Vibronic Exciton-Phonon States in Stack-Engineered van der Waals Heterojunction Photodiodes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fatemeh Barati
  • Trevor B. Arp
  • Shanshan Su
  • Roger K. Lake
  • Vivek Aji
  • Rienk van Grondelle
  • Mark S. Rudner
  • Justin C. W. Song
  • Nathaniel M. Gabor

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand " through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.

OriginalsprogEngelsk
TidsskriftNano Letters
Vol/bind22
Sider (fra-til)5751-5758
Antal sider8
ISSN1530-6984
DOI
StatusUdgivet - 5 jul. 2022

ID: 315390896