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Abstract

Sparse basic linear algebra subprograms (BLAS) are fundamental building blocks for
numerous scientific computations and graph applications. Compared with Dense
BLAS, parallelization of Sparse BLAS routines entails extra challenges due to the irreg-
ularity of sparse data structures. This thesis proposes new fundamental algorithms
and data structures that accelerate Sparse BLAS routines on modern massively paral-
lel processors: (1) a new heap data structure named ad-heap, for faster heap operations
on heterogeneous processors, (2) a new sparse matrix representation named CSR5, for
faster sparse matrix-vector multiplication (SpMV) on homogeneous processors such
as CPUs, GPUs and Xeon Phi, (3) a new CSR-based SpMV algorithm for a variety of
tightly coupled CPU-GPU heterogeneous processors, and (4) a new framework and
associated algorithms for sparse matrix-matrix multiplication (SpGEMM) on GPUs
and heterogeneous processors.

The thesis compares the proposed methods with state-of-the-art approaches on
six homogeneous and five heterogeneous processors from Intel, AMD and nVidia.
Using in total 38 sparse matrices as a benchmark suite, the experimental results show
that the proposed methods obtain significant performance improvement over the best
existing algorithms.
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Resumé

Sparse lineær algebra biblioteket kaldet BLAS, er en grundlæggende byggesten
i mange videnskabelige- og graf-applikationer. Sammenlignet med almindelige
BLAS operationer, er paralleliseringen af sparse BLAS specielt udfordrende, grun-
det den manglende struktur i matricernes data. Denne afhandling præsenterer
grundlæggende nye datastrukturer og algoritmer til hurtigere sparse BLAS afvikling
på moderne, massivt parallelle, processorer: (1) en ny hob baseret datastruktur, kaldet
ad-heap, for hurtigere hob operationer på heterogene processorer. (2) en ny repræsen-
tation for sparse data, kaldet CSR5, der tillader hurtigere matrix-vektor multiplikation
(SpMV) på homogene processorer som CPU’er, GPGPU’er og Xeon Phi, (3) en ny
CSR baseret SpMV algoritme for en række, tæt forbundne, CPU-GPGPU heterogene-
processorer, og (4) et nyt værktøj for sparse matrix-matrix multiplikationer (SpGEMM)
on GPGPU’s og heterogene processorer.

Afhandlingen sammenligner de præsenterede løsninger med state-of-the-art
løsninger på seks homogene og fem heterogene processorer fra Intel, AMD, og nVidia.
På baggrund af 38 sparse matricer som benchmarks, ses at de nye metoder der
præsenteres i denne afhandling kan give signifikante forbedringer over de kendte
løsninger.
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1. Introduction

In the past few decades, basic linear algebra subprograms (BLAS) [24, 60, 61] have
been gaining attention in many fields of scientific computing and simulation. When
the inputs of BLAS routines are large and sparse, exploiting their sparsity can sig-
nificantly reduce runtime and space complexity. In this case, a set of new routines
have been designed and called Sparse BLAS [68, 70, 71, 64]. Because a large amount
of real-world applications can obtain benefits from the exploitation of sparsity, de-
signing parallel and scalable data structures and algorithms for Sparse BLAS became
an important research area in the era of massively parallel processing.

This thesis presents the author’s parallel and scalable data structures and algo-
rithms for Sparse BLAS on modern multicore, manycore and heterogeneous pro-
cessors. Specifically, four main contributions have been made: (1) a new heap data
structure named ad-heap, for faster heap operations on heterogeneous processors, (2)
a new sparse matrix representation named CSR5, for faster sparse matrix-vector mul-
tiplication (SpMV) on homogeneous processors such as CPUs, GPUs and Xeon Phi, (3)
a new CSR-based SpMV algorithm for a variety of tightly coupled CPU-GPU hetero-
geneous processors, and (4) a new framework and associated algorithms for sparse
matrix-matrix multiplication (SpGEMM) on GPUs and heterogeneous processors.

1.1 Organization of The Thesis

The first chapter, i.e., this chapter, gives an overview and introduces main contribu-
tions of the author of the thesis.

Part I, composed of three chapters, describes background of Sparse BLAS and
parallelism in architectures and algorithms. Chapter 2 describes basic concepts about
sparsity, where sparse data come from, how sparse data are decomposed, and what
the main challenges of parallel processing of sparse data. Chapter 3 introduces
four architectures of modern microprocessors: multicore CPUs, manycore GPUs,
manycore coprocessors and CPUs, and tightly-coupled CPU-GPU heterogeneous
processors. Chapter 4 describes useful data structure, i.e., ad-heap, and primitives,
such as reduction, sorting network, prefix-sum scan, segmented sum, merging and
k-selection, for parallel implementation of Sparse BLAS operations.

Part II, composed of two chapters, introduces representation of sparse matrices
for modern computer systems. Chapter 5 introduces the basic and newly proposed
storage formats for sparse matrices. Chapter 6 describes the CSR5 storage format,
which is one of the main contributions of the author’s PhD work.

1
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Part III, composed of three chapters, gives the author’s algorithms for Sparse
BLAS routines on modern homogeneous and heterogeneous processors. Chapter 7
focuses on several methods for adding two sparse vectors, which is the main building
block for the more complex SpGEMM operation. Chapter 8 describes the author’s
two SpMV algorithms for sparse matrices in the CSR format and in the CSR5 format.
Chapter 9 describes the author’s approach for SpGEMM, the most complex Sparse
BLAS operation.

The last chapter concludes the thesis and suggests future work.
Appendix A lists detailed information of 38 sparse matrices used as benchmark

suites in this thesis. Appendix B gives the used experimental platforms.

1.2 Author’s Publications

In the period of the author’s PhD research, he published the following five technical
papers in the field of parallel computing as the leading author. This thesis is compiled
from the following five technical papers:

1. Weifeng Liu, Brian Vinter. “Ad-heap: An Efficient Heap Data Structure for
Asymmetric Multicore Processors”. 7th Workshop on General Purpose Process-
ing Using GPUs (held with ASPLOS ’14) (GPGPU-7), 2014, pp. 54–63. DOI
= http://doi.acm.org/10.1145/2576779.2576786. ISBN 978-1-4503-
2766-4. (Reference [117])

2. Weifeng Liu, Brian Vinter. “An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data”. 28th IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS ’14), 2014, pp. 370–381. DOI = http:
//dx.doi.org/10.1109/IPDPS.2014.47. ISBN 978-1-4799-3800-1. (Refer-
ence [118])

3. Weifeng Liu, Brian Vinter. “CSR5: An Efficient Storage Format for Cross-
Platform Sparse Matrix-Vector Multiplication”. 29th ACM International Con-
ference on Supercomputing (ICS ’15), 2015, pp. 339–350. DOI = http://
dx.doi.org/10.1145/2751205.2751209. ISBN 978-1-4503-3559-1. (Refer-
ence [120])

4. Weifeng Liu, Brian Vinter. “A Framework for General Sparse Matrix-Matrix
Multiplication on GPUs and Heterogeneous Processors”. Journal of Parallel and
Distributed Computing (JPDC). Volume 85, November 2015. pp. 47–61. DOI
= http://dx.doi.org/10.1016/j.jpdc.2015.06.010. ISSN 0743-7315.
(Reference [119])

5. Weifeng Liu, Brian Vinter. “Speculative Segmented Sum for Sparse Matrix-
Vector Multiplication on Heterogeneous Processors”. Parallel Computing (PARCO).
Volume 49, November 2015. pp. 179–193. DOI = http://dx.doi.org/10.
1016/j.parco.2015.04.004. ISSN 0167-8191. (Reference [121])

Because the characteristic of this monograph, content of the above five published
papers are distributed to Chapters 3, 4, 6, 7, 8 and 9. Specifically, Chapter 3 includes

http://doi.acm.org/10.1145/2576779.2576786
http://dx.doi.org/10.1109/IPDPS.2014.47
http://dx.doi.org/10.1109/IPDPS.2014.47
http://dx.doi.org/10.1145/2751205.2751209
http://dx.doi.org/10.1145/2751205.2751209
http://dx.doi.org/10.1016/j.jpdc.2015.06.010
http://dx.doi.org/10.1016/j.parco.2015.04.004
http://dx.doi.org/10.1016/j.parco.2015.04.004
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contributions from papers 1, 4 and 5; Chapter 4 includes contributions from papers 1, 2
and 4; Chapter 6 includes contributions from paper 3; Chapter 7 includes contributions
from papers 2 and 4; Chapter 8 includes contributions from papers 3 and 5; Chapter 9
includes contributions from papers 2 and 4.

Additionally, the author co-authored a technical paper in sparse representation
for dictionary learning in machine vision:

6. Huamin Ren, Weifeng Liu, Søren Ingvor Olsen, Sergio Escalera, Thomas B.
Moeslund. “Unsupervised Behavior-Specific Dictionary Learning for Abnormal
Event Detection”. 26th British Machine Vision Conference (BMVC ’15), 2015.
pp. 28.1–28.13. ISBN 1-901725-53-7. (Reference [152])
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2. Sparsity and Sparse BLAS

2.1 What Is Sparsity?

2.1.1 A Simple Example

Given a group of ordered small balls in colors gray, red, green and blue (shown in
Figure 2.1(a)), we can create a one-dimensional array (shown in Figure 2.1(b)) to
record their colors. In a computer system, the array can be accessed by integer indices,
which are implicitly given. This thesis always uses 0-based indexing style (i.e., C
style) but not 1-based (i.e., Fortran style). For example, it is easy to locate the 5th entry
of the array at index 4, and to find the 5th ball is green.

(a) A group of ordered balls.

(b) An one-dimensional array containing colors of the balls.

Figure 2.1: A group of ordered balls of different colors and their representation.

Now assume that the gray balls are unimportant in a certain scenario and we
want to save memory space of the computer system, so that only red, green and blue
balls need to be stored. The expected storage form is the array shown in Figure 2.2.
However, if low-level details of modern computer storage systems and complex
data structures such as linked list are not considered here, typical computer memory
are organized in linear order thus cannot “label” unused entries in a hollow data
structure. In other words, by using the single array, all “gray” entries still occupy
memory space to guarantee correct indexing.

To avoid wasting memory space for the gray balls, a one-dimensional integer array
can be introduced to store indices of the red, green and blue balls. We can see that the
indices are implicitly given in the first example, but in the second, they are explicitly

7
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Figure 2.2: The expected storage fashion when gray balls are not important.

stored. Therefore, all “gray” entries can be removed from the original color array, and
we still know the originally positions of the other entries. Figure 2.3 gives the new
storage form composed of two arrays rather than one. We can search for index 4 (as
input) in the index array to find the 5th ball is at the position 2 (as output). In other
words, we now know that position 2 of the index array stores index 4. Afterwards, it
is easy to find the position 2 (as new input) of the color array is green (as new output).
Similarly, when we search index 6 in the index array and find it is not in the array, we
can say that the 7th ball is gray.

Figure 2.3: Red, green and blue entries and their indices are stored in two arrays.

By using the above representation, the input data are actually “compressed”.
Given an input array composed of n entries and each entry occupies α storage units,
the array needs αn storage units in total. Assume it contains p “important” entries
and n− p “unimportant” entries, the space cost of storing the array in the compressed
fashion is (α+β)p, where β is the storage cost of the index of an entry. Because α and β
are constant factors, the compressed storage format is much more space-efficient than
the ordinary format when n is very large and p � n. Furthermore, computational
cost can also be saved if only “important” entries are involved in a procedure.

We say that a dataset is sparse if many entries of the set are “unimportant”, and
the dataset can be represented in a compressed style to avoid space and time cost of
processing its “unimportant” entries. In contrast, we say that a dataset is dense or
full if all entries are seen as “important” and stored explicitly.

2.1.2 Sparse Matrices

The above example of small balls can be seen as dealing with a sparse vector. It is
actually a simple matter to extend its concept to matrices and tensors of arbitrary
ranks1 [14, 10, 11, 113]. Given a matrix A of dimension m× n, we say that A is sparse

1Because this thesis concentrates on Sparse BLAS, we leave sparse tensor computations as a future
work.
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if it contains many zeros and is stored in a compressed fashion, or is dense of full if
all entries of the matrix are explicitly stored [65].

In matrix computations, zeros are seen as “unimportant”, since a zero is an
identity element (or a neutral element) for addition and an absorbing element for
multiplication. That is to say, it leaves other entries unchanged when added a zero
with them, and obtains zero itself when multiplied any entries with a zero.

To demonstrate why zeros are not important in matrix computations, we use an
example that multiplies a dense matrix A of size 6× 3

A =


a g m
b h n
c i o
d j p
e k q
f l r

 =
[
a∗,0 a∗,1 a∗,2

]

composed of three column vectors

a∗,0 =


a
b
c
d
e
f

 , a∗,1 =


g
h
i
j
k
l

 , a∗,2 =


m
n
o
p
q
r


with a sparse vector x of size 3

x =
[
2, 0, 0

]T
.

We obtain a resulting vector y of size 6

y = Ax

= x0a∗,0 + x1a∗,1 + x2a∗,2

= 2a∗,0 + 0a∗,1 + 0a∗,2

= 2
[
a, b, c, d, e, f

]T
+ 0

[
g, h, i, j, k, l

]T
+ 0

[
m,n, o, p, q, r

]T
=
[
2a, 2b, 2c, 2d, 2e, 2f

]T
+
[
0, 0, 0, 0, 0, 0

]T
+
[
0, 0, 0, 0, 0, 0

]T
=
[
2a, 2b, 2c, 2d, 2e, 2f

]T
.

We can see that the 2nd and the 3rd entries of x are zeros thus do not contribute to
the final resulting vector y (recall multiplication of zero and any entry gives zero and
addition of zero and any entry gives the entry itself). In other words, if it is known in
advance that only the 1st entry of x is nonzero, a simpler and faster computation

y = Ax

= x0a∗,0

= 2a∗,0

= 2
[
a, b, c, d, e, f

]T
=
[
2a, 2b, 2c, 2d, 2e, 2f

]T
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is enough to give the expected result.
In real-world applications, it is very common to see that a sparse matrix contains a

large amount of zeros and very small proportion of nonzero entries. Appendix A lists
the benchmark suite of this thesis, which are selected from the University of Florida
Sparse Matrix Collection [56] that contains over 2700 sparse matrices from a variety
of real-world applications. We can calculate the ratio of the number of nonzeros
to the number of entries in the full matrix, and can see that the matrix Protein has
0.33% nonzero entry ratio, which is the densest of the 38 benchmark matrices. The
lowest ratio is merely 0.00018%, from the matrix Circuit5M. Therefore, it is important
to exploit the zeros of a sparse matrix to save memory space and corresponding
computations.

2.2 Where Are Sparse Matrices From?

Many real-world applications generate sparse matrices. This section lists three typical
scenarios from finite element methods, social networks and sparse representation of
signals.

2.2.1 Finite Element Methods

The finite element method (FEM) [124] is used for approximating a partial differential
equation over a large domain by connecting many simple element equations over
many small subdomains (called finite elements). Figure 2.4 shows a simple 4-vertex
mesh composed of two elements.

Figure 2.4: A simple mesh with 2 elements and 4 vertices. The numbers outside the
mesh are indices of the four vertices. The numbers inside the mesh are local indices
of vertices of each element.

Because each element has 3 vertices, we say that the local degrees of freedom
(DoF) per element is 3. In this case, each element generates a local dense matrix of
size 3× 3, and contributes entries of the local dense matrix to a global sparse matrix
of 4 × 4 (because there are 4 vertices, i.e., total number of DoFs in the mesh). The
procedure is called finite element assembly [2].

Assume that the local matrix of the first element is
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0 1 2

E0 =
0
1
2

a d g
b e h
c f i

 ,
where the three entries in the column vector [0, 1, 2]T to the left of the matrix will be
row indices in the global matrix, and the three entries in the row vector [0, 1, 2] on
the top of the matrix will be column indices in the global matrix. Thus each entry in
the matrix knows where the position to write its value is. For example, value g will
be stored to location (0, 2) in the global matrix. After adding all entries, we obtain a
sparse global matrix

A =


a d g 0
b e h 0
c f i 0
0 0 0 0

 .
Similarly, we can form a local matrix for the second element:

0 2 3

E1 =
0
2
3

j m p
k n q
l o r

 ,
where the three entries in the column vector [0, 2, 3]T to the left of the matrix will be
row indices in the global matrix, and the three entries in the row vector [0, 2, 3] on the
top of the matrix will be column indices in the global matrix. By adding all entries
of this local matrix to the obtained global sparse matrix, we update the 4x4 sparse
matrix to

A =


a d g +m p
b e h 0

c+ k f i+ n q
l 0 o r

 .
The sparse matrix can have much more zeros thus more sparse when the domain

is divided into more elements. Appendix A collects some matrices generated from
FEM applications.

2.2.2 Social Networks

A social networks is composed of a set of social actors (e.g., individuals or orga-
nizations) and a set of dyadic ties (i.e., groups of two social actors) between them.
If each actor is seen as a vertex of a graph and each dyad is seen as an edge con-
necting two vertices (i.e., social actors), a social network can be represented by a
graph. Figure 2.5(a) shows a small and simple social network of 6 individuals and
the dyadic ties, and each individual labels his/her preference in a list as a row. We
can see that the 1st individual (red) likes the 2nd and the 5th individuals (orange and
blue, respectively). The 2nd individual like all the others in the network, and the 5th
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(a) Social network including 6 individuals. (b) Graph representation of the social network.
An arrow means “gives like to”.

Figure 2.5: A small and simple social network and its graph representation.

individual does not like anybody but is liked by all the others. This social network
can be represented by the graph shown in Figure 2.5(b).

Actually, we can directly extract a sparse matrix

A =


0 1 0 0 1 0
1 0 1 1 1 1
1 0 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 1 1 0


from Figure 2.5(a) and recognize the equivalence between the sparse matrix A and the
graph in Figure 2.5(b). When the number of social actors in a network increases, the
sparse matrix obtained from it is more and more sparse. The reason is that generally
each individuals friend circle is only a very small proportion of the whole network.

2.2.3 Sparse Representation of Signals
In a vector space, a set of linearly independent vectors is called a basis, if every
vector in the space is a linear combination of this set. The dimensions of the space
is the number of basis vectors, and is the same for every basis. For instance, a six-
dimensional vector space’s basis always contains 6 vectors. An example of such a
basis is the canonical basis:

v0 =


1
0
0
0
0
0

 , v1 =


0
1
0
0
0
0

 , v2 =


0
0
1
0
0
0

 , v3 =


0
0
0
1
0
0

 , v4 =


0
0
0
0
1
0

 , v5 =


0
0
0
0
0
1

 .
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Any given vector, for example vector

x =
[
2, 2, 3, 3, 5, 5

]T
in this space is a linear combination of the basis vectors. Assume that the basis vectors
are columns of a dense matrix

B =
[
v0, v1, v2, v3, v4, v5

]
=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The vector x can be represented by multiplying B with a dense vector

a =
[
2, 2, 3, 3, 5, 5

]T
.

In other words,

x =


2
2
3
3
5
5

 = Ba =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




2
2
3
3
5
5

 .

If we want to construct the vector x with a sparse vector rather than the dense
vector a, we can introduce another dense matrix

D =
[
v0, v1, v2, v3, v4, v5, v6, v7, v8

]
=


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1

 ,

that contains a set of linear dependent vectors (e.g., v6 is a linear combination of the
first 6 column vectors v0 – v5) as its columns. To obtain x, we actually can multiply D
with a sparse vector

a′ =
[
0, 0, 0, 0, 0, 0, 2, 3, 5

]T
.

That is

x =


2
2
3
3
5
5

 = Da′ =


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1





0
0
0
0
0
0
2
3
5


.
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We can call dense vector x a signal, and can see that even though D required
larger memory space than B, sparse vector a′ occupies less space than a. When we
need to calculate or to store a large amount of signals, using sparse vectors like a′ is
more space-efficient, when D keeps unchanged for all signals. In this case, a large
amount of sparse vectors construct a sparse matrix A. By multiplying D with A, a
group of signals are reconstructed. This technique is widely-used in applications
such as signal processing and audio/image analysis [153, 152]. The above matrix D is
called a dictionary (or overcomplete dictionary), and the sparse vector is called sparse
approximation or sparse representation of a signal.

2.3 What Are Sparse BLAS?

Basic Linear Algebra Subprograms, or BLAS for short, are a set of building blocks for
a wide range of software. The definitions of interfaces in BLAS help keeping software
portable and maintainable [61, 60, 24]. Vector and matrix are two basic elements in
BLAS. According to possible combinations among them, BLAS can be grouped into
three levels: (1) vector operations, (2) matrix-vector operations, and (3) matrix-matrix
operations.

Consider sparsity of an input vector or matrix, Sparse BLAS [64, 68, 70, 71] are
defined by using similar interfaces of BLAS for dense inputs. Sparse BLAS have more
functions than Dense BLAS since they consider both dense and sparse data as inputs
and outputs. Sparse BLAS are in general more complex because of indirect memory
accesses and keeping output as sparse whenever possible. This section introduces
main operations of Sparse BLAS. Later on, the main challenges of implementing fast
and scalable Sparse BLAS will be discussed in Section 2.5.

In this section, subscripts s and d are used for indicating whether a vector or a
matrix is sparse or dense.

2.3.1 Level 1: Sparse Vector Operations

Level 1 Sparse BLAS include dot product and adding of one vector to another. The
output of a dot product operation is a scalar, regardless the input vectors are sparse or
dense. The addition of two vectors generates another vector. If any one of the inputs
is dense, the resulting vector is dense. If both inputs are sparse, the output is sparse
as well.

Dense Vector – Sparse Vector Dot Product

The operation is performed by
dot← xTd ys,

or
dot← xTs yd,

where one of the input vectors x and y is sparse, the other is dense, and the output
dot is a scalar.
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This operation is basically a gather operation. All nonzero entries of the sparse
vector are multiplied with entries of the same indices in the dense vector. Then a sum
of the results of the multiplication is the output of the dot product operation.

Sparse Vector – Sparse Vector Dot Product

The operation is performed by
dot← xTs ys,

where input vectors x and y are sparse, and the output dot is a scalar.
In this operation, a nonzero entry in an input sparse vector does not contribute to

the dot product result if its index is not found in the nonzero entry list of the other
input sparse vector. So dot product of two sparse vectors can be converted to a set
intersection problem. That is, only the nonzero entries having the same index in both
inputs are multiplied. Then the sum of the separate results of the multiplication is the
output of dot product.

Dense Vector – Sparse Vector Addition

The operation is performed by
zd ← xd + ys,

or
zd ← xs + yd,

where one of the input vectors x and y is sparse, the other is dense, and the output z
is a dense vector.

Because the indices of the sparse vector is known, the addition is actually a
scatter operation. In other words, the nonzero entries of the sparse vector are added
with entries of the same indices in the dense vector, the results are written to the
corresponding positions of the output vector. All the other entries at the indices not
found in the sparse vector will directly copy the corresponding values from the dense
input.

Sparse Vector – Sparse Vector Addition

The operation is performed by
zs ← xs + ys,

where input and output vectors x, y and z are all sparse.
This operation is more complex than the above operations, since all of the three

vectors are sparse. From the point view of set operations, nonzero entries in the
intersection of the two inputs are added and stored to the output vector. The nonzero
entries in the symmetric difference (i.e., the union of two relative complements of one input
in the other) of x and y are directly saved to z. Chapter 7 describes the developed
methods for this operation.
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2.3.2 Level 2: Sparse Matrix-Vector Operations

Level 2 Sparse BLAS include sparse matrix and vector operations. When we consider
sparsity both from the matrix and from the vector, Level 2 Sparse BLAS contain three
possible operations: (1) multiplication of dense matrix and sparse vector, (2) multipli-
cation of sparse matrix and dense vector, and (3) multiplication of sparse matrix and
sparse vector. All the three operations have their own application scenarios.

Dense Matrix – Sparse Vector Multiplication

The operation is performed by
yd ← Adxs,

where the input A is a dense matrix, the input x is a sparse vector, and the output y is
a dense vector.

Two approaches can be used for this operation. Multiplying column vectors in the
dense matrix with corresponding nonzero entries of the sparse vector, and adding the
resulting vectors together to construct the dense resulting vector. One example of this
method is shown in Section 2.2.3. Another method is to compute dot products of each
row of A (as a dense vector) and x by using the dense vector – sparse vector dot product
operation in the Level 1 Sparse BLAS, and to store the scalar outputs as entries of the
resulting vector y.

Sparse Matrix – Dense Vector Multiplication

The operation is performed by
yd ← Asxd,

where the input A is a sparse matrix, and the input vector x and the output vector y
are all dense.

This operation can also be conducted by multiple dense vector – sparse vector dot
product operations in the Level 1 Sparse BLAS. Then the generated dot products are
entries of y. Because many real-world applications (as shown in Section 2.2) generate
sparse matrices, this operation has probably been the mostly studied Sparse BLAS
routine over the past few decades. This thesis proposes two fast algorithms for this
operation described in Chapter 8. In the rest of this thesis, this operation is called
SpMV for short.

Sparse Matrix – Sparse Vector Multiplication

The operation is performed by
ys ← Asxs,

where the input matrix A and vector x and the output vector y are all sparse.
The sparse vector – sparse vector dot product in Level 1 Sparse BLAS can be used as

a building block for this operation. Similarly to the above mentioned two Level 2
operations, outputs of dot products construct the resulting vector y. If A is organized
by columns, an approach similar to the first method of dense matrix – sparse vector Mul-
tiplication can be used: multiplying sparse column vectors of A with corresponding
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nonzero entries of x and adding the resulting sparse vectors together to obtain the
sparse vector y. In this case, A sparse vector – sparse vector addition operation is also
utilized.

2.3.3 Level 3: Sparse Matrix-Matrix Operations
There are three combinations of matrix-matrix multiplication: (1) multiplication
of dense matrix and sparse matrix, (2) multiplication of sparse matrix and dense
matrix, and (3) multiplication of sparse matrix and sparse matrix. Besides the three
multiplication operations, two matrices, sparse or dense, can be added up, if they
have the same dimensions.

Sparse Matrix Transposition

The operation is performed by
Bs ← AT

s ,

where the input matrix A and the output matrix B are both sparse.
This operation transpose a sparse matrix to another sparse matrix. All nonzero

entries of the input are relocated to new positions in the output, if nonzero entries of
the same row/column are required to be organized contiguously.

Dense Matrix – Sparse Matrix Multiplication

The operation is performed by
Cd ← AdBs,

where the input matrices A and B are dense and sparse, respectively. The resulting
matrix C is dense.

The dense vector – sparse vector dot product in Level 1 Sparse BLAS can be used for
calculating each entry in the resulting matrix. However, to achieve higher perfor-
mance, this operation can also be seen as multiplication of the dense matrix A and
multiple sparse column vectors ofB. Thus the dense matrix – sparse vector multiplication
in Level 2 Sparse BLAS can be used as a building block. In this case, each resulting
vector of the Level 2 operation is a column of C.

Sparse Matrix – Dense Matrix Multiplication

The operation is performed by
Cd ← AsBd,

where the input matrices A and B are sparse and dense, respectively. The resulting
matrix C is dense.

This operation looks similar to the previous one, since they can both use dense
vector – sparse vector dot product in Level 1 Sparse BLAS as a building block. This
operation can also be seen as multiplying a sparse matrix A with multiple dense
column vectors of B, thus sparse matrix – dense vector multiplication can be used. But
a better method may be to multiply each nonzero entry of a sparse row in A with
corresponding dense row of B, and to add all resulting dense vectors together as a
dense row of C.
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Sparse Matrix – Sparse Matrix Multiplication

The operation is performed by
Cs ← AsBs,

where the all matrices A, B and C are sparse.
This is the most complex operation among the Level 1, 2 and 3 Sparse BLAS since

the two inputs and the output are all sparse. Even though sparse vector – sparse vector
dot product in Level 1 Sparse BLAS can be used for calculating each entry in C, its
sparsity will be broken since it can be explicitly stored zero. To keep C sparse, a
method similar to computing sparse matrix – dense matrix multiplication (i.e., exploiting
rows of B) can be used. In this case, corresponding rows of B are scaled by nonzero
entries of a sparse row of A, and are added up by the operation sparse vector – sparse
vector addition in Level 1 Sparse BLAS. This thesis proposes a new algorithm for
SpGEMM described in Chapter 9. In this thesis, the operation is called SpGEMM for
short.

Dense Matrix – Sparse Matrix Addition

The operation is performed by

Cd ← Ad +Bs,

or
Cd ← As +Bd,

where one of the two input matrices A and B is dense and the other is sparse, and the
resulting matrix C is dense.

This operation is similar to the dense vector – sparse vector addition operation in
Level 1 Sparse BLAS, except multiple rows/columns are considered.

Sparse Matrix – Sparse Matrix Addition

The operation is performed by

Cs ← As +Bs,

where the all matrices A, B and C are sparse.
This operation can use sparse vector – sparse vector addition as a building block for

each row or column.

2.4 Where Does Parallelism Come From?

Because sparse matrices from real-world applications can be very large, parallel
sparse matrix algorithms have obtained a lot of attention. To expose parallelism, a
fork-join model is used: a sparse matrix need to be divided into multiple submatrices,
and each of them is assigned to one compute unit in a computer system. This stage is
called “fork”. After all processes complete, the separate subresults of submatrices are
required to be merged for one single output. This stage is called “join”.
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2.4.1 Fork: From Matrix to Submatrix
There are three main methods that can decompos a sparse matrix into multiple
submatrices. The first method is by row/column. We can partition a 6 × 6 sparse
matrix

A =


a d g 0 0 0
b e h 0 0 0
c f i 0 0 0
0 0 0 j 0 0
0 0 0 0 k m
0 0 0 0 l n


into a sum of three submatrices

A0 =


a d g 0 0 0
b e h 0 0 0
c f i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 j 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 k m
0 0 0 0 l n

 ,

where
A = A0 +A1 +A2.

The second method is by sparsity structure. We can divide the above sparse matrix
A into a diagonal matrixA′0 and another matrixA′1 composed of the remaining entries.
Then we have

A′0 =


a 0 0 0 0 0
0 e 0 0 0 0
0 0 i 0 0 0
0 0 0 j 0 0
0 0 0 0 k 0
0 0 0 0 0 m

 , A
′
1 =


0 d g 0 0 0
b 0 h 0 0 0
c f 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 m
0 0 0 0 l 0

 ,

where
A = A′0 +A′1.

The third method is by the number of nonzero entries. We can evenly divide A,
which contains 14 nonzero entries, into two submatrices, A′′0 and A′′1 , that contain 7
nonzero entries each. Then we have

A′′0 =


a d g 0 0 0
b e h 0 0 0
c 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A
′′
1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 f i 0 0 0
0 0 0 j 0 0
0 0 0 0 k m
0 0 0 0 l n

 ,

where
A = A′′0 +A′′1 .
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In practice, selecting decomposition method depends on the target Sparse BLAS
algorithm and architecture of the used computer system. Because of the compressed
storage methods, the above decomposition methods in general do not bring obvious
extra memory footprint regardless which method is selected.

2.4.2 Join: From Subresult to Result

Using the first method as an example, if we want to compute one of the level 2 BLAS
routines that multiply A with a dense vector

x =
[
1, 2, 3, 4, 5, 6

]T
.

We can compute

y0 = A0x =


a d g 0 0 0
b e h 0 0 0
c f i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
2
3
4
5
6

 =


1a+ 2d+ 3g
1b+ 2e+ 3h
1c+ 2f + 3i

0
0
0

 ,

y1 = A1x =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 j 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
2
3
4
5
6

 =


0
0
0
4j
0
0

 ,

y2 = A2x =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 k m
0 0 0 0 l n




1
2
3
4
5
6

 =


0
0
0
0

5k + 6m
5l + 6n

 .

We can see that y0, y1 and y2 can be computed in parallel. Thereafter, by summing
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them up, we obtain

y = y0 + y1 + y2

=


1a+ 2d+ 3g
1b+ 2e+ 3h
1c+ 2f + 3i

0
0
0

+


0
0
0
4j
0
0

+


0
0
0
0

5k + 6m
5l + 6n



=


1a+ 2d+ 3g
1b+ 2e+ 3h
1c+ 2f + 3i

4j
5k + 6m
5l + 6n

 .

2.5 Challenges of Parallel and Scalable Sparse BLAS

2.5.1 Indirect Addressing

Because of the compressed storage fashion, nonzero entries of a sparse vector or matrix
have to be accessed by indirect addresses stored in its index array. On one hand,
indirect addressing leads to random accesses that bring more memory transactions
and lower cache hit rate. On the other, the addresses are only known at runtime but
not at compile time when software prefetching may be added to improve performance.
Thus compared to sequential memory accesses in Dense BLAS, indirect addressing in
general significantly decreases performance of Sparse BLAS.

Some hardware features can improve performance of indirect addressing. For
example, modern CPUs are equipped with relatively large private and shared caches.
As a result, cache hit rate is increased because more possibly usable data are stored in
on-chip memory for latency hiding. In other words, each random memory transaction
requires on average less time because of reduced long latency accessing on off-chip
memory. Additionally, modern GPUs concurrently run a large amount (e.g., tens
of thousands) of light-weight threads on high bandwidth memory to hide latency.
Moreover, Improving sparse matrix storage structures, e.g., slicing and grouping
column entries [5, 8, 54, 135], can greatly reduce negative affect of indirect addressing
by caching more recently usable data.

Therefore, the main target of this thesis is utilizing high throughput of manycore
processors such as GPUs and Xeon Phi for Sparse BLAS. All main contributions on
data structures and algorithms of this thesis have been designed for them.

2.5.2 Selection of Basic Primitives

When the output is required to be sparse, some computations must be performed
on indirect addresses. For example, sparse vector – sparse vector dot product in Level 1
Sparse BLAS executes a set intersection operation on the index arrays of two sparse
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input vectors. This is obviously slower than a scatter or gather operation when one
operand is dense, and can be much slower than trivial dot product of two dense
vectors.

Therefore, selection of the best building blocks plays a crucial role in the imple-
mentation of Sparse BLAS. Many basic primitives such as sorting, searching, insertion,
merging, reduction and prefix-sum scan all have their own application scenarios when
using different hardware platforms. Chapter 4 of this thesis describes useful parallel
primitives such as sorting network, evaluates multiple parallel merge algorithms,
and develops new parallel primitives such as fast segmented sum. We further show
that the contributions of Chapter 4 greatly improve performance of Sparse BLAS
described in Chapters 7 – 9.

2.5.3 Data Decomposition, Load Balancing and Scalability

As listed in Section 2.4, multiple data decomposition methods can be used for gen-
erating submatrices for parallel processing on multiple compute units. However,
which decomposition method is the best depends on required operation and concrete
hardware device. Load balancing is actually the most important criterion of data
decomposition, and decides scalability of a data structure or algorithm.

To achieve load balancing, three factors are required to be considered: (1) is data
composition based on a sparse matrix’s rows/columns, or sparsity structures, or
nonzero entries? (2) is data composition conducted in input space or output space?
and (3) which merging approach is the best if a decomposition method is decided?

Because various massively parallel chips are the main platform of this thesis, we
offers multiple contributions. For example, Chapter 8 demonstrates that partitioning
a sparse matrix into 2D tiles of the same size provides the best scalability for SpMV
operation, and Chapter 9 shows that data composition conducted in output space
delivers the best performance for SpGEMM.

2.5.4 Sparse Output of Unknown Size

Several Sparse BLAS operations, such as addition of two sparse vectors/matrices
and multiplication of two sparse matrices, generate sparse output. The number of
nonzero entries and their distribution are actually not known in advance. Because
sparse matrices are normally very large, it is infeasible to store resulting nonzero
entries to a dense matrix then to convert it to sparse.

Precomputing an upper bound is one method to approximate the number of
nonzero entries of the output. For example, addition of a sparse vector v0 including
nnz0 nonzero entries and another sparse vector v1 containing nnz1 nonzero entries
will generate a sparse vector including no more than nnz0 + nnz1 nonzero entries.
Thus preallocating a memory block of size nnz0 + nnz1 is a safe choice. However,
this method may waste memory space when the intersection of the index sets is
large. Another method is to preallocate a sparse resulting vector including only nnz0
nonzero entries then insert nnz1 nonzero entries from v1. But this method may need
memory reallocation, which is not supported on some accelerator platforms such as
GPUs.
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In Chapter 9 of this thesis, we propose a hybrid memory management method
that pre-allocates upper bound size for short rows and a fixed size for long rows,
and re-allocates memory for the long rows on-demand. The experimental results
show that this hybrid method can significantly save memory space (e.g., by a factor of
20) for some test problems. Further, on tightly coupled CPU-GPU processors, using
re-allocatable memory bring extra performance gain.
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3. Parallelism in Architectures

3.1 Overview

The performance of Sparse BLAS operations highly depend on the used hardware. In
the past decade, a variety of chip multiprocessors (CMPs) have replaced single-core
processors as the main targets of shared memory Sparse BLAS algorithm design. This
Chapter introduces four mainstream CMPs: multicore CPU, manycore GPU, many-
core coprocessor and CPU, and emerging tightly coupled CPU-GPU heterogeneous
processor.

3.2 Multicore CPU

Central processing units (CPUs) are designed as the central control units that perform
basic compute and control operations of computer systems. Because the CPU is
responsible for processing and responding, its single-thread performance is highly
emphasized. Inside one single CPU core, various parallelism oriented techniques,
such as multiple functional units, pipelining, superscalar, out-of-order execution,
branch prediction, simultaneous multithreading and deep cache hierarchies, have
been designed. Because of the so-called power wall, clock frequency of a single
GPU core cannot be further increased. As a result, multiple CPU cores of lower
clock frequency have to be combined onto a single chip for continued performance
improvements. Figure 3.1 shows a quad-core CPU equipped with large private and
shared caches.

Because of the low-cost of commercial grade CPUs, they are widely used as main
compute units of large-scale supercomputers. However, for the same reason, CPUs
cannot achieve a performance balance between general purpose operations such
as human-computer interaction and specific purpose applications such as scientific
computing. As a result, more special purpose devices are required for massively
parallel scientific computing.

3.3 Manycore GPU

Graphics processing units (GPUs), also known as graphics cards having a long history,
are originally designed by nVidia in 1999 for photorealistic 3D rendering in computer
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Figure 3.1: A quad-core CPU including multi-level caches.

games. Because basic numerical linear algebra operations play crucial roles in real-
time 3D computer graphics, GPUs are designed for this set of operations. Because
GPUs offer higher peak performance and bandwidth, numerical linear algebra appli-
cations can deliver much higher performance than merely using multicore CPUs. In
the year 2007, the birth of nVidia’s CUDA programming model made GPU program-
ming much easier for researchers without background knowledge on programming
shading languages such as GLSL1 and HLSL2. To describe non-graphics applications
on GPU, a new research direction general-purpose computation on graphics hardware
(or GPGPU for short) has been naturally established [100, 134]. Figure 3.2 shows a
GPU composed of four cores, private scratchpad memory, and private and shared
caches.

Figure 3.2: A GPU composed of four cores, scratchpad memory, and caches.

Because CUDA and OpenCL are both widely used in GPU programming and
they actually deliver comparable performance [74], our Sparse BLAS algorithms

1The OpenGL Shading Language from the OpenGL Architecture Review Board (ARB).
2The High Level Shading Language from the Microsoft Corp..
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support both of them. We use CUDA implementation on nVidia GPUs and OpenCL
implementation on AMD GPUs.

For simplicity, we define the following unified terminologies: (1) thread denotes
thread in CUDA and work item in OpenCL, (2) thread bunch denotes warp in nVidia
GPU and wavefront in AMD GPU, (3) thread group denotes thread block or cooperative
thread array (CTA) in CUDA and work group in OpenCL, (4) core denotes streaming
multiprocessor (SMX) or Maxwell streaming multiprocessor (SMM) in nVidia GPU and
compute unit in AMD GPU, and (5) scratchpad memory denotes shared memory in CUDA
and local memory in OpenCL.

Because GPU cores can execute massively parallel lightweight threads on SIMD
units for higher aggregate throughput, applications with good data-level parallelism
can be significantly accelerated by GPUs [42, 43, 41]. As such, some modern supercom-
puters have already used GPUs as their accelerators. However, utilizing the power
of GPUs requires rewriting programs in CUDA, OpenCL or other GPU-oriented
programming models. This brings non-trivial software engineering overhead for
applications with a lot of legacy code [37, 165]. Furthermore, because GPUs have their
own memory, data have to be transferred back and forth between CPU-controlled
system memory and GPU-controlled device memory. This data transfer may offset
gained performance improvements from GPUs. Also, programming data transfer
makes software more complicated and less easy to maintain [180]. Figure 3.3 shows a
loosely coupled CPU-GPU heterogeneous system. We can see that the CPU and the
GPU are connected by a PCIe interface, which delivers much lower bandwidth than
the GPU device memory.

Figure 3.3: A loosely coupled CPU-GPU heterogeneous system with PCIe interface.

3.4 Manycore Coprocessor and CPU

Inspired by the success of GPU computing, Intel designed manycore coprocessors
and CPUs for aggregate throughput as well. Like GPUs, manycore coprocessors
and CPUs contain many relatively small cores in one chip. However, each small
core can run an operating system and is strengthened by wider SIMD units. Even
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Figure 3.4: A manycore CPU including 12 small cores and their private caches.

though the small cores are not as powerful as their counterparts in multicore CPUs,
a manycore coprocessor or CPU can include at least tens of such small cores. Thus
the computational power is also impressive [73], compared with GPUs. The first
generations of such chips were released in a coprocessor form, which is similar to
an accelerator but has more flexible memory management. The later generations
can be used independently thus have no fundamental difference compared to classic
multicore CPUs. Figure 3.4 plots a manycore coprocessor/CPU composed of 12 small
cores and their private caches.

One obvious advantage of manycore coprocessors and CPUs is the programma-
bility. Ideally, unchanged legacy code for classic CPUs can run smoothly on those
chips. As a result, a large mount of applications are well prepared. Moreover, the
data transfer overhead in a CPU-GPU system can be completely avoided when using
a manycore CPU as the only compute device in one system.

3.5 Tightly Coupled CPU-GPU Heterogeneous Processor

Recently, heterogeneous processors (which are also known as heterogeneous chip
multiprocessors or asymmetric multicore processors, hCMPs or AMPs for short)
have been designed [105, 96] and implemented [30, 3, 53, 141, 150]. Compared to
homogeneous processors, heterogeneous processors can deliver improved overall
performance and power efficiency [46], while sufficient heterogeneous parallelisms
exist. The main characteristics of heterogeneous processors include unified shared
memory and fast communication among different types of cores (e.g., CPU cores and
GPU cores). Practically, heterogeneous system architecture (HSA) [90], OpenCL [136]
and CUDA [137] have supplied toolkits for programming heterogeneous processors.

Compared to homogeneous chip multiprocessors such as CPUs and GPUs, the
heterogeneous processors are able to combine different types of cores into one chip.
Thus heterogeneous processors offer more flexibility in architecture design space.
The Cell Broadband Engine [185, 167, 168] can be seen as an early form of hetero-
geneous processor. Currently, because of mature CPU and GPU architectures, pro-
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gramming environments and applications, CPU-GPU integrated heterogeneous pro-
cessor with multiple instruction set architectures (ISAs) is the most widely adopted
choice. Representatives of this model include AMD Accelerated Processing Units
(APUs) [30, 3, 159], Intel multi-CPU and GPU system-on-a-chip (SoC) devices [53],
nVidia Echelon heterogeneous GPU architecture [96], and many mobile processors
(e.g., nVidia Tegra [141] and Qualcomm Snapdragon [150]).

Figure 3.5 shows two block diagrams of heterogeneous processors used as one of
the experimental testbeds in this thesis. In general, a heterogeneous processor consists
of four major parts: (1) a group of CPU cores with hardware-controlled caches, (2) a
group of GPU cores with shared command processors, software-controlled scratchpad
memory and hardware-controlled caches, (3) shared memory management unit, and
(4) shared global dynamic random-access memory (DRAM). The last level cache of
the two types of cores can be separate as shown in Figure 3.5(a) or shared as shown
in Figure 3.5(b).

(a) Heterogeneous processor with separate last level cache

(b) Heterogeneous processor with CPU-GPU shared last level cache

Figure 3.5: Block diagrams of two representative heterogeneous processors.

The CPU cores have higher single-thread performance due to out-of-order ex-
ecution, branch prediction and large amounts of caches. The GPU cores execute
massively parallel lightweight threads on SIMD units for higher aggregate through-
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put. The two types of compute units have completely different ISAs and separate
cache sub-systems.

Compared to loosely-coupled CPU-GPU heterogeneous systems shown in Fig-
ure 3.3, the two types of cores in a heterogeneous processor share one single unified
address space instead of using separate address spaces (i.e., system memory space and
GPU device memory space). One obvious benefit is avoiding data transfer through
connection interfaces (e.g., PCIe link), which is one of the most well known bottle-
necks of coprocessor/accelerator computing [82]. Additionally, GPU cores can access
more memory by paging memory to and from disk. Further, the consistent pageable
shared virtual memory can be fully or partially coherent, meaning that much more
efficient CPU-GPU interactions are possible due to eliminated heavyweight synchro-
nization (i.e., flushing and GPU cache invalidation). Currently, programming on the
unified address space and low-overhead kernel launch are supported by HSA [90],
OpenCL [136] and CUDA [137].

To leverage the heterogeneous processors, existing research has concentrated on
various coarse-grained methods that exploit task, data and pipeline parallelism in
the heterogeneous processors. However, it is still an open question whether or not
the new features of the emerging heterogeneous processors can expose fine-grained
parallelism in fundamental data structure and algorithm design. Also, whether
new designs can outperform their conventional counterparts plus the coarse-grained
parallelization is a further question. A lot of prior work has concentrated on exploiting
coarse-grained parallelism or one-side computation in the heterogeneous processors.
The current literature can be classified into four groups: (1) eliminating data transfer,
(2) decomposing tasks and data, (3) pipelining, and (4) prefetching data.

Eliminating data transfer over a PCIe bus is one of the most distinct advantages
brought by the heterogeneous processors, thus its influence on performance and
energy consumption has been relatively well studied. Research [49, 181, 133] reported
that various benchmarks can obtain performance improvements from the AMD
APUs because of reduced data movement cost. Besides the performance benefits,
research [169, 138] demonstrated that non-negligible power savings can be achieved
by running programs on the APUs rather than the discrete GPUs because of shorter
data path and the elimination of the PCIe bus and controller. Further, Daga and
Nutter [48] showed that using the much larger system memory makes searches on
very large B+ tree possible.

Decomposing tasks and data is also widely studied in heterogeneous system
research. Research [106, 174] proposed scheduling approaches that map workloads
onto the most appropriate core types in the single-ISA heterogeneous processors. In
recent years, as GPU computing is becoming more and more important, scheduling
on multi-ISA heterogeneous environments has been a hot topic. StarPU [9], Qilin
[125], Glinda [163] and HDSS [22] are representatives that can simultaneously execute
suitable compute programs for different data portions on CPUs and GPUs.

Pipelining is another widely used approach that divides a program into multiple
stages and executes them on most suitable compute units in parallel. Heterogeneous
environments further enable pipeline parallelism to minimize serial bottleneck in
Amdahl’s Law [88, 148, 59, 133]. Chen et al. [44] pipelined map and reduce stages
on different compute units. Additionally, pipelining scheme can also expose wider
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design dimensions. Wang et al. [181] used CPU for relieving GPU workload after
each previous iteration finished, thus overall execution time was largely reduced. He
et al. [87] exposed data parallelism in pipeline parallelism by using both CPU and
GPU for every high-level data parallel stage.

Prefetching data can be considered with heterogeneity as well. Once GPU and
CPU share one cache block, the idle integrated GPU compute units can be leveraged
as prefetchers for improving single thread performance of the CPU [186, 187], and
vice versa [189]. Further, Arora et al. [6] argued that stride-based prefetchers are
likely to become significantly less relevant on the CPU if a GPU is integrated.
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4. Parallelism in Data Structures
and Algorithms

4.1 Overview

Fundamental data structures and algorithms play the key roles in implementing any
computer programs. Data structures are approaches to store information. Algorithms
are methods for solving problems. To accelerate Sparse BLAS on modern computer
architectures, effectively utilizing parallel-friendly data structures and scalable algo-
rithms is crucial. This chapter introduces some parallel building blocks used in the
implementation of Sparse BLAS.

4.2 Contributions

This chapter makes the following contributions:

• A new method that uses offset information for converting a complex segmented
sum operation to a simple inclusive all-scan operation.

• A performance comparison of five recently developed merge methods on three
nVidia and AMD GPUs. To the best of our knowledge, no literature has reported
performance of merging short sequences of size less than 212, which fully use
on-chip scratchpad memory.

• A new heap data structure named ad-heap is proposed for faster fundamental
heap operations on heterogeneous processors. To the best of our knowledge,
the ad-heap is the first fundamental data structure that efficiently leveraged the
two different types of cores in the emerging heterogeneous processors through
fine-grained frequent interactions between the CPUs and the GPUs.

4.3 Simple Data-Level Parallelism

4.3.1 Vector Addition
Data-level parallelism (or data parallelism) distributes data across different compute
units and independently runs the same instructions on them. A typical pattern of
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data-level parallelism is single instruction, multiple data (SIMD), which is ubiquitous
in modern microprocessors. The most easily understood data-level parallelism algo-
rithm may be the addition of two dense vectors. The resulting vector of this operation
is dense as well. Suppose that the two inputs are a and b, both of size n, and the
output is vector c of the same size, the parallel procedure is shown in Algorithm 1.
Ideally, this operation can be completed within one time unit, if a computer system
contains at least n compute units and n memory paths. In contrast, a sequential
method requires n time units, even though the used computer system has exactly the
same configuration, which is shown in Algorithm 2.

Algorithm 1 Addition of two dense vectors in parallel.

1: function VECTOR ADDITION PARALLEL(*in1,*in2,*out, len)
2: for i = 0 to len− 1 in parallel do
3: out[i]← in1[i] + in2[i]
4: end for
5: end function

From the point view of pseudocode algorithm representation, this thesis uses
keyword in parallel right after a for loop for exhibiting a routine can be executed in
parallel. For example, the sequential version of Algorithm 1 is shown in Algorithm 2.

Algorithm 2 Addition of two dense vectors in serial.

1: function VECTOR ADDITION SERIAL(*in1,*in2,*out, len)
2: for i = 0 to len− 1 do
3: out[i]← in1[i] + in2[i]
4: end for
5: end function

4.3.2 Reduction
Sometimes it is required to calculate a scalar from an array. The scalar can be the
maximum/minimum value or the sum of all of the entries of the array. Reduction
operation is commonly used to obtain the scalar. Algorithm 3 gives pseudocode of a
serial reduction-sum. This method loops through each entry in the array and sum all
entries up to obtain the scalar.

Algorithm 3 Serial reduction-sum.

1: function REDUCTION SUM SERIAL(*in, len)
2: sum← 0
3: for i = 0 to len− 1 do
4: sum← sum+in[i]
5: end for
6: return sum
7: end function
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Suppose that the length of the input array is n, serial reduction has a work com-
plexity O(n). In modern microprocessors, data in memory can be efficiently streamed
to a compute unit by prefetching thus has high cache hit rate. But when a system
has more compute units, they cannot be automatically used for higher performance.
Therefore, parallel reduction has been designed through a balanced tree structure.
The height (i.e., level or depth) of a balanced binary tree is log2n+ 1, if it has n nodes
(i.e., leaves). So an array of size n to be reduced can be integrated with a balanced
binary tree of depth log2n+ 1. Figure 4.1 shows an example of executing reduction-
sum on an array of size 8 with a balanced tree of level 4. We can see that addition
operations between every two levels of the tree can run in parallel. For example, the
four additions between the two levels on the top can run independently in parallel.

Figure 4.1: An parallel reduction-sum on an array of size 8.

A parallel implementation of the reduction-sum operation is shown in Algorithm 4.
The parallel version needs n− 1 additions and thus still has runtime complexity O(n).
However, the operation can be completed in O(log2 n) time, if at least n/2 compute
units and enough fast memory are available.

Algorithm 4 Parallel reduction-sum.

1: function REDUCTION SUM PARALLEL(*in, len)
2: for d = 0 to log2 len− 1 do
3: for k = 0 to len− 1 by 2d+1 in parallel do
4: in[k + 2d − 1]← in[k + 2d − 1] + in[k + 2d+1 − 1]
5: end for
6: end for
7: sum←in[0]
8: return sum
9: end function
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4.4 Scan (Prefix Sum)

Scan, which is also known as prefix sum, is a powerful building block in parallel
computing. For different purposes, scan algorithms can be categorized as inclusive
scan and exclusive scan. Given an array of size n

a =
[
a0, a1, ..., an−1

]
and an associative operator⊕ as inputs of a scan operation, the output of the inclusive
scan is another array of the same size

ain =
[
a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ...⊕ an−1)

]
,

and the exclusive scan generates an array of the same size

aex =
[
0, a0, ..., (a0 ⊕ a1 ⊕ ...⊕ an−2)

]
.

We see that
aex = ain − a.

For example, setting the ⊕ operator to arithmetic + and assuming the input is
[3, 6, 7, 8, 9, 12], the outputs will be [3, 9, 16, 24, 33, 45] and [0, 3, 9, 16, 24, 33] through
the inclusive scan and the exclusive scan, respectively.

Scan can convert seemingly serial computations to parallel operations. Unstruc-
tured sparse matrices have rows/columns of irregular sizes, thus can be a good
scenario for using parallel scan operation. The following subsection gives an exam-
ple.

4.4.1 An Example Case: Eliminating Unused Entries

Suppose that we want to eliminate all even columns of a sparse matrix

A =


0 c f j 0 0
a 0 g k n o
b 0 0 0 m 0
0 d h 0 0 0
0 0 0 0 0 p
0 e i l n q

 ,

and to obatin

Aodd =


0 f 0
a g n
b 0 m
0 h 0
0 0 0
0 i n


only containing three odd columns ofA. Because the two sparse matrices are required
to be stored in compressed style, parallelizing this partitioning operation is not trivial.
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Using the 2nd row as an example, it is stored as two arrays

col idx =
[
0, 2, 3, 4, 5

]
,

val =
[
a, g, k, n, o

]
.

Obviously, removing its even columns to obtain

col idxodd =
[
0, 2, 4

]
,

valueodd =
[
a, g, n

]
,

can be easily achieved by sequential iterating all entries and saving the ones with odd
indices. However, parallel processing is expected to have higher performance. This
can be achievable by using the scan primitive.

First, an intermediate array is introduced to label each nonzero entry. A nonzero
entry is labeled as 1 if it is an index for a odd column, otherwise 0 is used. So the 2nd
row with this auxiliary array is stored in

col idx =
[
0, 2, 3, 4, 5

]
,

val =
[
a, g, k, n, o

]
,

aux array =
[
1, 1, 0, 1, 0

]
.

Then an exclusive scan is executed on the auxiliary array to obtain

aux arrayex =
[
0, 1, 2, 2, 3

]
,

which stores the target positions of the odd columns. Now it is easy to save the odd
columns of the whole 2nd row of A by Algorithm 5 in parallel. This method can be
easily extended to the whole matrix.

Algorithm 5 Eliminating unused nonzero entries in parallel.

1: for i = 0 to 4 in parallel do
2: if aux array[i] = 1 then
3: col idxodd[aux arrayex[i]]← col idx[i]
4: valodd[aux arrayex[i]]← val[i]
5: end if
6: end for

4.4.2 All-Scan
A scan operation is called all-scan. If it runs on the whole input array, as opposed to
part of it. Algorithm 6 shows a serial out-of-place inclusive scan. Similar to the serial
reduction described above, all-scan iterates through all entries of the array and lets
each entry of the output array to store the sum of all entries except ones on its right
in the input array. Sometimes, the scan is required to be in-place for less memory
allocation. Algorithm 7 gives an in-place version of the serial all-scan. Similarly,
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Algorithm 6 Serial inclusive all-scan (out-of-place).

1: function INCLUSIVE ALL-SCAN SERIAL(*in, len,*out)
2: sum← in[0]
3: out[0]← sum
4: for i = 1 to len− 1 do
5: sum← sum+in[i]
6: out[i]← sum
7: end for
8: end function

Algorithm 7 Serial inclusive all-scan (in-place).

1: function EXCLUSIVE ALL-SCAN SERIAL(*in, len)
2: oldval← in[0]
3: for i = 1 to len− 1 do
4: newval← in[i]
5: in[i]← oldval+ in[i− 1]
6: oldval← newval
7: end for
8: end function

Algorithm 8 Serial exclusive all-scan (out-of-place).

1: function EXCLUSIVE ALL-SCAN SERIAL(*in, len,*out)
2: sum← 0
3: out[0]← sum
4: for i = 1 to len− 1 do
5: sum← sum+in[i− 1]
6: out[i]← sum
7: end for
8: end function

Algorithm 9 Serial exclusive all-scan (in-place).

1: function EXCLUSIVE ALL-SCAN SERIAL(*in, len)
2: oldval← in[0]
3: in[0]← 0
4: for i = 1 to len− 1 do
5: newval← in[i]
6: in[i]← oldval+ in[i− 1]
7: oldval← newval
8: end for
9: end function

serial out-of-place and in-place implementations of exclusive all-scan are given by
Algorithms 8 and 9, respectively.
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Parallel scan algorithm has been given by Blelloch [25, 26, 27]. The method divides
all-scan into two phases: up-sweep and down-sweep, each is organized by a balanced
tree described above. Figure 4.2 gives an example conducting all-scan on an array
of size 8. We can see that the up-sweep phase basically executes a parallel reduction
operation, and the down-sweep phase transmits zeros and adds previous sums to
subsequent entries. Algorithm 10 shows pseudocode of this operation. Its runtime
complexity is O(n) but can be completed in O(log2 n) time with enough parallel
resources.

Figure 4.2: An example of the parallel scan.

Recently, the in-place inclusive and exclusive all-scan operations have already
been defined by a set of Workgroup Functions of OpenCL 2.0 [136]. Using vendors’
implementation may bring high efficiency and programming productivity.

4.4.3 Segmented Scan
Segmented scan is a more general case of the all-scan operation. It divides an array
into multiple segments and performs a all-scan operation for each segment. So an
all-scan can be seen as a segmented scan with only one segment. To label starting
and ending points, a segment has its first entry flagged as TRUE and the other entries
flagged as FALSE. Other methods, such as labeling the last entry as FALSE and all
the others as TRUE [188], are also usable.

A parallel implementation of in-place exclusive segmented scan is shown in
Algorithm 11. This method is very similar to the above algorithm for the all-scan
operation, except flags are taken into account. In each step, flags are used for deciding
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Algorithm 10 Parallel exclusive all-scan (in-place).

1: function EXCLUSIVE ALL-SCAN PARALLEL(*in, len)
2: //up-sweep
3: for d = 0 to log2 len− 1 do
4: for k = 0 to len− 1 by 2d+1 in parallel do
5: in[k + 2d+1 − 1]← in[k + 2d − 1] + in[k + 2d+1 − 1]
6: end for
7: end for
8: in[len− 1]← 0
9: //down-sweep

10: for d = log2 len− 1 to 0 do
11: for k = 0 to len− 1 by 2d+1 in parallel do
12: t← in[k + 2d − 1]
13: in[k + 2d − 1]← in[k + 2d+1 − 1]
14: in[k + 2d+1 − 1]← t+in[k + 2d+1 − 1]
15: end for
16: end for
17: end function

whether an addition is required. Also, if any one of the inputs of the addition is
performed, the target position is flagged as TRUE in the up-sweep phase, or modified
to FALSE, if the entry is involved in any steps of the down-sweep phase.

4.4.4 Segmented Sum Using Inclusive Scan

Segmented sum can be seen as a simplified alternative of segmented scan. It performs
a reduction-sum operation for the entries in each segment of an array and collects
the sums. Algorithm 12 lists a serial segmented sum algorithm. Parallel segmented
sum algorithm can be implemented by segmented scan methods [28, 40, 161, 63].
However, as shown in Algorithm 11, using segmented scan for segmented sum may
be complex and not efficient enough. Thus we prepare seg offset as an auxiliary
array to facilitate implementation of segmented sum by the way of the all-scan, which
can be much more efficient than segmented scan.

Algorithm 13 shows the fast segmented sum using seg offset and an inclusive
all-scan. Figure 4.3 gives an example. The principle of this operation is that the
all-scan is essentially an increment operation. Once a segment knows the distance
(i.e., offset) between its head and its tail, its partial sum can be deduced from its
all-scan results. Therefore, the more complex parallel segmented sum operation
in [28, 40, 161, 63] can be replaced by a faster all-scan operation (line 4) and a few
arithmetic operations (lines 5–7). Also note that the seg offset array can be an
alternative to the flag array.
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Algorithm 11 Parallel exclusive segmented scan (in-place).

1: function EXCLUSIVE SEGMENTED SCAN(*in, len,*flag original)
2: MALLOC(*flag, len)
3: MEMCPY(*flag, *flag original, len)
4: for d = 0 to log2 len− 1 do
5: for k = 0 to len− 1 by 2d+1 in parallel do
6: if flag[k + 2d+1 − 1] = FALSE then
7: in[k + 2d+1 − 1]← in[k + 2d − 1] + in[k + 2d+1 − 1]
8: end if
9: flag[k + 2d+1 − 1]← flag[k + 2d − 1] ∨ flag[k + 2d+1 − 1]

10: end for
11: end for
12: in[len− 1]← 0
13: flag[len− 1]← FALSE
14: for d = log2 len− 1 to 0 do
15: for k = 0 to len− 1 by 2d+1 in parallel do
16: t← in[k + 2d − 1]
17: in[k + 2d − 1]← in[k + 2d+1 − 1]
18: if flag original[k + 2d] = TRUE then
19: in[k + 2d+1 − 1]← 0
20: else if flag[k + 2d − 1] = TRUE then
21: in[k + 2d+1 − 1]← t
22: else
23: in[k + 2d+1 − 1]← t+in[k + 2d+1 − 1]
24: end if
25: flag[k + 2d − 1]← FALSE
26: end for
27: end for
28: end function

Figure 4.3: An example of the fast segmented sum.
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Algorithm 12 Serial segmented sum operation.

1: function SEGMENTED SUM(*in, len,*flag)
2: for i = 0 to len− 1 do
3: if flag[i] = TRUE then
4: j ← i+ 1
5: while flag[j] = FALSE && j < len do
6: in[i]← in[i] + in[j]
7: j ← j + 1
8: end while
9: else

10: in[i]← 0
11: end if
12: end for
13: end function

Algorithm 13 Fast segmented sum using seg offset.

1: function FAST SEGMENTED SUM(*in, len,*seg offset)
2: MALLOC(*tmp, len)
3: MEMCPY(*tmp, *in)
4: INCLUSIVE ALL-SCAN PARALLEL(*in, len)
5: for i = 0 to len− 1 in parallel do
6: in[i]← in[i+seg offset[i]] − in[i] + tmp[i]
7: end for
8: FREE(*tmp)
9: end function

4.5 Sorting and Merging

Sorting is a fundamental algorithm in computer science and can find its broad use in
Sparse BLAS. Recall the first example of this thesis and Figure 2.3, searching the 5th
small ball takes longer time if the index array is not sorted. If so, a fast binary search
can be utilized to obtain the position of index 4 in O(log n) as opposed to O(n) time.

In the past decades, many sorting algorithms have been proposed. This thesis
mainly focuses on parallel-friendly sorting methods such as sorting network ap-
proaches and the recently developed merge path method.

4.5.1 An Example Case: Permutation

Permutation can be used for rearranging a matrix of expected order of rows/-
columns [69]. We sometimes want to exploit the number of nonzero entries in rows,
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and to permute a sparse matrix

A =

0
1
2
3
4
5


0 c f j 0 0
a 0 g k n o
b 0 0 0 m 0
0 d h 0 0 0
0 0 0 0 0 p
0 e i l n q


to another form

A′ =

1
5
0
2
3
4


a 0 g k n o
0 e i l n q
0 c f j 0 0
b 0 0 0 m 0
0 d h 0 0 0
0 0 0 0 0 p

 ,

in which the longer rows appear before shorter ones, where the column vector to
the left of the matrix contains indices of the rows of the matrix. This permutation
operation can be implemented by sorting an array of key-value pairs: the key is the
number of nonzero entries of each row, and the value is the index of each row of the
matrix. In this example, the array of key-value pair is

a〈key,value〉 =
[
〈3, 0〉, 〈5, 1〉, 〈2, 2〉, 〈2, 3〉, 〈1, 4〉, 〈5, 5〉

]
.

After the array is sorted by its key in a descending order, it becomes

a〈key,value〉 =
[
〈5, 1〉, 〈5, 5〉, 〈3, 0〉, 〈2, 2〉, 〈2, 3〉, 〈1, 4〉

]
.

Then the value part of the key-value array is actually the new order of rows of the
matrix.

4.5.2 Bitonic Sort

Bitonic sort is a class of sorting network algorithms [17], which connect entries of the
array to be sorted by comparators. The algorithm can be divided into multiple stages.
Each stage can have multiple steps, and each step changes connecting paths and may
reorder the entries of the array. Because connecting wires are independent of each
other, all comparators within one step can execute in parallel. Figure 4.4 gives an
example of sorting an array of size 8. We can see that there are 4 pairs of sequences in
the first stage. After that, the array has 4 pairs of ordered sequence. After the second
stage, 2 ordered sequences are generated. Finally, there is only one ordered sequence
is left.

Algorithm 14 gives the pseudocode of the bitonic sort. This method requires
log n stages for an input array of size n. The ith stage has i steps. So the number
of operations of the bitonic sort is O(n log22(n) + log2(n)). It can be completed in
O(log22(n)) time with enough parallel resources. The bitonic sort can also be efficiently
implemented by using SIMD intrinsics [89].
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Figure 4.4: An example of bitonic sort. The arrows indicate ascending order operated
by comparators.

Algorithm 14 Parallel bitonic sort (in-place).

1: function BITONIC SORT PARALLEL(*in, len)
2: for k = 1 to log2 len do
3: for j = 2k−1 down to 1 do
4: for i = 0 to len− 1 in parallel do
5: ixj ← XOR(i, j)
6: if ixj > i then
7: if (i ∧ 2k) = 0 then
8: if in[i] > in[ixj] then
9: SWAP(in[i], in[ixj])

10: end if
11: else
12: if in[i] < in[ixj] then
13: SWAP(in[i], in[ixj])
14: end if
15: end if
16: end if
17: end for
18: j ← j/2
19: end for
20: end for
21: end function
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4.5.3 Odd-Even Sort
Another sorting network method is odd-even sort, which is very similar to the above
bitonic sort. Its idea is to sort all odd and all even keys separately and then merge
them. Figure 4.5 gives an example of sorting an array of size 8. We can see that
odd-even sort has log2 n stages as well, and the ith stage has i steps. Algorithm 15
gives pseudocode of odd-even sort, which has the same complexity with the bitonic
sort.

Figure 4.5: An example of odd-even sort. The arrows indicate ascending order
operated by comparators.

4.5.4 Ranking Merge
Merge algorithms give better sorting performance, if the input array is composed
of multiple already ordered subarrays. Algorithm 16 gives pseudocode of a serial
merge that sorts two ordered input arrays and save the result in an output array. This
approach constructs 3 pointers for the two input arrays and the output array. Because
the two inputs are sorted, the pointers can trivially iterative through all entries of
them, compare their values, and select one (e.g., the one less-than-or-equal-to the
other one) to save to the output array. To merge two ordered lists, a serial merge
algorithm requires n comparison, where n is the size of the resulting array. Merge
methods are out-of-place, meaning they need an extra array of size n to save the
resulting array.

While multiple compute units are usable, merge algorithm can be parallelized
easily by using binary search as a ranking tool. Thus this method is called ranking
merge [157]. The basic idea is that each entry of the two input arrays wants to know
its position in the output array, thus it computes a rank (i.e., the number of entries
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Algorithm 15 Parallel odd-even sort (in-place).

1: function ODD-EVEN SORT PARALLEL(*in, len)
2: for k = 1 to log2 len do
3: for j = 2k−1 down to 1 do
4: for i = 0 to len− 1 in parallel do
5: offset← i ∧ (j − 1)
6: ixj ← 2× i− offset
7: if j = 2k−1 then
8: if in[ixj] > in[ixj + j] then
9: SWAP(in[ixj], in[ixj + j])

10: end if
11: else
12: if offset ≥ j then
13: if in[ixj − j] > in[ixj] then
14: SWAP(in[ixj − j], in[ixj])
15: end if
16: end if
17: end if
18: end for
19: j ← j/2
20: end for
21: end for
22: end function

Algorithm 16 Serial merge (out-of-place).

1: function MERGE SERIAL(*in1, len1,*in2, len2,*out)
2: ai← 0
3: bi← 0
4: for ci = 0 to len1 + len2− 1 do
5: if ai < len1 && (bi ≥ len2 || in1[ai] ≤ in2[bi]) then
6: out[ci]← in1[ai]
7: ai← ai+ 1
8: else
9: out[ci]← in2[bi]

10: bi← bi+ 1
11: end if
12: end for
13: end function

less-than-or-equal-to it in another input array) and adds the rank to its local index
to obtain the final position in the output array. Algorithm 17 gives pseudocode
of this method. Because the binary search of each entry is independent of all the
other ones, the operation can run in parallel very well. Overall cost of ranking
merge is O(n1 log2 n2 + n2 log2 n1), where n1 and n2 are sizes of the two input arrays,
respectively. Similar to its serial version, ranking merge is required to be out-of-place.
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Algorithm 17 Parallel ranking merge (out-of-place).

1: function RANKING MERGE PARALLEL(*in1, len1,*in2, len2,*out)
2: for i = 0 to len1 in parallel do
3: idx← BINARY SEARCH(*in2, in1[i])
4: out[idx+ i]← in1[i]
5: end for
6: for i = 0 to len2 in parallel do
7: idx← BINARY SEARCH(*in1, in2[i])
8: out[idx+ i]← in2[i]
9: end for

10: end function

Sorting network algorithms such as bitonic sort and odd-even sort can also be
used for merging. In their last stage (e.g., stage 3 in Figures 4.4 and 4.5), the input
is already composed of two ordered subarrays of the same size. Then the merge
methods can further sort the two subarrays.

4.5.5 Merge Path

Merge path algorithm [81, 142] is a recently designed merge algorithm for load
balanced parallel processing. It conceptually construct a rectangular grid of size n1
by n2, where n1 and n2 are sizes of the two input arrays, respectively. Then multiple
conceptual 45-degree lines as anti-diagonals are generated to partition the grid. Those
lines are equally spaced, meaning that any single intersection of one line with the
grid goes down to another intersection of a neighboring line with the grid through a
path of the same length. Figure 4.6 shows an example of the merge path approach.
We can see that a grid is established to merge two arrays of sizes 4 and 8, respectively.
Then five equally spaced 45-degree anti-diagonals (i.e., lines l0 to l4) are generated to
intersect with the grid. The paths (colored in red, orange, green and blue) between
two intersections from neighboring lines have the same length of 3.

The reason of constructing the grid and the 45-degree anti-diagonals is to evenly
partition the two input arrays and let each compute unit to have the same amount of
work. Figure 4.6 supposes that there are 4 compute units in the system, thus divide
the gird to 4 regions by 5 lines. Then each compute units can deal with 3 entries, thus
the 12 entries in total are evenly distributed to the 4 compute units.

The rest problem is to find which 3 entries are assigned to a compute unit. To
find those entries, the positions of the three empty circles (i.e., the three connecting
points of the red path and the orange path, the orange path and the green path, and
the green path and the blue path) are required to be searched by comparing entries
around any possible intersections. For example, the intersection connecting the red
path and the orange path is selected because entry of value 3 on the x axis is located
between the entries of values 2 and 4 on the y axis. Because the two input arrays are
sorted, binary search can be utilized to find those intersections.

Once the intersections are known, each compute unit completes a serial merge on
two ordered subarrays. For example, the 1st compute units (colored in red) merges a
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Figure 4.6: An example of merge path.

subarray including entry of value 0 and another subarray including two entries of
values 1 and 2, respectively. Then the ordered three entries are stored to the first 3
positions of the resulting array.

Algorithm 18 gives pseudocode of merge path. Lines 7–25 conduct binary search
on the 45-degree anti-diagonals to obtain positions of the intersections. Lines 26–33
complete serial merge between those intersections. More detailed description and
complexity analysis of the GPU merge path algorithm can be found in [81].

4.5.6 A Comparison

Since merging is an important operation in sparse matrix computations (such as
addition of two sparse vectors described in Chapter 7), the most efficient algorithm is
required to be selected. Consider on-chip scratchpad memory of GPUs is controlled
by the user and may offer performance gain for short inputs and outputs, we consider
some recently implemented merge algorithms [157, 81, 99, 146, 145, 91, 55] for GPUs.
First, because the main objective of the research [145, 91, 55] is efficiently merging
large data in the global memory, they still use basic methods, such as bitonic sort and
ranking-based merge, as building blocks for small data in the scratchpad memory.
Peters et al. [146] proposed a locality-oriented advanced bitonic sort method that can
reduce synchronization overhead by merging data in fast private memory instead
of relatively slow shared memory. Therefore we experimentally evaluate 5 GPU
merge algorithms: (1) ranking merge [157], (2) merge path [81], (3) basic oddeven
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Algorithm 18 Parallel merge path (out-of-place).

1: function MERGE PATH PARALLEL(*in1, len1,*in2, len2,*out, nt)
2: MALLOC(*border1, nt+ 1)
3: MALLOC(*border2, nt+ 1)
4: delta← d(len1 + len2)/nte
5: border1[nt]← len1
6: border2[nt]← len2
7: for i = 0 to nt in parallel do
8: offset← delta ∗ i
9: start← offset > len2?offset− len2 : 0

10: stop← offset > len1?len1 : offset
11: while stop >= start do
12: median← (stop+ start/2)
13: if in1[median] > in2[offset−median− 1] then
14: if in1[median− 1] < in2[offset−median− 1] then
15: break
16: else
17: stop← median− 1
18: end if
19: else
20: start← median+ 1
21: end if
22: end while
23: border1[i]← median
24: border2[i]← offset−median
25: end for
26: for i = 0 to nt− 1 in parallel do
27: offset← delta ∗ i
28: start1← border1[i]
29: l1← border1[i+ 1]-border1[i]
30: start2← border2[i]
31: l2← border2[i+ 1]-border2[i]
32: MERGE SERIAL(&in1[start1], l1,&in2[start2], l2,&out[i ∗ offset])
33: end for
34: end function

merge [99], (4) basic bitonic merge [99], and (5) advanced bitonic merge [146]. The
implementation of the algorithm (2) is extracted from the Modern GPU library [18].
The implementations of the algorithm (3) and (4) are extracted from the nVidia CUDA
SDK. We implement the algorithms (1) and (5). Additionally, another reason why we
conduct the evaluation is that none of the above literature presented performance of
merging short sequences of size less than 212, which is the most important length for
relatively short rows of our benchmark suite.

Our evaluation results of merging 32-bit keys, 32-bit key-32-bit value pairs and
32-bit key-64-bit value pairs are shown in Figure 4.7. The experimental platforms are
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nVidia GeForce GTX Titan Black, nVidia GeForce GTX 980 and AMD Radeon R9 290X
(see detailed specifications of the GPUs listed in Table B.2 of Appendix B). Each of the
five algorithms merges two short ordered sequences of size l into one ordered output
sequence of size 2l. The sorting network methods in our evaluation only execute the
last stage, since both inputs are sorted. To saturate throughput of GPUs, the whole
problem size is set to size 225. For example, 214 thread groups are launched while
each of them merges two sub-sequences of size l = 210. We execute each problem set
through multiple thread groups of different sizes and record the best performance for
the evaluation.

In Figure 4.7, we can see that the GPU merge path algorithm almost always
outperforms other methods while sub-sequence size is no less than 28. The extra
advantages of the merge path method are that it can evenly assign work load to
threads and can easily deal with the input sequences of arbitrary sizes.

We can see that the ranking merge is faster than the merge path method in Fig-
ure 4.7(f). But this algorithm requires more scratchpad memory and thus cannot scale
to longer sequences. The basic bitonic merge and the basic oddeven merge in general
do not show better performance and cannot simply deal with data of arbitrary sizes.
The advanced bitonic sort method is always the slowest because it loads data from
the scratchpad memory to thread private memory (register file or an off-chip memory
space) for data locality. However, due to the small or negatively large latency gap
between the scratchpad memory and the thread private memory, the load operations
actually reduce the overall performance. Thus this method should only be used for
migrating global memory access to scratchpad memory access.

We can also see that the AMD Radeon R9 290X GPU is almost always much faster
than the two nVidia GPUs in all tests. The reason is that the capacity of the scratchpad
memory (2816 kB, 64 kB/core × 44 cores, in the AMD GPU, 1536 kB, 96 kB/core
× 16 cores, in the nVidia Maxwell-based GTX 980 GPU and 720 kB, 48 kB/core ×
15 cores, in the nVidia Kepler-based GTX Titan Black GPU) heavily influence the
performance of merging small sequences. For the same reason, the GTX 980 GPU
delivers better overall performance than the GTX Titan Black GPU. On the other hand,
even though the AMD GPU has 64 kB scratchpad memory per core, each instance
of the kernel program can only use up to 32 kB. Thus the AMD GPU cannot scale to
longer sub-sequences (e.g., 212 with 32-bit key-32-bit value pairs) that can be executed
by using the nVidia GPUs.

4.6 Ad-Heap and k-Selection

Heap (or priority queue) data structures are heavily used in many algorithms such
as k-nearest neighbor (kNN) search, finding the minimum spanning tree and the
shortest path problems. Compared to the most basic binary heap, d-heaps [93, 182],
in particular implicit d-heaps proposed by LaMarca and Ladner [109], have better
practical performance on modern processors. However, as throughput-oriented
processors (e.g., GPUs) bring higher and higher peak performance and bandwidth,
heap data structures did not reap benefit from this trend because their very limited
degree of data parallelism cannot saturate wide SIMD units.

In this section, we propose a new heap data structure called ad-heap (asymmetric
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Performance comparison of merging 32-bit keys, 32-bit key-32-bit value
pairs and 32-bit key-64-bit value pairs through 5 GPU merge algorithms: ranking
merge, merge path, basic oddeven merge, basic bitonic merge and advanced bitonic
merge on three different GPUs: nVidia GeForce GTX Titan Black, nVidia GeForce
GTX 980 and AMD Radeon R9 290X.

d-heap) for heterogeneous processors. The ad-heap introduces an implicit bridge
structure — a new component that records deferred random memory transactions
and makes the two types of cores in a tightly coupled CPU-GPU heterogeneous
processor focus on their most efficient memory behaviors. Thus overall bandwidth
utilization and instruction throughput can be significantly improved.

We evaluate performance of the ad-heap by using a batch k-selection algorithm on
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two simulated heterogeneous processors composed of real AMD CPU-GPU and Intel
CPU and nVidia GPU, respectively. The experimental results show that compared
with the optimal scheduling method that executes the fastest d-heaps on the stan-
dalone CPUs and GPUs in parallel, the ad-heap achieves up to 1.5x and 3.6x speedup
on the two platforms, respectively.

4.6.1 Implicit d-heaps

Given a heap of size n, where n 6= 0, a d-heap data structure [93, 182] lets each parent
node to have d child nodes, where d > 2 normally. To satisify cache-line alignment
and reduce cache miss rate, the whole heap can be stored in an implicit space of size
n+ d− 1, where the extra d− 1 entries are padded in front of the root node and kept
empty [109]. Here we call the padded space “head” of the heap. Figure 4.8 shows an
example of the implicit max-d-heaps while n = 12 and d = 4. Note that each group of
the child nodes starts from an aligned cache block.

Figure 4.8: The layout of a 4-heap of size 12.

Because of the padded head, each node has to add an offset = d− 1 to its index
in the implicit array. Given a node of index i, its array index becomes i+ offset. Its
parent node’s (if i 6= 0) array index is b(i− 1)/dc+ offset. If any, its first child node
is located in di+ 1 + offset and the last child node is in array index di+ d+ offset.

Given an established non-empty max-d-heap, we can execute three typical heap
operations:

• insert operation adds a new node at the end of the heap, increases the heap size
to n+ 1, and takes O(logd n) worst-case time to reconstruct the heap property,

• delete-max operation copies the last node to the position of the root node, de-
creases the heap size to n−1, and takesO(d logd n) worst-case time to reconstruct
the heap property, and

• update-key operation updates a node, keeps the heap size unchanged, and takes
O(d logd n) worst-case time (if the root node is updated) to reconstruct the heap
property.

The above heap operations depend on two more basic operations:
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• find-maxchild operation takes O(d) time to find the maximum child node for a
given parent node, and

• compare-and-swap operation takes constant time to compare values of a child
node and its parent node, then swap their values if the child node is larger.

4.6.2 ad-heap design

Performance Considerations

We first conduct analysis on the degree of parallelism of the d-heap operations. We
can see that the insert operation does not have any data parallelism because the
heap property is reconstructed in a bottom-up order and only the unparallelizable
compare-and-swap operations are required. On the other hand, the delete-max oper-
ation reconstructs the heap property in a top-down order that does not have any
data parallelism either, but executes multiple (logd n in the worst case) lower-level
parallelizable find-maxchild operations. For the update-key operation, the position and
the new value of the key decides whether the bottom-up or the top-down order is
executed in the heap property reconstruction. Therefore, in this paper we mainly
consider accelerating the heap property reconstruction in the top-down order. After
all, the insert operation can be efficiently executed in serial because the heap should
be very shallow if the d is large.

Without loss of generality, we focus on an update-key operation that updates the
root node of a non-empty max-d-heap. To reconstruct the heap property in the top-
down order, the update-key operation alternately executes the find-maxchild operations
and the compare-and-swap operations until the heap property is satisfied or the last
changed parent node does not have any child node. Note that the swap operation can
be simplified because the child node does not need to be updated in the procedure.
Actually its value can be kept in thread register and be reused until the final round.
Algorithms 19 and 20 show pseudocode of the update-key operation and the find-
maxchild operation, respectively.

Imagine the whole operation is executed on a wide SIMD processor (e.g., GPU),
the find-maxchild operation can be efficiently accelerated by the SIMD units through a
streaming reduction scheme within much faster O(log d) time instead of original O(d)
time. And because of wider memory controllers, one group of w continuous SIMD
threads (a warp in the nVidia GPUs or a wavefront in the AMD GPUs) can load
w aligned continuous entries from the off-chip memory to the on-chip scratchpad
memory by one off-chip memory transaction (coalesced memory access). Thus to load
d child nodes from the off-chip memory, only d/w memory transactions are required.

A similar idea has been implemented on the CPU vector units. Furtak et al.
[75] accelerated d-heap find-maxchild operations by utilizing x86 SSE instructions.
The results showed 15% - 31% execution time reduction, on average, in a mixed
benchmark composed of the delete-max operations and insert operations while d = 8
or 16. However, the vector units in the CPU cannot supply as much SIMD processing
capability as in the GPU. Further, according to the previous research [6], moving
vector operations from the CPU to the integrated GPU can obtain both performance
improvement and energy efficiency. Therefore, in this paper we focus on utilizing
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Algorithm 19 Update the root node of a non-empty max-d-heap.

1: function UPDATE-KEY(∗heap, d, n, newv)
2: offset← d− 1 . offset of the implicit storage
3: i← 0 . the root node index
4: v ← newv . the root node value
5: while di+ 1 < n do . if the first child is existed
6: 〈maxi,maxv〉 ← FIND-MAXCHILD(∗heap, d, n, i)
7: if maxv > v then . compare
8: heap[i+ offset]← maxv . swap
9: i← maxi

10: else . the heap property is satisfied
11: break
12: end if
13: end while
14: heap[i+ offset]← v
15: return
16: end function

Algorithm 20 Find the maximum child node of a given parent node.

1: function FIND-MAXCHILD(∗heap, d, n, i)
2: offset← d− 1
3: starti← di+ 1 . the first child index
4: stopi← MIN(n− 1, di+ d) . the last child index
5: maxi← starti
6: maxv ← heap[maxi+ offset]
7: for i = starti+ 1 to stopi do
8: if heap[i+ offset] > maxv then
9: maxi← i

10: maxv ← heap[maxi+ offset]
11: end if
12: end for
13: return 〈maxi,maxv〉
14: end function

GPU-style vector processing but not SSE/AVX instructions.
However, other operations, in particular the compare-and-swap operations, cannot

obtain benefit from the SIMD units because they only need one single thread, which
is far from saturating the SIMD units. And the off-chip memory bandwidth is also
wasted because one expensive off-chip memory transaction only stores one entry
(lines 8 and 14 in the Algorithm 19). Further, the rest threads are waiting for the
single thread’s time-consuming off-chip transaction to finish. Even though the single
thread store has a chance to trigger a cache write hit, the very limited cache in the
throughput-oriented processors can easily be polluted by the massively concurrent
threads. Thus the single thread task should always be avoided.

Therefore, to maximize the performance of the d-heap operations, we consider



CHAPTER 4. PARALLELISM IN DATA STRUCTURES AND ALGORITHMS 55

two design objectives: (1) maximizing throughput of the large amount of the SIMD
units for faster find-maxchild operations, and (2) minimizing negative impact from the
single-thread compare-and-swap operations.

ad-heap Data Structure

Because the GPUs are designed for the wide SIMD operations and the CPUs are good
at high performance single-thread tasks, the heterogeneous processors have a chance
to become ideal platforms for operations with different characteristics of parallelism.
This thesis proposes ad-heap (asymmetric d-heap), a new heap data structure that can
obtain performance benefits from both of the two types of cores in the heterogeneous
processors.

Compared to the d-heaps, the ad-heap data structure introduces an important new
component — an implicit bridge structure. The bridge structure is located in the
originally empty head part of the implicit d-heap. It consists of one node counter and
one sequence of size 2h, where h is the height of the heap. The sequence stores the
index-value pairs of the nodes to be updated in different levels of the heap, thus at
most h nodes are required. If the space requirement of the bridge is larger than the
original head part of size d− 1, the head part can be easily extended to md+ d− 1
to guarantee that each group of the child nodes starts from an aligned cache block,
where m is a natural number and equal to d2(h + 1)/de − 1. Figure 4.9 shows the
layout of the ad-heap data structure.

Figure 4.9: The layout of the ad-heap data structure.

ad-heap Operations

The corresponding operations of the ad-heap data structure are redesigned as well.
Again, for simplicity and without loss of generality, we only consider the update-key
operation described in Algorithm 19.

Before the update-key operation starts, the bridge is constructed in the on-chip
scratchpad memory of a GPU and the node counter is initialized to zero. Then in
each iteration (lines 6–12 of the Algorithm 19 ), a group of lightweight SIMD threads
in the GPU simultaneously execute the find-maxchild operation (i.e., in parallel load
at most d child nodes to the scratchpad memory and run the streaming reduction
scheme to find the index and the value of the maximum child node). After each
find-maxchild and compare operation, if a swap operation is needed, one of the SIMD
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threads adds a new index-value pair (index of the current parent node and value of
the maximum child node) to the bridge and updates the node counter. If the current
level is not the last level, the new value of the child node can be stored in a register
and be reused as the parent node of the next level. Otherwise, the single SIMD thread
stores the new indices and values of both of the parent node and the child node
to the bridge. Because the on-chip scratchpad memory is normally two orders of
magnitude faster than the off-chip memory, the cost of the single-thread operations
is negligible. When all iterations are finished, at most 2h+ 1 SIMD threads store the
bridge from the on-chip scratchpad memory to the continuous off-chip memory by
d(2h+1)/we off-chip memory transactions. The single program multiple data (SPMD)
pseudocode is shown in Algorithm 21. Here we do not give out parallel pseudocode
of the find-maxchild operation, since it is very similar to reduction operation described
in Algorithm 4. After the bridge is dumped, a signal object is transferred to the
GPU-CPU queue.

Triggered by the synchronization signal from the queue, one of the CPU cores
sequentially loads the entries from the bridge and stores them to the real heap space
in linear time. Note that no data transfer, address mapping or explicit coherence
maintaining is required due to the unified memory space with cache coherence. And
because the entries in the bridge are located in continuous memory space, the CPU
cache system can be efficiently utilized. When all entries are updated, the whole
update-key operation is completed. The pseudocode of the CPU workload in the
update-key operation is shown in Algorithm 22.

Refer to the command queue in the OpenCL specification and the architected
queueing language (AQL) in the HSA design, we list the pseudocode of the update-key
operation in Algorithm 23.

We can see that although the overall time complexity is not reduced, the two
types of compute units more focus on the off-chip memory behaviors that they are
good at. We can calculate that the number of the GPU off-chip memory access needs
hd/w+(2h+1)/w transactions instead of h(d/w+1) in the d-heap. For example, given
a 7-level 32-heap and set w to 32, the d-heap needs 14 off-chip memory transactions
while the ad-heap only needs 8. Since the cost of the off-chip memory access dominates
execution time, the practical GPU performance can be improved significantly. Further,
from the CPU perspective, all read transactions are from the bridge in continuous
cache blocks and all write transactions only trigger non-time-critical cache write
misses to random positions. Therefore the CPU workload performance can also be
expected to be good.

ad-heap Simulator

From the perspective of the programming model, synchronization mechanism among
compute units is redefined. Recently, several CPU-GPU fast synchronization ap-
proaches [44, 108, 127] have been proposed. In this section, we implement the ad-heap
operations through the synchronization mechanism designed by the HSA Foundation.
According to the current HSA design [108], each compute unit executes its task and
sends a signal object of size 64 Byte to a low-latency shared memory queue when it
has completed the task. Thus with HSA, CPUs and GPUs can queue tasks to each
other and to themselves. Further, the communications can be dispatched in the user
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Algorithm 21 The SPMD GPU workload in the update-key operation of the ad-heap.

1: function GPU-WORKLOAD(∗heap, d, n, h, newv)
2: tid← GET-THREAD-LOCALID()
3: i← 0
4: v ← newv
5: ∗bridge← SCRATCHPAD-MALLOC(2h+ 1)
6: if tid = 0 then
7: bridge[0]← 0 . initialize the node counter
8: end if
9: while di+ 1 < n do

10: 〈maxi,maxv〉 ← FIND-MAXCHILD(∗heap, d, n, i)
11: if maxv > v then
12: if tid = 0 then . insert a index-value pair
13: bridge[2 ∗ bridge[0] + 1]← i
14: bridge[2 ∗ bridge[0] + 2]← maxv
15: bridge[0]← bridge[0] + 1
16: end if
17: i← maxi
18: else
19: break
20: end if
21: end while
22: if tid = 0 then . insert the last index-value pair
23: bridge[2 ∗ bridge[0] + 1]← i
24: bridge[2 ∗ bridge[0] + 2]← v
25: bridge[0]← bridge[0] + 1
26: end if
27: if tid < 2h+ 1 then . dump the bridge to off-chip
28: heap[tid]← bridge[tid]
29: end if
30: return
31: end function

mode of the operating systems, thus the traditional “GPU kernel launch” method
(through the operating system kernel services and the GPU drivers) is avoided and
the CPU-GPU communication latency is significantly reduced. Figure 4.10 shows an
example of the shared memory queue.

Because the HSA programming tools for the heterogeneous processor hardware
described in this section are not currently available yet, we conduct experiments on
simulated heterogeneous processor platforms composed of real standalone CPUs and
GPUs. The ad-heap simulator has two stages:

(1) Pre-execution stage. For a given input list and a size d, we first count the
number of the update-key operations and the numbers of the subsequent find-maxchild
and compare-and-swap operations by pre-executing the work through the d-heap
on the CPU. We write Nu, Nf , Nc and Ns to denote the numbers of the update-
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Algorithm 22 The CPU workload in the update-key operation of the ad-heap.

1: function CPU-WORKLOAD(∗heap, d, n, h)
2: m← d2(h+ 1)/de − 1
3: offset← md+ d− 1
4: ∗bridge← ∗heap
5: for i = 0 to bridge[0]− 1 do
6: index← bridge[2 ∗ i+ 1]
7: value← bridge[2 ∗ i+ 2]
8: heap[index+ offset]← value
9: end for

10: return
11: end function

Algorithm 23 The control process of the update-key operation.

1: function UPDATE-KEY(∗heap, d, n, h, newv)
2: QCtoG← CREATE-QUEUE()
3: QGtoC ← CREATE-QUEUE()
4: Gpkt← GPU-WORKLOAD(∗heap, d, n, h, newv)
5: Cpkt← CPU-WORKLOAD(∗heap, d, n, h)
6: QUEUE DISPATCH FROM CPU(QCtoG,Gpkt)
7: QUEUE DISPATCH FROM GPU(Gpkt,QGtoC,Cpkt)
8: return
9: end function

Figure 4.10: A shared memory queue.

key operations, find-maxchild operations, compare operations and swap operations,
respectively. Although the Nf and the Nc are numerically equivalent, we use two
variables for the sake of clarity.

(2) Simulation stage. Then we execute exactly the same amount of work with the
ad-heap on the CPU and the GPU. The work can be split into three parts:

• The CPU part reads the entries in Nu bridges (back from the GPU) and writes
Nu(Ns + 1) values to the corresponding entry indices. This part takes Tcc time
on the CPU.

• To simulate the CPU-GPU communication mechanism in the HSA design, the
CPU part also need to execute signal object sends and receives. We use a lockless
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multi-producer single-consumer (MPSC) queue programming tool in the DKit
C++ Library [19] (based on multithread components in the Boost C++ Libraries
[1]) for simulating the heterogeneous processor queueing system. To meet
the HSA standard [90], our packet size is set to 64 Byte with two 4 Byte flags
and seven 8 Byte flags. Further, packing and unpacking time is also included.
Because each GPU core (and also each GPU) needs to execute multiple thread
groups (thread blocks in the CUDA terminology or work groups in the OpenCL
terminology) in parallel for memory latency hiding, we use 16 as a factor for
the combined thread groups. Therefore, 2Nu/16 push/pop operation pairs are
executed for Nu CPU to GPU communications and the same amount of GPU to
CPU communications. We record this time as Tcq .

• The GPU part executes Nf find-maxchild operations and Nc compare operations
and writes Nu bridges from the on-chip scratchpad memory to the off-chip
global shared memory. This part takes Tgc time on the GPU.

After simulation runs, we use overlapped work time on the CPU and the GPU as
execution time of the ad-heap since the two types of cores are able to work in parallel.
Thus the final execution time is the longer one of Tcc + Tcq and Tgc.

Because of the features of the heterogeneous processors, costs of device/host
memory copy and GPU kernel launch are not included in our timer. Note that
because we use both the CPU and the GPU separately, the simulated heterogeneous
processor platform is assumed to have accumulated off-chip memory bandwidths
of the both processors. Moreover, we also assume that the GPU supports the device
fission function defined in the OpenCL 1.2 specification and cores in the current GPU
devices can be used as sub-devices which are more like the GPUs in the HSA design.
Thus one CPU core and one GPU core can cooperate to deal with one ad-heap. The
simulator is programmed in C++ and CUDA/OpenCL.

4.6.3 Performance Evaluation

Testbeds

To benchmark the performance of the d-heaps and the ad-heap, we use two represen-
tative machines: (1) a laptop system with an AMD A6-1450 APU, and (2) a desktop
system with an Intel Core i7-3770 CPU and an nVidia GeForce GTX 680 discrete GPU.
Their specifications are listed in Tables B.5 and B.6, respectively.

Benchmark and Datasets

We use a heap-based batch k-selection algorithm as benchmark of the heap operations.
Given a list set consists of a group of unordered sub-lists, the algorithm finds the kth
smallest entry from each of the sub-lists in parallel. One of its applications is batch
kNN search in large-scale concurrent queries. In each sub-list, a max-heap of size k is
constructed on the first k entries and its root node is compared with the rest of the
entries in the sub-list. If a new entry is smaller, an update-key operation (i.e., the root
node update and the heap property reconstruction) is triggered. After traversing all
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entries, the root node is the kth smallest entry and the heap contains the k smallest
entries of the input sub-list.

In our ad-heap implementation, we execute heapify function (i.e., the first construc-
tion of the heap) on the GPU and the root node comparison operations (i.e., to decide
whether an update-key operation is required) on the CPU. Besides the execution time
described in the ad-heap simulator, the execution time of the above two operations
are recorded in our timer as well.

According to capacity limitation of the GPU device memory, we set sizes of the
list sets to 228 and 225 on the two machines, respectively, data type to 32-bit integer
(randomly generated), size of each sub-list to the same length l (from 211 to 221), and
k to 0.1l.

Experimental Results

Primary Y-axis-aligned line graphs in Figures 4.11(a)–(e) and 4.12(a)–(e) show the
selection rates of the d-heaps (on the CPUs and the GPUs) and the ad-heap (on the
simulators) over the different sizes of the sub-lists and d values on the machine 1
and the machine 2, respectively. In all tests, all cores of the CPUs are utilized. We
can see that for the performance of the d-heaps in all groups, the multicore CPUs
are almost always faster than the GPUs, even when the larger d values significantly
reduce throughputs of the CPUs. Thus, for the conventional d-heap data structure, the
CPUs are still better choices in the heap-based k-selection problem. For the ad-heap,
the fastest size d is always 32. On one hand, the smaller d values cannot fully utilize
computation and bandwidth resources of the GPUs. On the other hand, the larger d
values lead to much more data loading but do not bring the same order of magnitude
shallower heaps.

Secondary Y-axis-aligned stacked columns in Figures 4.11(a)–(e) and 4.12(a)–(e)
show the execution time of the three parts (CPU compute, CPU queue and GPU
compute) of the ad-heap simulators. On the machine 1, the execution time of the
GPU compute is always longer than the total time of the CPU work, because the raw
performance of the integrated GPU is relatively too low to accelerate the find-maxchild
operations and the memory sub-system in the APU is not completely designed for
the GPU memory behaviors. On the machine 2, the ratio of CPU time and GPU time
is much more balanced (in particular, while d = 32) due to the much stronger discrete
GPU.

Figures 4.11(f) and 4.12(f) show aggregated performance numbers include the best
results in the former 5 groups and the optimal scheduling method that runs the fastest
d-heaps on the CPUs and the GPUs in parallel, respectively. In these two sub-figures,
we can see that the ad-heap obtains up to 1.5x and 3.6x speedup over the optimal
scheduling method when the d value is equal to 32 and the sub-list size is equal to 218

and 219, respectively. Note that the optimal scheduling method is also assumed to
utilize accumulated off-chip memory bandwidths of the both processors.

We can see that among all the candidates, only the ad-heap maintains relatively
good performance stabilities while problem size grows. The performance numbers
support our ad-heap design that gets benefits from main features of the two types of
cores while the CPU d-heaps suffer with wider find-maxchild operations and the GPU
d-heaps suffer with more single-thread compare-and-swap operations.
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(a) d = 8 (b) d = 16

(c) d = 32 (d) d = 64

(e) d = 128 (f) aggregated results

Figure 4.11: Selection rates and ad-heap execution time over different sizes of the
sub-lists on the machine 1 (i.e., the one with AMD CPU and GPU). The line-shape
data series is aligned to the primary Y-axis. The stacked column-shape data series is
aligned to the secondary Y-axis.
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(a) d = 8 (b) d = 16

(c) d = 32 (d) d = 64

(e) d = 128 (f) aggregated results

Figure 4.12: Selection rates and ad-heap execution time over different sizes of the sub-
lists on the machine 2 (i.e., the one with Intel CPU and nVidia GPU). The line-shape
data series is aligned to the primary Y-axis. The stacked column-shape data series is
aligned to the secondary Y-axis.

4.6.4 Comparison to Previous Work
This section we proposes ad-heap, a new efficient heap data structure for the het-
erogeneous processors. We conducted empirical studies based on the theoretical
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analysis. The experimental results showed that the ad-heap can obtain up to 1.5x and
3.6x performance of the optimal scheduling method on two representative machines,
respectively. To the best of our knowledge, the ad-heap is the first fundamental data
structure that efficiently leveraged the two different types of cores in the emerging
heterogeneous processors through fine-grained frequent interactions between the
CPUs and the GPUs. Further, the performance numbers also showed that redesigning
data structure and algorithm is necessary for exposing higher computational power
of the heterogeneous processors.

Compared with the prior work, our ad-heap not only takes advantage of reduced
data movement cost but also utilizes computational power of the both types of cores.
As shown in the previous section, we found that 8-heap is the best choice for the CPU
and 32-heap is the fastest on the GPU, thus the optimal scheduling method should
execute the best d-heap operations on both types of cores in parallel. However, our
results showed that the ad-heap is much faster than the optimal scheduling method.
Thus scheduling is not always the best approach, although task or data parallelism
is obvious. Actually, in the ad-heap, the find-maxchild operation can be seen as a
parallelizable stage of its higher-level operation delete-max or update-key. However,
the ad-heap is different from the previous work because it utilizes advantages of the
heterogeneous processors through frequent fine-grained interactions between the
CPUs and the GPUs. If the two types of cores shared the last level cache, the ad-heap
can naturally obtain benefits from heterogeneous prefetching, because the bridge and
the nodes to be modified are already loaded to the on-chip cache by the GPUs, prior
to writing back by the CPUs.

Because of the legacy CPU and GPU architecture design, in this section we choose
focusing on an heterogeneous processor environment with separate last level cache
sub-systems, as plotted in Figure 3.5(a). Conducting experiments on a shared last
level cache heterogeneous processor like the one in Figure 3.5(b) can be an interesting
future work. Additionally, our approach is different from the previous work since we
see both GPUs and CPUs as compute units as well but not just prefetchers.
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Part II

Sparse Matrix Representation
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5. Existing Storage Formats

5.1 Overview

Because different sparse matrices have different sparsity structures, selection of
representation (i.e., format) for a certain matrix may affect requirement of memory
space and efficiency of algorithms running on it. As a result, research on sparse matrix
representation attracts a lot of attention. This chapter introduces some widely used
and recently developed sparse matrix representations.

Some representative formats are classified into three groups: (1) four basic formats
mostly supported in many mathematical software packages, (2) three hybrid formats
mainly developed for irregular matrices, and (3) eight extended formats constructed
based on the basic formats.

5.2 Basic Storage Formats

5.2.1 Diagonal (DIA)

A sparse matrix containing nonzero entries only on its diagonals is called a diagonal
matrix. Hence only entries on the diagonals are required to be saved in the so-called
diagonal (DIA) format. For a matrix of sizem2, the primary diagonal has no more than
m nonzero entries, and the other diagonals include fewer entries. Thus a diagonal
matrix can be stored as arrays of its diagonals. Figure 5.1 shows a simple sparse
matrix A0 of size 6× 6 containing 6 nonzero entries on its primary diagonal. So the
matrix can be stored as an array dia with a label saying the array is diagonal “zero”.

Figure 5.1: A sparse matrix and its DIA format.

67
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Another simple example is shown in Figure 5.2. Sparse matrix A1 contains 3
diagonals, thus can be saved as a two-dimensional array composed of three rows, and
three labels [−1, 0, 1] indicating relative distance to the primary diagonal. Because the
diagonals at positions -1 and 1 has only 5 entries, one “empty” fill-in entry is padded
for occupying memory space. Note that a gray block with an asterisk in figures of
this chapter indicates a padded fill-in. We can see that the space complexity of the
DIA format is O(m), while the matrix has a fixed number of nonzero diagonals.

Figure 5.2: A sparse matrix and its DIA format.

However, the DIA format is designed only for sparse matrices dominated by
diagonals. If some weak diagonals have very few nonzero entries, the DIA format
may waste a large amount of memory space. Figure 5.3 shows an example matrix A2.
The diagonals at positions -2 and 2 only have one nonzero entry, respectively. Thus
each of them wastes 5 memory units for padded fill-ins. In general, the DIA format
may largely waste memory space for storing more irregular sparse matrices.

Figure 5.3: A sparse matrix and its DIA format.

5.2.2 ELLPACK (ELL)

Compared to the DIA format, the ELLPACK (or ELL for short) format is a bit more
generic. It saves a sparse matrix of size m by n as two two-dimensional arrays, col -
idx and val, of size m by nnzrmax, where nnzrmax is the number of nonzero entries
of the longest row of the matrix. The array col idx stores column indices of the
nonzero entries organized in rows, and the array val saves their values. The space
complexity of the ELL format is O(m nnzrmax).
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Figure 5.4 plots the ELL format in the row-major order of the matrix A2. We can
see that nnzrmax = 4 in this case, whereby the size of col idx and val is 6 × 4.
Because the 1st, 2nd, 5th and 6th rows have fewer nonzero entries compared to the
longest row, some fill-ins are padded to keep arrays col idx and val rectangular.
Note that the ELL data can also be stored in the column-major order for aligned
memory access.

Figure 5.4: A sparse matrix and its ELL format in the row major order.

Unfortunately, for matrices with a relatively long row, the ELL format may need
many fill-ins. Figure 5.5 gives an example matrix A3. Because the 3rd row is much
longer than the others, many fill-ins are explicitly stored thus waste memory space.

Figure 5.5: A sparse matrix and its ELL format in the row-major order.

5.2.3 Coordinate (COO)

A one-dimensional form of the Coordinate (or COO for short) format has been
introduced in the very first example of small colored balls in Section 2.1.1 of the thesis.
The term coordinate indicates row indices and column indices of the nonzero entries
of a sparse matrix. Thus a matrix is stored in the COO format, if each of its entries
contains a triple of row index, column index and value. To group all components
of triples together, three separate arrays row idx, col idx and val of size nnz are
constructed, where nnz is the number of nonzero entries of the sparse matrix. The
space complexity of the COO format is O(nnz). Unlike the DIA and the ELL formats,
the COO format does not require storing any fill-ins. Figure 5.6 shows the COO
format of the matrix A3.
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Figure 5.6: A sparse matrix and its COO format.

However, the COO format still stores some redundant row index information,
if a row contains more than one nonzero entry. In Figure 5.6, we can see that the
row idx array stores four ‘2’s for the nonzero entries in the 3rd row, and two ‘5’s for
the 6th row. Thus despite its generality, the COO format may waste memory space in
common cases.

5.2.4 Compressed Sparse Row (CSR)

To maximize space efficiency, the Compressed Sparse Row (CSR) format1 has been
designed. For a sparse matrix, the CSR format consists of three arrays: (1) row ptr
array of size m+ 1 saving the starting and ending pointers of the nonzero entries of
the rows, (2) col idx array of size nnz stores column indices of the nonzeros, and (3)
val array of size nnz stores values of the nonzero entries. Hence the overall space
complexity of the CSR format is O(m+ nnz). While m < nnz, the CSR format uses
memory space more efficiently than the COO format.

Figure 5.7 shows the CSR representation of the example matrix A3. We can see
that the 3rd entry and the 4th entry of the array row ptr are 2 and 6, respectively.
This indicates the 3rd row of the matrix contains 4 nonzero entries.

Figure 5.7: A sparse matrix and its CSR format.

Because the CSR format does not store redundant information, it is the most
widely used format for sparse matrices. As a result, Sparse BLAS algorithms for
matrices in the CSR format are basic functions of a sparse matrix library. Actually,

1The CSR format is also known as the Compressed Row Storage (CRS) format [156], and is equal to the
Yale format [72] as well.
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CSR and COO formats can be further compressed [101, 172, 183]. But description of
those methods is beyond the scope of this chapter.

5.3 Hybrid Storage Formats

5.3.1 Hybrid (HYB)

Hybrid formats store a sparse matrix as a set of more than one basic formats. By
utilizing hybrid formats, a very irregular sparse matrix can be stored as multiple
regular ones, thus may be more friendly to parallel processing. Bell and Garland [21]
proposed the first hybrid format called HYB for throughput-oriented processors in
particular GPUs. Their method is established on an observation that some very long
rows destroy load balancing of massive parallel chips, where each compute unit is
responsible for computations on one row of a matrix. So they divide a sparse matrix
into two submatrices: one is stored in the ELL format and the other is stored in the
COO format, as shown in Figure 5.8. We can imagine that the matrix A4 uses a large
amount of memory if it uses the ELL format for all nonzero entries. But separately
storing the nonzero entries except the last three entries of the 3rd row in the ELL
format and the three entries in the COO format saves the padded fill-ins in the pure
ELL format.

Figure 5.8: A sparse matrix and its HYB format.

5.3.2 Cocktail

Su and Keutzer proposed a more aggressive hybrid format called Cocktail [170]. It
constructed a framework that analyzes the sparsity structure of an input matrix and
stores it in a combination of 3 categories (i.e., diagonal based formats, flat formats
and block based formats) of 9 formats. Figure 5.9 shows that the matrix A4 can be
saved more efficiently if its ELL part is saved in the DIA format.
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Figure 5.9: A sparse matrix and its Cocktail format.

5.3.3 SMAT

However, given an irregular sparse matrix, selecting the best combination is NP-
hard. Li et al. [115] proposed a machine learning based autotuner trained by 2373
matrices in the University of Florida Sparse Matrix Collection [56] for deciding a
combination of formats for a new input matrix. Similar to the SMAT, Sedaghati et
al. [160] constructed machine learning classifiers for automatic selection of the best
format for a given input on a target device.

5.4 Sliced and Blocked Storage Formats

5.4.1 Sliced ELL (SELL)

As a variant of the ELL format, the sliced ELL (SELL) format [135] splits nb rows
into a block and stores nonzero entries in the column-major order in each block.
Figure 5.10 shows an example matrix A5. When nb is set to 3, A5 is divided into 2
blocks containing 8 and 6 nonzero entries, respectively. We can see that the slicing
method of the SELL format may bring better cache locality, compared to the ELL
format. Thus for some relatively regular sparse matrices such as the one generated
by the recent high performance conjugate gradient (HPCG) benchmark [62], SELL
can bring good performance [196]. However, both of the ELL and the SELL formats
waste memory space if a row is noticeably longer than the others.

Figure 5.10: A sparse matrix and its SELL format.
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5.4.2 Sliced COO (SCOO)

Similar to the slicing method of the SELL format, the COO format can be stored
in a sliced fashion as well. Dang and Schmidt designed the sliced COO (SCOO)
format [54] and showed its effectiveness. The method also splits the input matrix
into blocks of nb rows and stores their entries with triples in the column-major order.
Figure 5.11 shows the SCOO format for the matrixA5. Because the blocks may contain
different number of nonzero entries, a new array slice ptr of size dm/nbe + 1 is
introduced for storing the starting and ending pointers of the nonzero entries of the
row blocks.

Figure 5.11: A sparse matrix and its SCOO format.

5.4.3 Blocked COO (BCOO)

Because some sparse matrices such as the ones generated from some finite element
meshes naturally have dense local block structures, using small dense block as the
basic unit can reduce space cost of storing indices [177, 178, 179]. Suppose that a
sparse matrix is saved as submatrices of size nb1 × nb2, at most (m× n)/(nb1 × nb2)
row/column indices are required. If the indices are stored in the COO style, the so-
called blocked COO (BCOO) format [188] is established. Figure 5.12 shows the BCOO
representation of the matrix A5. We can see that the blocks of size 2× 2 may contain
padded fill-ins to maintain an equally spaced storage, and the arrays row idx and
col idx can be much shorter than their counterparts in the standard COO format.

Figure 5.12: A sparse matrix and its BCOO format of 2× 2 dense blocks.
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5.4.4 Blocked CSR (BCSR)
In analogy to the difference between the COO and the CSR, the indices of the blocks
of the BCOO format can be saved in the CSR fashion. Thus the blocked CSR (BCSR)
format [45] has been designed. In figure 5.13, we can see that row ptr is used instead
of the row idx array for saving duplicated block indices.

Figure 5.13: A sparse matrix and its BCSR format.

5.4.5 Blocked Compressed COO (BCCOO)
Yan et al. further compressed the BCOO format by introducing a bit flag array
in their blocked compressed COO (BCCOO) format [188]. This representation uses
one 1-bit TRUE or FALSE to replace each entry in the row idx array in the BCOO
format. The basic idea is that only the ending point for the block units in one row is
required to be labelled as FALSE, and the others are labelled as TRUE. The bit-wise
information is actually enough to determine the distribution of row blocks. Assume
that an integer row index requires 32 bits, the bit-wised label only needs 1/32 memory
space. However, the BCCOO format still explicitly stores padded fill-ins, as the BCOO
format does. Figure 5.14 shows an example of the BCCOO format.

Figure 5.14: A sparse matrix and its BCCOO format.

5.4.6 Blocked Row-Column (BRC)
Motivated by minimizing padded fill-ins in the blocked formats such as the BCOO,
the BCSR and the BCCOO, Ashari et al. proposed the blocked row-column (BRC)
format [8]. This method first sorts rows of the input matrix in a descending order in
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terms of the number of nonzero entries in each row, then aligns the entries to their
left as the ELL format does, finally stores entries in dense blocks in the column-major
order for better cache locality. Because of the sorting, a new array called perm is
introduced for storing permutation, i.e., original row positions. Figure 5.15 shows an
example. We can see that the 3rd row is longer than the others thus be located to the
front.

Figure 5.15: A sparse matrix and its BRC format.

5.4.7 Adaptive CSR (ACSR)

Because CSR is the most used format in many mathematical software packages, Ashari
et al. proposed a work called adaptive CSR (ACSR) [7] that adds extra information
to help balanced computations. Binning rows of a sparse matrix according to their
lengths is the main idea of the ACSR format. Figure 5.16 shows an example. The
rows of the matrix A5 is assigned to two bins of size 5 and 1, respectively. The first
bin stores rows of size 2, and the second bin contains the 3rd row of length 4. Hence
computations on the rows in each bin may consume roughly the same execution time
for better load balancing. One obvious advantage of this work is that the CSR data
can be kept intact in the ACSR format.

Figure 5.16: A sparse matrix and its ACSR format.
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5.4.8 CSR-Adaptive
Greathouse and Daga proposed their CSR-Adaptive format [80, 50] that uses an array
row block instead of the binning information of the ACSR format for grouping rows
of comparable length. In this format, contiguous rows are organized as row blocks
if the sum of their lengths is no longer than the size of usable on-chip memory. The
array row block records the starting and ending points of row groups. Figure 5.17
gives an example that assumes each row block does not contain more than 4 nonzero
entries. We can see that the 1st row block contains 2 rows, the 2nd one contains 1 row,
and so on. If the row blocks have roughly the same number of nonzero entries, good
load balancing can be expected on massively parallel devices. As the ACSR format,
the CSR data is not changed in the CSR-Adaptive format.

Figure 5.17: A sparse matrix and its CSR-Adaptive format.



6. The CSR5 Storage Format

6.1 Overview

In the previous chapter, we can see that many advanced formats have been proposed
for a variety of purposes. However, they may need not cheap format conversion cost,
if the input matrix is stored in a basic format such as CSR. The conversion cost is
mainly from the expensive structure-dependent parameter tuning of a storage format.
For example, some block based formats [33, 35, 45, 177, 178, 188] such as BCCOO
require finding a good 2D block size. Moreover, some hybrid formats [21, 170] such
as HYB may need completely different partitioning parameters for distinct input
matrices.

To avoid the format conversion overhead, the ACSR [7] and the CSR-Adaptive [80,
50] directly use the CSR data. However, they may provide very low performance for
irregular matrices due to unavoidable load imbalance. Furthermore, none of them
can avoid an overhead from preprocessing, since certain auxiliary data for the basic
CSR format have to be generated.

Therefore, to be practical, an efficient format must satisfy two criteria: (1) it should
limit format conversion cost by avoiding structure-dependent parameter tuning, and
(2) it should support fast sparse matrix computations for both regular and irregular
matrices.

6.2 Contributions

To meet these two criteria, this chapter proposes CSR5 (Compressed Sparse Row 5)1,
a new format directly extending the classic CSR format. The CSR5 format leaves
one of the three arrays of the CSR format unchanged, stores the other two arrays
in an in-place tile-transposed order, and adds two groups of extra auxiliary infor-
mation. The format conversion from the CSR to the CSR5 merely needs two tuning
parameters: one is hardware-dependent and the other is sparsity-dependent (but
structure-independent). Because the added two groups of information are usually
much shorter than the original three in the CSR format, very limited extra space is
required. Furthermore, the CSR5 format is SIMD-friendly and thus can be easily
implemented on all mainstream processors with the SIMD units. Because of the

1The reason we call the storage format CSR5 is that it has five groups of data, instead of three in the
classic CSR.

77



78 6.3. THE CSR5 FORMAT

structure-independence and the SIMD utilization, the CSR5-based sparse matrix algo-
rithm such as SpMV can bring stable high throughput for both regular and irregular
matrices.

6.3 The CSR5 format

6.3.1 Basic Data Layout

To achieve near-optimal load balance for matrices with any sparsity structures, we
first evenly partition all nonzero entries to multiple 2D tiles of the same size. Thus
when executing parallel SpMV operation, a compute core can consume one or more
2D tiles, and each SIMD lane of the core can deal with one column of a tile. Then the
main skeleton of the CSR5 format is simply a group of 2D tiles. The CSR5 format has
two tuning parameters: ω and σ, where ω is a tile’s width and σ is its height. In fact,
the CSR5 format only has these two tuning parameters.

Further, we need extra information to efficiently compute SpMV. For each tile, we
introduce a tile pointer tile ptr and a tile descriptor tile desc. Meanwhile, the
three arrays, i.e., row pointer row ptr, column index col idx and value val, of the
classic CSR format are directly integrated. The only difference is that the col idx
data and the val data in each complete tile are in-place transposed (i.e., from row-
major order to column-major order) for coalesced memory access from contiguous
SIMD lanes. If the last entries of the matrix do not fill up a complete 2D tile (i.e., nnz
mod (ωσ) 6= 0), they just remain unchanged and discard their tile desc.

In Figure 6.2, an example matrix A shown in Figure 6.1 of size 8 × 8 with 34
nonzero entries is stored in the CSR5 format. When ω = 4 and σ = 4, the matrix is
divided into three tiles including two complete tiles of size 16 and one incomplete tile
of size 2. The arrays col idx and val in the two complete tiles are stored in tile-level
column-major order now. Moreover, only the first two tiles have tile desc, since
they are complete.

Figure 6.1: A sparse matrix A of size 8× 8 including 34 nonzero entries.
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Figure 6.2: The CSR5 storage format of the sparse matrix A. The five groups of
information include row ptr, tile ptr, col idx, val and tile desc.

6.3.2 Auto-Tuned Parameters ω and σ

Because the computational power of the modern multicore or manycore processors
is mainly from the SIMD units, we design an auto-tuning strategy for high SIMD
utilization.

First, the tile width ω is set to the size of the SIMD execution unit of the used
processor. Then an SIMD unit can consume a 2D tile in σ steps without any explicit
synchronization, and the vector registers can be fully utilized. For the double precision
SpMV, we always set ω = 4 for CPUs with 256-bit SIMD units, ω = 32 for the nVidia
GPUs, ω = 64 for the AMD GPUs, and ω = 8 for Intel Xeon Phi with 512-bit SIMD
units. Therefore, ω can be automatically decided once the processor type used is
known.

The other parameter σ is decided by a slightly more complex process. For a
given processor, we consider its on-chip memory strategy such as cache capacity
and prefetching mechanism. If a 2D tile of size ω × σ can empirically bring better
performance than using the other sizes, the σ is simply chosen. We found that the x86
processors fall into this category. For the double precision SpMV on CPUs and Xeon
Phi, we always set σ to 16 and 12, respectively.

As for GPUs, the tile height σ further depends on the sparsity of the matrix. Note
that the “sparsity” is not equal to “sparsity structure”. We define “sparsity” to be
the average number of nonzero entries per row (or nnz/row for short). In contrast,
“sparsity structure” is much more complex because it includes 2D space layout of all
nonzero entries.

On GPUs, we have several performance considerations on mapping the value
nnz/row to σ. First, σ should be large enough to expose more thread-level local work
and to amortize a basic cost of the segmented sum algorithm. Second, it should not
be too large since a larger tile potentially generates more partial sums (i.e., entries
to store to y), which bring higher pressure to last level cache write. Moreover, for
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the matrices with large nnz/row, σ may need to be small. The reason is that once
the whole tile is located inside a matrix row (i.e., only one segment is in the tile), the
segmented sum converts to a fast reduction sum.

Therefore, for the nnz/row to σ mapping on GPUs, we define three simple bounds:
r, s and t. The first bound r is designed to prevent a too small σ. The second bound
s is used for preventing a too large σ. But when nnz/row is further larger than the
third bound t, σ is set to a small value u. Then we have

σ =


r if nnz/row ≤ r
nnz/row if r < nnz/row ≤ s
s if s < nnz/row ≤ t
u if t < nnz/row.

The three bounds, r, s and t, and the value u are hardware-dependent, meaning
that for a given processor, they can be fixed for use. For example, to execute double
precision SpMV on nVidia Maxwell GPUs and AMD GCN GPUs, we always set
<r, s, t, u> = <4, 32, 256, 4> and <4, 7, 256, 4>, respectively. As for future processors
with new architectures, we can obtain the four values through some simple bench-
marks during initialization, and then use them for later runs. So the parameter σ can
be decided once the very basic information of a matrix and a low-level hardware are
known.

Therefore, we can see that the parameter tuning time becomes negligible because
ω and σ are easily obtained. This can save a great deal of preprocessing time.

6.3.3 Tile Pointer Information

The added tile pointer information tile ptr stores the row index of the first matrix
row in each tile, indicating the starting position for storing its partial sums to the
vector y. By introducing tile ptr, each tile can find its own starting position,
allowing tiles to execute in parallel. The size of the tile ptr array is p+ 1, where
p = dnnz/(ωσ)e is the number of tiles in the matrix. For the example in Figure 6.2,
the first entry of Tile 1 is located in the 4th row of the matrix, and thus 4 is set as its
tile pointer. To build the array, we binary search the index of the first nonzero entry
of each tile on the row ptr array. Lines 1–4 in Algorithm 24 show this procedure.

Recall that an empty row has exactly the same row pointer information as its first
non-empty right neighbor row (see the second row in the matrix A in Figure 5.7).
Thus for the non-empty rows with an empty left neighbor, we need a specific process
(which is similar to lines 12–16 in Algorithm 30) to store their partial sums to correct
positions in y. To recognize whether the specific process is required, we give a hint
to the other parts (i.e., tile descriptor data) of the CSR5 format and the CSR5-based
SpMV algorithm. Here we set an entry in tile ptr to its negative value, if its
corresponding tile includes any empty rows. Lines 5–12 in Algorithm 24 show this
operation.

If the first tile has any empty rows, we need to store a −0 (negative zero) for it. To
record −0, here we use unsigned 32- or 64-bit integer as data type of the tile ptr
array. Therefore, we have 1 bit for explicitly storing the sign and 31 or 63 bits for an
index. For example, in our design, tile pointer −0 is represented as a binary style



CHAPTER 6. THE CSR5 STORAGE FORMAT 81

Algorithm 24 Generating tile ptr.

1: for tid = 0 to p in parallel do
2: bnd← tid× ω × σ
3: tile ptr[tid]← BINARY SEARCH(*row ptr, bnd) −1
4: end for
5: for tid = 0 to p− 1 do
6: for rid = tile ptr[tid] to tile ptr[tid+ 1] do
7: if row ptr[rid] = row ptr[rid+ 1] then
8: tile ptr[tid]← NEGATIVE(tile ptr[tid])
9: break

10: end if
11: end for
12: end for

‘1000 ... 000’, and tile pointer 0 is stored as ‘0000 ... 000’. To the best of our knowledge,
the index of 31 or 63 bits is completely compatible to most numerical libraries such as
Intel MKL. Moreover, reference implementation of the HPCG benchmark [62] also
uses 32-bit signed integer for problem dimension no more than 231 and 64-bit signed
integer for problem dimension larger than that. Thus it is safe to save 1 bit as the
empty row hint and the other 31 or 63 bits as a ‘real’ row index.

6.3.4 Tile Descriptor Information

Only having the tile pointer is not enough for a fast SpMV operation. For each tile,
we also need four extra hints: (1) bit flag of size ω × σ, which indicates whether
an entry is the first nonzero of a matrix row, (2) y offset of size ω used to further
let each column know where the starting point to store its local partial sums is, (3)
seg offset of size ω used to accelerate the local segmented sum inside a tile, and
(4) empty offset of unfixed size (but no longer than ω × σ) constructed to help the
partial sums to find correct locations in y if the tile includes any empty rows. The tile
descriptor tile desc is defined to denote a combination of the above four groups
of data.

Generating bit flag is straightforward. The procedure is very similar to lines
3–5 in Algorithm 30 that describes SpMV based on a segmented sum method. The
main difference is that the bit flags are saved in column-major order, which matches
the in-place transposed col idx and val. Additionally, the first entry of each tile’s
bit flag is set to TRUE for sealing the first segment from the top and letting 2D tiles
to be independent from each other.

The array y offset of size ω is used to help the columns in each tile knowing
where the starting points to store their partial sums to y are. In other words, each
column has one entry in the array y offset as a starting point offset for all segments
in the same column. We save a row index offset (i.e., relative row index) for each
column in y offset. Thus for the ith column in the tidth tile, by calculating tile -
ptr[tid] + y offset[i], the column knows where its own starting position in y
is. Thus the columns can work in a high degree of parallelism without waiting for a
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synchronization. Generating y offset is simple: each column counts the number
of TRUEs in its previous columns’ bit flag array. Consider Tile 1 in Figure 6.2
as an example: because there are 3 TRUEs in the 1st column, the 2nd column’s
corresponding value in y offset is 3. In addition, since there are in total 4 TRUEs
in the 1st, 2nd and 3rd columns’ bit flag, Tile 1’s y offset[3]= 4. Algorithm 25
lists how to generate y offset for a single 2D tile in an SIMD-friendly way.

Algorithm 25 Generating y offset and seg offset.

1: MALLOC(*tmp bit, ω)
2: MEMSET(*tmp bit, FALSE)
3: for i = 0 to ω − 1 in parallel do
4: y offset[i]← 0
5: for j = 0 to σ − 1 do
6: y offset[i]← y offset[i] + bit flag[i][j]
7: tmp bit[i]← tmp bit[i] ∨ bit flag[i][j]
8: end for
9: seg offset[i]← 1− tmp bit[i]

10: end for
11: EXCLUSIVE ALL-SCAN SERIAL(*y offset, ω) . Algorithm 7
12: SEGMENTED SUM(*seg offset, ω, *tmp bit) . Algorithm 12
13: FREE(*tmp bit)

The third array seg offset of size ω is used for accelerating a local segmented
sum in the workload of each tile. The local segmented sum is an essential step that
synchronizes partial sums in a 2D tile (imagine multiple columns in the tile come
from the same matrix row). In the previous segmented sum (or segmented scan)
method [28, 40, 161, 63], the local segmented sum is complex and not efficient enough.
Thus we use the method described in 4.4.4 introducing a seg offset array for fast
segmented sum.

To generate seg offset, we let each column search its right neighbor columns
and count the number of contiguous columns without any TRUEs in their bit flag.
Using Tile 0 in Figure 6.2 as an example, its 2nd column has one and only one right
neighbor column (the 3rd column) without any TRUEs in its bit flag. Thus the 2nd
column’s seg offset value is 1. In contrast, because the other three columns (the 1st,
3rd and 4th) do not have any ‘all FALSE’ right neighbors, their values in seg offset
is 0. Algorithm 25 shows how to generate seg offset using an SIMD-friendly
method.

The seg offset array is used for calculating fast segmented sum through an
inclusive prefix-sum scan. See Section 4.4.4 for detailes.

The last array empty offset occurs when and only when a 2D tile includes
any empty rows (i.e., its tile pointer is negative). Because an empty row of a matrix
has the same row pointer with its rightmost non-empty neighbor row (recall the
second row in the matrix A in Figure 1), y offset will record an incorrect offset for
it. We correct for this by storing correct offsets for segments within a tile. Thus the
length of empty offset is the number of segments (i.e., the total number of TRUEs
in bit flag) in a tile. For example, Tile 0 in Figure 6.2 has 4 entries in its empty -
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offset since its bit flag includes 4 TRUEs. Algorithm 26 lists the pseudocode that
generates empty offset for a tile that contains at least one empty row.

Algorithm 26 Generating empty offset for the tidth tile.

1: len← REDUCTION SUM PARALLEL(*bit flag, ω) . Algorithm 4
2: MALLOC(*empty offset, len)
3: eid← 0
4: for i = 0 to ω − 1 do
5: for j = 0 to σ − 1 do
6: if bit flag[i][j] = TRUE then
7: ptr ← tid× ω × σ + i× σ + j
8: idx← BINARY SEARCH(*row ptr, ptr) −1
9: idx← idx − REMOVE SIGN(tile ptr[tid])

10: empty offset[eid]← idx
11: eid← eid+ 1
12: end if
13: end for
14: end for

6.3.5 Storage Details

To store the tile desc arrays in a space-efficient way, we find upper bounds to the
entries and utilize the bit-field pattern. First, since entries in y offset store offset
distances inside a 2D tile, they have an upper bound of ωσ. So dlog2 (ωσ)e bits are
enough for each entry in y offset. For example, when ω = 32 and σ = 16, 9 bits
are enough for each entry. Second, since seg offset includes offsets less than ω,
dlog2 (ω)e bits are enough for an entry in this array. For example, when ω = 32, 5 bits
are enough for each entry. Third, bit flag stores σ 1-bit flags for each column of
a 2D tile. When σ = 16, each column needs 16 bits. So 30 (i.e., 9 + 5 + 16) bits are
enough for each column in the example. Therefore, for a tile, the three arrays can be
stored in a compact bit-field composed of ω 32-bit unsigned integers. If the above
example matrix has 32-bit integer row index and 64-bit double precision values, only
around 2% extra space is required by the three newly added arrays.

The size of empty offset depends on the number of groups of contiguous
empty rows, since we only record one offset for the rightmost non-empty row with
any number of empty rows as its left neighbors.

6.3.6 The CSR5 for Other Matrix Operations

Since we in-place transposed the CSR arrays col idx and val, a conversion from
the CSR5 to the CSR is required for doing other sparse matrix operations using the
CSR format. This conversion is simply removing tile ptr and tile desc and
transposing col idx and val back to row-major order. Thus the conversion can be
very fast. Further, since the CSR5 is a superset of the CSR, any entry accesses or slight
changes can be done directly in the CSR5 format, without any need to convert it to
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the CSR format. Additionally, some applications such as finite element methods can
directly assemble sparse matrices in the CSR5 format from data sources.

6.4 Comparison to Previous Formats

As shown in the previous chapter, a great deal of work has been published on
representing sparse matrices for higher SpMV performance. The block-based sparse
matrix construction has received most attention [8, 33, 35, 45, 149, 177, 188] because
of two main reasons: (1) sparse matrices generated by some real-world problems (e.g.,
finite element discretization) naturally have the block sub-structures, and (2) off-chip
load operations may be decreased by using the block indices instead of the entry
indices. However, for many matrices that do not exhibit a natural block structure,
trying to extract the block information is time consuming and has limited effects.
The BCCOO format is a representative. Its preprocessing stage works in a complex
optimizing space consists of up to 10 groups of parameters and up to 442368 tuning
possibilities. From our experiments, we can see that although it is much faster than
any other formats, the real applicability may be extremely low because of exhaustive
parameter tuning. The CSR5 format, in contrast, has only 2 parameters thus requires
very low format conversion cost.

On the other hand, the hybrid formats [21, 170], such as HYB, have been designed
for irregular matrices. However, higher kernel launch overhead and invalidated cache
among kernel launches tend to decrease their overall performance. Moreover, it is
hard to guarantee that every submatrix can saturate the whole device. In addition,
some relatively simple operations such as solving triangular systems become complex
while the input matrix is stored in two or more separate parts. The CSR5 format
does not require such decomposition for good performance on computing irregular
matrices.

Unlike the work of automatic selection of the best format from Li et al. [115] and
Sedaghati et al. [160] that analyzes sparsity structure and then suggests one or more
formats, the CSR5 format described in this work is insensitive to the sparsity structure
of the input sparse matrix.

Moreover, to the best of our knowledge, the CSR5 is the only format that sup-
ports high throughput cross-platform sparse matrix computations on CPUs, nVidia
GPUs, AMD GPUs and Xeon Phi at the same time. This advantage may simplify the
development of scientific software for processors with massive on-chip parallelism.
Chapter 8 will describe CSR5-based SpMV algorithm.
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7. Level 1: Sparse Vector
Operations

7.1 Overview

In Section 2.3, we can see that many Levels 2 and 3 sparse operations can directly
use Level 1 routines as building blocks, thus their performance is crucial for all
Sparse BLAS routines. This chapter main focuses on the sparse vector – sparse vector
addition operation since it is used as part of the SpGEMM method described in
Chapter 9.

7.2 Contributions

In this chapter, a heuristic approach for adding two sparse vectors is developed.
Depending on the upper bound length of the sparse output vector, the approach
maps the sparse input vectors to a heap method, a bitonic ESC method or a merge
method.

7.3 Basic Method

7.3.1 Sparse Accumulator

Gilbert et al. [77] designed a fundamental tool called sparse accumulator, or SPA for
short. The SPA conducts sparse operations on a dense array. One of its use scenarios
is adding two sparse vectors: the nonzero entries of the 1st sparse vector are assigned
to an all-zero dense vector of the same size, then the nonzero entries of the 2nd sparse
vector are added to associated positions of the dense vector, finally all zero entries are
removed from the dense vector to store nonzero ones only. Algorithm 27 shows this
procedure.

7.3.2 Performance Considerations

We can see that the SPA method works in the space of a dense vector, thus may waste
storage and compute resources for dealing with zero entries. In particular when the
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Algorithm 27 Adding two sparse vectors using SPA.

1: function SPARSE VECTOR ADDITION SPA(*in1, *in2, *out, len)
2: MALLOC(*tmp, len)
3: MEMSET(*tmp, 0)
4: nnzin1 ← in1.nnz
5: nnzin2 ← in2.nnz
6: for i = 0 to nnzin1 − 1 do
7: tmp[in1.col idx[i]]← in1.val[i]
8: end for
9: for i = 0 to nnzin2 − 1 do

10: tmp[in2.col idx[i]]← tmp[in2.col idx[i]] + in2.val[i]
11: end for
12: nnzout ← 0
13: for i = 0 to len do
14: if tmp[i] 6= 0 then
15: out.col idx[nnzout]← i
16: out.val[nnzout]← tmp[i]
17: nnzout ← nnzout + 1
18: end if
19: end for
20: out.nnz← nnzout
21: FREE(*tmp)
22: end function

input sparse vectors are short enough and the size of them is enough long.

7.4 CSR-Based Sparse Vector Addition

Here we develop three methods for adding two sparse vectors.

7.4.1 Heap Method
The heap method first creates an empty implicit index-value pair heap (or priority
queue) of the upper bound size (i.e., the sum of the number of nonzero entries of
the two input vectors) of the output vector. The heap can be located in the on-chip
scratchpad memory and collects all candidate nonzero entries from the input vectors.
Then the heap executes a heapsort-like operation to generate an ordered sequence
located in the tail part of the heap. The difference between this operation and the
classic heapsort operation is that the entries in the resulting sequence are duplicate-
free while the initial heap includes duplicate entries. In each delete-max step in our
variant heapsort, the root node and the first entry of the resulting sequence are
fused if they share the same index; otherwise the root node is inserted to the head
part of the sequence. The method is also distinguished from a heap-based sparse
accumulator given by Gilbert et al. [78] by the mechanism of eliminating duplicate
entries. Figure 7.1 gives two steps of an example of the heap method. Finally, the
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sorted sequence without duplicate indices is generated in the scratchpad memory
and saved to the output vector in the global memory. In addition, the numbers of
nonzero entries of the output is updated to the sizes of the corresponding resulting
sequences. To achieve higher throughput, the ad-heap proposed in Section 4.6 can be
directly used here.

(a) (b) (c)

Figure 7.1: Two steps of an example of the heap method. From (a) to (b), the root
entry is fused to the first entry in resulting sequence since they share the same index.
From (b) to (c), the root entry is inserted to the sequence since they have different
indices. After each step, the heap property is reconstructed.

7.4.2 Bitonic ESC Method
The method first collects all candidate nonzero entries to an array in the scratchpad
memory, then sorts the array by using basic bitonic sort (see Section 4.5.2) and
compresses duplicate indices in the sequence by using a combination of all-scan (see
Section 4.4.2) and segmented sum (see Section 4.4.4). Figure 7.2 shows an example of
adding two sparse vectors with 4 and 2 nonzero entries, respectively. Finally, a sorted
sequence without duplicate indices is generated in the scratchpad memory and saved
to the global memory, and the numbers of nonzero entries of the output sparse vector
is recorded.

Figure 7.2: An example of the bitonic ESC method.
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7.4.3 Merge Method
We can see that nonzero entries of the input vectors and the resulting vector can
always be kept ordered and duplicate-free because of the CSR format1. Therefore, we
can convert the addition operation to a parallel merge operation that merges ordered
sequences and the final resulting sequence is ordered and duplicate-free.

Each parallel merge operation can be split into multiple sub-steps: (1) a binary
search operation on the resulting sequence for fusing entries with the same indices and
tagging them, (2) an all-scan operation on the input sequence for getting continuous
positions in the incremental part of the resulting sequence, (3) copying non-duplicate
entries from the input sequence to the resulting sequence, and (4) merging the two
sequences in one continuous memory space. Figure 7.3 shows an example of this
procedure. Finally the resulting sequence is the output sparse vector, and its length is
the numbers of nonzero entries in the output.

Because both the binary search and the all-scan take fast logarithmic time for
each entry in the input sequence, these operations have relatively good efficiency
and performance stability on modern parallel processors. Therefore, a fast merge
algorithm is very crucial for the performance of the merge method in our SpGEMM
framework. Based on the experimental evaluation described in Section 4.5.6, GPU
merge path algorithm is selected from five candidate GPU merge approaches.

Figure 7.3: An example of the merge method. The original status of the resulting
sequence contains the 1st input vector. The input sequence as the 2nd input vector
can be stored in the register file. Its mask sequence and the resulting sequence are in
the scratchpad memory.

1Actually according to the CSR format standard, the column indices in each row do not necessarily
have to be sorted. But most implementations choose to do so, thus our method reasonably makes this
assumption.



8. Level 2: Sparse Matrix-Vector
Operations

8.1 Overview

In the Level 2 Sparse BLAS, multiplication of a sparse matrix and a dense or sparse
vector is very useful and challenging. In this chapter, we mainly consider fast algo-
rithms for sparse matrix-vector multiplication (SpMV for short), which is perhaps the
most widely-used non-trivial BLAS in computational science and modeling. In the
next chapter, a Level 3 BLAS routine SpGEMM will be introduced. This operation can
be seen as a more generic case of multiplication of sparse matrix and sparse vector.

The SpMV operation multiplies a sparse matrix A of size m× n by a dense vector
x of size n and gives a dense vector y of size m. The naı̈ve sequential implementation
of SpMV can be very simple, and can be easily parallelized by adding a few pragma
directives for the compilers [112]. But to accelerate large-scale computation, parallel
SpMV is still required to be hand-optimized with specific data storage formats and
algorithms [7, 8, 16, 21, 33, 35, 38, 45, 58, 76, 80, 102, 115, 116, 122, 170, 173, 166, 177,
184, 188, 191, 193, 194, 192] (see Chapter 5 for some recently proposed formats for
specific hardware architectures such as GPUs and Xeon Phi). The experimental results
showed that these formats can provide performance improvement for various SpMV
benchmarks.

However, the completely new formats bring several new problems. The first one
is backward-compatibility. When the input data are stored in basic formats (e.g., CSR),
a format conversion is required for using the new format based SpMV. In practice,
fusing a completely new format into well-established toolkits (e.g., PETSc [12]) for
scientific software is not a trivial task [132] because of the format conversion. More-
over, Kumbhar [107] pointed out that once an application (in particular a non-linear
solver) needs repeated format conversion after a fixed small number of iterations, the
new formats may degrade overall performance. Furthermore, Langr and Tvrdı́k [110]
demonstrated that isolated SpMV performance is insufficient to evaluate a new for-
mat. Thus more evaluation criteria, such as format conversion cost and memory
footprint, must be taken into consideration. Secondly, when the SpMV operation is
used with other sparse building blocks (such as preconditioning operations [116] and
SpGEMM [118]) that require basic storage formats, using the all-new formats is less
feasible.

91
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Therefore, if we can reduce the cost of format conversion and extra memory
footprint to a certain level, a new format can offer faster SpMV, compared to the
CSR format, in an iterative scenario. Otherwise, accelerating CSR-based SpMV can
give the best performance, in particular when the number of iterations is low. In this
chapter, we introduce our SpMV algorithms both for the CSR format and for the CSR5
format described in Chapter 6.

8.2 Contributions

Our work described in this chapter particularly focuses on CSR-based SpMV on
CPU-GPU heterogeneous processors and CSR5-based SpMV on CPUs, GPUs and
Xeon Phi.

The main idea of our CSR-based SpMV algorithm is first speculatively executing
SpMV on a heterogeneous processor’s GPU cores targeting high throughput compu-
tation, and then locally re-arranging resulting vectors by the CPU cores of the same
chip for low-latency memory access. To achieve load balanced first step computation
and to utilize both CPU and GPU cores, we improved the conventional segmented
sum method by generating auxiliary information (e.g., segment descriptor) at runtime
and recognizing empty rows on-the-fly. Compared to the row block methods for the
CSR-based SpMV, our method delivers load balanced computation to achieve higher
throughput. Compared with the classic segmented sum method for the CSR-based
SpMV, our approach decreases the overhead of global synchronization and removes
pre- and post-processing regarding empty rows.

The CSR-based SpMV work makes the following contributions:

• A fast CSR-based SpMV algorithm that efficiently utilizes different types of
cores in emerging CPU-GPU heterogeneous processors.

• An speculative segmented sum algorithm that generates auxiliary information
on-the-fly and eliminating costly pre- and post-processing on empty rows.

• On a widely-adopted benchmark suite, the proposed CSR-based SpMV algo-
rithm achieves stable SpMV performance independent of the sparsity structure
of input matrix.

On a benchmark suite composed of 20 matrices with diverse sparsity structures,
the CSR-based SpMV approach greatly outperforms the row block methods for the
CSR-based SpMV running on GPU cores of heterogeneous processors. On an Intel
heterogeneous processor, the experimental results show that our method obtains
up to 6.90x and on average 2.57x speedup over an OpenCL implementation of the
CSR-vector algorithm in CUSP running on its GPU cores. On an AMD heterogeneous
processor, our approach delivers up to 16.07x (14.43x) and on average 5.61x (4.47x)
speedup over the fastest single (double) precision CSR-based SpMV algorithm from
PARALUTION and an OpenCL version of CUSP running on its GPU cores. On an
nVidia heterogeneous processor, our approach delivers up to 5.91x (6.20x) and on
average 2.69x (2.53x) speedup over the fastest single (double) precision CSR-based
SpMV algorithm from cuSPARSE and CUSP running on its GPU cores.
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The CSR5 format described in Chapter 6 extends the basic CSR format for using
SIMD units efficiently, thus can be an alternative of the CSR format. The CSR5 format
merely needs very short format conversion time (a few SpMV operations) and very
small extra memory footprint (around 2% of the CSR data). Because the CSR5 format
shares data with the CSR format, the CSR-based Sparse BLAS routines can efficiently
work with the CSR5 format.

The CSR5-based SpMV work makes the following contributions:

• A CSR5-based SpMV algorithm based on a redesigned low-overhead segmented
sum algorithm.

• The work is implemented on four mainstream devices: CPU, nVidia GPU, AMD
GPU and Intel Xeon Phi.

• The CSR5-based SpMV is evaluated in both isolated SpMV tests and iteration-
based scenarios.

We compare the CSR5 with 11 state-of-the-art formats and algorithms on dual-
socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi. By using
14 regular and 10 irregular matrices as a benchmark suite, we show that the CSR5
obtains comparable or better performance over the previous work for the regular
matrices, and can greatly outperform the prior work for the irregular matrices. As for
the 10 irregular matrices, the CSR5 obtains on average speedups 1.18x, 1.29x, 2.73x
and 3.93x (up to 3.13x, 2.54x, 5.05x and 10.43x) over the second best work on the four
platforms, respectively. Moreover, for iteration-based real-world scenarios, the CSR5
format achieves higher speedups because of the fast format conversion. To the best
of our knowledge, this is the first time that a single storage format can outperform
state-of-the-art work on all four modern multicore and manycore processors.

8.3 Basic Methods

8.3.1 Row Block Algorithm

In a given sparse matrix, rows are independent from each other. Therefore an SpMV
operation can be parallelized on decomposed row blocks. A logical processing unit is
responsible for a row block and stores dot product results of the matrix rows with
the vector x to corresponding locations in the result y. When the SIMD units of a
physical processing unit are available, the SIMD reduction sum operation can be
utilized for higher efficiency. These two methods are respectively known as the CSR-
scalar and the CSR-vector algorithms, and have been implemented on CPUs [184]
and GPUs [21, 170]. Algorithm 28 and Algorithm 29 show parallel CSR-scalar and
CSR-vector methods, respectively.

Despite the good parallelism, exploiting the scalability in modern multi-processors
is not trivial for the row block methods. The performance problems mainly come from
load imbalance for matrices which consist of rows with uneven lengths. Specifically,
if one single row of a matrix is significantly longer than the other rows, only a single
core can be fully used while the other cores in the same chip may be completely idle.
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Algorithm 28 Parallel SpMV using the CSR-scalar method.

1: for i = 0 to m− 1 in parallel do
2: y[i]← 0
3: for j = row ptr[i] to row ptr[i+ 1]−1 do
4: y[i]← y[i] + val[j] × x[col idx[j]]
5: end for
6: end for

Algorithm 29 Parallel SpMV using the CSR-vector method.

1: for i = 0 to m− 1 in parallel do
2: for j = row ptr[i] to row ptr[i+ 1]−1 in parallel do
3: tmp<vector>← val[j] × x[col idx[j]]
4: end for
5: len← row ptr[i+ 1]−row ptr[i]
6: y[i]← REDUCTION SUM PARALLEL(tmp<vector>, len) . Algorithm 4
7: end for

Although various strategies, such as data streaming [51, 80], memory coalescing [58],
data reordering or reconstruction [16, 84, 149], static or dynamic binning [7, 80], Dy-
namic Parallelism [7] and and dynamic row distribution [123], have been developed,
none of those can fundamentally solve the problem of load imbalance, and thus
provide relatively low SpMV performance for the CSR format.

8.3.2 Segmented Sum Algorithm

Blelloch et al. [28] pointed out that the segmented sum may be more attractive for the
CSR-based SpMV, since it is SIMD friendly and insensitive to the sparsity structure
of the input matrix, thus overcoming the shortcomings of the row block methods. A
serial version of segmented sum is shown in Algorithm 12.

In the SpMV operation, the segmented sum treats each matrix row as a segment
and calculates a partial sum for the entry-wise products generated in each row.
The SpMV operation using the segmented sum methods consists of four steps: (1)
generating an auxiliary bit flag array of size nnz from the row ptr array. An
entry in bit flag is flagged as TRUE if its location matches the first nonzero entry of
a row, otherwise it is flagged as FALSE, (2) calculating all intermediate entries (i.e.,
entry-wise products) to an array of size nnz, (3) executing the parallel segmented
sum for the array, and (4) collecting all partial sums to the result vector y if a row is
not empty. Algorithm 30 lists the pseudocode. Figure 8.2 illustrates an example using
the matrix A plotted in Figure 8.1. We can see that once the heaviest workload, i.e.,
step 3, is parallelized through a fast segmented sum method described in [40, 63, 161],
nearly perfect load balance can be expected in all steps of Algorithm 30.
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Algorithm 30 Segmented sum method CSR-based SpMV.

1: MALLOC(*bit flag, nnz)
2: MEMSET(*bit flag, FALSE)
3: for i = 0 to m− 1 in parallel do . Step 1
4: bit flag[row ptr[i]] ← TRUE
5: end for
6: MALLOC(*product, nnz)
7: for j = 0 to nnz − 1 in parallel do . Step 2
8: product[j]← val[j] × x[col idx[j]]
9: end for

10: SEGMENTED SUM(*product, nnz, *bit flag) . Step 3, Algorithm 12
11: for k = 0 to m− 1 in parallel do . Step 4
12: if row ptr[k] = row ptr[k + 1] then
13: y[k]← 0
14: else
15: y[k]← product[row ptr[k]]
16: end if
17: end for
18: FREE(*bit flag)
19: FREE(*product)

Figure 8.1: A CSR matrix of size 4× 4.

Figure 8.2: CSR-based SpMV using segmented sum.
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8.3.3 Performance Considerations

Figure 8.3 gives a performance comparison of the row block method from the cuS-
PARSE v6.5 library and the segmented sum method from the cuDPP v2.2 [76, 161]
library. It shows that the row block method can significantly outperform the seg-
mented sum method, while doing SpMV on relatively regular matrices (see Table A.1
for details of the used benchmark suite). On the other hand, row block method only
gives very low performance for irregular matrices.

Figure 8.3: Single precision SpMV performance.

Why is this the case? We can see that the step 1 of the segmented sum method is
a scatter operation and the step 4 is a gather operation, both from the row space of
size m. This prevents the two steps from fusing with the steps 2 and 3 in the nonzero
entry space of size nnz. In this case, more global synchronizations and global memory
accesses may degrade the overall performance. Previous research [21, 170] has found
that the segmented sum may be more suitable for the COO-based SpMV, since the
fully stored row index data can convert the steps 1 and 4 to the nonzero entry space:
the bit flag array can be generated by comparison of neighbor row indices, and
the partial sums in the product array can be directly saved to y since their final
locations are easily known from the row index array. Further, Yan et al. [188] and
Tang et al. [173] reported that some variants of the COO format can also benefit from
the segmented sum. However, it is well known that accessing row indices in the COO
pattern brings higher off-chip memory pressure, which is just what the CSR format
tries to avoid.

In Figure 8.3, we can also see that the CSR5-based SpMV can obtain up to 4x
speedup over the CSR-based SpMV using the segmented sum primitive [161]. Its
main reason is that the CSR5-based SpMV can utilize both the segmented sum for
load balance and the compressed row data for better load/store efficiency. The details
will be shown below.
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8.4 CSR-Based SpMV

8.4.1 Algorithm Description

Data Decomposition

In the proposed CSR-based SpMV, we first evenly decompose nonzero entries of the
input matrix to multiple small tiles for load balanced data parallelism. Here we define
a tile as a 2D array of size W × T . The width T is the size of a thread-bunch, which is
the minimum SIMD execution unit in a given vector processor. It is also known as
wavefront in AMD GPUs or warp in nVidia GPUs. The height W is the workload (i.e.,
the number of nonzero entries to be processed) of a thread. A tile is a basic work unit
in matrix-based segmented sum method [161, 63], which is used as a building block
in our SpMV algorithm. Actually, the term “tile” is equivalent to the term “matrix”
used in original description of the segmented scan algorithms [161, 63]. Here we use
“tile” to avoid confusion between a work unit of matrix shape and a sparse matrix in
SpMV.

Since a thread-bunch can be relatively too small (e.g., as low as 8 in current Intel
GPUs) to amortize scheduling cost, we combine multiple thread-bunches into one
thread-group for possibly higher throughput. We define B to denote the number
of thread-bunches in one thread-group. Additionally, we let each thread-bunch
compute S contiguous tiles. Thus higher on-chip resource reuse and faster global
synchronization are expected.

Therefore, we can calculate that each thread-group deals with BSWT nonzero
entries. Thus the whole nonzero entry space of size nnz can be evenly assigned to
dnnz/(BSWT )e thread-groups. Figure 8.4 shows an example of the data decomposi-
tion. In this example, we setB = 2, S = 2,W = 4, and T = 2. Thus each thread-group
is responsible for 32 nonzero entries. Then dnnz/32e thread-groups are dispatched.

Figure 8.4: Data decomposition on the nonzero entry space. nnz nonzero entries
are assigned to multiple thread-groups. In this case, each thread-group consists of 2
thread-bunches (i.e., B = 2). The number of threads in each thread-bunch is equal
to 2 (i.e., T = 2). The workload per thread is 4 (i.e., W = 4). The number of iterative
steps in each thread-bunch is 2 (i.e., S = 2).
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Speculative Segmented Sum

Our CSR-based SpMV is based on fundamental segmented sum algorithm, which
guarantees load balanced computation in the nonzero entry space. While utilizing
segmented sum as a building block in our SpMV algorithm, we have three main per-
formance considerations: (1) the segment descriptor needs to be generated in on-chip
memory at runtime to reduce overhead of global memory access, (2) empty rows must
be recognized and processed without calling specific pre- and post-processing func-
tions, and (3) taking advantages of both types of cores in a heterogeneous processor.
Hence we improve the basic segmented sum method to meet the above performance
requirements.

The algorithm framework includes two main stages: (1) speculative execution
stage, and (2) checking prediction stage. The first stage speculatively executes SpMV
operation and generates a possibly incorrect resulting vector y. Here the term “in-
correct” means that the layout of entries in y can be incorrect, but the entries are
guaranteed to be numerically identified. Then in the second stage we check whether
or not the speculative execution is successful. If the prediction is wrong, a data
re-arrangement will be launched for getting a completely correct y.

We first give an example of our algorithm and use it in the following algorithm
description. Figure 8.5 plots this example. The input sparse matrix includes 12 rows
(2 of them are empty) and 48 nonzero entries. We set B to 1, S to 2, T to 4 and W
to 6. This setting means that one thread-group is composed of one thread-bunch of
size 4; each thread-bunch runs 2 iteration steps. Before GPU kernel launch, three
containers, synchronizer, dirty counter and speculator, are pre-allocated in DRAM for
global synchronization and speculative execution. Algorithm 31 lists pseudocode of
the first stage.

The speculative execution stage includes the following steps: (1) positioning
a range of row indices for nonzero entries in a given tile, (2) calculating segment
descriptor based on the range, (3) conducting segmented sum on the tile, (4) saving
partial sums to the computed index range in vector y. This stage also has some
input-triggered operations such as labeling a tile with empty rows.

Algorithm 31 The SPMD pseudocode of a thread-bunch in speculative execution
stage of the CSR-based SpMV

1: function SPECULATIVE EXECUTION GPU()
2: tb← GET-THREAD-GLOBALID( )/T ;
3: //positioning row indices of tiles in the thread-bunch
4: for i = 0 to S do
5: boundary[i]← tb× S ×W × T + i×W × T
6: tile offset[i]← BINARY SEARCH(*row pointer,boundary[i])
7: end for
8: //iterative steps in a thread-bunch
9: for i = 0 to S − 1 do

10: start← tile offset[i]
11: stop← tile offset[i+ 1]
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12: MEMSET(*seg descriptor,FALSE)
13: dirty ← FALSE
14: //calculating segment descriptor
15: for j = start to stop− 1 do
16: if row pointer[j] 6= row pointer[j + 1] then
17: descriptor[row pointer[j] - boundary[i]]← TRUE
18: else
19: dirty ← TRUE
20: end if
21: end for
22: //collecting element-wise products
23: for j = 0 to W × T − 1 do
24: x value← x[column index[boundary[i]+j]]
25: product[j]← x value× value[boundary[i]+j]
26: end for
27: //transmitting a value from the previous tile
28: if descriptor[0] = FALSE then
29: product[0]← product[0]+ transmitter
30: descriptor[0]← TRUE
31: end if
32: //segmented sum
33: SEGMENTED REDUCTION(*product,*descriptor,*ts,*tc)
34: //calculating index offset in y
35: *y index← EXCLUSIVE SCAN(*tc)
36: //saving partial sums to y
37: for j = 0 to T − 1 do
38: for k = 0 to tc[j]− 1 do
39: index← start+ y index[j]+ k
40: //first segment of the thread-bunch
41: if index = tile offset[0] then
42: synchronizer[tb].idx← index
43: synchronizer[tb].val← product[j ×W+ts[j]+k]
44: else
45: //storing to y directly
46: y[index]← product[j ×W+ts[j]+k]
47: end if
48: if index = stop then
49: transmitter ← product[j ×W+ts[j]+k]
50: end if
51: end for
52: end for
53: //labeling dirty tile
54: if dirty = TRUE then
55: pos← ATOMIC INCREMENT(*dirty counter)
56: speculator[pos]← 〈start, stop〉
57: transmitter ← 0
58: end if
59: end for
60: end function
61:
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62: function SYNCHRONIZATION CPU()
63: for i = 0 to dnnz/(S ×W × T )e − 1 do
64: index← synchronizer[i].idx
65: value← synchronizer[i].val
66: y[index]← y[index]+ value
67: end for
68: end function

Figure 8.5: An example of our CSR-based SpMV algorithm. The input sparse matrix
contains 48 nonzero entries in 12 rows (10 non-empty rows and 2 empty rows). One
thread-bunch composed of 4 threads is launched in this 2-iteration process. The arrays
synchronizer and speculator store tuples (shown with angular brackets).

First, each thread-bunch executes binary search of S + 1 tile boundaries on the
CSR row pointer array. Then we obtain corresponding row indices and store them in
a scratchpad array tile offset of size S + 1. The results of the binary search are starting
and ending row indices of the nonzero entries in each tile. Thus each tile knows
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the locations to store generated partial sums. Lines 3–7 of Algorithm 31 give a code
expression of this step. In our example shown in Figure 8.5, the 2 tiles of size 24 have
3 boundaries {0, 24, 48}. The results of binary search of {0, 24, 48} on the CSR row
pointer array are {0, 4, 12}. Note that the binary search needs to return the rightmost
match, if multiple slots have the same value.

Then each thread-bunch executes an iteration of S steps. Lines 8–59 of Algo-
rithm 31 give code expression of this step. Each iteration deals with one tile. By
calculating offset between the left boundary of a tile and the covered row indices,
a local segment descriptor is generated (lines 14–21 in Algorithm 31). For example,
the left boundary of the second tile is 24 and its row index range is 4–12. We need
to compute offset between 24 and the row pointer {19, 27, 29, 29, 34, 37, 37, 44, 48}.
Then we obtain a group of offsets {-5, 3, 5, 5, 10, 13, 13, 20, 24}. After removing
duplicate values and overflowed values on the left and the right sides, the effective
part {3, 5, 10, 13, 20} in fact implies local segment descriptor for the current tile. We
can easily convert it to a binary expression {0, 0, 0, 1, 0, 1, 0, ... , 0, 0, 1, 0, 0, 0} through
a scatter operation in on-chip scratchpad memory. Moreover, since each tile is an
independent work unit, the first bit of its segment descriptor should be TRUE. Thus
the final expression becomes {1, 0, 0, 1, 0, 1, 0, ... , 0, 0, 1, 0, 0, 0}. In Figure 8.5, the
filled and empty circles are heads (i.e., 1s or TRUEs) and body (i.e., 0s or FALSEs) of
segments, respectively.

While generating the segment descriptor, each thread detects whether or not
its right neighbor wants to write to the same slot. If yes (like the duplicate offset
information {..., 5, 5, ...} and {..., 13, 13, ...} in the above example), we can make sure
that this tile contains at least one empty row, since an empty row is expressed as two
contiguous indices of the same value in the CSR row pointer array. Then we mark
this tile as “dirty” (line 19 in Algorithm 31). Further, the dirty counter array stored
in DRAM is incremented by atomic operation, and this tile’s offset is recorded in
the speculator array (lines 53–58 in Algorithm 31). In our example, dirty counter is 1
and speculator array has a pair of offsets {〈4, 12〉} ((shown with angular brackets in
Figure 8.5).

Then we calculate and save element-wise products in scratchpad memory, based
on its nonzero entries’ column indices, values and corresponding values in the vector
x. Lines 22–26 of Algorithm 31 show code expression of this step. When finished, we
transmit the sum of the last segment to an intermediate space for the next iteration
(lines 27–31 in Algorithm 31). In our example, the first tile’s last value 5e is transmitted
to the next tile. Then we execute the matrix-based segmented sum (lines 32–33) on the
tile. Because the segmented sum algorithm used here is very similar to the method
described in [28], we refer the reader to [28] and several pervious GPU segmented
sum algorithms [161, 63] for details. But note that compared to [28], our method
makes one difference: we store partial sums in a compact pattern (i.e., values are
arranged in order from the first location in the thread work space), but not save them
to locations of corresponding segment heads. For this reason, we need to record
the starting position and the number of partial sums. Then we can use an ordinary
exclusive scan operation (lines 34–35) for obtaining contiguous indices of the partials
sums in y. In Figure 8.5, we can see that the partial sums (expressed as filled hexagons)
are aggregated in the compact fashion. Note that empty hexagons are intermediate
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partial sums, which are already added to the correct position of segment heads.
Finally, we store the partial sums to known locations in the resulting vector. Lines

36–52 of Algorithm 31 show code expression. As an exception, the sum result of the
first segment in a thread-bunch is stored to the synchronizer array (lines 40–43), since
the first row of each thread-bunch may cross multiple thread-bunch. This is a well
known issue while conducting basic primitives, such as reduction and prefix-sum
scan, using more than one thread-group that cannot communicate with each other. In
fact, atomic add operation can be utilized to avoid the global synchronization. But
we choose not to use relatively slow global atomic operations and let a CPU core
to later on finish the global synchronization. Lines 62–68 of Algorithm 31 show the
corresponding code expression. Since the problem size (i.e., dnnz/(SWT )e) can be
too small to saturate a GPU core, a CPU core is in fact faster for accessing short arrays
linearly stored in DRAM. Taking the first tile in Figure 8.5 as an example, its first
partial sum is 3a, which is stored with its global index 0 to the synchronizer. After that,
the value 3a is added to position 0 of y.

When the above steps are complete, the resulting vector is numerically identified,
except that some values generated by dirty tiles are not in their correct locations.
In Figure 8.5, we can see that after synchronization, vector y is already numerically
identified to its final form, but entries 5g, 3h, 7i and 4j generated by the second tile
are located in wrong slots.

The checking prediction stage first checks value of the dirty counter array. If it
is zero, the previous prediction is correct and the result of the first stage is the final
result; if it is not zero, the predicted entries generated by dirty tiles are scattered to
their correct positions in the resulting vector. In this procedure, the CSR row pointer
array is required to be read for getting correct row distribution information. Again,
we use a CPU core for the irregular linear memory access, which is more suitable for
cache sub-systems in CPUs. In our example, entries 5g, 3h, 7i and 4j are moved to
their correct positions. Then the SpMV operation is done.

Complexity Analysis

Our CSR-based SpMV algorithm pre-allocates three auxiliary arrays, synchronizer,
dirty counter and speculator, in off-chip DRAM. The space complexity of synchronizer
is dnnz/(SWT )e, equivalent to the number of thread-bunches. The size of dirty
counter is constant 1. The speculator array needs a size of dnnz/(WT )e, equivalent to
the number of tiles. Since W and T are typically set to relatively large values, the
auxiliary arrays merely slightly increase overall space requirement.

For each thread-bunch, we executes S +1 binary searches in the row pointer array
of size m+1. Thus O(dnnz/(SWT )e× (S+1)× log2(m+1)) = O(nnz log2(m)/WT )
is work complexity of this part. On the whole, generating segment descriptor needs
O(m) time. Collecting element-wise products needs O(nnz) time. For each tile, seg-
mented sum needs O(WT + log2(T )) time. Thus all segmented sum operations need
O(dnnz/(WT )e(WT + log2(T ))) = O(nnz + nnz log2(T )/WT ) time. Saving entries
to y needs O(m) time. Synchronization takes O(dnnz/(SWT )e) = O(nnz/SWT )
time. Possible re-arrangement needs O(m) time in the worst case. Thus overall
work complexity of our CSR-based SpMV algorithm is O(m+ nnz + nnz(log2(m) +
log2(T ))/WT ).
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Implementation Details

Based on the above analysis, we can see that when the input matrix is fixed, the cost
of our SpMV algorithm only depends on two parameters: T and W . In our algorithm
implementation, T is set to SIMD length of the used processor. Choosing W needs
to consider the capacity of on-chip scratchpad memory. The other two parameters
B and S are empirically chosen. Table 8.1 shows the selected parameters. Note that
double precision is not currently supported in Intel OpenCL implementation for its
GPUs.

Table 8.1: The selected parameters

Processor Intel AMD nVidia

Precision 32-bit
single

32-bit
single

64-bit
double

32-bit
single

64-bit
double

T 8 64 64 32 32
W 16 16 8 8 4
B 4 2 2 5 5
S 6 2 5 7 7

We implement the first stage of our algorithm in OpenCL for the Intel and AMD
platforms (and CUDA for the nVidia platform) for GPU execution and the second
stage in standard C language running on the CPU part. Since our algorithm needs
CPU and GPU share some arrays, we allocate all arrays in Shared Virtual Memory
supported by OpenCL for the best performance. On the nVidia platform, we use
Unified Memory in CUDA SDK.

8.4.2 Experimental Results

Experimental Setup

We use three heterogeneous processors, Intel Core i3-5010U, AMD A10-7850K APU
and nVidia Tegra K1, for evaluating the CSR-based SpMV algorithms. Tables B.4
and B.5 shows specifications of the three processors. All of them are composed of
multiple CPU cores and GPU cores. The platforms from AMD and nVidia are based
on the design of Figure 3.5(a); the Intel platform uses the design of Figure 3.5(b).The
two types of cores in the Intel heterogeneous processor share a 3 MB last level cache.
In contrast, GPU cores in the AMD heterogeneous processor can snoop the L2 cache
of size 4 MB on the CPU side. Unlike those, the cache systems of the CPU part and the
GPU part in the nVidia Tegra processor are completely separate. Note that currently
the Intel GPU can run OpenCL program only on Microsoft Windows operating system.
Also note that we use kB, MB and GB to denote 210, 220 and 230 bytes, respectively;
and use GFlop to denote 109 flops.

To analyze efficiency of the proposed SpMV algorithm, we also benchmark parallel
CSR-based SpMV using some other libraries or methods on CPUs and GPUs.

On CPUs, we execute three CSR-based SpMV approaches: (1) OpenMP-accelerated
basic row block method, (2) pOSKI library [36] using OSKI [177] as a building block,
and (3) Intel MKL v11.2 Update 2 in Intel Parallel Studio XE 2015 Update 2. The three
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approaches are running on all CPU cores of the used heterogeneous processors. For
the Intel CPU, we report results from MKL, since it always delivers the best perfor-
mance and the pOSKI is not supported by the used Microsoft Windows operating
system. For the AMD CPU, we report the best results of the three libraries, since none
of the three libraries outperforms all the others. For the ARM CPU included in the
nVidia Tegra K1 platform, we only report results from OpenMP, since the current
pOSKI and Intel MKL implementations do not support the ARM architecture. More-
over, single-threaded naı̈ve implementation on CPU is included in our benchmark as
well.

On GPUs, we benchmark variants of the CSR-scalar and the CSR-vector algorithms
proposed in [21]. The OpenCL version of the CSR-scalar method is extracted from
PARALLUTION v1.0.0 [126] and evaluated on the AMD platform. The OpenCL
implementation of the CSR-vector method is extracted from semantically equivalent
CUDA code in the CUSP library v0.4.0 and executed on both the Intel and the AMD
platforms. On the nVidia platform, we run the CSR-based SpMV from vendor-
supplied cuSPARSE v6.0 and CUSP v0.4.0 libraries.

For all tests, we run SpMV 200 times and record averages. The implicit data
transfer (i.e., matrices and vectors data copy from their sources to OpenCL Shared
Virtual Memory or CUDA Unified Memory) is not included in our evaluation, since
SpMV operation is normally one building block of more complex applications. All
participating methods conduct general SpMV, meaning that symmetry is not consid-
ered although some input matrices are symmetric. The throughput (flops per second)
is calculated by

2× nnz
runtime

.

The bandwidth (bytes per second) is calculated by

(m+ 1 + nnz)× sizeof(idx type) + (nnz + nnz +m) ∗ sizeof(val type)
runtime

.

Benchmark Suite

To evaluate our method, we choose 20 unstructured matrices from the benchmark
suite. Table 8.2 lists main information of the evaluated sparse matrices. The first 14
matrices of the benchmark suite have been widely used in previous work [21, 170,
188, 8, 120, 184]. The last 6 matrices are chosen as representatives of irregular matri-
ces extracted from graph applications, such as circuit simulation and optimization
problems. Appendix A has details of the selected matrices.

The first 10 matrices are relatively regular, due to short distance between the
average value and the maximum value of nnz/row. The other matrices are relatively
irregular. In this context, ‘regular’ is used for a sparse matrix including rows of
roughly the same size. In contrast, an ‘irregular matrix’ can have some very long rows
and many very short rows. For example, matrices generated from power-law graphs
can have a few rows with O(n) nonzero entries and many rows with O(1) nonzero
entries.
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Id Name Dimensions nnz
nnz per row

(min, avg, max)
r1 Dense 2K×2K 4.0M 2K, 2K, 2K
r2 Protein 36K×36K 4.3M 18, 119, 204
r3 FEM/Spheres 83K×83K 6.0M 1, 72, 81
r4 FEM/Cantilever 62K×62K 4.0M 1, 64, 78
r5 Wind Tunnel 218K×218K 11.6M 2, 53, 180
r6 FEM/Harbor 47K×47K 2.4M 4, 50, 145
r7 QCD 49K×49K 1.9M 39, 39, 39
r8 FEM/Ship 141K×141K 7.8M 24, 55, 102
r9 Economics 207K×207K 1.3M 1, 6, 44
r10 Epidemiology 526K×526K 2.1M 2, 3, 4
i1 FEM/Accelerator 121K×121K 2.6M 0, 21, 81
i2 Circuit 171K×171K 959K 1, 5, 353
i3 Webbase 1M×1M 3.1M 1, 3, 4.7K
i4 LP 4K×1.1M 11.3M 1, 2.6K, 56.2K
i5 ASIC 680k 683K×683K 3.9M 1, 6, 395K
i6 boyd2 466K×466K 1.5M 2, 3, 93K
i7 dc2 117K×117K 766K 1, 6, 114K
i8 ins2 309K×309K 2.8M 5, 8, 309K
i9 rajat21 412K×412K 1.9M 1, 4, 119K
i10 transient 179K×179K 962K 1, 5, 60K

Table 8.2: The benchmark suite.

Performance Analysis

Figures 8.6 and 8.7 show throughput of single precision and double precision SpMV
of the tested CSR-based approaches, respectively.

In Figure 8.6, we can see that on the Intel heterogeneous processor, our approach
obtains up to 6.90x and on average 2.57x speedup over the CSR-vector method run-
ning on the used GPU. Although the speedup mainly comes from irregular matrices,
our method generally does not obviously lose performance on regular matrices. Fur-
ther, compared to CPU cores running MKL, both GPU SpMV algorithms are slower.
For our algorithm, the main reason is that the integrated GPU implements scratchpad
memory in its L3 cache, which has one order of magnitude higher latency compared
to fast scratchpad in nVidia or AMD GPUs. Our algorithm in fact heavily uses
scratchpad memory for storing and reusing segment descriptor, element-wise prod-
ucts and other shared data by threads. Thus even though the GPU part of the Intel
heterogeneous processor has higher single precision theoretical peak performance
than its CPU part, the delivered SpMV throughput is lower than expected. For the
CSR-vector method, the low performance has another reason: small thread-bunch
of size 8 dramatically increases loop overhead [15], which is one of the well known
bottlenecks [74] of GPU programming.

In Figures 8.6 and 8.7, we can see that on the AMD heterogeneous processor, our
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(a) Dense (b) Protein (c) FEM/Spheres

(d) FEM/Cantilever (e) Wind Tunnel (f) FEM/Harbor

(g) QCD (h) FEM/Ship (i) Economics

(j) Epidemiology (k) FEM/Accelerator (l) Circuit

(m) Webbase (n) LP (o) ASIC 680k

(p) boyd2 (q) dc2 (r) ins2

(s) rajat21 (t) transient Harmonic mean

Figure 8.6: Throughput (GFlop/s) of the single precision CSR-based SpMV algorithms
running on the three platforms.
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(a) Dense (b) Protein (c) FEM/Spheres

(d) FEM/Cantilever (e) Wind Tunnel (f) FEM/Harbor

(g) QCD (h) FEM/Ship (i) Economics

(j) Epidemiology (k) FEM/Accelerator (l) Circuit

(m) Webbase (n) LP (o) ASIC 680k

(p) boyd2 (q) dc2 (r) ins2

(s) rajat21 (t) transient Harmonic mean

Figure 8.7: Throughput (GFlop/s) of the double precision CSR-based SpMV algo-
rithms running on the AMD and the nVidia platforms.
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method delivers up to 71.90x (94.05x) and on average 22.17x (22.88x) speedup over
the single (double) precision CSR-scalar method running on the used GPU. Compared
to the GPU CSR-vector method, our algorithm achieves up to 16.07x (14.43x) and
on average 5.61x (4.47x) speedup. The CSR-scalar and the CSR-vector methods give
very low throughput while running the last 6 irregular matrices, because of the
problem of load imbalance. Further, we find that the Intel heterogeneous processor’s
GPU is actually faster than the AMD GPU while running the last 6 matrices. The
reason is that the shorter thread-bunch (8 in Intel GPU vs. 64 in AMD GPU) brings a
positive influence for saving SIMD idle cost by executing a much shorter vector width
for dramatically imbalanced row distribution. On the other hand, for several very
regular matrices with short rows, e.g., Epidemiology, the CSR-scalar method offers
the best performance because of almost perfect load balance and execution of short
rows without loop cost. For most regular matrices, our method delivers comparable
performance over the best CPU algorithm.

In Figures 8.6 and 8.7, we can see that on the nVidia platform, our method delivers
up to 5.91x (6.20x) and on average 2.69x (2.53x) speedup over the single (double)
precision SpMV in the CUSP library running on the used GPU. Compared to cuS-
PARSE, our method has higher speedups. Since the both libraries use CSR-vector
algorithm, those speedups are within expectations. Consider the Tegra K1 platform
only contains one single GPU core, the problem of load imbalance on this device is
not as heavy as on the above AMD platform. As a result, the speedups are not as high
as those from the AMD processor. Here our method delivers on average 1.41x (1.42x)
speedup over OpenMP-accelerated SpMV on the quad-core ARM CPU, while using
single (double) precision benchmark.

Figure 8.8 shows bandwidth utilization of our algorithm proposed in this section.
We can see that the regular matrices can use bandwidth more efficiently compared to
the irregular ones. Considering the throughput speedups listed above, our method
can obtain higher bandwidth utilization than the other CSR-based SpMV algorithms
running on GPUs.

Parameter Selection

We further conduct experiments to exploit how selected parameters influence overall
performance.

Figure 8.9 shows dependency of the overall performance (harmonic means of
the 20 benchmarks) on the parameters, while we fix all the parameters except for
parameter W (i.e., workload per thread). We can see that in general the overall
performance goes up as parameter W increases. This trend matches the algorithm
complexity analysis described in Section 3.3. However, when W is larger than a
certain value, the overall performance degrades. The reason is that device occupancy
may decrease while more on-chip scratchpad memory is allocated forWT work space
of each thread-bunch.

Figure 8.10 shows the trend of the overall performance while we change parameter
S (i.e., the number of iterations of each thread-bunch) and fix all the other parameters.
We can see that if we assign more work to each thread-bunch, a better performance
can be expected. The performance improvement mainly comes from higher on-chip
resource reuse.
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(a) Single precision SpMV on Intel Core i3-5010U

(b) Single precision and double precision SpMV on AMD A10-7850K

(c) Single precision and double precision SpMV on nVidia Tegra K1

Figure 8.8: Bandwidth utilization (GB/s) of our CSR-based SpMV algorithm running
on the three platforms. Theoretical bandwidth from the hardware specifications are
marked up using black lines.

8.5 CSR5-Based SpMV

8.5.1 Algorithm Description

Recall the CSR5 format described in Chapter 6, since information (tile ptr, tile -
desc, col idx and val) of its 2D tiles are independent of each other, all tiles can
execute concurrently. On GPUs, we assign a thread bunch for each tile. On CPUs
and Xeon Phi, we use OpenMP pragma for assigning the tiles to available x86 cores.
Furthermore, the columns inside a tile are independent of each other as well. So we
assign a thread on GPU cores or an SIMD lane on x86 cores to each column in a tile.
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(a) Intel, SP (b) AMD, SP (c) nVidia, SP (d) AMD, DP (e) nVidia, DP

Figure 8.9: Single precision (SP) and double precision (DP) SpMV performance of our
algorithm on the three platforms while parameter W changes and all the others fixed
to the best observed values (see Table 8.1).

(a) Intel, SP (b) AMD, SP (c) nVidia, SP (d) AMD, DP (e) nVidia, DP

Figure 8.10: Single precision (SP) and double precision (DP) SpMV performance of
our algorithm on the three platforms while parameter S changes and all the others
fixed to the best observed values(see Table 8.1).

While running the CSR5-based SpMV, each column in a tile can extract information
from bit flag and label the segments in its local data to three colors: (1) red means
a sub-segment unsealed from its top, (2) green means a completely sealed segment
existed in the middle, and (3) blue means a sub-segment unsealed from its bottom.
There is an exception that if a column is unsealed both from its top and from its
bottom, it is colored to red.

Algorithm 32 shows the pseudocode of the CSR5-based SpMV algorithm. Fig-
ure 8.11 plots an example of this procedure. We can see that the green segments can
directly save their partial sums to y without any synchronization, since the indices
can be calculated by using tile ptr and y offset. In contrast, the red and the
blue sub-segments have to further add their partial sums together, since they are not
complete segments. For example, the sub-segments B2, R2 and R3 in Figure 8.11 have
contributions to the same row, thus an addition is required. This addition operation
needs the fast segmented sum shown in Algorithm 13 and Figure 4.3. Furthermore, if
a tile has any empty rows, the empty offset array is accessed to get correct global
indices in y.
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Figure 8.11: The CSR5-based SpMV in a tile. Partial sums of the green segments are
directly stored to y. The red and the blue sub-segments require an extra segmented
sum before issuing off-chip write.

Consider the synchronization among the tiles, since the same matrix row can be
influenced by multiple 2D tiles running concurrently, the first and the last segments of
a tile need to store to y by atomic add (or a global auxiliary array used in device-level
reduction, scan or segmented scan [63, 161]). In Figure 8.11, the atomic add operations
are highlighted by arrow lines with plus signs.

For the last entries not in a complete tile (e.g., the last two nonzero entries of the
matrix in Figure 6.2), we execute a conventional CSR-vector method after all of the
complete 2D tiles have been consumed. Note that even though the last tile (i.e., the
incomplete one) does not have tile desc arrays, it can extract a starting position
from tile ptr.

In Algorithm 32, we can see that the main computation (lines 5–21) only contains
very basic arithmetic and logic operations that can be easily programmed on all
mainstream processors with SIMD units. As the most complex part in our algorithm,
the fast segmented sum operation (line 22) only requires a prefix-sum scan, which
has been well-studied and can be efficiently implemented by using CUDA, OpenCL
or x86 SIMD intrinsics.

8.5.2 Experimental Results

Experimental Setup

We evaluate the CSR5-based SpMV and 11 state-of-the-art formats and algorithms on
four mainstream platforms: dual-socket Intel CPUs, an nVidia GPU, an AMD GPU
and an Intel Xeon Phi. The platforms and participating approaches are shown in
Table 8.3.

Host of the two GPUs is a machine with AMD A10-7850K APU, dual-channel
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Algorithm 32 The CSR5-based SpMV for the tidth tile.

1: MALLOC(*tmp, ω)
2: MEMSET(*tmp, 0)
3: MALLOC(*last tmp, ω)
4: /*use empty offset[y offset[i]] instead of y offset[i] for a
tile with any empty rows*/

5: for i = 0 to ω − 1 in parallel do
6: sum← 0
7: for j = 0 to σ − 1 do
8: ptr ← tid× ω × σ + j × ω + i
9: sum← sum + val[ptr] × x[col idx[ptr]]

10: /*check bit flag[i][j]*/
11: if /*end of a red sub-segment*/ then
12: tmp[i− 1]← sum
13: sum← 0
14: else if /*end of a green segment*/ then
15: y[tile ptr[tid] + y offset[i]]← sum
16: y offset[i]← y offset[i] +1
17: sum← 0
18: end if
19: end for
20: last tmp[i]← sum //end of a blue sub-segment
21: end for
22: FAST SEGMENTED SUM(*tmp, ω, *seg offset) . Alg. 13
23: for i = 0 to ω − 1 in parallel do
24: last tmp[i]← last tmp[i] + tmp[i]
25: y[tile ptr[tid] + y offset[i]]← last tmp[i]
26: end for
27: FREE(*tmp)
28: FREE(*last tmp)

DDR3-1600 memory and 64-bit Ubuntu Linux v14.04 installed. Host of the Xeon Phi
is a machine with Intel Xeon E5-2680 v2 CPU, quad-channel DDR3-1600 memory and
64-bit Red Hat Enterprise Linux v6.5 installed. Detailed specifications of the used
four devices are listed in Tables B.1, B.2 and B.3.

Here we evaluate double precision SpMV. So cuDPP library [76, 161], clSpMV [170]
and yaSpMV [188] are not included since they only support single precision floating
point as data type. Two recently published methods [103, 173] are not tested since the
source code is not available to us yet.

We use OpenCL profiling scheme for timing SpMV on the AMD platform and
record wall-clock time on the other three platforms. For all participating formats and
algorithms, we evaluate SpMV 10 times (each time contains 1000 runs and records
the average) and report the best observed result.
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The testbeds The participating formats and algorithms

Dual-socket
Intel Xeon
E5-2667 v3

(1) The CSR-based SpMV in Intel MKL 11.2 Update 1.
(2) BiCSB v1.2 using CSB [35] with bitmasked register block [33].
(3) pOSKI v1.0.0 [36] using OSKI v1.0.1h [177, 178] kernels.
(4) The CSR5-based SpMV implemented by using OpenMP and
AVX2 intrinsics.

An nVidia
GeForce
GTX 980

(1) The best CSR-based SpMV [21] from cuSPARSE v6.5 and
CUSP v0.4.0 [51].
(2) The best HYB [21] from the above two libraries.
(3) BRC [8] with texture cache enabled.
(4) ACSR [7] with texture cache enabled.
(5) The CSR5-based SpMV implemented by using CUDA v6.5.

An AMD
Radeon R9
290X

(1) The CSR-vector method [21] extracted from CUSP v0.4.0 [51].
(2) The CSR-Adaptive algorithm [80] implemented in ViennaCL
v1.6.2 [154].
(3) The CSR5-based SpMV implemented by using OpenCL v1.2.

An Intel
Xeon Phi
5110p

(1) The CSR-based SpMV in Intel MKL 11.2 Update 1.
(2) The ESB [122] with dynamic scheduling enabled.
(3) The CSR5-based SpMV implemented by using OpenMP and
MIC-KNC intrinsics.

Table 8.3: The testbeds and participating formats and algorithms.

Benchmark Suite

In Table 8.4, we list 24 sparse matrices as our benchmark suite for all platforms. The
first 20 matrices have been widely adopted in previous SpMV research [8, 21, 80, 122,
170, 184, 188]. The other 4 matrices are chosen since they have more diverse sparsity
structures. Table A.1 in Appendix A gives more details of the matrices.

To achieve a high degree of differentiation, we categorize the 24 matrices in
Table 8.4 into two groups: (1) regular group with the upper 14 matrices, (2) irregular
group with the lower 10 matrices. This classification is mainly based on the minimum,
average and maximum lengths of the rows. Matrix dc2 is a representative of the group
of irregular matrices. Its longest single row contains 114K nonzero entries, i.e., 15%
nonzero entries of the whole matrix with 117K rows. This sparsity pattern challenges
the design of efficient storage format and SpMV algorithm.

Isolated SpMV Performance

Figure 8.12 shows double precision SpMV performance of the 14 regular matrices
on the four platforms. We can see that, on average, all participating algorithms
deliver comparable performance. On the CPU platform, Intel MKL obtains the best
performance on average and the other 3 methods behave similar. On the nVidia GPU,
the CSR5 delivers the highest throughput. The ACSR format is slower than the others,
because its binning strategy leads to non-coalesced memory access. On the AMD
GPU, the CSR5 achieves the best performance. Although the dynamic assigning in
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Id Name Dimensions nnz
nnz per row

(min, avg, max)
r1 Dense 2K×2K 4.0M 2K, 2K, 2K
r2 Protein 36K×36K 4.3M 18, 119, 204
r3 FEM/Spheres 83K×83K 6.0M 1, 72, 81
r4 FEM/Cantilever 62K×62K 4.0M 1, 64, 78
r5 Wind Tunnel 218K×218K 11.6M 2, 53, 180
r6 QCD 49K×49K 1.9M 39, 39, 39
r7 Epidemiology 526K×526K 2.1M 2, 3, 4
r8 FEM/Harbor 47K×47K 2.4M 4, 50, 145
r9 FEM/Ship 141K×141K 7.8M 24, 55, 102
r10 Economics 207K×207K 1.3M 1, 6, 44
r11 FEM/Accelerator 121K×121K 2.6M 0, 21, 81
r12 Circuit 171K×171K 959K 1, 5, 353
r13 Ga41As41H72 268K×268K 18.5M 18, 68, 702
r14 Si41Ge41H72 186K×186K 15.0M 13, 80, 662
i1 Webbase 1M×1M 3.1M 1, 3, 4.7K
i2 LP 4K×1.1M 11.3M 1, 2.6K, 56.2K
i3 Circuit5M 5.6M×5.6M 59.5M 1, 10, 1.29M
i4 eu-2005 863K×863K 19.2M 0, 22, 6.9K
i5 in-2004 1.4M×1.4M 16.9M 0, 12, 7.8K
i6 mip1 66K×66K 10.4M 4, 155, 66.4K
i7 ASIC 680k 683K×683K 3.9M 1, 6, 395K
i8 dc2 117K×117K 766K 1, 6, 114K
i9 FullChip 2.9M×2.9M 26.6M 1, 8, 2.3M
i10 ins2 309K×309K 2.8M 5, 8, 309K

Table 8.4: The benchmark suite.

the CSR-Adaptive method can obtain better scalability than the CSR-vector method, it
still cannot achieve near perfect load balance. On the Xeon Phi, the CSR5 is slower than
Intel MKL and the ESB format. The main reason is that the current generation of Xeon
Phi can only issue up to 4 relatively slow threads per core (i.e., up to 4× 60 threads
in total on the used device), and thus the latency of gathering entries from vector x
becomes the main bottleneck. Then reordering or partitioning nonzero entries based
on the column index for better cache locality behaves well in the ESB-based SpMV.
However, later on we will show that this strategy leads to very high preprocessing
cost.

Figure 8.13 shows double precision SpMV performance of the 10 irregular matrices.
We can see that the irregularity can dramatically impact SpMV throughput of some
approaches. On the CPU platform, the row block method based Intel MKL is now
slower than the other methods. The CSR5 outperforms the others because of better
SIMD efficiency from the AVX2 intrinsics. On the nVidia GPU, the CSR5 brings the
best performance because of the near perfect load balance. The other two irregularity-
oriented formats, HYB and ACSR, behave well but still suffer from imbalanced work
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(r1) Dense (r2) Protein (r3) FEM/Spheres

(r4) FEM/Cantilever (r5) Wind Tunnel (r6) QCD

(r7) Epidemiology (r8) FEM/Harbor (r9) FEM/Ship

(r10) Economics (r11) FEM/Accelerator (r12) Circuit

(r13) Ga41As41H72 (r14) Si41Ge41H72 (r1–r14) Harmonic mean

Figure 8.12: The SpMV performance of the 14 regular matrices. (nGPU=nVidia GPU,
aGPU=AMD GPU)

decomposition. Note that the ACSR format is based on Dynamic Parallelism, a
technical feature only available on recently released nVidia GPUs. On the AMD GPU,
the CSR5 greatly outperforms the other two algorithms using the row block methods.
Because the minimum work unit of the CSR-Adaptive method is one row, the method
delivers degraded performance for matrices with very long rows1. On the Xeon Phi,
the CSR5 can greatly outperform the other two methods in particular when matrices
are too irregular to expose cache locality of x by the ESB format. Furthermore, since
ESB is designed on top of the ELL format, it cannot obtain the best performance for

1Note that we use an implementation of the CSR-Adaptive from the ViennaCL Library. The AMD’s
version of the CSR-Adaptive may have slightly different performance.
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(i1) Webbase (i2) LP (i3) Circuit5M

(i4) eu-2005 (i5) in-2004 (i6) mip1

(i7) ASIC 680k (i8) dc2 (i9) FullChip

(i10) ins2 (i1–i10) Harmonic mean

Figure 8.13: The SpMV performance of the 10 irregular matrices. (nGPU=nVidia
GPU, aGPU=AMD GPU)

some irregular matrices.
Overall, the CSR5 achieves better performance (on the two GPU devices) or

comparable performance (on the two x86 devices) for the 14 regular matrices. For
the 10 irregular matrices, compared to pOSKI, ACSR, CSR-Adaptive and ESB as the
second best methods, the CSR5 obtains on average speedups 1.18x, 1.29x, 2.73x and
3.93x (up to 3.13x, 2.54x, 5.05x and 10.43x), respectively.

Effects of Auto-Tuning

In section 3.2, we discussed a simple auto-tuning scheme for the parameter σ on
GPUs. Figure 8.14 shows its effects (the x axis is the matrix ids). We can see that
compared to the best performance chosen from a range of σ = 4 to 48, the auto-tuned
σ does not have obvious performance loss. On the nVidia GPU, the performance loss
is on average -4.2%. On the AMD GPU, the value is on average -2.5%.
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(a) The nVidia GTX 980 GPU.

(b) The AMD R9-290X GPU.

Figure 8.14: Auto-tuning effects on the two GPUs.

Format Conversion Cost

The format conversion from the CSR to the CSR5 includes four steps: (1) memory
allocation, (2) generating tile ptr, (3) generating tile desc, and (4) transposition
of col idx and val arrays. Figure 8.15 shows the cost of the four steps for the 24
matrices (the x axis is the matrix ids) on the four used platforms. Cost of one single
SpMV operation is used for normalizing format conversion cost on each platform.
We can see that the conversion cost can be on average as low as the overhead of a
few SpMV operations on the two GPUs. On the two x86 platforms, the conversion
time is longer (up to cost of around 10–20 SpMV operations). The reason is that the
conversion code is manually SIMDized using CUDA or OpenCL on GPUs, but only
auto-parallelized by OpenMP on x86 processors.

Iteration-Based Scenarios

Since both the preprocessing (i.e., format conversion from a basic format) time and the
SpMV time are important for real-world applications, we have designed an iteration-
based benchmark. This benchmark measures the overall performance of a solver with
n iterations. We assume the input matrix is already stored in the CSR format. So
the overall cost of using the CSR format for the scenarios is nT csr

spmv, where T csr
spmv is
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(a) The CPU. (b) The nVidia GPU.

(c) The AMD GPU. (d) The Xeon Phi.

Figure 8.15: The normalized format conversion cost.

execution time of one CSR-based SpMV operation. For a new format, the overall cost
is Tnew

pre + nTnew
spmv , where Tnew

pre is preprocessing time and the Tnew
spmv is one SpMV time

using the new format. Thus we can calculate speedup of a new format over the CSR
format in the scenarios, through (nT csr

spmv)/(T
new
pre + nTnew

spmv).

Tables 8.5 and 8.6 show the new formats’ preprocessing cost (i.e., Tnew
pre /T

new
spmv) and

their speedups over the CSR format in the iteration-based scenarios when n = 50 and
n = 500. The emboldened font in the tables shows the highest positive speedups on
each platform. The compared baseline is the fastest CSR-based SpMV implementation
(i.e., Intel MKL, nVidia cuSPARSE/CUSP, CSR-vector from CUSP, and Intel MKL,
respectively) on each platform. We can see that because of the very low preprocessing
overhead, the CSR5 can further outperform the previous methods when doing 50
iterations and 500 iterations. Although two GPU methods, the ACSR format and
the CSR-Adaptive approach, in general have shorter preprocessing time, they suffer
from lower SpMV performance and thus cannot obtain the best speedups. On all
platforms, the CSR5 always achieves the highest overall speedups. Moreover, the
CSR5 is the only format that obtains higher performance than the CSR format when
only 50 iterations are required.
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Benchmark The 14 regular matrices

Metrics
Preprocessing Speedup Speedup

to SpMV of #iter.=50 of #iter.=500
ratio avg best avg best

CPU-BiCSB 538.01x 0.06x 0.11x 0.35x 0.60x
CPU-pOSKI 12.30x 0.43x 0.88x 0.57x 0.99x
CPU-CSR5 6.14x 0.52x 0.74x 0.59x 0.96x
nGPU-HYB 13.73x 0.73x 0.98x 0.92x 1.21x
nGPU-BRC 151.21x 0.26x 0.31x 0.80x 0.98x
nGPU-ACSR 1.10x 0.68x 0.93x 0.72x 1.03x
nGPU-CSR5 3.06x 1.04x 1.34x 1.10x 1.45x
aGPU-CSR-Adaptive 2.68x 1.00x 1.33x 1.07x 1.48x
aGPU-CSR5 4.99x 1.04x 1.39x 1.14x 1.51x
Phi-ESB 922.47x 0.05x 0.15x 0.33x 0.88x
Phi-CSR5 11.52x 0.54x 1.14x 0.65x 1.39x

Table 8.5: Preprocessing cost and its impact on the iteration-based scenarios.

Benchmark The 10 irregular matrices

Metrics
Preprocessing Speedup Speedup

to SpMV of #iter.=50 of #iter.=500
ratio avg best avg best

CPU-BiCSB 331.77x 0.13x 0.24x 0.60x 1.07x
CPU-pOSKI 10.71x 0.62x 1.66x 0.83x 2.43x
CPU-CSR5 3.69x 0.91x 2.37x 1.03x 2.93x
nGPU-HYB 28.59x 1.86x 13.61x 2.77x 25.57x
nGPU-BRC 51.85x 1.17x 7.60x 2.49x 15.47x
nGPU-ACSR 3.04x 5.05x 41.47x 5.41x 51.95x
nGPU-CSR5 1.99x 6.43x 48.37x 6.77x 52.31x
aGPU-CSR-Adaptive 1.16x 3.02x 27.88x 3.11x 28.22x
aGPU-CSR5 3.10x 5.72x 135.32x 6.04x 141.94x
Phi-ESB 222.19x 0.27x 1.15x 1.30x 2.96x
Phi-CSR5 9.45x 3.43x 18.48x 4.10x 21.18x

Table 8.6: Preprocessing cost and its impact on the iteration-based scenarios.

8.6 Comparison to Recently Developed Methods

In recent years, some new formats have been designed for SpMV operation on various
processor architectures.

Because of less off-chip memory access and better on-chip memory localiza-
tion, SpMV using block-based formats, such as OSKI [177, 179, 178], pOSKI [36],
CSB [35, 33], BELLPACK [45], BCCOO/BCCOO+ [188], BRC [8] and RSB [129], at-
tracted the most attention. However, block-based formats heavily rely on sparsity
structure, meaning that the input matrix is required to have a block structure to meet
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potential block layout. Therefore, block-based formats are mainly suitable for some
matrices generated from scientific computation problems, but may not fit irregular
matrices generated from graph applications. Our methods proposed in this chap-
ter is insensitive to the sparsity structure of input matrix, thus a generally better
performance is achieved.

A lot of research has focused on improving row block method CSR-based SpMV.
Williams et al. [184] proposed multiple optimization techniques for SpMV on multi-
core CPUs and Cell B.E. processor. Nishtala et al. [139] designed a high-level data
partitioning method for SpMV to achieve better cache locality on multicore CPUs.
Pichel et al. [147] evaluated how reordering techniques influence performance of
SpMV on GPUs. Baskaran and Bordawekar [16] improved off-chip and on-chip
memory access patterns of SpMV on GPUs. Reguly and Giles [151] improved thread
cooperation for better GPU cache utilization. Ashari et al. [7] utilized static reordering
and the Dynamic Parallelism scheme offered by nVidia GPUs for fast SpMV operation.
Greathouse et al. [80] grouped contiguous rows for better runtime load balancing
on GPUs. LightSpMV [123] proposed to dynamically distribute matrix rows over
warps in order for more balanced CSR-based SpMV without the requirement of
generating auxiliary data structures, and implemented this approach using atomic
operations and warp shuffle functions as the fundamental building blocks. However,
again, the row block methods cannot achieve good performance for input matrix with
dramatically imbalanced row distribution. In contrast, our methods are independent
with the sparsity structure of input matrix.

As mentioned, using segmented sum method as a building block is potentially a
better generic method for the CSR-based SpMV. An early segmented sum method
GPU SpMV was introduced by Sengupta et al. [161] and Garland [76] and imple-
mented in the cuDPP library [86]. But the cost of segmented sum and global memory
access degrade overall SpMV performance. Zhang [195] improved backward seg-
mented scan for a better cache efficiency and implemented the CSR-based SpMV
on multicore CPUs. Recently, nVidia’s Modern GPU library [18] implemented an
improved reduction method, which has been used as a back-end of cuDPP. However,
its performance still suffered by pre- and post-processing empty rows in global mem-
ory space. The segmented sum methods have been used in two recently published
papers [173, 188] for the SpMV on either GPUs or Xeon Phi. However, both of them
need to store the matrix in COO-like formats to utilize the segmented sum. Our
CSR-based SpMV methods, in contrast, uses scratchpad memory more efficiently
and utilizes the two types of cores in a heterogeneous processor for better workload
distribution. Moreover, the CSR5 format saves useful row index information in a
compact way, and thus can be more efficient both for the format conversion and for
the SpMV operation.

Compared with the CSR5 work designed for cross-platform SpMV on CPUs, GPUs
and Xeon Phi, our CSR-based SpMV approach does not need to process any format
conversion or generate any auxiliary data for the input CSR matrix. Consider the
format conversion from the CSR to the CSR5 merely needs the cost of a few SpMV
operations, the CSR5-based SpMV and the CSR-based SpMV can find their own
application scenarios, such as solvers with different number of iterations.



9. Level 3: Sparse Matrix-Matrix
Operations

9.1 Overview

General matrix-matrix multiplication (GEMM) [114, 23, 128] is one of the most crucial
operations in computational science and modeling. The operation multiplies a matrix
A of size m × k with a matrix B of size k × n and gives a resulting matrix C of
size m× n. In many linear solvers and graph problems such as algebraic multigrid
method (AMG) [20], breadth first search [79], finding shortest path [39], colored
intersection [95] and sub-graphs [175], it is required to exploit sparsity of the two
input matrices and the resulting matrix because their dense forms normally need
huge storage space and computation cost for the zero entries. Therefore SpGEMM
becomes a common building block in these applications.

Compared to CPUs, modern graphics processing units (GPUs) promise much
higher peak floating-point performance and memory bandwidth. Thus a lot of
research has concentrated on GPU accelerated sparse matrix-dense vector multipli-
cation [21, 120, 121] and sparse matrix-dense matrix multiplication [143, 176] and
achieved relatively attractive performance. However, despite the prior achievements
on these GPU sparse BLAS routines, massive parallelism in GPUs is still significantly
underused for the SpGEMM algorithm, because it has to handle three more challeng-
ing problems: (1) the number of nonzero entries in the resulting matrix is unknown
in advance, (2) very expensive parallel insert operations at random positions in the
resulting matrix dominate the execution time, and (3) load balancing must account
for sparse data in both input matrices with diverse sparsity structures.

Previous GPU SpGEMM methods [20, 57, 140, 51, 52, 83] have proposed a few
solutions for the above problems and demonstrated relatively good time and space
complexity. However, the experimental results showed that they either only work best
for fairly regular sparse matrices [57, 140, 83], or bring extra high memory overhead
for matrices with some specific sparsity structures [20, 51, 52]. Moreover, in the usual
sense, none of these methods can constantly outperform well optimized SpGEMM
approach [92] for multicore CPUs.

121
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9.2 Contributions

The work described in this chapter particularly focuses on improving GPU SpGEMM
performance for matrices with arbitrary irregular sparsity structures by proposing
more efficient methods to solve the above three problems on GPUs and emerging
CPU-GPU heterogeneous processors.

This chapter makes the following contributions:

• A 4-stage framework for implementing SpGEMM on manycore platforms in-
cluding homogeneous GPUs and heterogeneous processors composed of CPU
cores, GPU cores and shared virtual memory. This framework effectively orga-
nizes memory allocation, load balancing and GPU kernel launches.

• A hybrid method that initially allocates memory of upper bound size for short
rows and progressively allocates memory for long rows. The experimental
results show that our method saves a large amount of global memory space and
efficiently utilizes the very limited on-chip scratchpad memory.

• An efficient parallel insert method for long rows of the resulting matrix by
using the fastest merge algorithm available on GPUs. We make an experimental
evaluation and choose GPU merge path algorithm from five candidate GPU
merge approaches.

• A load balancing oriented heuristic method that assigns rows of the resulting
matrix to multiple bins with different subsequent computational methods. Our
approach guarantees load balancing in all calculation steps.

Our framework and corresponding algorithms delivers excellent performance
in two experimental scenarios: (1) calculating triple matrix Galerkin products (i.e.,
PTAP ) in AMG for 2D and 3D Poisson problems, and (2) computing matrix squaring
(i.e., A2) on a benchmark suite composed of 23 sparse matrices with diverse sparsity
structures.

In the context of Galerkin products, our method constantly outperforms the state-
of-the-art GPU SpGEMM methods in two vendor supplied libraries cuSPARSE and
CUSP. Average speedups of 1.9x (up to 2.6x) and 1.7x (up to 2.7x) are achieved when
compared to cuSPARSE and CUSP, respectively.

In the context of matrix squaring, more comparison methods are included. First, on
two nVidia GPUs (i.e., a GeForce GTX Titan Black and a GeForce GTX 980), compared
with cuSPARSE and CUSP, our approach delivers on average 3.1x (up to 9.5x) and
4.6x (up to 9.9x) speedups, respectively. Second, compared to a recently developed
CUDA-specific SpGEMM method RMerge [83], our method offers on average 2.5x
(up to 4.9x) speedup on the nVidia GeForce GTX 980 GPU. Third, compared to the
SpGEMM method in the latest Intel Math Kernel Library (MKL) on a six-core Xeon
E5-2630 CPU and quad-channel system memory, our method gives on average 2.4x
(up to 5.2x) and 2.1x (up to 4.2x) speedups on the nVidia GeForce GTX 980 GPU and
an AMD Radeon R9 290X GPU, respectively.

Furthermore, our approach can utilize re-allocatable memory controlled by CPU-
GPU heterogeneous processors. On an AMD A10-7850K heterogeneous processor,
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compared to merely using its GPU cores, our framework delivers on average 1.2x (up
to 1.8x) speedup while utilizing re-allocatable shared virtual memory in the system.

9.3 Basic Method

9.3.1 Gustavson’s Algorithm
For the sake of generality, the SpGEMM algorithm description starts from discussion
of the GEMM and gradually takes sparsity of the matrices A, B and C into consider-
ation. For the matrix A, we write aij to denote the entry in the ith row and the jth
column of A and ai∗ to denote the vector consisting of the ith row of A. Similarly, the
notation a∗j denotes the jth column of A. In the GEMM, the ith row of the resulting
matrix C can be defined by

ci∗ = (ai∗ · b∗1, ai∗ · b∗2, . . . , ai∗ · b∗p),

where the operation · is the dot product of the two vectors.
We first give consideration to the sparsity of the matrix A. Without loss of general-

ity, we assume that the ith row of A only consists of two nonzero entries in the kth
and the lth column, respectively. Thus ai∗ becomes (aik, ail). Since all other entries
are zeros, we do not record them explicitly and ignore their influence on the dot
products in the calculation of the ith row of C. Then we obtain

ci∗ = (aikbk1 + ailbl1, aikbk2 + ailbl2, . . . , aikbkp + ailblp).

We can see in this case, only entries in the kth and the lth row of B have contribu-
tion to the ith row of C. Then row vector form instead of column vector form is used
for the matrix B. So we obtain

ci∗ = aikbk∗ + ailbl∗.

Since the matrix B is sparse as well, again without loss of generality, we assume
that the kth row of B has only two nonzero entries in the rth and the tth column, and
the lth row of B also has only two nonzero entries in the sth and the tth column. So
the two rows are given by bk∗ = (bkr, bkt) and bl∗ = (bls, blt). Then

ci∗ = aik(bkr, bkt) + ail(bls, blt).

Because the matrix C is also sparse and the ith row of C only has three nonzero
entries in the rth, the sth and the tth column, the row can be given by

ci∗ = (cir, cis, cit),

where cir = aikbkr, cis = ailbls and cit = aikbkt + ailblt.
In general there are more nonzero entries per rows of the matrices A, B and C.

But from the above derivation we can see that the SpGEMM can be represented by
operations on row vectors of the matrices. Therefore, in this work we store all sparse
matrices in the CSR format. Actually compressed sparse column (CSC) format is also
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widely used for sparse matrices stored in column-major order [77]. The SpGEMM in
the CSC format is almost the same as in the CSR format except rows are changed to
columns and vice versa.

The above CSR-based SpGEMM algorithm can be performed by pseudocode in
Algorithm 33. An early description of this algorithm was given by Gustavson [85].

Algorithm 33 Pseudocode for the SpGEMM.

1: for each ai∗ in the matrix A do
2: set ci∗ to ∅
3: for each nonzero entry aij in ai∗ do
4: load bj∗
5: for each nonzero entry bjk in bj∗ do
6: value← aijbjk
7: if cik 6∈ ci∗ then
8: insert cik to ci∗
9: cik ← value

10: else
11: cik ← cik + value
12: end if
13: end for
14: end for
15: end for

9.3.2 Performance Considerations

Memory Pre-Allocation For the Resulting Matrix

Compared to SpGEMM, other sparse matrix multiplication operations (e.g., multipli-
cation of sparse matrix and dense matrix [143, 176, 158] and its special case sparse
matrix-vector multiplication [21, 120, 121, 184, 33]) pre-allocate a dense resulting ma-
trix or vector. Thus the size of the result of the multiplication is trivially predictable,
and the corresponding entries are stored to predictable memory addresses. However,
because the number of nonzero entries in the resulting sparse matrix C is unknown
in advance, precise memory allocation of the SpGEMM is impossible before real com-
putation. Moreover, physical address of each new entry is unknown either (consider
line 7 in Algorithm 33, the position k is only a column index that cannot trivially map
to a physical address on memory space).

To solve this problem, the previous SpGEMM algorithms proposed four different
solutions: (1) precise method, (2) probabilistic method, (3) upper bound method, and
(4) progressive method.

The first method, precise method, pre-computes a simplified SpGEMM in the same
computational pattern. We can imagine that multiplication of sparse boolean matri-
ces is more efficient than multiplication of sparse floating-point matrices. RMerge
algorithm and the SpGEMM methods in cuSPARSE and MKL are representatives of
this approach. Even though the pre-computation generates precise size of nnz(C),
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this method is relatively expensive since the SpGEMM operation in the same pattern
is executed twice.

The second method, probabilistic method, estimates an imprecise nnz(C). This
group of approaches [4, 47, 144] are based on random sampling and probability
analysis on the input matrices. Since they do not guarantee a safe lower bound for the
resulting matrix C and extra memory has to be allocated while the estimation fails,
they were mostly used for estimating the shortest execution time of multiplication of
multiple sparse matrices.

The third method, upper bound method, computes an upper bound of the number of
nonzero entries in the resulting matrix C and allocates corresponding memory space.
Numerically, the upper bound size equals nnz(Ĉ), or half of flops, the number of
necessary arithmetic operations. The ESC algorithms use this method for memory
pre-allocation. Even though this approach saves cost of the pre-computation in the
precise method, it brings another problem that the intermediate matrix Ĉ may be too
large to fit in the device global memory. Since the SpGEMM algorithm does not take
into consideration cancellation that eliminates zero entries generated by arithmetic
operations, the resulting matrix is normally larger than the input matrices. Table 9.2
shows that nnz(Ĉ) is much larger than nnz(C) while squaring some matrices. For
example, the sparse matrix Wind Tunnel generates 626.1 million nonzero entries (or
7.5 GB memory space for 32-bit index and 64-bit value) for the intermediate matrix Ĉ
while the real productC (i.e.,A2) only contains 32.8 million nonzero entries. Although
the upper bound method can partition the intermediate matrix Ĉ into multiple sub-
matrices, higher global memory pressure may reduce overall performance.

The last method, progressive method, first allocates memory of a proper size, starts
sparse matrix computation and re-allocates the buffer if larger space is required. Some
CPU sparse matrix libraries use this method. For instance, sparse matrix computation
in the Matlab [77] increases the buffer by a ratio of 50% if the current memory space
is exhausted.

Since the upper bound method sacrifices space efficiency for the sake of improved
performance and the progressive method is good at saving space, we use a hybrid
method composed of the both approaches. However, compared to the relatively
convenient upper bound method, it is hard to directly implement a progressive
method for discrete GPUs. The reason is that although modern GPU devices have the
ability of allocating device global memory while kernels are running, they still cannot
re-allocate device memory on the fly. We will describe our hybrid method designed
for discrete GPUs in the next section.

On the other hand, emerging heterogeneous processors, composed of multiple
CPU cores and GPU cores in one chip, supply both flexibility and efficiency. In this
architecture, integrated GPU cores can directly use system memory allocated by the
CPU part. Then data transfer through connection interfaces such as PCIe link can
be avoided to obtain higher performance [82]. This gives our SpGEMM algorithm a
chance to let integrated GPUs use re-allocatable system memory for a better overall
performance. Later on, we will show the corresponding performance gain by using
an AMD APU.
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Parallel Insert Operations

As shown in Algorithm 33, for each trivial arithmetic computation (line 6), one much
more expensive insert operation (lines 7–11) is required. To the best of our knowledge,
none of the previous GPU SpGEMM methods takes into account that the input
sequence (line 4) is ordered because of the CSR format. One of our algorithm design
objectives is to efficiently utilize this property. Based on experiments by Kim et al. [98],
as the SIMD units are getting wider and wider, merge sort methods will outperform
hash table methods on the join-merge problem, which is a similar problem in the
SpGEMM. Then our problem converts to finding a fast GPU method for merging
sorted sequences. Later on we will describe our strategy in detail.

Load Balancing

Because distribution patterns of nonzero entries in both input sparse matrices can
be very diverse (consider plots of the matrices in Table 9.2), input space-based data
decomposition [57, 171] normally does not bring efficient load balancing. One ex-
ception is that computing SpGEMM for huge sparse matrices on large scale dis-
tributed memory systems, 2D and 3D decomposition on input space methods demon-
strated good load balancing and scalability by utilizing efficient communication
strategies [79, 13, 35]. However, in this chapter we mainly consider load balancing
for fine-grained parallelism in GPU and CPU-GPU shared memory architectures.

Therefore we use the other group of load balancing methods based on output
space decomposition. Dalton et al. [52] presented a method that sorts rows of the
intermediate matrix Ĉ, divides it into 3 sub-matrices that include the rows in different
size ranges, and uses differentiated ESC methods for the sub-matrices. We have a
similar consideration, but our implementation is completely different. We do not
strictly sort rows of the intermediate matrix Ĉ but just assign rows to a fixed number
of bins through a much faster linear time traverse on CPU. Moreover, we decompose
the output space in a more detailed way that guarantees much more efficient load
balancing. We will demonstrate that our method is always load balanced in all stages
for maximizing resource utilization of GPUs.

9.4 CSR-Based SpGEMM

9.4.1 Framework

Our SpGEMM framework includes four stages: (1) calculating upper bound, (2)
binning, (3) computing the resulting matrix, and (4) arranging data. Figure 9.1 plots
this framework.

9.4.2 Algorithm Design

The first stage, calculating upper bound, generates the upper bound number of
nonzero entries in each row of the resulting matrix C. We create an array U of size m,
where m is the number of rows of C, for the upper bound sizes of the rows. We use
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Figure 9.1: The SpGEMM framework composed of four stages.

one GPU thread for computing each entry of the array U . Algorithm 34 describes this
procedure.

Algorithm 34 Pseudocode for the first stage on GPUs.

1: for each entry ui in U in parallel do
2: ui ← 0
3: for each nonzero entry aij in ai∗ do
4: ui ← ui + nnz(bj∗)
5: end for
6: end for

The second stage, binning, deals with load balancing and memory pre-allocation.
We first allocate 38 bins and put them into five bin groups. The bins contain the indices
of the entries in the array U and present as one array of size m with 38 segments.
Then all rows are assigned to corresponding bins according to the number of nonzero
entries. Finally, based on the sizes of the bins, we allocate a temporary matrix for
nonzero entries in the resulting matrix C.

The first bin group includes one bin that contains the indices of the rows of size 0.
The second bin group also only has one bin that contains the indices of the rows of
size 1. Because the rows in the first two bins only require trivial operations, they are
excluded from subsequent more complex computation on GPUs. Thus a better load
balancing can be expected.

The third bin group is composed of 31 bins that contain the indices of the rows
of sizes 2–32, respectively. Since the sizes of these rows are no more than the size of
a single thread bunch (32 in current nVidia GPUs or 64 in current AMD GPUs) and
these rows require non-trivial computation, using one thread bunch or one thread
group for each row cannot bring efficient instruction throughput on GPUs. Therefore,
we use one thread for each row. Further, because each bin only contains the rows
of the same upper bound size, the bins can be executed separately on GPUs with
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different kernel programs for efficient load balancing. In other words, 31 GPU kernel
programs will be executed for the 31 bins, if not empty.

The fourth bin group consists of 4 bins that contain the indices of the rows located
in size ranges 33–64, 65–128, 129–256 and 257–512, respectively. The rows of these sizes
are grouped because of three reasons: (1) each of them is large enough to be efficiently
executed by a thread group, (2) each of them is small enough for scratchpad memory
(48 kB per core in current nVidia Kepler GPUs, 96 kB per core in current nVidia
Maxwell GPUs and 64 kB per core in current AMD Graphics Core Next, or GCN,
GPUs), and (3) the final sizes of these rows in the resulting matrix C are predictable
in a reasonable small range (no less than the lower bound of size 1 and no more than
the corresponding upper bound sizes). Even though the rows in each bin do not
have exactly the same upper bound size, a good load balancing still can be expected
because each row is executed by using one thread group and inter-thread group load
balancing is naturally guaranteed by the GPU low-level scheduling sub-systems.

The fifth bin group includes the last bin that contains the indices of the rest of the
rows of size larger than 512. These rows have two common features: (1) their sizes
can be too large (recall nnzr(Ĉ) in Table 9.2) to fit in the scratchpad memory, and (2)
predicting the final sizes of these rows to a small range (scratchpad memory level) is
not possible in advance. Therefore, we execute them in a unified progressive method
described later. Again because we use one thread group for each row, load balancing
is naturally guaranteed.

Since we do not use precise method for memory pre-allocation, a temporary
memory space for the resulting matrix C is required. We design a hybrid method that
allocates a CSR format sparse matrix C̃ of the same size of the resulting matrix C as
temporary matrix. We set nnz(c̃i∗) to ui while the row index i is located in the bin
groups 1–4 because compared with modern GPU global memory capacity, the total
space requirement of these rows is relatively small. For the rows in the bin group 5,
we set nnz(c̃i∗) to a fixed size 256 since normally this is an efficient working size for
the scratchpad memory. Therefore, we can see that if all of the indices of the rows are
in the bin groups 1–4, our hybrid method converts to the upper bound method, on
the other extreme end, our method converts to the progressive method. But generally,
we obtain benefits from the both individual methods. The stage 2 is executed on CPU
since it only requires a few simple linear time traverses, which are more efficient for
the CPU cache sub-systems. The pseudocode is shown in Algorithm 35.

The third stage, computing the resulting matrix, generates nnz(ci∗) and the final
nonzero entries stored in the temporary matrix C̃.

For the rows in the bin groups 1–2, we simply update the numbers of correspond-
ing nonzero entries. For the rows in the bin groups 3–5, we use three totally different
methods: (1) heap method, (2) bitonic ESC method, and (3) merge method, respec-
tively. Note that each bin has a counter (at the host side) that records the number
of rows included. So the host can easily decide if a GPU kernel will be issued for a
certain bin. In other words, our approach only issue kernels for non-empty bins.

The heap method described in Section 7.4.1 is used for each row in the bin group
3. For the rows in each bin of the bin group 4, a typical ESC algorithm described
in Section 7.4.2 is used. For the rows in the bin group 5, our method inserts each
input nonzero entry to the corresponding row of the resulting matrix C (lines 7–11 in
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Algorithm 35 Pseudocode for the second stage on a CPU core.

1: for each entry ui in U do
2: if ui = 0 then . The 1st bin group
3: insert i to bin0
4: nnz(c̃i∗)← 0
5: else if ui = 1 then . The 2nd bin group
6: insert i to bin1
7: nnz(c̃i∗)← 1
8: else if ui ≥ 2 && ui ≤ 32 then . The 3rd bin group
9: insert i to binui

10: nnz(c̃i∗)← ui
11: else if ui ≥ 33 && ui ≤ 64 then . The 4th bin group
12: insert i to bin33
13: nnz(c̃i∗)← ui
14: else if ui ≥ 65 && ui ≤ 128 then . The 4th bin group
15: insert i to bin34
16: nnz(c̃i∗)← ui
17: else if ui ≥ 129 && ui ≤ 256 then . The 4th bin group
18: insert i to bin35
19: nnz(c̃i∗)← ui
20: else if ui ≥ 257 && ui ≤ 512 then . The 4th bin group
21: insert i to bin36
22: nnz(c̃i∗)← ui
23: else if ui > 512 then . The 5th bin group
24: insert i to bin37
25: nnz(c̃i∗)← 256
26: end if
27: end for
28: nnz(C̃)←

∑
nnz(c̃i∗)

Algorithm 33) in parallel. Because the resulting rows in the bin group 5 may require
more involved entries, method described in Section 7.4.3 is used.

As we allocate a limited scratchpad memory space for the resulting sequence of
the bin group 5, a potential overflow may happen. In this case, we first compare total
size of the two sequences (note that the input sequence is in the thread registers, but
not in the scratchpad memory yet) with the allocated size of the resulting sequence
in the scratchpad memory. If a merge operation is not allowed, our method records
current computation position as a checkpoint and dumps the resulting sequence from
the scratchpad memory to the global memory. Then the host allocates more global
memory (we use 2x each time) and re-launches kernel with a 2x large scratchpad
memory setting. The relaunched kernels obtain checkpoint information, and load
existing results to the scratchpad memory and continue the computation. The global
memory dumping and reloading bring an extra overhead, but actually it does not
affect the total execution time too much because of three reasons: (1) the global
memory access is almost completely coalesced, (2) the latency could be hidden
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by subsequent computation, and (3) this overhead is only a small factor of large
computation (short rows normally do not face this problem). For very long rows
that exceed the scratchpad memory capacity, our method still allocates a space in the
scratchpad memory as a level-1 merge sequence, executes the same merge operations
on it and merges the level-1 sequence in the scratchpad memory and the resulting
sequence in the global memory only once before the kernel is ready to return.

It is worth noting that the parameters of the binning depends on specifications
(e.g., thread bunch size and scratchpad memory capacity) of GPU architectures. In this
chapter, we use the abovementioned fixed-size parameters for assigning the rows into
the bins since the current nVidia GPUs and AMD GPUs have comparable hardware
specifications. However, the strategies in stages 2 and 3 can be easily extended for
future GPUs with changed architecture designs.

The fourth stage, arranging data, first sums the numbers of nonzero entries in all
rows of the resulting matrix C and allocates its final memory space. Then our method
copies existing nonzero entries from the temporary matrix C̃ to the resulting matrix
C. For the rows in the bin group 1, the copy operation is not required. For the rows
in the bin group 2, we use one thread for each row. For the rest of the rows in the
bin groups 3–5, we use one thread group for each row. After all copy operations, the
SpGEMM computation is done.

9.5 Experimental Results

We use four platforms (one CPU and three GPUs) shown in Table 9.1 for evaluating
the SpGEMM algorithms. Tables B.1 and B.2 list specifications of the used hardware.
The host side of all GPUs is a quad-core 3.7GHz CPU in an AMD A10-7850K APU
with 8 GB DDR3-1600 dual-channel system memory and 64-bit Ubuntu Linux 14.04.

The testbeds The participating formats and algorithms
Intel Xeon E5-2630 (1) Intel MKL v11.0.

nVidia GeForce GTX Titan Black

(1) CUSP v0.4.0 [51].
(2) cuSPARSE v6.5 [140].
(3) RMerge [83].
(4) bhSPARSE (this work).

nVidia GeForce GTX 980

(1) CUSP v0.4.0 [51].
(2) cuSPARSE v6.5 [140].
(3) RMerge [83].
(4) bhSPARSE (this work).

AMD Radeon R9 290X (1) bhSPARSE (this work).

Table 9.1: The testbeds and participating algorithms.
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9.5.1 Galerkin Products

Testing Scenario

Calculating Galerkin products plays an important role in AMG. We use smoothed
aggregation preconditioner with Jacobi smoother (described in [20] and implemented
in the CUSP library [51]) as a test scenario for evaluating SpGEMM algorithms. In
each level of an AMG hierarchy in this context, we multiply three sparse matrices PT ,
A and P , where rectangular matrix PT is a restriction operator, square matrix A is
initially the system matrix, and rectangular matrix P is a prolongation operator.

Performance Comparison

Figures 9.2 and 9.3 show execution time of Galerkin products PTAP in constructing
an AMG hierarchy (typically including 3-5 levels) for a smoothed aggregation pre-
conditioner in single precision and double precision, respectively. The input system
matrix A is from 2D 5-point, 2D 9-point, 3D 7-point or 3D 27-point Poisson prob-
lem, respectively. The two 2D problems have dimensions 1024× 1024 and generate
system matrices of size 1048576× 1048576. The two 3D problems have dimensions
101×101×101 and generate system matrices of size 1030301×1030301. The SpGEMM
approaches in three libraries, CUSP v0.4.0, cuSPARSE v6.5 and bhSPARSE1, are tested
on nVidia GeForce GTX Titan Black and GeForce GTX 980 GPUs. To obtain the best
SpGEMM performance, CUSP uses the coordinate (COO) format for its input matri-
ces. The other two libraries use the CSR format. Because the operation multiplies
three sparse matrices PT , A and P , the order of multiplication may influence overall
performance. Here we test the two possible orders (PTA)P and PT (AP ). In our
experiments, matrix data transfer time between the host and the device is not included
since the SpGEMM is normally one of the building blocks for more complex problem
completely running on GPUs.

In Figures 9.2 and 9.3, we can see that our method is constantly faster than
SpGEMM algorithms in the other two libraries. When using system matrix from 3D
27-point Poisson problem, bhSPARSE delivers up to 2.6x and up to 2.7x speedups
over cuSPARSE and CUSP, respectively. On average, speedups of 1.9x and 1.7x are
achieved when compared with the above two libraries, respectively.

As for the order of multiplication, we can see that our method in general gives
better performance while doing PT (AP ), compared to running (PTA)P . In contrast,
the order of multiplication does not bring obvious performance difference for CUSP.
When cuSPARSE is used, (PTA)P delivers better throughput for the two 2D problems,
but degrades throughput for the two 3D problems.

9.5.2 Matrix Squaring

Benchmark Suite

We also evaluate multiplication of sparse square matrix and itself (i.e., C = A2)
to avoid introducing another sparse matrix as a multiplier with different sparsity

1We call our library bhSPARSE since this work is under the Project Bohrium [104].
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(a) 2D 5-point (b) 2D 9-point

(c) 3D 7-point (d) 3D 27-point

Figure 9.2: Execution time (in milliseconds) comparison of single precision SpGEMM
(SpSGEMM) from three libraries CUSP, cuSPARSE and bhSPARSE in the context of
smoothed aggregation preconditioner with Jacobi smoother. The system matrices are
from four Poisson problems. Both (PTA)P and PT (AP ) are tested on two nVidia
GPUs.

structure. We choose 23 sparse matrices as our benchmark suite. 16 of them were
widely used for performance evaluations in previous sparse matrix computation
research [120, 121, 57, 52, 83, 92, 158, 184, 34]. The other 7 new matrices are chosen
since they bring more diverse irregular sparsity structures that challenge the SpGEMM
algorithm design. The variety of sparsity structures are from many application
fields, such as finite element methods, macroeconomic model, protein data, circuit
simulation, web connectivity and combinational problem. All of the 23 matrices are
downloadable from the University of Florida Sparse Matrix Collection [56]. Note that
symmetry in the sparse matrices is not used in our SpGEMM algorithm, although
some matrices in the benchmark suite are symmetric. Also note that we use the
standard CSR format that does not consider symmetric storage pattern.



CHAPTER 9. LEVEL 3: SPARSE MATRIX-MATRIX OPERATIONS 133

(a) 2D 5-point (b) 2D 9-point

(c) 3D 7-point (d) 3D 27-point

Figure 9.3: Execution time (in milliseconds) comparison of double precision SpGEMM
(SpDGEMM) from three libraries CUSP, cuSPARSE and bhSPARSE in the context of
smoothed aggregation preconditioner with Jacobi smoother. The system matrices are
from four Poisson problems. Both (PTA)P and PT (AP ) are tested on two nVidia
GPUs.

Besides the input matrix A, the work complexities of the different SpGEMM
algorithms also depend on the intermediate matrix Ĉ and the resulting matrix C.
So we list characteristics of the three matrices in Table 9.2. The set of characteristics
includes matrix dimension (n), the number of nonzero entries (nnz) and the average
number of nonzero entries in rows (nnzr). The upper 9 matrices in the table have
relatively regular nonzero entry distribution mostly on the diagonal. The other 14
matrices include various irregular sparsity structures.
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Table 9.2: Overview of sparse matrices for benchmarking matrix squaring. Here
nnz(Ĉ) is the upper bound size of A2. Numerically, nnz(Ĉ) equals to half of flops,
the number of necessary arithmetic operations while doing SpGEMM. nnz(C) is the
number of nonzero entries in the resulting matrix C = A2.

Id Name n
nnz(A),
nnzr(A)

nnz(Ĉ),
nnzr(Ĉ)

nnz(C),
nnzr(C)

r1 FEM/Cantilever 63 K 4 M, 64 269.5 M, 4315 17.4 M, 279
r2 Economics 207 K 1.3 M, 6 7.6 M, 37 6.7 M, 32
r3 Epidemiology 526 K 2.1 M, 4 8.4 M, 16 5.2 M, 10
r4 Filter3D 106 K 2.7 M, 25 86 M, 808 20.2 M, 189
r5 Wind Tunnel 218 K 11.6 M, 53 626.1 M, 2873 32.8 M, 150
r6 FEM/Ship 141 K 7.8 M, 55 450.6 M, 3199 24.1 M, 171
r7 FEM/Harbor 47 K 2.4 M, 51 156.5 M, 3341 7.9 M, 169
r8 Protein 36 K 4.3 M, 119 555.3 M, 15249 19.6 M, 538
r9 FEM/Spheres 83 K 6 M, 72 463.8 M, 5566 26.5 M, 318
i1 2cubes sphere 102 K 1.6 M, 16 27.5 M, 270 9 M, 88
i2 FEM/Accelerator 121 K 2.6 M, 22 79.9 M, 659 18.7 M, 154
i3 Cage12 130 K 2 M, 16 34.6 M, 266 15.2 M, 117
i4 Hood 221 K 10.8 M, 49 562 M, 2548 34.2 M, 155
i5 M133-b3 200 K 0.8 M, 4 3.2 M, 16 3.2 M, 16
i6 Majorbasis 160 K 1.8 M, 11 19.2 M, 120 8.2 M, 52
i7 Mario002 390 K 2.1 M, 5 12.8 M, 33 6.4 M, 17
i8 Mono 500Hz 169 K 5 M, 30 204 M, 1204 41.4 M, 244
i9 Offshore 260 K 4.2 M, 16 71.3 M, 275 23.4 M, 90
i10 Patents main 241 K 0.6 M, 2 2.6 M, 11 2.3 M, 9
i11 Poisson3Da 14 K 0.4 M, 26 11.8 M, 871 3 M, 219
i12 QCD 49 K 1.9 M, 39 74.8 M, 1521 10.9 M, 222
i13 Circuit 171 K 1 M, 6 8.7 M, 51 5.2 M, 31
i14 Webbase 1 M 3.1 M, 3 69.5 M, 70 51.1 M, 51

Performance Comparison

The single precision and double precision absolute performance of the SpGEMM
algorithms that compute C = A2 are shown in Figures 9.4 and 9.5, respectively. Four
GPU methods from CUSP v0.4.0, cuSPARSE v6.5, RMerge [83] and bhSPARSE are
evaluated on three GPUs: nVidia GeForce GTX Titan Black, nVidia GeForce GTX 980
and AMD Radeon R9 290X. One CPU method in Intel MKL v11.0 is evaluated on Intel
Xeon E5-2630 CPU. The performance of another recent ESC-based GPU SpGEMM
work [52] is not included in the comparison because its source code is not available to
us yet. The Intel MKL SpGEMM program is multithreaded and utilizes all six cores
in the Intel Xeon CPU. For GPU algorithms, again, the host-device data transfer time
is not included.

We first compare the performance of the four different GPU SpGEMM algorithms
on the nVidia GPUs. We can see that bhSPARSE always outperforms CUSP, cuSPARSE
and RMerge on most sparse matrices in the benchmark suite. Compared to the two
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(a) FEM/Cantilever (b) Economics

(c) Epidemiology (d) Filter3D (e) Wind Tunnel

(f) FEM/Ship (g) FEM/Harbor (h) Protein

(i) FEM/Spheres (j) 2cubes sphere (k) FEM/Accelerator

(l) Cage12 (m) Hood (n) M133-b3

(o) Majorbasis (p) Mario002 (q) Mono 500Hz

(r) Offshore (s) Patents main (t) Poisson3Da

(u) QCD (v) Circuit (w) Webbase

Figure 9.4: Single precision SpGEMM (SpSGEMM) GFlop/s comparison.
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(a) FEM/Cantilever (b) Economics

(c) Epidemiology (d) Filter3D (e) Wind Tunnel

(f) FEM/Ship (g) FEM/Harbor (h) Protein

(i) FEM/Spheres (j) 2cubes sphere (k) FEM/Accelerator

(l) Cage12 (m) Hood (n) M133-b3

(o) Majorbasis (p) Mario002 (q) Mono 500Hz

(r) Offshore (s) Patents main (t) Poisson3Da

(u) QCD (v) Circuit (w) Webbase

Figure 9.5: Double precision SpGEMM (SpDGEMM) GFlop/s comparison.
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vendor supplied libraries, our method obtains better SpSGEMM and SpDGEMM
performance on 21 and 21 matrices out of the whole 23 matrices over CUSP, and on 19
and 21 matrices over cuSPARSE, respectively. Compared to RMerge, another CUDA-
specific method, bhSPARSE achieves better SpSGEMM and SpDGEMM performance
on 19 and 10 matrices on the GTX Titan Black GPU, and on 19 and 20 matrices on the
GTX 980 GPU.

From the perspective of speedup, our method delivers on average 4.6x (up to 9.6x)
and 3.1x (up to 8.8x) speedup on SpSGEMM performance over CUSP and cuSPARSE,
and on average 4.6x (up to 9.9x) and 3.1x (up to 9.5x) speedup on SpDGEMM perfor-
mance over them, respectively. Compared to RMerge, our method offers on average
1.4x (up to 2.5x) speedup and 2.8x (up to 4.9x) speedup for SpSGEMM and on average
1.0x (up to 1.5x) and 2.1x (up to 3.4x) speedup for SpDGEMM on the GTX Titan Black
GPU and GTX 980 GPU, respectively.

We can see that the cuSPARSE method outperforms our approach when and
only when the input matrices are fairly regular (belong to the first 9 matrices in
Table 9.2). For all irregular matrices and some regular ones, our bhSPARSE is always
more efficient. On the other hand, the absolute performance of the CUSP method is
very stable since its execution time almost only depends on the number of necessary
arithmetic operations. Therefore this approach is insensitive to sparsity structures.
Actually this insensitivity may bring better performance on matrices with some
specific sparsity structures. However in most cases, the CUSP method suffers with
higher global memory pressure. The RMerge method offers significant speedups over
the other methods on three matrices (i.e., Epidemiology, M133-b3 and Mario002), which
are characterized by short rows. However, for the other matrices, RMerge supplies
relatively lower performance due to imbalanced workload and high-overhead global
memory operations between iterative steps. Further, we can see that since RMerge
mainly relies on computational power of the SIMD units, its performance decreases
from GTX Titan Black (2880 CUDA cores running at 889 MHz) to GTX 980 (2048
CUDA cores running at 1126 MHz). In contrast, our method also depends on capacity
of scratchpad memory. Thus we can see that bhSPARSE obtains better performance
while using GTX 980 (1536 kB scratchpad) over GTX Titan Black (720 kB scratchpad).

Compared to Intel MKL on the Intel CPU, our CUDA-based implementation on
the nVidia GPUs obtains better SpSGEMM and SpDGEMM performance on all 23
matrices, and delivers on average 2.5x (up to 5.2x) and 2.2x (up to 4.9x) SpSGEMM
and SpDGEMM speedup, respectively. Our OpenCL-based implementation on the
AMD GPU in the machine 2 obtains better SpSGEMM and SpDGEMM performance
on 23 and 18 matrices, and delivers on average 2.3x (up to 4.2x) and 1.9x (up to 3.8x)
SpSGEMM and SpDGEMM speedup, respectively.

The relative performance (harmonic mean) of the SpGEMM algorithms that com-
puteC = A2 is shown in Figure 9.6. We can see that our method in general delivers the
best performance on the used testbeds while running the 23 matrices as a benchmark
suite. If we set the Intel MKL SpGEMM performance in this scenario as a baseline,
our approach is the only GPU SpGEMM that constantly outperforms well optimized
CPU method.
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(a) Single precision SpGEMM

(b) Double precision SpGEMM

Figure 9.6: Average (harmonic mean) relative performance comparison of the 23
matrices, using SpGEMM method in MKL on Intel Xeon E5-2630 as a baseline.

Memory Pre-allocation Comparison

Figure 9.7 shows the comparison of the three memory pre-allocation methods, while
benchmarking C = A2. We can see that, for small matrices (e.g., 2cubes sphere),
our hybrid method shows exactly the same space requirements as the upper bound
method does. However, for large matrices, allocated memory sizes through our hybrid
method are much closer to the memory sizes allocated by the precise method. Taking
the matrix Protein as an example, our hybrid method requires 2.7x memory space over
the precise method, while the upper bound method needs 20.6x space requirement.
One exception is the matrix Webbase, our hybrid method actually allocates more
memory space than the upper bound method. The reasons are that the reduced rate
of the intermediate matrix Ĉ to the resulting matrix C is very low (see Table 9.2) and
our 2x progression mechanism just allocates memory across the upper bound size.
But overall, our hybrid method saves space allocation of the upper bound method
and execution time of the precise method without introducing any significant extra



CHAPTER 9. LEVEL 3: SPARSE MATRIX-MATRIX OPERATIONS 139

space requirements.

(a) Absolute memory requirement

(b) Relative memory requirement

Figure 9.7: Global memory requirement comparison of the precise method, our hybrid
method and the upper bound method, when benchmarkingC = A2 on the 23 matrices.
The memory requirement of the precise method includes the two input matrices and
the resulting matrix. The memory requirements of the other two methods also contain
additional intermediate matrices. “Hmean” refers to harmonic mean.

9.5.3 Using Re-Allocatable Memory
For some matrices with relatively long rows in the bin group 5, our method dumps
scratchpad data to global memory, allocates a larger memory block, copies the old
data to the newly allocated portion, reloads values and continues processing. We
have to do the allocation/copy operation pair and pay the overhead since current
GPUs are not able to re-allocate memory (i.e., change the size of the memory block
pointed to a certain pointer). However, the emerging heterogeneous processors with
shared virtual memory (or unified memory) address space deliver a possibility that
lets integrated GPUs use system memory, which is re-allocatable from the CPU side.

We evaluated two memory allocation strategies (i.e., a typical allocation/copy
approach and an improved re-allocation approach) of our OpenCL-based SpGEMM
algorithm on the GPU part in the AMD A10-7850K APU (see Table B.5 in Appendix B
for specifications). Figure 9.8 shows the results. We can see that re-allocatable memory
brings on average 1.2x (up to 1.6x) speedup and on average 1.2x (up to 1.8x) speedup



140 9.5. EXPERIMENTAL RESULTS

for SpSGEMM and SpDGEMM, respectively. Therefore, our GPU SpGEMM method
may deliver further performance improvement on future GPUs with re-allocatable
memory, or on emerging heterogeneous processors composed of CPU cores and
GPU cores. Moreover, both CPU cores and GPU cores can be utilized for Stage 3 in
our framework. We leave this heterogenous workload partitioning (similar to the
methods described in [162, 164]) to future work.

(a) Single precision SpGEMM

(b) Double precision SpGEMM

Figure 9.8: C = A2 performance of bhSPARSE running with and without re-
allocatable memory on an AMD A10-7850K APU. Note that only executable matrices
that require memory re-allocation are included here. “Hmean” refers to harmonic
mean.
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9.6 Comparison to Recently Developed Methods

A classic CPU SpGEMM algorithm, also known as Matlab algorithm, was proposed
by Gilbert et al. [77]. This approach uses a dense vector-based sparse accumulator (or
SPA) and takes O(flops+ nnz(B) + n) time to complete the SpGEMM, where flops
is defined as the number of necessary arithmetic operations on the nonzero entries,
nnz(B) is defined as the number of nonzero entries in the matrix B, and n is the
number of rows/columns of the input square matrices. Matam et al. [130] developed
a similar Matlab algorithm implementation for GPUs. Sulatycke and Ghose [171]
proposed a cache hits-oriented algorithm runs in relatively longer time O(flops+n2).
A fast serial SpGEMM algorithm with time complexity O(nnz0.7n1.2 + n2+o(1)) was
developed by Yuster and Zwick [190]. Buluç and Gilbert [32] presented an SpGEMM
algorithm with time complexity independent to the size of the input matrices under
assumptions that the algorithm is used as a sub-routine of 2D distributed memory
SpGEMM and the input matrices are hypersparse (nnz < n).

Recent GPU-based SpGEMM algorithms showed better time complexity. The
SpGEMM algorithm in the cuSPARSE library [57, 140] utilized GPU hash table for the
insert operations (lines 7–11 in Algorithm 33). So time complexity of this approach
is O(flops) on average and O(flops nnzr(C)) in the worst case, where nnzr(C)
is defined as the average number of nonzero entries in the rows of the matrix C.
Because the algorithm allocates one hash table of fixed size for each row of C, the
space complexity is O(nnz(A) + nnz(B) + n+ nnz(C)).

The CUSP library [20, 51] developed an SpGEMM method called expansion,
sorting and compression (ESC) that expands all candidate nonzero entries generated
by the necessary arithmetic operations (line 6 in Algorithm 33) into an intermediate
sparse matrix Ĉ, sorts the matrix by rows and columns and compresses it into the
resulting matrix C by eliminating entries in duplicate positions. By using GPU radix
sort algorithm (with linear time complexity while size of the index data type of the
matrices is fixed) and prefix-sum scan algorithm (with linear time complexity) as
building blocks, time complexity of the ESC algorithm isO(flops+nnz(Ĉ)+nnz(Ĉ)).
Since nnz(Ĉ) equals half of flops, the ESC algorithm takes the optimal O(flops) time.
Dalton et al. [52] improved the ESC algorithm by executing sorting and compression
on the rows of Ĉ, but not on the entire matrix. Therefore fast on-chip memory
has a chance to be utilized more efficiently. The improved method sorts the very
short rows (of size no more than 32) by using sorting network algorithm (with time
complexity O(nnzr(Ĉ) log2(nnzr(Ĉ)))) instead of the radix sort algorithm which is
mainly efficient for long lists. So the newer method is more efficient in practice, even
though its time complexity is not lower than the original ESC algorithm. Because
both of the ESC algorithms allocate an intermediate matrix Ĉ, they have the same
space complexity O(nnz(A) + nnz(B) + nnz(Ĉ) + nnz(C)).

RMerge algorithm, recently proposed by Gremse et al. [83], iteratively merges
rows in the matrix B into the resulting matrix C. Because this approach underutilizes
thread interaction and generates one intermediate sparse matrix for each iteration step,
it works best for input matrices with evenly distributed short rows. For irregular input
matrices, load imbalance and large memory allocation make this method inefficient.
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Our experimental results show that the proposed SpGEMM method in general
outperforms the pervious SpGEMM methods designed for CPUs and GPUs.



10. Conclusion and Future Work

10.1 Conclusion

This thesis studied some key routines of Sparse BLAS and some fundamental data
structures and algorithms as their building blocks.

Chapter 4 proposed ad-heap, a new efficient heap data structure for the tightly
coupled CPU-GPU heterogeneous processors. Empirical studies were conducted
based on the theoretical analysis. The experimental results showed that the ad-heap
can obtain up to 1.5x and 3.6x performance of the optimal scheduling method on two
representative machines, respectively. To the best of our knowledge, the ad-heap is
the first fundamental data structure that efficiently leveraged the two different types
of cores in the emerging heterogeneous processors through fine-grained frequent
interactions between the CPUs and the GPUs. Further, the performance numbers
also showed that redesigning data structure and algorithm is necessary for exposing
higher computational power of the heterogeneous processors.

Chapter 6 proposed the CSR5 format. The format conversion from the CSR to the
CSR5 was very fast because of the format’s insensitivity to sparsity structure of the
input matrix.

Chapter 7 developed three methods for sparse vector addition. Those methods
have been used for adding rows of different sizes in the SpGEMM operation described
in Chapter 9.

Chapter 8 proposed an efficient method for SpMV on heterogeneous processors
using the CSR storage format. On three mainstream platforms from Intel, AMD
and nVidia, the method greatly outperforms row block method CSR-based SpMV
algorithms running on GPUs. The performance gain mainly comes from the newly
developed speculative segmented sum strategy that efficiently utilizes different types
of cores in a heterogeneous processor.

Chapter 8 also proposed the CSR5-based cross-platform SpMV algorithm for
CPUs, GPUs and Xeon Phi. The CSR5-based SpMV was implemented by a redesigned
segmented sum algorithm with higher SIMD utilization compared to the classic
methods. The experimental results showed that the CSR5 delivered high throughput
both in the isolated SpMV tests and in the iteration-based scenarios.

Chapter 9 demonstrated an efficient SpGEMM framework and corresponding
algorithms on GPUs and emerging CPU-GPU heterogeneous processors for solving
the three challenging problems in the SpGEMM. In the two experimental scenarios
using matrices with diverse sparsity structures as input, the SpGEMM algorithm

143
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delivered excellent absolute and relative performance as well as space efficiency over
the previous GPU SpGEMM methods. Moreover, on average, the approach obtained
around twice the performance of the start-of-the-art CPU SpGEMM method. Further,
the method obtained higher performance on emerging heterogeneous processors with
re-allocatable memory.

10.2 Future Work

Besides SpMV and SpGEMM, some other operations of Sparse BLAS such as multi-
plication of dense matrix and sparse vector or sparse matrix, and multiplication of
sparse matrix and sparse vector or dense matrix may be important for some scenarios
e.g., machine learning applications. Efficiently implementing them on CPUs/GPUs
with more cores and emerging stronger CPU-GPU heterogeneous processors is an
interesting future work.

In the SpMV and SpGEMM work designed for heterogeneous processors, we
assign different task to the CPU part and the GPU part in one heterogeneous processor.
However, the heaviest workload currently only runs on GPU cores, while the CPU
cores may be idle. Obviously, it is possible to schedule tasks in the first stage on both
CPU cores and GPU cores simultaneously for potentially higher throughput. Using
the ideas described in [111, 94, 162, 164] for utilizing both CPU cores and GPU cores
in a heterogeneous environment may further improve performance.

Furthermore, designing adaptive algorithms and sparse data structures for Sparse
BLAS in graph applications is another promising direction [97]. Whether graph
algorithms require a new set of primitives or can directly use current Sparse BLAS is
still an open question [31, 131], thus need studies both in theory and in practice.
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A. Benchmark Suite

To maintain a relatively fair performance comparison, Duff et al. [66] advocated build-
ing publicly accessible sparse matrix collections. In the past several decades, a few
collections (e.g., the SPARSKIT Collection [155], the Rutherford-Boeing Sparse Matrix
Collection [67], the Matrix Market Collection [29]and the University of Florida Sparse
Matrix Collection [56]) have been established and widely used in evaluating sparse
matrix algorithms. The latest University of Florida Sparse Matrix Collection [56]
is a superset of the former collections and includes over 2700 sparse matrices now.
Therefore, all matrices (except a dense matrix named Dense) used in this thesis are
downloaded from this collection. Details of matrices used in this thesis are listed in
the alphabetical order in Table A.1.

Table A.1: Overview of evaluated sparse matrices

Plot Information
Name: 2cubes sphere
#rows: 101,492
#columns: 101,492
#nonzeros: 1,647,264
#nonzeros per row (min; avg; max): 5; 16; 31
Author: E. Um
Kind: Electromagnetics problem
Description: FEM, electromagnetics, 2 cubes in a sphere.
Name: ASIC 680k
#rows: 682,862
#columns: 682,862
#nonzeros: 3,871,773
#nonzeros per row (min; avg; max): 1; 6; 395,259
Author: R. Hoekstra
Kind: Circuit simulation problem
Description: Sandia, Xyce circuit simulation matrix
(stripped).

163



164

Name: Boyd2
#rows: 466,316
#columns: 466,316
#nonzeros: 1,500,397
#nonzeros per row (min; avg; max): 2; 3; 93,262
Author: N. Gould
Kind: Optimization problem
Description: KKT matrix - convex QP (CUTEr).
Name: Cage12
#rows: 130,228
#columns: 130,228
#nonzeros: 2,032,536
#nonzeros per row (min; avg; max): 5; 15; 33
Author: A. van Heukelum
Kind: Directed weighted graph
Description: DNA electrophoresis, 12 monomers in polymer.
Name: Circuit
#rows: 170,998
#columns: 170,998
#nonzeros: 958,936
#nonzeros per row (min; avg; max): 1; 5; 353
Author: S. Hamm
Kind: Circuit simulation problem
Description: Motorola circuit simulation.
Name: Circuit5M
#rows: 5,558,326
#columns: 5,558,326
#nonzeros: 59,524,291
#nonzeros per row (min; avg; max): 1; 10; 1,290,501
Author: K. Gullapalli
Kind: Circuit simulation problem
Description: Large circuit from Freescale Semiconductor.
Name: Dc2
#rows: 116,835
#columns: 116,835
#nonzeros: 766,396
#nonzeros per row (min; avg; max): 1; 6; 114,190
Author: T. Lehner
Kind: Subsequent circuit simulation problem
Description: IBM EDA circuit simulation matrix.



APPENDIX A. BENCHMARK SUITE 165

Name: Dense
#rows: 2,000
#columns: 2,000
#nonzeros: 4,000,000
#nonzeros per row (min; avg; max): 2,000; 2,000; 2,000
Author: Unknown
Kind: Dense
Description: Dense matrix in sparse format.
Name: Economics
#rows: 206,500
#columns: 206,500
#nonzeros: 1,273,389
#nonzeros per row (min; avg; max): 1; 6; 44
Author: Unknown
Kind: Economic problem
Description: Macroeconomic model.
Name: Epidemiology
#rows: 525,825
#columns: 525,825
#nonzeros: 2,100,225
#nonzeros per row (min; avg; max): 2; 3; 4
Author: Unknown
Kind: 2D/3D problem
Description: 2D Markov model of epidemic.
Name: Eu-2005
#rows: 862,664
#columns: 862,664
#nonzeros: 19,235,140
#nonzeros per row (min; avg; max): 0; 22; 6,985
Author: Universita degli Studi di Milano
Kind: Directed graph
Description: Small web crawl of .eu domain.
Name: FEM/Accelerator
#rows: 121,192
#columns: 121,192
#nonzeros: 2,624,331
#nonzeros per row (min; avg; max): 0; 21; 81
Author: Unknown
Kind: 2D/3D problem
Description: FEM/Accelerator: Accelerator cavity design.
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Name: FEM/Cantilever
#rows: 62,451
#columns: 62,451
#nonzeros: 4,007,383
#nonzeros per row (min; avg; max): 1; 64; 78
Author: Unknown
Kind: 2D/3D problem
Description: FEM/Cantilever.
Name: FEM/Harbor
#rows: 46,835
#columns: 46,835
#nonzeros: 2,329,092
#nonzeros per row (min; avg; max): 4; 50; 145
Author: S. Bova
Kind: Computational fluid dynamics problem
Description: 3D CFD model, Charleston harbor.
Name: FEM/Ship
#rows: 140,874
#columns: 140,874
#nonzeros: 7,813,404
#nonzeros per row (min; avg; max): 24; 55; 102
Author: C. Damhaug
Kind: Structural problem
Description: DNV-Ex 4 : Ship section/detail from produc-
tion run-1999-01-17.
Name: FEM/Spheres
#rows: 83,334
#columns: 83,334
#nonzeros: 6,010,480
#nonzeros per row (min; avg; max): 1; 72; 81
Author: Unknown
Kind: 2D/3D problem
Description: FEM/Spheres: FEM concentric spheres.
Name: Filter3D
#rows: 106,437
#columns: 106,437
#nonzeros: 2,707,179
#nonzeros per row (min; avg; max): 8; 25; 112
Author: D. Hohlfield, T. Bechtold, H. Zappe
Kind: Model reduction problem
Description: Oberwolfach: tunable optical filter.
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Name: FullChip
#rows: 2,987,012
#columns: 2,987,012
#nonzeros: 26,621,983
#nonzeros per row (min; avg; max): 1; 8; 2,312,481
Author: K. Gullapalli
Kind: Circuit simulation problem
Description: Circuit simulation from Freescale Semiconduc-
tor.
Name: Ga41As41H72
#rows: 268,096
#columns: 268,096
#nonzeros: 18,488,476
#nonzeros per row (min; avg; max): 18; 68; 702
Author: Y. Zhou, Y. Saad, M. Tiago, J. Chelikowsky
Kind: Theoretical/quantum chemistry problem
Description: Real-space pseudopotential method.
Name: Hood
#rows: 220,542
#columns: 220,542
#nonzeros: 10,768,436
#nonzeros per row (min; avg; max): 21; 48; 77
Author: J. Weiher
Kind: Structural problem
Description: INDEED Test Matrix (DC-mh).
Name: In-2004
#rows: 1,382,908
#columns: 1,382,908
#nonzeros: 16,917,053
#nonzeros per row (min; avg; max): 0; 12; 7,753
Author: Universita degli Studi di Milano
Kind: Directed graph
Description: Small web crawl of .in domain.
Name: Ins2
#rows: 309,412
#columns: 309,412
#nonzeros: 2,751,484
#nonzeros per row (min; avg; max): 5; 8; 309,412
Author: A. Andrianov
Kind: Optimization problem
Description: ins2 matrix from SAS Institute Inc.
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Name: LP
#rows: 4,284
#columns: 1,096,894
#nonzeros: 11,284,032
#nonzeros per row (min; avg; max): 1; 2,633; 56,181
Author: P. Nobili
Kind: Linear programming problem
Description: Italian railways (H. Mittelmann test set).
Name: M133-b3
#rows: 200,200
#columns: 200,200
#nonzeros: 800,800
#nonzeros per row (min; avg; max): 4; 4; 4
Author: V. Welker
Kind: Combinatorial problem
Description: Simplicial complexes from Homology.
Name: Majorbasis
#rows: 160,000
#columns: 160,000
#nonzeros: 1,750,416
#nonzeros per row (min; avg; max): 6; 10; 11
Author: Q. Li and M. Ferris
Kind: Optimization problem
Description: MCP; mixed complementarity optimization
problem; similar to QLi/crashbasis.
Name: Mario002
#rows: 389,874
#columns: 389,874
#nonzeros: 2,097,566
#nonzeros per row (min; avg; max): 2; 5; 7
Author: N. Gould, Y. Hu, J. Scott
Kind: Duplicate 2D/3D problem
Description: Larger matrix from Mario For which MA47
analysis is slow
Name: Mip1
#rows: 66,463
#columns: 66,463
#nonzeros: 10,352,819
#nonzeros per row (min; avg; max): 4; 155; 66,395
Author: A. Andrianov
Kind: T. Davis
Description: mip1 matrix from SAS Institute Inc.
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Name: Mono 500Hz
#rows: 169,410
#columns: 169,410
#nonzeros: 5,033,796
#nonzeros per row (min; avg; max): 10; 29; 719
Author: M. Gontier
Kind: Acoustics problem
Description: 3D vibro-acoustic problem, aircraft engine na-
celle.
Name: Offshore
#rows: 259,789
#columns: 259,789
#nonzeros: 4,242,673
#nonzeros per row (min; avg; max): 5; 16; 31
Author: E. Um
Kind: Electromagnetics problem
Description: 3D FEM, transient electric field diffusion.
Name: Patents main
#rows: 240,547
#columns: 240,547
#nonzeros: 560,943
#nonzeros per row (min; avg; max): 0; 2; 206
Author: B. Hall, A. Jaffe, M. Tratjenberg
Kind: Directed weighted graph
Description: Pajek network: main NBER US Patent Citations,
1963-1999, cites 1975-1999
Name: Poisson3Da
#rows: 13,514
#columns: 13,514
#nonzeros: 352,762
#nonzeros per row (min; avg; max): 6; 26; 110
Author: COMSOL
Kind: Computational fluid dynamics problem
Description: Comsol, Inc. www.femlab.com : 3D Poisson
problem
Name: Protein
#rows: 36,417
#columns: 36,417
#nonzeros: 4,344,765
#nonzeros per row (min; avg; max): 18; 119; 204
Author: S. G. Sarafianos et al
Kind: Weighted undirected graph
Description: Protein: protein data bank 1HYS.
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Name: QCD
#rows: 49,152
#columns: 49,152
#nonzeros: 1,916,928
#nonzeros per row (min; avg; max): 39; 39; 39
Author: B. Medeke
Kind: Theoretical/quantum chemistry problem
Description: Quantum chromodynamics conf5.4-00l8x8-
2000
Name: Rajat21
#rows: 411,676
#columns: 411,676
#nonzeros: 1,876,011
#nonzeros per row (min; avg; max): 1; 4; 118,689
Author: Rajat
Kind: Circuit simulation problem
Description: Rajat/rajat21 circuit simulation matrix.
Name: Si41Ge41H72
#rows: 185,639
#columns: 185,639
#nonzeros: 15,011,265
#nonzeros per row (min; avg; max): 13; 80; 662
Author: Y. Zhou, Y. Saad, M. Tiago, J. Chelikowsky
Kind: Theoretical/quantum chemistry problem
Description: Real-space pseudopotential method.
Name: Transient
#rows: 178,866
#columns: 178,866
#nonzeros: 961,368
#nonzeros per row (min; avg; max): 1; 5; 60,423
Author: K. Gullapalli
Kind: Circuit simulation problem
Description: Small circuit from Freescale Semiconductor.
Name: Webbase
#rows: 1,000,005
#columns: 1,000,005
#nonzeros: 3,105,536
#nonzeros per row (min; avg; max): 1; 3; 4,700
Author: unknown
Kind: Weighted directed graph
Description: Web connectivity matrix.
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Name: Wind Tunnel
#rows: 217,918
#columns: 217,918
#nonzeros: 11,524,432
#nonzeros per row (min; avg; max): 2; 53; 180
Author: R. Grimes
Kind: Structural problem
Description: Pressurized wind tunnel.
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B. Testbeds

A variety of platforms are used for evaluating the proposed sparse matrix algorithms
in this thesis. The CPUs, GPUs, Xeon Phi and tightly coupled CPU-GPU heteroge-
neous processors are listed separately in this Appendix.

B.1 CPUs

The used two CPUs are listed in Table B.1.

Table B.1: Two CPUs used for benchmarking.

Vendor Intel Intel
Family Xeon CPU Xeon CPU
Device E5-2630 E5-2667 v3
Codename Sandy Bridge Haswell

#Cores 6 8
#SIMD units 6×2×256-bit wide 8×2×256-bit wide
Clock 2.3 GHz 3.2 GHz
SP flop/cycle 96 256
SP Peak 220.8 GFlop/s 819.2 GFlop/s
DP flop/cycle 48 128
DP Peak 110.4 GFlop/s 409.6 GFlop/s

L1 data cache 6×32 kB 8×32 kB
L2 cache 6×256 kB 8×256 kB
L3 cache 15 MB 20 MB

Memory 32 GB DDR3-1333 (4 channels) 32 GB DDR4-2133 (4 channels)
Bandwidth 42.6 GB/s 68.3 GB/s
ECC on on
Hyper-
Threading

on on

OS (64-bit) Ubuntu 12.04 RedHat Enterprise Linux v6.5
Compiler Intel C/C++ v14.0 Intel C/C++ v15.0.1
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B.2 GPUs

The used two nVidia GPUs and one AMD GPU are listed in Table B.2.

Table B.2: Three GPUs used for benchmarking.

Vendor nVidia nVidia AMD
Family GeForce GPU GeForce GPU Radeon GPU
Device GTX Titan Black GTX 980 R9 290X
Codename Kepler GK110 Maxwell GM204 GCN Hawaii

#Cores 15 16 44
#SIMD units 2880 CUDA cores 2048 CUDA cores 2816 Radeon cores
Clock 889 MHz 1126 MHz 1050 MHz
SP flop/cycle 5760 4096 5632
SP Peak 5120.6 GFlop/s 4612.1 GFlop/s 5913.6 GFlop/s
DP flop/cycle 1920 128 704
DP Peak 1706.9 GFlop/s 144.1 GFlop/s 739.2 GFlop/s

L1 data cache 15×16 kB 16×24 kB 44×16 kB
Scratchpad 15×48 kB 16×96 kB 44×64 kB
L2 cache 1.5 MB 2 MB 1 MB

Memory 6 GB GDDR5 4 GB GDDR5 4 GB GDDR5
Bandwidth 336 GB/s 224 GB/s 345.6 GB/s

OS (64-bit) Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04
Device driver v344.16 v344.16 v14.41
Compiler g++ v4.9,

nvcc v6.5.19
g++ v4.9,
nvcc v6.5.19

g++ v4.9,
OpenCL v1.2
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B.3 Xeon Phi

The used Intel Xeon Phi is listed in Table B.3.

Table B.3: Xeon Phi used for benchmarking.

Vendor Intel
Family Xeon Phi
Device 5110p
Codename Knights Corner

#Cores 60
#SIMD units 60×2×512-bit wide
Clock 1.05 GHz
SP flop/cycle 1920
SP Peak 2016 GFlop/s
DP flop/cycle 960
DP Peak 1008 GFlop/s

L1 data cache 60×32 kB
L2 cache 60×512 kB

Memory 8 GB GDDR5
Bandwidth 320 GB/s
ECC on

OS (64-bit) RedHat Enterprise Linux v6.5
Device driver v3.4-1
µOS v2.6.38.8
Compiler Intel C/C++ v15.0.1
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B.4 Heterogeneous Processors

The used heterogeneous processors from Intel, nVidia and AMD are listed in Tables B.4
and B.5. One simulated heterogeneous processor is listed in Table B.6.

Table B.4: Intel and nVidia heterogeneous processors used for benchmarking.

Processor Intel Core i3-5010U nVidia Tegra K1
Core type x86 CPU GPU ARM CPU GPU
Codename Broadwell HD 5500 Cortex A15 Kepler

Cores @ clock (GHz) 2 @ 2.1 3 @ 0.9 4 @ 2.3 1 @ 0.85
SP flops/cycle 2×32 3×128 4×8 1×384
SP peak (GFlop/s) 134.4 345.6 73.6 327.2
DP flops/cycle 2×16 3×32 2×2 1×16
DP peak (GFlop/s) 67.2 86.4 18.4 13.6

L1 data cache 4×32 kB 3×4 kB 4×32 kB 1×16 kB
Scratchpad N/A 3×64 kB N/A 1×48 kB
L2 cache 4×256 kB 3×24 kB 2 MB 128 kB
L3 cache N/A 384 kB N/A N/A
Last level cache 3 MB N/A

DRAM Dual-channel DDR3-1600 Single-channel DDR3L-1866
DRAM capacity 8 GB 2 GB
DRAM bandwidth 25.6 GB/s 14.9 GB/s

OS (64-bit) Microsoft Windows 7 Ubuntu Linux 14.04
GPU driver v15.36 r19.2
Compiler Intel C/C++ 15.0.2 gcc 4.8.2, nvcc 6.0.1
Toolkit version OpenCL 2.0 CUDA 6.0
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Table B.5: AMD heterogeneous processors used for benchmarking.

Processor AMD A6-1450 APU AMD A10-7850K APU
Core type x86 CPU GPU x86 CPU GPU
Codename Jaguar GCN Steamroller GCN

Cores @ clock (GHz) 4 @ 1.0 2 @ 0.4 4 @ 3.7 8 @ 0.72
SP flops/cycle 4×8 2×128 4×8 8×128
SP peak (GFlop/s) 32 102.4 118.4 737.3
DP flops/cycle 4×3 2×8 4×4 8×8
DP peak (GFlop/s) 12 6.4 59.2 46.1

L1 data cache 4×32 kB 2×16 kB 4×16 kB 8×16 kB
Scratchpad N/A 2×64 kB N/A 2×64 kB
L2 cache 2 MB Unreleased 2×2 MB Unreleased

DRAM Single-channel DDR3L-1066 Dual-channel DDR3-1600
DRAM capacity 4 GB 8 GB
DRAM bandwidth 8.5 GB/s 25.6 GB/s

OS (64-bit) Ubuntu Linux 12.04 Ubuntu Linux 14.04
GPU driver 13.11 Beta 14.501
Compiler gcc 4.6.3 gcc 4.8.2
Toolkit version OpenCL 1.2 OpenCL 2.0
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Table B.6: A simulated heterogeneous processor used for benchmarking.

Processor Simulated Processor
Core type x86 CPU GPU
Product Intel Core i7-3770 nVidia GeForce GTX 680
Codename Ivy Bridge Kepler

Cores @ clock (GHz) 4 @ 3.4 8 @ 1.006
SP flops/cycle 4×16 8×384
SP peak (GFlop/s) 217.6 3090.4
DP flops/cycle 4×8 8×16
DP peak (GFlop/s) 108.8 128.8

L1 data cache 4×32 kB 8×16 kB
Scratchpad N/A 8×48 kB
L2 cache 4×256 kB 512 kB
L3 cache 8 MB N/A

DRAM Dual-channel DDR3-1600 GDDR5
DRAM capacity 32 GB 2 GB
DRAM bandwidth 25.6 GB/s 192.2 GB/s

OS (64-bit) Ubuntu Linux 12.04
GPU driver v304.116
Compiler gcc 4.6.3, nvcc 5.0
Toolkit version CUDA 5.0



C. Word Cloud of The Thesis

This appendix includes a “word cloud” generated by http://www.wordle.net/
by using the text of the thesis as input. It is easy to see the most frequently used
words in this thesis.

179

http://www.wordle.net/


180



D. Short Biography

Weifeng Liu is currently a Ph.D. candidate at Niels Bohr Institute, Faculty of Science,
University of Copenhagen, Denmark. He is working in the eScience Center under
advisor Professor Brian Vinter. Before he moved to Copenhagen, he worked as a
senior researcher in high performance computing technology at SINOPEC Exploration
& Production Research Institute for about six years. He received his B.E. degree and
M.E. degree in computer science, both from China University of Petroleum, Beijing,
in 2002 and 2006, respectively. He is a member of the ACM, the IEEE, the CCF and
the SIAM.

His research interests include numerical linear algebra and parallel computing,
particularly in designing algorithms for sparse matrix computations on throughput-
oriented processors. His algorithms run on a variety of many-core devices (e.g., nVidia
GPUs, AMD GPUs, Intel GPUs and Intel Xeon Phi) and CPU-GPU heterogeneous
processors (e.g., nVidia Tegra, AMD Kaveri and Intel Broadwell).

181


	
	Introduction
	Organization of The Thesis
	Author's Publications

	I Foundations
	Sparsity and Sparse BLAS
	What Is Sparsity?
	A Simple Example
	Sparse Matrices

	Where Are Sparse Matrices From?
	Finite Element Methods
	Social Networks
	Sparse Representation of Signals

	What Are Sparse BLAS?
	Level 1: Sparse Vector Operations
	Level 2: Sparse Matrix-Vector Operations
	Level 3: Sparse Matrix-Matrix Operations

	Where Does Parallelism Come From?
	Fork: From Matrix to Submatrix
	Join: From Subresult to Result

	Challenges of Parallel and Scalable Sparse BLAS
	Indirect Addressing
	Selection of Basic Primitives
	Data Decomposition, Load Balancing and Scalability
	Sparse Output of Unknown Size


	Parallelism in Architectures
	Overview
	Multicore CPU
	Manycore GPU
	Manycore Coprocessor and CPU
	Tightly Coupled CPU-GPU Heterogeneous Processor

	Parallelism in Data Structures and Algorithms
	Overview
	Contributions
	Simple Data-Level Parallelism
	Vector Addition
	Reduction

	Scan (Prefix Sum)
	An Example Case: Eliminating Unused Entries
	All-Scan
	Segmented Scan
	Segmented Sum Using Inclusive Scan

	Sorting and Merging
	An Example Case: Permutation
	Bitonic Sort
	Odd-Even Sort
	Ranking Merge
	Merge Path
	A Comparison

	Ad-Heap and k-Selection
	Implicit d-heaps
	 ad-heap design
	Performance Evaluation
	Comparison to Previous Work



	II Sparse Matrix Representation
	Existing Storage Formats
	Overview
	Basic Storage Formats
	Diagonal (DIA)
	ELLPACK (ELL)
	Coordinate (COO)
	Compressed Sparse Row (CSR)

	Hybrid Storage Formats
	Hybrid (HYB)
	Cocktail
	SMAT

	Sliced and Blocked Storage Formats
	Sliced ELL (SELL)
	Sliced COO (SCOO)
	Blocked COO (BCOO)
	Blocked CSR (BCSR)
	Blocked Compressed COO (BCCOO)
	Blocked Row-Column (BRC)
	Adaptive CSR (ACSR)
	CSR-Adaptive


	The CSR5 Storage Format
	Overview
	Contributions
	The CSR5 format
	Basic Data Layout
	Auto-Tuned Parameters  and 
	Tile Pointer Information
	Tile Descriptor Information
	Storage Details
	The CSR5 for Other Matrix Operations

	Comparison to Previous Formats


	III Sparse BLAS Algorithms
	Level 1: Sparse Vector Operations
	Overview
	Contributions
	Basic Method
	Sparse Accumulator
	Performance Considerations

	CSR-Based Sparse Vector Addition
	Heap Method
	Bitonic ESC Method
	Merge Method


	Level 2: Sparse Matrix-Vector Operations
	Overview
	Contributions
	Basic Methods
	Row Block Algorithm
	Segmented Sum Algorithm
	Performance Considerations

	CSR-Based SpMV
	Algorithm Description
	Experimental Results

	CSR5-Based SpMV
	Algorithm Description
	Experimental Results

	Comparison to Recently Developed Methods

	Level 3: Sparse Matrix-Matrix Operations
	Overview
	Contributions
	Basic Method
	Gustavson's Algorithm
	Performance Considerations

	CSR-Based SpGEMM
	Framework
	Algorithm Design

	Experimental Results
	Galerkin Products
	Matrix Squaring
	Using Re-Allocatable Memory

	Comparison to Recently Developed Methods

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix Benchmark Suite
	Appendix Testbeds
	CPUs
	GPUs
	Xeon Phi
	Heterogeneous Processors

	Appendix Word Cloud of The Thesis
	Appendix Short Biography


