Active matter in a viscoelastic environment

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Active matter systems such as eukaryotic cells and bacteria continuously transform chemical energy to motion. Hence living systems exert active stresses on the complex environments in which they reside. One recurring aspect of this complexity is the viscoelasticity of the medium surrounding living systems: Bacteria secrete their own viscoelastic extracellular matrix, and cells constantly deform, proliferate, and self-propel within viscoelastic networks of collagen. It is therefore imperative to understand how active matter modifies, and gets modified by, viscoelastic fluids. Here we present a two-phase model of active nematic matter that dynamically interacts with a passive viscoelastic polymeric phase and perform numerical simulations in two dimensions to illustrate its applicability. Motivated by recent experiments we first study the suppression of cell division by a viscoelastic medium surrounding the cell. We further show that the self-propulsion of a model keratocyte cell is modified by the polymer relaxation of the surrounding viscoelastic fluid in a nonuniform manner and find that increasing polymer viscosity effectively suppresses the cell motility. Last, we explore the hampering impact of the viscoelastic medium on the generic hydrodynamic instabilities of active nematics by simulating the dynamics of an active stripe within a polymeric fluid. The model presented here can provide a framework for investigating more complex dynamics such as the interaction of multicellular growing systems with viscoelastic environments.

Original languageEnglish
Article number023102
JournalPhysical Review Fluids
Volume5
Issue number2
Number of pages15
ISSN2469-990X
DOIs
Publication statusPublished - 24 Feb 2020

    Research areas

  • DYNAMICS, ELASTICITY, STRESS

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 248024209