Viscous, Resistive Magnetorotational Modes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating background threaded by a vertical magnetic field when disturbances with wavenumbers perpendicular to the shear are considered. We provide a geometrical description of these viscous, resistive MRI modes and show how their physical structure is modified as a function of the Reynolds and magnetic Reynolds numbers. We demonstrate that when finite dissipative effects are considered, velocity and magnetic field disturbances are no longer orthogonal (as it is the case in the ideal MHD limit) unless the magnetic Prandtl number is unity. We generalize previous results found in the ideal limit and show that a series of key properties of the mean Reynolds and Maxwell stresses also hold for the viscous, resistive MRI. In particular, we show that the Reynolds stress is always positive and the Maxwell stress is always negative. Therefore, even in the presence of viscosity and resistivity, the total mean angular momentum transport is always directed outwards. We also find that, for any combination of the Reynolds and magnetic Reynolds numbers, magnetic disturbances dominate both the energetics and the transport of angular momentum and that the total mean energy density is an upper bound for the total mean stress responsible for angular momentum transport. The ratios between the Maxwell and Reynolds stresses and between magnetic and kinetic energy densities increase with decreasing Reynolds numbers for any magnetic Reynolds number; the lowest limit of both ratios is reached in the ideal MHD regime.
TidsskriftAstrophysical Journal
Udgave nummer1
Sider (fra-til)498-514
Antal sider16
StatusUdgivet - 1 sep. 2008

ID: 34382828