Dynamic buckling of actin within filopodia
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- 19420889.2015.1022010
Final published version, 483 KB, PDF document
Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft.
Original language | English |
---|---|
Journal | Communicative & Integrative Biology |
Volume | 8 |
Issue number | 2 |
Pages (from-to) | e1022010 |
ISSN | 1942-0889 |
DOIs | |
Publication status | Published - 21 Oct 2015 |
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 153446905