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Abstract

Systems based on mechanical resonators are among the most sensitive force
probes in existence. The innate ability of mechanical devices to interact with
almost any other system through a variety of interaction forces is, at once,
a blessing and a curse. Tailoring these interactions is an act of balance and
is at the very heart of the research field of cavity optomechanics and, as a
result, of the work presented here.

In this thesis, I report on the development of mechanical resonators with
exceedingly low internal dissipation, and their application in cavity optome-
chanics. These devices are based on highly tensioned silicon nitride mem-
branes, whereupon we pattern a phononic crystal structure. Introducing
a geometric defect in the central region of this crystal structure allows for
spatial localisation of vibrations within the frequency range of the phononic
bandgap. These vibrational modes exhibit a distinct departure from regu-
lar clamping conditions of a square membrane resonator. Specifically, these
resonators, which are attached to silicon substates, do not experience the
rigid clamp otherwise present at the interface between a membrane and the
underlying substate. Instead, the evanescent decay of the localised vibration
modes into the phononic crystal patterned membrane structure constitutes
an effective “soft” clamping condition. Using this technique we realise soft
clamped membrane resonators with mechanical quality factors in excess of
109 at moderate cryogenic temperatures. With the highest reported quality
factor of 1.555× 109 at 1.28 MHz frequency, these devices are well suited for
experiments in quantum optomechanics.

Upon embedding such a device inside a high-finesse optical cavity, we cou-
pling the transverse motion of a localised vibrational mode to the cavity field.
Due the weak coupling of these mechanical devices to their phonon thermal
bath, we observe a strong influence of the radiation pressure back-action force
on the resonator motion. Particularly, we demonstrate strong ponderomo-
tive squeezing of light below the vacuum noise level, with (−2.89± 0.31) dB
as the highest degree of measured squeezing. Furthermore, our results sug-
gest that we can indeed prepare these devices close to their motional ground

iii



iv

state. Due to the long coherence time of our mechanical devices, as well
as the high detection efficiency, our optomechanical system lends itself for a
number of quantum optical protocols, including the generation, storage and
tomography of single excitations states.



Sammenfatning

Systemer baseret p̊a mekaniske resonatorer er blandt de mest følsomme kraft-
sensorer der findes. Deres naturlige evne til at vekselvirke med næsten ethvert
andet system gennem en række forskellige vekselvirkningskræfter er, p̊a sam-
me tid, en velsignelse og en forbandelse. Nøje tilpasning af disse interaktioner
er en balanceakt, og er selve essensen af forskningsfeltet kavitetsoptomekanik,
og dermed ogs̊a af det arbejde, som er præsenteret her.

I denne afhandling rapporterer jeg om udviklingen af mekaniske resonato-
rer med ekstremt lav intern dissipation, og disses anvendelse i kavitetsoptome-
kanik. Disse enheder er baseret p̊a stramt udspændte siliciumnitrid membra-
ner, i hvilket vi ætser et fononisk krystalmønster. Indførslen af en geometrisk
defekt i den centrale region af det krystalmønster muliggør rumlig lokalisering
af vibrationer med frekvenser inden for det fononiske b̊andgab. Disse vibratio-
nelle tilstande udviser tydelig afvigelser i deres grænsebetingelser fra normalt
udspændte kvadratiske membranresonatorer. Konkret udviser disse resona-
torer, som er udspændt p̊asiliciumsubstrater, ikke en rigid fastspænding, der
ellers er tilstede i grænsefladen mellem en membranen og det underliggende
substrat. I stedet udgr det henfaldende nærfelt (eng. “evanescent field”) af de
vibrationelle tilstande i membranstrukturen med det fononisk krystalmønster
en effektiv grænsebetingelse svarende til en “blød-fastspænding. Ved brug af
denne teknik udvikler vi blødt fastspændte membranresonatorer med meka-
niske godheder der overstiger 109 ved moderate kryogeniske temperaturer.
Med den højst rapporterede godhed p̊a 1.555 × 109 ved 1.28 MHz frekvens,
er disse enheder velegnede til kvanteoptomekaniske eksperimenter.

Ved indlejring af s̊adan en enhed i en høj-finesse optisk kavitet, kobler vi
den transverse bevægelse af en lokaliseret vibrationel tilstand til det optiske
felt. Grundet den svage kobling mellem disse mekaniske enheder og deres
fononiske bad, observerer vi en stærk p̊avirkning af lysstr̊alingstrykkets til-
bagekobling p̊a resonatorens bevægelse. Vi viser stærk ponderomotorisk lys-
klemning under lysets vakuumstøjniveau, med (−2.89± 0.31) dB værende
den højeste grad af lys-klemning vi har målt. Derudover tyder vores resulta-
ter p̊a, at vi kan forberede vores mekaniske enheder tæt p̊a deres vibrationelle
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grundtilstand. Grundet de lange kohærenstider af vores mekaniske enheder,
samt den høje detektionseffektivitet, er vores optomekaniske system veleg-
net til en række kvanteoptiske protokoller, herunder generering, lagring og
tomografi af enkeltexcitationstilstande.
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Chapter 1

Introduction

Diving into the history of modern cavity optomechanics is a behemoth of a
task, considering its deep routes in quantum optics and solid state physics.
Conveying that story is arguably an even greater undertaking, given the
intertwined nature of the field. Throughout the thesis I will try to provide
an overview of relevant prior work, and how it relates to subject matter.
However, before diving into the technical details, a brief contextualisation of
the work presented in this thesis is appropriate.

At its core, optomechanics is the study of the interaction between photons
(optical or microwave) and motional degrees of freedom. This interaction is
mediated by the radiation pressure force, which alters the dynamics of the
constituent systems. Engineering the details of this interactions can lead to
interesting static, as well as dynamical effects.

The near- and long-term applications of cavity optomechanics are in-
deed numerous. From prospects of signal conversion between the optical and
microwave domains [2], to magnetic-field sensing [3, 4], and tests of gravi-
tationally induced collapse of the mechanical wavefunction [5, 6], the field
of optomechanics consists of many parallel trajectories. Since a number of
these trajectories involve observation of quantum mechanical effects, one of
the key challenges is ensuring that influence of thermal noise on the mechan-
ical degrees of freedom is negligible compared to the disturbance added by
the measurement (i.e. measurement back-action [7]). Regardless of the exact
trajectory, the vast majority of these paths demand continued improvements
of the optical and mechanical sub-systems.

The ability to optimise the optical and mechanical sub-systems individu-
ally, before combining them, has made one optomechanical platform partic-
ularly popular – namely the membrane-in-the-middle system, which consists

1
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of a thin1 dielectric membrane (slab) placed inside a free-space Fabry-Pérot
optical cavity. This optomechanical system, pioneered by the group of Jack
Harris [8], emerged in part following the studies by Scott Verbridge and
colleagues [9], reporting on surprisingly high mechanical quality factors at
room temperature. The use of silicon nitride as the material of choice for
electromechanical experiments was not new per se, and priori results included
quality factors on the order of a few thousand at room temperature [10] or
3.5× 104 at millikelvin temperatures [11]. However, the results by Verbridge
et al. showed Q ∼ 2 × 105 at room temperature, which attracted a lot of
attention. The group of Jack Harris made use of the fact that thin silicon
nitride membranes was a commercially available product, used as vacuum
windows for x-ray spectroscopy, among others. These silicon nitride vacuum
windows turned out to be exceptionally potent mechanical devices [12], yield-
ing quality factors in excess of 107 at 300 mK temperatures. Furthermore,
embedding them inside a high-finesse optical cavity, resulted in a highly ver-
satile optomechanical system – depending on the location of the membrane
within the optical cavity, the experimenters could choose between an optome-
chanical interaction linear or quadratic in the membrane’s displacement [8].
The fact that this optomechanical system could make use of decades of re-
search in high-finesse free-space optical resonators, combined with the seem-
ing simplicity of the system, unsurprisingly resulted in a tremendous amount
of interest in the years to come.

The path from this pioneering piece of work towards an optomechan-
ical system operating in the quantum regime involved several challenges.
Among these was the understanding of mechanical dissipation in membrane
resonators and developing techniques to ensure reproducibly high quality
factors, technical limitations related to cryogenic operation of high-finesse
cavities, as well as classical noise of the lasers used in relation to the exper-
iments and thermal noise of the cavity mirrors. Over the past decade these
challenges have been addressed to a large extent, allowing for the observation
of strong ponderomotive squeezing of light [13, 14], cooling of a vibrational
mode of the membrane to the its motional ground state [15–17], quantum
feedback control of mechanical motion [17], quantum back-action evading
measurements in a hybrid atom-membrane system [18], displacement mea-
surement below the standard quantum limit [19], and so on. This thesis
describes some of the developments leading to several of the results outlined
above, and is structure as follows:

1Typically below a few hundred nanometers.
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In Chapter 2 we develop the theoretical toolbox necessary to describe
tensioned membrane resonators. In particular, we discuss some of the most
important sources of dissipation of elastic energy, with a particular emphasis
on the concept of dissipation dilution, which describes the influence of ten-
sion on the quality factors of a tensioned resonator – namely the fact that
tension “dilutes” mechanical losses. In addition to summarising previous
results, a new derivation of dissipation dilution is provided, which suggests
that the degree of dilution is temperature dependent. While said dependence
is negligible for the membrane devices studied in this thesis, the derivation
provides new insights related to dissipation dilution.

Chapter 3 is dedicated to the description of phononic engineered mem-
brane resonators. After discussing some of the basics of phononic engineering,
we describe the concept of soft clamping and how phononic crystal pattern-
ing of a tensioned membrane resonator can alter the boundary conditions
of the vibrational modes, leading to a significant increase in the mechanical
quality factors of membrane resonators. Finally, the latest incarnations of
soft clamped resonators are described, which provide an improvement of up
to 46% in quality factors, compared to the first incarnation.

In Chapter 4 we summarise basic optomechanical effects, including
optomechanically induced transparency and ponderomotive squeezing, and
discuss the mapping between the membrane-in-the-middle system and a
canonical optomechanical system. Finally, we describe our realisation of the
membrane-in-the-middle system and its performance with two different soft
clamped resonator geometries. We show that our system is indeed quantum
enabled, which is demonstrated by the measurement of strong ponderomo-
tive squeezing of light. Cryogenic measurements of the latest incarnation of
soft clamped resonators yield the highest measured quality factor to date.
Finally, we discuss future developments, including a proposed solution to the
technical noise source related to cavity mirror modes.
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Chapter 2

Fundamentals of membrane
resonators

The aim of this chapter is to establish a common language with regards
to mechanical resonators, and develop a toolbox which will later aid us in
understanding membranes with more complicated structures. We begin by
reviewing the elastic equation of motion for a thin plate in the linear regime,
and establishing how effective resonator parameters – spring constant and
mass – can be estimated. Since understanding and reducing elastic losses is at
the very heart of this thesis, a substantial amount of time will be dedicated to
describing some of the more important dissipation mechanisms. The concept
of dissipation dilution will be introduced, alongside a derivation of dissipation
dilution starting from thermoelastic damping. Here, I find that the dilution
factor has an explicit temperature dependence. Accounting for surface and
volumetric losses, a region in parameter space is identified where this model
can be tested.

2.1 Elastic equation of motion for a thin plate

We start by considering the dynamical equation of motion for a thin plate of
uniform thickness h with in-plane forces [20]

Dx

h

∂4w

∂x4
+
Dy

h

∂4w

∂y4
+ 2

Dxy

h

∂4w

∂x2∂y2
(2.1)

−σx
∂2w

∂x2
− σy

∂2w

∂y2
− 2σxy

∂2w

∂x∂y
= −ρ∂

2w

∂t2
,

where w(x, y, t) is the vibration amplitude normal to the midplane of the
plate (assumed to be smaller than the plate thickness), Di are the flexural

5
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rigidities, σi are the in-plane stress components, and ρ is the material density.
The flexural rigidities can be expressed in terms of the Young’s moduli and
Poisson’s ratios as follows

Di,j =
Ei,jh

3

12(1− νjνj)
(2.2)

Dxy = νyDx + 2
Gh3

12
, (2.3)

where G is the shear modulus. Since the material our membranes are fab-
ricated from is isotropic (due to the amorphous nature of the material),
the equations above can be simplified assuming Ex = Ey = E, νx = νy = ν
and G = E/2(1 + ν). Simple algebra shows that in this leads leads to
Dx = Dy = Dxy ≡ D. Finally assuming an isotropically tensioned plate,
with no shear stresses (i.e. σx = σy ≡ σ and σxy = 0), we arrive at

D

h

{
∂4w

∂x4
+
∂4w

∂y4

}
− σ

{
∂2w

∂x2
+
∂2w

∂y2

}
+

2D

h

∂4w

∂x2∂y2
= −ρ∂

2w

∂t2
, (2.4)

The equation above can of course be written more compactly in terms of
the Laplace and biharmonic operators. For the material and device param-
eters considered in this work1, the last term on the left-hand side can be
considered as a perturbative term and shown to have negligible effect on the
eigensolutions [21].
Upon removing the perturbative term in Eq. (2.4), the equation of motion
can be solved by separation of variables for the out-of-plane displacement
field (i.e. w(x, y, t) = u(t)X(x)Y (y), where u(t) described the temporal evo-
lution of the field) and assuming clamped boundary conditions (w(x, y) = 0
and ∂w/∂x = ∂w/∂y = 0 at all four edges of the plate). The solutions for
a clamped square membrane can in fact be constructed from the eigensolu-
tions for a 1D beam [21,22]. While our main focus is on 2D geometries, it is
nevertheless instructive to consider the solutions to the 1D problem, which
can be approximated as [21–23]2

um(x) =

{
vm(x), 0 ≤ x ≤ L/2

(−1)m+1vm(L− x), L/2 ≤ x ≤ L
(2.5)

vm(x) = sin(kxx) +
λkxL

2

[
exp

(
−2x

λL

)
− cos(kxx)

]
, (2.6)

1While we will return to this in greater detail later on, the relevant quantities for this
consideration are: E = 270 GPa and h ∼ 50 nm.

2To be consistent with the notation of [21], we use um(x) to denote a spatial mode,
not to be confused with the aforementioned temporal evolution u(t) for the out of plane
displacement.
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where kx = mπ/L (m indicating the number of antinodes in the vibration
pattern and L being the beam sidelength) and λ being the so-called dilution
factor 3, defined as

λ ≡
√

4D

σhL2
=

√
Eh2

3(1− ν2)σL2
. (2.7)

At this point in time, it is worth getting a rough sense of scales. For a
typical membrane resonator considered in this work, the thickness is on the
order of a few tens of nanometers, while the sidelength is on the order of
a few hundred micrometers. This, together with a Young’s modulus of ∼
270 GPa and a tensile stress of ∼ 1 GPa, gives λ ∼ 10−3. This suggests
that the second term in Eq. (2.6) is only relevant at the very edges of
the beam/membrane. The characteristic length of the exponential decay is
Lchar = λL/2 ≈

√
E/12σ h, which for relevant parameters is on the order of

a few hundred nanometers. As we will see later in this work, the additional
term in Eq. (2.6), which originates from the flexural rigidity terms in the
equation of motion (as indicated by the presence of the flexural rigidity in
the dilution parameter), can be of paramount importance. However, for now,
the observations above suggest that we can omit the second term in Eq. (2.6)
and continue our derivation with the simple sinusoidal modeshape.

As such, in it’s simplest form the solution to the elastic equation of motion
for a thin rectangular plate can be written as [20]

w(x, y, t) = umn(t)ψmn(x, y) (2.8)

≈ Amn sin(Ωmnt)︸ ︷︷ ︸
umn(t)

× sin(mkxx) sin(nkyy)︸ ︷︷ ︸
ψmn(x, y)

, (2.9)

where the wavenumbers are defined as ki = π/Li, Ωmn is the angular fre-
quency of the vibration and Amn is the amplitude. Three examples of vibra-
tional mode patterns are shown in Fig. 2.1.
While the dynamics of the plate resonator can be described in detail through
Eq. 2.4, as experimentalists we are often times interested in effective param-
eters describing the resonator at hand (such as an effective spring constant),
allowing us write more manageable one-dimensional equations of motion of
a point mass. To this end, we employ Galerkin’s method [23] in deriving
effective resonator parameters.

3As to why this is the commonly known name for this parameter, we will touch upon
later in this chapter.
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2.1.1 Effective resonator parameters via Galerkin’s method

Galerkin’s discretization method is a widely used technique in engineering,
and belongs to a broader family of weighted-residual methods used in solving
partial differential equations [24]. The Garlekin method uses an eigensolution
to the differential equation as a test function. Operationally the method
involved multiplication of the differential equation with the said test function
and integration over entire domain of the resonator [23]. Starting from Eq.
(2.4) (now expressed in terms of the Laplace and biharmonic operators, for
compactness), we multiply the normalized modeshape ψmn(x, y) (see Eq.
(2.8)) onto the differential equation and perform volume integration

D

h

∫
ψmn∇4wmn dV − σ

∫
ψmn∇2wmn dV = −ρ

∫
ψmn

∂2wmn
∂t2

dV

(2.10)

um,n

∫ (
D

h
ψmn∇4ψmn − σψmn∇2ψmn

)
dV︸ ︷︷ ︸

keff

= −ümn ρ
∫
ψ2
mn dV︸ ︷︷ ︸

meff

, (2.11)

where the effective spring constant, keff , and mass, meff , are here defined as

meff ≡ ρ

∫
ψ2
mn dV (2.12)

keff ≡
∫ (

D

h
ψmn∇4ψmn − σψmn∇2ψmn

)
dV. (2.13)

It is worth appreciating that, starting from the more involved elastic equation
of motion, we have arrived at the description of simple harmonic motion in
Eq. (2.11).

(2, 1) (2, 2) (4, 2)

Figure 2.1: Simulated displacement patterns for three different vibrational
modes.
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The equation for the effective mass, as defined in Eq. ((2.12)) can in fact
be written more generally as

meff ≡ ρ

∫ (
|Q|
|Q|max

)2

dV, (2.14)

where Q is the out-of-plane displacement for a given vibrational mode.
With the definition of effective resonator parameters, we see that the

differential equation can be masked as an equation of motion for an effective
one dimensional resonator. Using Eq. ((2.9)), we can write explicit equations
for the effective mass, spring constant, as well as the eigenfrequency, for a
rectangular membrane

meff =
ρdLxLy

4
=
mphys

4
(2.15)

keff =

(
D

h

[
(mkx)

2 + (nky)
2
]2

+ σ
[
(mkx)

2 + (nky)
2
]) meff

ρ
(2.16)

Ωmn =

√
keff

meff

= Ω0
mn

√
1 +

D

σh
[(mkx)2 + (nky)2] (2.17)

Ω0
mn =

√
σ

ρ
[(mkx)2 + (nky)2] . (2.18)

Seeing that the second term in Eq. (2.17) scales4 as h2/L2, this term can be
omitted in most cases for typical device parameters. It is worth noting that
Galerkin’s method has been shown to result in less accurate prediction for
resonators operating in the nonlinear regime [24, 25] (i.e. for deformations
on the order of or larger than the device thickness). The accuracy can,
however, be improved by including more than one mode in the discretization
process [25].

2.2 Dissipation of elastic energy

As we have seen in the previous section, the equation of elasticity for a
plate can be manipulated to take the form of an equation of motion for a
simple (undriven) harmonic oscillator, with effective resonator parameters.
However, our treatment so far has not considered the fact that the elastic
energy, stored in the resonator at hand, eventually dissipates. At the level of
the effective one dimensional harmonic oscillator equation, we can introduce
a simple damping term proportional to the velocity, i.e. ∝ meffΓmż. The

4By using Eq. (2.2) and the definition of kx/ky.
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purpose of this section is to outline the various contributions to elastic energy
dissipation and how some can be mitigated.

The total mechanical quality factor, Q = 2π W
∆W
≈ Ωm/Γm, given by the

ratio of the stored and dissipated elastic energies (or mechanical frequency,
Ωm, and the dissipation rate, Γm, in the low-damping limit), can be divided
into two parts – intrinsic or extrinsic of origin. The exact type of intrinsic
and extrinsic sources will typically depend on the specifics of the mechani-
cal resonator at hand, and the environment it “sees”. In our case, the most
relevant extrinsic sources of dissipation include gas damping and phonon tun-
neling losses [26] (also known as anchoring losses), while the relevant intrinsic
sources are thermoelastic damping (TED), surface losses and two-level de-
fects (TLS). The sum total of these contributions ultimately determines the
quality factor of our devices

Q−1 =
∑
i

Q−1
i = Q−1

gas +Q−1
tunnel +Q−1

TED +Q−1
surface +Q−1

TLS +Q−1
other. (2.19)

Other sources of dissipation, of lesser importance/interest for the work at
hand, will be discussed at the end of this chapter. In the next few sections
we will touch upon the four sources of dissipation mentioned above, starting
with gas damping.

2.2.1 Gas damping

Loss of elastic energy due to the interaction of a resonator with the surround-
ing gas molecules is an excellent example of an extrinsic loss mechanism. The
exact details of this interaction will typically depend on a number of things
– the geometry and surface roughness of the resonator, gas composition,
proximity to other objects, temperature, gas pressure, and so on. Broadly
speaking, gas damping can be divided into four regimes [23,27–29]:

1) free molecular, where the loss of energy to the surrounding gas is
negligible compared to other loss mechanisms,

2) molecular or ballistic regime, where elastic energy is dissipated due to
momentum exchange with the surrounding (noninteracting) gas molecules,

3) transition or crossover regime, marking the transition from the molec-
ular regime to the Newtonian regime and

4) the continuum or Newtonian regime (also referred to as fluidic or
viscous regime), where one has to resort to the Navier-Stokes equations,
in order to describe the interaction between the mechanical resonator and
the surrounding gas.

It is common practice to distinguish between the various regimes in terms
of a dimensionless quantity, the Knudsen number, Kn, defined as the ratio
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between the mean free path length of the gas molecules (λf) and the charac-
teristic length scale of the resonator (Lc)

Kn =
λf

Lc

. (2.20)

The transition between the Newtonian and molecular regime takes place
when the mean free path becomes comparable to the characteristic length
scale [29], 0.1 < Kn < 10. The mean free path length can be expressed as
follows [23,30]

λf =
kBT√
2π d2p

, (2.21)

where kB is Boltzmann’s constant, T is the temperature of the gas, d is the
kinetic diameter of the molecule (∼ 3.5 Å for ambient gas [30]) and p is the
gas pressure. For a characteristic length5 of 500 µm, one would anticipate
the transition region to be between ∼ 1 mbar and ∼ 10−2 mbar in room
temperature settings. Finally, it is worth noting that in the viscous regime
the frequency of the resonator changes appreciably as a function of the gas
pressure [27, 28]. This dependence is still present in the molecular regime,
albeit less pronounced.

For the vast majority of the results presented in this work, we operate
deep in the molecular or free molecular regimes. In those cases, the quality
factor due to gas damping for a square plate can be derived by considering
the momentum exchange between the resonator and the gas molecules on
both sides of the resonator [31]. The quality factor can be expressed as

Qgas = QD

(
1 +

L

d0

β

32

)−1

(2.22)

QD =
ρhΩmn

4

√
π

2

√
RT

Mm

1

p
, (2.23)

where d0 is the distance between a nearby surface and the membrane, L is the
sidelength of the membrane, β is a geometry-related constant (describing the
average travelled distance for a molecule between the plate and the nearby
surface [31]), R is the ideal gas constant, Mm is the molar mass of the gas
and p is the gas pressure. The second term in Eq. (2.22) is typically referred

5The notion of “characteristic length” is unfortunately ill-defined, and will depend on
the exact geometry of the resonator and it’s surrounding. If a membrane resonator is in
close proximity to another surface, the characteristic length would no longer be the size
of the resonator, but rather the gap between the resonator and the nearby surface.
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to as squeeze film damping (since the air is being “squeezed” out, as the
membrane moves towards the nearby surface), and only becomes relevant
when the resonator is in close proximity (∼ L/50 for a square membrane,
assuming β = 2/π [31]) to another surface.

In Fig. 2.2 we see an example of gas damping for a 50 nm thin membrane
with 450 µm sidelength. As expected, we see a departure from the p−1

scaling at higher pressures, while the data follows scales in accordance with
Eq. (2.23) for lower pressures. The dashed is a plot of Eq. (2.23), with
the final Q as the only fit parameter (i.e. (Q−1

0 + Q−1
D )−1), while the solid

line includes a “fudge factor”, α, to account for pressure differences (i.e.
QD → QD/α). The fit suggests that the actual pressure, as seen by the
membrane, is approximately 35 times higher than is suggested by the pressure
gauge, and as a result, that the transition region is around p ∼ 10−2 mbar,
which roughly agree with the estimate based on the Knudsen number above.
More often than not, such a “fudge factor” is required for a quantitative
agreement between measurement and data. This will depend on the exact
details of the vacuum system, the local environment of the resonator and the
proximity of the pressure gauge to the vacuum chamber.

10-5 10-4 10-3

Pressure (mbar)
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y 
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(Kn>10)

Transition
regime
(Kn<10)

Figure 2.2: Quality factor of a square membrane resonator as a function of
vacuum pressure, as read from the pressure gauge. The membrane parame-
ters are: L ≈ 452 µm, h ≈ 50 nm, σ ≈ 1.14 GPa. The measurements are of
the (2,2) vibrational mode.

Finally, as one might expect, perforating the membrane can reduce the
effect of squeeze film damping, since the air molecules now only have to
travel from one hole to another [29] (thus resulting in a reduction of β).
While somewhat manageable expressions can be found for certain types of
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perforation (e.g. circular holes arranged in a square lattice), one has to
resort to numerical simulations for more complex perforations [32]. However,
operationally speaking, one can resort to Eq. (2.22) as an estimate for a lower
bound.

2.2.2 Phonon tunneling losses

Another prime example of an extrinsic loss mechanism is that of phonon
tunneling [26], often referred to as anchoring or clamping losses. It refers
to the channel of dissipation associated with mounting of the mechanical
resonator and, as a result, the eventual dissipation of the stored elastic energy
in the mechanical resonator into the supporting structure. A large body of
theoretical and experimental work has been devoted to understanding and
mitigating this loss mechanisms over the past few decades, and we will return
to some of these in the next chapter.

As one might anticipate, the magnitude of this loss mechanisms can be
highly dependent on the geometries of the resonator and support structure,
and often one has to resort to approximate solutions (for instance, assuming
that the support structure is semi-infinite), and eventually numerical simula-
tions. Nevertheless, it is instructive to consider phonon tunneling in general
terms, since some of the concepts are integral to finding means to eliminate
this loss mechanism. In the following, we limit our discussion to membrane
resonators.

The term “phonon tunneling” was initially coined by Ignacio Wilson-
Rae [26], and is a general theoretical framework used to describe support-
induced losses in nanomechanical resonators. Assuming a weak coupling
between the resonator and the underlying support structure, for mechanical
quality factor due to phonon tunneling losses can be expressed as follows [33]

Q−1
tunnel =

π

2ρsρrω3
r

∫
q

∣∣∣∣∫
S

dS̄ ·
(
σσσ(0)
q · ū′R − σσσ′R · ū(0)

q

)∣∣∣∣2 × δ (ωR − ω(q)) .

(2.24)

Here, i ∈ R, q denote a resonator eigenmode R and support eigenmode q.
Furthermore, σσσi and ui are the stress and displacement fields, ρi the material
densities, and ωR and ω(q) and the eigenfrequencies of the resonator and the
support, respectively. The overlap integral is taken over the contact area S
between the resonator and the support. This expression, albeit quite general,
suggests that the mechanical quality factor can be increased by reducing the
spatial and/or spectral overlap between the resonator mode(s) and the sup-
port modes. In practice, the latter can be achieved by reducing the density
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of states of the support (for instance, by decreasing the effective size of the
support), while the former can be achieved by choosing different symmetries
of the resonator and substate modes (e.g. by embedding a circular resonator
in a square silicon support). But while the specifics of the implementation
can vary, reducing the spatial and spectral overlap is a key objective is de-
signing high-Q mechanical resonators. This concept is at the very heart of
the devices described in this work.

2.2.3 Thermoelastic damping and dissipation dilution

As we turn our attention to internal loss mechanisms, we are inevitably
lead to the work of Clarence Zener in late 1930’s and early 1940’s on internal
friction in solids. Zener considered transverse vibrations in an isotropic beam,
and how the coupling between these vibrations to a temperature field can
constitute a mechanism of elastic energy dissipation [34]. His analysis was
based on the Thomson effect, which links stress, σ, that a solid is subjected to
with a temperature change, ∆T , in the solid. Mathematically the Thomson
effect can be described as follows for an isotropic solid [35]

∆T = − α
ρc
σT0, (2.25)

where ρ is the material density, c is the specific heat per unit mass, T0 is
the equilibrium temperature, and α is the coefficient of thermal expansion
and, in effect, the coupling coefficient. Assuming a positive coefficient of
thermal expansion, an increase in the temperature will be observed upon
subjecting the object to a compressive force (i.e. σ < 0). Zener realised
that a similar dynamics is taking place in a beam as it vibrates: the side of
the beam which is stretched at a given point in time of the vibration will
be cooled down, while the opposite side will heat up (see Fig. 2.3). The
resultant temperature gradient across the neutral axis of the beam leads to
an irreversible heat transfer, as the system relaxes to equilibrium. This idea
was proposed by Zener in his initial work from 1937 [34] and generalised
for beams and wires shortly hereafter [36]. Zener’s derivation was based
on his “standard model” of an anelastic solid (sometimes referred to as the
“standard linear solid” model). It is therefore instructive to cover certain
aspects of Zener’s derivation. Here, we follow the derivation as presented
in [37,38].

Zener’s model of anelasticity

In the standard theory of elasticity we implicitly assume no time dependence
in the stress-strain relation – exerting a force on an object leads to an instan-
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Figure 2.3: Illustration of temperature changes in a deformed beam, assum-
ing a positive coefficient of thermal expansion.

taneous deformation. However, in reality there is a lag between these events.
A solid object showing non-instantaneous response to an external force, and
no lasting deformation, is known as an anelastic solid. This dynamics can
be captured by modifying Hooke’s law to include time derivatives of stresses
and strains

σ + τεσ̇ = ER(ε+ τσ ε̇), (2.26)

where τε (τσ) is the stress (strain) relaxation time for constant strain (stress),
and ER is the elastic modulus after all relaxation has occurred. We can solve
Eq. (2.26) in Fourier space, re-expressing the stress-strain relation with an
effective elastic modulus

σ = ER
1 + iΩτσ
1 + iΩτε︸ ︷︷ ︸
Eeff

ε. (2.27)

By a simple manipulation we find that the effective elastic modulus can be
expressed as the sum of an in-phase and an out-of-phase term

Eeff = ER

[
1 + Ω2τστε
1 + (Ωτε)2

+ i
1 + Ω(τσ − τε)

1 + (Ωτε)2

]
. (2.28)

The assumption of an imaginary Young’s modulus is in and of itself often
referred to as Zener’s model.

Based on this finding, let us take a simplified example and express the
stress and strain as harmonic functions of time

ε = ε0 exp(iΩt) (2.29)

σ = σ0 exp(iΩt). (2.30)
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Expressing the complex Young’s modulus, Ẽ ≡ E1+iE2, in polar coordinates,
the stress-strain relation can be written as follows

σ = |Ẽ| ε0 exp

(
iΩt+ i tan−1 E2

E1

)
︸ ︷︷ ︸

ε

, (2.31)

where the argument of the complex Young’s modulus has been absorbed into
the strain field, ε. We can now calculate the stored and dissipated energies,
and hence the mechanical quality factor, using the equations above. The
mechanical work done per unit volume per oscillation cycle (i.e. dissipated
energy per unit volume per cycle) can be found as follows [39]

∆W =

∫ 2π/Ω

0

R[σ]R
[

dε

dt

]
dt, (2.32)

whereR is the real part. The amount of stored energy is found by integration
over a quarter oscillation cycle, π/2Ω,

W =

∫ π/2Ω

0

R[σ]R
[

dε

dt

]
dt. (2.33)

Thus we arrive at the following result for the quality factor

Q−1 =
∆W

2πW
=
E2

E1

. (2.34)

As we can see, in the framework of Zener’s model, the quality factor is given
by the ratio of the real to imaginary part of the complex Young’s modulus.
Returning to Eq. (2.28), we can now express the mechanical quality factor
by taking the ratio of the real and imaginary parts of Eeff

Q−1
Debye = ∆

Ωτ̄

1 + (Ωτ̄)2
, (2.35)

where ∆ = (τσ−τε)/τσ (know as “relaxation strength”) and τ̄ =
√
τστε . The

quality factor has a Lorentzian form, with a minimum at Ωτ̄ = 1. As the
naming suggests in Eq. (2.35), dissipation of this form is known as Debye
peaks. Given the simplicity of the model, it is not surprising that Debye
peaks appear in a number of descriptions of dissipation, including two-level
systems, which we will touch upon later in this chapter.

In the derivation of thermoelastic damping for a thin beam, Zener arrived
at the result in the form of Eq. (2.35), with the relaxation strength and the
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characteristic time constant expressed in terms of thermodynamic quantities

Q−1
TED,Zener = ∆E

ΩτTED

1 + (ΩτTED)2
, (2.36)

∆E = E
α2T0

ρcp

, (2.37)

τTED =
h2ρcp

π2k
=

h2

π2Dth

, (2.38)

where cp is the specific heat capacity, k is the thermal conductivity, and
Dth = k/ρcp is the thermal diffusivity (τTED is the mean diffusion time across
the thickness of the beam). This result was achieved by mode expansion of
the temperature field. Zener showed that the dominant contribution (98.6%)
is from the first mode, and the resultant quality factor was found to be given
by Eq. (2.36). Experimental agreement with the thermoelastic model was
found shortly after the proposal. In fact, a few months after his original pa-
per, Zener reported on the quantitative agreement between his thermoelastic
model and measurements with glass and metal wires [40].

Separate and apart from the thermoelastic loss model, another aspect of
Zener’s work has played a key role in experimental physics, particularly over
the last few decades – namely the assumption of complex Young’s modulus.
In the following I will outline the main outcome of these efforts, and how
these are intimately related to the work presented in this thesis.

Dissipation dilution

The first branch of efforts related to the model of anelasticity can be traced
back to the early days of LIGO. Among the numerous considerations asso-
ciated with the design of the gravitational wave detector was the thermal
noise of the mirror suspension. In a lengthy report [41] from 1983 compiled
by Paul Linsay, Peter Saulson and Rainer Weiss, the authors noted, among
others, that the quality factor of the pendulum (consisting of a thin wire
suspension and a large mirror) was dominated by the elastic energy stored
as gravitational potential energy. The quality factor of the pendulum mode
could therefore be approximated as

Q ≈ Qmat
Egrav

Eelastic

, (2.39)

where Qmat is the intrinsic quality factor of the suspension material (quartz
in the case of LIGO), while Egrav and Eelastic are the elastic energies stored in
the flexure of the wire and as gravitational potential energy, respectively. By
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introducing a lossless potential, namely the gravitational field, the amount
of stored elastic energy is increased, without increasing the internal friction
in the suspension material.

Of course, a bi-product of such a construct is that the quartz wire be-
comes tensioned, due to the gravitational pull of the mirror attached to the
suspension wire. The importance of the tension was first highlighted in the
seminal work by Gabriela González and Peter Saulson in 1994 [42]. Here,
González and Saulson set out to derive an exact expression for the mechani-
cal quality factor of the pendulum mode, starting from the elastic equation
of motion for a tensioned beam6. Importantly, the authors did the deriva-
tion in the framework of Zener’s model, using a complex Young’s modulus
to incorporate material losses (i.e. Ẽ = E1 + iE2). Assuming a displacement
modeshape similar to Eq. (2.6), the mechanical quality factor was shown to
be given by the following expression [42]

Q−1
n = 2

√
E1I

σL2

[
1 +

n2π2

2

√
E1I

σL2

]
Q−1

int (2.40)

where I is the area moment of inertia, and Q−1
int = E2/E1 is the intrinsic

inverse quality factor of the underlying material, given by the ratio of the
real and imaginary Young’s moduli. González and Saulson showed that the
presence of tension σ “dilutes” the intrinsic losses of the wire. This rather
remarkable result was later dubbed dissipation dilution [43] and, to this day,
plays a key role in gravitational wave interferometers.

More than a decade later, in a rather different context, researchers were
studying mechanical dissipation in tensioned silicon nitride strings. In 2006,
Scott Verbridge and colleagues reported unexpectedly low dissipation in these
microfabricated devices [9], starkly deviating from dissipation in other glassy
materials. Unaware of the earlier works of Saulson and colleagues, these
results were quite surprising. In an attempt to explain these findings, Sil-
van Schmid and Christofer Hierold derived an expression for the mechanical
quality factor [44] using Zener’s model (i.e. assuming a complex Young’s
modulus), finding that

Q−1
n =

(nπ)2

12

E

σ

(
h

L

)2

Q−1
int . (2.41)

6While the origin of the tension in the case of González and Saulson was due to the
gravitational pull of a mirror attached to the wire, the equation of motion based on which
the quality factor was derived is the one for a tensioned beam, making the result more
general than at first glance.
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As we can see, the expression closely resembles the second term of Eq. (2.40)
derived by González and Saulson. The discrepancy was later shown to be
due to the fact that Schmid and Hierold used a simplified expression for
the modeshape (i.e. w ∝ sin(kxx)). However, the prediction of a Q scaling
quadratically with length was incompatible with experiments, where a linear
scaling was observed.

A couple of years past, Quirin Unterreithmeier and colleagues took a
similar approach as Schmid and Hierold in trying to explain the observed
Q-factors [45]. However, instead of attempting to derive an explicit expres-
sion for the quality factor, the stored and dissipated elastic energies were
(presumably) derived numerically, showing excellent agreement with experi-
mental data. In passing, the authors noted that “(...) the maximum strain
and thus local dissipation occurs near the clamping points (...)”. Shortly
after these findings, Schmid reported on a modified derivation of quality fac-
tor of a string under flexure [46], which resulted in an expression closely
resembling the one by González and Saulson (see Eq. (2.40)). As Schmid
pointed out, the additional term in the quality factor, which was missing in
his original derivation [44], was due to the concentrated bending at the edges
of the string. This was the culmination of several years of work by numerous
research groups, resulting in the re-discovery of dissipation dilution and the
realisation that tension in a resonator dilutes dissipation.

With growing interest in tensioned silicon nitride resonators for opto-
and electromechanics, these considerations were extended to 2D by Pen-Li
Yu and colleagues in Cindy Regal’s group [21]. As a stark demonstration
of loss concentration near the edges of the membrane, the researchers con-
sidered two cases of metallized silicon nitride membranes – one, where the
entire membrane was covered by aluminum, and the second case involving
metallization everywhere except for the edges. Indeed, removing metal in the
immediate vicinity of the clamp was shown to boost the mechanical quality
factor appreciably. Given the relevance of Yu’s derivation, we will now review
some of the main details associated with it.

We start by considering the strain components associated with bending of
the plate. Assuming that the deflections of the plate are small compared to
the it’s thickness, we can ignore terms associated with elongation. For a given
displacement field of the membrane w̃(x, y, t) = w(x, y)eiΩt, the oscillating
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strains can be written as [21,47]

ε̃(t) =

ε̃xx(t)ε̃yy(t)
ε̃xy(t)

 ≈
 −z ∂

2w
∂x2

−z ∂2w
∂y2

−2z ∂2w
∂x∂y

 eiΩt =

εxxεyy
εxy


︸ ︷︷ ︸

ε0

eiΩt. (2.42)

Next, the oscillating stresses can be found via the stress-strain relation for a
thin plate

σ̃(t) =

σ̃xx(t)σ̃yy(t)
σ̃xy(t)

 = Ẽ
1

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2


︸ ︷︷ ︸

M

ε̃(t) = ẼMε̃(t), (2.43)

where Ẽ = E1 + iE2 is the complex Young’s modulus, following Zener’s
model of anelasticity. The real part of the oscillating stresses can therefore
be written as follows

R[σ̃(t)] = E1Mε0 cos Ωt− E2Mε0 sin Ωt. (2.44)

Similar to the toy-model in the last section, we can calculate the amount of
dissipated elastic energy following Eq. (2.32). The mechanical work done
per unit volume per oscillation cycle is found to be given by the following
expression [21]

∆WδV =

∫ 2π/Ω

0

R[σ̃T]R
[

dε̃

dt

]
dt = πE2ε

T
0 Mε0. (2.45)

The total loss can thus be estimated by integration of the above equation
over the entire volume of the resonator. Using Eqs. (2.42-2.43), the total
dissipation can be written as follows

∆W =

∫
∆WδV dV (2.46)

=

∫
z2dz

∫∫
πE2(x, y)

1− ν2

{(
∂2w

∂x2
+
∂2w

∂y2︸ ︷︷ ︸
mean curvature

)2

− 2(1− ν)

(
∂2w

∂x2

∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)

︸ ︷︷ ︸
Gaussian curvature

}
dxdy, (2.47)
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where, for the sake of generality, we include the spatial dependence of E2.
Performing the integral from z = −h/2 to z = +h/2 and invoking Green’s
theorem, it can be shown that the integrated Gaussian curvature is zero for
a clamped plate with uniform thickness and constant E2, yielding [21]

∆W =
πE2h

3

12(1− ν2)

∫∫ {
∂2w

∂x2
+
∂2w

∂y2

}2

dxdy. (2.48)

The stored elastic energy can either be calculated similar to Eq. (2.33),
or by calculating the maximum kinetic energy

Wkinetic =
ρΩ2

2

∫
w(x, y)2dV. (2.49)

Combining the results of Eqs. (2.47-2.49), and assuming a displacement field
given by Eq. (2.6), Yu and colleagues found that the mechanical quality
factor for a square membrane could be expressed as follows

Q−1
mn =

∆W

2πWkinetic

= Q−1
intλ

(
1 + λ

(m2 + n2)π2

4

)
, (2.50)

Q−1
int ≡

E2

E1

(2.51)

where λ is given by Eq. (2.7). By tracking the contribution of the edge-term
of the modeshape (cf. Eq. (2.6)) throughout their derivation, they identified
the first term as being associated with the clamp. Since the amount of
dissipated energy depends on the integrated curvature of the modeshape, it’s
instructive to look at the spatial dependence of the curvature. In Fig. 2.4
we consider the curvature close to the edge of the membrane, as a function
of distance. As we can see, the far dominant contribution is at the clamping
point of the membrane, concentrated within a distance of a few hundred
nanometers. It is remarkable that for a resonator with a sidelength of several
hundred microns, the mechanical dissipation is almost entirely dictated by
the losses within a distance of less than a micron. Only for very high mode
numbers does the second term in Eq. (2.50) start to play a significant role.

While these derivations are extremely insightful, and will be used ex-
tensively in the rest of this work, one thing is arguably lacking for a more
complete understanding – namely a clearer interpretation of the intrinsic
quality factor, here given by the ratio of the real and imaginary parts of
Young’s modulus. In the following section this question will be addressed.
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Figure 2.4: Curvature of the fundamental vibrational mode of a string, as
a function of position in units of characteristic length, Lchar = λL/2. The
normalized displacement field is given by Eq. (2.6). Here, L = 500 µm,
h = 50 nm, σ = 1.27 GPa, E = 270 GPa, ν = 0.27 and Lchar ≈ 220 nm.

Thermoelastic damping in membrane resonators

The first studies of thermoelastic damping in micromechanical resonator
came in early 1990’s, with Terry Roszhart reporting on measurements of
microfabricated cantilever beams from single crystal silicon [48], with beam
thicknesses of 10 µm − 17.5 µm. As devices became smaller, thus shifting
the product ΩτTED closer to unity, researchers became interested in exact
solutions of thermoelastic damping7. While such derivations were presented
by Landau and Lifshitz in the holy book of elasticity [50], and by J. B.
Alblas [51], a transparent derivation, alongside an explicit expression for
the quality factor, was missing. Inspired by the impressive developments in
micro- and nanoelectromechanical systems, Ron Lifshitz and Michael Roukes
presented an exact derivation of thermoelastic damping for thin beams [37],
where the thermoelastic coupling manifested itself as an additional flexural
rigidity in the elastic equations of motion8. The quality factor for a beam

7This is due to the fact that the accuracy of Zener’s model is diminished for smaller
values of diffusivity or thicker beams [37,49].

8Very naively one could say that since heating of a beam will result in an increase of the
thickness, the thermoelastic coupling will manifest itself as an additional flexural rigidity
due the D ∝ h3 scaling.
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was found to be given by the following expression

Q−1
LR = ∆E

[
6

ξ2
− 6

ξ3

sin ξ + sinh ξ

cos ξ + cosh ξ

]
, (2.52)

where ∆E is defined in Eq. (2.37) and ξ is defined as

ξ = h

√
Ωρcp

2k
=

√
π2

2
ΩτTED . (2.53)

Here we have used Eq. (2.38) to express ξ in terms of the mean diffusion
time τTED.

A few years later, Andrew Norris and Douglas Photiadis provided a
derivation of thermoelastic damping for plate resonators [52], shortly followed
by a derivation by Ali Nayfeh and Mohammad Younis [53], which followed
an identical path of derivation as Lifshitz and Roukes. Importantly, Nayfeh
and Younis considered the effect of in-plane forces, and showed numerically
that thermoelastic damping is decreased due to added tension.

Around the same point in time, tensioned nanobeam resonators were
receiving a lot of attention due to unexpectedly high mechanical quality
factors [9]. Furthermore, Scott Verbridge and colleagues demonstrated that
the quality factor could be tuned in-situ by bending the device substrate,
thus modifying the tension in the silicon nitride nanobeam [54]. Inspired
by these findings, Sandeep Kumar and Aman Haque presented an explicit
expression for thermoelastic damping in the presence of a secondary elastic
field (i.e. the in-plane tension). Their results were in agreement with the
findings of Neyfeh and Younis, in that thermoelastic losses were reduced in
the presence of in-plane tension.

As tensioned resonators emerged as promising candidates for cavity op-
tomechanics (particularly following the work in the group of Jack Harris),
similar considerations and derivations began to emerge for membrane res-
onators. The first mentions of thermoelastic damping were by Benjamin
Zwickl and colleagues [12], noting that the limit set by thermoelastic damp-
ing at 300 K should be Q ∼ 3× 1011 for millimeter-sized Si3N4 membranes,
which is significantly higher than for untensioned resonators of similar di-
mensions. Independently, similar estimates were carried out the in group of
Jeff Kimble, and while no derivations were published, Dalziel Wilson noted
in his thesis that their prediction “(...) is in qualitative agreement with the
results of a calculation we’ve been told has been independently carried out by
the Yale group” [55]. The derivation leading to the estimate by Zwickl and
colleagues was presented a few years later in Zwickl’s dissertation [56], which,
to my knowledge, is the first explicit derivation of thermoelastic damping in
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tensioned membrane resonators. Zwickl combined the approach presented
by Norris and Photiadis [52] with Zener’s thermal mode expansion, to arrive
at the following result [56]

Q−1
Zwickl,TED =

32T0h
4(m2 + n2)3/2E2α2

π3
√
ρσ L3(1− ν)2k

. (2.54)

The somewhat complicated approach taken by Zwickl, combined with several
approximations as part of the derivation, called for a more careful derivation.
Srivatsan Chakram and colleagues provided an alternative result [57], closely
following the derivations of Lifshitz and Roukes, as well as Neyfeh and Younis

Q−1
Chakram,TED =

Ω2
mnE

2α2T0h
2

12σ2cp(1− ν)2

[
6

ξ2
− 6

ξ3

sin ξ + sinh ξ

cos ξ + cosh ξ

]
. (2.55)

The connection between the results of Zwickl and Chakram et al. isn’t obvi-
ous, and even less so between the result of Zwickl and the result by Lifshitz
and Roukes (see Eq. (2.52)). A bit of algebra can, however, shed some light
on that. Here, we will be using the approximate equation for the resonance
frequency, given by Eq. (2.18), as well as a Taylor expansion of Eq. (2.52)
to second order in ξ, yielding

Q−1
LR ≈ ∆E

ξ2

5
. (2.56)

Using this approximation, it can be shown that Eq. (2.54) can be re-
expressed as follows

Q−1
Zwickl,TED =

960

π6
λ2π2(m2 + n2)

ξ2

5
∆E (2.57)

≈ λ2π2(m2 + n2)Q−1
LR, (2.58)

where, in the last line, I have inserted the approximate expression for the
quality factor by Lifshitz and Roukes (see Eq. (2.56)), and approximated
960/π6 to 1 (differing by less than 0.15%). As for the result by Chakram et
al., once again using Eq. (2.18) for the approximate resonance frequency, we
arrive at

Q−1
Chakram,TED =

(
1 + ν

1− ν

)
λ2π2(m2 + n2)

4
Q−1

LR. (2.59)

As we can see, the result agrees with the re-arranged expression by Zwickl,
up to a numerical factor. More importantly, having re-expressed the results
of Zwickl and Chakram, we start seeing a connection between these results



2.2. DISSIPATION OF ELASTIC ENERGY 25

for thermoelastic damping and dissipation dilution (see Eq. (2.50)). The
λ2 scaling, which is present in the expression for dissipation dilution, can
be found here as well. Since the derivations by Zwickl and Chakram et al.
assumed the approximate solution of the displacement field (i.e. Eq. (2.9)),
it is conceivable that including the exponential correction of the modeshape
close to the clamping points of the membrane will result in a result closely
resembling the one from dissipation dilution. I will therefore take a simi-
lar approach as in the articles of Lifshitz and Roukes [37] and Neyfeh and
Younis [53], but using the full expression for the displacement field of the
membrane9.

We begin with the thermoelastic linear equation of motion, in the presence
of in-plane tension [53]

D∇4w − σh∇2w +∇2MT +NT∇2w = −ρh∂
2w

∂t2
, (2.60)

where NT and MT are the thermal (as indicated by the superscript) axial
force and bending moment, defined as

NT =
Eα

1− ν

∫ h/2

−h/2
θ(x, y, z, t)dz (2.61)

MT =
Eα

1− ν

∫ h/2

−h/2
zθ(x, y, z, t)dz. (2.62)

Here, θ(x, y, z, t) = T (x, y, z, t)−T0 is the relative temperature field. Assum-
ing that ∆E � 1, the heat conduction equation can be written as follows

k∇2θ = ρcp
∂θ

∂t
+
EαT0

1− ν
∂

∂t
(z∇2w), (2.63)

where T has been replaced with T0 in the second term on the right-hand
side of the equation. Assuming plane-wave solution for the relative temper-
ature field and no heat flow from the membrane to the ambient across the
membrane boundary, the heat equation can be solved, yielding

θ =
EαT0

(1− ν)ρcp

∇2w

(
z − sin k̃z

k̃ cos(k̃h/2)

)
, (2.64)

9I would like to acknowledge Mark Dykman for posing the question of whether dissi-
pation dilution is valid for devices as thin as ours. After some digestion, the derivation
that follows is my attempt to answer that question.
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where k̃ is defined as

k̃ = (1 + i)

√
Ωmρcp

2k
(2.65)

= (1 + i)
ξ

h
(2.66)

with Ωm being the angular frequency of the resonator, and using the Eq.
(2.53) in the last line. Finally, inserting Eqs. (2.64) and (2.65) into the
elastic equation of motion yields

DT∇4w − σh∇2w = −ρh∂
2w

∂t2
, (2.67)

where DT is the modified flexural rigidity, given as

DT = D

[
1 + ∆E

(
1 + ν

1− ν

)
f(k̃h)

]
(2.68)

f(k̃h) = 1 +
24

(k̃h)3

[
k̃h

2
− tan

k̃h

2

]
. (2.69)

Here, D is the flexural rigidity as defined in Eq. (2.2). This result is rather
satisfying, since we have previously tackled equations in the form of Eq.
(2.67).

In the previously mentioned derivations of thermoelastic damping [37,
53, 57], the equation of motion was solved in the Fourier domain. Since
the second and fourth-order spatial derivatives of simple sinusoidal functions
gives the original functions, multiplied with a numerical factor, all spatial
dependencies can be eliminated trivially. However, this is not the case for
the full solution of the mode profile (cf. Eq. (2.6)). Instead, we will use
the Galerkin method to derive the effective mass and spring constant, and
finally the angular frequency. Due to the complex functional dependence
of the thermoelastic flexural rigidity, the eigenfrequencies will be complex.
Since the imaginary part of the eigenfrequency is responsible for the energy
decay10, we can express the mechanical quality factor as the ratio of real and
imaginary parts of the complex angular frequency

Q−1 = 2

∣∣∣∣ I[Ω]

R[Ω]

∣∣∣∣ . (2.70)

10Following Eq. (2.9), w ∝ exp iΩt = exp(iΩRt) exp(−ΩIt), where ΩR and ΩI are the
real and imaginary parts of the angular frequency, respectively. Since the amplitude decay
is proportional to exp(−Γmt/2), this suggests that Γm = 2ΩI.
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Using the expression for the modeshape of a 1D string (cf. Eqs. (2.5-2.6)), we
write the normalized displacement field for a square membrane resonator11

wmn(x, y) = um(x)un(y). (2.71)

Using Galerkin’s method, the effective spring constant and effective mass
can be expressed as follows

meff = ρh

∫∫
w2
mn dxdy (2.72)

keff =

∫∫ (
DT

{
∂4wmn
∂x4

+
∂4wmn
∂y4

+ 2
∂4wmn
∂y2∂x2

}
wmn

− hσ
{
∂2wmn
∂x2

+
∂2wmn
∂y2

}
wmn

)
dxdy. (2.73)

The effective mass for a square membrane was estimated previously (cf. Eq.
(2.15)) using the simplified modeshape. Using Eqs. (2.5-2.6) and (2.71), we
evaluate the expression for the effective mass, yielding

meff =
hL2ρ

4
(1 +O(λ) + . . .) ≈ hL2ρ

4
. (2.74)

Given the fact that λ is on the order of 10−3 for our resonators, we can safely
neglect all but the zeroth-order term12, thus recovering the result from Eq.
(2.15).

In the limit of λm� 1, the product wmn
∂4wmn
∂x4 can be approximated as

∂4um(x)

∂x4
um(x) ≈ 4m2π2

L4

(
exp

[−4x
Lλ

]
λ2

−
exp

[−2x
Lλ

]
cos
[
mπx
L

]
λ2

+
2 exp

[−2x
Lλ

]
sin
[
mπx
L

]
mπλ3

+
m2π2 sin2

[
mπx
L

]
4

)
, 0 ≤ x ≤ L/2 (2.75)

where the first three terms are dominant close to the membrane edge, while
the last term is so elsewhere. Similarly, the product wmn

∂2wmn
∂x2 can be written

11Strictly speaking, this is only true for the special case of equal mode indices, i.e.
m = n [21]. However, the derivation that follows has also been checked using symmetrized
mode functions, verifying that the final result also holds for m 6= n.

12It is furthermore worth reminding that the modeshapes used for this derivation are
only valid for λ� 1.
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as

∂2um(x)

∂x2
um(x) ≈ m2π2

L2

(
exp

[
−4x

Lλ

]
− exp

[
−2x

Lλ

]
cos
[mπx
L

]
+

2 exp
[−2x
Lλ

]
sin
[
mπx
L

]
mπλ

+ sin2
[mπx
L

])
, 0 ≤ x ≤ L/2. (2.76)

These approximations significantly simplify the equations one has to deal
with. Upon performing the volume integral in Eq. (2.73) and neglecting
terms scaling with exp (−1/λ), the effective spring constant can be found to
be given by the following expression

keff =
π2D

4λ2L2

{
4(1− λ)

(
m2 + n2

)
+ λ

[
π2λ

(
m4 + n4

)
+ 4n2

+ 2m2
(
π2λ(λ− 1)2n2 + 2

) ]
×(

1 +

(
1 + ν

1− ν

)(
∆E −

6i∆E

ξ2

)
+

(
1 + ν

1− ν

)
(6 + 6i)∆E tan

[(
1
2

+ i
2

)
ξ
]

ξ3

)}
.

(2.77)

While somewhat opaque at first glance, a closer look at the imaginary part
of the effective spring constant is instructive. Here we find that

I[keff ] =− π2D∆E

4λL2

(
1 + ν

1− ν

)(
4(m2 + n2) + π2λ

(
m4 + n4

)
+ 2m2n2π2λ(λ− 1)2

)
×∆E

[
6

ξ2
− 6

ξ3

sin ξ + sinh ξ

cos ξ + cosh ξ

]
︸ ︷︷ ︸

Q−1
LR

. (2.78)

Unsurprisingly we find that the imaginary part of the effective spring constant
is proportional to the inverse quality factor derived by Lifshitz and Roukes
(cf. Eq. (2.52)). Combining Eqs. (2.74) and (2.77) for the effective mass
and the effective spring constant, respectively, the angular frequency can be
found. Expanding to first order in ∆E simplifies the equations appreciably,
allowing us to calculate the quality factor following Eq. (2.70). One final
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Taylor expansion in λ yields the following result

Q−1
TED ≈

(
1 + ν

1− ν

)
Q−1

LR

{
λ+ λ2π

2(m2 + n2)

4
+

(
1 + ν

1− ν

)
λ2∆E

2

[
1 +

6

ξ3

sin ξ − sinh ξ

cos ξ + cosh ξ

]
+O(λ3) + . . .

}
.

(2.79)

While the second term of this expression resembles the results of Zwickl and
Chakram, we see that including the corrections to the modeshape at the
edges of our resonator has resulted in the emergence of two additional terms
– one, which closely resembles the edge term known from “canonical” dissi-
pation dilution calculations (cf. Eq. (2.50)), and an explicitly temperature
dependent term (since ∆E ∝ T0). The latter is suggests that the dilution
term is in fact temperature dependent. However, since ξ ∼ O(10−2) for thin
(∼ 10 nm) membrane resonators, the temperature dependent term will likely
be negligible for the devices studies in this thesis. For membrane thicknesses
approaching 1 µm, the temperature dependent term could, however, be of
importance.

As in dissipation dilution, thermoelastic damping in tensioned resonators
has two contributions – one from the sinusoidal modeshape (in agreement
with the results of Zwickl and Chakram), and the other originating from the
exponential correction at the edges of the resonator. Looking back at the
equation for the relative temperature field (cf. Eq. (2.64)), we see that it is
proportional to the second order spatial derivative of the displacement field,
i.e. θ ∝ ∇2w. The largest temperature gradients are found in regions with
largest curvatures for a given modeshape, which, in our case, happens to be
at the clamping points of the resonator. Since the second derivative of the
displacement field given by Eq. (2.6) scales as (λL)−1 near the membrane
clamp, the dissipation is thus dominated by the large temperature gradients
at the clamping points of the resonator (see Fig. 2.4). We can therefore con-
clude that in order to reduce thermoelastic damping for a given vibrational
mode in a tensioned resonator, the curvature of the modeshape has to be
reduced accordingly.

As an aside and a testament to “hindsight is 20/20”, let us consider the
concept of “modal participation factor”, which was introduced by Douglas
Photiadis and colleagues in the early 2000’s [58]. The authors realised that
the exact mode profile can play a significant role in the magnitude of thermoe-
lastic damping, and proposed to account for this by a so-called participation
factor, pn, defined as the ratio of the energy associated with flexure and to-
tal modal energy. Thermoelastic damping for given mode n could then be
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Figure 2.5: Comparison of thermoelastic damping derived in this work with
results from Chakram et al. [57] (see Eq. (2.59)), and Lifshitz and Roukes [37]
(see Eq. (2.52)). We also compare the approximate solution (dashed) given
by Eq. (2.79), and the exact solution (red), estimated numerically from Eqs.
(2.74) and (2.77). We assume L = 500 µm, h = 50 nm, σ = 1.27 GPa,
E = 270 GPa, α = 2.8× 10−6 K−1, T0 = 294 K, ν = 0.27, ρ = 3200 kg m−3,
cp = 656 Jkg−1K−1 and k = 3.2 Wm−1K−1 (here, I use the same values for
CTE, specific heat and thermal conductivity as [56]).

described as Q−1
n,Zener = pnQ

−1
Zener. A couple of years later, Norris and Pho-

tiadis formalised this idea [52], showing that, for an isotropic material, the
thermoelastic damping can be expressed as follows13

Q−1
m,Zener =

(
1 + ν

1− ν

)
1

6(1− ν2)

E1h
3
∫∫ (

∂2w
∂x2 + ∂2w

∂y2

)2

dxdy

ρΩ2
∫
w(x, y)2dV

×Q−1
Zener, (2.80)

where E1 is the real part of the complex Young’s modulus. As we can see, the
numerator corresponds to the surface integral of the mean curvature, while
the denominator is the total stored modal energy. This expression looks quite
similar to the equations we considered in the context of dissipation dilution

13The following expression is based on Eqs. (4.9) and (4.17) in [52], but here I have
taken the liberty to express them such that the parallels to previous equations are clearer.



2.2. DISSIPATION OF ELASTIC ENERGY 31

(see particularly Eq. (2.47)). In fact, making the substitution E1 → E2QZener

makes the resemblance even clearer. Therefore, in the context of tensioned
resonators, the modal participation factor is in essence the inverse of the
dilution factor.

Since we have now derived dissipation dilution from “first principles”, its
physical origins are clearer than before. Comparing the results for thermoe-
lastic damping (Eq. (2.79)) and dissipation dilution (see Eq. (2.50)), and
assuming that the quality factor of our resonator is limited by thermoelastic
damping, allows us to express the intrinsic quality factor, previously defined
by the ratio of the real and imaginary part of the Young’s modulus, in terms
of thermodynamical quantities

Q−1
int =

(
1 + ν

1− ν

)
∆E

[
6

ξ2
− 6

ξ3

sin ξ + sinh ξ

cos ξ + cosh ξ

]
. (2.81)

In the limit of ξ � 1 this expression simplifies to

Q−1
int ≈

(
1 + ν

1− ν

)
∆E

ξ2

5
=

(
1 + ν

1− ν

)
h2ΩmEα

2T0

10k
, (2.82)

where we have Taylor expanded Eq. (2.81) to second order in ξ, and substi-
tuted the expressions for ξ and ∆E (see Eqs. (2.37-2.53)).

Finally, of high relevance for this work is the case of cryogenic operation
of thin membrane resonators. As it turns out, the mean-free path length
of thermal phonons in tensioned silicon nitride resonators is on the order of
∼ 30 nm at 10 K [59]. As we will see later, some of the experiments in this
thesis are focused around cryogenic operation with membrane thicknesses on
the order of 10 nm. In this regime the heat transfer transitions from diffu-
sive to ballistic. As suggested by Lifshitz and Roukes [37], and later shown
numerically by Kiselev and Iafrate [60], the characteristic time constant τ
(given by Eq. (2.38) in the diffusive regime) transitions from τ ∝ h2 (as in
Zener’s model for thermoelastic damping) to τ ∝ h. Since we have previ-
ously seen that ξ ∝ √τTED (see Eq. (2.53)), this suggests that in the ballistic

regime we can expect a scaling of ξ ∝
√
h .

Näıvely one could say that since the explicitly temperature dependent
term (O(λ2∆E)) in Eq. (2.79) is small compared to the first two terms, the
dilution factor is mostly unchanged as a function of temperature – λ only
depends on temperature via the temperature dependence of Young’s mod-
ulus, Poisson’s ratio and the tension. However, seeing that the mean-free
path length exceeds ∼ 30 nm at liquid helium temperatures [59], it is unclear
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whether the foundational equations of our thermoelastic damping model still
hold. In the ballistic regime the temperature becomes non-local and hence
nonlocal terms could arise in our heat equation. To my knowledge the gener-
alisation of Fourier’s law of heat conduction to the ballistic regime is a topic
of ongoing research and the interested reader is referred to a recent publica-
tion by Hua et al. [61] outlining the current state of affairs. It can therefore
not be ruled out that for the thinnest devices presented in this work there is
indeed a (minor) deviation from the “canonical” dissipation dilution model
at liquid helium temperatures.

Looking back at the expression for the intrinsic Q in the limit of small ξ
(cf. Eq. (2.82)), the result suggests that one can expect a Qint ∝ h−2 scaling
with thickness. While this suggests that shrinking the device thickness down
is highly favorable, another dissipation mechanism starts to play a significant
role at these length scales – namely losses due to surface impurities and/or
roughness. This source of dissipation has been shown to play a significant role
at sub-micron length-scales [62–64] and will be the discussed in the following
section.

2.2.4 Surface losses in thin resonators

It is an experimental fact that an increase in the surface-to-volume ratio of
a mechanical device is accompanied by a reduction of it’s mechanical quality
factor. Surfaces are prone to contamination, as well as physical and chemical
damage during the fabrication process, so it is not surprising that losses
at the surfaces af a resonator are greater than in the bulk. Early studies
of silicon nitride cantilevers by Kevin Yasumura and colleagues showed that
below a thickness of ∼ 1 µm, the quality factor scaled linearly with the device
thickness [62], approaching a plateau for thicker devices, which is ascribed
to volumetric (bulk) losses.

We can explain this in broad strokes within the framework of Zener’s
model, and by dividing the imaginary part of Young’s modulus into two
parts – one responsible for surface related dissipation, and one for the bulk

Ẽ = E1 + i [E2,vol + E2,surf (δ(z − h) + δ(z))]︸ ︷︷ ︸
E2

, (2.83)

where a Dirac delta function appears in conjunction with E2,surf , to signify
its role being limited to the surface only (here we assume that the device
midplane is at z = h/2 with surfaces at z = 0 and h, whereas at Eq. (2.48)
the midpoint was z = 0). As we saw in the derivation of dissipation dilution,
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the total dissipated elastic energy scales with ∆W ∝
∫
z2E2dz (see Eq.

(2.47)). Using the expression above for the complex Young’s modulus we
find that

∆W ∝
∫
z2 [E2,vol + E2,surfδ(z − h)] dz ×

∫∫
(curvatures)dxdy (2.84)

∝
(
h3

3
E2,vol + h2E2,surf

)
×
∫∫

(curvatures)dxdy (2.85)

∝
(
E2,vol +

3E2,surf

h

)
× h3

3

∫∫
(curvatures)dxdy. (2.86)

In the last line we have factored out h3/3, to ensure the correct scaling for
the next step of our calculation. Recalling that the quality factor can be
written as the product of the dilution factor and the ratio of the real and
imaginary parts of the Young’s modulus (see Eq. (2.50), we can express the
mechanical quality factor as

Qm = D(λ)
E1

E2,vol +
3E2,surf

h

(2.87)

= D(λ)

(
E2,vol

E1︸ ︷︷ ︸
Q−1

vol

+
3E2,surf

E1h︸ ︷︷ ︸
Q−1

surf

)−1

, (2.88)

where D(λ) is the overall dilution factor for a given geometry. As we can
see, Qsurf scales linearly with the device thickness h, as it has been observed
experimentally.

An extensive literature study was recently carried out by Silvan Schmid
and Luis Guillermo Villanueva, where the authors considered the intrinsic
mechanical quality factor of silicon nitride devices for a variety of geometries
(membranes, strings and cantilevers), as a function of device thickness [64].
Spanning two orders of magnitude in thickness, a clear trend was shown to
emerge – surface losses were dominant below h ∼ 100 nm, and the intrinsic
quality factor saturated around Qint ∼ 2.8× 104 above ∼ 1 µm device thick-
ness. In Figure 2.6 the best fit of Q−1

int = Q−1
vol +Q−1

surf is shown from the study
of Villanueva and Schmid, alongside a 60% confidence interval (originating
from the uncertainties in the device dimensions and the tensile stresses of
the devices). The values found in this study were as follows

Qvol = 28000± 2000 (2.89)

Qsurf =
[
(6± 4)× 1010 m−1

]
× h, (2.90)
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while in the surface-dominated regime the quality factor was found to be
Qsurf ≈ (5.7× 1010 m−1) × h. These values will be used extensively in this
work, as we try to estimate the mechanical quality factors of various mem-
brane geometries.

101 102 103

Device thickness (nm)

102

103

104

Q
in

t

(Q
vol

-1+Q
surf

-1)-1

Figure 2.6: Intrinsic quality factor as a function of device thickness, assuming
a surface and volumetric quality factor given by Eqs. (2.90) and (2.89)
(following Villanueva and Schmid [64]).

While in fundamental research we are mainly interested in the best pos-
sible performance of a mechanical device, in the context of practical sensors
it can be advantageous to realise devices which are accurately described us-
ing easily accessible material data. As we saw in relation to thermoelastic
damping, one can in principle predict the mechanical quality factor entirely
based on thermodynamic and elastic quantities. On the other hand, esti-
mating Qvol and Qsurf necessitates careful measurements with varying device
dimensions, which can be cumbersome. Thus it could of interest to recog-
nise a parameter regime where the mechanical quality factor is dominated by
thermoelastic damping, rather than surface and bulk losses. A more sinister,
albeit more honest, reason to identify such a regime is that it would allow us
to verify the theoretical predictions for thermoelastic damping.

As we have seen, upon introducing tension in a resonator, the intrinsic
dissipation will be diluted as follows

Qm = D(λ)Qint = D(λ)
(
Q−1

vol +Q−1
surf

)−1
, (2.91)
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where the dilution factor D(λ) is given by Eq. (2.50) as

D(λ) =

(
λ+ λ2 (m2 + n2)π2

4

)−1

. (2.92)

In Fig. 2.7 we consider the total quality factor (of the fundamental vibra-
tional mode) for square silicon nitride membrane resonators in room temper-
ature settings

Qm,tot = Q−1
TED +D(λ)−1

(
Q−1

vol +Q−1
surf

)
, (2.93)

where we use the values for Qvol and Qsurf obtained by Villanueva and Schmid
(see Eqs. (2.89-2.90)). As shown in Fig. 2.7, the total quality factor is
dominated by surface and volumetric losses below device thicknesses of ∼
100 nm, while thermoelastic damping plays the dominant role for thicker
devices. Initially, the quality factor is independent of the thickness. This
is due to the fact that Qint ∝ h, while λ ∝ h, resulting in a thickness-
independent quality factor in the surface-dominated regime. For thicknesses
above ∼ 1 µm, the dilution factor grows, resulting in a dip in the overall
quality factor.

Since we are interested in using high-stress silicon nitride, we need to
consider one limitation – namely the fact that above a thickness of ∼ 400 nm
the silicon nitride film starts cracking [65]. While this is not a “hard limit”
and can be mitigating by structuring of the silicon nitride film in the vicinity
of the resonator [65], we use this as an “upper bound” for our current con-
sideration. Fig. 2.7 suggests that studying thermoelastic damping should be
possible for smaller device dimensions (i.e. L . 250 µm).

Reduction of surface losses

Seeing that surface losses are the dominant source of dissipation in thin mem-
brane resonators, it is worthwhile investigating options to reduce this source.
Additionally, by doing so one could access the thermoelastic damping lim-
ited regime for smaller thicknesses, making it easier to probe this damping
mechanism. In the context of silicon cantilevers, Yasumura and colleagues
showed that heat treatment of samples in a nitrogen environment can re-
sult in a 4-fold enhancement of the mechanical quality factor [62]. Heat
treatments can remove surface adsorbates, release spurious strains in the de-
vices, remove SiO2 layers arising from oxidation of the silicon surface, and
so on. Other studies have shown Q improvements of more than an order of
magnitude as a result of annealing in ultra-high vacuum (UHV) [66], and
subsequently a steady reduction of the Q, as contaminants gradually latch
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Figure 2.7: Solid lines show the total mechanical quality factor, combin-
ing thermo-elastic damping (dashed and highlighted with an ellipse), as
well as volumetric and surface losses (dashed and annotated). The mate-
rial stress limitation is indicated by the black dashed line. The individual
curves correspond to membrane sidelengths of 10 µm, 50 µm and 250 µm
and are indicated by different colours. Here, we have assumed σ = 1.27 GPa,
E = 270 GPa, α = 2.8× 10−6 K−1, T0 = 294 K, ν = 0.27, ρ = 3200 kg m−3,
cp = 656 Jkg−1K−1 and k = 3.2 Wm−1K−1.

on to the device surfaces. Finally, it has been demonstrated that modifying
the surface chemistry can improve the performance of mechanical devices.
For instance, exposing the surfaces of silicon cantilevers to atomic hydrogen
results in chemically inert surfaces [67], due to a reduction of the number of
dangling bonds and thus the reactivity of the surface. This can, among oth-
ers, reduce the oxidation rate, which causes additional dissipation in silicon
resonators [67]. Diamond resonator, on the other hand, perform best with
oxygen termination [68].

Unfortunately, when it comes to silicon nitride, there are no in-depth stud-
ies of the effects of surface treatment on mechanical performance. Recently,
Silvan Schmid and colleagues demonstrated the effect of oxygen plasma on
the mechanical Q’s of silicon nitride membrane resonators [69]. The oxygen
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plasma oxidises the silicon nitride surface, and the resultant silicon oxyni-
tride has a compressive stress, resulting in almost 50% reduction of the overall
membrane tension. The effect on the intrinsic quality factors are apprecia-
ble (up to ∼ 40% reduction), suggesting that the oxydized layer is more
lossy, compared to pristine silicon nitride. Finally, it is conceivable that heat
treatments of silicon nitride in vacuum will result in a reduction of surface
adsorbates. As for surface passivation, I am currently not aware of efforts in
this direction.

2.2.5 Other damping mechanisms

As we are wrapping up the topic of dissipation, we consider one final loss
mechanisms that is of relevance for the type of resonators described in this
work. While it is not central to this thesis, a general overview is nevertheless
warranted.

Two-level systems

An important question in the context of sensing and cavity optomechanics is
the temperature dependence of the mechanical quality factor. Assuming op-
eration in thermoelastic damping limited regime, which was discussed in the
previous section, one could in principle predict the temperature dependence
of the quality factor using Eq. (2.81) and knowledge of the temperature de-
pendence of the coefficient of thermal expansion, thermal conductivity and
the specific heat capacity. However, since our devices will, for the most part,
only be a few tens of nanometers thick, surface losses will be dominant (see
Fig. 2.7). In this regime, we need to describe the temperature dependence
by other means.

As it turns out, dissipation in resonators based on amorphous materials is
effectively universal at cryogenic temperatures, and the agreement is not only
qualitative, but also quantitative, showing little dependence on the chemi-
cal composition of the resonator material [70]. Following measurements by
Zeller and Pohl of thermal conductivity and specific heat in vitreous14 SiO2,
selenium and germania [71], Phillips [72], as well as Anderson, Halperin and
Varma [73], proposed a tunneling model to explain the observations by Zeller
and Pohl. The model assumes a distribution of defect states, each with two
equilibrium positions. Describing each of these defects as an effective particle
in a double-well potential, the researchers could accurately describe the ob-
servations of Zeller and Pohl. Importantly, Anderson and colleagues pointed

14Also referred to as fused silica or fused quartz.
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out that one should anticipate attenuation of ultrasonic phonons, due to
their interaction with the two-level systems (TLS). This idea was explored
further by Jäckle [74], predicting that the attenuation should scale as T 3 at
low temperatures (below 1 K), which was confirmed experimentally shortly
hereafter by Hunklinger and colleagues [75].

The attenuation of elastic waves is due to the coupling of two-level defect
states within the material and the strain fields, ε, described by the so-called
deformation potential, γ = 1/2(∂∆/∂ε) [76, 77]. As mentioned before, a
defect state is represented as a particle in a double-well potential with an
asymmetry ∆ and energy barrier height V . Above liquid helium temper-
atures, the particle can move over the potential barrier via multi-phonon
processes, where phonons originating from the mechanical mode of interest
contribute to this excitation. The elastic energy is dissipated upon the sub-
sequent decay of the excited defect state. The internal friction due to this
relaxation process can to a very good approximation be described as [76]

Q−1
rel,TLS =

γ2

ρv2kBT

∫ ∞
−∞

d∆

∫ ∞
0

P (∆, V )sech2

(
∆

2kBT

)
Ωτ

1 + Ω2τ 2
dV,

(2.94)

where P (∆, V ) is the distribution of energies V and ∆, v is the velocity of
sound. We recognise the last part of the integral as a Debye peak (see Eq.
(2.35)). The relaxation rate between the two wells of the potential can be
described by Arrhenius’ law

τ−1 = τ−1
0 cosh

(
∆

2kBT

)
exp

(
− V

kBT

)
. (2.95)

Assuming a Gaussian distribution for ∆, and a “modified” Gaussian distri-
bution [77] for the energy barrier V (i.e. g(V ) ∝ (V/V0)−ξ exp (−V 2/2V 2

0 ),
where ξ < 1), the inverse quality factor is found to be

Q−1
rel,TLS =CΦ

(√
2 kBT

∆C

)
1

kBT

∫ ∞
0

(
V

V0

)−ξ
× exp

(
−1

2

V 2

V 2
0

)
Ωτ0 exp (V/kBT )

1 + Ω2τ 2
0 exp (2V/kBT )

dV, (2.96)

with Φ being the error function. The remaining parameters are found by fit-
ting the above model to the data. Below liquid helium temperatures (more
specifically, below ∼ 1 K), the particle in the double-well potential can no
longer hop between the wells via thermal excitation, but rather through quan-
tum mechanical tunnelling [77].
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Seeing that silicon nitride is an amorphous material, a behaviour similar
to silica is anticipated. Indeed, Faust et al. [78] first reported evidence of
two-level defect states in silicon nitride string resonators, by considering the
temperature dependence of two vibrational modes of the device as a function
of temperature. The authors found that the low-temperature (< 100 K)
behaviour can be accurately described by the relaxation model presented by
Vacher et al. [77], where the TLS parameters agreed with those for silica
to within 30%. Importantly, this was observed in a prestressed structure,
suggesting that the presence of tension in the resonator does not affect the
coupling between the resonator mode and the two-level defect states.

It is interesting to note that a few years prior to this publication, Jian-
sheng Wu and Clare C. Yu proposed a modified TLS model as an explana-
tion for the observed low mechanical dissipation in stressed silicon nitride
resonators [79]. Among the possible explanations was dissipation dilution15,
but also the possibility of pre-tension modifying the tunnel barrier height V0

or the deformation potential γ. The modified TLS model predicted, among
others, a stress-dependent thermal conductivity and specific heat. This was
later studied by Hossein Ftouni and colleagues [59], finding that the ther-
mal properties of the silicon nitride are not stress dependent. This provides
some confidence in the results presented previously on thermoelastic damping
(particularly, Eq. (2.79)).

2.2.6 Damped driven harmonic oscillator

Our derivations up to this point have focused on the origins of dissipation
in tensioned membrane resonators, as well as touched upon the mapping
from a two-dimensional resonator to an effective 1D (point-mass) oscillator
undergoing simple harmonic motion (cf. (2.11)). Combining these, alongside
a generic driving force Fext, leads us to the well-known equation for a damped
harmonic oscillator

∂2q

∂t2
+ Γm

∂q

∂t
+ Ω2

mq =
F

meff

, (2.97)

where Γm = Ωm/Qm and q is the displacement field of a particular vibrational
mode of the resonator. We can solve this equation in a straightforward

15In fact, this publication is how we became aware of work on dissipation dilution
preceding the findings of Silvan Schmid, Quirin Unterreithmeier, and others within our
field of research.
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fashion in the Fourier domain16

q(Ω) = χm(Ω)F (Ω), (2.98)

χm(Ω) =
m−1

eff

Ω2
m − Ω2 − iΩΓm

. (2.99)

Here we have defined the mechanical susceptibility, χm, describing the re-
sponse of the mechanical mode to an external driving force. In our case,
a very relevant driving force is the thermal Langevin force. Following the
fluctuation-dissipation theorem, the auto-correlation of the thermal force can
be written as [80]

〈Fth(t)Fth(t+ τ)〉 = 2meffΓmkBTδ(τ). (2.100)

This result holds in the limit of kBT � ~Ω (i.e. high-temperature limit) and
under the assumption that the correlation time of the bath is significantly
shorter than all other relevant time scales (i.e. Markovian limit). Following
the Wiener-Khinchin theorem, the (single-sided) power spectral density of
the Langevin force can be written as

SFthFth
(Ω) = 2

∫ ∞
−∞
〈Fth(0)Fth(τ)〉e−iΩτdτ (2.101)

= 4meffΓmkBT. (2.102)

Minimising the influence of the Langevin force noise is often a key objective in
mechanical sensor design and optimisation, and is at the heart of this work.
The equation above suggests that this can be achieved via three different
paths – reduction of resonator pass, dissipation rate and temperature.

Using Eq. (2.98) in conjunction with the above result, the power spectral
density of the displacement can be expressed as

Sqq(Ω) = |χm(Ω)|2SFthFth
(Ω) (2.103)

=
4ΓmkBTm

−1
eff

(Ω2
m − Ω2)2 + (ΩΓm)2

. (2.104)

For Fourier frequencies close to the mechanical resonance, the displacement
power spectral density simplifies to a simple Lorentzian lineshape

Sqq(Ω) ≈ kBT

meffΩ2
m

Γm

(Ωm − Ω)2 + (Γm/2)2
. (2.105)

16Following our definition of the Fourier transform, F [q̇] = −iΩq(Ω).
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Invoking Parseval’s theorem, the mean-squared displacement can be found
by integration of the displacement power spectral density

〈q2〉 =

∫ ∞
−∞

Sqq(Ω)
dΩ

2π
=

kBT

meffΩ2
m

. (2.106)

As we can see, the temperature of the vibrational mode can be estimated
by integration of the power spectral density. Conversely, knowing the bath
temperature, resonance frequency and effective mass can be used to calibrate
vibrational spectra in absolute displacement units. While the latter will not
be of relevance for the results presented here, the connection between the
displacement PSD and the mode temperature will be invoked later in this
work.

2.3 Summary

As we conclude this chapter, let us summarise some of the key points that will
be of relevance for the work at hand, as well as future research. We saw the
value of Galerkin’s method from the get go (see Section 2.1.1), as it allows us
to define effective resonators parameters starting from the elastic equations
of motion. In particular the definition of effective mass will be employed in
the following chapters, both as a figure of merit for the mechanical devices,
and in relation to estimating the light-mechanical coupling strength in cavity
optomechanics.

After reviewing two of the most prominent extrinsic sources of dissipation
for our mechanical devices, a substantial part of the chapter focused on ther-
moelastic damping, in particular its connection to dissipation dilution. Start-
ing from the thermoelastic equations of motion, and using Galerkin’s method,
we derived an explicit expression for thermoelastic damping, valid for highly
tensioned membrane resonators. We found that the stress-dependent pre-
factor closely resembles the “canonical” dilution factor [21]. However, this
derivation provided two new insights. Firstly, we found that the dilution
factor is in fact temperature dependent, albeit weakly for thin and highly
stressed resonators. Secondly, since the equations of motion upon which
the derivation is based on are potentially invalid for thin resonators in low
temperature settings, we are led to the conclusion that the standard model
for dissipation dilution is not necessarily valid for our devices at cryogenic
temperatures. This is a particularly interesting question to explore in the
future.

While the derivation of thermoelastic damping presented in this chapter
provides us with an explicit expression for the mechanical quality factor,
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which only dependents on the elastic and thermal properties of the resonator
material, surface related losses are in fact the dominant source of dissipation
for the device dimensions considered in this thesis. However, we identify
a region in the parameter space, where the contribution of thermoelastic
damping is dominant. Realising and characterising membrane devices that
span this region of the parameter space would potentially allow us to verify
the validity of the model.

For the following chapters, however, we will solely focus on the geometric
dependence of the dilution factor.



Chapter 3

Phononic engineering and soft
clamping

Having established some theoretical groundwork, we now move our atten-
tion to the experimental aspects of developing high-Q mechanical resonators.
Specifically, we will focus on the use of phononic crystal structures in sup-
pressing phonon tunneling losses in membrane resonators. The underlying
design considerations are outlined, particularly in light of their designated
use in quantum optomechanical experiments.

In the second half of the chapter the concept of soft clamping is pre-
sented, which allows for a significant reduction of the internal dissipation in
membrane resonators. Starting from a phononic crystal slab akin to the one
discussed in relation to phonon tunneling losses, we consider the evolution
from a thick to a thin plate, and how the introduction of in-plane tension
affects the properties of the phononic bandgap structure. The device fabrica-
tion and characterisation are outlined, and the fingerprints of soft clamping
are identified based on the measurements. Finally, building upon the basics
of soft clamping, three additional devices and their design rationale are pre-
sented.

Note that the following chapter includes results which constituted part
of my master’s thesis [1]. Figures reprinted or reproduced from the master’s
thesis will be acknowledged accordingly in figure captions.
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3.1 Phonon tunneling losses

3.1.1 Introduction

Anchor losses, clamping losses, radiation losses, mounting losses, phonon
tunneling losses, and so on – the devil goes by many names. All these terms
refer to one and the same loss mechanism, namely loss of elastic energy into
the support of the resonator. Studies of this loss mechanism can be found in
numerous fields of research within physics and engineering, and can be traced
several decades back in time. Here, I will outline select examples, drawing
parallels to research in our own field of optomechanics. As an aside, it is
worth mentioning that not all applications of mechanical resonators neces-
sarily benefit from extremely high quality factors and thus small bandwidths.
A prime example is mechanical transducers, where the resonator bandwidth
has to be comparable to the signal bandwidth (either intrinsically or exter-
nally, by dampening the resonator motion). These applications nevertheless
demand careful study of anchor losses, in the interest of reproducibility.

Among the various solutions to reduce dissipation due to anchor losses
one can find common threads. A common technique is suspension of the
resonator at the nodal points of the mode of interest [81]. The so called “free-
free” design found it’s way to our research field [82], where a careful study
of anchor losses was conducted using the phonon tunneling approach, which
we touched upon in the previous chapter. This theory, developed by Ignacio
Wilson-Rae [26], provides a general framework to describe anchor losses in
suspended beam and membrane-like resonators. Due to it’s relevance for the
work at hand, the term phonon tunneling will be adapted in this work, over
the multitude of other names for the same loss mechanism.

Another technique involves structuring of the region around the resonator
(e.g. etching trenches/mesas), in order to realise acoustic1 reflectors. Exam-
ples can be found both for surface acoustic waves (SAWs) [83], as well as
suspended mechanical structures [84]. Similar techniques have been adapted
in optomechanical devices, including silicon nitride membranes [85], where
the corrugations in the silicon substrate act as acoustic reflectors. In a sim-
ilar vain, nested structures, where the inner-most part is the resonator of
interest, while the outer structure acts as a mechanical low-pass filter, have
shown to reduce the influence of phonon tunneling losses in torsional res-

1While there is not a clearly established terminology within our field (or the literature
for mechanical resonators in general) when it comes to referring to bulk waves in solid
objects, in this work I will refer to pressure waves in fluids as acoustic waves, while waves
propagating in solids will be referred to as elastic waves.
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onators [86, 87], as well as membrane resonators [88]. Yet another approach
is using beams of particular length as suspension, which provides an acoustic
impedance mismatch between the resonator and it’s support [89]. A similar
approach was adapted by Tobias Kippenberg’s group in realising microdisk
resonators with low mechanical dissipation [90]. These devices also included
another layer of impedance mismatch, namely due to the difference in the
material of the microdisk resonator (silica) and it’s support (silicon). Sim-
ilar to optics, the interface between two materials results in an impedance
mismatch, where part of the (elastic) wave is reflected2.

Finally, another method to reduce phonon tunneling losses, similarly
adapted from optics, involves acoustic/elastic Bragg reflectors. Shortly after
the pioneering work by Eli Yablonovitch and coworkers in 1991 [91], intro-
ducing photonic crystals as we know them, two research groups [92,93] pub-
lished their results on the acoustic analogy of photonic crystals – phononic
crystal structures. Here the idea is quite similar: by periodically modulat-
ing the acoustic (elastic) potential, acoustic (elastic) excitations with wave-
lengths comparable to the periodicity of the underlying structure interfere
destructively3, thus creating phononic bandgaps (sometimes referred to as
stop bands) – regions in frequency, where acoustic (elastic) waves are not
allowed to propagate and any excitation within the frequency range of the
bandgap is exponentially suppressed. Similar to the theory of electrons in pe-
riodic potentials, the eigensolutions in a phononic crystal structures are Bloch
waves [94], ψnk(r) = exp(ik · r)unk(r), where unk(r) is a function with the
periodicity of the crystal lattice. Inside a phononic bandgap the wavevectors
k become imaginary, thus resulting in an exponential decay of an excitation
created within the stop band. In essence, due to Bragg interference4 spectral
regions that forbid elastic wave propagation emerge. As one can imagine,

2In contrast to optics, however, vacuum does not support elastic wave propagation.
As such, the ultimate impedance mismatch can be achieved upon levitating a mechanical
resonator – this being one of the main points of attraction in levitated optomechanics.

3More precisely, when the lattice constant a is comparable to half the phonon wave-
length.

4It should be mentioned, that phononic bandgaps can not only emerge due to Bragg
interference, as described here, but also by the existence of internal resonances within the
unit cells of the crystal structure. This was demonstrated by Ping Sheng and coworkers
in year 2000 [95], where a matrix of lead balls covered with a layer of silicon rubber was
shown to have phononic bandgaps, despite the fact that the lattice constant was two
orders of magnitude smaller than the relevant wavelength at which the stop band was
observed. Roughly speaking, this mechanisms relies on elastic waves being trapped in
local “cavities”, before they are radiated away. Since this is not of relevance for this work,
this topics – albeit exciting on it’s own – will not be discussed further.
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scatterers can either be defined purely geometrically (e.g. by periodic cor-
rugation or perforation of a slab of material), or by periodic modulation of
the material parameters, and thus the speed of sound. The latter can be
achieved in a multitude of ways, but a simple example is arranging steel rods
in a periodic fashion, and filling the gaps with epoxy.

Some of the main advantages of phononic crystal structures for vibration
isolation applications were already pointed out by Bahram Djafari-Rouhani
and colleagues in their original paper from 1993 [92]:

“A complete acoustic gap or a low density of states should have im-
portant consequences for the suppression of zero-point motion and for the
localization of phonons, and may lead to improvements in transducers and in
the creation of a vibrationless environment.”.

While the various approaches for vibration isolation described above can
reduce phonon tunneling losses, many of them have have one or both of the
following challenges: 1) losses can be sensitive to the exact positioning of the
immediate support structure (e.g. suspension beams in the free-free resonator
design) and 2) the suspension structure has it’s own vibrational modes, thus
“contaminating” the vibrational spectrum with more modes. Phononic crys-
tal structures, on the other hand, offer means to define a spectral region with
no vibrations, other than the ones designed by the experimenter.

Unsurprisingly, this was realised by researchers within our field, and the
first devices were introduced by the group of Oskar Painter in 2009 [96]. The
so-called optomechanical crystals combined photonic and phononic crystal
structures, allowing for co-localisation of photons and phonons in a corru-
gated silicon slab, and thus strong light-matter coupling. It should be men-
tioned, that a few years prior to this, Martin Maldovan and Edwin Thomas
proposed a 2D structure for such co-localisation [97]. These publications
sparked tremendous interest in microfabricated devices based on artificial
crystals within optomechanics.

Focusing onto efforts to reduce phonon tunneling losses within our sub-
community working with membranes, the first systematic experimental stud-
ies of phonon tunneling loss were conducted by Dalziel J. Wilson [98]. Here,
the quality factors of square silicon nitride membrane resonators were studies
for different mounting condition, ultimately concluding that the highest Q’s
were observed for minimal contact between the membrane chip and the envi-
ronment (i.e. small glue droplets at three of the corners of the silicon chip).
Similar conclusions were reached by other research groups working with these
mechanical devices. While minimising the contact makes perfect sense, this
solution has several drawbacks: 1) such mounting conditions are difficult to
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reproduce, 2) the thermal contact between the resonator and the environ-
ment is reduced, which is disadvantageous for experiments in cryogenic set-
tings and 3) the membrane resonator can hybridise with the substrate modes,
which can lead to a “contaminated” vibrational spectrum. These concerns
eventually lead to the implementation of phononic crystal structures in the
area surrounding the membrane resonators. This was initially realised in the
group of Cindy Regal, as well as our in Copenhagen, and showed the poten-
tial of such structuring for cavity optomechanics [99, 100]. In the following
section, we consider some of the main features of such structures, design
considerations and device performance.

3.1.2 Phononic crystal structures in silicon – design
rationale

Let us outline a ”plan of attack” for suppressing phonon tunneling losses
in membrane resonators. Simple analytic examples from solid state physics,
such as vibrations in a periodic diatomic chain consisting of atoms with
alternating masses, can give us initial clues at the very onset of our journey.
Without going through the details of these examples (see [101, 102] for the
calculations of vibrations in 1D atomic chains with alternating masses), the
main points can be summarised as follows: a phononic bandgap can emerge in
a lattice with alternating masses, and the width of the bandgap will depend
on the ratio of these masses. In close analogy, one can envision a beam,
where the width is modulated periodically (see sketch in Fig. 3.1).

Unfortunately, analytics can only get us so far, and in order to evaluate
actual structures, we need to resort to numerical simulations. This is done
using a commercial software solution based on the finite element method
(FEM) – COMSOL Multiphysics. In the software the elastic equations of
motion are solved numerically for an arbitrary geometry, allowing us to find
the eigensolutions for complex mechanical structures.
This brings us to the topic of design rationale. We begin by constraining the
parameter space, based on experimental requirements and practical ease:

• Since our goal is to use these devices in optomechanical experiments, we
need to operate in a frequency range where technical noise sources are
negligible. One of these sources of noise is our laser and, for the lasers
used in our quantum optical experiments, classical amplitude and phase
noise becomes negligible, compared to vacuum noise fluctuations, above
∼ 1 MHz [17]. Therefore, design a structure with a phononic bandgap
above this frequency is preferable for our experiments.
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a

a

Figure 3.1: Sketch of a diatomic chain, consisting of a string of alternating
point masses connected with springs, and in analogy to that, a beam with
modulated width.

• To make use of established microfabrication techniques, our phononic
support structure will be based on silicon.

• As mentioned previously, in order for a bandgap to emerge at a certain
frequency, the lattice constant of our artificial crystal structure has to
be comparable to half the wavelength of the elastic wave. Based on the
density and Young’s modulus of silicon [103], we can estimate the speed
of sound for transverse wave in silicon to be vt ∼

√
E/ρ ∼ 6000 m/s

[104]. As such, for a bandgap to emerge at a frequency of fc ∼ 2 MHz,
the lattice constant a has to be on the order of vt/2fc ∼ 1500 µm.
Typically, the thickness of the slab has to be comparable to the lattice
constant, in order to have a substantial bandgap [105,106]. Since wafers
with 350 µm and 500 µm thickness are readily available inside our
cleanroom facility, we choose the thicker one of the two in the interest
of matching wafer thickness to lattice constant.

• A slab of silicon with a phononic crystal structure etched into it will
of course have it’s own vibrational modes. To avoid the lowest order
modes being excited by technical (e.g. acoustic) noise inside the labo-
ratory, we would like to keep the fundamental resonance frequency of
our phononic crystal structure above 10 kHz. Using Eq. (2.17) we can
estimate what this would correspond to in terms of overall size of the
crystal structure. Disregarding the presence of the holes in the silicon
slab, we find that a crystal lattice with ∼ 16 mm sidelength is our pain
threshold. Assuming a lattice constant of ∼ 1500 µm based on our
previous estimate, this would correspond to ∼ 5 unit cells on each side
of a membrane, embedded in the center of such a crystal structure.

• The crystal structure of choice will be etched into the silicon wafer
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using a process known as deep reactive ion etching (DRIE) (more on
this later). While very high aspect ratios (i.e. ratio between etch depth
and feature size) can be achieved using DRIE [107], we choose to be
conservative in our choice of critical dimensions within our structure
and fix the narrowest dimension to 100 µm (i.e. an aspect ratio of 5
for a 500 µm thick silicon wafer).

In fact, the second to last point was proven to be an issue for the initial
phononic crystal structures developed in our group [100]. Here, the collective
motion of the crystal structure was too large to allow for stable operation
of a cavity optomechanical system [108]. As a result, 2D phononic crystal
structures were developed during my PhD studies.

Last, but certainly not least, we get to the choice of the ”microscopic”
structure of our phononic crystal support structure. In our case, this choice
was based on previous work from the group of Oskar Painter, showing that
2D phononic crystal structures based on a periodic array of cross-like holes
result in large phononic bandgaps [109,110].

3.1.3 Numerical modelling

We now briefly touch upon some of the basic numerical modelling techniques
that we use in designing mechanical resonators based on phononic crystal
structures. With the design rationale described in the previous section, as
well as a choice of a crystal structure in place, the very first step is to iden-
tify the centre frequency and size of the phononic bandgap. This typically
involves computing band diagrams, which are obtained by simulating the
eigenvalues of a periodic structure as a function of the Bloch wavevector. In
practice, we start with a single unit cell of the crystal structure and apply
Bloch-Floquet periodic boundary conditions on the outer-most surfaces of
the unit cell, along the directions of the crystal periodicity. This is shown
in Fig. 3.2, where each pair of shaded areas indicates the use of a periodic
boundary condition. Since we are interested in the response of the peri-
odic crystal structure to incident waves of different wavevectors, the x- and
y-components of the wavevector are swept across the first Brillouin zone,
computing the eigenfrequencies of the periodic structure for each value of
the wavevector. As we plot the eigenvalues versus the wavevector, we ob-
tain band diagrams similar to those that we have been exposed to in solid
state physics. With growing interest in phononic crystal structures, COM-
SOL now provides excellent examples and basic models on how to calculate
band diagrams in periodic crystal structures [111]. The resultant band di-
agram for our particular structure is shown in Fig. 3.2. As we can see,
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Figure 3.2: Simulated band diagram for a silicon phononic crystal structure.
Top left shows the unit cell of a cross-structure phononic crystal. Highlighted
are the pairs of surfaces (yellow along x-direction and blue along y-direction)
upon which Bloch-Floquet periodicity is imposed. Bottom left shows the
equivalent first Brillouin zone of the unit cell. The simulated band diagram
is shown on the right. Here we use a = 1350 µm, h = 500 µm, w = 513 mum
and c = 50 µm. The material parameters are the default values provided by
COMSOL, where ρ = 2329 kg/m3, E = 170 GPa and ν = 0.28.

the structure does not support vibrational modes in the frequency range be-
tween ∼ 1.25 MHz and ∼ 2.25 MHz, and yet again at higher frequencies.
This process can be repeated for varying parameters of the unit cell, in or-
der to maximise the bandgap and/or its centre frequency, depending on the
experimental requirements. In this case, the optimisation was simply done
by varying the hole width w (see unit cell in Fig. 3.2) and unit cell size a,
while maintaining the same critical dimensions c and plate thickness.

Typically, implementing such a model in COMSOL is not a particularly
challenging task, in part because of an established toolbox, often provided by
COMSOL itself. However, paying attention to meshing (i.e. discretisation)
of the crystal structure can be of importance and alleviate unpleasant sur-
prises. First, as it relates to phononic bandgap simulations, it is important to
ensure a matching mesh on the periodic boundary condition. Failing to do so
can result in seemingly realistic, but in reality incorrect band diagrams. Of
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broader relevance is the question of mesh density and what constitutes a good
mesh. In most cases, we discretise our geometry into triangles and tetrahe-
drons, which COMSOL does using Delauney triangulation [112]. However,
meshing a geometry with regions significantly smaller than the overall di-
mensions of the entire geometry can result in “flat” triangles and tetrahedra
in said regions. Such discretisation can lead to numerical inaccuracies in our
simulation results [113] and should therefore be avoided. One could therefore
use the presence of equilateral triangles and absence of “flat” triangles and
tetrahedra as a gauge for the mesh quality. This often times provides a suf-
ficiently fine mesh density from the get go. Ultimately, convergence tests are
a helpful path forward, where multiple simulations are performed using the
same geometry, but with an increasing amount of mesh elements. Combined
with the cannonical “5-8 mesh elements per wavelength” recommendation
from COMSOL [114], these guidelines can be utmost helpful in constructing
robust numerical models.

Once the unit cell geometry has been identified and verified to support a
large phononic bandgap, the next step is typically to design a device based
on the underlying crystal structure, with an embedded defect supporting
a membrane resonator. In our case, the overall size of the structure is
largely limited by the considerations regarding the fundamental resonance
frequency of the entire phononic crystal structure (cf. Section 3.1.2). We
are thus bounded from above in size, but how many unit cells are actually
needed in order to render phonon tunneling losses negligible? This ques-
tion can be addressed within the framework of phonon tunneling, as demon-
strated by Garret Cole and colleagues [82]. Alternatively, one can employ
a more straightforward (yet computationally heavy) approach by using per-
fectly matched layers (PML), which are domains within the simulation acting
as perfect absorbers of elastic waves. This technique is often used in assess-
ing anchor losses of mechanical resonators [115, 116] and is well suited for
complex geometries. Therefore, we adapt this approach in addressing the
question regarding the miniumum number of unit cells. Surprisingly, we find
that even for a single unit cell the radiation loss limited quality factor for
the (2, 2) mode of a square membrane (h = 100 nm) is approximately 1011,
while two unit cells result in a radiation loss limited Q of ∼ 1013 and, finally,
∼ 2 × 1013 for three unit cells. While these numbers might seem excessive,
this is not particularly uncommon when assuming a prefect crystal structure
(even one consisting of a single unit cell). However, as recently reported by
MacCabe et al. [117], imperfections in the crystal structure can lead to a
significant reduction of the radiation loss limited Q. Therefore, we base our
choice on similar studies and land upon a lower bound of 3 unit cells.
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3.1.4 Fabrication of shielded membrane resonators

With the geometry in place, we move our focus to the fabrication process.
Throughout this section the reader is referred to Fig. 3.3 for an overview
and some detail will be provided about the basics of microfabrication. The
interested reader is referred to [118] for a comprehensive overview of micro-
fabrication basics.
The process starts with the selection of double-side polished (DSP) silicon

wafers. We use wafers provided by Okmetic, with 〈100〉 crystal orienta-
tion (0.0 ± 0.5◦ off-orientation) and 500 ± 15 µm thickness. The wafers are
transferred to a low-pressure hot-wall furnace [118], where amorphous sili-
con nitride is deposited on the surface of the silicon wafers. This process is
known as low-pressure chemical vapor deposition (LPCVD), and takes place
by injecting ammonia (80 sccm NH3) and dichlorisilane (20 sccm SiH2Cl2)
in the gas phase into the deposition chamber. The reaction takes place at
high temperatures (typically ∼ 780 ◦C) and 200 mTorr pressure, resulting
in a thin film of stoichiometric silicon nitride (Si3N4), where stoichiometric
typically refers to a 3/4 ratio of silicon to nitrogen), as well as hydrogen (H2)
and hydrogen chloride (HCl) in gaseous form as reaction byproducts5. Upon
completion of the process, the wafers are cooled down. Due to a difference
in rate of contraction of silicon and silicon nitride, the deposited thin film
becomes tensioned, described by the integrated difference in the coefficients
of thermal expansion of the two materials [119]

σth =
ESi3N4

1− νSi3N4

∫ Troom

Tdep

(αSi − αSi3N4)dT, (3.1)

where ESi3N4 and νSi3N4 are the Young’s modulus and Poisson’s ratio of sil-
icon nitride (assumed to be constant as a function of temperature), Tdep is
the deposition temperature, Troom is the final (room) temperature, and αSi

and αSi3N4 are the coefficients of thermal expansion (CTE) of silicon and
silicon nitride, respectively. We can estimate the thermal contribution to
the film stress using values for CTE from literature. While values for silicon
are readily found [120], the thermal expansion coefficient for LPCVD silicon
nitride is harder to come across. A comparison of measurements for LPCVD
nitride up to 400◦C [121] and data originating from plasma deposited silicon
nitride and spinel-type (crystalline) silicon nitride [122] shows fair agreement
in the overlapping temperature range, suggesting that we can use the data
from [122] for our estimate. As shown in Fig. 3.4, the thermal expansion

5These can be embedded in the deposited thin film and have an effect on the mechanical
quality factor [78].
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1) LPCVD deposition of
 Si₃N₄ on a 500μm thick
 <100> Si wafer.

2) Spin-coat and softbake
 1.5µm AZ5214E on both
 sides of the silicon wafer.

3) UV exposure and deve-
 lopment of square holes
 on the back-side of the
 wafer.

4) Transfer of pattern to
 silicon nitride via reactive
 ion etching.

5) Resist strip in acetone. 6) KOH etch of silicon,
 stopping short of releasing
 the membranes, followed
 by hot piranha clean.

7) PECVD deposition of
 SiO₂ on the font-side of
 the wafer. 

8) Spin-coat and softbake
 10µm AZ4562 on the
 front-side of the wafer. 

9) UV exposure and deve-
 lopment of phononic
 crystal structure on the
 front-side of the wafer.

10) Bond device wafer to
    carrier wafer using
    crystalbond.

11) Transfer of phononic
    crystal structure pattern
    using deep reactive ion
    etching (DRIE).

12) Removal of carrier wa-
   fer in hot water bath,
   followed by resist strip
   in acetone. 

13) Hot piranha bath to
   remove residual organic
   contaminants.

14) KOH etch to fully release
   the membranes.

15) Buffered hydrofluoric
   acid etch of PECVD SiO₂ 
      and hot piranha clean. 

Figure 3.3: Process flow for silicon phononic crystal shielded membrane res-
onators. The various materials are colour coded as follows: silicon (light
grey), silicon nitride (orange), photoresist (purple), PECVD SiO2 (green),
crystalbond (blue), carrier wafer (dark grey).
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coefficient of silicon is lower than the CTE of silicon nitride, meaning that
silicon nitride contracts slower than silicon, resulting in compressive stress
in the thin film. Integrating the difference in CTEs in the temperature range
300 K to 1050 K suggests that the thermal contribution to the overall stress
of the silicon nitride film is ∼ 100 MPa. Similar estimates found in the liter-
ature suggest that depending on the deposition method of the thin film, the
thermal stress contribution can be either compressive [119] or tensile [123].
But whether tensile or compressive, it is typically found to be on the order
of ∼ 100 MPa.
Once the silicon nitride film has been deposited, we can measure the over-
all tension in the film by measuring the bow of the wafer with and without
the thin film. In practice, this involves a (reference) measurements of the
wafer curvature, with the silicon nitride thin film on both sides of the wafer,
followed by removal of the film from one side only and a repeated measure-
ment of the curvature. The measurement is done using Bruker’s Dektak
XTA R© stylus profiler. Knowing the curvature before and after removal, as
well as material parameters of the substrate, allowed us to calculate the stress
of the remaining silicon nitride film following this expression [125]

σ =
ESi

6(1− νSi)

t2Si

tSi3N4

(
1

Rpost

− 1

Rpre

)
, (3.2)

where ESi and νSi are the Young’s modulus and Poisson’s ratio of silicon (de-
pendent on the crystal orientation), tSi (tSi3N4) is the thicknesses of the silicon
wafer (silicon nitride thin film), and Rpost (Rpre) is the measured curvature
after (before) the removal of the thin film. Using this technique we have
measured the tensile stress of 105.5 nm silicon nitride to be 1273± 24 MPa.
Combined with our estimate of stress due to the mismatch of CTEs we there-
fore conclude that the dominant contribution of stress is not thermal of origin.
Indeed, the consensus in the literature is that the tension in deposited thin
films is predominantly intrinsic of nature (i.e. related to the deposition con-
ditions) and that the films are already tensioned at elevated temperatures.
Understanding the exact details of this dynamics is still actively being stud-
ied [126]. The origin of the stress can be explained by a mechanism known as
crystallite coalescence [127], which suggests that the initial growth happens
in small patches (crystallites), and as the islands grow bigger, they spon-
taneously snap together, which can result in stretching (tensioning) of the
film. The details of this process will depend on a number of things, including
deposition surface. As such, determining the stresses of deposited thin films
is a non-trivial exercise and in practice means that one should measure these,
for instance using the wafer bow technique.
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Figure 3.4: Thermal expansion coefficients for silicon nitride [121, 122] and
silicon [120] as a function of temperature. The values have been extracted
digitally using WebPlotDigitizer [124]. The values from [122] originate from
plasma deposited silicon nitride and spinel-type (crystalline) silicon nitride,
while the values from [121] are for LPCVD silicon nitride. The shaded area
represents the thermal contribution to the stress of silicon nitride. The
dashed lines are fits to the extracted data from Linas et al. and Okada
et al. in the relevant temperature range (300 K and 1050 K). On the top a
cross-section view of the wafer curvature at elevated temperatures and room
temperature is shown (the curvature originating from thermal stresses only).
The depicted wafer (top left) curvature corresponds to a compressive film
stress.

Following the deposition of silicon nitride, we proceed with Step 2 and
3 of the process (cf. Fig. 3.3). Here, the pattern for the square holes,
which in the end will define the size and placement of the membranes on the
silicon wafer, is transferred lithographically onto the said wafer. We begin
by baking out the wafer on a hotplate (or in a dedicated furnace) at 150 ◦C,
in order to remove moisture, followed by application of hexamethyldisilazane
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(HMDS) in the gas phase, in order to improve the adhesion of photoresist to
the wafer. A thin layer (1.5 µm) of positive photoresist (i.e. a photosensitive
polymer, where the polymer chains are broken upon illumination with UV
light) is spin coated onto both sides of the wafer, with a 60 s softbake at
90 ◦C after each coating. The latter results in evaporation of the solvent
in the photoresist and solidifies the polymer. The wafer is transferred to
a mask aligner, where a photomask6 is used to transfer a pattern (in this
case, a matrix of square holes) onto the photoresist. Once illuminated, the
polymer chains in the exposed regions have been broken and can be removed
chemically (i.e. developed). In this case, we use diluted TMAH (AZ 726 MIF
developer) to develop the wafer, followed by a rinse in deionized (DI) water.
The combination of spin coating, baking, exposure and, finally, development,
will henceforth be referred to as the ”lithographic step”.

Upon completion of the lithographic step, our wafer is covered on both
sides with photoresist, with square openings in the photoresist, and thus
access to the silicon nitride, on one of the sides (referred to as the back-
side) only. In Step 4 and 5 of the process (cf. Fig. 3.3) we transfer this
pattern to the silicon nitride on the back-side of the wafer, using dry etching
(more specifically, reactive ion etching (RIE) or inductively coupled plasma
etching (ICP)). Here, a fluorine gas (consisting of CF4 and H2) is ionized and
accelerated towards the sample. The silicon nitride is gradually etched away,
thus exposing the silicon underneath. The photoresist, which was used to
protect the rest of the silicon nitride, is subsequently removed in an acetone
bath with sonication.

The square openings in the silicon nitride are now used to remove the sili-
con between the back-side of the wafer and the front-side. This is done chemi-
cally, using potassium hydroxide (KOH), which etched silicon anisotropically,
resulting in characteristic pyramid-formed ”craters” in the silicon (see Step 6
in Fig. 3.3). For a given square opening in the silicon nitride of sidelength
L, the resultant sidelength of the square a distance d away from the opening
will be L−

√
2 d. As such, if the sidelength of the square previously etched in

the silicon nitride is 1200 µm and we etch all the way through the wafer, the
size of the opening on the front-side will be ∼ 492 µm. Since the etch rate of
silicon in KOH is significantly higher than the one for silicon nitride7, the en-

6In this case, a photomask is a large piece of glass with a thin layer of chromium, where
parts of the chromium have been removed, thus blocking light everywhere, except for the
regions where the metal has been removed.

7This ratio, often referred to as selectivity, is better than 1:80000 – i.e. > 80000 nm
silicon is removed for every nanometer of silicon nitride etched in the same amount of
time. More specifically, the etch rate of silicon along the 〈100〉 direction in KOH at 80 ◦C
is ∼ 1.3 µm/min, while the etch rate of stoichiometric silicon nitride is ∼ 1 nm/hr.
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tire wafer is submerged into the chemical solution and etched for ∼ 6 hours.
The etch is stopped slightly short of removing all of the silicon between the
opening and the silicon nitride of the front-side, which would ”release” the
membrane. This is done to provide mechanical stability for the subsequent
fabrication steps. Finally, in order to remove organic residues from the KOH
etch, the wafer is cleaned in a hot piranha solution, which consists of of a 4:1
mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2).

After the KOH etch, the to-be silicon nitride membranes are supported
from below by a thin (∼ 10 µm) silicon layer, but are exposed on the front side
of the wafer. Since the subsequent steps in the process involve some risk of
contamination and/or damaging of the silicon nitride film, we deposit a thin
layer (0.3−0.5 µm) of silicon dioxide (SiO2) using plasma-enhanced chemical
vapor deposition (PECVD) in Step 7 of the process. With a deposition rate
of approximately 100 nm/min, this process only takes a few minutes and
provides extra protection for the to-be membrane surface.

With both membrane surfaces being protected (with silicon from below,
and silicon dioxide from above), we move to Steps 8-11 of the process (cf.
Fig. 3.3), where the phononic crystal pattern is defined on the front-side
of the wafer and subsequently transferred to the silicon wafer. We begin
with yet another lithographic step, by coating the front-side of the wafer
with a thick (∼ 10 µm) layer of positive photoresist (AZ R© 4562). Prior
to this the wafer has once again been baked out and coated with HMDS.
A thick layer of polymer is needed in order to withstand approximately 1
hour of dry etching in the following steps of the process. Upon exposure
and development, a matrix of the phononic crystal pattern of our choice is
defined in the polymer layer on the front-side of the wafer. The wafer is now
ready to be dry-etched, in order to transfer the phononic crystal pattern into
the silicon. However, since we intend to etch all the way through the wafer,
there is a risk of contaminating and/or damaging the ceramic electrode8

in the etching chamber (the wafer is clamped to the electrode during the
etch process). In order to avoid this, we need to attach our device wafer to a
plane silicon wafer (henceforth referred to as carrier or dummy wafer). Since
the dry etch process generates heat, the wafers in the process chamber are
typically cooled from the back side using helium gas. Therefore, we need to
make sure that upon attaching our device wafer to the carrier wafer, a decent
thermal link is maintained. This is done using a mounting wax (adhesive)
known as crystalbond. Resembling a square candle, crystalbond is solid at
room temperature, melts at elevated temperatures (typically above 60 ◦C),
and can either water- or acetone-soluble. For process compatibility reasons,

8Referred to as Thick Dielectric Electro Static Chuck (TDESC).
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we choose the water soluble option. We heat our carrier wafer to ∼ 70 ◦C
on a hotplate and apply a thin layer of crystalbond at the surface of the
silicon wafer by hand. To avoid trapped air pockets underneath the to-be
membranes, instead of a uniform layer of crystalbond, ∼ 1 cm wide strips of
crystalbond are applied across the carrier wafer. Upon doing so, the device
wafer is placed on top of the carrier wafer, and the sandwich of the two wafers,
with crystalbond between them, is removed from the hotplate, in order to
cool down and for the crystalbond to solidify. Once cooled down, the wafer
sandwich is moved to the reaction chamber of a deep reactive ion etcher
(DRIE). We are using the SPTS Pegasus system by SPTS Technologies Ltd.,
which allows processing of 4” silicon wafers using the Bosch plasma etch
process. In short, the Bosch process alternates between a nearly isotropic
etch of the silicon (using primarily sulfur hexafluoride, SF6, alongside oxygen,
O2), followed by polymer deposition (a so-called passivation layer, which uses
octafluorocyclobutane gas, C4F8), which protects the sidewalls, allowing for
highly anisotropic etching of silicon, resulting in nearly vertical etch profiles.
This etch process is rather ”violent”, which is why, in steps 6 and 7 we
ensured to protect the membrane from both sides. With an etch rate of
∼ 10 µm/min in silicon, the process takes approximately an hour at 0 ◦C
and results in a complete transfer of the phononic crystal structure into the
silicon wafer.

We are now entering the final stretch of the process. In Step 12 of the
process we wish to remove the carrier wafer. This is done in two steps. First,
the wafer sandwich is placed onto a hotplate set to 80 ◦C, in order to soften
the crystalbond, and the device wafer is carefully removed from the carrier.
To remove the bulk of the crystalbond, the wafer is placed into a 90 ◦C
water bath with agitation. The combination of wafer and heat efficiently
removes the majority of crystalbond from the device wafer. The wafer is
finally transferred to a room temperature water rinse, and is left for an hour
or more. Lastly, the photoresist on the front-side of the wafer, which is
partially burnt after the long dry etch, is removed by placing it into acetone
overnight. While the vast majority of crystalbond and photoresist is removed
in the hot water bath and acetone bath, there are still some minor residues
remaining on the device wafer. In Step 13 these are removed using a hot
piranha solution.

With the phononic crystal etched into the silicon wafer, we are now ready
to fully release the membranes in a short (∼ 10 min) KOH etch in Step 14.
Unavoidably, the vertical sidewalls are also etched during the KOH etch,
but due to the brevity of the etch and hence the relatively small change in
dimensions, compared to the simulated geometry, this is not a major concern
for the performance of the device. Finally, in Step 15 of the process we
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remove the protective SiO2 layer using buffered hydrofluoric acid etch (BHF)
and clean the device wafer once more in a piranha solution, thus concluding
the fabrication process.

3.1.5 Characterisation of phononic crystal shielded mem-
brane resonators

One of the first and simplest measurement we can do with newly fabricated
microresonators is coherently driving the resonator at some frequency and
looking at the response of the resonator at that exact frequency. Depending
on the specifics of the measurement, we can either use a piezoelectric trans-
ducer to launch elastic waves and thus excite the resonator, or an amplitude
modulated diode laser, which excited the resonator directly. The response
of the resonator is measured interferometrically. Here, we use a balanced
Michelson interferometer to do so (see [128] for more details on our setup).
A simplified sketch of our interferometric setup is shown in Fig. 3.5.

The primary light source in our setup is a Nd:YAG solid state laser9,
operating at 1064 nm wavelength. The light is split between the reference
arm and the probe arm of the interferometer using a half-wave plate (λ/2)
and a polarizing beam splitter (PBS). The light in the probe arm is coupled
into a single mode fiber, at the output of which we place the membrane
resonator we wish to characterise. More specifically, the probe beam is guided
through a fiber to a probe head, which, in essence, is a portable optical
setup consisting of a fiber coupler, lenses, a translation stage, and a CCD
camera. The membrane resonator is placed either inside a large vacuum
chamber, which can accommodate 4” silicon wafers, as well as individual
samples, reaching pressures down to 10−8 mbar, or a flow cryostat10 with a
base pressure at room temperature of ∼ 10−5 mbar. Importantly, the probe
head used in conjunction with the flow cryostat includes a 50× microscope
objective11 and a motorised translation stage. As we will see later in this
chapter, this allows for measurements of mode displacement profiles.

The light which is reflected from the membrane will be phase modulated
due to the membrane motion. Upon reflection, light is coupled back into the
fiber and recombined with light from the reference arm on a PBS. At the
output of a (lossless) Michelson interferometer we expect to see the power

9Mephisto Ultra-Narrow Linewidth DPSS Laser by Coherent Inc.
10Microstat Hi-Res by Oxford Instruments.
1150× Mitutoyo Plan Apo NIR Infinity Corrected Objective.
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λ/4
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Figure 3.5: Simplified illustration of the Michelson interferometric setup.
Light from the laser is split between the probe and reference arms of the
interferometer, where in the latter a piezo-mounted mirror is used to sta-
bilise the relative path length difference of the two interferometer arms. The
mechanical resonator is placed inside a vacuum chamber (not shown here)
in the probe arm, and a CCD camera is used for sample imaging. Light
reflected from both interferometer arms is recombined on a polarising beam
splitter, and subsequently detected using a balanced photodetector. The
output signal of the photodetector is split between an analyser (here shown
as a lock-in amplifier) and a PI-controller, used in locking the interferometer
at a particular point of the interference fringe.

depend on the optical path length difference ∆L as follows

Pout

Pin

=
1− cos(2k∆L)

2
, (3.3)
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where k is the wavenumber. The output signal is most sensitive to small fluc-
tuations in the path length difference when the phase difference ∆φ = 2k∆L
equals π(2n−1)/2 (where n is an intereger). As such, the mirror in our refer-
ence arm is mounted on a piezoelectric transducer, which is used to stabilise
the path length difference to ∆L = λ(2n−1)/8 using a proportional-integral
(PI) feedback loop with a bandwidth of ∼ 2.5 kHz. Since the light from the
two interferometer arms are orthogonally polarised immediately after the
PBS where they are re-combined, a half-wave plate rotates the polarisation
by 45◦, before splitting the light on a PBS. This ensures that light reflected
from the probe and reference arms are evenly distributed between the two
output ports of the polarising beam splitter. We use a balanced detection
scheme, which ensures common noise rejection (e.g. laser amplitude noise,
acoustic noise, etc.). Once the interferometer is locked, the output signal of
our detector (Thorlabs PDB420C-AC) is sent to a spectrum analyzer and/or
lock-in amplifier, where fluctuations in the signal at the relevant Fourier fre-
quencies are analysed.

Our strategy for characterising the silicon phononic crystal structures is
as follows. We mount a single sample inside one of our vacuum chambers
on top of a piezo, with the probe light focused either on the membrane, the
silicon defect or the outer frame of the chip. Using a vector network analyser
(VNWA), or a lock-in amplifier, the piezo is driven at different frequencies,
while monitoring the response of the device at said frequency at the output of
the interferometer. As we sweep the drive tone across the expected frequency
region of the phononic bandgap, we expect to see a different response at
different positions of the membrane chip. More specifically, the motion in the
central part of the phononic crystal structure is expected to be smaller within
the frequency range of the phononic bandgap, compared to the displacement
outside the crystal structure. This behaviour is show in Fig. 3.6, where
the driven responses, averaged over ten locations on the frame or the defect,
are compared, showing > 20 dB suppression of vibrations over a frequency
range of ∼ 2 MHz. Importantly, the measurement shows not only suppressed
vibrational amplitude, but also a sparse mode spectrum, with the peaks found
inside the bandgap being ascribed to localised modes of the silicon defect,
in the centre of which the membrane is placed. We note that the size of the
observed bandgap is larger than the simulated structure in Fig. 3.2. This is
largely due to the fact that the sidewalls of our phononic crystal structure are
etched during the final release (cf. 3.1.4), thus reducing the critical dimension
from 100 µm, as initially designed, down to ∼ 75 µm (here we assume a 10
minute KOH etch with an etch rate of 1.25 µm/min). This results in a larger
mass mismatch within our phononic crystal structure, and hence a larger
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Figure 3.6: Driven response of a silicon phononic crystal structure, nor-
malised to the shotnoise. Each curve is an average of ten measurements at
different positions of the frame (blue) or the defect (red). An RF tone at
3.58 MHz is sent onto the piezo of the reference arm and is used to account
for power drifts among these individual sweeps. The white square in the
central part of the defect is the silicon nitride membrane. Figure is adapted
from [1] and [14].

bandgap.

The measurements shown in Fig. 3.6 are helpful in identifying regions in
frequency where the phononic crystal suppresses vibrations. However, as we
can see, our measurement sensitivity is insufficient to resolve the degree of
suppression between 2 MHz and 3 MHz. Furthermore, the mapping between
the degree of suppression and quality factors of the membrane modes is non-
trivial. Hence, a direct assessment of the quality factors is needed, in addition
to the driven measurements shown above.

This is done using a ringdown technique, where the individual membrane
modes are excited by a resonant drive (either using a piezo or an amplitude
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Figure 3.7: a) Mechanical quality factors for a 60 nm thin silicon nitride
membrane at cryogenic temperatures. The shaded areas indicate regions of
frequency outside of the bandgap (cf. Fig. 3.6). Light blue circles indicate
modes where both mode indices are lower than 3, while opposite applies
for the dark circles. The membrane sidelength is ∼ 544 µm. b) Ringdown
measurement for the red datapoint in a). Here, the mechanical frequency
is Ωm = 2π × 1.218 MHz and the measured quality factor is Q = (12.61 ±
0.04)× 106. Figure a) is adapted from [1] and [14].

modulated light source). Upon turning the drive off, the mode amplitude
decays according to

q(t) = q0 sin (Ωmt+ φ) e−Γmt/2, (3.4)

where q0 is the initial amplitude and Γm is the energy decay rate. Since
we mostly care about the time evolution of the envelope of the amplitude
decay (i.e. e−Γmt/2) the detected signal is analysed using a lock-in amplifier,
where the demodulated signal at the mechanical frequency yields the decay
envelope. Upon fitting an exponential function and recalling that Qm =
Ωm/Γm, the quality factor can be estimated. Typically, this is repeated
several times and the average of the individual estimates is the quality factor
we ultimately quote.

In Fig. 3.7b we see an example of one such ringdown measurement, per-
formed at cryogenic temperatures, alongside a broader overview of measured
quality factors for thirty vibrational modes of the membrane (Fig. 3.7a). As
we can see, the membrane modes inside the phononic bandgap have compara-
ble mechanical quality factors and are monotonically decreasing in magnitude
as a function of frequency. On the contrary, modes outside of the bandgap
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show deviation from this trend and a larger spread in Q-factors is seen. This
can be understood in terms of modal overlap between the membrane and
support structure, which has a significantly denser mode spectrum outside
of the bandgap (cf. Fig. 3.6). Furthermore, in Fig. 3.7a we differentiate
between vibrational modes with mode indices m∨ n < 3 and others, since it
has previously been pointed out that the latter category is more susceptible
to phonon tunneling losses [64]. While the vast majority of modes within our
phononic bandgap belong to this category, no such trend can be seen for our
samples.

As we have now seen, phononic crystal engineering is a powerful tool in
suppressing and eliminating dissipation due to phonon tunneling. Having
done so, the dominant source of dissipation is no longer extrinsic, but intrin-
sic in nature. As we touched upon in the previous chapter, surface loss is
the main source of dissipation in thin silicon nitride resonators, and is subse-
quently diluted due to the presence of tension in the thin film. Therefore, if
we wish to improve the mechanical quality factors of our devices (for a given
temperature), we can either reduce the intrinsic dissipation (e.g. by modi-
fying the surface chemistry or using a different material for the mechanical
resonator) or by improving the degree of dilution. The latter is the path we
have chosen to pursue and will be the focus for the remainder of this chapter.

3.2 Soft clamping

The curvature at the edges of a membrane resonator dictate its mechanical
quality factor. This, in short, is one of the main conclusions from dissipation
dilution, discussed in the previous chapter. Broadly speaking, the boundary
conditions of our resonators essentially dictate that the membrane has to be
in a horizontal position at the edges, leading to significant bending and hence
dissipation. The quality factor for a square resonator was found to be given
by the following expression

Q−1
mn = Q−1

int

(
λ+ λ2 (m2 + n2)π2

4

)
, (3.5)

where the first term in the parentheses is due to the curvature at the mem-
brane edges. Given the fact that λ ∼ 10−3 for our devices, the second term
O(λ2) is negligible and hence the quality factor simply scales inversely with
λ. Seeing that λ ∝

√
Eh2/σL2 , the degree of dilution can be improved in

a three12 different ways: a) choosing a material with a significantly lower

12As we saw in the previous chapter, surface related losses scale linearly with thickness,
which happens to cancels out the thickness scaling due to dissipation dilution. Therefore,
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Young’s modulus b) increasing the tension in the silicon nitride resonators
(for instance mechanically, by bending the silicon chip [54], rapid thermal an-
nealing [129], or choosing a different substrate material [130]) or c) increasing
the sidelength of the membrane resonator. Since for most standard materials
the yield stress is proportional to the Young’s modulus, it is not very likely
that we can find a material which can provide us a significantly lower Young’s
modulus, while preserving a high yield strength. Further, since the dilution
term scales with the square root of Young’s modulus, this does not seem like
a viable option. Similarly, since the yield strength of LPCVD silicon nitride
is approximately σy = 6.4 GPa [131], increasing the tension in our resonators
would result in approximately two-fold improvement of the dilution factor,
due to the square root scaling, Finally, we can consider the option of in-
creasing the size of our resonator. This approach was taken by Chakram et
al. [57], where mechanical quality factors of 50 million were measured using
large (∼ (5 mm)2) silicon nitride membranes, and showing Qf -products of
100 THz at f ≈ 2.7 MHz.

While we could increase the dilution factor by scaling the lateral dimen-
sions of our devices up, this approach opens a different can of worms: by
doing so we not only increase the effective mass of the resonator (meff ∝ L2),
thus reducing the optomechanical interaction strength, but also increase the
density of membrane modes at higher frequencies, making it increasingly
harder to separate between the different vibrational modes of the membrane
resonator. Using the expression for the mechanical resonance frequency (see
Eq. (2.18)) and treating the mode indices as continuous variables, it can
easily shown that the approximate number of modes N per unit frequency is
given as

dN

df
= 2πfL2 ρ

σ
. (3.6)

In Fig. 3.8 the calculated mode density is plotted for a membrane of com-
parable dimensions to the device studied by Chakram et al. [57]. At the fre-
quency with the highest measured Qf -product, the mode density is almost 1
per kilohertz. With a decoherence rate of Γdec = kBT/~Q ≈ 2π× 130 kHz at
room temperature, it is evident that using such vibrational modes in quan-
tum optomechanical experiments is not feasible.

we do not gain in dilution by reducing the resonator thickness.
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Figure 3.9: Profile sketch of a soft clamped membrane, illustrating the grad-
ual transition of a localised vibration into the phononic crystal structure
(bottom), which acts as a “soft” clamping region.

Seeing that the only viable option of increasing the dilution factor is a
double-edged sword, we turn our attention back to expression for dissipation
dilution, as we look for an alternative solution. It is evident that eliminating
the “hard clamp” at the edges of our resonators would result in a much more
favourable Q ∝ λ−2 scaling. Remarkably, this can be achieved by phononic
crystal patterning of the membrane resonator, as opposed to the structuring
of the substrate, discussed earlier in this chapter. By introducing a defect in
the membrane (see Fig. 3.9), we can localise vibrational modes in the central
region of our device. The fact that the isolation structure (i.e. the phononic
crystal structure) and the resonator have comparable stiffnesses13, the lo-
calised vibrational modes decay gradually into the “soft” clamping region
(i.e. the phononic crystal structure), and have negligibly small amplitudes
at the interface of the membrane structure and the supporting silicon sub-
strate. Since the localised vibrational modes no longer “see” the rigid clamp,
their integrated curvatures are significantly reduced and hence the degree
of dilution is dramatically enhanced. This essentially amounts to elimina-
tion of the O(λ) in dissipation dilution, leaving us with the more favourable
O(λ2) term. The technique of eliminating the rigid clamp by phononic crys-
tal engineering is what we call “soft clamping”. In the following sections
we will go through the various steps of the design process, as well as device

13Stiffness being the ability of a membrane structure, subject to an external force, to
resist deformation. For thin plates, the stiffness is dominated by the in-plane tension,
rather than flexural rigidity, which becomes negligible due to the D ∝ h3 scaling.
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characterisation.

3.2.1 Finite element modelling

Simulation of mechanical Q’s and effective masses

Simulating the mechanical properties of our soft clamped devices is a key
part of the design process. In most phononic crystal structures the geometry
is decoupled from the intrinsic properties of the resonator. However, in our
case the stress distribution is strongly coupled to the geometry. Therefore, it
isn’t obvious that our “geometric intuition” will always be true – moving or
scaling a set of holes in our structure could lead to a non-trivial redistribution
of the stress, and the resulting mode properties could be opposite to what we
had intended with said geometric perturbation. As such, we need to develop
a set of numerical tools, which will aid us in optimising our devices.

We will use a plain square membrane as our test case, comparing simu-
lated and analytic values of the effective masses and quality factors, which
are the two primary quantities we are interested in extracting from our sim-
ulations. In COMSOL we will be using the Structural Mechanics module
to perform eigenfrequency analysis of the membrane resonator, and estimate
said quantities by manipulating the simulated displacement fields – by inte-
gration, differentiation, or both. The effective mass is estimated in COMSOL
using Eq. (2.14). The quality factor is estimated by the ratio of the kinetic
energy given by Eq. (2.49), and the dissipated energy expressed in terms

5 µm

500 µm

Figure 3.10: COMSOL model of a 500 µm × 500 µm square silicon nitride
membrane. The geometry includes a 5 µm frame, which is used for dense
meshing near the membrane edges. Fixed boundary conditions are applied
at the four surfaces of the square membrane (i.e. at the clamping points).
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of the second order derivatives of the displacement field (cf. Eq. (2.48)).
Anticipating a large curvature around the membrane edges, we mesh the a
region of 5 µm around the circumference of the membrane extra densely (see
Fig. 3.10).

In Fig. 3.11b such a comparison of the quality factors is shown for a
square membrane resonator of 100 nm thickness and 500 µm sidelength. We
have once again introduced a small degeneracy (0.1%), in order to break the
degeneracy in our simulation. As shown in the figure inset, the simulated
quality factor agrees with the analytic estimate to within 10%. Comparing
the stored and dissipated energies from our simulation with theory suggests
that the discrepancy is due to our estimate of the dissipated energy. The few
percent discrepancy is likely due to the imperfect meshing at the membrane
edges. However, since the simulations of soft clamped membranes do not
involve such large curvatures, the slight discrepancy in the simulated values
for a square membrane is perfectly acceptable.
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Figure 3.11: Comparison of simulated (a) energies and (b) quality factors
with analytic values for a 100 nm thin silicon nitride membrane with 500 µm
sidelength and 1 GPa tensile stress. The inset of figure (a) shows the ratio of
the simulated and analytic values, suggesting that the COMSOL simulation
agrees with the theoretical values to within 10%.

Finally, we compare the simulate effective masses with theoretical values
(see Fig. 3.12). Here, the agreement is better than 0.5% and only slight
deviations are seen for higher order vibrational modes. If necessary, this
could be improved with a denser mesh. With this, we are now confident
that we can accurately simulate the two most important quantities for device
optimisation, and are ready to move on to simulations related to soft clamped
membranes.
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Figure 3.12: Simulated (circles) and analytic (dashed) values of the effective
mass for a 100 nm thin and 500 µm wide membrane resonator with 1 GPa
tensile stress. Across the entire range, the agreement with the theoretical
value is better than 0.5%. Slight deviation is seen for higher order modes
(example of one of these modes is shown in the inset).

Phononic bandgaps in thin, tensioned films

At a first glance it might seem obvious that periodic perforation of a thin
silicon nitride membrane will result in a phononic bandgap. However, as
mentioned earlier in this chapter, slabs with periodic perforation typically
exhibit large bandgaps when the plate thickness is comparable to the lattice
constant. In an earlier study by Khelif et al. [105] it was indeed shown that
the ratio of thickness to lattice constant is a key parameter for the existence,
as well as the overall size, of the bandgap. A year later Mohammadi and col-
leagues compared the properties of square and honeycomb lattice phononic
crystal structures [106], etched into a thin silicon slab. The honeycomb lat-
tice was shown to support a larger relative bandgap, as compared to the
square lattice. Interestingly, the honeycomb lattice was furthermore shown
to exhibit a richer bandgap structure as a function of the plate thickness,
with complete phononic bandgaps emerging even for thicknesses more than
3 times the lattice constant. These observations render the honeycomb lat-
tice an interesting candidate for our purposes.

Starting with a unit constituent of a honeycomb lattice, we consider the
evolution of the band diagram, as the ratio of thickness to lattice constant
is reduced. Our starting point is a rectangular unit cell (see Fig. 3.13a),
with lattice constant a =

√
3 × 100 µm and hole radius r = 0.45 × a/

√
3 .
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Figure 3.13: (a) Sketch of a unit cell of the hexagonal honeycomb lattice and
(b) the corresponding first Brillouin zone.

Bloch-Floquet periodicity is imposed on the boundaries along the x- and y-
directions, and the wavevector k is swept across the first Brillouin zone (see
Fig. 3.13b). At first we consider an unstressed membrane where the only
restoring force is its flexural rigidity. Banddiagrams for thicknesses between
100 µm and 1 µm are shown in Fig. 3.14. For 100 µm, we see a complete
bandgap between ∼ 16 MHz and ∼ 24 MHz. As the thickness-to-lattice con-
stant ratio becomes smaller, we see a reduction and eventually closure of the
bandgap. Furthermore, as the unit cell becomes thinner, the flexural rigid-
ity reduces and more bands with flexural polarisation start populating lower
frequencies, ultimately resulting in a tightly packed forrest of flexural bands.
While this is in no way surprising, we notice something interesting – namely
a sub-group of bands that remain almost stationary as we vary the thickness
over two orders of magnitude. Upon closer inspection we find that these
bands correspond to in-plane motion (see inset of vibrational modeshapes in
Fig. 3.14) of the perforated structure. In order to establish direct mechanical
coupling between in- and out-of-plane modes of our structure, some sort of
symmetry breaking along the z-direction is needed (e.g. non-uniform plate
thickness or external electrostatic potential). Furthermore, in a an actual
device a non-zero spatial and spectral overlap between the in-plane and out-
of-plane modes would be necessary (similar to the requirement in the phonon
tunneling framework). Seeing that the group velocity of the in-plane modes
(i.e. the slope of the vibrational bands corresponding to in-plane motion)
is significantly larger than for the flexural bands, it is therefore conceivable
that in-plane modes will be sparsely located at lower frequencies in an actual
device. It is therefore a fair assumption that low-frequency flexural modes
will not couple to in-plane motion in an actual device.
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With these things in mind, combined with the fact that the reduced stiff-
ness of the phononic crystal structure can be compensated for by introducing
an in-plane force, we consider the evolution of the band diagram, as we in-
crease the tension in the phononic crystal structure. Here, the thickness of the
crystal structure is 100 nm. As shown in Fig. 3.15, starting from a 10.24 kHz
wide quasi-bandgap for 2.5 MPa pre-stress, the bandgap increases in size and
moves up in frequency, as we increase the tension. The center frequency has
a square-root scaling with the pre-tension, which is consistent with the previ-
ous calculations (cf. Eq. (2.18)). For the maximum value of the initial stress,
comparable to the pre-stress in our deposited silicon nitride thin films, we
see an appreciable quasi-bandgap at fc = 1439.24 kHz. Furthermore, as
shown in Fig. 3.15, the relative bandgap size (i.e. ratio of bandgap size, ∆f ,
to center frequency, fc) increases by approximately 4% (14.93% to 18.47%)
from 2.5 MPa to 1250 MPa. The absolute values for the center frequency
and span of the quasi-bandgaps are fc = {68.62, 205.05, 643.18, 1439.24} kHz
and ∆f = {10.24, 36.79, 117.65, 265.86} kHz.

Thus far we have not discussed the fact that the stress distribution in a
perforated membrane structure is not uniform. In fact, in order to accurately
simulate the phonon dispersion, an additional step is required in our band
diagram simulations. Assuming an initial stress along the x- and y-directions
of the membrane, a steady-state analysis is performed in COMSOL. The new
equilibrium distribution shows concentrations of stress in narrow region and
relaxation elsewhere. This stress distribution is subsequently used as the
initial condition for the eigenfrequency analysis, where we once again impose
Bloch-Floquet periodicity. In order to demonstrate the importance of this
additional step, we compare a band diagram for a unit cell with a uniform
stress distribution, to a band diagram where the stress redistribution in the
unit cell is accounted for. As shown in Fig. 3.16, the dispersion relation
assuming homogeneous (incorrect) stress distribution results in bands with
significantly higher frequencies, compared to the band diagram where stress
concentration and relaxation is accounted for. The average stress over the
unit cell is approximately 796.1 MPa, corresponding to a 36.3% reduction
from the 1.25 GPa pre-stress assumed in this simulation.

Beyond the importance of accounting for the stress redistribution, in or-
der to accurately predict the location and size of bandgaps in these struc-
tures, this comparison furthermore suggests that the spatial modulation of
the propagation speed (which is proportional to the square root of tension)
does not play a crucial role in defining the size of the quasi-bandgap. Instead,
mass contrast (broadly speaking, one can think of the “small-mass-big-mass”
picture) and stiffness are the key parameters. Since the latter scales linearly
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Figure 3.15: Band diagram simulations for varying in-plane tension in a
honeycomb lattice (a =

√
3 × 100 µm, r = 0.45 × a/

√
3 and h = 100 nm).

a) The relative and absolute size, as well as the center frequency, of the quasi-
bandgap as a function of initial stress. Here, pentagons and circles correspond
to the relative and absolute bandgap sizes, respectively. The dashed line (top)
corresponds to a fit of fc(σ) = a

√
σ + b, with a = 40.61 kHz/

√
MPa and

b = 2.77 kHz. b) The corresponding band diagrams.

with tension14, it is important to maintain a high average value of stress
across the entire membrane structure. For instance, the average value of the

14Writing the stiffness (spring constant) as keff = meffΩ2
m, with meff being the effective

mass, and recalling that Ωm ∝
√
σ (cf. Eq. (2.18)), we see that keff ∝ σ.
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von Mises stress in the unit cell shown in Fig. 3.16 is approximately 796 MPa,
slightly shy of 40% lower than in the unit cell with uniform 1250 MPa stress
distribution. If we naively rescale the frequency of the upper bands for the
unit cell with uniform stress distribution with said percentage, we find that
these bands should be closer to 1667 kHz, instead of 2617 kHz. This roughly
agrees with the simulated frequency of the upper band edge in the case of
redistributed stress in the unit cell. Therefore, in order to realise large quasi-
bandgaps in our structures, we need to have a large mass contrast, as well
as a high average stress. Unfortunately, while the former can be achieved by
increasing the ratio of hole radii to lattice constant, this would necessarily
lead to a reduction of tension in the large regions of the phononic crystal
structure and potentially an overall decrease of the bandgap size.

As an aside, let us once again consider the inhomogeneous stress distribu-
tion in Fig. 3.16. While it is evident that the stress in the narrow regions will
be higher than elsewhere, the choice of von Mises stress as the metric might
seem unclear or perhaps arbitrary. As mentioned before, the yield strength
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Figure 3.16: Simulated band diagrams assuming a uniform 1.25 GPa stress
distribution (top left) and redistributed stress (top right) in the unit cell,
alongside the corresponding band diagrams (bottom). The modeshapes of
the first six bands for wavenumber kx = 0.4× π/a are shown on the far left
and right with the color map indicating their absolute displacement value.
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of silicon nitride is approximately σy = 6.4 GPa [131], which is merely five
times higher than the initial stress of LPCVD silicon nitride. Therefore, as
we begin to perforated such a highly stressed film, we need to keep track of
the tension, in order to avoid reaching yield stress and thus plastic deforma-
tion. The von Mises stress [133] is a commonly used quantity in mechanical
engineering to predict yielding of a materials, and in the relevant case of
plane stresses can be expressed as [134]

σv =
√
σ2

11 + σ2
22 + 3σ2

12 − σ11σ22 , (3.7)

where σij are the principal stresses in the material. For instance, in the case
of a thin plate with σ11 = σ22 = σ and σ12 = 0, the von Mises stress equals
σv = σ. The von Mises yield criterion, expressed in terms of the von Mises
stress, simply states that yielding will occur when the von Mises stress equals
the yield stress, i.e. σv = σy. Therefore, in our simulations of stress distribu-
tion in soft clamped resonators, we use the von Mises stress as the relevant
metric.

Lastly, we need to introduce a defect within our artificial crystal lattice,
in order to localise vibrational modes within the phononic crystal. One of
the simplest defect geometries can be realised by translation of six holes
within the crystal structure, resulting in a hexagonal-shaped defect (see Fig.
3.17a). Before simulating the vibrational mode of this structure, it is worth
considering the vibrational modes of a simple hexagonal-shaped membrane.
Shown in figure 3.17 are the first ten vibrational mode patterns of such a

0.774 MHz 1.232 MHz 1.232 MHz 1.648 MHz 1.648 MHz

1.771 MHz 2.0 MHz 2.099 MHz 2.244 MHz 2.244 MHz

(a) (b)

Figure 3.17: a) Sketch of a honeycomb lattice, with red arrows representing
translational of holes and dashed circles indicating the new positions of the
holes. b) Vibrational mode patterns of a hexagonal silicon nitride membrane
with 350 µm sidelength, 100 nm thickness and 1.25 GPa tensile stress.
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Figure 3.18: Simulated vibrational modes of a hexagonal-shaped defect
within the honeycomb phononic crystal lattice. a) Spectral composition of
vibrational eigenmodes, where each vertical line corresponds to an eigenmode
of the phononic crystal structure. The filled (orange) area corresponds to the
predicted bandgap from a unit cell simulation (cf. Fig. 3.15). Within the
bandgap we find five localised modes with transverse polarisation, as well as
an in-plane “pinch” mode (see inset). b) The vibrational mode patterns of
the five modes highlighted in the spectrum. Figure b) is reproduced from [1]
and [132].

membrane. Seeing that the membrane is near-circular, it is unsurprising
that the vibrational mode shapes closely resemble the radial and azimuthal
modes of a circular plate [20].

We now consider the vibrational mode patterns for the proposed defect
geometry in Fig. 3.17a. An eigenfrequency analysis of the perforated mem-
brane structure, with lattice constant a =

√
3 ×100 µm, r = 0.45×a/

√
3 and

1.25 GPa pre-tension, confirms the existence of a phononic bandgap. Within
the anticipated frequency range of the quasi-bandgap (cf. Fig. 3.15a) we
see an absence of modes, except for a small handful (see Fig. 3.18a). These
are five localised transverse vibrational modes, as well as a in-plane “pinch”
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mode of the entire membrane structure. As we can see, the modes A-E
correspond to the second row of mode patterns in Fig. 3.17. We therefore
conclude that the fundamental-like mode A in Fig. 3.18 correspond to the
second radial mode of the hexagonal-like defect. As anticipated the modes
evanescently decay into the “soft” clamping region, which is the phononic
crystal structure. The following two sections will focus on the fabrication
process and importantly the mechanical performance of these devices.

3.2.2 Soft clamped membrane resonators

Fabrication process

While the geometry of soft clamped devices differs appreciably from the sili-
con phononic crystal structures discussed in the first section of this chapter,
the fabrication processes have several parallels. As such, certain parts of the
fabrication process for soft clamped membrane will be covered superficially,
and the reader is referred to the description of the silicon phononic crystal
fabrication process in Section 3.1.4. Throughout this section, the reader is
referred to figure 3.19, for an overview of the process flow.

Unsurprisingly, Step 1 of the process involves deposition of stoichiometric
silicon nitride on 500 µm thick 4” silicon wafers with 〈100〉 crystal orientation.
In contrast to the silicon phononic crystal structures, there is no apparent
reason for choosing this particular wafer thickness, other than compatibility
with existing experimental assemblies designed for the silicon phononic crys-
tal based devices. We proceed with a photolithographic step (Step 2-3), in
order to define square openings on the back-side of the wafer. This involves
spin-coating 1.5 µm AZr MIRTM 701 (positive photoresist) at 4600 rpm, fol-
lowed by a 60 s softbake at 90◦C, UV exposure, post-exposure bake15 (PEB)
and, finally, development. Following 60 s PEB at 110◦C, the photoresist is
developed in diluted TMAH, thus exposing square regions of the silicon ni-
tride film underneath the photoresist. Similar to the silicon phononic crystal
fabrication, we use reactive ion etching in Step 4 to etch the silicon nitride
in the exposed regions of the wafer. The photoresist is then stripped away in
Step 5 using acetone or NMP (1-Methyl-2-pyrrolidone) Remover 1165. We
repeat Steps 2-5, in order to define the phononic crystal structure on the

15Since the critical dimensions in our phononic crystal structures can be on the order
of a few micrometers, a post-exposure baking step is employed to smoothen out the in-
homogeneously exposed photoresist, originating from the standing-wave pattern formed
inside the photoresist during UV exposure. For more details, the reader is referred to the
application notes provided by the photoresist manufacturer [135].
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1) LPCVD deposition of
 Si₃N₄ on a 500μm thick
 <100> Si wafer.

2) Spin-coat and softbake
 1.5µm AZ® MIRTM 701
 on both sides of the
 silicon wafer.

3) UV exposure and deve-
 lopment of square holes
 on the back-side of the
 wafer.

4) Transfer of pattern into
 silicon nitride using
 reactive ion etching.

5) Resist strip in acetone
  or NMP Remover 1165.

6) Repeat steps (2)-(5) to
 define and transfer the
 phononic pattern to the
 front-side of the wafer.

7) KOH etch of silicon,
 with the front-side
 protected using a
 “backside protecting”
 PEEK wafer holder.
    

8) Remove organic conta-
 minants and KOH resi-
 dues in a hot piranha
 solution, followed by
 a rinse in DI water.
    

80℃ KOH solution
28% concentration 

Front-side of the
wafer faces the 
PEEK holder.

Water filling connection

Figure 3.19: Process flow for the fabrication of soft-clamped membrane res-
onators. The inset shows the backside protecting holder used in the second
to last step of the process.

front-side of the wafer. At this point, the wafer has a matrix of square holes
on the back-side, and a corresponding matrix of phononic crystal patterns
on the front side.

As with silicon phononic crystal shielded membranes, the soft clamped
membranes are released in Step 7 in a KOH solution at 80◦C. The wafer is
placed inside a PEEK (polyetheretherketone) backside protecting holder16,
which ensures that the KOH solution only attacks the back-side of the wafer,
thus protecting the phononic crystal pattern throughout the 6 hour etch. The
holder is tightened with screws (see Fig. 3.19 for a picture of the holder), and

16Tandem4 wafer holder with backside protection from AMMT GmbH.
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the font-side of the wafer is sealed using a set of EPDM o-rings17. Following
the etch, the backside protecting holder is rinsed in DI water and the wafer
is subsequently removed. While in liquid, the wafer is handled with utmost
care, to avoid rupturing the perforated membrane structure. Finally, in
Step 8 the wafer is cleaned using a hot piranha solution (cf. Section 3.1.4),
rinsed in DI water, and dried in air in a clean environment. The wafer with
membranes is subsequently placed inside a vacuum chamber, in order to be
characterised, or, alternatively, broken into individual devices, before doing
so.

Initial characterisation of soft clamped membranes

We begin with an interferometric measurement of a soft clamped membrane,
akin to the measurements described in Section 3.1.5. In contrast to the silicon
phononic crystal structures, the effective masses of the soft clamped mem-
brane modes are sufficiently low to allow us to measure the Brownian motion
of the membrane structure, thus avoiding driven measurements, which tend
to be more time consuming.

One such measurement is shown in Fig. 3.20, alongside a simulate band
diagram for the corresponding device dimensions. The displacement spec-
trum is an average of several spectra taken in a square region in the central
part of the defect. As we can see, within the frequency range of 1.41 −
1.68 MHz, only a handful of modes are found, while outside this frequency
window we observe a dense mode spectrum. Comparing the measured mode
spectrum with the simulated band diagram of a unit cell strongly suggests
that the observed depletion of modes is evidence of the phononic bandgap.
In fact, the spectral location of said window agrees with our simulation to
within 2%.

Next, we wish to identify the modes within the phononic bandgap. In
order to do so, we perform a raster-scan of the membrane device. As pre-
viously mentioned, our interferometric setup includes a probe head with a
motorised translation stage, as well as a 50× microscope objective, which
allows us to focus the probe light down to a spot diameter of 2 µm. This
allows us to raster-scan the probe beam across the surface of of the mem-
brane over a rectangular grid in an automated fashion, extracting calibrated
displacement spectra a each position of the grid. In post-processing we ex-
tract the displacement of each one of the five modes identified in Fig. 3.20,
thus constructing 2D displacement maps for said modes. In figure 3.21 these
displacement maps are shown for the modes within the apparent phononic

17EPDM o-rings are the most suitable sealing material for KOH and TMAH etching.
Alternatives include FFMP, albeit at a significantly higher cost.
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Figure 3.20: Simulated band diagram (left) and measured mechanical mode
spectrum (right) for the geometry shown in Fig. 3.18. The shaded area in-
dicates the simulated bandgap, the position and size of which is in good
agreement with the measurement. The five localised modes inside the
bandgap are labeled according to the naming in Fig. 3.18. The unlabeled
peak at ∼ 1.5 MHz is a calibration tone. Here, the lattice constant is
a ≈
√

3 × 92.58 µm. Figure is reproduced from [1] and [132].
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Figure 3.21: Measured vibrational mode patterns of the localised defect
modes, obtained via a raster measurement. We see excellent agreement with
the simulated modeshapes (see Fig. 3.18b). Figure is reproduced from [1]
and [132].
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bandgap. We see an excellent agreement with the simulated modeshapes (cf.
Fig. 3.18b). Outside of the defect the localised modes decay quickly with
increasing distance, as expected within a phononic bandgap.

Evidence of soft clamping

Having verified some of the key design features of our devices, we now wish to
address the question whether our approach has indeed eliminated the effect
of the rigid clamp. Recalling that λ ∝ L−1 and fmn ∝ L−1, we can express
the quality factor for a square membrane resonator as

Q−1
mn = aQ−1

int

(
fmn + bf 2

mn

(m2 + n2)π2

4

)
, (3.8)

where a and b are constants. If our devices indeed render losses due to the
rigid clamp negligible, this will equate to eliminating the first term in the
above equation, and hence we would anticipate a Q ∝ f−2

mn scaling. Since
the quasi-bandgap only spans a few hundred kilohertz in frequency, this
effect will not be sufficiently pronounced within the bandgap18. Hence, we
choose to fabricate and characterise samples with varying size, by rescaling
the entire membrane geometry. This ensures a fixed relative position of the
modes within the bandgap, as well as a constant stress distribution within
the membrane resonators. Each wafer contains four series of N = 10 samples,
where the lattice constants of the samples are scaled from amin =

√
3 ×50 µm

to amax =
√

3 × 200 µm, with a multiplicative factor of (amax/amin)1/(N−1) ≈
1.1665.

We begin by placing a wafer of soft clamped membranes with h ≈ 35 nm
inside a large vacuum chamber19, with a base pressure of 10−8 mbar. The
vacuum pressure is measured immediately outside the chamber using an ion
gauge20. For the resonator with the highest mechanical Qf − product we
consider the pressure dependence of the quality factor. By performing ring-
down measurements for varying vacuum pressures, we observe a Q ∝ p−1

scaling at higher pressures (see Fig. 3.22a), in agreement with Eq. (2.22).
At a pressure of approximately 1.85×10−7 mbar we measure a quality factor
of Q = (214± 2)× 106 at fE = 777 kHz for mode E21 on one of the samples
on the wafer. Fitting Q = (Q−1

0 + Q−1
D )−1 to our data, where Q−1

D ∝ p (cf.

18Not to mention the fact that the degree of dilution is different for the localised modes.
19The wafer is placed on top of a teflon piece, and firmly clamped around the edges with

a teflon ring, tightened with a set of screws.
20Pfeiffer PKR 251 Compact FullRangeTM Gauge.
21Here, the uncertainty in the quality factor is from the standard deviation of several

ringdown measurements of the same mode.
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Figure 3.22: a) Mechanical quality factor of mode E as a function of vacuum
pressure. The quality factor is gas damping limited down to ∼ 10−7mbar.
A ringdown measurement corresponding to the highest quality factor is
shown on the right. b) Ringdown measurements of modes A (red) and E
(blue) from two different membrane resonators, both with lattice constants
a =
√

3 × 200 µm. Figure b) is reproduced from [1] and [132].

Eq. (2.22)), we find a saturation level of Q0 = 230 × 106, suggesting that
gas damping contributes less than 10% in our measurements of the quality
factors. Fig. 3.22b shows a representative ringdown measurements for this
sample, alongside the highest measured quality factor for the fundamental-
line mode (A), yielding Q = (141± 1)× 106 at fA = 690 kHz.

We now consider measurements of all five localised modes of our mem-
brane structures from multiple membrane resonators with 35 nm silicon ni-
tride thickness. In figure 3.23 the quality factors and Qf -products for all
samples and modes are shown. Following our discussion from above (cf. Eq.
(3.8)), we anticipate a Q ∝ f−1 scaling for a rigidly clamped resonator, and
Q ∝ f−2 scaling for a soft clamped boundary condition. As a guide to the
eye, these scalings are shown in Fig. 3.23. As we can see, our data ad-
heres to the Q ∝ f−2 line, strongly suggesting that all five localised modes
are softly clamped, despite the fact that they are embedded in rectangular
shaped membranes. As further confirmation we observe a Q× f ∝ f−1. By
eliminating the hard clamping condition, we have thus reduced the integrated
curvature due to this clamping region, leading to an apparent enhancement
of the mechanical quality factors.

In addition to the observed Q ∝ f−2 scaling, the standard theory of dis-
sipation dilution further suggests that we should anticipate a distinct scaling
with thickness, as well as pre-tension. Assuming a soft clamped boundary
condition, standard theory of dissipation dilution (cf. Eq. (2.50)) suggests
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Figure 3.23: Measured quality factors (top) and Qf -products (bottom) for
membranes of thickness h = 35 nm. The membrane geometry is scaled from
amin =

√
3 × 50 µm to amax =

√
3 × 200 µm. The observed f−2 frequency

scaling of the Q-factors and f−1 for the Qf -products is indicative of a soft
clamping condition. The colours indicate the localised vibrational modes seen
in Fig. 3.20. The dashed horizontal line (bottom) indicates the Qf ≈ 6 THz
required for a quantum coherent oscillation at room temperature. Figure is
adapted from [1] and [132].

that Q ∝ λ−2 for a soft clamped resonator mode, and hence the quality factor
can be written as

Q−1
m,soft = ηm

E

σ̄

h2

a2
Qint(h)−1, (3.9)

where ηm is a mode- and geometry-dependent numerical pre-factor, a is the
lattice constant, and σ̄ is the pre-stress. Recalling that the intrinsic quality
factor is thickness dependent [64] (cf. Section 2.2.4), the quality factor will
in fact scale linearly with thickness below a few of hundred nanometers. To
further corroborate the hypothesis of Q-enhancement by soft clamping, we
have fabricated samples with varying thicknesses, h = {35, 66, 121, 240} nm.
The samples are prepared in exact same fashion and using the exact same
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Figure 3.24: Characteristic scaling of the mechanical quality factors for mode
A with a) membrane thickness h, and b) lattice constant a. The solid line
in a) accounts for volumetric, as well as surface losses, while the dashed line
shows the scaling due to surface losses only. Consistent with the results from
Villanueva et al. [64], we see a deviation for the largest membrane thickness.
b) The dashed line indicates a ∝ a2 scaling, consistent with dissipation dilu-
tion in the absence of a rigid clamp. Figure is reproduced from [1] and [132].

photolithographic mask as the samples in Fig. 3.23, with the exception of
a different initial deposition thickness. For each of the five localised modes
we now consider the scaling of the quality factor with the lattice constant
and with thickness. In Fig. 3.24 we present the rescaled quality factors as a
function of device thickness and lattice constant. All of the localised modes
exhibit a Qh ∝ a2 scaling (Fig. 3.24, bottom row), as well as Qa−2 ∝ h
scaling (Fig. 3.24, middle row). Expectedly, our data shows poor agreement
with the linear thickness scaling for h = 240 nm (see dashed line in Fig.
3.24, middle row). Including (thickness independent) volumetric losses in
our fit model (i.e. Q−1

int = Q−1
vol +Qsurf(h)−1, where Qsurf(h) ∝ h), we see good

agreement across all five modes.

Drawing on our experience with square membrane resonators (see Section
3.2.1), we now seek to verify our hypothesis of soft clamping by a direct com-
parison of simulated and measured quality factors. For each of the localised
eigenmodes, we compute the maximum kinetic energy following Eq. (2.49),
as well as the dissipated energy given by Eq. (2.48).

In Fig. 3.25 we compare the normalised curvatures, |(∂2
x+∂

2
y)wA(x, y)|/Wmax

kin ,
of mode A and the fundamental mode of a 327.2 µm × 327.2 µm square
membrane. The lateral dimensions of the membrane are chosen in order
to match the fundamental frequency of the square resonator with the reso-
nance frequency of mode A (the lattice constant of the crystal structure being
a ≈
√

3 × 92.587 µm). This comparison reveals the advantage of soft clamp-
ing over a rigid clamping condition of the membrane resonator: the curvature
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Figure 3.25: Normalised curvatures of the fundamental mode of a square
membrane (grey) and a soft clamped resonator (blue). For the soft clamped
resonator, the curvature is evaluated along the y-axis (x = 0, see Fig. 3.18).
The dimensions of the square membrane resonators are chosen such that the
eigenfrequencies of the vibrational modes for the two structures are the same.
Figure is reproduced from [1] and [132].
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Figure 3.26: Compilation of measured mechanical quality factors for 85 soft
clamped devices with thicknesses h = {35 nm, 66 nm, 121 nm}. Here, the
quality factors are normalised to a2/h, following the observed scalings in Fig.
3.24. Simulated values for the Q-factors are plotted alongside the data, where
empty circle indicates integration of the mean curvature only, while diamonds
indicate integration including Gaussian curvature. Figure is adapted from [1]
and [132].
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Figure 3.27: Comparison between mechanical quality factors under clamped
or non-clamped conditions. The data consists of membranes with thicknesses
h = {35 nm, 65 nm}. Strong deviation of datapoints from the diagonal like
are indicative of residual phonon tunneling loss. As we can see, mode D
shows systematically worse performance under clamped conditions.

in the clamping region is more than two orders of magnitude larger for the
square membrane, compared to our perforated membrane resonator.

Assuming Qint(h = 66 nm) = 3750 (cf. Section 2.2.4), we estimate the
diluted quality factors for the five modes to be {QA, QB, QC, QD, QE} =
{20.72, 23.65, 19.44, 24.23, 25.80}× 106. Upon including the Gaussian curva-
ture in our estimates of the dissipate elastic energy (cf. Eq. (2.47)), the resul-
tant Q’s are {Q̃A, Q̃B, Q̃C, Q̃D, Q̃E} = {19.05, 20.08, 19.09, 21.24, 22.25}×106.
This suggests that the integrated mean-field curvature accounts for the ma-
jority of the elastic energy loss. Normalising these values according to the ob-
served geometrical scaling, we now compare our simulations with normalised
quality factors Q× h/a2 for all measured devices with h = {35, 66, 121} nm.
Data for 425 modes across 85 samples is presented in Fig. 3.26. Remarkably,
the mean values of the measured quality factors are in quantitative agreement
with simulations for the majority of localised modes.

Beyond a small (< 2%) discrepancy in the simulated resonance frequen-
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cies, which we ascribe to small disagreements between the geometry and
material parameters of the simulated and fabricated devices, we observe a
significantly lower measured quality factor for mode D, as compared to the
simulated values. A somewhat smaller, discrepancy is furthermore seen for
mode B. In order to explain these observations, we perform complimentary
measurements on a subset of samples, where the wafers with h = {35, 66} nm
silicon nitride thickness are not clamped around the edges. Rather, the wafers
are placed inside the vacuum chamber under their own gravitational weight.
The motivation for such a series of measurements is to assess the role of
phonon tunneling losses. Across 21 samples, we measure the quality factors
without clamping, Qunclamped, followed by measurements on the same samples
with the wafer firmly clamped, yielding Qclamped. As we can see in Fig. 3.27,
the mechanical quality factors of mode D consistently degrade upon clamp-
ing. To a lesser extent we see a similar trend for mode B. This suggests that
the discrepancies in the simulated and measured quality factors seen in Fig.
3.26 can be ascribed to residual radiation loss.

COMSOL simulations can further aid in explaining the discrepancy for
mode D. Indeed, mode D has the largest amplitude at the silicon frame, as
shown by in Fig. 3.28. We thus attribute the increased loss of this particular
mode under clamped conditions, see Fig. 3.27, to be due to phonon tunneling.

102

103

104

105

106

107

108

D
is

pl
ac

em
en

t (
a.

u.
)

-1500 -500 0 500 1500
Membrane position (μm) Membrane position (μm)

-1500 -500 0 500 1500
102

103

104

105

106

107

108

D
is

pl
ac

em
en

t (
a.

u.
)

Membrane position (μm)
-1500 -500 0 500 1500

A B

C

D

E

102

103

104

105

106

107

D
is

pl
ac

em
en

t (
a.

u.
)

Figure 3.28: Projection of the simulated mechanical displacement onto the
x- and y-axes, shown as the red and orange lines, respectively. The inset
label letters indicate the defect mode illustrated in Fig. 3.18. The y-axis
projection of mode D (far right) shows much larger displacement at the edge
of the phononic structure than any other mode. This figure is reproduced
from [1] and [132].
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3.3 Soft clamped devices for cavity optome-

chanics

With the concept of soft clamping on solid theoretical and experimental
footing, we now turn our attention to applications of soft clamped devices,
specifically in relation to research projects in cavity optomechanics pursued
by the groups of Albert Schliesser and Eugene S. Polzik at the Niels Bohr
Institute. The following section will therefore touch upon three concrete
examples of soft clamped devices, designed and optimised for, but certainly
not limited to, specific experimental pursuits.

The specific geometry presented in the previous section (i.e. defect geom-
etry and ratio of hole radii to lattice constant) will, for the sake of simplicity,
be referred to as the first generation single-defect soft clamped membranes.
While these devices are evidently capable of providing high mechanical qual-
ity factors, other factors need to be accounted for in the context of cavity
optomechanics. First and foremost, in the context of cavity optomechanics,
it is evident that the fundamental-like localised mode of our soft clamped
membranes is the better choice among the five localised modes, despite the
higher quality factors observed for mode E). This can be seen from the follow-
ing consideration. Firstly, with the maximum amplitude of mode A being in
the centre of the defect (cf. 3.21), the optical beam spot is far away from the
perforated regions, which could lead to scattering of light and hence optical
losses within our cavity. Second, the Gaussian-like mode profile of mode A
will provide us with an appreciable mode-overlap with the optical Gaussian
beam, leading to a larger optomechanical interaction strength. Combined
with a lack of neighbouring localised vibrational modes, these considerations
render mode A as the best choice for single-mode cavity optomechanics. Thus
our focus henceforth will be on mode A.

However, one of the potential shortcomings of said mode can be found
in the spectral composition of the first generation devices: specifically its
proximity to the band edge (cf. Fig. 3.20). Anticipating a threefold increase
in the mechanical quality factor upon cryogenic cooling to ∼ 10 K, the de-
coherence rate for the best performing device from the previous section (see
Fig. 3.22 for mode A) is estimated to Γdec = nthΓm ≈ 2π × 493 Hz. As
we will see in the next chapter, this roughly corresponds to the width of the
mechanical resonance, as we optically cool the mechanical mode of interest
to a mean occupancy of n̄ = 1. With the mean occupancy scaling inversely
with the decoherence rate, the latter will in practice be on the order of sev-
eral kilohertz for a resonance close to the motional ground state. Including
the fact that sideband cooling in the unresolved sideband regime is accompa-
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Figure 3.29: The holes around the defect are modified to be elliptical. In-
creased ellipticity a) increases the fundamental defect mode frequency, b)
confines the mode further to the centre of the defect, and c) modifies the
stress distribution, leading to regions of very low tensile stress.

nied by a spring-softening and hence reduction of the resonance frequency of
the mode of interest, we see that the proximity of mode A to the lower band
edge can potentially be problematic, as we seek to exploit the low mechanical
loss of our soft clamped membranes in quantum optomechanical experiments.
Therefore our first modification to the existing geometry will be in an attempt
to increase the frequency separation between the fundamental-like mode and
the lower band edge, while preserving the high mechanical quality factor.

3.3.1 Second generation – Further from the edge

Pushing the resonance frequency of the fundamental-like mode up can in
principle be done in several ways – from modification of the holes in the ex-
isting defect geometry, or further perforation, to thinning of the membrane in
the central region. While some require new fabrication steps (the last exam-
ple being one), others are straightforward to implement. Here, two examples
will be considered – one, which allows for wide tuneability, yet degrades
the mechanical quality factor, and another, with moderate tuneability, yet
improved mechanical performance.



3.3. SOFT CLAMPED DEVICES FOR CAVITY OPTOMECHANICS 91

The first approach we consider is one where holes surrounding the defect
are modified. In order to increase the resonance frequency of the fundamental-
like mode with respect to the band edge, the effective size of the defect has
to be reduced. We do so by replacing a subset of circular holes within the
defect with semi-elliptical holes. In Fig. 3.29 we consider a simulation of the
frequency tuning as a function of ellipticity, here defined as the ratio of the
semi-major and semi-minor axis, ε = amajor/aminor, alongside a simulation
of the stress distribution within the defect and the displacement field of the
fundamental-like mode for ε = 2. For said ellipticity the simulated frequency
shift is ∼ 86 kHz.

At a first glance, this geometry seems rather promising – the frequency
shift is appreciable and the modeshape closely resembles that of mode A
from the previous section. However, a close inspection of an actual device
(see Fig. 3.30) of this type reveals a major issue: regions of the defect, close
to the semi-elliptical holes, are seemingly sagging. As we take a closer look
at our simulated stress distribution (cf. Fig. 3.29c), we find that in these
regions the tensile stress is as low as 5 MPa. Combined with the fact that
the fundamental-like mode has an appreciable displacement in these regions
(cf. Fig. 3.29b), it is not surprising that the measured mechanical quality
factors with these devices are on the order of a few millions.

It is worth considering why this particular geometry failed it’s purpose.
Looking at the stress distribution within the defect in Fig. 3.29c, we realise
that the elliptical holes effectively “shield” the region with stress relaxation
from in-plane forces in the vertical and horizontal directions22. It is therefore
important to ensure that the tensile stress “reaches” each and every corner
and crevice of our structures.

With these observations at hand, we now consider a geometry which isn’t
plagued by the issues described above. By introducing a set of holes with
small radii rminor within our defect, this can in fact be achieved. To avoid
stress relaxation akin to the example above, these holes are strictly circular
and placed at a distance Rminor from the center

Rminor =
a√
3

+ rmajor − rminor, (3.10)

where rmajor (rminor) is the radius of the main (secondary) holes within the
membrane structure. Similar to the first generation devices, rmajor = 0.45×
a/
√

3 . This particular choice of Rminor ensures that the spacing between the

22It can be helpful to thing of the stress distribution as a flow of a liquid in the negative
of our devices (i.e. where holes are solid pillars, and regions with material are absent).
The regions between the semi-elliptical holes (think, pillars) would experience low flow
rates, while narrow regions would be exemplified by high flow rates.



92 CHAPTER 3. PHONONIC ENGINEERING AND SOFT CLAMPING

Figure 3.30: Optical image of a membrane where the holes around the defect
have been modified to be elliptical. The dashed red circles mark regions of
very low tensile stress, where the membrane is sagging. Figure is adapted
from [1] and [132].

smaller holes and the existing holes in the defect is the same as the tether
widths within the crystal structure (see inset in Fig. 3.31).

We now consider how the resonance frequency, effective mass, stored and
dissipated elastic energies, and finally the mechanical quality factor, depend
on the radius of the secondary holes. Fig. 3.31 shows the simulated val-
ues for said quantities, for a device with h = 20 nm and lattice constant
a ≈

√
3 × 109.053 µm. Since our primary focus is shifting the frequency

of the fundamental-like mode away from the band edge, we first consider
the resonance frequency of the mode as a function of rminor (cf. Fig. 3.31,
bottom). The largest frequency shift is predicted for rminor/rmajor = 0.55.
Note that for the same lattice constant and pre-tension, a first generation
define has a fundamental resonance frequency of ∼ 1.195 MHz. With a res-
onance frequency of ∼ 1.224 MHz for rminor/rmajor = 0.55, this amounts to a
∼ 28.6 kHz frequency difference. For this ratio of secondary to primary hole
radii we calculate a ∼ 33% increase in the effective mass and ∼ 5.5% increase
in the mechanical quality factor. While this isn’t particularly favourable from
a force sensing point of view, which scales with the ratio meff/Qm, as we will
see in the next chapter, the increase in the effective mass is not of significant
importance in the context of cavity optomechanics.

3.3.2 Third generation – Opening a second bandgap

Looking back at the vibrational mode patterns of our soft clamped resonators,
we see that only the fundamental-like mode has an anti-node at the centre of
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Figure 3.31: Simulations of second generation membrane resonators. We
consider the various parameters of relevance, as a function of the relative size
between the primary and secondary holes. The addition of secondary holes in
the defect leads to a shift in the resonance frequency of the fundamental-like
mode, this increasing the frequency separation between the mode and the
band edge. Furthermore, we see an increase in the effective mass, as well
as the Q-factor, for increasing values of rminor/rmajor. The dashed vertical
line emphasises the geometry which leads to the largest frequency shift. We
use the following parameters for these simulations: σ = 1.17 GPa, a ≈√

3 × 109.053 µm, h = 20 nm.
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defect. This, among others, means that an optical probe placed in the centre
of our structure will have little to no coupling to the other localised modes.
However, having a soft clamped device where more than one localised mode
couples strongly to an optical could be of interest for certain optomechanical
experiments. One could, of course, displace the optical probe in the xy-plane,
but this would result in a result coupling between the optical field and the
fundamental-like mode, and potentially introduce optical losses associated
with diffraction and/or absorption due to the holes in the membrane. There-
fore, we wish to modify our existing membrane structure, in order to localise
a second vibrational mode with a radial pattern. This, however, requires
introducing a second bandgap at higher frequencies.

Looking back at Fig. 3.16, we make two observations. First, from a
somewhat superficial point of view, we note that the band structure for
the two band diagrams looks very similar. The lack of stress redistribution
seemingly “stretches” the band diagram along the frequency axis. Second, for
the band diagram of a unit cell with a uniform stress distribution we notice a
small(er) bandgap at higher frequencies. Combining these two observations
we realise that a second bandgap can potentially be opened up, if the average
stress within the unit cell can be increased. This can in fact be achieved by
decreasing the hole radii of the phononic crystal structure. In Fig. 3.32 we
consider the evolution of the band structure, as we change the hole radii
r = rfac × a/

√
3 , where rfac is varied from 45% (i.e. rfac = 0.45) to 37%.

Alongside each band diagram we furthermore show the average von Mises
stress in the unit cell, normalised to the initial (unrelaxed) stress. As we can
see, the relative stress increases as we reduce the hole radii, and the second
bandgap gradually opens up. However, for the smallest radii in Fig. 3.32 we
see a substantial reduction in the size of the first bandgap. Hence, we choose
rfac = 0.41 as our target for the hole radii.

The defect geometry for these structures is largely based on the insights
from the second generation soft clamped devices. In fact, only a slight mod-
ification is needed in order to localise a second radial mode in the newly
opened phononic bandgap. For rminor/rmajor = 0.45, we find that the second
bandgap contains a radial mode. In Fig. 3.33 we show a raster measurement
of the two radial localised modes, alongside a power spectral density obtained
in our optomechanical cavity, which will be discussed in the next chapter.

In addition to the emergence of a second bandgap and a second radial
mode, simulations suggest that with this new structure we should antici-
pate a rather favourable improvement in the mechanical quality factor of
the first localised radial mode. Assuming h = 20 nm, σ = 1.17 GPa and
a ≈
√

3 × 109.053 µm, we find that the third generation structures should
provide a 46% improvement over the second generation devices. More specif-
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Figure 3.32: Evolution of band structure as a function of decreasing hole
radii r = rfac × a/

√
3 , where rfac is shown as percentage, spanning from

45% to 37%. The shaded areas indicate the first and second quasi-bandgaps.
The top figure shows the average von Mises stress normalised to the initial
(unrelaxed) stress, which is σ = 1.25 GPa.

ically, for the same choice of thickness, pre-tension and lattice constant, we
simulate a mechanical quality factor of 71.21 M for the first generation de-
vices, 76.82 M for the second generation devices and 111.86 M for the third
generation. As we will see in the following chapter, at cryogenic temperatures
third generation resonators can reach mechanical quality factors approaching
1.6 B at ∼ 1.25 MHz frequencies, amount to a Qf -product of 1.99×1015 Hz,
which, to my knowledge, is the highest Qf -product for any silicon nitride
mechanical resonator reported to date.



96 CHAPTER 3. PHONONIC ENGINEERING AND SOFT CLAMPING

1.2 1.6 2.0 2.4
Frequency (MHz)

10-14

 

10-13

10-12

10-11

10-10

10-9

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

V
2 /

H
z)

Figure 3.33: Raster measurement of a third generation soft clamped res-
onator, showing the vibrational patterns of the two radial modes. The power
spectral density shows an overview of the broadband spectral response.

3.4 Summary and outlook

As we have seen in this chapter, the combination of phononic bandgap en-
gineering and dissipation dilution can lead to significant improvements in
mechanical resonator performance. Importantly, this combination not only
leads to a reduction of radiative losses (i.e. phonon tunneling), as was the
case for the silicon phononic crystal shielded resonators discussed in the first
part of this chapter, but also of internal dissipation, associated with bend-
ing in the clamping regions of membrane resonators. The elimination of the
hard clamp can be identified by the f−2 scaling of the mechanical quality
factors, as well as the Q ∝ h−1 thickness scaling, which is absent in regular
membrane resonators. Furthermore, numerical simulations of the mechanical
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quality factor, which involves integration of the mode curvature, were seen
to be in excellent agreement with measurements.

Building on these findings, two new resonator geometries were presented
towards the end (i.e. second and third generation soft clamped devices).
With application in cavity optomechanics in mind, second generation res-
onators aim to increase the frequency separation between the band edge and
the resonance frequency of the localised radial mode, while third generation
resonators are found to be promising candidates for cavity optomechanics,
not the least in light of the projected improvement in Q slightly shy of 50%.
The following chapter aims to corroborate on this, as we study the perfor-
mance of second and third generation soft clamped devices in the quantum
regime.
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Chapter 4

Cavity optomechanics with soft
clamped resonators

Thus far our focus has been on the improvement of the mechanical per-
formance of our membrane resonators. In doing so, we have reduced the
coupling to the thermal bath, thus lowering the bar for overwhelming this
(undesirable) coupling with one that we can tailor – namely the coupling to
an optical bath. This chapter will describe our implementation of a cavity
optomechanical system, which harnesses the hard-earned improvements in
the mechanical domain.

We will first discuss the theoretical aspects of cavity optomechanics, and
how the behaviour of a membrane-in-the-middle system is mapped onto the
canonical description of an optomechanical system. Moving forward, the ex-
perimental details of our implementation will be discussed, including limita-
tions due to classical noise sources. Strong ponderomotive squeezing, along-
side ground-state cooling, is demonstrated in a multimode optomechanical
system. Finally, we discuss improvements of our current optomechanical sys-
tem in the context of heralded single phonon generation. A new method is
developed in realising phononic crystal shielded mirrors, which could enable
quantum optomechanical experiments in room temperature settings.

4.1 Basic considerations

In Fig. 4.1 the so-called canonical optomechanical system is depicted as a
Fabry-Pérot with a harmonically suspended end-mirror. The optomechanical
interaction is mediated by the radiation pressure force. The exerted force on
the suspended mirror alters its motion, which, in turn, changes the resonance
condition of the optical cavity and thus the intracavity photon number 〈n̂〉,

99
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and ultimately the magnitude of the exerted force.

Tbath

x̂

F̂rp n̂

Figure 4.1: Sketch of a canonical optomechanical system, consisting of a
Fabry-Pérot, where one of the end-mirrors harmonically suspended, depicted
by a spring. The radiation pressure, which is proportional to the intracavity
photon number 〈n̂〉, exerts a force on the end-mirror, resulting in a change
of the cavity resonance and thus a light-motion coupling.

Following this line of thought a bit further, we consider the effect of this
coupling on the intracavity optical field â. The harmonic motion of the sus-
pended mirror modulates the intracavity field amplitude at a frequency Ωm,
which, roughly speaking, can be written as a ∝ sin(Ωmt) sin(ωLt). Simple
trigonometry tells us that the optical field will obtain components (i.e. side-
bands) at frequencies ωL ±Ωm. If the input optical field is off-resonant1, the
sidebands will inevitably be imbalanced due to the non-flat spectral response
of the cavity resonance. Placing our input field below the cavity resonance,
will tilt this imbalance towards the sideband ωL + Ωm. The excess energy
~Ωm is in fact originating from the suspended mirror, and, as these photons
eventually leak out of the cavity, they carry away this excess energy, thus
reducing the stored elastic energy of the mirror. This rather handwaving
description already describes one of the key features originating from the
optomechanical coupling – namely the fact that the motion of a mechanical
resonator, which interacts with a cavity field via the radiation pressure force,
can be dampened by the presence of light.

The fact that the cavity resonance is shifted due to mirror displacement
can also be seen as follows. The resonance condition of a Fabry-Pérot cavity
is simply nλ/2 = L, where L is the cavity length and λ is the wavelength
of light. Hence, the (angular) resonance frequencies of the cavity can be
expressed as ωc = 2πnc/2L, where n is an integer. Allowing for small ex-
cursions in the overall cavity length, L→ L+ x, the resonance frequency to

1Here, we assume that the mechanical frequency is comparable to the spectral width
of the optical cavity resonance.
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first order in x can be expressed as

ωc = ωc,0 + x
dωc
dx

∣∣∣∣
x=0︸ ︷︷ ︸

G

, (4.1)

where ωc,0 is the equilibrium resonance frequency (i.e. x = 0). The quantity
G ≡ dωc/dx signifies the optical frequency shift per displacement.

Moving towards a Hamiltonian description of our system, we recall that
quantisation of the optical field yields the following Hamiltonian describing
the energy [136]

Ĥ = ~ωc

(
â†â︸︷︷︸
n̂

+
1

2

)
, (4.2)

where â (â†) is the optical annihilation (creation) operator, and n̂ = â†â is
the so-called number operator, the expectation value of which quantifies the
average number of intracavity photons, n̄cav. Assuming quantisation of the
mirror motion (i.e. x→ x̂), and using the expression for the cavity resonance
shift from Eq. (4.1), we find that

Ĥ = ~ (ωc,0 +Gx̂)

(
â†â+

1

2

)
, (4.3)

Ĥ = ~ωcâ†â+ ~Gx̂â†â, (4.4)

where, in the last line, we have neglected the contribution due to zero-point
energy and replaced ωc,0 with ωc to simplify the notation. While the first
part is the bare Hamiltonian of the optical field, the second term describes
the optomechanical interaction. It thus follows that the radiation pressure
force is simply

F̂rp = −∂Ĥ
∂x̂

= −~Gâ†â. (4.5)

Unsurprisingly the magnitude of the radiation pressure force depends on the
photon population inside the optical cavity. Simply put, one of the main
objectives in (quantum) optomechanics is to realise a system where the in-
teraction due to the radiation pressure force outweighs the thermal Langevin
force.

Before moving to a more general description of the optomechanical inter-
action, let us review some of the key characteristics of a simple Fabry-Pérot
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cavity. Here, we consider an optical cavity, consisting of two mirrors (see
Fig. 4.2). Often we will refer to the two available points of entry for light
into the cavity as ports. As we shall see later in this chapter, in our ex-
perimental setup the cavities are driven from one port, while the second is
used for detection purposes. The cavity mirrors are associated by a set of
complex quantities, namely the amplitude transmissivities ti and reflectivi-
ties ri. The cavity length2 L defines the round-trip time of photons within
our optical resonator, τ = 2L/c, where c is the speed of light. The inverse of
the round trip time is the so-called free-spectral range (FSR) and quantifies
the frequency spacing of cavity resonances

FSR =
c

2L
. (4.6)

(t
1
, r

1
) (t

2
, r

2
)

Input Output

L
κ

R
κ

T

κ
L

Figure 4.2: Sketch of an optical cavity probed in transmission, with the
relevant quantities defined. The rates of κR,T signify the rate of loss via the
two ports of the cavity, while κL is the rate of loss. The subscript “R” is
short for reflective (port), whilst the subscript “T” is short for transmissive
(port).

The round-trip time can furthermore be thought of as an attempt-rate of
the individual photons at escaping the optical cavity through either of the
mirrors. We therefore define transmission rates through both ports as follows

κR =
|t1|2

τ
, κT =

|t2|2

τ
. (4.7)

2More specifically, the optical path length, defined as OPL ≡ nL, where n is the
refractive index of the medium occupying the space between the two mirrors. However,
since our experiments are performed in vacuum, the optical path length equals the physical
length of the optical resonator.
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The total optical loss rate is thus κ = κR + κT + κL, where the last term
accounts for losses through experimentally inaccessible ports (e.g. scatter-
ing and absorption). Anticipating a mechanical resonator being embedded
inside such an optical cavity, it is important to consider through which port
the light preferentially exits through – after all, the light that escapes the
confines of our optical cavity carries valuable information about the state
of our mechanical resonator. Thus, in our experiments the input mirror is
highly reflective (hence the subscript R in κR, see Fig. 4.2), while the output
mirror has a significantly lower reflectivity. In quantifying the fraction of
light escaping the optical cavity through a desirable port we define the cavity
outcoupling efficiency

ηc =
κT

κ
. (4.8)

Finally, combining the expression for FSR with the (total) cavity decay rate
κ, yield a unitless quantity known as finesse

F = 2π
FSR

κ
=

2π

L
, (4.9)

where L denotes the total losses within the cavity (scattering, absorption
and transmission).

With this, we move to a rigorous description of the optomechanical in-
teraction.

4.2 Hamiltonian description

Our starting point is the Hamiltonian formulation of the canonical optome-
chanical system, as provided by Law [137]

Ĥ = Ĥopt + Ĥmech + Ĥint + Ĥdrive, (4.10)

Ĥopt = ~ωc
(
â†â+

1

2

)
, (4.11)

Ĥmech =
p̂2

2meff

+
1

2
meffΩ2

mx̂
2, (4.12)

Ĥint = ~Gx̂â†â, (4.13)

Ĥdrive = i~
√
κR

(
s̄inâ

†e−iωLt − s̄∗inâeiωLt
)
, (4.14)

where ωc is the cavity resonance frequency, x̂ and p̂ are the mechanical posi-
tion and momentum operators, G = dωc/dx̂ quantifies the optical resonance
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frequency shift per displacement, and s̄in = Pin/~ωL is the normalised am-
plitude of the drive field. The recognise the interaction term from Eq. (4.4).
This Hamiltonian description assumes that the scattering of photons from
the cavity mode associated with ωc into other optical modes is negligible,
which holds in the case of Ωm � FSR. This indeed holds in our system,
where Ωm ∼ 2π × 1 MHz, while the free-spectral range is on the order of
100 GHz.

The “dimensionfull” and dimensionless mechanical position and momen-
tum operators are defined as

x̂ = xzpf(b̂
† + b̂), p̂ = ipzpf(b̂

† − b̂), (4.15)

Q̂ :=
1√
2

(b̂† + b̂), P̂ :=
i√
2

(b̂† − b̂), (4.16)

where b̂† (b̂) is the phononic creation (annihilation) operator, and the zero-
point motion and zero-point momentum of the mechanical oscillator are de-
fined as

xzpf =

√
~

2meffΩm

, pzpf =

√
~meffΩm

2
. (4.17)

It is commonplace to define the cavity frequency shift in terms of the
zero-point motion of the mirror

g0 := Gxzpf . (4.18)

This is the so-called single-photon optomechanical coupling rate and is a key
parameter in quantifying the strength of the optomechanical interaction. The
exact form of this coupling rate for our membrane-in-the-middle system will
be discussed later in this chapter.

Regrettably, the single-photon coupling rate is usually small compared to
other rates in the optomechanical cavity (particularly the decoherence rate,
nthΓm, and the cavity decay rate, κ. Hence the vast majority of optome-
chanical experiments operate in a regime of strong laser driving. Here, the
interaction Hamiltonian can be linearised by expressing the cavity field in
terms of a constant amplitude, ā, alongside small fluctuations

â(t) = ā+ δâ(t). (4.19)

Here, ā is the mean field, and it holds that 〈â〉 = ā. The linearised interaction
Hamiltonian, in terms of the dimensionless position operator, can thus be
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expressed as follows

Ĥ lin
int = ~g0Q̂(ā+ δâ)†(ā+ δâ) (4.20)

= ~g0Q̂(|ā|2 + ā∗δâ+ āδâ† + δâδâ†). (4.21)

The first term is in essence a static force on the mechanical resonator, which
simply shifts it’s equilibrium position such that x̂→ x̂−~Gā2/meffΩ2

m, while
the last term is neglected since the optical fluctuations are assumed to be
small to first order. Finally, without loss of generality, we assume that ā = ā∗,
allowing us to express the linearised interaction Hamiltonian

Ĥ lin
int = ~g0Q̂ā(δâ+ δâ†). (4.22)

As an aside, with the definition of the cavity field in Eq. (4.19), we see that
n̄cav = 〈â†â〉 = |ā|2. Inspired by Eq. (4.22), we define the light enhanced
optomechanical coupling rate as

g := |ā|g0 =
√
n̄cav g0 (4.23)

Before deriving the equations of motion for light and mechanics, we make
a final simplifications to our optomechanical Hamiltonian. The operators for
the optical and mechanical fields in Eq. (4.10) are in fact time dependent,
where the former evolves at optical frequencies, i.e. δâ ∝ eiωct. Seeing that
we are interested in the fluctuations of light at the mechanical frequency,
it is reasonable to transform the Hamiltonian to a reference frame rotating
at the laser frequency, where the relevant frequency is the now the detuning
between the cavity resonance frequency and the drive frequency, ∆ = ωL−ωc.
This is done by the unitary transformation [136]

H̃ = Û †ĤÛ + i~
dÛ †

dt
Û , (4.24)

where the operator Û is defined as follows

Û = e−iĤ0t/~, with Ĥ0 = ~ωLâ†â. (4.25)

Using the Hadamard lemma3 the linearised Hamiltonian in the rotating frame
can be expressed as

H̃lin =− ~∆̄δâδâ† + ~Ωmb̂
†b̂+ ~g(δâ† + δâ)(b̂† + b̂)

+ i~
√
κR (s̄inδâ

† − s̄∗inδâ), (4.26)

3For two operators, Â and B̂, the Hadamard lemma can be written as follows [138]:

eÂB̂e−Â = B̂ +
[
Â, B̂

]
+

1

2!

[
Â,
[
Â, B̂

]]
+

1

3!

[
Â,
[
Â,
[
Â, B̂

]]]
+ . . .



106 CHAPTER 4. CAVITY OPTOMECHANICS

where the detuning and the mechanical displacement have been redefined as
follows

x̂→ x̂− x̄ = x̂− ~Gā2

meffΩ2
m

(4.27)

∆̄ = ∆ +Gx̄ = ∆ +
~G2ā2

meffΩ2
m

. (4.28)

We have furthermore discarded terms that do not depend on δâ or b̂, since
these do not alter the dynamics of the optomechanical system.

Finally, it it instructive to consider temporal dependence of the interac-
tion Hamiltonian. Following Eq. (4.26) the interaction part of the linearised
Hamiltonian can be expressed as

H̃ lin
int ∝ δâ†b̂†ei(∆̄−Ωm)t + δâb̂e−i(∆̄−Ωm)t + δâ†b̂ei(∆̄+Ωm)t + δâb̂†e−i(∆̄+Ωm)t.

(4.29)

The first two terms describe a two-mode squeezing interaction [136], while
the last two terms are equivalent to a beam-splitter (“swap”) interaction.
Importantly, we can control which of the two processes is more pronounced,
simply by changing the detuning. For instance, assuming a blue-detuned
laser ∆̄ = +Ωm we see that the first two terms in Eq. (4.29) are time-
independent, while the beam-splitter terms are oscillating at a frequency of
±2Ωm. Within the rotating frame approximation, rapidly oscillating terms
average out to zero. Hence, assuming 2Ωm � κ (i.e. resolved sideband
regime), this choice of detuning renders the beam-splitter interaction negli-
gible. Conversely, for ∆̄ = −Ωm, the beam-splitter interaction becomes the
dominant one. Viewing each of the terms above as a Raman process (i.e.
inelastic scattering of photons), we consider two examples of particular rele-
vance for this work. Within the beam-splitter interaction, we first consider
the scenario where Ωm � κ. Operating at a detuning of ∆̄ = −Ωm, the scat-
tering process δâb̂†, which annihilates a pump photon and creates a phonon
excitation, is off-resonant. The resonant process, δâ†b̂, leads to creation of
photons with higher energy, at the expense of removing energy from the
mechanical resonator. This scattering process is represented as a Feynman
diagram in Fig. 4.3a and corresponds to laser cooling of mechanical motion.

If we instead consider operation in a regime where Ωm is comparable to
the cavity linewidth κ, both processes – δâb̂† and δâ†b̂ – will inevitably take
place. A representative scattering process in this regime in shown in Fig.
4.3b, where a phonon excitation recombines with a pump photon, ωL, to
create a blue-detuned photon. In fact, the two output photons in Fig. 4.3b
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are entangled and, as we will see later in this chapter, manifests itself as
ponderomotive squeezing upon detection [139]. Importantly, this combined
process only plays a significant role if the red sideband photon, ωL − Ωm, as
well as the mechanical excitation, do not decay between the first and second
scattering processes. One could say that this requirement is in fact embed-
ded in the definition of the quantum cooperativity, which, broadly speaking,
describes the ratio of good (i.e. coherent scattering) and bad (i.e. optical
and mechanical losses) processes

Cq :=
4g2

(n̄th + 1
2
)Γmκ

, (4.30)

where n̄th describes the mean phonon occupancy of the thermal bath, de-
scribed by the Boltzmann distribution

n̄th =
1

e~Ωm/kBTbath − 1
≈

{
kBTbath/~Ωm, (kBTbath � ~Ωm)

e−~Ωm/kBTbath , (kBTbath � ~Ωm)
(4.31)

where Tbath is the bath temperature. Since our experiments are typically
performed at Ωm ∼ 2π × 1 MHz and Tbath ∼ 10 K, it holds for the ex-
ponent in that ~Ωm � kBTbath, which allows us to use the approximation
n̄th ≈ kBTbath/~Ωm to estimate the bath occupancy. For said parameters the
mean bath occupancy is therefore n̄th ≈ 210 × 103. As such, we tend to ig-
nore the additional half thermal quanta in the denominator of Eq. (4.30). As
we will see later in this chapter, the quantum cooperativity is a quantity fre-
quently emerging in equations quantifying “quantumness” in optomechanical
experiments, with the (soft) threshold being at Cq ≥ 1.

Ωm

ωL + Ωm

δâ† b̂

ωL δâ† b̂

ωL − Ωm

ωL + Ωm

Ωm

δâb̂†

ωL

ωL

(a) (b)

Figure 4.3: Feynman diagram of optomechanical scattering processes involv-
ing a phonon (red) of frequency Ωm and a photons from a pump field (yellow)
of frequency ωL. (a) Beam-splitter interaction. (b) Two-mode squeezing op-
tomechanical interaction.
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4.2.1 Heisenberg-Langevin equations

From classical mechanics we are familiar with the Hamiltonian equations,
which provide us with the equations of motion for the generalised position
and momentum. Dissipation is often times included in an ad-hoc fashion,
by adding a velocity dependent damping term. In the quantum domain,
the unitary time evolution of an operator can be described via Heisenberg’s

equation [140], which reads dÂ/dt = i
[
Ĥ, Â

]
/~+∂Â/∂t. However, adapting

the näıve approach from classical mechanics by adding a damping term pro-
portional to velocity leads to inconsistencies, such as commutation relations
decaying in time.

Fortunately, dissipation can be adequately accounted form within the
Heisenberg-Langevin framework, where the system under investigation is
coupled to a large ensemble of harmonic oscillators (often referred to as a heat
bath or reservoir). Given the size of the reservoir, the system has a negligible
effect on the bath dynamics, while the system dynamics is indeed affected
by the presence of the bath. Energy dissipated from the system is captured
by this system-bath coupling. Furthermore, as a result of the fluctuation-
dissipation theorem, the coupling to this bath results in a fluctuating force
acting on the system operators. These so-called “noise terms” ultimately
ensure that the commutation relations are conserved. In-depth discussions
of the quantum Langevin framework can be found in [138,141,142].

Within the first Markov approximation, assuming a memory-less reser-
voir (or, equivalently, a frequency-independent system-bath coupling), and
the rotating wave approximation, the Heisenberg-Langevin equation for an
arbitrary system operator Ô can be expressed as follows [138,142]

dÔ
dt

=
1

i~
[Ô, Ĥsys]− [Ô, Ŝ†]

(γ
2
Ŝ + f̂

)
+ [Ô, Ŝ]

(γ
2
Ŝ† + f̂ †

)
, (4.32)

where Ĥsys is the system Hamiltonian, Ŝ is the system operator that couples

to the heat bath, and f̂ is the forcing term (i.e. the noise term) acting on
the system, as a result of the system-reservoir coupling. However, typically
the forcing term is expressed in terms of an input noise operator.

Using the Hamiltonian given by Eq. (4.10), in conjunction with a trans-
formation to the rotating frame of the laser drive (cf. Eq. (4.24)), we arrive
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at the following set of quantum Langevin equations

˙̂a =
(

i∆− κ

2
− iGx̂

)
â+
√
κR s̄in +

√
κ âin, (4.33)

˙̂x =
p̂

meff

, (4.34)

˙̂p = −meffΩ2
mx̂− ~Gâ†â− Γmp̂+ F̂th, (4.35)

where âin is the light input noise operator and F̂th is the thermal force opera-
tor (i.e. the forcing term). The light input noise operator fullfils the following
commutation and correlation relations

[âin(t), â†in(t′)] = δ(t− t′), (4.36)

〈âin(t)â†in(t′)〉 = (n̄+ 1)δ(t− t′), (4.37)

〈â†in(t)âin(t′)〉 = n̄δ(t− t′), (4.38)

where δ(τ) is the Dirac delta function, and n̄ is the mean thermal occupation
of the optical field, described by the Boltzmann distribution (see Eq. (4.31)).
At room temperature an optical field at a wavelength of 852 nm has a mean
thermal occupation of n̄ ≈ 3.6× 10−25. Thus, the correlations for an optical
field can be simplified to 〈âin(t), â†in(t′)〉 = δ(t− t′) and 〈â†in(t), âin(t′)〉 = 0.

As for the thermal force operator, its (symmetrised) autocorrelation func-
tion is given by [143]

1

2
〈F̂ (t)F̂ (t′) + F̂ (t′)F̂ (t)〉 = meffΓmkBT

d

dt
coth

(
πkBT

~
(t− t′)

)
. (4.39)

Noting that ∂x cothx = −1/ sinh2 x, it is evident that the correlation function
is rapidly decaying for time scales larger than τ = ~/kBT . In our case the
time scale we need to compare this to is the mechanical decay time. Seeing
that we can realise mechanical resonators with quality factors in excess of 108

in room temperature settings, the decay time Ωm/Qm ∼ 16 s is significantly
longer than ~/kBT ≈ 2.5×10−14 s. Thus we can safely assume a memoryless
thermal bath, resulting in a simplified correlation function

1

2
〈F̂ (t)F̂ (t′) + F̂ (t′)F̂ (t)〉 = 2meffΓmkBTδ(t− t′). (4.40)

Ultimately we are interested in studying the fluctuations of the optical
field leaving the cavity. Within the quantum Langevin formalism the output
field can be described in terms of the vacuum input field to that port âin, as
well as the intracavity field emerging from the port as

âout = âin −
√
ηcκ â, (4.41)
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where we have included the outcoupling efficiency as defined in Eq. (4.8).
Detection inefficiencies, ηdet, can be described by an additional beamsplitter
placed at the output of the cavity. The two inputs of this hypothetical
beamsplitter are the vacuum fluctuations and the field exiting the cavity,
âout. The modified output field can thus be described as follows

âout =
√
ηdet (âin −

√
ηcκ â) +

√
1− ηdet âvac, (4.42)

where âvac obeys a similar set of commutation and correlation relations as
Eqs. (4.36-4.37). With the quantum Langevin equations of motion, as well
as the input-output relation, we are in a position of describing some of the
most important optomechanical effects relevant for this work.

4.3 Static optomechanical effects

Using the quantum Langevin formalism introduced above, we will now con-
sider the only static optomechanical effect, which is of experimental relevance
for this work, namely static optical bistability. As we saw in section 4.2, a
consequence of the radiation pressure interaction is a shift in the equilibrium
position of the suspended mirror. It is therefore conceivable that multiple
stable points emerge, as we increase in amount of intracavity optical power.
Indeed, this was one of the first radiation pressure effects to be observed
by Dorsel and colleagues [144], in a system truly resembling the canonical
optomechanical system – a Fabry-Pérot cavity cavity, where one of the end-
mirrors was suspended by two tungsten wires.

Our interest in this effect is mainly due to the limitations it imposes
on the highest achievable value for quantum cooperativity. Starting with
the equations of motion given by Eqs. (4.33-4.35), we consider the steady
state solutions for the intracavity and displacement fields in a mean-field
approximation (i.e. 〈âin〉 = 〈F̂th〉 = 0, 〈â〉 = ā and 〈x̂〉 = x̄)

ā =

√
κR s̄in

−i(∆−Gx̄) + κ/2
(4.43)

x̄ = − ~G
meffΩ2

m

|ā|2. (4.44)

Inserting the expression for the static displacement into the intracavity field
results in a third-order polynomial. Thus, for a sufficiently large intracavity
field more than one stable solutions emerge. This can be illustrated by plot-
ting the absolute square of the intracavity field as a function of the static
displacement, x̂. Evidently, Eq. (4.43) represents a Lorentzian, while Eq.
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(4.44) is a line with slope −meffΩ2
m/~G. When this slope exceeds the largest

slope of |ā|2 given by Eq. (4.43), the optomechanical system enters a bistable
regime.

Using Eq. (4.43) it can be shown that that the largest slope for Lorentzian
is at a detuning ∆̄onset = ±κ/2

√
3 , where we are only interested in the

negative (red-detuned) solution4. Finally, equating the slope of Eq. (4.43)
(evaluated at ∆̄onset = −κ/2

√
3 ) to the slope of Eq. (4.44), we find the

following condition for the onset of bistability

|s̄in|2 ≥
meffΩ2

mκ
3

3
√

3G2~κR

. (4.45)

Following Eq. (4.43), the intracavity field at this detuning is |ā|2 = 3κR|s̄in|2/κ2.
Using the fact that g0 = Gxzpf , alongside the definition of zero-point motion
in Eq. (4.17), the condition for bistability can be written as follows

nonset
cav ≥

meffΩ2
mκ√

3G2~
=

Ωmκ

2
√

3 g2
0

. (4.46)

Combined with Eq. (4.30), we are now in a position to estimate the maximum
quantum cooperativity at the onset of static bistability for a localised mode
of a soft clamped membrane resonator, while keeping track of the parameters
from Eq. (4.46) (indicated by a tilde)

Conset
q =

2√
3

g2
0

g̃2
0

Ω̃m

nthΓm

(4.47)

≈ 2√
3

m̃effΩ̃2
m

meffΩ2
m

~
kBT

Q× Ωm =
2√
3

k̃eff

keff

~
kBT

Q× Ωm, (4.48)

where in the last line we have used the approximation nth ≈ ~Ωm/kBT (cf.
Eq. (4.31)). This result suggests that the highest attainable quantum coop-
erativity for an optomechanical system is dictated by the Qf -product of the
mode of interest and the lowest spring constant in the system, k̃eff = m̃effΩ̃2

m.
As we will see later in this chapter, this is an important consideration for
our optomechanical system.

4.4 Coherent optomechanical interactions

Moving towards dynamical effects we anticipate in our experimental endeav-
ours, we now provide a theoretical treatment of a few key optomechanical
effects – dynamical backaction and sideband cooling, optomechanically in-
duced transparency and ponderomotive squeezing.

4Note, that here we refer to the detuning, which includes the static displacement.
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4.4.1 Dynamical backaction and sideband cooling

Arguably the most exciting optomechanical effects arise from the fact that
the mechanical motion affects the intracavity field, which, in turn, modifies
the dynamics of the mechanical resonator. This is referred to as dynamical
backaction and is briefly summarised in this section.

We begin by writing the linearised Heisenberg-Langevin equations for the
field fluctuations (cf. Eq. (4.26))

δ ˙̂a =
(

i∆̄− κ

2

)
δâ− iGāx̂+

√
κR δs̄in +

√
κ δâin, (4.49)

˙̂x =
p̂

meff

, (4.50)

˙̂p = −meffΩ2
mx̂− ~Gā(δâ† + δâ)− Γmp̂+ F̂th. (4.51)

Since we are merely interested in the effect of the radiation pressure inter-
action on the mechanical response, we neglect the input terms in Eqs. (4.49)
and (4.51), and treat the field fluctuations as complex quantities, rather than
quantum mechanical operators (i.e. δâ→ δa and δâ† → δa∗). In the Fourier
domain the solutions to the light and mechanical fields can be expressed as
follows5

δa(Ω) =
−iGā

−i(∆̄ + Ω) + κ/2
x(Ω), δa∗(Ω) =

iGā

i(∆̄− Ω) + κ/2
x(Ω), (4.52)

meff

(
Ω2

m − Ω2 − iΩΓm

)︸ ︷︷ ︸
χ−1

m (Ω)

x(Ω) = −~Gā(δa∗(Ω) + δa(Ω))︸ ︷︷ ︸
δFrp(Ω)

. (4.53)

We recognise the left-hand side of Eq. (4.53) as the product of the inverse
(bare) mechanical susceptibility (cf. Eq. (2.99)) and the mechanical displace-
ment, while the right-hand side corresponds to the radiation pressure force
fluctuations, δFrp(Ω). The radiation pressure force alters the response of the
mechanical resonator, resulting in an effective mechanical susceptibility

χ−1
eff (Ω) := χ−1

m (Ω) + χ−1
opt(Ω), (4.54)

χ−1
opt(Ω) =

4g2meffΩm

κ

(
κ/2

(∆̄ + Ω) + iκ/2
+

κ/2

(∆̄− Ω)− iκ/2

)
(4.55)

= 4g2meffΩm
∆̄

∆̄2 + (κ/2− iΩ)2
, (4.56)

where in the second to last line we have used the relation ~G2ā2 = 2meffΩmg
2.

In extension of our definition of an effective susceptibility, we can define an

5Here, δa∗(Ω) corresponds to F [δa∗(t)].
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effective mechanical frequency, Ωeff , and damping, Γeff ,

χ−1
eff (Ω) = meff

(
Ω2

eff − Ω2 + iΩΓeff

)
(4.57)

Γeff(Ω) =
I[χ−1

eff (Ω)]

meffΩ
(4.58)

Ωeff(Ω) =

√
Ω2 +

R[χ−1
eff (Ω)]

meff

. (4.59)

The explicit dependence on the Fourier frequency suggests that the exact
values for these effective quantities will depend on the range of frequencies
within the optical density of states that is being samples by the mechanical
resonator. Assuming κ� Γeff (corresponding to a uniform density of optical
states within the effective linewidth of the mechanical resonator), as well as
Ωeff/Ωm � 1, Eqs. (4.58-4.59) can be evaluated at Ω = Ωm

Γopt := Γeff(Ωm)− Γm (4.60)

δΩm := Ωeff(Ωm)− Ωm ≈ Ωm

(
1 +

1

2

R[χ−1
eff (Ωm)]

meffΩ2
m

)
− Ωm (4.61)

=
1

2

R[χ−1
eff (Ωm)]

meffΩm

, (4.62)

where in Eq. (4.61) we have Taylor expanded Ωeff(Ωm) to first order in
R[χ−1

eff (Ωm)]/meffΩ2
m. The resultant expressions for the optical spring effect

(i.e. optically induced frequency shift) and optomechanical damping are thus

δΩm = g2

(
∆̄ + Ωm

(∆̄ + Ωm)2 + (κ/2)2
+

∆̄− Ωm

(∆̄− Ωm)2 + (κ/2)2

)
(4.63)

Γopt = 2g2

(
κ/2

(∆̄ + Ωm)2 + (κ/2)2
+

κ/2

(∆̄− Ωm)2 + (κ/2)2

)
. (4.64)

Looking back at Eq. (2.106) and performing a similar integral with the
optically modified mechanical susceptibility (see Eq. (4.57)) yields

〈x2〉 =

∫ ∞
−∞
|χeff(Ω)|2SFthFth

(Ω)
dΩ

2π
≈ kBTeff

meffΩ2
eff

, (4.65)

where we have defined an effective mode temperature as

Teff =
Γm

Γopt + Γm

T. (4.66)
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Figure 4.4: Example of the optical spring (dashed, δ = δΩm) and damping
(solid, δ = Γopt) for experimentally relevant parameters. For negative de-
tunings the resonator experiences spring softening, while positive detunings
result in spring hardening. The latter regime is, however, often times inac-
cessible experimentally, since the accompanying negative damping leads to
amplification of the mechanical motion (for Γopt � Γm) and hence parametric
instability.

Hence, the light induced damping of the mechanical mode not only leads
to a spectral broadening of the mode, but also a reduction of its temperature.
While our treatment is purely classical, this result nevertheless captures the
essence of laser cooling and is of particular interest for this work. With this
in mind, we seek to find the optimal detuning for which the optically induced
broadening is at it’s largest. Using Eq. (4.64) we find that that the optical
broadening is largest for the following detunings

∆̄optimal =− 1

2
√

3

√
4Ω2

m − κ2 + 2
√
κ4 + 4κ2Ω2

m + 16Ω4
m (4.67)

≈

{
−Ωm, Ωm � κ (resolved sideband regime)

−κ/
√

12 , Ωm � κ (unresolved sideband regime)
. (4.68)

Using these results, we consider two approximations which are particularly
helpful in our experimental considerations. First, we consider the optical
damping rate in the resolved sideband regime (i.e. κ� Ωm). Taylor expand-
ing Eq. (4.64) to lowest order in κ/Ωm and evaluating at ∆̄ = −Ωm following
the above result, we obtain

Γopt ≈
4g2

κ
. (4.69)
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Assuming Γopt � Γm, we can express the quantum cooperativity (cf. Eq.
(4.30)) in terms of the optical broadening

Cq ≈
Γopt

n̄thΓm

. (4.70)

In a similar fashion one can re-express Eq. (4.66) in terms of the quan-
tum cooperativity. Assuming Γopt � Γm and using the high-temperature
approximation n̄ ≈ kBT/~Ωm (cf Eq. (4.31)) we find that

Teff ≈
~Ωm

kBCq
→ n̄eff ≈

1

Cq
, (4.71)

where we have defined an effective mean occupancy n̄eff ≈ kBTeff/~Ωm. This
result, originating from a purely classical analysis, suggests that in order to
reach a mean occupancy lower than unity, we require Cq > 1. In fact, a
full quantum treatment of the problem yields the same result in the resolved
sideband regime.

Lastly, let us consider the probability, Pn, of finding a vibrational mode
with a certain mean occupancy in a particular energy eigenstate |n〉. Follow-
ing [136] we write

Pn =
n̄n

(1 + n̄)n+1
. (4.72)

The probability of finding a particular vibrational mode in it’s motional
ground state |0〉 is hence P0 = 1/(1 + n̄), which suggests that for a mean
occupancy of n̄ = 1 the mode can be found in it’s motional ground state
50% of the time. The term “ground state cooling” within the field of cavity
optomechanics refers to achieving a mean phonon occupancy below unity,
which, in turn, requires Cq > 1.

Going from a classical to a quantum mechanical description of radiation
pressure cooling can be done in two different ways. Starting from the equa-
tions of motion (cf. Eqs. (4.49-4.51)) one could calculating the expectation
value of the phononic number operator in the Fourier domain, 〈b̂†b̂〉, thus
finding an explicit expression for the mean phonon occupancy. A detailed
derivation following this approach can be found in the doctoral dissertation
of Cheng Yang [145]. Alternatively, a scattering picture can be adapted,
where transition rates between phononic states are calculated using Fermi’s
golden rule. Here, we follow this approach as presented in [138,146,147].

The average phonon number, n̄, can be expressed in terms of the probabil-
ities Pn given by Eq. (4.72) as n̄ =

∑∞
n=0 Pnn. Since we are consider a system
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where the mechanical resonator couples to two different reservoirs – an opti-
cal and a thermal – a change in the mean occupancy can either originate from
a thermal process or a Raman-scattering process, akin to those discussed in
relation to Fig. 4.3. The rate of change of the average phonon number
can therefore be written as the difference of upwards going transitions (i.e.
phonons entering from the thermal reservoir and optomechanical scattering
processes ∝ δâb̂†) and downwards going transitions (i.e. phonons dissipating
into the thermal reservoir and optomechanical scattering processes ∝ δâ†b̂)

˙̄n = (n̄+ 1)(A+ + A+
th)− n̄(A− + A−th), (4.73)

where A± are the light-mediated transition rates (see Fig. 4.5 for a sketch),
while A±th are the thermal transition rates. The respective transitions are
driven by the radiation-pressure and Langevin forces, and in accordance with
Fermi’s Golden rule the transition rates are proportional to the density of
states associated with said forces at the relevant Fourier frequencies. The
thermal transition rates can be expressed as follows [138]

A+
th =

x2
zpf

~2
SFF (−Ωm), A−th =

x2
zpf

~2
SFF (Ωm) (4.74)

SFF (−Ωm) = 2meffΓm~Ωmn̄, SFF (Ωm) = 2meffΓm~Ωm(n̄+ 1), (4.75)

where SFF is the power spectral density of the Langevin force. The resultant
transition rates are thus A+

th = n̄thΓm and A−th = (n̄th + 1)Γm. Similarly the
light-mediated transition rates can be expressed as [147]

A± =
x2

zpf

~2
SFrpFrp(Ω = ∓Ωm) = g2

0SNN(Ω = ∓Ωm) (4.76)

SNN(Ω) = n̄cav
κ

(∆̄ + Ω)2 + (κ/2)2
(4.77)

where SFrpFrp(Ω) is the power spectral density of the radiation pressure force
(cf. Eq. (4.5)). Comparing the optical density of states in Eq. (4.77) to Eq.
(4.64) the expression for the optical damping rate, we see that

Γopt = A− − A+. (4.78)

Having established a connection between the mean phonon occupancy and
the optical damping rate in Eq. (4.71) (i.e. larger damping equals lower
occupation), this result comes as no surprise – the transition rate A− removes
excitations from our mechanical resonator, and for A− � A+, the damping
rate is positive, leading to an overall reduction of the mean occupancy.
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A+ A−

Figure 4.5: Sketch of the Raman-scattering processes. Sidebands scattered at
±Ωm from a probe field (black) detuned by ∆̄ from cavity resonance (dashed
black line).

Combining these results, we can solve Eq. (4.73) in the steady-state,
yielding the following expression for the mean phonon occupancy

n̄final =
Γoptn̄min + Γmn̄th

Γopt + Γm

(4.79)

n̄min = −(∆̄ + Ωm)2 + (κ/2)2

4∆̄Ωm

. (4.80)

The minimum occupancy n̄min is merely a consequence of imperfect sideband
resolution. Only for Ωm � κ is the Stokes sideband (originating from the
process associated with the A+ transition rate) strongly suppressed by the
optical cavity. The expression for the final occupancy is simplified in the
resolved sideband regime

n̄final ≈ n̄min +
1

Cq
, (4.81)

where we have used Eq. (4.70) in order to express the occupancy in terms
of the quantum cooperativity. As we can see, even for an infinitely large
quantum cooperativity, the lowest attainable mean occupancy is given by
n̄min. This limit is often referred to as the backaction or Doppler limit, and
only very recently was it reached in an optomechanical experiment [16].

There are, however, techniques that allow for sub-Doppler cooling. These
involve, among others, cooling by injection of squeezed light [148], cooling by
measurement [149, 150], feedback cooling [17], Stokes sideband suppression
by optomechanically induced transparencies [151], and cooling by teleporta-
tion in hybrid systems [152].
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Due to the importance of the backaction limit as it pertains to laser
cooling, let us consider the optimal detuning, as we seek to minimise n̄min

∆̄optimal
n̄min

=−
√
κ2

4
+ Ω2

m ≈

{
−Ωm, Ωm � κ (resolved sideband)

−κ/2, Ωm � κ (unresolved sideband)
.

(4.82)

In the resolved sideband regime the optimal detuning coincides with the op-
timal detuning previously derived in relation to the optical damping rate (cf.
Eq. (4.68)). In the unresolved sideband regime, however, the results differ,
which can be ascribed to the fact that in Eq. (4.82) we seek to maximise
the asymmetry between the Stokes and anti-Stokes sidebands. But while
∆̄ = −κ/2 might not be the optimal detuning for broadening, in practice
one often has an abundance of optical power and can compensate for the
reduced optical damping rate by simply increasing the input power. In Fig.
4.6 a comparison between the optimal detunings following Eqs. (4.68) and
(4.82) is shown.
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Figure 4.6: Comparison of optimal detuning based on the backaction limit
Eq. (4.68) (solid) and optical damping rate Eq. (4.82) (dashed).

4.4.2 Optomechanically induced transparency

To say that electromagnetically induced transparency (EIT) [153] is a well-
known effect in atomic physics would be an understatement. With numerous
applications spanning from motional ground state cooling of atoms [154,
155], slow light [156] and storage of light pulses [157], to single-atom optical
transistors [158], EIT is widely used in atomic physics. The effect can be



4.4. COHERENT OPTOMECHANICAL INTERACTIONS 119

observed in optical media with a Raman transition, upon probing it with
two phase-coherent laser beams. A window of transparency for the one of
the beams emerges once the frequency difference of the two beams matches
the Raman transition.

EIT is often realised is atomic media exhibiting a three-level Λ-scheme.
As we will see shortly, such a level structure can also be realised in optome-
chanical systems, leading to the emergence of optomechanically induced trans-
parency (OMIT). This idea was initially proposed by A. Schliesser in his doc-
toral thesis [159], and shortly hereafter demonstrated experimentally [160].
In the context of this thesis, we employ this technique as a means of mea-
suring key system parameters – namely cavity linewidth, κ, and the cavity
detuning with respect to the laser frequency, ∆̄. Here we follow a similar
derivation as presented in [14].

As in atomic physics, the input to our system is a strong pump (control)
field, with a small modulation which constitutes the probe field. When the
difference frequency of the probe and control fields matches a Raman tran-
sition of the optomechanical system, a transparency window is expected to
emerge. In our case, the Raman transition is none other than the mechanical
resonance transition. In effect, when the weak probe field overlaps spectrally
with a mechanical sideband originating from Raman scattering processes in-
volving the strong control field, we see an interference effect, which manifests
itself as a window of transparency for the probe field.

In contrast to a “canonical” EIT experiment, we inject two probe beams
symmetrically around the strong control field, into the cavity. This is merely
a consequence of how we perform the measurement – in order to preserve
phase coherence between the control and probe fields, we use an electro-
optic modulator (EOM) to generate sidebands at a frequency ±Ωp relative
to the carrier. A sketch of the relevant Λ level scheme is depicted in Fig. 4.7.
We will return to the experimental details of the underlying measurement
later in this chapter.

Our starting point is the set of linearised equations of motion, given by
Eqs. (4.49-4.51). Since the effect we wish to study is classical in nature, we
take the expectation values of said equations, thus discarding the quantum
noise operators (i.e. 〈δâin〉 = 〈F̂th〉 = 0). Similar to Section 4.4.1 we write
the solutions in the Fourier domain
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Figure 4.7: Sketch of OMIT. To the left the probe tones are seen at ±Ωp

from the control field s̄in (green). To the right the level structure of the
optomechanical system is shown. The detuned control field addresses the
Stokes sideband transition, annihilating a phonon and generating a photon.
A given energy evel is given by the mechanical and optical occupations, nm

and np respectively.

δa(Ω) = (−iGāx+
√
κR δs̄in)χc(Ω), (4.83)

δa∗(Ω) = (iGāx+
√
κR δs̄

∗
in)χ∗c(−Ω) (4.84)

x(Ω) = −~Gā(δa(Ω) + δa∗(Ω))χm(Ω), (4.85)

where we have defined the optical susceptibility χc(Ω) as follows

χc(Ω) :=
1

−i(∆̄ + Ω) + κ/2
. (4.86)

As previously mentioned, we assume the intracavity field to be real. In
order to fulfil this requirement, the physically irrelevant phase of the intra-
cavity field is absorbed into the phase of input field. Following Eq. (4.43)
and assuming G = 0, we find that

s̄in =
−i∆̄ + κ/2
√
κR

ā =
−i∆̄ + κ/2√
∆̄2 + κ2/4

|s̄in| = e−iθin |s̄in|, (4.87)

where θin = atan(−2∆̄/κ). Similar to the definition of mechanical position
and momentum operators, we now define the optical amplitude and phase
quadratures in terms of the creation/annihilation operators

X :=
1√
2

(â† + â), Y :=
i√
2

(â† − â). (4.88)
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Combined with Eq. (4.87) we can now write a general relation between
the fluctuations of the quadrature operators and the creation/annihilation
operators, assuming that the mean field is rotated by a phase angle θ(

δâ
δâ†

)
=

1√
2

(
e−iθ ie−iθ

eiθ −ieiθ

)
︸ ︷︷ ︸

Mθ

(
δX̂

δŶ

)
. (4.89)

Our input field is thus converted into amplitude modulation inside the cavity,
δX, if it fulfils the following relation

δs̄in =
i√
2

−i∆̄ + κ/2√
∆̄2 + κ2/4

δX =
i√
2

|χc(0)|
χc(0)

δX, (4.90)

δs̄∗in = − i√
2

i∆̄ + κ/2√
∆̄2 + κ2/4

δX = − i√
2

|χc(0)|
χ∗c(0)

δX, (4.91)

where we have used Eq. (4.86) for the optical susceptibility. Solving Eqs.
(4.83-4.85) for δa+ δa∗, and inserting Eqs. (4.90-4.91), yields

δa(Ω) + δa∗(Ω) =
C(Ω)

1−M(Ω)
, (4.92)

C(Ω) :=
√
κR

(
χc(Ω)

i√
2

|χc(0)|
χc(0)

− χ∗c(−Ω)
i√
2

|χc(0)|
χ∗c(0)

)
δX, (4.93)

M(Ω) := 2ig2meffΩmχm(Ω) (χc(Ω)− χ∗c(−Ω)) . (4.94)

Evidently, the cavity response has two distinct contributions – C(Ω), which
only depends on the optical susceptibilities, and M(Ω), which is directly
dependent on the optomechanical coupling and the mechanical susceptibil-
ity. The latter also entails that the cavity response is only modified close
to the resonance frequency of the mechanical resonator. In Fig. 4.8a the
full response function, C(Ω)/(1 −M(Ω)), is plotted, alongside the response
for zero optomechanical coupling. At the mechanical frequency the cavity
response is distorted and a Fano resonance [161] arises, which is a known
interference effect to arise in systems where a discrete state interacts with
a continuum of states. In our case, the former originates from the discrete
mechanical resonance spectrum, while the latter is provided by the optical
radiation field. Furthermore, since the relative phase of the cavity suscepti-
bility changes below and above the resonance, the narrowband response due
to the mechanical resonance changes, depending on its resonance frequency
(see Fig. 4.8c).

In practice, we perform these types of measurements in the cavity trans-
mission by direct detection. The detected photocurrent is proportional to
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â†â, which, upon linearisation (i.e. â → ā + δâ), yields a photcurrent
∝ ā(δâ† + δâ). Hence, our detected signal is simply

δXdet(Ω) =
√
κT (δa(Ω) + δa∗(Ω)) . (4.95)

Despite the fact that the input and output coupling rates, κR and κT, are
present in these equations, in practice they do not matter – a simple normal-
isation procedure renders them quite irrelevant. The details of our measure-
ments procedure will be described later in this chapter.

4.4.3 Quantum backaction

Thus far we have avidly ignored the quantum noise terms in our equations
of motion. As we saw in Section 4.4.1, the radiation pressure drives the
mechanical oscillator. In the following section we consider the impact of
including said noise terms.

Following our definitions of the optical and mechanical quadrature oper-
ators (cf. Eqs. (4.16) and (4.88)), the linearised equations of motion (see
Eqs. (4.49-4.51) can be expressed as follows

δ
˙̂
X = −κ

2
δX̂ − ∆̄δŶ +

√
κ δX̂in, (4.96)

δ
˙̂
Y = −κ

2
δŶ + ∆̄δX̂ + 2gQ̂+

√
κ δŶin, (4.97)

˙̂
Q = ΩmP̂ , (4.98)

˙̂
P = −ΓmP̂ −

√
2Γm P̂in − ΩmQ̂− 2gδX̂, (4.99)

where the mechanical noise operator P̂in has been defined following [138] in
terms of the Langevin force operator as follows

P̂in :=
xzpf

~
√

Γm

F̂th. (4.100)

The equations of motion can now be cast in matrix form
δ

˙̂
X

δ
˙̂
Y
˙̂
Q
˙̂
P


︸ ︷︷ ︸

V̇

=


−κ/2 −∆̄ 0 0

∆̄ −κ/2 2g 0
0 0 0 Ωm

2g 0 −Ωm −Γm


︸ ︷︷ ︸

M


δX̂

δŶ

Q̂

P̂


︸ ︷︷ ︸

V

+


√
κ δX̂in√
κ δŶin

0√
2Γm P̂in


︸ ︷︷ ︸

Fin

. (4.101)



4.4. COHERENT OPTOMECHANICAL INTERACTIONS 123

0 2 4 6 8 10
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

C
(Ω

)/
1-

M
(Ω

) 
(n

or
m

al
is

ed
)

1.2 1.3 1.4 1.5 1.6 1.7 1.8
Frequency (MHz)

0 2 4 6 8 10
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

C
(Ω

)/
1-

M
(Ω

) 
(n

or
m

al
is

ed
)

(a) (b)

(c)

Mechanical resonance frequency

Figure 4.8: OMIT response following Eq. (4.92). Figures (a) and (b) depict
the full response (solid), as compared to the bare response, described by the
function C(Ω) (cf. Eq. (4.93)). The dashed-dotted line in (b) indicates the
mechanical resonance frequency. Here, the relevant parameters are: κ =
2π × 3.5 MHz, Ωm = 2π × 1.5 MHz, g = 2π × 0.2 MHz, and ∆̄ = −κ/2.
Figure (b) is a close-up view of the OMIT feature (shaded area in (a)). c)
For the same cavity parameters, the full OMIT response is shown for varying
mechanical frequencies, Ωm = 2π × {1, 2.475, 5} MHz.

We solve this equation in the Fourier domain, followed by a matrix inversion,
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yielding

V(Ω) = −(iΩ1 + M)−1Fin(Ω) = L(Ω)Fin(Ω), (4.102)

L(Ω) =
χ̃eff(Ω)

κ


2vχ̃−1

m (Ω) 2uχ̃−1
m (Ω) L13 4gu

−u
(

8g2

∆̄
+ 2χ̃−1

m (Ω)
)

2vχ̃−1
m (Ω) L23 4gv

4gv 4gu L33 κ
−4igΩv/Ωm −4igΩu/Ωm L43 −iκΩ/Ωm

 .

(4.103)

Here we have defined modified effective and mechanical susceptibilities, χ̃eff(Ω)
and χ̃m(Ω), alongside cavity response functions v(Ω) and u(Ω)

χ̃eff := χeff(Ω)meffΩm, χ̃m(Ω) := χm(Ω)meffΩm, (4.104)

u(Ω) :=
−2∆̄

4∆̄2 + (κ− 2iΩ)2
κ, v(Ω) :=

κ− 2iΩ

4∆̄2 + (κ− 2iΩ)2
κ, (4.105)

where χeff is the effective susceptibility defined in Eq. (4.54). Finally, note
that since the displacement operator doesn’t have an explicit input noise
term, the entire third column of L(Ω) is redundant and has thus been omit-
ted.

Using Eq. (4.103) the solution to the (dimensionless) displacement field
is therefore

Q̂(Ω) = χ̃eff

(√
2Γm P̂in︸ ︷︷ ︸
thermal

+
4g√
κ

[
v(Ω)δX̂in + u(Ω)δŶin

]
︸ ︷︷ ︸

quantum backaction

)
, (4.106)

In addition to the Langevin forcing term, the mechanical resonator is also
driven by the light fluctuations. The forcing term involving the granularity
of light is also known as quantum backaction and can lead to a wealth of
interesting quantum optomechanical phenomena.

Following our definition of the optical quadrature operators, in conjunc-
tion with Eq. (4.37), the field correlators in the Fourier domain are

〈δX̂†in(Ω)δX̂in(Ω′)〉 = 〈δŶ †in(Ω)δŶin(Ω′)〉 =
2π

2
δ(Ω− Ω′) (4.107)

〈δX̂†in(Ω)δŶin(Ω′)〉 = −〈δŶ †in(Ω)δX̂in(Ω′)〉 =
2πi

2
δ(Ω− Ω′). (4.108)

With this we can now derive the (symmetrised) power spectral density of the
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displacement field, finding

S̄QQ = |χ̃eff |2
(
S̄th
FF + S̄qba

FF

)
, (4.109)

S̄th
FF = 2Γm(n̄th + 1/2), (4.110)

S̄qba
FF = g2κ

(
|χc(Ω)|2 + |χc(−Ω)|2

)
, (4.111)

where S̄th
FF and S̄qba

FF are the thermal and quantum backaction force noise, re-
spectively. In practice the thermal Langvin force often times masks quantum
mechanical signatures of a mechanical resonator. The relative contribution
of quantum backaction noise to thermal force noise is therefore an imperative
quantity to improve. In the resolved and unresolved sideband regimes it can
be shown that

S̄qba
FF

S̄th
FF

≈

Cq, Ωm, ∆̄� κ (unresolved sideband)

Cq

(
1
2

+ 1
2

(
κ

4Ωm

)2
)

Ωm � κ and ∆̄ = −Ωm (resolved sideband)
,

(4.112)

where Cq is the quantum cooperativity given by Eq. (4.30). We can therefore
interpret the quantum cooperativity as the relative contribution of Langevin
force noise to quantum backaction noise. These contributions evidently equi-
librate for Cq & 1.

As we have already seen, one of the consequences of Cq > 1 is motional
ground state cooling. We will now describe another optomechanical effect
which becomes accessible in this regime, namely ponderomotive squeezing.

4.4.4 Ponderomotive squeezing

Looking back at our equations of motion (4.96-4.99), we turn our atten-
tion to the light quadratures. As we can see, when ∆̄ = 0, the (direct)
coupling between the amplitude and phase quadratures of light vanishes.
This comes as no surprise, since the first derivative of the cavity response
is zero on resonance. However, the light quadratures remain coupled due
to the optomechanical coupling. As seen in Eq. (4.99), the momentum of
the mechanical resonator couples to the amplitude fluctuations of light. The
position-momentum coupling subsequently results in a displacement of the
mechanical resonator (cf. Eq. (4.98)), which imprints itself on the phase

quadrature of light due to the fact that δ
˙̂
Y ∝ 2gQ̂ (cf. Eq. (4.97)). Ev-

idently, an optomechanical system imparts an amplitude dependent phase
shift on light, which suggests that it can be thought of as an effective Kerr
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medium (i.e. a dispersive medium with a χ(3) nonlinearity). This was indeed
realised early on by Pierre Meystre and colleagues [162], pointing out that
there is in fact a one-to-one correspondence between an optical cavity with
a suspended mirror and a Kerr medium.

Coincidently, later the same year Richart Slusher and coworkers reported
on the first observation of squeezing of light below the vacuum noise level
using the Kerr nonlinearity of Na atoms inside an optical resonator [163].
The fact that a medium with a χ(3) nonlinearity can lead to non-classical
correlations between the light quadratures, resulting in a reduction of fluc-
tuations below the shot noise level, had been proposed a few years before by
Horace Yuen and Jeffrey Shapiro [164]. But despite a tremendous amount
of interest in realising a “quantum noise eater”, particularly in view of its
potential in relation to the gravitational wave detectors [165], doing so in-
volved numerous difficulties. The interested reader is referred to the excellent
(and rather entertaining6) paper by Marc Levenson and Robert Shelby, ap-
propriately entitled “Experimentalists’ Difficulties in Optical Squeezed State
Generation” [166], as well as the review paper by Daniel Walls [167].

In the years following the publication of Slusher, a number of new systems
successfully demonstrated squeezing below the shot noise level. Importantly,
the most potent among these were χ(2) nonlinearity-based systems, which, to
date, hold the record for the largest observed squeeze factor of 15 dB [168].
The reason for the success of these systems is primarily due to the fact that
the χ(2) nonlinearities are typically larger than the χ(3) nonlinearities. How-
ever, as pointed out by Holico and colleagues [169], the χ(2) nonlinearity
leads to squeezing at a different frequency compared to the pump laser fre-
quency. This contributed to the continued interest in developing “quantum
noise eaters” using Kerr media.

Unfortunately, the low third-order nonlinearity posed a challenge – in
order to achieve appreciable squeezing, a substantial amount of light needed
to be used. But this was accompanied by additional losses, due to Brillouin
scattering in fibers or spontaneous emission for atomic systems [169, 170].
This led researchers to explore other options, among which was the optical
cavity with a harmonically suspended mirror. First theorised by Hilico et
al. [169], and later put on more solid theoretical footing by Mancini et al. [171]
and Fabre et al. [170], a squeezer based on an optomechanical system was
deemed a promising alternative to other candidates. Due to the motional
origin of squeezing, the method was termed ponderomotive squeezing, echoing

6Starting with the first challenge of “figuring out what the theorists are talking about”,
and ending with the difficulty of “proving that we aren’t crazy”, this paper provides a
relatable overview of some of the earlier challenges in generating squeezed light.
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the language used by Braginsky and Manukin [172].

Despite the optimism of Stefano Mancini and Paolo Tombesi in 1994, stat-
ing that “the up-to-date technology is mature enough to obtain an optome-
chanical control of the quantum fluctuations” [171], it took experimentalists
almost 20 years to observe ponderomotive squeezing in an optomechanical
system. Brooks et al. [173] first reported on percent level squeezing of light
in a Fabry-Pérot based system, where the collective motion of an ultracold
87Rb atomic ensemble acted as the mechanical resonator. Shortly hereafter,
Safavi-Naeini et al. [174] reported squeezing at a level of a few percent in a
silicon-based optomechanical crystal. The rather modest amount of squeez-
ing observed in the experiment by Brooks et al. [173] was due to detection of a
less favourable quadrature angle, while Safavi-Naeini et al. [174] ascribed the
low level of squeezing to the thermal noise of higher-order mechanical modes.
Later the same year Thomas Purdy and colleagues reported on substantial
improvement over the previous results, demonstrating ponderomotive squeez-
ing of −1.7±0.2 dB in a membrane-in-the-middle based system [13]. In 2016
our own group demonstrated further improvement in this direction, by using
silicon phononic crystal shielded membrane resonators embedded in a high-
finesse Fabry-Pérot cavity. With −2.4 dB squeezing below the shot noise
level [14], this remains one of the largest reported amount of sub shot noise
squeezing in an optomechanical system. Using a very similar cavity, with an
improved outcoupling efficiency, Christoffer B. Møller recently demonstrated
−(3.3± 0.2) dB ponderomotive squeezing [175].

In order to aid us in interpreting and analysing the data presented later
in this chapter, we seek to develop the theoretical framework for modelling of
ponderomotive squeezing. Here, we closely follow the approach from Nielsen
et al. [14]. Starting from Eqs. (4.96-4.97), we write the solution for the
amplitude quadrature fluctuations in the Fourier domain

δX̂(Ω) =
4gQ̂

κ
u(Ω) +

2√
κ

(
v(Ω)δX̂in + u(Ω)δŶin

)
. (4.113)

Inserting the solution for the displacement field given by Eq. (4.106) yields

δX̂(Ω) =

(
16g2u(Ω)

κ
χ̃eff + 2

)
1√
κ

[
v(Ω)δX̂in + u(Ω)δŶin

]
+

4gu(Ω)

κ
χ̃eff

√
2Γm P̂in. (4.114)

Assuming perfect detection efficiency for the sake of simplicity, and using
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the input-output relation given by Eq. (4.42)7, the output field is found

δX̂out(Ω) =−
(

16g2uv

κ
χ̃eff + 2v − 1

)
δX̂in −

(
16g2u2

κ
χ̃eff + 2u

)
δŶin

− 4gu√
κ
χ̃eff

√
2Γm P̂in. (4.115)

Finally, we calculate the symmetrised power spectral density8 of the ampli-
tude quadrature fluctuations, finding

S̄out
XX = 1︸︷︷︸

shot noise

+

(
16g2

κ

)2

|χ̃eff |2|u(u+ v)|2︸ ︷︷ ︸
quantum backaction

+
16g2

κ
|χ̃eff |2|u|24Γm

(
n̄th +

1

2

)
︸ ︷︷ ︸

thermal force noise

+
32g2

κ
Re
[
χ̃effu(2u2 + 2v2 − v)

]
︸ ︷︷ ︸

correlations

. (4.116)

While the first three terms are comprised of absolute squares and are thus
strictly positive, the last term can in principle become negative close to the
mechanical resonance frequency, leading to a reduction of fluctuations below
the shot noise level.

To garner intuition for ponderomotive squeezing, we consider the influ-
ence of detection inefficiency. Optical losses, whether inside the cavity or
outside, inevitably lead to admixing of vacuum fluctuations into our signal,
thus washing out the correlations created within our optomechanical cavity.
Combined with the assumption of a fast cavity (i.e. κ � |∆̄|,Ωm) and high
(classical) cooperativity limit, we find that the measured fluctuations S̄meas

XX

is bounded from below by

S̄meas
XX &

(
1− Γopt

Γopt + n̄thΓm

)
η + (1− η) (4.117)

≈ 1− Cq
Cq + 1

η, (4.118)

where in the last line we have used the resolved-sideband approximation for
Γopt in conjunction with Eq. (4.70). For ideal detection efficiency, the amount
of ponderomotive squeezing is determined solely by the quantum coopera-
tivity. This bound furthermore suggests that for moderately high values of

7It follows directly from said relation that δX̂out(Ω) = δX̂in(Ω)−
√
κ δX̂(Ω).

8Note that we have multiplied the PSD with a factor 2, resulting in the shot noise
level being 1, rather than 1/2, as one would anticipate from our definition of the light
quadratures.
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quantum cooperativity the amount of squeezing can largely be described by
the detection efficiency alone. Put differently, for a significantly broadened
mechanical mode the bath temperature plays a negligible role in the amount
of observed ponderomotive squeezing and is almost solely determined by the
detection efficiency. This observation will be of importance later in this work.

In Fig. 4.9 we evaluate the full model for ponderomotive squeezing for
experimentally relevant parameters, while varying three parameters of inter-
est – number of thermal phonons, cavity detuning and detection efficiency.
Firstly, we see that the amount of squeezing is only weekly dependent on the
thermal occupancy of the bath. Only for a bath occupancies of n̄th = 5×105

and n̄th = 106 (corresponding to Cq ≈ 6.8 and Cq ≈ 3.4) do we start seeing a
discernible departure from the minimum amount of squeezing. It is further-
more worth noting that the effect of an increase in the thermal occupancy
shifts the squeezing curve upwards – both the peak value, as well as the mini-
mum value. While not surprising, given the way the bath occupancy appears
in Eq. (4.116), it can be helpful in identifying anomalies in measurements.

Next, despite the fact that we assume a detection efficiency of η = 50%
in the top left figure, the largest amount of ponderomotive squeezing is not
∼ 0.5, as one would näıvely anticipate from Eq. (4.117). However, as we
reduce the detuning (top right plot in Fig. 4.9), the feature becomes nar-
rower, due to a reduced amount of backaction cooling, but more importantly,
it slowly approaches the bound of ∼ 0.5. This is indeed compatible with
the expectation from the scattering picture discussed earlier (cf. Section
4.2). More specifically, the calculated ponderomotive squeezing spectra in
Fig. 4.9) assume Ωm = 2π × 1.475 MHz and κ = 2π × 2.95 MHz. Since
ponderomotive squeezing is indicative of entanglements between Stokes- and
anti-Stokes sidebands [139], it is therefore necessary to have a small detuning
for this specific choice of cavity linewidth and sideband resolution, in order
to avoid a large asymmetry in the scattering rates of the two processes. In
the unresolved sideband regime the requirement is slightly different – here, a
larger detuning is more favourable, since it ensures a more pronounced mix-
ing between the light quadratures. This can be show by further simplifying
the correlation term in Eq. (4.116). In the fast cavity (i.e. κ� |∆̄|,Ωm) and
high cooperativity regime we find that

S̄out
XX ≈ 1− 16∆̄

κ

4g2

κ
Re [χ̃eff ] +

(
8∆̄

κ

)2
4g2

κ
|χ̃eff |2

(
4g2

κ
+ n̄thΓm

)
. (4.119)

Indeed, the output field fluctuations increase for larger detunings. However,
for the results presented in this work, we rely on the numerical simulations
presented in Fig. 4.9 as a guide and source of intuition.
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Figure 4.9: Ponderomotive squeezing dependence on thermal occupancy (top
left), cavity detuning (top right) and detection efficiency (bottom). For all
three plots we use the following parameters: κ = 2π × 2.95 MHz, Ωm =
2π × 1.475 MHz, g = 2π × 50 kHz, and Γm = 2π × 1 mHz. For the top row
we have assumed a detection efficiency of η = 50%, while in the top right
and bottom figures the bath temperature is set to 10 K.

With this, we move to the final ingredient in understanding our optome-
chanical system – namely establishing a mapping between the canonical sys-
tem and the membrane-in-the-middle configuration.
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4.5 Mapping to membrane-in-the-middle

The theoretical considerations thus far have been rather generic and could be
applied to most optomechanical systems operating in the dispersive coupling
regime. The final piece of the puzzle is understanding the unique features of a
membrane-in-the-middle optomechanical system, and identifying how certain
parameters are mapped from this specific system to a generic optomechanical
system.

One of the virtues of the MIM configuration is its simplicity – a high-
finesse Fabry-Pérot cavity, with a thin dielectric slab placed between the
mirrors. This, to a large extent, allows for the optimisation of the individual
constituents of the system, before putting it all together. This system has
been studied extensively – theoretically, as well as experimentally – since
its conception in the research group of Jack Harris in 2008 [176]. The most
common method of describing the specificities of the MIM configuration is
using the transfer matrix formalism. This method allows for the calculation
of some of they key parameters as a function of membrane position within the
cavity – cavity resonance shift, optomechanical coupling rate, outcoupling ef-
ficiency, and so on. Here, we follow the treatment as described in [14,55,176].

The relevant configuration for the work at hand is shown in Fig. 4.10,
where the electric field amplitudes Ai of the traveling waves are specified.
For simplicity, the electric field amplitudes are assumed to be plane waves.
This is a good approximation when the Rayleigh length zR, which in prac-
tice is set by the cavity geometry, is much longer than the cavity length L.
For our system the optical beam waist is approximately w0 ≈ 45 µm, which
amounts to a Rayleigh length of zR = πw2

0/λ ≈ 7.5 mm at a wavelength
of λ = 852 nm. Since our cavity length is ∼ 2.5 mm long, the aforemen-
tioned approximation would appear borderline. However, previous studies
in our group have shown good agreement between experimental data and
predictions from this simple transfer matrix model [14, 17], suggesting that
the approximation is sufficiently accurate for our purposes.

Since the dielectric slab (i.e. the membrane) is semi-transparent, the left
and right sub-cavities of the optical resonator are coupled. The coupling
strength is dictated by the relative relative lengths of the two sub-cavities,
as well as the reflectivity and transmissivity of a dielectric slab. The latter



132 CHAPTER 4. CAVITY OPTOMECHANICS

(t
1
, r

1
) (t

2
, r

2
)

A
in

L

A
refl

zm

(tm, rm)

A
1

A
2

A
3

A
4

A
tran

Figure 4.10: Mean field amplitudes in a membrane-in-the-middle configu-
ration. The cavity is driven from one side only with the input field Ain,
and light is collected in transmission. The (amplitude) reflection and trans-
mission coefficients of the membrane and the mirrors, (ti, ri), as well as the
distance of the membrane from the flat mirror, zm, are specified.

are given by the following set of equations

rm =
(n2 − 1) sin(knh)

2in cos(knh) + (n2 + 1) sin(knh)
, (4.120)

tm =
2n

2in cos(knh) + (n2 + 1) sin(knh)
(4.121)

where n and h are the refractive index and thickness of the dielectric, respec-
tively, and k is the wavenumber of the incident light field. For knh� 1, the
power reflectivity can be expressed as

|rm|2 ≈ (n2 − 1)2

(
kh

2

)2

. (4.122)

A comparison of the exact and approximate solutions is shown in Fig. 4.11,
where the power reflectivity is shown as a function of thickness. As we can
see, the approximate solution is valid up to h ∼ 25 nm. Also, note that for
the experimentally relevant thickness of h = 15 nm the reflectivity is merely
2.64%.

We can now write a system of equations describing the field amplitudes9

9More specifically, the field amplitude fluxes.
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Figure 4.11: Membrane (power) reflectivity as a function of thickness, as-
suming n = 2 and λ = 852 nm, reflecting typical experiment conditions. The
solid line is evaluated using Eq. (4.120), while the dashed line is valid for
knh� 1.

in our system

A1 = it1Ain + rmA2eik(L−zm), (4.123)

A2 = rmA1eik(L−zm) + itmA4eikzm , (4.124)

A3 = itmA1eik(L−zm) + rmA4eikzm , (4.125)

A4 = r2A3eikzm , (4.126)

Atrans = it2A3eikzm (4.127)

While these equations are straightforward to solve numerically, the analytic
expressions are less illuminating. However, an approximate solution for the
MIM cavity resonances can be derived, assuming a lossless cavity, where the
mirror reflectivities are much larger than that of the membrane. Following
[55,176], the resonance condition can be found to be

|rm| cos(2kreszm) = cos (kres(L− h)− arg (|rm|)) , (4.128)

where kres is a resonant wavenumber. Assuming that the cavity resonances
are close to those of a bare (empty) cavity, we can further approximate this
expression. This is a fair assumption, seeing that the reflectivity of a silicon
nitride membrane is only a few percent at the relevant thicknesses (cf. Fig.
4.11). We find that

(k0,n − kres)L ≈ −|rm| sin (2k0,nzm) , (4.129)

where k0,n is the bare cavity resonant wavenumber, with the subscript n ac-
counting for the fact that we are not working with the first resonance of the
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cavity. As we can see, the membrane position modulates the resonance fre-
quency of the cavity. Importantly, it does so periodically, with a periodicity
of 2k0,nzm. Furthermore, it worth noting that in our system k0,n − kres is al-
ways negative, since the optical path length can only increase by embedding
a (thin) dielectric medium inside the cavity.

This result is important for our particular realisation of the MIM configu-
ration. Due to practical reasons, which we will touch upon shortly, our cavity
length, as well as the membrane position, zm, as in fact fixed. Therefore, the
only remaining knob we can turn is the wavelength of light. Since the cavity
resonances are discretely spaced, the relative position of the membrane with
respect to the standing wave will differ from resonance to resonance. In Fig.
4.12 a rough illustration of this process is shown. Broadly speaking, one can
think of this process as follows – since the laser is resonant with the cavity
when an integer multiple of half wavelength equal the cavity length, going
from resonance to resonance corresponds to adding (removing) a “bubble”
of the optical standing wave. In doing so, we change the relative position
of the membrane with respect to the standing wave, which leads to a slight
shift of the cavity resonance in agreement with Eq. (4.129). Therefore, in
our everyday language, the question “Where is the membrane with respect
to the standing wave?” is replaced by “Where are we in 2kz?”.

Fig. 4.12 also illustrates an important detail of practical importance,
namely that not all membrane locations are equally favourable. For instance,
placing the membrane in the middle of the cavity would only provide access
to the nodal and anti-nodal points of the standing wave, thus limiting tune-
ability of the system.

Returning to Eqs. (4.128) and (4.129), we now consider the resonance
frequency shift for varying k0,n, which is treated as a continuous variable
for illustrative purposes. Importantly, we fold the computed resonance fre-
quencies back into 2π (i.e. mod(2kzm, 2π). In Fig. 4.13 we compare the
frequency shifts for varying membrane thicknesses. As one might have ex-
pected, the frequency shifts are modest compared to the free spectral range
(here, 60 GHz) for thin membranes, but already for a thickness of 50 nm the
frequency shift compared to the bare cavity resonance is approximately a
third of the FSR. Furthermore, we see a deviation of the solutions found via
Eq. (4.129) for large thicknesses, which is consistent with the fact that said
approximation assumes small frequency shifts with respect to the bare cavity
resonances. However, for the membrane thicknesses relevant for this work,
the sinusoidal approximation of Eq. (4.129) provides sufficient accuracy.

Finally, returning to the field equations (4.123-4.127), we seek to calculate
the 2kz-modulation of three key parameters – namely the cavity linewidth,
optomechanical coupling rate, and finally the outcoupling efficiency. While
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Figure 4.12: Left: Sketch of a Fabry-Pérot cavity in a plano-concave config-
uration, with an embedded dielectric membrane (yellow). The optical path
length within the cavity, and hence the resonance frequency, depend on the
relative position of the dielectric slab to the optical standing wave (the opti-
cal “bubble”), which is described by the quantity 2kzm following Eq. (4.129).
Right: An illustration of how the relative membrane position changes with
respect to the standing wave for difference cavity resonances.

the cavity linewidth is not necessary in order to establish a mapping be-
tween our MIM configuration and a canonical optomechanical system, it
nevertheless provides valuable insight and reference point for experimental
endeavours.

Firstly, starting with a fixed cavity length and membrane position, we
find cavity resonances numerically by computing the transmitted cavity field
for varying wavenumbers. Upon identifying the cavity resonances, we vary
the wavenumber in the immediate vicinity of each resonance10, and fitting a
Lorentzian to extract the cavity linewidth.

While in a canonical optomechanical system the suspended mirror expe-
riences a radiation pressure force from one side only, this is certainly not the
case for our configuration. Due to the fact that our membrane divides the

10More specifically ±5 full-width half maxima (FWHM), where the FWHM is estimated
from the bare cavity FSR and mirror transmissivities, |t1|2 and |t1|2.
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Figure 4.13: Resonance frequency shift dependence on membrane thickness,
as a function of 2kzm. The solid line is computed following Eq. (4.128),
while the dashed line is based on the approximate expression for the cavity
frequency shift given by Eq. (4.129). We have assumed a refractive index of
n = 2, cavity length L = 2.5 mm, and zm = 500 µm.

cavity into two parts, the membrane experiences a radiation pressure force
from both sides. The strength of the interaction will depend on the amount
of light in each sub-cavity. Here, we use the fact that the radiation pressure
force in a canonical optomechanical system can be expressed in terms of the
rate of photon momentum transfer [147]

〈F̂rp〉 = −2~kn̄cavτ
−1
c , (4.130)

where τc is the round-trip time of the photons inside the cavity, and k is the
wavenumber. For our configuration, the differential radiation pressure force
can therefore be expressed as follows

〈F̂rp〉 = 2~k
(
n̄1

τ1

− n̄2

τ2

)
, (4.131)

where τi are the round-trip times for each sub-cavity, given by τ1 = 2(L −
zm)/c and τ2 = 2zm/c, while the n̄i are the mean photon occupancies of each
sub-cavity

n̄1 = (|A1|2 + |A2|2)τ1, n̄1 = (|A3|2 + |A4|2)τ2. (4.132)

Combined with the expression for the radiation pressure force in an end-
mirror configuration (cf. Eq. (4.5)), we arrive at the following expression for
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the single-photon optomechanical coupling rate

g0 = 2kxzpf
(|A1|2 + |A2|2)− (|A3|2 + |A4|2)

τ1(|A1|2 + |A2|2) + τ2(|A3|2 + |A4|2)
. (4.133)

Finally, we consider the overcoupling parameter (i.e. outcoupling effi-
ciency) for our optomechanical system. As one might anticipate, the amount
of overcoupling will be largest when the mean photon number is concentrated
in the sub-cavity facing the output mirror. We can estimate the outcoupling
efficiency by the ratio of light leaving through the output port (in this case
port 2), as compared to the total loss through the mirrors

ηc =
|t2|2|A3|2

|t2|2|A3|2 + |t1|2|A2|2
, (4.134)

where ti are the transmissivities of the mirrors.

With this, we now consider the dependence of all discussed parameters
as a function of modulo 2kzm, assuming experimentally relevant parameters.
In Fig. 4.14 an overview of the parameter dependencies is shown. Since the
calculated modulations are for a thin (h = 15 nm) membrane, the modulation
of the parameters is modest. The input mirror (see Fig. 4.10 for overview) is
here assumed to have a low transmissivity (|t1|2 = 50 ppm), while the output
mirror is set to have a transmissivity of |t2|2 = 230 ppm.

As can be seen, the cavity linewidth and the outcoupling efficiency are
at their largest at the same position in 2kz. This is due to the fact that
for this relative membrane position the sub-cavity facing the output mirror
has a larger photon population than elsewhere in 2kz. Importantly, this
coincides with the negative slope of the frequency shift, offering an exper-
imentally convening way to identify the cavity resonance with the largest
outcoupling efficiency. The cavity linewidth modulation demonstrates one of
the attractive features of our system – whether one is interested in a large(r)
detection efficiency and quadrature rotations, or better sideband resolution
(at the expense of a slightly reduced detection efficiency), a simple change
from one cavity resonance to another will do the job.

4.5.1 Modal overlap

Separate and apart from the transfer matrix model, yet important in as-
sessing the optomechanical coupling rate, is the question of spatial modal
overlap between the optical and the mechanical modes. Thus far we have
treated the intracavity field in more general terms, disregarding its spatial
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Figure 4.14: Modulation of membrane-in-the-middle cavity parameters, as a
function of mod(2kzm, 2π) (normalised to 2π). Here, the total cavity length
Lcav = L1 + L2 is assumed to be 2.62 mm, while zm = 0.5 mm. Further-
more, the following parameters are assumed in these calculations: h = 15 nm,
nSiN = 2, |t1|2 = 50 ppm, |t2|2 = 230 ppm, Ωm = 2π×1.475 MHz, meff = 2 ng
(the latter two are used in estimating the zero-point motion of the mem-
brane). The dashed line in the top-right figure indicates the bare cavity
linewidth, κ0 = 2π × (c/2Lcav)/(|t1|2 + |t2|2), where we have used the defini-
tions of finesse following Eq. (4.9).

form. However, the intracavity field has a transverse distribution, which can
be described by a Gaussian distribution [177]

I(x, y, zm) = P
2

πw2(zm)
e−2(x2+y2)/w2(zm)︸ ︷︷ ︸
φ(x,y)

, (4.135)

where w(zm) is the beam waist (radius) at the membrane position, P is the
total optical power through the plane, and φ(x, y) is the normalised intensity
profile. As one might anticipate, the finite extent of the optical beam results
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in a spatial averaging of the membrane displacement field. Hence, the average
displacement, as “seen” by the light, is smaller, as compared to a point-like
probe, focused on a position of the membrane with the largest transverse
displacement.

We can cast this intuition into a formula, following our definition of the
effective mass

meff = ρ

∫ (
|Q|
|Q|max

)2

dV, (4.136)

where |Q| is the displacement field of a particular vibration mode of the
membrane. In reality, our optical beam doesn’t sample a single point on
the membrane, indicated above with |Q|max, but a weighted average over
the area of the optical beam. Naturally, the weighting is described by the
Gaussian distribution of the optical intensity profile, which motivates the
following re-definition of the effective mass

m̃eff = ρ

∫
|Q|2(∫

A
|Q(x, y)|φ(x, y)dA

)2 dV, (4.137)

= ρ

∫
|Q|2

|Q|2max

(∫
A
|ψ(x, y)|φ(x, y)dA

)2 dV, (4.138)

=

(∫
A

|ψ(x, y)|φ(x, y)dA

)−2

ρ

∫ (
|Q|
|Q|max

)2

dV, (4.139)

=: η−2
ommeff , (4.140)

where ψ(x, y) = |Q|/|Q|max is the normalised displacement field of the mem-
brane mode, and ηom is defined as the overlap integral between the normalised
optical and mechanical modes. Since the effective mass appears in the def-
inition of the zero point motion, this result furthermore suggests that the
optomechanical coupling rate will have the following dependence on the spa-
tial overlap

g̃0 = ηomg0. (4.141)

As an example, we consider the magnitude of this effect for our membrane-
in-the-middle system. First, a few general points regarding the optical part
of this story. For a plano-concave cavity configuration, which this work
is based on, the beam waist (on the flat mirror) is given by the following
expression [177]

w0 =

√
λLcav

π

(
R

Lcav

− 1

)1/4

, (4.142)
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Frequency (MHz) ηom (%) meff (ng) m̃eff (ng)
1.668 81.96 2.00 2.98
1.699 1.90× 10−3 2.78 7.67× 109

1.787 1.07× 10−3 2.61 2.26× 1010

1.787 4.31× 10−3 1.97 1.06× 109

1.798 1.21× 10−4 2.50 1.72× 1012

Table 4.1: Modal overlaps for the five localised modes of a third generation
soft clamped membrane resonator, assuming a Gaussian beam centred on
the defect. The parameters used in this calculation are: w0 ≈ 45.644 µm,
λ = 852 nm, h = 15 nm, a =

√
3 × 90.125 µm, σ = 1.17 GPa.

where R is the radius of curvature of the concave mirror, while Lcav us the
total cavity length. In our case, the radius of curvature of the concave mir-
ror is 25 mm, and the cavity length is approximately 2.64 mm in length,
amounting to a beam waist of w0 ≈ 45.6 µm at a wavelength of 852 nm. The
position dependence of the beam waist is described in terms of the Rayleigh
length (which is related to the divergence angle of the beam) as follows

w(z) = w0

√
1 + (z/zR)2 , (4.143)

where the Rayleigh length is expressed in terms of the beam waist and the
last wavelength, zR = πw2

0/λ. For our cavity parameters, the Rayleigh length
is approximately 7.5 mm. With the membrane located 500 µm from the flat
mirror, we find that the beam waist at the membrane position is only ∼ 0.2%
larger than on the flat mirror.

We are now in a position to calculate the mode overlap for a soft clamped
resonator, assuming a beam waist of w0 ≈ 45.6 µm. In Table 4.1 the re-
sults for the five localised vibrational modes are shown. As anticipated,
the fundamental-like mode has the largest overlap with the Gaussian beam
(which is placed at the centre of the defect), while the other vibrational
modes have a negligible overlap, since their respective mode shapes has a
nodal line at the centre. According to Eq. (4.141) an ∼ 82% overlap would
lead to a ∼ 20% decrease in the single photon coupling rate. Comparing to
Fig. 4.14 this means that the largest optomechanical coupling rate would be
reduced from g0 ∼ 2π × 80 Hz to g̃0 ∼ 2π × 65 Hz.

Limits on quantum cooperativity

With the above insight, we now look back at the discussion regarding static
bistability, in particular Eq. (4.48). The question we wish to answer is the
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Frequency (kHz) ηom (%) meff (ng) m̃eff (ng)
104.75 99.92 82.48 82.62
165.07 1.56× 10−4 83.50 3.45× 1013

165.77 3.14× 10−3 83.41 8.45× 1010

209.39 6.41× 10−3 83.68 2.04× 1010

233.30 99.61 68.63 69.17

Table 4.2: Modal overlaps for the five lowest vibrational modes of a third
generation soft clamped membrane, assuming a Gaussian beam centred on
the defect. The parameters used in this calculation are: w0 ≈ 45.644 µm,
λ = 852 nm, h = 15 nm, a =

√
3 × 90.125 µm, σ = 1.17 GPa.

following – what are the “limitations” on the highest attainable quantum
cooperativity for our system11? Similar to the discussion above, we now
compute the overlap integrals for the low-frequency (drum) modes of the
entire membrane structure. For simplicity, we only consider the lowest five
vibrational modes. In Table 4.2 the results of this simulation are presented.
Recalling that the maximum quantum cooperativity can be estimated by the
ratio of the spring constants (cf. Eq. (4.48))

Conset
q =

2√
3

k̃eff

keff

~
kBT

Q× Ωm, (4.144)

we can now estimate the ratio of the spring constants. Following the esti-
mates in Table 4.2, we predominantly care about the effective spring con-
stant of the first drum mode of the entire membrane structure. We find
that k̃eff = m̃effΩ̃2

m ≈ 35.79 N/m, while the effective spring constant of the
fundamental-like localised mode is keff ≈ 436.17 N/m. This clearly suggests
that the lowest order vibrational mode of our mechanical resonator ultimately
sets the limit on how much light can be injected into the system, before static
bistability sets in. Assuming a mechanical quality factor of Q = 109, the
highest attainable quantum cooperativity at 10 K is Conset

q ≈ 759. This is an
encouraging result, which suggests that a MIM system based on soft clamped
membranes can be operated deep within the backaction dominated regime,
despite the “floppy” low-frequency modes of the membrane structure.

With this final piece of the puzzle in place, we are now ready to consider
the experimental realisation of such a system.

11In this paragraph, “maximum quantum cooperativity” rather indicates the quantum
cooperativity at the onset of static bistability.
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4.6 Experimental realisation

At a first glance, the membrane-in-the-middle configuration is rather straight-
forward and merely requires “sandwiching” two high-reflective mirrors, along-
side a pristine mechanical resonator. However, as it turns out, the devil is
in the detail, and seemingly minor differences in cavity assembly can have
a profound effect on the stability and reproducibility of the system. In the
following, we discuss the particularities of our cavity realisation and the un-
derlying reasons for these choices.

We then proceed to describing how we perform basic characterisation of
our optomechanical system, which involves identifying the most favourable
position in 2kzm and assessing key system parameters at said 2kzm position
(cavity linewidth, detuning, light-enhanced coupling rate).

4.6.1 Optomechanical cavity

Within the sub-field in optomechanics that deals with membrane-in-the-
middle systems, one can find a handful of modalities as it pertains to cavity
assembly. In a majority of cases, the membrane resonator is mounted on a
motorised stage, allowing for a complete control of the membrane position,
as well as its tilt. Such an approach has was initially adapted by the group
of Jack Harris [176, 178] and has the advantage of large tuneability. How-
ever, since the vast majority of quantum optomechanical systems operate in
cryogenic settings, having a bulky motorised stage inside a cryostat can be
problematic, both from the standpoint of thermalisation, as well as vibration
stability.

In order to reduce the amount of material that needs to be thermalised
within the cryostat, several groups have adapted the option of gluing the
membrane resonator chip to a ring piezo, which is subsequently placed be-
tween the cavity mirrors (see for instance [179]). While this reduces the
amount of material within the cryostat that requires cooling, it re-surfaces
the issues of membrane alignment and, importantly, tilt. As reported by
Jack Sankey and colleagues [180], tilting the membrane within the cavity
has the effect of shifting higher-order Hermite-Gaussian modes of the cavity
in wavelength, which can lead to mode crossings between the TEM00 mode
of the cavity and the higher order optical modes. These avoided crossings
can lead to additional optical losses of the TEM00 mode, which, as we saw in
the section on ponderomotive squeezing, washes out hard-earned quantum
correlations. This issue can be addressed to some extent by using low-CTE
materials (e.g. invar) in constructing the cavity assembly. With that, one can
in principle align away membrane tilt at room temperature, before cooling
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it down, relying on the low expansion coefficient of the underlying structure
to preserve said alignment. This, unfortunately, re-surfaces the previous
problem of thermalisation, since materials with a low coefficient of thermal
expansion tend to have a poor thermal conductivity.

This brings us to the experimental realisation of a MIM cavity adapted
by the groups of Eugene S. Polzik and Albert Schliesser, the idea of which
originates from Dalziel Wilson, a former postdoc in Eugene Polzik’s lab. Our
cavity assembly is designed to address both of the above mentioned issues.
By mechanically clamping the flat (output) mirror to the membrane chip,
with a single silicon spacer between, we address the issue of parallelity and
its thermal stability. Here, we rely on the fact that the mirror surface, as
well as the silicon substrates, are flat, and misalignment only originates from
specs of dust or other contaminants trapped between these surfaces. This
sandwich of spacers, membrane chip and mirror is mechanically clamped
inside a copper sample holder. This choice of material provides us with a
strong thermal link between the cold finger of the cryostat and the membrane
resonator. A cross-sectional view of the sampleholder is shown in Fig. 4.15.
The continued parallelity between the flat mirror and the silicon substrate can
be achieved by a spring-like object underneath the flat mirror (here, shown
as an o-ring). This is particularly important for cryogenic cycling, since the
surrounding copper does deform as we cool down from room temperature to
4.2 K. For further details regarding our “monolithic” cavity assembly, see
the PhD thesis of William H. P. Nielsen [108].

The mirrors used in our cavity are super-polished mirrors from Advanced
Thin Films (ATF), where the curved mirror has a radius of curvature of
25 mm. As for the flat mirror, our starting point was a 1 mm thick 4”
glass wafer with the high reflective coating on one side, specified to have
transmission of 250 ± 50 ppm, and an anti-reflection (AR) coating on the
opposite side. Since assembling a cavity with a 100 mm large glass wafer
is impractical, to say the least, we first need to mill out smaller mirrors
form the wafer. To avoid damaging the mirror coating, we spin coated a
thick layer of photoresist on both sides of the wafer, and use crystalbond to
attach the mirror wafer to a carrier glass wafer. The latter is subsequently
glued to a metal carrier, compatible with the milling machine, where circular
disks are carved out of the mirror wafer (see Fig. 4.16). Once the individual
mirrors have been removed from the carrier wafer, we follow a combination of
cleaning procedures described in Chapter 3. First, the mirrors are rinsed in
deionised water, to remove larger contaminants. We proceed by cleaning the
mirrors in NMP, followed by a rinse in isopropanol and deionised water. Since
the capping (top) layer of the mirror coating is SiO2 (specified by ATF), we
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Figure 4.15: Cross sectional view of the “monolithic” cavity assembly. The
flat (output) mirror is pressed against a silicon spacer, which, in turn, is
pressed against the membrane chip. The sandwich of spacers is rigidly
clamped with the surrounding copper sample holder. The copper sample
holder is subsequently mounted to the cryostat cold finger.

clean the mirrors in a piranha solution, to remove all photoresist and milling
related residues.

Figure 4.16: Flat high reflective mirrors, carved out from a 4” glass wafer with
a mirror coating. On the left is shown the mirror immediately after milling,
and on the right is the mirror following a cleaning procedure involving NMP
and piranha solution. The mirror are ∼ 8 mm in diameter and 1 mm in
thickness.

After cleaning the mirrors, we perform a transmission measurements for
different wavelengths in order to verify that the cleaning procedure has not
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damaged the coating quality. Seeing that the specified transmissivity is
250 ± 50 ppm, we perform said measurement using a powermeter12. The
light source used for all our measurements is a Ti-Sapphire laser13, which
provides wide wavelength tuneability (from 740 nm to 920 nm), as well as
low phase- and amplitude noise, which we will touch upon towards the end
of this chapter. For different laser wavelengths we measure the mirror trans-
missivity, immediately followed by a reference measurement where the flat
mirror is removed. The result of this measurement is shown in Fig. 4.17,
alongside the transmissivities provided by ATF, indicative of the quality of
this coating run. Our measurement suggests that the mirror transmission at
852 nm wavelength is 252 ± 5 ppm, whereas the datasheet suggests a value
of ∼ 241 ppm. While our data deviates appreciably from the datasheet for
wavelengths between 815 nm and 850 nm, it remains within the specified
tolerance level of ±50 ppm. We thus conclude that our milling and cleaning
procedure introduces (little to) no additional optical losses.
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Figure 4.17: Measured power transmissivity of a flat ATF mirror after clean-
ing with NMP and piranha. The red (diamond) point corresponds to the
operational wavelength of our experiment (852 nm), with the dashed line as
a guide to the eye. The solid line is extracted from the datasheet provided
by ATF.

Once the membrane chip and the spacers have been stacked on top of
the flat mirror and clamped down, we can verify that the membrane is in-

12Thorlabs PM100A.
13MSquared SolsTiS SA PSX-R.
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deed parallel to the mirror by imaging the membrane, upon illuminating the
etalon formed by the membrane and the flat mirror with a wide laser beam.
Averaging over several wavelengths, we indeed find negligible tilt in our as-
sembly. Based on the interference pattern shown in Fig. 4.18b, indicating
a single interference fringe over a distance of ∼ 2 mm, we estimate a tilt of
∼ 0.5 mrad between the membrane surface and the flat mirror.

Finally, we position the curved mirror such that the beam spot of the
TEM00 mode is centred on the defect. Once the mirror has been clamped
down, the cavity alignment can be maintained over a prolonged period of
time. In Fig. 4.18c an image of the membrane is shown, alongside the
TEM00 mode.

500 µm

500 µm

a

b

c

Figure 4.18: a) Direct image of the membrane stacked on top of the flat mirror
(without the curved mirror in place). b) Interference pattern as a result of tilt
between the flat mirror and the membrane along each diagonal of the image.
The center brightness is the anti-node of fringes along both diagonals. The
image is an average of 21 individual images acquired over a wavelength span
of 1 nm. c) Image of the membrane after completed assembly, with the
TEM00 seen in the centre. Dashed circles have been added as a guide to the
eye.
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Clipping losses

As Fig. 4.18c suggests (despite the saturation), our optical beam spot is
in fact appreciably large compared to the overall defect size. We therefore
wish to estimate the optical losses associated with the overlap of our Gaussian
mode with the phononic crystal holes. Following Eq. (4.135) we can estimate
the transmitted power through an aperture of area A, oriented in the xy plane
at the membrane position z = zm, as

Pout =

∫
A

I(x, y, zm)dA. (4.145)

Now, we treat the phononic crystal holes as apertures (i.e. any fraction of
light overlapping with a hole is forever lost) and calculate the single pass
optical loss, as well as the associated finesse (see Eq. (4.9)), assuming the
losses due to clipping are the only losses in the cavity. While the assuming
that that light is permanently lost when it overlaps with a hole results in
a conservative estimate, it can nevertheless give us a rough sense of the
potential limitations for a given assembly. Fig. 4.19 shows the result of such
a simulation. Evidently, for our combination of device and beam spot size we
can anticipate . 30 ppm single-pass losses in our cavity due to clipping of the
optical beam. It goes without saying that this is not a desirable scenario for a
quantum optician, who desperately counts every iota of optical loss and tries
to eliminate it. However, the cavity parameters and its performance as they
are presented in this work should rather be perceived as a “status update”
towards a bigger goal (which we will return to later), rather than the end
destination. For now it suffices to say that the current choice of membrane
dimensions have largely been dictated by a dense spectrum of mirror modes.

4.6.2 Measurement of optomechanically induced trans-
parency

As previously mentioned, one of the more convenient diagnostic tools within
our toolkit is that of optomechanically induced transparency, which we use in
measuring cavity linewidth κ, cavity detuning ∆̄ and light enhanced coupling
rate g. From the theoretical treatment of OMIT in Section 4.4.2, recall
that the cavity response to an input field with a weak phase modulation
consists of two components – the overall cavity response, described by the
function C(Ω) (cf. Eq. (4.93)), and a narrow-band feature associated with
mechanical resonances described by the function M(Ω) (cf. Eq. (4.94)).
The cavity response does, however, depend on the incoupling cavity rate,
κR. However, as we discussed in Section 4.5, the outcoupling efficiency, and
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Figure 4.19: Upper bound single pass optical losses (and resultant maximum
cavity finesse) for a cavity mode of varying beam waist passing through a
membrane aperture.

therefore also the incoupling efficiency, of our cavity depends on the 2kzm
position of the particular optical resonance. Fortunately, we can render this
lack of information redundant by a simple normalisation. Seeing that the
overall response of the cavity is largely dominated by the envelope function
C(Ω) (see Fig. 4.8 as a reference), we normalise the response, before fitting
said function to the cavity response with two unknowns – the cavity linewidth
and laser detuning.

In practice, the measurement is performed as follows. Light from our
Ti:Sapphire laser is passed through a fiber EOM (phase modulator), before
it is coupled into the optomechanical cavity. The transmitted light is col-
lected at the cavity output using an avalanche photodetector14, while a small
percentage (� 1%) of the light is used for imaging of the cavity modes,
helping us in identifying the TEM00 resonances. The photodetector signal
is split between our acquisition system (i.e. oscilloscope, data acquisition
(DAQ) card and/or network analyser) and a high-speed proportional inte-
gral controller15, the output of which is fed to the piezo of our laser resonator.
All results presented in this chapter are based on a wide (with respect to the
mechanical frequency) cavity resonances, and hence a simple transmission

14Thorlabs APD430A/M.
15New Focus LB1005-S.
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lock is used in stabilising the laser to our cavity16. Once the cavity is locked,
part of the photodetector signal is sent to a network analyser, the output of
which is fed into the RF input of the EOM. We then apply a weak (−20 dBm
or lower) RF tone to the EOM, thus generating sidebands at ωL ± ωp. The
RF tone is swept, while demodulating the signal from the photodetector. Fi-
nally, the acquired cavity response is normalised to the integrated response
and fitted to the envelope function, C(Ω).

The outcome of such a measurement is shown in Fig. 4.20a for three
different laser detunings. While the envelope function seemingly fits all three
curves equally well, a closer look at the linewidths extracted from our fits
in Fig. 4.20b strongly suggests that for detunings larger than the cavity
linewidth this approach is unreliable. For detunings smaller than −2.5 MHz
the relative error in the estimated linewidths is ∼ 1.6%.
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Figure 4.20: (a) Cavity detuning and linewidth from broadband driven cavity
response for three different detunings. (b) Extracted cavity linewidth versus
the fitted detuning. The overall systematic tendency is suspected to be due
to the non-flat frequency response of the detector.

Once the cavity detuning and linewidth have been determined, the same
measurement can be repeated in the vicinity of the mechanical mode. Having
fixed two of the parameters associated with an OMIT feature, namely κ and
∆̄, the narrow-band measurement can be modelled by Eq. (4.94), yielding the
light-enhanced coupling rate g. This will be of importance for the following
section.

16Typical bandwidth of our feedback loop is . 10 kHz
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4.6.3 Modulation in 2kzm and measurement of g0

The measurements presented above were taken for a cavity resonance, dis-
regarding the relative position of the membrane with respect to the optical
standing wave. However, since our system parameters depend strongly on
the position in 2kzm, it is important to identify the most favourable optical
resonance. Here, we rely on the theory and intuition described in Section
4.5. Since the membrane associated with this measurement is on the order of
15 nm thin17, we can reliably use the approximate solution for the resonance
frequency shift (see Eq. (4.129)) as our starting point. Let us first rewrite
said expression, in order to motivate our measurement procedure. Multiply-
ing both sides of Eq. (4.129) with c/2π and using our definition of FSR (cf.
Eq. (4.6)) yields

fres = f0,n + |rm|
FSR

π
sin (2k0,nzm) . (4.146)

Using the fact that the (bare) cavity resonances are to evenly spaced with
an FSR, implying that f0,n+m = f0,n + m × FSR, we make the substitution

f0,n → f̃0,n + mresFSR, as well as k0,n → (c/2π) ×
(
f̃0,n +mresFSR

)
, where

mres is an integer number, signifying the m’th resonance from an arbitrary
reference point, f̃0,n. Eq. (4.146) can therefore be expressed as follows

fres = f̃0,n +mresFSR + |rm|
FSR

π
sin (2πz̃mmres + φ0) , (4.147)

where z̃m = zm/Lcav, and φ0 is a constant phase associated with our starting
resonance point. For all intents and purposes this phase can be ignored in
the process of folding.

The above expression suggests a pathway for measuring the relative posi-
tion of our membrane within the cavity. Record the wavelength of successive
cavity resonances, followed by a least square fit of Eq. (4.147) to said data,
provides us with estimates of z̃m and FSR. The combination of these quanti-
ties gives us an accurate estimate of the membrane position within the cavity.
Folding the 2kzm values back into 2π, as described in Section 4.5, provides
us with a convenient representation of the relative membrane positions for
each recorded wavelength. The result of such a measurement is shown in Fig.
4.21, alongside the underlying fit.

Equation (4.147) furthermore provides us with an estimate of the mem-
brane reflectivity. From the fit in Fig. 4.21 we extract an amplitude reflec-
tivity of |rm| = (13.3 ± 0.5) %, which according to Eq. (4.122) corresponds
to a membrane thickness of h = (12.0± 0.4) nm.

17This is estimated from etch rate of silicon nitride and initial film thickness.
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Figure 4.21: Cavity resonance wavelength measurements, alongside a sinu-
soidal fit following Eq. (4.147), folded back into 2π. From the fit we find
Lcav = 2.64 mm and z̃m/Lcav = 0.19.

We now perform OMIT measurements for all cavity resonances listed in
Fig. 4.21. At each 2kzm position we perform to consecutive OMIT mea-
surements – one of the broad cavity response, immediately followed by a
narrow-band measurement in the vicinity of the membrane mode of inter-
est (here, the fundamental-like localised mode). As previously mention, the
broadband response provides us with the κ and ∆̄. With these parameters
fixed, we can now extract the light-enhanced coupling rate through a fit of the
narrowband OMIT feature. In Fig. 4.22 the result of one such measurement
is shown.

Importantly, at each 2kzm position we also record the DC-voltage at the
output of our detector and hence the optical power at the output of our
optomechanical cavity. At each position we optimize the input cavity mode-
matching and fix the optical power. The transmission, in conjunction with
the cavity linewidth and the outcoupling efficiency, allows us to estimate
the amount of intracavity power and hence the single photon coupling rate.
However, in order to do so, we need to estimate the outcoupling efficiency
at the respective 2kzm positions. With the above estimate of the membrane
thickness, as well as the measured transmissivity of our input18 and output
mirror (see Fig. 4.17), we return to the transfer matrix model in order to

18The transmissivity of the input mirror has been estimated to be |tin|2 = 20 ppm based
on finesse measurements of an empty cavity consisting of two high-reflective mirrors.
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Figure 4.22: OMIT measurements at the 2kzm position corresponding to
851.616 nm. The broadband response (left) yields ∆̄ = 2π × −1.935 MHz
and κ = 2π × 2.977 MHz. From the narrowband response (right) we extract
Ωm = 2π × 1.494 MHz and g = 2π × 26.02 kHz.

calculate the outcoupling efficiencies. Note that we do not assume additional
optical losses due to clipping (cf. Section 4.6.1). Finally, to account for
an overall phase-shift in 2kzm, we perform a least-square minimisation us-
ing the simulated and measured resonance frequency shifts, as well as cavity
linewidths. With this in place, we can extract the relevant outcoupling effi-
ciencies from our simulations. Using these values, combined with our OMIT
measurements, we can estimate the mean intracavity photon number and
thus g0. Finally, we apply a correction factor to our simulated single photon
coupling rates following our discussion on modal overlaps (cf. Table 4.1).
The result of this analysis in shown in Fig. 4.23. The simulated resonance
frequency shift and cavity linewidth show good agreement with measured
values. The agreement between the measured and simulated linewidths is
particularly notable, since it suggests that our estimate regarding clipping
losses in Section 4.6.1 was somewhat pessimistic. With the exception of a
single resonance, the agreement between our measurements and simulation
is better than 10% across the board.

As for the outlier in terms of the cavity linewidth, we consider the optical
modeshapes of two cavity resonances – the outlier, and its neighbour with
comparable optomechanical coupling (see Fig. 4.24). The lossy optical mode
shows a larger amount of speckles, which could be indicative of scattering into
higher order optical modes. Since these modes are typically larger in terms
of spatial extent, they are more likely to overlap with a larger fraction of
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Figure 4.23: Measured and simulated values of resonance frequency shift,
cavity linewidth, outcoupling efficiency and single photon coupling rate. Here
we assume h = 12 nm, |tout|2 = 252 ppm, |tin|2 = 20 ppm, Lcav = 2.64 mm
and zm = 0.50 mm, where the cavity length and membrane position are
extracted from the fit shown in Fig. 4.21. The simulated curves have been
shifted along the x-axis following a least square minimisation of either the
resonance frequency shifts (solid) or cavity linewidths (dashed).

the perforated membrane region, as compared to the TEM00 mode. Further
measurement and analysis would be required to test this hypothesis.

The analysis presented here suggests that we can indeed trust the system
parameters estimated through OMIT. This is consistent with previous studies
conducted in our research groups [14,17].
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Figure 4.24: Images of optical mode shapes at the cavity output. Both cavity
resonances represent a high-coupling point in 2kzm (cf. Fig. 4.23), with the
main difference being in a ∼ 300 kHz additional optical loss associated with
the mode on the right, which could be associated with the more pronounced
patterns of speckles.

4.6.4 Role of low-frequency membrane modes

As the reader might already suspect, for the most part we do not bother to
think of the low-frequency vibrational modes of the entire membrane, and
rather focus on the fundamental-like localised mode. However, there are a
few instances where this is important. An example of this was discussed
in Section 4.5.1, where we concluded that the largest attainable quantum
cooperativity in our system is in fact limited by the fundamental mode of
the perforated membrane structure. Here, we touch upon two additional
instances where paying attention to these modes can be of importance.

First, we consider the output cavity fluctuations for varying laser detun-
ings. As described above, light is injected into the cavity from the high-
reflective port (i.e. through the curved mirror) and detected in transmission
using an avalanche photodetector. Part of the output signal is sent to a DAQ
card19, whereafter the power spectral density (i.e. the periodogram) is com-
puted. Repeating this measurement for detunings ranging from −4.1 MHz
to −0.48 MHz provides with a broadband map of spectral noise evolution.
In Fig. 4.25 we show the result of such a measurement, where we highlight
the bandgap region, as well as the frequency region in the vicinity of the
fundamental mode of the entire membrane structure. We notice that for
∆̄ < −κ/2 the bandgap is populated by a forrest of peaks. However, past
a certain detuning, these peaks seem to disappear. Interestingly, this coin-
cides with a similar trend at lower frequencies. Upon a closer inspection we
find that this is correlated with a reduction in the amplitudes of the low fre-
quency modes (see Fig. 4.26). The abrupt change in the spectral composition

19Spectrum M2i.4931-exp.
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within the bandgap suggests that the spurious peaks are a result of nonlinear
mixing processes (optical or mechanical), involving the low frequency vibra-
tional modes, and can be mitigated by reducing their amplitudes through
backaction cooling.

Figure 4.25: Normalised power spectral densities of the output cavity fluctu-
ations, for varying cavity detunings. On the left is shown the “spectrogram”
near the lowest order modes of the entire membrane structure (where the
fundamental mode is ∼ 100 kHz), while the figure on the rights show the
frequency regions near the phononic bandgap. As the detuning is decreased,
we see a distinct reduction of spurious peaks inside the phononic bandgap.
This coincides with a similar reduction in the number of noise peaks in the
lower frequency band (left).

A second consideration is concerned with the optical spring effect of the
lowest order membrane mode. Given its frequency, the mode is evidently
in the unresolved sideband regime, Ωm � κ, where Ωm is the resonance
frequency of the fundamental mode. A Taylor expansion of Eq. (4.63) in
Ωm/κ yields

δΩm ≈ g2 2∆̄

∆̄2 + (κ/2)2
. (4.148)

Combining this result with Eq. (4.46) for the maximum intracavity photon
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Figure 4.26: Normalised displacement spectra in the vicinity of the funda-
mental (left) and the third harmonic (right), as a function of cavity detuning.
For detunings above ∼ κ/2 we see a clear reduction in the peak amplitude
of the modes.

number, evaluated at the optimal detuning following Eq. (4.68), we find that

δΩmax
m ≈ −Ωm/2. (4.149)

Hence we can anticipate an appreciate optical spring effect for measurements
performed with high optical powers. Seeing that our starting point is typi-
cally a fundamental resonance frequency of ∼ 100 kHz or lower, the optical
spring effect can shift the mode down to ∼ 50 kHz. Combined with the fact
that the mode is broadened as a result of dynamical backaction, one must
choose a feedback loop bandwidth for laser stabilisation which is sufficiently
distant from the mode.

4.6.5 Cryogenic operation

With helium shortage being one of the hot topics these days within scien-
tific circles, operating our optomechanical experiments in room temperature
settings would be the preferred option. Unfortunately, the thermal noise of
our cavity mirrors is too severe at room temperature to allow for quantum
correlations to emerge, let alone survive. This is simply because the ther-
mal fluctuations of the mirrors are written onto the phase of the intracavity
light field, which, upon conversion to amplitude fluctuations, drives the mem-
brane mode of interest. Hence, our experiments require cryogenic cooling.
To this end we use a liquid helium flow cryostat20 with a free-space optical

20Janis ST-100.
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access. The low vibration levels of flow cryostats is the primary reason for
this choice. To further reduce vibrations in our system, we maintain the he-
lium flow by ensuring that the helium dewar is pressurised. In this regime we
have consistently observed thermalisation of our membrane devices around
∼ 10 K [14,17,18,18,108,175,181]. Importantly, this was observed for mem-
brane thicknesses between ∼ 15 nm and ∼ 60 nm. It is yet unclear why
the thermalisation temperature is not closer to the cryostat base tempera-
ture of ∼ 4.2 K, but seeing that our assembly consists of two relatively large
pieces of glass with poor thermal conductivity at cryogenic temperatures, it
is conceivable that this is the culprit of the problem.

As for the specifics of our system, in particular when dealing with ex-
tremely thin samples (such as the one discussed in the previous section), a
gentle cooldown rate of ∼ 10 K/min or lower is chosen, in order to avoid ther-
mal shocks, which in most extreme cases can lead to rupture of the perforated
membranes. Once the cavity resonances stop drifting over time, indicative
of completed thermalisation, we maintain a moderate helium flow, in order
to avoid addition vibrations [108], and begin cryogenic measurements.

4.6.6 Cavity mirror noise

Reducing the temperature of our cavity inevitably reduces the thermal noise
of our mirrors. But while the overall spectral weight is reduced, the individ-
ual vibrational modes of the mirrors can nevertheless be problematic. Similar
to our discussion leading to the conclusion that a phononic crystal shield is
important from the standpoint of spectral clarity, the same line of though
applies here. Our experiments typically require Cq � 1, which in practice in-
volves broadening of the membrane mode. Therefore a clear spectral window
of & 50 kHz is needed in our mirror vibrational spectrum.

Unfortunately, the dissimilar dimensions of our cavity mirrors results in a
denser than usual mode spectrum. To illustrate this, we consider a cryogenic
measurement of the same cavity previously described, but with the membrane
removed, in order to see the cavity fluctuations only. Fig. 4.27 shows a
calibrated spectrum of these fluctuations. Due to the monolithic nature of our
assembly, we anticipate some degree of hybridisation between the mirrors and
the silicon spacers (cf. Fig. 4.15), which can explain the observed bunching
of vibrational modes.

Let us first get a sense for how large these fluctuations are, by consid-
ering their effect on the membrane mode of interest and how its minimum
occupancy depends on these mirror noise induced phase fluctuations. For a
given amount of intracavity phase noise the final occupancy of the resonator
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(in the resolved sideband regime) can be expressed as follows [147,182]

nf ≈ 2π

√
n̄thΓm

g2
0

S̄ff (Ωm) , (4.150)

where S̄ff (Ωm) is the symmetrised power spectral density of frequency fluc-
tuations evaluated at the resonance frequency of the membrane mode. Since
the frequency fluctuations originate from the thermal motion of the mirrors,
let us consider the scaling of the above expression with cavity. The spec-
tral density scales quadratically with the optomechanical coupling rate of
the mirrors [183], which means that S̄ff (Ωm) ∝ g2

0,mirror ∝ L−2
cav. Of course,

the optomechanical coupling rate of the membrane mode exhibits the same
scaling with the cavity length, which suggests that the relative contribution
of the mirror noise is unchanged upon cavity length change21 Seeing that
an increase in the cavity length results in a smaller free spectral range and
hence cavity linewidth, bringing us to the resolved sideband regime, one
could argue that using it for our cavity parameters is fair for a rough esti-
mate. Now, assuming n̄th = 105, Γm = 2π× 1 mHz and g0 = 2π× 10 Hz, we
find that 2π

√
n̄thΓm/g2

0 = 0.5, suggesting that ground state cooling requires
S̄ff (Ωm)� 4 Hz2/Hz. Looking at the scale of cavity fluctuations in Fig. 4.27
we therefore conclude that the valleys between the mirror modes is where our
membrane mode should be placed.

At a first glance, the frequency window between ∼ 1.05 MHz and ∼
1.15 MHz lends itself as a promising candidate. However, as we have previ-
ously reported [14, 17] (and will touch upon later in this chapter), our laser
source has a non-negligible amount of classical noise at these frequencies,
which would result in heating of the membrane mode of interest. With the
current combination of cavity mirrors our choices are therefore quite lim-
ited. For now, we begrudgingly settle for the frequency window between
∼ 1.45 MHz and ∼ 1.5 MHz, but will return to the issue of mirror noise later
in this chapter, offering a robust solution to the problem.

An example of an unfortunate frequency positioning of the membrane
mode is shown in Fig. 4.28. Here, cryogenic performance of a third gen-
eration soft clamped membrane resonator is shown. While the mechanical
quality factor of the two radial modes are perfectly suited for optomechanical
experiments, a quick look at the vibrational mode spectrum reveals the mode
perfectly overlaps with a forrest of mirror modes, rendering the membrane
largely unusable for quantum optomechanical measurements. However, we

21This is strictly speaking not completely true, since the cavity acts as a low-pass fil-
ter. This means that in the resolved sideband regime the phase fluctuations are further
suppressed due to the low-pass characteristic of the cavity.
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Figure 4.27: Vibrational spectrum of an empty cavity, calibrated using a
known modulation depth of an electro-optic modulator (calibration tone at
1.54 MHz is highlighted in red). The highlighted portion of the spectrum
represents our target region for the resonance frequency of the fundamental-
like membrane mode.

note that this is in fact the highest mechanical quality factor measured to
date with soft clamped membrane resonators. Furthermore, the measured
quality factor agrees well with the predicted ∼ 50% improvement over second
generation devices (see previous chapter), for which we have measured me-
chanical quality factors around 109 at cryogenic temperatures [17]. A device
of comparable performance is characterised later in this chapter.

4.7 Ponderomotive squeezing

We now turn our attention to measurements of ponderomotive squeezing
with soft clamped membranes. The main objective here is to compare the
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Figure 4.28: Cryogenic characterisation of a third generation soft clamped
resonator. a) Ringdown measurements of the two radial localised modes
are shown (left), alongside the respective mechanical frequencies and quality
factors. b) Vibrational spectrum of an empty cavity in the vicinity of the
first radial mode (cf. Fig. 4.27). c) Measured amplitude fluctuations at the
output of the optomechanical cavity. The spectrum shows the first radial
mode at ∼ 1.28 MHz, with a noise peak on its left wing.

performances of a second and a third generation membrane resonators, while
operating in a high quantum cooperativity regime.

Our measurements are performed in cavity transmission using a home-
built high-efficiency photodetector 22 based on Hamamatsu S5971 PIN pho-
todiodes. Less than a percent of the transmitted light is picked off and
directed to an APD, which is used for OMIT measurements. For each mea-
sured spectrum we perform an OMIT measurement immediately after, in
order to determine κ, ∆̄ and g. Alongside a ringdown measurement, yielding
Γm, all but two of the parameters in our squeezing model (cf. Eq. (4.116))
are fixed – the detection efficiency and the bath occupancy. The former we
can typically estimate based on the outcoupling efficiency of our optome-
chanical cavity, optical losses between the cavity and the detector, as well as
the detection efficiency of the detector.

It should be noted that our optomechanical system is placed separately

22We acknowledge J. Appel for help with the photodetector design.
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from the Michelson interferometer used in the previous chapter for all char-
acterisation measurements. Instead, we change the wavelength of our Ti-
Sapphire laser by approximately 100 nm (typically down to ∼ 740 nm),
where the cavity mirror coating are no longer high reflective23. Here, we
have an effective interferometer, albeit with a poor sensitivity. This typically
requires excitation of the mechanical mode to large amplitudes, in order to
initially identify the mode of interest in a ringdown measurement. At these
amplitudes the amplitude decay is initially nonlinear, due to non-negligible
elongation losses within the resonator. To accurate determine the mechanical
quality factor, we cross check the fit results of a simple exponential decay
curve and a modified decay curve for the amplitude, which captures the initial
nonlinear decay [184]

A(t) =
A0e−Γmt/2√

1 + γNL

2Γm
A2

0 (1− e−Γmt)
, (4.151)

where A0 is the initial amplitude and γNL is the nonlinear decay rate. The
result of such a decay curve is shown in Fig. 4.29.

4.7.1 Third generation device

We now consider the spectral density of detected amplitude fluctuations, in
units of shot noise. For each recorded cavity spectrum we note the DC voltage
at the output of our photodetector, and subsequently use a shot noise limited
light source (e.g. a thermal light source) to acquire a reference spectrum with
the same (or comparable) DC voltage. These shot noise spectra are rescaled
with the voltage ratio24, to account for discrepancies between the optical
powers used.

From the transfer matrix model we estimate an outcoupling efficiency
of approximately 94% (see Fig. 4.23). Combined with ∼ 95% collection
efficiency of light (i.e. optical losses between the cavity and the detector),
as well as a an estimated home-built detector detection efficiency of ∼ 85%,
we anticipate an overall efficiency of ∼ 76%. This leaves us with the thermal
occupancy as the only free parameters for our model given by Eq. (4.116).
However, as can be seen in Fig. 4.30, the single free parameter fit (red dashed

23We ensure that there is no appreciable residual backaction damping the mechanical
mode by comparing ringdown measurements performed on both sides of the broad “cavity”
resonance.

24More specifically, we subtract the electronic noise contribution from the cavity and
shot noise spectra, before rescaling with the ratio of DC voltages.
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Figure 4.29: Cryogenic ringdown of a third generation soft clamped mem-
brane resonator (same device as in Sections 4.6.3 and 4.6.4). The quality
factor is based on 8 ringdown measurements. The solid line is a fit of a non-
linear ringdown curve, while the dashed line correspond to a linear ringdown
curve, extrapolated from the regime dominated by linear damping.

line) does not agree with our measurement25. With Fig. 4.9 as a reference, we
see that this can be explained by a lower than anticipated detection efficiency.

In fact, OMIT measurements suggest that the cavity linewidth is κ ≈
2π×3.7 MHz, indicative of additional optical losses within the cavity. Assum-
ing that these losses lead to added inefficiency, we estimate a modified out-
coupling efficiency of η̃c = ηcκTMM/κmeas. With a simulated cavity linewidth
of ∼ 3 MHz, this amounts to an additional inefficiency of ∼ 81%, and a com-
bined detection efficiency of ∼ 58%. In fact, allowing our model to fit two pa-
rameters, namely the bath temperature and the efficiency, yields η = 55.2%.
For a better estimate of both parameters, we perform a least square optimi-
sation using four squeezing traces, similar to Fig. 4.30, where the detuning
is varied between ∆̄/κ = −0.33 and ∆̄/κ = −0.41. With the two free pa-
rameters shared between the four traces we find Tbath = (9.2 ± 0.8) K and
η = (55.5± 0.3) %.

We note a few things in relation to Fig. 4.30. Following the simulated ra-
tio between the first and second localised modes of our defect (see Table 4.1)
we recognise the sharp peak at ∼ 1.51 MHz as the second localised mode.
In agreement with our calculated values of optical-mechanical mode over-
laps, the second mode shows no discernible signs of dynamical backaction.

25The fit predicts a bath temperature of 4.2 K, which was set as the lower bound.
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Figure 4.30: Power spectral density of output cavity fluctuations, show-
ing squeezing below the shot noise level. The red rashed line is a fit of
Eq. (4.116), assuming a detection efficiency of ∼ 76%, with the mean
phonon occupancy as the only free parameter. With two free parameters,
the detection efficiency and the mean thermal occupancy, we find a signifi-
cantly better agreement between the measured data and the model. We find
Tbath = (9.2± 0.8) K and η = (55.5± 0.3) %. From OMIT measurements we
find that ∆̄ = −2π×1.199 MHz, κ = 2π×3.63 MHz and g = 2π×114.8 kHz.

Below the resonance frequency of the fundamental-like mode we see the anti-
squeezed part of the spectrum is bleeding out of the bandgap and exciting
the edge modes. However, seeing that these are more than five linewidths
away (where Γeff = 2π× 9.6 kHz in Fig. 4.30), we do not anticipate that the
mechanical mode temperature changes significantly as a result thereof. With
all parameters fixed in our model, we can therefore estimate the mean occu-
pancy of the mode by inferring S̄QQ(Ω) from measurement of S̄out

XX(Ω) and
integrating in the vicinity of the mechanical mode. We find that the mean
occupancy of the mode in Fig. 4.30 is n̄ = (0.516± 0.03), with nmin = 0.477.

As for the elephant in the room, namely the amount of ponderomotive
squeezing, we calculate the mean and standard deviation of the data in a
bandwidth of 10 × n̄thΓm ≈ 2π × 3.5 kHz. This is evaluated around the
frequency of largest amount of squeezing predicted by our model. For the
data in Fig. 4.30 we evaluate (−2.29± 0.27) dB squeezing below shot noise.
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With all parameters fixed, we consider the effect of increased intracavity
power for a detuning of approximately −1.4 MHz. In Fig. 4.31 we see spectra
with quantum cooperativities ranging between Cq ≈ 37 and Cq ≈ 80. We
notice a slight deviation between the theoretical prediction and the measure-
ment for the highest optical power, particularly in the peak amplitude of the
mode. Whether this is due to additional excitation as a result of classical
laser noise (i.e. amplitude and phase) or the fact that the out-of-bandgap
mode is driven stronger for larger values of Cq, is not obvious from these
measurements. While the amount of squeezing is essentially constant for
values between Cq ≈ 37 and Cq ≈ 80, the mechanical mode is significantly
broadened for the highest intracavity power (Γeff = 2π × 19.85 kHz), and
thus a non-negligible portion of the mode bleeds outside the bandgap. Even
for a different method of thermometry than the one employed earlier this
would pose a challenge.

Finally, we take a brief look at the vibrational spectrum near the second
radial mode. As one might anticipate, the mirror mode spectrum becomes
denser for higher frequencies, and this is indeed seen in Fig. 4.32. While
there is some amount of ponderomotive squeezing, the spectrum is largely
contaminated with mirror modes. Therefore, a cleaner mode spectrum in the
vicinity of the second radial mode is imperative to harness the multimode
nature of these structures.

4.7.2 Second generation device

For the second generation devices, we assemble a similar cavity as already de-
scribed. In contrast to the assembly for the third generation device, here we
measure a cavity linewidth of κ = 2π×3.11 MHz, which is in close agreement
with the simulated value from the transfer matrix model at the high-coupling
point in 2kzm. The membrane device itself has a resonance frequency of
Ωm = 2π×1.274 MHz with a measured quality factor of (979.52±29.77)×106

(based on 7 ringdown measurements). Assuming a detection efficiency of 76%
and a temperature of 9.2 K, we consider measurements of ponderomotive
squeezing for three different cavity detunings (∆̄/κ = −0.58, ∆̄/κ = −0.43
and ∆̄/κ = −0.29) in Fig. 4.33a-c. Consistent with theoretical predictions
(see Fig. 4.9) we see a steady increase in the amount of squeezing, going
from (−1.36± 0.16) dB, to (−1.90± 0.20) dB, and finally (−2.89± 0.31) dB.
As before, we evaluate the degree of squeezing in a frequency window of
10× n̄thΓm ≈ 2π × 1.95 kHz. Note that besides the fundamental-like mode,
one of the higher order localised modes also produces squeezing, albeit to a
lower degree. This suggests that our optical beam is not perfectly centred
on the defect.
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Figure 4.31: Ponderomotive squeezing for varying intracavity powers. The
measured power spectral densities are normalised to shot noise and a zero-free
parameter plot of the theoretical prediction is shown alongside each spectrum.
The amount of squeezing for each measurement, evaluated in a frequency
windows of ∼ 3.5 kHz centred around the minimum value according to the
theoretical prediction, is: a) −(1.94 ± 0.34) dB, b) (−1.84 ± 0.34) dB, c)
(−1.93 ± 0.27) dB and d) (−2.04 ± 0.18) dB. For the theoretical model we
assume η = 55.5%, Tbath = 9.2 K and Γm = 2π × 2.686 mHz. All other
parameters are found via OMIT measurements.

Despite the appreciable amount of squeezing, our theoretical model pre-
dicts a larger degree of noise reduction for all three measurements. In order to
fit the model to our measurements, one would have to increase the assumed
bath temperature (the effect of which is increasing the overall excitation) and
reduce the detection efficiency (which results in a reduction of the “visibility”
of the curve – the maximum amplitude is reduced, and so is the amount of
squeezing, as a result of lower detection efficiency). However, allowing our
model to fit both of these parameters yields a bath temperature of ∼ 45 K,
which is incompatible with estimated bath temperature from the previous
section, as well as previous observations in our system. However, upon in-
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Figure 4.32: Calibrated mirror mode spectrum of a bare cavity (top, orig-
inating from the same measurement as Fig. 4.27), and normalised power
spectral density (bottom) in the vicinity of the second radial mode (Ωm ≈
2π × 2.715 MHz).

creasing the intracavity power we notice the tips of spurious resonances show
up on top of our mechanical mode (see Fig. 4.33d around 1.24 MHz and
1.3 MHz). Seeing that this coincides with a dense region within our mirror
mode spectrum (cf. Fig. 4.27) it is therefore more likely that the lack of
agreement between our model and the measurements is due to additional
noise, origination from the thermal motion of the cavity mirrors.

It is furthermore worth noting that for the spectrum in Fig. 4.27 the light
enhanced coupling rate is g = 2π× 176 kHz (Γm = 2π× 22.6 kHz), based on
OMIT measurements, which amounts to a quantum cooperativity of 193.

In this section we have used ponderomotive squeezing as a probe for
the potential shortcomings in cavity assemblies involving second and third
generation soft clamped devices. As we have seen, both devices can provide
appreciable amount of squeezing, as well as high quantum cooperativities,
thus overwhelming the thermal Langevin noise with backaction.

While it might seem that the second generation devices are superior due
to a larger absolute frequency separation between the first localised mode
and the band edge, a more relevant figure of merit for a number of applica-
tions is the frequency separation in units of decoherence rate, Γdec = n̄thΓm.
Seeing that the highest measured quality factor for a third generation soft
clamped device is approximately 1.5× larger than for a second generation
device (see Fig. 4.28), and recalling that Cq ≈ Γopt/n̄thΓm, one could achieve
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Figure 4.33: Ponderomotive squeezing spectra for a second generation soft
clamped resonator. Top row: power spectral densities for varying cavity
detunings. From left to right, we have ∆̄/κ = −0.58, ∆̄/κ = −0.43 and
∆̄/κ = −0.29, where κ = 2π× ≈ 3.11 MHz. The theoretical curves are
based on an estimated detection efficiency of 76% and a bath temperature of
9.2 K. The amount of ponderomotive squeezing is evaluated in a frequency
window of ≈ 1.95 kHz, finding (−2.89±0.31) dB squeezing for the right-most
measurement.

the same quantum cooperativity as for a second generation device using a
third generation resonator for 1.5× smaller optical broadening. This relaxes
the requirements on absolute frequency separation between the band edge
and the membrane mode. Of course, this is only a relevant figure of merit
if the sole requirement involving a particular experiment is to a achieve a
certain ratio between quantum backaction noise and thermal noise. If the
amount of broadening for the mechanical mode is dictated by external fac-
tors, such as matching of bandwidths in a hybrid system, this argument is
invalid and one has to resort to considerations based on absolute frequencies
(in which case, the second generation devices are superior).
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4.8 Summary and outlook

The primary purpose of this chapter has been to describe our implementation
of the membrane-in-the-middle system involving soft clamped resonators, and
demonstrate their performance at moderate cryogenic temperatures. Despite
technical limitations we have observed strong ponderomotive squeezing with
two types of soft clamped devices, which is an unambiguous sign that our
system is indeed quantum limited. Our system combines coherence times
in excess of 1 ms, high detection efficiency and can be operated in a regime
where the backaction noise is almost 200 times larger than the thermal noise
contribution. This combination is highly versatile and can be beneficial in
a number of quantum optomechanical experiments. In the following I will
outline one such effort in the group of Eugene Polzik, which I have been
involved in, as well as present a potential solution to one of the most persis-
tent sources of technical noise in relation to this work, namely that of mirror
noise.

4.8.1 Towards generation of mechanical Fock states

The theoretical description of optomechanics presented in this chapter has
been squarely within the linearised domain, where the intrinsic nonlinearity
associated with the radiation pressure interaction was omitted. This is the
consequence of the fact that for the vast majority of optomechanical systems,
including our own, the single-photon optomechanical interaction strength
(i.e. g0) is significantly smaller than other rates in the system (g0 � κ,Ωm),
requiring the experimenter to inject a strong coherent field to ensure a non-
negligible radiation pressure force. This allows us to realise non-classical
Gaussian states, such as squeezed states of light or motion, motional ground
state and entangled states. Extending our portfolio of quantum states into
the non-Gaussian domain requires, however, the introduction or enhancement
of a nonlinearity. A plethora of schemes have been proposed along these direc-
tions, ranging from enhancement of the single-photon interaction strength26

by coupling to an ensemble of mechanical resonators [186] or through hy-
bridisation with nonlinear components, such as a Josephson junction [187] or
an optical parametric amplifier [188, 189], to dissipative schemes combining
linear and quadratic optomechanical coupling [190, 191], injection of single
photon states into the optomechanical system [6,192,193], and, finally, non-
linear detection [194, 195]. Among the various approaches, the latter and
the former are arguably the least “invasive” methods for our system, since

26More specifically, the “granularity” parameter [185], defined as g0/κ.
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the additional requirements are largely extrinsic, and little to no alternation
of the optomechanical system itself is needed. Coincidentally, the approach
involving injection of a single photon is pursued by Albert Schliesser, in
collaboration with the groups of Peter Lodahl and Anders Sørensen, while
the approach involving nonlinearity through detection is pursued by Eugene
Polzik. The experimental results presented in this chapter are part of the
larger effort to prepare our membrane resonators in the first energy eigen-
state, and in the following I outline progress and challenges towards this goal.

Due to the fact that our mechanical devices are quite devoid of any appre-
ciable degree of anharmonicity, the Raman scattered photons within our cav-
ity are effectively degenerate in frequency, preventing us from distinguishing
between the different energy transitions of our resonator mode. Conversely,
this prevents us from addressing a particular level transition. Hence, in order
to prepare our vibration mode of choice in a specific energy eigenstate, we
need to excite the mechanical mode probabilistically, and use single photon
detection to herald the preparation of a single-phonon Fock state. More con-
cretely, we seek to implement the scheme proposed by C. Galland et al. [195].
In short, the scheme involves state initialisation (i.e. ground state cooling
of the vibrational mode), followed by a blue-detuned (∆̄ = +Ωm) “write”
pulse, which probabilistically scatters a single photon resonant with the cav-
ity. Upon spectral filtering of the photon from the large drive field, the
photon is detected with a single photon detector, where a “click” from the
detector heralds the motional Fock state. To verify the generation of the first
excited state, a red-detuned (∆̄ = −Ωm) “read” pulse is sent onto the optome-
chanical cavity, which maps the single excitation onto the light field via an
anti-Stokes scattering process. The emerging photon is once again resonant
with the cavity and is passed through the spectral filtering system, before
impinging onto the single photon detector. The single-photon nature of the
read out state can be verified by computing the second-order autocorrelation
(conditioned on the detection of a herald photon) in a Hanbury-Brown-Twiss

(HBT) setup. For an ideal single-photon source g
(2)
cond(τ = 0) = 0, where τ is

the time delay between the recorded photon counts of the two detectors in
the HBT setup. The measurement of g(2) essentially quantifies the purity of
the single photon source.

Such a scheme was recently realised in the group of Simon Gröblacher
[196], where a second-order intensity correlation of g

(2)
cond(τ = 0) = 0.65

was measured in a silicon optomechanical crystal based system. The high
mechanical frequency of this system is particularly favourable with respect
to spectral filtering of pump photons, where commercial optical filters can
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be employed to achieve > 80 dB rejection, as well as state initialisation,
since at the base temperature of the dilution refrigerator (T = 35 mK) the
mechanical mode Ωm ≈ 2π × 5.25 GHz has a mean phonon occupancy of
n̄ ≈ 0.75 × 10−3. However, the silicon optomechanical crystals are known
to suffer from two-photon absorption at low temperatures, which limits the
observed non-classicality in this system. Furthermore, despite the estimated
coherence time of ∼ 15 ms (assuming Q = 3.8×105 [196] and thermalisation
to 35 mK), the absorption heating also leads to a reduced coherence time
due to appreciable frequency jitter of the mode, as described by MacCabe
and colleagues [117].

While our system does not suffer from this issue, the low mechanical
frequency poses two additional challenges – deep ground state cooling and
filtering of the resonant (single) photons from the pump photons associated
with the write/read pulses. Let us first consider the former of the two.

First and foremost, it is important to remind ourselves that laser cool-
ing of the mechanical motion results in a thermal state with a certain mean
occupation where the probability of finding the mode in a particular energy
eigenstate |n〉 is Pn = n̄n/(1 + n̄)n+1, rather than a pure state. And while
performing a measurement akin to the heralding scheme described above
would yield non-Gaussian motional states27, even for non-negligible mean
occupancies of the mechanical mode, one would have to resort to optical
quantum-state tomography of the mechanical mode, in order to verify the
nonclassicality. With this in mind, it is therefore not surprising that ob-
serving a second-order autocorrelation below unity demands a low initial
mean phonon occupancy. Assuming n̄ � 1, Galland et al. [195] found that

g
(2)
cond(τ = 0) ≈ 4n̄, which suggests that a mean occupancy below ∼ 1/4 is

required to observe g
(2)
cond(τ = 0) < 1 in a HBT experiment.

The most straightforward path forward for our system is to increase the
cavity length, such that we operate in the resolved sideband, with a signifi-
cantly lower backaction limit, as compared to our cavity assembly. In order to
maintain (and preferably decrease) the optical beam spot size, which would
increase the optomechanical coupling rate and reduce potential losses due
to clipping, a cavity length of 24.2 mm or longer is needed with the current
mirrors, amounting to a near ten-fold increase in cavity length. This assem-
bly has already been successfully tested, and a (bare) cavity linewidth of
(309±41) kHz has been measured28, consistent with the prediction based on

27Roughly speaking one could say that since n̄ = 1 implies that the vibrational mode is
found in the |0〉 eigenstate 50% of the time and 25% in |1〉, with similar probabilities one
would generate the energy eigenstates |1〉 and |2〉, respectively.

28This was done by sweeping the laser frequency across the cavity resonance, while
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mirror transmissivities. An advantage of a longer cavity is the fact that the
free spectral range is significantly reduced, which would allow us to address-
ing multiple cavity resonances using the sidebands of an EOM. In practice,
this could allow us to use one cavity resonance for locking and state prepa-
ration (i.e. sideband cooling), and another for write and read pulses. The
advantage of this approach is that the cavity can be maintained locked while
the pulses are injected into the cavity29.

Assuming a cavity linewidth of 300 kHz and mechanical resonance fre-
quency of Ωm = 2π × 1.5 MHz, the backaction limit (cf. Eq. 4.80) is
n̄min = 2.5×10−3 and the final occupancy is instead dictated by the quantum
cooperativity and additional sources of noise. As we have seen in Section 4.7,
we can reach quantum cooperativities in excess of 102 in our system, which,
in the resolved sideband regime and in the absence of additional sources of
heating, would amount to a final occupancy of n̄final ≈ 10−2 (cf. Eq. (4.81)).

Besides excess phase noise due to the thermal motion of our mirror, the
most obvious source of heating is our laser source. To this end, we have char-
acterised the classical amplitude and phase noise of our Ti-Sapphire laser,
using a cavity transduction technique similar to [197, 198]. Here, the idea
is to use a Fabry-Pérot cavity to rotate the input light quadratures, thus
converting classical phase noise to amplitude noise. These amplitude fluctu-
ations are subsequently detected in cavity transmission by direct detection.
As for the amplitude noise, we shine the laser directly onto a photodetector,
acquiring spectra for varying input powers. Normalising each recorded PSD
to the shot noise level and consider the scaling of the variance as a function
of input power, we are able to quantify the classical amplitude noise (in units
of shot noise). Following the definitions by Jayich et al. [199], the input field
is defined as ŝin = s̄in + δŝin + (δX + δY ) /2, where δX and δY are the laser
amplitude and phase noise, respectively. Assuming a white noise model (i.e.
〈δX(t)δX(t′)〉 = Cxxδ(t − t′) and 〈δY (t)δY (t′)〉 = Cyyδ(t − t′)), we quan-
tify the excess amplitude and phase noise by the real numbers Cxx and Cyy,
which are proportional to the optical power. Our measurements suggest that
the amount of excess classical noise at the Fourier frequency 1.475 MHz is
Cxx ≈ 3 × 10−5 µW−1 and Cyy ≈ 3 × 10−3 µW−1, consistent with simi-
lar measurements reported for a similar laser system in [17]30. A detailed

applying a weak modulation tone to the EOM. The latter introduces sidebands around
the cavity resonance (separated by twice the modulation frequency). The spacing between
the sidebands is used as a reference in estimating the cavity linewidth.

29Here we assume that the cavity resonance used for locking is not resonant with the
filter cavities, and is thus strongly suppressed by the filtering system.

30It should be noted that the definition of Cxx and Cyy differs by a factor of 4 between
Jayich et al. [199] and Rossi et al. [17].
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summary of our measurements can be found in the master’s thesis of Timo
Zwettler [200]. Assuming a cavity linewidth of 300 kHz, a single-photon cou-
pling rate of g0 = 2π × 6 Hz, Tbath = 10 K, as well as Cxx ≈ 3× 10−5 µW−1

and Cyy ≈ 3× 10−3 µW−1, and using the theoretical framework from Jayich
et al. [199], we find that the minimum occupation is approximately 0.232.
Importantly, simulations suggest that it is indeed limited by the classical
phase noise of the laser. To address this issue we recently implemented a fil-
ter cavity with a FWHM of ∼ 130 kHz, which suppresses classical laser noise
at the relevant Fourier frequencies. We have measured more than a five-fold
reduction of Cyy at the Fourier frequency of Ωm = 2π × 1.5 MHz (see [200]),
bringing the predicted mean occupancy down to ∼ 0.11. While this figure
can be improved further, for initial studies of Fock state generation and, even-
tually, optical state tomography, this is a reasonable starting point. Finally,
it should be noted for Cxx ≈ 3× 10−5 µW−1 and Cyy ≈ 3× 10−3 µW−1, the
estimated contribution of classical laser noise to the total phonon occupancy
for the ponderomotive squeezing measurements is approximately 5% and is
therefore negligible. This would also suggest that the additional heating seen
in Fig. 4.31 is due to excitation of the band edge modes, rather than clas-
sical laser noise at high optical powers. The contribution of various heating
mechanisms will be the subject of experimental study in our group moving
forward.

Moving towards optical filtering, it is first and foremost worth acknowl-
edging some of the advantages associated with an optomechanical system
with a long coherence time, as it pertains to Fock state generation. Firstly,
one could envision heralding the single-excitation state, and instead of read-
ing it out immediately hereafter, storing it until need be. This is a desirable
feature in the context of quantum repeaters and quantum networks more
broadly, where not all parts of the network are ready at any given time,
which calls for means to store single excitations. Second, the fact that our
photons are spectrally narrow (and hence temporally broad), suggests that
experiments involving two-photon interference, akin to the Hong-Ou-Mandel
effect, would have more relaxed requirements on interferometric stability.
These, among others, are some of the motivating aspects of our system.

Once the system has been initialised and a write pulse has resulted in a
Stokes scattering event, our next task is to isolate that single photon from
the pump field (i.e. the pulse). For a generic system, estimating the degree
of suppression can be done using the light-mediated scattering rates (cf.
Eq. (4.76)). Assuming operation in the resolved sideband regime (and ∆̄ =
−Ωm), the scattering rate can be expressed as A+ = n̄cav4g2

0/κ, and with an
output photon flux of n̄cavκ, the ratio between scattered photons and total
number of photons escaping the cavity is 4g2

0/κ
2. Assuming the resolved
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parameters similar to those in the preceding paragraphs, this suggests a
ratio of 10−9. This estimate suggests that our system requires a filter system
which can provide 109 rejection at megahertz frequencies. Unfortunately, this
estimate neglects an important detail, namely the fact that not only do we
need to suppress the pump photons, but equally important is it to suppress
the scattered photons originating from the mechanical modes outside the
phononic bandgap. After all, as we have seen in Section 4.7, the edge of the
bandgap is less than 100 kHz away from the mode of interest. Accounting for
the presence of the edge modes, in actuality, a rejection of ∼ 1014 is required
by our filter cavities. The latter can be achieved using a system consisting
of four cascaded Fabry-Pérot cavities with FWHM of ∼ 30 kHz. While a
daunting task, such a system has been brought to life by Ivan Galinskiy, a
PhD student in Eugene Polzik’s group. With this ingredient in place, we are
therefore hopeful of exciting results to emerge in the near future.

Looking ahead, one of the prospects in our system is making use of the
fact that our third generation membrane devices have two highly coherent
radial localised vibrational modes. Following a proposal by Weaver et al.
[201], one could implement a heralded scheme involving multiple input pulses,
which would result in an entangled state between the two vibrational modes.
Secondly, seeing that our system has the potential of achieving very detection
efficiencies (values approaching 80% were integral to our work on quantum
feedback cooling reported in [17]), the prospects of optical quantum-state
tomography [202] of the non-Gaussian mechanical states are encouraging.
Lastly, seeing that the atomic equivalent of the single-excitation experiment
has been developed in the group of Eugene Polzik [203], using the DLCZ
protocol to create entanglement between the our optomechanical system and
the collective spin excitation of a Cesium atomic ensemble seems like a happy
marriage waiting to happen.

4.8.2 Exoskeleton mirrors

A common thread throughout this chapter has been the issue of mirror
modes, which ultimately prevented us from using the best performing de-
vice to date (cf. Fig. 4.28). Therefore, we seek to find a solution to this
technical challenge. One path forward is to reduce mirror size, which will re-
sult in an increase of the eigenfrequencies of the mirror modes, thus reducing
the mode density at megahertz frequencies. However, hybridisation can still
be an issue in such a scenario.

An alternative and more robust solution includes phononic crystal struc-
turing. However, structuring of glass, akin to the silicon phononic crystal
devices considered in the previous chapter, can be technically challenging –
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Figure 4.34: Exoskeleton mirror, consisting of a thick phononic crystal ex-
oskeleton structure, with a thin (100 µm) pyrex glass anodically bonded to
the silicon phononic crystal structure. The glass surface is coated with a
mirror coating.

there is no DRIE equivalent for glass, and other techniques, such as wet etch-
ing or laser micromachining, have their respective issues. Since one would
have to realise through-holes in glass of hundreds of micrometer thickness,
wet etching would require highly resistant masking materials, which can with-
stand a hydrofluoric acid etch for several hours. As for laser micromachining,
it can be a challenge to define structures with small critical dimensions (and,
importantly, large aspect ratios), since cracking of the glass due to thermal
shocks is a known issue.

The technique presented here addresses both of those issues, but separat-
ing the shielding structure from the glass structure. An important realisation
with respect to phononic crystal structures is that full thickness modulation
is not a necessity for a complete phononic bandgap to emerge, insofar the
modulation is a significant fraction of the device thickness. On the same
note, if a thin plate is glued to a phononic crystal perforated slab, the stack
will exhibit a complete bandgap as long as the underlying phononic crystal
is significantly thicker than the thin plate attached to it. This constitutes
the core of the idea on how to address the issue of mirror noise.

Our approach is largely based on the silicon phononic crystal structures
presented in the previous chapter, with the main difference that we do not
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Figure 4.35: (Left) Driven response measurement of the exoskeleton structure
of Fig. 4.34. Each trace consists of an average of 5 different sampled locations
on the structure. The traces are normalised to the reference noise floor. The
sharp peak at 1.5 MHz is an added calibration tone. (Right) The bandgap
associated with the same crystal structure is shown.

introduce a geometric defect, as we did in relation to shielding of membrane
resonators. Instead, we process base silicon wafers and, following a thorough
cleaning procedure, use anodic bonding to attach a thin (100 µm) piece of
pyrex glass. In Fig. 4.34 a photograph of the final product is shown.

With a target frequency is 1.5 MHz, we find a complete phononic bandgap
for a silicon substrate thickness 775 µm and pyrex thickness 100 µm. Akin
to the characterisation of silicon phononic crystal structures, we performed
a piezo driven measurements, while monitoring the displacement outside of
crystal structure (i.e. the frame) and subsequently in the central part of the
exoskeleton structure. In Fig. 4.35 we see such a driven measurement, along-
side the simulated band diagram. As we can see, the exoskeleton structure
provides more than a ten-fold suppression of vibrations within the phononic
bandgap. Furthermore, as it so happens, the higher order bandgaps placed
such that both radial modes of the third generation soft clamped devices can
be placed inside a bandgap, thus ensuring a clean mirror mode spectrum.

The exoskeleton structure shown here is still a work in progress, but
preliminary measurements – optical, as well as mechanical – suggest that
this approach could indeed resolve issues related to mirror noise in cavity
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optomechanical experiments. Finally, simulations of phase noise fluctua-
tions originating from the exoskeleton mirror have been performed within the
framework of Levin’s direct approach [204], finding that that for a 2.5 mm
cavity the phase noise from the exoskeleton structure is on order of ∼ 2 ×
10−3 Hz2/Hz in room temperature settings. If proven to be correct, this sug-
gests that the exoskeleton mirrors, in conjunction with our best performing
soft clamped devices, could allow us to perform quantum optomechanical
measurements, without the need of cryogenic cooling. The future does, in-
deed, look brighter towards the end.

4.9 Concluding remarks

On that note, we reach the conclusion of this thesis. Hence, a brief summary
of the presented results and future prospects is in place. As we have seen,
a careful analysis, design and subsequent implementation of phononic engi-
neered mechanical resonators can result in devices with an exceptionally low
degree of dissipation. Looking ahead, a number of potential improvements
and alternations come to mind. First and foremost, given the fact that two-
level systems are particularly prominent in amorphous materials, the possi-
bility of replacing silicon nitride with a crystalline material is certainly one
worth exploring. Measurements of high mechanical quality factors involv-
ing single-crystal diamond [68], as well as crystalline silicon [117], provide a
clear incentive to explore microfabrication techniques allowing for tensioning
of these materials. Next, electromechanical integration of soft-clamped res-
onators can provide a versatile platform for not only optomechanical studies,
but also as a means of modifying the phononic properties in situ [205]. In
extension, one could also envision realising electrostatically defined defects,
in resemblance to [206], which could allow to tuneable coupling between
multiple geometric defects within a soft clamped resonator. Finally, inspi-
ration can be drawn from recent work on soft-clamped resonators, including
strain-engineered strings [207], as well as low effective mass membrane res-
onators [208]. The possibility of combining our technique with the findings
in these studies could potentially yield further improvements of the device
performance.

As it pertains to the use of our devices in cavity optomechanics, the pos-
sibilities are numerous. Beyond the experiment described in Section 4.8.1, a
related experiment is currently under way in the groups of Peter Lodahl and
Albert Schliesser, involving the use of soft clamped resonators as a storage
of single photons. Other potential trajectories include that of embedding
multiple membrane resonators within an optical cavity. This would, for ex-
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ample, allow for entanglement generation between multiple mechanical res-
onators [209] and studies of synchronisation effects [210]. Finally, with the
potential improvements provided by the exoskeleton mirrors, one could fur-
thermore hope to see some of these experimental endeavours move towards
operation at liquid nitrogen or even room temperatures. I hope that the
reader will join me in eagerly awaiting for these results to materialise.
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Appendix A

Fourier analysis

This appendix covers the basics of Fourier analysis, which is used throughout
the thesis in describing the spectral composition of signals emerging from our
experimental setups. Here, we draw broadly from [138,211].

A.1 Fourier transforms

We begin by define the Fourier transform of an arbitrary time-varying signal
s(t) as

s(Ω) = F [s(t)](Ω) :=

∫ ∞
−∞

s(t)eiΩtdt. (A.1.1)

Similarly, the inverse Fourier transform of a signal in the Fourier domain is
defined as

s(t) = F−1[s(Ω)](t) :=

∫ ∞
−∞

s(Ω)e−iΩtdΩ

2π
. (A.1.2)

Since we rely on Fourier analysis in deriving the power spectral densities
of quantum operators, we note that the Hermitian conjugate of a quantum
operator X̂(Ω) is

(X̂(Ω))† = X̂†(−Ω), (A.1.3)

which follows directly from the definition of the Fourier transform. Evidently,
for a Hermitian operator it holds that (X̂(Ω))† = X̂(−Ω).

Finally, we often use the Fourier transform in order to solve a time-domain
differential equation by transforming to the Fourier domain. Following the
definitions of the Fourier transform and it’s inverse, it can be shown that

F
[

d

dt
X(t)

]
= −iΩX(Ω). (A.1.4)
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A.2 Power spectral densities

In our experimental endeavours we are often interested in the spectral com-
position of time-domain signals emerging from a photodetector, particularly
around the resonance frequency of our mechanical resonator. This is done by
computing the power spectral density (PSD) of the signal. Here, we consider
stationary and ergodic stochastic signals, where the former implies statisti-
cal properties constant in time, while the latter implies that the ensemble
average of several experimental realisations is equivalent to the long time
time-average of a single realisation.

The power spectral density for a stationary signal X(t), defined for all
times t, is defined as

SXX(Ω) := lim
T→∞

1

T
|XT (Ω)|2, (A.2.5)

where XT (Ω) is the finite-time Fourier transform of X(t), defined as

XT (Ω) :=

∫ T/2

−T/2
X(t)eiΩtdt. (A.2.6)

Evidently, we can never measure the actual power spectral density, due to the
fact that in practice we will be working with signals acquired over a finite pe-
riod of time in discrete steps. Instead the power spectral density is estimated,
and the estimator of choice in our case in the so-called periodogram1.

Here, we use the discrete version of the Fourier transform (DFT)

DFT[X](m) :=
N−1∑
n=0

Xne2πimn/N , (A.2.7)

where X is an array of length N = FST , representing a time-signal sampled
at a rate FS over a time period T . The integer m, running from 0 to N − 1,
is mapped to an specific frequency component fm following

fm = m
FS

N
. (A.2.8)

Using the definition of the DFT (A.2.7), the periodogram as an estimator for
the power spectral density (A.2.5) of signal X can be expressed as

PXX =
1

T
|DFT[X](m)∆t|2, (A.2.9)

where ∆t = 1/FS.

1Modern spectrum analysers similarly use the periodogram as the estimator for the
power spectral density.



A.3. CROSS SPECTRAL DENSITIES 203

A.3 Cross spectral densities

We define the cross-correlation function of two time-signals, X(t) and Y (t),
as follows

(X ? Y )(τ) := lim
T→∞

1

T

∫ T/2

−T/2
X∗(t)Y (t+ τ)dτ, (A.3.10)

where τ is the time-lag between the two signals. The cross-correlation can
be expressed as

(X ? Y )(τ) = 〈X∗(t)Y (t+ τ)〉 = 〈X∗(0)Y (τ)〉, (A.3.11)

where, from left to right, we assume ergodicity, and that the signals are
stationary (allowing us to set t = 0). Here, 〈·〉 indicates an ensemble average.
Invoking the Wiener-Khinchin theorem, we can now write the cross power
spectral density as

SXY (Ω) =

∫ ∞
−∞
〈X∗(t)Y (t+ τ)〉t=0eiΩτdτ (A.3.12)

=

∫ ∞
−∞
〈X∗(Ω)Y (Ω′)〉dΩ′

2π
, (A.3.13)

where the first equality is due to the Wiener-Khinchin theorem, while the
second is obtained via the definition of the inverse Fourier transform (cf. eq.
(A.1.2)). Replacing the complex conjugate with a Hermitian conjugate, the
expression above can be used directly to compute quantum power spectral
densities. In doing so, 〈·〉 now represents an expectation value, rather than
an ensemble average.
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