Danish Center for Climate Computing (DC3)

ÆGIR (AEGIR), BYLGJA, HRONN and SKADI clusters are equipped with 1296 CPU cores. There are 17 nodes with 16 cores per node, 12 nodes with 32 cores per node, 8 nodes with 48 cores per node, and 4 nodes with 64 cores per node, 4.93 TB of RAM and high-speed Infiniband or RoCE internal networks.

Staff

Name Title Phone E-mail
Jochum, Markus Professor +4535326921 E-mail

 

 

 

 

 

 

 

Hardware

ÆGIR (AEGIR), BYLGJA, HRONN and SKADI clusters are equipped with 1296 CPU cores. There are 17 nodes with 16 cores per node, 12 nodes with 32 cores per node, 8 nodes with 48 cores per node, and 4 nodes with 64 cores per node, 4.93 TB of RAM and high-speed Infiniband or RoCE internal networks.

Details:

  • 2 CPUs per node: Xeon E5-2667v3 3.2GHz (8 cores per CPU)
    • RAM per node: 64GB DDR4 (per node)
    • Interconnection: Mellanox QDR Infiniband
  • 2 CPUs per node: Intel Xeon E5-2683v4 2.1GHz (16 cores per CPU)
    • RAM per node: 128GB DDR4 (per node)
    • Interconnection: Mellanox QDR Infiniband
  • 2 CPUs per node: Intel Xeon Gold 6248R 3.0GHz (24 cores per CPU)
    • RAM per node: 192GB DDR4 (per node)
    • Interconnection: RoCE v2
  • 1 CPU per node: AMD EPYC 9554P 3.75GHz (64 cores per CPU)
    • RAM per node: 192GB DDR5 (per node)
    • Interconnection: RoCE v2
  • SSD per node: 120 GB
  • Mass storage: 134 TB

Account Request

To get access to the DC3 systems you need to be either a HPC grant holder or a member of a group holding a current HPC grant.
To get an account please go to the following web-page: https://hpc.ku.dk


Connecting to DC3

In order to login to DC3 computational system, you must use the SSH protocol. This is provided by the "ssh" command on Unix-like systems (including Mac OS X) or by using an SSH-compatible application (e.g. PuTTY on Microsoft Windows). We recommend that you "forward" X11 connections when initiating an SSH session to DC3. For example, when using the ssh command on Unix-based systems, provide the "-Y" option:

ssh -Y jojo@fend01.hpc.ku.dk

In order to download/upload data from/to DC3 use the following command:

scp –pr user@host1:from_path_file1 user@host2:to_path_file2

for more information use man/info commands (man scp).

There are 5 frontend/login nodes available at the moment: fend01.hpc.ku.dk - fend05.hpc.ku.dk

N.B. The login nodes are intended only for lightweight tasks such as source code editing, compiling, and managing files and directories. All computationally intensive tasks must be submitted and executed on compute nodes. You can find more details in the SLURM Workload Manager section below.   


Software

DC3 provides a rich set of HPC utilities, applications, compilers and programming libraries. If there is something missing that you want, send email to nuterman@nbi.ku.dk with your request and evaluate it for appropriateness, cost, effort, and benfit to the community. See more information about available software and how to use it in the Available Software section below.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Student / Researcher Project Supervisor / PI
Marta Mrozowska (PostDoc)
Bayesian Optimization for Earth System Modelling (EU project ClimTip)
Markus Jochum
Qi-fan Wu (PhD) Machine Learning for Earth System Modelling (DFF-funded MadGod project) Markus Jochum
Svenja Frey (MSc) Machine Learning for Earth System Modelling Markus Jochum
Aster Lei Stoustrup (MSc) Bayesian Optimization Markus Jochum
Maria Friis Greibe (BSc) Gullmarn Fjord Modelling Markus Jochum
Majbritt Eckert (PhD)
Greenland Ice Sheet Modelling (NN Foundation project PRECISE)
Christine Hvidberg
Leonie Röntgen (PhD)
Antarctic Ice Sheet Modelling Christine Hvidberg
Isabel Schwermer (MSc) Greenland Ice Sheet Modelling Christine Hvidberg
Chenhan Di (MSc) Greenland Ice Sheet Modelling Christine Hvidberg
Irina Thaler (PostDoc)
Impact of Aerosols on Climate throughout Earth’s History
Christian J. Bjerrum
Miguel Garrido Zornoza (PostDoc)  
Jan Olaf Härter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. Vettoretti G., Nuterman R., Jochum M. (2024). Impacts of Parameterizing Estuary Mixing on the Large-Scale Circulations in the Community Earth System Model. Journal of Climate, 37, 17. https://doi.org/10.1175/JCLI-D-23-0365.1
    2. Nuterman, R., & Jochum, M. (2024). Impact of marine carbon removal on atmospheric CO2. Environmental Research Letters, 19(3), [034011]. https://doi.org/10.1088/1748-9326/ad26b7
    3. Vettoretti, G., Nuterman, R., & Jochum, M. (2024). Impacts of Parameterizing Estuary Mixing on the Large-Scale Circulations in the Community Earth System Model. Journal of Climate, 37(17), 4461-4479. https://doi.org/10.1175/JCLI-D-23-0365.1
    4. Jochum, M., Chase, Z., Nuterman, R., Pedro, J., Rasmussen, S., Vettoretti, G., & Zheng, P. (2022). Carbon Fluxes during Dansgaard-Oeschger Events as Simulated by an Earth System Model. Journal of Climate, 35(17), 5745-5758. https://doi.org/10.1175/JCLI-D-21-0713.1
    5. Lhardy, F., Bouttes, N., Roche, D. M., Abe-Ouchi, A., Chase, Z., Circhton, K. A., Ilyina, T., Ivanovic, R., Jochum, M., Kageyama, M., Kobayashi, H., Liu, B., Menviel, L., Muglia, J., Nuterman, R., Oka, A., Vettoretti, G., & Yamamoto, A. (2021). A First Intercomparison of the Simulated LGM Carbon Results Within PMIP-Carbon: Role of the Ocean Boundary Conditions. Paleoceanography and Paleoclimatology, 36(10), [e2021PA004302].https://doi.org/10.1029/2021PA004302
    6. Keisling, B.A., Nielsen L.T., Hvidberg C.S., Nuterman R., DeConto R.M. (2020). Pliocene–Pleistocene megafloods as a mechanism for Greenlandic megacanyon formation. Geology, 48. https://doi.org/10.1130/G47253.1
    7. Haerter, J.O., Meyer, B., Nissen, S.B. (2020). Diurnal self-aggregation. npj Clim Atmos Sci 3, 30. https://doi.org/10.1038/s41612-020-00132-z
    8. Poulsen, M. B., Jochum, M., Maddison, J. R., Marshall, D. P., & Nuterman, R. (2019). A Geometric Interpretation of Southern Ocean Eddy Form Stress. Journal of Physical Oceanography, 49(10), 2553-2570. https://doi.org/10.1175/JPO-D-18-0220.1
    9. Nielsen, S. B., Jochum, M., Pedro, J. B., Eden, C., Nuterman, R. (2019). Two-time scale carbon cycle response to an AMOC collapse. Paleoceanography and Paleoclimatology, 34. https://doi.org/10.1029/2018PA003481
    10. Moseley, C., Henneberg, O., Haerter, J. (2019). A statistical model for isolated convective precipitation events. Journal of Advances in Modeling Earth Systems, 11, 360–375. https://doi.org/10.1029/2018MS001383 
    11. Zunino, A. and Mosegaard, K. (2019), An efficient method to solve large linearizable inverse problems under Gaussian and separability assumptions, Computers & Geosciences, 122, 77-86. https://doi.org/10.1016/j.cageo.2018.09.005 
    12. Häfner D., Jacobse R. L., Eden C., Kristensen M. R. B., Jochum M., Nuterman R., Vinter B. (2018), Veros v0.1-a fast and versatile ocean simulator in pure Python. Geoscientific Model Development, Vol. 11, No. 8, p. 3299-3312. https://doi.org/10.5194/gmd-11-3299-2018 
    13. Nielsen L., Adalgeirsdottir G., Gkinis V., Nuterman R., Hvidberg C. (2018). The effect of a Holocene climatic optimum on the evolution of the Greenland ice sheet during the last 10 kyr. Journal of Glaciology, 64(245), 477-488. https://doi.org/10.1017/jog.2018.40 
    14. Nielsen, S. B., Jochum, M., Eden, C., Nuterman, R. (2018). An energetically consistent vertical mixing parameterization in CCSM4. Ocean Modelling, 127, 46-54. https://doi.org/10.1016/j.ocemod.2018.03.002 
    15. Poulsen, M. B., Jochum, M., Nuterman, R. (2018). Parameterized and resolved Southern Ocean eddy compensation. Ocean Modelling, 124, 1-15. https://doi.org/10.1016/j.ocemod.2018.01.008

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section secretary (web, communication, coordination, guests), pice@nbi.ku.dk