15 March 2018


Rosanna IgnazziRosanna Ignazzi

A thesis for the degree of Doctor of Philosophy defended September 2019.

The PhD School of Science, Faculty of Science, Discovery Center, Niels Bohr Institute, University of Copenhagen

Principal Supervisor:
Prof. Peter H. Hansen


Measurement of the tt production cross section in the e channel with b-tagged events at s = 13 TeV and its interpretation towards a high precision top quark mass Measurement.

The study of the top quark is fundamental to the field of particle physics, because its high mass of approximately 173 GeV, the highest in the Standard Model, is close to the electro-weak vacuum expectation value of 246 GeV, which hints to the fact that this particle might be special and it could be the key to unveil physics beyond the Standard Model. Therefore a precise study of the properties and mass of the top Quark is necessary. In particular the mass of the top quark, which is a free parameter in the Standard Model, needs to be measured precisely, because it is one of the parameters used to constrain the global t to check for the validity of the Standard Model and its consistency with the measured data. Also, the measured inclusive tt production cross section can be compared to theoretically predicted values, allowing for a further check of the Standard Model.

The tt production total ducial and inclusive cross section and the tt production absolute and normalised di erential cross section for seven di erent leptonic kinematic variables are measured using the data collected in the ATLAS experiment at p s = 13TeV during the full Run 2 period (2015􀀀2018) with a total integrated luminosity of 139 fb􀀀1. The measurement is performed using dilepton e events with opposite sign and with either one or two associated b-jets. The total tt production ducial cross section is measured with a total relative uncertainty of 2:34% and the total inclusive tt production cross section with a total relative uncertainty of 2:91%. The value of the total inclusive cross section and the contributions to its uncertainty are as such:

tt = 839:8  1:3  16:0  18:4 pb

where the first uncertainty is the statistical one, the second is the luminosity uncertainty and the last is the total systematic uncertainty from all of the other sources other than the luminosity. The normalised differential distributions are used to extract the top pole mass for ve leptonic kinematic variables, pT(`+`􀀀), pT(`+) + pT(`􀀀), pT(`), E(`+) + E(`􀀀), m(`+`􀀀), due to their sensitivity to the mass of the top quark. The extraction is done by comparing the measured distributions to Monte Carlo templates at different top mass values. The results show that the uncertainty on the top pole mass can be reduced compared to previous measurements, thanks to the lower uncertainty on he normalised differential cross section distributions, but the templates used in this thesis are not adequate and more proper templates, including correction to the top pT spectrum and NNLO processes, would improve the results.

Download Thesis >>