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The Capacitance and Electromechanical Coupling of Lipid Membranes
Close to Transitions: The Effect of Electrostriction
Thomas Heimburg*
The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
ABSTRACT Biomembranes are thin capacitors with the unique feature of displaying phase transitions in a physiologically rele-
vant regime. We investigate the voltage and lateral pressure dependence of their capacitance close to their chain melting tran-
sition. Because the gel and the fluid membrane have different area and thickness, the capacitance of the two membrane phases
is different. In the presence of external fields, charges exert forces that can influence the state of the membrane, thereby influ-
encing the transition temperature. This phenomenon is called ‘‘electrostriction’’. We show that this effect allows us to introduce
a capacitive susceptibility that assumes a maximum in the melting transition with an associated excess charge. As a conse-
quence, voltage regimes exist in which a small change in voltage can lead to a large uptake of charge and a large capacitive
current. Furthermore, we consider electromechanical behavior such as pressure-induced changes in capacitance, and the appli-
cation of such concepts in biology.
INTRODUCTION
Biological membranes provide a barrier between cells and
organelles that serves to maintain differences in chemical
and electrical potentials by separating molecules and ions.
The electrical phenomena that result from transient changes
in these electrochemical potentials provide the basis for
contemporary understanding of the electrophysiology of
biomembranes (1,2). The cell membrane consists mainly
of a lipid bilayer into which proteins are embedded. It is
widely (but incorrectly (see (49)) believed that the lipid
bilayer itself is impermeable to water, ions, and molecules.
Therefore, electrophysiology considers the membrane to be
a capacitor, and ion channel proteins are regarded as electri-
cal resistors. The nerve pulse, for instance, is considered as
a propagating segment of charged capacitor loaded by
currents through the channel proteins (3).

The membrane capacitance, Cm, defines how much
charge, q, is stored on two capacitor plates at a fixed
membrane voltage, Vm,

q ¼ Cm ,Vm: (1)

For a parallel plate capacitor, Cm is given by

Cm ¼ e0e
A

D
; (2)

with vacuum permittivity e0 ¼ 8.85410�12 F/m and dielec-
tric constant e z 2–4. Here, A is the area of the membrane,
and D is its thickness.

Excitatory processes in cells are typically accompanied
by changes in voltage. During nerve pulses, for instance,
the voltage changes transiently by ~100 mV in 1 ms. Volt-
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ages as large as 100 mVare also typical in the voltage-clamp
experiments that are used to measure protein conductances
(4). In electroporation experiments, used to transport drugs
or DNA into cells, voltages can be on the order of several
100 mV (5,6). Stimulation voltages for nerve pulses can
be of order up to 1 V (e.g., Kassahun et al. (7)).

A change in voltage leads to a capacitive current because
the charge on the capacitor changes. The capacitive current
induced by a change in voltage is given as

dq

dt
¼ d

dt
ðCm ,VmÞ ¼ Cm

dVm

dt
þ Vm

dCm

dt
: (3)

In electrophysiological models such as the Hodgkin-Huxley
model for nerve pulse propagation and in the interpretation
of voltage-clamp experiments, it is assumed that the capac-
itance of biomembranes (in particular of nerves) is indepen-
dent of voltage (i.e., Cm is constant) so that the second term
on the right of this equation is zero (e.g., Johnston and Wu
(2) and Hodgkin and Huxley (3)). This is equivalent to
assuming that membrane dimensions are unaffected by elec-
trical phenomena and that the excitation of membranes does
not change their dimensions. The second of these assump-
tions is known to be incorrect because changes in the thick-
ness of nerve membranes during the action potential have
been observed (8–14). Furthermore, there are numerous
reports in the literature on voltage-induced changes in
membrane bending, i.e., caused by flexoelectricity or me-
chanoelectricity (15–17). In the recent years, we have
proposed that the voltage changes during the nerve pulse
are actually related to changes in capacitance (13,18–22).

In this article, we show that the assumption of constant
capacitance is incorrect, especially if one is close to chain
melting transitions in the lipid membrane. Biological
membranes display transitions close to physiological
temperature. Heat capacity maxima are typically found
http://dx.doi.org/10.1016/j.bpj.2012.07.010
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10–15� below physiological or growth temperature, both for
bacterial membranes from Escherichia coli and Bacillus
subtilis, for lung surfactant (13) and for nerves from the
spine of rats (S. B. Madsen and N. V. Olsen, unpublished
data). The fluid state membrane is thinner than the gel
membrane. Simultaneously, the area of the fluid membrane
is larger (23). This implies that the capacitance of the fluid
membrane is larger than that of the gel membrane. Thus, any
phenomenon in the biomembrane related to a phase transi-
tion will influence its capacitance. For instance, the temper-
ature of the phase transition is influenced by charges on the
capacitor because electrostatic forces act on the capacitor
plates. Further, hydrostatic pressure (24), lateral pressure
(13), or the addition of drugs like anesthetics (25) influence
the position of the melting transition. Therefore, the capac-
itance must be also a function of voltage, hydrostatic pres-
sure, lateral pressure, and the concentration of anesthetics.

We show here that close to a transition voltage is able to
change the dimensions of a membrane and the capacitance.
We also show how the electrical properties of the membrane
are affected by the application of lateral pressure or tension
in a membrane. This gives rise to pressure-induced capaci-
tive currents or pressure-induced voltage changes. Although
we restrict ourselves primarily to the phenomenon of elec-
trostriction, i.e., the force that capacitive charges exert on
the capacitor, we also discuss polarization effects.
THEORY

Consider a capacitor whose equilibrium properties depend
on voltage Vm only, i.e., all other intensive variables of the
system such as pressure and temperature are kept constant.
We write

dq ¼
�

vq

vVm

�
dVmhbCmdVm: (4)

Here we introduce the function bCm ¼ (vq/vVm), which we

call the ‘‘capacitive susceptibility’’. Note that the definition
of bCm differs from that of the capacitance that is given by
Cm ¼ q/Vm. According to Eq. 1, Eq. 4 corresponds to

dq ¼
�
vðCmVmÞ
vVm

�
dVm ¼

�
Cm þ Vm

vCm

vVm

�
dVm

¼ CmdVm þ VmdCm: (5)

This equation takes into account that the changes of the

charge on a capacitor are not solely due to voltage changes
but also to voltage-induced changes in capacitance, which
are described by the capacitive susceptibility

bCmhCm þ Vm

vCm

vVm

: (6)

If the capacitance Cm is independent of voltage, we obtain
bCm ¼ Cm. However, the last term on the right-hand side
of Eq. 6 can become large close to transitions in biomem-
branes, as we will show below. In the context of transitions,
this term can be considered an excess capacitance. It is
proportional to the voltage. Therefore, it is zero at zero
voltage where the capacitor is not charged. In contrast, the
function Cm has a finite value because it depends only on
the dimensions of the capacitor.

The capacitive susceptibility bCm is fully analogous to
other susceptibilities such as heat capacity, (dH/dT)P,
isothermal volume compressibility, �(dV/dp)T, and iso-
thermal area compressibility, �(dA/dP)T. The capacitive
susceptibility has been used before, e.g., by Carius (26).
Electrostriction

Electrostriction is the generation of a mechanical force on
a capacitor by the electrostatic attraction of the charges on
the two capacitor plates. In the absence of other forces,
increasing the voltage on a capacitor will generally tend to
deform the capacitor such that its thickness is reduced.

Consider a membrane with fixed thickness D, a capaci-
tance Cm (given by Eq. 2), and a transmembrane voltage,
Vm. The field across the membrane is E ¼ Vm/D (assuming
a uniform dielectric constant in the membrane interior), and
the charge is q ¼ CmVm. The force, F , acting on this capac-
itor is given by Vanselow (27) as

F ¼ 1

2
E , q ¼ 1

2

Vm

D
q ¼ 1

2

CmV
2
m

D
: (7)

The force F and the field E are vectors normal to the
membrane surface. Assuming that the fluid membrane has
a capacitance of Cm ¼ 0.5 mF/cm2 ¼ 0.5 $ 10�2 F/m2, this
results in a pressure on the membrane of p ¼ 104 N/m2 at
100 mV, which corresponds to 0.1 bar. Due to its quadratic
dependence on voltage, this pressure is 100 times larger
(p ¼ 10 bar) at Vm ¼ 1 volt. In contrast to hydrostatic pres-
sure, this pressure has a direction normal to the membrane.
This implies that increasing this force results in a reduction
of thickness and an increase in area. Because the melting of
a membrane is linked to an increase in area, an increase of
transmembrane voltage can therefore potentially melt
a membrane.

At constant voltage, the work done by the electrical field
upon melting of the membrane is given by

DWc ¼
ZDf

Dg

FdD ¼ 1

2
e0V

2
m

ZDf

Dg

e
A

D2
dD; (8)

where Dg and Df are the thickness of the gel and the fluid

membrane, respectively. For constant area, this relation
yields the familiar expression for the work done on a capac-
itor, 1/2 CmVm

2. However, the membrane area does not stay
constant here.
Biophysical Journal 103(5) 918–929
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The area in the fluid state of 1,2-dipalmitoyl-sn-3-phos-
phatidylcholine (DPPC) is 24.6% larger than in the gel state
and the thickness is 16.3% smaller (24). If we assume
a dielectric constant e independent of voltage and membrane
state, this difference is

Cfluid
m ¼ e0e

Ag , ð1þ 0:246Þ
Dg , ð1� 0:163Þ ¼ 1:49 Cgel

m : (9)

Thus, the capacitance in the fluid phase is ~1.5 times larger
than that of the gel phase, and the force across the
membrane is 1.78 times larger than in the gel phase. In
the presence of a voltage difference, a sudden change in
membrane state can lead to significant capacitive currents
(see Discussion).

The assumption made above of a voltage- and tempera-
ture-independent dielectric constant may not be correct.
Paraffin oil has a dielectric constant of 2.2–4.7 and olive
oil has 3.1 whereas paraffin wax has 2.1–2.5 (Dielectric
Constants Chart; ASI Instruments, Warren, MI). Therefore,
it may be possible that the dielectric constant in the fluid
membrane is somewhat higher. Lacking reliable data for
membranes, we consider e to be constant.
Voltage dependence of the melting temperature

In the following, we describe the melting of a membrane in
the presence of a transmembrane voltage. We approximate
the excess heat capacity in the absence of voltage, Dcp,0 ¼
d(DH0(T))/dT, by assuming that the transition is governed
by a van’ t Hoff law, i.e., by a two-state transition from
gel to fluid with a temperature-dependent equilibrium
constant K(T). The temperature dependence of the excess
enthalpy, DH0(T), is given by

DH0ðTÞ ¼ KðTÞ
1þ KðTÞDH0

with

KðTÞ ¼ exp

�
� n ,

DH0

k

�
1

T
� 1

Tm

��
;

(10)

where n is a cooperative unit size that determines how

many lipids undergo a transition at the same time. For
DPPC, the total excess enthalpy of the transition is DH0 ¼
39 kJ/mol, and the melting temperature is Tm ¼ 314.2 K.
The transition of DPPC unilamellar vesicles is reasonably
well described by n ¼ 100. (For details of this calculation,
see Heimburg (29).)

We denote the membrane volume as V(T) ¼ Vg þ DV(T)
and the membrane area as A(T)¼ Agþ DA(T), where Vg and
Ag are the volume and the area of the gel state lipids, and
DV(T) and DA(T) are the temperature-dependent changes
due to melting. In previous publications we have shown
that the changes in both volume and area are proportional
Biophysical Journal 103(5) 918–929
to the excess enthalpy during the chain melting transition
(23,24),

DVðTÞ ¼ gVDH0ðTÞ;
DAðTÞ ¼ gADH0ðTÞ; (11)

where gV ¼ 7.8 $ 10�10 m3/J is a constant that is practically

independent of the lipid species or the lipid mixture (24),
and gA ¼ 0.89 m2/J. We assume that a similar relation holds
for the mean thickness,

DDðTÞ ¼ gDDH0ðTÞ; (12)

with gD ¼ 2.49 $ 10�14 m/J. The thickness of the gel phase

membrane, Dg, is 4.79 nm (for DPPC), and it is Df ¼
3.92 nm in the fluid phase. DPPC in the gel phase has an
area of Ag ¼ 0.474 nm2 per lipid and a membrane area
1.43 $ 105 m2 per mol of lipid (23). Here and below we
will assume that the above proportionality to the enthalpy
is valid. Further, we assume that the voltage dependence
of the pure lipid phases is small.

According to Eq. 8, the enthalpy change, DH0(T), at
constant voltage, Vm, of the membrane at temperature, T,
is given by

DHðVm; TÞ ¼ DH0ðTÞþ1

2
e0 V

2
m

ZDðTÞ
Dg

e
AðTÞ
DðTÞ2dD

¼ DH0ðTÞ þ 1

2
e0 V

2
m

ZDH0ðTÞ

0

e

�
AgþgADH0ðTÞ

��
DgþgDDH0ðTÞ

�2
�gDdDH0ðTÞ: (13)

Making use of (1 þ x)�2 z 1 – 2x for small x and assuming
constant e, we finally obtain

DHðVm; TÞ ¼ DH0ðTÞ
 
1þ 1

2
e0e gDV

2
m

Ag

D2
g

�
�
1þ 1

2

�
gA

Ag

� 2
gD

Dg

�
DH0ðTÞ

�!
;

(14)

where DH0(T) is the temperature-dependent enthalpy in
the absence of voltage described by Eq. 10. One can now
determine the temperature dependence of DH(Vm, T). For
T >> Tm, DH(Vm, T) assumes a constant value, which is the
excess heat of melting. It is a quadratic function of voltage:
DH(Vm)¼ DH0þ a0Vm

2 with a0¼ 141.7 [J/V2] using e¼ 4.
The value DH0 is the melting enthalpy of the membrane

in the absence of voltage with melting temperature Tm,0 ¼
DH0/DS0, and DH(Vm) is the melting enthalpy of the
membrane with voltage Vm. The transition temperature Tm
in the presence of voltage can be written as
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Tm ¼ DHðVmÞ
DS0

¼ DH0 þ a0V
2
m

DS0

¼ Tm;0 þ a0

DS0
V2
mh
�
1þ aV2

m

�
Tm;0;

(15)

with a ¼ a0/DH0 ¼ �0.003634 [1/V2], and DS0 ¼ DH0/
Tm,0. The melting profiles and the melting temperature as
a function of voltage are shown in Fig. 1. One obtains a shift
of the transition temperature toward lower temperatures
of �11.4 mK for Vm ¼ 100 mV, of �1.14 K for Vm ¼ 1 V,
and of �114 K for Vm ¼ 10 V. The effect of electrostriction
on the melting temperature is obviously small at physiolog-
ical voltages. However, it is large for voltages of >1 V.

The above calculation applies to a symmetric membrane.
According to the results of Alvarez and Latorre (30), the
quadratic voltage dependence of Tm can be shifted on the
voltage axes when the membrane is asymmetrically
charged. In this case, the maximum melting temperature
can be achieved for voltages different than zero.
Voltage and temperature dependence of the
capacitive susceptibility

It has been shown that outside of transitions, capacitance
changes induced by voltage are small (31–33) but quadratic
in voltage. As above, we will therefore assume that the
FIGURE 1 Influence of electrostriction on the melting of membranes.

(Top) Excess heat capacity of DPPC large unilamellar vesicles (LUVs) at

three different voltages. (Bottom) Change of the transition temperature of

DPPC as a function of voltage (see Eq. 15).
voltage dependence of the capacitance in the transition
regime is much higher than that of the pure phase. I.e., we
assume that Ag and Af as well as Dg and Df display a negli-
gible voltage dependence.

The charge on a membrane at temperature T and voltage
Vm is then given by

qðVm; TÞ ¼ ee0
Agel þ DAðVm; TÞ
Dgel þ DDðVm; TÞVm; (16)

and at voltage Vm þ dV by
qðVmþdVm; TÞ ¼ ee0
AgelþDAðVm þ dVm; TÞ
DgelþDDðVm þ dVm; TÞ , ðVmþdVmÞ;

(17)

whereDA and DD are again proportional to DH (see Eq. 14).

For fixed voltage, the capacitance is a function of tempera-
ture only. For fixed temperature, it is a function of voltage
only. The area and thickness of the membrane at T ¼
311 K are shown as a function of voltage in Fig. 2 (left).

The capacitive susceptibility, bCm, is now given by

bCm ¼ dq

dVm

¼ qðVm þ dVm; TÞ � qðVm; TÞ
dVm

: (18)

If the temperature T is below the melting temperature, Tm,0,

voltage can induce a transition in the membrane. The value
FIGURE 2 (Bottom) Area and thickness changes as a function of voltage

at T ¼ 311 K. The temperature, T ¼ 311 K, is below the melting point of

DPPC in the absence of voltage. (Top) Capacitive susceptibility, bCm, of

DPPC LUV as a function of voltage. The shaded area indicates the excess

charge of the voltage-induced transition. The dashed line is the voltage

dependent capacitance, Cm.

Biophysical Journal 103(5) 918–929
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bCm displays a maximum at a transition voltage that depends
on the experimental temperature. This is shown in Fig. 2
(right) for the case of T ¼ 311 K. The units are given in
absolute units (per mol of lipid) because the area of the
membrane is not constant. For comparison, the specific
capacitance in the gel state is 0.74 mF/cm2, and in the fluid
state it is 0.93 mF/cm2.

The charge on the capacitor is given by

qðVm; TÞ ¼
Z
Vm

bCmdVm: (19)

The charge as a function of voltage is shown in Fig. 3 (left)

for various temperatures. One can see that the charge
undergoes a stepwise change at the transition voltage. We
call this change in charge the ‘‘excess charge,’’ Dq0. It is
given by (see Eq. 6)

Dq0ðTÞ ¼
Z
Vm

Vm

�
vCm

vVm

�
dVm; (20)

where the integral is from a voltage below to a voltage

above the transition. The excess charge corresponds to
the shaded peak area in Fig. 2 (top). It has a value of
634 C/mol.

One can also determine the capacitive susceptibility, bCm,
and the capacitance, Cm, as functions of temperature. This is
shown in Fig. 3 (right) for several voltages. For Vm ¼ 0, the
capacitive susceptibility and the capacitance are identical.
Fluctuations

The heat capacity of a membrane at constant pressure is the
temperature derivative of the mean enthalpy and is given by
Biophysical Journal 103(5) 918–929
cp ¼ dhHi
dT

with

hHi
P
i

Hi expð�Hi=kTÞP
i

expð�Hi=kTÞ ;

(21)

where hHi is the statistical mean of the enthalpy averaged
over all possible microstates of the system with enthalpy
Hi. The enthalpies of the microstates are given by

Hi ¼ Ei þ pVi þPAi þJqi þ. (22)

with the intensive variables pressure p, lateral pressure P,
electrostatic potential J, and the conjugated extensive

quantities of internal energy Ei, volume Vi, area Ai, and
charge qi.

Equation 21 immediately leads to

cp ¼ dhHi
dT

¼ hH2i � hHi2
kT2

; p;P;J;. ¼ const:;

(23)

which is one of the fluctuation relations. Similar relations
are found for the specific isothermal volume compressibility

kVT , and the area compressibility kAT (23):

kVT ¼ � 1

hVi
�
dhVi
dp

�
T

¼ hV2i � hV2i
hVikT ; T;P;J;.

¼ const: (24)

A 1
�
dhAi� hA2i � hAi2
kT ¼ �hAi dP T

¼ hAikT ; T; p;J;.

¼ const: (25)
FIGURE 3 (Left) Voltage-induced transition of

DPPC LUVs at four different (constant) tempera-

tures. (Top panel) The charge as a functions of

voltage. (Bottom panel) Capacitive susceptibility

as a function of voltage. (Right) Capacitive suscep-

tibility bCm as a function of temperature for five

different voltages. The dashed lines represent

capacitance Cm as a function of temperature.
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Like the heat capacity, these compressibilities have maxima
in the melting transition (23).

The capacitive susceptibility of the membrane, bCm, is
a similar susceptibility and can be written as

bCm ¼ � dq

dJ
¼ dq

dVm

¼ hq2i � hqi2
kT

; T; p;P;.

¼ const: (26)

All of the above susceptibilities are derivatives of extensive
variables with respect to the conjugated intensive variables.

For such susceptibilities, the fluctuations hX2i � hX2i are
quadratic forms and therefore always positive. Heat
capacity, volume and area compressibility, and capacitance
must always be positive definite functions. For this reason,
one also finds that the integrals of the susceptibilities are
always positive:

DH ¼
ZT2
T1

cpdT > 0 for T2 > T1;

�DV ¼
Zp2
p1

hVikVTdp > 0 for p2 > p1;

�DA ¼
ZP2

P1

hAikATdP > 0 for P2 > P1;

Dq ¼
ZVm;2
Vm;1

bCmdVm > 0 for Vm;2 > Vm;1:

(27)

This implies that an increase in voltage across a membrane

must result in an increase in charge so long as intensive vari-
ables other than Vm are kept constant. This is in agreement
with the findings in Fig. 3 (left).

For derivatives of extensive quantities with respect to
nonconjugated quantities, the fluctuations are no longer
positive definite forms, and negative values can be obtained.
For instance, the volume expansion coefficient is given by
dhVi/dT ¼ [hV Hi � hVi hHi]/kT2. For water at 0�C it is
negative. Similarly, derivatives of other extensive variables
with respect to nonconjugated intensive variables, such as
dhqi/dT or dhqi/dP, can also be negative (see below).
Piezoelectricity

A material is said to be ‘‘piezoelectric’’ if the application of
a force produces an electric field (and vice versa). ‘‘Piezo’’
originates from the Greek word for pressure, and we will
therefore use the term ‘‘piezoelectric’’ as synonymous
with ‘‘electromechanical’’ in the sense of pressure-induced
voltages across membranes. At fixed temperature,

dq ¼
�

vq

vVm

�
F
dVm þ

�
vq

vF
�

Vm

dF ; (28)
where F is the force normal to the membrane. Because
thickness changes in the melting transition are coupled to
area changes, this leads to the relation

dq ¼
�

vq

vVm

�
F
dVm þ

�
vq

vP

�
Vm

�
vP

vF
�

Vm

dF|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dP

¼
�

vq

vVm

�
P

dVm þ
�
vq

vP

�
Vm

dP; (29)

where P is the lateral pressure of the membrane. In the
following we will focus on lateral pressure changes.

At constant voltage, the enthalpy change, DH(T), of the
membrane at temperature T due to a lateral pressure is given
by a modified version of Eq. 13,

DHðVm; T;PÞ ¼ DH0ðTÞ þ DWcðVmÞ þ DWAðPÞ; (30)

DWAðPÞ ¼ PDA ¼ PgADH0ðTÞ; (31)
where DWA(P) is the work done to change the area of
the membrane from Ag to A. With the help of Eq. 14, this
leads to

DHðVm; T;PÞ ¼ DH0ðTÞ
 
1þ 1

2
e0e gDV

2
m

Agel

D2
gel

�
1� 1

2

�
�
gA

Agel

þ 2
gD

Dgel

DH0ðTÞ
��

þ gAP

!
;

(32)

and the melting temperature is given by
Tm ¼ DHðVm;PÞ
DS0

¼ �
1þ aV2

m þ gAP
�
Tm;0; (33)

with a ¼ �0.003634 [1/V2] (see Eq. 15), and gA ¼
0.89 m2/J.

The charge on a membrane at temperature T, voltage Vm,
and lateral pressure P can be written as

qðVm; T;PÞ ¼ ee0
Agel þ DAðVm; T;PÞ
Dgel þ DDðVm; T;PÞVm; (34)

whereDA and DD are again proportional to DH (see Eq. 32).
Now we can determine 1), how the charge on the capac-

itor changes with changes in lateral pressure at constant
voltage and temperature (and vice versa); and 2), how the
voltage changes at constant temperature and constant charge
with changes in lateral pressure (and vice versa). Fig. 4 (left)
shows case 1 for a fixed voltage of Vm ¼ 1 Vand T¼ 315 K.
Under these conditions, the membrane is in the fluid state
when the lateral pressure P is zero. Increasing pressure
Biophysical Journal 103(5) 918–929



FIGURE 4 Changes in electrical properties induced by lateral pressure

changes. (Top) Change in the charge on a capacitor upon changes in lateral

pressure at fixed voltage of Vm ¼ 1 V. (Bottom) Change in voltage

induced by lateral pressure changes at fixed charge on the capacitor (Cm ¼
1430.7 C/mol corresponding to the charge on the fluid phase membrane at

Vm ¼ 1 V). Increasing lateral pressure renders the membrane more solid.

FIGURE 5 (Top) Change in voltage induced by lateral pressure changes

at fixed charge on the capacitor (Cm ¼1430.7 C/mol corresponding to the

charge on the fluid phase membrane at Vm ¼ 1 V). Increasing lateral pres-

sure renders the membrane more solid. (Bottom) The corresponding suscep-

tibility, bq ¼ (vVm/vP)q.

924 Heimburg
renders the membrane more solid and the capacitance of the
membrane decreases. This leads to a release of charge from
the capacitor (i.e., pressure-induced capacitive currents).
One can define the corresponding susceptibility,

bVh

�
vq

vP

�
Vm

; (35)

which is shown in Fig. 4 (right). This susceptibility represents

the change in the charge on the membrane due to an incre-
ment in the pressure at constant voltage. Because it is a
derivative of the extensive variable qwith respect to the non-
conjugated extensivevariableP, it can have a negative value.

When the charge in Eq. 28 is kept constant (dq ¼ 0), we
obtain

dVm ¼

2664�

�
vq

vP

�
Vm�

vq

vVm

�
P

3775dPhbqdP: (36)

This is shown in Fig. 5 (left) where the charge is fixed at q¼
1645.4 C/mol, which is the charge on the fluid membrane at
a voltage of Vm ¼ 1 V. The work done on the membrane by
pressure is converted into work done on the charges by
changing their distance. Increasing pressure at fixed charge
leads to a larger voltage across the membrane. We call this
‘‘a piezoelectric effect’’. The coupling constant,
Biophysical Journal 103(5) 918–929
bq ¼
�
vVm

vP

�
q

; (37)

is shown in Fig. 5 (right). It is identical to the term in rect-

angular brackets in Eq. 36. A situation of constant charge
could be present in a membrane during a sudden reversible
change in lateral pressure when charges have no time to
dissociate.
DISCUSSION

Lipid membranes are thin capacitors that are unique in their
property to display transitions in capacitance. Here, we have
offered a theoretical framework for describing the capaci-
tance and the capacitive susceptibility of membranes in
the transition regime. Because biomembranes are close to
such transitions, this is of immediate biological relevance.
Charges on membranes create forces on the membrane
that tend to compress the membrane normal to the
membrane surface. This effect is called electrostriction
(27). It leads to a lowering of the melting temperature of
the membrane. Therefore, a change of transmembrane
voltage can induces melting transitions. As a consequence,
there is an excess charge linked to the voltage-induced tran-
sition. This is expressed by the capacitive susceptibility,bCm ¼ vq/vVm, which displays a pronounced maximum at
the transition. This behavior is very similar to that of the
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heat capacity as a function of temperature and the volume
and area compressibilities as a function of hydrostatic and
lateral pressure. These functions are all derivatives of exten-
sive thermodynamic variables with respect to their conju-
gated intensive variable. Using the fluctuation theorem, we
have shown that the capacitive susceptibility is related to
fluctuations in charge and must therefore always be positive.
The maximum of the capacitive susceptibility describes the
fact that, in particular voltage regimes close to transitions,
a small change in voltage may lead to a large uptake of
charge, i.e., the membrane is very susceptible to small vari-
ations in conditions.

We further show that electromechanical couplings exist in
lipid membranes. One finds a straightforward connection
between lateral pressure and the charge on a membrane
(at constant voltage) that also assumes a maximum in the
melting transition of the membrane. This implies that
changes in pressure can give rise to capacitive currents.
This effect is described by the derivative of an extensive
variable (charge) with respect to a nonconjugated variable
(lateral pressure). Such susceptibilities may have either
positive or negative values. At constant charge, a coupling
also exists between voltage and lateral pressure. This effect
corresponds to piezoelectricity. The coupling constant
assumes a maximum in the melting transition. This effect
is very important for excitatory processes (for instance
nerve pulse) and is discussed below. In this article, we
have not considered other potentially significant effects
such as field-induced changes in polarization. Such effects
are relevant and clearly exist in lipid monolayers. This
will be the focus of a future publication.

Due to their different capacitance, gel and fluid
membranes carry different charges when a constant voltage
is applied. An interesting consequence is that the presence
of a transmembrane voltage will lead to charge separation
in the melting regime where gel and fluid domains coexists.
If the membranes contain a fraction of charged lipids, this
will lead to an asymmetric accumulation of charged lipids
in the fluid domains. Thus, the shape of phase diagrams
will be influenced by the application of an electrical field
across the membrane. Not surprisingly, in addition to
temperature, pressure, and components’ concentrations,
the transmembrane voltage is also a variable that determines
phase diagrams and should be included in Gibbs’ phase rule.

The influence of voltage on the capacitance of black lipid
membranes had been investigated both theoretically and
experimentally in several studies in the 1970s (30,31,
34–36). All of these studies assume that electrostriction is
the dominant effect leading to a reduction in membrane
thickness and an increase in area due to an increase in
voltage. Those studies were done far away from the phase
transitions temperature of black lipid membranes. In agree-
ment with our derivations here, they found that the depen-
dence of the capacitance should be a quadratic function of
voltage, i.e., Cm f (1 þ aVm

2), where a is a constant.
This constant is strongly influenced by the presence of
solvent in the black lipid membranes (32). Solvent-free
membranes display a much smaller voltage dependence of
the capacitance on voltage. In an interesting experimental
study, Alvarez and Latorre (30) found that changes in capac-
itance in asymmetric membranes are influenced by a resting
potential, E0, such that Cm f (1 þ a(V – E0)

2). Alvarez and
Latorre discussed this finding in the context of nerve pulse
propagation and the measurement of gating currents. They
suggested that the membrane itself could display capacitive
currents similar to gating currents. What we regard as the
novel aspect of the work presented in this article is the
recognition of the profound effect that the melting transition
has on the nonlinear behavior of the membrane capacitance.
Whereas previous authors have assumed a constant
compressibility of the membrane, we have made use of
the fact that the compressibility is dramatically increased
in transitions.

The two terms of the capacitive current, Cm $ dVm/dt and
Vm $ dCm/dt, in Eq. 3 can have different time dependences.
The first term is fast and is largely determined by the elec-
trical resistance of the aqueous medium. The second term
has a timescale given by the relaxation time of the
membrane, which is slow in transitions. It should therefore
be possible to distinguish the two contributions to the capac-
itive current experimentally. We have previously shown that
relaxation timescales can be as large as 30 s for artificial
membranes at the transition maximum, and we estimate
timescales of up to 100 ms for biomembranes (37,38).
Besch et al. (39) investigated HEK293 cells and found
currents with timescales in the 10-ms regime after voltage
change, which indicates that these currents are related to
time-dependent changes in membrane geometry rather
than being caused by charging a membrane with a constant
capacitance. Slow capacitive currents after voltage changes
were also found in rat nerves (40) but interpreted as gating
currents.

The electromechanical aspect of membranes has received
considerable interest in the past. Ochs and Burton (15)
showed in 1974 that black lipid membranes made of egg-
PC and cholesterol show electromechanical behavior under
voltage-clamp conditions. They applied an oscillating pres-
sure difference across the membrane and recorded capaci-
tive currents that they described by IC ¼ Vm $ dCm/dt (see
Eq. 3).

As mentioned above, the interesting issue of polarization
has not been treated here. However, much of the literature
on electromechanical phenomena in membranes is dedi-
cated to polarization caused by membrane curvature. Meyer
(41) proposed in 1969 that liquid crystals of molecules that
possess electrical dipole moments should also be piezoelec-
tric. In particular, Meyer stated that ‘‘another possible appli-
cation of these effects may be in interpreting some of the
potentials and ion distributions observed in liquid-crystal-
line biological structures.’’ Following this idea, Petrov
Biophysical Journal 103(5) 918–929
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(42,43) proposed that membranes should also display piezo-
electric behavior. Lipid monolayers have significant dipole
moments due to the polar headgroups and the oriented asso-
ciated water layer. For a symmetric membrane of a zwitter-
ionic lipid, the polarizations of the two layers should cancel
because they have opposite orientations.

However, in the presence of curvature, this symmetry
argument does not apply, and one expects an electrical field
generated by curved membranes. Petrov named this
phenomenon ‘‘flexoelectricity’’ and demonstrated the effect
in experiments similar to those by Ochs and Burton (15) but
interpreted differently as curvature-induced polarization
(44,45). In several further articles the authors applied the
concept of flexoelectricity to biomembranes and proposed
a coupling of flexoelectricity to ionic currents through
channel proteins (46,47). Because lipid membranes in the
absence of proteins also display ion-channel-like character-
istics close to transitions (48–50), Petrov’s considerations
are also valid here. It is reasonable to expect that the polar-
ization, P, of membranes changes significantly in the phase
transition regime and that the related susceptibility, dP/dE
(with E being the electrical field), should have a maximum
in the transition. This must be so because the dipole moment
of a gel monolayer differs from that of a fluid monolayer.
Upon membrane bending one should find an asymmetric
distribution of gel and fluid lipids in the two opposing
monolayers (51) leading to an effective polarization of the
membrane. Unfortunately, we are not aware of any reliable
experimental data or theoretical estimates of the magnitude
of this polarization.

To our knowledge, the above authors did not investigate
the effect of the phase transition on flexoelectricity.
However, polarizations induced by curvature are completely
analogous to voltage changes induced by lateral compres-
sion as described above by Eq. 36 and Fig. 5. Interestingly,
Helfrich (52) investigated the effect of voltage on the phase
transition temperature of three-dimensional liquid crystals
as early as 1970. He found that the shift of the transition
is given by

DTm ¼ 1

2
Tm;0e0DeE

2=DH0r;

where De is the difference of the dielectric constant between

liquid and solid phase, r is the density, and E is the electric
field. Assuming E/D ¼ Vm, this law is analogous to Eq. 15.

It is known experimentally that lipid monolayers have
large dipole potentials of ~300 mV—somewhat higher for
gel than for fluid phase monofilms (53,54). This is
frequently attributed to the dipolar nature of the lipid head-
group and the associated water. One can influence the state
of lipid monolayers in experiments by an applied field. At
positive voltages a liquid-expanded monolayer becomes
more solid, whereas the opposite effect is observed when
the field is reversed. This rules out the possibility that the
influence of voltage is due to electrostriction (K. Feld, Niels
Biophysical Journal 103(5) 918–929
Bohr Institute, 2012), which is independent of the direction
of the field. For membranes, this is less clear. Antonov et al.
(55) measured the voltage dependence of the lipid chain
melting transition via the effect of voltage on membrane
permeability, which displays a maximum at the melting
point. For synthetic black lipid membranes made of
either DPPC or DPPA (dipalmitoyl phosphatidic acid),
they found an increase in melting temperature that was
well described by

TmðDPPCÞ ¼ 315:4½K� þ 20:5½K=V� ,Vm;
TmðDPPAÞ ¼ 332:8½K� þ 55:1½K=V� ,Vm:

(38)

This corresponds to a linear shift of Tm of þ1.03 K at Vm ¼
50 mV for DPPC and a shift of 2.75 K for DPPA toward
higher temperatures, respectively. This effect is opposed to
the trend toward lower temperatures predicted above based
on electrostriction, which is in agreement with previous
predictions from Sugár (56). However, Antonov’s finding
is remarkably close to the calculation of Cotterill (57)
made by considering the polarization of the monolayers.
The shift of Tm by Antonov was found to be linear within
experimental accuracy, as expected from Cotterill’s calcula-
tion. We do not believe, however, that the derivation of
Cotterill is theoretically sound.

An increase of the transition temperature with increasing
voltage poses an interesting theoretical problem. Under such
circumstances, the fluid membrane can be made solid by
voltage leading to a lower capacitance. This would render
the excess capacitive susceptibility in the transition nega-
tive, and would result in a negative excess charge. Accord-
ing to the considerations of fluctuations above, this can hold
only if there are couplings between the charge on the
membrane and nonconjugated intensive variables. It
remains to be seen whether the simultaneous change of
capacitance and polarization allows for such behavior.
However, if this were the case, an increase in voltage could
possibly result in a decrease of charge, i.e., in capacitive
currents against the applied field. It should also be noted
that the publication of Antonov et al. (55) is the only one
on voltage-induced shifts in transition temperature of which
we are aware, and independent experiments verification
would be useful. In this respect, the shift of the quadratic
dependence on voltage due to a preexisting polarization
found by Alvarez and Latorre (30) might contain the answer
to the problem presented in this article. The maximum tran-
sition temperature may exist at a resting potential different
from zero volts. Thus, the melting-point dependence on
voltage may be linear and sign-dependent around zero volts.
This suggests that the membranes in the experiments of An-
tonov were not symmetric. Additional studies of polarized
membranes are to be encouraged.

Biological membranes display somewhat different
melting characteristics than artificial membranes. Their
melting profiles are broader and they contain proteins that
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probably do not alter their shape in a transition. Therefore,
one expects voltage-induced transitions that are qualita-
tively similar but not necessarily quantitatively identical.
For instance, such effects may play an important role in
outer hair cells. Fang et al. (58) and Izumi et al. (59) showed
in various publications that the capacitance in outer hair
cells displays a pronounced maximum. The shape of the
profiles is strikingly similar to the capacitive susceptibility
curves in Figs. 2 and 3. The authors called this effect the
‘‘nonlinear capacitance’’ and attributed it to a conforma-
tional charge transition in the protein Prestin, which is abun-
dant in outer hair cells and is believed to display
piezoelectric behavior (60). However, in the same publica-
tions it is also shown that the nonlinear capacitance is
strongly influenced by alterations of the lipid composition
indicating that some properties of the membrane itself
contribute to the apparent maximum in capacitance. It
may well be that Iwasa (61) describe a voltage-induced tran-
sition in the membrane that is tuned by prestin. Iwasa also
found a change in membrane charge upon stretching the
hair cells (see Fig. 4). The biological importance of electro-
mechanical coupling in outer hair cells was also discussed
by Rabbitt et al. (62) and Sachs et al. (63). In a recent article,
Brownell et al. (64) showed that tethers pulled from hair
cells contract upon application of a voltage difference across
the cell body.

The phenomena discussed in this article are especially
important for nerve pulse propagation. A change of the
membrane state from fluid to gel will alter the capacitance
by ~50% (see Eq. 9). If this change occurs within 0.5 ms
(which is the timescale of the rising phase of the nervous
impulse), it will generate a significant capacitive current
of ~100 mA/cm2 at a constant voltage of Vm¼ 100 mV. Ionic
currents of a similar order of magnitude are central elements
in the Hodgkin-Huxley model of the nerve pulse (3) (see
Fig. 18 therein). Hodgkin and Huxley calculated net ion
currents of ~100–600 mA/cm2 in the squid axon. In previous
publications, we have suggested that the nervous impulse
consists of an electromechanical soliton corresponding to a
lateral compression of the neuronal membranes (13,18–22).
In particular, we have proposed that the membrane
undergoes a change in state from fluid to gel and back
during the nerve pulse. Thus, in the soliton theory one
expects capacitive currents of similar magnitude as the ionic
currents in the Hodgkin-Huxley model. If charges cannot
dissociate (i.e., no capacitive current), one rather expects
changes in transmembrane potential (Fig. 5). The conse-
quence of these nonlinear effects is an electromechanical
soliton that can travel along membrane cylinder with
a velocity close to the speed of sound with many similarities
to the nervous impulse. In fact, Tasaki and co-workers
showed in various publications that such mechanical pulses
exist (8–12,65). Further support comes from atomic force
experiments that show mechanical signals in synapse in
phase and proportional to voltage changes (14). Further,
light scattering techniques demonstrate that voltage changes
are accompanied by changes in nerve dimensions (66,67).

One might reasonably assume that polarization pulses can
also propagate in membranes. In lipid monolayers, such
pressure pulses have recently been demonstrated experi-
mentally by Griesbauer et al. (68). The pressure pulses are
accompanied by voltage pulses that are directly related to
and in phase with the pressure pulse (M. F. Schneider,
Boston University, private communication, 2012). The
coupling displays a maximum in the phase transition regime
in an agreement with the concepts proposed here. Such
experiments are important and will eventually lead to
a complete thermodynamic picture of the capacitive suscep-
tibility and the electromechanical behavior of biomem-
branes and nerves.
CONCLUSION

We have shown here that lipid membranes are very suscep-
tible to voltage changes close to phase transitions. This
result extends previous theoretical and experimental find-
ings of voltage-dependent capacitances of artificial
membranes far from such transitions. We have introduced
a capacitive susceptibility that displays a pronounced
maximum at the transition. These effects depend on other
intensive variables. Higher lateral pressure and lower
temperature shift the voltage-induced transition toward
higher voltages. Voltage changes generate changes in area
that result in an electromechanical coupling. Because bio-
membranes exist naturally in a state close to a transition,
this effect will play a role in excitatory processes of the
cell. One important example is nerve pulse propagation.
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