A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars. / Udry, A.; Ostwald, A.; Sautter, V.; Cousin, A.; Beyssac, O.; Forni, O.; Dromart, G.; Benzerara, K.; Nachon, M.; Horgan, B.; Mandon, L.; Clavé, E.; Dehouck, E.; Gibbons, E.; Alwmark, S.; Ravanis, E.; Wiens, R. C.; Legett, C.; Anderson, R.; Pilleri, P.; Mangold, N.; Schmidt, M.; Liu, Y.; Núñez, J. I.; Castro, K.; Madariaga, J. M.; Kizovski, T.; Beck, P.; Bernard, S.; Bosak, T.; Brown, A.; Clegg, S.; Cloutis, E.; Cohen, B.; Connell, S.; Crumpler, L.; Debaille, V.; Flannery, D.; Fouchet, T.; Gabriel, T. S.J.; Gasnault, O.; Herd, C. D.K.; Johnson, J.; Manrique, J. A.; Maurice, S.; McCubbin, F. M.; McLennan, S.; Ollila, A.; Pinet, P.; Quantin-Nataf, C.; the SuperCam team.

I: Journal of Geophysical Research E: Planets, Bind 128, Nr. 7, e2022JE007440, 2023.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Udry, A, Ostwald, A, Sautter, V, Cousin, A, Beyssac, O, Forni, O, Dromart, G, Benzerara, K, Nachon, M, Horgan, B, Mandon, L, Clavé, E, Dehouck, E, Gibbons, E, Alwmark, S, Ravanis, E, Wiens, RC, Legett, C, Anderson, R, Pilleri, P, Mangold, N, Schmidt, M, Liu, Y, Núñez, JI, Castro, K, Madariaga, JM, Kizovski, T, Beck, P, Bernard, S, Bosak, T, Brown, A, Clegg, S, Cloutis, E, Cohen, B, Connell, S, Crumpler, L, Debaille, V, Flannery, D, Fouchet, T, Gabriel, TSJ, Gasnault, O, Herd, CDK, Johnson, J, Manrique, JA, Maurice, S, McCubbin, FM, McLennan, S, Ollila, A, Pinet, P, Quantin-Nataf, C & the SuperCam team 2023, 'A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars', Journal of Geophysical Research E: Planets, bind 128, nr. 7, e2022JE007440. https://doi.org/10.1029/2022JE007440

APA

Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., ... the SuperCam team (2023). A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars. Journal of Geophysical Research E: Planets, 128(7), [e2022JE007440]. https://doi.org/10.1029/2022JE007440

Vancouver

Udry A, Ostwald A, Sautter V, Cousin A, Beyssac O, Forni O o.a. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars. Journal of Geophysical Research E: Planets. 2023;128(7). e2022JE007440. https://doi.org/10.1029/2022JE007440

Author

Udry, A. ; Ostwald, A. ; Sautter, V. ; Cousin, A. ; Beyssac, O. ; Forni, O. ; Dromart, G. ; Benzerara, K. ; Nachon, M. ; Horgan, B. ; Mandon, L. ; Clavé, E. ; Dehouck, E. ; Gibbons, E. ; Alwmark, S. ; Ravanis, E. ; Wiens, R. C. ; Legett, C. ; Anderson, R. ; Pilleri, P. ; Mangold, N. ; Schmidt, M. ; Liu, Y. ; Núñez, J. I. ; Castro, K. ; Madariaga, J. M. ; Kizovski, T. ; Beck, P. ; Bernard, S. ; Bosak, T. ; Brown, A. ; Clegg, S. ; Cloutis, E. ; Cohen, B. ; Connell, S. ; Crumpler, L. ; Debaille, V. ; Flannery, D. ; Fouchet, T. ; Gabriel, T. S.J. ; Gasnault, O. ; Herd, C. D.K. ; Johnson, J. ; Manrique, J. A. ; Maurice, S. ; McCubbin, F. M. ; McLennan, S. ; Ollila, A. ; Pinet, P. ; Quantin-Nataf, C. ; the SuperCam team. / A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars. I: Journal of Geophysical Research E: Planets. 2023 ; Bind 128, Nr. 7.

Bibtex

@article{0145369020d446e0876b6ac197810531,
title = "A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the M{\'a}az Formation at Jezero Crater and Link With S{\'e}{\'i}tah, Mars",
abstract = "The M{\'a}az formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the S{\'e}{\'i}tah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the M{\'a}az formation and the Content member of the S{\'e}{\'i}tah formation. We conclude that the M{\'a}az formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The M{\'a}az formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different M{\'a}az and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the S{\'e}{\'i}tah formation. The study of returned M{\'a}az samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.",
author = "A. Udry and A. Ostwald and V. Sautter and A. Cousin and O. Beyssac and O. Forni and G. Dromart and K. Benzerara and M. Nachon and B. Horgan and L. Mandon and E. Clav{\'e} and E. Dehouck and E. Gibbons and S. Alwmark and E. Ravanis and Wiens, {R. C.} and C. Legett and R. Anderson and P. Pilleri and N. Mangold and M. Schmidt and Y. Liu and N{\'u}{\~n}ez, {J. I.} and K. Castro and Madariaga, {J. M.} and T. Kizovski and P. Beck and S. Bernard and T. Bosak and A. Brown and S. Clegg and E. Cloutis and B. Cohen and S. Connell and L. Crumpler and V. Debaille and D. Flannery and T. Fouchet and Gabriel, {T. S.J.} and O. Gasnault and Herd, {C. D.K.} and J. Johnson and Manrique, {J. A.} and S. Maurice and McCubbin, {F. M.} and S. McLennan and A. Ollila and P. Pinet and C. Quantin-Nataf and {the SuperCam team}",
note = "Funding Information: We thank the Mars 2020 Science and Engineering teams for their work supporting the enabling the scientific research presented in this manuscript. Funding for this work was provided by NASA Mars 2020 Participating Scientist program 80NSSC21K0330 (AU) and 80NSSC21K0329 (MN), contracts NNH15AZ24I and NNH13ZDA018O to LANL as well as internal funding code XWHW for calibrations. Several co-authors were supported by CNES for their work with SuperCam on Perseverance. CDKH is supported by Canadian Space Agency Grant 20EXPMARS. SA was supported by the Swedish Research Council (Grant 2017-06388). Funding Information: We thank the Mars 2020 Science and Engineering teams for their work supporting the enabling the scientific research presented in this manuscript. Funding for this work was provided by NASA Mars 2020 Participating Scientist program 80NSSC21K0330 (AU) and 80NSSC21K0329 (MN), contracts NNH15AZ24I and NNH13ZDA018O to LANL as well as internal funding code XWHW for calibrations. Several co‐authors were supported by CNES for their work with SuperCam on Perseverance. CDKH is supported by Canadian Space Agency Grant 20EXPMARS. SA was supported by the Swedish Research Council (Grant 2017‐06388). Publisher Copyright: {\textcopyright} 2022. American Geophysical Union. All Rights Reserved.",
year = "2023",
doi = "10.1029/2022JE007440",
language = "English",
volume = "128",
journal = "Journal of Geophysical Research: Solid Earth",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "7",

}

RIS

TY - JOUR

T1 - A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars

AU - Udry, A.

AU - Ostwald, A.

AU - Sautter, V.

AU - Cousin, A.

AU - Beyssac, O.

AU - Forni, O.

AU - Dromart, G.

AU - Benzerara, K.

AU - Nachon, M.

AU - Horgan, B.

AU - Mandon, L.

AU - Clavé, E.

AU - Dehouck, E.

AU - Gibbons, E.

AU - Alwmark, S.

AU - Ravanis, E.

AU - Wiens, R. C.

AU - Legett, C.

AU - Anderson, R.

AU - Pilleri, P.

AU - Mangold, N.

AU - Schmidt, M.

AU - Liu, Y.

AU - Núñez, J. I.

AU - Castro, K.

AU - Madariaga, J. M.

AU - Kizovski, T.

AU - Beck, P.

AU - Bernard, S.

AU - Bosak, T.

AU - Brown, A.

AU - Clegg, S.

AU - Cloutis, E.

AU - Cohen, B.

AU - Connell, S.

AU - Crumpler, L.

AU - Debaille, V.

AU - Flannery, D.

AU - Fouchet, T.

AU - Gabriel, T. S.J.

AU - Gasnault, O.

AU - Herd, C. D.K.

AU - Johnson, J.

AU - Manrique, J. A.

AU - Maurice, S.

AU - McCubbin, F. M.

AU - McLennan, S.

AU - Ollila, A.

AU - Pinet, P.

AU - Quantin-Nataf, C.

AU - the SuperCam team

N1 - Funding Information: We thank the Mars 2020 Science and Engineering teams for their work supporting the enabling the scientific research presented in this manuscript. Funding for this work was provided by NASA Mars 2020 Participating Scientist program 80NSSC21K0330 (AU) and 80NSSC21K0329 (MN), contracts NNH15AZ24I and NNH13ZDA018O to LANL as well as internal funding code XWHW for calibrations. Several co-authors were supported by CNES for their work with SuperCam on Perseverance. CDKH is supported by Canadian Space Agency Grant 20EXPMARS. SA was supported by the Swedish Research Council (Grant 2017-06388). Funding Information: We thank the Mars 2020 Science and Engineering teams for their work supporting the enabling the scientific research presented in this manuscript. Funding for this work was provided by NASA Mars 2020 Participating Scientist program 80NSSC21K0330 (AU) and 80NSSC21K0329 (MN), contracts NNH15AZ24I and NNH13ZDA018O to LANL as well as internal funding code XWHW for calibrations. Several co‐authors were supported by CNES for their work with SuperCam on Perseverance. CDKH is supported by Canadian Space Agency Grant 20EXPMARS. SA was supported by the Swedish Research Council (Grant 2017‐06388). Publisher Copyright: © 2022. American Geophysical Union. All Rights Reserved.

PY - 2023

Y1 - 2023

N2 - The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.

AB - The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.

U2 - 10.1029/2022JE007440

DO - 10.1029/2022JE007440

M3 - Journal article

AN - SCOPUS:85154615928

VL - 128

JO - Journal of Geophysical Research: Solid Earth

JF - Journal of Geophysical Research: Solid Earth

SN - 0148-0227

IS - 7

M1 - e2022JE007440

ER -

ID: 360693966