Electron-nuclear interaction in 13C nanotube double quantum dots

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Nphys1247

    Forlagets udgivne version, 1,45 MB, PDF-dokument

For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information processing and memory: the 13C nuclei differ from those in the substrate, are naturally confined to one dimension, lack quadrupolar coupling and have a readily controllable concentration from less than one to 10^5 per electron.
OriginalsprogEngelsk
TidsskriftNature Physics
Vol/bind5
Udgave nummer5
Sider (fra-til)321-326
Antal sider6
ISSN1745-2473
DOI
StatusUdgivet - 6 apr. 2009

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 44225218