AstroNu er en forskningsgruppe på Niels Bohr Institutet ved Københavns Universitet. Vi er tilknyttet Niels Bohr International Academy og DARK og arbejder i krydsfeltet mellem astrofysik og fundamental fysik. AstroNu er en forskningsgruppe på Niels Bohr Institutet ved Københavns Universitet. Vi er tilknyttet Niels Bohr International Academy og DARK og arbejder i krydsfeltet mellem astrofysik og fundamental fysik. AstroNu er en forskningsgruppe på Niels Bohr Institutet ved Københavns Universitet. Vi er tilknyttet Niels Bohr International Academy og DARK og arbejder i krydsfeltet mellem astrofysik og fundamental fysik. AstroNu er en forskningsgruppe på Niels Bohr Institutet ved Københavns Universitet. Vi er tilknyttet Niels Bohr International Academy og DARK og arbejder i krydsfeltet mellem astrofysik og fundamental fysik. AstroNu er en forskningsgruppe på Niels Bohr Institutet ved Københavns Universitet. Vi er tilknyttet Niels Bohr International Academy og DARK og arbejder i krydsfeltet mellem astrofysik og fundamental fysik.

AstroNu

The AstroNu team aims at unveiling the nature of fascinating weakly interacting elementary particles, such as the neutrino, and explores the role of these  particles in astrophysical sources, in the synthesis of new elements, and in the Early Universe. The AstroNu group also adopts neutrinos as probes of the inner workings of astrophysical transients together with photons, cosmic rays, and gravitational waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2021

  • S. Shalgar, I. Tamborra, Symmetry breaking induced by pairwise conversion of neutrinos in compact sources, arXiv: 2106.15622.
  • D. Das et al., A three Higgs doublet model with symmetry-suppressed flavour changing neutral currents, arXiv: 2106.06425.
  • S. Shalgar, I. Tamborra, The three flavor revolution in fast pairwise neutrino conversion, Phys. Rev. D 104 (2021) 023011 [arXiv: 2103.12743].
  • T. Pitik, I. Tamborra, M. Petropoulou, Neutrino signal dependence on gamma-ray burst emission mechanism, JCAP 05 (2021) 034 [arXiv: 2102.02223].

2020

  • N. Song et al., The Future of High-Energy Astrophysical Neutrino Flavor Measurements, JCAP 04 (2021) 054 [arXiv: 2012.12893].
  • A. M. Suliga, S. Shalgar, G. M. Fuller, A closer look at the pp-chain reaction in the Sun: Constraining the coupling of light mediators to protons, JCAP 07 (2021) 042 [arXiv: 2012.11620].
  • S. Abbar, F. Capozzi, R. Glas, H.-T. Janka, I. Tamborra, On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova models, Phys. Rev. D 103 (2021) no. 6, 063033 [arXiv: 2012.06594].
  • R. S. L. Hansen, S. Shalgar, I. Tamborra, Neutrino flavor mixing breaks isotropy in the early universe, JCAP 07 (2021) 017 [arXiv: 2012.03948].
  • I. Tamborra, S. Shalgar, New Developments in Flavor Evolution of a Dense Neutrino Gas, arXiv: 2011.01948.
  • S. Shalgar, I. Tamborra, A change of direction in pairwise neutrino conversion physics: The effect of collisions, Phys. Rev. D 103 (2021) 063002 [arXiv: 2011.00004].
  • S. Al Kharusi et al., SNEWS 2.0: A Next-Generation SuperNova Early Warning System for Multi-Messenger Astronomy, New J. Phys. 23 (2021) 031201 [arXiv: 2011.00035].
  • A. M. Suliga, I. Tamborra, Astrophysical constraints on non-standard coherent neutrino-nucleus scattering, Phys. Rev. D 103 (2021) 083002 [arXiv: 2010.14545].
  • M. George, M.-R. Wu, I. Tamborra, R. Ardevol-Pulpillo, H.-T. Janka, Fast neutrino flavor conversion, ejecta properties, and nucleosynthesis in newly-formed hypermassive remnants of neutron-star mergers, Phys. Rev. D 102 (2020) no. 10 [arXiv: 2009.04046].
  • I. Padilla-Gay, S. Shalgar, I. Tamborra, Multi-Dimensional Solution of Fast Neutrino Conversions in Binary Neutron Star Merger Remnants, JCAP 01 (2021) 017 [arXiv: 2009.01843].
  • M. Ahlers, M. Bustamante, N. G. Nortvig Willesen, Flavors of Astrophysical Neutrinos with Active-Sterile Mixing, JCAP 07 (2021) 029 [arXiv: 2009.01253].
  • M. Bustamante, I. Tamborra, Using High-Energy Neutrinos as Cosmic Magnetometers, Phys. Rev. D 102 (2020) 12, 123008 [arXiv: 2009.01306].
  • S. Shalgar, I. Tamborra, Dispelling a myth on dense neutrino media: fast pairwise conversions depend on energy, JCAP 01 (2021) 014 [arXiv: 2007.07926].
  • A.M. Suliga, I. Tamborra, M.-R. Wu, Lifting the core-collapse supernova bounds on keV-mass sterile neutrinos, JCAP 08 (2020) 018 [arXiv: 2004.11389].
  • L. Pattavina, N. Ferreiro Iachellini, I. Tamborra, Neutrino observatory based on archeological lead, Phys. Rev. D 102 (2020) no. 6, 063001 [arXiv: 2004.06936].
  • M. Bustamante, New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, arXiv: 2004.06844.
  • T. Hasegawa et al., MeV-scale reheating temperature and cosmological production of light sterile neutrinos, JCAP 08 (2020) 015 [arXiv: 2003.13302].
  • M. Bustamante, C. Rosenstroem, S. Shalgar, I. Tamborra, Bounds on secret neutrino interactions from high-energy astrophysical neutrinos, Phys. Rev. D 101 (2020) no.12, 123024 [arXiv: 2001.04994].

2019

  • S. Shalgar, I. Tamborra, M. Bustamante, Core-collapse supernovae stymie secret neutrino interactions, Phys. Rev. D 103 (2021) 123008 [arXiv: 1912.09115].
  • S. Shalgar, I. Padilla-Gay, I. Tamborra, Neutrino propagation hinders fast pairwise flavor conversions, JCAP 06 (2020) 048 [arXiv: 1911.09110].
  • L. Walk, I. Tamborra, H.-T. Janka, A. Summa, D. Kresse, Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse, Phys. Rev. D 101 (2020) no.12, 123013 [arXiv: 1910.12971].
  • E. Vitagliano, I. Tamborra, G. Raffelt, Grand Unified Neutrino Spectrum at Earth, Rev. Mod. Phys. 92 (2020) 045006 [arXiv: 1910.11878].
  • A. M. Suliga, I. Tamborra, M.-R. Wu, Tau lepton asymmetry by sterile neutrino emission -- Moving beyond one-zone models, JCAP 12 (2019) 019 [arXiv: 1908.11382].
  • J. R. Westernacher-Schneider, E. O'Connor, E. O'Sullivan, I. Tamborra, M.-R. Wu, S. M. Couch, F. Malmenbeck, Multimessenger Asteroseismology of Core-Collapse Supernovae, Phys. Rev. D 100 (2019) 12 [arXiv: 1907.01138].
  • M. Bustamante, Exact neutrino oscillation probabilities: a fast general-purpose computation method for two and three neutrino flavors, arXiv: 1904.12391.
  • S. Shalgar and I. Tamborra, On the Occurrence of Crossings Between the Angular Distributions of Electron Neutrinos and Antineutrinos in the Supernova Core, Astrophys. J. 883 (2019) 80 [arXiv: 1904.07236].
  • C. Fryer et al., Core-Collapse Supernovae and Multi-Messenger Astronomy, Bull. Am. Astron. Soc. 51 (2019) 122.
  • R. Alves Batista et al., Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Front. Astron. Space Sci. 6 (2019) 23 [arXiv: 1903.06714].
  • M. Ackermann et al., Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51 (2019) 185 [arXiv: 1903.04334].
  • M. Ackermann et al., Fundamental Physics with High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51 (2019) 215 [arXiv: 1903.04333].
  • M. Bustamante and M. Ahlers, Inferring the flavor of high-energy astrophysical neutrinos at their sources, Phys. Rev. Lett. 122 (2019) no. 24, 241101  [arXiv: 1901.10087].
  • L. Walk, I. Tamborra, H.-T. Janka, A. Summa, Effects of SASI and LESA in the neutrino emission of rotating supernovae, Phys. Rev. D 100 (2019) no.6, 063018 [arXiv: 1901.06235].

More publications >>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Media