
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

PhD thesis

The phenomenological study on alternative
black holes and dark matter distribution
Zhen Li

Advisors: Steen H. Hansen and Adriano Agnello

Submitted: March 31, 2024

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen



Zhen Li, DARK, Niels Bohr Institute, University of Copenhagen
Jagtvej 128, 2200 Copenhagen N, Denmark
© 31 March, 2024



Publications related to this thesis

This thesis is based on the following single-author and first-author publications:

• Scalar perturbation around rotating regular black hole: Superradiance insta-
bility and quasinormal modes,
Zhen Li, Phys.Rev.D, 107, 044013 (2023). arxiv: 2210.14062.

• Superradiance and quasinormal modes of the gravitational perturbation around
rotating hairy black hole,
Zhen Li, Phys.Lett.B, 841, 137902 (2023). arxiv: 2212.08112.

• Energy extraction from rotating regular black hole via Comisso-Asenjo mech-
anism,
Zhen Li, Xiao-Kan Guo and Faqiang Yuan, Phys.Rev.D, 108, 044067 (2023).
arxiv: 2304.08831.

• Energy extraction via Comisso-Asenjo mechanism from rotating hairy black
hole,
Zhen Li, Faqiang Yuan, Phys.Rev.D 108, 024039 (2023). arxiv: 2304.12553.

• A phenomenological model for dark matter phase space distribution,
Zhen Li, Steen H. Hansen, MNRAS 529, 1877 (2024). arxiv: 2312.12304.

3





Abstract

Black holes and dark matter stand out as two of the most intriguing and mysteri-
ous subjects in modern physics. Significant progress has been made in understand-
ing black holes through gravitational waves and imaging observations. However,
due to the precision limitations of observations, we can not exclude the possibility
of alternative black holes beyond general relativity. Moreover, general relativity
itself faces challenges, such as the spacetime singularity problem. Therefore, there
is a need for more phenomenological studies on alternative black holes, enabling
potential comparisons with observations. Concerning dark matter, numerous out-
standing simulations aim to address the distribution of dark matter by assuming
the collisionless nature of dark matter particles. Several universal properties of dark
matter halos have been observed. Unfortunately, a satisfactory theory to predict
these properties is lacking. Consequently, there is a quest for a phenomenologi-
cal model that can provide a unified description of the observed empirical laws in
simulations and also inspire theoretical investigations.

In this thesis, we employ several phenomenological studies on both black holes
and dark matter distributions.

We consider two alternative black holes: the rotating regular black hole and the
rotating hairy black hole, corresponding to the violation of two theorems in general
relativity, namely the singularity theorem and the no hair theorem, respectively.
The scalar field was investigated around the rotating regular black hole, while the
gravitational field was studied in the regime of the rotating hairy black hole. These
investigations allow us to discuss the phenomenology of superradiance and quasi-
normal modes around these two alternative black holes. Additionally, we also study
the energy extraction from these two alternative black holes via magnetic recon-
nection. The effects of the new parameters, which characterize the deviation from
Kerr black holes, were presented, and the physical implications were also discussed.

For dark matter distribution, we propose and analyze a new phenomenologi-
cal model of dark matter phase space distribution, which could semi-analytically
provide NFW-like density profile and analytically give velocity magnitude as well
as components distributions that closely align with simulation data. Particularly
noteworthy is the ability of our model that could accurately capture radial velocity
data across the entire velocity range and the lower velocity regime of tangential
data. While certain discrepancies exist, our model demonstrates strong predictive
performance in reproducing universal properties observed in simulations. These re-
sults suggest that our model may be relevant for describing the distribution of dark
matter particles.
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Dansk resumé

Sorte huller og mørkt stof skiller sig ud som to af de mest fascinerende og mys-
tiske emner inden for moderne fysik. Der er gjort betydelige fremskridt med at
forst̊a sorte huller gennem observationer af gravitationsbølger og billeddannelse.
Dog p̊a grund af præcisionsbegrænsningerne i observationerne kan vi ikke udelukke
muligheden for alternative sorte huller ud over den generelle relativitetsteori. Desu-
den st̊ar den generelle relativitetsteori selv over for udfordringer, s̊asom singular-
itetsproblemet i rumtiden. Derfor er der behov for flere fænomenologiske studier
af alternative sorte huller, der muliggør potentielle sammenligninger med obser-
vationer. Vedrørende mørkt stof sigter talrige fremragende simuleringer mod at
adressere fordelingen af mørkt stof ved at antage mørkt stofs partiklers kollisionsløse
natur. Adskillige universelle egenskaber ved mørkt stofhaloer er blevet observeret.
Desværre mangler der en tilfredsstillende teori til at forudsige disse egenskaber.
Som følge heraf er der en søgen efter en fænomenologisk model, der kan give en
forenet beskrivelse af de observerede empiriske love i simuleringer og ogs̊a inspirere
teoretiske undersøgelser.

I denne afhandling anvender vi flere fænomenologiske studier b̊ade p̊a sorte huller
og mørkt stofs fordelinger.

Vi overvejer to alternative sorte huller: det roterende regelmæssige sorte hul
og det roterende h̊arede sorte hul, der svarer til overtrædelse af to teoremer i den
generelle relativitetsteori, nemlig singularitetsteoremet og ingen-h̊ar-teoremet, hen-
holdsvis. Skalarfeltet blev undersøgt omkring det roterende regelmæssige sorte hul,
mens det gravitationelle felt blev undersøgt i regime for det roterende h̊arede sorte
hul. Disse undersøgelser tillader os at diskutere fænomenologien af superradiance og
kvasinormale tilstande omkring disse to alternative sorte huller. Derudover stud-
erer vi ogs̊a energiudvindingen fra disse to alternative sorte huller via magnetisk
genforbindelse. Virkningerne af de nye parametre, der karakteriserer afvigelsen fra
Kerr sorte huller, blev præsenteret, og de fysiske implikationer blev ogs̊a diskuteret.

For mørkt stofs fordeling foresl̊ar og analyserer vi en ny fænomenologisk model
af mørkt stofs fasepladsfordeling, som kunne give en analytisk NFW-lignende den-
sitetsprofil og hastighedsmagnitude samt komponentsfordelinger, der tæt matcher
simuleringsdata. Især bemærkelsesværdig er vores models evne til nøjagtigt at fange
radiale hastighedsdata p̊a tværs af hele hastighedsomr̊adet og det lavere hastighed-
sregime af tangentiale data. Mens visse uoverensstemmelser eksisterer, demonstr-
erer vores model stærk forudsigende præstation i reproduktion af universelle egen-
skaber observeret i simuleringer. Disse resultater antyder, at vores model kan være
relevant for at beskrive fordelingen af mørkt stofs partikler.
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Chapter 1

Introduction

1.1 Current status and motivations for black

hole phenomenology

We are currently experiencing a golden age in the study of black holes. For centuries,
black holes remained purely theoretical concepts. However, recent breakthroughs,
such as the first detection of gravitational waves in 2015 by the LIGO-Virgo Collab-
oration [1] and the first black hole image in 2019 by the Event Horizon Telescope
[2], have confirmed their existence in our universe. Despite the success of general
relativity (GR) as the best theory of gravity so far, it still faces significant theoreti-
cal and experimental challenges. One notable challenge is the spacetime singularity
problem, which suggests spacetime incompleteness inside black holes and at the be-
ginning of our universe [3, 4]. In these regimes, the laws of physics break down due
to the infinite spacetime curvature, presenting a fundamental challenge. Another
possible issue is the no hair theorem of black holes. The name ”hair” is nothing but
a property of the black hole. No hair theorem suggests that, besides mass, spin, and
electric charge, no other properties can be observed outside the event horizon of the
black hole [5, 6, 7, 8, 9]. All information is gone except for these three properties.
With the existence of unknown dark energy and dark matter, it remains uncertain
whether these mysterious substances contribute additional properties, or ”hair” to
black holes.

To address these challenges, various alternative gravity theories and black hole
metrics have been proposed. Instead of delving into more theoretical alternative
gravity theories, a pragmatic approach involves working with alternative black hole
spacetime metrics. By utilizing these metrics, we can investigate their effects on
observations and thereby test these alternative black holes. In response to the
spacetime singularity problem and no hair theorem, researchers have put forth the
concepts of regular [10, 11, 12, 13, 14, 15, 16] and hairy black holes [17, 18] along
with their rotating counterparts. These alternative black holes provide avenues
for studying deviations from the predictions of GR and examining their potential
impact on observational data. As we explore these alternatives, we move closer
to a comprehensive understanding of black holes and gravity. Given the current
precision of gravitational wave measurements and black hole imaging, providing a
definitive answer about black holes remains challenging. To study the properties
of black holes, more advanced and diverse observations are necessary. Therefore,

11



CHAPTER 1. INTRODUCTION 12

a comprehensive study of black hole phenomenology is crucial to offer additional
observational insights.

In future gravitational wave observations, it is anticipated that the quasinormal
modes will be detected in the final phase (or ringdown phase) of two merging black
holes [19, 20, 21, 22]. In this phase, the spacetime can be seen as a gravitational
perturbation field propagating around a black hole. Because fields or matter will
more or less fall into the black hole and also propagate to infinity, the perturbation
fields will oscillate with a damped amplitude. Quasinormal modes refer to the
frequencies of a damped perturbation field around a black hole. The quasinormal
modes are directly determined by the black hole properties. Hence, quasinormal
modes play a pivotal role in distinguishing black holes. It is important to investigate
the quasinormal modes of alternative black holes so that we can compare them with
upcoming gravitational wave observations of quasinormal modes. This will allow
us to test the possibility of black holes beyond GR.

Quasinormal modes are not limited to gravitational perturbations. Scalar and
vector fields can also exhibit quasinormal modes when they evolve as perturbation
fields around a black hole. Furthermore, perturbation fields could be enormously
amplified through the so-called superradiance phenomena. When the frequency of
the perturbation fields is within a certain range, the fields will become unstable in
the rotating black hole spacetime, and they could be scattered by the rotating black
hole with amplified amplitude. This instability is caused by the interaction between
the fields and the black hole spacetime. Superradiance is governed by the properties
of the black hole as well as the perturbation fields. Thus, this mechanism provides
a valuable tool to explore unknown fields around black holes. As an example,
a ultralight scalar field, whose Compton wavelength is comparable to the event
horizon size of a rotating black hole, will become unstable and the superradiance
phenomena will occur. As a result, a superradiant scalar field cloud will form
around the rotating black hole, which is usually called a gravitational atom. This
superradiant scalar cloud is actually a quasinormal condensate state of scalar fields
that can emit gravitational waves [23, 24].

Beyond gravitational waves, the non-gravitational high-energy phenomenology
around black holes is particularly intriguing. These phenomena offer an indepen-
dent means of detecting the physics surrounding black holes. The magnetic fields
in the vicinity of black holes are exceptionally strong. The magnetic lines could
be anti-parallel in the equatorial plane of a rotating black hole, which could easily
cause magnetic reconnection. This process will emit an amount of energy from the
magnetic fields. Since the magnetic fields are maintained by the rotation energy of
a black hole, it is equally correct to say that magnetic reconnection can potentially
extract energy from the rotating black holes. A novel study shows that magnetic re-
connection happening within the ergosphere can indeed extract significant amounts
of energy from a rotating black hole [25]. The nature of different black hole mod-
els influences the energy extraction process, leading to high-energy phenomenology
that can be observed to distinguish between various black hole models.

In this thesis, we will delve into the phenomenology of quasinormal modes,
superradiance, and magnetic reconnection around both rotating regular black holes
and rotating hairy black holes.
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1.2 Current status and motivations for dark

matter distributions

As mentioned in the above section, dark matter remains one of the most mysterious
phenomena observed in our universe. Dark matter comprises about 25% of the en-
ergy density of the current universe and is approximately five times more abundant
than normal matter [26]. Its elusive nature, interacting only through gravitational
forces, poses a significant challenge for direct detection and study in space and un-
derground experiments [27, 28, 29]. Dark matter plays a crucial role in governing
galaxy formation and influencing the destiny of the cosmos. It is also essential
to understand the distribution of dark matter halos in galaxies. Additionally, the
velocity distribution of dark matter is of great importance for direct detection ex-
periments [30, 31, 32, 33], especially if dark matter interacts with normal matter
through non-gravitational portals. Assuming dark matter is collisionless, cosmolog-
ical simulations emerge as the most promising approach to experimentally address
questions about its distribution.

Several universal properties, such as density profiles, have been discovered through
various simulation programs [34, 35, 36, 37, 38, 39, 40]. However, despite these ad-
vancements, a satisfactory theory capable of predicting the properties observed in
simulations is still lacking [41, 42, 43, 44, 45, 46, 47, 48]. The distribution of dark
matter particles is believed to satisfy the phase space collisionless Boltzmann equa-
tion, yielding Maxwell-Boltzmann distributions—a concept known as the standard
halo model. However, this model contradicts simulation data in several aspects,
such as density profiles and velocity distributions [45, 46, 47, 48]. This discrepancy
may stem from the highly nonlinear nature of self-gravitating systems [43, 44], such
as dark matter halos. Addressing this challenge requires a more comprehensive
understanding of the complex interactions within these systems.

Consequently, adopting a pragmatic approach, a phenomenological model seems
to be a valuable avenue given the current status. On one hand, such a model could
serve as a practical tool for describing simulation data. On the other hand, it has
the potential to fuel motivation and inspiration for the development of more rigor-
ous theoretical models. A phenomenological model might manifest through a single
function, elucidating aspects such as density profiles (e.g., NFW profile [34]) or ve-
locity distributions (e.g., generalized Maxwell-Boltzmann distribution [46]). How-
ever, a more plausible and comprehensive approach for a phenomenological model
would involve predicting a multitude of universal properties observed in simulation
data. In this context, a phenomenological phase space distribution emerges as a log-
ical choice. Such a distribution not only includes empirical laws but also facilitates
deductions of various properties, thereby maintaining internal consistency. The in-
tegration of these empirical laws into a phenomenological phase space distribution
holds the potential to inspire and guide theoretical investigations.

We have proposed a phenomenological model for the phase space distribution of
dark matter. This model potentially leads to an NFW-like density profile, velocity
distribution, and other properties that align with simulation data. However, it is
important to note that there are some discrepancies with the existing data, which
need confirmation through further simulations.
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1.3 Thesis outline

In the upcoming chapters, Chapters 3 and 4 will focus on the phenomenology of
alternative black holes, while Chapter 5 will delve into the study of a new phe-
nomenological model of dark matter distributions. We now outline the structure of
the remaining chapters in this thesis.

Chapter 2 will serve as an introduction to the theoretical background relevant to
this thesis, providing readers to comprehend the concepts discussed in subsequent
chapters.

In Chapter 3, we will explore the phenomena of superradiance and quasinor-
mal modes associated with alternative black holes. Specifically, we will investigate
the scalar field around rotating regular black holes and gravitational perturba-
tions around rotating hairy black holes. Superradiance will be studied using the
matching-asymptotic method, while quasinormal modes will be analyzed using the
continued fraction method. The impact of new parameters of alternative black holes
on these two phenomenology will be thoroughly examined and discussed.

Moving on to Chapter 4, we will discuss the energy extraction from alternative
black holes through the newly proposed magnetic reconnection (Comisso-Asenjo
mechanism). Our study will explore how the energy extraction process is influ-
enced by the rotation of regular black holes and hairy black holes, as well as other
parameters.

In Chapter 5, we will present and discuss a new phenomenological model of
dark matter phase space distributions. We will calculate analytical properties such
as density profile, anisotropy, velocity distributions, and compare velocity compo-
nents distributions with simulation data. The fitting results will be illustrated and
discussed.

Chapter 6 will summarize the key results and findings of this thesis. We will
also explore possible ways to enhance the study and discuss future prospects.

Chapter 7 will present the appendix, focusing on the error estimation of the
approximation method used in Chapter 2, the special functions used in this thesis,
and the contour plots of the MCMC samples used in Chapter 5. The aim is to
provide a comprehensive understanding of the methodology employed in this study.



Chapter 2

Theoretical background

It is always helpful to enhance the understanding of a discussion by providing
some theoretical background at the beginning. As introduced in the introduction,
our research related to the alternative black holes which go beyond the two well-
known theorems in GR. Therefore, we will begin by showing the rotating black holes
predicted by GR, specifically the Kerr black hole. Subsequently, we will present a
brief introduction on these two theorems. We will also illustrate the collisionless
Boltzmann equation for describing the distributions of dark matter. Additionally,
we will show the Maxwell-Boltzmann distribution, i.e., the standard halo model,
which is an important solution to the collisionless Boltzmann equation.

2.1 Kerr black hole

The Kerr black hole is an exact solution to Einstein’s equations, describing a sta-
tionary axisymmetric spacetime, or a rotating black hole. In Boyer-Lindquist coor-
dinates, the metric for the Kerr black hole can be written as:

ds2 =−
[
∆− a2 sin2 θ

Σ

]
dt2 +

Σ

∆
dr2 + Σdθ2

− 2a sin2 θ

[
1− ∆− a2 sin2 θ

Σ

]
dtdϕ

+ sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
dϕ2 (2.1)

where ∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ. It only has two parameters,
the black hole mass M and spin a = J/M with J is the total angular momentum
of black hole. Kerr black hole has two horizons that could be obtained by solving
equation ∆ = 0, which gives us

r+ = M +
√
M2 − a2 (2.2)

r− = M −
√
M2 − a2 (2.3)

r+ and r− are usually called event (outer) and inner horizon respectively. Unlike
the Schwarzschild black hole, the Kerr black hole has an ergosphere and ergoregion,

15
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which refers to the region lying between the radius rs+ and rs+ given by

rs+ = M +
√
M2 − a2 cos2 θ (2.4)

rs− = M −
√
M2 − a2 cos2 θ (2.5)

these two radius are obtained by making the metric time component gtt = 0. rs+
and rs+ are dependent on the polar angle θ. Inside the ergosphere, an observer is
force to move and cannot remain static because the spacetime itself is also rotating.
An observer could escape from the ergoregion to infinity since it is outside the event
horizon. The angular velocity of a Kerr black hole is defined as

ΩH =
a

2Mr+
=

a

r2+ + a2
(2.6)

2.2 Singularity theorem and no hair theorem in

GR

The singularity is the spacetime region where the curvature of spacetime is infinite,
and all physical laws thus break down. The singularity theorem is a robust theorem
in GR proved by Hawking, Penrose, and others [3, 4]. They have demonstrated that
a singularity must exist in spacetime when the following conditions are satisfied,

• Chronology of time, i.e., there is no close time-like geodesic, or time travel.

• GR is right.

• Strong energy condition holds.

• There is matter or energy exist in the spacetime.

With the above conditions, they proved that a geodesic can only be extended for
a limited duration as measured by the observer moving along it, leading to the
existence of a singularity [49]. In the case of the Kerr black hole, the singularity is
a ring rather than a point observed from an Euclidean coordinates.

A hair of a black hole refers to a parameter in the spacetime metric that could
be observed externally. The no hair theorem does not imply that there are no
parameters observable outside a black hole, instead, it asserts that all stationary
black hole metrics in GR can be fully determined by only three independent pa-
rameters: mass, spin, and electric charge. Beyond these three, no other distinctive
features, or hair, exist in stationary black holes according to GR [5, 6, 7, 8, 9]. This
theorem also implies that all other information, apart from these three parameters,
disappears after an object falls into a black hole.
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2.3 Collisionless Boltzmann equation and

standard halo model

The observations of galaxy cluster collisions suggest that dark matter particles can
pass through each other without collisions [50, 51, 52]. Therefore, a dark matter
halo is considered a collisionless system, which can be described by the collisionless
Boltzmann equation (CBE),

df

dt
=

∂f

∂t
+ v⃗ · ∇f −∇ϕ · ∂f

∂v⃗
= 0 (2.7)

where f(x⃗, v⃗, t) represents the phase space distributions, and ϕ denotes the mean
gravitational potential. The CBE is derived from the phase space continuity equa-
tion or Liouville’s theorem. The dark matter halo can be considered to be in a
steady state, i.e., ∂f

∂t
= 0. Then for the steady-state solutions of CBE, we have the

famous Jeans theorem:
The steady-state solution of the CBE depends solely on the phase-space coordi-

nates through integrals of motion. Equivalently, any function of these integrals is a
steady-state solution of the CBE.
For a spherical isotropic system, the binding energy ϵ = ϕ − 1

2
mv2 serves as the

sole integral of motion, implying that f is a function of ϵ only. A solution for f
corresponding to the Maxwell-Boltzmann distribution can be derived,

f(ϵ) ∝ eϵ/ϵ0 (2.8)

where ϵ0 is a normalization parameter. This phase space distribution is usually
called standard halo model (SHM). To determine the corresponding density profile,
we need to solve the Poisson equation, in spherical coordinates,

d

dr
(r2

dϕ

dr
) = −4πGr2ρ(r) (2.9)

ρ(r) =

∫
f(v⃗, r)dv⃗ = 4π

∫ ϕ

0

f(ϵ)
√
2(ϕ− ϵ)dϵ (2.10)

which give us

ρ(r) ∝ 1

r2
(2.11)

However, this density profile could not match the observed density in the simulation,
which typically follows ρ(r) ∝ 1/r in the inner region and ρ(r) ∝ 1/r3 in the outer
region of the dark matter halo [34]. This discrepancy may be attributed to the
spherical isotropic assumption of the system. In addition, the SHM usually predicts
more particles at the high velocity tails in the velocity distributions [45, 46, 47, 48].
Anyway, these issues have motivated physicists to explore alternative possibilities
for the dark matter phase space distribution.



Chapter 3

Superradiance and quasinormal
modes of alternative black holes

This chapter is built upon the content of two single-author papers:
• Scalar perturbation around rotating regular black hole: Superradi-
ance instability and quasinormal modes
Author: Zhen Li
Published in Phys.Rev.D, 107, 044013 (2023). arxiv: 2210.14062.

• Superradiance and quasinormal modes of the gravitational pertur-
bation around rotating hairy black hole
Author: Zhen Li
Published in Phys.Lett.B, 841, 137902 (2023). arxiv: 2212.08112.

3.1 Scalar perturbation around rotating regular

black hole

Abstract: Black holes provide a natural laboratory to study particle physics and
astrophysics. When black holes are surrounded by matter fields, there will be plenty
of phenomena which can have observational consequences, from which we can learn
about the matter fields as well as black hole spacetime. In this work, we investigate
the massive scalar field in the vicinity of a newly proposed rotating regular black
hole inspired by quantum gravity. We will especially investigate how this nonsingu-
lar spacetime will affect the superradiance instability and quasinormal modes of the
scalar filed. We derive the superradiant conditions and the amplification factor by
using the matching-asymptotic method, and the quasinormal modes are computed
through continued fraction method. In the Kerr limit, the results are in excel-
lent agreements with previous research. We also demonstrate how the quasinormal
modes will change as a function of black hole spin, regularity described by a pa-
rameter k and scalar field mass respectively, with other parameters taking specific
values.

18
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3.1.1 Introduction

Our current best understanding on gravitational interaction is described by gen-
eral relativity (GR). The recent observation of gravitational waves [1, 53, 54] and
black hole shadows[2, 55] provide even more evidences on this fascinating theory.
However, GR also faces several challenges, such as, the incompatibility between GR
and quantum theory [56], the singularities [3, 4], the late time acceleration of the
universe and so on [57, 58, 59]. Among these, the singularities in classical GR are
most severe. Because it is widely belief that singularities do not exist in nature,
rather they reveal the limitations of GR. Therefore, the idea of regular black holes
may provide a solution or a trial to the singularity problem. The regular black holes
are the solutions that have horizons and are nonsingular at the origin, and their
curvature invariant are regular everywhere[60, 61, 62, 63, 64]. A novel spherical
symmetric regular black hole proposed in [10, 11, 12] and reformulated in [13] is a
very promising solution to the singularity problem. Later it has also been general-
ized to the rotating axisymmetric scenario[14, 15, 16]. The exponential convergence
factor is used in these regular black holes, which is also used in formulation of the
quantum gravity[65].

Scalar field play a crucial role in fundamental physics as well as astrophysics,
like the inflation field [66, 67, 68] and also in the dark energy models[69]. Dark
matter could also be a kind of scalar field, especially, the ultralight scalar field dark
matter could have some advantages over the standard Lambda cold dark matter
model[70]. When the Compton wavelength of the scalar field particles are com-
parable to the characteristic size of the black hole horizon, they can efficiently
extract rotational energy from rotating black holes through superradiance insta-
bilities and form macroscopic quasinormal condensates[71, 72]. This provide a
unique way and natural laboratory to detect the ultralight scalar field particles
through black hole observations, for example, they will leave imprints on the grav-
itational waves[73, 24]. Because of this and its importance in black hole physics,
superradiance has recently attracted plenty of attention from the science commu-
nity, and physicists have performed investigation in many different aspects and
scenarios[74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. It is also
worthwhile to mention that there are alternative mechanisms for energy extraction
from a rotating black hole, such as Penrose process[91, 92], the Blandford-Znajek
process[93], magnetic reconnection process[25, 94, 95] and so on, which may also
produce (charged) scalar field particles.

Thus, to study the superradiance and quasinormal of scalar field around rotating
regular black holes will provide us with information that could compare with the
near future gravitational waves observations. Usually, the scalar filed will be taken
as a test field or perturbation filed such that it will not shift the black hole back-
ground spacetime. There are some related works on this topic but with different
focus or regular spacetime[96, 97, 98]. In this work, we will study the superradiance
instabilities and quasinormal modes of scalar field around the newly proposed rotat-
ing regular black hole[14, 15, 16]. We will demonstrate how the regular parameter
affects the superradiance and quasinormal modes.

The structure of this section is as follows: In subsection.3.1.2, we will introduce
the rotating regular black hole spacetime. In subsection.3.1.3, we will solve the mas-
sive Klein-Gordon equation in this spacetime, and obtained the radial and angular
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equations. Then, in subsection.3.1.4, we will analysis the superradiance instabilities
and compute the amplification factor. Then, in subsection.3.1.5, we will compute
the quasinormal modes by continued fraction method, we also demonstrate how the
quasinormal modes will change as a function of black hole spin, regular parameter
and scalar field mass, respectively. In subsection.3.1.6, we will make a conclusion
and discussion.

3.1.2 Rotating regular black hole

The metric of nonsingular rotating black hole mentioned in the introduction could
be written in the Boyer–Lindquist coordinates as [14, 15, 16],

ds2 =−
(
1− 2Mre−k/r

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

− 4aMre−k/r

Σ
sin2 θdt dϕ

+

[
r2 + a2 +

2Mra2e−k/r

Σ
sin2 θ

]
sin2 θdϕ2

(3.1)

with Σ = r2 + a2 cos2 θ,∆ = r2 + a2 − 2Mre−k/r. and M , a, and k are three
parameters, which were assumed to be positive. The Kerr metric could be reduced
when set k/r = 0.

To show the regularity of this metric, it is convenient to study the spacetime
invariant, for example, the Kretschmann invariant K = RabcdR

abcd (Rabcd is the
Riemann tensor).

K =
4M2e

−2k
r

r6Σ6

(
Σ4k4 − 8r3Σ3k3 + Ak2 +Bk + C

)
(3.2)

where A, B, and C are functions of r and θ, given by

A = −24r4Σ (−r4 + a4 cos4 θ)
B = −24r5 (r6 + a6 cos6 θ − 5r2a2 cos2 θΣ)
C = 12r6 (r6 − a6 cos6 θ)

−180r8a2 cos2 θ (r2 − a2 cos2 θ)

(3.3)

For M ̸= 0, they are regular everywhere.
The solutions of equation

∆ = r2 + a2 − 2Mre−k/r = 0 (3.4)

will give us the event horizons. The numerical results of horizon structure with dif-
ferent parameters were discussed in [11]. However, there are no analytical solutions.

Despite this, we can use approximation method to solve (3.4) analytically as
long as k/M ≪ 1, and it also satisfies the condition for (3.4) to have two distinct
real solutions (see [11]), i.e, less than the critical value kEH

c which decreases with
the increase in a, for a = 0.9M , kEH

c ≈ 0.1M , for a = 0.95M , kEH
c ≈ 0.05M . In the

Kerr limit, ∆kerr = r2 + a2 − 2Mr = (r − r+)(r − r−), where r+ and r− are called
event and inner horizon of Kerr black hole respectively. They can be seen as the
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zeroth order (with respect to k/r) solution to equation (3.4). Because the equation
(3.4) can be written as

r2 + a2 − 2Mr = 2Mr(e−k/r − 1) (3.5)

where the right-hand side is much smaller than the left-hand side if k/r ≪ 1, so the
right-hand side is the small perturbation. Therefore, if we brought the zeroth order
solutions r± into the right-hand side of (3.5), we will get high order approximation
solutions, there are

∆kerr − 2Mr+(e
−k/r+ − 1) = (r − rI+)(r − r̃−)

∆kerr − 2Mr−(e
−k/r− − 1) = (r − r̃+)(r − rI−)

(3.6)

where rI+ and rI− could be seen as the first order approximate solutions to (3.4), i.e,

∆ ≈ (r − rI+)(r − rI−) (3.7)

where r̃+ and r̃− are the two extra roots because we are solving two quadratic
equations, and they are numerically less accurate compared to rI+ and rI−. The
explicit forms for rI+ and rI− are given by

rI+ = M +
√
M2 − a2 + 2Mr+(e−k/r+ − 1) (3.8)

rI− = M −
√

M2 − a2 + 2Mr−(e−k/r− − 1) (3.9)

For better accuracy, we can carry rI+ and rI− back to the right-hand side of (3.5)
and repeat the process above to get more accurate second order solutions of (3.4).

rII+ = M +

√
M2 − a2 + 2MrI+(e

−k/rI+ − 1) (3.10)

rII− = M −
√

M2 − a2 + 2MrI−(e
−k/rI− − 1) (3.11)

even third order solutions

rIII+ = M +

√
M2 − a2 + 2MrII+ (e−k/rII+ − 1) (3.12)

rIII− = M −
√

M2 − a2 + 2MrII− (e−k/rII− − 1) (3.13)

they could be seen as the event horizon and inner horizon of metric (3.1). One
could repeat the approximation steps to get more higher order solutions, but third
order rIII+ and rIII− are sufficient in this work, see Appendix.7.1. Here after we will
define r̂+ ≡ rIII+ and r̂− ≡ rIII− for simplicity.

3.1.3 Decoupled master equations for massive scalar field

The dynamics of a massive scalar field Φ in the spacetime (3.1) is governed by the
Klein-Gordon equation(

∇a∇a − µ2
)
Φ = (

√
−g)−1∂µ

(√
−ggµν∂νΦ

)
− µ2Φ = 0 (3.14)
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where g = det(gµν) and µ is the mass of the scalar field. We can rewrite it more
explicitly in the Boyer–Lindquist coordinates as(

(r2 + a2)
2

∆
− a2 sin2 θ

)
∂t∂tΦ +

4Mare−k/r

∆
∂t∂ϕΦ

+

(
a2

∆
− 1

sin2 θ

)
∂ϕ∂ϕΦ− ∂r (∆∂rΦ)

− 1

sin θ
∂θ (sin θ∂θΦ) + µ2ΣΦ = 0 (3.15)

For the axisymmetric and asymptotically flat black-hole spacetime, the test Klein-
Gordon allows for the separation of variables[99]. Since the spacetime symmetry
and asymptotic behavior of Kerr black hole also apply to rotating regular black hole
(3.1) as well[11], so we can decompose the field with the ansatz

Φ (xµ) = e−iωteimϕSlm(θ)Rlm(r) (3.16)

where ω is the frequency and it is permitted to be complex. The sign of Im(ω)
determines whether the solution is decaying (Im(ω) < 0) or growing (Im(ω) > 0)
in time. Carrying (3.16) to equation (3.15), this leads to two ordinary differential
equations, also called the Teukolsky equations [100]. For the radial part,

d

dr

(
∆
dRlm

dr

)
+

(
ω2 (r2 + a2)

2 − 4Mamωre−k/r +m2a2

∆

−
(
ω2a2 + µ2r2 + Λlm

))
Rlm(r) = 0

(3.17)

where Λlm is the separation constant, they are the eigenvalues with respect to the
following angular part equation,

1

sin θ

d

dθ

(
sin θ

dSlm

dθ

)
+

(
a2
(
ω2 − µ2

)
cos2 θ − m2

sin2 θ
+ Λlm

)
Slm(θ) = 0 (3.18)

The angular solutions Slm(θ) are spheroidal harmonics Slm = Sm
l (cos θ; c). In the

nonrotating limit, the spheroidal harmonics reduce to spherical harmonics Ylm and
Λlm ≈ l(l + 1).

We define u(r) ≡
√
r2 + a2Rlm(r) and switch to the tortoise coordinate via

dr∗ = r2+a2

∆
dr, after some algebra, the radial function (3.17) takes the following

Schrodinger-like form
d2u (r∗)

dr2∗
+ V(r)u (r∗) = 0 (3.19)

with the effective potential V(r) given by

V(r) =
(
ω − am

a2 + r2

)2

− ∆

(a2 + r2)2
(
a2ω2 + µ2r2 + Λlm − 2amω

)
− r2∆2

(a2 + r2)4
− ∆+ 2r2 − 2Me−k/r(k + r)

(a2 + r2)2
+

4r2∆

(a2 + r2)3
(3.20)

the first line comes from the potential of equation (3.17) divided by (r2+ a2)2. The
second line represents the effect of introducing the tortoise coordinate dr∗.
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3.1.4 Superradiance instability

The incident scalar waves could be amplified when scattered off of a rotating or
charged black hole, within certain parameter space of the black hole. This is the
so-called Superradiance.

superradiance modes

In this section, we will study the conditions for the happening of superradiance.
Now we consider the following asymptotic behavior of the solutions or boundary
conditions of equation (3.19),

uh(r∗) = AT exp (−ikhr∗) , r∗ −→ −∞(r → r̂+)

u∞(r∗) = AI exp (−ik∞r∗) +AR exp (ik∞r∗) , r∗ −→ ∞(r → ∞)
(3.21)

where kh =
√

V (r → r̂+) = ω − mΩh, k∞ =
√

V(r → ∞) =
√

ω2 − µ2. These
boundary conditions describe an incoming wave from spatial infinity with an am-
plitude of AI , which scatters off the event horizon and produces reflected and
transferred waves with amplitudes of AR and AT , respectively.

Now, by equating the Wronskian quantity

W =

(
u
du∗

dr∗
− u∗ du

dr∗

)
for regions near the event horizon with its counterparts at infinity, we can get

|AI |2 − |AR|2 =
ω −mΩh√
ω2 − µ2

|AT |2 (3.22)

where Ωh = a/(r̂2+ + a2), According to the above equation, for superradiance to
occur, the amplitude of the reflected waves must be greater than the amplitude of
the incident waves, and the following frequency criteria must be met

µ < ω < mΩh (3.23)

The frequency or modes satisfying above condition is called superradiance modes.

amplification factor

The degree of amplification caused by the superradiance is described by the ampli-
fication factor, it can be computed via

Zlm =
|AR|2

|AI |2
− 1 (3.24)

Since the Kerr spacetime’s symmetry and asymptotic behavior also applies to ro-
tating regular black hole (3.1) as well, the derivation of this section is essentially
similar to that of Kerr [71], with the exception that r+ is replaced by r̂+. However,
the geometry of near-horizon region is altered as a result of this difference, which
also results in a different amplification factor. Just to be self-content, we will briefly
review the calculation steps of amplification factor Zlm.
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We assume that the Compton wavelength of scalar field particle is significantly
greater than the black hole gravitational size or µM ≪ 1, we also consider the
low-frequency regime ωM ≪ 1 which also implies aω ≪ 1, these conditions allow
us to use the matching-asymptotic techniques [101, 102] as follow.

We divide the space into two overlapping regions, i.e, the near-region ω(r−r+) ≪
1, and the far-region r− r+ ≫ M . We will solve the radial equation (3.17) at these
two regions and then match them in their overlapping region, this will give us the
analytical solutions to the amplitudes, so that we can compute the amplification
factor.

The radial equation (3.17) can be written as

x2(1 + x)2
d2Rlm

dx2
+ x(x+ 1)(2x+ 1)

dRlm

dx
+ (β2x4 − (ω2a2 + Λlm)x(x+ 1)

− µ2((r̂+ − r̂−)x+ r̂+)
2x(x+ 1) +Q2)Rlm = 0 (3.25)

where we defined new variables

x =
r − r̂+
r̂+ − r̂−

(3.26)

β = ω(r̂+ − r̂−) (3.27)

Q =
r̂2+ + a2

r̂+ − r̂−
(mΩh − ω) (3.28)

In the near region, we have kx ≪ 1 and µ2((r̂+ − r̂−)x+ r̂+)
2 ≈ µ2r̂2+, such that

equation (3.25) is then approximately take forms as

x2(x+ 1)2
d2Rlm

dx2
+ x(x+ 1)(2x+ 1)

dRlm

dx
+
(
Q2 − l(l + 1)x(x+ 1)

)
Rlm = 0

(3.29)

the general solution satisfying the boundary condition (3.21) to the above equation
is given by the hypergeometric functions

Rlm = A1(
x+ 1

x
)iQF (−l, l + 1, 1− 2iQ,−x) (3.30)

the large x behavior of above solution is

Rlm ∼ A1x
l Γ(1− 2iQ)Γ(2l + 1)

Γ(1 + l − 2iQ)Γ(l + 1)

+ A1x
−l−1Γ(1− 2iQ)Γ(−2l − 1)

Γ(−l)Γ(−l − 2iQ)
(3.31)

In the far region, equivalently x → ∞, equation (3.25) approximately give us

d2Rlm

dx2
+

2

x

dRlm

dx
+

(
ξ2 − l(l + 1)

x2

)
Rlm = 0 (3.32)

where ξ = (r̂+ − r̂−)
√

ω2 − µ2. The solution of this equation can be written in
terms of the confluent hypergeometric function

Rlm = exp(−iξx)C1x
lU(l + 1, 2l + 2, 2iξx)

+ exp(−iξx)C2x
−l−1U(−l,−2l, 2iξx) (3.33)
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Expanding it for small kx ≪ 1, we obtain

Rlm ∼ C1x
l + C2x

−l−1 (3.34)

Now, matching (3.31) and (3.34), we can get

C1 = A1
Γ(1− 2iQ)Γ(2l + 1)

Γ(l + 1)Γ(l + 1− 2iQ)

C2 = A1
Γ(1− 2iQ)Γ(−1− 2l)

Γ(−l − 2iQ)Γ(−l)

When r → ∞, from (3.21), we can know the solution of (3.17) takes form as

Rlm ∼ u∞(r∗)

r
∼ AI

exp (−ik∞r∗)

r
+AR

exp (ik∞r∗)

r
(3.35)

Expanding (3.33) at infinity and matching to (3.35), we obtain the analytical ex-
pression for AI and AR

AI = C1
(−2i)−l−1ξ−lΓ(2l + 2)

k∞Γ(l + 1)
+ C2

(−2i)lξl+1Γ(−2l)

k∞Γ(−l)
, (3.36)

AR = C1
(2i)−l−1ξ−lΓ(2l + 2)

k∞Γ(l + 1)
+ C2

(2i)lξl+1Γ(−2l)

k∞Γ(−l)
. (3.37)

After some algebra, we finally find the amplification factor (3.24) takes the
explicit form as

Zlm = 4Qξ2l+1 (l!)4

((2l)!)2((2l + 1)!!)2
×

l∏
n=1

(
1 +

4Q2

n2

)
(3.38)

The formulas above are valid for any spin a ≤ M provided µM < ωM ≪ 1.
In Fig.3.1, we plot Z11 for different values of regular parameter k and black hole
spin, by setting µM = 0.1. We can clearly see that the amplification starts when
ωM > µM , and dies out when it is close to the threshold frequencies mΩh. The
amplification increases along with the black hole spin, and the parameter k/M
only affects the amplification when the frequencies close to the threshold mΩh, and
bigger k/M will cause a bigger threshold frequency.

3.1.5 Quasinormal modes

Quasinormal modes are solutions of the wave equation (3.19), satisfying the follow-
ing boundary conditions,

uh(r∗) = exp (−ikhr∗) , r∗ −→ −∞(r → r̂+)

u∞(r∗) = exp (ik∞r∗) , r∗ −→ ∞(r → ∞) (3.39)

which means there are only ingoing waves at the event horizon, while pure outgoing
wave at spatial infinity. This condition leads to a discrete eigenvalue of frequencies.
Quasinormal modes were referred to as the ”fingerprints” of black holes. Because
they are determined by the parameters of black holes, like mass and spin etc.

There are many methods to compute the quasinormal modes, see the reviews[103,
104, 105]. In this section, we will use the popular continued fraction method to com-
pute the quasinormal modes, and this method has been used in many outstanding
works even recently[106, 107, 108].
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Figure 3.1: The amplification factor Z11 for l = m = 1, µM = 0.1, with three black
hole spin a = 0.5M , a = 0.7M and a = 0.9M , and different regular parameter
values k = 0.01M , k = 0.03M , k = 0.05M , with the Kerr case (k = 0) as reference.

continued fraction method

According to the boundary conditions (3.39), we can obtain a series solution to the
radial equation (3.17), by setting Rlm(r) as

Rℓm(r) = (r − r̂+)
−iσ+ (r − r̂−)

iσ− y(r − r̂−) (3.40)

where −iσ+ and iσ− are the indices of Rℓm(r) at singular points r = r̂+ and r = r̂−,
they are given by

σ+ =
ωr̂+ − am

b
(3.41)

σ− =
ωr̂− − am

b
(3.42)

where b = r̂+ − r̂−. For simplicity, we first define x = r − r̂−, now we have
∆ = x(x− b). Next, we rewrite (3.40) and (3.17) in terms of x, and also substitute
the series solution (3.40) into (3.17). Then we calculate the first term (derivatives)
of (3.17). When the above operations were done, we collect all the terms with the

same order of y(x), dy
dx
, d2y

dx2 respectively. At the end, we can get the second order
differential equation for y(x),

x (x− b)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
(
(ω2 − µ2)x (x− b)

−2η
√

ω2 − µ2 (x− b) +B3

)
y = 0 (3.43)
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where B1, B2, B3, and η are given by

B1 = (−1− 2iσ−)b

B2 = 2(iσ− − iσ+ + 1)

B3 = 2ω2r̂2+ + ω2(r̂+ + r̂−)
2 + a2ω2 − Λlm − µ2r̂2+

+ i(σ− − σ+)− (σ− − σ+)
2

η = −(ω2 − µ2/2)(r̂+ + r̂−)/
√

ω2 − µ2

The function y(x) can be expanded further in a power series

y(x) = eik∞xx−(1/2)B2−iη

∞∑
n=0

dn

(
x− b

x

)n

(3.44)

By substituting the above series solution y(x) to Rℓm(r), and then to the radial
equation (3.17). We can obtain the coefficients dn which satisfies a three term
recurrence relation as follow

α0d1 + β0d0 = 0 (3.45)

αndn+1 + βndn + γndn−1 = 0, n = 1, 2, 3, ... . . . (3.46)

where the coefficients are

αn = n2 + (c0 + 1)n+ c0
βn = −2n2 + (c1 + 2)n+ c3
γn = n2 + (c2 − 3)n+ c4 − c2 + 2

(3.47)

and the intermediate constant cn are defined as

c0 = B2 +B1/b
c1 = −2 (c0 + 1 + i (η − k∞b))
c2 = c0 + 2(1 + iη)
c3 = −c4 − 1

2
B2

(
1
2
B2 − 1

)
+ η(i− η) + ik∞bc0 +B3

c4 =
(
1
2
B2 + iη

) (
1
2
B2 + iη + 1 +B1/b

) (3.48)

If the series in (3.40) and (3.44) converges and the r = ∞ boundary condition (3.39)
is satisfied, for a given a, M , k, µ and Λlm, the frequency ω must be a root of the
continued fraction equation

0 = β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

. . . (3.49)

or any of its inversions. (3.49) is obtained by combining equation (3.45) and (3.46).
The roots of (3.49) will give us the so-called quasinormal modes.

numerical results

For simplicity and consisting with the literature, we will choose units by setting
M = 1 in the rest of this paper. Then the radial distance r, the regular parameter
k and black hole spin a are measured in unit of M , while the frequency ω and scalar
field mass µ are in unit of M−1.
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µ = 0.1 k = 0 k=0.001 k=0.005 k=0.01
a Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0.1 0.297602 0.094884 0.297658 0.094884 0.297921 0.094914 0.298290 0.094981
0.2 0.298164 0.094661 0.298218 0.094658 0.298452 0.094661 0.298771 0.094684
0.3 0.299116 0.094273 0.299170 0.094269 0.299397 0.094259 0.299698 0.094260
0.4 0.300478 0.093692 0.300534 0.093686 0.300762 0.093668 0.301058 0.093653
0.5 0.302285 0.092873 0.302342 0.092865 0.302574 0.092838 0.302874 0.092809
0.6 0.304579 0.091742 0.304638 0.091732 0.304878 0.091692 0.305185 0.091646
0.7 0.307413 0.090182 0.307475 0.090168 0.307725 0.090110 0.308043 0.090041
0.8 0.310836 0.087989 0.310900 0.087968 0.311160 0.087884 0.311489 0.087780
0.9 0.314815 0.084810 0.314880 0.084778 0.315143 0.084654 0.315474 0.084498

Table 3.1: Values of the quasinormal frequencies for the fundamental mode, with
l = 1, m = 0, µ = 0.1 for different values of k, and spin a.

Our numerical procedures operate as follow, we first calculate the angular eigen-
values Λlm using the Leaver method[109], by fixing the values for (k, l, m, a, µ).
Then the continued fraction equation (3.49) depends only on the quasinormal fre-
quency ω. For practical purposes, it is necessary to truncate the above continuing
fraction to an order of n, We use a technique developed by Nollert [110] to approx-
imate the value n. At the end, the root-finding algorithm (Built-in functions in
Wolfram Mathematica) will be applied to find the roots of the continued fraction
equation (3.49). Previous calculations of quasinormal modes in the Kerr background
[111, 112] are used to validate our numerical methods. The errors of quasinormal
modes caused by using the approximation (3.12) and (3.13) are less than 10−2, see
Appendix.7.1, they become extreme accurate when the spin grows.

In Table.3.1 and Table.3.2, we show some of the quasinormal frequencies for the
fundamental mode with (l = 1,m = 0) and (l = 1,m = 1), by setting different black
hole spins and regular parameter k. The scalar field mass has been set as µ = 0.1.
In Table.3.3, we show the dependency of quasinormal frequencies on the scalar field
mass µ and regular parameter k, by setting (l = 1,m = 1), a = 0.5. Please note
that we used minus Im(ω) to represent the imaginary part of quasinormal modes
here and after in this paper. In all three tables, the k = 0 columns correspond
to the quasinormal modes of Kerr black hole, which are in excellent six decimals
agreements with the results obtained before by [111, 112].

From Table.3.1 and Table.3.2, we notice that the real part of quasinormal
frequencies grow along with the black spin, while the imaginary part decrease
with spin. The regular parameter k does play a role on the quasinormal frequen-
cies. We also computed (l = 1, m = 1) quasinormal frequencies with smaller
spin intervals ∆a = 0.02 from a = 0.05 to a = 0.91, with regular parameter
k = 0, 0.001, 0.005, 0.01, The results were plotted in Fig.3.2. We can see that the
higher spin and bigger regular parameter k, the more deviation from Kerr black
hole (k = 0).

To better show the dependency of quasinormal frequencies on the regular param-
eter k, we plot the real and imaginary part of quasinormal frequencies as a function
of regular parameter k in Fig.3.3, with three different high spins (a ≥ 0.5). We can
see that regular parameter k will increase the real part of quasinormal frequencies
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Figure 3.2: the l = m = 1 fundamental quasinormal frequencies as a function of
black hole spin (from a = 0.05 to a = 0.91 with spin intervals ∆a = 0.02), with the
regular parameter k = 0, 0.001, 0.005, 0.01, scalar filed mass µ = 0.1.

µ = 0.1 k = 0 k=0.001 k=0.005 k=0.01
a Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0.1 0.305329 0.095029 0.305390 0.095027 0.305674 0.095054 0.30607 0.095118
0.2 0.314119 0.094920 0.314184 0.094915 0.314460 0.094908 0.314833 0.094921
0.3 0.323981 0.094569 0.324052 0.094561 0.324347 0.094536 0.324735 0.094518
0.4 0.335181 0.093883 0.335261 0.093871 0.335590 0.093828 0.336015 0.093783
0.5 0.348105 0.092714 0.348198 0.092696 0.348576 0.092630 0.349059 0.092552
0.6 0.363345 0.090805 0.363456 0.090780 0.363904 0.090678 0.364474 0.090554
0.7 0.381888 0.087678 0.382025 0.087637 0.382580 0.087474 0.383285 0.087271
0.8 0.405606 0.082262 0.405790 0.082191 0.406531 0.081904 0.407473 0.081540
0.9 0.439045 0.071342 0.439332 0.071183 0.440495 0.070533 0.441982 0.069685

Table 3.2: Values of the quasinormal frequencies for the fundamental mode, with
l = m = 1, µ = 0.1 for different values of k, and spin a.
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a=0.5 k = 0 k=0.001 k=0.005 k=0.01
µ Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0 0.344753 0.094395 0.344848 0.094375 0.345234 0.094301 0.345726 0.094214
0.1 0.348105 0.092714 0.348198 0.092696 0.348576 0.092630 0.349059 0.092552
0.2 0.358230 0.087478 0.358317 0.087466 0.358671 0.087423 0.359125 0.087375
0.3 0.375284 0.078022 0.375362 0.078020 0.375679 0.078016 0.376086 0.078016
0.4 0.399201 0.062970 0.399267 0.062982 0.399536 0.063031 0.399884 0.063099
0.5 0.429036 0.040234 0.429096 0.040270 0.429336 0.040421 0.429639 0.040617

Table 3.3: Values of the quasinormal frequencies for the fundamental mode, with
l = m = 1, a = 0.5 for different values of k, and mass µ.

gently. For the imaginary part, the regular parameter k decrease imaginary part of
quasinormal frequencies, even more for higher spins. These features could provide
us some insights on the connection between the regularity of black hole and the
stability of massive scalar field perturbation. All the imaginary part of quasinor-
mal modes are negative (see Table.3.1, 3.2, 3.3 and Fig.3.2, 3.3), which means the
black hole (3.1) is stable under massive scalar field perturbation. What is more,
especially in the high spin regime, the increasing in regular parameter k will cause
a smaller imaginary part of quasinormal modes compare to Kerr black hole, which
corresponds to a longer damping time. The regularity of black hole seems put more
‘elasticity’ onto the massive scalar field perturbation such that they will live longer
than the Kerr black hole scenario. On the other hand, increasing in regular pa-
rameter k will cause a bigger real part of quasinormal modes, which means it will
increase the oscillation frequency of scalar field perturbation. In addition, we again
see black hole spins change quasinormal frequencies significantly for both real and
imaginary part.

Last but not least, we investigate the quasinormal frequencies dependency on
the scalar field mass µ. From Table.3.3, we can see that, for the real part, the value
increase monotonously with the scalar field mass µ. For the imaginary part, the
value decrease monotonously with the scalar field mass µ. It seems that, for µ ≤ 0.3,
the bigger regular parameter k, the bigger real part and smaller imaginary part.
But for µ ≥ 0.4, it is not the case, where the bigger k, the bigger imaginary part.
So, the scalar field mass will affect the relation between the regularity of black hole
and the stability of massive scalar field perturbation. It maybe easy to understand
because the different scalar field mass will significantly change the behavior of scalar
field perturbation such that it will react differently to the regularity of black hole
spacetime.

3.1.6 Conclusion and discussion

We have studied the massive scalar field perturbation around regular rotating black
hole. We first introduced the newly proposed regular black hole spacetime metric
(3.1) and some physical quantities, also we used approximation method to analyti-
cally solve the horizons. Then we separated and solved the massive Klein-Gordon
equation in this spacetime and obtained the master equations(3.15), also radial
part (3.17) and angular part equations (3.18). With these equations, we studied
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Figure 3.3: upper and lower plots are respectively the real and imaginary part of
the fundamental quasinormal frequencies as a function of parameter k, by setting
l = m = 1, µ = 0.1 and three different spins a = 0.5, 0.7, 0.9.
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the superradiance instability and quasinormal modes.
For the superradiance instability, we first discussed the conditions for the su-

perradiance happen. The results show that the amplification happens when the
frequencies are within certain parameter region (3.23). Then, we used the matching-
asymptotic method to compute the amplification factor under small mass and low
frequency approximations. At the end, we obtained a very net analytical expression
for the amplification factor (3.38) and we plotted the l = m = 1 modes with several
parameters.

Regarding to the quasinormal modes, we applied the continued fraction method
to numerically calculated the quasinormal modes of the rotating regular black hole.
We present three tables (Table.3.1, 3.2, 3.3), and the k = 0 columns could validate
our numerical approaches. It is in excellent agreement with the previous results in
the Kerr limit[111, 112]. The numerical results, in these tables also in Fig.3.3, are
computed by selecting some parameters as the variables while others are settled
down with certain values for the purpose of studying: (a) fundamental quasinormal
modes as a function of black hole spin a; (b) fundamental quasinormal modes as a
function of regular parameter k; (c) fundamental quasinormal modes as a function
of scalar field mass µ.

This work is the first step to study the perturbations around the nonsingular
rotating black hole (3.1). There are many researches could be conduct at the future.
For example, the superradiance instability and quasinormal modes of the vector and
gravitational perturbations (i.e, gravitational waves) in this spacetime. We believe
it will give us more deeper understanding on black holes and gravity. We leave this
research to the future.

3.2 Gravitational perturbation around rotating

hairy black hole

Abstract: The No Hair theorem in classical general relativity predicts that ro-
tating black holes are specified by the Kerr metric, which is uniquely identified by
the mass and spin. However, as a pioneering study beyond general relativity, the
rotating hairy black hole has been proposed, which encompasses the Kerr black
hole as a special case. In these black holes, there are extra hair which could appear
due to the additional surrounding sources such as dark matter or dark energy. In
this work, we study the phenomenology of the rotating hairy black hole in terms of
gravitational perturbations. In particular, the superradiance and the quasinormal
modes. Using the matching-asymptotic method, we derive the amplification factor
and the superradiance conditions. We also calculate the quasinormal modes using
the continued fraction method. The results are in very good agreement with previ-
ous studies in the Kerr limit. We also show how the amplification and quasinormal
modes will shift in response to variations in the hairy parameters, black hole spin,
and quantum numbers.

3.2.1 Introduction

Recent observations of gravitational waves (GW) [1, 53, 54] and black hole shadows
[2, 55] provide strong evidence for the existence of black holes, the intriguing objects
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predicted by general relativity. It is widely believed that the physically rotating
black holes in the universe are Kerr black holes described by the Kerr metric.
The famous No Hair theorem [5, 6, 7, 8, 9] also states that the Kerr metric is
completely determined by the mass and spin of the black hole. However, due to the
additional surrounding sources like dark matter, Kerr black holes can acquire an
additional global charge, called ’hair’, which deviates from the Kerr metric [113].
Recently, the hairy black hole and later its rotating version were obtained using the
gravitational decoupling approach (GD) [17, 18], which is specifically designed to
describe deformations of known solutions of general relativity induced by additional
sources[114, 115]. The rotating hairy black hole attracts amount of theoretical and
observational investigations [116, 117, 118, 119, 120, 121].

To verify this proposal in GW observations, the ringdown signal from black
holes will be essential. This is because the ringdown waveforms arise from the
gravitational perturbation of black holes, such as the final phase of black hole merger
[1, 53, 54, 122], and they are the superposition of quasinormal modes which are
directly related to the No Hair theorem. The discovery and accurate identification
of the quasinormal modes could be the ’smoking gun’ for testing this proposal as
well as general relativity [123].

On the other hand, if the wavelength of gravitational perturbations is compara-
ble to the size of the black hole horizon, they can efficiently extract rotational energy
from rotating black holes through superradiance instabilities, which also generate
GW and black hole shadow signals that could be detected by observations in the
future [71, 124, 125]. Because of its importance, superradiance has recently received
a lot of attention from the scientific community, and physicists have explored a va-
riety of aspects and scenarios.[74, 75, 76, 77, 78, 79, 80, 126, 127, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 128, 129, 130].

Studying the superradiance and quasinormal of the gravitational perturbation
field around rotating hairy black holes is therefore important for preparing to com-
pare with future GW and black hole shadow observations. There is some work on
this topic, but it is limited to scalar perturbations in the case of non-rotating hairy
black holes [118]. In this work, we will study the superradiance and quasinormal
modes of the gravitational perturbation around the rotating hairy black hole [18].
We will show how the hairy parameters and the spin of the black hole affect the
superradiance and the quasinormal modes.

This section is organized as follows: In subsection.3.2.2, we will introduce the
rotating hairy black hole and derive the horizons using the approximation method.
In subsection.3.2.3, we obtain the master equations for the gravitational perturba-
tion in this spacetime, and also drive the radial and angular equations respectively.
Then, in subsection.3.2.4, we will calculate the superradiance amplification factor
and obtain the conditions for the superradiance. We will also explore the quasi-
normal modes in this spacetime in subsection.3.2.5, after introducing the continued
fraction method, we will present the numerical results on how the quasinormal
modes will change as a function of the black hole spin, hairy parameters. In sub-
section.3.2.6, we will come to a conclusion and discussion.
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3.2.2 Rotating hairy black hole

In [18], a rotating hairy black hole was derived using the GD approach which is
precisely designed to find the deformation of the known solution of general relativity
[114, 115]. In Boyer-Lindquist coordinates it is

ds2 =−
[
∆− a2 sin2 θ

Σ

]
dt2 +

Σ

∆
dr2 + Σdθ2

− 2a sin2 θ

[
1− ∆− a2 sin2 θ

Σ

]
dtdϕ

+ sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
dϕ2

(3.50)

with ∆ = r2 + a2 − 2Mr + αr2e−r/(M−h0
2 ), and Σ = r2 + a2 cos2 θ. M , a denote

the mass and spin of the black hole. α measures the deviation from standard
Kerr black holes and is related to the primary hair h0 via h0 = αh, where h0

measures the increase of entropy caused by the hair and must satisfy the condition
h0 ≤ 2M ≡ hK to ensure asymptotic flatness. The hair could originate from new
fields or new gravitational sectors such as dark matter or dark energy as long as their
effective energy-momentum tensor satisfies the strong energy condition outside the
event horizon[18]. All these parameters were assumed to be positive. When α = 0,
this spacetime reduces to the Kerr metric, which means the absence of surrounding
matter.

The solutions of the equation

∆ = r2 + a2 − 2Mr + αr2e−r/(M−h0
2 ) = 0 (3.51)

will give us the horizons. One can find the numerical results of the horizon structure
with different parameter values in [117]. However, the exact analytical solutions are
impossible for this ∆ function.

Nevertheless, we can use the approximate method to solve (3.51) analytically as

long as αe−r/(M−h0
2 ) ≪ 1, which means that the new field where the hair originate

from is less dense, such that the deviation from the standard Kerr black hole is
small, and it will also satisfy the condition for (3.51) to have two distinct real
solutions, see [117].

For the Kerr black hole, ∆kerr = r2+a2−2Mr = (r−r+)(r−r−), where r+ and
r− are the so-called event and inner horizon, respectively. They can be considered

as the zero-order solution (in terms of αe−r/(M−h0
2 )) of equation (3.51). Because

Eq. (3.51) can be written as

r2 + a2 − 2Mr = −αr2e−r/(M−h0
2 ) (3.52)

where the right side is much smaller than the left side if αe−r/(M−h0
2 ) ≪ 1, so the

right side is the small perturbation. Thus, if we bring the zero-order solutions r±
into the right-hand side of (3.52), we obtain high-order approximate solutions, they
are

∆kerr + αr2+e
−r+/(M−h0

2 ) = (r − rI+)(r − r̃−)

∆kerr + αr2−e
−r−/(M−h0

2 ) = (r − r̃+)(r − rI−)
(3.53)
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where rI+ and rI− can be regarded as the first-order approximate solutions of (3.51),
while r̃+ and r̃− are the two additional roots, since we are solving two quadratic
equations, and they are numerically less accurate compared to rI+ and rI−. The
explicit forms for rI+ and rI− are given by

rI+ = M +

√
M2 − a2 − αr2+e

−r+/(M−h0
2 ) (3.54)

rI− = M −
√

M2 − a2 − αr2−e
−r−/(M−h0

2 ) (3.55)

For better accuracy, we could substitute rI+ and rI− back to the right hand side of
(3.52) and repeat the above process to get more accurate second order solutions of
(3.51),

rII+ = M +

√
M2 − a2 − αrI 2+ e−rI+/(M−h0

2 ) (3.56)

rII− = M −
√

M2 − a2 − αrI 2− e−rI−/(M−h0
2 ) (3.57)

they could be considered as the event horizon and inner horizon of metric (3.50).
One could repeat the approximation steps to obtain higher order solutions, but
second order rII+ and rII− are sufficient in this work, see Appendix.7.2. This approx-
imation method has been used previously to study rotating regular black holes in
[131]. In the following, for simplicity, we will define r̂+ ≡ rII+ and r̂− ≡ rII− . Then
the ∆ function could be approximately written as

∆ ≈ (r − r̂+)(r − r̂−) (3.58)

In the following sections, whenever we write ∆ for metric (3.50), we refer to the
above function (3.58).

3.2.3 Decoupled perturbation equations

The spacetime symmetries and the asymptotic behavior of this rotating hairy black
hole (3.50) are the same to Kerr black hole[11], so we can decompose the perturba-
tion field Φ with the ansatz

Φ (xµ) = e−iωteimϕSslm(θ)Rslm(r) (3.59)

where ω is the complex-valued frequency, l, m are the quantum numbers.
In a breakthrough work [100], it was shown that the linear gravitational per-

turbations of Kerr geometry can be described by a master equation: the Teukolsky
equation. However, the Teukolsky equation does not apply to the metric (3.50)
because it is not a solution of Einstein’s field equation. Fortunately, using the ap-
proximation for the ∆ function in subsection.3.2.2, we can see from Eq.(3.53) that
it effectively corresponds to the ∆ function of a Kerr-Newman black hole, with the

effective charge Qeffect ≈
√
αr̂2+e

−r̂+/(M−h0
2 ) or

√
αr̂2−e

−r̂−/(M−h0
2 ) (we used the

results of the second order approximation). For a Kerr-Newman black hole, it has
been shown that the gravitational perturbation can be described by the Dudley-
Finley equation [132], which provides a good approximation to the dynamics of the
perturbation field when the electric charge Q ≤ M/2 [133, 134]. The condition is
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also satisfied in our situation, since we assume Qeffect ≪ M by the definition of the
approximation method in subsection.3.2.2.

The final ∆ function (3.58) we considered could be seen as a Kerr-Newman black
hole with effective mass Meffect = (r̂+ + r̂−)/2 and charge Qeffect =

√
r̂+r̂− − a2.

It could be proved that Qeffect ≪ Meffect. Therefore, we can approximately obtain
a pair of differential equations from the Dudley-Finley equation [133, 134], and in
fact these two equations have the same form as the Teukolsky equations, with the
only difference that we replace ∆kerr by ∆ function (3.58) compared to the Kerr
case. The radial equation has the following form

∆−s d

dr

(
∆s+1dRslm

dr

)
+

(
K2 − isK∆′

∆
+ 4isωr − λ

)
Rslm(r) = 0 (3.60)

where s is the spin weight of the gravitational field, K = (r2 + a2)ω − am and
λ = Λlm + a2ω2 − 2amω, Λlm is the separation constant, they are the eigenvalues
with respect to the following angular equation,

1

sin θ

d

dθ

(
sin θ

dSslm

dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2saω cos θ

−2sm cos θ

sin2 θ
− s2 cot2 θ + s+ Λlm

)
Sslm(θ) = 0 (3.61)

The solutions of the angular equation are Slm(θ), which are called spheroidal har-
monics [136]. In the nonrotating or spherically symmetric limit case, the spheroidal
harmonics reduce to the well-known spherical harmonics Ylm and also Λlm ≈ l(l +
1)− s(s+ 1).

We define u(r) ≡
√
r2 + a2Rslm(r) and switch to the tortoise coordinate via

dr∗ = r2+a2

∆
dr, after some algebra, the radial function (3.60) takes the following

Schrödinger-like form
d2u (r∗)

dr2∗
+ V(r)u (r∗) = 0 (3.62)

with the effective potential V(r) given by

V(r) =
(
ω − am

a2 + r2

)2

− isω∆′

a2 + r2
+

isam∆′

(a2 + r2)2

+
∆

(a2 + r2)2
(4isωr − λ)− dG

dr∗
−G2 (3.63)

where G = r∆/(r2+a2)2+s∆′/2(r2+a2). The last two terms represent the effect of
introducing the tortoise coordinate dr∗. The other terms result from the potential
of Eq.(3.60) divided by (r2 + a2)2.

3.2.4 Superradiance and amplification factor

Within a certain black hole parameter space, the incident gravitational waves can
be amplified if they are scattered by a rotating black hole. In this way, the grav-
itational waves can efficiently extract the rotational energy of the black hole, i.e.,
the gravitational waves of the black hole are superradiant. We focus on the regime
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in which the back-reaction of the superradiant waves on the geometry is negligible,
i.e., the background spacetime metric is held fixed. This can be easily satisfied since
we are working in the linear perturbation framework, and furthermore the super-
radiant waves are typically distributed over a very large area, which implies very
low density and consequently small back-reaction effects. The work [135] which
investigate the back-reaction of bosonic clouds on the Kerr geometry could be a
good reference.

In this section we will examine the conditions for the occurrence of superradi-
ance. We consider the following boundary conditions of Eq.(3.62),

uh(r∗) = Ts∆
−s/2 exp (−ikhr∗) , r∗ −→ −∞(r → r̂+)

u∞(r∗) = Isr
s exp (−iωr∗) +Rsr

−s exp (iωr∗) , r∗ −→ ∞(r → ∞)
(3.64)

where kh = ω−mΩh, Ωh = a/(r̂2+ + a2). The above boundary conditions state that
there is an incoming wave from spatial infinity with amplitude Is that is scattered
at the event horizon such that it produces reflected waves with amplitude Rs and
transferred waves with amplitude Ts respectively. The subscription s means that
all amplitudes are s dependent.

To quantify how much the incident waves were amplified due to superradiance,
one usually refers to the amplification factor Zslm, which is given by [71, 137]

Zslm =

∣∣∣∣RsR−s

IsI−s

∣∣∣∣− 1 (3.65)

where R−s and I−s means the substitution of s by −s in the solution of Eq.(3.62)
with the asymptotic behavior of u∞(r∗) given by

u∞(r∗) = I−sr
−s exp (−iωr∗) +R−sr

s exp (iωr∗) , r∗ −→ ∞(r → ∞) (3.66)

The derivation of Zslm in this rotating hairy black hole (3.50) spacetime is about
the same as in Kerr[71], with the difference that r+ is replaced by r̂+. However,
this changes the geometry of the region near the horizon, which also affects the
amplification factor. Just to be self-content, we shall briefly discuss the calculation
process of amplification factor Zslm.

We will consider the low frequency range ωM ≪ 1 which also implies aω ≪ 1.
These approximations allow us to use the matching-asymptotic techniques [101,
102, 138] as follows.

We divide the space into two overlapping regions, which we call the near region
ω(r − r+) ≪ 1 and the far region r − r+ ≫ M . Then We can solve the radial Eq.
(3.60) in these two regions and match the solutions in the overlapping region. In
this way, we obtain the analytical solutions for the amplitudes, which we can use
to calculate the amplification factor. The specific steps are as follows.

Let’s rewrite (3.60) as

x2(1 + x)2
d2Rslm

dx2
+ x(x+ 1)(2x+ 1)

dRslm

dx
+ (k2x4 + 2iskx3 − λx(x+ 1)− isQ(2x+ 1) +Q2)Rslm = 0

(3.67)
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where we have defined new variables

x =
r − r̂+
r̂+ − r̂−

(3.68)

k = ω(r̂+ − r̂−) (3.69)

Q =
r̂2+ + a2

r̂+ − r̂−
(mΩh − ω) (3.70)

In the near region, the quantity kx ≪ 1, so Eq.(3.67) could be approximately
written as

x2(x+ 1)2
d2Rslm

dx2
+ x(x+ 1)(2x+ 1)

dRslm

dx
+
(
Q2 − isQ(2x+ 1)− l(l + 1)x(x+ 1)

)
Rslm = 0 (3.71)

the general solutions to the above equation as well as satisfying the boundary con-
ditions (3.64) are given by the hypergeometric functions

Rslm = A1(
x+ 1

x
)−s+iQF (ξ, β, γ,−x) (3.72)

where

γ = 1− s− 2iQ (3.73)

β = l − s+ 1 (3.74)

ξ = −l − s (3.75)

the large x behavior of above solution is

Rslm ∼ A1x
l−sΓ(γ)Γ(β − ξ)

Γ(γ − ξ)Γ(β)
+ A1x

−l−1−sΓ(γ)Γ(ξ − β)

Γ(ξ)Γ(γ − β)
(3.76)

In the far region, equivalently x → ∞, Eq.(3.67) approximately give us

d2Rslm

dx2
+

2

x

dRslm

dx
+

(
k2 +

2isk

x
− l(l + 1)

x2

)
Rslm = 0 (3.77)

The solution of this equation can be written in terms of the confluent hypergeometric
function

Rslm = exp(−ikx)C1x
l−sU(l − s+ 1, 2l + 2, 2ikx)

+ exp(−ikx)C2x
−l−1−sU(−l − s,−2l, 2ikx) (3.78)

Applying the condition kx ≪ 1 and Expanding it with respect to kx, we obtain

Rslm ∼ C1x
l−s + C2x

−l−1−s (3.79)

Now, we can match the solutions (3.76) and (3.79), and it will give us

C1 = A1
Γ(1− s− 2iQ)Γ(2l + 1)

Γ(l + 1− s)Γ(l + 1− 2iQ)

C2 = A1
Γ(1− s− 2iQ)Γ(−1− 2l)

Γ(−l − 2iQ)Γ(−l − s)
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From (3.64), we can know that, when r → ∞, the solution of (3.60) will take
form as

Rslm ∼ u∞(r∗)

r
∼ Is

exp (−iωr∗)

r
+Rs

exp (iωr∗)

r2s+1
(3.80)

Expanding (3.78) at infinity and matching to (3.80), we obtain the analytical ex-
pression for Is and Rs

Is = C1
(−2i)s−l−1ks−lΓ(2l + 2)

ωΓ(l + s+ 1)
+ C2

(−2i)l+skl+1+sΓ(−2l)

ωΓ(−l + s)

Rs = C1
(2i)−l−1−sks−lΓ(2l + 2)

ω2s+1Γ(l + 1− s)
+ C2

(2i)l−skl+1+sΓ(−2l)

ω2s+1Γ(−l − s)
. (3.81)

After some calculations and algebra, we finally find that the amplification factor
(3.65) takes the following explicit form

Zslm = 4Qk2l+1 ((l − s)!(l + s)!)2

((2l)!)2((2l + 1)!!)2
×

l∏
n=1

(
1 +

4Q2

n2

)
(3.82)

The above formula is applicable to any spin a ≤ M as long as ωM ≪ 1. In Fig.3.4,
Z−222 is shown for different values of the parameter α, h0 and the spin of the black
hole. We can clearly see that the amplification starts at ωM > 0, and stops abruptly
when it comes close to the threshold frequencies mΩh. Increasing the spin of the
black hole leads to an increase in the amplification, and the parameters α and h0

only affect the amplification when the frequencies reach the threshold mΩh. Larger
α and smaller h0 cause a larger threshold frequency.

The formula (3.82) also gives us the conditions of superradiance. If we want the
amplitude of the reflected waves to be larger than that of the incident waves, i.e.
Zslm > 0 which means Q > 0, the following frequency criteria must be fulfilled

0 < ω < mΩh (3.83)

where 0 < ω is required by the boundary conditions. The modes that satisfy the
above condition are also called superradiance modes.

One could also study the amplification of scalar and vector perturbation fields
using the same formula (3.82) by simply substituting s = 0 and s = ±1. However,
we will focus only on amplification of gravitational perturbations because it is more
interesting and could potentially provide phenomenological intuitions for gravita-
tional wave observations. In the next section, we will also study the quasinormal
modes of gravitational perturbations, which are closely related to the ringdown
signal of gravitational waves.

3.2.5 Quasinormal modes

Quasinormal modes are the solutions of the equation (3.62) satisfying the following
boundary conditions,

uh(r∗) ∝ ∆−s/2 exp (−ikhr∗) , r∗ −→ −∞(r → r̂+)

u∞(r∗) ∝ r−s exp (iωr∗) , r∗ −→ ∞(r → ∞) (3.84)
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Figure 3.4: The amplification factor Z−222 for s = −2, l = m = 2, with three black
hole spin a = 0.3M , a = 0.5M and a = 0.7M . The upper plot aims to show
the effects of α to the amplification by setting h0 = M with α ̸= 0 (please note
that α = 0 also means h0 = 0). The lower plot is to show the effects of h0 to the
amplification by setting α = 0.5.
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These boundary conditions mean that there are only incoming waves at the event
horizon, while there are pure outgoing waves at spatial infinity. These conditions
lead to discrete eigenvalue frequencies. Quasinormal modes are also called ”finger-
prints” of black holes. This is because they are completely determined by the hair
parameters of the black hole, such as mass and spin.

There are a number of different approaches to calculating quasinormal modes,
see reviews in [103, 104, 105]. In this work we will use the popular continued
fraction method, which has been used in many outstanding papers, including recent
ones[106, 107, 108, 131].

continued fraction method

According to the boundary conditions (3.84) and the poles of the radial Eq. (3.60)
we can formulate a series solution for Rslm(r) as

Rslm(r) = (r − r̂+)
−iσ+ (r − r̂−)

iσ− y(r − r̂−) (3.85)

where −iσ+ and iσ− are the indices of Rslm(r) corresponding to the singular points
r = r̂+ and r = r̂− respectively, they have the form

−iσ+ = −s− i
ωr̂+ − am

b
(3.86)

iσ− = −s+ i
ωr̂+ − am

b
(3.87)

where b = r̂+− r̂−. For simplicity, we define x = r− r̂− and thus ∆ = x(x−b). Then
we can rewrite (3.85) and (3.60) into the expression of x and substitute the series
solution (3.85) into (3.60). Next, we compute the derivatives in (3.60). Combining

the terms based on y(x), dy
dx
, and d2y

dx2 , respectively, we obtain the equation for y(x),

x (x− b)
d2y

dx2
+ (B1 +B2x)

dy

dx
+
(
ω2x (x− b)− 2ηω (x− b) +B3

)
y = 0 (3.88)

where B1, B2, B3 and η are given by

B1 = (−s− 1− 2iσ−)b

B2 = 2(iσ− − iσ+ + s+ 1)

B3 = 2ω2r̂2+ + ω2(r̂+ + r̂−)
2 + a2ω2 − Λlm

+ i(2s+ 1)(σ− − σ+)− (σ− − σ+)
2 − isω(b+ 2− 4r̂+)

η = −ω(r̂+ + r̂−)− is

The function y(x) can be extended to a power series in the following form

y(x) = eiωxx−(1/2)B2−iη

∞∑
n=0

dn

(
x− b

x

)n

(3.89)

Substituting this new power series solution of y(x) into Eq.(3.88). We obtain the
coefficients dn satisfying a three term recurrence relation as follows

α0d1 + β0d0 = 0 (3.90)

αndn+1 + βndn + γndn−1 = 0, n = 1, 2, 3, ... . . . (3.91)
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where the coefficients are

αn = n2 + (c0 + 1)n+ c0
βn = −2n2 + (c1 + 2)n+ c3
γn = n2 + (c2 − 3)n+ c4 − c2 + 2

(3.92)

and the intermediate constant cn are defined as

c0 = B2 +B1/b
c1 = −2 (c0 + 1 + i (η − ωb))
c2 = c0 + 2(1 + iη)
c3 = −c4 − 1

2
B2

(
1
2
B2 − 1

)
+ η(i− η) + iωbc0 +B3

c4 =
(
1
2
B2 + iη

) (
1
2
B2 + iη + 1 +B1/b

) (3.93)

By combining Eq.(3.90) and (3.91), we can get

0 = β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

. . . (3.94)

If the power series (3.85) and (3.89) converge and satisfy the boundary condition
r = ∞ (3.84), then for a given a, M , α, h0, and Λlm the frequency ω must be a
root of the continued fraction Eq.(3.94) or any of its inversions. The solutions of
Eq.(3.94) give us the quasinormal modes.

numerical results

For simplicity and in agreement with the literature, we set M = 1 as the unit in
the rest of this paper. Then the radial distance r, the hair parameter h0 and the
spin of the black hole a are measured in the unit M , while the frequency ω is given
in the unit M−1.

Our numerical procedures are as follows: first, we compute the angular eigenval-
ues using the Leaver method[109], by fixing the values for (α, h0, l, m, a). Then the
continued fraction Eq.(3.94) is only a function of the quasinormal modes ω. It is
more convenient and necessary to truncate the continuing fraction to a certain order
N , so we use the technique developed by Nollert [110] to fix the value of N . Finally,
the root-finding algorithm (built-in functions in Wolfram Mathematica) is used to
find the roots of Eq. (3.94). Previous calculations of quasinormal modes in the
Kerr background and also the scalar field perturbation scenario [139, 111, 112] are
used to validate and verify our numerical methods. The errors of the quasinormal
modes caused by using the approximation (3.56) and (3.57) are smaller than 10−2,
see Appendix.7.2, they become extremely accurate in the slow rotation region.

In Table.3.4 we show some of the quasinormal modes for the fundamental mode
(s = −2, l = m = 2) with different black hole spins a, parameter α by setting
h0 = 1. The columns with α = 0 correspond to the quasinormal modes of the
Kerr black hole, which are in excellent six decimals agreements with the results
previously obtained by [139]. In Table.3.5 we show some of the (s = −2, l = m = 2)
quasinormal frequencies for the fundamental mode with different black hole spins
and parameter h0 by setting α = 0.5. In Table.3.6 we show few overtones of
(s = −2, l = m = 2) quasinormal frequencies with different black hole spins a, by
setting h0 = 1 and α = 0.5.
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h0 = 1 α = 0, Kerr α=0.1 α=0.5 α=1
a Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0.1 0.387018 0.088706 0.387514 0.089016 0.389570 0.090307 0.392310 0.092044
0.2 0.402145 0.088311 0.402704 0.088634 0.405023 0.089980 0.408122 0.091795
0.3 0.419527 0.087729 0.420173 0.088067 0.422858 0.089476 0.426465 0.091385
0.4 0.439842 0.086882 0.440609 0.087229 0.443813 0.088683 0.448146 0.090663
0.5 0.464123 0.085639 0.465067 0.085980 0.469026 0.087410 0.474434 0.089363
0.6 0.494045 0.083765 0.495261 0.084067 0.500398 0.085320 0.507520 0.087007
0.7 0.532600 0.080793 0.534283 0.080988 0.541479 0.081742 0.551710 0.082628
0.8 0.586017 0.075630 0.588656 0.075563 0.600233 0.075057 0.617659 0.073752
0.9 0.671614 0.064869 0.677072 0.064026 0.703157 0.059362 0.753330 0.048227

Table 3.4: Values of the quasinormal modes for the fundamental mode, with s = −2,
l = m = 2, h0 = 1 with different values of α and spin a. α = 0 corresponds to Kerr
black hole

α = 0.5 h0 = 0.5 h0=1 h0=1.5 h0=1.99
a Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0.1 0.397183 0.095178 0.389570 0.090307 0.387063 0.088734 0.387017 0.088706
0.2 0.413525 0.095024 0.405023 0.089980 0.402195 0.088333 0.402145 0.088311
0.3 0.432555 0.094764 0.422858 0.089476 0.419576 0.087720 0.419527 0.087729
0.4 0.455153 0.094289 0.443813 0.088683 0.439877 0.086787 0.439842 0.086882
0.5 0.482712 0.093406 0.469026 0.087410 0.464125 0.085370 0.464123 0.085639
0.6 0.517632 0.091731 0.500398 0.085320 0.493995 0.083205 0.494045 0.083765
0.7 0.564612 0.088411 0.541479 0.081742 0.532508 0.079807 0.532600 0.080793
0.8 0.635179 0.081067 0.600233 0.075057 0.586002 0.074068 0.586017 0.075630
0.9 0.778872 0.057647 0.703157 0.059362 0.672405 0.062476 0.671614 0.064869

Table 3.5: Values of the quasinormal modes for the fundamental mode, with s = −2,
l = m = 2, α = 0.5 with different values of h0 and spin a.

From Table.3.4, Table.3.5, and Table.3.6, we notice that the real part of the
quasinormal frequencies increases with the spin of the black hole, while the imagi-
nary part decreases with the spin, regardless of the parameters and overtones are.
This can be caused by the choice of a certain quantum number l = m = 2.

To better show the dependence of the quasinormal frequencies on the quantum
number (l,m) and the spin of the black hole, we have also computed (s = −2,
l = 2, 3, m = −l....l) quasinormal frequencies from a = 0.01 to a = 0.91, with
parameters α = 0.5, h0 = 1, The results are shown in Fig.3.5. Please note that here
and in all further figures we have used the minus Im(ω) for the imaginary part of
the quasinormal modes. We see that the quantum number l causes only a general
shift of the quasinormal modes. However, non-negative m causes the real part of
the quasinormal modes to increase with spin (larger m, larger ratio of increase),
while negative m causes the opposite. For the imaginary part, all decrease with
spin.

Next, we want to investigate how the hairy parameters α and h0 affect the
relation between the quasinormal modes and the spin of the black hole. Therefore,
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Figure 3.5: The s = −2 fundamental quasinormal modes with l =2, 3, α = 0.5,
h0 = 1 and different values of m. The upper panel is the real part. From top to
bottom, solid lines correspond to m = l, ..., 1, dotted line m = 0, and dashed lines
correspond to m = −1, ...,−l. The low panel is the minus imaginary part, From
top to bottom, solid lines correspond to m = 1, ..., l, dotted line m = 0, and dashed
lines correspond to m = −l, ...,−1.
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Figure 3.6: The s = −2 fundamental quasinormal modes with l = m = 2 as a
function of spin a, with different combinations of α, h0. The upper panel is the real
part while the low panel is the minus imaginary part
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Figure 3.7: The real and imaginary part of s = −2, l = m = 2 fundamental
quasinormal modes as a function of parameter α ∈ [0, 1], with different spin a and h0

(please note when a ≤ 0.7, the errors are also below 10−2 even with α = 1, h0 = 0.5,
see Fig.7.2)
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Figure 3.8: The s = −2 fundamental quasinormal modes with l = m = 2 as a
function of parameter h0 ∈ [0.5, 2], with different spin a and α. The upper panel is
the real part while the low panel is the minus imaginary part.
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α=0.5, h0 = 1 n = 0 (α=0) n=0 n=1 n=2
a Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω) Re(ω) -Im(ω)
0.1 0.387018 0.088706 0.389570 0.090307 0.363668 0.275243 0.319704 0.477473
0.2 0.402145 0.088311 0.405023 0.089980 0.381088 0.273410 0.340243 0.471936
0.3 0.419527 0.087729 0.422858 0.089476 0.400989 0.270985 0.363435 0.465366
0.4 0.439842 0.086882 0.443813 0.088683 0.424145 0.267668 0.390088 0.457279
0.5 0.464123 0.085639 0.469026 0.087410 0.451751 0.262947 0.421462 0.446879
0.6 0.494045 0.083765 0.500398 0.085320 0.485800 0.255900 0.459693 0.432749
0.7 0.532600 0.080793 0.541479 0.081742 0.530002 0.244640 0.508836 0.411948
0.8 0.586017 0.075630 0.600233 0.075057 0.592584 0.224438 0.577928 0.376740
0.9 0.671614 0.064869 0.703157 0.059362 0.700220 0.177572 0.694559 0.296919

Table 3.6: Values of the quasinormal modes for the fundamental mode n = 0 and
few overtones n =1, 2, with s = −2, l = m = 2, α = 0.5, h0 = 1 for different values
of spin a. The n = 0 (α=0) column correspond to the Kerr black hole case. As
one expect, the higher overtone, the smaller real part and bigger imaginary part of
quasinormal modes.

in Fig.3.6 we plot the real and imaginary parts of the quasinormal frequencies as a
function of the black hole spin, with different combinations of the parameters α and
h0. We can see that α and h0 do not affect the overall tendency between quasinormal
modes and the spin of the black hole, but slightly change the slopes. In particular,
for the imaginary part, there are crossings between different combinations of the α
and h0 parameters in the high spin regime.

To see it more clearly, we examine respectively how α and h0 will affect the
quasinormal frequencies. We have plotted the (s = −2, l = m = 2) fundamental
quasinormal modes as a function of the parameter α in Fig.3.7 and h0 in Fig.3.8,
by fixing three spin and the other one parameter. We find that both the real and
imaginary parts of the quasinormal modes increase monotonically with α. However,
the reverse is true for h0: the larger h0 becomes, the smaller the quasinormal modes
become, and they almost become a constant when they reach the limit h0 = hK .
Nevertheless, we can see from both Fig.3.7 and Fig.3.8 that the larger the spin, the
larger the real part of the quasinormal modes and the smaller the imaginary part.

3.2.6 Conclusion and discussion

In this work, we study the phenomenology of gravitational perturbation around
rotating hairy black holes. We first introduced the hairy black hole (3.50) and
also used an approximation method to obtain the horizons analytically. Then we
derived the master equations of the gravitational perturbation field including a
radial part (3.60) and an angular part (3.61). Based on these equations, we studied
the superradiance instability and quasinormal modes of the rotating hairy black
holes.

For superradiance, we derived the conditions for superradiance to occur. The re-
sults show that amplification occurs when certain frequency criteria are met (3.83).
Then, we calculated the amplification factor with low frequency approximations by
using the matching-asymptotic technique. In the end, we obtained the formula to
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calculate amplification factor (3.82) and plotted the s = −2, l = m = 2 modes with
different parameters.

As for the quasinormal modes, we have calculated the quasinormal modes of the
rotating hairy black hole numerically using the continued fraction method. We first
present three tables (Table.3.4, 3.5, 3.6), and the columns α = 0 in Table.3.4 and
Table.3.6 could validate our numerical approaches. They agree very well with the
previous results in the Kerr limit [139]. Then we demonstrated and drew several
figures to show how the quasinormal modes change with the variation of different
parameters: (a) fundamental quasinormal modes as a function of quantum number
(l,m); (b) fundamental quasinormal modes as a function of black hole spin a; (c)
fundamental quasinormal modes as a function of hairy parameters α, h0; By fixing
the other parameters respectively.

The results of both superradiance instability and quasinormal modes show that
the rotating hairy black hole is different from a Kerr black hole. Although the dis-
crepancies are small, one might still expect that this should have some consequences
for observations such as GW, in particular the discovery and accurate identification
of the ringdown signal could provide the ’smoking gun’ for testing this rotating
hairy black hole. We will continue these studies in the future.



Chapter 4

Energy extraction from
alternative black holes via
magnetic reconnection mechanism

This chapter is based on the following two first-author papers:
• Energy extraction from rotating regular black hole via Comisso-
Asenjo mechanism
Authors: Zhen Li, Xiao-Kan Guo and Faqiang Yuan
Published in Phys.Rev.D, 108, 044067 (2023). arxiv: 2304.08831.
Author contributions:
Zhen Li proposed the idea and carried out all the figure plotting, code and
draft writing, as well as the manuscript revision. Zhen Li also did the majority
of the calculations. Xiao-Kan Guo and Faqiang Yuan calculated the light
ring data in the parameter space figure. Xiao-Kan Guo and Faqiang Yuan
also provided comprehensive feedback throughout the writing process and
proofread the manuscript.

• Energy extraction via Comisso-Asenjo mechanism from rotating
hairy black hole
Authors: Zhen Li, Faqiang Yuan
Published in Phys.Rev.D 108, 024039 (2023). arxiv: 2304.12553.
Author contributions:
Zhen Li proposed the idea and carried out all the figure plotting, code and
draft writing, as well as the manuscript revision. Zhen Li also did the ma-
jority of the calculations. Faqiang Yuan calculated the light ring data in the
parameter space figure. Faqiang Yuan also provided comprehensive feedback
throughout the writing process and proofread the manuscript.

4.1 Energy extraction from rotating regular

black hole

Abstract: Recently, it has been demonstrated by Comisso and Asenjo that mag-
netic reconnection processes in the ergosphere of a Kerr black hole can provide us
with a promising mechanism for extracting the rotational energy from it. In this

50
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paper, we study the energy extraction from the the newly proposed rotating regular
black holes via this Comisso-Asenjo mechanism. This novel rotating regular black
hole has an exponential convergence factor e−k/r on the mass term characterized
by the regular parameter k in the exponent. We explore the effects of this reg-
ular parameter on the magnetic reconnection as well as other critical parameters
determining the Comisso-Asenjo process. The parameter spaces allowing energy
extraction to occur are investigated. The power, efficiency and the power ratio to
the Blandford-Znajek mechanism are studied. The results show that the regularity
of the rotating black hole has significant effects on the energy extraction via the
Comisso-Asenjo mechanism.

4.1.1 Introduction

General relativity is the theory that best captures our present understandings of
gravitational interaction. Gravitational waves [1, 53, 54] and black hole images
[2, 55] have recently been observed, adding to the compelling evidences for general
relativity. However, general relativity also encounters a number of difficulties and
issues, of which the singularity problem in classical general relativity [3, 140] is
the most severe one. It is generally accepted that singularities do not exist in
nature and instead show the limits of general relativity. The regular black holes,
which are solutions with horizons but are nonsingular in the sense that curvature
invariants are finite everywhere, can offer an alternative solution for the singularity
problem. In addition to the typical regular black hole solutions such as the Bardeen
and Hayward regular black holes [60, 62, 141], many new regular black holes are
derived and studied recently (cf. the review [142]). To construct such regular black
hole solutions, one could modify the shape function in the black hole metric in
such a way that the the curvature invariants are finite. A highly efficient way
of obtaining regular solution is to multiply the mass function by an exponential
factor e−k/r, and many new regular black hole metrics have been generated by this
approach [143, 10, 11, 144, 145, 146, 14, 13, 15, 16]. In particular, the regular
rotating black hole obtained this way [14, 15, 16], which are different from those
obtained by the Newman-Janis algorithm [147], have attracted lots of attention,
but the phenomenological studies of such black holes are still very lacking. There
are a few works exploring this aspect, mainly focusing on the black hole image and
quasinormal mode effects [148, 149, 150, 152, 151], and therefore other astrophysical
tests of regular rotating black holes are desirable.

A rapidly rotating black hole will produce an anti-parallel magnetic field con-
figuration in the equatorial plane [153, 154]. Both numerical simulations [155, 156,
157, 158] and black hole image [2, 55] support that the main condition for this con-
figuration is realistic. Comisso and Asenjo have shown in their remarkable paper
[25] that this peculiar magnetic field configuration could lead to a fast magnetic
reconnection process inside the ergosphere when the aspect ratio of the current
sheet exceeds critical value [159, 160, 161], which can convert an amount of mag-
netic energy into plasma particle energy so that the plasma can escape from the
reconnection layer. We will denote this new mechanism as the Comisso-Asenjo
mechanism in order to distinguish with previous attempts in magnetic reconnec-
tion [162]. Comisso-Asenjo mechanism offers us a brand new way to extract energy
from the rotating black holes. It has also been shown in many numerical simula-
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tions that there is always a dominant point at which the reconnection process occurs
[155, 157, 158]. In this Comisso-Asenjo magnetic reconnection process, one part of
the plasma or flux is accelerated and another part is decelerated in the opposite
direction. If the decelerated part has a negative energy and the accelerated part
has an energy greater than its rest mass and thermal energy at infinity, the energy
is extracted from the rotating black hole by magnetic reconnection [25]. The frame
dragging effect of a rapidly rotating black hole causes this process to occur over
and over again. In comparison with other energy extraction mechanisms, such as
the Penrose process [163, 164] and the Blandford-Znajek mechanism [165], such a
mechanism could be dominant in extracting the rotational energy of black holes.

The energy extraction via Comisso-Asenjo mechanism was first studied in the
Kerr black hole [25] and recently extended to many other rotating black holes
[166, 167, 168, 169, 170]. All the results show that the effects on the reconnection
process of non-Kerr black holes are significantly different from the Kerr case. In this
work, we aim to investigate the energy extraction from the rotating regular black
hole via Comisso-Asenjo mechanism in the ergosphere. Because this process could
potentially produce more high-energy astrophysical phenomena, it allows us to test
the rotating regular black hole hypothesis across a wider observational range.

This section is organized as follows: We introduce the rotating regular black hole
spacetime in subsection.4.1.2. Then in subsection.4.1.3, we will present the formu-
lations of Comisso-Asenjo mechanism, especially the equations of plasma energy-at-
infinity density per enthalpy and the conditions for energy extraction from a regular
rotating black hole to occur. Next, based on the formulas in the last section, in sub-
section.4.1.4, we will explore the parameter spaces allowing energy extraction from
the rotating regular black hole via Comisso-Asenjo mechanism. In subsection.4.1.5,
we study the power and efficiency of this mechanism with different parameter combi-
nations. We also compare the power ratio between the Comisso-Asenjo mechanism
and the Blandford-Znajek mechanism in this section. In subsection.4.1.6, we will
make a conclusion.

4.1.2 Rotating regular black hole

The metric of rotating regular black hole that we will discuss can be written in the
Boyer-Lindquist coordinates as [15, 16],

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 + 2gtϕdtdϕ (4.1)

where the metric components are given by

gtt = −
(
1− 2Mre−k/r

Σ

)
gtϕ = −2aMre−k/r

Σ
sin2 θ

grr =
Σ

∆
gθθ = Σ

gϕϕ =

(
r2 + a2 +

2Mra2e−k/r

Σ
sin2 θ

)
sin2 θ (4.2)

with Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mre−k/r. The mass, specific angular
momentum, and regular parameters, M , a, and k, are assumed to be positive.
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The Kerr metric could be retained when we set k/r = 0. Here and after, we use
geometrized units with G = c = 1.

The solutions of equation

∆ = r2 + a2 − 2Mre−k/r = 0 (4.3)

give the horizons. However, there are no analytical solutions. The numerical re-
sults of horizon structure as well as the ergosphere with different parameters were
discussed in [14]. We will restrict our discussion on the value of regular parameter
k such that (4.3) has two distinct real solutions (outer/event horizon and inner
horizon), i.e, k should be less than the critical value kEH

c which decreases as a
increases.

Although the metric (4.1) mainly modifies the Kerr spacetime inside the event
horizon, they also affect the spacetime outside the event horizon. One of the main
purposes of this paper is to examine how the exponential convergence factor, rep-
resented by regular parameter k, affect the magnetic reconnection process in the
ergosphere.

4.1.3 Energy extraction via Comisso-Asenjo mechanism

In this section, we present the Comisso-Asenjo formulas [25] of calculating the
energy at infinity associated with accelerated/decelerated plasma in the spacetime
(4.1). It is more convenient to evaluate the plasma energy density in the “zero-
angular-momentum-observer” (ZAMO) frame [171]. The metric (4.1) in ZAMO
frame takes the form of a Minkowski metric

ds2 = −dt̂2 +
3∑

i=1

(
dx̂i
)2

= ηµνdx̂
µdx̂ν (4.4)

where
dt̂ = αdt, dx̂i =

√
giidx

i − αβidt (4.5)

with

α =

(
−gtt +

g2ϕt
gϕϕ

)1/2

, βϕ =

√
gϕϕω

ϕ

α
. (4.6)

We define ωϕ = −gϕt/gϕϕ as the angular velocity of the frame dragging due to the
rotating regular spacetime.

For a contra-variant vector aµ in the Boyer-Lindquist coordinates, when trans-
formed into the ZAMO frame, which we denote by âµ, the following relation is
obtained:

â0 = αa0, âi = hia
i − αβia0 (4.7)

and we also have the covariant vector âµ transformation relations

â0 =
1

α
a0 +

∑
i

βi

hi

ai, âi =
1

hi

ai. (4.8)

The one-fluid approximation energy-momentum tensor of this system, in Boyer-
Lindquist coordinates, takes form of

T µν = pgµν + wUµUν + F µ
δF

νδ − 1

4
gµνF ρδFρδ (4.9)
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where p, w, Uµ, and Fµν are, respectively, the proper plasma pressure, enthalpy den-
sity, four-velocity, and electromagnetic field tensor. With this energy-momentum
tensor, we can get the “energy-at-infinity” density e∞ = −αgµ0T

µ0 = e∞hyd + e∞em
[162], where e∞hyd and e∞em are, respectively, the hydrodynamic energy-at-infinity
density and the electromagnetic energy-at-infinity density, and they are given by

e∞hyd = α(wγ̂2 − p) + αβϕwγ̂2v̂ϕ

e∞em =
α

2
(B̂2 + Ê2) + (B̂× Ê)ϕ (4.10)

where γ̂ = Û0 = 1/
√
1−

∑3
i=1(dv̂

i)2, B̂i = ϵijkF̂jk/2, Ê
i = F̂i0 are the Lorentz

factor, the components of magnetic and electric fields respectively. Here, vϕ denotes
the azimuthal component of the plasma outflow velocity in the ZAMO frame [172].
The hat above these quantities means that we evaluate the quantity in the ZAMO
frame.

Just as Comisso and Asenjo [25], we also assume that a considerable portion of
the magnetic energy is converted into kinetic energy of plasma during the Comisso-
Asenjo magnetic reconnection process, one can ignore the contribution of e∞em in the
total energy, which leads to e∞ ≈ e∞hyd. In addition, considering the plasma element
is incompressible and adiabatic, we have [162]

e∞ = α

(
w(γ̂ + βϕγ̂v̂ϕ) +

p

γ̂

)
. (4.11)

One should note that the incompressible and adiabatic assumptions are consistent
with each other. According to the incompressible approximation (see [162]), plasma
fluid is made up of tiny, spatially separated elements with a constant volume. Simi-
lar to a soft ball, the element has a thin, light, closed, adiabatic skin and its volume
is also constant. Here, we made the assumption that plasma gas pressure has no
effect on the plasma and only has an inertia effect on the plasma dynamics. Due to
the assumption that the plasma gas inside the ball is incompressible and adiabatic,
the temperature in the ball is also expected to be constant.

We would like to introduce the local rest frame in order to investigate the lo-
calized magnetic reconnection process, x̄µ = (x̄0, x̄1, x̄2, x̄3), in which the directions
of x̄1 and x̄3 are, respectively, parallel to the radial direction x̄1 = r the azimuthal
direction x̄3 = ϕ. The local rest frame of plasma rotates with Keplerian angular ve-
locity ΩK in the equatorial plane from the perspective of Boyer-Lindquist observer,
which is given by

ΩK =
dϕ

dt
=

−gtϕ,r +
√

g2tϕ,r − gtt,rgϕϕ,r

gϕϕ,r
. (4.12)

Based on the transformation relation of vectors between Boyer-Lindquist and ZAMO
coordinates, we can also obtain the above Keplerian angular velocity observed in
the ZAMO frame, which is given by

v̂K =
ΩK

√
gϕϕ

α
− βϕ. (4.13)
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If we denote the outflow velocity observed in the local rest frame as vout, then the
outflow velocity observed in the ZAMO frame is

v̂ϕ± =
v̂K ± voutcos(ξ)

1± v̂Kvoutcos(ξ)
(4.14)

where ± represent the outflow velocity with corotating (+) and counterrotating
(-) direction relative to the rotation of the black hole. They also correspond to
the accelerated part and decelerated part of the plasma, respectively. In (4.14),
ξ = arctan(v̄1/v̄3) is the plasma orientation angle, v̄1 and v̄3 are the radial and
azimuthal components of plasma velocities in the local rest frame.

With the above equations (4.11) and (4.14), we can get the energy-at-infinity
density of the reconnection outflows as

e∞± =αγ̂K
((
1 + v̂Kβ

ϕ
)
γoutw ± cos(ξ)

(
v̂K + βϕ

)
γoutvoutw

− p

(1± cos(ξ)v̂Kvout) γoutγ̂2
K

)
(4.15)

where γout = 1/
√
1− v2out and γ̂K = 1/

√
1− v̂2K . From [25], Comisso and Asenjo

have derived that vout is related to the properties of plasma magnetization and it
could be expressed as

vout =

√
σ0

σ0 + 1
(4.16)

where σ0 = B2
0/w0 is the plasma magnetization upstream of the reconnection layer,

B0 is the asymptotic macroscale magnetic field and w0 is the enthalpy density of
the plasma. Then, the plasma energy-at-infinity density per enthalpy ϵ∞± = e∞± /w
becomes [25]

ϵ∞± = αγ̂K [
(
1 + βϕv̂K

)
(1 + σ0)

1/2 ± cos(ξ)
(
βϕ + v̂K

)
σ
1/2
0

−1

4

(1 + σ0)
1/2 ∓ cos(ξ)v̂Kσ

1/2
0

γ̂2
K (1 + σ0 − cos2(ξ)v̂2Kσ0)

]
(4.17)

where we have assumed that p = w/4. Eq.(4.17) has exactly the same form as
the one in the Kerr black hole case (see [25]), and the differences are the geometry
quantities that are now replaced by spacetime metric (4.1).

Just like in the Penrose process [163, 164], if the following conditions should be
satisfied

ϵ∞− < 0, ∆ϵ∞+ = ϵ∞+ −
(
1− Γ

4(Γ− 1)

)
> 0 (4.18)

for a relativistic hot plasma, i.e. Γ = 4/3, then we have ∆ϵ∞+ = ϵ∞+ . Consequently,
black hole energy can only be extracted if the decelerated part of plasma in a
magnetic reconnection process acquires negative energy as measurable at infinity,
while the accelerated part of the plasma in the same magnetic reconnection process
acquires energy at infinity larger than its rest mass and thermal energies.
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4.1.4 Parameter spaces for energy extraction

The expression of energy at infinity Eq.(4.17) depends on several critical parameters:
the black hole mass M , the black hole spin a, the dominant reconnection radial
location r (so-called X point [155, 157, 158, 25]), the plasma magnetization σ0, the
orientation angle ξ and the regular parameter k. For simplicity, we will choose units
by setting M = 1 in the rest of this paper, then a, r, and k are measurable in the
unit of M , while σ0 and ξ are dimensionless parameters.

Now, we will show that Comisso-Asenjo mechanism is a viable mechanism to
extract energy from regular rotating black holes in a significant range of parameter
spaces. In order to compare with the literature, the structure of figures in this
section are in reference to the Comisso and Asenjo original paper [25].

First, let us consider how the orientation angle ξ and plasma magnetization
σ0 affect the energy-at-infinity per enthalpy ϵ∞+ and ϵ∞− . For this purpose, taking
r = 1.5, a = 0.89 and k = 0.1, we plot ϵ∞+ and ϵ∞− as a function of σ0 with different
ξ in Fig.4.1. We can see that ϵ∞+ increases with the plasma magnetization σ0 while

0 2 4 6 8 10

0

1

2

3

4

5

+
,

a=0.89, k=0.1

= /12
= /6
= /4
+

Figure 4.1: The behaviors of ϵ∞+ (dotted curve) and ϵ∞− (solid curve) as a func-
tion of plasma magnetization σ0 ∈ [0, 10], with different orientation angle ξ =
π/12, π/6, π/4. The dominant reconnection radial location is taken as r = 1.5, with
black hole spin a = 0.89 and regular parameter k = 0.1. The black solid line is
ϵ∞+ = ϵ∞− = 0 as reference.

ϵ∞− decreases with the plasma magnetization σ0. It is easy to satisfy the condition
∆ϵ∞+ = ϵ∞+ > 0, however, the orientation angle is essential for ϵ∞− to be negative. In
order to satisfy the energy extraction conditions (4.18), the orientation angle should
be small enough. The restriction could be relaxed if the plasma magnetization σ0 is
large enough since it can subtract the increase of ϵ∞− due to increase of orientation
angle ξ.
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To investigate the impact of regular parameter k on ϵ∞+ and ϵ∞− , we plot ϵ∞+ and
ϵ∞− as a function of regular parameter k in Fig.4.2 by taking r = 1.6, a = 0.89 and
ξ = π/12 with different plasma magnetization σ0. From both upper plot and lower
plot, we can see that ϵ∞+ and ϵ∞− all decrease as the regular parameter k increases.
Again, ϵ∞+ > 0 is well satisfied regardless of what the plasma magnetization σ0 is.
However, in order to extract energy from the black hole, the condition ϵ∞− < 0 is
not so straightforward to be met. It requires that the regular parameter k should
be large enough. What is more, from both plots, we can see that a large plasma
magnetization σ0 is always beneficial for extracting energy from the black hole.

Let us now examine the parameter space of the dominant reconnection radial
location r and black hole spin a that permit the realization of energy extraction from
black hole via magnetic reconnection. The results are shown in two-dimensional r−a
parameter space plots, see Fig.4.3 and Fig.4.4. In Fig.4.3, we have three plots, they
correspond to different regular parameters k = 0, 0.05, 0.1, respectively by taking
ξ = π/12. The k = 0 case is the Kerr black hole as reference. The critical black
hole spin, under which the rotating black hole has two horizons, decreases as the
regular parameter k increases. We only show the region below those critical black
hole spin. As the regular parameter k increase, the radii of the outer event horizon
and outer ergosphere decrease while that of the light ring increases. The allowed
region for ϵ∞+ > 0 (gray area) is widening in the r dimension while shrinking in the
a dimension. The regions where ϵ∞− < 0 have a great dependency on the plasma
magnetization σ0; the larger σ0, the larger the region with ϵ∞− < 0. The increase
in the regular parameter k will make smaller the black hole spin a available for
ϵ∞− < 0. Regarding Fig.4.4, we aim to exam the effects of orientation angle ξ on the
r − a parameter space by taking σ0 = 100, k = 0.1 . We can see that the smaller
orientation angle ξ, the larger region with ϵ∞− < 0.

4.1.5 Energy extraction power and efficiency

The power and efficiency of energy extraction via the Comisso-Asenjo mechanism
are significant to the black hole evolution and its astrophysical phenomena. In this
section, we will investigate the energy extraction power and efficiency of the rotating
regular black hole (4.1). In [25], Comisso and Asenjo have proposed that these two
quantities essentially depend on how quick the plasma with negative energy-at-
infinity density are absorbed by the black hole per unit time. The power can be
well estimated by [25]

Petr = −ϵ∞−w0AinUin (4.19)

where the reconnection inflow four-velocity Uin = O(10−1) and O(10−2), respec-
tively, refer to the collisionless [173, 174, 175] and collisional regimes [176, 177].
Ain is the cross-sectional area of the inflowing plasma, which can be estimated as
Ain ∼ r2E − r2ph for rapid rotating regular black holes, with rE and rph are the outer
ergosphere and light ring of the rotating regular black hole respectively.

We will investigate the power mainly in the collisionless regime, which is consist
with [25], and it also allows for a higher energy extraction rate than the collisional
regime.

In Fig.4.5, we demonstrate the ratio Petr/w0 as a function of the dominant recon-
nection radial location r for a rapidly spinning black hole (4.1) in the collisionless
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Figure 4.2: The behaviors of ϵ∞− (upper plot) and ϵ∞+ (lower plot) as a function of
the regular parameter k ∈ [0, 0.1], with different plasma magnetization σ0 = 1, 5, 10.
The dominant reconnection radial location is taken as r = 1.6, with black hole spin
a = 0.89 and orientation angle ξ = π/12. The black solid line in the upper plot is
ϵ∞− = 0 as reference.
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Figure 4.3: The parameter space (r − a) with ξ = π/12 and three different regular
parameters k = 0 (upper plot), 0.05(middle plot), and 0.1(lower plot). The colored
regions are ϵ∞− < 0 with σ0 = 1, 5, 10, 50. The gray area is the region where ϵ∞+ > 0.
Black solid curves, black dotted curves, and black dot dashed curves are the radii
of the outer event horizon, light ring, and outer ergosphere respectively.
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Figure 4.4: The parameter space (r − a) with σ0 = 100, k = 0.1 and different
orientation angle ξ. The colored regions are ϵ∞− < 0 with ξ = π/20, π/12, π/6, π/4
respectively. The gray area is the region where ϵ∞+ > 0. Black solid curves, black
dotted curves, and black dot dashed curves are the radii of the outer event horizon,
light ring, and outer ergosphere respectively.

regime Uin = 0.1, with different plasma magnetization σ0 = 10, 100, 1000, 10000 by
taking a = 0.89, ξ = π/12 and k = 0.1. As the plasma magnetization σ0 increases,
the power extracted from the black hole rises monotonically. The power peaks
at those positions near the limiting circular orbit or light ring and then gradually
declines.

We also show the ratio Petr/w0 as a function of the regular parameter k in
Fig.4.6. with different plasma magnetization σ0 = 10, 100, 1000, 10000 by taking
r = 1.5, a = 0.89, ξ = π/12 and Uin = 0.1. The power increases monotonically
for the increasing values of the regular parameter k. In addition, along with the
plasma magnetization σ0, the power rises monotonically as well.

Next, we evaluate the efficiency of energy extraction. It is convenient to define
the efficiency as [25]

η =
ϵ∞+

ϵ∞+ + ϵ∞−
. (4.20)

If η > 1, then the energy will be extracted from the rotating regular black hole.
In Fig.4.7, we show the efficiency η as a function of the dominant reconnection

radial location r with different black hole spin a = 0.87, 0.88, 0.89, 0.90, taking
σ = 100, ξ = π/12, k = 0.1. Note that when a = 0.90, the black hole is an extreme
one for k = 0.10. As reference, we also plot the efficiency for the extreme black
hole. Regarding the nonextremal case, we can see from Fig.4.7 that the efficiency
significantly increases with location r that is closer to the outer event horizon and
decreases below unity when it is close to the ergosphere. Thus, there are peaks for
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Figure 4.5: Petr/w0 as a function of the dominant reconnection radial location r
with different plasma magnetization σ0 = 10, 100, 1000, 10000, by taking a = 0.89,
ξ = π/12, k = 0.1, and Uin = 0.1. The vertical dotted line indicates the limiting
circular orbit, i.e., light ring rph.
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Figure 4.6: Petr/w0 as a function of the regular parameter k with different plasma
magnetization σ0 = 10, 100, 1000, 10000, by taking r = 1.5, a = 0.89, ξ = π/12 and
Uin = 0.1.
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efficiency and the peaks go to a large value and shift to a small location r when
black hole spin a increases.

In order to study the role of the regular parameter k on the efficiency, we plot
the efficiency as a function of the regular parameter k with different plasma magne-
tization σ0 = 10, 100, 1000, 1000 in Fig.4.8, taking r = 1.5, a = 0.89 ξ = π/12. We
can see that the efficiency grows monotonically along with the increasing of regular
parameter k. The effects of plasma magnetization σ0 on the efficiency is dropping
exponentially as σ0 grows and is almost the same for sufficiently large values.
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Figure 4.7: Efficiency η of the magnetic reconnection process as a function of
the dominant reconnection radial location r with different black hole spin a =
0.87, 0.88, 0.89, 0.90, taking σ = 100, ξ = π/12, k = 0.1. Note that the a = 0.90
case is the extreme black hole for k = 0.10.

Last but not least, we compare the powers of the energy extractions via the
Comisso-Asenjoand Blandford-Znajek mechanisms, in the latter of which the black
hole rotation energy is extracted through a magnetic field that threads the event
horizon. Regarding the Blandford-Znajek mechanism, in the so-called maximum
efficiency conditions [178, 179, 180], the power of energy extraction is given by
[165, 181, 182]

PBZ =
κ

16π
Φ2

H(Ω
2
H + C1Ω

4
H + C2Ω

6
H +O(Ω8

H)) (4.21)

where κ is a numerical constant related to the magnetic field configuration and
C1, C2 are numerical coefficients. The magnetic flux crossing the black hole event
horizon is given by ΦH = 1

2

∫
θ

∫
ϕ
|Br|

√
−gdθdϕ = 2π(r2+ + a2)B0sin(ξ), where

r+ is the event horizon. The angular velocity at the event horizon is ΩH =

2ar+e
−k/r+/

(
r2+ + a2

)2
. We assume that the difference in the spacetime metric will
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Figure 4.8: Efficiency η of the magnetic reconnection process as a function of the
regular parameter k with different plasma magnetization σ0 = 10, 100, 1000, 1000,
taking r = 1.5, a = 0.89 ξ = π/12.

only affect the Blandford-Znajek process through geometry quantities, since the
basic magnetic field configurations are the same to the Kerr case. Thus, we have
only modified the geometry quantities in the Blandford-Znajek power of Kerr black
hole and obtain Eq.(4.21). Then, the power ratio between these two mechanism is

Petr

PBZ

∼
−4ϵ∞−AinUin

πκσ0(r2+ + a2)2sin2(ξ)(Ω2
H + C1Ω4

H + C2Ω6
H)

. (4.22)

By taking ξ = π/12, κ = 0.05, C1 = 1.38, C2 = −9.2 respectively [25], we show
the power ratio in Fig.4.9 as a function the plasma magnetization σ0 with different
dominant reconnection radial location r = 1.3, 1.5, 1.7, the near-extreme black hole
spin a = 0.89, 0.99 corresponding to regular parameter k = 0.1, 0 respectively. We
can see that all the power ratios rise sharply along with the plasma magnetization
that is closer to the critical value, and then after their maximum value are attained,
the power ratios drop along with the plasma magnetization. The reason why the
power ratios Eq.(4.22) decrease as the increase in the plasma magnetization is the
different dependency on the plasma magnetization. Since when σ0 → ∞, we have
Petr ∼ σ

1/2
0 and PBZ ∼ σ0 , thus Petr/PBZ ∼ 1/σ

1/2
0 , which decrease with the

increase in plasma magnetization. On the other hand, when σ0 ∼ 1, the force-free
electrodynamics approximation [165, 181, 182] of Blandford-Znajek power becomes
invalid. It is necessary to examine the energy and angular momentum carried onto
the rotating regular black hole by the accreting plasmas. In this scenario, the power
ratios can only be seen as an effective or rough comparison. We also found that the
smaller the dominant reconnection radial location r, the larger the power ratios. In
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addition, the power ratio of Kerr black hole (k = 0) is greater than the regular black
hole (k = 0.1), which shows that, compared with the Kerr black hole, the Comisso-
Asenjo mechanism is less effective at extracting energy from a regular black hole.
Nevertheless, in a very broad parameter range of the plasma magnetization σ0,
the power ratio is greater than 1, which means that the Comisso-Asenj mechanism
is a very promising and an important energy extraction mechanism from rotating
regular black holes.
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Figure 4.9: Power ratio Petr/PBZ as a function of the plasma magnetization σ0 with
different dominant reconnection radial location r = 1.3, 1.5, 1.7 and [a = 0.89, k =
0.1](dotted curve), [a = 0.99, k = 0] (solid curve), by taking the orientation angle
ξ = π/12. The coefficients are taken as κ = 0.05, C1 = 1.38, C2 = −9.2 respectively.
The black solid line is Petr/PBZ = 1 as reference.

4.1.6 Conclusion

Rotating regular black hole (4.1) is a very promising solution to the singularity
problem in general relativity. In order to verify this proposal, the phenomenolog-
ical study of this spacetime is essential. In this work, we investigated the energy
extraction from a rotating regular black hole (4.1) caused by Comisso-Asenj mag-
netic reconnection process within the ergosphere.

With the assumption that a considerable portion of the magnetic energy is
converted into kinetic energy of plasma during reconnections, we first present the
Comisso-Asenjo formulas of the plasma energy at infinity (4.17) associated with
the accelerated and decelerated part of the same reconnection process as well as the
conditions (4.18) for extracting energy from the rotating regular black hole.
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Then we specifically studied how the plasma magnetization, orientation angle
and especially the regular parameter will affect the behavior of the plasma energy-
at-infinity per enthalpy ϵ∞+ and ϵ∞− , by taking black hole spin and dominant re-
connection radial location as certain values. It turns out that the small value of
orientation angle and large values of plasma magnetization and regular parameter
will be beneficial for the energy extraction via magnetic reconnection from the ro-
tating regular black hole. What is more, in order to explore the effects of the other
parameters settled down, we demonstrated the two dimensional (r − a) parameter
space that satisfies the conditions (4.18). We also show the effects of different regu-
lar parameter, plasma magnetization and orientation angle in the same figures such
that we can fully explore the parameter spaces.

In the subsequent section, we also studied how these critical parameters will
affect the power and efficiency of the energy extraction via the magnetic reconnec-
tion. The power and efficiency all grow with the increasing of regular parameter. It
is interesting that the plasma magnetization almost has no effect to the efficiency
when it becomes large enough.

Finally, we studied the power ratio of the energy extraction via the Comisso-
Asenjo mechanism to the famous Blandford-Znajek mechanism. In a sufficient large
parameter range, the energy extraction via Comisso-Asenjo process is more power-
ful than the Blandford-Znajek mechanism for extracting energy from the rotating
regular black hole. In addition, the Kerr case (k = 0) is more efficient than the
regular black hole case (k = 0.1).

4.2 Energy extraction from rotating hairy black

hole

Abstract: It was demonstrated by Comisso and Asenjo that the magnetic recon-
nection in the ergosphere is a promising mechanism to extract energy from the
rotating Kerr black hole. In this work, we investigate the role of the Comisso-
Asenjo mechanism in energy extraction from the newly suggested rotating hairy
black holes which have an extra hair due to the additional surrounding sources,
such as dark matter or dark energy. We examine how the hairy parameters char-
acterized the hair affect the magnetic reconnection process in addition to other
important variables of the Comisso-Asenjo process, including the parameter spaces
that permit energy extraction, the power, efficiency and power ratios with respect
to the Blandford-Znajek mechanism.

4.2.1 Introduction

It is widely accepted that the physically rotating black holes in the Universe are
described by the Kerr metric, which are characterized by two parameters, i.e., the
mass and the spin. The famous No Hair theorem in classical general relativity
[5, 6, 7, 8, 9] also states that the Kerr metric has no other ’hair’ besides the mass and
spin. However, the unknown dark matter and dark energy, which may originate from
new fundamental fields, could be an additional source of the black hole such that
Kerr black holes obtain a new hair and deviate from the Kerr metric [113]. Based on
this novel idea, recently, the hairy black hole and later its rotating counterpart were
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obtained using the gravitational decoupling approach (GD) [17, 18] which has been
created expressly to describe the deformation of known solutions of general relativity
brought on by additional sources [114, 115]. There are numerous theoretical and
observational investigations on this (rotating) hairy black hole [116, 117, 118, 119,
120, 121, 183, 184].

A fast rotating black hole, on the other hand, will result in an antiparallel mag-
netic field configuration in the equatorial plane [153, 154]. Comisso and Asenjo
have shown that, when the aspect ratio of the current sheet approaches a critical
value [159, 160, 161], this distinctive magnetic field configuration could result in a
quick magnetic reconnection process inside the ergosphere, which is capable of con-
verting a large amount of magnetic energy into the kinematic energy of the plasma
particles which escape from the black hole to infinity [25]. In order to distinguish
this new mechanism from the earlier attempt [162] at magnetic reconnection, we
will refer to it as the Comisso-Asenjo mechanism. Numerous numerical simulations
have also demonstrated that the Comisso-Asenjo reconnection process always oc-
curs at a dominant point [155, 157, 158]. This process keeps repeating due to the
frame-dragging effect of the rotating black hole. Such a mechanism might be more
effective than others for extracting the rotational energy from black holes, such as
the Penrose process [163, 164] and the Blandford-Znajek mechanism [165]. The
Kerr black hole was the first black hole to be studied with energy extraction via
the Comisso-Asenjo mechanism [25] and most lately applied to the other rotating
black holes [166, 167, 168, 169, 170, 185].

In this work, we look into the role of the Comisso-Asenjo mechanism in the
energy extraction from the rotating hairy black hole. Since this process may result
in more high energy astrophysical phenomena, therefore, this work may provide us
phenomenological insights on testing the rotating hairy black hole as well as the No
Hair theorem over a larger spectrum of future observations.

The structure of this section is as follows: The rotating hairy black hole space-
time is presented in subsection.4.2.2. Then in subsection.4.2.3, the Comisso-Asenjo
mechanism formulas will be discussed, along with the equations for plasma energy
at infinity density per enthalpy and the conditions for energy extraction. Next
in subsection.4.2.4, use the Comisso-Asenjo mechanism formulas in the previous
section, we will look into the magnetic reconnection parameter spaces for energy
extraction. In subsection.4.2.5, we examine the power and efficiency of the Comisso-
Asenjo mechanism using a variety of parameter combinations. In this section, we
also examine the power ratios of the Comisso-Asenjo mechanism comparing to the
Blandford-Znajek mechanism. At last, we will make a conclusion in subsection.4.2.6.

4.2.2 Rotating hairy black hole

The GD method, which is specifically created to find deformation of the known
solution of GR [114, 115], was used to derive a rotating hairy black hole in [18]. Its
line element square can be read as follows in the Boyer-Lindquist coordinates:

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 + 2gtϕdtdϕ (4.23)
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where the metrics are provided by

gtt = −
[
∆− a2 sin2 θ

Σ

]
grr =

Σ

∆

gtϕ = −a sin2 θ

[
1− ∆− a2 sin2 θ

Σ

]
gθθ = Σ

gϕϕ = sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
(4.24)

with ∆ = r2 + a2 − 2Mr + λr2e−r/(M−h0
2 ), and Σ = r2 + a2 cos2 θ. M , a denote

the black hole mass and spin. The primary hair h0 measures the rise in entropy
generated by the hair and must meet the requirement h0 ≤ 2M ≡ hK in order
to achieve asymptotic flatness. λ measures deviation from the standard Kerr black
holes and is related to h0 via the equation h0 = λh. The Kerr metric, which denotes
the absence of surrounding matter, is what this spacetime reduces to when λ = 0.

We will get horizons from the equation below

∆ = r2 + a2 − 2Mr + λr2e−r/(M−h0
2 ) = 0 (4.25)

Analytical solutions, however, do not exist. In [117], it was discussed how different
hairy parameters affected the numerical results of the horizon structure and the
ergosphere. We will restrict our discussion on the regime of hairy parameters such
that (4.25) has two distinct real solutions (see[117]).

4.2.3 Energy extraction via the Comisso-Asenjo
mechanism

One part of the plasma accelerates during the Comisso-Asenjo magnetic reconnec-
tion process while the opposing direction part decelerates. If the accelerated half
has an energy larger than its rest mass and thermal energy at infinity and the de-
celerated part has a negative energy, then the energy is extracted from the rotating
black hole by the Comisso-Asenjo mechanism [25]. The formula of the Comisso-
Asenjo mechanism was already presented in subsubsection.4.1.3. To discuss this
mechanism in the rotating hairy black hole scenario, we just need to replace the
metric components in subsubsection.4.1.3 with the quantities specified in (4.23).
So, we will go directly to the results in the next section.

4.2.4 Parameter spaces for energy extraction

The plasma energy at infinity density (4.17) depends on several critical parameters:
the black hole mass M , the black hole spin a, the dominant reconnection radial
location r, the plasma magnetization σ0, the orientation angle ξ, and the hairy
parameters λ and h0. For simplicity, we will choose units by setting M = 1 in the
rest of this paper, then a, r and h0 are measured in the unit of M . λ, σ0 and ξ are
dimensionless parameters.

We will now demonstrate that, in a sizable range of parameter spaces, the
Comisso-Asenjo mechanism is a viable process to extract energy from hairy rotat-
ing black holes. In order to examine the effects of both hairy parameters λ and h0
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on the magnetic reconnection and simplify our discussion, we choose four different
combinations of hairy parameter in the following analysis, which take two typical
values for each hairy parameter in its dominate range and permute them. As a re-
sult, we will use the following combinations: (λ = 0.5, h0 = 0.5), (λ = 0.5, h0 = 1.5),
(λ = 1, h0 = 1.5) and (λ = 1, h0 = 0.5).

We first show the behavior of ϵ∞+ and ϵ∞− as a function of plasma magnetization
σ0 in Fig.4.10, taking r = 1.5 and ξ = π/12 with four different combinations of
hairy parameter and its corresponding maximal black hole spin for which it has
two horizons. We can see that ϵ∞+ increases along with σ0 while the ϵ∞− decreases.
In the entire range, ϵ∞+ > 0 and ϵ∞− < 0 when σ0 ≳ 2 for all the combinations of
hairy parameter, which implies that meeting the conditions (4.18) is easy and it
is very effective to extract energy from the hairy black hole via magnetic recon-
nection in the sufficient parameter range. Although the differences of ϵ∞+ and ϵ∞−
between different combinations of hairy parameter are small, there are still notable
information: the bigger the maximal black hole spin which the hairy parameter
combination corresponds to, the larger ϵ∞+ and smaller ϵ∞− , almost the same when
their maximal black hole spin are equal. That is to say that extract energy via
the magnetic reconnection process has a positive correlation with the black hole
spin. It may be easy to understand this since the higher black hole spin means
more rotational energy. In addition, we also find that the difference of ϵ∞+ and ϵ∞−
between different λ almost disappear when h0 = 1.5, while the differences become
notable when h0 = 0.5. We can conclude that in order to let the effect of the hairy
parameter λ be significant, h0 should be sufficiently small.

To better understand how the black hole spin affects the energy extraction via
magnetic reconnection, we plot the two dimensional (r − a) parameter space in
Fig.4.11 and Fig.4.12. For the four subplots of Fig.4.11, they correspond to four
combinations of hairy parameter. The maximal black hole spin, under which the
rotating hairy black hole has two horizons, is different. We found that the smaller
black hole spin requires a relatively large radial location r such that the energy
extraction via the magnetic reconnection mechanism works. As we discussed before,
here the parameter spaces for (λ = 0.5, h0 = 1.5) and (λ = 1, h0 = 1.5) are almost
the same, this prove again that the effects of λ depend on how small the value of
h0 is. When h0 = 0.5, λ indeed causes a difference in the parameter space as well
as the radii of the outer event horizon, light ring and outer ergosphere. In Fig.4.12,
we aim to examine the effects of orientation angle ξ on the (r− a) parameter space
by taking σ0 = 100, λ = 0.5, and h0 = 1.5 . We can see that the smaller orientation
angle ξ, the larger the region allowing to extract energy from the rotating hairy
black hole via magnetic reconnection mechanism.

4.2.5 Energy extraction power and efficiency

Black hole evolution and its associated astrophysical phenomenon depend signif-
icantly on the power and efficiency of energy extraction via the Comisso-Asenjo
mechanism. We will examine the energy extraction power and efficiency form the
rotating hairy black hole. Comisso and Asenjo have proposed that [25] these two
quantities mostly depend on the rate at which plasma with negative energy-at-
infinity density is absorbed. We denote the power as Petr and it can be well esti-
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Figure 4.10: The behaviors of ϵ∞+ (dotted curve) and ϵ∞− (solid curve) as a function
of plasma magnetization σ0 ∈ [0, 10] with four different combinations of hairy pa-
rameter and black hole spin. The dominant reconnection radial location is taken
as r = 1.5, with orientation angle ξ = π/12. The black solid line is ϵ∞+ = ϵ∞−= 0 as
reference

mated by [25]
Petr = −ϵ∞−w0AinUin (4.26)

where Uin = O(10−1) and O(10−2) respectively refer to the collisionless and colli-
sional regimes. Ain is the cross-sectional area of the inflowing plasma, which can
be estimated as Ain ∼ r2E − r2ph for rapid rotating black holes, and rE, rph are the
outer ergosphere and light ring of the black hole, respectively.

We will investigate the power mainly in the collisionless regime which allows for
a higher energy extraction rate than the collisional regime.

We first plot the ratio Petr/w0 as a function of the dominant reconnection radial
location r in Fig.4.13, with different plasma magnetization σ0 = 10, 100, 1000, 10000,
by taking a = 0.99, ξ = π/12, λ = 0.5, h0 = 1.5 and Uin = 0.1. The power extracted
from the black hole rises monotonically as plasma magnetization rises. The power
steadily declines after reaching a maximum at those locations close to the outermost
circular orbit or light ring.

In order to examine the effects of the hairy parameters λ and h0, we plot the ratio
Petr/w0 as a function of the dominant reconnection radial location r in Fig.4.14,
but with different combinations of hairy parameter, taking σ = 100, ξ = π/12
and Uin = 0.1. The results show that they all rise sharply when the location is
closer to their light ring and then decline along with the increases in radial location
r. The higher the peaks, the faster the decline. The critical locations r where
Petr/w0 = 0 and the peaks where Petr/w0 reach the maximum also shift with the
hairy parameters. The bigger the value of λ, the smaller critical locations and the
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Figure 4.11: The parameter space (r − a) with ξ = π/12 and four different dif-
ferent combinations of hairy parameter. The colored regions are ϵ∞− < 0 with
σ0 = 1, 5, 10, 50. The gray area is the region where ϵ∞+ > 0. Black solid curves,
black dotted curves, and black dot dashed curves are the radii of the outer event
horizon, light ring, and outer ergosphere respectively.
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Figure 4.12: The parameter space (r − a) with σ0 = 100, λ = 0.5, h0 = 1.5
and different orientation angle ξ. The colored regions are ϵ∞− < 0 with ξ =
π/20, π/12, π/6, π/4 respectively. The gray area is the region where ϵ∞+ > 0. Black
solid curves, black dotted curves, and black dot dashed curves are the radii of the
outer event horizon, light ring, and outer ergosphere respectively.

higher peaks when h0 keep unchanged. The bigger the value of h0, the bigger critical
locations and the lower peaks when λ keep unchanged.

Next, we assess the efficiency. It is practical to define the efficiency as [25]

η =
ϵ∞+

ϵ∞+ + ϵ∞−
(4.27)

if η > 1, then the energy will be extracted from the rotating hairy black hole.
We plot the efficiency η as a function of the dominant reconnection radial loca-

tion r in Fig.4.15 with different black hole spin a = 0.90, 0.95, 0.98, 0.99, 1, taking
σ = 100, ξ = π/12, λ = 0.5, h0 = 1.5. Note that the a = 1 case is the over-extreme
black hole. With regard to the non-extreme situation, Fig.4.15 shows that the effi-
ciency sharply increases with location r that is closer to the light ring and gradually
declines after the peaks. As the black hole spin increases, the peaks shift to smaller
locations and grow to higher values.

In addition, we plot the efficiency η in Fig.4.16 as a function of the dominant re-
connection radial location r with different combinations of hairy parameter, taking
σ = 100, ξ = π/12. There are peaks close to their light ring as well, and then all η
decrease along with the radial location r, which seems that the decline rates are the
same at sufficient large location (r ≈ 1.4) regardless the hairy parameter combina-
tions. However, the position and value of the peaks depend on the combinations of
hairy parameter.



CHAPTER 4. ENERGY EXTRACTION FROM ALTERNATIVE BLACK
HOLES VIA MAGNETIC RECONNECTION MECHANISM 72

1.0 1.2 1.4 1.6 1.8 2.0
r / M

0

1

2

3

4

5
P e

tr
/w

0

a=0.99, = 0.5, h0 = 1.5, = /12
= 10
= 100
= 1000
= 10000

Figure 4.13: Petr/w0 as a function of the dominant reconnection radial location
r with different plasma magnetization σ0 = 10, 100, 1000, 10000, by taking a =
0.99, ξ = π/12, λ = 0.5, h0 = 1.5 and Uin = 0.1. The vertical dotted line indicates
the limiting circular orbit, i.e., light ring rph.
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Figure 4.14: Petr/w0 as a function of the dominant reconnection radial location r
with different combinations of the hairy parameter, by taking σ = 100, ξ = π/12
and Uin = 0.1.
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Figure 4.15: Efficiency η of the magnetic reconnection process as a function of
the dominant reconnection radial location r with different black hole spin a =
0.90, 0.95, 0.98, 0.99, 1, taking σ = 100, ξ = π/12, λ = 0.5, h0 = 1.5. Note that the
a = 1 case is the extreme black hole.
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Figure 4.16: Efficiency η of the magnetic reconnection process as a function of
the dominant reconnection radial location r with different combinations of hairy
parameter, taking σ = 100, ξ = π/12.
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Furthermore, we would like to make a power comparison between the energy
extraction via Comisso-Asenjo mechanism and Blandford-Znajek mechanism. Re-
garding the Blandford-Znajek mechanism, it extracts the rotation energy of the
black hole through a magnetic field that threads the event horizon. In the maxi-
mum efficiency conditions [178, 179, 180], the power of energy extraction is given
by [165, 181, 182]

PBZ =
κ

16π
Φ2

H(Ω
2
H + C1Ω

4
H + C2Ω

6
H +O(Ω8

H)) (4.28)

where κ is a numerical constant related to the magnetic field configuration. C1

and C2 are the numerical coefficients. The magnetic flux passing across the event
horizon of the rotating hairy black hole is given by

ΦH =
1

2

∫
θ

∫
ϕ

|Br|
√
−gdθdϕ = 2π(r2+ + a2)B0sin(ξ)

. The angular velocity at the event horizon is

ΩH = 2ar+(1−
1

2
λr+e

−r+/(1−h0/2))/
(
r2+ + a2

)2
. Since the fundamental magnetic field configurations are the same as in the Kerr
case, we expect that only the geometry quantities will be affected by the difference
in the spacetime metric on the Blandford-Znajek mechanism. As a result, we just
change the geometry quantities in the Blandford-Znajek power of Kerr black hole
and obtain Eq.(4.28). Then, the power ratio between these two mechanisms is

Petr

PBZ

∼
−4ϵ∞−AinUin

πκσ0(r2+ + a2)2sin2(ξ)(Ω2
H + C1Ω4

H + C2Ω6
H)

(4.29)

Taking the orientation angle ξ = π/12, the coefficients κ = 0.05, C1 = 1.38 and
C2 = −9.2 [25], we show the power ratio Petr/PBZ as a function of the plasma
magnetization σ0 in Fig.4.17 with different dominant reconnection radial location
r = 1.3, 1.5, 1.7. As the plasma magnetization gets closer to the critical value, we
can observe that all of the power ratios rise along with it. Once their maximum
values are reached, power ratios decrease along with the plasma magnetization.
The distinct dependence on plasma magnetization is what causes the power ratios
Eq.(4.29) to decline as plasma magnetization increases. Since we have Petr/PBZ ∼
1/σ

1/2
0 when σ0 → ∞, which drops as plasma magnetization increases. On the

other hand, the Blandford-Znajek power has used the force-free electrodynamics
approximation [165, 181, 182] which is invalid when σ0 ∼ 1. Therefore, in this
instance, the power ratios can only be viewed as a rough comparison. We also notice
that the smaller the location r, the faster the rising and decline of the curves. The
different combinations of hairy parameter only slightly change the curves comparing
to the location r. Nevertheless, the Comisso-Asenjo mechanism is a very promising
and significant energy extraction mechanism from rotating hairy black holes since
the power ratios are greater than 1 throughout a very wide parameter range.



CHAPTER 4. ENERGY EXTRACTION FROM ALTERNATIVE BLACK
HOLES VIA MAGNETIC RECONNECTION MECHANISM 75

1 10 100

0

2

4

6

8

10

12

14

16
P e

tr
/P

BZ

= /12
a = 0.93, = 0.5, h0 = 0.5
a = 0.99, = 0.5, h0 = 1.5
a = 0.99, = 1, h0 = 1.5
a = 0.86, = 1, h0 = 0.5

Figure 4.17: Power ratio Petr/PBZ as a function of the plasma magnetization σ0

with different dominant reconnection radial location r = 1.3 (solid curve), 1.5 (dot-
dashed curve), 1.7 (dotted curve), by taking the orientation angle ξ = π/12. The
coefficients are taken as κ = 0.05, C1 = 1.38, C2 = −9.2 respectively. The black
solid line is Petr/PBZ = 1 as reference.

4.2.6 Conclusion

The rotating hairy black hole is a very encouraging black hole solution beyond
classical general relativity. The existence of new hair originated from unknown fun-
damental field, such as dark matter and dark energy, will break down the No Hair
theorem of general relativity and lead to a new theory for gravity as well as space-
time. Therefore, the phenomenological investigation of rotating hairy black hole
spacetime is crucial for testing this hypothesis and laid foundation for observations.
In this paper, we studied the energy extraction from a rotating hairy black hole
(4.23) via magnetic reconnection process in the ergosphere.

We started by presenting Comisso-Asenjo formulas, i.e., the plasma energy at
infinity density (4.17) associated with the accelerated and decelerated parts as well
as the conditions (4.18) allowing the energy extraction to occur. Then, all the
following analyses are based on these.

We first emphasize our discussion on how the plasma magnetization and hairy
parameter will affect the behavior of the plasma energy-at-infinity density per en-
thalpy ϵ∞+ and ϵ∞− , taking the orientation angle ξ = π/12 and dominant reconnection
radial location r = 1.5. The results show that ϵ∞+ increases monotonically along
with plasma magnetization while ϵ∞− decreases with it. In addition, we found that
in order to make the effects of the hairy parameter λ become significant, the other
hairy parameter h0 should be sufficiently small. The amount of energy extraction
has a positive correlation with the maximal black hole spin which the hairy param-



CHAPTER 4. ENERGY EXTRACTION FROM ALTERNATIVE BLACK
HOLES VIA MAGNETIC RECONNECTION MECHANISM 76

eter combinations correspond to. Then, we studied how the black hole spin affects
the energy extraction by demonstrating the two-dimensional (r−a) parameter space
with different combinations of hairy parameter, taking orientation angle ξ = π/12.
We found that the smaller the black hole spin the relatively larger radial location r
such that the energy extraction works.

We also investigated how the power and efficiency of the energy extraction
through magnetic reconnection will be impacted by the hairy parameters as well as
the other critical parameters. They all have peaks near their light ring and decrease
with radial location after reaching the peaks. However, the location and value of the
peaks depend on the combinations of hairy parameter. At the end, we compared
the power ratio between the Comisso-Asenjo mechanism and the Blandford-Znajek
mechanism. It turns out that the energy extraction via the Comisso-Asenjo mecha-
nism is more effective in a sufficiently wide parameter range. Especially, the closer
the radial location to the event horizon, the greater the power ratio. The effects of
different combinations of hairy parameter on the power ratios are small comparing
to that of the dominant reconnection radial location.

Since we have made the same assumption as in the original work of Comisso
and Asenjo [25] that the plasma rotates in circular orbits, one possibility for future
research is to consider more complex and realistic cases where reconnection takes
place in noncircular orbits. The allowable parameter space for extracting energy
from rotating hairy black holes should be expanded, since the plasma could get
closer to the event horizon even if the black hole spin is not very high. Moreover, if
the force-free approximation of Eq.(4.28) fails, one should also consider the energy
and angular momentum carried by the accretion plasmas onto the black hole, which
would be more accurate for the comparison (4.29) if σ0 ∼ 1. In addition, the
Comisso-Asenjo formalism is very general and can be applied to many different
spacetime. It offers us a brand new way to extract energy from rotating black
holes. So one could extend the Comisso-Asenjo mechanism to other rotating black
holes and even to wormholes.
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Abstract: Understanding the nature of dark matter is among the top priorities of
modern physics. However, due to its inertness, detecting and studying it directly
in terrestrial experiments is extremely challenging. Numerical N-body simulations
currently represent the best approach for studying the particle properties and phase
space distribution, assuming the collisionless nature of dark matter. These simu-
lations also address the lack of a satisfactory theory for predicting the universal
properties of dark matter halos, including the density profile and velocity distribu-
tion. In this work, we propose a new phenomenological model for the dark matter
phase space distribution. This model aims to provide an NFW-like density profile,
velocity magnitude distribution, and velocity component distributions that align
closely with simulation data. Our model is relevant both for theoretical modeling
of dark matter distributions, as well as for underground detector experiments that
rely on the dark matter velocity distribution for experimental analysis.

5.1 Introduction

Dark matter is an invisible and mysterious substance that makes up a great portion
of the universe. While its existence is solely inferred from its gravitational effects,
its true nature and composition remain one of the most significant questions in
modern astrophysics and particle physics. Detecting dark matter has proven to
be incredibly challenging because it does not emit or interact with light. Based on
these limitations, cosmological N-body simulations may, at the moment, be the only
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possibly way to study dark matter structures and distributions. These simulations
are performed assuming the collisionless property of dark matter, see the review of
simulations [186, 187].

Across a wide range of halo mass and redshift, some universal properties appear
in different dark matter simulations when the halos attain equilibrium [34, 35, 36,
37, 38, 39, 40]. The density profile of dark matter halos can always be fitted quite
well by the famous double power law density profile, i.e, the Navarro-Frenk-White
(NFW) model [188, 189, 190], which has logarithmic density slope −1 close to the
center and −3 in the outer region. Although there are alternative models (see a
brief review [191]), NFW model plays a crucial role in modern dark matter related
researches. It finds applications in simulating galaxy formation [186], gravitational
lensing modeling [192, 193], galaxy rotation curves [194], dark matter detection
experiments [195], and so on. In addition, the velocity anisotropy has also been
shown to vary as a function of radius [35, 36, 37]. Another important universal fea-
ture in simulations is the so called phase-space density ρ/σ3, which seems to follow
a power-law with respect to radius [38, 39]. These universal empirical properties
unveil the intrinsic physics of collisionless N-body systems as well as properties of
equilibrium dark matter structures in a cosmological setting. However, there is still
no universally accepted theoretical model that predicts all of these empirical results
[41, 42, 43, 44, 45, 46, 47, 48].

Another important aspect is the velocity distributions of dark matter parti-
cles. The direct detection experiments of dark matter, which aim to detect the low
energy nuclear recoil from rare scattering events between target nuclei and dark
matter particles, relies on the knowledge of velocity distributions near the location
of solar system. Therefore, it is essential to know the velocity distributions of dark
matter halos. The inverse-Eddington method is very efficient to perform this task
[196], however, it is only valid under certain limiting circumstances [197]. There are
also degeneracies in the velocity distributions for a given density profile when the
system is not ergodic, because single variable function ρ(r) is not sufficient to deter-
mine the velocity distribution which involves multiple variables. An ideal velocity
distribution function should also provide the distribution of velocity components.
As an example, the standard halo model (SHM) is known to not provide the right
description on the velocity distributions [45, 46, 47, 48], especially the behavior of
high velocity tails. Therefore, many velocity distribution models have been pro-
posed, either from the first principle or theories [198, 199, 200, 201], guessing from
the empirical fitting [202, 203, 204, 205, 206], inferring from the observational data
[207, 208, 209], or parameterizing velocity distributions [210, 211, 212]. However,
none of these are fully satisfactory and widely accepted. Furthermore, these veloc-
ity distribution models also have degeneracy in the velocity components since they
all use the velocity magnitude rather than the velocity components as principle
variables.

Instead of working on the universal properties (like density profile) and velocity
distribution separately, we suggest applying an unified approach where the density
profile (as well as other universal properties) and velocity distributions could be
derived and are consistent with each other. One promising way is to propose a
phase space distribution function from which the density profile and velocity dis-
tributions could easily be derived and thus automatically be consistent with each



CHAPTER 5. A PHENOMENOLOGICAL MODEL FOR DARK MATTER
DISTRIBUTION 79

other. The density could be obtained through the velocity integral of the phase
space distribution function, and the velocity distribution could also be derived by
fixing the radius and potential in the phase space distribution function [213].

In previous studies, one notable phase space distribution model has been pro-
posed by assuming the separability of energy and angular momentum in the distri-
bution function [214]. This model could successfully recover many empirical laws
observed in simulations. It has three parameters for the angular momentum part
( or anisotropy profile), and the energy part is obtained by inverting the density
profile, which usually doesn’t have analytical expressions. A six parameter ana-
lytical approximation for the energy part was given. Due to the large number of
parameters (at least nine parameters) in this model, it introduces many uncertain-
ties in predicting the properties of distribution, potentially causing overfitting to
the simulation data.

More generally speaking, not restricting to a phase space distribution, it could
also be some kind of formula that is related to phase space distribution. By working
in energy or orbit space, the well-known DARKexp model has been developed,
which is derived from the first principle of statistical mechanics for self-gravitating
collisionless systems [215, 216]. DARKexp model only has one free parameter, i.e.,
the central potential, and could provide a good fit to the energy distributions. The
corresponding phase space distribution could be obtained by dividing the DARKexp
energy distribution with the density of states. However, DARKexp focuses on
the isotropic scenario. Currently, there is no relevant research available for the
anisotropic case, which needs further development.

There is also an action-based approach that could related to phase space distri-
bution, which were derived using the action-angel method [217, 218, 219]. However,
the reasoning employed to create the distribution function does not apply to the
NFW case. Consequently, there is no action distribution function for NFW den-
sity profile, instead they proposed an empirical model for NFW [217]. In addition,
the action-based models generally do not provide analytical formula for the derived
quantities, making their application more challenging.

In this work, we aim to propose a new analytical and ready-to-use phase space
distribution with few free parameters, which could result in a NFW-like density pro-
file, the radial varied anisotropy as well as power law phase-space density (although
certain disagreements with simulation data exist). What’s more, it can also provide
us with the velocity magnitude distribution as well as its components, with natural
cut off at the local escape velocity. We will also compare our analytical velocity
distributions with simulation data, which has radial and tangential velocity data
separately allowing to break the degeneracy of the velocity magnitude distributions.
Our model fit quite well to the radial velocity data and also the low velocity regime
of tangential velocity data, giving consistent results on the distributions as well as
the fitting parameters within an acceptable range. This provides support that our
analytical model may be relevant for understanding the gravitational dynamics of
cosmological dark matter structures.

This chapter is organized as follows: In section.5.2, we will present our dark
matter phase space distribution function and study its predictions on the density
profile, anisotropy parameter, as well as the phase space density. Additionally, we
will provide the formulas for the velocity magnitude , the radial and tangential
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velocity components distributions. Next, in section.5.3, we will compare our radial
and tangential velocity distributions with simulation data. The velocity data were
extracted from different radial bins (shell) of equilibrium dark matter halos, with
both radial and tangential velocity data available in each bin. For comparison, we
use data from two different simulation schemes, namely the cold collapse and explicit
energy exchange. The fitting results and estimated parameters are also presented
in this section. Finally, we will conclude and discuss our findings in section.5.4.

5.2 The distribution function and its properties

Based on the observations of the simulation data introduced in subsection.5.3, a
reasonable distribution function should be spherically symmetric due to the simu-
lated halos have no preferred spatial directions. Therefore, it is convenient to write
out the distribution function of dark matter halos in spherical coordinates (r, θ, φ).
The distribution function should also be anisotropic because the simulation data of
radial and tangential velocity distributions are different. That means we need take
into account the angular momentum of dark matter particles. It would be a good
choice to put the angular momentum in the exponent because when we integrate
the distribution function to obtain the density profile, it will result in a term of
1+ r2 in the denominator. Then if we wish to obtain an NFW-like profile, we could
just multiply it by the radial distance r. Meanwhile, we would like the distribution
function to have a natural cutoff, and it could be realized by multiplying the binding
energy. After considering the above conditions, our distribution function is given
by

f(vr, vt, r) = f(ϵ, L, r) ∝ r0
r
× ϵ

λ2
× Exp

(
Q/λ2

)
(5.1)

where r0 is the parameter to normalize radial distance, and λ is the parameter to
normalize the binding energy ϵ and exponent Q which are given by

ϵ = −v2

2
+ ϕ (5.2)

v2 = v2r + v2t (5.3)

Q = ϵ− L2/4r20 (5.4)

L = rvt (5.5)

where ϕ is the positive potential, vr and vt =
√

v2θ + v2φ are respectively the radial

and tangent velocity, and L is the angular momentum of dark matter particles.
One could notice that this distribution function does not satisfy the Jeans theorem
since there is a factor r0/r, which means that the full form is not only a function
of the integrals of motion. This could be seen as the limitation of our model.
However, this limitation does not undermine the primary objective of our work.
We have proposed a phenomenological or effective model rather than presenting a
comprehensive theory. Therefore, it is acceptable for breaching the Jeans theorem
as long as it is consistent with the simulation data.

For simplicity, in the following discussion of this section, we will denote a = r/r0
and set λ = 1. Then the potential, binding energy and Q are all in unit of λ2, the
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velocity is in unit of λ. The density of the above distribution is given by the integral
with respect to velocities

ρ(a, ϕ) = 2π

∫
vtf(vr, vt, a)dvrdvt

= Nρ[

√
2πeϕ (a2(2ϕ− 1) + 4ϕ− 6) erf

(√
ϕ
)

a (a2 + 2)2

+
8
√
πe−

1
2(a2ϕ)erfi

(
a
√
ϕ√
2

)
/a

a (a2 + 2)2
+

2
√
2ϕ

a (a2 + 2)
] (5.6)

where Nρ is the normalization constant, which is usually the inverse of the halo
mass, erf(x) and erfi(x) are called error function and imaginary error function.
To obtain ρ(a), we first need to know the dependence of ϕ on a, which requires
solving the spherically symmetric Poisson equation,

d

da
(a2

dϕ

da
) = −4πGa2ρ(a, ϕ) (5.7)

however, it has to be solved numerically. Starting from a = 0 for some chosen value
of ϕ(0) and dϕ

da
= 0, we thus can solve for ϕ(a). In practice, we need to apply a

softening to the centre point a = 0 due to the divergent behavior of 1/a of the
Poisson equation. If we assume that the central potential is nearly flat within a
small radial distance, let’s say a = 0.01. Then, we could solve the Poisson equation
by choosing that the initial conditions at a = 0.01 is the same as the centre point.
Thus, the numerical results are not sensitive to the choice of a = 0.01 as long as
the approximation of flat central potential is valid. In the following discussions,
we mainly choose to start the numerical solution from a = 0.01 with different
initial potentials, i.e., ϕ(0.01) = 5, 7, 10 and dϕ

da
|a=0.01 = 0. As a comparison, we

also show the numerical results of potential when we choose to start with a =
0.001. The gravitational constant G in the numerical solutions is set to be 4.301×
10−6kpcM−1

⊙ (km/s)2, and the normalization factor Nρ is set to Nρ = 1.

5.2.1 potential, density, anisotropy and pseudo phase pace
density

The numerical results of the potential are shown in Fig.5.1 and Fig.5.2 for given
initial potentials. We can see that all the potentials with different initial conditions
are quite smooth when close to the center and at a significant distance from the
center, with a drastic transition between them. A larger initial potential, a greater
difference between the central and distant regions, and a faster drop in the transition
region. By comparing the potentials in Fig.5.1 and Fig.5.2, we can see that results
are not sensitive to the initial value a in the numerical solutions. The potentials
are almost the same regardless of the different initial values of a. Therefore, we
could safely use one of the numerical results of potential (the case with a = 0.01)
to continue our discussion.

With the results of potential, we can obtain the density (5.6) corresponding to
the distribution function (5.1). The results are shown in Fig.5.3. For comparison,
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Figure 5.1: The numerical solution of the potentials as a function of radial distance
a, for three different initial conditions ϕ(0.01) = 5, 7, 10 and dϕ

da
|a=0.01 = 0 at

a = 0.01.
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Figure 5.2: The numerical solution of the potentials as a function of radial distance
a, for three different initial conditions ϕ(0.001) = 5, 7, 10 and dϕ

da
|a=0.001 = 0 at

a = 0.001.
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we also plot the NFW density profile

ρNFW ∝ 1

r(r + rs)2
(5.8)

by setting the characteristic radius of NFW as rs =
√
2r0. All the density profiles

are normalized by demanding that they have the same total mass Mtot = 1 within
their R200 radius where the average density within this radius are 200 times than
the mean density of the universe which is set to be 5 × 10−5 for simplicity. We
can see that they are very similar to the well-known NFW density profile, which
has logarithmic density slope γ = dlogρ/dloga approximately −1 near the center
and −3 in the outer region of the halo, referring to Fig.5.4 for the variation of γ
with radial distances. However, there are also differences between NFW and our
model, especially in the transition region where γ is from −1 to −3. Our model
seems more sharper than the NFW density profile around the transition region.
The initial potentials will affect the logarithmic slope near the center region. The
concentrations c ≡ R200/R−2 (R−2 is the radius at which the logarithmic slope is
−2) for the curves in Fig.5.3 with ϕ(0.01) = 5, 7, 10 and NFW are respectively
222.7, 645.5, 14866.7 and 231.9. It is evident that larger initial potential values
result in higher concentrations. To closely resemble the NFW profile, the initial
potential should be sufficiently small. The smaller the initial potential, the more
similar the profile to the NFW one. It is remarkable that we can obtain the NFW-
like density profile from a phase space distribution function.

ϕ(0.01)=5

ϕ(0.01)=7

ϕ(0.01)=10

NFW
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Figure 5.3: The numerical result of dark matter density as a function of radial
distance a, for three different initial conditions ϕ(0.01) = 5, 7, 10, and the NFW
density profile by setting rs =

√
2 r0. All profiles are normalized by ensuring that

they share the same total mass within their R200 radius as Mtot = 1. The concen-
trations for the curves with ϕ(0.01) = 5, 7, 10 and NFW are 222.7, 645.5, 14866.7
and 231.9 respectively.

Since our model considers the anisotropic case, it is also important to investigate
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Figure 5.4: The logarithmic slope of the dark matter density γ as a function of
radial distance a, with three different initial conditions ϕ(0.01) = 5, 7, 10, and the
NFW density slope by setting rs =

√
2 r0.

the anisotropy parameter β which is defined as

β(a) ≡ 1− σ2
t

2σ2
r

(5.9)

where σt and σr are respectively the tangential and radial velocity dispersion. They
could be compute through

σ2
r(a) =

2π

ρ(a)

∫
v2r ∗ vtf(vr, vt, a)dvrdvt (5.10)

σ2
t (a) =

2π

ρ(a)

∫
v3t f(vr, vt, a)dvrdvt (5.11)

We show β as a function of a in Fig.5.5. Despite the different initial potentials, we
observe that the values of β are nearly identical. The initial conditions do not affect
the anisotropy. β starts at β = 0, i.e., σ2

t /2 = σ2
θ = σ2

φ = σ2
r , indicating isotropy

around the center. As the radius grows, β increase rapidly around the scale radius
a ≈

√
2, reaching β = 1 at larger radial distances. This implies σ2

t ≪ σ2
r . This

type of β behaves similarly to the commonly-used Osipkov-Merritt model [220, 221],
which is expressed as

β(r) =
1

1 + r2a/r
2

(5.12)

with ra as the scale parameter in Osipkov-Merritt model. We also illustrate the
behavior of β(r) when r2a = 2

√
2 r20 in Fig.5.5. We can see that they are almost the

same to our model across a large range of radial distances. This could be attributed
to the exponent of our distribution function Q which is similar to the Osipkov-
Merritt model. β(r) is only related to the scale parameter ra and independent of
the other parameters of the Osipkov-Merritt model. A similar observation holds
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for our model, possibly explaining why all the β(a) values in our model are almost
identical. Eq.(5.12) could serve as an approximation for β(a) in our model, achieved
by setting r2a = 2

√
2 r20.
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Figure 5.5: The anisotropy parameter β as a function of radial distance a, with three
different initial conditions ϕ(0.01) = 5, 7, 10, as well as the β(r) of the Osipkov-
Merritt model with r2a = 2

√
2 r20.
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Figure 5.6: The pseudo phase space density as a function of radial distance a, with
three different initial conditions ϕ(0.01) = 5, 7, 10.

We also investigate the pseudo phase space density

ρ

σ3
=

ρ

(σ2
t + σ2

r)
3/2

(5.13)

which is another important empirical laws. In Fig.5.6, we plot the pseudo phase
space density as a function of a. We can see that it has a pretty much the same
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Figure 5.7: The quantity ρ/σ3
r as a function of radial distance a, with three different

initial conditions ϕ(0.01) = 5, 7, 10.

logarithmic density slope as the density, see Fig.5.3. It has logarithmic slope of
−1 in the inner region and −3 in the outer region. These results disagree with
simulation data, which show a simple logarithmic slope ≈ −1.9 across a large range
of orders of magnitude in radius a [38, 39, 222, 223, 224]. Nevertheless, the different
initial potentials only cause a difference in the center region and have no effect on
the outer region. For comparison, we also plot the quantity ρ/σ3

r as a function of
radius [222] in Fig.5.7. The slopes in the outer region are the same as the pseudo
phase space density, while there is an overall shift to higher values in the center
region. Unfortunately, these still contradict the simulation data [39, 222].

5.2.2 velocity distributions

The velocity magnitude distribution f(v) could be obtained by transformation and
integrating over the distribution function (5.1). We get

f(v) = Nv

4πeϕ−
v2

2 (2ϕ− v2)DawsonF
(

1
2

√
a2v2

)
a
√
a2v2

(5.14)

where Nv is the normalization constant, DawsonF(x) is the so-called Dawson in-
tegral. We have plotted the velocity magnitude distribution for different radii
a = 1, 5, 10 in Fig.5.8, by choosing the initial potential ϕ(0.01) = 5. As com-
parison, we also show the SHM velocity distributions which corresponds to the
Maxwell-Boltzmann phase space distribution. We can see that our velocity dis-
tribution is suppressed more than the SHM model in the high velocity tails. The
velocity distributions are more concentrated at lower values as the radial distance
becomes larger. We also compare the velocity distribution function (5.14) with sim-
ulation data from the Aquarius Project [225, 45]. We fitted the data with our model
as well as the SHM model in Fig.5.9. The velocity distribution data are taken from



CHAPTER 5. A PHENOMENOLOGICAL MODEL FOR DARK MATTER
DISTRIBUTION 87

many 2 kpc boxes located between 7 and 9 kpc from the center of halo Aq-A-1 in
Aquarius Project. In each 2 kpc box, there are about 104 to 105 particles. In Fig.5.9,
the black line is the median value of velocity distribution measured over all 2 kpc
boxes, and the green band encloses 95% of the measured velocity distributions for
each velocity bin, and each velocity bin has a width of 5 km/s. We can see that our
model almost overlaps the SHM model, with the exception that our model exhibits
a relatively larger suppression in the high velocity tails, resulting in a better fit to
the simulation data.

a=1, SHM
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Figure 5.8: The normalized velocity magnitude distribution v2f(v) as a function
of velocity v, at three different radial locations a = 1, 5, 10, with initial potential
ϕ(0.01) = 5. We also show the Maxwell-Boltzmann distribution which is also known
as the standard halo mode (denote as SHM) at a = 1, as comparison.

The above velocity magnitude has some extent degeneracy over the velocity
components. Therefore, it is crucial to understand the radial and tangential velocity
distributions and validate them through simulations.

By integrating over the tangent velocity component in the distribution function
(5.1), this yields the radial velocity distribution. Similarly, we can integrate over the
radial velocity component in the distribution (5.1) to obtain the tangential velocity
distribution. They are respectively given by

f(vr) = Nr[

e−
v2r−2ϕ

2λ2

(
4λ2

(
e
(a2+2)(v2r−2ϕ)

4λ2 − 1

))
a (a2 + 2)2

+
e−

v2r−2ϕ

2λ2 (−v2r (a
2 + 2) + 2ϕ (a2 + 2))

a (a2 + 2)2
] (5.15)
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Figure 5.9: The best fit of our model(red dashed) and SHM model(blue dashed) to
the velocity distribution data extracted from 2 kpc boxes between 7 and 9 kpc from
the center of halo Aq-A-1 in Aquarius Project. The black line is the median value
while the green band enclose 95% of the velocity distributions over all 2 kpc boxes.

f(vt) = Nt[−

e−
(a2+2)v2t

4λ2

√
2πe

ϕ

λ2 (λ2 + v2t − 2ϕ) erf

√
ϕ− v2t

2

λ


2aλ

+

e−
(a2+2)v2t

4λ2

(
2λe

v2t
2λ2

√
2ϕ− v2t

)
2aλ

] (5.16)

where Nr and Nt represent the normalization constants. To fit the real simulation
data in the next section, we have kept λ as a free parameter rather than λ = 1
in the above formulas of f(vr) and f(vt). It can be verified that the radial and
tangential velocity distribution functions approach zero at the local escape velocity
vr = vt = vescape =

√
2ϕ, indicating a cutoff at the local escape velocity.
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5.3 Comparing velocity component distribution

with simulation data

5.3.1 the simulation data

We use the velocity data extracted from the simulation in [226]. These numerical
simulations were described in detail previously [199, 200]. To test our model, we
compare the velocity distribution function with two different scheme of simulation
performed in [226].

The first is called the cold collapse simulation. This aims to simulate the violent
relaxing process that occurs in the early universe when structure collapsed. They
create a main halo with a number of compact and condensed substructures. All
particles started with zero velocities and evolve under gravity. Once it has attained
equilibrium, we divide a halo structure into radial bins (thin spherical shell) and thus
we can extract the radial and tangential velocity components of the particles from
selected bins. We sample the same number of particles in three radial bins whose
radial and the tangential velocity data are shown in Fig.5.10. To facilitate the read-
ability of the bin data, some of the bin data have been shifted vertically. The three
radial bins were chosen near the slope of γ0 = dlogρ/dlogr = −1.6, −2.0, −2.4.
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Figure 5.10: The three radial bins data for radial and tangential velocities in the
cold collapse simulation. The three radial bins were chosen near the slope of γ0 =
−1.6, −2.0, −2.4 (From top to bottom), and the γ0 = −1.6, −2.0 data were shifted
vertically for easy reading. Each data point represents the number of particles
within a velocity bin ∆v = 0.1.
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The second set of numerically simulated data is the so-called explicit energy ex-
change simulation. Various types of energy exchange take place between collisionless
particles, particularly through violent relaxation and dynamical friction. Therefore,
the numerical set-up take into account a perturbation in which the spherical sym-
metry is preserved, but they permit the particles to exchange energy. Each radial
bin is designed to preserve energy with instantaneous energy exchange, ensuring
that the perturbation itself has no impact on the density or dispersion profiles.
Afterward, the system evolves with normal collisionless dynamics. Similarly, we
divide the equilibrium structure into radial bins and then extract the radial and the
tangential velocity data. We plot the velocity data in Fig.5.11. The three radial
bins were chosen near the slope of γ0 = −1.7, −2.4 − 3.0.
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velocity

100

101

102

103

104

105

 f(
v)

radial
tangent

Figure 5.11: The three radial bins data for radial and tangential velocities in the
explicit energy exchange simulation. The three radial bins were chosen near the
slope of γ0 = −1.7, −2.4 − 3.0 (From top to bottom), and the γ0 = −1.7, −2.4
data were shifted vertically for easy reading. Each data point represents the number
of particles within a velocity bin ∆v = 0.07.

5.3.2 fitting and parameter estimation for the velocity
data

When fitting our radial and tangential velocity distribution model to the real sim-
ulation data, we adopt error-bars on these data. We assume that the horizontal
(velocity) error for each data point corresponds to the width of velocity bin ∆v,
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while the vertical (frequency) errors are taken as the square root of the counts in
each velocity bin. This assumption is based on considering the particles in each
velocity bin follow a Poisson distribution. In total, we have four parameters to fit
for radial or tangential velocity distribution data: the normalization factor Nr(Nt),
the radial distance a, the potential ϕ(a), the parameter λ.

From an ideal perspective, if our model is the truth, when fitting the radial
and tangential data independently in each bin, there should be two constraints for
the fitting parameters of the data: first, since the three radial bins data are taken
from one halo structure, the value of λ for the three radial bins should be the
same; second, for each radial bin, the fitting parameters (a, ϕ) for the radial and
tangential data should also be the same. Instead of fitting the radial and tangential
data independently, we choose to jointly fit the radial and tangential data for each
bin by using the same values of a and ϕ(a) in the fitting algorithm, i.e. we define
the total logarithmic likelihood function as the sum of the radial and tangential
parts

lnL(rad and tan data|Nr, Nt, a, ϕ(a), λ)

= lnL1(rad data|Nr, a, ϕ(a), λ) + lnL2(tan data|Nt, a, ϕ(a), λ) (5.17)

where rad and tan data represent the radial and tangential velocity data in each ra-
dial bin. With this joint fitting, the second constraint could be easily implemented.
Then, we employ Bayesian inference with flat priors and MCMC sampling method
to explore the posterior distributions of parameters given the velocity data from
each radial bin. We use 300 random walkers, and each walker takes 5000 steps.
After excluding 10% of the samples in the burning phase, we finally obtain the
samples that can be used to analyze our model. The contour plots of these MCMC
samples are shown in Appendix.7.4.

The fitting parameters for each bin in the collapse simulation data are presented
in Table.5.1. We show the median values as well as the upper and lower bound that
enclose 68% of the MCMC samples. The normalization factors increase with γ0,
showing a positive correlation. The median values of radial distance a and potential
ϕ(a) are reasonable, as they exhibit growth and decrease respectively with increasing
γ0. Additionally, for comparison with the fitting potential, we also show the local
escape kinetic energy v2max/2 for each bin, where vmax represents the maximum
velocity (≈ local escape velocity) of each bin. Ideally, the fitting potential should
be equal to local escape kinetic energy, represented by ϕ ≈ v2max/2. We could see
from Table.5.1 that the fitting potential is approximately equal to the local escape
energy. This supports the self-consistency of the fitting ϕ(a) in different radial bins.
It is noteworthy that our model appears to violate the first constraint mentioned
above, as the fitting λ values are not uniform. However, in practice, due to the
size of radial bins and the limitation of particle numbers in the simulation, some
flexibility in adhering to these constraints is expected.

To be more explicit, we present the fitting results to the three radial bins of
collapse simulation in Fig.5.12. From top to bottom, we present the data and fits
for the bins with γ0 = −1.6, −2.0, −2.4. In each plot, we show both the radial
and tangential velocity data along with the corresponding error-bars, as mentioned
above. The solid blue curve represents the radial velocity distribution, while the
solid red curve represents the tangential velocity distribution, both predicted by the
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Figure 5.12: The radial and tangential velocity fitting results to the three radial
bins in the cold collapse simulation. From top to bottom are respectively γ0 =
−1.6, −2.0, −2.4. The radial data and the median radial distributions are colored
blue, while the tangential results are colored red. The 1-sigma band of radial
distributions are colored shallow blue, and tangential bands are colored shallow red.
The relative residuals are also given for the radial (colored blue) and tangential data
(colored red).
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γ0 = −1.6 γ0 = −2.0 γ0 = −2.4

Nr 185.114 +34.140
−27.785 122091 +67844

−50666 1064057 +678118
−448879

Nt 38.782 +7.105
−5.800 21814 +12125

−9034 115227 +73459
−48646

a 1.033 +0.033
−0.030 4.601 +0.635

−0.643 9.175 +1.480
−1.361

ϕ(a) 1.684 +0.024
−0.024 1.095 +0.014

−0.010 0.724 +0.007
−0.006

v2max/2 1.805 1.280 0.781

λ 0.770 +0.010
−0.009 1.953 +0.259

−0.259 1.996 +0.318
−0.292

Table 5.1: The best estimated parameters for the three radial bins in the collapse
simulation. We show the median values with upper and lower bounds enclosing 68%
of the MCMC samples. Additionally, we display the local escape energy v2max/2 for
each bin as reference to compare with the potential.

median values of the MCMC samples. Additionally, we include the 1-sigma band of
the velocity distribution predicted by the MCMC samples. The band is colored in
shallow blue for the radial fit and shallow red for the tangential fit, though it may
be relatively small for some bins. The relative residuals, defined as the difference
between the data and the solid curves, are calculated as

data− solid curve

data
(5.18)

are also shown in the bottom of each subplot in Fig.5.12. The blue and red dots
respectively represent the radial and tangential relative residuals. We can see from
Fig.5.12, our model gives a good fit to all three bins especially for the radial data,
despite some residuals remaining. The radial fits of our model are much better
than the tangential fits. Our model only performs well in the low velocity regime of
tangential data and underestimate their high velocity tails. The relative residuals
increase as γ0 and velocity increase. Nevertheless, as expected, the radial and
tangential velocity converge to each other at higher velocities. The smaller the
value of γ0, the higher the similarity of radial and tangential velocity distributions.

We have also shown the fitting parameters of the three radial bins for the explicit
energy exchange simulation data in Table.5.2. Similar to the situation with the
collapse simulation data, we also show the upper and lower bounds that encompass
68% of the MCMC samples, together with the median values. As γ0 rises, so do
the normalization factors. The median of radial distance a and potential ϕ(a) are
following a good trend along with γ0. The fitting ϕ(a) in different radial bins are
also self-consistent since ϕ ≈ v2max/2 in each bin. The fitted bands of the radial bin
at γ0 = −3 is quite large compare to the other two radial bins. In addition, because
fitting λ vary among different bins, we can also observe that our model appears to
break the first constraint, similarly to the case in the collapse simulation.

We also plot the fitting results for the explicit energy exchange simulation data
in Fig.5.13. From top to bottom are respectively the γ0 = −1.7, −2.4, −3.0 bins
data and fits. As in the collapse simulation case, we also show the tangential and
radial velocity data along with the previously mentioned error bars in each plot.
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Figure 5.13: The radial and tangential velocity fitting results to the three radial bins
in the explicit energy exchange simulation. From top to bottom are respectively
γ0 = −1.7, −2.4 − 3.0. The radial data and the median radial distributions are
colored in blue, while the tangential results are colored in red. The 1-sigma band
of radial distributions are colored in shallow blue, and tangential bands are colored
in shallow red. The relative residuals are also given for the radial (colored in blue)
and tangential data(colored in red).
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γ0 = −1.7 γ0 = −2.4 γ0 = −3.0

Nr 2.776 +6.585
−1.559 3107 +762

−913 83211678 +393502366
−71717150

Nt 0.363 +0.855
−0.204 342.9 +84.6

−100.2 3249348 +15434273
−2798681

a 0.737 +0.070
−0.057 2.370 +0.112

−0.132 38.039 +29.741
−18.075

ϕ(a) 0.936 +0.078
−0.104 0.539 +0.017

−0.007 0.164 +0.001
−0.001

v2max/2 0.832 0.562 0.174

λ 0.404 +0.013
−0.007 0.631 +0.023

−0.029 2.875 +2.259
−1.361

Table 5.2: The best estimate parameters for the three radial bins in the explicit
energy exchange simulation. We show the median values along with upper and
lower bounds that enclose 68% of the MCMC samples. In addition, we also show
the local escape energy v2max/2 for each bin as reference for comparison with the
potential.

The radial and tangential velocity distributions predicted by the median value of the
fitting parameters are also shown by the solid blue and red curves. We present the
1-sigma band and relative residuals with the same setup in the collapse simulation
case. We can also see from Fig.5.13 that the situation is almost the same to the
collapse simulation case. The patterns are repeating. Our model provides a fair fit
to all three bins, particularly for the radial data, while it fails again on predicting the
high velocity tails of the tangential data. As γ0 and velocity increase, the relative
residuals also increase.

Although there are slight differences, the similarity of the data and fits in both
cold collapse and explicit energy exchange simulation reveals an universal dark mat-
ter velocity distributions. The basic trends and structures of dark matter velocity
distributions were captured by our model. The data suggests that our model could
be relevant to describe the distribution of dark matter particles, especially for the
radial velocity distributions. In principle, we could use the fitted a and the nor-
malized potential ϕ(a)/λ2 of three radial bins in each simulation to reproduce the
density profiles of the original simulated halo. However, the discrepancy of fitting
λ to three bins add large uncertainties on the normalized potential ϕ(a)/λ2. So, we
will leave this as a problem that needs to be addressed in the future.

5.4 Conclusion and discussion

In this paper, we have suggested and analysed a phenomenological model of spher-
ically symmetric anisotropy dark matter phase space distribution function as pre-
sented in Eq.(5.1). We first introduced our distribution function and demonstrated
their predictions on integrated quantities, which are typically analysed in numerical
simulations, namely the density profile (5.6), the anistropy (5.9) and phase space
density (5.13). In addition, we also give the velocity magnitude (5.8), the radial
and tangential velocity distributions in analytical forms (5.15) (5.16). To assess the
utility of our velocity distributions, we have respectively compared with radial and
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tangential velocity data which were extracted from different radial bins of equilib-
rium dark matter halos. We verify our results in two different simulation schemes,
the cold collapse and explicit energy exchange which effectively cover a wide range
of possible equilibrium processes. The fits show good performance and the results
are promising, especially for the radial data (across the whole velocity range) and
the lower velocity regime of tangential data. There is agreement in estimating the
relevant parameters of the radial and tangential velocity data.

Despite the advantages of providing good fits to the velocity distributions, there
are also some potentially important limitations to our model that we wish to ad-
dress. Our model faces the first challenge in predicting the pseudo phase space
density, which does not follow a single, unbroken power law. The second limita-
tion arises when comparing with the data, as significant deviations are observed,
especially in the high-velocity tails of tangential data. Additionally, the predicted
parameter λ differs among three bins of the same halo. These observations could
indicate that our model is missing some additional features of dark matter halos.
However, it is essential to verify this issue using another independent simulation
program since the error could originate from the data rather than the model. If
these limitations have been confirmed by other simulations, we should explore pos-
sible ways to improve our model. Our model only uses the linear order of binding
energy ϵ and exponent Q, which represents the simplest case. One could consider
using ϵn or Qn in the exponent of (5.1) with n ≥ 0. Introducing non-linearity could
potentially compensate for these limitations. Furthermore, the r0/r factor in our
phase space distribution (5.1) could also be a simplification of some complicated
function involving integrated quantities such as ϵ and Q. If r0/r could be replaced
by functions of integrated quantities, the model would be much plausible, indicat-
ing its adherence to the Jeans theorem and transcending a mere phenomenological
model.



Chapter 6

Summary and outlook

Black holes and dark matter are both crucial subjects within the current physics
community. Due to limitations in observational precision, numerous mysteries per-
sist, requiring further exploration. Additionally, there are no definitive results re-
garding the true nature of black holes and dark matter on the theoretical front.
Studying the phenomenology of black holes and dark matter can serve as a bridge
between theory and observations. This approach enables us to glean insights for
the development of both theory and experiments.

6.1 Summary of this thesis

In this thesis, we have delved into various phenomenological aspects of two well-
known alternative black holes beyond GR. The alternative black holes under inves-
tigation are the rotating regular black hole and the rotating hairy black hole, intri-
cately connected to two renowned theorems in classical GR: the singularity theorem
and the no hair theorem. These black hole metrics serve as significant avenues for
exploring the potential violation of these theorems and extending our understanding
beyond GR. The phenomenological aspects we have explored encompass superra-
diance, quasinormal modes, and energy extraction via the magnetic reconnection
mechanism. Superradiance has been investigated using the matching-asymptotic
method, quasinormal modes have been computed through the continued fraction
method, and the Comisso-Asenjo formalism has been employed to study magnetic
reconnection occurring within the ergosphere. These phenomena hold profound im-
plications on the theoretical front, and, concurrently, they bear the potential for
future observational confirmation. Our application of these phenomenological stud-
ies extends to both types of alternative black holes. Through our investigations, we
aim to contribute not only to the theoretical understanding of these exotic black
holes but also to pave the way for potential observations in the future.

In the study of rotating regular black holes using the approximation method,
we have derived the effective horizons and subsequently examined the behavior of
scalar fields around such black holes. In relation to the phenomenon of superra-
diance, our findings indicate that the regular parameter plays a significant role in
the amplification of incident scalar waves. Notably, an increase in the regular pa-
rameter leads to the extension of the cutoff frequency for superradiance modes to
higher values. When it comes to quasinormal modes, the influence of the regular
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parameter becomes pronounced only when the spin of the black hole is sufficiently
high. Furthermore, a larger value of the regular parameter has the effect of lowering
the threshold and enhancing the power and efficiency associated with the extraction
of energy through the Comisso-Asenjo magnetic reconnection mechanism.

For the study of rotating hairy black holes, we also employed an approximation
method for the horizons. Subsequently, we delved into the gravitational perturba-
tions surrounding this black hole. It is not straightforward to directly use Teukolsky
equations to describe the gravitational perturbation around non-GR black holes.
However, leveraging the assumption of the smallness of the effective charge Qeffect,
we could managed to employ the Teukolsky equations to describe the gravitational
perturbations around rotating hairy black holes. Two hairy parameters of rotating
hairy black holes exert a combined influence on superradiance modes. Their impact
becomes pronounced only when the frequencies of gravitational waves close to the
critical threshold. As for the quasinormal modes, the hairy parameters exhibit no
significant alteration to the overall trend in quasinormal modes concerning black
hole spin. Nonetheless, they do introduce slight variations in the slopes of both real
and imaginary parts of the quasinormal modes. In the context of energy extraction
through magnetic reconnection phenomena, the combinations of hairy parameters
leading to a larger black hole spin expand the parameter spaces, enhancing the
power and efficiency of energy extraction.

Additionally, we have proposed and investigated a phenomenological model of
dark matter distributions. Given the absence of a satisfactory theory for predicting
the distributions of dark matter halos in simulations, we utilize an phenomenological
model of phase space distribution to comprehensively describe the universal prop-
erties and the velocity distributions observed in simulations. Initially, we present
the analytical properties of our model, including a NFW-like density profile. Sub-
sequently, we compare the velocity magnitude distribution and velocity component
distributions with simulation data. Regarding the velocity magnitude distribution,
our model exhibits a relatively more pronounced suppression in the high-velocity
tails, resulting in a superior fit compared to the standard halo model. Furthermore,
we compare the analytical formulas of radial and tangential velocity distribution
with the velocity data extracted from radial bins of two simulation schemes. The
fitting results demonstrate the excellent performance of our model for the radial
velocity data across the entire velocity range and the lower velocity regime of tan-
gential data. This suggests that our model provides a helpful tool for describing
the intricate features of dark matter distributions.

6.2 Outlook for future studies

While these interesting results and findings are listed above, there is still plenty of
room for improvement and extension in our research.

In our study on superradiance and quasinormal modes of two alternative black
hole scenarios, we employed an approximation for the horizons, thereby limiting
the parameter spaces available for exploration. However, a more comprehensive
approach would involve a fully numerical investigation [227, 228, 229], allowing us
to extend the range of parameter spaces and providing our results as a calibration
or verification for numerical findings. Additionally, while our studies were based
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on the linear perturbations of black hole, it has been suggested that the nonlinear
quasinormal mode originating from high order perturbations of black hole spacetime
would be detectable in future ground-based and space-based gravitaional detectors
[22]. The approximation method used in our studies could extend to the studies
of nonlinear quasinormal modes of these two alternative balck holes. For energy
extraction through magnetic reconnection, it is crucial to note that this phenomena
occurs within the equatorial plane of black holes, typically accompanied by the
presence of an accretion disk. The outflowing plasma carrying energy extracted
from the black hole through magnetic reconnection has the potential to heat up the
inner region of the accretion disk surrounding the black hole. This phenomenon may
lead to a luminosity anomaly in observations of the accretion disk [230], presenting
an opportunity for comparison with empirical data to verify the existence of these
alternative black holes.

The phenomenological phase space distribution model we have proposed has
room for improvement in both theoretical and simulation aspects. If our model
were modified to satisfy the Jeans theorem, it would become a more appealing
representation for dark matter distribution. Additionally, it is crucial to validate
the significant limitations of our model through other simulations. Moreover, our
velocity distribution could be further applied to the analysis of dark matter direct
detection experiments [30, 31, 32, 33]. This is especially noteworthy as our velocity
magnitude and radial velocity distribution have already demonstrated excellent
fitting, and they are also analytically derived.



Chapter 7

Appendix

7.1 The errors of approximation method for

rotating regular black holes

In subsection.3.1.2, we used the analytically approximation to solve the Delta func-
tion (3.4). To show the accuracy of this method, we plot the errors of high order
solutions in Fig.7.1 as a function of black hole spin a, given different regular pa-
rameter k. We plot the errors up to the second order for event horizon and third
order for inner horizon. The errors denoted as Ei

± are computed by comparing to
the numerical solutions rnum± of (3.4), i.e,

Ei
± =

∣∣ri± − rnum±
∣∣

rnum±
(7.1)

where i = I, II, III represents the i-th order solution.
We can see from Fig.7.1, the approximation errors drop down as the order goes

up for both event and inner horizon, besides that, we can see the errors of event
horizon are tiny (≪ 10−3) even in the first order although they are slowly going up
along with the black hole spin. However, the errors of inner horizon are significantly
large at first order, but they drop down quickly as the order and black hole spin
goes up.

From the order of magnitude, the errors of inner horizon are significantly larger
than that of event horizons Ei

− ≫ Ei
+ even in the high spin regime. Therefore, we

shall focus on the inner horizon errors Ei
−, because it will dominate the errors of

our approximation results. We plot a horizontal line Ei
− = 10−2 and a vertical line

a = 0.1. We would like to control the errors such that they always below 10−2 from
a = 0.1 to 0.9. Then the regular parameter k should be chosen not greater than
0.01M , and third order solutions are sufficient for our goal.

The final equation to compute the amplification factor and quasinormal modes
are (3.38) and (3.49) respectively, the essential quantities Q, ξ, αn, βn, γn for these
equations are all proportional to r̂+, r̂+, ω or their quadratic. The accuracy of
amplification factor and quasinormal modes, because of using the approximation
solutions (3.12) and (3.13), are therefore in the order of (EIII

− )2l+2 and EIII
− , re-

spectively. So, the approximation has almost no effect in amplification factor, while
the accuracy of quasinormal modes are always higher than 10−2, even 10−6 when
a ≳ 0.3, provided with the regular parameter k ≤ 0.01M .
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Figure 7.1: upper and lower plots are respectively the errors of high order event
horizon and inner horizon, with regular parameter k = 0.005, 0.01, 0.05 and black
hole spin a = 0.01 to 0.91.
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7.2 The errors of approximation method for

rotating hairy black holes

Figure 7.2: Upper and lower plots are respectively the errors of second order event
horizon and inner horizon, with parameter α = 0.1, 0.5, 1, l0 = 0.5, 1, 1.5 and black
hole spin a = 0.01 to 0.91.

In subsection.3.2.2, we used the analytical approximation to solve the Delta
function (3.51). To show the accuracy of this method, we plot the errors of the
second order solutions in Fig.7.2 as a function of the spin a of the black hole at
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different parameters α, h0. The errors, denoted as E±, are calculated by comparison
with the numerical solutions rnum± of (3.51), i.e,

E± =

∣∣r̂± − rnum±
∣∣

rnum±
(7.2)

We can see from Fig.7.2, the approximation errors for both the event horizon and
the inner horizon increase with spin. There is some oscillation for the event horizon
errors as the black hole spin approaches higher values. We want to control the errors
so that they never increase above 10−2 within the spin intervals a = 0.01 to 0.9.
Therefore, we draw a horizontal line E± = 10−2 in Fig.7.2. Then the parameters
α, h0, a should be chosen within a certain range so that the approximation works
well, and for this purpose second order solutions are sufficient.

It is true that the original Delta function depends not only on the roots, but
everywhere in the radial distance. However, replacing the original Delta function
(which is a transcendental function) with a quadratic function gives a very good
approximation for r ≳ 2M ≈ r̂+ (see Fig.7.3), i.e., outside the event horizon, since
all perturbations occur in the region r ≳ 2M . The errors are calculated by

∆approx −∆original

∆original

(7.3)

where ∆approx is given by Eq.(3.58) and ∆original is the exact Delta function in metric
(4.23). We can clearly see that the errors decrease rapidly as r becomes large. The
larger α and smaller h0, the larger the errors. The spin has only a small effect. The
errors go below a few percent when r ≳ 2M . One can also notice that the ∆approx

is always slightly larger than the ∆original.

a/M=0.8,α=0.1,h0/M=0.5

a/M=0.8,α=0.5,h0/M=0.5

a/M=0.8,α=0.5,h0/M=1

a/M=0.5,α=0.5,h0/M=1

a/M=0.8,α=1,h0/M=1

2 4 6 8 10
r/M

0.02

0.04

0.06

0.08

error of Δ

Figure 7.3: The relative error of Delta as a function of radial distance. We plot
the errors with several combinations of black spin a, α and h0 as references. These
combination values will were used in this work.

For a quadratic function Eq.(3.58), the roots determine its behavior everywhere
outside the event horizon. Moreover, the final equation for calculating the amplifi-
cation factor and quasinormal modes are (3.82) and (3.94) respectively, the essential
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quantities Q, k, αn, βn, γn for these equations are all proportional to r̂+, r̂− or their
quadratic. Therefore, the accuracy of amplification factor and quasinormal modes,
because of using the approximation solutions (3.56) and (3.57), are therefore in the
order of (E±)

2l+2 and E±, respectively. Choosing the parameters within a certain
range α ∈ [0, 0.5], h0 ∈ [0.5, 2], a ∈ [0.01, 0.9], the errors of amplification factor and
quasinormal modes are always below the order of 10−4l+4 and 10−2, respectively.
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7.3 Special functions used in this thesis

• Gamma function
Γ(x) = (x− 1)! (7.4)

• Hypergeometric functions

F (a, b; c;x) =
∞∑
n=0

anbn

cn
xn

n!
, for|x| < 1. (7.5)

• Confluent hypergeometric function

U(a, b, x) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b, x)+

Γ(b− 1)

Γ(a)
x1−bM(a−b+1, 2−b, x) (7.6)

where M(a, b, x) is the Kummer function, defined as

M(a, b, x) =
∞∑
n=0

an

bn
xn

n!
(7.7)

• Error function

erf(x) =
2√
π

∫ x

0

e−t2dt (7.8)

• Imaginary error function

erfi(x) = −i erf(i x) (7.9)

• Dawson integral

DawsonF(x) = e−x2

∫ x

0

et
2

dt (7.10)
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7.4 Contour plot of MCMC samples
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Figure 7.4: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −1.6 in the collapse simulation. The contours on the plots represent the regions
enclosing 16%, 50%, and 84% of the samples. The values displayed above each subplot are
the median values, along with the upper and lower bounds enclosing 68% of the samples.
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Figure 7.5: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −2.0 in the collapse simulation. The contours on the plots represent the regions
enclosing 16%, 50%, and 84% of the samples. The values displayed above each subplot are
the median values, along with the upper and lower bounds enclosing 68% of the samples.
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Figure 7.6: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −2.4 in the collapse simulation. The contours on the plots represent the regions
enclosing 16%, 50%, and 84% of the samples. The values displayed above each subplot are
the median values, along with the upper and lower bounds enclosing 68% of the samples.
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Figure 7.7: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −1.7 in the explicit energy exchange simulation. The contours on the plots represent
the regions enclosing 16%, 50%, and 84% of the samples. The values displayed above each
subplot are the median values, along with the upper and lower bounds enclosing 68% of the
samples.
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Figure 7.8: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −2.4 in the explicit energy exchange simulation. The contours on the plots represent
the regions enclosing 16%, 50%, and 84% of the samples. The values displayed above each
subplot are the median values, along with the upper and lower bounds enclosing 68% of the
samples.
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Figure 7.9: The contour plots show the MCMC samples for the posterior of radial bin
γ0 = −3.0 in the explicit energy exchange simulation. The contours on the plots represent
the regions enclosing 16%, 50%, and 84% of the samples. The values displayed above each
subplot are the median values, along with the upper and lower bounds enclosing 68% of the
samples.
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