Bottom-up nanoscale synthesis of quantum circuits

Research output: Book/ReportPh.D. thesisResearch

Documents

This thesis is a summary of my work spanning almost 3½ years, spent with the Novo Nordisk Foundation Quantum Computing Programme and with the Center for Quantum Devices at the Niels Bohr Institute, University of Copenhagen.
It recounts my efforts in the intersection between physics, materials science and engineering towards the realization of nano- and microscale circuits with relevance for quantum computing applications. The efforts are part of a larger scale research effort into quantum devices and quantum computing technology, but very little quantum physics appears in this thesis. Rather, the focus is on the enabling technology, going through considerations for the high-cleanliness quantum circuit synthesis.
The novel stencil techniques proposed towards the end of this thesis allow for multiple qubit fabrication steps within one in-situ UHV step, offering improvements in qubit performance and reproducibility. The pristine conditions are kept for devices fabricated with these techniques, as little to no ex-situ fabrication is necessary. While challenges remain on the engineering side, I am hopeful and confident that these techniques will prevail and prove valuable for quantum device fabrication in the long run.
Original languageEnglish
PublisherNiels Bohr Institute, Faculty of Science, University of Copenhagen
Number of pages194
Publication statusPublished - 2024

ID: 387263284