Erratum: Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3

Research output: Contribution to journalComment/debateResearchpeer-review

Standard

Erratum : Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 . / Holm-Dahlin, S.; Kreisel, A.; Schäffer, T. K.; Bakke, A.; Bertelsen, M.; Hansen, U. B.; Retuerto, M.; Larsen, J.; Prabhakaran, D.; Deen, P. P.; Yamani, Z.; Birk, J. O.; Stuhr, U.; Niedermayer, Ch; Fennell, A. L.; Andersen, B. M.; Lefmann, K.

In: Physical Review B, Vol. 97, No. 9, 134304, 17.09.2018.

Research output: Contribution to journalComment/debateResearchpeer-review

Harvard

Holm-Dahlin, S, Kreisel, A, Schäffer, TK, Bakke, A, Bertelsen, M, Hansen, UB, Retuerto, M, Larsen, J, Prabhakaran, D, Deen, PP, Yamani, Z, Birk, JO, Stuhr, U, Niedermayer, C, Fennell, AL, Andersen, BM & Lefmann, K 2018, 'Erratum: Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 ', Physical Review B, vol. 97, no. 9, 134304. https://doi.org/10.1103/PhysRevB.97.134304

APA

Holm-Dahlin, S., Kreisel, A., Schäffer, T. K., Bakke, A., Bertelsen, M., Hansen, U. B., Retuerto, M., Larsen, J., Prabhakaran, D., Deen, P. P., Yamani, Z., Birk, J. O., Stuhr, U., Niedermayer, C., Fennell, A. L., Andersen, B. M., & Lefmann, K. (2018). Erratum: Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 . Physical Review B, 97(9), [134304]. https://doi.org/10.1103/PhysRevB.97.134304

Vancouver

Holm-Dahlin S, Kreisel A, Schäffer TK, Bakke A, Bertelsen M, Hansen UB et al. Erratum: Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 . Physical Review B. 2018 Sep 17;97(9). 134304. https://doi.org/10.1103/PhysRevB.97.134304

Author

Holm-Dahlin, S. ; Kreisel, A. ; Schäffer, T. K. ; Bakke, A. ; Bertelsen, M. ; Hansen, U. B. ; Retuerto, M. ; Larsen, J. ; Prabhakaran, D. ; Deen, P. P. ; Yamani, Z. ; Birk, J. O. ; Stuhr, U. ; Niedermayer, Ch ; Fennell, A. L. ; Andersen, B. M. ; Lefmann, K. / Erratum : Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 . In: Physical Review B. 2018 ; Vol. 97, No. 9.

Bibtex

@article{8568f13b9f6f42e3a22a927f677b5afa,
title = "Erratum: Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3 ",
abstract = "Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.",
author = "S. Holm-Dahlin and A. Kreisel and Sch{\"a}ffer, {T. K.} and A. Bakke and M. Bertelsen and Hansen, {U. B.} and M. Retuerto and J. Larsen and D. Prabhakaran and Deen, {P. P.} and Z. Yamani and Birk, {J. O.} and U. Stuhr and Ch Niedermayer and Fennell, {A. L.} and Andersen, {B. M.} and K. Lefmann",
year = "2018",
month = sep,
day = "17",
doi = "10.1103/PhysRevB.97.134304",
language = "English",
volume = "97",
journal = "Physical Review B",
issn = "2469-9950",
publisher = "American Physical Society",
number = "9",

}

RIS

TY - JOUR

T1 - Erratum

T2 - Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3

AU - Holm-Dahlin, S.

AU - Kreisel, A.

AU - Schäffer, T. K.

AU - Bakke, A.

AU - Bertelsen, M.

AU - Hansen, U. B.

AU - Retuerto, M.

AU - Larsen, J.

AU - Prabhakaran, D.

AU - Deen, P. P.

AU - Yamani, Z.

AU - Birk, J. O.

AU - Stuhr, U.

AU - Niedermayer, Ch

AU - Fennell, A. L.

AU - Andersen, B. M.

AU - Lefmann, K.

PY - 2018/9/17

Y1 - 2018/9/17

N2 - Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.

AB - Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.

UR - http:///10.1103/PhysRevB.98.099902

U2 - 10.1103/PhysRevB.97.134304

DO - 10.1103/PhysRevB.97.134304

M3 - Comment/debate

AN - SCOPUS:85053470612

VL - 97

JO - Physical Review B

JF - Physical Review B

SN - 2469-9950

IS - 9

M1 - 134304

ER -

ID: 203892593