, decoupled later. This is not the final relation, because

later-decoupled HNLs may be produced in an NR regime with significant

Boltzmann suppression. Finally, we need to study, how the decays of HNLs can

affect the Universe’s evolution.

4.3.3 Decays of HNLs, t & τN

Before considering decays, let us estimate the ratio of the HNL energy density

compared to the SM particles energy density:

ρN
ρ SM

=
(
a(T−)
a(T )

)3
nN(T−) ·mN

π2

30g∗, smT 4
= YN ·mN · s(T )

π2

30g∗, smT 4
'

' 5
(

g∗
g∗, sm

)(
YN

10−2

)(3 MeV
T

)(
mN

1 GeV

)∣∣∣∣∣
t(T )�τN

(4.65)
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Here we neglect the HNL decays and assume that there are no other non-SM

particles apart from HNLs in question; a(T ) is the scale factor at temperature T ,

g∗, SM ≈ 10.75 is the number of relativistic degrees of freedom in SM atO( MeV)
temperatures, whereas g∗ is the total effective number of relativistic species,

including the effective contribution of HNLs; and we used Eq. (4.60).

According to expectations, since the energy density of NR HNLs is scaled as

number density it can become a considerable fraction of the energy density

of the Universe at temperature T ∼ MeV. This would significantly affect

weak reaction decoupling processes as the Hubble rate will be changed. But

when decays start, such large HNL energy will be injected into the SM sector.

This would head SM plasma in the same way it was heated during electron-

positron annihilation or meson/baryon annihilation and decays after QCD

phase transition. As was explained before, this energy injection can be treated

as dilution of decoupled species - while this happens at T � Tν, dec, only HNLs

will be diluted, but if this injection occurs at T � Tν, dec neutrinos, that are

already decoupled will be also diluted. Impact of decays on other particle

species we postpone for the further sections and concentrate only on effect on

HNLs themselves.

Similar to the factor
(

4
11

)4/3
in case of dilution of active neutrinos, we can esti-

mate the value of similar dilution factor for HNLs. Starting from Eqn. 4.64 with

g∗ as in SM, HNL’s contribution to effective number of relativistic species:

∆g∗, HNLs(T ) ≈ mNnN(T )
π2T 4/30 ≈ 150 g∗

10.75
mN

1 GeV
Y N

10−2
1 MeV
T

e−t(T )/τN (4.66)

Contrary to the active neutrino case, when effective g∗ has it’s maximum

value at largest temperatures, ∆g∗, HNLs from HNLs is small at the moment of

decoupling and begin to increase when they become non-relativistic. Reaching

its maximum value at temperature Tmax, it starts decreasing due to decays.

Estimate for Tmax and corresponding ∆g∗, HNLs(Tmax) ≡ ∆g∗, HNLs,max assuming

SM time-to-temperature relation yields:

∆g∗, HNLs,max ≈ 22.5 g∗
10.75

YN
10−2

√
τN

0.1 s
mN

1 GeV
, T max ≈ 3.86 MeV

√
0.1 s/τN

(4.67)

Now we can use this value to estimate the dilution factor.

ζ(∆g∗, HNLs,max) = g∗(Tmax)
∆g∗, HNLs,max(T max) + g∗(Tmax) , (4.68)
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Figure 4.8: Dependence of analytic estimate of the dilution factor on the mass of HNL
for different lifetimes. The dilution becomes the largest for HNLs with
large masses since their abundance differs only slightly (until the decou-
pling temperature crosses the temperature of the QCD transition). The
"bump" on lower masses corresponds to the rapid change of abundance
of HNLs, decoupled before and after the QCD transition

For this estimate we used simplified scenario, when entropy was considered

as in SM. It can be specified if we substitute g∗, HNLs,max(T max) with scaled

parameter ḡ∗, HNLs,max(T max):

∆ḡ∗, HNLs,max = ∆g∗, HNLs,max

(
g∗(Tmax) + ∆g∗, HNLs,max

g∗(Tmax)

)
(4.69)

Values of estimate of dilution parameter are presented at Fig.4.8 With this, to

find number density of remaining HNLs after their major part already decayed

we can use the following expression:

nN(T ) = ζ(T ) · YN · s(T ) · e−
t(T )
τN , (4.70)

Such estimate is a useful demonstration, that HNLs can significantly affect

their own evolution, effectively diluting their number density compared to SM

particles that can easily lead to factor ζ ∼ 0.1. Checking this estimate requires

solving system of Friedman equations. For the case of τ � 1 sec, we do not

have to think about decoupling of active neutrinos, so their energy density

and temeperature can be taken the same as for EM sector. This would be a
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particular case of interest for BBN-constraining HNLs. Resulting system of

equations will be:

dT

dt
= −4H(ργ + ρν)− 3H(ρe + pe) + ρN/τN

∂(ργ + ρν)/∂Tγ + ∂ρe/∂Tγ
, (4.71)

ȧ(t)
a(t) = H(t) = 1

m Pl

√√√√8π
3

(∑
α

ρνα + ργ + ρe + ρN

)
(4.72)

Here:

ρe = 2 ·
∫ d3p

(2π)3

√
p2 +m2

ef FD(p, T ), ργ = π2

15T
4, ρν = 3 · 7π2

120T
4 (4.73)

and f FD - Fermi-Dirac distribution function of electrons. Numeric solution of

this system of equaitons will give us evolution of time-to-temperature relation

T (t) together with evolution of scale parameter a(t). Comparison of such

evolution in the SM case and in presence of HNLs are presented at Fig. ??. As

both of this parameters affect evolution of HNLs number density, analogue for

analytic ζ (eqn. (4.68)) would be value

ζ num(T ) =
(

a SM(T )
a SM+ HNLs(T )

)3

Exp

[
t SM(T )− t SM+ HNLs(T )

τN

]
(4.74)

Comparison of numeric results and analytic estimates of dilution parameter

are presented at Fig. 4.9. The described picture means, that while considering

the effect of HNLs on BBN, there are two more factors needed to be accounted

for, arising from details of HNLs evolution in the early Universe. Both of them

suppressing the number density of HNLs besides regular decays. These are

dilution due to QCD phase transition (for early-decoupled HNLs) and dilution

due to their own energy injection to SM plasma. Together, these two factors

can introduce additional suppression of the order ∼ 10−2. Now, we can obtain

HNLs population characteristics at the moment of weak reaction decoupling

and proceed to estimate their effect on BBN itself.

Finally, let us provide a branching ratios of HNLs decays into hadrons, leptons

and neutrinos [59], which are shown at Fig. 4.10. We also add a contribution

of secondary neutrinos, that appear after muons and hardons decays.
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Figure 4.9: Comparison of the evolution dilution factor according to numeric compu-
tation and according to our estimate (4.68). We see a good correspon-
dence between the exact solution and analytic approximation in terms of
final (at t� τN) value of the dilution factor. Although, at intermediate
temperatures, the discrepancy might be significant.
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Figure 4.10: Top panels and bottom left:Branching ratios of HNLs into neutri-
nos/antineutrinos together with branching into secondary neutrinos
and hadrons, multiplied by the number of neutrinos in each channel.
Bottom tight panel: Branching of HNL decay into specific mesons

Eq. (4.61) means that for UR regime later decoupling (i.e. larger mixing angles)

leads to larger HNL abundance. In Fig. 4.13 (right panel) we summarize the

HNL parameter space explored by the current study. It shows the domain in

which HNLs never entered thermal equilibrium as well as the regime in which
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Figure 4.11: HNL lifetime as a function of mass for mixing with different flavors.
The dashed gray lines show the scaling of the lifetime with mass. The
lifetimes is shown for U2 = 1 and scales as U−2.
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Figure 4.12: Left panel: the behavior of the decoupling temperature T− versus the
HNL mass for particular lifetimes. The Black dashed line is T− = mn

which roughly indicates the transition from a relativistic to the non-
relativistic decoupling regime. The Gray horizontal band shows the
temperature when the hadronization of quarks takes place and therefore
the effective number of relativistic degrees of freedom drops sharply.
Right panel: HNL abundances versus the HNL mass for particular values
of the lifetime. Details of the calculation of the abundances are given in
Appendix A.4

HNLs decouple while being non-relativistic. We see that these two regimes

are separated by the broad parameter space for which HNLs enter thermal

equilibrium and decouple while being UR. A dashed line in the middle of this

region is the seesaw bound (4.56).

4.3.4 HNLs effect on the expansion of Universe
during the BBN

The contribution of HNL energy density to the effective number of degrees of

freedom varies with temperature. We have already mentioned, that HNLs may
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Figure 4.13: Left panel: The reaction rate of the HNL with SM particles, Γ int
N , com-

pared to the Hubble rate, H(T ). T+ and T− are the temperatures at
which HNLs enter and exit the thermal equilibrium. For illustration,
we used HNL mass mN = 1 GeV, and mixing angles U2 = U2

min and
U2 = 50U2

min, see Eq. (4.55). Right panel: For lifetimes in the gray solid
gray shaded region HNLs never enter thermal equilibrium (we do not
consider this case below, but see [120]). White region corresponds
to HNLs that were in equilibrium and decoupled (mostly) relativistic.
The blue shaded domain represents HNLs that were in equilibrium and
decoupled already being non-relativistic (T− < mN). The dashed line
corresponds to the seesaw bound (4.56). For details, see Appendix A.4

give a significant contribution to the effective number of relativistic degrees

of freedom as follows from rough estimate - Eqn. (4.66) at low temperatures.

This contribution will differ significantly at different temperatures. Before

decoupling T > T−, it can not be larger, than g HNL
∗ . 2 · 7

8 , which corresponds

to ultra-relativistic HNLs in equilibrium. If they have never undergone equi-

librium or the temperature decreases, such that they become non-relativistic

before decoupling, the value of g HNL
∗ would be even smaller. Since the SM

value of g∗ & 10 for temperatures T & 1 MeV, such contribution is quite

negligible and its effect may not be considered before the decoupling T−.

While HNLs remain ultra-relativistic, their contribution to g∗ is scaled with

temperature as (g∗(T )/g(T−))4/3 so it can only decrease if, for example, some

particles disappear from plasma. When temperature drops below HNL mass

(which is always much higher, than our temperature of interest T . 1 MeV for

the considered HNL mass range 50 MeV . mN . 1 GeV), their energy density

start to scale as

ρN ∼
(
g∗(T )T 3

g∗(T−)T 3
−

)
(4.75)

, corresponding to matter contribution to g∗ , while other particle species

are still ultra-relativistic, hence scaling as ρ SM ∼ T 4. Starting from this

moment, the effective number of degrees of freedom increases which continues
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until HNLs start to decay. Taking into account entropy dilution, encoded in

parameter ζ - Eqn.(4.74) we got

g HNL
∗ = ζ(T ) ·mN ·

YN · s SM(T )
π2

30T
4

· Exp
(
−t SM(T )

τN

)
=

= 5ζ(T ) ·
(
YN

10−2

)(3 MeV
T

)(
mN

1 GeV

)
Exp

[
−
(0.74 s

τN

)(1 MeV
T 2

)2 ( 10.75
g eff, SM(T )

)]
(4.76)

Here, all parameters, marked with subscript "SM" refers to their standard

model versions, unaffected by HNLs. YN - is the abundance of HNLs, s(T )
- entropy density. Value of g eff, HNL for a range of masses , lifetimes and for

different temperatures is presented at Fig.4.14
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Figure 4.14: Contribution of HNLs to the effective number of relativistic species for
two sets of HNL parameters. We see, that at high temperatures, corre-
sponding to small-time, HNLs can contribute to the energy density of
the Universe even more, than SM particles. But as soon, as temperature
drops, their contribution vanishes due to small lifetimes, such that at
the time t ∼ 1 s, when X decoupling of neutrons is estimated, they do
not affect the energy density at all.

Due to the smallness of abundance and presence of dilution factor, even for

long-living HNLs it is unlikely to contribute to energy density stronger, than

the SM part of g∗ at T ∼ Tn. In the most interesting domain of lifetimes

τ ∼ 0.1 sec, that may be relevant for BBN, the contribution of HNLs is either

low or completely negligible during the process of neutron decoupling and

hence, not relevant for us. HNLs with smaller lifetimes τN . may give a

noticeable contribution at higher temperatures T & Tn and although it is not

relevant for direct impact on neutron abundance, it can still affect the factor

ζ(T ). At large lifetimes, there could be a temperature, when the contribution
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of g HNL
∗ becomes the major part of total g∗. It will turn the Universe into a

matter-dominated expansion stage of evolution which will continue up to the

decays of HNLs.

4.4 HNLs effect on BBN: meson-driven
constraints

4.4.1 Mesons from HNL decays

HNLs, heavy enough, can decay into π,K, etc - mesons (see [126, 59] or g C

in [SOM]). For HNLs, up to h 1 GeV mass we might obtain mesons with

following masses and lifetimes ([PDG]).

mπ± = 139.57 MeV, τπ± = 2.6 · 10−8 sec (4.77)

mπ0 = 134.97 MeV, τπ0 = 8.4 · 10−17 sec (4.78)

mK± = 493.67 MeV, τK± = 1.2 · 10−8 sec (4.79)

mK0/K̄0 = 497.61 MeV, τK0
L

= 5.1 · 10−8, τK0
S

= 8.9 · 10−11 sec (4.80)

mη = 547.86 MeV, τη = 5 · 10−19 sec (4.81)

mρ±/ρ0 ≈ 775.4 MeV, τρ±/ρ0 ∼ 4.5 · 10−24 sec (4.82)

here we did not used uncertainties in lifetime for several meson species,

although they can be relatively large, since it would be irrelevant for future

analysis.

The main feature of such mesons is that they participate in n↔ p conversion

rates through strong interactions. A reasonable estimate for nuclear cross

sections is a geometrical estimate 〈σπp↔n v〉 ∼ m−2
p leading to very large ratio

of strong to weak cross section at MeV temperatures:

〈σπp↔n v〉
〈σ Weak

p↔n v〉
' 1
G2
Fm

2
pT

2 ∼ 1016
(1 MeV

T

)2
, (4.83)

Such estimate holds for all mesons, separating their effect from weak conver-

sion rates effect and change of g∗.
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Let us compare the charged pion decay rates and meson-driven conversion

rate from the estimate of cross-section:

Γm, dec

Γhn⇔p
= 1
τπ±〈σπp↔n v〉 · ηB · nγ(T ) ' 150 ·

(
T

1 MeV

)−3
·
(

ηB
6.01 · 10−10

)−1

(4.84)

At temperatures, close to ∼ MeV scale, mesons decay rate dominates over the

rate of conversion for charged pions, so we expect that only fraction of pions

will participate in conversions. Since lifetimes of other mesons are either of

the same order or smaller, this is true for them too. Moreover, mean lifetime of

η,K0
S, π

0, ρ±, ρ0 is so much smaller, than of π±, K±, K0
L, that independently on

if there are any conversion reaction available for them, they will be completely

subdominant compared to either pions or kaons.

But those mesons can decay into lighter and more long-living, doing effective

contribution. For example,

η → π+ + π0 + π−, K0
S → π+ + π−, ρ± → π± + π0 (4.85)

Since the decay rate is high, we might simply consider, that HNL decay into

π± or K±, K0
L with effective branching ratio

Br eff
N→π± = BrN→π± +

∑
A

BrN→ABrA→π± +
∑
K±,0

BrN→K±,0BrK±,0→π± (4.86)

Br eff
N→K±,0 = BrN→K±,0 +

∑
A

BrN→ABrA→K±,0 (4.87)

In the first equation we included term with kaons decay into pions separately.

Although we will see, that it will not give a noticeable contribution, due to

dominance of pion branching ratio among kaon, this term is not completely

correct. kaons, participating in conversions might not survive to be able to

decay into pions. So that last term might be suppressed. This is not the case

for heavier mesons, as they decay too fast to react with nucleons. The only one

remaining detail is that if decaying HNL is massive enough, resulting mesons

might be relativistic right after decay. This is mostly important for pions, as

other mesons are too heavy, so that in 2 or 3-body decays of HNL with mN . 1

GeV, they could not achieve significant kinetic energy. But charged or neutral
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pion might be the case and this would lead to decrease of their decay rate due

to Lorentz factor

ΓAdecay(EA) = mA

〈EA〉
1
τA

(4.88)

where index A stands for a particular meson and τA - lifetime of a meson

A. Since maximum energy of decay is given by mass of HNL, this can give a

correction up to factor of few for charged and neutral pion.

This would not be enough to increase the lifetime of neutral pion to make it

worth considering. In the same time, charged pions appear in surrounding of

EM plasma with mean energy 3.15·T � mπ. In this plasma, Coloumb scattering

of electrons and positrons and inverse Compton scatterings of photons would

lead to thermalization of mesons and decrease of their energy.

Estimate of pions thermalization rate gives:

Γπth ∼
α2
EM

E2
π

nγ(T ) ∼ 3 · 10−9MeV = 4 · 1012 sec−1 � Γπdecay (4.89)

We therefore have the following separation of rates and corresponding time

scales:

Γπth � Γπdecay � Γπp↔n (4.90)

which means, that right after HNL decay at MeV temperatures mesons will

thermalize, losing their initial kinetic energy in EM plasma. After that, decays

of mesons will start and only a fraction of them might participate in p ↔ n

conversion processes.

4.4.2 Pion-driven reactions

Charged pions and kaons participate in neutron-proton conversions with reac-

tions (see [180]):

π− + p→ n+ γ, 〈σπ−p→nv〉 th h 0.57 mb, Q = 138.3 MeV (4.91)

π− + p→ n+ π0, 〈σπ−p→nv〉 th h 0.88 mb, Q = 3.3 MeV (4.92)

π+ + n→ p+ π0, 〈σπ+

n→pv〉 th h 1.7 mb, Q = 5.9 MeV (4.93)
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Figure 4.15: Sommerfeld enhancement factor for charged pions and kaons. At large
temperatures, when kinetic energy of all particles is large it does not play
any role, starting from T ∼ 0.1 MeV it starts to increase, obtaining values
significantly higher, that 1 at T ∼ 0.05 MeV which can be important for
the nucleosynthesis process.

All these reactions proceeds with energy release, so they can proceed for

different temperatures without stopping. These cross-sections, given at thermal

threshold are not final as π−−p interaction is a subject for Coloumb correction

for a process that leads to Sommerfeld enhancement of a corresponding cross-

sections. With this, cross-sections can be rewritten as

〈σπ−p→nv〉 = 〈σπ−p→nv〉 th ·F π
c (T ) ≈ 4.3·10−23F π

c (T ) m3/s,
〈σπ−p→nv〉
〈σπ+

n→pv〉
≈ 0.9 F π

c (T ),

(4.94)

where F π
c (T ) is an enhancement factor, that depends on the relative velocity

of pion and proton.

F π
c = x

1 + e−x
, where x = 2πα EM

ve
, (4.95)

Since both pions and protons are already thremalized and mp � mπ velocity

can be estimated as ve '
√

2·T
mπ

. Now we can find the probability for a pion

to participate in p↔ n conversion before decay. Assuming the separation of

scales Γπp↔n � Γπdecay, define it with

P π
conv ≈

〈σπp↔nv〉nB
Γπdecay

, (4.96)

Taking the cross-sections above and decay widths of pion [217]

Γπ±decay ≈ 3.8 · 107 s−1, (4.97)
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for the p→ n conversion probability we got

P π−

conv(T ) ≈ 2.5 · 10−2 · F π
c

(
T

1 MeV

)3
(4.98)

Sommerfeld enhancement factor is of the order of 1 (see Fig. 4.15), so such

probability remains < 1, as it should be, at temepratures T . 3.3 MeV. At

higher temperatures, density of nucleons is sufficient, such that conversion

rate become faster, than decay rate. In this regime, mesons disappear from

plasma mostly due to conversions and not decays. The expression 4.98 can

not be used in such case and instead we have to consider the unsimplified

probability

P π−

conv(T ) = 1− Exp
[
−Γπp↔n /Γπdecay

]
(4.99)

Note, that here we used SM value of baryon-to-photon ratio. But we described

in 4.3, entropy release from HNLs decays can affect it significantly. So before

HNL’s decayed we could have had larger number density of baryons. It would

change the conversion probability on the corresponding factor ζ(T )−1.

Although mesons decay rate is large, it proceeds through weak interactions,

while conversions - through strong force. This is the reason, why the similar

scenario can not be efficient for another quickly decaying HNL product - µ±.

Although muons can participate in conversions, they would be driven by weak

force, leading to significantly smaller conversion probability before decay.

4.4.3 Kaon-driven reactions

Lifetime argument, we mentioned before, tells that we might be interested in

reactions, involving both charged kaons K± and long-living neutral kaon K0
L.

But it becomes a bit more complicated. In analogy to processes 4.93, there are

"direct" charge-exchange reactions like

K− + p→ K̄0 + n, Q = −5.2 MeV (4.100)

n+K+ → p+X, Q = −2.8 MeV (4.101)

but such reactions have a threshold. That will be a reason for significant their

suppression at low temperatures we consider. Instead, there are processes with

short-living baryons as final states - Σ±, Σ0 and Λ - hyperons are the lightest
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ones. After this, hyperons will rapidly decay into protons, neutrons and pions

giving the following chains of reactions that are all threshold-less:

K− + p→ Σ±/0/Λ + π∓/0/π0 → n+ 2π,

K− + n→ Σ−/0/Λ + π0/−/π− → n+ 2π,

K̄0
L + p→ Σ0/+/Λ + π+/0/π+ → n+ 2π,

K̄0
L + n→ Σ±/0/Λ + π∓/0/π0 → p+ 2π,

(4.102)

Note, that there is no process K+ → n→ .... All reactions above goes through

the exchange of strange quark. The similar process with K+ would require

existence of a hyperon with strangeness S=-1 and baryon number B=+1.

Though, such particle do not exist. Similar to the pion case, cross-sections of

(4.102) can depend on the energy of the meson and the first reaction would

also be affected by Coloumb attraction.

While the estimate on the thermalization process of charged kaons gives the

same consequence as in pions case - lose of energy before interaction or decay,

neutral kaons are not stopped by EM interactions. But since as we already

mentioned, for the mass range of HNLs we consider it is reasonable to follow

[179] and assume kaons are injected with energy close to thermal threshold.

So only Coloumb contribution remains. Resulting cross-sections are

〈σK−p→nv〉 ≈ 9.6 · 10−22FK
c (T ) m3/s,

〈σK−p→nv〉
〈σK−n→pv〉

≈ 2.46 FK
c (T ), (4.103)

〈σK0

p→nv〉 ≈ 1.95 · 10−22 m3/ s,
〈σK

0
L

p→nv〉
〈σK

0
L

n→pv〉
≈ 0.41. (4.104)

with FK
c (T ) similar to (5.13) up to change of mπ → mK in velocity of meson.

Similar to the case of pions, we can define conversion probabilities for kaons.

Using decay rates:

ΓK−decay ≈ 8.3 · 107 s−1, ΓK
0
L

decay ≈ 2 · 107 s−1 (4.105)

we got for a threshold cross-sections:

PK−

conv(T ) ≈ 2.8 · 10−1
(

T

1 MeV

)3
, P

K0
L

conv(T ) ≈ 1.6 · 10−1
(

T

1 MeV

)3
(4.106)
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Obtained conversion probabilities are higher, than in the case with pions.

Hence, conversions start dominating decays at temperature T & 2 MeV.

4.4.4 Meson-driven n/p ratio

In the SM scenario, n/p-ratio before neutron freeze-out is governed by local

thermal equilibrium in which ratio of number densities equals to ratio of

corresponding conversions processes (Eqn. (4.23)) driven by electrons and

neutrinos. If we add mesons, we get additional terms in conversion rates. If

they are large enough, they might dominate in determining n/p ratio. Let us

compare weak and meson-driven conversion rates. We have already estimated,

that strong force meson-driven reactions have cross section with several orders

of magnitude larger, than thermally given weak rates. They might be balanced

via significantly lower number density of mesons in plasma. For this we need

to estimate, how much mesons will be present. Consider the regime, when

mesons decay faster, than participate in p↔ n conversions which is completely

true at MeV temperatures. In this case, the instantaneous number density

of mesons is a result of balance between their production rate (rate of HNls

decays) and their decays rate

n inst
π/K = nN(T ) · BrN→π/K

ΓN, dec

Γπ/K, dec
= nN(T ) · BrN→π/K

τπ/K

τN
. (4.107)

Here, BrN→π/K are the branchings of HNLs into mesons, including effective

contribution from decays to other mesons (Eqns. (4.87),(4.86)) and nN(T )
- number density of HNLs ((4.70)). It follows, that instantaneous number

density of mesons can be suppressed via several factors: (i) ratio of meson

and HNL lifetimes τπ/K
τN
∼ 10−9 − 10−10, (ii) abundance and dilution factor

YN · ζ(T ) ∼ 10−2 and (iii) HNLs decays. Now, comparing the weak and strong

rates

Γπ,Kp↔n
Γ Weak
p↔n

∼
〈σπ/Kp↔n v〉 · n inst

π/K

G2
FT

5 ∼ 104 ·
(
YN · ζ(T )

10−2

)(
τπ/K
10−8

)(
τN

10−2

)−1
· (4.108)

we see, that meson-driven conversions completely dominate over the weak

reactions unless HNLs almost decayed. So at times t & τN we can neglect weak

contribution to local-equilibrium value of n/p ration and define it only from
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meson rates. Let us consider HNL, that can decay only into pions. Neutron-to-

proton ratio will be given by

(
nn
np

)π
=

Γπ−p→n
Γπ+
n→p

=
〈σπ−p→nv〉
〈σπ+

n→pv〉
≈ 0.9 F π

c (T ), (4.109)

So if present in plasma, pions will maintain ratio of densities close to 1. Notice,

that although we have a system in a good equilibrium, as interaction rates

are significantly higher, than Hubble rate, number densities ratio is far from

thermal Boltzmann exponent as in the SM scenario. There are several reasons

for this: (i) population of pions is not given by thermal value, (ii) there are no

backwards reaction in (4.93) - neutral pions decay too fast and photons lose

their energy below threshold (iii) isotopic symmetry for pions and closeness of

cross-sections. Only when HNLs population will reduce significantly, at t� τN ,

the ratio will move away from unity. It is also true at large temperatures when

weak rates are high, but this is irrelevant for us. After HNLs has decayed,

weak processes will try to change n/p ratio, shifting it to thermal equilibrium

value. If disappearance of mesons occur at large temperatures, SM rates can

successfully erase any traces of unusually large n/p ratio. But closer to neutron

freeze-out it might not be true and corresponding ratio will never return to

its SM value. The similar picture is present for heavier HNLs that can decay

into kaons. But in this case we have to include all contributions from both

pions and kaons, if they are present. Modified neutron-to-proton ratio will

have form

(
nn
np

)π+K

=
〈σπ−p→nv〉BrN→π− + 〈σK−p→nv〉BrN→K− + 〈σK0

p→nv〉BrN→K0

〈σπ+
n→pv〉BrN→π+ + 〈σK−n→pv〉BrN→K− + 〈σK0

n→pv〉BrN→K0
(4.110)

Resulting value depends on the mass and mixing of HNLs leading to a bit

different n/p ratio than in the case of pure pions. But presence of kaons does

bring any qualitative changes.

4.4.5 Estimate of BBN based constraint

Presence of mesons can only increase the number density of neutrons, hence

always leading for the positive correction for helium abundance.
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Figure 4.16: Evolution of the neutron mass fraction with temperature in presence
of mesons from HNL decays for three different masses of HNLs. Grey
dashed line corresponds to SBBN-driven equilibtium value of neutron
abundance. We consider HNLs mixing with e flavor and different masses:
mN = 200 MeV (only pions are present), mn = 700 MeV (pions and
charged kaons are present), mn = 1.5 GeV (pions, charged and neutral
kaons are present).

We set the following condition for the estimate according to picture above.

Heavy neutral lepton, that can decay into mesons would have constrained

mass and lifetime if Standard Model weak conversion rates would not be able

to reduce discrepancy between meson-dominated neutron-to-proton ratio and

SM value below measurable limit starting from the temperature, when meson

contribution is turned-off.

We can separate this question into two parts:

• Find a temperature T0, such that if nn/np(T0) = 1, evolution at T < T0

with SM rates only would lead to (Xn − X SM
n )|T=T BBN < δ%, where δ -

desired accuracy

• Find the maximum lifetime of HNL with given mass, such that at T > T0,

mesons from its decays could not dominate the p↔ n conversions

Starting from the first step, we solve Boltzmann equation (4.22) with initial

condition Xn(T0) = 0.5 (exact value, given by meson-driven n/p ratio, affects

feebly on the result). The relation between T0 and resulting correction as well

as example of Xn behaviour under such condition are presented at Fig.4.17
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Proceeding to second step we impose the following condition. The number of

p↔ n conversions, that can occur due to mesons starting from temperature T

is

Nh
p↔n (T ) =

∑
h

∞∫
t(T )

dt ninst
h (T ) · 〈σhp↔n v〉 ≈

≈ nN(T )
nB

· e−
t(T )
τN · BrN→h · Pconv, (4.111)

here sum
∑
h goes over all mesons with corresponding probabilities of conver-

sions Pconv ((4.106),(4.98)). Mesons can no more dominate the conversion

process if this number of conversions becomes less than one. Therefore, after

condition

Nh
p↔n (T0) = 1 (4.112)

is satisfied, weak SBBN reactions are trying to relax the neutron-to-proton ratio

to its SBBN value. Having the lower bound on the meson turn-off temperature

T0 = Tmin
0 , we can solve (4.112) with respect to lifetime and find an upper

limit on the HNL lifetime with given mass

τN .
t(Tmin

0 )

ln
[∑

h
nN (T0)Pconv BrN→h

nγ(Tmin
0 )ηB

] . (4.113)

here time-to-temperature relation t(T ) can be taken as in SBBN, since HNLs

already decayed a lot. t(T ) = M∗
2T 2 , M∗ = MPl

1.66√g∗ the reduced Planck mass,

where g∗(T ) ' 10.6 for T ' 1− 2 MeV. The same reason allow to use the SBBN

value of ηB at temperatures above electron-positron annihilation:

ηB ≈
10.75
3.36 · 6.09 · 10−10, (4.114)

The constraint on the lifetime can be rewritten in more convenient form:

τN .
0.019

(
1.5 MeV
T0,min

)2
s

1 + 0.06 ln
[
Pconv
0.1

BrN→h
0.4

YN ·ζ(T0)
10−2

] (4.115)

Using the values of branching ratios BrN→h, conversion probability Pconv and

entropy dilution factor ζ(T ) (Figs. 4.8, 4.10 and Eqns. (4.106),(4.98)) we see,
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Figure 4.17: Left panel: The evolution of neutron fraction in presence of pions of
HNL decays. We used mN = 400 MeV and lifetime τN = 0.03 s. Pions
drive the neutron fraction until number of HNLs becomes suppressed
with decays so much, that there is not enough pions to convert each
baryon. In this case, the temperature is approximately T0 ≈ 1.3 MeV.
At smaller temperatures, since the remaining HNL population decays
and no pions left, SM rates of p ↔ n conversion are trying to get the
Xn value to equilibrium, but since the "decoupling" of pions occured
too late, the resulting correction to neutron abundance at T BBN will be
large. Right panel: a relation between the temperature T0 (defined by
Eq. (4.112))and corresponding relative correction to expected helium
abundance Yp. The gray dashed line corresponds to maximum correction
∆Yp/Ȳp = 4.35% we adopted to get a robust constraint. Blue dashed
line shows the intersection of grey line and corresponds to Tmin

0 we will
use
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that almost independently on mass, once meson decays become kinematically

allowed, constraint on the lifetime remains at the level of τmaxN h 2 · 10−2 s.

Also notice, that even significant modifications of HNL parameters will not

affect the result as it depends on logarythm that is additionaly suppressed with

factor 0.06. Therefore, the only important parameter, defining the constraint

is the minimum temperature for relaxation T0. Even if we ask for a much

higher accuracy, though it is not the case for current observations, Tmin
0 will not

change much as well as corresponding upper limit on τN . That is so, because

we are already at the tail of the decaying exponent and further decrease of

HNL lifetime will completely vanish their effect very fast.

In this estimate we assumed, that at some moment, mesons contribution is

turned-off instantaneously. In real situation, it happens gradually which can

affect the conversions, changing the number of p↔ n reactions from estimate

(4.111) and hence, the resulting constraint. We also neglected other effects of

HNLs decays on the neutron-to-proton ratio. It is well justified by the strength

of meson-driven effect. Note, that this constraint can not be extended to

arbitrary long lifetimes. It is applicable only if mesons do not survive untill

the onset of nuclear reaction network T BBN. Otherwise they can potentially

disintegrate the light nuclei, decreasing their mass fraction back to the SBBN

values. We will use this condition to limit our constrained parameters range

from above.

4.4.6 Numerical calculation of meson-driven
constraint

To improve the analytic estimate (4.115) we have to solve a system of Boltz-

mann equations on the number densities of π±, K−, K0
L mesons, together with

Xn equation. Using the processes (4.102),(4.93), decay rates (4.97), (4.105)

and conversions cross section (4.94), (4.103), (4.104) we have:
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Xn
dt

=
(
dXn
dt

)
SM

+
(
dXn
dt

)
π

+
(
dXn
dt

)
K−

+
(
dXn
dt

)
K0
L

,

dnπ−
dt

= nN
BrN→π−
τN

− Γπ−decaynπ− − 〈σπ
−

p→nv〉(1−Xn)nBnπ− ,
dnπ+
dt

= nN
BrN→π+
τN

− Γπ+

decaynπ+ − 〈σπ+
n→pv〉XnnBnπ+ ,

dnK−
dt

= nN
BrN→K−
τN

− ΓK−decaynK− − 〈σK
−

p→nv〉(1−Xn)nBnK− − 〈σK
−

n→pv〉XnnBnK− ,
dn
K0
L

dt
= nN

Br
N→K0

L

τN
− ΓK

0
L

decaynK0
L
− 〈σK

0
L

p→nv〉(1−Xn)nBnK0
L
− 〈σK

0
L

n→pv〉XnnBnK0
L

(4.116)

Here, (
dXn

dt

)
π

= (1−Xn)nπ−〈σπ
−

p→nv〉 −Xnnπ+〈σπ+

n→pv〉, (4.117)

(
dXn

dt

)
K

= (1−Xn)(nK−〈σK
−

p→nv〉+nK0
L
〈σK0

L
p→nv〉)−Xn(nK−〈σK

−

n→pv〉+nK0
L
〈σK0

L
n→pv〉)

(4.118)

Last four equations in the system define the instantaneous number densities

of different mesons. But since both their decay rate and interaction rates are

much higher, than Hubble rate we can instead use LTE values for their number

densities

nπ− = nN · BrN→π−
τN(Γπ−decay + 〈σπ−p→nv〉(1−Xn)nB)

, nπ+ = nN · BrN→π+

τN(Γπ+
decay + 〈σπ+

n→pv〉(1−Xn)nB)
,

(4.119)

nK−/K0
L

= nN · BrN→K

τN(ΓK
−/K0

L

decay + 〈σK
−/K0

L
p→n v〉(1−Xn)nB + 〈σK

−/K0
L

n→p v〉XnnB)
, (4.120)

So we only need to solve the first equation in system (4.116), where we

plug LTE number densities in terms (4.118). We solve those equations

until temperature T BBN and translate obtained deviation from SM value

δXn(T BBN)/Xn(T BBN) ≈ 4.3% onto constraint.
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4.4.7 Upper limit for applicability of constraint

At lifetimes, higher, than allowed by our constraint, neutron-to-proton abun-

dance monotonically increase and so the helium abundance. But if lifetime of

HNLs is large enough, pions may be present in plasma, when He-4 appears, it

can dissintegrate it. Such threshold reactions would be:

π− +4 He→ T + n, 〈σv〉π−Tn h 1.1mb, Q = 118.5 MeV (4.121)

π− +He4 → D + 2n, 〈σv〉π−Dnn h 4.1mb, Q = 112.2 MeV (4.122)

π− +He4 → p+ 3n, 〈σv〉π−pnnn h 1.3mb, Q = 110 MeV (4.123)

as a threshold values with total dissintegration cross-section 〈σv〉π−4He, diss =
6.5mb. These reactions are also affected by Coloumb correction resulting in

Sommerfeld enhancement factor similar to (5.13). At the temperature around

T BBN it will give a factor F π4He
c ≈ 3.5.

Pions can also participating in processes, dissintegrating other nuclei - 3He,

T, D or heavier one. But for now let us consider only He-4, since nuclear

reaction network would transfer almost all available free neutrons into this

isotope of helium. The situation would be same as in SBBN scenario even

with significantly higher neutron abundance, because the only reason reaction

stops is that the number density of reactant drops too much. Hence, initially

large value can not prevent neutrons to settle down in form of He-4.

We can introduce number of disintegrations in the same way as 4.111:

Nh
4He, diss(T ) =

∞∫
t(T )

dt ninst
π− (T ) · 〈σv〉π−4He, diss ≈

≈ nN(T )
nB

· e−
t(T )
τN · BrN→π · PHe diss, (4.124)

here PHe diss - disintegration probability:
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PHe diss =
〈σv〉π−4He, dissnHe

Γπdecay
' 8.3 · 10−2 · 4 · nHe

nB

(
T

1 MeV

)3
, (4.125)

Now, if number of disintegrations Nh
4He, diss(T ) starting from T BBN would be

smaller, than differnce between number of Helium nuclei in the SM+HNL and

SBBN scenario, than pions from HNL decays would not be able to restore the

SBBN value of Y4He as we can neglect any SM-driven dissociation process due

to low temperature of photons.

This condition is formulated as

nN · BrN→π− · PHe diss = nHe(T BBN), (4.126)

c.f. Eq. 4.115.

To find the number density of HNLs at temperature T BBN we have to solve

the system of Friedmann equations. Note, that we can not use system with

Eqns. (4.71) since neutrino and EM plasma becomes decoupled at T . 1 MeV,

and in general we have to write a separate equation of type (4.71) for each

component together with account of energy transition between components of

plasma. This prevents us making a meaningful simple analytic estimate on the

parameter ζ which affects both baryon and HNL number densities. We will

discuss this question in the next section in more details.

For now we can just say, that using T BBN ≈ 84 keV for more robust estimate,

and assuming all neutrons become bounded at that temperature, we obtain

τN . 40 s as a limit, when our analysis is applicable.

Comparing the see-saw limit with this number, we see that only in the case

of e-mixing there exist a window for HNL masses mN . 200 MeV when HNL

lifetimes are not constraint from this 40 s limit. For higher masses, see-saw

line is below this robust estimate. It justifies, that we do not need to consider

other heavier mesons.

This estimate is very rough, it does not take either disintegrations of lighter

nuclei, which number will increase after disintegration of 4He. Also we do not
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consider the following re-synthesis of nuclei. It means, that "real" limit of our

BBN analysis constraints may be at significantly higher lifetimes.

4.4.8 Results

Obtained constraints in the terms of lifetime for electron mixing are presented

at Fig. 4.18. We see, that numeric calculation has levelled down the upper

limit for allowed lifetime to the τN . 0.019− 0.021 s.

Excluded region
This work
Ruchayskiy et al.
Dolgov et al.
Sabti et al.
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Figure 4.18: Left panel: comparison of the meson-driven constraint we obtained with
the results of the previous works [193, 99, 194]. The meson-driven
constraint can only work for masses mN > mπ but we also added (with
a dashed line), the results for non-meson driven constraint for lower
masses. It should be noted, that we are comparing the constraints that
were stated in those works, although our maximum available correction
is larger to take care about all available data.

Comparison of our bound with different experimental searches are presented

at Fig. 4.19

Our constraint correspond to lower lifetimes as compared to the result τN .

0.1 s of [99], that was commonly used in the literature for HNLs in this mass

range. Which makes them a better complementary constraint compared to the

parameters region, covered by SHiP.

Also, our approach can be used not only for heavy neutral leptons. It requires

only parameters of branching ratios into charged pions or kaons, mass and

lifetime. With this, we can completely repeat the approach for other hypotetical

particles to obtain meson-driven constraints from BBN.
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Figure 4.19: Final bounds for HNLs mixed solely with one particular flavour (e, µ ot
τ). For comparison, darker grey area is excluded by previous searches
( [25], [87]), while the light grey area correspond to out-of-equilibrium
production that we did not study. Dashed lines represent the expected
area, that future experiments would be sensitive to ( SHiP [20, 124]
and DUNE [42, 11, 86] (see [47])). Black dashed line corresponds to
a see-saw limit and can be taken into consideration if HNLs are to be
responsible for neutrino oscillations ( [192, 25]).

4.4.9 Long-living HNLs

Let us now briefly discuss effect of HNLs with larger lifetimes on abundances

of light elements in case, if they survive until the onset of nuclear reaction

network. We have already mentioned such lifetimes when considering robust

limit on applicability of our meson-driven constraint. According to that limit

and see-saw constraint, there exist an unconstrained region in the range of

masses mN . 200 MeV and lifetimes ∼ 104 s . τN . 40 s. Decay products of

such neutrinos would affect not only neutron abundances at T > T BBN but

also light nuclei at T < T BBN.

For neutrinos with allowed pion decay channel, neutron-to-proton ratio at

T BBN is given by Eqn. (4.109) since pions dominate this ratio long after the

freeze-out of weak reactions. Since Sommerfeld enhancement is not large at

that temperatures, it still has a value of the order of unity F π−
c (T BBN) ≈ 1.8,
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the resulting dynamic equilibrium value of neutron bundance is not Xn = 0.5
as at high temperatures. If mass of HNL is lower than the pion threshold, than

change of n/p ratio would be given primarily by the change of g∗ instead of

decoupled weak reactions. It would lead to less drastic change of n/p ratio

than in the meson case so potential restoration process would require less

disintegrations. But in the same time, hadron channel is closed for HNLs and

only neutrons and photons might be reliable for this.

Initial conditions at T BBN

Let us collect the initial conditions at the start of nuclear reactions.

• As we described before, depending on the mass, nn/np is shifted from

SBBN value with either meson-driven ratio or change of g∗. The first

option can be easily estimated via Eqn. (4.109) while for the second,

system of equations (4.144) -(4.146) and (4.22) with account of g∗
correction have to be solved.

• Number density of HNLs are obtained by solving the same system of

equations

• Temperature of start of nuclear reaction network: decaying HNLs affect

baryon to photon ratio, decreasing it. Since we assume commonly used

value in SBBN scenario η SM
B = 6.09 · 10−10 is the one, obtained at TCMB, it

will have higher value before HNL decays.

ηB(T BBN) = η SM
B · ζ(TCMB

ζ(T BBN) (4.127)

This higher baryon-to photon ratio would shift the start of nuclear reac-

tions defined by (4.20). Larger ηB would increase T BBN. But since the

dependence on this parameter is logarythmic:

T BBN h −Qd · Log
[
2ζ(3)ηB

T 2
BBN, SM

Q2
d

]
(4.128)

here ζ - Riemann zeta function, T BBN, SM - SBBN value of temperature of

start of nuclear reactions, Qd = 2.2 MeV - deuterium photo-dissociation

energy threshold. Even order of magnitude changes of ηB change T BBN
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only to a few keV. High energy-photons, appearing from secondary decays

or annihilations of decay products would also not shift the start as EM

reactions are still in good equilibrium. We would also study, if pions can

delay this temperature.

• Hubble rate can be significantly higher, than the one given by SBBN value

due to HNLs contribution, that increase with temperature before decays

have started (Eqn. (4.76)). But nuclear reactions are proceeding very

fast, so they are in a good LTE. Hence, change of expansion rate would

not affect start of nuclear network but it can affect remaining abundances

of light elements. Recall, that abundances of deuterium and Helium-3

as well as tritium (right after the complete stop of BBN) are defined by

decoupling of nuclear reactions due to decrease of reactant abundance.

Faster expansion would result in larger freeze-out abundances of those

light nucleus.

• Change of N eff and corresponding change of neutrino temperature is

relevant only for change of Hubble rate as decoupled neutrinos do not

play any any role in nuclear reactions.

Let us now focus on the region of HNL parameters, that is remaining as

opened window below the see-saw line. Lifetimes tBBN . τN . 104 s Once

lifetime τN reaches ' t BBN, HNLs start affecting the nuclear dynamics directly

– via the meson-driven and photon-driven dissociation, modification of time-

temperature relation and ηB. In this section, we will consider HNLs with

lifetimes τN . 104 s. For such HNLs, photodissociation is a sub-dominant effect

in comparison to the meson-driven dissociation, and we may neglect it. For

these lifetimes the abundances of light elements (d,3 He,He) increase.

Two possibilities may appear: either the meson abundance Xπ is enough

for keeping all the nucleons unbounded, disintegrating the nuclei or it is

suppressed and does not prevent BBN from starting. However, in any case

after the disappearing of mesons we are left with an excess of free neutrons

in comparison to SBBN. If mesons disappear before the freeze-out of BBN

reactions, this excess leads to the overabundance of the primordial helium –

more protons may be bounded in He. Roughly, we have Yp = mHeXHe/mp ≈
4XnXp ≈ 1, where we used Xn ≈ Xp ≈ 1/2.
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BBN dynamics in presence of HNLs To make quantitative predictions on the

abundances of other light nuclei and estimate whether the He abundance is

suppressed as far as mesons from HNLs are present in the plasma, we need

to consider their full dynamics. It is an interplay between the SBBN synthesis

processes and the meson-driven dissociation processes:

dXi

dt
∝ XjXknB〈σjk→iv〉 −XiXmnB〈σim→...v〉, (4.129)

where Xi ≡ ni/nB.

Given the SBBN synthesis D + C → A+X and the meson-driven dissocia-

tion processes π + A→ X ′, the abundance XA is given by the quasi-static

equilibrium:

Xeq
A ∼

XDXC

Xπ

〈σDC→AXv〉
〈σAπ→X′v〉

(4.130)

In this regime, the values of the abundances Xd, X3He are larger than in

SBBN, which leads to the overabundance of these nuclei.

Let us first estimate the pion abundance:

Xπ = ninst
π

nB
≈ 2 · 10−3e−t/τN

nN(T dec)
nγ(T dec)

ζ(TCMB)
4 · 10−4

1000 s
τN

BrN→π, (4.131)

Here, Tdec is a temperature at which the population of HNLs completely

decoupled from the plasma. The suppression of Xπ comes from ζ and the

instant meson population factor, ninst
π ∝ τπ/τN ∼ 2.5 ·10−11 · (1000 s/τN), which

is only partially compensated by ηB.

Let us now apply Eq. (4.130) to the case of the deuterium synthesis. The

synthesis is driven by p + n → d + γ. Its cross-section is suppressed in

comparison to the one of the pion-driven dissociation by∼ 0.1α EM ' 10−3 [89].

This suppression cannot compensate the suppression coming from the baryon-

to-pion ratio (4.131), and for the right hand-side of Eq. (4.130) we get

Xn ·Xp · 40 τN
1000 s

· nγ(Tdec)
nN(Tdec)

· Br−1
N→π · et/τN ·

4 · 10−4

ζ(TCMB) � 1, (4.132)
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which means that BBN successfully starts even in presence of mesons from

HNLs. It means, that the major fraction of neutrons would become bounded

anyways. It means, that for such lifetimes, the bounded fraction of baryons will

still be larger, than in the SM scenario. So our naive estimate of τN . 40 s is

actually can be extended to a much higher values. The first possibility to have

the window for HNLs parameters opened would appear only for lifetimes, that

correspond to decoupling of strong reactions. As it is the only chance for pions

to destroy the already formed light nuclei so that they are not synthesized

again.

4.5 HNLs and BBN: non-meson driven
effects

We have stated in the previous section, that the meson effect on primordial

abundances is dominating for HNLs if those mesons are allowed to appear

in decays. Mostly, this statement was based on the comparison of weak and

strong interaction rates. In this section we will estimate the effect of HNLs

decays on the weak reaction rates and g∗ as two main components, defining

neutron-to-proton ratio and hence, Helium abundance. Contrary to the meson-

driven effects, we can not separate them from each other. It is already clear

from SM scenario, that expansion rate, as well as interaction rates, play the

role of the same order, as in estimate 4.24 we actually find when those rates

are equal. There is another, less obvious reason, why those effects can not be

accounted independently.

Change of weak reaction rates can be associated with: (i) Change of tem-

perature of neutrino spectrum Tνα (compared to EM-interacting particles

temperature Tγ), (ii) distortions of spectrum of neutrinos from their equilib-

rium Fermi-Dirac shape for given temperature and (iii) appearance of particle,

species, absent in the SM scenario at T ∼ 1 MeV.

Formally, expansion rate depends only on the energy density of the universe,

so we are interested in the contributions of neutrinos, EM particles, and HNLs

themselves without considering detailed shape of spectrum. But let us recall,

that we are interested in temperatures around neutrinos decoupling Tν, dec. In

this case, any created spectral distortions in neutrino spectra (whether it is
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considered as the change of temperature of neutrino or the change of Fermi-

Dirac shape) will affect the processes of energy transition between neutrino

and EM sector. So both of above mentioned distortions (i) and (ii) do affect g∗
through changing its evolution.

Hence we need to estimate, how HNL’s decay products evolve and how

they can affect neutrino spetra during this evolution.

4.5.1 HNLs decay products’ evolution

At first, let us consider the case of a single neutrino of flavor α, injected at

temperature T inj with energy E inj � T inj. It would correspond to neutrino,

that appear after in decay of massive HNL at temperatures T ∼ MeV. Such

neutrino participate in interactions with SM plasma, that proceed with rates,

significantly higher, than for thermal neutrinos.

It is convenient to classify different weak reactions for such highly non-

equilibrium neutrino (νnon-eq), neglecting interactions with nucleons. De-

pending, on how it may affect non-equilibrium part of spectra we have: It

is convenient to classify different interactions of a non-equilibrium neutrinos

νnon-eq with SM particles in the following way:3

1. Processes that do not change the number of neutrinos of α flavor:

νnon-eq
α /ν̄non-eq

α + e± → νnon-eq
α /ν̄non-eq

α + e± (4.133)

2. Processes that do not change the number of α flavor but increase the

total νnon-eq number:

ν
non-eq

α /ν̄
non-eq

α + νβ/ν̄β → νnon-eq
α /ν̄non-eq

α + νnon-eq
β /ν̄non-eq

β , β 6= α (4.134)

3. Processes decreasing the total number of neutrinos:

νnon-eq
α + ν̄non-eq

α → e+ + e− (4.135)
3Below all changes about increasing or decreasing number is referred only to non-

equilibrium part of spectra.
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4. Processes decreasing the number of α flavor but increasing the total

νnon-eq number by annihilation to another flavor:

νnon-eq
α + ν̄α → νnon-eq

β + ν̄non-eq
β , β 6= α (4.136)

5. Processes increasing both the numbers of α flavor and all neutrinos:

νnon-eq
α + να/ν̄

non-eq
α → νnon-eq

α + νnon-eq
α /ν̄non-eq

α (4.137)

We have put index "non-eq" for neutrinos in the r.h.s. since we assume, that

reaction products will be also highly non-equilibrium. According to high

injection energy, that is a reasonable approximation. We do not use any index

for EM particles, as their equilibration rates are significantly higher, than weak

rates. Hence, for every reaction with EM particles in products, we can assume,

that all energy of that EM particle was injected to EM plasma, heating it.

With this we can give a simplified picture of the evolution of injected neu-

trino.

1. HNL decays, producing high energy non-equilibrium neutrino

2. While participating in weak reactions, this neutrino can either knock-out

of equilibrium another neutrino or produce an EM particle, injecting part

of its energy to EM plasma.

3. If there was at least one neutrino in decay products, its energy decreases

compared to injected one and it acts the same, as the initial neutrino

4. Due to reactions, when the number of non-eq neutrinos increases, one

injected neutrino can lead to cascade production of non-equilibrium

neutrinos, but with lower energy.

5. When the energy of non-equilibrium neutrinos from r.h.s. of reactions

becomes close to thermal, this simple picture can be used only for rough

estimate
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With this simplified overview of the evolution of HNL decay products after

their injection into SM particles plasma we can proceed to estimate of the

contributions, those decay products do with respect to BBN-related quantities.

We will start with estimate of how HNL’s decay products affect the number of

relativistic degrees of freedom and the effective number of neutrino species in

particular.

4.5.2 How HNLs change Neff and relativistic
numbers of degrees of freedom

Change of g∗ by HNLs decays product

In this section we will refer to parameter of N eff - effective number of neutrino

species. It is defined by

N eff ≡
8
7

(11
4

)4/3 (ρ rad − ργ
ργ

)
, (4.138)

where ρrad - energy density of radiation (photons and neutrinos after electron-

positron annihilation) and ργ - energy density of photons. It corresponds to

the number of neutrino flavors, that will produce a similar contribution to

energy density as massless particles with perfect Fermi-Dirac distribution. Or

in terms of neutrino Tνα and photon Tγ temperatures:

N eff =
(11

4

) 4
3 ∑
α=e,µ,τ

(
Tνα
Tγ

)4 ∣∣∣∣∣
T�me

(4.139)

Note, that factor (11/4)4/3 has to be applied only after rhe electron-positron

annihilation. Its SM value can be calculated with high accuracy NSM
eff =

3.043− 3.045 [50, 109, 51]. The deviation from N eff = 3 comes from details of

neutrino decoupling process and contribution of high-order QED corrections.

This quantity is a convenient parameter that shows the contribution of neutri-

nos to the total energy density of plasma. Decaying HNLs affect g∗ and N eff in

the following way:
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• Injections into EM plasma Decaying HNL can produce EM-interacting

particle. It could be either stable particles like electron/positron and

photons or unstable particles - muons, charged mesons (π±, K±). Large

rate of the EM-interactions leads to almost instant thermalization of

those decay products, while e±, γ become a part of a thermal spectra,

transferring their whole energy into it, non-stable fraction of decay

products would first lose all their kinetic energy (again, by transferring it

into EM-spectra) and decay afterwards. In this secondary (with respect

to HNL) decay, the similar situation occurs and we can apply the same

argument until final decay products would become either EM-interacting

stable particles or neutrinos. An example of the discussed matter could

be an HNL decaying into charged pion and electron at low relatively

tempratures (me < T � mπ):

N → π+ + e−, Eπ ≈
m2
N +m2

π

mN

, Ee ≈
m2
N −m2

π

mN

(4.140)

The energy of the electron Ee and kinetic energy of pion Eπ −mπ are

directly injected into EM plasma. After this, decay of the pion occurs.

With large Br ≈ 1 ([242]) it decays into muon and neutrino

π± → µ± + νµ/ν̄µ (4.141)

And the story repeats. Muon in this decay first lose his (small) ki-

netic energy in thermal plasma and afterward - decays into neutri-

nos/antineutrinos and electrons/positrons which transfer another frac-

tion of initial decaying HNL mass into the EM plasma.

• Injections into neutrino plasma. HNLs decay products, as well as sec-

ondary decays of latter, might produce a population of non-equilibrium

neutrinos of different energies. On the one hand, this is a bit similar to

the EM injections story in terms of the decay cascade. But on the other

hand, neutrinos do not thermalize instantly and they can BE dangerous.

Moreover, neutrinos interact with both neutrino and EM (e± sector),

allowing the transition of energy between neutrino and EM sector during

neutrino thermalization.

• Post-thermalization effect. After High-energy neutrinos has almost

thermalized and its energy has already been distributed between neutrino
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and EM sector, if it happens on temperatures T & 0.1−0.3 MeV we should

take into account energy exchanges between EM and neutrino sector.

according to the picture we presented in the beginning of Sec. 4.5.1, it is

natural to separate the calculation of g∗ into the following steps:

• Evaluate the total energy, that will be injected into the EM sector via

HNL decay products, not including the neutrinos (only EM-interacting

particles injections) - taking the lifetimes of decaying particles and EM

interaction rate, can be treated as instantaneous.

• Estimate the energy, that will be transferred from the neutrino sector

to EM during the thermalization of high-energy neutrino. We would

consider this process also as instant due to high neutrino energy, relevant

for it.

• Calculation of evolution of the total system of HNLs, neutrinos and EM

plasma in terms of their energy densities taking into account exchanges

of energy. This slower process requires would require solving a system of

equations for the temperature of each spectra component.

Although there is no physical difference between energy transition between

EM and neutrino sectors for either low- or high-energy neutrinos, we still want

to separate those processes due to very different time scales. They allow us for

applying a simplified treatment of a high-energy neutrino thermalization.

In the SM plasma before neutrino decoupling largest relevant rate scale (after

the EM interaction rate) is a rate of weak processes with thermal particles,

which is also related to energy transition rates. But interaction rate of high-

energy neutrinos, injected into plasma after HNL decay may be significantly

higher at T ∼ MeV.

Γ non-eq

Γ therm
∼ G2

FT
4Einj

ν

G2
FT

5 = Einj
ν

T
� 1 , (4.142)

as energy of injected non-equilibrium neutrinos Einj
ν ∼ mN � MeV.

Calculation of energy injection
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Figure 4.20: Fraction of HNL mass, that will be transferred directly into EM plasma
component in EM interactions, neglecting the contribution from ther-
malizing neutrinos. This quantity already includes the contribution from
secondary decays.

Let us introduce the quantity ξ EM, that will correspond to a fraction of energy

of initial HNL mass, injected into EM-sector directly (without neutrinos ther-

malization) and corresponding ξν = 1− ξ EM is the energy fraction that HNL

directly injects into the neutrino sector. The value of ξ EM parameters for three

mixing cases are shown at Fig.4.20. If, by some reason, the interaction between

neutrino and EM sector would be switched off, this quantity would completely

parametrize the resulting g∗ as it would not depend on anything else. This

could be the case, if we consider very late injections T inj � me, Tν, dec for a very

long-living HNLs. Now we have to account for the neutrino thermalization con-

tribution. Besides the pure thermalization, as we have stated in the beginning

of Sec. 4.5.1, there could be a non-trivial contribution from the energy transfer

due to dragging of neutrinos out of equilibrium by high-energy particles during

the thermalization (reactions (4.134), (4.136) and (4.135)).

Some extra explanation might be useful here. Consider the case of low

temperature, at which interactions between thermal neutrinos and EM thermal

bath are almost switched off, such that small heating of either neutrinos or

EM part does not change this. Consider an HNL with such mass mN , that the

high-energy neutrino thermalization rate Γ ∼ G2
FmNT

4 is still higher, than

Hubble rate. If the dragging of thermal neutrinos is neglected, than the total

energy deposit available for redistribution between ν/EM sectors is given by

initial HNL mass. But, if we take it into account, each neutrino, that had

thermal energy Etherm = 3.15 · T after being dragged out of equilibrium, add
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its energy to the redistributable deposit. Although the contribution of a single

neutrino seems irrelevant 3.15 · T/mN � 1, but as we stated in the beginning

processes (4.137), and (4.136) could eventually lead for the cascade, and the

number of those neutrinos could become significantly higher, than one. This

might produce a correction, important for account in calculation of energy

transitions and thermalizations.

Now, let us introduce quantity ξ EM, eff:

ξ EM, eff(Einj
ν , T ) = ξ EM + ξν × ε(Einj

ν , T ) , (4.143)

which takes into account, that some fraction (parametrized by ε(Einj
ν , T )) of

the energy, injected initially in the form of neutrinos (with a fraction ξν of the

HNL mass) would transit to EM plasma. Factor ε consist of two contributions

- ε = ε non-eq + ε thermal where ε non-eq - fraction of non-equilibrium neutrinos

energy "lost" in the EM plasma (ε non-eq = E non-eq→EM
ν /E inj

ν ) and ε thermal is not

a fraction in a full sense, but an effective contribution, that defines the ratio of

the dragged thermal energy, that was transferred to EM part to injected energy

(ε thermal = E thermal→EM
ν /E inj

ν ). Due to latter contribution, the value of ε does

not have to be limited by unity.

Naively, Eq. (4.143) tells, that if ε > 1/2 , then energy, stored in the EM sector

would increase more, than in the neutrino sector so the ratio of ρν/ργ would de-

crease and g∗ and N eff would effectively decrease (remember, that parameters

of effective number of particles is given with respect to photon temperature,

hence the "unexpected" decrease of Neff after the injections of neutrinos may

occur, if there is also injections into EM plasma). This is the situation when

more than a half of HNLs mass has left in the EM sector. But this naive guess

does not take into account the subsequent energy redistribution between the

neutrino and EM sector. If there was a mechanism, keeping the distribution

functions of neutrinos in a perfect equilibrium shape and in the same time

leaving the the interactions between neutrinos and EM sector untouched, then

the relation between the value of ε and significant change in ∆g∗ or ∆N eff we

had from a naive point of view, would be correct. But in realistic scenario,

the neutrino spectrum would have a spectral distortion at high energies as a

trace of incomplete neutrino thermalization. Hence, the average energy of

neutrinos might be higher, than the thermal one. And since the highest-energy

neutrinos are the most important for energy exchange (due to their higher

120 Chapter 4 Cosmological constraints on HNLs



interaction rate), it might have consequences for the interaction of neutrinos

and electrons, changing the result of energy redistribution between them. In

detail, this effect can be captured only by solving the system of Boltzmann

equations for neutrinos spectra.

Here we are interested in an approximate treatment, that will capture the

main effect so we will not discuss the distortions of neutrino spectra for now.

Energy transition and system evolution

For the calculation of resulting N eff we will use a system of Friedman equa-

tions, taking into account, that contrary to the approximation we had in the

preliminary study of HNLs evolution, each component of plasma - three neu-

trino flavors and EM-sector, containing electrons, positrons and photons may

have different temperature. In this case, we have a system of 5 equations to

solve: The resulting system of equations we need is

dTγ
dt

= −4Hργ − 3H(ρe + pe) + ρN/τN · ε EM, eff −
∑
α δρνα/δt

∂ργ/∂Tγ + ∂ρe/∂Tγ
, (4.144)

dTνα
dt

+HTνα = δρνα/δt+ ρN/τN · (1− ε EM, eff)/3
∂ρνα/∂Tν

, (4.145)

and the last equation is not changed as it is just a definition of Hubble rate

ȧ(t)
a(t) = H(t) = 1

m Pl

√√√√8π
3

(∑
α

ρνα + ργ + ρe + ρN

)
(4.146)

Here: Tγ, Tνα are temperatures of the EM plasma and neutrinos of the flavor α

correspondingly;

ρe = 2 ·
∫ d3p

(2π)3

√
p2 +m2

efFD(p, Tγ), ργ = π2

15T
4
γ , ρνα = 7π2

120T
4
να (4.147)

are the energy densities of e±, photons and neutrinos of the flavor α corre-

spondingly, while pe is the pressure of e±; ρN is the energy density of the FIP.

Factor 1/3 in front of (1− ε EM, eff) appears, since we average the neutrinos over

flavours during the thermalization of high-energy neutrino. Finally, δρνα/δt

is the rate of the change of the energy density of να, α = e/µ/τ due to ν − ν
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and ν − e interactions, averaged over neutrino flavors with the temperature

oscillation probabilities Pαβ (see [209, 194]):

δρνα
δt

=
∑
β

Pαβ(T,Eν = 3.15Tν) ·
δρ pure

νβ

δt
, (4.148)

where δρ pure
νβ

/δt is the pure rate without neutrino oscillations,

δρ pure
νβ

δt
= G2

F

π5 (1± 4s2
W + 8s4

W )F(Tγ, Tνβ)− G2
F

π5

∑
β′ 6=β
F(Tβ, Tβ′) (4.149)

with “+” corresponding to νe and “-” belonging to νµ/τ .

F(T1, T2) = 32 · 0.859 · (T 9
1 − T 9

2 ) + 56 · 0.824 · T 4
1 T

4
2 (T1 − T2) (4.150)

In the system above, energy transition rates are obtained in the assumption of

equilibrium shape of neturinos spectrum, given by corresponding temperature.

The factor ε is yet to be calculated. Note, that we have found, that if we include

additional fitting factor x = 0.8 in the energy transition rate (4.148) such that

it becomes
δρνα
δt

=
∑
β

Pαβ(T,Eν = 3.15Tν) · x ·
δρ pure

νβ

δt
, (4.151)

than the system begin to describe the evolution of N eff way better indepen-
dently on the injected energy. This factor physically should correspond to

spectral distortions, that make neutrino plasma hotter, which decreases energy

exchange rate with EM plasma, as we saw when comparing the result with the

publicly available code pyBBN4 [194]. The only remaining detail in this model

is the value of parameter ε which we will estimate in the following manner:

Value of parameter ε

We follow our illustrative picture of the evolution of high-energy neutrinos

when they get injected into SM plasma. Let us start from a description of

energy redistribution caused by a single high-energy neutrino, injected at

temperature T inj with energy E inj
ν , that appeared from either 2- or 3- body

decay. We expect such neutrino to create a cascade of secondary neutrinos

during its thermalization process in reactions (4.133)−(4.137). Every time

a neutrino participates in a reaction with thermal neutrino it drags it out of

equilibrium or annihilates into electron-positron pair and while interacting

4https://github.com/ckald/pyBBN
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with electron/positron, it leaves half of its energy in the EM plasma. To

evaluate the energy, that will remain in the neutrino plasma we have to know

the number of reactions in a cascade. Roughly, since we expect the high-energy

neutrino to lose half of its energy in every reaction, thermalization should

occur during

N therm ' log2(E inj
ν /3.15T ) (4.152)

energy-loss interaction processes (we add "energy-loss" here, since neutrino

can lose all it’s energy by annihilating into e − e+ pair). Every process of

(4.133)−(4.137) can decrease the number of non-equilibrium neutrinos by

one (annihilation), do not change it (scattering ob the EM plasma components)

or double the neutrino number (scattering with thermal neutrino and dragging

it out of equilibrium). Thus, average number of neutrinos on "k"-th and "k-1" -

th step of thermalization would be related as

N (k)
ν = N (k−1)

ν (2Pνν→νν + Pνe→νe) = N (0)
ν (2Pνν→νν + Pνe→νe)k , (4.153)

While at the first step we take N (
ν0) = 1. Here we introduced probabilities

of the processes of doubling the neutrino numbers Pνν→νν and process of

scattering on EM plasma without change of neutrino numbers Pνe→νe. These

probabilities are defined as as Pi = Γi/Γtot
ν , where Γi is the interaction rate of

each process and Γtot
ν is the total neutrino interaction rate.

Pνν→νν ≈ 0.78, Pνν→ee ≈ 0.041, Pνe→νe ≈ 0.166 . (4.154)

These values are obtained in the assumption of Fermi-Dirac distribution of neu-

trinos with temperature, equal to the photon temperature. The corresponding

rates are presented at 4.1. Note, that these probabilities are obtained without

any consideration if the interaction rate of neutrinos and EM plasma is decou-

pled or not. We know, that at low temperatures any transition between EM and

neutrino components has to be switched off. To incorporate this switching-off

we manually introduce additional factor min[Γi/H, 1], where Γi = Γi(E inj
ν /2k)

is the interaction rate corresponding process. As we have found, this does

not affect the results noticeably. Taking into account, that the energy of those

individual neutrinos decreases as E(
νk) = E inj

ν /2k, the remaining energy in the

neutrino sector will be

E(k)
ν = E(k−1)

ν

(
Pνν→νν + 1

2Pνe→νe
)

= E inj
ν

(
Pνν→νν + 1

2Pνe→νe
)k

, (4.155)
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Figure 4.21: Left panel: values of ε thermal, ε non-eq and their total value for different
masses of HNLs assuming injection occurs at T = 1 MeV. Thermal
contribution is subdominant everywhere but still can give a contribution
with an order of 5− 10%. Right panel: Estimate of a resulting fraction
of HNL energy injected into EM plasma for three different flavous. The
value is calculated at temperature T = 1 MeV for the case of 2-body
decay as an example.

Now we can get the final value of the ε non-eq that accounts for the energy

transfer from non-equilibrium neutrinos to the EM plasma:

ε non-eq = 1
E inj
ν

N therm∑
k=0

(
Pνe→νe

2 + Pνν→ee

)
E(k)
ν . (4.156)

But as we have mentioned, together with redistribution of energy of injected

neutrino we have a catalysing of thermal energy when equilibrium neutrino

is being dragged out. The effective contribution coming from this transfer is

therefore:

ε thermal = 3.15T
E inj
ν

N therm→EM
ν = 3.15T

E inj
ν

Pνν→ee

N therm∑
k=0

N (k)
ν +

Pνν→νν +
N therm∑
k=1

(2Pνν→νν)(k)

 ,
(4.157)

here the first term comes from the annihilation to e−e+ pair (as it also directly

injects thermal energy into EM plasma), and the term in the square brack-

ets corresponds to contribution from process of neutrino-neutrino scattering.

The value of the thermal dragging contribution, non-equilibrium part and

is presented at Fig. 4.21 Now, with the value of ε we can solve the system

of equations for the evolution of temperature and scale factor to obtain the

correction to N eff as a function of HNL parameters.
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Results

Our main result for the analytic estimate of the change of N eff is presented

at Fig. 4.22 for a wide variety of HNL parameters. We did not limit ourselves

to small BBN-related lifetimes but expanded the study for τN � t BBN. Out

estimate is not limited to small lifetimes because we treat the change of N eff

primarily through using the integral values like total injected energy instead

of dealing with the spectra of neutrinos, which detailed study at large time

intervals can be insanely time-consuming in the case of numeric computation.

At a high lifetime with very late injections, the change of N eff if not related
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Figure 4.22: Value of ∆N eff as it follows from semi-analytic estimate we described
above for the case of τ mixing. Although for low-mass and short lifetime
HNLs τN . 10−1 − 10−2, that lead to small changes of N eff accuracy
compared to the results of pyBBN code is only up to a factor of few,
for high masses and higher lifetimes we have found a good correspon-
dence. Independent on mass and lifetime we get, that our semi-analytic
approach provides a good qualitative understanding of the behavior of
N eff. We see, that the strongest effect on the N eff comes from HNLs with
large lifetimes and small masses. It is so because such HNLs produce
a lot of neutrinos that are already decoupled, but do not inject much
energy into EM plasma. High mass and large lifetimes HNLs affect N eff
weakly as their abundance become non-thermal at some moment and
afterward - decreases with the increase of lifetime

to any energy transitions between plasma components or thermalizations of

neutrinos since all those processes are decoupled a long time ago. In this case,

the resulting value begins to depend solely on the ξ EM as its effective value is

the same with ε→ 0.
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The example of the temperature of all plasma components evolution for 2 sets

of HNL parameters are presented at Fig. 4.23. We will use our approach and
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Figure 4.23: Evolution of temperature of photons Tγ and neutrinos of all flavours Tνα ,
α = e, µ, τ with time in presence of decaying HNLs with the following
parameters: mN = 1 GeV, τN = 0.2 s (right panel) and mN = 0.1
GeV, τN = 5 s (left panel). For the case of large mass HNL with a small
lifetime, it is seen, that due to the large injection of its energy into the EM
component, temperature Tγ increases significantly compared to three
other temperatures as soon as HNLs start decaying. The temperature
of electron neutrinos in its turn is higher than of two other flavors, as
their interaction with electrons/positrons heats them a little. For the
case of a low mass HNLwith a higher lifetime, an interesting feature can
be noticed, that at first, the temperature of neutrinos become higher,
than of the photons, but with time, when electron-positron annihilation
proceeds, its effect becomes stronger than the change of N eff by HNLS
and photons become hotter.

described machinery to calculate the total effect of HNLs on the BBN.
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4.5.3 Distortions of neutrino spectrum

At the beginning of Sec. 4.5.1 we have given an illustrative picture of the

evolution of HNL decay products and in particular - of high-energy neutrinos.

To find the corrections for neutrino-driven conversion rates Γνp↔n we need to

know the form of spectral distortions. Formally, for this we need to solve the

Boltzmann equation for each neutrino flavor:

dfα
dt = ∂fα

∂t
−Hp∂fα

∂p
= Iα, (4.158)

here Iα - collision integral, that accounts all interactions, which particle α

participates, in our case, it is one of neutrino flavors. In its general form,

a collision term for reaction involving n particle species one of which is a

neutrino:

α + 2 + 3 + ...+ k ↔ (k + 1) + (k + 2) + ...+ n (4.159)

can be written as ( [145])

Iα =
n∑
i=α

∫ 1
2Eαgα

n∏
i=2

d3pi
(2π)32Ei

S|M|2F [f ](2π)4δ4(Pin − Pout) , (4.160)

here gα - number of degrees of freedom for particle α, Pin and Pout) - total

4-momentum of particles in initial and final state of process (4.159), S is the

symmetry factor, not included in the non-averaged squared matrix element

|M|2. Summation goes over all initial and final states’ degrees of freedom of

all particles. Factor F [f ] responsible for phase space distributions of initial

state- and Pauli blocking (for fermions) or Bose enhancing (for bosons) for

final state- particles:

F [f ] = (1± fα) . . . (1± fk)fk+1 . . . fn− fα . . . fk(1± fk+1) . . . (1± fn) (4.161)

It consists of two terms, as it accounts for both directions of process (4.159)

- direct, corresponding to "disappearance" of α and reverse - relevant for

production. If the interaction rate Γint is significantly larger, than expansion
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rate, all particles distribution functions takes the shape of Fermi-Dirac or

Bose-Einstein shape during some characteristic time τtherm = Γ−1
int if they were

disturbed which drives the value of F [f ] to zero making the collision integral

also effectively zero - local thermal equilibrium. In the SM scenario, thermal

equilibrium is supported with high accuracy, such that the distribution function

of neutrinos is always almost with equilibrium shape.

In the case of HNL presence, they are distorted by injection of high-energy

neutrinos and their subsequent thermalization, which makes the collision term

differ from zero equilibrium value. It is enough to consider only processes

of 2- and 3-body decays of HNLs and 2→ 2 scattering reactions to calculate

the distribution function of neutrinos with great accuracy. The standard

procedure (see, for example, [194]) can reduce the dimension of integration

to only two. But even with such simplification, it is still a challenging task to

compute the evolution of the distribution function of neutrinos and it requires

a numeric solution of the system of Boltzmann equations. After calculating

the distribution function evolution, one can solve the Boltzmann equation

for neutron abundance (4.22). This a method, typically used to set BBN-

based constraints on the HNL’s parameters ([193, 95, 194]). Although all

those numeric codes may undergo different tests and provide extremely high

accuracy of computation, they still remain a very complicated "black-box"

instrument, hence we believe, that is important to see, if it is possible to

capture the computable effects via some analytic or semi-analytic (without the

requirement of solving Boltzmann equation) approximations. For this, we try

to find a reasonable model to account the distortions of the neutrino spectrum.

One step thermalization

The simplest estimate one can make is to consider a "one-step" thermalization.

Namely, a neutrino, after being injected in the SM plasma will have large

interaction rate Γν,therm(E inj) ∼ G2
FT

4E inj (compared to Hubble or thermal

neutrinos interaction rates) even at temperature close to decoupling of neutri-

nos Tν, dec ∼ 2−3 MeV ([95]). We can assume, that due to this large interaction

rate, neutrinos thermalize very fast in one interaction. In this case, a distorted

spectrum would be given by dynamic equilibrium between decaying of HNLs

and thermalization of high-energy injected neutrinos.

fν, inj(p, T ) = nN(T ) BrN→ν
Γν,therm(p)−1

τN
Fν(p) (4.162)
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where BrN→ν branching ratio of HNL decay into neutrino, Fν(p) - decay

spectra of neutrinos from HNL. Moreover, one can expect, that since weak

conversion rate scales with energy of neutrino as ∼ E2
ν , only the highest energy

neutrinos would matter. Such approach is identical to the approach of meson-

driven conversions - before neutrino "decays", it can participate in the p↔ n

conversion with probability similar to meson conversion probabilities (4.98),

(4.106):

P ν
conv =

nB〈σνp↔n v〉
Γν,therm

(4.163)

Thermalization rate for neutrinos with energy E inj ∼ 102 MeV at temper-

ature T = 1 MeV is Γν,therm ∼ 10−7τ−1
π while the weak conversion rate is

nB〈σνp↔n v〉 ∼ 10−16
(

1 MeV
E inj

)2
. So the probability of conversion is 6-8 orders of

magnitude smaller, than in the case of mesons. Direct use of constraint (4.115)

with the change of conversion probability would give a limit at the level of

τN & 0.1 − 0.2 s for large mass HNLs which is already order of magnitude

weaker, than meson constraints. For HNLs with smaller masses, that injects

neutrinos with even smaller energy, such constraint would be significantly

higher.

Note, it is not correct to use the meson constraint directly. The value of neutron

abundance in dynamic equilibrium in the presence of high-energy neutrinos

may differ from the case of mesons (which is the case, as will be shown later)

and be closer to the SM-given value. This would lead to the decrease of T0,min
which would increase the constrained lifetime even more.

We can avoid further study of this approximation not only because it gives

too high values for constrained HNL lifetimes. We have already shown, that

account of the evolution of decay products after injection leads to dependence

of N eff not only on the pure branchings into neutrino or EM plasma, but on

the additional quantity ε(E inj, T ), that parametrize, how energy is additionally

redistributed between EM and neutrino sector during the thermalization of

decay products. Which gives non-trivial consequences on when N eff might

increase or decrease. Value of g∗, that includes N eff is important for the

calculation of neutron abundances and requires accounting not only the first

step of neutrino thermalization. Hence we should improve our approximation

to do the same for neutrino spectra.
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Multiple steps thermalization

Now let us take into account, that high-energy neutrino does not thermalize in

one reaction. Let us still consider the case, when neutrino distribution function

can be separated into fully equilibrium part and non-equilibrium distortion

fν = fν,eq + fν,non-eq (4.164)

We would consider neutrinos as non-equilibrium if their energy is such that

the thermalization rate is significantly higher than the Hubble rate. If we use

distribution function in such form for kinetic equation 4.158, we would get a

Boltzmann equation for ∂fν,non-eq/∂t with collision term describing neutrino-

neutrino interactions separated into two components. One - corresponding

to interaction between non-equilibrium and equilibrium components, propor-

tional to fν,eq ·fν,non-eq and another one - for interactions within non-equilibrium

component. The equilibrium-equilibrium part would be canceled as it vanishes

the collision integral. It is a reasonable approximation to neglect the the in-

teraction within non-eq component compared to interaction with equilibrium

part as its population has to be significantly limited via thermalization process

rate and HNLs decay rate. It corresponds to fν,non-eq � 1 , nν,non-eq � nν,eq.

In this case, the evolution of the non-eq part of the spectrum will be governed

by interaction with the equilibrium component and by decays of HNLs. Con-

tribution from decays is quite straight-forward, if we know the momentum

distribution for a decay of a single HNLs, then the contribution to collision

integral Iα is given by

I inj
α = ∂nN(T )∂t BrN→νFν(pα) (4.165)

For interaction terms, the argument about the smallness of fν,non-eq can be

applied to Fermi blocking factors. Since we consider relatively large energies,

blocking factors 1− fx can be neglected, such that F [f ] becomes

F [f ] = fν,non-eq(p3)fν,eq(p4) + fν,non-eq(p4)fν,eq(p3)− fα(pα)fν,eq(p2) (4.166)

Here the first two terms corresponding to process, when higher-energy non-

equilibrium neutrinos are thermalizing are supplying lower energies (but

still non-eq) population. The last term corresponds to depleting of non-eq
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population due to energy loss and annihilation processes and can be integrated

explicitly leading to contribution

Idepl
α = −fαΓν(pα, T ) (4.167)

where Γν(pα, T ) - interaction rate of neutrinos of momentum pα with surround-

ing SM plasma at temperature T. The first two terms can not be integrated

directly without making about any assumptions about the shape of distribution

function. In total evolution of non-equilibrium spectrum is affected by:

• HNL decays that populates mostly high-energy part of spectrum (E inj ∼
mN) with the rate of HNL decay

• Energy-loss and annihilation processes, that depletes the population with

the rate of interaction rate of neutrino of corresponding energy

• Energy loss processes also populates the lower-energy part of spectrum

For this assumption, we will use the following model, based on the Sec.4.5.1.

Since the thermalization rate decreases with energy but still significantly higher

than expansion or HNL decay rate (for lifetimes of interest) there will be local

dynamic equilibrium for the above described repopulation and depletion

processes. Now, for simplicity let us assume, that the HNLs decay spectrum

is a narrow peak. Then, the population of neutrino spectrum at very high

energies will be given by dynamic equilibrium between decays and depletion

while at lower-energy part - by dynamic equilibrium between depletion and

re-population with energy loss.

In this case, for highest energies:

nν(Eν ∼ mN) = nN(T ) BrN→ν
Γν,therm(Eν)−1

τN
(4.168)

Now, consider neutrino energy T � Eν < E inj ∼ mN that appears due to one

energy loss process (4.133). Dynamical equilibrium value of that population

is given by

nν(Eν) = nν(E inj)
Γν,therm(E inj)
Γν,therm(Eν)

= nν(E inj)
E inj

Eν
(4.169)

4.5 HNLs and BBN: non-meson driven effects 131



We can continue this chain for lower energies in the same way until we

reach the limit energies for neutrino, that are non-thermal. So populations of

non-equilibrium neutrinos at energies, separated via one process (4.133) are

related as:
nν(Eν,a)
nν(Eν,b)

= Eν,b
Eν,a

(4.170)

The increase of number density with the decrease of energy can be understood

as follows: the "lifetime" of neutrino on large energy determines the time,

when neutrinos can "stack" on corresponding energy level. During the time

of thermalization of neutrino, the number density of HNLs would not change

significantly (τN � Γν,therm), so the "refilling" rate is also constant during

the dynamical equilibrium establishment. Hence, the population on different

energies depends only on "stacking time".

Therefore, since we know population of injected neutrinos, we can restore the

population on any lower energy. Take the energy intervals asE inj, E inj/2, E inj/4, E inj/8, ...
as it’s a reasonable steps of how neutrinos lose their energy in average. We

have:

nν(E inj/2) = 2nν(E inj), nν(E inj/4) = 4nν(E inj), ... (4.171)

in reality, we know that there are more processes affecting the distribution

function of neutrinos (Eqns. (4.133)- (4.137)) and as we mentioned, they can

also change the total number density of non-equilibrium neutrinos by dragging

thermal neutrinos out of equilibrium. This will result in different relations of

neutrino number densities on different energies.

Using matrix elements of the processes (4.134)-(4.137) from [194] (that

updated [193]), we obtained the interactions rates Γ1 . . .Γ5. Our results agree

with those from [113, 108].5 The rates of particular processes (4.133)-(4.137),

which we denote as Γ1,2,3,4,5, are given in Table 4.1 . We also provide there the

values of the total interaction rate Γnon-eq
int ,

Γnon-eq
total =

∑
i

Γi (4.172)

5Note that temperatures in Γ1−5 in Table 4.1 are temperatures of low energy particle (electron
or neutrino), so for different temperatures of EM and neutrino components of plasma,
corresponding temperature (Tγ,νe,µ,τ depending on process) must be used.
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and the energy loss rate Γnon-eq
E loss , which we define as the sum over the rates of

processes

νnon-eq +X → νnon-eq +X (4.173)

Process (4.133) (4.134) (4.135) (4.136) (4.137) Γnon-eq
total Γnon-eq

E loss
Γe flavor/G2

FT
4Eν 0.37 0.33 0.09 0.08 0.4 1.28 1.1

Γµ/τ flavor/G2
FT

4Eν 0.04 0.16 0.01 0.04 0.13 0.8 0.69
Table 4.1: Neutrino interaction rates: of the processes (4.133)-(4.137), total interac-

tion and energy loss rates. The total rate is obtained under the assumption
that Tγ = Tν , i.e. is valid for equal neutrino and photon temperatures.
If this is not the case, one can use separate temperature for each rate.
Electrons are assumed ultra-relativistic.

Let us introduce the probabilities of annihilation ( (4.135)) and scattering

( (4.135)):

Pann =
Γνnon-eqν̄→e+e−

Γnon-eq
total

, PEM scat =
Γνnon-eqe±→νnon-eqe±

Γnon-eq
total

(4.174)

After averaging over neutrino flavors, their values are

Pann ≈ 0.041, PEM scat ≈ 0.166 (4.175)

In each process (4.134), (4.136), (4.137) the number of non-equilibrium

neutrinos grows by a factor of two, in each process (4.135) non-equilibrium

neutrinos disappear, whereas in the process (4.135) their amount does not

change. Therefore, number of non-equilibrium neutrino after one scattering is

changed via factor

(1−PEM scat−Pann)·2+PEM scat·1+0·Pann = (2−2Pann−PEM scat) ≈ 1.77, (4.176)

fnd since its value is larger than one, so number of neutrino actually increase.

Hence one injected high energy neutrino produce a cascade of reactions that

increases total number of non-equilibrium neutrino. Then for one injected

neturino, number of neutrinos on k-th step is given by factor

F (k)
ν = (2− 2Pann − PEM scat)k, (4.177)
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So we need to modify relations (4.169), (4.170) using this factor. Now, relation

between number density of injected neutrinos and number density at step "k"

is given by

nν(E inj/2k) = F (k)
ν 2knν(E inj) (4.178)

Finally, we can calculate the correction for the p↔ n conversion rate driven

by high-energy neutrinos. for the total conversion rate due to HE neutrinos

we get

ΓHE, tot
p↔n ≈ ΓHE

n↔p(Eν,inj) · fn↔pcorr (Eν,inj), (4.179)

where the correction factor fcorr is

fn↔pcorr (Eν,inj) =
∑
k

nHE
νe (E(k)

ν )
nHE
νe (Eν,inj)

〈σHE
n↔pv〉(E(k)

ν )
〈σHE

n↔pv〉(Eν,inj)
=

=
kmax(Eν,inj)∑

k=0
(2(1 + βνe))

k 〈σp↔nv〉(E(k)
ν )

〈σp↔nv〉(Eν,inj)
(4.180)

Value of kmax(Eν, inj) is defined from minimal non-equilibrium energyEmin,non-eq(T )
as

kmax(Eν, inj) = log2

[
Eν, inj

Emin,non-eq(T )

]
(4.181)

Naive dependence of the cross section on the neutrino energy 〈σp↔n v〉 ∼ E2
ν

would lead to estimate of the correction factor as

fp↔ncorr =
kmax(Eν,inj)∑

k=0

(
Fν
2

)k
(4.182)

For a neutrino injection energy Eν, inj . 500 MeV at temperature T ∼ MeV its

value will be fp↔ncorr ∼ 5.

In reality, for such high-energy neutrinos, nucleon form factors have to be

used in calculations of p ↔ n conversion rates (see App.A.3). This would

make the correction factor different for p → n and n → p rate. In the range

Eν 6 0.5 GeV we have fn→pcorr 6 3.5, fp→ncorr 6 5.5. The difference is caused

by slower Eν dependence of 〈σp→nv〉. Hence high energy non-equilibrium

neutrinos would not shift the neutron to proton ratio to unity even if there was

large abundance of them. Instead, we have temperature dependent (since the

minimum energy and hence - parameter kmax depends on it) local equilibrium

value.
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Figure 4.24: Evolution of equilibrium value of neutron abundance as given by the
high-energy neturinos from HNL decays for two sets of paramters:
mN = 1 GeV, τn = 0.1 s (left panel) and mN = 1 GeV, τn = 0.054
s (right panel) . If we would use the point-like approximation, the
abundance of Helium would be affected significantly, but the occasional
proximity of the SBBN value of Xn and the ratio of p ↔ n weak
reactions cross sections has led to a very small deviation of Xn(T ) from
the SBBN value.

So as we see, taking into account several steps of neutrino thermalization

indeed increases significantly their contribution to conversion rates compared

to naive assumption. Although the contribution of a single neutrino indeed

drops with energy significantly, but the number of neutrinos increases, hence

compensating the cross-section drop. But local equilibrium value Xeq
n

acciden-

tally remains very close to the one, given by SBBN. It is a result of nucleon

form factors which we didn’t include in our simplest estimate 4.5.3. Such

unexpected result shows, that contribution from high-energy non-equilibrium

neutrinos is a counter-intuitively subdominant effect if we compare it with, for

example, effect of g∗ change.

There are two remaining effects we did not take into account yet, that are

relevant :

• Spectral distortions due to change of temperature of neutrinos. When

HNLs inject energy into EM and neutrino spectra, changing their tem-

perature, and energy-redistribution processes start, they do not proceed

with the same rate on each energy. While EM-particles (e±, γ) spectra

remain always with FD distribution, neutrinos don’t have to. It distorts

the spectrum of neutrinos.

• Distortions on low energies. Previously we avoided them since they were

naively subdominant to high-energy neutrinos, but as we saw, the effect
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of such neutrinos is accidentally suppressed. So we need to estimate the

effect for lower Eν,non-eq also.

Temperature-difference driven distortions

Previously we have separated the spectrum of neutrinos into equilibrium and

non-equilibrium parts, assuming for simplicity, that the equilibrium component

keeps perfect FD distribution. But as we saw in Sec.4.5.2, the temperature

of neutrinos may differ from EM-plasma temperature already at neutrino

decoupling. The neutrino decoupling process is not instant, hence even if

lower-energy neutrinos can be considered as decoupled, a hotter part of the

spectrum may still interact. If we introduce effective temperature of neutrinos,

such that spectrum would be given by:

fν = 1
1 + epν/Teff(pν) (4.183)

We can expect, that population of neutrinos at high energy would correspond

to T eff ≈ Tγ, while lower energies may have T eff higher or lower, than photon

temperature, depending on the injected energy to each component. In what

follows we would refer to this distorted population as to quasi-equilibrium

fquasi-eq. For estimate of the level of the distortions we would follow approach

of (see [96]) where the similar process was studied. Namely, authors has

considered the change of neutrino spectrum after electron-positron annihila-

tion that has also lead to difference between Tν and Tγ. It was obtained, that

correction for neutrino spectrum can be expressed as

δfν(p, t) = 8G2
F (g2

L + g2
R)

3π3
p

Tν

[11
4
p

Tν
− 3

]
·
t(Tγ)∫
t0

dtT 5
ν

(
Tγ
Tν
− 1

)
, (4.184)

where gL = 1/2 + sin2(θW ), gR = −1/2 + sin2(θW ). We can rewrite it in the

terms of correction to effective temperature of neutrino.

δTν(p, t) =
(
1 + e−

p
Tν

) Tν
p
δν(p, t), (4.185)

It is seen from this expression, that if Tν < Tγ, at low energies effective

temperature is effectively decreased with negative correction, while at higher

energies - increased. This can be understood as follows: hotter EM plasma

drags the neutrinos, trying to give it the same temperature, but neutrinos
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are getting out of equilibrium, so their population is not restored effectively,

especially at low energies, where such neutrinos are already decoupled and

such neutrinos are "used" to refill the population at Eν & Tν .

To follow this approach we need the temperature of neutrinos Tν introduced.

For this, we use the one from 4.5.2. Namely, the one, defining the energy

density of neutrinos ρν = 7
8
π2

30T
4
ν . Having the Tν/Tγ for each moment of time

and using Eqn, (4.184) we can find the distorted population.

Naively, we have use the value of Tν + δTν(p, t) as the effective temperature

of neutrinos T eff. But since our temperature Tν is basically a neutrino energy

density rather than temperature, defining spectra while treatment of [96]

corresponds to exact distribution we have to take care about the consistency
6. For this, we use Tν + δTν(p, t) as shape-defining effective temperature and

then re-normalize the distribution such that energy density of neutrino still

correspond to Tν . With this,we have the following spectra for quasi-equilibrium

component of neutrino spectra.

fν,quasi-eq(p, T ) =
7
8 ·

π2

30 · T
4
ν∫ p

ep/(Tν+δTν )+1
d3p

(2π)3

· 1
exp

(
p

Tν+δTν

)
+ 1
≡ 1

exp
(

p
T eff

)
+ 1

,

(4.186)

With this we can calculate directly the change of conversion rates for any

ratio of neutrino to photon temperature, the difference in rates are shown at

Fig. 4.25

Low-energy distortions

Although the previously described temperature-driven distortions have also

corresponded to low energy (compared to Eν ∼ mN) contribution, we separate

the one, forced by injections. We will concentrate on neutrinos with such

energy, that Γν,therm(Eν) ∼ H(T ). Hence, this distortion becomes important

only at temperature of neutrino decoupling and below (e.g. Tν, dec ∼ 2 − 3
MeV). The most important difference from high-energy distortions is that there

6The inconsistency appears since the expression (4.184) contains not only energy redistribu-
tion within the neutrino spectra, but also the energy transfer between EM ↔ ν. At the
same time, in the Tν/Tγ evolution these processes are already incorporated. Hence, we
might double account this energy transfer as both Tν/Tγ and δfν(p, t) evolves in the same
time.
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Figure 4.25: All conversion rates p ↔ n as a function of temperature for different
neutrino-to-photon temperature Tνe/Tγ . Panels from top left to bottom
right correspond to the processes: (i) p+ν → n+e, (ii) p+e→ n+ν, (iii)
p+ ν + e→ n, (iv) n+ ν → p+ e, (v) n+ e→ p+ ν, (vi) n→ p+ ν + e.
Obviously, the most sensitive fot temperature changes are the rates,
involving neutrinos as initial state, as they are proportional to their
number density and energy. Rates, that has neutrinos only as final state,
also depend in the neutrino population , but much weaker - through the
Pauli blocking

is no dynamic equilibrium anymore, neutrinos during the energy-loss process

may go out of equilibrium before getting thermal distribution, so instead of

dissolving in the thermal bath, they can "stack" at Eν & Eν,thermal = 3.15 · Tν .
While a total number of high-energy non-equilibrium neutrinos is defined by

decay rate and temperature, it does not depend on the total number of HNLs

decaying. For low-energy, this is not the case as we can expect, that they all

will settle down in form of "slightly hotter than thermal" neutrinos. The more

HNL decays, the stronger will be this cumulative effect.
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Let us start from estimating the energy , where non-thermal neutrinos will be

stacking. For this, let us calculate the energy evolution of a single neutrino

injected at temperature T = T inj with energy Eν = E inj. For a simple estimate

we can use kinetic equation

dEnon-eq

dt
+H ·Enon-eq ≈ log(2) ·Γν,therm · (Enon-eq−Eν,therm), Eν,therm ≡ 3.15 ·Tν

(4.187)

here, Γν,therm - flavour-averaged rate of neutrinos interaction that lead to

change of energy of initial neutrino (without annihilation processes) - (see

rates from Table 4.1 ). Eν,therm was introduced to represent, that thermalization

has to lead to averaged thermal energy. Factor Log[2] - numeric factor following

from the assumption, that when energy of neutrino is high, it has to lose half of

it’s energy each interaction (Eν ∼ 2−Γν,thermt). Let us for now consider the case

Tν = Tγ, such that we can use the same temperature in all rates. Rewriting it

with respect to temperature

dEnon-eq

dT
−Enon-eq

T
≈ A·Enon-eqT (Enon-eq−3.15T ), A ≡ Log2 Mpl

1.66√g∗
·Γν,therm|Enon-eq=T=1 MeV

(4.188)

it can be solved explicitly

Enon-eq(T ) ≈ 3.15T(
3.15Tinj

Einj − 1
)
e

0.11(T3−Tinj3)
MeV3 + 1

(4.189)

At temperature, close to injection, change of energy is completely driven by

fast reactions, while at T � T inj - by expansion factor (∼ T ). The value

Enon-eq(T )/T at small temperatures is frozed-out and depend on the initial

injected energy very weakly. Much more important is the temperature of

injection. See Fig. 4.26

In more general case, the temperature of neutrinos and photons does not

have to be equal. For this, the factor A ≡ Log2 Mpl

1.66√g∗ · Γν,therm in the r.h.s. of

Eq. 4.188 have to be calculated using rates with different temperatures. Using

this equation, we have found that the non-equilibrium neutrinos equilibrates

completely (i.e., T eff → T ) only if the injection temperature T inj & 3.5 MeV,

see Fig. 4.26. Although this equation was used to describe the evolution of a

single neutrino, it can be used to calculate the evolution of average energy of

neutrinos injected at some temperature (see App. A.1), in assumption, that

distribution function of neutrinos, injected at some temperature T inj acquires
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Figure 4.26: The ratio Enon-eq/3.15T for the cascade of non-equilibrium neutrinos
for two injection temperatures T inj = 3.5 MeV (blue lines) and T inj =
2 MeV (red lines) and the energy Eν,inj of the injected non-equilibrium
neutrinos (solid lines: E inj = 500 MeV, dashed lines: E inj = 50 MeV).

FD-shape with the temperature T eff = 〈Eν〉/3.15, and normalization factor

given by the number density of non-equilibrium neutrinos. In its turn, to

find the number density of injected non-equilibrium neutrinos, we follow the

approach of multiple-step thermalization and use (4.178), but instead of k-th

step of thermalization we use the value of energy obtained from Eqn. (4.188)

extrapolating the applicability of F-factor to lower energies

nν,non-eq(Eν , T ) =
(
a(T inj)
a(T )

)3

· F Log2((E inj/Eν)·(T/T inj)·(g∗(T )/g∗(T inj))1/3)
ν nν, inj(T inj)

(4.190)

where nν, inj(T inj) - number density of neturinos, injected at temperature T inj

Here we introduced ratio (T/T inj), since power in abundance factor F must cor-

respond to energy change only due to energy-loss reactions but in Eqn. (4.188),

the expansion of the Universe is also taken into account. To compensate it we

need to add the ratio of scaling factors which is related to temperature and

g∗ through s(T )a(T )3 = const7. Factor
(
a(T inj)
a(T )

)3
· corresponds to dilution of

injected number density during expansion. We didn’t have this two last terms

in Eqn. (4.178) as the initial steps of thermalization proceeds much faster,

than universe expands. We also do not have factor 2k since it appeared from

dynamical equilibrium. While here, instead of instantaneous number density

we introduce total number of neutrinos injected at some temperature.

Let us summarize our approach for treatment of low-energy corrections:

7If the temperatures of neutrinos and photons are different, this ratio would be slightly
modified, as contribution to entropy density will be not even
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• Consider, that at temperature T inj high-energy neutrinos were injected

with number density n inj

• During the termalization neutrinos acquire FD-shape distribution (nor-

malized to n inj) and increase their number density with factor Fν .

• Effective temperature of those neutrinos is taken from their average

energy evolution as T eff = 〈Eν〉/3.15

• We account the expansion of the Universe by diluting the resulting

number density with temperature

• p↔ n conversion rates from low-energy non-equilibrium neutrinos are

calculated using the general formula (5.12)

Let us only make a small additional comment about improving the consistency

of our approach. When considering high-energy distortions, their low num-

ber density allowed us to avoid taking their effect on the quasi-equilibrium

population into account. In the case of low-energy neutrinos, their number

density may become significant, since (i) HNLs do not have time to decay

before Tν, dec ∼ 2−3 MeV, (ii) factor Fν together with branchings into multiple-

neutrino decay leads to additional factor ∼ 10, that increases number density

of neutrinos compared to HNLs. Since equilibrium neutrinos are being dragged

out during the thermalization process, we account for it by introducing an ad-

ditional "depletion" factor for the quasi-equilibrium neutrinos when calculating

the final rates.

The resulting neutrino distribution function is

fν(p, T ) ≈ fν,non-eq +
(

1− nν,non-eq

nν,quasi-eq

)
fν,quasi-eq, (4.191)

where the pre-factor 1− nν,non-eq/nν,quasi-eq corresponds to the fraction of the

quasi-equilibrium neutrinos.

4.5.4 Computation of neutron abundance

Now we can finally describe the machinery of our computations.
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1. First step: We start from calculation of HNL number density-to-entropy

ratio YN(T ) ≡ nN/s, that will be present in plasma as a function of

temperature. For this we use kinetic equation

dYN
dt

= −Γ int
N (T )(YN − YN,eq), (4.192)

where YN,eq = nN,eq/s(T ) is the abundance at equilibrium (i.e., calcu-

lated using the Fermi-Dirac distribution), and Γ int
N is the total rate of

processes A+N → B + C:

Γ int
N =

∑
A,B,C

ΓA+N→B+C , ΓA+N→B+C(T ) = nA(T )·〈σNA→BCv〉 (4.193)

2. Second step: We solve the system of Friedman equations (4.144)-

(4.146) to define the evolution of: (1) dilution factor ζ(T ), (2) neutrino

and EM plasma energy density evolution with account of energy injec-

tions. At this step, the shape of all distribution is taken as Fermi-Dirak

with some temperature.

3. Third step: Take the temperature interval for injections starting fro

Tstart = 3.5 MeV (higher values are irrelevant due to perfect thermaliza-

tion ) and until Tfin = min(Tn, dec, T (10 · τN)). Separate the (Tfin, Tstart)
into ∆N = 100 intervals (Ti, Ti+1). Suppose, that at each Ti there was

an injection of

ni-th
inj,2 = Brν,2− dec (nN(Ti)− nN(Ti+1)) (4.194)

neutrinos with energyE inj = m2
N−m

2
π

2mN from 2-particle decay. Here Brν,2− dec

- 2-particle decay branching into neutrino of HNL, and

ni-th
inj,3 = ( Brν,3− dec + Br3ν,3− dec) (nN(Ti)− nN(Ti+1)) (4.195)

neutrinos with energy E inj = mN/3. Here Brν,3− dec and Brν,3− dec are

3-particle decay branchings with 1 and 3 neutrinos respectively.
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4. Fourth step: Neutrinos from each of that injection are accounted as

separate contribution to non-equilibrium distribution function:

f i-th
ν,non-eq(p, T ) =

(
a(T )
a(Ti)

)3 ( ni-th
inj,2

nν,eq(T i-th,2
eff )

1
ep/T

i-th,2
eff + 1

+
ni-th

inj,3

nν,eq(T i-th,3
eff )

1
ep/T

i-th,3
eff + 1

)
(4.196)

Here, nν,eq is the equilibrium number density of neutrinos at given tem-

perature, T i-th,2
eff , T i-th,3

eff is an effective temperature of the neutrinos at the

temperature T, originated from the injection at Ti from 2- and 3- particle

decays, given by solving the Eqn. (5.7) for average energy and taking

T eff = 〈Enon-eq〉/3.15.

5. Fifth step: Combine all the low-energy non-equilibrium distortions from

each injection fnon-eq(p, T ) = ∑
i f

i-th
ν,non-eq(p, T ) together with correction

from high-energy distortions (4.178) and quasi-equilibrium distribution

function (4.186) in a total neutrino distribution. Sixth step: Solve the

Boltzmann equation (4.22) for neutron abundance Xn with the account

of correction to p↔ n conversion rates, temperatures of plasma compo-

nents and correction to Hubble rate from HNLs, starting at temperature

T = 10 MeV, where SM rates are defining the neutron fraction. We solve

this equation untill the moment T BBN = 0.084 keV to compare the final

value of Xn(T BBN) with numeric results of [194]

6. Final step: Transfer the obtained fraction of neutrons into Helium-4

mass fraction Yp ≈ 2 ·Xn(T BBN). Compare it with the SM-driven value

we compute without corrections. If the correction is higher, than the

constrained error 3.8%, such HNLs would be considered as excluded.

4.6 Results

First of all, we compare our non-meson results with the numeric results in

[194] where the same mass range was considered ( see Fig. 4.27 ). This

line does not correspond to our final constraint, as it uses a different limit

error of ∆Yp/Yp = 2.5% which we increase to ∼ 4% to be consistent with all

observational data. Qualitatively – the shape of the bound, the hierarchy of

the bounds for different mixings – the bounds agree well. The discrepancy

occurs at low masses mn . mπ.
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Figure 4.27: Top panels and down left panel: constraints on the HNL lifetime from
primordial helium abundance measurements assuming the maximal
correction ∆Yp/Yp = 2.5%. Blue lines are the results of this work and
red lines of [194]. The dashed lines correspond to the constraint with
meson effect taken into account, see Sec. 4.4. Bottom right panel: The
He abundance correction induced by a 1 GeV HNL versus its lifetime (see
text for details). Solid lines denote our predictions, while dashed lines
correspond to the fitting functions of [194], which have a maximum
deviation of 0.4%. The dashed gray line denotes 2.5% correction.

We also present our final constraint for HNL parameters that is related to our

pick of maximum error at Fig. 4.28:
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Figure 4.28: Parameter space of HNLs, which non-hadronic contribution to BBN
lead to a correction of 4.35% to Helium-4 abundance for three different
mixings. HNLs with higher lifetimes are constrained until they reach
the non-thermal production, which did not consider.
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5Discussion and conclusion

Particle physics is at crossroads [202, 106, 205]. On the one hand the latest

accelerator experiments have confirmed predictions of the Standard Model

with the remarkable precision [see e.g. 146] while failing to discover new

physics at electroweak scale [41, see e.g.]. On the other hand BSM phenomena

(subject of Chapter 1 of this thesis) unequivocally point towards incomplete-

ness of the Standard Model and existence of new particles. The uniqueness

of today’s moment is in the absence of any hints regarding the properties of

these particles. Their masses, types of interactions, even their numbers are not

known. It is possible that only 3 new particles are missing (as in the case of

heavy neutral leptons in the νMSM [35, 38, 202, 71]) or that the number of

the SM particles will double one day (as in the case of supersymmetric SM

[23]). It is even possible that the number of new particles is infinite, as in the

case of Kaluza-Klein-like extensions of the SM [30]. The proposed solutions to

each of the BSM problems predict particles ranging in masses by many orders

of magnitude.

Current situation is perplexing not only from a theoretical viewpoint. It also

has drastic practical consequences. There exists no single experiment that

could explore all the proposed options. What experiment should we build and

in what combination? Which frontier (Figure 1.1) should we explore first?

There is no lack of potential ways to go forward [107] and no obvious winner.

In this situation any prior knowledge we can obtain about parameter space of

hypothetical particles can be of paramount importance, shaping the future of

experimental particle physics.

The cosmic frontier is one of the ways to constrain (or even discover) new

particles without doing new experiments. It is especially important when one

tries to constrain feebly interacting particles. Indeed, interiors of the stars (and

especially, supernovae) as well as primordial plasmas early in the Universe’s

history deliver to us densities of matter where even feebly interacting particles
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become noticeable and can affect the existing observables in an essential

way.

This thesis uses cosmic frontier to constrain the properties of hypothetical

particles – sterile neutrinos with masses ranging from few keV to few GeV. It

considers two “test grounds” – proto-neutron stars (interiors of supernovae

during the first second after the explosion) and primordial plasma at MeV

(billions of degree Kelvin) temperatures.

In the case of exploding supernovae it is demonstrated that the keV-scale sterile

neutrinos can be copiously produced in their interior regions via the analog of

MSW effect [214]. The reported result presents a self-consistent treatment of

such a production, taking into account for the first time back-reaction of sterile

neutrinos on the supernova lepton number distribution. The mechanism of

production is very efficient and can lead to copious production of keV-scale

sterile neutrinos with the couplings many orders of magnitude weaker than

e.g. those probed by the KATRIN experiment [61]. Surprisingly this does not

lead to any competitive bounds on sterile neutrino parameters, contrary to the

previous claims in the literature [33]. This is because the experimental data

about supernova explosion (e.g. those coming from SN1987A) are scarce and

numerical simulations has not yet reached the maturity that would allow to

answer detailed questions about the interiors of the proto-neutron stars, in

particular about the temperature in the inner regions.

In the second part of the thesis, the interaction of sterile neutrinos with

primeval plasma is analysed [66, 67]. Our information about the state of

primordial plasma at MeV temperatures comes mainly from the measure-

ments of the primordial abundance of Helium-4. It is demonstrated in the

thesis that once sterile neutrinos have masses above that of pion mass, their

semi-leptonical decays (with one or several mesons in the final state) change

neutron-to-proton ratio and thus the Helium-4 abundance to the values in-

compatible with observations. The effect qualitatively is driven by the large

difference between strong and weak rates of proton-to-neutron conversion.

The bounds on sterile neutrino lifetime become factor 5 stronger than in the

absence of this effect [99, 194]. Next we consider the influence of decaying

sterile neutrinos to the overall expansion rate of the Universe (expressed via

N eff). While sterile neutrinos can indeed change the expansion rate of the Uni-

verse at the early times, they are not able to alleviate fully the so-called Hubble

148 Chapter 5 Discussion and conclusion



tension. The limits on the lifetime of sterile neutrinos from the measurements

of the anisotropies of Cosmic Microwave Background are also derived.

Unlike most of the previous works, the treatment of sterile neutrinos on BBN

is done analytically and this thesis provides necessary details of this treatment.

Such treatment not only allows for a simpler cross-check of the results, but

also for the exploration of full (4-dimensional) parameter space of sterile

neutrinos.

Finally, the cosmic frontier results are confronted with the specific particle

physics models in [60] where they provide a “bottom line” for direct intensity

frontier searches.

There are two important conclusions of this thesis that go beyond specific

results and bounds on sterile neutrino parameters. First, the existing super-

novae bounds are prone to high “systematic” uncertainties having to do with

the lack of information about the supernovae interiors. This conclusion (that

was derived for sterile neutrinos) holds for other types of feebly interacting

particles. This result should be kept in mind when “SN1987A bounds” are

confronted with direct particle physics searches, as often done in the literature

[17].

Second important conclusion is the complementarity of cosmic frontier results

to other types of searches. Astrophysical/cosmological bounds often probe the

properties of feebly interacting particles in the (very) long-lived regime – the

regime that is the hardest for particle physics experiments.
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Appendix A

A.1 Equation for 〈Eν,non-eq〉

In this section we derive the equation for evolution of average energy of

non-equilibrium neutrinos. In our rough estimates for high-energy neutrino

contribution we considered them as having the wide-peak distribution so we

can follow it’s evolution similar to evolution of a single neutrino with given

energy. It is much more natural, though, to expect this distribution to become a

Fermi-Dirac shape but with a different temperature. Such that this temperature

approaches to the temperature of equilibrium (quasi-equilibrium) neutrinos.

We have tested this hypothesis, using the code for [194], injecting neutrinos at

different energies and temperatures and comparing the resulting population

with Fermi-Dirac distribution function with some effective temperature. We

have found, that this assumption is a relatively good approximation for neu-

trino spectrum. Not that this is true only after few thermalization times after

injection, otherwise spectrum is completely non-thermal. The example of such

comparison is on the Fig. A.1

With this assumption, evolution of average energy is the same as evolution of

effective temperature, as for FD distribution they are related. Quickly after

the injection of non-equilibrium neutrinos their distribution function gains the

Fermi-Dirac shape with some effective momentum independent temperature

Teff > T :

fν ∼
1

1 + epν/Teff
(5.1)

To describe the evolution of this distribution function and in particular, to

derive the equation for T eff we can consider the Fokker-Planck equation. It
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Figure A.1: The energy spectrum at T = 1.6 MeV (the blue line) of muon neutri-
nos injected with monochromatic energy E inj = 250 at T inj = 2.3 MeV,
and evolved due to energy loss processes with thermal bath particles
e±, γ, νe/τ . All the processes leading to the non-conservation of the νµ
number are turned off. The spectrum is provided by pyBBN simula-
tions [194]. By the red line, we show the Fermi-Dirac spectrum with the
effective temperature Teff ≈ 1.9 · T . Main discrepancy appears on the
lowest energies as that part of neutrino spectra thermalize the worst.

is applied for the distribution function of non-equilibrium neutrinos fν,non-eq

that present are in some thermal bath of temperature T (for now, let us not

distinguish, that components of such thermal bath may have different com-

ponents). We also assume the conservation of number density of neutrinos

(co-moving) during this evolution [57], as for the evolution at high temper-

atures, when number of non-equilibrium neutrino changing a lot (factor Fν
(4.166)), FD-distribution approximation is not applicable:

∂tfν,non-eq−Hpν∂pνfν,non-eq = pν∂pν [γ(EνT∂pνfν,non-eq + pνfν,non-eq(1− fν,non-eq))]
(5.2)

Here, H is the Hubble factor, γ is the momentum transfer rate,

γ(pν , T ) = 1
6EνT (1− v2

ν/3)
∑
j

∫ d3pj
(2π)3fj(1− fj)

4p2
cm∫

0

dt t
dσνnon-eq+j→νnon-eq+j′

dt
v,

(5.3)

with j denoting ν/ν̄, e± particles. In our case,

γ ≈ 1.04G2
FT

4pν ≈ 1.27ΓE loss(pν , T ), (5.4)

with ΓE loss ≈ 0.82G2
FT

4pν being the energy loss rate averaged over flavors (see

Table 4.1). Finally, t = −(pν − pj′)2 is the squared momentum transfer. The

applicability of Eq. (5.2) breaks down in the regime of large energy transfer,

i.e. as far as typical energies of neutrinos are much higher than thermal
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bath average energy 3.15T . However, we expect that in the regime when the

average energy 〈Eν〉 exceeds the thermal energy at most by a factor of few,

which is our case of interest, it describes the evolution properly. To derive

the equation for T eff, we approximate 1 − fν,non-eq ≈ 1 (since the amount of

non-equilibrium neutrinos is small), multiplying (5.2) by pν and integrating

over d3pν/(2π)3, we get

∂tρν,non-eq +4Hρν,non-eq ≈ −1.3γ(〈Eν,non-eq〉, T )ρν,non-eq(〈Eν,non-eq〉−3.1T ) (5.5)

Using then the relation

∂tρν,non-eq = ∂tT eff∂T effρν,non-eq = 4ρν,non-eq

T eff
∂tT eff = 4 ρν,non-eq

〈Eν,non-eq〉
∂t〈Eν,non-eq〉,

(5.6)

following from the FD shape of the non-equilibrium neutrinos, and taking into

account Eq. (5.4), we finally obtain

∂t〈Eν,non-eq〉+H〈Eν,non-eq〉 ≈ −0.4ΓE loss(〈Eν,non-eq〉, T )(〈Eν,non-eq〉 − 3.15 · T )
(5.7)

A.2 Weak p↔ n conversion rates

When calculating the p↔ n conversion rates we follow the procedure of [194].

Namely, we start from the matrix elements for the process n+ ν → p+ l:

Mnν→pl = GF√
2
Jnpµ (q)ūl(pl)γµ(1− γ5)uν(pν), (5.8)

where q2 = −(pp − pn)2 is the squared transferred momentum, Jnpµ (q) is the

matrix element of the hadronic charged current,

Jnpµ = cos(θc)ūp(pp)Γµ(pp, pn)un(pn) (5.9)

Following [Leitner2005, 240, 155], we write

Γµ(pp, pn) = γµ(F V
1 (q2)−γ5F

A(q2))+ i

2mp

σµνq
νF V

2 (q2)+ qµ
mp

γ5F
P (q2), (5.10)
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with σµν = i[γµ, γν ]/2. Having the squared matrix element |Mnν→pe|2 in terms

of s, t, u invariants, we can calculate the other matrix elements for the p↔ n

conversion:

|Mpe→nν |2(s, t, u) = 1
2 |Mnν→pe|2(s, t, u),

|Mpν→ne|2(s, t, u) = 2|Mne→pν |2(s, t, u) = |Mnν→pe|2(u, t, s) (5.11)

Then, we calculate 2→ 2 conversion rates under an assumption that incoming

nucleons are at rest (as T � mn/p), but taking into account the non-zero

momentum transfer and Coulomb correction:

ΓNl→N ′l′ = 1
64π3

gl
mN

∫
fl(El)(1− fl′(El′))|MNl→N ′l′ |2Fc(Ee)dEldE

′

l , (5.12)

whereN/N ′ denote nucleons and l′ electron (positron) or electron (anti)neutrino,

fl is the distribution function of the lepton l, and Fc is a Coulomb correction

being non-zero only if electron and proton are both in the initial or final

states:

Fc(Ee) = x

1 + e−x
, where x = 2πα EM

ve
, (5.13)

where Ee and ve are the electron energy and velocity correspondingly.

The rate Γn→peν̄ does not give the free neutron decay rate Γ−1
n, decay = 880.2

s, which is due to unaccounted corrections (see [176]). We multiply it by a

constant ≈ 1.047, which calibrates it on Γn, decay (see also [194]).

A.3 Nucleon form factors

The form factors entering (5.8) are

FA(q2) = gA

(1 + q2/m2
A)2 , F P (q2) =

2m2
p

q2 +m2
π

FA(q2), (5.14)

F V
1 (q2) = Gp

E(q2)−Gn
E(q2) + τ(Gp

M(q2)−Gn
M(q2))

1 + τ
, (5.15)

F V
2 (q2) = Gp

M(q2)−Gn
M(q2)− (Gp

E(q2)−Gn
E(q2))

1 + τ
, (5.16)
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where τ = q2/(4m2
p), and GE/P are electric and magnetic form factors. In

dipole approximation they read

Gp
E(q2) ≈ GD(q2), Gn

E(q2) = −µn
aτ

1 + bτ
GD(q2), (5.17)

Gp
M(q2) ≈ µpGD(q2), Gn

M(q2) = µnGD(q2), GD(q2) = 1(
1 + q2

m2
V

)2 , (5.18)

with µp = 2.793, µn = −1.913 are magnetic moments of the proton and the

neutron. The other phenomenological parameters entering the form factors

are given in Table 5.1.

Parameter a b mA mV gA
Value 0.942 4.61 1.026 GeV 0.843 GeV 1.26

Table 5.1: Values of parameters entering the form factors (5.14) (5.18).

A.4 Abundance of HNLs

We consider the following equation for the evolution of the HNL number

density-to-entropy ratio YN(T ) ≡ nN/s:

dYN
dt

= −Γ int
N (T )(YN − YN,eq), (5.19)

where YN,eq = nN,eq/s(T ) is the abundance at equilibrium (i.e., calculated

using the Fermi-Dirac distribution), and Γ int
N is the total rate of processes

A+N → B + C:

Γ int
N =

∑
A,B,C

ΓA+N→B+C , ΓA+N→B+C(T ) = nA(T ) · 〈σNA→BCv〉 (5.20)

We approximate the cross sections by the expression

〈σNA→BCv〉 ≈ σNA→BCv
∣∣∣
s=〈sNA〉

, (5.21)

with 〈sNA〉 being the average invariant mass of the colliding particles. We

assume that rates with light quarks u, d, s in the initial states rapidly turn off at

the temperature T ' 150 MeV of the QCD confinement. For the temperature

behavior of g∗ we used a fit from [134]. We use the matrix elements of
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all relevant processes with HNLs from [194]. The behavior of the rates for

particular masses of the HNL is shown in Fig. A.2.
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Figure A.2: Left panel: the temperature behavior of the ratio Γ int/G2
FT

5 for HNLs
with masses mN = 100 MeV and 1 GeV, where Γ int is the rate keeping
HNLs in the equilibrium. The matter suppression of the mixing angle
(Eq. (4.51)) is not taken into account here. A sudden jump around
T ' 150 MeV is caused by the disappearance of u/d/s quarks from the
primordial plasma due to the QCD confinement. For 100 MeV HNLs, the
ratio changed slowly in the considered temperature domain, whereas for
1 GeV HNLs it starts increasing below T = 1 GeV since the HNL mass
changes the temperature behavior of the rate. Right panel: the behavior
of the ratio YN = nN/s versus temperature for the HNL mass mN =
150 MeV and various lifetimes. For large lifetimes (=small couplings)
HNLs decouple at T− � mN , and the abundance is given by the UR
estimate (4.61). For lower τN ∼ 0.1 s HNLs decouple in the regime
T− ' mN , but the Boltzmann suppression is compensated by the rapid
drop of g∗, see Fig. A.3, and the abundance increases. With further
decrease the Boltzmann suppression becomes the dominant factor, and
the abundance decreases.

The temperature behavior of YN for particular lifetimes is shown in Fig. A.2.

Having the solution, we define the HNL abundance as

YN = YN(T = 5 MeV), (5.22)

see Fig. 4.12.

In Fig. A.3 we compare our estimates for the temperature behavior of nN with

predictions of pyBBN [194]. For the whole mass range of interest 50 MeV <

mN < 1 GeV and the most of lifetimes the agreement between the approaches

the abundances differ by at most by a factor of 0.6.
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Figure A.3: The behavior of the ratio of the HNL number density obtained in our work
and in [194] for masses mN = 200 MeV (left panel) and mN = 50 MeV
(right panel). The jump at T ' 150 MeV for mN = 200 MeV is caused by
the implementation of the instant QCD confinement in pyBBN.
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