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ABSTRACT

The most intriguing aspect of studying supernovae associated with gamma-ray bursts
(GRB-SNe) is the fact that they are accompanied by the most energetic events in the uni-
verse: gamma-ray bursts (GRBs). GRBs are extremely bright, which makes a swift trigger
of observation on them. Therefore, a supernova (SN) light curve following a GRB can be
detected. In addition, GRB-SN rate does not decline beyond z > 1.5, which is a fun-
damental feature to breakdown degeneracies in the constraint on the equation of state
parameter w(z).

Apart from two exceptions, i.e., GRB 060614 and GRB 060505, all other long GRBs
have been observed followed by a SN. Hundreds of GRBs are detected yearly though,
properties and progenitor mechanism of GRB-SNe remain elusive, due to the difficulties
in obtaining the light curves of GRB-SNe. For example, the brightness of a GRB and a host
galaxy may conceal a GRB-SN, and dust in the line of sight may also blur the brightness
of a GRB-SN.

In this thesis, supernovae (SNe), especially GRB-SNe are extensively explored and
used as a tool to study the dark distant universe. We first intend to estimate the rates of
observing a lensed SN behind Abell 1689. A function describing time delay distribution
of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate
is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond
z ∼ 1.5. Based on these reasons, we investigate a potential candidate to measure cosmo-
logical distance: GRB-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are
obtained and their properties are studied. We ascertain that the properties of GRB-SNe
make them another candidate for standardizable candles in measuring the cosmic dis-
tance. Cosmological parameters ΩM and ΩΛ are constrained with the help of GRB-SNe.

The first Chapter presents a theoretical background of this thesis divided into three
Sections. In the first Section, a theory of gravitational lensing is briefly introduced. The
lensing effects are strongly depended on the mass distribution of a lensing cluster. We
discussed models of mass distributions of a cluster of galaxies. We also theoretically de-
duce time delay. The second Section is dedicated to SN. Progenitor models of different
types of SNe are investigated. SNe Ia and their application as standard candles are dis-
cussed. After that, we introduce updated research on GRB-SNe and difficulties in study
their properties. The Chapter ends by discussing cosmological parameters ΩM and ΩΛ

and cosmological distance.
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In the second Chapter, we estimate the chance of observing an image of different
types of SN lensed by Abell 1689. We analyze the rates and the time delay distribution
of lensed sources with multiple images behind strong lensing galaxy clusters. In total 17
clusters are studied. We deduce a function presenting the probability distribution of time
delays. A separation of the mass model of Abell 1689 is investigated to test the effects of
different types of mass clumps on time delay distributions. It shows that its dark halo and
bright galaxies are responsible for generating large time delays and small time delays are
mostly produced by galaxy-scale clumps. We conclude that the chance of SN Ia is smaller
than CC SNe, though both of them are low.

The third Chapter is devoted to the investigation of GRB-SNe. We discuss the possi-
bility of generating light curves of GRB-SNe, who have ‘strong evidence’ to be connected
with GRBs. In total 8 light curves are obtained. Based on these light curves, properties
of GRB-SNe are explored. We find that the peak magnitudes are strongly correlated to
the decline rates. Here the decline rate is defined as the decay of the magnitude after the
light curve reaches its peak luminosity. This luminosity-decline rate relation is tighter
than the widely discussed relation, i.e., k−s relation, where k and s represent the relative
brightness and width of light curves to SN 1998bw. We also stretch the light curve of
SN 1998bw to test if it can be used as a light curve template for GRB-SNe. We find out
that stretching the curve around the peak luminosity is superior to other methods, e.g.,
stretch with time since burst or the s factor.

In the fourth Chapter, cosmological parameters ΩM and ΩΛ are constrained with
GRB-SNe, whose peak magnitudes are corrected with the help of the decline rates. With
the standard Monte Carlo method, we simulate the magnitudes and the decline rates of
8 GRB-SNe and find the best cosmological parameters ΩM and ΩΛ in flat universe.

Finally, the thesis closes with a short discussion on the summary and potential future
works in the fifth Chapter. The luminosity-decline rate relation can help to constrain the
progenitor models of GRB and GRB-SNe. Though the progenitors and properties of SN
Ia and GRB-SNe are different, GRB-SNe show similar light curve properties as SN Ia,
therefore it can be used as standard candles to measure cosmic distance and constrain
cosmological parameters ΩM and ΩΛ. Considering the rates of GRB-SNe do not decline
beyong z ∼ 1.5, with more GRB-SNe to be discovered, they will become a powerful tool
in the study of dark energy through w(z).



摘要 
——————————————————————————————————— 

 

  研究与伽玛射线暴相联系的超新星(GRB-SNe)最有趣的地方在于他们总是伴随着

宇宙中最具能量的事件：伽玛射线暴(GRB)。伽玛暴极其的明亮，以至于一旦爆发

我们可以发现并迅速地观测他们。因此，我们有机会观测到伽玛暴之后的超新星

(SN)的光变曲线。另外，在红移z>1.5之外伽玛暴超新星率并不随着红移的增加而

降低，这样可以在估算状态方程参数w(z)时破坏其简并性。  

  除了两个例外：GRB 060614 and GRB 060505, 其他所有长伽玛暴都可以观测到与

之相联系的超新星。虽然每年可以观测到几百个伽玛暴，但是关于伽玛暴超新星的

性质和前身机制仍不清楚，这是因为观测伽玛暴的光变曲线还是有困难的。比如， 

伽玛暴和宿主星系的光亮会遮挡住超新星，并且在观测路径上的尘埃也会掩盖超新

星。 

  在这篇论文中，我们主要研究超新星，特别是伽玛暴超新星，并以他们为工具来

探测遥远的黑暗宇宙。我们首先计算在Abell 1689背后，观测到被引力透镜放大的

超新星的概率。 我们推导出关于强引力透镜的时间延迟分布的公式。Ia型超新星

(SNe Ia)可被观测到的机会要小于核坍塌超新星（CC SNe)。 SNe Ia 率在红移z~1.5

之外下降。基于此，我们研究一个潜在的可用来测量宇宙距离的候选者:伽玛暴超

新星。它是一种次型 CC SNe 。我们得到伽玛暴超新星的光变曲线，并且研究其光

变曲线的特点。我们确信他们光变曲线的特点使得伽玛暴超新星也可作为测量宇宙

距离的标准烛光。而且我们利用伽玛暴超新星测量了宇宙常数ΩM, ΩΛ .  
  第一章论述了整篇论文的理论背景。分为三个部分。第一部分简要介绍了有关引

力透镜的理论。透镜的星系团的质量分布会影响引力透镜效应。我们讨论了几种星

系团的质量分布模型，并且介绍了时间延迟理论。第二部分主要介绍了超新星。 

我们研究了不同类型超新星的前身机制。我们讨论了Ia型超新星以及他们作为标准

烛光的应用。之后，我们介绍了关于伽玛暴超新星的最近研究进展，以及研究中遇

到的困难。本章的结尾讨论宇宙常数 ΩM, ΩΛ和宇宙距离。 

  在第二章 我们测算了在 Abell 1689背后观测不同类型超新星的像的概率。我们分

析了强引力透镜星系团背后可观测到的超新星率和时间延迟分布。总计研究了17个

星系团。我们推导出了时间延迟的概率分布。我们分离了 Abell 1689的质量模型来

探讨不同类型的质量团对时间延迟分布的影响。结果表明暗物质晕和明亮的星系主

产生长的时间延迟，而短的时间延迟主要由星系规模的质量团产生。 我们发现可

观测到的Ia型超新星的机会要小于观测到核坍塌的超新星的机会，尽管观测到两种

超新星的机会都比较小。 

  第三章主要研究伽玛暴超新星。我们讨论了得到伽玛暴超新星的光变曲线的可能

性，有很强的证据证明这些超新星是与伽玛暴相联系的。总计得到8条光变曲线。

基于这些光变曲线，我们研究了伽玛暴超新星的性质。我们发现了光变曲线的峰值

和减光率有关联。减光率是指从光度峰值开始光变曲线下降的速度。这个光度－减

光率关系比广泛讨论的k-s关系更紧密，这里k和s代表相对于SN 1998bw光变曲线的



亮度和宽度。我们也伸缩了SN 1998bw的光变曲线来测试它是否可作为伽玛暴超新

星的光变曲线模板。我们发现在光度峰值附近伸缩比其他方式效果要好，比如优于

伽玛暴爆发以来的时间，或者s系数。 

  第四章，利用被减光率修正了的伽玛暴的光度峰值，我们测量了宇宙常数ΩM, ΩΛ。

我们用蒙特卡罗方法模拟了8个伽玛暴超新星的光度峰值和减光率，测量了在平坦

宇宙中的最佳宇宙常数。  

  最后，第五章我们总结了本论文的内容，并展望了未来的工作。光度－减光率关

系可以帮助我们约束伽玛暴超新星的前身模型。尽管Ia型和伽玛暴超新星的前身机

制和性质不同，伽玛暴超新星和Ia型超新星的光变曲线有相同性质，因此它可以作

为标准烛光来测量宇宙距离和宇宙常数 ΩM, ΩΛ。考虑到在红移z>1.5时伽玛报超新

星率并不降低，随着更多的伽玛暴超新星被观测到，他们可以用来测量状态方程的

参数w(z)，成为研究暗能量的重要工具。 
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1

INTRODUCTION

The only reason for time
is so that everything

doesn’t happen at once.
Albert Einstein

Abstract -
This chapter presents a briefly theoretical introduction of relevant topics studied in this thesis. The
topics include gravitational lensing, supernovae and cosmology. For the first topic: gravitational
lensing, we first present a brief theory of gravitational lensing, then we talk about the mass distri-
bution of lensing clusters, and the section also presents a discussion of time delay. In the second
section, supernovae are introduced. A classification of SNe, progenitor models of different types
of SNe and a subclass of SNe: GRB-SNe are discussed. The third topic is about cosmology. We
present cosmological parameters and discuss cosmological distance.

1.1 GRAVITATIONAL LENSING

Based on general relativity, a massive object, e.g., a star, a galaxy or a cluster of galaxies,
could contort local space-time around it. This so-called gravitational lensing has been
developed to a powerful tool in astronomy, astrophysics and cosmology studies.

In gravitational lensing regime, an object emitting the distorted light is denoted by
source. A massive object which bend the light is called lens. According to lensing scales,
it is divided into three subclasses. They are micro, week and strong lensing. The micro
lensing happens where light rays is bent by a compact object, e.g., a star of a planet. In
weak and strong lensing, a lens is a galaxy or a cluster of galaxies. In strong lensing, we
can observe giant arcs, arclets and multiple images of lensed objects, while weak lensing
is characterized by magnified or demagnified images and deformed shapes of a source
galaxy. A schematic diagram of strong lensing (Kneib & Natarajan, 2011) is shown in
Figure 1.1. This thesis is dedicated to strong lensing.
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1.1. GRAVITATIONAL LENSING

Figure 1.1: Strong lensing diagram (Kneib & Natarajan, 2011).
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Figure 1.2: Schematic view of of a lensing system.

1.1.1 THEORETICAL INTRODUCTION

In Einstein’s general relativity, space-time is distorted by the presence of mass. The
Friedmann-Lemâitre-Robertson-Walker (FLRW) metric is assumed to describe the uni-
verse

dτ2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

))
, (1.1)

where a(t) is the scale factor and k presents curvature of the universe.
A configuration of lensing system is shown in Figure 1.2. When light rays emitted

by a source on the source plane pass a lens on the lens plane, they are bent due to the
presence of the lens mass. The angular position of the image θ is related to the deflection
angle α̂ and the angular position of the source β. DLS , DOL and DOS are the angular
diameter distances between the observer (O), the lens (L) and the source (S). ξ and η are
the positions of the lens and the source. Here the thin lens approximation is valid and
optical effects due to the thickness of a lens is ignored. The structure of the lens along the

3



1.1. GRAVITATIONAL LENSING

Figure 1.3: Critical lines for Abell 1689 with source at z = 3 (Limousin et al., 2007). The
field is 485 kpc × 485 kpc.
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Figure 1.4: Caustic lines for Abell 1689 at z = 1.83 (Limousin et al., 2007).
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1.1. GRAVITATIONAL LENSING

line of sight is negligible and the deflection is governed by the mass distribution of the
lens on the lens plane. The angular position of the image is determined by the deflection
angle by

θ = β +
DLS

DOS
α̂. (1.2)

Deflection angle α̂ measures how deeply the light is bent by the lens. It depends on the
perturbation of lens mass. According to general relativity, light travels on null geodesics
with dτ2 = 0 in Eq. 1.1. Combined with Fermat’s principle, the deflection angle can be
calculated as (Schneider et al., 1992)

α̂(ξ) =

∫
d2ξ′

4GΣ(ξ′)

c2

ξ − ξ′

|ξ − ξ′|2
, (1.3)

where Σ(ξ′) represents the surface mass density. we define the characteristic length scale
as ξ0 = 4π( θvc )2 DOLDLS/DOS , with θv being the effective velocity dispersion. The cor-
responding length scale on the source plane is η0 = ξ0DOS/DOL. Dimensionless vectors
are x = ξ/ξ0 and y = η/η0. Then the lens equation 1.3 can be written as (Schneider et al.,
1992)

y = x− DOLDLS

ξ0DOS
α̂(ξ). (1.4)

When the image is strongly lensed and multiple images are observed, the surface mass
density Σ must be larger than the critical mass density, which is defined as

Σcrit =
c2

4πG

DOS

DLSDOL
. (1.5)

The effect of gravitational lensing is described by the Jacobian matrix (Narayan & Bartel-
mann, 1996)

A−1 ≡ ∂θ

∂β
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
=M−1, (1.6)

withM the magnification tensor. Here κ = ∇2ϕ/2 = Σ/Σcrit is convergence with ∇2ϕ

being the two-dimensional lensing potential. The shear vector γ is a complex number
with γ = (γ1, γ2). Hence, the magnification is

µ = detM = detA−1 = (1− κ)2

(
1−

(
γ

1− κ

)2
)
. (1.7)

Here the magnification factor µ describes the ratio of the image area to the source area.
The surface brightness of an image is preserved. The critical lines are collection of posi-
tions in the lens plane where it has infinite magnification. The corresponding lines in the
source plane is caustic lines. Figures 1.3 and 1.4 show critical lines and caustic lines for
cluster Abell 1689 (Limousin et al., 2007). When the observer, the lens and the source are
perfectly aligned, the image of the source behaves like a ring. The Einstein radius is

θE =

√
4GM

c2

DLS

DOLDOS
. (1.8)
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CHAPTER 1. INTRODUCTION

1.1.2 MASS DISTRIBUTION

The deflection angle Eq. 1.3 is determined by the surface mass distribution of the lens.
Hence, the mass distribution of a cluster of galaxies is critical in gravitational lensing
study. According to Newton’s theorems, we may calculate the mass distribution of clus-
ters:

Newton’s first theorem If the body is a spherically symmetric shell, no net gravitational
force is exerted by the shell on any object inside, regardless of the object’s location
within the shell.

Newton’s second theorem A spherically symmetric body affects external objects gravi-
tationally as though all of its mass were concentrated at a point at its center.

In general, the two-dimensional lensing potential is (Schneider et al., 1992)

ϕ(x) =
1

π

∫
ln |x− y|Σ(x)

Σcrit
dy, (1.9)

with x and y are dimensionless vectors.

Singular isothermal sphere

The singular isothermal sphere (SIS) profile is the simplest model describing the mass
distribution of an massive object, e.g., a galaxy or a cluster of galaxies. The model takes
the components, e.g., stars as point mass and they behave like ideal gas. The gravita-
tional potential is assumed to be spherical. With thermal equilibrium and hydrostatic
equilibrium, the mass density is

ρ(r) =
σ2
v

2πG

1

r2
, (1.10)

with σ2
v being the velocity dispersion. Hence, the surface mass density is (Narayan &

Bartelmann, 1996)

Σ(ξ) =
σ2
v

2Gξ
, (1.11)

and the Einstein radius from Eq. 1.8 is

θE = 4π
σ2
vDLS

c2DOS
= α̂

DLS

DOS
. (1.12)

The SIS profile has singularity at ρ = 0.

Dual Pseudo Isothermal Elliptical mass distribution

The dual Pseudo Isothermal Elliptical mass distribution (dPIE) (Elı́asdóttir et al., 2007) is
another way describing the mass distribution in gravitational lensing. The 3D spherical
density distribution is

ρ(r) =
ρ0

(1 + r2/a2)(1 + r2/s2)
; s > a, (1.13)

7



1.1. GRAVITATIONAL LENSING

where ρ0 is the central density, a is the core radius and s is the scale radius. In the center,
the density ρ ≈ ρ0/(1+r2/a2). In the region r ∈ (a, s), ρ ∼ r−2 and at r > s, it has ρ ∼ r−4

(Elı́asdóttir et al., 2007). The surface mass density is (Elı́asdóttir et al., 2007)

Σ(R) = Σ0
as

s− a

(
1√

a2 +R2
− 1√

s2 +R2

)
, (1.14)

with Σ0 = πρ0sa/(s+ a). Hence, the mass is (Elı́asdóttir et al., 2007)

M(R) = 2πΣ0
as

s− a

(√
a2 +R2 − a−

√
s2 +R2 + s

)
. (1.15)

The dPIE profile is used in modeling the mass distribution of Abell 2218 (Elı́asdóttir et al.,
2007).

Navarro-Frenk-White profile

The mass distribution of dark matter halos is usually in the Navarro-Frenk-White profile
(NFW) (Navarro et al., 1996). It is a two-power density model. In general, for elliptical
galaxies, the dark matter halos behave like

ρ(r) ∝ ρ0

(r/a)m(1 + r/a)n−m
, (1.16)

with ρ0 and a being the free parameters. When (m,n) = (1, 3), the model is called the
NFW model. The mass of NFW profile is (Binney & Tremaine, 2008)

M(r) = 4πρ0a
3

(
ln
(

1 +
r

a

)
− r

a+ r

)
. (1.17)

1.1.3 TIME DELAY

In strong gravitational lensing, light rays are bent and light paths are different. The time
between the light is emitted by the source and the light reaches the observer is called
arrival time. Light along different paths produces different arrival times. The arrival
time is

τ(x, y) =
ξ2

0

c

DOS

DOLDLS
(1 + z)

(
(x− y)2

2
− ϕ(x)

)
, (1.18)

where z is the lens redshift. The difference between the arrival times of multiple images
is time delay. There are two effects contributing to the time delay. The geometrical time
delay is caused by the bent light path. The potential of the gravitational field contributes
to the potential time delay (Schneider et al., 1992). A geometrical time delay is

c∆tgeom = (1 + z)
DOLDOS

2DLS
(θ − β)2, (1.19)

while a potential time delay is calculated as

c∆tpoten = −(1 + z)ϕ̂(ξ) + const, (1.20)
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Figure 1.5: A map of arrival time on the image plane with Lenstool.
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with ϕ̂(ξ) = DOSξ
2
0 ϕ/DOLDLS . A time delay is a combination of a geometrical time

delay and a potential time delay

∆t = ∆tgeom + ∆tpoten, (1.21)

So time delay can be calculated as (Schneider et al., 1992)

c∆t(x, y) =
DOLDOS

2cDLS

[
(x− ξ)2 + (y − η)2 − 2φ(x− y)

]
, (1.22)

where φ(x−y) is the Fermat potential with φ(x−y) = (x−y)2/2−ϕ(x−y). With Lenstool
Jullo et al. (2007), a map of arrival time is produced in Figure 1.5. The lens is Abell 1689.
The source is located at z = 3.

1.2 SUPERNOVAE

Supernovae (SNe) are stellar explosions that emit energy and materials into nearby inter-
stellar space. SN explosion is energetic that it can be as bright as a whole galaxy. SN is a
primary source of heavy elements in the universe. Figure 1.6 shows a SNe remnant.

1.2.1 BRIEF INTRODUCTION

A classification of SNe is based on their spectra (Smartt, 2009).

Type I SNe There is no emission or absorption of H in their spectra. Type Ia SNe (SNe
Ia) have Si absorption line in the spectra. SNe Ib (SNe Ic) show a presence (absence)
of He in the spectra.

Type II SNe They show strong H lines. Among them, a subclass of Type II SNe with a
plateau phase after peak luminosity in their light curves are II-P SNe, while II-L
SNe exhibit a decay after peak luminosity.

Based on the progenitor mechanism, all SNe Ib, SNe Ic and Type II SNe are core-collapse
SNe. Figure 1.7 shows a diagram of classification mentioned above.

1.2.2 PROGENITOR MODELS

SN Ia comes from the thermonuclear explosion of white dwarf (WD). A WD is a low
luminous but hot stellar remnant. They are very dense, whose mass can be comparable
to the Sun and radius are in earth-size. Because of its high density, in a stable WD core,
the electron degeneracy pressure is balanced to the gravitational force to resist the star
from collapsing. The maximum mass of a stable WD is ∼ 1.39 M�. This is called the
Chandrasekhar limit. If a WD’s mass is above the Chandrasekhar limit, e.g., by accretion
from its companion star or merge of two WDs, the electron degeneracy pressure can no
longer resist to the gravitational force, and the WD will undergo further collapse.

10
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Figure 1.6: The crab supernova remnant, photoed by Hubble Space Telescope (2005). It is
a supernova remnant in the constellation of Taurus.
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Figure 1.7: Classification of SNe.
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Figure 1.8: A schematic onion-like layers of a massive star before core collapse.
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There are some models to explain the SN progenitor scenarios so far. But the progeni-
tor picture of SNe Ia are somehow uncertain. For SNe Ia, there are three major progenitor
models. In the single degenerate (SD) model (Whelan & Iben, 1973), a carbon-oxygen WD
accretes mass from a non-degenerate stellar companion, e.g., a red giant, a main sequent
star, a subgiant and etc, and gains mass up to the Chandrasekhar limit, which results in
a thermonuclear explosion. A double degenerate (DD) model (Webbink, 1984) has two
WDs merging to approach the Chandrasekhar mass limit. The third scenario (Bildsten
et al., 2007; Fink et al., 2007; Guillochon et al., 2010) describes the explosion with deto-
nation. In a double WD system, the detonation ignites the He shell of one WD, then the
shock waves reaches the other WD and another detonation begins.

But any progenitor model has their problems either in theory and/or in observation
(Maoz & Mannucci, 2011). SD model allows only a narrow range of mass accretion rate
to guarantee stable hydrogen burning. Too low or too high rate will lead to a nova event
or a red-giant-like expansion. An explanation to solving this problem is that the accretion
is regulated by strong winds from the accreting WD (Hachisu et al., 1999). But this wind-
regulation picture is conflict with the observed results (Badenes et al., 2007; Leonard,
2007). Whether or not the wind-regulation is effective is still under debate (Kobayashi &
Nomoto, 2009). The DD model has been questioned as well. The merging of two massive
carbon-oxygen degenerate dwarfs will lead to the formation of neutron star and ignite an
explosion of a CC SN instead of SN Ia (Darbha et al., 2010; Guerrero et al., 2004; Nomoto
& Iben, 1985; Shen et al., 2012).

The CC SNe are formed by massive stars heavier than ∼ 8M� (Smartt, 2009). Hydro-
gen is converted to helium, and then helium is burning, which leads to a carbon-oxygen
core. If the star is massive, it may provide enough temperature and pressure to fuse
carbon and oxygen at the end of helium burning. Hence the core of the star becomes
onion-like with heavier elements being accumulated in the center. This burning stage
may circulate up to iron since iron has highest binding energy per nucleon, so by iron
fusion, energy cannot be produced. When there is no further fusion reaction to keep the
high temperature, the gravitational pressure exceeds the electron degeneracy pressure,
and the core collapses inwards rapidly. As the density of the core increases, electrons is
merged into proton to form neutrons. The outer core falls due to the shrink . The col-
lapse happens so quickly to leave the outer layers suspend above the core. When the
collapse ends by the neutron degeneracy, and the outer core rebounds and a shock wave
is produced. As the shock wave expands, the supernova explosion starts. Depending
on the mass of the star, the remnant may be a neutron star (M < 20M�) or a black hole
(20M� < M < 50M�). A more massive star with M > 50M� will collapse to a black hole
without SN explosion.

1.2.3 SNE IA AS STANDARD CANDLES

SNe Ia shine the deep sky when they explode, while the research on SNe Ia shines our
knowledge on the universe and also wins a shining Nobel prize medal.

14
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Figure 1.9: Phillips relation of SNe Ia. ∆m15 represents the decline of the light curves in
magnitude 15 days since it reaches the peak brightness (Phillips, 1993).
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Figure 1.10: Hubble diagram with 42 SNe Ia (Perlmutter et al., 1999).
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Figure 1.11: Artist’s image of a GRB from wikipedia.

In 2011, the Nobel Prize in Physics was awarded to Saul Perlmutter, Brian P. Schmidt
and Adam G. Riess ”for the discovery of the accelerating expansion of the Universe
through observations of distant supernovae”. They used SNe Ia to measure the cos-
mic distance with the help of light curves (LCs) of SNe Ia, whose peak magnitudes are
strongly correlated with LC width. This relation is so-called the Phillips relation (Phillips,
1993), as shown in Figure 1.9. After correcting the peak magnitudes of SNe Ia due to the
Phillips relation, the corrected peak magnitudes are uniform and SNe Ia can be used as
standard candles. Figure 1.10 shows the Hubble diagram with SNe Ia (Perlmutter et al.,
1999). With the Hubble diagram, we can constrain the the matter density parameters Ωm

and ΩΛ.

1.2.4 GRB-SNE

Discovered by Vela series of military Satellites (Klebesadel et al., 1973), Gamma-ray bursts
(GRBs) are energetic explosions with narrow beams of flashes of gamma rays. They are
the most luminous phenomena in the universe. Energies of gamma-ray photons may be
up to some GeV. The duration of the bursts less than 2 seconds is classified as short GRBs,
and those last longer than 2 seconds are called long GRBs. GRB is thought to be triggered

17
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Figure 1.12: A diagram of light curve of GRB-SN (Hjorth, 2013). A bright afterglow or
host galaxy may contaminate the luminosity of a GRB-SN.
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by a collapse of a massive star forming a neutron star or a black hole. They are associated
with supernova explosions. Figure 1.11 shows an image of a GRB.

Supernovae associated with GRBs are Type Ibc SNe (SNe Ibc), whose spectra lack hy-
drogen line but show weak silicon line. A collapsar model provides a theoretical explana-
tion to the connection between GRBs and SNe (MacFadyen & Woosley, 1999; MacFadyen
et al., 2001). But the there are some questions still under debate, e.g., the progenitor sce-
nario of GRBs, the distinct properties of long and short GRBs, etc. A crucial key to solve
these and other relevant questions are the light curves of GRB-SNe. But their light curves
are not easy to get. A schematic diagram is shown in Figure 1.12 (Hjorth, 2013). An after-
glows of GRB decays rapidly, but considering its high energy, if it is still bright enough
after a few days since the burst, the associated SN may not be able to be observed. SNe
Ibc are form in star-forming and dust-rich galaxies. Host galaxy may conceal a GRB-SN
to be discovered. In addition, dust in the Milky Way and the host region may also prevent
a SN light to be seen.

1.3 COSMOLOGY

The standard candles of SNe Ia and GRB-SNe can be used measure the cosmological
distance (Li & Hjorth, 2014; Li et al., 2014; Perlmutter et al., 1997, 1999; Riess et al., 1998),
hence they can be used to constrain the matter density parameters Ωm and ΩΛ. In this
Section, we briefly introduce some basic concepts of cosmology.

1.3.1 COSMOLOGICAL PARAMETERS

The expansion of the universe can be expressed as

l(t) ∝ a(t), (1.23)

where l(t) represents the distance and a(t) is the scale factor. When Hubble parameter H
is involved, the scale factor can be written as

H =
ȧ

a
. (1.24)

Derived from Einstein’s field equation, the Friedmann equation, describing the expan-
sion of a homogeneous and isotropic universe, is written as (Peebles & Ratra, 2003)(

ä

a

)2

= H2
0

(
ΩM0(1 + z)3 + ΩR0(1 + z)4 + ΩΛ0 + ΩK0(1 + z)2

)
, (1.25)

whereH0 is Hubble’s constant, and the dimensionless density parameters Ωi0 = 8πGρi,0/(3H
2
0 ),

with ρi,0 being the mass density. ρM0 denotes the present mass density of nonrelativistic
matter, ρR0 represents the present mass in the thermal cosmic microwave background
(CMB), ρΛ0 is a measure of present dark energy, and ρK0 describes the curvature of the
universe. The sum of the density parameters satisfies

ΩM0 + ΩR0 + ΩΛ0 + ΩK0 = 1. (1.26)

19
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Figure 1.13: Combined results of constraint on ΩM and ΩΛ in ΛCDM model (Suzuki et al.,
2012).
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In a flat universe, ΩM + ΩΛ = 1. Derived from general relativity, a standard as well as
simple model, so-called ΛCDM model is developed, in which a cosmological constant
(Λ) is associated with dark energy and cold dark matter. Figure 1.13 shows a recent
result of constraint on density parameters ΩM and ΩΛ (Suzuki et al., 2012) in ΛCDM
model. It is a combined result with SNe Ia (Suzuki et al., 2012), CMB (Dunkley et al.,
2009; Komatsu et al., 2011) and baryon acoustic oscillations (BAO; Eisenstein et al., 2005;
Percival et al., 2010). In 2013, Planck measurement gives the matter density parameter
ΩM = 0.315± 0.017 (Planck Collaboration et al., 2013) with CMB temperature survey.

1.3.2 COSMOLOGICAL DISTANCE

The universe is expanding at an increasing rate. The presence of mass in the universe
changes the curvature of the universe. The cosmological distance measurement is based
on general relativity.

Light travels at the speed of c, and the Hubble distance DH is defined as (Hogg, 1999)

DH =
c

H0
. (1.27)

The line-of-sight comoving distance DC is the distance between two points measured
along a path defined at the present cosmological time, which is also the distance that we
would measure locally between the events if two points were moving with the Hubble
flow,

DC = DH

∫ z

0

dz′

E(z′)
, (1.28)

where E(z) is a function of cosmological parameters with (Hogg, 1999)

E(z) =
√

Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ. (1.29)

The transverse comoving distance is defined as

DM =


DH

1√
Ωk

sinh
[√

ΩkDC/DH

]
for Ωk > 0

DC for Ωk = 0

DH
1√
|Ωk|

sin
[√
|Ωk|DC/DH

]
for Ωk < 0.

(1.30)

The angular diameter distance, which is commonly used in gravitational lensing, is cal-
culated as

DA =
DM

1 + z
, (1.31)

and the luminosity distance is
DL = (1 + z)DM . (1.32)

With the luminosity distance, the distance modulus in the conversion between the appar-
ent magnitude and the absolute magnitude is

DM = 5 log

(
DL

10 pc

)
. (1.33)
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Figure 1.14: The distance modulus at different cosmological models with z up to 10. The
solid lines show DM in flat universe with ΩM + ΩΛ = 1, while dash lines are in curved
space. Here H0 = 67.3 km s−1 Mpc−1 (Planck Collaboration et al., 2013).

Figure 1.14 shows the distance modulus in different cosmological models with different
ΩM and ΩΛ. Different estimates of the matter density parameters have the distance mod-
ulus curves. This is why we want to constrain the parameters ΩM and ΩΛ, and trace the
evolution history of the universe.
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2

GRAVITATIONAL LENSING AND

SUPERNOVAE

I was like a boy
playing on the sea-shore,

and diverting myself now and then
finding a smoother pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.
Isaac Newton

Abstract -
Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector
and determine cosmological parameters. We here present an analysis of the time-delay distribution
of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass
models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability

distribution functions are well represented by P (log ∆t) = 5.3×10−4∆tβ̃/M2β̃
250, with β̃ = 0.77,

whereM250 is the projected cluster mass inside 250 kpc (in 1014M�), and β̃ is the power-law slope
of the distribution. The resultant probability distribution function enables us to estimate the time-
delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M�,
the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an
example, its dark halo and brightest galaxies, with central velocity dispersions σ > 500 km s−1,
mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating
smaller time delays. We estimate the probability of observing multiple images of a supernova in
the known images of Abell 1689. A two-component model of estimating the supernova rate is
applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-
collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the

Published as: Xue Li, Jens Hjorth, Johan Richard − The rates and time-delay distribution of multiply imaged
supernovae behind lensing clusters, Journal of Cosmology and Astroparticle Physics, Issue 11, article id. 015
(2012).

23



2.1. INTRODUCTION

magnitude threshold is lowered to mAB ∼ 27.0, the rate of core-collapse supernovae suitable for
time delay observation is 0.044± 0.015 per year.

2.1 INTRODUCTION

An object in our universe, such as a galaxy or a galaxy cluster, could bend light rays pass-
ing it and act as a lens to magnify or demagnify sources behind it (Zwicky, 1937). This
effect is known as gravitational lensing and has been developed into a powerful cosmo-
logical tool in recent decades (Cooke & Kantowski, 1975) (Blandford & Narayan, 1992)
(Efstathiou et al., 1990) (Kneib & Natarajan, 2011). With the help of gravitational lensing,
we can observe distant galaxies behind galaxy clusters which would otherwise be too
faint to be observed, and analyze their properties. We can also measure the cosmological
parameters that describe the geometry and the expansion rate of the universe (Refsdal,
1964) (Jullo et al., 2010). In addition, we can analyze the total mass distribution in lens-
ing galaxy clusters (Kochanek & Schechter, 2004), regardless of the differences between
luminous and dark matter (Massey et al., 2010).

In strong gravitational lensing systems, multiple images are produced. Light travels
along the stationary paths between two points in space time. A massive object, like a
galaxy or cluster of galaxies located along the light path, in general affects and perturbs
the light trajectory (Schneider et al., 1992). When lensed by a galaxy or a cluster of galax-
ies, light emitted by a source may travel along different light paths and be observed as
different multiple images. Light from these images is received at different times. Thus,
multiple images have different arrival times to the observer. The difference of arrival
times between multiple images of the same source is called the time delay.

So far, time delays have been studied and applied in many ways: to constrain the
Hubble parameter H0 (Saha et al., 2006) (Paraficz & Hjorth, 2010) (Suyu et al., 2012); to
study the galaxy mass profile with Monte Carlo simulations (Rusin, 2000); to measure the
cosmological parameter w (Paraficz & Hjorth, 2009) (Coe & Moustakas, 2009) (Suyu et al.,
2010) (Linder, 2011) (Suyu et al., 2012); to improve the mass models of galaxies with the
time delays of quasars (Goicoechea & Shalyapin, 2010).

Compared to quasars, light curves of type Ia supernovae (SNe Ia) evolve regularly
with time, and have been extensively studied (Hamuy et al., 1996) (Hillebrandt & Niemeyer,
2000). Hence, they are potentially very useful as standard sources for constraining time
delays in gravitational lens systems. In principle, they can also be used to constrain the
Hubble constant through the measurement of the time delays (Oguri & Kawano, 2003).
SNe Ia play a key role as standard candles in distance measurements on cosmological
scales. Supernovae provide direct evidence that the low-redshift universe is accelerating
(Riess et al., 1998) (Perlmutter et al., 1999) (Nordin et al., 2011). They act as the primary
sources of heavy elements and potentially dust in the universe (Gall et al., 2011). How-
ever, there is still debate on the progenitor models of SNe Ia (Hillebrandt & Niemeyer,
2000) (Maoz & Mannucci, 2011). There are two major progenitor scenarios to explain the
mechanism of Type Ia progenitor. In the single degenerate model (Whelan & Iben, 1973),
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a carbon-oxygen white dwarf accretes mass from a companion star, a subgiant, a helium
star or a red giant, and reaches the Chandrasekhar mass limit, resulting in a thermonu-
clear explosion (Hoyle & Fowler, 1960) (Branch et al., 1995). In the double degenerate
scenario (Webbink, 1984), two white dwarfs merge, approach the Chandrasekhar mass
limit, and ignite. Recently, a third model gives another explanation of the possible SN
progenitor scenarios. Instead of accreting the mass to the Chandrasekhar mass limit, the
detonation ignites to the accreted He shell of one white dwarf, then the detonation shock
wave comes to the core or near the center, and a second detonation happens (Fink et al.,
2007) (Bildsten et al., 2007) (Guillochon et al., 2010).

The rate of supernovae (SNR) reflect their formation mechanism. For example, core-
collapse SNe (Type II and Ibc supernovae) arising from massive stars help us trace the
star formation and may be used to constrain the star formation rate (SFR) (Anderson
et al., 2011). A well established model of estimating the SNR for Ia SNe (SNRIa) is a “two-
component” model (Scannapieco & Bildsten, 2005) (Mannucci et al., 2005) (Sullivan et al.,
2006), with one component dependent on the recent star formation in the host galaxy
and the other component dependent on the host stellar mass. The SN type Ia rate is
a combination of these two components. The SNRIa at intermediate redshift has been
constrained using the SDSS-II dataset to z 6 0.12 (Dilday et al., 2008), and extended
analysis to z < 0.3 (Dilday et al., 2010). At high redshift, the SN Ia rate is also tested
and constrained, using the SNLS dataset to z ≈ 0.5 (Neill et al., 2006) and 0.1 ≤ z ≤ 1.1

(Perrett et al., 2012), the HST/GOODS survey up to z < 1.8 (Dahlen et al., 2004) (Dahlen
et al., 2008), and the Subaru Deep Field (SDF) to z < 2 (Graur et al., 2011). The core-
collapse supernova rate is also tested and estimated up to z ∼ 0.7, using the GOODS
survey. With these data and the SNR model, we can estimate the lensed SNR in a cluster
lensing system (Riehm et al., 2011).

The aim of this paper is to (1) develop a general function to describe the time-delay
distributions in gravitational lensing systems; (2) estimate the lensed SNR as a function
of time delay and magnitude in Abell 1689 to assess the feasibility of constraining mass
models and cosmological parameters with lensed supernovae observationally.

The outline of the paper is as follows. In section 2.2, we develop a theoretical formal-
ism for describing the time-delay distribution. The analysis and discussion of parameters
for the distribution function are developed in section 2.3. In section 2.4, we model time-
delay distributions of 17 massive lensing clusters. We analyze and fit the parameters
of the distribution function, based on the results from modeling. In section 2.5, using
the “two-component” model, we calculate the probability of observing supernovae in 35
known multiply imaged galaxies behind Abell 1689. Finally, we summarize our investi-
gation and discuss future prospects in section 2.6. Throughout this paper, we assume a
cosmological model with Ωm = 0.3,ΩΛ = 0.7, h = 0.7. Magnitudes are in the AB system.
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2.2. TIME DELAY THEORY

2.2 TIME DELAY THEORY

A light ray is deflected when it passes a cosmic massive object. In a lensing system,
the light path from the source to the observer is changed according to the gravitational
field near the lens. In the case of a multiple image system, lensing generally causes a
difference in the arrival time of a galaxy image pair and hence generates a time delay.
The time delay, ∆t, can be calculated as (Schneider et al., 1992)

c∆t(y) = ξ2
0

DOS

DOLDLS
(1 + zL)[φ(x1, y)− φ(x2, y)], (2.1)

where ξ0 = 4π(σvc )2DOLDLS
DOS

is the characteristic length scale in the lens plane. Here σv
is the value of an effective velocity dispersion, DOS is the angular diameter distance be-
tween the observer and the source, DOL is the angular diameter distance between the
observer and the lens, DLS is the angular diameter distance between the lens and the
source, and zL is the lens redshift. We denote the image position in the lens plane by ξ
and the source position in the source plane by η. Here y = |η|/η0, is the source position
in the source plane, with η0 = ξ0DOS

DOL
being the maximal distance to the caustic line. We

define xi(i = 1, 2) as two image positions in the lens plane with x = |ξ|/ξ0. Here x, y
are dimensionless vectors. The Fermat potential is defined as φ(xi, y)(i = 1, 2). For a
two-image system, the larger the difference of their Fermat potentials, the larger time de-
lay they will generate. The Fermat potential φ(x, y) can also be described by the lensing
potential ϕ(x) (Narayan & Bartelmann, 1996),

φ(x, y) =
(x− y)2

2
− ϕ(x). (2.2)

We assume spherically symmetric lenses in what follows.
Generally, for a lens with density distribution ρ ∝ r−δ, the time delay can be expanded

as (Kochanek & Schechter, 2004) (Witt et al., 2000)

∆t(δ) ≈ (δ − 1)∆tSIS

[
1− (2− δ)2

12

(
∆r

〈r〉

)2

· · ·

]
, (2.3)

where ∆tSIS represents the time delay for the Singular Isothermal Sphere (SIS; δ = 2), and
〈r〉 = (ri + rj)/2. If the term ∆r

〈r〉 is small, the higher order terms can be ignored.
For real clusters, tidal perturbations from objects near the lens or along the line of

sight (Keeton et al., 1997) (Witt & Mao, 1997) may affect the images as well. An external
shear can be added to the lens (Witt et al., 2000), whose potential is

φ(γ) = −1

2
[γ1(ζ2

1 − ζ2
2 ) + 2γ2ζ1ζ2], (2.4)

where γ is the strength of the shear, γ1 = γ cos 2θγ and γ2 = γ sin 2θγ , with θγ being
the angle between the direction of the shear and the major axis of the lens. Here ζ1, ζ2

represent the components of the lens coordinate. Then more than 2 multiple images may

26



CHAPTER 2. GRAVITATIONAL LENSING AND SUPERNOVAE

be produced by each source, and the time delay between images i and j is (Witt et al.,
2000)

c∆t =
DOLDOS

2DLS
(1 + zL){(r2

j − r2
i ) + γ[r2

j cos 2(θj − θγ)− r2
i cos 2(θi − θγ)]}, (2.5)

where rk = (ζ2
k+ζ2

k)1/2 with k = i, j is the distance of the image from the center. The shear
affects the time delay in two-image lenses with ri 6= rj only slightly, while in four-image
lenses with ri ≈ rj , the shear may play a significant role.

For a lens in a general quadrupole with total shear Γ = γint + γext, the time delay can
be estimated as (Kochanek & Schechter, 2004) (Kochanek, 2002)

∆t ' 2∆tSIS(1− 〈κ〉) sin2(∆θij/2)

1− 4fint cos2(∆θij/2)
, (2.6)

where 〈κ〉 is the average surface density in the annulus bounded by the images in units
of the critical surface density and fint = γint/Γ is the fraction of the quadrupole. Here
∆θij represents the angle between the images ∆θij = θ1 − θ2.

To discuss the time-delay distribution in a lensing cluster, we start from a simple
situation, in which the mass distribution of a lensing cluster is described by a SIS profile
and no more than two multiple images are generated from each source. With the density
ρ(r) = σ2

v
4πGr2 , the time delay is (Oguri et al., 2002)

c∆tSIS = 32π2
(σv
c

)4 DOLDLS

DOS
(1 + zL)y, (2.7)

from which it follows that ∆t ∝ y, i.e., the time delay is proportional to the location of
the source. If the source is located within the strong lensing area enclosed by the caustic
line, two images will be created. In this case, the normalized probability that the source
is located between η and η + dη is (Samsing, 2010)

p(η, η + dη) =

∫ η+dη

η
2
η

η2
0

dη; η 6 η0. (2.8)

Hence, the normalized time delay probability distribution function can be simplified as

f(∆t) = 2
∆t

∆t2peak
; ∆t 6 ∆tpeak. (2.9)

Here f(x) denotes a probability distribution function throughout this paper and ∆tpeak is
the time delay which has the largest probability. With f(∆t)d(∆t) = P (log ∆t)d(log ∆t),
and d(∆t) = ln 10 · 10log ∆td(log ∆t), it follows that P (log ∆t) = ln 10 · 10log ∆tf(∆t), i.e.,
the probability distribution function of the logarithmic time delay for the SIS profile is

P (log ∆t) =
2 ln 10

∆t2peak
102 log ∆t; log ∆t 6 log ∆tpeak. (2.10)
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inner δ intermediate δ outer δ β

SIS −2 −2 −2 2.00

NFW −1 −2 −3 1.20

dPIE 0 −2 −4 0.83

Table 2.1: The slopes of the density profiles describing the mass distribution of a galaxy
cluster and the slopes of the best-fitting functions to the time-delay distribution. More
details of the best-fitting function and slope β are described in subsection 2.3.1.

The time-delay distribution is sensitive to the slope of the density profile (Keeton &
Madau, 2001) (Wyithe et al., 2001). Steeper inner slopes tend to produce larger time de-
lays (Oguri et al., 2002). There are several theoretical profiles established to describe the
mass distribution of a cluster: the SIS profile, the dPIE profile (dual pseudo isothermal
elliptical profile) (Elı́asdóttir et al., 2007), and the NFW profile (Navarro-Frenk-White pro-
file) (Navarro et al., 1996), etc. For a density distribution described as ρ ∝ r−δ, the density
slopes δ for these three profiles are listed in table 2.1. The slope of the density profile may
affect the distribution of the time delay in this way: compared to the SIS profile, the NFW
profile has shallower inner density slope, but steeper outer density slope, which means
that on small time delay scales, the distribution of the time delay will be stretched out
to a higher probability, but on large time-delay scales, it will be lower than the distribu-
tion of a SIS profile. The dPIE profile has even shallower inner density slope but steeper
outer density slope than the NFW profile, so the time-delay distribution of dPIE profile
has the shallowest slope among the three profiles. Equations (2.9) (2.10) show that the
time-delay probability distribution function is a power law for the SIS profile. Motivated
by the discussion above, we make the simple ansatz that the time-delay probability dis-
tribution function can be approximated as: f(∆t) ∝ ∆tβ−1 and P (log ∆t) ∝ 10β log ∆t, or
P (log ∆t) ∝ ∆tβ . More details on the comparison of the ansatz and simulation results
are presented in section 2.3.1.

This ansatz is based on the assumption of the time-delay distribution generated by a
two-multiple-image system. For clusters with complicated structures, as shown in equa-
tions (2.3), (2.5), (2.6), e.g., clusters whose mass distributions are described by clumps of
potentials, the situation is more complicated because more images are produced so more
time delays are generated. Fortunately, the simulations described in section 2.3.2 and fig-
ure 2.2 show that the distribution of time delays generated by multiple images still obey
a power-law distribution.

After normalization, the probability distribution functions can be written as:

f(∆t) =
β

∆tβpeak

∆tβ−1; ∆t 6 ∆tpeak, (2.11)

P (log ∆t) =
β ln 10

∆tβpeak

∆tβ; ∆t 6 ∆tpeak, (2.12)
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logP (log ∆t) = β log(∆t) + log(β ln 10)− β log ∆tpeak; ∆t 6 ∆tpeak. (2.13)

We can also write the cumulative probability distribution as

f(< ∆t) =

∫ ∆t

0
f(x)dx =


∆tβ

∆tβpeak
∆t 6 ∆tpeak,

1 ∆t > ∆tpeak.
(2.14)

If we set β = 2, the probability distribution functions (2.11) and (2.12) reduce to the
expressions for the SIS case, i.e., functions (2.9) and (2.10).

According to the virial theorem(Binney & Tremaine, 2008), for a fixed radius, the en-
closed mass is proportional to the velocity dispersion, M ∝ σ2

v . From equation (2.7), for
the SIS profile, ∆tpeak, SIS ∝ σ4

v ∝ M2. More generally, for a general profile with density
distribution described as ρ ∝ r−δ, the expression for the time delay can be well approxi-
mated as ∆t ∝ ∆tSIS(δ−1) (2.3), i.e., ∆t ∝ (δ−1)M2. Hence, we can write the probability
distribution function (2.13) as

logP (log ∆t) = β log(∆t) + log(βC1 ln 10)− 2β logM250 + C2, (2.15)

where C1, C2 are constants to be determined. Here M250 is defined as the projected mass
within R < 250 kpc, in units of 1014 M�. In this equation, β and M250 are parameters. If
the value of β is fixed, on the right hand of the equation (2.15), the second and the fourth
terms (i.e., log(βC1 ln 10) andC2) will be reduced to one constant: C

′
2 = C2+log(βC1

fix ln 10).
In this case, there will be only one constant C

′
2 to be determined. So the logarithmic

probability distribution function can be reduced to

logP (log ∆t) = β log(∆t)− 2β logM250 + C
′
2. (2.16)

We will discuss β and C
′
2 in section 2.3.

2.3 MODELING CLUSTERS OF GALAXIES

In this section, we discuss how β depends on different mass profiles, and the effect of the
mass on the time-delay distribution. Considering the time required for a realistic obser-
vation, small time delays, i.e., time delays no longer than 1000 days, are more suitable
for an actual time-delay measurement in a reasonable amount of time. In this paper, we
therefore focus on time delays less than 1000 days. We treat all time delays as indepen-
dent from each other and the time delays are taken from all images pairs.

To get the time-delay distribution, we create an input catalog of sources. Time delays
are created when there are multiple images, so we need to make sure that the input source
plane covers the area enclosed by the caustic line(s) and includes all potential multiply
lensed sources. On the other hand, the input source plane should be sufficiently well
sampled so as to be sensitive to the mass distribution and potential differences in the
lens. This is to make sure that small time delays are also produced. In this work, we
choose an input source plane covering an area of 60 × 60 arcsec with 200 × 200 pixels in
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Figure 2.1: The logarithmic probability distribution of the time delays for three density
profiles. They are the SIS profile (black), the dPIE density profile (red) and the NFW
density profile (blue). The background sources are at z = 3. The open circles and their
poisson error bars are obtained from a numerical representation of the potentials. The
best-fitting functions for each cluster are also plotted. The slopes of the best-fitting func-
tions for the SIS profile, the NFW profile and the dPIE profile are βSIS = 2.0, βNFW = 1.11,
βdPIE = 0.78.

30



CHAPTER 2. GRAVITATIONAL LENSING AND SUPERNOVAE

the source plane at z = 3. With the help of Lenstool (Jullo et al., 2007), we can obtain a list
of all images of every source in the source plane. Then we compute the differences in the
arrival times between multiple images from each source. For example, for a source with
3 multiple images: image1, image2, image3, we compute the differences of arrival times
between each two of these three images. Then we get 3 time delays in total.

2.3.1 THE SLOPE OF THE TIME-DELAY DISTRIBUTION

The time-delay distributions for the SIS, the NFW and the dPIE profiles are simulated
and computed. In simulating the time-delay distributions, we choose parameters similar
to those of mass models of real clusters. We adjust the parameters of the profiles to make
their distributions overlap. The results are shown in figure 2.1. In the NFW mass model,
the velocity dispersion is 1810 km/s, the concentration is 3.579 and the scale radius is
618 kpc. In the dPIE mass model, the velocity dispersion is 1500 km/s, the core radius is
72 kpc, and the cut radius is 2000 kpc. For the mass model described by the SIS profile,
we set the velocity dispersion to 400 km/s. A change in the velocity dispersion will
shift the distribution horizontally but keep the slope unchanged. So for computational
convenience, we keep the velocity dispersion and shift the distribution horizontally to
make the results for three profiles overlap. All three profiles are circular. With time delays
less than 1000 days, the slopes of the logarithmic probability distribution functions for the
SIS profile, the NFW profile and the dPIE profile, are βSIS = 2.0 as expected, βNFW = 1.11,
βdPIE = 0.78, respectively (see also table 2.1). The difference in slopes of the distributions
arises from the difference in the density slopes of the mass profiles, as discussed in section
2.2. This shows that the slope of the time-delay distribution is strongly affected by the
mass distribution, especially the density slope of the cluster.

2.3.2 AN EXAMPLE: ABELL 1689

With the help of deep Hubble Space Telescope (HST) imaging, Abell 1689 (z = 0.183)
displays a large number of multiple image systems at the center of the cluster. Using
information from these systems, the mass model of Abell 1689 has been extensively stud-
ied. We base our work on the mass model consisting of 35 plausible lensed sources and
116 multiple images (Limousin et al., 2007) (Richard, 2011) (Jullo et al., 2010). Among
them, 25 sources have confirmed spectroscopic redshifts, the other 10 systems have lens-
ing modeling redshifts or/and photometric redshifts.

To check how the time-delay distribution depends on the mass distribution, we split
the mass model of Abell 1689 into two parts. The first part (massive components) con-
sists of a dark halo and the three brightest galaxies with central velocity dispersions
σ > 500 km s−1. The second part includes all other substructures (subcomponent), that
is, all other gravitational potentials with velocity dispersions σ smaller than 500 km s−1.
We compute the time-delay distribution in two different ways: First, we produce all time
delays for Abell 1689 with the full mass model. Second, we compute time delays of Abell

31



2.3. MODELING CLUSTERS OF GALAXIES

0 1 2 3 4 5
log t (day)

-4

-3

-2

-1

0

lo
g 

P(
lo

g
t)

Simulation
Model2
Dark Halo and Bright Galaxies
Longest
35 Sources
 = 0.77

Figure 2.2: The time-delay distributions of Abell 1689 with modeled background sources
at z = 3. The time-delay distribution produced by the cluster with the full mass model
is in black. The blue curve represents the time-delay distribution produced by the dark
halo and a few bright galaxies (massive components), which fails to reproduce small
time delays. The distribution of the selected longest time delays from each source is in
purple. The red curve represents the logarithmic probability distribution function with
β = 0.77. The histogram in green represents the distribution of the time delays of 35
known multiply imaged sources. We are mainly interested in small time delays, i.e.,
those located to the left of the dotted orange line at 1000 days (log ∆t = 3.0). The dashed
line in olive represents ∆tpeak.
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1689 with only the mass model of the first part (massive components). The second part
(subcomponent) itself produces only two multiple images, i.e., only one time delay. This
is because most substructures do not gain enough mass to surpass the critical surface
mass density, which is required for the structure to produce multiple images.

The time-delay distribution for Abell 1689 is shown in figure 2.2. The histogram in
green represents the distribution of the time delays of the 35 known sources. It is con-
sistent with the simulation of the grid of hypothetical sources. A logarithmic probability
distribution function (2.13) with slope β = 0.77 in red is also plotted. The blue curve
represents the time delay distribution generated by the first part (massive components).
From the figure, it is evident that the first part (massive components) succeeds in repro-
ducing most relatively ‘large’ time delays, e.g., time delays larger than around 30 days.
We conclude that small time delays are predominantly generated by substructures in the
mass model.

The typical offset between the observed and modeled images is about ∼ 1′′ (Kneib
& Natarajan, 2011). Therefore, the individual time delays are affected. To test how the
position offset affects the time-delay distribution, we plot the time delay distributions
generated by two different mass models for Abell 1689. The result is shown in figure
2.2. The black curve represents the time-delay distribution applied in this paper, while
the dotted curve is the result when another mass model (Richard, 2010) is used. Though
different models may produce different time delays, the slope of the distribution of the
time delays is not strongly affected.

The time-delay distribution of a real cluster may be more complicated than the ones
discussed in section 2.2. The structure of the lensing cluster may consist of more clumps
of potentials with more complicated mass distribution, thus each source may produce
more than 2 multiple images. To check how these extra multiple images affect the time-
delay distribution and whether the distributions for real clusters can also be fitted with
the power-law functions, we also plot the distribution of the longest time delays gener-
ated by each source in figure 2.2. The figure shows firstly that compared to the ‘longest’
time delays, the total time-delay distribution can be fitted to a power-law function. Sec-
ondly, for small time delays, though none of them belong to the ‘longest’ time delays
and there is no direct connection between the ansatz motivated by two image systems
and those non-longest time delays, the distribution of the small time delays may also be
fitted with a power-law function, which is implied by the simulation result of the total
time delays. Finally, even though more multiple images are generated and more time
delays are produced, the time-delay distribution still can be fitted well with a power-law
function. Therefore, we proceed to apply the ansatz of the power-law functions (2.11)
(2.12) deduced from two-image system to the real clusters with more multiple images.
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Cluster z RA (J2000.0) Dec (J2000.0) M250 β

[deg] [deg] (1014M�)
Abell 2204 0.152 248.195540 5.575825 2.29± 0.50 0.79± 0.03

Abell 868 0.154 146.359960 −8.651994 1.97± 1.11 0.57± 0.03

RXJ 1720 0.164 260.041860 26.625627 1.18± 0.59 0.64± 0.04

Abell 2218 0.171 248.954604 66.212242 3.00± 0.24 0.89± 0.04

Abell 1689 0.183 197.872954 −1.341006 4.53± 0.13 0.79± 0.03

Abell 383 0.188 42.014079 −3.529040 1.87± 0.26 0.85± 0.09

Abell 773 0.217 139.472660 51.727024 3.01± 0.58 0.86± 0.04

RXJ 2129 0.235 322.416510 0.089227 1.37± 0.37 0.74± 0.03

Abell 1835 0.253 210.258650 2.878470 2.83± 0.41 0.89± 0.05

Abell 1703 0.280 198.771971 51.817494 2.98± 0.09 0.77± 0.08

MACS 2135 0.325 323.800390 −1.049624 2.64± 0.04 0.83± 0.02

MACS 1319 0.328 200.034880 70.077501 2.28± 0.26 0.41± 0.06

MACS 0712 0.328 108.085460 59.538994 1.29± 0.27 0.63± 0.05

MACS 0947 0.345 146.803230 76.387101 2.96± 0.94 0.59± 0.09

SMACS 2248 0.348 342.183260 −44.530966 2.87± 0.06 0.80± 0.06

MACS 1133 0.389 173.304880 50.144436 1.52± 0.23 0.91± 0.05

MACS 1347 0.451 206.877570 −11.752643 3.86± 0.02 0.77± 0.05

Table 2.2: Properties of 17 lensing clusters. The redshifts of the selected clusters range
from 0.15 to 0.30 for models from LoCuSS and from 0.30 to 0.45 for MACS clusters. Here
M250 denotes the projected lensing mass inside 250 kpc (Richard et al., 2010) (Richard,
2010). The slopes of β in function (2.16) are also listed.
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2.4 TIME DELAYS IN 17 CLUSTERS

2.4.1 CLUSTER SELECTION AND MODELING

To further analyze the logarithmic probability distribution function of time delays and
constrain the parameter and the constant in equation (2.13), we compute time-delay dis-
tributions by modeling 17 lensing clusters. The cluster selection procedure is based on
two criteria: First, each lensing cluster system should have at least one image with a
spectroscopically-confirmed redshift. Furthermore, the range of redshifts of the selected
clusters should be as large as possible. The redshifts of the selected clusters range from
0.15 to 0.30 for models from LoCuSS (Richard et al., 2010) and from 0.30 to 0.45 for MACS
models (Richard, 2010). The selected clusters are listed in table 2.2.

The modeling procedure is the same as described in section 2.3. To make a reason-
able comparison, the input source file for each cluster should have the same number of
sources. Moreover, the whole source area should have the same size and be sufficiently
sampled to cover the multiple image areas described by the caustic lines.

2.4.2 ESTIMATING β

As for Abell 1689 (section 2.3.2), we fit power-law distribution functions to time-delay
distributions generated from the 17 cluster models. The functions are fitted to the data
with time delays less than 1000 days. The cluster masses (Richard, 2011) (Richard et al.,
2010) and the fitting values of β are shown in table 2.2. The distribution of the parameter
β is shown in figure 2.3. The mean value is β̄ = 0.75, and the median value is β̇ = 0.79.
With the least squares method, if the clusters are weighted equally to each other, we de-
termine that the best-fitting slope is β̃ = 0.77 for the 17 clusters, with standard deviations
in logP (∆t) in the range [0.11, 0.30]. As a consequence, to a good approximation, β can
be fixed in equation (2.16).

2.4.3 PARAMETER ESTIMATION

We fix the value of β̃ = 0.77 in the logarithmic probability distribution function (2.16)
and fit the function to the simulated data, and then find the best-fitting value for constant
C
′
2. With smallest deviations, we find that the best-fitting value is C

′
2 = −3.28. So the

logarithmic probability distribution function (2.16) can be written as

logP (log ∆t) = β̃ log ∆t− 2β̃ logM250 − 3.28, (2.17)

or
P (log ∆t) = 5.27× 10−4∆tβ̃/M2β̃

250. (2.18)

If we introduce β̃ = 0.77, then the logarithmic probability distribution function is simply

logP (log ∆t) = 0.77 log ∆t− 1.54 logM250 − 3.28. (2.19)

For a cluster with M250 = 2 × 1014 M�, the probability of a time delay less than 1000
days is about 0.025. In figure 2.4, we present modeled time-delay distributions for all

35



2.4. TIME DELAYS IN 17 CLUSTERS

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

nu
m

be
r

Figure 2.3: The distribution of parameter β for probability distribution functions of 17
clusters. The modeling sources are at z = 3. The probability distribution functions are
fitted to the modeling data of time delays within 1000 days. The parameter range is
β ∈ [0.41, 0.91].
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Figure 2.4: The logarithmic probability distribution functions for 17 clusters with back-
ground sources at z = 3. The solid curves represent the modeling results of time-delay
distribution of 17 clusters. The red shaded regions represent the logarithmic probability
distribution function from equation (2.19). The uncertainties of the distribution functions
arise from the uncertainties in the mass. For MACS1133, the input source area is 10 × 10
arcsec. For other clusters, the input source areas are 60 × 60 arcsec.
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17 clusters and their logarithmic probability distribution functions (2.19) with sources
at z = 3. Among the 17 systems, MACS1133 has much smaller multiple-image area
enclosed by the caustic lines. To make the small time delays detectable, for MACS1133,
we change the input source area to 10 × 10 arcsec. For other clusters, we keep the input
source as 60 × 60 arcsec.

2.5 THE RATE OF LENSED SUPERNOVAE IN ABELL 1689

With the help of the gravitational lensing amplification, we can potentially observe su-
pernovae which would otherwise be too faint for detection. If a source is located inside
the multiply imaged surface defined by the caustic line, two or more images will be gen-
erated. We may therefore observe multiple images of a supernova in the source galaxies.

For Abell 1689, we know 35 multiply imaged sources and 116 corresponding multiple
images. For each multiple-image pair producing a time delay, we call the image arriving
first to the observer the leading image. For example, for a source with 3 multiple images:
image1, image2, image3, assuming the images have arrival times τimage1 < τimage2 <

τimage3, there are three image pairs: pair12, pair13 and pair23. The corresponding leading
images are image1, image1 and image2, accordingly. So in this three-image system, only
the image with the longest arrival time (in this case, it is image3) cannot be the leading
image. That is, for 1 source having 3 multiple images, the number of the leading images
are 3−1 = 2. Therefore, in a lensing system withm sources and n corresponding multiple
images, the number of the leading images are n−m. According to this definition, in Abell
1689, there are (116− 35 =) 81 leading images in total.

To estimate the probability of observing a leading supernovae image in Abell 1689,
we need to know the supernova rate. The models for describing the supernova rate are
dependent on the types of the supernova. The rate of core-collapse supernovae (SNRcc)
can be obtained from the star-formation rate:

(
SNRcc

yr−1

)
= kcc · 10−3

(
SFR

M� yr−1

)
, (2.20)

where the parameter kcc can be determined by measuring the SNRcc and SFR. Here the
factor of 10−3 is multiplied into the function to simplify the parameter kcc. We also mul-
tiply factors in the following functions (2.21) (2.26) for the same reason. The SNRcc and
SFR can be derived from observational data (Dahlen et al., 2004) (Giavalisco et al., 2004).
By using the core-collapse SN rate density and comparing it against the SFR density, the
parameter is constrained to be kcc = 7.5 ± 2.5 (Scannapieco & Bildsten, 2005). Alterna-
tively, by using a Salpeter IMF and a progenitor mass ranging between 8 and 50 solar
masses, the parameter is estimated to be kcc = 7 (Riehm et al., 2011). In this paper, we
choose kcc = 10 as the upper limit, and kcc = 5 as the lower limit.

For Type Ia supernovae, we use the popular “two-component” model to estimate the
Type Ia supernova rate (SNRIa) (Scannapieco & Bildsten, 2005) (Mannucci et al., 2005)
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(Sullivan et al., 2006):(
SNRIa

yr−1

)
= Â · 10−10

(
M?

M�

)α
+ B̂ · 10−3

(
SFR

M�yr−1

)
, (2.21)

where M? is the host stellar mass, and α denotes the exponent of the stellar mass. The
first component describes the stellar mass contribution. The second component describes
the host galaxy star-formation contribution. For parameters Â and α, we choose Â =

1.05± 0.16 and α = 0.68± 0.01 (Smith et al., 2011). The parameter B̂ can be related to the
SNRcc − SFR relation (2.20),

B̂ = kccΘ, (2.22)

where Θ = SNRIa/SNRcc. The value of Θ has been estimated at redshift up to z ∼ 1.5

(Dahlen et al., 2004). At redshift z < 1, the ratio of SNRIa/SNRcc approximately ranges
between Θ = 1/2 and Θ = 1/4, which is consistent with the result Θ = 0.35 ± 0.08 in
nearby galaxies (Mannucci et al., 2005). At higher redshift z > 1.0, inspired from figure 3
of (Dahlen et al., 2004), we assume

Θ =
1

15
; 1.0 ≤ z. (2.23)

Considering all sources in Abell 1689 have redshifts z > 1.0, in this work, B̂ = 0.5± 0.17.
This value is consistent with B̂ = 0.39 ± 0.07 (based on redshift 0.2 < z < 0.75 (Sullivan
et al., 2006)).

From their magnitude in F775W, we estimate the flux and the luminosity and then
constrain their SFR (Kennicutt, 1998) as(

SFR
M� yr−1

)
= 1.4× 10−28

(
L̄ν

erg s−1 Hz−1

)
. (2.24)

This conversion between UV flux and the SFR is for rest wavelengths, ranging from 1500
Å to 2800 Å, while our data (Limousin et al., 2007) have observed wavelength in the range
6900 Å to 8600 Å. We assume these galaxies have flat spectra, as is typical for star-forming
galaxies, so we can calculate the luminosity from the flux.

Note that multiple images from the same source should have the same inferred lu-
minosity. To infer the luminosity of each image, we need to know their fluxes. With
magnitudes of 116 images (Limousin et al., 2007) (Richard, 2011), we can estimate their
fluxes. Using Lenstool, we can get a magnification map on the image plane then read
the values of the magnification on the map. Considering the gravitational magnification
effect and k correction (Hogg et al., 2002) (van Dokkum & Franx, 1996), the flux can be
calculated as

log(Fν) = [mAB + 2.5 log(|µ|) + 2.5 log(1 + z) + 48.6]/(−2.5), (2.25)

where µ is the gravitational magnification factor, and z is the source redshift. When
images are located close to the caustics, their gravitational magnification factors (µ) may
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Figure 2.5: The cumulative rate (NSN) of the leading images of lensed supernovae in Abell
1689, derived from equations (2.20) and (2.26). The magnitude threshold is 26.5 and a
total number of 70 among the 72 leading images are included because of the magnitude
threshold. The time delays are calculated based on the modeled source positions. The red
curve represents the estimated cumulative SNRIa, while the cumulative SNRcc is plotted
in blue curve. The uncertainties of NSN arise from the upper and lower limits of the
parameters in the functions (2.20) (2.21) (2.26).
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be very large. Thus, the values of fluxes of these images derived from equation 2.25 are
uncertain, and their luminosities estimated from the fluxes may not be reliable. So we
neglect these images and average other luminosity values of images of the same source
to constrain L̄ν . When we know their luminosities, from equation (2.24), we can calculate
their SFR, and then SNRIa (2.26) and SNRcc (2.20).

We also need to calculate the stellar masses and the star-formation rates for each
galaxy. To estimate the stellar-mass contribution to the SNR, we separate the images
into two groups. In group one, with data of photometry from HST/ACS in bands B, V,
I, Z, ground-based near-infrared imaging and Spitzer/IRAC photometry (Richard, 2011),
we derive their stellar mass from SED fitting (Walcher et al., 2011). In group two with in-
sufficient photometric data, we estimate the mass contribution based on the ratio of mass
and star-formation contribution to the SNR derived from group one. The median value
of this ratio, is only 2.9% (4.2%) of the upper (lower) limits of the star-formation part. In
this paper, we choose its median value and assume the mass part contributes 3.5 % of the
star-formation part. Therefore, for group two, the SNRIa may be estimated as(

SNRIa

yr−1

)
= 1.035 · B̂ · 10−3

(
SFR

M�yr−1

)
. (2.26)

We assume Type Ia supernovae have absolute magnitude M = −19.3 mag (Dahlen
et al., 2004), and core-collapse supernovae have M = −17.0 mag (D’Andrea et al., 2010).
With their absolute magnitudes, considering the k correction, we calculate the apparent
magnitudes for each supernova. Their apparent magnitudes of a supernova can be ex-
pressed as:

m = M + 5 log10(DL/10 pc)− 2.5 log10(|µ|)− 2.5 log10(1 + z). (2.27)

Here DL denotes the luminosity distance. This equation is used to constrain the magni-
tude when considering the magnitude thresholds in figures 2.5 and 2.7.

The cumulative rate of observing the leading images of the lensed supernovae in
Abell 1689 is shown in figure 2.5. Among the total 81 leading images, we exclude 14
images from 5 sources with insufficient magnitude data (Limousin et al., 2007), so there
are 72 leading images to be considered. Here NSN(< log ∆t) represents the cumulative
rate of the supernova images observable in one year. We set the detection threshold to
26.5 mag in all bands. In that case, a total number of 70 of the 72 leading images are
included. The resulting probabilities are 0.004 ± 0.002 for the Type Ia supernovae and
0.029 ± 0.001 for the core-collapse supernovae in one year, assuming time delays less
than 1000 days.

We also compare our results to the results from other groups (Riehm et al., 2011).
The result is shown in figure 2.6. The difference in supernovae rates may arise from the
difference in the lens model and/or the SNR prescription. For example, different lens
models may produce different magnification factors for each images, and then produce
different luminosities, and SFR. In addition, the different parameters chosen in the SNR
model (2.21), e.g., kcc, Â, α, B̂ may also affect the constraint on SNR. In this paper, we
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Figure 2.6: The comparison of the supernova rate estimated from functions (2.20) and
(2.26), and the supernova rate from (Riehm et al., 2011), with time delays less than 5 years.
The green and purple curves represent the logarithmic cumulative SNRcc and SNRIa from
(Riehm et al., 2011). Our results are shown in blue for SNRcc and in red for SNRIa. The
uncertainties of logNSN arise from the upper and lower limits of the parameters in the
functions (2.20) (2.21) (2.26). At log ∆t ∼ 1.8, there is a fast increase in the logNSN. Firstly,
in this region, there are more leading images included, so both our results and the results
from (Riehm et al., 2011) raise quickly. Secondly, the leading images have much larger
SNR and uncertainties in their result. This causes an even faster raise and higher upper
limit in their curves.
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choose kcc = 7.5± 2.5, Â = 1.05± 0.16, α = 0.68± 0.01, B̂ = 0.5± 0.17, while in (Riehm
et al., 2011), the parameters are kcc = 7.0, Â = 4.4+1.6

−1.4, α = 1.0, B̂ = 2.6 ± 1.1. Larger
values of Â, α, B̂ chosen will cause a higher SNR estimate. We applied the parameters
of (Riehm et al., 2011) to the functions (2.20) (2.21) (2.26), in an attempt to reproduce
their results. The results fit well to their SNRIa, but a significant discrepancies remain for
SNRcc.

We estimate the probability of observing the leading supernova images as a function
of magnitude threshold in figure 2.7. The figure shows the cumulative rates of observable
leading supernova images as a function of magnitude threshold, with time delays less
than 1000 days. For a magnitude threshold of 27.0, we can observe 0.044 ± 0.015 core-
collapse supernovae per year, with time delays less than 1000 days. Under the conditions
of small time-delay scales and limited magnitude threshold, the probability of observing
a leading supernova image is quite low.

2.6 SUMMARY AND DISCUSSION

We analyzed the time-delay distributions in strong lensing systems. We found that we
can describe the probability distribution of time delays as a power law function (2.16). In
the function, there are two parameters, M250, β, and a constant C

′
2. Modeling with mass

profiles of SIS, NFW and dPIE (in figure 2.1), we found that the parameter β is strongly
affected by the slopes of the mass profiles of the lensing clusters. The shallower the inner
density profile and the steeper the outer density profile are, the more the time-delay
distribution will be stretched out to both the higher and the lower end, causing a lower
β. By modeling Abell 1689, we found that the massive galaxies and halos mainly produce
large time delays, while small time delays are predominated produced by substructures
(galaxies) in the cluster. We also simulated and verified that the time-delay distribution
generated by ‘real’ clusters with more than 2 multiple images from the same sources also
obey the power-law distribution in figure 2.2.

To estimate the parameter and the constant in the logarithmic probability distribution
function, we modeled 17 strong lensing clusters as shown in figure 2.4, using their well
calibrated mass models. With the fixed best-fitting slope β̃ = 0.77, we determined the
best-fitting value of C

′
2 to the function (2.16). The resultant logarithmic probability distri-

bution function (2.19) enables us to estimate the time-delay distribution of a cluster with
known mass.

We also calculated the probability of observing the leading images of the lensed su-
pernovae in Abell 1689. The SNRcc can be derived from the SFR (2.20). The “two compo-
nent” model was applied to constrain the SNRIa. We constrained the parameters in the
function (2.21), and calculated the SNR for Type Ia supernova. We estimated the luminos-
ity from magnitudes of images in Abell 1689 (2.25), derived the SFR from the luminosity
(2.24), and then estimated the probability of observing a leading supernova image in the
system as shown in figure 2.5. Considering a typical magnitude limit of observations
with mAB = 26.5, we can observe 0.004 ± 0.002 Type Ia supernovae and 0.029 ± 0.001
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Figure 2.7: The cumulative rate of observing a leading supernovae image, as a function
of magnitude threshold. The images have time-delay separations less than 1000 days.
The uncertainties of NSN arise from the upper and lower limits of the parameters in the
functions (2.20) (2.21) (2.26). The Type Ia supernovae involved are much brighter than
those of the core-collapse supernovae. This causes a ‘shift’ in the distributions of the rates
of Type Ia supernovae. AtmAB around 24.7 for Type Ia supernovae, the curve flattens out.
This is because all the Type Ia supernovae involved in the calculation have magnitudes
smaller than about 24.7. The HST telescope has the magnitude limit in detecting the
lensed sources. The James Webb Space Telescope may detect fainter lensed sources behind
Abell 1689. As a sequence, Type Ia supernovae fainter than 24.7 will be detected, and
the cumulative rate of observing a leading Type Ia supernovae (NSN) will increase at
mAB > 24.7 as well. This is also the case for the core-collapse supernovae when mAB >

27.0.
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core-collapse supernovae per year. We compared the results in this work to (Riehm et al.,
2011) as shown in figure 2.6, and discussed the possible reasons which may cause the
differences.

We also constrained the cumulative rate of observing a leading supernovae image, as
a function of the magnitude threshold (in figure 2.7). If the magnitude limit is lowered to
27.0, the probability of observing the leading images of the core-collapse supernovae will
be up to 0.044±0.015 per year, with image separations within 1000 days. This probability
is quite low, which means that detecting time delays from lensed supernovae will be
challenging with current facilities.

We thank Johan Samsing for discussions on his work on time-delay distributions. We
thank Danuta Paraficz and Árdı́s Elı́asdóttir for many helpful discussions on gravita-
tional lensing. We also thank Claudio Grillo, Andrew Zirm and Teddy Frederiksen for
their helpful comments on the paper, and Enrico Ramirez-Ruiz for discussion on Type
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3

GRB-SNE

Prediction is very difficult,
especially

if it’s about the future.
Niels Bohr

Abstract -
Context. Little is known about the diversity in the light curves of supernovae (SNe) associated
with gamma-ray bursts (GRBs), including whether the light curve of SN 1998bw can be used as
a representative template or whether there is a luminosity-decline rate relation akin to that of SNe
Ia.
Aims. In this paper, we aim to obtain well-constrained light curves of GRB-SNe without the
assumption of empirical or parametric templates and to investigate whether the peak brightness
correlates with other parameters such as the light curve shape or the time of peak.
Methods. We select eight SNe in the redshift range 0.00857 to 0.606, which are firmly associated
with GRBs. The light curves of these GRB-SNe are well sampled across the peak. Afterglow and
host galaxy contributions are subtracted and dust reddening is corrected for. Low-order polyno-
mial functions are fitted to the light curves. A K-correction is applied to transform the light curves
into the rest frame V band.
Results. GRB-SNe have fairly uniform peak luminosities, similar to SNe Ia. Moreover, GRB-
SNe follow a luminosity-decline rate relation similar to the Phillips relation for SNe Ia. The rela-
tion between the peak magnitude MV,peak and the decline rate ∆mV,15 in V band is MV,peak =

1.57+0.25
−0.28∆mV,15 − 20.58+0.22

−0.20 mag, with χ2 = 5.51 for 6 degrees of freedom and dispersion
σ = 0.18 mag. This luminosity-decline rate relation is tighter than the k − s relation, where k
and s are the factors describing the relative brightness and width to the light curve of SN 1998bw.
The peak luminosities of GRB-SNe are also weakly correlated with the time of peak: the brighter
the GRB-SN, the longer the rise time.

Submitted for publication as: Xue Li, Jens Hjorth − Light Curve Properties of Supernovae Associated With
Gamma-ray Bursts, Astronomy & Astrophysics.
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Conclusions. The light curve of SN 1998bw, stretched around the time of explosion, can be used
as a template for GRB-SNe with reasonable confidence, but stretching around the peak produces
better results. GRB-SNe exhibit a luminosity-decline rate relation, similar to SNe Ia, both in
normalization and slope. The existence of such a relation provides a new constraint on GRB ex-
plosion models. Considering the usefulness of SNe Ia in measuring cosmological distances, it is
possible that GRB-SNe can be used as standardizable candles to measure cosmological distances
and constrain cosmological parameters.

3.1 INTRODUCTION

Gamma-ray bursts (GRBs) were first observed by the Vela Satellites in 1967 (Klebesadel
et al., 1973). Being flashes of narrow beams of intense electromagnetic radiation observed
in distant galaxies (Metzger et al., 1997) with peak energies in the gamma ray energy
range, they are the most luminous phenomena in the universe. The bursts are usually
separated into two classes: long and short (Kouveliotou et al., 1993). The long GRBs have
a duration of more than two seconds, while the short events last less than two seconds.
Since the first discovery of the connection between SN 1998bw and GRB 980425 (Galama
et al., 1998; Iwamoto et al., 1998; Kulkarni et al., 1998; Woosley et al., 1999), many SNe
have been found to be associated with long GRBs (Hjorth & Bloom, 2012; Hjorth et al.,
2003; Stanek et al., 2003; Woosley & Bloom, 2006).

A collapsar model (MacFadyen & Woosley, 1999; MacFadyen et al., 2001) has been
developed to explain the GRB-SN connection. The luminosities of GRB-SNe are in a
small range (Mazzali et al., 2014, 2013). But the properties of GRB-SNe, as well as GRBs
are still under debate, e.g., what are the progenitors for long and short GRBs? Can GRB-
SNe be used as standard candles? To answer these and other relevant questions, light
curves of GRB-SNe are required.

In previous studies, the light curves of SN 1998bw in the U, B, V, R, I bands were
used as a template to model the light curves of GRB-SNe (Bloom et al., 1999; Cano, 2013;
Ferrero et al., 2006). The light curves of SN 1998bw were shifted to the corresponding
redshift and scaled to the peak luminosity and stretched in time (Cano et al., 2011b).
Some work used semi-analytical models (Richardson et al., 2006) to constrain GRB-SN
light curves (Richardson, 2009). But whether the semi-analytical models or the light curve
of SN 1998bw can be used as a stretchable template is still unknown. We do not know
if there is a better way to stretch the template other than stretching with factor s (Cano
et al., 2011b). We do not even know if the luminosities of GRB-SNe can be corrected with
properties of their light curves and used as standard candles to measure cosmological
distance (Stanek et al., 2005). To test this, it is important to obtain light curves instead of
using the SN 1998bw light curve as a template.

It is not easy to obtain light curves of GRB-SNe. Sometimes a GRB is so bright that
even though its afterglow declines rapidly (van Paradijs et al., 1997), it may still exceed
the brightness of its associated SN, in which case no SN will be detectable. This is also the
case when a host galaxy is brighter than a GRB-SNe (Hjorth, 2013). Dust along the line
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of sight will extinguish the SN light. Moreover, any constraint we impose on the light
curves e.g., afterglow modeling or SN light curve modeling, may bias the study.

Our task is to find a way to obtain light curves of GRB-SNe without using light curve
templates. With such light curves, we may test if peak luminosities of GRB-SNe are
correlated with other properties of the light curves, such as is the case for SNe Ia (Phillips,
1993; Phillips et al., 1999; Riess et al., 1998). We may further test if the light curve of SN
1998bw can be used as a general light curve template for GRB-SNe, and, if so, how to
stretch this light curve template.

The outline of this paper is as follows. In section 3.2, we discuss the general steps in
obtaining light curves of GRB-SNe from published data. In section 3.3, we present the
data and obtain light curves for GRB-SNe. Then in section 3.4 we analyze the properties
of the light curves of GRB-SNe. We present a luminosity-decline rate relation and other
properties of the light curves for GRB-SNe. We also test if the light curve of SN 1998bw
can be used as a general light curve template and if there is a better way to stretch it
than the commonly used approach. In section 4.5, we summarize our investigation and
discuss future prospects.

3.2 LIGHT CURVES OF GRB-SNE

Our goal is to obtain light curves of GRB-SNe in the rest frame V band. This is because, as
shown in Figure 3.1, the spectral energy distribution (SED) peaks around the V band. In
addition, the K-correction procedure (section 3.2.5) relies on using a redder band to cor-
rect to the rest-frame flux and we rely on the availability of suitable data. After the light
curves are obtained, we measure peak magnitudes (MV,peak) and decline rates (∆mV,α).
Here ∆mV,α is defined as the decline of the V-band magnitude α days after the SN has
reached its peak brightness.

For error estimation, we use a standard Monte Carlo method to resimulate the data
throughout the paper. The resimulated data are gaussian distributed. The resulting un-
certainties are quoted as 68.3% (±1σ) of the total resimulated results. In general, to
obtain a light curve, we account for the effects of the host galaxy and the afterglow, and
subtract their contributions from the total flux. We correct for extinction and fit low-order
polynomial functions to the resimulated data. A K-correction is used to get the peak mag-
nitude and decline rate in the rest frame V band. To do so, we either apply a multi-band
K-correction, or use the SN 1998bw peak SED and decay properties to correct the values
of the peak magnitude and the decline rate in bands obtained in a wavelength close to
the rest frame V band.

3.2.1 HOST GALAXY

The brightness observed is the total flux of the GRB-SN, the afterglow, and the host
galaxy. In some cases, the host galaxy is sufficiently faint compared to the SN that the
host contribution is negligible. But for other systems, the host galaxy will contaminate
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the SN light curve. In these cases, to obtain the intrinsic SN luminosity, the contribution
of the host galaxy must be subtracted.

The brightness of a host galaxy is constant. It is usually observed when the SN has
faded away. In this paper, we take the host brightness from the literature. The host
brightness is resimulated with the standard Monte Carlo method, and subtracted from
the total brightness.

3.2.2 AFTERGLOW

Table 3.1: The slopes and the break times for GRB 050525A and GRB 090618.

GRB/XRF/SN smooth functiona broken power-law reference
t̄break (day) β̄1 β̄2 β̂b tbreak (day) β2

050525A/2005nc 0.3 1.1 1.8 1.63 0.3 1.74+0.11
−0.15 (1), (2)

090618 0.48± 0.08 0.79± 0.01 1.74± 0.04 1.52+0.06
−0.05 0.5 1.56+0.07

−0.08 (3)

a: An afterglow fitting method with m(t) = −2.5×

(((
t

tbreak

)β̄1
+
(

t
tbreak

)β̄2)−1
)

+B (Cano et al., 2011a).

b: Post-break slope fitted to the smooth function with broken power-law method.

(1) Blustin et al. (2006), (2) Della Valle et al. (2006), (3) Cano et al. (2011a)

Except for two long GRBs, i.e., GRB 060614 (Fynbo et al., 2006; Gal-Yam et al., 2006;
Gehrels et al., 2006) and GRB 060505 (Fynbo et al., 2006; McBreen et al., 2008; Ofek et al.,
2007), for which no associated SNe were detected, there are no other known cases of long
duration GRBs for which the limits on detecting a SN rules out something that is about
as bright as SN 1998bw (Hjorth & Bloom, 2012).

GRBs are very luminous and energetic with isotropic energies up to Eγ,iso ∼ 1054 erg
(Hjorth & Bloom, 2012; Xu et al., 2013). Soon after the burst, the flux of the GRB afterglow
dominates the light, but it declines rapidly. In some cases, after a few days, the brightness
of an afterglow will have decreased significantly and is no more a major contributor to
the photometry. At this time, if the host galaxy is not brighter than the SN, usually we
can observe the light from the SN.

We assume that the afterglow behaves as a power law or a broken power-law decay
f(t) = c1t

β1 for t < tbreak and f(t) = c2t
β2 for t > tbreak, where f(t) is the flux of an

afterglow, β1 and β2 are the decay slopes and tbreak is the time for the change of the
slopes from pre-break β1 to post-break β2. We choose tbreak based on the data or from the
literature. This method is different from the broken power-law fits (Cano et al., 2011a;
Zeh et al., 2004), but the effect is similar. The slopes, the break time for systems GRB
050525A and GRB 090618 (see section 3.3 for more discussion on each system) are listed
in Table 3.1. The values of t̄break, β̄1 and β̄2 in the column of ‘smooth function’ are from the
literature, while in the ‘broken power-law’ column, the value of β2 is used in this paper.
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When the results of the smooth function are fitted with a broken power-law way, β̂ is the
fitted post-break slope. Compare β̂ and β2, we conclude that the broken power-law fits
is consistent with the results of broken power-law fits.

In this paper, we resimulate the afterglow data with the standard Monte Carlo method
and fit the resimulated data with broken power-law functions. We remove the contribu-
tion of the afterglow by subtracting the fitted power-law functions.

3.2.3 EXTINCTION, DISTANCE MODULUS, AND REST FRAME TIME

Dust in galaxies reddens light emitted from GRB-SNe. There are two main contributing
sources: dust in the host galaxy, where the GRB-SN is located, and dust in the Milky Way.
In this paper, we take the values of host extinction, e.g.,A(V )host orE(B−V )host, from the
literature. Schlafly & Finkbeiner (2011) found that the Galactic extinction is overestimated
by DIRBE/IRAS dust map (Schlegel et al., 1998) and calculated the correction coefficients
if the dust map is used. In this paper, with RV = 3.1, we use the DIRBE/IRAS dust map
(Schlegel et al., 1998) to get E(B − V ), then the coefficients (see Table 6 in Schlafly &
Finkbeiner (2011)) are multiplied to correct the value.

The distance modulus is calculated and subtracted to obtain the absolute magnitude.
In this paper, we adopt the cosmological parameters {Ωm,ΩΛ} = {0.315, 0.685} andH0 =

67.3 km s−1 Mpc−1 in a flat universe (Planck Collaboration et al., 2013). The absolute
magnitude is determined as

M = m− 5 log10(DL/10pc)−∆Ktotal −∆A, (3.1)

where DL denotes the luminosity distance, ∆Ktotal represents the total effect of the K-
correction (section 3.2.5 and Eq. 3.7) and ∆A represents the correction for dust extinction.

Peculiar velocities may affect the estimate of the distance modulus, especially for
nearby SNe. Except for SN 1998bw which has peculiar velocity vp = −65± 75 km s−1 (Li
et al., 2014), for the other systems we assume the peculiar velocity is 0 and the uncertainty
is δvp = 300 km s−1 (Davis , 2013). Therefore, the uncertainty in the distance modulus is
(5/2.3) δvp (cz)−1, where c is the speed of light and z is the redshift of a GRB-SN.

It is straightforward to convert the observational time into the rest frame time by
dividing the observational time by (1 + z).

3.2.4 POLYNOMIAL FUNCTION FITTING

After the steps discussed above, polynomial functions are fitted to the data. We fit the
data with the lowest possible order. The most suitable order is to some extent subjective,
but as discussed below, in most cases the polynomial functions are of 3rd or 4th order.
Data on both sides of the peak are needed. This is to ensure that parameters dependent
on sampling the peak, such as the time of peak, the peak brightness, and the decline rate
past peak, are robustly determined.
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3.2.5 K-CORRECTION

The observational data of GRB-SNe may be in U, B, V, R, I and other bands. After sub-
tracting the host and afterglow brightness and fitting polynomial functions to the results,
light curves of SNe are obtained in the observed bands. Then a K-correction is applied to
correct light curves from the observed band(s) into the rest frame V band. If the systems
have been observed in two or more bands and two bands are close to the redshifted V
band for interpolation, then a ‘multi-band K-correction’ (Hogg et al., 2002; van Dokkum
& Franx, 1996) is applied. For the other systems, which have data in only one band or
the other bands are not close to the redshifted V band, we correct their peak magnitude
and decline rate with peak SED and decline rate templates based on SN 1998bw. We use
broad-band data because we do not have useful spectra around (before and after) the
peak of the light curve. We stress that we do not use SN 1998bw as a template for the
light curve or the SED. We use SN 1998bw to obtain a 2nd order correction once a model
independent magnitude close to the V band has been obtained. This effect does not re-
quire that the overall light curves or spectra are perfectly identical to those of SN 1998bw.

Multi-band K-correction

The multi-band K-correction is a method to constrain the light curves in the rest frame V
band by interpolating two light curves in adjacent observed bands (Hogg et al., 2002; van
Dokkum & Franx, 1996). The method is based on the assumption that flux densities are
correlated in contiguous bands. For example, if a GRB-SNe has z ∈ (0.26, 0.60), then we
can interpolate the magnitude in the R and I bands into the redshifted V band. The flux
density in the V band can be estimated as: F (νV (z)) = F (νR)cF (νI)

1−c. The magnitude
in the redshifted V band is then

Vz = kR+ (1− k)I, (3.2)

where Vz , R and I are magnitudes in the AB system. The parameter k is calculated
as a function of central wavelength of the observed bands and the SN redshift (van
Dokkum & Franx, 1996). Here k = (λI − λV (1 + z))/(λI − λR) with λR and λI being
the observational R and I band wavelengths and λV (1 + z) being the redshifted V band
wavelength. In this step, the selected two bands should fulfill the conditions: 1) the two
bands must be adjacent; 2) the parameter should be c ∈ (0, 1) to make sure one is not
extrapolating beyond the observed bands.

SN 1998bw peak SED and decline rate templates

When useful light curve data is available only in one band, or the other observed bands
are too far away from the redshifted V band to do a meaningful multi-band K-correction,
we resort to using the light curves of SN 1998bw as a template to obtain V-band values
from data close to the redshifted V band, typically within a few hundred Å. The observed
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Figure 3.1: SN 1998bw peak SED and decline rate templates. The black points represent
values in the U, B, V, R, I bands (Clocchiatti et al., 2011; Galama et al., 1998; Sollerman
et al., 2002). The dotted lines are the 4th order polynomial functions fitted to the tem-
plates. The upper panel shows the relation between the wavelength λ and the peak
magnitude M temp(λ). The rectangular region in red marks the difference ∆ (Eq. 3.4)
between the two K-correction methods used in this paper. More details are in Section
3.2.5 and Figure 3.2. In the lower panel, the relation between the wavelength λ and the
decline rate ∆mα(λ) is plotted. Here we show values for α = 15. M temp(λ) values have
errors < 0.02 mag while ∆m15 values have errors < 0.026 mag in the V, R and I bands.
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band which is closest to the redshifted V band is chosen to obtain the light curves and
measure the values of the peak magnitude and the decline rate. After that, according to
the wavelength of the chosen band, MV,peak and ∆mV,α are corrected to the rest frame V
band using the light curves of SN 1998bw as a template.

The SN 1998bw peak SED and decline rate templates describe the relations of Mpeak

and ∆mα, as a function of wavelength λ. It is based on the assumption that the behavior
of the light curves in different bands are similar for all GRB-SNe.

Here we use the observational data of SN 1998bw (Clocchiatti et al., 2011; Galama
et al., 1998; Sollerman et al., 2002) to establish the template (see section 3.3.1 for details
on SN 1998bw). The light curves are well defined by the observational data. Therefore,
peak magnitudes Mpeak and the decline rates ∆mα are constrained in the U, B, V, R, I
bands. Then we fit 4th order polynomial functions to the relations between Mpeak, ∆mα

and λ. The resulting templates are shown in Figure 3.1. The relation between Mpeak and
wavelength λ is

M temp(λ) = −4.51− 6.8 · 10−3λ+ 1.05 · 10−6λ2

− 5.75 · 10−11λ3 + 6.09 · 10−16λ4, (3.3)

where λ represents the wavelength in Å. With the templates, the peak magnitude of a
GRB-SN is corrected as MV,peak = Mdata

λ −M temp
λ + M temp

V , where Mdata
λ represents the

peak magnitude at the wavelength λ = λobs/(1 + z), with λobs being the observational
wavelength, while M temp

λ and M temp
V denote the measured values at the wavelength λ

and in the V band respectively, obtained from the SN 1998bw peak SED and decline rate
templates. The decline rate ∆mV,α is corrected in the same way.

Comparing the two K-correction methods

The difference between the two K-correction methods is

∆ = M temp
V,peak −M

multi
V,peak, (3.4)

where M temp
V,peak denotes the peak magnitude estimated via the SN 1998bw peak SED

and decline rate templates, and Mmulti
V,peak is the value obtained from the multi-band K-

correction. We define dobs
wave as the distance from the bluer observed band to the redshifted

V band in units of Å, so drest
wave = dobs

wave/(1 + z), where drest
wave denotes the distance from the

rest frame bluer band to the rest frame V band. Therefore, from Eq. 3.2, the peak magni-
tude estimated from the multi-band K-correction is

Mmulti
V,peak = kMpeak(V rest

wave − drest
wave)

+ (1− k)Mpeak

(
V rest

wave +
k

1− k
drest

wave

)
, (3.5)

where V rest
wave is the wavelength of the rest-frame V band in units of Å. Here Mpeak(V rest

wave−
drest

wave) is the peak magnitude in the rest-frame bluer band, with the band having drest
wave
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Figure 3.2: The difference of peak magnitude (∆) estimated via two K-corrections as
a function of K-correction factor k (Eqs. 3.2 and 3.6) for four systems: SN 1998bw, SN
2006aj, SN 2010bh and SN 2012bz (see section 3.3 for details). The shaded area shows
the systematic uncertainty of 0.02 mag in the K correction procedure.
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distance to the rest-frame V band (V rest
wave). The value of Mpeak(V rest

wave + kdrest
wave/(1 − k))

represents the peak magnitude in the rest-frame redder band, where kdrest
wave/(1− k) is the

distance between the rest-frame redder band and the rest-frame V band.
Combining the results in Figure 3.1 and Eqs. (3.4) and (3.5), ∆ is dependent on two

parameters: k and drest
wave. The value of ∆ may get larger as k is closer to 0.5 and drest

wave is
larger, i.e., the redshifted V band is closer to the middle point of two observed bands, as
well as the distances between two observed bands and the redshifted V band is larger.
In this paper, kdrest

wave < 270Å. Within this small range, a linear relation between ∆ and
|k − 0.5| is

∆ = 0.24 · |k − 0.5| − 0.12. (3.6)

Figure 3.2 shows that two methods lead to small differences with |∆| 6 0.1 mag for
four systems: SN 1998bw, SN 2006aj, SN 2010bh and SN 2012bz (see section 3.3 for more
discussion on each system). For these four systems, the difference ∆ is small and kdrest

wave <

270Å. When k = 0.5, the redshifted V band is exactly the average of two observed bands.
In that case, the difference between the two K-correction methods is the largest.

The peak of M temp(λ) on the SN 1998bw peak SED and decline rate templates is
around 5500 Å, which is close to the V band. Therefore, the multi-band K-correction,
obtained by interpolating magnitudes on each side of the peak, may underestimate the
value of MV,peak. We therefore apply the modification (Eq. 3.6) to the multi-band K-
correction. We adopt a systematic uncertainty of 0.02 mag in quadrature in the K-correction
after applying this modification, as shown in the shaded area in Figure 3.2. The total K-
correction is defined as

∆Ktotal = ∆Kcorr − 2.5 log(1 + z), (3.7)

where ∆Ktotal is the total K-correction, ∆Kcorr represents the multi-band K-correction or
the correction from the SN 1998bw peak SED and decline rate templates.

3.3 SYSTEMS OF GRB-SNE

Based on the degree of observational evidence of a GRB having an associated SN (Hjorth
& Bloom, 2012), GRB-SNe are graded from class A to class E, where class A has ‘strongest
spectroscopic evidence’, while class E has the weakest evidence. In this paper, we select
GRB-SN candidates in classes A, B, and C. In total 21 systems are collected (see Table 9.1
in Hjorth & Bloom 2012), including SN 2012bz (Schulze et al., 2014) which is classified as
a class A system and GRB 120714B/SN 2012eb (Klose et al., 2012) which is classified as a
class C system.

We have studied all the 21 GRB-SN systems and evaluated the feasibility of constrain-
ing model-independent peak magnitudes and decline rates for them. Among them, we
succeed to measure MV,peak and ∆mV,α for 8 systems, as listed in Table 4.1, along with
the corrections made in each case. We address the other systems and the reasons why
they are not selected in section 3.3.9.
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Table 3.2: The selected systems and the relevant steps.

GRB/XRF/SN afterglowa hostb k/tc class reference
980425/1998bw - - k A (1), (2), (3)
030329/2003dh - - t A (4), (5)
031203/2003lw -

√
t A (6), (7), (8)

050525A/2005nc
√ √

t B (9), (10)
060218/2006aj -

√
k A (11), (12), (13), (14), (15)

090618
√ √

t C (16)
100316D/2010bh - - k A (17), (18), (19)
120422A/2012bz

√
- k A (20), (21)

a: Subtraction of afterglow brightness.
b: Subtraction of host galaxy brightness.
c: Multi-band K-correction (denoted ‘k’) or shift based on the SN 1998bw peak SED and decline rate tem-

plates (denoted ‘t’).

(1) Galama et al. (1998), (2) Sollerman et al. (2002), (3) Clocchiatti et al. (2011), (4) Hjorth et al. (2003), (5)

Matheson et al. (2003), (6) Malesani et al. (2004), (7) Mazzali et al. (2006), (8) Malesani (2013), (9) Blustin

et al. (2006), (10) Della Valle et al. (2006), (11) Sollerman et al. (2006), (12) Ferrero et al. (2006), (13) Šimon

et al. (2010), (14) Guenther et al. (2006), (15) Poznanski et al. (2012), (16) Cano et al. (2011a), (17) Cano et al.

(2011b), (18) Olivares E. et al. (2012), (19) Bufano et al. (2012), (20) Melandri et al. (2012), (21) Schulze et al.

(2014).
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3.3.1 GRB 980425/SN 1998BW

SN 1998bw was the first SN discovered to be connected with a GRB, GRB 980425 (Galama
et al., 1998). Combined with the peculiar velocity vp = −65 ± 75 km s−1 (Li et al., 2014)
and the CMB velocity vCMB = 2505± 14 km s−1 (Foley et al., 2006), it has vz = 2570± 76

km s−1. The redshift is z = vz/c = 0.00857 ± 0.00025. It is by far the lowest redshift
of GRB-SNe. A lot of work have been done on this system, which is why we have built
the peak SED and decline rate templates based on this system. This system is a class A
GRB-SNe.

We collect the data in the V and R bands (Clocchiatti et al., 2011; Galama et al., 1998;
Sollerman et al., 2002). We assume that the host galaxy and afterglow contributions to the
total brightness are negligible and fit 4th order polynomials to the light curves. We have
enough data in the V and R bands and these two bands are close to the redshifted V band,
so the multi-band K-correction is applied. The parameter in the K-correction is k = 0.97.
We assume that the host extinction is negligible. Unless stated otherwise, we treat GRB-
SNe in the same way and neglect the contributions from the host galaxy, the afterglow
or the host extinction, if they are not mentioned in the literature. The Galactic extinction
is estimated to be E(B − V ) = 0.06 mag. The distance modulus is µ = 32.94 ± 0.08.
The uncertainty in the distance modulus is dominated by the uncertainty in the peculiar
velocity.

Figure 3.3 shows the light curves of SN 1998bw. In the upper panel, the observational
data, the resimulated data and the fitting functions to the resimulated data in the V (left)
and R (right) bands are plotted. In the lower panel, the left plot shows the light curves
in the V and R bands, after correcting for the Galactic extinction and converting into the
absolute magnitude. On the right, after the K-correction, the light curves in the rest frame
V band are plotted. The temporal axes in the four panels have been corrected into the rest
frame. The uncertainties in the resimulated data and the fitting light curves are plotted
as 68.3% (±1σ) of the total resimulated results. In this section, the similar figures show
100 out of the 1000 resimulated light curves.

3.3.2 GRB 030329/SN 2003DH

The GRB 030329/SN 2003dh system was the first solid spectroscopic association between
a cosmological GRB and a SN (Hjorth et al., 2003; Stanek et al., 2003). The redshift is
z = 0.1685. It is a class A system. The data is collected in the V band (Hjorth et al., 2003).
The spectra was decomposed, and the SN spectra was obtained (Hjorth et al., 2003).
With an SMC extinction law, Matheson et al. (2003) estimated the host extinction to be
AV,host = 0.12 ± 0.22 mag. The Galactic extinction is E(B − V )MW = 0.025 mag and
the distance modulus is µ = 39.63 ± 0.01. Due to the small number of data points, we
fit 2nd order polynomial functions to the resimulated data. The MV,peak and ∆mV,15 for
this system are corrected with the SN 1998bw peak SED and decline rate templates. The
results are shown in Figure 3.4 (left).
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Figure 3.3: GRB 980425/SN 1998bw. The upper panels show the photometric data points
(blue/red), the resimulated data (gray) and the polynomial functions fitted to the resim-
ulated data in V (left) and R (right) bands. In the lower left panel, the light curves after the
extinction, the K-correction and the distance modulus correction are plotted in V band
(blue) and R band (red) in AB magnitude. In the lower right panel, the final light curves
after the multi-band K-correction (Eq. 3.2) in the rest frame V band are plotted. The un-
certainties in the resimulated data and the fitting light curves are plotted as 68.3% (±1σ)

of the total resimulated results.
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Figure 3.4: GRB 030329/SN 2003dh (left) and GRB 031203/SN 2003lw (right). The line
styles are the same as in Figure 3.3.
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3.3.3 GRB 031203/SN 2003LW

GRB 031203 (SN 2003lw) had a very faint afterglow and a relatively bright host galaxy
with Vhost = 20.57 ± 0.05 mag and Rhost = 20.44 ± 0.02 mag (Malesani, 2013; Mazzali
et al., 2006). It is a class A system.

The redshift is z = 0.1055 ± 0.0001 (Prochaska et al., 2004). We collect data in the V
and R bands (Malesani et al., 2004; Mazzali et al., 2006).

The observed fluxes are corrected for the significant host contribution. After that,
we fit 2nd order polynomial functions to the resimulated data. Unfortunately, the V
band data do not cover the rising part of the light curve. Therefore, only the R band
data is used to generate the light curves. This system has uncertain extinction. From
Prochaska et al. (2004), a lower Galactic extinction is adopted to be E(B − V )MW = 0.78

mag, and total extinction is E(B − V )total = 1.17 ± 0.1 mag, through Balmer line ratio
study. Through spectral modeling, (Mazzali et al., 2006) favors a value of the host extinc-
tion E(B − V )host = 0.25 mag and AV,host = 0.78 ± 0.16 mag (Cardelli et al., 1989) and
total reddening E(B − V )total ∼ 1.07 ± 0.05 mag. We adopt the Galactic extinction to be
E(B − V )MW = 1.06 mag and the host extinction to be AV,host = 0.78 ± 0.16 mag from
Mazzali et al. (2006). We consider the peak magnitudes are uncertain values, because
the host extinction is uncertain. The distance modulus is µ = 38.52 ± 0.02. The MV,peak

and ∆mV,15 for this system are corrected with the SN 1998bw peak SED and decline rate
templates. The results are shown in Figure 3.4 (right).

3.3.4 GRB 050525A/SN 2005NC

GRB 050525A (SN 2005nc) is a long GRB with redshift z = 0.606 (Blustin et al., 2006). It
is a class B system.

We collect data from Della Valle et al. (2006). Only R band data is available. Therefore,
the SN 1998bw peak SED and decline rate templates are applied. We subtract the host
contribution with Rhost = 25.2 ± 0.1 mag (Della Valle et al., 2006). Then we resimulate
and subtract the afterglow data, fitted as a broken power-law, to get the intrinsic SN
flux. After that, we fit 3rd order polynomial functions to the resimulated data. The
host extinction is estimated to be AV,host = 0.26 ± 0.12 mag (Blustin et al., 2006; Cardelli
et al., 1989; Pei, 1992), assuming an SMC extinction curve. For the Galactic extinction,
the foreground extinction is E(B − V )MW = 0.094 mag. The distance modulus is µ =

42.84± 0.004. Figure 3.5 (left) shows the results for SN 2005nc.

3.3.5 XRF 060218/SN 2006AJ

The X-Ray Flash (XRF; Heise et al., 2001) 060218 is a long GRB. The redshift is z =

0.03342. This system is another class A GRB-SN.
We collect data from Sollerman et al. (2006), Ferrero et al. (2006), and Šimon et al.

(2010) in the V and R bands. SN 2006aj is an extreme case (Šimon et al., 2010) because
before a normal SN peak, there is an early peak and these two peaks are equally bright.

60



CHAPTER 3. GRB-SNE

Figure 3.5: GRB 050525A /SN 2005nc (left) and GRB 090618 (right). The line styles are the
same as in Figure 3.3. The green lines are the broken power-law functions fitted to the
afterglow.
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Figure 3.6: XRF 060218 (SN 2006aj). The line styles are the same as in Figure 3.3.
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The data from Šimon et al. (2010) includes the early part (< 2.5 days) of the photometry
since the burst, therefore the light curve shows two bumps. In this paper, we study the
normal SN light curve so we only collect the data after 2.5 days since the burst.

SN 2006aj is located in a relatively bright host galaxy with Vhost = 20.19 ± 0.04 mag
and Rhost = 19.86 ± 0.03 mag (Sollerman et al., 2006), which are subtracted from the
observed fluxes. The distance modulus is µ = 35.92 ± 0.07. We fit 4th order polyno-
mial functions. There is a discrepancy in the reported estimates of the host extinction.
Campana et al. (2006) estimate it to be E(B − V )host = 0.2 ± 0.03 mag, assuming an
SMC reddening law. Assuming the relation between sodium absorption and dust extinc-
tion from Munari & Zwitter (1997) is representative for interstellar medium, Guenther
et al. (2006) find E(B − V )host = 0.042 ± 0.003 mag. With an updated empirical relation
from Poznanski et al. (2012), the extinctions are E(B − V )host = 0.026 ± 0.014 mag and
E(B − V )MW = 0.061 ± 0.03 mag, which are about half of the values from Munari &
Zwitter (1997). We adopt the Galactic extinction is E(B − V )MW = 0.145 mag. The host
extinction is estimated to beE(B−V )host = 0.026±0.014 mag andAV,host = 0.076±0.041

mag with the updated empirical relation from Poznanski et al. (2012). We apply the multi-
band K-correction with k = 0.87. Figure 3.6 shows the light curves of SN 2006aj.

3.3.6 GRB 090618

The long GRB 090618 is a classC system with z = 0.54 (Cano et al., 2011a). We collect data
from Cano et al. (2011a) in the i band. We subtract the brightness of the host galaxy and
the afterglow. The host brightness is estimated to be ihost = 23.22± 0.06 mag (Cano et al.,
2011a). The afterglow is fitted with broken power-law functions and the resimulated data
are fitted with 3rd order polynomial functions. The Galactic extinction is E(B−V )MW =

0.09 mag. From X-ray to optical SED fitting, the host extinction is AV,host = 0.3 ± 0.1

mag according to Cano et al. (2011a). The distance modulus is µ = 42.54 ± 0.004. The
SN 1998bw peak SED and decline rate templates are used to convert the peak magnitude
and the decline rates into the rest frame V band. Figure 3.5 (right) shows the results for
GRB 090618.

3.3.7 XRF 100316D/SN 2010BH

XRF 100316D is a soft long GRB (Cano et al., 2011b). It is a class A system. The redshift
is z = 0.059 and we use published photometry in the V and R bands (Bufano et al.,
2012; Cano et al., 2011b; Olivares E. et al., 2012). The three data sets are not consistent
with each other (shown in Figure 3.7). There are systematic offsets in the photometry,
especially around the peak. Compared to Bufano et al. (2012) and Cano et al. (2011b), the
R band data from Olivares E. et al. (2012) is about 0.3 mag fainter at the peak. This may
because of zero point discrepancies. We reduce the offset by subtracting 0.3 mag from the
R band data (Olivares E. et al., 2012), although we acknowledge there is a possibility that
the other two data sets should be shifted instead.
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Figure 3.7: XRF 100316D/SN 2010bh. The line styles are the same as in Figure 3.3.
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The foreground extinction is E(B − V )MW = 0.117 mag. Reported values of the host
extinction are very different. Using the Hα/Hβ ratio, the host extinction is estimated to
be E(B − V )host = 0.14 mag (Bufano et al., 2012). From color excess measurement, Cano
et al. (2011b) assumes the host extinction to be E(B − V )host = 0.18± 0.08 mag. Olivares
E. et al. (2012) estimated the extinction using afterglow SED fitting and found AV,host =

1.20±0.09 mag. We adopt this value because the intrinsic SN spectrum is otherwise very
red (Levan et al. (2013)). However, we consider the peak magnitude an uncertain value
because of the possible zero point errors in the photometry and the uncertain extinction
correction.

The distance modulus is µ = 37.20±0.04. We fit 4th order polynomial functions to the
resimulated data. The multi-band K-correction parameter is k = 0.77. Figure 3.7 shows
the resulting light curves for SN 2010bh.

3.3.8 GRB 120422A/SN 2012BZ

Extensive observations have been done to detect GRB 120422A (SN 2012bz) with tele-
scopes from mm to optical wavelengths (Melandri et al., 2012; Schulze et al., 2014). It is a
class A system.

The redshift is z = 0.283, and the data are collected from Melandri et al. (2012);
Schulze et al. (2014) in the r’ and i’ bands. Compared to the X-ray lightcurve (Fig. 2
in Schulze et al. (2014)), the afterglow in the r’ and i’ bands have a significant supernova
contribution, so we fix the the post-break slope β = 1.48 ± 0.4 based on the X-ray ob-
servations (Schulze et al., 2014). But the subtraction of the afterglow barely changes the
intrinsic SN brightness. So for this system, either we fix the slope based on X-ray obser-
vation or on the SN modeling have no difference to the brightness of the SN (Schulze
et al., 2014). We adopt the foreground extinction to be E(B − V )MW = 0.035 mag. The
resimulated data are fitted with 4th order polynomial functions. The distance modulus
is µ = 40.89± 0.01. The multi-band K-correction parameter is k = 0.40. Figure 3.8 shows
the light curve results.

3.3.9 GRBS NOT INCLUDED

We investigated the possibilities of obtaining light curves for other GRB-SNe in class A,
B and C. Here we briefly explain the reasons why we do not report the light curves for
these systems.

There are several reasons that may cause the failure of obtaining the light curves in the
rest frame V band: 1) The errors in the subtraction of the afterglow will inflate the errors
in the SN photometry. This is a major reason why for some systems, even though enough
data points have been obtained, after the afterglow fitting, there are too few useful data
points left to do the polynomial fitting. We cannot get full light curves (notably infor-
mation at and before the peak) for these systems. 2) Some systems lack data in proper
band(s) to do the K-correction. This is because the multi-band K-correction is only valid
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Figure 3.8: GRB 120422A/SN 2012bz. The line styles are the same as in Figure 3.3.
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when the redshifted V band is between the two observed bands. 3) Some systems have
very uncertain host extinction or host galaxy contribution. 4) Some systems lack enough
data to do polynomial fits to obtain light curves. e.g., for 2nd order, at least 3 data points
are required. In practice, to obtain well defined light curves, more data points are needed.
Below we provide a brief discussion for each system. The reasons for these systems being
excluded from our analysis are summarized in Table 3.3.

Table 3.3: A list of unselected systems in class A, B, and C.

GRB/XRF/SN reason(s)
970228 4
990712 1, 4

011121/2001ke 3, 4
020405 1, 4
020903 1

021211/2002lt 1
040924 4
041106 2

080319B 1
081007/2008hw 3
091127/2009nz 1

101219B/2012ma 4
120714B/2012eb 4

1: After subtracting the afterglow, there are too few data points left to obtain full light curves.
2: Lack of data in proper band(s) to do K-correction.
3: Uncertain host extinction or host galaxy contribution.

4: Lack of sufficient data around the peak to do polynomial fitting.

GRB 970228 At z = 0.695 ± 0.002 (Galama et al., 2000) I band data are collected. How-
ever, there are not enough data (< 3) around the peak in the I band.

GRB 990712 The V and I bands (Björnsson et al., 2001; Christensen et al., 2004; Sahu et al.,
2000) have less than 3 data points after subtracting the afterglow brightness. In the
R band, there are not enough data points to perform polynomial fitting.

GRB 011121/SN 2001ke At z = 0.36 (Bloom et al., 2002) R and I band data (Bloom et al.,
2002; Garnavich et al., 2003; Greiner et al., 2003; Küpcü Yoldaş et al., 2007) are col-
lected. The host and the afterglow brightness are subtracted. Then there are not
enough data around peak to do polynomial fitting in the I band. In addition, the
host extinction is very uncertain.

GRB 020405 After subtracting the host and afterglow flux, there are too few data points
left (< 3) (Masetti et al., 2003; Price et al., 2003) to obtain light curves.
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XRF 020903 After subtracting the afterglow brightness, there are not enough useful data
points to do the polynomial fitting (Bersier et al., 2006; Soderberg et al., 2005).

GRB 021211/SN 2002lt After subtracting the host and afterglow flux, there are too few
data points left (< 3) (Della Valle et al., 2003) to obtain light curves.

GRB 040924 The redshift is z = 0.86. But only in I band, there are enough data (Soder-
berg et al., 2006; Wiersema et al., 2008). After subtracting the afterglow brightness,
there are not enough useful data to fit polynomial functions.

GRB 041006 Only in the R band there are enough data (Stanek et al., 2005) to extract the
light curve. But at a redshift of z = 0.716, the R band is too far from the rest frame
V band.

GRB 080319B The redshift is z = 0.937 and the data (Bloom et al., 2009; Tanvir et al.,
2010) are in the R and I bands. The host contributions are Rhost = 26.96± 0.13 mag
and Ihost = 26.17±0.15 mag. The afterglow slope is fixed to β2 = 2.33 (Bloom et al.,
2009; Tanvir et al., 2010). After subtracting the afterglow brightness there are not
enough useful data points left to fit polynomial functions.

GRB 081007/SN 2008hw The redshift is z = 0.5295 and the data are in the r’ and i’ bands
(Jin et al., 2013). For the afterglow fitting, we fixed the slope to β2 = 1.25, based
on the X-ray observation (Jin et al., 2013). A multi-band K-correction is applied.
But the host contribution is uncertain. If we assume it has host rhost = 25.0 mag
and ihost = 24.5 mag, then the peak magnitude is MV,peak = −18.85+0.91

−0.64 mag.
However, a different estimate of the host galaxy brightness would lead to different
peak magnitudes.

GRB 091127/2009nz The redshift is z = 0.49 and the data are collected from Cobb et al.
(2010); Troja et al. (2012); Vergani et al. (2011). The i band data are selected. We
subtract the host brightness with Ihost = 22.54 ± 0.10 mag (Troja et al., 2012). The
afterglow is fitted with broken power-law functions. But after the afterglow fitting,
there are not enough data to obtain light curves and measure the peak magnitude
and the decline rate.

GRB 101219B/SN 2010ma With only two data points and an upper limit (Sparre et al.,
2011), it is not possible to obtain the light curve.

GRB 120714B/SN 2012eb SN 2012eb was confirmed to be associated with GRB 120714B
by Klose et al. (2012). But there are no published data for SN 2012eb yet.

3.4 PROPERTIES OF THE LIGHT CURVES

The peak magnitudes, the decline rate in 15 days, the time of peak (see section 3.4.2) of
the eight GRB-SNe are listed in Table 3.4. For SNe Ia, there is a relation between the
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Figure 3.9: The peak-luminosity and decline rate relation for GRB-SNe with the decline
times of 5, 10 and 15 days. Systems GRB 031203/SN 2003lw and GRB 100316D/SN
2010bh have uncertain extinction, and they are plotted as open symbols. The best lin-
ear fits to the relations are in black.
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Figure 3.10: Kendal’s τ , Spearman’s rank, and Pearson’s correlation coefficients of the
luminosity-decline rate relation in the upper panel and the k − s relation (section 3.4.2)
in the bottom panel. Bin size is 0.01. MV,peak, ∆mV,15, the k factor and the s factor are
resimulated 10 000 times with the standard Monte Carlo method.
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The best linear fits are plotted in black.
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Table 3.4: The selected systems and relevant results with 1σ uncertainties.

GRB/XRF/SN z Ma
V,peak ∆mV,15 tpeak

(mag) (mag) (day)
980425/1998bw 0.00857 −19.27+0.08

−0.08 0.75+0.02
−0.02 16.09+0.17

−0.18

030329/2003dh 0.1685 −19.39+0.15
−0.12 0.90+0.50

−0.50 10.74+2.57
−0.85

031203/2003lw 0.1055 −19.90+0.16
−0.16 0.64+0.10

−0.10 19.94+1.37
−1.48

050525A/2005nc 0.606 −18.59+0.39
−0.23 1.17+0.77

−0.85 11.08+2.26
−3.37

060218/2006aj 0.03342 −18.85+0.08
−0.08 1.08+0.06

−0.06 9.96+0.18
−0.18

090618 0.54 −19.34+0.13
−0.13 0.65+0.16

−0.19 17.54+1.51
−1.64

100316D/2010bh 0.059 −18.89+0.10
−0.10 1.10+0.05

−0.05 8.76+0.31
−0.37

120422A/2012bz 0.283 −19.50+0.03
−0.03 0.73+0.06

−0.06 14.20+0.34
−0.34

a: The uncertainties in MV,peak quadratically come from the polynomial fits, the 0.02 mag in K-correction,

the distance modulus uncertainties and the uncertainties in the host extinction.
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peak = 16.09+0.17
−0.18 days. The illustrative straight

line in black is y = x.
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intrinsic peak magnitude MV,peak and decline rate ∆mB,15 (Phillips, 1993; Phillips et al.,
1999). In addition, ∆mV,15 is used in this paper to check if the light curves of SN 1998bw
can be used as light curve templates and if there is a better way to do the rescaling other
than using the s factor.

3.4.1 LUMINOSITY-DECLINE RATE RELATION

MV,peak = f(∆mV,15)

Though the physical progenitors and explosion mechanisms for SNe Ia and GRB-SNe
are different (Smartt, 2009; ?), their light curves show similar luminosity-decline rate re-
lations. The peak magnitude and the decline rate are resimulated 10 000 times each. The
widths of the distribution of the resimulated data are 1σ. We linearly fit each set of the
resimulated data and get two distributions of the fitting parameters. The median values
and ±1σ values on two sides of the median values in these two distributions are treated
as the best fitting parameters and the ±1σ uncertainties. The luminosity-decline rate
relation for GRB-SNe is

MV,peak = 1.57+0.25
−0.28∆mV,15 − 20.58+0.22

−0.20, (3.8)

with χ2 = 5.51 (6 dof). Figure 3.9 shows the luminosity-decline rate relation with α =

5, 10, and 15 days. Systems GRB 031203/SN 2003lw and GRB 100316D/SN 2010bh have
uncertain extinction, so they are plotted as open symbols. Unless mentioned otherwise,
these two systems are discerned in the same way in the following figures. Some systems
lack data to constrain light curves at large times, i.e., α > 15 days, so we cannot get
∆mV,>15 for these systems. This relation shows that (1) the peak magnitudes span a
small range; (2) the trend of the relation is the same as for SNe Ia, i.e., brighter systems
decline slower. Though there could be significant selection effects, in that we only have
good data for bright systems.

Correlation coefficients and significance

With the standard Monte Carlo method, the correlation coefficients: Pearson’s, Kendal’s
τ and Spearman’s rank, are calculated to statistically measure the strength of the corre-
lation between the peak magnitudes and the decline rates. As in section 3.4.1, the peak
magnitudeMV,peak and the decline rate ∆mV,15 are resimulated 10 000 times each, where
1σ are the widths of the distribution of the resimulated data. For each set of resimulated
data, we calculate three correlation coefficients.

Pearson’s correlation coefficient (Pearson’s r) measures the linear correlation between
two variables. The result r ∈ [−1, 1], where 1 (−1) is total positive (negative) correlation,
and 0 is no correlation. When |r| > 0.7 (or 0.8 by different suggestion), the correlation
is described as ‘very strong’. If bin size is set to 0.01 (same in the following), r = 0.905

has the highest frequency and this shows the correlation is significant at 0.01 level. This
means we expect to get the result occurring by chance once every 100 times. The result
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indicates a significant correlation between MV,peak and ∆mV,15. There are [93%, 87%,
63%, 9%] of Pearson’s correlation coefficients lie at [0.1, 0.05, 0.01, 0.001] significance
levels.

Kendal’s rank correlation coefficient (Kendal’s τ ) measures the strength of the mono-
tonic relationship between variables. The result τ ∈ [−1, 1], where 1/ − 1 imply the per-
fect agreement/disagreement between two rankings and 0 means the ranking is totally
independent. In this paper, τ = 0.715 has the highest frequency and the corresponding
significance level is 0.01. There are [92%, 81%, 46%, 0.4%] of Kendal’s rank correlation
coefficients lie at [0.1, 0.05, 0.01, 0.001] significance levels.

Spearman’s rank correlation coefficient (Spearman’s ρ) tests the dependence between
two variables. The result ρ ∈ [−1, 1], where −1 or +1 appears when the relation of the
variables can be perfectly described with a monotonic function. When |ρ| ≥ 0.6, the
correlation is described as ‘strong’. In this paper, ρ = 0.855 has the highest frequency
and the corresponding significance level is 0.025. There are [95%, 89%, 42%, 2%] of
Spearman’s rank correlation coefficients lie at [0.1, 0.05, 0.01, 0.001] significance levels.

Table 3.5: The most frequent values and the percentage of the correlation coefficients at
different significance levels. Here we set the bin size equal to 0.01.

coefficient significance levela most frequent value
0.1 0.05 0.01 0.001

luminosity-decline rate relation
Pearson’s 93% 87% 63% 9% 0.905
Kendal’s τ 92% 81% 46% 0.4% 0.715

Spearman’s rank 95% 89% 42% 2% 0.855
k − s relation

Pearson’s 100% 99% 18% ∼ 0% 0.795
Kendal’s τ 73% 38% 2.7% ∼ 0% 0.505

Spearman’s rank 100% 71% 3% ∼ 0% 0.714

a: The probability of accidentally getting the result, e.g., 0.05 represents the result happens by chance once

every 20 times.

The distributions of the correlation coefficients of the luminosity-decline rate relation
are plotted in the upper panel in Figure 3.10. The most frequencies and the percentage
of the correlation coefficients at different significance levels are listed in Table 3.5. The
statistical correlation coefficients show that the luminosity and the decline rate of GRB-
SNe are significantly correlated.
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3.4.2 TIME SINCE BURST

Peak time

The peak time tpeak is defined as the time when the light curve of a GRB-SN reaches its
peak brightness relative to the time of the GRB in the rest frame. The peak times for the
eight systems are listed in Table 3.4. With the same procedure as in section 3.4.1, the best
fit to the relation between log tpeak and MV,peak is

MV,peak = −2.52+0.15
−0.16 log tpeak − 16.40+0.18

−0.17. (3.9)

When combining the two parameters log tpeak and ∆mV,15, regression fit to MV,peak can
be expressed as

MV,peak = 1.41+0.72
−0.87∆mV,15 − 0.34+1.01

−1.43 log tpeak − 20.08+2.37
−1.73. (3.10)

The relation between log tpeak and ∆mV,15 can be expressed as

log tpeak = −0.50+0.13
−0.11∆mV,15 + 1.55+0.09

−0.10. (3.11)

Figure 3.11 shows the relations between log tpeak, ∆mV,15 and MV,peak. The upper panel
shows that there is a dependency between the peak time tpeak and the peak magnitude
MV,peak. There is a trend that a GRB-SN with smaller peak time has fainter peak lu-
minosity, i.e., MV,peak decreases as tpeak increases. In general, brighter GRB-SNe evolve
more slowly. Compared to Figure 3.9, tpeak is less strongly correlated with MV,peak than
∆mV,15. The middle panel shows a multiple linear regression fit to MV,peak with log tpeak

and ∆mV,15. The bottom panel of Figure 3.11 shows a ‘fundamental plane’ of GRB-SNe
with peak time tpeak and decline rate ∆mV,15. Constant absolute peak magnitudes are
also indicated by dotted lines.

k − s relation

Besides the peak magnitudeMV,peak and the decline rate ∆mV,α, another way to describe
the light curve is through the luminosity factor k and the stretch factor s. These two
factors stand for the relative peak (k) and width (s) of the light curves compared to SN
1998bw (Cano et al., 2011b):

f(t) = k × f98bw(t/s), (3.12)

Here f(t) is the flux of a SN, and f98bw(t) is the flux of SN 1998bw. The factor s equals to
tpeak/t

98bw
peak , with t98bw

peak representing the peak time of SN 1998bw. With the same procedure
as in section 3.4.1, the s and k factors are correlated as

k = 1.27+0.12
−0.13 · s− 0.05+0.10

−0.10, (3.13)

with χ2 = 8.2 (6 dof). This relation is named as k − s relation. Figure 3.12 shows the
correlations between s, k, the decline rate ∆mV,15 and the peak magnitude MV,peak.
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With the procedure discussed in section 3.4.1, the distributions of the correlation co-
efficients of the k − s relation are plotted in the lower panel in Figure 3.10. The most
frequencies and the percentage of the correlation coefficients at different significance lev-
els are listed in Table 3.5. Comparing the results in Figures 3.9, 3.11, 3.12 and Table 3.5,
we conclude that 1) the correlation between ∆mV,15 and MV,peak is stronger than the one
between factors k and s. 2) ∆mV,15 is stronger correlated with MV,peak than tpeak and the
s factor.

3.4.3 RESCALING OF LIGHT CURVES

We rescale the time axes of the light curves in three ways. MV,peak has been normalized
relative to SN 1998bw.

∆m15 rescaling The light curves are stretched around tpeak, when the light curves reach
the peak brightness. The time of the light curve is calculated as t′ = (t − tpeak) ×
∆mV,15/∆m

98bw
15 + t98bw

peak , with ∆m98bw
15 and t98bw

peak representing the decline rate and
the peak time of SN 1998bw, i.e., a faster decline light curve with bigger ∆mV,15

will be rescaled to be more flat.

s factor rescaling The light curves are stretched since the burst as t′ = t/s, with s being
the stretch factor. The factor s is another way representing the decline rate of the
light curves, similar to ∆mV,15. A faster decline light curve with smaller s will be
more flatter after the stretch.

log (tpeak) rescaling The light curves are stretched around tpeak. The time is calcu-
lated as t′ = (t − tpeak) × log(t98bw

peak )/ log(tpeak) + t98bw
peak . This method is similar to

∆m15 rescaling, both stretch the light curves around the peak brightness. But in
this method, a parameter log(tpeak) is used instead of ∆mV,15.

A collection of rescaled light curves for the selected systems are shown in Figure 3.13.
The fitting curves are the rest frame V band light curves obtained in section 3.3. The data
points are for illustration and are from the bands closest to the rest frame V band. The
figure shows that a rescaled SN 1998bw light curve is a reasonable template for other
GRB-SN light curve. ∆m15 rescaling appears superior to the other approaches. If values
of ∆m15 are not available, log(tpeak) rescaling is an alternative to the commonly used s

factor rescaling.

3.4.4 DISCUSSION

We compare the values of the peak magnitudes to other studies (Cano, 2013; Cano et al.,
2011a,b; Malesani et al., 2004; Schulze et al., 2014). The result is shown in Figure 3.14.
There are three obvious outliers: GRB 090618, SN 2010bh and SN 2012bz (marked in
red). These systems are estimated to have fainter peak magnitudes in this paper. It is
difficult to trace the exact causes of the differences in the peak magnitudes. We follow
the procedure from the literature, and compare it to our results.
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There is no independent third-part study for the peak magnitude of GRB 090618.
The peak magnitude is estimated to be MV,peak = −19.34+0.13

−0.13 (−19.75+0.14
−0.14) mag from

this paper (Cano et al., 2011a). The reasons cause the difference are: 1) With different
cosmological parameters, the distance modulus is different. We adopt distance modulus
µ = 42.53 with the cosmological parameters {ΩM ,ΩΛ, h} = {0.315, 0.685, 0.673}, while
µ = 42.45 from Cano et al. (2011a). 2) The subtraction of the afterglow may be another
reason for the discrepancy. This may cause ∼ 0.15 mag difference around the peak. The
observed peak magnitude is i = 22.33 mag. After the host and the afterglow subtraction
with ihost = 23.22± 0.06 mag, the peak magnitude becomes i = 22.96 mag and i = 23.13

mag, respectively. From Cano et al. (2011a) the apparent peak magnitude is i = 23.00

mag. 3) The polynomial fitting may bring ∼ 0.08 mag difference. The fitted (observed)
apparent peak magnitude is i = 23.21 (23.13) mag. Figure 3.5 shows the observed data.
Around peak, the data are noisy. At t = 16.69 and 17.60 days, the magnitudes are ∼
0.2 and 0.04 mag fainter than the one at t = 14.79. Instead of using a single datum, in
this paper, polynomial functions are fitted, especially around the peak. 4) The Galactic
extinction is different. In this paper, we use RV = 3.1 as well as the re-calibration results
of DIRBE/IRAS dust map from Schlafly & Finkbeiner (2011). This may bring ∼ 0.15 mag
difference.

For XRF 100316D/SN 2010bh, the peak magnitude is constrained to be MV,peak =

−18.89+0.10
−0.10/−18.62 ± 0.08 mag in this paper/Cano et al. (2011b). This is a system with

uncertain host extinction and peak magnitude. The reasons are: 1) The values in Cano
et al. (2011b) are inconsistent. In Table 2 (Cano et al., 2011b), the apparent peak magnitude
in the V band is 19.47 mag after the Galactic extinction correction. So if RV = 3.1 and K-
correction ∆k = 0.09 are used in his calculation, the peak magnitude should beMV,peak =

mV − µ − AV,host − ∆K = 19.47 − 37.08 − 0.18 · 3.1 − 0.09 = −18.26 mag instead of
−19.62 mag, which is listed In Table 4 (Cano et al., 2011b). The photometric data from
Cano et al. (2011b) is consistent with the result from Bufano et al. (2012), so we guess
the foreground extinction is subtracted twice in the calculation, which is consistent with
the statement of the captions of Table 2 and 4. The result also shows that a larger host
extinction is expected, otherwise the spectrum is very red (as stated in section 3.3.7). 2)
The host extinction estimated in the literature are different. We adopt a large extinction
with E(B − V )host = 0.39 ± 0.03 mag from Olivares E. et al. (2012). The value of E(B −
V )host = 0.18± 0.08 mag is estimated in Cano et al. (2011b). This may cause ∼ 0.64 mag
difference. 3) The distance moduli are different. In this paper, µ = 37.20 while Cano et al.
(2011b) adopts µ = 37.08. This causes about 0.12 mag difference. 4) The K-correction in
(Cano et al., 2011b) may bring about 0.09 mag difference.

For GRB 120422A/SN 2012bz, the peak magnitude is estimated to be MV,peak =

−19.50+0.03
−0.03/−19.7 mag in this paper/Schulze et al. (2014), while using the same cos-

mological parameters (Planck Collaboration et al., 2013), Leloudas (2014) estimates the
peak magnitude to be −19.63 mag. The reasons of the discrepancies may be as follows:
1) The Galactic extinction may be corrected twice in calculating the absolute peak mag-
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nitude (Leloudas, 2014; Schulze et al., 2014). So the magnitude should be about 0.09 mag
fainter. 2) In addition, RV instead of RI may be multiplied in calculating the Galactic ex-
tinction. This may in further bring about ∼ 0.05 mag difference. 3) As discussed above,
the noisy data around the peak may bring about 0.03 mag difference.

Figure 3.15 shows the comparison of peak time in this paper (in Table 3.4) and the
stretch factor s from Cano (2013). There is no information on sV for systems SN 2003dh,
SN 2003lw, GRB 050525A and GRB 090618, so sR is used instead.

3.5 CONCLUSIONS

We developed a method for obtaining the light curves in the rest frame V band from
the observational data. A standard Monte Carlo method was used for error estimation.
Afterglow and host brightness were subtracted. We used the DIRBE/IRAS dust map
and the correction coefficients to correct the foreground extinction. The host extinction
was corrected. We used a multi-band K-correction to correct the light curves from the
observed bands into the rest frame V band. Alternatively, SN 1998bw peak SED and
decline rate templates were used when a multi-band K-correction is not feasible. Polyno-
mial functions were fitted to obtain the light curves.

Based on this method we obtained the peak magnitudes and the decline rates for
eight GRB-SN systems in classes A, B, and C. We discovered a relation between the
peak magnitude and the decline rate. This luminosity-decline rate relation was tested
with the decline day α at 5, 10 and 15 days. The strength of the relationship between
the peak magnitude and the decline rate was statistically measured by three correlation
coefficients and the significance levels were discussed. There is a dependency between
the peak magnitude and the peak time. The larger the peak time, the brighter the SN is.
We found that the light curve of SN 1998bw can be used as a representative template. In
addition, rescaling around the peak time with ∆mV,15 is better than rescaling with peak
time log tpeak or stretch factor s. We also compared the peak magnitudes and the decline
rates constrained from this work to the results from other studies.

SNe Ia and GRB-SNe have completely different progenitors. Nevertheless, the light
curves have similar peak magnitudes and decline rates. This phenomenon may poten-
tially help us shed light on progenitor models of GRBs. As SNe Ia are widely used as
standard candles to measure cosmological distances, it is possible that GRB-SNe may
also turn out to be useful high-redshift standard candles. In Li et al. (2014), we study the
cosmological constraints of Ωm and ΩΛ resulting from these 8 systems. In particular, the
prospects of studying dark energy through w(z) with GRB-SNe using the James Webb
Space Telescope (JWST) is intriguing.

We thank Enrico Ramirez-Ruiz, Tamara Davis Giorgos Leloudas and Radek Wojtak
for their many helpful discussions and comments on the paper. We thank Teddy Fred-
eriksen, Darach Watson, Daniele Malesani and Dong Xu for discussions on GRB and SNe.
The Dark Cosmology Centre is funded by the Danish National Research Foundation.
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4

COSMOLOGICAL PARAMETERS WITH

GRB-SNE

Knowing others
is wisdom,

knowing yourself
is Enlightenment

Lao Tzu

Abstract -
We report estimates of the cosmological parameters Ωm and ΩΛ obtained using supernovae (SNe)
associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe
with well-sampled light curves across the peak are used. We correct their peak magnitudes for
a luminosity-decline rate relation to turn them into accurate standard candles with dispersion
σ = 0.18 mag. We also estimate the peculiar velocity of the low-redshift host galaxy of SN
1998bw, using constrained cosmological simulations. In a flat universe, the resulting Hubble
diagram leads to best-fit cosmological parameters of (Ωm,ΩΛ) = (0.58+0.22

−0.25, 0.42+0.25
−0.22). This

exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to
high redshifts to measure distances in the universe and constrain cosmological parameters.

4.1 INTRODUCTION

The accelerating expansion of the universe was detected with the help of Type Ia super-
novae (SNe Ia) (Perlmutter et al., 1997, 1999; Riess et al., 1998). Taking advantage of the
correlation between their decline rate and peak brightness (Phillips, 1993; Phillips et al.,
1999), the corrected luminosities of SNe Ia exhibit sufficiently small dispersons that they
can be used to measure cosmological distances and constrain cosmological parameters.

Submitted for publication as: Xue Li, Jens Hjorth, Radek Wojtak − Cosmological parameters from super-
novae associated with gamma-ray bursts, Astrophysical Journal Letters.
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While SNe Ia are exquisite standard candles that are routinely used to measure dis-
tances out to z ≈ 1.0 (Hook, 2013; Koekemoer et al., 2011), the rate of events unfortunately
appears to decline at higher redshifts (Graur et al., 2014; Rodney et al., 2014). However, it
is necessary to observe the universe at redshift z > 1 to constrain the dark-energy equa-
tion of state parameter w(z) by breaking the degeneracies between cosmological models
(King et al., 2013; Linder & Huterer, 2003).

At higher redshifts, e.g., z > 1.5, core collapse supernovae (CCSNe) strongly domi-
nate the rates of SNe (Li et al., 2012; Rodney et al., 2014). Moreover, with more powerful
telescopes to be launched, e.g., the James Webb Space Telescope (JWST), CCSNe may be
discovered at redshifts up to z = 7 − 8 (Pan & Loeb, 2013). But in general, CCSNe are
much fainter than SNe Ia. They do not have the same intrinsic luminosities and their
peak magnitudes do not exhibit any correlation with the decline rates (Drout et al., 2011).

This problem may be solved by considering a certain type of CCSNe: a subclass of
broad-lined Type Ic SNe which are observed to be associated with gamma-ray bursts
(GRBs). First observed by the Vela Satellites in 1967 (Klebesadel et al., 1973), GRBs are
flashes of narrow beams of intense electromagnetic radiation whose peak energies occur
at gamma-ray wavelengths (Metzger et al., 1997). SN 1998bw was first detected to be
associated with GRB 980425 (Galama et al., 1998; Iwamoto et al., 1998; Kulkarni et al.,
1998; Woosley et al., 1999). Since then, many GRB-SNe have been found (Hjorth & Bloom,
2012; Hjorth et al., 2003; Stanek et al., 2003; Woosley & Bloom, 2006).

GRB-SNe have relatively smooth optical spectra and very large explosion energies
(Galama et al., 1998; Hjorth, 2013). The peak magnitudes of GRB-SNe are in the same
range as SNe Ia. Moreover, their peak magnitudes are correlated with their decline rates
(Li & Hjorth, 2014). While GRB-SNe are rare and difficult to disentangle from the contam-
inating light of the GRB afterglow and host galaxy, these properties could make GRB-SNe
a powerful tool for distance determination and constraining cosmological parameters.
This paper is devoted to the first quantitative exploration of this idea.

The outline of the paper is as follows. In Section 4.2, we briefly review the procedure
of obtaining light curves of GRB-SNe, and measuring peak magnitudes and decline rates.
We also present an estimate of the peculiar velocity of the host galaxy of the low-redshift
SN 1998bw. In Section 4.3, we establish GRB-SNe as standard candles based on a limited
set of high-quality GRB-SNe. In Section 4.4 we create a Hubble diagram and place con-
straints on the matter density parameter assuming a flat ΛCDM cosmological model. We
conclude in Section 4.5.

4.2 GRB-SNE SYSTEMS

The selected GRB-SNe are firmly associated with GRBs from class A to class C (Hjorth
& Bloom, 2012), where class A has ‘strongest spectroscopic evidence’. Here we briefly
summarize the discussion of the steps in obtaining the light curves of GRB-SNe. More
details on the procedure are in Li & Hjorth (2014). The systems are listed in Table 4.1.
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Table 4.1: Light curve properties of GRB-SNe systems

GRB/XRF/SN z mcorr
V

a ∆mV,15
b

(mag) (mag)
980425/1998bw 0.00857 c 13.66+0.08

−0.08 0.75+0.02
−0.02

030329/2003dh 0.1685 20.23+0.15
−0.12 0.90+0.50

−0.50

031203/2003lw 0.1055 18.62+0.16
−0.16 0.64+0.10

−0.10

050525A/2005nc 0.606 24.24+0.39
−0.23 1.17+0.77

−0.85

060218/2006aj 0.03342 17.07+0.08
−0.08 1.09+0.06

−0.06

090618 0.54 23.20+0.13
−0.13 0.67+0.16

−0.19

100316D/2010bh 0.059 18.31+0.10
−0.10 1.10+0.05

−0.05

120422A/2012bz 0.283 21.40+0.03
−0.03 0.73+0.06

−0.06

a: Here mcorr
V is the apparent magnitude after extinction correction and K correction (Li & Hjorth, 2014).

b: Here ∆mV,15 represents the decline of the rest frame V-band magnitude 15 days after the SN reaches its

peak brightness.
c: More details are in Section 4.2.2.

4.2.1 DATA ANALYSIS

The afterglow is either fitted to power-law or broken power-law functions and sub-
tracted. Both Galactic and host extinction are corrected for. For the Galactic extinction,
we assume RV = 3.1 and get E(B − V ) from the DIRBE/IRAS dust map (Schlegel et al.,
1998). The values are re-calibrated based on Table 6 in Schlafly & Finkbeiner (2011). We
take the values of host extinction from the literature. We fit low-order polynomial func-
tions to obtain the light curves. A K correction method is developed to correct the peak
magnitudes and decline rates into the rest frame V band. A ‘multi-band K-correction’ is
used for systems which have two band data available and these two bands are close to
the redshifted V band. Otherwise, SN 1998bw peak SED and decline rate templates are
used to correct the peak magnitude and the decline rate from the light curve obtained at
a wavelength close to the redshifted V band. In total eight light curves of GRB-SNe with
z up to 0.606 are obtained in the rest frame V band (Li & Hjorth, 2014).

4.2.2 PECULIAR VELOCITY AND UNCERTAINTY OF DISTANCE MODULUS OF

SN 1998BW

SN 1998bw (Galama et al., 1998; Iwamoto et al., 1998; Kulkarni et al., 1998; Woosley et al.,
1999) was the first SN discovered to be connected with a GRB (GRB 980425). It is the
nearest GRB-SN so far, and the measured redshift is z = 0.00867 ± 0.00004 (Foley et al.,
2006), so it constitutes an important low-redshift anchor of the Hubble diagram. For
the recessional velocity of this low-redshift system, the contribution from the peculiar
velocity may be relatively substantial. The true recessional velocity vrec due to the Hubble
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Figure 4.1: Peculiar velocities (line-of-sight component) in the direction of the supernova
host galaxy, ESO 184−G82, as a function of the comoving distance from the Local Group
formed the constrained simulation. The blue dots show dark matter particles and the
red symbols represent dark matter haloes. The green band indicates the location of the
galaxy ESO 184−G82.
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flow should be corrected for the peculiar velocity vpec of the host galaxy: vCMB = vrec +

vpec, with vCMB being the velocity relative to the cosmic microwave background (CMB).
In order to estimate the peculiar velocity of its host galaxy, ESO 184−G82, and calcu-

late the uncertainty in the distance modulus, we use a dark matter simulation performed
as a part of the Constrained Local Universe Simulations (CLUES) project. The simula-
tion is carried out in a volume of (160h−1Mpc)3 containing 10243 particles. The assumed
cosmological model is based on the 3rd data release of the WMAP satellite (WMAP3 cos-
mology), i.e., matter density Ωm = 0.24, dimensionless Hubble parameter h = 0.73, and
normalization of the power spectrum σ8 = 0.76. The initial conditions are generated from
observational data of the galaxy distribution and galaxy velocities in the local universe
(for technical details see Gottloeber et al., 2010). With this setup, the simulation recov-
ers all observed structures on scales larger than 5h−1Mpc. In particular, all nearby galaxy
clusters and superclusters, such as the Virgo cluster, the Coma cluster, the Great Attractor
and the Perseus–Pisces cluster, are well reproduced in the final simulation snapshot. On
the other hand, small scale structures formed in the simulation emerge from a random
realization of the power spectrum on these scales. Their evolution, however, is strongly
constrained by nearby large-scale structures. Therefore, the simulation provides a real-
istic and dynamically self-consistent model for the matter distribution and the velocity
field in the local universe.

The position vector of the host galaxy with respect to the Local Group in the simu-
lation box can be found be matching angular separations from several large-scale struc-
tures. As the reference structures, we use the Coma cluster, the Perseus–Pisces cluster
and the Great Attractor. Having determined the direction to the host galaxy from the Lo-
cal Group in the simulation box, we compute the radial components of peculiar velocities
within a narrow light cone. Figure 4.1 shows the resulting projected peculiar velocities as
a function of the comoving distances from the Local Group. The blue dots show veloci-
ties of dark matter particles, whereas the red symbols represent dark matter haloes found
with the friends-of-friends algorithm. Lack of dark matter haloes at small distances is re-
lated to the fact that the line of sight crosses the edge of the Local Void (see Nasonova &
Karachentsev, 2011).

To identify the position of the host galaxy ESO 184−G82 in the simulation box, we
use a range of plausible distances to the host galaxy in units of Mpc/h so they are inde-
pendent of H0. We assume that the true recessional velocity is likely between the host
velocity with respect to the CMB vCMB = 2505 ± 14 km s−1 (Foley et al., 2006) and the
host velocity with respect to the local large-scale structures (Virgo, Great Attractor and
Shapley Supercluster) vVirgo+GA+Shapley = 2769± 21 km s−1, as shown in the green band
in Figure 4.1 . Within the green band, the mean peculiar velocity is vpec = −65 km s−1

with a mean systematic error ±75 km s−1. Combined with the peculiar velocity vpec and
the CMB velocity vCMB, the Hubble flow velocity is vrec = 2570± 76 km s−1, which is in
the green band in Figure 4.1, as expected. The uncertainty of vpec dominates the uncer-

more details are in http://ned.ipac.caltech.edu/ and the reference therein
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tainty of vrec. The corresponding redshift is z = vrec/c = 0.00857 ± 0.00025. Therefore,
the contribution of the peculiar velocity of the the host galaxy to uncertainty in the dis-
tance modulus of SN 1998bw is σ(DM) = (5/2.3)σ(vpec)(cz)

−1 = 0.06 mag, where c is the
speed of light and σ(vpec) is the uncertainty of peculiar velocity vpec.

4.3 GRB-SNE AS STANDARD CANDLES

In much the same way as SNe Ia were used to measure the cosmological parameters Ωm

and ΩΛ (Perlmutter et al., 1997, 1999; Riess et al., 1998), here we use GRB-SNe as standard
candles.

Similar to SNe Ia (Phillips, 1993; Phillips et al., 1999), GRB-SNe have bright peak lu-
minosities. The luminosity-decline rate relation for GRB-SNe in the rest-frame V band is
(Li & Hjorth, 2014)

MV,peak = α∆mV,15 +M0, (4.1)

where α is the slope and M0 is a constant representing the absolute peak magnitude at
∆mV,15 = 0. Assuming Ωm = 0.315 and H0 = 67.3 km s−1 Mpc−1 (Planck Collaboration
et al., 2013), we have α = 1.57+0.25

−0.28 and M0 = −20.58+0.22
−0.20 (Li & Hjorth, 2014). This

relation is superior to other similar relations (Li & Hjorth, 2014), such as the k− s relation
(Cano, 2014), where k and s are the relative peak and width of the light curves compared
to SN 1998bw, or the relation between the peak magnitude and the elapsed time since
GRB. With MV,peak from Li & Hjorth (2014), obtained using the above Planck cosmology,
the corrected apparent peak magnitude in the rest-frame V band is

mcorr
V = MV,peak +DM(z), (4.2)

where mcorr
V is the corrected apparent magnitude in the rest-frame V band after correc-

tions for dust extinction and K correction (Li & Hjorth, 2014). HereDM(z) is the distance
modulus at Ωm = 0.315 and H0 = 67.3 km s−1 Mpc−1 in a flat universe. The values of
mcorr
V are listed in Table 4.1. Considering the relation in Eq. (4.1), the effective apparent

peak magnitude meff
V can be obtained as

meff
V = mcorr

V − α∆mV,15. (4.3)

The term α∆mV,15 represents the correction due to the luminosity-decline rate relation.
The effective apparent magnitude can also be expressed as (Perlmutter et al., 1997, 1999)

meff
V = Υ + 5 logDL(z; Ωm,ΩΛ), (4.4)

where DL ≡ H0dL is the “H0-free” luminosity distance in units of km s−1, with dL being
the luminosity distance in units of Mpc (Hogg, 1999) and H0 in units of km s−1 Mpc−1.
Here Υ = M0 − 5 logH0 + 25 is the “H0-free” V-band absolute peak magnitude (Perl-
mutter et al., 1997, 1999). The fitting procedure does not invoke H0 and the constraints
on cosmological parameters are therefore independent of the Hubble constant. In this
paper, α and Υ are statistical ‘nuisance’ parameters.
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4.4 CONSTRAINTS ON Ωm AND Ωλ

We employ a Monte Carlo Markov Chain technique to place constraints on the matter
density parameters and the two nuisance parameters. We adopt a flat cosmological
model, i.e. Ωm + ΩΛ = 1, and assume a flat prior on all free parameters, i.e. Ωm, α
and Υ. With a straightforward generalization of the χ2 function from Astier et al. (2006),
the adopted likelihood function L is

L ∝
∏
i

exp
[∆2

i

2σ2
i

] 1

σi
, (4.5)

with ∆i = mcorr
V,i −α∆mV,15,i−Υ−5 logDL(zi,Ωm), where σ2

i = σ2(mcorr
V,i )+α2σ2(∆mV,15,i),

and σ(mcorr
V,i ) and σ(∆mV,15,i) are the errors of mcorr

V,i and ∆mV,15,i, respectively. The for-
mula for σi assumes an independent propagation of errors in mcorr

V,i and ∆mV,15,i. We
verify this assumption by finding no signature of a correlation betweenmcorr

V and ∆mV,15

in a covariance matrix obtained from fitting the light curves.
The marginalised posterior probability densities of Ωm, α and Υ are shown in Figure

4.2. The confidence levels of the density contours are 68.3% and 95.5%. We quantify
the fit in terms of the maximum-likelihood values and confidence intervals containing
68.3% of the corresponding marginal probabilities. The best-fit nuisance parameters are
α = 1.37+0.36

−0.19 and Υ = −4.50+0.17
−0.32, which are consistent with the values derived from

the luminosity-decline rate relation, assuming Ωm = 0.315 and H0 = 67.3 km s−1 Mpc−1

(Li & Hjorth, 2014). In a flat universe, the best-fit cosmological model is (Ωm,ΩΛ) =

(0.58+0.22
−0.25, 0.42+0.25

−0.22).
Figure 4.3 shows the Hubble diagram for eight GRB-SNe systems. The effective

magnitudes meff
V of the GRB-SN systems in the rest frame V band are plotted as red

points. The best cosmological model is the black curve. For comparison, we plot three
other cosmological models: {(Ωm,ΩΛ)} = {(0, 1), (0.32, 0.68), (1, 0)} as dotted lines. The
lower panel in Figure 4.3 shows the magnitude residuals relative to the best cosmological
model.

4.5 CONCLUSION

The cosmological parameters Ωm and ΩΛ can be constrained with SNe Ia (Knop et al.,
2003; Perlmutter et al., 1999), CMB radiation (Planck Collaboration et al., 2013; Spergel
et al., 2003), and clusters of galaxies (Allen et al., 2002; ?). As shown in this paper, GRB-
SNe may add further constraints on cosmological parameters. With more systems at z up
to 1, the result would be more constraining, but we have opted here for systems with very
well sampled light curves. At higher redshifts (z > 1.5), with more powerful telescope
to be launched, e.g., JWST, GRB-SNe are potential candidates to break the degeneracies
and constrain the equation of state parameter w(z) (King et al., 2013; Linder & Huterer,
2003).

We thank Enrico Ramirez-Ruiz, Tomotsugu Goto and Dong Xu for their many helpful
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Figure 4.2: Constraints on α, Υ and Ωm assuming a flat cosmological model. The confi-
dence levels of the density contours are 68.3% and 95.5%.
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Figure 4.3: Hubble diagram for GRB-SNe. The effective apparent magnitudes of eight
GRB-SNe plotted as red points, are calculated using the best-fit parameters α = 1.37 and
Υ = −4.50. The best cosmological model with (Ωm,ΩΛ) = (0.58, 0.42) is in black, while
other models (labeled on the right side of the figure) are in blue. The lower panel shows
the magnitude residuals from the best-fit cosmological model.
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CONCLUSIONS AND OUTLOOK

Three things
cannot be long hidden:

the sun, the moon,
and the truth.

buddha

In this thesis, we have explored properties of SNe, especially GRB-SNe. GRB-SNe can
be used as standard candles in measuring cosmic distance. Their light curves also show
Phillips relation similar to SN Ia, whose peak magnitudes are correlated with decline
rates. Considering that they are associated with GRBs, and GRBs are extremely bright
that they can be easily detected, so we can detect light curves of GRB-SNe, especially
around the peaks. Corrected peak magnitudes with the decline rates, GRB-SNe can be
used to measure distance in the universe and constrain cosmological parameters.

The first main topic, which is discussed in Chapter 2, is the time delay distribution
and the rates of observing a lensed SN behind Abell 1689. Started with SIS profile, we
first theoretically analyze the time delays in strong gravitational lensing systems. Per-
turbs are then added into the system. A theoretical function describing the distribution
of time delays is derived. The effects of different mass profiles on the time delay dis-
tribution are also discussed. The dPIE profile has the shallowest slope, NFW is steeper,
and SIS is the steepest one. Taking cluster Abell 1689 as an example, time delays are
simulated with different mass clumps. We find that small time delays (< 1000 days) are
most generated by low massive clumps with velocity dispersion σ < 500 km s−1. With
17 strong lensing clusters, we constrain the parameters in the theoretical time delay dis-
tribution function. The clusters are selected that at least one image is spectroscopically
confirmed, as well as the range of the redshifts of the clusters are as large as possible. The
rates of observing a lensed background SN behind Abell 1689 is calculated. For SN Ia,
the rate is associated with both the mass and the star-formation rate of a host galaxy. A
two component model is used with one component describing the mass contribution and

92



CHAPTER 5. CONCLUSIONS AND OUTLOOK

the other being the star-formation contribution. For CC SNe, the rate can be estimated
with the star-formation rate of a host galaxy. Assuming the SNe are located at z = 3, the
yearly rate of observing a lensed SN with time delays less than 1000 days is small. With
more powerful space telescope to be launched, the rates of observing a lensed SN will
rise.

As discussed in Chapter 3, the second main topic is on the light curves of GRB-SNe.
Observed light curves of a GRB-SN are a combination of a GRB afterglow, a host galaxy
and a SN. The difficulty in obtaining an intrinsic light curve of a SN is to subtract the
afterglow and the host brightness from the total brightness. Sometimes a GRB afterglow
is too bright, though it decays exponentially, it is still bright enough to conceal the SN, or
a host galaxy where the SN is located at is brighter than the SN. In these cases, the light
curve of a SN is not detectable. Furthermore, dust along the line of sight is also needed
to be considered. In Chapter 3, we presented a general step to obtain the light curves of
GRB-SNe. The standard Monte Carlo method is widely used in error estimation. First
the flux from the host galaxy is subtracted. Then we subtract the afterglow contribu-
tion by assuming the afterglow decays in a power law or a broken power-law way. This
is different from the commonly used smooth function, but as discussed in the chapter,
the results in both ways are similar and consistent with each other. After that, we esti-
mate dust extinction in the Milky Way. DIRBE/IRAS dust map is used to constrain the
foreground extinction. A recalibration value is multiplied in order to correct the overes-
timated dust map. We also eliminate the host extinction from the literature. An updated
cosmological parameters are applied in distance modulus calculation. A multi-band K
correction is applied to the systems which have been observed in two or more bands and
two bands are appropriate for interpolation. We also build the SN 1998bw peak SED and
decline rate templates for those where multi-band K correction is not applicable. These
templates are built based on the light curves of SN 1998bw in U, B, V, R and I bands.
Compared to other steps, this is only a second order effect. The comparison between
two K correction methods is discussed and applied. The light curve data are fitted in
polynomial functions, and most of them are in 3rd or 4th order. Among 21 GRB-SNe
which have ‘strongest evidence’ to be associated with GRB, we succeed in getting 8 light
curves. We also present the reason for those we failed to obtain the light curves. Most
of them lack enough data to do polynomial fitting, either the afterglow subtraction take
away too many data or the observational data are not sufficient. There are two systems
have uncertain extinction or host galaxy contributions. One system lack data in proper
bands to do the K correction. With eight light curves, we find the correlation between
the peak magnitudes and the decline rates. The correlation effects: Pearson’s, Kendal’s
and Spearman’s are calculated. The peak magnitudes and the decline rates are stronger
correlated than the k and s factors. The correlation between the peak magnitudes, the
peak times, and the decline rates are presented. Rescaled light curves with decline rates,
factor s and peak time are presented. Among them, GRB-SNe show the most uniform
light curves with corrected with the decline rates.
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The third main topic is an application of the correlation between the peak magnitude
and the decline rate, which is discussed in Chapter 5. With the corrected peak magni-
tudes, we constrained the cosmological parameters ΩM and ΩΛ. Extinction and K correc-
tion are corrected to get apparent peak magnitudes of eight GRB-SNe mentioned above.
With the Standard Monte Carlo method, the effective apparent magnitudes and the de-
cline rates are simulated with 1−σ uncertainties covering the 68% of the total simulation
values to constrain the best cosmological parameters ΩM , assuming a flat universe. A
Hubble diagram is shown in flat universe.

The correlation between the peak magnitudes and the decline rates indicates that the
light curves of GRB-SNe behave similar to SNe Ia. Though the progenitor scenarios of
SNe Ia and GRB-SNe are different, their light curves have similar property and this makes
them standard candles in cosmic distance measurements. This correlation can further
constrain the progenitor model of GRB-SNe.

The rate of CC SNe do not decline rapidly beyond z > 1.5, and GRB-SNe are as-
sociated with the most luminous events in the universe: gamma-ray bursts, which make
GRB-SNe potential candidates as high redshift standard candles. With JWST to be launched,
GRB-SNe are potential candidates to breakdown the degeneracies and constrain the equa-
tion of state parameter w(z). GRB-SNe are potentially useful tools in dark energy re-
search.
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A

SUPPLEMENTARY MATERIALS

To test the accuracy of the code constraining the cosmological parameter Ωm (Li et al.,
2014), we use a different approach to constrain the best resultant free parameters α, Υ

and Ωm.

A.1 CROSS-CHECKING OF CONSTRAINING THE PARAMETERS α,
Υ AND Ωm

Covariance matrix does not show any relevant correlation between mcorr
V and ∆mV,15.

We simulate mcorr
V and ∆mV,15 independently with a standard Monte Carlo method. The

data are simulated 104 times with 68.3% of the total simulated data covering 1σ uncer-
tainties of the observed data.

The procedure of constraining Ωm is similar to Astier et al. (2006). We constrain the
cosmological parameters in a flat universe with ΩΛ = 1 − Ωm and Ωm ranging from 0 to
1. For each simulated data set (including eight mcorr

V and eight ∆mV,15), we constrain the
best-fit values of α, Υ and Ωm by minimizing

χ2 =

8∑
i=1

(mcorr
V,i − α∆mV,15,i −Υ− 5 logDL(z; Ωm))2

σ2(mcorr
V,i ) + α2σ2(∆mV,15,i)

, (A.1)

where σ(mcorr
V ) and σ(∆mV,15) are the 1σ uncertainties of the data mcorr

V and ∆mV,15.
The obtained constraints on the model parameters are shown in Figure A.1. The con-

fidence levels of the density contours are 68.3%, 90% and 95.5%. We choose the median
values of the distributions of α, Υ and Ωm as the best-fit values and 68% confidence level
around the median values as the errors. The best free parameters are α = 1.59+0.31

−0.28 and
Υ = −4.68+0.25

−0.27, which are consistent with the values derived from the luminosity-decline
rate relation, assuming Ωm = 0.315 and H0 = 67.3 km s−1 Mpc−1 (Li & Hjorth, 2014). In
a flat universe, the best-fit cosmological model is (Ωm,ΩΛ) = (0.52+0.34

−0.31, 0.48+0.31
−0.34). With

more systems at z up to 1, the result would be more constraining, but we have opted here
for systems with very well sampled light curves.

Figure A.2 shows the Hubble diagram for eight GRB-SNe systems. The effective mag-
nitudes meff

V of the GRB-SN systems in the rest frame V band are plotted as red points.
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Figure A.1: Cross-checking of the resultant parameters α, Υ and Ωm, assuming a flat
cosmological model. The confidence levels of the density contours are 68.3%, 90% and
95.5%.
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Figure A.2: Cross-checking of the Hubble diagram for GRB-SNe. The effective appar-
ent magnitudes of eight GRB-SNe plotted as red points, are calculated using the best-fit
parameters α = 1.59 and Υ = −4.68. The best cosmological model with (Ωm,ΩΛ) =

(0.52, 0.48) is in black, while other models (labeled on the right side of the figure) are
in blue. The lower panel shows the magnitude residuals from the best-fit cosmological
model.
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A.2. CODE TEST ON SCATTERS

The best cosmological model is the black curve. In comparison, three other cosmologi-
cal models: {(Ωm,ΩΛ)} = {(0, 1), (0.32, 0.68), (1, 0)} are also plotted as dotted lines. The
lower panel in Figure A.2 shows the magnitude residuals relative to the best cosmological
model.

The discussion above shows that though the two procedures are different in con-
straining α, Υ and Ωm, the results are consistent with each other.

A.2 CODE TEST ON SCATTERS

To test the effects of the uncertainties of the data on the uncertainties of Ωm and ΩΛ, with
the same procedure in Section A.1, we generate sets of pseudo-data containing MV,peak,
∆m15,V and their uncertainties and the redshifts, under a certain value of Ωm, α and Υ,
then we vary the scatter of mV and ∆m15, i.e., mscat. The uncertainties of Ωm and ΩΛ are
changed according to the changes of σ(mscat). We generate an initial set of mscat. When
the input σinput changes, the scatter values are multiplied by a factor of σinput/σ(mscat) to
make a new scatter mscat,new. The pseudo-data are generated in Ωm = 0.3 and ΩΛ = 0.7.
The uncertainties of Ωm change as a function of σinput as shown in blue in Figure A.3. In
general, as we expected, the uncertainties of the best cosmological parameters become
larger as σ(δmpseudo

V ) increases.
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Figure A.3: Uncertainties of best cosmological parameters as a function of pseudo-
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dashed lines represent the upper and lower uncertainties, while filled points and bold
lines show the averaged uncertainties (average of upper and lower limits).
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