Closing of the induced gap in a hybrid superconductor-semiconductor nanowire

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. / Puglia, D.; Martinez, E. A.; Menard, G. C.; Poschl, A.; Gronin, S.; Gardner, G. C.; Kallaher, R.; Manfra, M. J.; Marcus, C. M.; Higginbotham, A. P.; Casparis, L.

I: Physical Review B, Bind 103, Nr. 23, 235201, 08.06.2021.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Puglia, D, Martinez, EA, Menard, GC, Poschl, A, Gronin, S, Gardner, GC, Kallaher, R, Manfra, MJ, Marcus, CM, Higginbotham, AP & Casparis, L 2021, 'Closing of the induced gap in a hybrid superconductor-semiconductor nanowire', Physical Review B, bind 103, nr. 23, 235201. https://doi.org/10.1103/PhysRevB.103.235201

APA

Puglia, D., Martinez, E. A., Menard, G. C., Poschl, A., Gronin, S., Gardner, G. C., Kallaher, R., Manfra, M. J., Marcus, C. M., Higginbotham, A. P., & Casparis, L. (2021). Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B, 103(23), [235201]. https://doi.org/10.1103/PhysRevB.103.235201

Vancouver

Puglia D, Martinez EA, Menard GC, Poschl A, Gronin S, Gardner GC o.a. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. 2021 jun. 8;103(23). 235201. https://doi.org/10.1103/PhysRevB.103.235201

Author

Puglia, D. ; Martinez, E. A. ; Menard, G. C. ; Poschl, A. ; Gronin, S. ; Gardner, G. C. ; Kallaher, R. ; Manfra, M. J. ; Marcus, C. M. ; Higginbotham, A. P. ; Casparis, L. / Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. I: Physical Review B. 2021 ; Bind 103, Nr. 23.

Bibtex

@article{ff28cec964c249ff8ed3d607bca44812,
title = "Closing of the induced gap in a hybrid superconductor-semiconductor nanowire",
abstract = "We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity.",
author = "D. Puglia and Martinez, {E. A.} and Menard, {G. C.} and A. Poschl and S. Gronin and Gardner, {G. C.} and R. Kallaher and Manfra, {M. J.} and Marcus, {C. M.} and Higginbotham, {A. P.} and L. Casparis",
year = "2021",
month = jun,
day = "8",
doi = "10.1103/PhysRevB.103.235201",
language = "English",
volume = "103",
journal = "Physical Review B",
issn = "2469-9950",
publisher = "American Physical Society",
number = "23",

}

RIS

TY - JOUR

T1 - Closing of the induced gap in a hybrid superconductor-semiconductor nanowire

AU - Puglia, D.

AU - Martinez, E. A.

AU - Menard, G. C.

AU - Poschl, A.

AU - Gronin, S.

AU - Gardner, G. C.

AU - Kallaher, R.

AU - Manfra, M. J.

AU - Marcus, C. M.

AU - Higginbotham, A. P.

AU - Casparis, L.

PY - 2021/6/8

Y1 - 2021/6/8

N2 - We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity.

AB - We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity.

U2 - 10.1103/PhysRevB.103.235201

DO - 10.1103/PhysRevB.103.235201

M3 - Journal article

VL - 103

JO - Physical Review B

JF - Physical Review B

SN - 2469-9950

IS - 23

M1 - 235201

ER -

ID: 272509083