A possible universal role for mRNA secondary structure in bacterial translation revealed using a synthetic operon

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt


In bacteria, translation re-initiation is crucial for synthesizing proteins encoded by genes that are organized into operons. The mechanisms regulating translation re-initiation remain, however, poorly understood. We now describe the ribosome termination structure (RTS), a conserved and stable mRNA secondary structure localized immediately downstream of stop codons, and provide experimental evidence for its role in governing re-initiation efficiency in a synthetic Escherichia coli operon. We further report that RTSs are abundant, being associated with 18%-65% of genes in 128 analyzed bacterial genomes representing all phyla, and are selectively depleted when translation re-initiation is advantageous yet selectively enriched so as to insulate translation when re-initiation is deleterious. Our results support a potentially universal role for the RTS in controlling translation termination-insulation and re-initiation across bacteria. The mechanisms for regulating translation re-initiation in bacteria remain poorly understood. Here, the authors screened a library of synthetic operons and identified a ribosome termination structure that modulates re-initiation efficiency and which is conserved across bacteria.

TidsskriftNature Communications
Udgave nummer1
Antal sider11
StatusUdgivet - 24 sep. 2020

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk

Ingen data tilgængelig

ID: 249903552