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Abstract

Cavity optomechanics, a field which has matured tremendously over the last de-
cade, has conclusively reached the quantum regime. Noteworthy experimental
achievements include cooling of the vibrational motion of macroscopic objects to
the quantum ground state, the observation of shot noise of radiation pressure, and
the achievement of strong correlations between light at mechanics, manifested as
ponderomotive squeezing. e next step invariably seems to be the incorporation
of cavity optomechanical systems in more complex constellations, in some sense
mimicking what has already been achieved with atoms.

In this work, we report on the progress of bringing a cavity optomechani-
cal system “up to speed” for the later integration into a hybrid atomic-optical-
mechanical entanglement experiment. e optomechanical system in considera-
tion consists of a highly stressed stoichiometric silicon-nitride membrane placed
between two highly reflective mirrors, all of which are embedded in a helium flow
cryostat. In order to reach truly quantum territory, severe shielding of the mem-
brane from the environment is required, aswell asmeticulous concern for auxiliary
sources of noise, both from the laser and mirrors used.

e purpose of this thesis is to document the development of the experiment
from its initial stages to its final quantum enabled incarnation, as well as to provide
the necessary theoretical machinery to interpret the experimental results. A strong
emphasis is placed on the unique challenges posed by our uniquemonolithic cavity
design and how to understand and overcome them.

e evolution of the experimentwas successful, andwe conclude that the quan-
tum regime has been reached. Our main result is the observation of simultaneous
ponderomotive squeezing from more than 13 mechanical modes, the strongest of
which suppresses the light noise by −2.4 dB, implying the hitherto strongest cor-
relations observed between light and mechanics. A secondary result is the cooling
of the mechanical motion close to the quantum ground state.
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Sammenfatning

Kavitets-optomekanik, et forskningsfelt der i løbet af det seneste årti har oplevet en
rivende udvikling, har endegyldigt nået kvanteregimet. Af spektakulære eksperi-
mentelle bedrier kan nævnes den lysmedierede køling af en makroskopisk gen-
stands bevægelse til den kvantemekaniske grundtilstand, observationen af lys-
strålingstrykkets kvantemekaniske haglstøj samt opnåelsen af stærke korrelationer
mellem lys og mekanisk bevægelse, konkret givende sig til kende som pondero-
motorisk klemt lys. Det næste skridt i denne udvikling må uundgåeligt være sam-
menføjningen af kavitets-optomekaniske systemer med andre kvanteoptiske ele-
menter, i en hvis forstand den samme udvikling som atomare ensembler har gen-
nemlevet.

I det foreliggende arbejde bereer vi om de eksperimentelle fremskridt i forbin-
delse med at klargøre et sådant kavitets-optomekanisk system til senere at kunne
indgå som en del af et hybridt atomar-optisk-mekanisk sammenfiltringseksperi-
ment. Det optomekaniske system, der er genstand for vore betragtninger, består
af en højst udspændt støkiometrisk mebran af siliciumnitrid anbragt mellem to
højreflektive spejle, altsammen indeholdt i en heliumflow-kryostat. For for alvor
at kunne sæe vores eksperimentelle fødder på solid kvantegrund, er en betydelig
afskærmning afmembranen fra dens omgivelse nødvendig, ligesom en omhyggelig
keren sig om udefrakommende støjkilder, såvel fra lyset som spejlene, er påkrævet.

Formålet med denne aandling er at dokumentere eksperimentets udvikling
fra dets spæde fase til den endelige inkarnation, såvel som at tilvejebringe den for
forståelsen og fortolkningen af de eksperimentelle resultater nødvendige kvante-
mekaniske teorimængde. Fokus lægges især på beskrivelsen af de for voresmono-
litiske kavitetsdesign særegne udfordringer og hvorledes disse overvindes.

Eksperimentets udvikling var tilfredsstillende, og vi sluer at kvante-regimet
er blevet nået. Vores hovedresultat er observationen af samtidig ponderomotorisk
lys-klemning hidrørende framere end 13mekaniske svingingstilstande, den kraig-
ste af hvilke klemmer lysstøjen med end −2.4 dB, hvilket indikerer den hidtil
stærkeste korrelation observeret mellem lys og mekanik. Et sekundært resultat
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består af kølingen af denmekaniske bevægelse til området nær kvante-grundtilstanden.
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Chapter 

Introduction

In this work, we present the progress of an experimental project, the goal of which
was to create an optomechanical system displaying true quantum behaviour. In
the course of this PhD project, the system, which consists of a rectangular high-
stress silicon nitride (Si3N4) membrane placed between two highly reflective mir-
rors embedded in a helium flow cryostat, was developed from a bare minimum

to a fully multimode quantum enabled platform. To ascertain the “quantumness”
of the system, two separate goals where pursued. First, it was aempted to side-
band cool a single vibrational mode of the membrane (as close as possible) to its
quantum ground state. Second, ponderomotive squeezing of light, also a clear sig-
nature of a quantum enabled interaction, was pursued. e former goal was not
conclusively reached, whereas the second certainly was.

e thesis is structured as follows. In this introductory chapter, we first, in
section ., take a bird’s eye view of the field of optomechanics and present where
our own experimental work fits into this diverse picture, and then proceed, in
section ., to give a conceptual walkthrough of the experiment. A student new to
this field will hopefully find section . to be a good initial exposition.

Chapter  is concerned with the formal theoretical aspects of the system and
system dynamics. We cover the subjects necessary to anticipate and interpret the
experimental outcomes, and specify the concept of a system being quantum en-
abled.

Chapter  deals with our particular experimental approach to cavity optome-
chanics, first explaining how the experiment is built and operated, then proceeding
to discuss the different optimisation procedures involved in eventually reaching a
large quantum cooperativity.

Literally an empty laboratory.
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Chapter . Introduction .. e Background

Finally, chapter  presents and discusses the evidence that the interaction of our
study is indeed showing its quantum nature. An outlook is also given, pointing to
the interesting experimental avenues opened up by reaching the quantum regime.

. e Baground

.. A Brief History of Optomeanics Before 

On  February , a truly historical scientific discovery was announced. In a
coordinated live-streamed press conference and paper publication [Abbo et al.,
], the LIGO scientific collaboration announced the first ever direct observa-
tion of gravitational waves. With the detection, which took place on  Septem-
ber , and the announcement coinciding with the centennials of respectively
Albert Einstein’s theory of general relativity [Einstein, ] and his prediction of
gravitational waves [Einstein, ], there was a sense of closure to the discovery.
As if though a long and strenuous quest including decades of experimental optimi-
sation of gravitational wave detectors had now finally paid off, and Einstein was
at long last proven right. For a researcher in the field of optomechanics, however,
the groundwork of the gravitational wave detection community had already paid
off decades earlier.

In the late ’s, V. Braginsky and his collaborators, fundamentally concerned
with the precision limits of interferometric sensing, pioneered, both theoretically
[Braginsky and Manukin, ] and experimentally [Braginsky et al., ], the
field of (microwave) optomechanics by demonstrating how the radiation pressure
force may cool or heat a harmonically suspended cavity mirror. at inherently
quantum effects, namely the quantum fluctuations of the radiation pressure force,
pose a limit for the sensitivity of gravitational wave detectors was pointed out by
C. Caves in  [Caves, ], who one year later proposed a visionary idea to
overcome this limitation by the injection of squeezed light [Caves, ] into the
detection interferometer. e realisation that quantum effects play a role in the
interferometric detection of large scale cosmological phenomena such as gravita-
tional waves is in itself remarkable, but it also paves the way for a different field
of study: quantum optomechanics. If light and mechanics (as embodied by the
moving mirrors in the interferometer) can interact in a way that is intrinsically

is was recently realised experimentally in two different gravitational wave detectors, the
British-German GEO 600 [Grote et al., ] and the aforementioned American LIGO [e LIGO
Scientific Collaboration, ].





.. e Background Chapter . Introduction

quantum mechanical, then surely that interaction is worth studying in its own
right.

In the ’s, theoretical work on quantum cavity optomechanics started emerg-
ing. Of particular interest to this work is optomechanically induced (ponderomo-
tive) squeezing of light [Fabre et al., ] [Mancini and Tombesi, ], but as
diverse proposals as the generation of non-classical states (both of light and me-
chanics) [Bose et al., ] [Mancini et al., ], feedback cooling of the mirror
temperature [Mancini et al., ], quantum non-demolition measurements of the
intra-cavity light field [Braginsky and Khalili, ], and even the quantum su-
perposition of a massive mirror [Marshall et al., ] emerged. In other words, a
broad theoretical foundation was in place, and the world was hungry for experi-
ments.

Roughly a decade later, strong progress in micro- and nano-fabrication tech-
nologies had allowed for the realisation of a multitude of devices. Although early
feedback cooling results [Cohadon et al., ] were achieved with large mirrors,
to eventually reach the regime where quantum effects show, small masses, low
mechanical dissipation, and good optical qualities were simultaneously needed. It
is beyond the scope of this introduction to describe the entire optomechanical de-
vice “zoo” and the exciting developments in the first decade of this century (see
[Kippenberg and Vahala, ] and[Aspelmeyer et al., ] for broader reviews),
but we nonetheless highlight four alternative approaches, mainly to set the stage
for our own project, which began in .

In the microwave regime, µm-small circular drums capacitively coupled to an
LC circuit and precooled in a dilution refrigerator to mK-temperatures had been
brought to operate in the strong coupling regime [Teufel et al., b] and even
sideband cooled to their motional ground state [Teufel et al., a]. In the opti-
cal regime, optomechanical crystals allowing for the simultaneous localisation of
optical and mechanical resonances [Eichenfield et al., ] that interact via ra-
diation pressure, had also been cooled to the motional ground state [Chan et al.,
], this time from a more modest pre-cooling using a helium flow cryostat. e
laer of these approaches uses mechanical resonances in the GHz-regime, whereas
the circular drums have resonance frequencies of tens of MHz. Also in the tens of
MHz-range, the vibrational breathing modes of microtoroidial whispering-gallery
mode resonators [Schliesser, ] had been brought to quantum-coherently inter-
act with light [Verhagen et al., ]. ese three approaches share the same heavy
reliance of sophisticated fabrication procedures for the mechanical resonators. A
different path was offered by the idea of embedding a commercially available Si3N4
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membrane in a normal Fabry-Perot cavity [ompson et al., ]. is system,
also known as a membrane-in-the-middle system (or simply MIM), was not yet
in the quantum regime, but showed great promise, owing in particular to the low
optical losses and high mechanical quality factors of the membranes [Zwickl et al.,
] [Wilson et al., ].

.. Our Project: Scope and Purpose

is was the state of the art in , when the author started his project. In the
QUANTOP lab, where the main expertise lay in the field of atom-light interaction,
in particular that between atomic caesium ensembles and light (see e.g. [Sher-
son et al., ]), there was a wish to utilise the promising new optomechanical
platforms as supplements to the caesium cells. In the long term, there was the
prospect to entangle one such caesium cell with a mechanical oscillator [Ham-
merer et al., ], in a certain sense mimicking what had already been achieved
between two atomic ensembles [Julsgaard et al., ]. What was needed was
a quantum-enabled cavity optomechanical system. It was decided to pursue a
membrane-in-the-middle approach to constitute the mechanical part of the hy-
brid experiment. e aim of this project then became to establish the mechanical
part of said joint experiment, more precisely: to build a cavity optomechanical
setup with high-stress silicon nitride membranes definitely operating in the quan-
tum regime. e work at hand details the labour we undertook to finally reach
that goal.

. e Membrane in the Middle

We now give an illustrative outline of the experiment. Beyond the mere pedagog-
ical purposes, we also establish most of the terminology and notation regarding
cavities to be used throughout this work. We first introduce the basics about op-
tical cavities and from there on guide the reader through the dynamics of our op-
tomechanical system and the goals and objectives of the experiment. e aim of
this section is to provide a conceptual overview, whereas chapter  deals with the
more “niy-griy” theoretical aspects of the experiment.

.. Optical Cavities

All of the interesting physics in cavity optomechanics take place inside an optical
cavity. Although cavities are named aer the empty space between two reflect-
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ing surfaces, we here include the surfaces in the definition and take a cavity to
consist of two mirrors with amplitude transmissivities t1 and t2 separated by a
fixed distance L. Light shone into this cavity will be reflected back and forth from
the surfaces interfering with itself, and a standing wave forms when the incom-
ing light’s frequency is an integer multiple of the cavity’s free spectral range, FSR,
given by

FSR =
c

2L
, (.)

where c is the speed of light. Note that the round-trip time of the cavity, τ , fulfils
that τ−1 = FSR. In Figure . the

..

L

.
Input

.
Output

. t1. t2

Figure .: A sketch defining the incoupling and outcoupling mirrors.

e light eventually leaves the cavity. We shall consistently take the light to
emanate from a monochromatic laser source and enter the cavity via the first mir-
ror. en the light may either be reflected back out through mirror one, trans-
mied out through the second mirror, or be lost through some other mechanism.
ese three processes happen at rates κR, κT , and κL, respectively. e total rate,
κ, at which light leaves the cavity is then given by

κ = κR + κT + κL. (.)

e reflection and transmission rates relate to the mirror transmissivities as

κR =
1

τ
|t1|2, κT =

1

τ
|t2|2. (.)

When detecting signals from the cavity, it is useful to quantify the amount of
light coming out of the port (mirror) where one is detecting. We always detect in
transmission. e quantification is captured by the cavity coupling parameter, ηc,
given by

ηc =
κT
κ
. (.)

A cavity for which ηc > 1/2 is said to be overcoupled. From the viewpoint of the
detector, a fraction of 1 − ηc of the intra-cavitylight is lost (never detected), and

Similarly, a cavity for which ηc < 1/2 is undercoupled, whereas ηc = 1/2 corresponds to a
critically coupled cavity.
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it is therefore usually advantageous to maximise ηc. We now explore the role of
ηc a lile. For the rest of this section, we assume κL=. Exactly on resonance, the
ratio between incoming power, |sin|2, and transmied power, |sout|2, is given (in
the limit of highly reflective mirrors) by [Siegman, , section .]

|sout|2

|sin|2
=

4T1T2
(T1 + T2)2

= 4ηc(1− ηc), (.)

which is clearly maximal when ηc = 1/2.
It is important to consider what happens when the laser frequency is changed

around the cavity resonance. e intracavity field, a, normalised such that |a|2 is
the intra-cavity energy, fulfils the following differential equation (derived in [Haus,
, chapter ], cf. equation (.)):

d
dta(t) = (i∆− κ/2)a(t) +

√
(1− ηc)κsin(t), (.)

where∆, the detuning, is the frequency difference between the laser and the cavity
resonance. In the steady-state, the intra-cavity field then satisfies that

a =

√
(1− ηc)κsin
i∆− κ/2

, (.)

whence it follows that

|a|2 = (1− ηc)|sin|2
κ

∆2 + κ2/4
. (.)

i.e. the cavity responds to variations of the laser frequency with a Lorentzian
curve with a full-width-half-maximum (FWHM) of κ. e resonance is reached
when ∆ = 0 and the point of steepest slope when ∆ = ±κ/2

√
3, where the slope

is ∓3
√
3/κ2.

e output power is the intra-cavity energy times the output transmission rate;
|sout|2 = ηcκ|a|2, implying that on resonance

|sout|2

|sin|2
= 4ηc(1− ηc), (.)

in agreement with equation (.). e intra-cavity power, |s|2, may build up to a
very large value, depending on the mirror transmissivities and external losses. On
resonance,

|s|2 = 4(1− ηc)

κτ
|sin|2 =

F
2π

4(1− ηc)|sin|2, (.)
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where we have introduced the cavity finesse, defined as the ratio between the free
spectral range and the FWHM of the cavity response;

F := 2π
FSR
κ
, (.)

where the 2π accounts for the fact that κ is in angular units whereas the FSR is
in Hz. e finesse is the figure of merit for the goodness of an optical cavity, and
generally speaking, more is beer. In our setup we actually have a tunable finesse,
which we describe in section ..

.. Optomeanical Cavities

We now consider the case of a cavity with a moving element. Canonically, this is
taken to be the end mirror (see section .), although the system of our study has
the moving element inside the cavity. e resulting physics of the two situations
are very similar, and for the sake of illustration, it is unnecessary to delve into their
differences (we do that in section .). Specifically, a dielectric Si3N4 membrane
is placed between two highly-reflecting mirrors. In Figure ., three descriptive
depictions of the setup are shown.

Since the membrane thickness d is considerably smaller than the wavelength
λ of the light (usual numbers: d ∼ 50 nm, λ ∼ 800 nm), the membrane changes, as
it moves in the intra-cavity standing wave, the effective optical cavity length via
its refractive index, which is different from unity. is is illustrated in Figure .B.
A small change in cavity length slightly displaces all cavity resonances, which is
equivalent to the laser detuning slightly changing. From equation (.) we there-
fore expect a modulation of the intra-cavity field and thus also of the transmied
light. is is the basic mechanism allowing for read-out of the membrane motion.
Said modulation is illustrated in Figure .C, where a certain membrane position
(green) maps to a particular output power (orange). For a given cavity length, it is
clear that higher finesse leads to a higher sensitivity via the increase in cavity line-
shape slope. Just how much the frequency changes when the membrane surface
moves a given amount is encapsulated by the optomechanical coupling parameter
G;

G =
∂ωc

∂zm
, (.)

where ωc is the cavity resonance (angular) frequency and zm is the membrane
position. For a cavity with a moving end mirror, the model we are adopting in this
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Figure .: ree illustrations of our optomechanical system. A: e actual geom-
etry. B: e membrane moving in the standing wave of the cavity. C: e effect
of the membrane’s motion on the light transmied from the cavity. e oscillation
amplitudes are highly exaggerated.

chapter, it holds that ωc = 2πnc/2L, where n is an integer. As L → L + zm, we
therefore have to first order that

G =
∂

∂zm

2πnc

2(L+ zm)

∣∣∣∣
zm=0

=
ωc

L
. (.)

It is not only the membrane position that determines amount of intra-cavity
light; the light also acts on the membrane via the radiation-pressure force and
thereby displaces the membrane. It is this interplay that in a certain sense is op-
tomechanics. Each photon scaered off the membrane surface imparts a momen-
tum change ∆p, given by

∆p = 2ℏk, (.)

where k is the photon wavenumber. If we designate the total number of intra-
cavity photons as n̄cav, the total force arising from the radiation pressure is then

FRP =
∆p

τ
n̄cav = ℏGn̄cav. (.)

At this point, wemay reflect a lile on the design of our optomechanical exper-
iment. In order to achieve a large optomechanical coupling, a high-finesse cavity
will be helpful in providing a large build-up of intra-cavity power. Also, a short

We stress that having the mechanically compliant element between the mirrors rather than as
the end mirror makes no conceptual difference, and that the differences that nonetheless withstand
between the two geometries are discussed in section ..
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cavity will yield a large G, suggesting that we should make the cavity as short
as possible. Now, as the cavity linewidth is inversely proportional to the cav-
ity length, things are slightly more involved, but it turns out that a short cavity
is favourable for optimising the light-mechanical interaction (see section .). A
short cavity is also helpful in another aspect, namely that of focusing the beam.

e membrane has different mechanical modes, an example of which is shown
in Figure .. e modes are characterised by the number of antinodes, n and m,
in each direction of the membrane. In order to properly sample the motion of
such a mechanical mode, the beam width of the optical mode at the membrane
position should be smaller than half the wavelength of the mechanical standing
wave (we treat this subject in more depth in section ..). A typical membrane has
a side length of Lmem ≈ 500 µm and the mechanical wavelengths scale according
to λmech

n = 2Lmem/n.

Figure .: An example of a membrane mode. Here, n = 3 and m = 2.

Our cavity consists of a plano-concave mirror (mirror 1, the incoupler mirror)
with a radius of curvature R = 2.5 cm and a flat mirror (mirror 2, the outcoupler
mirror). From standard Gaussian optics [Milonni and Eberly, , chapter ],
we may then calculate the intra-cavity beam waist, w0, which for stability reasons
must be at the flat mirror, by propagating the complex beam parameter, q, through
the cavity. Specifically, q must fulfil that

q =
Aq +B

Cq +D
, (.)

where [
A B

C D

]
=

[
1− 2L

R
L
(
1− 2L

R

)
+ L

− 2
R

1− 2L
R

]
. (.)

e cavity waist is then found from the relation

w0 =
(
Im(q−1)

π

λ

)− 1
2
, (.)
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and propagated to the membrane position using that

w(z) = w0

√
1 +

(
zλ

πw0

)2

. (.)

In Figure . we display the resulting beam widths. e length or our optical cav-
ity is ∼ 1.5mm, yielding a beam width of 40 µm, meaning that we can resolve
membrane modes up to ∼ 10.
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Figure .: e obtainable beam width. e inset illustrates the transverse overlap
between the membrane and optical mode.

.. antum Coherent Interaction

Aer the preliminary considerations regarding the optomechanical cavity, we now
turn our aention to the quantum aspects of the light-mechanical interaction. e
goal of this work is to realise an optomechanical setup that is somehow quantum
enabled, meaning, on a conceptual level, that clear quantummechanical signatures
arise from the interaction. Owing to the macroscopic dimensions of the membrane
resonators, this is by no means trivial.

In the course of the experiment, any mechanical mode of the membrane will
be in a thermal state. A nice intuition is offered by the picture of a system in a
thermal state being really always in a coherent state, but jumping between these
on a time scale of the mechanical decoherence. In this picture, the membrane may
interact coherently with the light provided that the interaction happens sufficiently
quickly. It must, however, be appreciably slow that the membrane mode completes
at least one oscillation period. Let us recast this intuition in formulae.


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In the presence of a thermal bath at temperature T , a membrane mode of fre-
quency ωm has an equilibrium phonon occupation, n̄th, given by

n̄th =
kBT

ℏωm

. (.)

e rate at which a phonon jumps in or out of the mechanical mode (making the
system transition to a new coherent state) is the occupation times the mechani-
cal dissipation rate, Γm. e demand that this rate be lower than the mechanical
frequency may then be expressed as

ωm

Γmn̄th
> 1, or, equivalently, ℏQωm

kBT
> 1, (.)

where we have introduced the mechanical quality factor, Q, defined as the ratio
ωm/Γm. e condition of equation (.) provides a good preconception for the ex-
perimental demands on the mechanics. e membranes should be cold, preferably
fast and have as high quality factors as possible. For frequencies in the MHz-range
as offered by our samples, with ambient temperatures reachable with a helium
cryostat (4K-10K), quality factors of more than 107 are necessary. is is a very
high number, not yet available when the author embarked on his project. In sec-
tion . we explain how it was eventually reached.

Having quantum “ready” mechanics does not imply having a quantum enabled
system. As we shall see repeatedly in chapter , the condition for a quantum en-
abled interaction is that the quantum cooperativty, Cq exceeds unity,

Cq =
4g2

κΓmT
> 1, (.)

where g is the cavity-enhanced coupling rate (to be defined in equation (.)).
Both conditions can summarised as ℏω2

m, 4g
2/κ > Γmn̄th, highlighting the neces-

sity of as low mechanical dissipation as possible.
is concludes our tutorial presentation. In the next chapter, where we cover

the body of formal theory used in characterising and understanding the system,
we shall see more concrete examples of the utility of the quantum cooperativity
as a figure of merit for quantum-enabledness.
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Chapter 

eoretical Considerations

In this chapter we present the body of formal theory needed to describe the exper-
iment. e chapter is meant to be self-contained, although most of the motivation
for the theory has to be drawn from the preceding and subsequent chapter. e
topics covered span a very wide range, and we do not intend this exposition to
be exhaustive. Instead, this chapter can be viewed as the minimal necessary and
sufficient requirements for predicting and interpreting the experimental outcomes
of the experiment. Despite this formal seing, we aempt to make references to
the real experiment throughout the chapter.

. Spectral Analysis

In the end, this work is concerned with examining power spectral densities and
extracting optomechanical dynamics from those. We therefore start out with an
overview of the spectral analysis involved, thereby also establishing the notation
and instituting the conventions followed. is section is very brief in form.

.. Fourier Transforms

We define the Fourier transform of a signal, s(t), as

F [s](ω) :=

∫ ∞

−∞
s(t) e−iωt dt (.)

and its inverse, here of a function p(ω), as

F−1[p](t) :=

∫ ∞

−∞
p(ω) e+iωt dω

2π
. (.)
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In spite of the lucidity of this F-notation, we shall adopt the more careless physi-
cist’s notation and let s(ω) denote the Fourier transform of s(t), i.e.,

s(ω) := F [s](ω). (.)

From the context and argument of the function in question, it should always be
clear what is meant.

For quantum operators, the definitions are completely analogous. Note that,
with our Fourier transform convention, it holds for a generic quantum operator Â,
that (Â(ω))† ̸= Â†(ω), since

(Â(ω))† =

(∫ ∞

−∞
Â(t) e−iωt dt

)†

=

∫ ∞

−∞
Â†(t) e+iωt dt = Â†(−ω). (.)

is is completely analogous to the classical case (Fourier transforms of functions),
and just like a real function has a Fourier transform symmetric (even) upon com-
plex conjugation, it holds that

Â†(t) = Â(t) ⇒ (Â(ω))† = Â(−ω). (.)

Note also that our convention implies that

Â†(t) = Â(t) ⇒ Â†(ω) = Â(ω). (.)

.. Power Spectral Densities

As mentioned above, the power spectral density (PSD) is the main object of our
study. Here we give its basic definition, warn about a common pitfall, extend the
definition to the quantum case, and finally explain how it may be experimentally
estimated. For the sake of clarity and brevity, and since we are ultimately con-
cerned with actual laboratory signals, we assume all non-quantum signals to be
real.

ere is no universal consensus on what is the fundamental definition of the
PSD (cf. e.g. [Gardiner, , chapter ] and [Saulson, , chapter ]). Here we
first define the finite-time Fourier transform, sT (ω), of a signal s(t) as

sT (ω) :=

∫ T/2

−T/2

s(t) e−iωt dt. (.)

Next, we define the PSD of s as

Sss(ω) := lim
T→∞

1

T
|sT (ω)|2. (.)
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If s has units of V, the units of Sss is V2/Hz. Note that the PSD exists even for
signals that do not have a well-defined Fourier transform. Sometimes it is useful
to consider the energy spectral density, S̃, of a signal. is may be defined as

S̃ss(ω) := lim
T→∞

|sT (ω)|2 = |s(ω)|2. (.)

e energy spectral density has units of V2/Hz2 and clearly only exists when the
Fourier transform of s exists. e PSD may very well exist even if the energy
spectral density does not, which reflects the fact that some signals have infinite
energy but finite power.

We mention the energy density here mainly to remedy some confusion about
the subject. Not all authors are very strict in distinguishing the two densities, but
they are different, and one should be careful to use the correct one. If all else fails,
at least the units should be correct.

e PSD definition of equation (.) is straightforwardly extended to the case
of two different signals, s and u, as

Ssu(ω) := lim
T→∞

1

T
sT (ω)uT (ω). (.)

Sus is referred to as the cross spectral density. To gain a beer intuition for what
Sus represents, it is useful to introduce the cross-correlation function between s
and u, given by

s ⋆ u(t) := lim
T→∞

1

T

∫ T/2

−T/2

s(t′)u(t′ + t)dt′. (.)

Note that s ⋆ s is denoted as the auto-correlation of s. e Wiener-Khinchin the-
orem now states that

Ssu(ω) = F [s ⋆ u](ω), (.)

which, in the special case of u = s, aests that the PSD is the Fourier transform
of the auto-correlation function. It may be shown without too much effort (see
[Riley et al., , chapter ] for the energy spectral density case) that equations
(.) and (.) agree.

In the course of this work, we shall deal primarily with stochastic signals,
whether the stochasticity arises from classical noise such as thermal fluctuations
or from the more dignified quantum fluctuations. It will be an understood assump-
tion throughout the remaining chapters that all stochastic signals are stationary,

Stationary processes, in particular.
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meaning that their statistical properties are constant in time, and ergodic, mean-
ing that an ensemble average over a large number of realisations equals a long
time time average of a single realisation. In such a case, we may also re-express
the cross-correlation function as

s ⋆ u(t) = ⟨s(0)u(t)⟩ , (.)

where ⟨·⟩ should be understood as an ensemble average, and thus write

Ssu(ω) =

∫ ∞

−∞
⟨s(0)u(t)⟩ e−iωt dt. (.)

As ensemble averaging does not change the physical units of the quantity averaged
(x and ⟨x⟩ have the same units), this definition has the same units as equation (.).
e form of equation (.) is very suggestive as to what the quantum definition
should be. For two operators, Â and B̂, we define their cross spectal density as

SAB(ω) =

∫ ∞

−∞

⟨
Â†(0)B̂(t)

⟩
e−iωt dt =

∫ ∞

−∞

⟨
Â†(ω′)B̂(ω)

⟩ dω
2π

′
, (.)

where ⟨·⟩ now refers to the quantummechanical expectation value. For the special
but very relevant case of the PSD of a Hermitian operator, X̂ , we then have

SXX(ω) =

∫ ∞

−∞

⟨
X̂(ω′)X̂(ω)

⟩ dω
2π

′
. (.)

All quantum spectra of interest to us will belong to this group. We return to the
subject of actually calculating these in section ...

.. Measuring PSD’s: e Periodogram

Finally, we address the issue of experimentally estimating the PSD. For stochastic
processes, it holds that one can strictly speaking nevermeasurewhat, say, themean
value of a signal is, but only acquire some data and estimate the mean value. ere
is in principle some freedom in the choice of estimator to use, although only one
makes sense in the case of the mean. For the PSD, the freedom is more outspoken,
and here we take the periodogram as our estimator of choice. Before defining the
periodogram, we need to briefly touch upon life’s inescapable finiteness.

e assumption of stationary statistics carries over to the quantum operators.
To wit, the sum of all samples divided by the number of samples.
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In the discussion above we used continuous time and frequency, but no actual
data acquisition device offers this. Instead, one invariably deals with a finite num-
ber of samples acquired over a finite time. In such a case, the Fourier transform
may be approximated by the discrete Fourier transform (DFT). For a set sn of N
samples of a signal s, sampled with a sampling rate FS , the DFT is given by

DFT[s](m) :=
N−1∑
n=0

sn e−2πimn/N , (.)

where them index runs from 0 to N − 1 and maps to a real frequency as

m 7→ m× FS/N. (.)

e frequency increment FS/N is also known as the resolution bandwidth (RBW).
Spectral features more narrow than the RBWwill not be resolved by the DFT. Note
that the RBW is equal to the inverse of the acquisition time. e (finite continuous
time) Fourier transform is approximated as

sT (ω) =

∫ T/2

−T/2

s(t) e−iωt dt ≈
N∑

n=0

sn e−2πim/N ∆t = DFT[s](m)∆t, (.)

where we have introduced ∆t = 1/FS . It then follows, by comparison with equa-
tion ., that the periodogram, Ps, defined as

Ps(m) =
1

T
|DFT[s](m)∆t|2 = 1

NFS

|DFT[s](m)|2 , (.)

does indeed converge to the PSD as T → ∞. Note that, since the input signal
is real, half of the periodogram is redundant. us, one may only discern signals
up to FS/2, the so-called Nyquist frequency. As a final remark, we recognise that
the periodogram is not a very efficient estimator. Without going into a serious
discussion about spectral estimation, an intuitive understanding can be gained
by comparing to the estimator for the mean. When estimating the mean, N data
points go together to form a single number, whereas the periodogram estimates
N different frequency bin values with N data points. e result is rather impre-
cise, which shows as noise in the measurement. is noise may be overcome by
averaging together multiple periodograms, thereby using several data points per
frequency bin estimate.

Such a discussion may be found in [Broersen, ] and [Priestley, ] and is worthwhile
the read.
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We are now in a position to understand the basic data acquisition procedure of
our experiment. All membrane mode frequencies of interest fall below 5MHz. We
measure PSD’s by sampling the output of our photodetector with a sample rate
of 10MHz. To get a good frequency resolution, N is usually 106. e time trace
thus acquired is then subjected to a fast Fourier transform, absolute squared and
divided by NFS . e procedure is repeated and outcomes are averaged together
as required.

. Meanical Oscillators

e membrane resonators, although very thin, are of course three dimensional
objects. e theory used to describe their interaction with light fields, to be devel-
oped in the next section, does however treat the coupling of two one-dimensional
oscillators. To establish a connection to that treatment, we now discuss the me-
chanical properties of the membranes and in particular develop an effective one-
dimensional one-mode description of their vibration.

.. Membranes: from three dimensions to one

e general problem of plate vibrations is very complicated, due to the many pos-
sible internal degrees of freedom of a plate. Luckily, not much of this freedom
applies to the membranes we consider, and in fact a very simple two-dimensional
wave equation captures the essential physics. Let us nonetheless begin in a slightly
more general seing.

We consider the out-of-plane displacements, w(x, y, t), of a thin rectangular
plate (d≪ Lx, Ly). See Figure . for a sketch of the coordinate system.

For a plate of an isotropic material with uniform inplane tension, the unforced
equation satisfied by the out-of-plane displacement w(x, y, t), is a fourth-order
partial differential equation [Leissa, , chapter ] [Landau and Lifshitz, ,
chapter ] of the form

D

d
∇4w(x, y, t)− T ∇2w(x, y, t) + ρ

∂2

∂t2
w(x, y, t) = 0, (.)

where ρ is the uniform material density (per unit volume), T is the tensile stress,
d is the thickness of the membrane, andD is the flexural rigidity, which relates to
the Young’s modulus, E, and the Poisson ratio, ν, via

D =
Ed3

12(1− ν2)
. (.)
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Figure .: e coordinate system. Note that w and d as well as the ratio Ly/Lx

are grossly exaggerated.

e first term of equation (.) represents the “energy cost” of bending [Lan-
dau and Lifshitz, , chapter II], whereas the next two terms can be seen as the
inplane force arising from the tension. For plates with negligible bending resis-
tance, which can even be taken as the definition of a membrane (see [Rao, ,
section .]), the first term can be neglected. To get a feel for the orders of mag-
nitudes involved, we can anticipate the (separable) solution of the wave equation,
and take

w(x, y) ∝ sin(nkxx) sin(mkyy), (.)

with kx,y = π/Lx,y. Let us for the time being consider a square membrane, i.e.
Lx = Ly = L and kx = ky = k. e number we are taking to be far less than one
is then the following ratio, Rnm, given by

Rnm =
Dnmk2

dT
. (.)

We note that Rnm is increasing in wavenumbers n andm, which is intuitively
appealing as very short wavelengths “bendmore” than long ones. Inserting typical
values for our membranes found in Table . and checking along the fast growing
diagonal (n = m), we find that R only approaches unity for n = m = 570 and
is still less than 1 % for n = m = 58. In this work, we only ever consider mode
numbers of n < 15 and m < 15, and we thus feel comfortable neglecting the
bending resistance.

What then remains to be solved is thewell-known two-dimensionalwave equa-
tion:

∇2w(x, y, t) = − 1

c2
∂2

∂t2
w(x, y, t), (.)
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antity Symbol Value Reference
Tensile stress T 1.0GPa [Tabata et al., ]
Poisson’s ratio ν 0.25 [Edwards et al., ]
Young’s modulus E 350GPa [Kaushik et al., ]
Density ρ 3.2 g · cm−3 [Pierson, ]
Membrane thickness d 50 nm Own measurement
Membrane sidelength L 500 µm Own measurement
Fundamental frequency ω11 2π × 791 kHz Equation (.)

Table .: Typical membrane material parameters.

with the propagation speed c given by c =
√

T
ρ
, subject to the boundary conditions

that
w(x, 0, t) = w(x, Ly, t) = w(0, y, t) = w(Lx, y, t) = 0 (.)

and the initial condition that
∂

∂t
w(x, y, 0) = 0, (.)

where the former condition represents the actual clamping constraint of the mem-
brane, and the laer an arbitrary phase choice.

By a standard separation of variables, we obtain the solution

wnm(x, y, t) = znm(t) sin(nkxx) sin(mkyy), (.)
znm(t) = z0 cos(ωnmt), (.)

where z0 is a for now arbitrary amplitude constant, and the mode vibrational
frequency satisfies that

ωnm = c
√
n2k2x +m2k2y = π

√
T
ρ

√
n2

L2
x

+
m2

L2
y

. (.)

For a square membrane, the following rewriting is oen very helpful:

ωnm =
π

L

√
2T
ρ

√
n2 +m2

2
= ω11

√
n2 +m2

2
. (.)

e amplitude of the membrane oscillations will be determined once forces are allowed to act
on the membrane. is happens in section ...

Here we anticipate that no relevant mode number will ever exceed 9, so that no ambiguity
arises in the notation (e.g. ω132 will never occur).
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Equation (.) is usually considered either for a fixed time or a fixed point
in the plane. In the former case, each pair (n,m) gives rise to a characteristic
mode shape of the vibration. e first four such modes are sketched in Figure .
with z0 set to unity. In the laer case, the membrane motion is a simple harmonic
oscillator, the amplitude of which we shall now determine.

...

.

. (1, 1)..

.

. (1, 2)..

.

.

(2, 1)

..

.

.

(2, 2)

Figure .: e first few excitations of a square membrane at time t = 0.

We are now ready to take the final step mapping the three-dimensional mem-
brane vibrations onto a one-dimensional motion. We do so by requiring that the
potential energy of each vibrational mode be equal to that of a one-dimensional
oscillator with a new (possibly mode dependent) effective mass, meff. In formulae,
we demand that

Vosc =
1

2
meffω

2
nmz

2, (.)

whilst physically, by integrating each small mass element,

Vosc =
1

2

∫ Lx

0

∫ Ly

0

dx dyw2(x, y, t)ρd (.a)

=
1

2
z2(t)ω2

nm × 1

4
ρsLxLy. (.b)
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As the last factor in equation (.b) is the physical mass,mphys, of the membrane,
we obtain the mode-independent relation

meff =
1

4
mphys. (.)

While this procedure is generally valid for any geometry, we note that it is peculiar
to rectangular resonators that the effective mass is the same for all modes (see e.g.
[Serra et al., ] for an experiment with circular membranes). As will become
apparent in chapter , choosing the right mechanical mode to work with usually
involves difficult trade-offs between equally important parameters, meaning that
it is a virtue having at least one of these parameters being fixed.

.. Damped Harmonic Oscillators

Let us now consider a single mechanical mode at a fixed point, (x, y), on the mem-
brane. is is the experimentally relevant situation, as onemay imagine the tightly
focused light beam to see only a very small region of the membrane. In section
.. we discuss the effects of finite beam widths. In this one-dimensional seing,
we now allow forces to act on the membrane. In particular, we introduce a viscous
damping force and a generic driving force, so that the equation of motion reads

∂2

∂t2
z(t)− Γm

∂

∂t
z(t) + ω2

mz(t) =
1

meff
F (t), (.)

where we have allowed ourselves to drop the mode-indexing subscripts. We intro-
duce themechanical susceptibility, χm(ω), via a Fourier transform to the frequency
domain;

z(ω) =
m−1

eff
ω2
m − ω2 + iωΓm

F (ω) (.a)

=: χm(ω)F (ω). (.b)

Equation (.) clarifies an important point about themembrane resonators, namely
that they are indeed resonators rather than oscillators; in the absence of a driving
force there is no motion whatsoever.

From equation (.), it then follows that the power spectral density of displace-
ments is

Szz(ω) = SFF (ω)|χm(ω)|2. (.)
Although neither the literature nor this work is always very strict in distinguishing the two.
And with the initial conditions far back in the past.





.. Mechanical Oscillators Chapter . eoretical Considerations

It is sometimes useful to consider the time domain. From equation (.) it is
seen that the solution to equation (.) is a convolution ofF and the Fourier trans-
form of χm. Indeed, assuming zero initial displacement and velocity [Uhlenbeck
and Ornstein, ],

z(t) =
1

meffω1

∫ t

0

F (τ) e−Γm(t−τ)/2 sin(ω1τ) dτ, (.)

where ω1 =
√
ω2
m − Γ2

m/4, which for any actual membrane used in this work is
identical to ωm, due to the smallness of the damping. e ratio of mechanical
frequency to damping is known as the quality factor, Q, of the resonator. For
reasons that will be expanded upon in the next section, the quality factor is a key
figure of merit for the usefulness of a given membrane.

e Q-value may be measured by applying a large initial displacement to the
membrane. e full solution to (.) is given by

z(t) =
Γmz0 + 2ż0

2ω1

e−Γmt/2 sin(ω1t) + z0 e−Γmt/2 cos(ω1t)

+
1

meffω1

∫ t

0

F (τ) e−Γm(t−τ)/2 sin(ω1τ) dτ. (.)

For a fluctuating driving force such as a thermal driving force (to be introduced in
the next section) the convolution term may be neglected for sufficiently large z0
and short times, and we may write

z(t) = zX(t) cos(ω1t) + zY (t) sin(ω1t), (.)

with obvious definitions of zX and zY . A lock-in measurement of z(t) will then
yield a response zR(t), given by

zR(t) =
√
z2X(t) + z2Y (t) =

√(
Γmz0 + 2ż0

2ω1

)2

+ z20 e−Γmt/2, (.)

i.e. an exponentially decaying signal with a ring-down time τ0 = 2/Γm. In section
.. the measurements of Q are described.

.. Brownian Harmonic Oscillators

A very relevant driving force to consider is the stochastic thermal drive force of
an equilibrium situation. Equation (.) then turns into a Langevin equation with

As we shall see, ωm/Γm is on the order of millions.
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a stochastic driving force, Fth. Here we shall not worry about the mathematical
subtleties of Langevin equations such as properly interpreting the derivative of
a non-differentiable trajectory, but instead simply use the results to elucidate the
relevant physics. e interested reader is referred to (in order of accessibility)
[Gillespie, ], [van Kampen, ], and [Gardiner, ].

If the membrane has equilibrated to a reservoir at temperature T , thenFth must
fulfil the fluctuation-dissipation theorem (see e.g. [Saulson, , chapter ]) and
therefore have a power spectral density given by

SFthFth(ω) = 4kBTΓmmeff, (.)

where kB is Boltzmann’s constant.
A comment about this spectrum is in order. At a glance, the thermal force

seems to have infinite energy, as the power spectral density is not integrable. By
virtue of the Wiener-Khinchin theorem, we may write the auto-correlation of the
thermal force as

⟨Fth(t)Fth(t+ τ)⟩ = 2kBTΓmδ(τ)meff. (.)
It should now be clear that the “un-physicalness” of the power spectral density
arises from the equally un-physical delta function correlation, the laer being
however easier to understand. As long as the actual (non-zero) correlation time
of the bath is much shorter than any other time scale involved, a zero-correlation
time approximation may be made. Similarly in frequency space; the PSD actually
falls off at some very high frequency, but this makes no difference to the physics
of our interest and the flat response approximation is a good one.

Returning to the main track, equations (.), (.), and (.) yield the PSD
of the mechanical displacements:

Szz(ω) =
4ΓmkBTm

−1
eff

(ω2
m − ω2)2 + ω2Γ2

m

, (.)

which, for Fourier frequencies close to the mechanical resonance, may be approx-
imated as

Szz(ω) ≈
ΓmkBT

ω2
mmeff

1

(ωm − ω)2 + (Γm/2)2
, (.)

i.e. a Lorentzian with a full-width at half maximum (FWHM) of Γm.
Now, from the equipartition theorem of statistical mechanics, every quadratic

term in the system Hamiltonian, which in our case reads

H =
1

2
meffω

2
mz

2 +
1

2
meffż

2, (.)

Strictly speaking: a stationary and ergodic zero-mean time-uncorrelated Gaussian process.
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will have a mean energy of kBT/2. erefore, in particular,⟨
z2
⟩
=

kBT

meffω2
m

. (.)

As the process driving the resonator is ergodic (by assumption), ensemble averag-
ing and time averaging are equivalent. By virtue of Parseval’s theorem, then,⟨

z2
⟩
=

∫ ∞

−∞
Szz(ω)

dω
2π

=
kBT

meffω2
m

, (.)

and the integral of the displacement PSD is thus proportional to the temperature
of the resonator.

We now try to intuitively explain the damping term. In the presence of a ther-
mal bath, the damping describes the rate at which phonons are exchanged with the
environment. ese exchanges happen in a random, phase non-coherent manner,
sometimes exciting the mechanical motion, sometimes damping it. is leads to
the following observation: the smaller the damping term, the longer the time of
coherent oscillation once the resonator has been excited, and the slower the oscil-
lation amplitude changes. For our experimental purposes, lower damping is thus
always to be preferred.

is can be seen in Figure ., where we have simulated three trajectories of
the resonator by inserting a realisation of Gaussian white noise with standard de-
viation

√
2kBTΓmmeff/dt into equation (.). As the quality factor increases, the

amplitude of the time traces modulates more slowly, and at the same time the
peak in the frequency space becomes more well-defined around the mechanical
frequency.

As a final subject of this section, it is interesting to now consider the case of
equilibrium when coupling to two different thermal reservoirs. We may simply
modify the governing Langevin equation to read

z̈ + Γ1ż + Γ2ż + ω2
mz =

1

meff
(F1 + F2). (.)

Taking the forcesF1 andF2 to be thermal and have PSDs each given by a fluctuation-
dissipation theorem [Fogedby and Imparato, ], i.e. having

SF1F1 = 4kBTmeffΓ1T1, SF2F2 = 4kBTmeffΓ2T2, (.)

the corresponding PSD of the mechanical displacements then becomes

S(two baths)
zz (ω) =

kBm
−1
eff (Γ1T1 + Γ2T2)

(ω2
m − ω2)2 + ω2(Γ1 + Γ2)2

. (.)
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Figure .: Simulated trajectories and corresponding periodograms of the Brownian
oscillator for three differentQ-values: 102 (purple), 103 (red), and 104 (blue). Other
parameters: ωm = 2π × 1.5MHz, T = 300K, meff = 200 ng.

We may now use the relation between the PSD, the mean square displacement
and the equipartition theorem (equations (.) and (.)) to calculate an effective
temperature of the resonator;

Teff =

(
kB

meffω2
m

)−1 ∫ ∞

−∞
S(two baths)
zz (ω) dω =

Γ1T1 + Γ2T2
Γ1 + Γ2

. (.)

In this classical picture, one can thus, irrespective of the first reservoirs tempera-
ture, always cool (or heat) the resonator arbitrarily close to the second reservoir’s
temperature, simply by increasing the coupling strength to said reservoir. Al-
though non-classical effects, in particular radiation-pressure quantum back-action,
will, as we shall see in the next section, impose a lower limit to the achievable cool-
ing, it is nonetheless instructive to consider a semi-classical laser cooling theory

One could argue that the description is entirely classical. e use of bosons urge us to call it
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to see how large a cooling rate ratio (i.e. Γ2/Γ1) one needs to reach the ground
state of the resonator.

For any bosonicmode, such as the phonons of amechanical membranemode or
the photons of a cavity field, the thermal occupancy is given by the Bose-Einstein
distribution:

n̄th =
1

eℏωmode/kBT −1
. (.)

For a light field at 300THz, the room temperature occupation is on the order of
10−21. For a resonator coupled to such a field, its bath temperature can thus clas-
sically be taken to be zero. For a membrane mode coupled to a cavity mode, we
therefore find, in agreement with [Aspelmeyer et al., ], a final temperature of

Tfinal = Tinit
Γm

Γm + Γopt
, (.)

where we have anticipated the notation of the next section.
e prediction for final occupancy by a laser cooled membrane mode is shown

in Figure ..
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Figure .: Semi-classical laser cooling prediction for a membrane mode of fre-
quency ωm = 2π × 1.5MHz for different ambient temperatures Tinit.

A coupling rate ratio of more than 5×104 seems necessary to reach the ground
state. is already consolidates the urgent importance of high mechanical quality
factors as well as the need for a cryogenic environment.

We conclude this section by recasting the equilibrium in terms of jumping rates
to obtain the correct formula for the phonon occupancy. We may view a harmonic

semi-classical, but the main thing to keep in mind is the complete absence of quantum fluctuations.
Here we take the chemical potential to be zero.
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oscillator as an infinite chain of energy states and consider the system dynamics
as jump between these (see Figure .).

.. n. n+ 1.n− 1 .n− 2 . n+ 2.

Γ↑

.

Γ↓

Figure .: Jump rates in a harmonic oscillator.

e jump rates may in general be complicated expressions, encompassing in-
formation about the many possible baths perturbing the resonator. Here we only
assume that they are constant in time. In this seing, the dynamics of the system
are readily described by a master equation [van Kampen, , chapter V] for the
evolution of the probability pn of the system to be in state n;

d
dtpn = nΓ↑pn−1 + (n+ 1)Γ↓pn+1 − nΓ↓pn − (n+ 1)Γ↑pn. (.)

To find the average phonon number, we may multiply through by n and perform
a sum over n, using that the average phonon number is given by

n̄ =
∞∑
n=0

npn. (.)

Doing this (and shiing the sums a lile), one finds for the steady state, where
d
dtpn = 0, that

n̄ =
Γ↑

Γ↓ − Γ↑
. (.)

An alternative way at arrive to the same result is by the principle of detailed
balance [Clerk et al., ]. In equilibrium, we demand that

Γ↑

Γ↓
= e

−ℏωmode
kBTeff . (.)

From this principle and the fact that we are dealing with bosons (see equation
(.)), it follows that the mean equilibrium phonon number is given by

n̄ =
1

eℏωmode/kBTeff −1
=

Γ↑

Γ↓ − Γ↑
. (.)

In the simple case of coupling only to a single heat bath, it is not hard to verify
that the jump rates Γth

↑ = n̄thΓm and Γth
↓ = (n̄th + 1)Γm yield the correct mean

occupation.
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is last equation, which may of course be recast to provide an effective tem-
perature, turns out to be the proper replacement for the (semi-) classical result of
equation (.). In section ... we calculate the jump rates using the full quan-
tum machinery.

. Optomeanical Dynamics

In this section we introduce the full quantummechanical model needed to describe
the dynamics of our system. Our approach consists of three steps. First, write up
a Hamiltonian appropriate for the particular limit in question. Next, work out
the Heisenberg-Langevin equations of motion to get the system dynamics. Fi-
nally, apply the input-output relations to calculate what will actually be measured
outside of the cavity. What we present here is the so-called canonical quantum
optomechanical system, in which one cavity field mode is coupled parametrically
to one mechanical mode, modelled by canonical quantisation of a cavity with one
mirror on a spring. is simple model maps surprisingly well onto a wide range
of different systems (see [Aspelmeyer et al., ] for a review) with more com-
plex geometries, including our own system. We discuss that particular mapping
in section .. For the remainder of this section, since the model is explicitly one-
dimensional, and to keep consistency with the notation used in the majority of the
literature, we let x rather than z denote the mechanical degree of freedom.

In Figure . we show an overview of the canonical quantum cavity optome-
chanical system, where a light field (â, â†) couples to a mechanical resonator with
the coupling rate g, while both photons and phonons dissipate out of the cavity
and a laser drive sin feeds the cavity.

â, â† x̂, p̂ T , n̄th

κ g Γm

sin

Figure .: A sketch of the canonical optomechanical system. e purple dots to
the far le indicate vacuum noise of the light field.
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.. e Ground State

Before embarking on the description of the light-mechanical interaction dynamics,
we briefly discuss the quantum mechanical aspects of the mechanical resonator
and in particular clarify what is strictly speaking meant by ground state cooling.

e Hamiltonian for the mechanics alone reads

Ĥmech =
p̂2

2meff
+
meffω

2
m

2
x̂2 = ℏωm

(
b̂†b̂+

1

2

)
, (.)

where we have introduced the phononic creation/annihilation operators b̂† and b̂.
e last 1/2-term implies a finite displacement amplitude even when no quanta of
motion are in the resonator. To see this, onemay take the expectation value of both
sides of (the last equality sign o) equation (.). Seing the phonon number equal
to zero and assuming equipartition of energy between the kinetic and potential
energy,

⟨Tmech⟩+ ⟨Vmech⟩ =
ℏωm

2
, ⟨Vmech⟩ =

ℏωm

4
, (.)

whence it follows that √
⟨x̂2⟩ =

√
ℏ

2meffωm

. (.)

e root mean square of the ground state displacement is denoted as the zero-point
fluctuation amplitude, xZPF. Completely analogously, one may derive zero-point
fluctuations for the momentum by looking at the kinetic rather than the potential
energy. One then arrives at

pZPF =
√
⟨p̂2⟩ =

√
ℏmeffωm

2
. (.)

e state used to calculate the expectation values above was the true ground
state, the Fock state |0⟩. In reality, the mechanical resonator will never be quite in
that state, but always in a thermal state, an incoherent mixture of different Fock
states. For a thermal state, the corresponding density operator can be expressed
in terms of Fock states as

p̂th =
∞∑
n=0

Pn |n⟩ ⟨n| , (.)

where the Pn, the probabilities of finding n phonons in the state, can be cast as

Pn =
n̄n

(1 + n̄)n+1
, (.)
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with n̄ being the mean phonon occupancy. Considering n = 0, it is seen that
when n̄ = 1, the probability P0 is exactly one half. Whenever n̄ < 1, the resonator
spendsmost of its time in the state |0⟩. It then makes sense to define the following
as ground state cooling: achieving a thermal state with a mean phonon occupancy
strictly less than unity. is is the definition commonly accepted when discussing
optomechanical ground state cooling and also the definition that we shall adopt.

To really reach the true ground state, one would have to perform a strong
projective measurement of n̂, an experimental tasks much beyond the scope of
this work.

.. e Optomeanical Hamiltonian

e appropriate Hamiltonian for an optomechanical system must include the two
harmonic oscillators, their interaction and the laser drive “feeding” new photons
to the system. erefore,

Ĥ = Ĥopt + Ĥmech + Ĥint + Ĥdrive, (.)

with

Ĥopt = ℏωc

(
â†â+

1

2

)
, (.)

Ĥmech =
p̂2

2meff
+
meffω

2
m

2
x̂2 = ℏωm

(
b̂†b̂+

1

2

)
, (.)

Ĥint = ℏGx̂â†â, (.)
Ĥdrive = iℏ√κR

(
s̄inâ

† e−iωLt −s̄∗inâ eiωLt
)

(.)

at no further optical modes are involved is reasonable in the limit where
the free spectral range of the cavity is much larger than the optical linewidth, i.e.
when the cavity finesse is large. As our system operates with F ≈ 103 − 105,
this approximation is completely justified. Also, scaering of photons from the
mechanical resonator into other cavity modes must be suppressed, which is the
case if the mechanical frequency is much smaller than the cavity FSR [Law, ].
Here we are in even beer shape, as FSR ≈ 1THz, whereas ωm ≈ 1MHz. Finally,
by the same logic, it holds for the mechanical modes that their inter-modal spacing
must be much larger than their linewidths for us to neglect all but one of them. As
we shall see in chapter , this is actually not always the situation. It does, however,
serve as the appropriate starting point of our analysis.
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We now turn to the interaction. First, we find that the radiation pressure force
has the expected form (cf. equation (.)),

F̂RP = −∂Ĥint

∂x̂
= −ℏGâ†â, (.)

that is, the force is proportional to the photon number. Next, it is seen that a
frequency shi is induced as the coupling parameter G is varied away from zero,
as

ℏωcâ
†â→ ℏ(ωc +Gx̂)â†â = ℏωcavâ

†â. (.)
e optomechanical coupling parameter describes howmuch the cavity resonance
shis per unit mechanical displacement;

G =
∂ωcav

∂x̂
. (.)

e coupling is in general dependent of the system geometry (we explore our own
membrane-in-the-middle geometry in section .), but has the value ωc/L for the
canonical geometry. is “raw” coupling rate is easily on the order of hundreds
of PHz ·m−1, which has lile relation to any number achieved in our experiment.
It is natural to scale the raw coupling rate down by the relevant unit of motion of
the membrane, namely the zero-point fluctuations, to obtain the so-called vacuum
optomechanical coupling rate g0,

g0 = xZPFG, (.)

which in our experiment is on the order of a few hundred Hz. Finally, as more
light entails more interaction, it makes sense to define a cavity enhanced coupling
rate, g, as

g =
√
n̄cavg0, (.)

where n̄cav is the steady-state photon occupation of the cavity.
Viewing the optomechanical system dynamics as a fight between coherent in-

teraction and incoherent losses, we may define a figure of merit quantifying which
side is “winning”. is is the so-called cooperativity, C , which is the ratio between
“good” coupling rates and “evil” loss rates;

C =
4g2

κΓm

. (.)

Onemay intuitively understand the cooperativity by envisioning a photon’s round
trip in the cavity. e photonmay interact with a phonon and thereby become cor-
related with it, which happens at a rate g, or it may be lost out of the cavity. Simi-
larly, the phonon that interacted may also escape out of the mechanical resonator,
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thus losing the correlations. If both light and mechanics are only replenished with
vacuum, the cooperativity as it stands is good figure of merit. In the presence of a
very warm thermal bath, one should weight the mechanical loss rate by the ther-
mal bath occupancy, and a beer figure of merit is the quantum cooperativity, Cq,
given by

Cq =
C

n̄th
=

4g2

κΓmn̄th
. (.)

Aswe shall see in section ..., havingCq > 1 is indeed a necessary condition
for ground-state cooling.

Although we are in principle finished with the Hamiltonian by now, there
are two re-writings that greatly improve the usability of the Hamiltonian for the
equations of motion. First, as all our measurements will be relative to the laser
frequency rather than to an absolute frequency reference, it makes sense to trans-
form to a frame rotating with the laser frequency, where the discrepancy between
laser and cavity frequency is given by the detuning, ∆ = ωL − ωc. We do so by
leing [Bowen and Milburn, , chapter ]

Ĥ → Û †ĤÛ − T̂ , where T̂ = ℏωLâ
†â, Û = e−iT̂ t/ℏ . (.)

e full form of the interaction given in equation (.) is, however seemingly
simple, sometimes too unwieldy. By seing â = ᾱ + δâ (and, without loss of
generality, arg(ᾱ) = 0) we may expand and approximate the interaction as

Ĥint = ℏGx̂(ᾱ+ δâ†)(ᾱ + δâ) (.)
≈ ℏG|α|2x̂+ ℏG(ᾱδâ+ ᾱδâ†)x̂. (.)

e first term corresponds to a constant shi of the mechanics, which we may
absorb back into the mechanical displacement and detuning by leing x̂→ x̂−
ℏG|α|2/meffω

2
m and∆ → ∆−ℏG2|α|2/meffω

2
m. is approximation yields the so-

called linearised interaction, with which, in the rotating frame, the Hamiltonian
now reads

Ĥlin =− ℏ∆â†â+ ℏωmb̂
†b̂+ ℏg(â† + â)(b̂† + b̂)

+ iℏ√ηcκ(s̄inâ† − s̄∗inâ), (.)

where we have also disregarded the factors of ℏ∆/2 and ℏωm/2, as they have no
effect on the dynamics of the system, and redefined the light operators to encom-
pass the shi by their mean value, i.e. we let â→ â+ ᾱ.

We do not introduce new notation for these shied quantities, but hope that it is always clear
from the context whether the shied or unshied quantity is in play.

Since, as we shall see, the equations of motion become linear in â and b̂.
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.. Heisenberg-Langevin Equations

Once the systemHamiltonian has been determined, the next step is to insert it into
the general form of the Heisenberg-Langevin equations to obtain the equations of
motions for the operators of interest. We now briefly outline how the relevant
equations of motion come about. Detailed accounts may be found in [Gardiner,
, chapter ] and [Bowen and Milburn, , chapter ].

What we are seeking is the quantum analogue of the classical Langevin equa-
tion for an oscillator, an example of which is equation (.) when the driving
force F is stochastic. By making the assumption that the heat bath consists of
an ensemble of independent bosonic oscillator modes coupling only to x̂ of our
particle under consideration, and, furthermore, that said coupling, γ, is frequency
independent, one then arrives at the following Heisenberg-Langevin equation
for a general operator Â:

d
dtÂ =

1

iℏ
[Â, Ĥ]− 1

iℏ
[Â, x̂]F̂ +

m

2iℏ

{
[Â, x̂], γx̂

}
. (.)

With the replacements of meff for m and Γm for γ and the proper choice of F̂
(see below), this will be the governing equation for the mechanics. It is seen that
equation (.) has the form of the normal Heisenberg equation plus additional
terms describing the bath coupling. Furthermore, the coupling to the bath only
influences the equation of motion for p̂, as taking Â = x̂ obviously makes the last
two terms on the right hand side vanish. e appropriate thermal force operator,
F̂th, for the mechanics fulfils that⟨

F̂th(t)F̂th(t+ τ) + F̂th(t+ τ)F̂th(t)
⟩
= 2meffΓmkBT

× d
dτ

(
coth

[
πkBT

ℏ
τ

])
. (.)

Curiously, this is not a memoryless process, in spite of the frequency-independent
coupling assumption. It is, however, a very sharply peaked function, and may
be approximated by a δ-function. at approximation will hold as long as the

Note that non-harmonic potentials also are included in this treatment. We shall, however,
never consider them.

e assumption of frequency-indepedence is called the first Markov approximation, since it
leads to damping terms only depending on the current time, thus being memoryless [Gardiner and
Colle, ]. See however equation . and the comment below.

On this point, we follow [Bowen and Milburn, ]. See also [Giovannei and Vitali, ]
for a discussion of the appropriate form of the thermal noise operator.
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characterstic bath time scale, ℏ/kBT , is much shorter than the mechanical decay
time (or, as we shall call it in section .., ring-down time), 1/Γm. At 1K, for a
2MHz mechanical mode with a quality factor of 10 M, ℏ/kBT ≈ 8 ps whereas
1/Γm ≈ 0.8 s. We therefore introduce no big error when making the Markovian
approximation for the bath and seing⟨

F̂th(t)F̂th(t+ τ) + F̂th(t+ τ)F̂th(t)
⟩
= 4meffΓmkBTδ(τ). (.)

For the light operators, it is first of all customary to work with the creation
and annihilation operators rather than the dimensionful quadrature operators, and
secondly to make the rotating wave approximation for the bath interaction. When
doing so, the following Heisenberg-Langevin equation for a general operator Â
emerges:

d
dtÂ =

1

iℏ
[Â, Ĥ]− [Â, â†]

(γ
2
â−√

γâin

)
+
(γ
2
â† −√

γâ†in

)
[Â, â]. (.)

In equation ., the bath noise, expressed through the input operators âin and
â†in, enters symmetrically in both quadratures. By leing γ → κ we obtain the
appropriate Heisenberg-Langevin equation for the light modes. e input noise
operators have the following correlation functions:⟨

âin(t)â
†
in(t

′)
⟩
= δ(t− t′), (.)⟨

â†in(t)âin(t
′)
⟩
=

⟨
â†in(t)â

†
in(t

′)
⟩
= ⟨âin(t)âin(t′)⟩ = 0 (.)

Applying the transformation to the rotating frame (equation (.)) to the full
Hamiltonian of equation (.) and using the resulting Hamiltonian to generate
Heisenberg-Langevin equations for light and mechanics, we obtain the following
set of equations of motion:

d
dt â =

(
i∆− κ

2
− iGx̂

)
â+

√
κRs̄in +

√
κâin (.)

d
dt â

† =
(
−i∆− κ

2
+ iGx̂

)
â† +

√
κRs̄

∗
in +

√
κâ†in (.)

d
dt x̂ =

1

meff
p̂ (.)

d
dt p̂ = −meffω

2
mx̂− ℏGâ†â− Γmp̂+ F̂th. (.)

ese are the governing equations in their most general form. From these equa-
tions, onemay derive amyriad of interesting optomechanical effects, usually in dif-
ferent limits where different terms may be neglected. In the next four sections we
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explore three important phenomena arising from the dynamical light-mechanical
interaction in greater detail. In section ... we consider an even simpler ex-
ample, namely a static, classical phenomenon, the static bistability. Before doing
so, let us demonstrate the versatility of equations (.) and (.) by deriving the
linearised equations of motion. is is simply done by inserting the linearised
Hamiltonian of equation (.) into the aforementioned equations, whereby we
obtain that

d
dt â =

(
i∆− κ

2

)
â− iG|α|x̂+√

κRs̄in +
√
κâin (.)

d
dt â

† =
(
−i∆− κ

2

)
â† + iG|α|x̂+√

κRs̄
∗
in +

√
κâ†in (.)

d
dt x̂ =

1

meff
p̂ (.)

d
dt p̂ = −meffω

2
mx̂− ℏG|α|(â† + â)− Γmp̂+ F̂th. (.)

ese linearised equations of motion will serve as the starting point for most of
our subsequent analysis, and in particular in section .. we exploit their linearity
to recast them in matrix form.

... Static bistability

In the steady-state classical limit (with a constant drive), equations (.) and (.)
take on the simple forms:

|α| =
√
κR s̄in

i∆− κ/2− iGx̄, (.)

x̄ = − ℏG
meffω2

m

|α|2. (.)

Evidently, for a given intracavity field amplitude |α|, the corresponding mechani-
cal displacement x̄ is the root of a third-order polynomial. e condition for more
than one real root to exist can be understood from Figure ., where equations
(.) and (.) are ploed; when the slope of the Lorentzian cavity response to
the displacement exceeds that of the linear displacement caused by the static radi-
ation pressure (purple line), more than one solution can exist. Note that the cavity
response peak occurs when∆ = Gx̄, which experimentally means that the regime
of multiple stable points is entered as the detuning is scanned closer to the cavity
resonance. In Figure ., this corresponds to the dashed curve moving towards the
solid curve as the detuning is decreased.
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In practice, this bistability imposes an upper limit to the amount of intracavity
power achievable in the experiment. For a given input power, there is (if the power
is large enough) a critical detuning for which the system becomes unstable. We
return to this point in chapter .

.

.

.

.

.
x̄

.

|α|2

Figure .: Static bistability illustrated. e dashed red line is made with the same
parameters as the solid burgundy line, except for the detuning, which 1.8 times
higher for the dashed line.

.. Optomeanical Sideband Cooling

Of considerable experimental interest is the possibility of using the laser field as
an effectively zero-temperature bath to which we couple the mechanical resonator.
A brief discussion of this was already given in section ... Now we derive the
coupling rate of the mechanics to said cold bath, Γopt, as we analyse the dynamical
effects of the interaction. We do so first in a classical picture, capturing most of
the relevant physics and then proceed to examine the quantum effects induced by
fluctuations of the light field, specifically the minimal achievable phonon number
even at zero ambient temperature.

... Classical picture

From the linearised equations of motion, equations (.)- (.), we may recover
the classical limit by replacing operators with classical variables and neglecting
the noise terms (or more properly: replace them by their zero expectation values).
We also assume a constant input drive, and thus neglect the sin term. We then
have that
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ȧ = (i∆− κ/2)a− iG|α|x, (.)
meffẍ = −meffω

2
m dx−meffΓmδẋ− ℏG|α|(a+ a∗). (.)

Solving these equations in the frequency domain reveals mechanically induced
sidebands to the light field;

a(ω) =
−iG|α|

−i(∆ + ω) + κ/2
x(ω), (.)

a∗(ω) =
iG|α|

i(∆− ω) + κ/2
x(ω), (.)

which in turn, when inserted in equation (.), reveals a modified mechanical
susceptibility;

x(ω)
(
χ−1
m (ω) + χ−1

opt(ω)
)
= 0, (.)

where
χ−1
m (ω) = meff(−ω2 − iωΓm + ω2

m), (.)

and

χ−1
opt(ω) = ℏG|α|

(
−iG|α|

−i(∆ + ω) + κ/2
+

iG|α|
i(∆− ω) + κ/2

)
(.a)

= ℏG2|α|2
[
i

(
κ/2

(∆ + ω)2 + κ2/4
− κ/2

(∆− ω)2 + κ2/4

)
+

(
∆+ ω

(∆ + ω)2 + κ2/4
− ∆− ω

(∆− ω)2 + κ2/4

)]
. (.b)

By defining an effective susceptibility as

χ−1
eff (ω) :=

(
χ−1
m (ω) + χ−1

opt(ω)
)
, (.)

and seing
χ−1

eff (ω) = meff(ω
2 − iωΓeff + ω2

eff), (.)

it follows that
Γeff = Γm +

1

ωmeff
Im(χ−1

opt), (.)

In order to avoid disorientation we recall our Fourier transformation convention; a∗(ω) =

F [a∗](ω).
It is perhaps a bit confusing with the subscript “e” now referring both to the effective mass

and optically modified spring qualities, two completely unrelated origins of “effectiveness”, but this
is standard notation in the field.


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and similarly that

ωeff =

√
ω2
m +

1

meff
Re(χ−1

opt) ≈ ωm +
1

2

Re(χ−1
opt)

meffωm

, (.)

provided that the frequency shi is small compared to the mechanical frequency.
us, we identify the optically induced damping and frequency shi (oen denoted
respectively optical damping and optical spring [Aspelmeyer et al., ]) as

Γopt(ω) =
2g2ωm

ω

(
κ/2

(∆ + ω)2 + κ2/4
− κ/2

(∆− ω)2 + κ2/4

)
, (.)

and
δωopt(ω) = g2

(
∆+ ω

(∆ + ω)2 + κ2/4
− ∆− ω

(∆− ω)2 + κ2/4

)
, (.)

where we utilise that ℏ/meff = 2x2ZPFωm to rewrite the prefactor in terms of the ex-
perimentally more readily accessible coupling g. Finally, for coupling rates much
smaller than the cavity linewidth (g ≪ κ), we may replace the full frequency de-
pendent damping and resonance shi by their values evaluated at the mechanical
frequency. We thus define the optical damping and frequency shi as

Γopt := Γopt(ωm), δωopt := δωopt(ωm). (.)

By furthermore invoking the standard Lorentzian approximation for the mechan-
ical susceptibility (see equation (.)) and keeping the effective temperature in
mind (see equation (.)), a clear prediction emerges for the behaviour of the me-
chanical response; as the coupling is increased a Lorentzian peak shis, broadens
and becomes smaller. In Figure . we show a comparison between spectral data
from our experiment and model prediction as we, for a fixed input power, gradu-
ally decrease the laser detuning and thereby increase the amount of light present
in the cavity. ere is very good qualitative agreement between data and model.

One important consequence of the modified susceptibility of equation (.) is
the emergence of a new effective mode temperature. Replacing χm(ω)with χeff(ω)

in equation . for the displacement PSD, and carrying out the integral of equation
(.), one finds that∫ ∞

−∞
Sxx(ω)

dω
2π

=

∫ ∞

−∞
SFthFth(ω)|χeff(ω)|2

dω
2π

=
Γm

Γopt

kBT

meffω2
eff
. (.)

At the new mechanical frequency, the mechanics respond to the bath as if it were
a bath of temperature Teff, where

Teff =
Γm

Γeff
T =

Γm

Γm + Γopt
T, (.)


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Figure .: Cooling in practice. Le: measured spectral response of the (, ) mode.
Right: e model using equation (.) and independently measured values of κ,
∆ and g. e amplitude is fixed from a single fit to the first data trace.

in agreement with the treatment of section .. (in particular equation (.)).
Note that the effectivemechanical temperature only decreaseswhen the optical

broadening is positive. From equation (.) we see that only negative detunings
yield a positive broadening. For positive detunings, the broadening is negative,
leading to a heating (amplification) of the mechanics. When Γopt = −Γm, the so-
called parametric instability sets in. From an experimental viewpoint, this is very
disadvantageous. We discuss this further in chapter .

It is of general interest and particular necessity in section .. to examine
when the optically induced damping is largest, for a given cavity linewidth and
mechanical frequency. In other words, we are interested in the detuning ∆ex for
which

dΓopt

d∆

∣∣∣∣
∆=∆ex

= 0. (.)

With a bit of algebra we find that

∆ex = ±
√
−κ

2

12
+
ω2
m

3
+

1

6

√
κ4 + 4κ2ω2

m + 16ω4
m, (.)

with the positive solution corresponding to the minimum (largest heating) and
the negative solution corresponding to the maximum (largest cooling). Equation
(.), although a bit unwieldy at first sight, is easily interpreted in the two limits

In this case performed with the aid of SymPy.


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of respectively ωm ≫ κ and κ≫ ωm. In both cases, a zeroth-order approximation
suffices. In the former case, one obtains

∆ex ≈ ±ωm (ωm ≫ κ), (.)

which, by inspection of equation (.), is expected, as the two Lorentzian con-
tributions are well separated (resolved) and the maximum (minimum) will simply
be at the peak position of either Lorentzian. In the laer case,

∆ex ≈ ± κ√
12

(ωm ≪ κ), (.)

which is also expected, as this is the steepest point of the cavity Lorentzian, and
therefore the point of maximal sideband asymmetry in the relevant limit where
ωm is small. In Figure . we display some graphs to aid this intuition. Note that it
only holds classically that the largest Γopt by necessity corresponds to the lowest
effective temperature. We explore this more in the next section.
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Figure .: Optimal detuning. Le: Γopt as a function of detuning for different κ-
values; κ/ωm is 1 (green), 3 (blue), 5 (purple), 8 (burgundy), 10 (red), and g = ωm.
Right: the optimal detuning (for heating) over a large range of sideband-resolution
degrees. Also shown are the two asymptotes, ∆ex = ωm and ∆ex = κ/

√
12.

e classical cooling theory presented so far already captures the main features
of optomechanical sideband cooling. It does not, however, correctly predict the
ultimate limit on the achievable occupation. Nothing we have said in this section
contradicts the classical picture of coupled reservoirs presented in section ..,
and equation (.) evidently allows for arbitrarily low phonon occupation. To
obtain the proper limit and thereby answer the burning question of whether and
when ground state cooling is (at least theoretically) possible is the goal of the next
section.


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Figure .: antum sideband picture of cooling. In the level diagram to the right,
we have set∆ = −ωm and taken κ ≪ ωm. e quantum states are joint Fock states
of light and mechanics and the ratio ωm/ωcav is exaggerated for clarity.

... antum picture

As is oen the case in physics, much can be learned from simple energy consider-
ations. We saw in equations (.) and (.) that the mechanical motion gener-
ates sidebands on the laser drive. e frequency and thus the energy of the side-
band photons differ from that of the carrier field by exactly a mechanical phonon
energy, and the creation/annihilation of phonons in the mechanical resonator is
therefore required for the sideband appearance to conserve energy. e presence
of a cavity creates an imbalance between the sidebands and thereby favour either
cooling or heating. is is indeed the essence of the sideband cooling mechanism.
In Figure . we display a diagrammatic overview and introduce the two scaer-
ing rates A+ and A−. e rest of this section will be devoted to calculating these
rates and obtaining a final cooling prediction.

For the final occupation number, we invoke the jump rate picture introduced
in section ... We remind ourselves that the final phonon number will be given
by ( see equation (.))

n̄f =
Γ↑

Γ↓ − Γ↑
. (.)

As the two baths are completely independent, the effective jump rates are simply
the sums of the contributions from the thermal bath and the light field;

Γ↑ = A+ + A+
th, Γ↓ = A− + A−

th, (.)

where, as discussed in section .., A+
th = n̄thΓm and A−

th = (n̄th + 1)Γm. To get
actual expressions for A+ and A−, one may invoke Fermi’s Golden Rule [Clerk


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et al., ]. For an oscillator subject to a Hamiltonian of the form

Ĥ = ℏωm

(
b̂†b̂+

1

2

)
− ℏGx̂F̂ , (.)

the transition rates (not the jump rates, see below) from state |n⟩ to |n+ 1⟩ re-
spectively are given by

Γn→n+1 = G2| ⟨n+ 1| x̂ |n⟩ |2SFF (−ωm), (.)

respectively
Γn→n−1 = G2| ⟨n− 1| x̂ |n⟩ |2SFF (ωm). (.)

As in our case F̂ = n̂, the relevant PSD is the photon number spectrum Snn(ω).
is can be calculated [Marquardt et al., ] to be given by

Snn(ω) = n̄cav
κ

(ω +∆)2 + (κ/2)2
. (.)

e matrix elements of equations (.) and (.) are directly evaluated to yield
x2ZPF(n+ 1) and x2ZPFn, that is,

Γn→n+1 = (n+ 1)g20Snn(−ωm), (.)

and
Γn→n−1 = g20nSnn(ωm). (.)

By direct comparison with the master equation (.), we see that Γn→n−1 = nA−

and Γn→n+1 = (n+ 1)A+, which leads us to identify

A− − A+ = n̄cavg
2
0

(
κ

(ω +∆)2 + (κ/2)2
− κ

(−ω +∆)2 + (κ/2)2

)
(.a)

= Γopt. (.b)

is result is intuitively appealing; the broadening of the mechanical mode can
indeed be viewed as a damping, both in the form of a coupling to a reservoir and
a net dissipation rate. With all this in place, the full expression for the phonon
occupation may finally be evaluated. We find that

n̄f =
A+ + n̄thΓm

Γopt + Γm

. (.)

For clarity, we omit the terms involving only light.


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It is of course interesting to inquire what the minimal obtainable occupation is in
the absence of mechanical dissipation. It follows directly that

n̄min =
A+

Γopt
=

(
(ωm −∆)2 + (κ/2)2

(ωm +∆)2 + (κ/2)2
− 1

)−1

, (.)

whence we can rewrite equation (.) in the slightly more suggestive form

n̄f =
Γoptn̄min + n̄thΓm

Γopt + Γm

. (.)

is expression very closely resembles equation (.), only expressed in phonon
numbers rather than temperatures. Now we may clearly pinpoint where the clas-
sical prediction of equation (.) went wrong; the effective temperature of the
light field is not simply zero. Instead, one can re-express equation (.) in terms
of an effective light noise temperature to find that

Teff, light =
ℏωcav

kB(log(Snn(ωm))− log(Snn(−ωm)))
. (.)

In other words, the quantum fluctuations of the light act as a stochastic force, me-
diated by radiation pressure, heating the membrane. Without going into a detailed
discussion, we emphasise that classical fluctuations of the laser will have a similar
effect. Random phase of amplitude fluctuations of the laser in a spectral region
near the mechanics are added on top of the shot noise, leading to an even higher
effective occupation of the laser. For a ground state cooling experiment, it is there-
fore of utmost importance to be limited by only shot noise in the laser. We return
to this subject again in section .. when we characterise the light source used in
the experiment.

Aside from that, we note from equation (.) that the presence of n̄min can
shi the detuning yielding the lowest phonon occupancy away from the detuning
yielding the largest optical broadening. is is most pronounced in the unresolved
sideband regime, where n̄min is larger. In Figure . we plot the quantum limit for
sideband cooling for a range of different ratios κ/ωm. It is seen that sideband
resolution (having ω > κ) is, although desirable, not strictly necessary in order
for the ground state to be reachable.

Finally, it is interesting to cast the condition for ground state cooling in terms
of the quantum cooperativity. In the highly resolved sideband limit, ωm ≫ κ, the

Where, as always, we by “ground state” mean n̄ < 1


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following two approximations can be made:

n̄f ≈ Γmn̄th

Γopt
, Γopt ≈

4g2

κ
. (.)

In that limit, we then obtain the important result that

Cq > 1 ⇒ n̄f < 1. (.)

Outside the highly resolved sideband regime things get a bit more murky, so we
turn to numerical solutions. For a given ratio between the cavity linewidth and the
mechanical frequency, we ask what the minimal quantum cooperativity needed to
achieve n̄f < 1 is. is of course hinges on the detuning (but not on n̄th!), and we
must make some choice for this parameter. We have not been able to find a closed-
form expression for the detuning generally yielding the lowest phonon occupancy,
but we know that equation (.) is optimal in the resolved sideband limit and that
∆ = −κ/2 is optimal in the very unresolved limit [Aspelmeyer et al., ]. By
combining the results of those two limits, the picture of Figure . emerges. As the
mechanical frequency grows relatively to the cavity linewidth, a larger quantum
cooperativity is called for, but the demand is not dramatically increased even in
the moderately unresolved regime.

.. antum Power Spectral Densities

We now turn our aention to the linearised equations of motion and the impor-
tant task of calculating the measured spectra coming out of the cavity. Our goal


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is to develop a numerical model that we may compare directly to data. e calcu-
lation is done in two steps; first we calculate all intra-cavity quantities using the
linearised Heisenberg-Langevin equations and next we apply input-output theory
to calculate the spectra of light coming out of the cavity.

... Inside the Cavity

When considering the power spectral densities of light and mechanics, the most
natural point of departure is to cast the equations in terms of quadrature operators.
We define

Q̂ :=
1√
2
(b̂† + b̂), P̂ :=

i√
2
(b̂† − b̂), (.)

and
X̂ :=

1√
2
(â† + â), Ŷ :=

i√
2
(â† − â), (.)

and note that
Q̂ =

1√
2xZPF

x̂, P̂ =
1√
2pZPF

p̂. (.)

By direct substitution, the linearised equations of motion for the mechanics, equa-
tions (.) and (.), may then be recast as

d
dtQ̂ = ωmP̂ . (.)

and
d
dtP̂ = −ΓmP̂ −

√
2ΓmP̂in − ωmQ̂− 2gX̂, (.)


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where we have introduced the mechanical input noise operator P̂in, given by

P̂in =
xZPF

ℏ
√
Γm

F̂th. (.)

Similarly, we have for X̂ and Ŷ that

d
dtX̂ = −κ

2
X̂ −∆Ŷ +

√
κX̂in, (.)

d
dt Ŷ = −κ

2
Ŷ +∆X̂ + 2gQ̂+

√
κŶin. (.)

Now, the great virtue of these equations is their linearity, which allows us to
compactly recast them in matrix form;

d
dt


X̂

Ŷ

Q̂

P̂

 =


−κ/2 −∆ 0 0

∆ −κ/2 2g 0

0 0 0 ωm

2g 0 −ωm −Γm



X̂

Ŷ

Q̂

P̂

+


X̂in

Ŷin

Q̂in

P̂in,

 (.)

with proper (re-)definitions of the input noise operators;
X̂in

Ŷin

Q̂in

P̂in,

 =


√
κX̂in√
κŶin

0√
2Γm P̂in

 . (.)

Using matrix notation to rewrite equation (.) as

d
dtV(t) = MV(t) + Vin(t), (.)

we obtain the following solution in the frequency domain:

V(ω) = −(iω1 + M)−1Vin(ω). (.)

From the solution hereto, we may calculate all spectra, once the noise correlators
have been specified. e noise correlators may be compactly expressed in the
covariance matrix, Σ, given by

Σij(ω
′, ω) =

⟨
Vin

i (ω
′)Vin

j (ω)
⟩
. (.)

If we define a new matrix L as

L = −(iω1 + M)−1, (.)


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equation (.) can be re-expressed as

Vi(ω) =
4∑

j=1

Lij(ω)Vin
j (ω). (.)

We may then compactly write the spectrum of any quadrature operator as

SViVi
(ω) =

∫ ∞

−∞
⟨Vi(ω

′)Vi(ω)⟩
dω
2π

′
(.)

=

∫ ∞

−∞

4∑
j,l=1

Lij(ω
′)Σjl(ω

′, ω)Lil(ω)
dω
2π

′
(.)

=

∫ ∞

−∞

dω
2π

′ (
L(ω′)Σ(ω′, ω)LT (ω)

)
ii
. (.)

In the Markovian limit, Σ takes the following simple form:

Σ = Tδ(ω′ + ω), (.)

where

T =


κ/2 iκ/2 0 0

−iκ/2 κ/2 0 0

0 0 0 0

0 0 0 2Γm(n̄th + 1/2)

 , (.)

and the expression for the spectrum simplifies somewhat to become

SViVi
(ω) =

(
L(−ω)TLT (ω)

)
ii
. (.)

is last equation, although difficult to penetrate analytically, is easily evaluated
numerically, since the matrix inversion of equation (.) only ever needs to be
performed once. Note that some simplification takes place when one considers the
symmetrised PSD. Upon the symmetrisation, terms proportional to non-diagonal
elements of T cancel out, such that

S̄ViVi
(ω) =

4∑
j=1

Lij(−ω)Lij(ω)Tjj. (.)

As an example, we consider S̄QQ(ω).

S̄QQ(ω) =
κ

2
L31(−ω)L31(ω) +

κ

2
L32(−ω)L32(ω)

+2Γm(n̄th + 1/2)L34(−ω)L34(ω).
(.)
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Even this rewriting is, however, somewhat intractable analytically due to the in-
volved expressions for the Lij . In section .. we solve the Heisenberg-Langevin
equations exactly for the light amplitude quadrature. For now we proceed with
the numerical modelling.

... Outside the Cavity

e spectrum we measure is that of the light field emanating from the cavity. To
calculate the output operator of this field, we must account for extraneous losses.
Not all light that has interacted with the mechanics is being collected by the pho-
todetector. Some is lost through the input port (remember that we measure in
transmission), some disappears due to lossy optics on the way to the detector, and
some might even be scaered out of the cavity. Whatever the reason, all these
losses may be lumped together into a single vacuum noise term replacing a part
of the correlated signal. e input-output relation for X̂ then reads

X̂out =
√
η(X̂in +

√
κX̂) +

√
1− ηX̂vac. (.)

e losses are parametrised through the detection efficiency η, which is bounded
from above by the cavity coupling parameter ηc. Having η = ηc corresponds to
perfect detection with light only escaping through the cavity input port.

Using the machinery and notation of section ..., the spectrum of X̂out is
found to be

S̄XoutXout(ω) = ηκSXX(ω) +
1

2
[1− ηκ(L11(−ω) + L11(ω))]

−1

2
[ηκ(L12(−ω) + L21(ω))].

(.)

Upon symmetrisation, this expression takes the even simpler form

S̄XoutXout(ω) = ηκS̄XX(ω) +
1

2
− ηκL̄11(ω). (.)

Although still intended for numerical evaluation, it is possible to argue a bit for
the correctness of this last equation. First of all, it is compelling that what comes
out is indeed the intracavity spectrum, only with some added noise modifications.
Both of these modifications have a clear interpretation. For η = 0, one measures
only vacuum noise, which does not have a zero value, but rather (in our conven-
tion) a value of 1/2, explaining the presence of a constant term. Secondly, when
g = 0 we should also expect a flat spectrum, which is not guaranteed by S̄XX ,
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since this quantity describes the amount of intra-cavity fluctuations, and these are
modulated by the cavity response. e third term can be thought of as “ensuring”
the cancellation of the cavity response so as to generate a flat spectrum of shot
noise. In Figure . we show an explanatory picture of S̄XX(ω) and S̄XoutXout(ω)

in two important regimes. We also show the very important S̄QQ(ω), which we
shall use in chapter  to calculate phonon occupations (see below).

e plots in Figure . illustrate several important points. We see that S̄XX

does indeed have some overall shape plus a mechanical response, whereas S̄XoutXout

is flat everywhere except near the mechanics. Furthermore, the spectral features
of the output light do not exactly mimic the shape of the mechanics, unlike in the
classical limit (cf. Figure .). In fact, in a certain spectral region, the output light
noise is squeezed below the shot noise level. is effect, a clear quantum signa-
ture, is denoted ponderemotive squeezing and further explored in the next section.
Finally, we see the expected shi and damping of the mechanical spectrum. We
stress that since the model makes a simultaneous prediction for S̄XoutXout and S̄QQ,
it suffices to measure one in order to determine the other.

Finally, we showhow themechanical phonon occupation follows from S̄QQ(ω).
First, we realise that the symmetrised PSD of x̂ in the classical limit should equal
the PSD of the classical variable z, i.e.

S̄xx(ω) = Szz(ω). (.)

Next, using argument similar to the ones used in section .., we may write∫ ∞

−∞
S̄xx(ω)

dω
2π

=
1

meffω2
m

⟨
Ĥ
⟩
=

ℏωm

meffω2
m

(
n̄+

1

2

)
. (.)

Finally, since
√
2xZPFQ̂ = x̂, it follows that∫ ∞

−∞
S̄QQ(ω)

dω
2π

=
meffωm

ℏ

∫ ∞

−∞
S̄xx(ω)

dω
2π

= n̄+
1

2
. (.)

is of course agrees with the results of section .. in the classical limit where⟨
Ĥ
⟩
→ kBT .

.. Ponderemotive Squeezing

On an intuitive level, it is reasonable that the optomechanical interaction will
squeeze the cavity light field. Aer all, an amplitude-dependent phase shi is
what the mechanics impinge, meaning that the phase and amplitude quadratures
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of the light will become correlated. In Figure . a conceptual model is shown,
where two originally uncorrelated quadratures become correlated as the phase (Ŷ )
is shied proportionally to the amplitude (X̂) value. If the correlation is strong
enough, there exists a cut through the centre of the cloud along which the vari-
ance is less than of the vacuum. In such a case, we say that quantum noise is being
squeezed.

.

.

. .

.

Ŷ

.

X̂

.

. .
.

Ŷ ′

.

X̂ ′

Figure .: Conceptual squeezing model. A point of a certain colour on the le is
mapped to a point with the same colour on the right.

We now analytically solve the Heisenberg-Langevin equations for the light
quadratures. e overall plan of aack is to express first X̂ and then X̂outsolely in
terms of input noise operators, so that the output spectrum may be evaluated.

By introducing two cavity response functions, c1 and c2, defined by

c1 :=
−2∆

4∆2 + (κ− 2iω)2κ, c2 :=
κ− 2iω

4∆2 + (κ− 2iω)2κ, (.)

we may recast equations (.) and (.) in the frequency domain as

X̂(ω) =
4gc1
κ

Q̂(ω) +
2√
κ
(c1Ŷin(ω) + c2X̂in(ω)), (.)

Q̂(ω) = χm(ω)
(
2gX̂(ω) +

√
2ΓmP̂in(ω)

)
, (.)

where we now define the mechanical susceptibility, χm, as

χm(ω) =
ωm

ω2
m − ω2 − iΓmω

. (.)

Substituting the value of X̂ of equation (.) into (.) then gives that

Q̂(ω) = χeff(ω)

(
4g

κ
[c1Ŷin(ω) + c2X̂in(ω)] +

√
2ΓmP̂in(ω)

)
, (.)
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where the effective susceptibility, χeff, is the same as the one of equation (.)
withmeff replaced by 1/ωm, arising from us working now with the dimensionless
quadrature operators. Finally, this expressionmay be substituted for Q̂ in equation
(.) to yield

X̂(ω) =

(
16
g2c1
κ
χeff(ω) + 2

)
1√
κ
[c1Ŷin(ω) + c2X̂in(ω)]

+
4gc1
κ

χeff(ω)
√

2ΓmP̂in(ω).

(.)

Assuming for the sake of illustration an ideal detection efficiency η = 1, the output
quadrature is given by

X̂out(ω) = X̂in(ω)−
√
κX̂(ω) (.)

= −
(
16
g2c21
κ
χeff(ω) + 2c1

)
Ŷin(ω)

−
(
16
g2c1c2
κ

χeff(ω) + 2c2 − 1

)
X̂in(ω) (.)

− 4gc1χeff(ω)
√

2ΓmP̂in(ω).

esymmetrised PSD of the output fluctuations can be found using equation (.).
One then obtains

S̄XoutXout(ω) =
1

2
+

(
16g2

κ
√
2

)2

|χeff(ω)|2|c1(c1 + c2)|2

+
16g2

κ
|χeff(ω)|2|c1|22Γm(n̄th +

1

2
) (.)

+
16g2

κ
Re

(
χeff(ω)c1(2c

2
1 + 2c22 − c2)

)
.

In order for squeezing of quantum noise to occur, the value of S̄XoutXout(ω)must fall
below 1/2. e first three terms of equation are strictly positive and thus counter-
act any squeezing. Wemay physically interpret these contributions as the constant
imprecision noise of the measurement, the quantum back-action and the trans-
duced thermal noise. Finally, the fourth term embodying the light-mechanical
correlations may become negative and thereby potentially produce squeezing. It
is not immediately clear from these expressions what effect different optical pa-
rameters have on the squeezing, but it is directly seen that a low bath temperature
and mechanical dissipation rate are desirable.
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Figure .: Squeezing improving with cooperativity. Parameters used: κ/2π =

14MHz, ∆/2π = −1.8MHz, ωm/2π = 2.5MHz, Q = 10 M, T = 10K.

In Figure . we illustrate how the degree of achieved squeezing grows with
the quantum cooperativity, calculated with parameters similar to those of our ex-
periment, but for an ideal detection efficiency.

In terms of experimental parameters, good squeezing is not achieved in the
same region as good sideband cooling. Sideband resolution, so tremendously help-
ful for cooling, is of no aid in the squeezing endeavour. In Figure . we dis-
play the maximal amount of ponderomotive squeezing present in the output spec-
trum as the cavity linewidth and detuning are varied. For each trace, the cavity-
enhanced coupling is adjusted so that the quantum cooperativity is one.

.. OMIT

Another interesting phenomenon emerging from the Heisenberg-Langevin equa-
tions of motion is that of optomechanically induced transparency (OMIT). First pro-
posed in [Schließer, , chapter ] and shortly thereaer further theorised [Agar-
wal and Huang, ] and verified experimentally [Weis et al., ], the effect is
now routinely demonstrated in optomechanical experiments. Indeed, to our ends,
it serves as a diagnostic tool to measure three key parameters on which all of the
previous effects depend, namely κ, ∆ and g.

Aweak phasemodulation (probe) is applied to the input fieldwill, by the cavity,
be turned into an amplitude modulation which, at the mechanical frequency, will
interfere with the sidebands already created by the mechanics on the strong laser
drive (see equations (.) and (.)). is interference may be destructive or
constructive, leading to either induced transparency or opaqueness.

For our purposes, the effect is purely classical in the sense that quantum noise
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Figure .: Maximal degree of squeezing (in dB) for unit quantum cooperativity.
Other parameters are the same as those used in Figure ..

plays no role in it. Our starting point is the linearised equations with all operators
replaced by their (shied) expectation values. is is once again equations (.)
and (.), but keeping now the drive term, which will constitute the weak probe.
In the frequency domain, these equations read

(−i(∆ + ω) + κ/2)a(ω) =
√
ηcκδsin − iGα x(ω), (.)

(i(∆− ω) + κ/2)a∗(ω) =
√
ηcκδs

∗
in + iGα x(ω), (.)

(ω2
m − ω2 − iΓmω)x(ω) = − ℏG

meff
α(a∗ + a). (.)

Now, the cavity rotates the quadratures of the input field. Adopting the conven-
tion that our intracavity field is real, for the drive to be turned into intra-cavity
amplitude modulations, δX , the phase of the drive must fulfil that (see [Schließer,
, appendix B])

δsin =
i
2

−i∆+ κ/2√
∆2 + (κ/2)2

δX, δs∗in = − i
2

i∆+ κ/2√
∆2 + (κ/2)2

δX. (.)

Note that δX is real. e signal measured at the output is

S(ω) =
√
κout(a

∗(ω) + a(ω)), (.)

where the output coupling κout will actually play no role in the end. Insertion of
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(.) into equations (.) and (.) yields that

a(ω) = χc(ω)
(√

ηcκδsin + 2ig2χm(ω)(a
∗ + a)

)
(.a)

a∗(ω) = χ∗
c(−ω)

(√
ηcκδs

∗
in − 2ig2χm(ω)(a

∗ + a)
)
, (.b)

where

χc(ω) =
1

−i(ω +∆) + κ/2
, χm(ω) =

ωm

ω2
m − ω2 − iΓmω

, (.)

and we have used that ℏGα/meff = 2ωmg. Solving equations (.) for a∗ + a,
we find that

S(ω) = κout
C(ω)

1−M(ω)
, (.)

where

C(ω) =
√
ηcκ (χc(ω)δsin + χ∗

c(−ω)δs∗in) (.a)

=
√
ηcκ δX

(
χc(ω)

i
2

|χc(0)|
χc(0)

− χ∗
c(−ω)

i
2

|χc(0)|
χ∗
c(0)

)
, (.b)

and
M(ω) = 2ig2χm(ω)(χc(ω)− χ∗

c(−ω)). (.)

In both functions, C(ω) andM(ω), the signal is seen to be the sum of the two side-
bands present in the cavity at respectively ±ω. We may understand C(ω) as the
response from the bare cavity, whereasM(ω) is the mechanical contribution to the
signal. In Figure . we display the evolution of the two different contributions
as the detuning is varied. As the overall amplitude is of no interest, we normalise
the C(ω) plot such that the peak response is . An easily understandable paern
is observed; as the Fourier frequency approaches (minus) the detuning, the cav-
ity responds with a response as wide as the cavity linewidth. Similarly, to ease
gauging the depth of the OMIT dips, we have “normalised” by ploing just the
(1−M(ω))−1 part of S(ω) plots such that the asymptotic value is . Here, asymp-
totic should be understood as meaning that χeff(ω) (as given by equation (.))
has become negligible. e true asymptotic value of S(ω) is of course ≈ C(ωm).
As will be further described in section ..., this response is, once the amplitude
has been normalised away, our door to gain access to κ, ∆ and g.

... Multi-mode OMIT

Whereas the previous section dealt with the interaction of a single mechanical
mode and the light field, many real mechanical resonators, and indeed our mem-
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branes, sport a multitude of mechanical modes. Assuming these modes to be non-
interacting, the model just developed is easily extended to encompass an arbitrary
number of mechanical modes. For m mechanical modes, here for clarity labelled
with a single index i, the equations of motion read

χ−1
c (ω)a(ω) =

√
ηcκδsin − iα

m∑
i

Gixi, (.)

χ−1
c (ω)a∗(ω) =

√
ηcκδs

∗
in + iα

m∑
i

Gixi, (.)

χ−1
m,i(ω)xi(ω) = −ωm,i

ℏGi

meff,i
α(a∗ + a). (.)

Following a derivation completely analogous to the single mode case, one ends
up with the very same expressions as equations (.) and (.), only with a
modifiedM -function. e multi-mode version reads

M(ω) = 2i(χc(ω)− χ∗
c(−ω))

m∑
i

g2i χm,i(ω), (.)

of which equation (.) is just the special case when m = 1. In Figure . we
show a plot of the expected OMIT response of the first 105 modes of a square
membrane. We calculate the mode frequencies using equation (.) and calculate
the different couplings using both the different zero-point fluctuations (equation
(.)) for each mode and the transverse overlap, to be discussed in section ..,
which makes the coupling to many of the modes vanish for a laser beam centred
on the membrane.

e actual OMIT traces one encounters in the laboratory are very similar to
that of Figure .. e reader may compare with trace 2 of Figure ..

. Transfer Matrix Model

Having now concluded the discussion of optomechanical effects arising in the
canonical system, it is time to develop the mapping from our MIM system to the
canonical one. e main difference between the two systems consists in our me-
chanically compliant part, the membrane, being sandwiched between the mirrors

We plot all (n,m)modes for n = 1, . . . , 14,m = 1, . . . , 14where only one of each (1, 3)-(3, 1)
type pair is included.
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rather than displacing one of the mirrors. is introduces a few extra complica-
tions into the analysis, most noticeably that the coupling of the membrane to the
light field depends on the membrane’s position relatively to the intracavity stand-
ing wave.

In order to analyse this situation we turn to the transfer matrix model. is
section is based on the work presented in [Jayich et al., ] and [Wilson, ,
chapter ]. e idea is to simply track the circling intra-cavity fields to obtain all
the parameters of the total cavity. is approach approximates all fields by infi-
nite plane waves, an approximation we justify by noting that the Rayleigh range
of our cavity mode is roughly ten times the distance from the end mirror to the
membrane.

e starting point of the analysis is the situation illustrated in Figure .,
where we diagrammatically show the seven fields of interest.

.. zm.

L

.
Ain

.

Arefl

.
A1

.

A2

.
A3

.

A4

.
Aout

.(t1, r1). (t2, r2).

(tm, rm)

Figure .: Overview of the six field amplitudes to be determined from the nine
(including wavenumber) input parameters.

Evidently, the field amplitudes obey the following set of equations:

A1 = it1Ain + rmA2 eikL−zm , (.)
A2 = rmA1 eik(L−zm)+itmA4 eikzm , (.)
A3 = itmA1 eik(L−zm)+rmA4 eikzm , (.)
A4 = r2A3 eikzm , (.)
Arefl = it2A2 eik(L−zm) +r1Ain, (.)
Atran = it2A3 eikzm , (.)

where rm and tm are the amplitude reflection respectively transmission coefficients
of the membrane. To calculate these, one treats the membrane as thin dielectric
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plate to obtain that

rm =
(n2 − 1) sin(knd)

2in cos(knd) + (n2 + 1) sin(knd) , (.)

tm =
2n

2in cos(knd) + (n2 + 1) sin(knd) , (.)

where d is the membrane thickness and n is the index of refraction of the mem-
brane. For our Si3N4 membranes, at a wavelength of roughly 800 nm and a stress
of 1.1GPa, this is has a value of 2.0 [Philipp, ], [Campillo and Hsu, ].
e imaginary part of the refractive index, corresponding to light absorption in
the membrane, has been found to be immeasurably small. From a measurement of
the finesse of our cavity before and aer the insertion of a membrane, we obtain
Fcavity = 130×103±7×103 andFMIM = 125×103±5×103, respectively, meaning
that within the uncertainties, the two finesses are the same. Using the mean values
from the finesse measurements and knowledge about the mirror reflectivities (see
section .), we may place an upper bound for the optical losses of the membrane
of 4 ppm. Denoting this loss as L, it then holds (for small losses) that

1− L = e2 Im(n)kd ≈ 1 + 2 Im(n)kd. (.)

For 2π/k = 837 nm and d = 50 nm, one obtains that Im(n) ≈ 5× 10−6.
It is worth noting, at this point, that the membrane thickness is an important

experimental parameter in the pursuit of the highest possible coupling, as a higher
membrane reflectivity obviously yields more imparted light momentum. In Figure
. we illustrate the periodic dependence of |rm| on the membrane thickness. e
optimal working point turns out to be at a thickness of ≈ 65 nm, rather than at
100 nm, since also the membrane mass increases with the thickness, which in turn
will decrease the zero-point fluctuations and thus the coupling achieved.

Returning from this small digression, we may solve the system of equations
(.)-(.) for the Ai (i = 1, 2, 3, 4) by seing the input field, Ain, to be 1. is
yields somewhat lengthy expressions, that are, however, easily evaluated numer-
ically. From the intra-cavity fields, we can then build all quantities of interest.

Although the Ai (i = 1, 2, 3, 4), given fixed input parameters {t1, r1, t2, r2,
n, d, L, zm}, can be calculated for all values of k, it is of course most relevant to
assert what happens on resonance. To find the resonances, we simply demand
that the two fields Ain and Arefl be π out of phase with each other, which for our
transmission/reflection phase convention corresponds to having arg(A2) = 0.

See [Siegman, , section .].
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Figure .: Aplot of equation (.). Note the veryweakwavelength dependence.

Before calculating the quantities of interest, we address the question of peri-
odicity. As already mentioned, the main difference between such a dispersively
coupled system and the canonical end mirror coupled system is that not all cavity
resonances have the same optical properties; it all depends on the relative position
of the membrane in the intra-cavity standing light wave. For our particular sys-
tem, themonolithic cavity design does not allow us to vary the membrane position,
so the expected periodicity with membrane position is more conveniently cast as a
periodic behaviour in light wavenumber, k. To do so, we note that the relative po-
sition of membrane to standing wave is unaffected by changing the wavenumber
as k → k+∆k, where∆k = L/zmk0, and k0 is the fundamental cavity resonance;
k0 = π/L. In order words, the period in k, Tk, fulfils that Tk = π/zm. To lend from
normal sinusoidal intuition, it has become customary in our group to work with
2k rather than k, since then everything is 2kzm-periodic with period 2π. On an
intuitive level, we can understand this period as the membrane moving through
one “bubble” of light field, as sketched in Figure ..

..
Membrane

.

2kzm

Figure .: An intuitive sketch.

is intuition may also be cast into formulas. From [Jayich et al., ] and
[Wilson, , chapter ], in the limit of a closed, lossless cavity with low mem-
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Figure .: Frequency shis folded back into 2π for membrane reflectivities
|rm| = {0.1, 0.2, 0.3, 0.4, 0.5} (burgundy, red, orange, turquois, blue). e bare
FSR is 90GHz.

brane reflectivity, the following formula holds for the resonance wavenumber, kres:

|rm| cos(2kres∆z) = cos(kresL+ ϕ), (.)

where∆z = zm−L/2 andϕ = arg(rm). By neglecting the constant phase, approx-
imating the kres on the le hand side by the “bare” cavity resonance wavenumber
k0,n (k0,n = nk0 = nπ/L, n ∈ N) and adding an extra term of k0,n to account for
multiple resonances, we obtain

kres =
1

L
arccos(|rm| cos(2k0,n∆z)) + k0,n, (.a)

≈ 1

L
|rm| sin(2k0,nzm) + k0,n, (.b)

which is easily interpreted as the membrane causing periodic frequency shis of
the cavity resonance. In Figure . we let k0,n be a continuous variable and plot
the resulting frequency shis of equation (.) folded back into a single “bubble”
(in the sense of Figure .), that is 1

L
|rm| sin(2k0,nzm) versus mod(2kreszm, 2π). In

spite of the many approximations made, the behaviour of the full model is nicely
captured.

is is as far as we go analytically. Turning now to solving the model numer-
ically to understand our system, we plot a number key quantities in Figure ..
Here we go through them one-by-one to explain how they are built from the Ai

(i = 1, 2, 3, 4).
e frequency shi. As the membrane has an index of refraction larger than

air (and vacuum), its presence can only increase the optical path length of the cav-
ity, and therefore decrease the cavity’s resonance frequencies. As this decrease, for
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membrane thicknesses relevant here, is never more than one free spectral range
of the cavity, it makes sense to identify to each cavity resonance, fres, a “bare cav-
ity” resonance, f 0

res, and calculate the shi in frequency induced by the membrane.
is is most elegantly done by assigning the shi, ∆f , as

∆f = f 0
res − fres = mod(fres, c/2L). (.)

Note that the two positions in 2kzm that yield maximal or minimal shi of fre-
quency correspond to the membrane being at respectively a field anti-node or
node.

eoutput power ratios. ese are simply the reflected and transmied power
ratios for the cavity as a whole, and are given by

Tcav =
|Atran|2

|Ain|2
, (.)

Rcav =
|Arefl|2

|Ain|2
. (.)

Shown in Figure . are also the “bare cavity” values, given by (equation (.)),

T0 =
4|t1|2|t2|2

(|t1|2 + |t2|2)2
, (.)

and R0 = 1− T0.
e cavity coupling parameter. e degree of overcoupling (or undercou-

pling) of the cavity is the ratio between how much light leaves the cavity through
the output port and how much light leaves in total. In the MIM picture, this ratio
is given not only by the mirror transmissivities, but also by the different amounts
of light in each subcavity. Specifically,

ηc =
|t2|2|A3|2

|t2|2|A3|2 + |t1|2|A2|2
. (.)

e cavity linewidth. A simple formula for the cavity linewidth in this model
is not known to us. Instead, we numerically calculate the FWHM of the cavity
resonance by varying k around each resonance. Shown in Figure . is also the
bare cavity linewidth, calculated as

κ0
2π

=
FSR
F

, F =
2π

|t1|2 + |t2|2
. (.)

e clean fact that the membrane modulates the cavity linewidth, can, however, be
expressed in simple formulae. For a membrane-less cavity, the linewidth is given
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by κ0 = (|t1|2 + |t2|2)/τ , where τ = 2L/c. As the membrane enters the picture,
we have two subcavities for which the linewidths are

κ1 =
c|t1|2

2(L− zm)
, κ2 =

c|t2|2

2zm
. (.)

e resulting MIM linewidth will be a convex combination of κ1 and κ2, and the
non-trivial part consists in determining exactly which combination. In [Wilson
et al., ] a comprehensive data set exploring this linewidth modulation is pre-
sented.

e optomeanical coupling rate. As opposed to the canonical optomechan-
ical system, where all photons contribute to the radiation pressure force, we now
have pressure from both sides of the membrane, allowing for a possible cancella-
tion of optomechanical effects. is behaviour is all contained in the optomechan-
ical coupling rate. It is useful to compare to the canonical situation. ere, the net
radiation pressure force, Fnet, fulfils that

Fnet =
2ℏkn̄cav

τc
= ℏGn̄cav, (.)

where τc is the cavity round-trip time; τc = 2L/c. In our case, we define G such
that the right hand side stays the same, whilst the net force is obviously the dif-
ference between the radiation pressure from the le and right subcavity, i.e.

Fnet = F1 − F2 = 2ℏk
(
n̄1

τ1
− n̄2

τ2

)
= ℏGn̄cav, (.)

whence it follows that
G = 2k

n̄1/τ1 − n̄2/τ2
n̄1 + n̄2

. (.)

Recast in terms of the Ai and normalised to become g0/2π (in Hz), we then have
that

g0 =
2kxZPF

2π

|A1|2 + |A2|2 − |A3|2 − |A4|2

τ1(|A1|2 + |A2|2) + τ2(|A3|3 + |A4|2)
, (.)

where we have used that the Ai are fluxes, so that n1 = τ1(|A1|2 + |A2|2) (and
similarly for n2).

e map thus compiled of how the cavity parameters vary with membrane
position inside the cavity nicely illustrates the differences between the canoni-
cal system and our membrane-in-the-middle system. More importantly, it also

e authors recast it as a finesse modulation.
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provides an indispensable experimental tool for choosing the right wavelength to
work with. For wavelengths around 800 nm, the product 2kzm is of order 104,
meaning that variations of tenths of a per-mill will vastly displace mod(2kzm, 2π).
Operationally, the strategy is therefore to record a series of subsequent cavity res-
onance frequencies and from their frequency shi deduce their position in 2kzm
and, ultimately, with which one of them it is favourable to work.
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Figure .: e periodic modulation of cavity parameters with k. For the three
central plots, the dashed curves indicate the bare cavity values. e following set
of parameters was used: T1 = 41 ppm, T2 = 255 ppm, zm = 500 µm,L = 1.72mm,
dm = 40 nm, λ0 = 806 nm, meff = 2 ng, ωm = 2π × 2.5MHz, n = 2.0.
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Chapter 

Experimental Realisation

We now turn to the description of the actual experiment performed. As one may
imagine, the experiment underwent many incarnations before reaching the “final”
form, in which it produced the results presented in the next chapter. e current
chapter falls in two parts. In the first part (sections .-.), we explain the chain
of spectral data acquisition, present an overview of the setup, and discuss selected
parts of it. In the second part (sections .-.), we focus on how to reach the
quantum-enabled regime. As the figure of merit hereof we take, as always, the
quantum cooperativity, given by

Cq =
4g2

κΓmn̄th
. (.)

Four experimental parameters constitute this relation, namely κ, the cavity line-
width, g, the cavity-enhanced optomechanical coupling rate, Γm, the mechanical
dissipation rate, and n̄th, the thermal phonon occupation number, in which the
membrane effective bath temperature hides. In the second part of the chapter, we
go through these four parameters one by one, explaining for each of them how
the setup was designed with optimisation regarding that particular parameter in
mind, as well as how said parameter was measured.

. Spectral Measurements

With the notable exception of the ring-down measurements presented in section
., we exclusively perform measurements in the frequency domain. In fact, all we
ever consider is different power spectral densities. In this section we explain the
acquisition of spectra, i.e. how the displacement fluctuations of the membrane get
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transduced through the detection chain to ultimately become the voltage fluctu-
ations measured by our spectrum analyser/ADC card. is chain consists of five
steps shown in Figure ..

Szz

Sωω

SII SV VSXX

Figure .: An overview of the ideal noise-less detection chain.

Displacement fluctuations of the membrane are imprinted as frequency fluc-
tuations of the intracavity field. ese are then transduced by the cavity into am-
plitude fluctuations of the outgoing light. e amplitude fluctuations are photo-
detected and give rise to a fluctuating photocurrent going out of the detector. Fi-
nally, an acquisition device terminal registers these as voltage fluctuations; the
signal we get access to.

e different PSDs are related to one another in the following way:

Sωω = G2Szz, (.)
SXX = G2

CSωω, (.)
SII = G2

DSωω, (.)
SV V = |Z|2SII , (.)

where G is the optomechanical coupling of equation (.) (G = ∂ωcav/∂zm), GC

is the cavity transduction factor, depending on frequency, cavity linewidth and
detuning, GD is the detector gain, in general a frequency dependent quantity, and
Z is the input impedance of the acquisition device. is only holds true, of course,
in the absence of other noise sources. In this ideal situation, our spectrum analyser
will show a scaled version of Szz(ω) and nothing else.

Painfully evident to any experimental physicist, there is an abundance of un-
wanted signals creeping into the detection, and we should somehow account for
those. Here, we focus on four understood sources of noise and dismiss everything
else as “electronic noise”. e four noise sources are shown in Figure ..

ree of the four noise sources have to do with the laser. e light going into
the cavity might have classical amplitude noise and/or classical phase noise, and
will with certainty have quantum noise (shot noise). at is, the input noise PSDs
S in
XX and S in

Y Y consist of a classical and a quantum part. We may hope to eliminate
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Szz

Sωω

SII SV VSXX

Smirror
zz

S in
XX

S in
Y Y

Figure .: An overview of the realistic noisy detection chain.

the classical part, which we discuss more in section ... e mirrors of the cavity
are responsible for the fourth noise source in terms of their thermal motion, which
imparts fluctuating length changes to the cavity. e subject of understanding and
classifying all sources of mirror noise (from the coating, from the bulk, etc.) is cov-
ered in e.g. [Harry and Bodiya, ] (see in particular chapter ), but will not be
pursued here. Instead, we lump all thermomechanical noise from the mirrors as
well as all other acoustic sources together as “mirror noise”. Given some trans-
duction coefficients, αi, the noises then show up in the intra-cavity field as

Sωω = G2Szz + α1S
mirror
zz + α2S

in
XX + α3S

in
Y Y . (.)

e transduction coefficients are frequency dependent functions of cavity param-
eters such as cavity linewidth and detuning, and even contain optomechanical in-
teraction effects. A detailed account can be found in [Wilson, ]. To our ends, it
will not be necessary to understand the details of noise transduction much deeper
than what is encapsulated in the following statement: in the spectral regions of
interest, the only significant contributions to Sωω must be from light shot noise
and membrane displacements.

Meeting this noise criterion is no easy feat, and a very considerable amount of
this work went into achieving that. e verification that the goal has in fact been
reached, is, however, rather straightforward, as we shall see in section ..

.. Calibration of the Spectrum

To calibrate the measured SV V in terms of frequency fluctuations of the cavity,
Sωω , a calibration tone of knownmodulation depth is applied to the incoming laser
light. is calibration procedure is well-established and described in [Gorodetsky
et al., ] and [Wilson, , chapter ]. Here, we give a somewhatmore succinct
explanation of how to understand the calibration procedure.

Since any shaking of the cavity is only relevant/problematic to the extent that it displaces the
two mirrors relative to one another.
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e incoming (monochromatic) laser light receives a phase modulation from
an EOM, which may be described as

|sin| e−iωLt → |sin| e−iωLt+iβ cos(ωmodt) . (.)

e PSD of incoming phase fluctuations is therefore

S in
ϕϕ(ω) = δ(ω − ωmod)β

2. (.)

In passing through the cavity and being detected, these fluctuations get transduced
by a frequency dependent factor Gϕ,I(ω), such that

SII(ω) = |Gϕ,I(ω)|2S in
ϕϕ(ω), (.)

or, similarly,
SV V (ω) = |Gϕ,V (ω)|2S in

ϕϕ(ω), (.)

where |Gϕ,V (ω)|2 = |Gϕ,I(ω)|2R2. Usually, we want to calibrate the measured
spectrum into frequency fluctuations (Hz2/Hz) and therefore invoke the relation

Sϕϕ(ω) =
1

ω2
Sωω(ω) =

1

f 2
Sff (ω), (.)

to obtain the transduction factorGf,V between frequency and voltage fluctuations;
Gf,V = fGϕ,V .

In the limit of negligible extraneous noise, then, it holds that if we integrate
over the measured calibration tone peak, then the spectral area, A, will be given
by

A =

∫ ωmod+ϵ

ωmod−ϵ

SV V (ω)
dω
2π

= f 2
modβ

2|Gf,V (ωmod)|2, (.)

where ϵ is some arbitrary range including the calibration peak but excluding any
other features (thereby justifying the assumption of no extra noise). us, the
desired translation is given by

Sff (ωmod) =
f 2
modβ

2

A
SV V (ωmod). (.)

All that remains now is to calibrate the β-factor in terms of a parameter directly
accessible experimentally, such as a voltage sent to an EOM. To this end, it is useful

Usually, ϵ = 100Hz.
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to consider the transmied power in the sidebands created by the phase modula-
tion. It holds for the ratio of the power in the carrier, Pc, and the power in the
first-order sidebands, Ps, that [Black, ]

Pc

Ps

=
J2
0 (β)

J2
1 (β)

, (.)

where Jn(β) are Bessel functions (of the first kind). By applying a sufficiently
strong phase modulation faster than the cavity decay rate and slowly scanning the
laser carrier frequency across the cavity resonance frequency whilst recording a
time trace of the cavity output, we may measure the carrier and two first-order
sidebands. is is shown in Figure .. e power in each peak is extracted from a
Lorentzian fit (the power ratio is equal to the integral ratio) and the transcendental
equation (.) is then solved numerically to obtain β. is procedure is repeated
for different RMS voltages sent to the EOM and a calibration curve relating VRMS to
β thus emerges. As a sanity check (factors of πmaer for calibration purposes!) we
may compare the inferred Vπ of the EOM to the one specified by the manufacturer.
From the fit, we obtain a slope of 2.12V−1. en

Vπ =
√
2× 1

2.12V−1 × π = 2.09V, (.)

in agreement with the specified Vπ of “<3V” for our EOSpace EOM.
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Figure .: Calibration of β. Le: Measurement of sidebands with Lorentzian fits.
Modulation frequency: 50MHz. Right: fied linear relationship between VRMS and
β. Error bars from statistical uncertainties (N = 13).

We rely heavily on this method of spectral calibration in the data analysis. It is
important to stress the fact that this calibration is only valid locally in the spectrum.

e factor of
√
2 translates from RMS voltage to DC voltage.
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e cavity transduces frequency fluctuations differently at different Fourier fre-
quencies, and the absolute calibration is only trustworthy when the frequency dif-
ference between fmod and the frequencies considered (usually a mechanical peak)
is much smaller than any other frequency scale involved (κ, ∆, ωm). Also, the
mechanics strongly modulate the cavity response, as testified by the OMIT calcu-
lations of section ... Whenever a calibrated spectrum is used to quantitatively
calculate a value, as in section ... for calibrating the effective membrane bath
temperature, great care is taken to properly position the calibration peak.

. Overview of the Setup

Over the years, the optical setup grew and shrank organically as new ideas were
tested and dismissed or sometimes retained. What we present here is a sort of
snapshot of the state of affairs during the months of acquiring the data presented
in the next chapter. A grand overview schematic is shown in Figure ..

e current section is divided into two parts. e first, inevitable somewhat
staccato in form, lists and briefly discusses the central components in the setup. e
second part touches upon some heavily used experimental procedures underlying
most all of the data acquisition to be presented.

.. List of Equipment

... Lasers

e two lasers on the table are MSquared Ti:Sapph lasers, models PSX and SRX,
respectively. In section .. we characterise their noise properties. As we shall
discuss further in section ., the cavity length is not a tunable parameter, mean-
ing that locking of the laser frequency to the cavity resonance must proceed by
feedback to the laser. Also, any other manipulation of the relative laser-cavity
frequency goes through this channel.

Passive stability of the laser resonance frequency is ensured via an in-system
etalon lock. is locking mechanism also allows for tuning the lasers via external
inputs. Both lasers have a slow and fast feedback input. e slow feedback input
is connected to a long stroke piezo moving a mirror in the laser cavity, providing
a maximal tuning range of 25GHz with a sensitivity cut-off at 50Hz. is range
is about a quarter of a cavity FSR (roughly 88GHz), and suffices to make scans
for sideband-calibrated cavity linewidth measurements similar to those shown in
Figure .. Furthermore, when used in the locking loop, the slow input may be
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used to cancel dri of the cavity resonance frequency. e fast feedback input is
connected to a faster piezomoving a differentmirror in the laser cavity, providing a
tuning range of 80MHzwith a flat response up to 30 kHz and a−5.3 dB sensitivity
drop at 100 kHz. is is fast enough to target the most prominent acoustical noise
in the experiment and at the same time much too slow to affect the mechanical
signals in the MHz range.

e coarse tuning range of both lasers is remarkably large. With etalon lock
stability and output power level somewhat compromised at the ends of the inter-
val, the laser wavelength may be varied from 725 nm to 910 nm. is large tun-
ing range via the wavelength-dependent transmissivities of the mirrors provides a
much-needed means of tuning the optical parameters of the cavity. In subsequent
sections of this chapter we explore this further.

Both laser beams are split and sent to a wavemeter. A precise monitoring of the
wavelength is imperative to distinguish the 2kzm-value of each cavity resonance.
e details of how this is done is described in section .., but the procedure
hinges on knowing the cavity resonance wavelength beer than a few percent of
the FSR expressed in metres. A quick conversion formula from frequency change
to wavelength change near a base wavelength λ0 is:

∆λ ≈ λ20
c
∆f. (.)

For our possible wavelength range, the FSR of 88GHz expressed in metres thus
varies from ≈ 180 pm to ≈ 240 pm. e SolsTis SRX light is sent to a Bristol 
wavemeter with a specified precision of 5 pm. Using a stable laser input and sta-
tistical analysis, we have found a precision of 1 pm to be aainable. e SolsTis
PSX is sent to a High-Finesse Ångstrom WS/ wavemeter which has a live display
precision of 0.1 pm. Such high precision allows for accurately tracking the cavity
wavelength while the laser is locked to the cavity, useful for gauging the e.g. ther-
malisation times of the cavity. In section ... we use this precision to justify a
lack of cavity expansion as the temperature is varied in a certain region.

... Data Acquisition

e spectral data acquisition proceeds in one of two ways. In Figure . we only
show a spectrum analyser, but in realitywemost oen use anADC card in a PC.We
use an Adlink PCI-H 16-bit 40MHz ADC card with 512 MB buffer memory.
Typically we acquire with 10MHz with 1Msamples, allowing for a RBW of 10Hz.
In the schematic of Figure ., the ADC card may be placed in the place of the
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spectrum analyser with the important addendum that the ADC card is connected
to a PC to which also the CCD camera and laser control boxes (not shown in the
Figure) are connected. is multitude of connections allows for ground loops, a
problem revealing itself as excess noise in the spectral measurements. To check
whether observed noise is really “in the light” or an electronic artefact, a spectrum
analyser electrically disconnected from the rest of the setup may be used. We
thus alternate our acquisition between the ACD card and a Rohde-Schwarz FSW
Spectrum Analyzer, the laer being always completely electrically disconnected
from the experiment (save for the signal input).

eDC level of the detector is constantlymonitored on an oscilloscope (Agilent
MSO-X A 8-bit). Along with any spectral measurement the DC level from
the detector, the wavelength reading from the wavemeter, and the cryostat set
temperature are automatically saved.

... e Detection Island

In Figure . the detection island is marked with a green box. is is where the
output light is analysed. e island consists of two branches.

e first branch is mainly for diagnostics and alignment. Here a CCD camera
images the transverse profile of the beam, a vital tool for choosing the right trans-
verse cavity mode to work with. Working with any other cavity mode than the
TEM00 significantly impedes the optomechanical coupling due to a worse trans-
verse overlap of the light mode and the mechanical vibration paern (see also
section ..). At the same time, a orlabs APD-A detects the light signal,
which, due to the high sensitivity of this detector, is helpful during the initial
cavity alignment phase where the transmied signal is very weak. An important
figure of merit for a photodetector is its quantum efficiency, ηd, the probability
that an impinging photon is detected, i.e. converted into a photocarrier pair (for a
more detailed discussion, see [Saleh and Teich, , chapter ]). In terms of the
photodiode responsivity, R,

ηd = R
ℏω
e

=
R

λ

hc

e
, (.)

where e is the fundamental charge unit and λ is the wavelength of the light. In
the region near 800 nm our APD has ηd ≈ 0.81. e APD saturates at a CW input
power of 1.44 µW, making it unsuitable for most of our quantum signal detection,
where the large g-factors required necessitate large optical powers throughout the
system.
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Figure .: QD detector characterisation. Le: Direct DC branch response. Right:
AC level. e value for SV V is an average over a 3.3 kHz region near 4MHz. e
dots are data and the straight lines are linear fits.

e second branch is the quantum measurement branch, consisting only of a
home-built photodetector, from now on referred to as the QD detector, directly
detecting the output light. e QD detector has a nominal quantum efficiency of
0.87. Also, the detector has separate built-in DC and AC branches with differ-
ent electronic gains, a design allowing for high input light powers. In Figure .
we show a characterisation of the large power range in which the QD detector re-
sponds linearly. From the combined DC and AC data we conclude that the detector
has a linear response up to a CW input power of 0.7mW. From the DC data, a DC
gain of 9.52V ·mW−1 is derived. Using this value, the AC data fit reveals a noise
level 3 dB above the electronic level when the DC output is 248mV, corresponding
to an input power of 26.0 µW. Comparing this to the APD CW saturation power,
we find a “dead” window for output signals of powers ranging from 1.44 µW to
26.0 µW. In section . we explain how our cavity has a tunable linewidth. e
full range of achievable linewidths is not at our disposal, since the output signal
from the cavity must not fall in the dead range.

... e Cryostat

e cryostat is an Oxford Instruments  Microstat Hi-Res Helium flow cryo-
stat. Helium is delivered through a transfer tube inserted into an external Dewar
flask. e helium is transported through the system either via a vacuum pump
creating an under-pressure in the cryostat (pull mode) or by exploiting the over-
pressure naturally created in the Dewar flask due to evaporation (push mode). e
vacuum pump is connected to the cryostat via a flow control station, using which
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one may reduce the effective helium pump rate. e cold finger of the cryostat can
easily reach the ambient helium bath temperature of 4.2K when using pull mode.
e vibrations thus induced by the helium flow are, however, detrimental to the
vibrational stability of the cavity. For normal experimental operation, it is neces-
sary to carefully and gradually reduce the output flow until a feasible steady-state
is found. is procedure is both time-consuming and non-reproducible in the
sense that hysteresis makes it unclear a priori which temperature can be reached.
Typical resulting cold finger temperatures fall between 6K and 9K. e vibrations
of the pump can be circumvented by operating the cryostat in push mode. Here
we are however faced with different challenges. When closing the safety valve of
the Dewar flask, an over-pressure steadily builds up, leading to ever-higher he-
lium flow rates. Eventually, the flow gets so violent that this again compromises
the cavity stability. At this point, reached usually around 5K, one must reduce
the pressure, leading to an increase in temperature. In conclusion, it is not pos-
sible to maintain a stable temperature during the many hours of data acquisition.
erefore, we accept the sub-ideal cold finger temperatures offered by pull mode
in order to achieve a stable temperature. Once an equilibrium has been reached,
the temperature deviations are typically as small as a few tens of mK over several
hours.

e cryostat is evacuated with a Pfeiffer HiCube  Eco pump station to a nor-
mal working pressure of 1 × 10−5 mbar, which under cryogenic conditions drops
to 2 × 10−6 mbar. e pump station consists of a roughing pump and a turbo
pump which has a maximal operational speed of 90 000 rpm, corresponding to a
1.5 kHz vibration. ese vibrations completely obstruct any locking of the laser
to the cavity, and must be greatly dampened for the experiment to proceed. A
successful way to dampen these vibrations (and any other tube-transmied vibra-
tions) is to introduce an impedance mismatch along the transmission line. More
concretely, we forged a shoe-box sized plastic container full of cement around a
≈ 30 cm segment of the vacuum tube connecting the turbo pump to the cryostat.
is completely solved the problem.

With some experience, one may move from room temperature to a stable cryogenic working
temperature in one and a half hours.

e exact vibration threshold depends on the cavity linewidth, but there seems to be a steep
transition, perhaps from laminar to turbulent helium flow.
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.. Operating the Experiment

... Loing the Laser to the Cavity

e cavity resonates at a certain optical frequency, but this frequency is not com-
pletely stable in time. Small cavity length changes perturb the optical resonance
frequency. It is instructive to make a small back-of-the-envelope estimate for how
large a cavity length change is needed to change the resonance by an optical line-
width. e cavity resonance frequency is given by ωcav = nω0, where ω0 = πc/L

and L is the cavity length. A small change ∆L in the cavity length will, to first
order, change ωcav according to

ωcav → ωcav + ωcav
∆L

L
as L→ ∆L+ L. (.)

us, for the frequency change to be κ, ∆L/L must be equal to κ/ωcav, a small
number indeed. For ωcav = 372THz (corresponding to 806 nm), κ = 6MHz (see
Figure .) and L = 1.7mm, a cavity length change of ∆L = 0.21 nm suffices.
Obviously, some active stabilisation of the laser frequency is needed.

Over time, different approaches to solving the problem were tested, but even-
tually the experiment converged to a simple transmission slope lock, which is also
the one illustrated in Figure .. In such a scheme, the error signal fed back to
the laser is basically (appropriately modified by a PI-circuit) the DC level from the
photodetector. One selects a certain desired cavity output transmission level and
the feedback loop then aempts to reach this by changing the laser frequency.
is scheme clearly hinges on having good output power stability of the laser, as
input power fluctuations are indiscernible from cavity or laser frequency fluctua-
tions. Luckily, the SolsTis lasers are remarkably stable, both in terms of frequency
and power, and the scheme was found to work well. e detuning can then be
tuned using an input offset voltage added to the error signal (shown in the boom
right corner of Figure .). e error signal itself is split into a slow part fed to the
slow, long-range actuator of the laser and a fast signal fed to the fast, short-range
actuator.

Note also that that there is always only a single beam going into the cavity.
Locking, cooling, and reading is all done with the same laser beam, adding to the
simplicity of the experiment. From this way of operation, a certain way of data
acquisition also follows. In by far most of the cases when we perform serious
measurement series (to be discussed more in chapter , but already section ...

Including a PDH lock in reflection and using two different transverse cavity modes for respec-
tively locking and cooling.
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is an example hereo), we fix the laser input power to the cavity and vary the
detuning knob. In this way, the intra-cavity photon number is varied along with
the detuning, as the laser beam climbs closer and closer to resonance.

In chapter  we saw two examples of optomechanical instabilities, namely the
static bistability and the parametric instability. Both of these may be encountered
as the laser climbs towards zero detuning. e former is eventually reached simply
because the intracavity power becomes too large. e second becomes a problem
as soon at there are excursions of the relative cavity-laser frequency. ese might
temporarily bring the laser frequency to the blue-detuned (positive ∆) side of the
optical resonance, leading to a vanishing Γeff, which in turn induces violent oscilla-
tions that bring the laser out of lock. In the face of the cavity vibrations stemming
from thermal motion and in particular the helium flow, there is thus always some
critical detuning closer than which it is not possible to tune the laser to the reso-
nance.

... Determining ∆ and κ

A brief glance through section . will reveal that all optomechanical effects de-
pend on κ, the cavity linewidth, and∆, the laser detuning. Without knowing these,
the experimenter is le in the dark regarding what to expect from the output. In
some sense, this universal ∆-κ-dependence allows any measurable quantity to be
used for determining these two quantities, but it is preferable to decouple the me-
chanical parameters from the light-cavity parameters, and thus determine∆ and κ
independently of any spectral measurement. To this end, we recall from in section
.. that the weak probing of the cavity with a frequency-swept phase modula-
tion results in a response function (see equation (.) and Figure .), the broad
features of which are given by

C(ω) = −1

2

√
ηcκ δX

ωκ

((ω +∆)2 + κ2/4)
√
∆2 + κ2/4

, (.)

and thus depend only on ∆ and κ and an overall scale factor set by the output
coupling of the mirror and the modulation magnitude.

By using the Network Analyser (see Figure .) we apply a swept tone to the
EOMand demodulate at the same frequency. e resulting trace is then normalised
to remove the overall scaling, and the broad response function is fied. In Figure
. we show an exemplary measurement series, testifying to the credibility of this
scheme.
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Figure .: Determination of ∆ and κ. Top: five selected traces out of a series of
15 traces showing excellent agreement between model and data. Boom panels: 15
fit-extracted values of ∆ and κ.
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ere are, however, a few caveats. What is measured is not only the cavity re-
sponse, but also the mechanical contribution. As the intra-cavity power increases,
this response can get quite significant. Furthermore, all mechanical modes con-
tribute, which can heavily distort the measured signal from the bare cavity re-
sponse. In the top panel of Figure ., this is particularly evident in the 1MHz-
3MHz region of trace 2, where some seven crossings of the fit line by the data is
seen. ese crossings are OMIT responses of different mechanical modes (see also
section ...).

Looking at the measured linewidths, we see a small, but systematic error in
the linewidth measurement. e cavity linewidth should not vary throughout the
measurement series, and we conclude that the mechanical mode distortion leads
to some apparent broadening of the cavity response. e effect in these data is,
nonetheless, rather small; the mean linewidth is 2.44MHz and the standard devi-
ation of the measured values is 0.04MHz.

. eantum Light Source

Essential to any experiment pursuing quantum optomechanical interactions is a
light source limited by quantum noise only. From the theoretical considerations
of ground state cooling and ponderomotive squeezing in sections ... and ..,
respectively, it is clear that any excess noise in the laser will rapidly and thor-
oughly deteriorate the wanted quantum signal. In the next subsection, we present
measurements characterising the noise performance of our laser. e actual mea-
surement were performed with the SolsTis PSX model, but very similar results
hold for the SolsTis SRX.

Before turning to the measurements, we briefly present the schematics of the
laser setup. ey are shown in Figure . . emain thing to note is the presence of
a pump laser pumping the Ti:Sapph laser. e noise properties of the laser system
depend on the pumping power, as will be shown in the next section.

.. Noise Properties of the Laser

To determine whether a given light source is shot noise limited, the simplest ap-
proach is to take another light source, known to be shot noise limited, and compare
the two. To this end, we use a household torch which, being a thermal (chaotic)
light source with a very short coherence time, will, in the frequency range of inter-
est, have intensity fluctuations dominated by shot noise (see [Loudon, , chap-
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B

A
C

D

Figure .: e laser setup. A: e Sprout pump laser delivering 1W-10W of
532 nm light to e SolsTis. B: e power supply-cooler unit delivering cooling
water and pump light to the Sprout. C: e SolsTis laser. D. Cooling unit (er-
motek Nanoerm) for water cooling the Ti:Sapph crystal.

ter ]). Furthermore, as the torch is baery-driven, we expect very lile excess
noise from voltage and current fluctuations.

e measurements fall in two stages. As also mentioned in section ., we
worry about classical amplitude and phase fluctuations. We aack the former first,
in the form of intensity fluctuations.

... Relative Intensity Noise

To gauge the amplitude fluctuations of the laser source, we perform a relative in-
tensity noise (RIN) measurement. e optical setup is straightforward; the laser
is shone directly onto a photodiode (in this case the QD detector). For different
pump powers delivered to the laser, we dump different amounts of light (using
a PBS and a λ/2-plate) such that a constant DC light level is maintained on the
detector. We maintain a DC output of 1V corresponding to ∼ 100 µW to within
5% throughout the measurements. e resulting spectra are shown in Figure ..

e large relaxation oscillations of the laser are seen at the lower frequencies,
growing in height and retracting downwards in frequency as the pump power is
reduced. One of the features persistently haunting the experiment is also seen:
many very sharp spectral peaks, not aributable to any expected laser feature.
ese we classify as electronic noise, partly caused by ground loops not possi-
ble to eliminate, partly caused by unknown sources. Note, however, that most of
the peaks are only a single bin wide, and that the RBW of this measurement was
100Hz. e spectral “hair” is thus not as dense as it appears when the spectrum is
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Figure .: Relative intensity noise measurement. Boom panel is a zoom of top
panel. e spectra show that the laser has no excess amplitude noise for frequencies
above 1MHz when properly pumped. e pump powers are: P1 = 5.3W, P2 =

4.9W, P3 = 3.8W, P4 = 2.3W, and P5 = 1.6W.
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viewed over a range so large that the pixel resolution is much larger than the ac-
tual RBW. Apart from the electronic noise, the measurements show a very clearly
shot noise limited spectrum. Using a pump power of 2W, We conclude that our
light source has lile to no classical amplitude noise above 1MHz.

... Phase Noise

Phase noise is somewhat more difficult to extract as one must first transduce phase
fluctuations into photo-detectable amplitude fluctuations, whereby noise is poten-
tially added by the transductive element. us, it can in principle be difficult to
distinguish a noisy transducer from a noisy laser. e cleanest way to perform a
phase noise measurement would plausibly be by beating two laser beams of simi-
lar frequencies against each other. Save for a large slow beat note at the frequency
difference, classical phase noise would show directly, except for the very unlikely
event of the two lasers having common classical phase noise of equal magnitude.
With two lasers on the optical table, this measurement begs to be performed, but
has not been realised yet.

Instead, we let our optical cavity transduce both amplitude and phase fluctua-
tions of the laser. By referencing measured data traces to independent shot noise
measurements, it will always be possible to ascertain the background noise level
relative to shot noise. If this coincides with the shot noise level, it is a valid con-
clusion that no additional noise, be it in phase or amplitude, is present. In section
.. we also give a quantitative bound for the PSD of frequency fluctuations of
the laser derived from measurements of the thermal mirror motion.

. e Sample Holder

Rivalled only by the phononic bandgap chip (to be discussed in section ..), the
sample holder is the most vital part of the experiment. Once the experiment has
seled on a certain sample holder design approach, one is stuck with it and must
try to push through and overcome any setbacks introduced by following that par-
ticular path. In this work, we chose the minimalist monolithic cavity design ap-
proach, born out of the experimental philosophy that passive stability is preferable
to active stabilisation, and that any positional degree of freedom in the cavity is a
backdoor for unwanted noise to enter the system.

Or, when viewed on printed paper, the ink dot resolution.
We gratefully acknowledge Dr. D. Wilson as the originator of this idea.
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In addition to this, a shorter cavity implies a large optomechanical cooperativ-
ity. For a given set of mirror transmissivities, the cavity finesse, F , is fixed. en,
assuming also a fixed (to within one cavity FSR) working wavelength of the laser,
the optomechanical coupling scales according to

g = xZPF|α|2
ωcav

L
∝ 1

L
. (.)

e cavity linewidth fulfils that

κ = 2π
c

2LF
∝ 1

L
, (.)

meaning that the cooperativity goes as 1/L, indeed implying that the cavity should
be as short as possible. For sideband cooling the membrane, it is also preferable
to be able to work in the resolved sideband regime. e minimal tolerable cav-
ity length is therefore set by the mechanical frequency of the membrane modes
and the transmissivities of the mirrors. Using state-of-the-art mirrors with trans-
missivities of, say, T = 25 ppm (the actual values of our mirrors are discussed
in section .), and taking the membrane mode frequency to be 2MHz, we get
κ = 2ωm for a cavity length of roughly 1.25mm. is therefore sets the length
scale we aim for with our design; a few-mm long cavity.

In keeping with the minimalist philosophy and the short cavity length desire,
the cavity is made as compact and stable as possible by pressing the cavity mirrors
directly against the membrane chip. Or rather, as doing so would compromise the
bandgap and not allow the membrane to freely oscillate out of plane (see section
.. for details on the membrane chip geometry), against a small stack of silicon
chips. Such a design leaves no tunable degrees of freedom other than the laser
wavelength once the cavity has been assembled.

In Figure . we show a sketch, not too far from the actual realisation, of our
monolithic membrane-in-the-middle cavity. e main idea is to ensure thermal-
isation and stability by embedding the cavity in a bulky slap of copper which is
firmly bolted to the cold finger of the cryostat.

e rest of this section is structured as follows: in section .. we go over some
of the many considerations regarding the sample holder design, both justifying the
concept of a short, compact cavity and illustrating some of the design challenges
imposed by different experimental demands. In section .. a detailed overview
of actual sample holders is given, and sections .. and .. deal with two aspects
of the critical alignment procedure of the cavity.





Chapter . Experimental Realisation .. e Sample Holder

Curved mirror

Si spacer
Membrane chip
Si spacer

Flat mirror

Copper piece

Cold finger 4.2K

Figure .: e monolithic cavity approach: the minimal set of necessary compo-
nents for building a cryogenic MIM system. e vertical grooves in the membrane
chip represent the phononic structure. Lengths not to scale.

.. Sample Holder Design Criteria

Although simply described as aminimalist idea, the actual cavity physically present
on our optical table was the result of a long iterative design process. Here we illu-
minate the design process and some of the choices made.

As already explained, two main elements were required for the experiment to
be succesful; a high mechanical quality factor and a low temperature. In principle,
this is trivially accomplished: one simply leaves the membrane floating in a zero-
kelvin vacuum. In practice, these two demands rather contradict one another. A
high mechanical quality factor is severely compromised by the clamping losses
introduced by nearly any fixation of the membrane. A low temperature, on the
other hand, is impossible to achieve unless the membrane frame is very tightly
pressed against a massive cold object. Furthermore, as alignment of the membrane
to the flat boom mirror is crucial if there is to be a cavity at all, the membrane
frame should ideally be pressed against this mirror as well. ese three mechanical
requisites, all equally important, seem to impose different constraints on the setup.
e former constraint is resolved by the aid of the phononic bandgap shielded
membranes, to be discussed in section ... e laer two are in more direct
conflict; how can the membrane chip (or rather: the spacer-chip-spacer sandwich)
be pressed simultaneously against the cold copper and the flatmirror? e solution
pursued in this experiment was to press the silicon chips hard down against the
copper by sample holder construction (see next section) and then, using a spring,
press the flat mirror up against the silicon. We can not resist remarking that this
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way, our system genuinely realises the canonical mirror-on-a-spring setup, albeit
for different reasons.

.. Sample Holder Implementations

Yet another design criterion is the ease with which the sample holder may be as-
sembled and in particular aligned. Although thermalisation is best ensured with a
single-piece sample holder, such a design is not geometrically possible; there must
be at least two pieces. Furthermore, an intermediate assembly step is needed, both
to ensure parallelity betweenmembrane and flatmirror (the subject of the next sec-
tion) and to allow for an independent positioning of the curved mirror in the plane
transverse to beam propagation (the subject of section ..). erefore, the mini-
mal number of sample holder pieces is three. As the membranes’ phononic chips
evolved from 1D phononic crystals to 2D phononic crystals, the sample holder
also evolved. e overall design nonetheless remained the same. e two-step
evolution is shown in Figures . and .. e main differences between the two
designs consist in a downwards extension of the boom part ensuring a large con-
tact surface to the cold finger, a widening of the sample-accommodating groove
(B), and the addition of steering rod holes ().

In the next two subsections, we discuss two main experimental challenges re-
lating mainly to the assembly of the boom part and middle part of the sample
holder, namely the tilt of the sample and the clamping conditions for the mirrors.
e top part is covered in more detail in section ...

.. Membrane Tilt

e screws labelled 2a-2d in Figures . and . are providing the downwards
force clamping the spacer-membrane-spacer stack against the boom part and bal-
ancing the upwards force from the spring on which the boommirror rests. ere
is no way of ensuring that all four screws are screwed in exactly equally far, and
the middle part of the sample holder may therefore be tilted with respect to the
plane defined by the boom part of the sample holder, the plane to which the prop-
agating beam is a normal. is tilt is inherited by the membrane, causing different
parts of the membrane to be at different distances to the boom mirror. Such mis-
alignment might lead to optical losses via scaering of light off of the membrane

To the best of our knowledge, a solid modelling of the effects of tilt in a MIM system has not
been published. Results on the effect of tilt on polarization degeneracy of the cavity modes may be
found in [Kalinkevich, ].
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Figure .: e 1D Phononic Crystal Chip Sample Holder. Legend: A: e central
hole into which a spring and the flat mirror is inserted. B: e groove accommo-
dating the phononic crystal chips. C: the optical access hole. 1a-1d: Screw holes
connecting the boom part to the cryostat cold finger. 2a-2d: Screw holes con-
necting the middle part to the boom part. 3a-3d: Screw holes connecting the top
part to the middle part. 4: Holes allowing for evacuation.

Figure .: e 2D Phononic Crystal Chip Sample Holder. e legend is identical
to that of the 1D holder. Additionally: : Holes for steering rods. : Micro screw
hole.
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into other longitudinal cavity modes than the TEM00 normally used. During the
assembly phase, the tilt may be observed by illuminating the membrane with a
wide light source (e.g. the laser widened through a lens) and looking at the im-
age in the CCD camera. ere, the membrane tilt shows as interference fringes,
which may then be aligned away by systematically tightening and loosening the
four screws in question. In Figure . such an alignment operation is illustrated.

Figure .: Carefully aligning the tilt away. Time progresses from le to right.

What persists in the images as a checker-paerned grid of non-uniform illu-
mination is believed to be due to diffraction off the membrane edges and therefore
irrelevant to the narrow illumination normally used. e best alignment we have
been able to achieve le approximately one fringe in each direction across the
membrane. is is unlikely to lead to relevant optical losses, but, as we shall see in
section .. it somewhat complicates positioning the laser spot on the membrane.

Although the initial alignment of the cavity is thus possible to accurately make
tilt-free, there is no guarantee that the cryogenic cooling of the sample holder will
not change that original alignment. e membrane tilt remains somewhat of an
unknown variable, and might be responsible for the extra optical losses sometimes
observed in the experiment.

.. Springs and Mirror Noise

For an experiment as obsessed with vibrational stability as ours, it might at first
seem rather suicidal to introduce trembling elements such as springs into the sam-
ple holder. Clearly, a loose spring will leave the entire cavity length oscillating at
the loaded spring’s resonance frequency, a highly unwanted behaviour. A large
effort was put into investigating different springs and their resulting stability. e
general trend indicates that short springs with as large contact surfaces as possible
are preferable. is rules out disk springs and springs with more than a single coil
and leaves ring springs as our best candidates.

e mirrors themselves are not directly touching the springs, but are held in
small copper cups (see Figure .. e boom mirror has a similar cup). e
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effect of the spring on the cavity stability aside, the effect on the quality factor of
the mirror modes is remarkable. In the large overview plot of Figure . we show
the calibrated output spectrum of an empty cavity for four different assemblies.
Assembly 1 is the 1D sample holder using disk springs. Assembly 2 and 3 are for
the 2D sample holder using disk springs but an additional spacer is inserted in
assembly 3 to further compress the springs. Finally, in assembly 4 ring springs are
being used alongwith improved, slightly thicker spacers. e difference is striking.
Whereas the first three assemblies yield similar “mountainous” landscapes of broad
noise, assembly 4 shows clearly defined high-Q mirror modes.

When considering the effect of thermal mirror noise, it is important to first
note that the noise levels of the mirrors used in our setup are indeed of relevance
to the experiment. Secondly, as the spectral area of each peak is determined by the
temperature, and the area is (roughly) the width times the height of each peak, the
ideal situation is to have high-Q mirror modes, concentrating the noise in a few
very well-defined spectral regions with wide deep valleys between them, rather
than having a smeared-out spectrum with a high baseline.

In Figure . we show the mirror noise of assembly 4 at cryogenic temper-
ature. As expected from basic thermo-mechanical considerations, the noise level
experiences a suppression of order ∼ 50, the ratio between room temperature
and our cryogenic working temperature. e quality factors of the mirror modes
are somewhat compromised, which is expected for glass [Arcizet et al., ], but
well-defined peaks are still observed in the spectrum. Between the peaks are quiet
regions of shot noise. Ascribing all peaks to mirror modes, this measurement also
sets an upper bound for the intrinsic phase noise of our laser. As discussed in sec-
tion ..., technical laser noise acts as a thermal reservoir for the mechanics and
thus sets a lower bound for the occupation reachable by sideband cooling. In the
resolved sideband limit, it holds that [Kippenberg et al., ]

n̄f = 2π

√
n̄thΓm

g20
S̄ff (ωm). (.)

For n̄f = 1 to be barely reachable, this entails for a mechanical mode with re-
alistic parameters ωm = 2π × 2.5MHz, g0 = 2π × 120Hz and Q = 12 × 106,
that S̄ff (ωm) should fall below 0.132 Hz2/Hz, a boundary only just grazed in Fig-
ure .. If we however believe that the excess noise is ascribable to the mirrors,
we can extrapolate from Figure . that deeper valleys exist between the peaks,
where ground state cooling is possible (e.g. around 2.15MHz). At the same time,
the mirror noise excludes certain spectral regions and thereby certain mechanical
modes (for a given sample) from being targeted for serious cooling experiments.
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Figure .: Room temperature mirror noise for different cavity assemblies. e fi-
nal assembly 4 yielded significantly higher mirror modeQ factors than the previous
assemblies. Calibration tone at 2MHz for Assembly 4.
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Figure .: Cryogenic mirror noise for assembly 4. e cryostat set temperature
was 6.5K. Calibration tone at 2.1MHz.
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. e Cavity Linewidth

e optical losses and thereby the linewidth of the cavity are determined by the
transmiivities of the mirrors. As the membrane reflectivity is more or less un-
changed over a remarkably large range of 100 nm (see Figure .), there is nothing
in the experiment determining a priori which wavelength to work with. Further-
more, as the Ti:Sapph laser is also agnostic regarding working wavelengths over a
similar span, the wavelength dependence of the mirror coatings offer a convenient
knob for in situ tuning of the cavity linewidth. e mirrors used in the cavity are
highly reflective custom-made super-polished mirrors from Advanced in Films,
supposedly optimised for high reflectivity at the D line of Caesium. e mirror
transmiivities were measured using the setup shown in Figure ., where a laser
beam is detected with and without the mirror and the ratio is taken to be (an upper
bound for) the mirror transmiivities. To achieve the needed dynamic range of -
orders of magnitude, a full amplitude modulation was applied to the laser via an
AOM, and the measured signal was demodulated with a lock-in amplifier at the
modulation frequency, thereby greatly improving the signal-to-noise ratio for the
low-power signal.

Figure .: Setup for measuring highly reflective mirror transmiivities. e an-
gles in this simplified picture are slightly wrong; in reality the first order deflected
beam reaches the detector.

In Figure . we show the results of the measurement series for our (curved)
incoupler mirror and (flat) outcoupler mirror. In order to extrapolate between the
measured wavelengths, we fit two polynomials of order respectively 3 (incoupler)
and 5 (outcoupler) to the logarithmic losses. Although one could in principle fit a
more theoretically well-founded transmission curve for a Bragg mirror, not much
extra information would be gained that way. From the extrapolated curves, we
may then compare the expected cavity linewidth to a measurement for an empty

emirrors were purchased prior to the author joining the experiment, and all documentation
was lost (or anecdotal).
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Figure .: Tunable cavity properties. Le: measured mirror power transmiivi-
ties and extrapolating fits (fits explained in main text). Right: corresponding cavity
coupling parameter and linewidth, the laer together with empty cavity linewidth
measurements.

cavity. is is also shown in Figure .. We observe no measurable added round-
trip losses for the cavity, and conclude that the reflectivities of the mirrors are, to
a very good approximation, indeed equal to one minus the measured transmiiv-
ities.

In conclusion, we have an optical cavity with a widely tunable degree of over-
coupling and a very widely tunable cavity linewidth. e laer is very practical
for quickly switching between markedly different cavity regimes, and is also nec-
essary requirement for in situ measurements of the mechanical quality factor, dis-
cussed in section ., where one must rule out any dynamical back-action in order
to extract Γm.

.. Finding the Right Place in 2kzm

Finally, we note that the values presented in Figure . are the bare cavity values.
Upon insertion of the membrane, both the effective cavity linewidth and over-
coupling will be modulated around these values, with a modulation periodic in
the input laser wavenumber as discussed in section .. One important differ-
ence between the theoretical discussion and actual realisation isworthmentioning.
Whereas we presented continuous curves in Figure ., in the actual experiment,
the full tuning range is not available, since the relative membrane position, zm/L
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is fixed once the cavity is assembled. en only k is variable, but this is obvi-
ously not a continuous parameter, since the cavity resonance condition most be
fulfilled. Upon changing the laser frequency one FSR, we move a fixed amount in
2kzm given by the ratio zm/L, and for our particular parameters (L ≈ 1.7mm,
zm ≈ 0.5mm), zm/L ≈ 2/7, meaning that we keep sampling the same seven posi-
tions in 2kzm, unless the wavelength is changed rather drastically. Luckily, seven
is in this respect a large number, and there will always be points reasonably close
to the theoretical optimum. In Figure . we display an exemplary measurement
series of nine consecutive TEM00 resonances and how they “fold back” into the
relevant 2kzm range. Indeed, seven distinct locations are found.

e excellent agreement with the model (discussed in section .) is notewor-
thy. e model has no tunable degrees of freedom, but is only fed with the res-
onance data. First, the function of equation (.) is fied to the recorded reso-
nance wave numbers, yielding both the cavity length L, the membrane position
zm, and the membrane reflectivity rmem. Next, from the average wavelength of the
series, the mirror reflectivities can be looked up (see Figure .). is exhausts the
list of model input parameters (see Figure .). Rather than just being a success-
ful validation of a particular model, this is an invaluable experimental technique;
there is no other way to ensure that we choose the right working wavelength than
by making a fit like the one in Figure ..
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Figure .: Folding of resonances. Le: consecutive resonances fied to a function
à la equation (.) with the linear part subtracted. Right: e same resonances,
but folded back and with the model prediction for the shis superimposed (not
fied). e resonance numbers are added as annotations.

For zm/L = 1/2, this amount is exactly π.
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. e Optomeanical Coupling

As described in chapter  and quantified through the cooperativities, it is of prime
importance for the experiment to get “as much interaction” per photon as possible,
i.e. to maximise g0. To achieve this, we have two knobs to turn. First, we may
ensure that the membrane is situated close to the optimal position in the standing
wave (see section ..). is gives a general increase (or decrease) to the coupling
to all mechanical modes. Second, once a mode of interest has been selected, we
may optimise the transverse overlap of the laser beam and the mechanical mode
shape.

.. e Transverse Overlap

As our laser beam does not only illuminate a single point on the membrane, the
one-dimensional description of membrane motion used throughout chapter  is
not exactly what is measured in the experiment. e correction is, however, rather
straightforward. As the membrane oscillates inside the intracavity standing wave,
it imparts a phase shi to the light, a phase shi proportional to the membrane
displacement. Different points on the membrane displace with different ampli-
tudes and phases (see Figure .), and the light averages over all these points with
a weighting given by the local intensity profile of the light. Similarly to the cor-
rection from the transfer matrix model in section ., this can be accounted for by
applying a correction factor to G. Each optomechanical mode now has its own
coupling, Gnm, given by

Gnm = ηnmG, (.)

where
ηnm =

∫
D

dxdy sin(nkxx) sin(mkyy)I(x, y), (.)

where D is the domain of the membrane and I(x, y) is the normalised intensity
profile of the laser beam. Hidden in equation (.) is the fact that ηnm is a function
of x′ and y′, the laser spot centre position. To our ends, we exclusively work with
the TEM00 cavity mode, in which case the integral can be computed analytically
(see Appendix A) to yield (we have allowed x′ and y′ to lose the primes)

ηnm(x, y) = exp
[
−w

2(zm)

8

(
n2k2x +m2k2y

)]
sin(nkxx) sin(mkyy), (.)

Similarly, we may define gnm = gηnm.
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where w is the beam width function of the cavity mode, given, as in chapter ,
by

w(z) = w0

√
z2

z2R
+ 1, (.)

with the standard definition
zR =

πw2
0

λ
, (.)

and w0 being the beam width at the waist (z = 0), which for our cavity is at the
flat mirror. In section .. we discuss how to actually position the laser beam,
but let us for the time being assume perfect position, i.e. directly at a mechanical
mode anti-node. Even then, the overlap factor puts a rapidly decaying limit to
the achievable optomechanical coupling as the mode number grows, much more
severe for high-order modes than the semi-linear scaling of g0. We recall that

g0 = xZPFG ∝ 1√
n2 +m2

, (.)

whereas ηnm is exponentially decaying in n andm. Of course, the mode numbers
for which this second penalty begins to play a role hinges on the membrane di-
mensions and the tightness of optical focusing. In Table ., a range of optimal
overlaps are presented, assuming reasonable experimental parameters. Note that
these are generally not simultaneously achievable, e.g. optimally coupling to the
(1, 1)-mode entails zero coupling to the (2, 2)-mode et cetera.

e upshot is an important lesson for designing the experiment: the higher the
mode numbers, the lower the cooperativity.

.. Aieving a Good Transverse Overlap

As the monolithic cavity design pursued in this work does not encompass any
positional degrees of freedom, the good transverse overlap must be achieved upon
assembly. In other words, it is necessary to assemble the cavity such that the
optical mode has its focus at the desired (x, y)-point, meaning that the top (curved)
mirror must be reproducibly positionable with good accuracy. We achieve this by
the custom-made sample holder top part shown in Figure .. ree micro-metre
screws and a leaf spring allow for accurate and reversible positioning of the central

We follow the convention of [Milonni and Eberly, , chapter ] where the intensity of the
beam falls of according to I(x, y) ∝ exp(2(x2 + y2)/w2(z)).

For simplicity here we take Lx = Ly .
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ηnm

m\n 1 2 3 4 5 6 7

1 0.99 0.97 0.94 0.90 0.85 0.79 0.73

2 - 0.95 0.92 0.88 0.83 0.77 0.71

3 - - 0.89 0.85 0.80 0.75 0.69

4 - - - 0.81 0.77 0.72 0.66

5 - - - - 0.73 0.68 0.62

6 - - - - - 0.63 0.58

7 - - - - - - 0.53

Table .: e optimal position value of ηnm for differentmechanical mode numbers.
Parameters used: Lx = Ly = 500 µm, w0 = 36 µm.

cup into which the top mirror is placed. e screw behind the leaf spring is for
locking the position. Not shown is a disc spring between the cup and the bulk top
part, ensuring tight clamping along the beam propagation axis.

Figure .: Top Mirror Precision Positioner (TMPP). Le: Photograph. Right:
sketch displaying the three micro-metre screw holes (dashed white channels). e
laser beam propagates up (le) or out of the page (right).

e mirror positioning protocol then proceeds as follows. First, the cavity is
assembled with no top mirror.

Second, by maximising the reflection of the incoming beam off of the flat mir-
ror and back into the incoupler fibre, using a high-reflectivity wavelength (see
Figure .), parallelity of the plane of translation of the incoupler head and the
membrane plane can be established. emicro-metre screws of the incoupler head
then allows for fine-grained positioning.

e smallest division of the screws (Line Tool Inc.) is 10 µm.





Chapter . Experimental Realisation .. e Optomechanical Coupling

ird, the cryostat is evacuated to an intermediate vacuum level (typically
1 × 10−3 mbar) ensuring that all mechanical modes have lowQ-factors (see equa-
tion (.)) and therefore short coherence times, allowing for a rapid measurement
of the mechanical peak height. e cavity formed between the membrane and the
flatmirror offers, although having a linewidth of hundreds ofMHz, sufficient inter-
ferometric precision when illuminated at ≈ 745 nm to resolve the membrane mo-
tion and can therefore be used to map out the spatial dependence of the ηnm factors
by comparison of different mechanical peak sizes in the corresponding spectrum.
It holds for a general mechanical mode, (n,m), that it has nodal lines in the set Snl

given by

Snl = {(x,myLy/m) ∪ (nxLx/n, y)|
nx ∈ {1, . . . , n},my ∈ {1, . . . ,m}, x ∈ [0, Lx], y ∈ [0, Ly]} , (.)

whereas its antinodal points reside in the set Sap given by

Sap =

{(
Lx

2nx − 1

2n
, Ly

2ny − 1

2m

)∣∣∣∣nx ∈ {1, . . . , n},my ∈ {1, . . . ,m}
}
. (.)

In Figure . these two sets are shown for themechanical modes (2, 1) and (1, 3).

....

.
Lx/2

.

Ly/3

.

2Ly/3

...

.

Lx/4

.

3Lx/4

.
Ly/6

.

3Ly/6

.

5Ly/6

Figure .: epositions of nodes (dashed lines) and anti-nodes (dots) as described
by equations (.) and (.) for the modes (2, 1) (orange) and (1, 3) (blue). Also
shown are the contours of (the absolute value o) the corresponding mode shapes.

Evidently, another mode, (n′, m′), where either n′ is an even multiple of n or
m′ is an even multiple ofm (or both) will have a nodal line at every antinodal point
of (n, m). As it generally holds for experimental optimisation that minimising a





.. e Optomechanical Coupling Chapter . Experimental Realisation

signal is always beer than maximising a signal, this serves as a convenient guide
for positioning the beam. By making an “enemy” mode disappear in the measured
spectrum, we may infer that we are at the desired point (from equation (.) it
follows that ηnm is zero at amode node). In Figure .we show the simultaneously
recorded spectral response of six mechanical modes from the membrane-mirror
cavity. In this situation, we were aiming for the (2, 2)-mode, and thus expected a
low response from the (4, 1)-mode near the optimal position.

Fourth, once the optimal (x, y) point has been established, the curved mirror
is positioned using the TMPP piece (Figure .) and the light reflected off of the
curvedmirror as a guide; once the reflected light coincides with the incoming light,
the curved mirror is positioned correctly.

Finally, all screws are tightened and the cavity is then assembled. To verify that
the cavity thus formed does indeed have a beam path intersecting the membrane
at the coveted point, a series of OMIT measurements is performed, whereby we
obtain the different gnm-factors. Such a measurement series is shown in Figure
.. e inferred couplings are displayed in Table .. alitatively, this looks
acceptable; g22 is three times larger than g14.

Mode (n,m) (1, 1) (1, 2) (2, 2) (1, 4) (3, 2) (3, 3)
gnm (kHz) 102 141 116 36 67 24

Table .: Couplings extracted from the OMIT fits of Figure .. Measured with a
cavity detuning ∆ = 2π ×−2.46MHz and a linewidth κ = 2π × 5.38MHz.

We do, however, need to form a somewhat more quantitative statement about
the beam position and therefore perform a χ2 minimisation to infer the beam posi-
tion from the data. e idea is to form a vector of ηnm for different modes and then
compare that to a vector of theoretical ηnm. To this end, we use either integrated
peak values from the spectrum or gnm values from the OMIT fits.

e integrated peak value is proportional to G2
nm with a proportionality fac-

tor, Fp, that is in general position dependent (see section ..), but not, however,
dependent on mechanical mode number. In the limit of very good signal-to-noise,
the transduction equations (.)-(.) can be used directly, and we may thereby ob-
tain the following expression for the integral of a mechanical peak in the spectrum,
Inm:

Inm = R2G2
DFpG

2
nm

∫
R

dω
2π
Szz(ω) ≈ R2G2

DFpG
2
nm

∫ ∞

−∞

dω
2π
S(nm)
zz (ω), (.)
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Figure .: Spectral response of the membrane-mirror cavity from six mechanical
modes together with Lorentzian fits for the optimal beam position when aiming for
the (2, 2) mode.
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Figure .: OMIT response of the fully assembled cavity aempting to reproduce
the position of Figure .. Extracted couplings shown in Table ..
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where R is an appropriate spectral region, S(nm)
zz (ω) is the Lorentzian approxi-

mation of equation (.) to the thermally driven PSD of membrane displacement
fluctuations;

S(nm)
zz (ω) =

ΓmkBT

ω2
nmmeff

1

(ωnm − ω)2 + (Γm/2)2
. (.)

Here we have used the fact that we are in a poor-cavity limit with large viscous
damping (high pressure, see above) to neglect effects of dynamical back-action and
assume a common T and common Γm for all modes. is, together with equations
(.) and (.), then yields the following value for the integrated spectral peak:

Inm = G2
nm

∫ ∞

−∞
Snm(ω)

dω
2π

= A
η2nm
ω2
nm

, (.)

where the constant factor A is given by

A =
ΓmkBT

meff
R2G2

DFpG
2, (.)

which is the same for all modes. Similarly, for the OMIT-fied gnm, we have

gnm = B
ηnm√
ωnm

, (.)

where the factor B is given by

B =

√
ℏn̄cav

2meff
, (.)

also a constant throughout the set of mechanical modes.
Following a standard recipe [Press et al., , chapter ], we perform a χ2

minimisation to find the most likely beam position on the membrane, given the
data. We do not specify any uncertainties in the input data, only take them to be
uniform. e uncertainty is then estimated from the discrepancy between model
and data alone, which turns out to give a reasonably localised estimate. e pro-
cedure is useful for finding the most likely point of laser illumination, and can in
particular answer the urgent experimental question: is the curved mirror placed
correctly or should it be unmounted and repositioned?

For a fixed number, N , of measured modes, we construct a unit vector vdata as

vdata = N [ηn1m1 , ηn2m2 , . . .]
T , (.)

by multiplying out the mode frequency dependence using either equation (.)
or (.). For a given set of (x, y)-points (a grid spanning the membrane), we may
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then, for each point, form a unit vector with the model prediction from equation
(.),

vmodel(y, x) = N (x, y)[ηn1m1(x, y), ηn2m2(x, y), . . .]
T , (.)

where N (x, y) is the position-dependent normalisation factor. If we define an
error vector, e, as

e(x, y) = vdata − vmodel(x, y), (.)
then the most likely position, (x0, y0), is the position minimising χ2(x, y), where

χ2(x, y) =
N∑
i=1

e2i (x, y). (.)

e estimated uncertainty is then (the number 2 is the number of model parame-
ters, i.e. x and y)

σ2 = χ2(x0, y0)/(N − 2) (.)
and finally the likelihood function of where the beam is positioned is given by

L(x, y) =
1

2πσ2

N∏
i=1

exp
(
−e

2
i (x, y)

2σ2

)
. (.)

In Figure . the two resulting position estimates using the data of Figures .
and . are shown together with the aimed-for (2, 2)-mode contours. To make
the localisation more precise, we also include the (4, 1)-mode as a zero value in
both estimates. In the spectral data, the peak drowns in the noise and in the OMIT
measurement, it is unfiably small. ere is no difference in the end result between
using zero and a value, say, three times smaller than that for the (1, 4)-mode. Good
agreement is seen between “before” and “aer”, and we conclude that the TMPP
piece does indeed allow us to optimise the necessary optomechanical coupling.

. e Meanical ality Factor

As testified by the considerations in chapter , having a large quality factor is im-
perative to the experiment. Although commercially available Norcada membranes
were recognised early on for their low internal mechanical dissipation [Zwickl
et al., ], the losses they suffer in connection with being clamped, a necessity
in the monolithic cavity design, render them unaractive candidates for reach-
ing the quantum regime. e quality factor of a given mechanical mode may be
wrien as the inverse sum of different dissipative contributions;

Q−1 = Q−1
internal +Q−1

gas +Q−1
clamp, (.)
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Figure .: Position estimates from χ2 minimisation. e assembled cavity lo-
calises the estimate a lot and the most likely point is conserved.
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representing losses due to internal loss mechanisms, collision with surrounding
air molecules, and losses due to elastic coupling to the environment.

e first term is inherently small and will be of no further concern to us. We
do however mention that, owing to the mighty importance of the quality factor
in optomechanics, the internal dissipation mechanisms are subject to dedicated
and serious study. Recognised loss mechanism include thermo-elastic damping
[Chakram et al., ], activation of embedded two-level defects [Faust et al., ],
and phonon-phonon-scaering [Lifshitz, ]. Of less understood microscopic
origin, surface losses also play an important role [Villanueva and Schmid, ].

e next term, given for the (n,m)-mode by [Bao et al., ]

Qgas = ρdωnm

√
πRT

32mmolar

1

p
, (.)

where ρ, d, T , and ωnm are defined as in chapter ,mmolar is the molar mass of the
surrounding gas,R is the gas constant, and p is the gas pressure, may be alleviated
with proper vacuum equipment. Using the parameters of Table ., a temperature
of 10K, and a molar mass of 29 × 10−3 kg ·mol−1, even a modest vacuum level of
5 × 10−5 mbar yields aQgas-factor (for the fundamental mode) of 26M, more than
what has been experimentally realised in our group.

At last, the third term is the one that maers for samples and setups similar
to ours. e clamping losses will seriously impede the experiment if one simply
clamps a Norcada chip tightly as required by our sample holder design.

erefore, it was decided to abandon the commercial samples and follow a dif-
ferent route, namely that of embedding a phononic structure into the chip of the
membrane. is development, which has lasted several years and is still ongoing at
the time of writing, was almost solely driven by Y. Tsaturyan, now a PhD-student
in our group. e author of this work has not taken part in the design nor the
fabrication of the samples. Here we shortly cover the theoretical aspects of the
phononic bandgap, but mainly focus on the usage of these chips in the cryogenic
experiment. Amore elaborate discussion, including the non-trivial fabrication pro-
cedure, can be found in [Tsaturyan et al., ].

In Figure . we show the evolution of the membrane chips used in the op-
tomechanical setup. Complexity develops with time if it must, and in this case it
had to. e initial one-dimensional structure was found to be incompatible with
our setup. e two-dimensional structure was the first chip type with which good
results could be achieved. We elaborate on the difference between the two gener-
ations in the next section.
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Figure .: ree generations of samples. From le to right: a commercial Nor-
cada membrane, a one-dimensional phononic structure chip, a two-dimensional
phononic structure chip. e one-dimensional chip is artificially coloured to high-
light the phononic structure (green) and the central defect (red) where the mem-
brane resides. All three samples share the basic structure of a thin layer of Si3N4 of
a Si bulk.

.. e Phononic Bandgap Chips

All foreign noise is unwanted, but some noise frequencies are more inadmissible
than others. Noise at frequencies well outside the mechanical response, as given
by χeff, is non-essential to the outcome of the experiment, whereas noise near
the mechanics is detrimental. Rather than aempting a full-scale isolation of the
mechanics from the environment, it therefore makes sense to focus the effort on a
particular frequency range. e phononic bandgap offers just that. By periodically
modulating a crystal structure, elastic waveswithwavelengths of the same order of
magnitude as the crystal structure periodicity can be suppressed from propagating
[Maldovan, ]. For mm-structures in Si, this corresponds to the MHz range.
By embedding the membrane in such a periodically paerned structure, it is thus
possible to shield the mechanics from external disturbances near the mechanical
frequencies. It is important to note that a continuum of “forbidden” frequencies
can be realised, thus justifying the use of the term bandgap.

To achieve a complete suppression of the offendingmodes, one strictly speaking
needs an infinite crystal. Although we can sele for less, it holds that more unit
cells of the crystal yield a beer suppression. Given the circular constraint of
the sample holder (cf. Figures . and .) ultimately imposed by the cryostat
geometry, the narrow 1D structure therefore seems like the beer candidate, as this
accommodates more unit cells. In Figure ., the green 1D phononic structure
is only aached to the surrounding frame at the short edges, thereby sporting
5 unit cells between the central “defect” hosting the membrane and the frame.
Unfortunately, this long bridge-like structure has its own eigenmodes, the lowest
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of which is in the 10 kHz-range. e vibrations of this mode induce large sidebands
contaminating the cavity output spectrum. Many aempts were made to dampen
these vibrations, but they all invariably compromised the bandgap. Eventually,
the experiment progressed to the 2D structures, whose phononic structures have
higher frequencies and much smaller vibrational amplitudes.

Fortunately, having three unit cells in each direction is sufficient to produce
a significant bandgap. In Figure . we show a convincing measurement of the
noise annihilation. emeasurement was not performed in our setup, but in a sep-
arate Michelson interferometer used for sample characterisation. e lower panel
shows the relative driven (a piezowas used to provide acoustic excitation) response
of two different places on the membrane chip; the frame outside the phononic
bandgap and the defect inside it. Over a range of almost 2MHz, a suppression of
∼ 20 dB is seen. By proper design of the chip, the majority of the mechanical
modes lies in this region. A very consistent display of high quality factors is seen
throughout the bandgap, whereas most modes outside it show significantly weak-
ened Q-factors. Furthermore, the central defect, against the modes of which the
membrane is not shielded, has a very sparse spectrum of eigenmodes. In the lower
panel of Figure ., only 7modes occupy the region from 1.75MHz to 2.9MHz. As
mode hybridisation between defect and membrane modes is known to also hinder
high membrane Q-factors [Jöckel et al., ], this sparsity is another important
quality of the phononic crystal chip.

In the next section, we carefully describe how the quality factor may be mea-
sured with the phononic crystal chip mounted inside the real experimental setup.
Consistent agreement between the quality factors measured in that way and those
measured in the diagnostic setup has been observed.

.. Measurements of Q in Our Setup

Even in the presence of a working in-chip phononic bandgap, there are still many
unwanted sources of dissipation that might deteriorate the mechanical quality fac-
tors. Upon assembling the cavity, small residues of silicon may break off from the
spacers or membrane chip, or copper residues from the screw holes in the sample
holder may fall out. ere is even a non-negligible risk that dust particles from
the surrounding atmosphere may land on the membrane during cavity assembly.

From finite-element simulations of the different structures, the 1D bridge has a fundamental
frequency of 12.9 kHz and an effective mass of 5.4mg, whereas the 2D grid has a fundamental
frequency of 36.2 kHz and an effective mass of 7.3mg. From equation (.), the expected dis-
placement due to thermal excitations is then ∼ 10 times lower for the 2D structure.
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Figure .: e effect of the phononic bandgap for a 2D chip. Top: Cryogenic
quality factors for the first 30mechanical modes of the membrane. Boom: relative
responses to the frame and the defect to external perturbations. e colour coding
matches the 1D sample of Figure ..

An example of such membrane pollution is shown in Figure .. In that partic-
ular case, the identification of the problem was straightforward, but in general it
can be more difficult to ascertain the condition of the membrane. erefore, a
method to measure the Q-factor in situ of the assembled cavity is required. Al-
though the mechanical dissipation rate shows up in the spectrum as the FWHM of
the mechanical response Lorentzian, a spectral measurement of Γm is necessarily
imprecise due to the very low damping rates involved. For a mechanical mode
with Q = 107 and ωm = 2π × 2MHz, Γm/2π = 200mHz. To resolve this, a mea-
surement time of at least 5-10 seconds is needed. During this time, the mechanical
resonance frequency must be unchanged with a relative precision of 1/Q, i.e. 0.1
ppm. erefore, we rely on ring-down measurements to measure the mechanical
dissipation.

To this end, we use the AOM in our setup to amplitude-modulate the light
at the mechanical frequency, so as to optically excite it and measure the ring-
down time. As the optical excitation beam might lead to optical (anti) broadening
of the mechanics, we must somehow be able to rule out any such effect for the
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Figure .: A horror picture. Photograph through an assembled cavity showing a
large (diameter ≈ 70 µm) dirt particle on the membrane.

measurement to be trustworthy. We address this issue now, before describing the
actual excitation and read-out procedure.

... Ruling Out Dynamical Ba-action

In the very bad cavity limit, achieved when λ ≈ 740 nm, the membrane will re-
spond instantaneously to an applied radiation-pressure force, with no delay from
the cavity. In other words, dynamical back-action effects are expected to be very
small. is statement of course needs some qualification. In any seing where
a laser beam continuously illuminates the cavity, the mechanical frequency shi
and broadening of equations (.) and (.) apply, and we therefore measure
not Γm but Γm +Γopt. By working with a large cavity linewidth we can, however,
make Γopt much smaller than Γm. For Q-factors in the range of ten millions for
MHz mechanical frequencies, Γm/2π is of the order of a hundred mHz. erefore,
once Γopt/2π is below 1mHz, we may safely conclude that dynamical back-action
is irrelevant. To ensure that this condition is met, we may use the maximally
broadening detuning, ∆ex, of equation (.) to estimate a “worst case” Γopt for
a given input power. For a given input power, Pin, and a given g0, we calculate
the resulting g =

√
n̄cavg0 using the following relation (we for now disregard the

membrane modulation of cavity parameters):

n̄cav =
ηκ

∆2
ex + κ2/4

Pin

ℏωcav
, (.)

where Pin is the input laser power. In the spirit of a worst-case scenario, we set
η = 1. A Taylor expansion of Γopt to first order in the small parameter ωm/κ
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evaluated at ∆ex yields

Γopt ≈ 6
√
3
g2ωm

κ2
(ωm ≪ κ). (.)

Combining equations (.) and (.) and using the following input parameters:
Pin = 3mW, g0 = 2π × 150Hz, ωm = 2π × 2MHz, and ωcav = 2π × 400THz,
we find that Γopt < 1mHz for κ/2π > 5.3GHz. We also display the rapid decay
of Γopt with κ in Figure .. At this large linewidth, the optical spring effect is
already completely negligible; 1− δωopt/ωm is ≈ 2.5× 10−6 for κ/2π ≈ 5.3GHz.
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Figure .: For reachable values of κ, dynamical back-action can be ruled out. Red:
Γopt/2π, green: 1− δωopt/ωm.

e question now is whether such a large κ is feasible. e ultimate upper
limit on the cavity linewidth is the free spectral range of the cavity, which, for
a cavity length of 1.7mm is roughly 88GHz, leaving a good margin for κ to be
large enough. If only we can tune the laser wavelength far enough away from the
mirror coatings’ maximal reflectivity, we should thus be fine. In Figure . we
display a measurement series justifying that λ ≈ 740 nm is indeed in the relevant
range. It is difficult to precisely measure such large cavity linewidths, but using
the slow piezo in the laser, the laser frequency can be scanned over several GHz
whereby we may scan over the cavity resonance. By monitoring the wavelength
during the scan, the scan can be calibrated in a rough way (assuming a linear
response throughout the scan) and a linewidth may be extracted. In Figure .
such ameasurement series is shown. Although the laser piezo is specified to have a
scan range of 25GHz this range is in practice compromised at lower wavelengths,
where the laser frequency lock is weaker, and in practice we rather have≈10GHz
at 760 nm, making it hard to continue themeasurement series below 758 nm, as the
scan can no longer resolve the cavity resonance. is does, however, imply that κ





Chapter . Experimental Realisation .. e Mechanical ality Factor

is sufficiently large. We conclude that an in situ measurement of the unperturbed
mechanical dissipation is possible.
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Figure .: Cavity linewidth measurement. Le: exemplary fit of a Lorentzian to
the cavity resonance. Right: A summary of the measured cavity linewidths.

... e Ring-down Procedure

When optically exciting a membrane already inside the cavity, the excitation beam
has to overlap with the beam path defined by the experiment. In other words,
a second beam for reading out the membrane displacements (as used e.g. in an
earlier work from our group [Usami et al., ]) will not be feasible, since it by
necessity will overlap with the excitation beam. Although the beams could be
separated using polarisation optics, the large amplitude of the excitation beam
will make it difficult to suppress altogether. Instead, we use a single beam for
both exciting and reading. In Figure . (le) we show the pulse sequence sent to
the AOM. A voltage-controlled oscillator (VCO) supplies a constant tone atωAOM to
deflect the laser beam at a certain angle (see also Figure .). e VCO is controlled
via a home-made switchboard, where a positive pulse turns off the VCO tone. In
this way one can easily switch on and off the beam so as to generate a periodic
radiation-pressure force and then leave the beam on for reading out the ring-down.
is beam is then directed to a photodetector whose output current is demodulated
by a lock-in amplifier demodulating at ωm.
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From equation (.) the output, zR(t), of the lock-in amplifier is equal to

zR(t) = A e−Γmt/2, (.)

where A is an experimental constant we need not worry about. Fiing an expo-
nential decay function of the form f(t) = a e−bt then gives a ring down time, b,
which is the amplitude ring-down time, and a quality factor, Q, then equal to

Q =
πfm
b

=
ωm

2b
. (.)
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Figure .: Ring-down measurements. Le: an overview of the four signals in-
volved and their characteristic frequencies. Right: e resulting AOM signal and
measurement.

. e Temperature

Obtaining and measuring a low thermalisation temperature has been one of the
more time and energy consuming endeavours of the work at hand.

.. Measuring the Membrane Temperature

We now turn to the task of measuring which bath temperature, T , is actually ex-
perienced by the membrane. e idea is to measure the effective bath temperature
as well as the mechanical and optical dissipation rates to work out what the effec-
tive bath temperature is. e calibration measurements are performed with low

In terms of the language of section .., A is the |Gm,V | translating metres to Volts.
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input powers, meaning that quantum back-action is absent (we make this state-
ment more quantitative below). e measurement procedure is slightly convo-
luted, so we first describe the general procedure, then explain in more detail how
the measurements are performed, and finally evaluate the result. e temperature
extraction procedure is based on the results of [Gorodetsky et al., ].

... Temperature Extraction Procedure

We recall from section ... (equation (.)) that the integrated displacement
spectrum, Szz(ω), considering only a single mechanical mode, has the value∫ ∞

−∞
Szz(ω)

dω
2π

=
Γm

Γeff

kBT

meffωeff
. (.)

Being satisfied with a precision of a few percent, we make the following approxi-
mation:

Γm

Γeff

kBT

meffωeff
≈ Γm

Γopt

kBT

meffωm

. (.)

For phonon occupations, n̄th, reasonably far above the ground state, classical equi-
librium dynamics hold and

ℏωmn̄th = kBT. (.)

is equation, combined with the relation (.) between the displacement PSD and
frequency PSD, then reveals that∫ ∞

−∞
Sωω(ω)

dω
2π

= 2G2x2ZPF
Γm

Γopt
n̄th = 2g20n̄eff. (.)

As the spectral integral and the two decay rates Γm and Γopt can be measured inde-
pendently, we can thus obtain values of g20n̄eff for different ambient temperatures.
We describe how to extract T from this in a moment, but first briefly address the
question of ruling out quantum back-action.

By comparing the last equality sign in equation (.) to the full quantum me-
chanical expression in equation (.) for the effective (final) phonon number, it
is seen that two approximations have been made. Specifically,

Γoptn̄min + n̄thΓm

Γopt + Γm

≈ Γm

Γopt
n̄th (.)

when
Γm ≪ Γopt, Γoptn̄min ≪ n̄thΓm. (.)
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ere is therefore an intermediate regime in which these measurements should be
carried out, with neither too high nor too low (cavity-enhanced) coupling. In prac-
tice, as discussed in section ..., it actually takes some effort to enter the regime
where Γopt is no longer much larger than Γm. Similarly, n̄minΓopt is only compa-
rable to Γmn̄th close to the quantum ground state, and the intermediate regime
actually covers most of the experimentally accessible parameter space.

Returning now to the problem at hand, determining T from a measurement
of g20n̄th without knowing g0, we make a crucial assumption: g0 is constant over
a certain range of temperatures. is allows us to measure several pairs of set
temperatures and effective temperatures (times g20kB/ℏωm) and fit the proper re-
lationship between them, thereby extracting T . Let us elaborate on this.

From section .. we have a good classical model for the final temperature of
a resonator exposed to two baths. In the present case we identify one bath as the
surrounding laboratory environment at room temperature, Troom, and the other
bath as the cryostat at the set temperature, Ts, to obtain

T =
γ1Ts + γ2Troom

γ1 + γ2
. (.)

is function really only depends on one parameter, α, namely the ratio between
γ1 and γ2. To our ends, we must also introduce another parameter, β, which trans-
lates from g20n̄th to T . at is, for a particular mechanical mode, β = g20

kB
ℏωm

. e
function to fit to the data is then

f(Ts, α, β) = β
αTs + Troom

α + 1
. (.)

In the next subsubsection we describe how to acquire simultaneous points of (Ts,
g20n̄th) but first we justify the essential assumption of a constant g0.

Let us aack the question negatively. Why wouldn’t g0 be a constant over all
temperatures? –Because the length of the cavity will in general change with tem-
perature, whereby the optical resonance wavelengths change, which might in turn
change themembrane position in 2kzm (see sections . and ..). Since the length
of the cavity is mainly defined by the length of the combined spacer-membrane-
spacer stack, we might expect it to be given only by the coefficient of thermal
expansion (CTE) of silicon. If this were the case, a cavity length change would
actually not cause any change in the standing wave position of the membrane, as
the thermal expansion/shrinking would amount to an overall scaling factor, which
does not change relative positions. But there is also a non-negligible contribution
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to the cavity length from the curvature of the top mirror. With a radius of cur-
vature of 2.5 cm and a diameter of 7.6mm, an extra contribution of 0.27mm,
or roughly 20% of the cavity length, comes from this source, the length of which
is given by the CTE of borosilicate. In Figure . we show the CTEs of Si and
borosilicate. In the region from 0K to 50K, they are both rather small. One would
therefore expect only a very small shi in the cavity length as the temperature is
varied throughout this region
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Figure .: e thermal expansion coefficient of Si (red) and borosilicate (blue).
Values adopted from [Lyon et al., ] (Si) and [Jacobs et al., ] (borosilicate).

At the end of the day, the question must be decided by direct experiment. We
track the wavelength of a particular cavity resonance (λ ≈ 800 nm) as the tem-
perature is increased from 4.2K and upwards. As our tolerance we take 1 pm and
cease the measurement when the cavity wavelength has changed by this amount.
at leaves the range from 0K to 25K as a range of unchanged cavity length and
thereby a constant g0.

e choice of 1 pm was made somewhat arbitrarily. In hindsight, it proves
Calculated as d = R(1 − cos(arcsin(D/2R))), where R is radius of curvature of the mirror

and D is the mirror diameter.
Also, considering the shape of the CTE-curve, we note the possibility of recovering the 4.2K

length at a much higher temperature. From Figure ., this would appear to be around 150K.
is has not been tested experimentally, but would provide some very useful extra thermalisation
points.

For extraction of the borosilicate data, the online tool Web Plot Digitizer was used (http:
//arohatgi.info/WebPlotDigitizer/app/).


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to be a lile too conservative. We may estimate the worst case scenario were zm
remains unchanged as the cavity length changes on account of temperature. Given
an initial cavity resonance wavelength, λ0, the change in 2kzm emanating from a
change in wavelength, ∆λ, is given by

∆(2kzm) = 2zm∆k = 4πzm

(
1

λ0
− 1

λ0 −∆λ

)
≈ 4πzm

λ20
∆λ. (.)

For λ0 = 800 nm, ∆(2kzm)/2π takes a value of 1% when ∆λ = 6.4 pm.

... Measuring g20n̄th

As explained in the previous subsection, we may determine the effective mem-
brane bath temperature by fiing the function in equation (.) to simultaneous
measurements of Ts and g20n̄th. e laer is achieved, for each mechanical mode,
by first tuning the laser to ≈ 745 nm and performing optical ring-down measure-
ments, as described in section ..., to extract Γm. en, by seing the laser
wavelength to an intermediate value of ≈ 800 nm and placing a calibration tone
near themechanical peak of interest so as to calibrate themeasured PSD in terms of
frequency fluctuations (as described in section ..), the spectral integral, A, and
the optical damping, Γopt, can be retrieved. In principle, once Γm is determined
only one pair of (A,Γopt) is needed to determine g20n̄th from equation (.), but to
get beer statistics, we make a small detuning series and collect 4-5 such pairs. An
overview of one such measurement, for a single mode for a single temperature, is
shown in Figure ..

As explained in section ..., we conclude that g0 is constant in the range from
0K to 25K. We take five points in this range andmonitor four different mechanical
modes. All four modes show thermalisation behaviour in good agreement with
our expectation. In Figure . an overview of this measurement is shown. For
the results presented in the next chapter, we assume the temperature calibration
curve obtained here by linearly averaging the four fits in Figure . to hold. is
produces the following temperature calibration function:

Tobtained = 0.99× Ts + 2.71K. (.)

is concludes our exposition of the experimental setup. In the next, conclud-
ing section, we present the results obtained when pushing the experiment to its
limits and operating it in the quantum regime.
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Chapter 

In theantum Regime

With the theory well understood and the full experiment standing ready on the
table, we may now harvest the fruits of our labour. In this chapter, we present
compelling evidence that we have reached our goal of realising a quantum-enabled
optomechanical system.

e chapter falls naturally in two parts, each describing a separate endeavour.
In the first part, we present the highlights of a very long list of aempted ground-
state cooling runs. We argue that a mean phonon occupancy below unity has been
reached, although that statement does comewith a few assumptions. In the second
part, we turn our aention to the results regarding ponderomotive squeezing, were
there is lile room for doubt. In that sense, the contents of section . constitute
the main result of this work.

. Ground State Cooling

For a long time, the experimental efforts of our group were focused on the goal
of cooling a single vibrational mode to the ground state. Although the necessary
quantum cooperativity to do so was reached, we cannot really claim to have been
successful in that venture. ere are two main reasons for this: excess noise and
the difficulty of calibrating the phonon number precisely.

As discussed carefully in [Kippenberg et al., ], excess phase noise of the
laser gives rise to an additional fluctuating force, leading to a heating of the me-
chanics. is also agrees with our discussion in section ..., were we found
that the quantum noise of laser light leads to a non-vanishing heating contribu-
tion. With additional classical noise, the situation only gets worse. Now, we have
argued in section .. that input light is shot noise limited in the relevant spectral
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region, but perhaps the cavity is not. A mechanical mode of a mirror also leads
to phase fluctuations of the light, which in turn may heat the mechanics. e
same goes for any noise peak observed in the vicinity of the mechanical mode. We
are deliberately being a bit vague on this maer, as one would need to explicitly
model the physics of the noise in question to quantitatively determine the amount
of added phonons. e main point is, however, clear enough: to confidently state
that the shot-noise-only model of chapter  yields the correct phonon occupation,
no excess noise near the mechanics can be tolerated. Considering both how sensi-
tively one needs to measure to see the ground state and its expected spectral width,
this shot-noise-only restriction turns out to be a very stringent one.

Regarding the calibration, it is of course not sufficient to state the estimated
phonon number; one must include an uncertainty. It has not proven possible to
simultaneously calibrate all input parameters with the sufficient precision to get a
strict uncertainty bounding the occupancy to be below unity.

In spite of this somewhat pessimistic introduction, the cooling results we have
obtained are indicative at the very least of an optomechanical system operating
in the quantum regime. We now cover two different cooling runs which present
some peak achievements of the experiment and also explore different parts of the
parameter space. As we refrain from making strong claims about the occupation,
we do not specify uncertainties on the experimental parameters. e uncertainties
can be taken to be on the last digit.

.. Cooling Run A

In this cooling run, the overall plan was to make use of good sideband resolution to
achieve a low phonon occupancy. A base wavelength of 818 nm was used, which
from our measured mirror transmissivities (see Figure .) should give a bare
cavity linewidth of 1.6MHz. As explained in section ., the precise position of
the membrane in the intra-cavity standing wave leads to a periodic modulation of
the cavity linewidth. In section .. it was described how to experimentally order
the cavity resonances according to their position in that period. For this run, we
used the resonance yielding a narrow linewidth.

For a certain input power, the detuning is varied, yielding a different cavity-
enhanced coupling for each detuning. is is repeated for different input powers as
a way to exhaust the available parameter space and optimise the cooling. In Figure
. we display three resulting spectra with model predictions superimposed. It is
important to clarify which parameters enter the model and how they come about.

From broad OMIT measurements (see section ...), the cavity linewidth and
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detuning is inferred for each trace. e temperature is extracted from the tem-
perature calibration measurement described in section .. given the knowledge
of the cryostat set temperature, which for these traces varied between 5.2K and
5.4K. emechanical resonance frequency and damping rate are both determined
from the in situ ring-downmeasurements described in section ... What remains
to be fixed is the cavity-enchanced coupling and the detection efficiency. ese
parameters are adjusted until good agreement is found between data and model.
A single detection efficiency simultaneously fits all three curves.

e traces are acquired with the highly sensitive APD at light levels yield-
ing output fluctuations far above the electronic level. e traces are normalised
to the noise level of a spectral region showing only shot noise, residing between
2.74MHz and 2.75MHz, i.e. a 10 kHz spectrally flat region containing 1000 points.

A surprisingly low detection efficiency is necessary to fit the data. We arrive
at η = 0.033, which agrees with the very low signal-to-noise ratio in the data, but
not with the expected value. Let us estimate what η should be. From the mirror
transmission curves of Figure ., we get ηc = 0.78. On the “narrow linewidth”
side of the 2kzm curve, this getsmodulated to ηc = 0.61 and the expected linewidth
is κexp = 2π × 1.1MHz. Now, the linewidth that we measure is κmeas = 2π ×
2.0MHz. If we for simplicity assume the losses responsible for this to occur evenly
throughout the cavity, we may calculate a new, modified coupling parameter as

ηlossyc = ηc
κexp

κmeas
≈ 0.32. (.)

Whenmultiplying this number by the quantum efficiency of the APD, the resulting
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detection efficiency remains a factor of almost 8 too high. We have not been able
to find a satisfactory explanation for this low detection efficiency.

In Table . we summarise the parameters of the cooling run, both those mea-
sured independently and those adjusted in the analysis.

Parameter Value Measurement method
Common parameters

κ/2π 2.0MHz OMIT
Γm/2π 0.24Hz Ring-down
ωm/2π 2.622 551MHz Ring-down
η 0.033 Not measured

Individual traces

T 8.0K Temperature calib.
−∆/2π 0.42MHz OMIT
g/2π 4.1 × 104 Hz Not measured
n̄est 4.7 Derived
Cq 0.22 Derived
T 8.1K Temperature calib.

−∆/2π 0.28MHz OMIT
g/2π 6.0 × 104 Hz Not measured
n̄est 4.1 Derived
Cq 0.47 Derived
T 7.9K Temperature calib.

−∆/2π 0.40MHz OMIT
g/2π 11.0 × 104 Hz Not measured
n̄est 0.7 Derived
Cq 1.6 Derived

Table .: An overview of the parameters used in the analysis of cooling run A.

We now argue that the parameters set by us are trustworthy. From the in-
dependently acquired knowledge of ωm, κ, and ∆, and the optical broadening,
parametrised through g, the shape and position of the peak in the output light is
established. If the peak broadening and position is to fit the data, a unique choice
of g exists. For the vertical scaling, there is in principle a freedom of choice, in the
sense that a high detection efficiency is balanced by a low occupation (and vice
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.. Ground State Cooling Chapter . In the antum Regime

versa). In the few phonon regime, however, this is not quite true since the peak
asymmetry is washed out for higher phonon occupations. is is particularly ap-
parent in the high-asymmetry regime where ponderemotive squeezing is seen. We
illustrate this in Figure . below, where we fix all parameters except T and η. For
a given η, we then vary T until a certain peak height is obtained. is results in
different peak shapes. Furthermore, as the bath temperature is independently cal-
ibrated, there is a fairly strict limit to the freedom in trading η for T . For these
particular data, the only real concern is the very low signal-to-noise ratio making
the uncertainty in the unique parameter rather large. In Figure . a dashed model
curve showing n̄f = 1 for the same parameters (expect g) used in the n̄est = 0.7-
curve is shown. Albeit a marginal difference, we believe that the dashed curve fits
the data worse.
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Figure .: e trade-off between η and T for the parameters from section ... e
detection efficiencies used are 0.74, 0.5 and 0.25. e resulting phonon occupations
are 1.2, 1.8, and 3.8.

.. Cooling Run B

Abandoning the resolved sideband regime, this cooling run was performed at a
base wavelength of 807 nm. Furthermore, we this time worked at the 2kzm posi-
tion yielding a large cavity linewidth. is entails a larger output signal, allowing
us to use the QD detector. For this detector, more carefully calibrated shot noise
traces are available. For the calibration of the measured traces, we then apply the
following transformation

Smeas
V V → (Smeas

V V − Cel)C
DC
SN

(CSN − Cel)CDC
meas

+ Cel, (.)

where the four calibration constants are the DC levels of respectively the shot
noise trace and the measured trace and the average of the spectral region between
2.48MHz and 2.74MHz for the electronic noise trace and the shot noise trace.
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Apart from this more precise calibration, the analysis proceeds equivalently
to what was presented in the last section. From ring-down measurements we ex-
tract ωm and Γm, OMIT measurements yield κ and ∆, and we extract the bath
temperature from our temperature calibration measurements. Finally, η and g are
adjusted to make the data fit the model. In Figure . we show the record trace of
this particular cooling run.
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Figure .: Serious cooling aempt. e legend shows the extracted phonon occu-
pation from the solid line models. e dashed line shows the shot noise level of the
model.

Encouragingly, the signal-to-noise ratio is beer than before, but this improved
sensitivity reveals some additional noise of unknown and unwelcome origin. As
already discussed, without a specific model for this noise it is not possible to quan-
titatively assert what heating effect it could have on the mechanics. Nonetheless,
assuming no effect, our model prediction seems to agree with the data. We arrive
at a value for the detection efficiency of η = 0.74. e shape of the curve fits
very well with our model prediction, and a phonon occupancy close to unity is
reached. In the spirit of our semi-qualitative data analysis, we also show the two
curves corresponding to occupations of 1 and 2, obtained by varying g. With the
resolution at hand, the data seems easily discernible from those cases. In Table .
an overview of all experimental parameters is found.

Shown in Figure . is also the expected shot noise level, indicating that some
modest level of ponderomotive squeezing should be present. e excess noise in
this spectral region may be assumed to wash out the squeezing correlations. is
result is encouraging, however, in the sense that both the cooperativity and the
detection efficiency necessary to observe ponderomotive squeezing are present.
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Parameter κ/2π −∆/2π T ωm/2π Γm/2π

Value 6.3MHz 3.1MHz 11.5K 2.620 440MHz 0.24Hz

Parameter g/2π η n̄est Cq

Value 23 × 104 Hz 0.74 1.2 1.5

Table .: Parameter overview for this cooling run. Top table: independently mea-
sured parameters. Boom table: Fied and derived parameters.

Even if the ground state is just barely out of experimental reach, squeezing should
not be. Indeed, it is not, and in the next section we present the results of focusing
the experimental efforts in that direction.

. Ponderomotive Squeezing

From the experimentalist’s point of view, a squeezing experiment is nice and clean
in the sense that very lile calibration is necessary. Unlike the sideband cooling
described in the previous section, where different noise contributions should be
accounted for in order to gauge the final mechanical occupation, squeezing is self-
calibrating and model agnostic. With a careful independent shot-noise calibration
of the detector (in this case the QD detector), we can unambiguously infer the
amount of light squeezing achieved.

We now present the best squeezing run out of several successful ones. From
the considerations of chapter , it follows that we should “aack” at a large line-
width (see Figure .) and at a wavelength corresponding to 2kzm ≈ 0.8 in Figure
.. Here, the maximal bare coupling is achieved simultaneously with the largest
degree of cavity overcoupling. In this particular experimental run, a wavelength
of 799.877 nm brought us very close to the optimal working point. For different
input powers, different degrees of detuning can be reached, owing to the different
instabilities of the system (see section ...). As a consequence, we vary the in-
put power and thereby find the optimal working point, similarly to what was done
in connection with the cooling described above.

In Figure . we show the raw data trace of the best squeezing run. In the
large-cooperativity regime where we operate, the output spectrum is completely
dominated by the broad spectral features of the mechanical modes. Squeezing
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Figure .: Raw broadband squeezing data. e red curve is the recorded output
spectrum. e purple curve is the shot noise reference. Both traces are globally
scaled, meaning that small discrepancies occur wrt. the y-axis (a careful eye will
notice a small bend of the purple trace). e amount of squeezing can, at any fre-
quency, be directly inferred from comparing the two curves.

is seen for more than 13 distinct mechanical modes. is is it! Strong quantum
correlations between light andmechanics are unquestionably present in the output
light from the cavity.

To gauge our theoretical understanding of the data, six modes are selected for
comparison to the model presented in section .... In Figure . we show a
comparison between sections of the data trace from figure .. All parameters en-
tering the model are independently determined using methods described in chap-
ter . e cavity linewidth is determined via a sideband calibration, and found
to be 14.0MHz. From broad OMIT sweeps, the detuning may then be inferred to
be −1.8MHz. e temperature follows from the temperature calibration curves,
T = 10.1K for a cryostat set temperature of 7.4K. ese are the parameters com-
mon for all modes. For four of the modes, optically excited ring-downs yield qual-
ity factors of respectively (11.5±0.2)×106 for the (1, 2)-mode, (11.4±0.1)×106

for the (1, 3)-mode, (11.5± 0.3)× 106 for the (1, 3)-mode, and (11.5± 0.2)× 106

for the (2, 2)-mode. From this strong consistency ofQ-value, a consequence of the
phononic bandgap, we set the quality factor to be 11.5 × 106 for all modes in the
model. e mechanical frequency and cavity-enhanced coupling rate are both in-
ferred from OMIT fits, also shown in Figure .. e final parameter that requires
fixing is the detection efficiency. Contrary to the cooling analysis, where we le
this as a free parameter, we independently measure it for this run.

e calculation of η involves two steps. First, the degree of cavity overcou-
pling is evaluated from the transfer matrix model. is model takes eight input
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parameters. We have independently measured the membrane reflectivity and the
mirror reflectivities. Together with the inferred transmissivities, this constitutes
six parameters. e cavity length and membrane position are inferred from a
model fit to the resonance frequencies. e transfer matrix model then predicts
a cavity linewidth of 14MHz and a cavity overcoupling of 0.96. Next, we prop-
agate losses aer the cavity into the efficiency. e output window of the cryo-
stat is not anti-reflection coated and thus constitutes a small Fabry-Pérot etalon.
A careful measurement of the window transmission reveals that it is very near
unity at λ = 799.877 nm. e QD detector has a nominal diode quantum ef-
ficiency of 0.87 and a glass shielding of the diode with an estimated transmis-
sivity of 0.92. Assuming no further losses, the expected detection efficiency is
η = ηc×0.87×0.92 ≈ 0.76. Using this value, we thus have a zero-free-parameters
fit to superimpose on the data. In Figure . this is seen as the grey curves. ey
do not quite fit the data, and in particular simultaneously overshoot the mea-
sured peak value and overestimate the degree of measured squeezing. Reducing
the detection efficiency simultaneously addresses both these errors, whereas e.g.
a higher thermalisation temperature than expected would only move the model
curves upwards. If we allow ourselves to vary the detection efficiency (but of
course using the same number for all six modes), we can obtain good agreement
between model and data by assuming η = 0.61. At the time of writing, we can not
immediately account for the mismatch between expected and realised detection
efficiency. Candidate explanations include imprecisions on the transfer matrix
model implying an incorrect value ηc, beam focusing mismatch on the detector
diode, scratches in or silicon debris on the back surface of the outcoupler mirror,
and lossy (dirty) optics.

From the fixed parameters entering our model, we may also evaluate the quan-
tum cooperativity for the six modes of Figure .. ese are shown in Table ..

Mode number (1, 2) (2, 2) (1, 3) (2, 3) (1, 4) (3, 4)
Cq 6.1 5.0 3.4 5.4 3.2 1.8

Table .: e measured quantum cooperativities for the six most strongly coupled
mechanical modes.

We now make a few remarks on the shortcomings of our model. Evidently,
the squeezing decreases as a function of Fourier frequency much faster than our
model predicts. is is partly due to the inherent single-mode nature of our model,
which, as we already remarked upon in section .., becomes compromised when
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Figure .: Record squeezing run. Top panels: OMIT response (orange) and fit
(black) from each mechanical mode. Boom panels: Measured spectra (red) nor-
malised to shot noise (purple) and superimposed model prediction for both the ex-
pected (grey) and adjusted (black) detection efficiency. For the adjusted detection
efficiency, good agreement is seen between model and data.
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Figure .: e maximal amount of squeezing. e green lines indicate the level of
−2.4 dB and 0.1 dB to either side.

themechanical linewidths become comparable to the inter-modal spacing. A quick
look at Figure . will reveal that this is certainly the regime we are in. In the re-
gion to the right of the mechanical peak, where our single-mode model predicts a
slowly rising fluctuation spectrum, the tail of the next mechanical mode is already
making a significant contribution. Furthermore, the mirror noise levels presented
in section .. are relatively high and should, in a more thorough treatment, be
taken into account, as extraneous noise sources will wash out the quantum corre-
lations.

From the raw data of the response of the (2, 3)-mode, we infer a maximal
amount of squeezing of −2.4 dB ±0.1 dB. is is illustrated in Figure ..

. Concluding Remarks

e overall conclusion is the happy one that we have indeed been successful in
reaching the quantum regime. e experiment, in its present state of operation,
constitutes a compact and robust optomechanical system showing a simultaneous
quantum-enabled coupling of light to several mechanical modes. Although other
optomechanical systems have observed ponderomotive squeezing, first in the op-
tomechanical crystals [Safavi-Naeini et al., ] and more recently another MIM
system [Purdy et al., ], we note that the amount of squeezing presented here is
appreciably larger, and thus represents the hitherto strongest correlations between
light and mechanics reported for an optomechanical system. It is the combination
of high quantum cooperativities and good detection efficiencies that distinguishes
our system and allows for the large degree of observed squeezing.
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On the assembly side, the essential ingredients in reaching the goal was the
addition of a phononic structure around the membrane, which lead to consistently
high quality factors for a wide range of mechanical modes as well as the spectral
suppression of large amounts of spurious modes and the use of a very stable and
noise-free laser.

Although the system is functioning satisfactorily, there are a few places where
improvements would be welcome. First, the jier induced in the cavity by the he-
lium flow is a large inconvenience, and hinders the effective acquisition of large
amounts of data over several days. A different cryogenic solution might alleviate
this. Second, the vibrational modes of the mirrors seem to currently be a limiting
noise source for certain experiments. Using smaller-mass mirrors with higher vi-
brational eigenfrequencies and, potentially, higher quality factors would alleviate
most of the mirror noise. One might even the mirrors to also be protected by a
phononic structure. Smaller mirrors could also allow for a shorter cavity leading
to an increase in the mode-specific optomechanical coupling gnm both through the
increase in ∂ωcav/∂zm and the transverse overlap.

Finally, as the goal of our project was to prepare an optomechanical setup
for more advanced experiments, the future prospects of the experiment are very
compelling. In the QUANTOP laboratory, the hybrid atom-membrane experiment
[Hammerer et al., ] is already in its early stages, and another experiment to
entangle two laser beams is being initiated shortly. e system presented here
generally is a promising platform for going beyond the canonical single-mode op-
tomechanics.
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Appendix A

Calculation of the Beam Overlap
Factor

Introduction

For our schemes for finding the position of the laser beam spot on the membrane
we frequently need to calculate the so-called overlap factor, ηnm. Doing this nu-
merically can be surprisingly time-consuming, so in this note we find the analytic
expression.

Definitions

We define the overlap factor as

ηnm(x, y) :=

∫
D

dx′dy′ ϕ(x′ − x, y′ − y)ψnm(x
′, y′), (A.)

where D is the domain of the membrane, ϕ is the normalised Gaussian beam in-
tensity profile, and ψ is the membrane mode function. We define the laer two
as

ϕ(x, y) :=
2

πw(zm)2
exp

(
−2(x2 + y2)

w2(zm)

)
, (A.)

where w(zm) is the beam waist size on the membrane, and

ψnm(x, y) := sin
(
nπ

Lx

x

)
sin

(
mπ

Ly

y

)
, (A.)

with (n, m) being the integer excitation numbers and (Lx, Ly) the membrane side
lengths, respectively.
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Calculation

As a first approximation, wewill expand the domain of the integration to the entire
plane. Since our optical losses from clipping on the membrane side are immeasur-
ably small, this is a good approximation.

Next, we recognise the overlap integral to be the product of two convolutions;
rewriting ϕ and ψ with obvious notation, we get that

ηnm(x, y) =

∫
R2

dx′dy′ ϕx(x′ − x)ψx
n(x

′) ϕy(y′ − y)ψy
m(y

′) (A.)

= (ϕx ∗ ψx
n)(x)(ϕ

y ∗ ψy
n)(y). (A.)

Since x and y are independent variables, the two-dimensional Fourier transform
of ηnm factorises, and by virtue of the convolution theorem

F [ηnm](kx, ky) = F [ϕx](kx)F [ψx
n](kx)×F [ϕy](ky)F [ψy

m](ky). (A.)

ese Fourier transforms are readily found in amathematical handbook to be given
by

F [ϕx](kx) =

√
2

πw2(zm)

w(zm)

2
exp

(
−w

2(zm)k
2
x

8

)
, (A.)

and
F [ψx

n](kx) =

√
2π

2i (δ(kx − nπ/Lx)− δ(kx + nπ/Lx)), (A.)

respectively.
As was the case for the Fourier transform, its inverse of course also factorises.

e x-part of the inverse Fourier transform of the Fourier transform of ηnm, call it
ηxn, is then given by

ηxn(x) = F−1 [F [ϕx](kx)F [ψx
n](kx)] (x) (A.)

=

∫
R

dkx exp
(
−w

2(zm)k
2
x

2

)
(A.)

× 1

2i(δ(kx − nπ/Lx)− δ(kx + nπ/Lx)) exp(ikxx)

= exp
(
−w

2(zm)n
2π2

2L2
x

)
1

2i (exp(inπx/Lx)− exp(−inπx/Lx)) (A.)

= exp
(
−w

2(zm)n
2π2

2L2
x

)
sin(nπx/Lx). (A.)

We distribute the pre-factor of ϕ evenly between ϕx and ϕy .
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e y integral can be performed analogously and we obtain the final result that

ηnm(x, y) = exp
[
−w

2(zm)

8

(
n2π2

L2
x

+
m2π2

L2
y

)]
sin(nπx/Lx) sin(mπy/Ly)

(A.)
=: P (w(zm), n,m, Lx, Ly)ψn,m(x, y), (A.)

where we in the last line have defined the Penalty function, P .
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Appendix B

Membrane Cleaning Procedure

Introduction

As described e.g. in section .. and exemplified in Figure ., contamination of
the membrane is a very real threat to the experiment. As samples were always
rather sparse in this project, it was never favourable to simply dispose of a con-
taminated membrane. Instead, a lot of effort went into finding ways of “reviving”
seemingly “dead” membranes. Eventually, a cleaning procedure emerged in the
laboratory. Here, we share this accumulated experience, expressed as a series of
tips for how to handle a membrane with a dirt particle on top of it.

Do’s

Acetone, also used to remove the photoresist from the membrane during the fab-
rication process, is the chemical of choice for day-to-day cleaning of membranes.
Clamping the membrane chip with a pair of tweezers and gently stirring it in a
beaker full of clean acetone is a safe and relatively efficient way of removing con-
taminating agents. Note, however, that acetone (even the ultra-pure spectropho-
tometric grade variant) upon drying leaves residues on the surface off of which it
dried. is is shown in Figure B..

Such residuals compromise the parallelity between spacers and membrane and
may, if found on the membrane, be just as detrimental to the Q-value as the dirt
originally sought eradicated. erefore, themembrane should be rinsedwithmilli-
Q water immediately aer being taken out off the acetone bath. Both steps can be
repeated ad libitum, as long as the membrane chip is not allowed to go dry aer
the acetone bath.
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Figure B.: Dried-up acetone residuals. Here shown on two commercial Norcada
Si spacers.

Don’ts

e membrane is very small and fragile. Any aempt of mechanical dirt removal
has a high risk of shaering the membrane. Using canned air to blow off dust or
ultrasound baths to shake off the offending particle has proven to be almost certain
ways of losing a sample.
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