Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. / Moses, Matias E.; Lund, Philip M.; Bohr, Søren S-R; Iversen, Josephine F; Kæstel-Hansen, Jacob; Kallenbach, Amalie S.; Iversen, Lars; Christensen, Sune M.; Hatzakis, Nikos S.

In: A C S Applied Materials and Interfaces, Vol. 13, No. 28, 33704, 2021.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Moses, ME, Lund, PM, Bohr, SS-R, Iversen, JF, Kæstel-Hansen, J, Kallenbach, AS, Iversen, L, Christensen, SM & Hatzakis, NS 2021, 'Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium', A C S Applied Materials and Interfaces, vol. 13, no. 28, 33704. https://doi.org/10.1021/acsami.1c08809

APA

Moses, M. E., Lund, P. M., Bohr, S. S-R., Iversen, J. F., Kæstel-Hansen, J., Kallenbach, A. S., Iversen, L., Christensen, S. M., & Hatzakis, N. S. (2021). Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. A C S Applied Materials and Interfaces, 13(28), [33704]. https://doi.org/10.1021/acsami.1c08809

Vancouver

Moses ME, Lund PM, Bohr SS-R, Iversen JF, Kæstel-Hansen J, Kallenbach AS et al. Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. A C S Applied Materials and Interfaces. 2021;13(28). 33704. https://doi.org/10.1021/acsami.1c08809

Author

Moses, Matias E. ; Lund, Philip M. ; Bohr, Søren S-R ; Iversen, Josephine F ; Kæstel-Hansen, Jacob ; Kallenbach, Amalie S. ; Iversen, Lars ; Christensen, Sune M. ; Hatzakis, Nikos S. / Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. In: A C S Applied Materials and Interfaces. 2021 ; Vol. 13, No. 28.

Bibtex

@article{11b248713fb24d039099116143b3a5c6,
title = "Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium",
abstract = "Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.",
author = "Moses, {Matias E.} and Lund, {Philip M.} and Bohr, {S{\o}ren S-R} and Iversen, {Josephine F} and Jacob K{\ae}stel-Hansen and Kallenbach, {Amalie S.} and Lars Iversen and Christensen, {Sune M.} and Hatzakis, {Nikos S}",
year = "2021",
doi = "10.1021/acsami.1c08809",
language = "English",
volume = "13",
journal = "ACS applied materials & interfaces",
issn = "1944-8244",
publisher = "American Chemical Society",
number = "28",

}

RIS

TY - JOUR

T1 - Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium

AU - Moses, Matias E.

AU - Lund, Philip M.

AU - Bohr, Søren S-R

AU - Iversen, Josephine F

AU - Kæstel-Hansen, Jacob

AU - Kallenbach, Amalie S.

AU - Iversen, Lars

AU - Christensen, Sune M.

AU - Hatzakis, Nikos S

PY - 2021

Y1 - 2021

N2 - Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.

AB - Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.

U2 - 10.1021/acsami.1c08809

DO - 10.1021/acsami.1c08809

M3 - Journal article

C2 - 34235926

VL - 13

JO - ACS applied materials & interfaces

JF - ACS applied materials & interfaces

SN - 1944-8244

IS - 28

M1 - 33704

ER -

ID: 274526574