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H/L time lag

e Detection of a GW event needs at |east two detectors.
— Timelag
 Light speed & distance (3000 Km) & -10~10 ms
 Line-of-sight

o _ Detector - detector
— Similarity <
« Strong correlation with aproper time |
J Prop & Detector - GR

— Both are reasonably good & candidate
* For residual, none of the aboveis expected®

The Pearson correlation coefficient:
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GW150914 and the residual
(Fig. 1, Phys. Rev. Lett. 116, 061102)

Hanford, Washington (H1) Livingston, Louisiana (L1)
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Abnormal correlation of the residual

Strein [107]
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See also: http://www.nbi.ku.dk/gravitational-waves/



http://www.nbi.ku.dk/gravitational-waves/

The first ideathat comes to our mind

|s something wrong with the GW-template?

— There are two templates published:

— Fig. 1, Phys. Rev. Lett. 116, 061102
— https.//losc.ligo.org/s/events/L OSC_Event_tutorial.zip

Our work has been:

— Tested for both. ”’.‘\ |L,J ‘m J.‘Ih
— Intensively inspected by both usand L1IGO *‘ | | ]1 'J ]
— Only minor amplitude changes
Nothing we can do with the unpublished templ at&s

However, we can and should do something without
templ ates.
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https://losc.ligo.org/s/events/LOSC_Event_tutorial.zip

Where are the abnormal correl ations?

Templateisw Templateis strong No template

C(t,w)

— : Data =

—— : Residual .
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Time [s]

Figure 25. The running window correlation C'(¢,w) (Eq. (G.1)) with Livingston inverted and shifted by 7 ms.
Black for the clean strain data, and red for the residual (data minus template). The precursor and echo peaks
are marked by the green vertical lines.
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For GW151226 (where GW Isvery weak)

100 ms Run—Win resi—CC (L shift/inv), CW15122
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The corresponding time-domain —
signal

residuals can be seen by naked eyes

Similar to the previous page,
but for GW151226

https.//losc.ligo.org/events GW 151226/
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https://losc.ligo.org/events/GW151226/

Blind estimation of the common signal

« Description of the method: estimation of the common signal without a
template

— A denotes the common signal
— X, Y: denote the Hanford and Livingston data
— Corr(A, X), Corr(A, Y): They should be high
— Corr(A-X, A-Y): This should be low
« Why do we want to estimate the common signal?

— To check if the LIGO template is consistent with ablind estimation

— Totry to reduce thelevel of residual-CC with areasonable common
signal estimation.
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Data

Before estimation, we should match H/L

H(w) :@L(w)e?‘%@l

v ——— Closeto 1t
: : “Matching” means optimization of these
! ] three constant parameters.
0.5 -
o _ _\ Before matching, they look different.
I After matching, they will be exactly
o same (for this example).

f g T 15 20 25
Tirne

 https://losc.ligo.org/sevents GW150914/L OSC_Event_tutoria
| GW150914.html
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https://losc.ligo.org/s/events/GW150914/LOSC_Event_tutoria

Likelihood for this estimation

. . https://en.wikipedia.org/wiki/Fisher transformation

Fisher transform 1 R .
Corr(A, X) > Zxy = 7 log( ﬁ} For enhanced Gaussianity
expectation Probability density function

Null hypothesis: E(Z,,)=0 =———> PDF(Z,,) ~ & %

NUIl hypothes S. E(ZRny) = O — PDF (ZR . ) ~ e— kz(ZRXRy)Z

Assume H/L independence (Not 100% sure in reality, but good as a null hypothesis)
Three-parameter likelihood (take log for simplification)

.....
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https://en.wikipedia.org/wiki/Fisher_transformation
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1) Determine adirection that
gives higher likelihood

2) A small walk with
random size along this
direction
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Oscillation of the likelihood

In this region, Higher likelihood = better solution
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M Hansen et al, 2011, arxiv:1103.6135

We know that the Best Common Signal liesin the oscillatory region.

But it cannot be determined precisely. i

The oscillatory region determines the mean and the uncertainty range of .
the Best Common Signal. I W
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Strain

In the oscillation region:

Mean & Solution (black line)

Min-max range & Range of uncertainty (yellow)
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Run the same procedure for 100 times
each time with anew random initial guess

16.39 16.40 16.41 16.42 16.43
Time [sec]

1) Range of uncertainty

2) Stability of the solution
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Where do we find discrepanci es?
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RMS in small time-window for:
L1 GO minus each solution

Average over the 100 run

Regions with large discrepancies are identical
with regions with a high residual CC.

Beginning of the talk: resi-CC a extra common signal
Here: common signal & resi-CC

Self-consistent

The LIGO GW15014 template is not an optimal
estimator for the common signal
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How about the residual-correlation?

H-L Run—-win ABS(CC) for residual

0.8+ :
i Can reduce theresi-CC
06l But only part of it
[ The priceis huge: big difference to GW150914
0.4 N
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Can wereally treat the data as GW + noise?

Strain
)

A dilemma: common Different

— GW a res-CC

— Common signal & Big change to GW R ED gL, MR T
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|s GW+noise enough?
Dlrect observatlon peak mismatch (aII near the chirp)

_CHI50974 B CHAZT 226, H
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CW120104, H

0.6 :

Strain [1077]
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Such peak-mismatch is very common
for all current GW events, and it really
indicates that “GW+noise” assumption
Isinsufficient.

Q.o
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How about the GW-part (degeneracy?)

Raw product of pyCBC (the LIGO program)
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Comparison of two GW-templates with 7-solar-mass diff
to one BH (use pyCBC, byt not real LIGO templates)

as 1-sigmaerror

Can we skip
band pass and
use alonger
time range?
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The band passisinevitable & Use of longer time range
for discrimination isimpossible
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In this region, Higher likelihood -+ better solution

A +7 solar mass template iswell within the
“oscillation/region” (only an analogy, the
actual progedure is certainly different )

LIGO GW150914 template may give
higher likelihood, but is not 100% “better”
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What happens if we try to match
GW170104 with GW1509147

150F—— : GW170104 (stmulaled by Gﬁ"fﬁor.i) .

100F—— : cw170104 ﬂ -
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What will happen if we try to match GW1/70104
with GW150914?

* No change to the program, only replace the template file to
“cheat” the program.

» By the LIGO program (whitening, 43-800 Hz)
— For both H/L, the SNR decrease by ~10%

« By our program (linear filtering, 43-430 Hz)
— For Hanford, the SNR decrease by ~10%
— For Livingston, the SNR increase by ~1%

The LIGO SNR: Brief description:
Comparison of the covariances, Template-data V' S. template-noise
Exact definition:
https:.//arxiv.org/pdf/1508.02357.pdf
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Trueresult (LIGO program)

H1 matched filter SNR around event

—— H1 SNR(t)

SNR
=Y
Il
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1
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*Therefore, by using
GW150914 template
for GW170104, the
result is not much
different

Fal se result

H1 matched filter SNR around event

—— H1 SNRIt)

SNR
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Could we find out more events like GW150914 ?

« With afull constraint, the answer i1s “No”
— Hanford and Livingston
— Full frequency band of the event (35-350 Hz)
— Full time range (~0.2 sec)

— The LI1GO significance estimation gives avery low false
alert rate (1 event per 203,000 years)

« Let’stry apartial constraint for illustration.
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Could we find out more events like GW150914 ?
What 1f we look at the BPF at 180-350 Hz?

We are still inside 35-350 Hz recommended by LIGO

—  Hanford

1.0} — Livingston
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With this BPF we are
in the domain,
discussed in our JCAP

paper .
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We can easily find many chirp instances
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Could we find out more events like GW150914 ?

« With afull constraint, the answer is “No”
— Hanford and Livingston
— Full frequency band of the event (35-350 Hz)
— Full time range (~0.2 sec)
— The LIGO significance estimation gives avery low false alert rate (1
event per 203,000 years)
« How about apartia constraint for illustration?

 [t’simportant to study the origin of the chirp-like structure
— Purely random a the LIGO significance estimation will be OK

— Hasphysical origin & one should be more careful about the
significance estimation.
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Conclusion

Did we see chirpsin the LIGO detectors?
— Y es, no doubt about that.

|s the chirp due to GW-signal?

— Weredlly like this conclusion, but we also need to be careful about
reasonable questions (abnormal CC, blind estimation).

Are the BH parameters accurate?

— Wedidn’t test the central value claimed by L1GO, but the error bars
seem to be bigger than one thought.

— A 7-solar mass difference is amost indistinguishable

|s everything as perfect as GW + random noise?
— |l don’t think so

32





