Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 1.49 MB, PDF document

Quantum dot based parity-to-charge conversion is a promising method for reading out quantum information encoded nonlocally into pairs of Majorana zero modes. To obtain a sizable parity-to-charge visibility, it is crucial to tune the relative phase of the tunnel couplings between the dot and the Majorana modes appropriately. However, in the presence of multiple quasidegenerate dot orbitals, it is in general not experimentally feasible to tune all couplings individually. This paper shows that such configurations could make it difficult to avoid a destructive multiorbital interference effect that substantially reduces the readout visibility. We analyze this effect using a Lindblad quantum master equation. This exposes how the experimentally relevant system parameters enhance or suppress the visibility when strong charging energy, measurement dissipation, and, most importantly, multiorbital interference is accounted for. In particular, we find that an intermediate-time readout could mitigate some of the interference-related visibility reductions affecting the stationary limit.

Original languageEnglish
Article number245407
JournalPhysical Review B
Issue number24
Number of pages14
Publication statusPublished - 3 Jun 2021

    Research areas


Number of downloads are based on statistics from Google Scholar and

No data available

ID: 272510817